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Preface 

 

The doctoral dissertation has been written to fulfill the graduation requirements and to obtain the doctor's 

degree of the PSL Research University. I was engaged in writing it from March to August, 2019. 

The title of the dissertation is “Modeling of ductile fracture using local approach: reliable simulation of crack 

extension”. From this title, you can see two key words: “ductile fracture” and “local approach”. These two key 

words had already accompanied me for three years before starting the PhD study. Indeed, my master project, 

which was realized at Zhongshan University (also called Sun Yat-sen University) in China, centers on the 

extension of the GTN model to low triaxiality. The GTN model belongs to the category of local approach. This 

experience motivated me to pursue a PhD study in the field of ductile fracture.  

This PhD is a CIFRE thesis, a special PhD system set up by ANRT (Association Nationale de la Recherche 

et de la Technologie) in France. ANRT provides a part of financial support for PhD students. This kind of PhD 

system consists in carrying out the PhD work at an academic university and at a company at the same time. The 

name of My PhD University is PSL Research University, which was formed in 2010 and is located in Paris, 

France. My company is a French electric utility company named EDF (Electricité De France) from which I 

received another part of my financial support. The current work has been undertaken in the laboratories of 

Centre des matériaux (PSL) and EDF from November 2016 to October 2019. 

The dissertation provides some comprehensive ways to solve the uncontrolled strain localization issue 

induced by classical local approach (GTN model in this work) and several numerical issues appeared in finite 

element simulation. Theoretical knowledge and practical applications are both covered in detail. This 

dissertation is suitable as a literature review in different fields (Chapter 1): (1) Resolution of the physical issue 

of uncontrolled strain localization induced by classical local approach by means of different nonlocal models; 

(2) Treatment of some numerical issues such as mesh sensitivity, volumetric-locking, material failure and 

adaptive mesh refinement. This selected portion (Chapter 1) should appeal to a relatively wide audience. The 

dissertation is also suitable for readers who would like to implement the same model as mine in their in-house 

finite element software. I provide you the description (Chapter 2), the numerical implementation details 

(Appendices A2-A4), as well as some test-cases (Chapter 2) of the present nonlocal GTN model. For the more 

advanced reader, some applications of the model are also included (Chapter 3-5, Appendices A5-A6). To know 

more about the structure of the dissertation, you can read the “introduction” part in which the basic organization 

and underlying philosophy are described in detail.  

Enjoy your reading. 
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Introduction 

Industrial and scientific background 

Methodological and numerical needs 

As we know, when it comes to the design of industrial facilities such as nuclear reactors, pipelines, planes, 

cars, rockets, it is important to well understand the damage phenomena to produce high-quality components by 

controlling material resistance. Besides aging effects (temperature, corrosion, irradiation, etc.), the initial 

component quality has a direct impact on the service life of these facilities. Besides, when these facilities are 

put to use, it is crucial to be able to predict the potential damage and fracture of the materials under normal or 

accidental loading conditions so as to lower the risk of accidents and thus to ensure safety. For instance, in 

nuclear power plants, for nuclear safety, it is necessary to avoid pipe fracture which may occur due to the 

existence and the growth of defects (crack, notch, etc.) in the case of severe loading conditions. 

Numerical simulations including the description of damage of material are increasingly used to predict the 

behavior of structures, especially in industrial cases where the experiments at real scale cannot be realized. For 

instance, in view of high cost and representativeness, it is difficult, even impossible to replicate operating 

conditions (pressure, temperature, etc.) and aging effects in some nuclear power components (reactor pressure 

vessel, stream generator, etc.). 

Under the background of these methodological and numerical needs, the EDF R&D’s project named 

MODERN (Mode de Ruine) aims at studying the mechanical strength of various nuclear reactor components. 

One of the sub-projects centers on ductile fracture in metallic structures. Nowadays, the modeling and numerical 

simulation of ductile fracture remain complex due to the existence of finite strains and softening phenomena. 

 

“Global” and “Local” approach 

At present, the “global” approach to fracture is commonly used for the assessment of the mechanical integrity 

of mechanical structures. This approach is based on the concepts of linear elastic fracture mechanics (LEFM) 

and nonlinear fracture mechanics (NLFM). The fracture resistance is assumed to be measurable in terms of one 

(𝐾 or 𝐽) or several (𝐾 − 𝑇 or 𝐽 − 𝑄) parameters (Anderson, 2017). This approach is simple and useful, but it has 

lots of limitations. For instance, this approach cannot be easily used in large-scale yielding or non-isothermal 

conditions. Moreover, the quantity which is commonly used for the prediction of crack initiation, i.e., critical 

toughness 𝐽𝑐 is actually a specimen size/geometry dependent parameter, consequently, the transferability of the 

laboratory experimental results to large-scale structures remains problematic. 

Another approach, referred to as “local” approach to fracture, can overcome some limitations of “global” 

approach. The local approach was initially proposed in (McClintock, 1968, 1963). The local models are often 

derived from micromechanical models. Using the local approach requires to well estimate the stress-strain 

distribution in the neighborhood of defects (crack or notches) for both the initiation and propagation stages. The 

stress/strain field can be obtained using analytical or numerical (for instance, using the finite element method) 

solutions. The local approach is devoted to deal with complex situations (unknown crack path, non-proportional 

loading conditions, presence of welds, etc.).  
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Modeling of ductile fracture using “local” approach 

For ductile damage/fracture, the local approach relies on constitutive models for plasticity and damage which 

describe the three main stages of ductile fracture: micro void nucleation, growth and coalescence. The 

development of porous plasticity models traces back to the seminal work of (Rice and Tracey, 1969) in which 

the growth of a single void was studied. The Gurson model (Gurson, 1977) allowed accounting for a finite 

porosity and developing the first micro-mechanically based constitutive equations for porous plasticity. This 

first development was followed by the work of (Needleman and Tvergaard, 1984; Tvergaard and Needleman, 

1984) who developed the so-called GTN model which is a pragmatic modification of the Gurson model allowing 

accounting for void nucleation, growth and coalescence as well as work hardening. The model was in particular 

successful in capturing “cup and cone” fracture. Almost at the same time, the more phenomenological but 

thermodynamically consistent Rousselier model was also proposed (Rousselier, 1981). These works paved the 

way for the application of porous plasticity models to simulate crack initiation and growth in structures. They 

also led to the development of numerous porous plasticity models which, over the years, have allowed 

accounting for an increasing number of phenomena affecting ductile damage. Most of these models can be seen 

as extensions of the Gurson and GTN models. The models can first phenomenologically be extended to the case 

of rate-dependent materials (Besson et al., 2001) but a micro-mechanical approach can also be adopted (Leblond 

et al., 1994). The initial models were developed assuming a matrix following a von-Mises flow rule. It was then 

extended to account for a Hill-type matrix (Benzerga and Besson, 2001), a Tresca matrix (Cazacu et al., 2014), 

a matrix exhibiting tension-compression asymmetry (Cazacu and Stewart, 2009) or a complex Barlat-type (Bron 

and Besson, 2004; Kim et al., 2007) anisotropic matrix (Shinohara et al., 2016). Many extensions address the 

fact that voids cannot be considered as spheres and are in fact closer to ellipsoids. The first extensions (Gologanu 

et al., 1994, 1993) considered axisymmetric voids (oblate or prolate) but the model was later further extended 

to describe arbitrary ellipsoids including the description of the rotation of their main axes (Cao et al., 2013; 

Danas and Aravas, 2012; Madou et al., 2013; Madou and Leblond, 2013). The combined effects of plastic 

anisotropy and void shape were studied in (Keralavarma and Benzerga, 2010; Monchiet et al., 2008). 

Coalescence is also largely investigated based on the initial approach proposed in (Thomason, 1985a, 1985b) 

which described void coalescence as internal necking. The modeling approach was then improved by combining 

it with the Gurson model (Benzerga, 2002; Gologanu et al., 2001; Pardoen and Hutchinson, 2000; Zhang et al., 

2000). The resulting model can be formulated as a multi-surface model which can be used to perform finite 

element simulations (Besson, 2009; Reddi et al., 2019). This approach was also used in the case of anisotropic 

matrices (Keralavarma and Chockalingam, 2016; Shinohara et al., 2016).  Further developments include the 

description of coalescence under combined tension and shear (Torki et al., 2015). More recent developments 

concern single crystals containing voids for which a yield surface was first proposed by (Han et al., 2013). In 

that case, the activation of each slip system depends on a GTN-like yield surface. An approximate treatment of 

the model was proposed in (Paux et al., 2015) so that only one surface can be considered. To account for the 

size effect due to the size of voids, the matrix can be assumed to be a strain gradient plasticity material (Monchiet 

and Bonnet, 2013) or one can also assume interfacial residual stresses at the interface between the matrix and 

the cavity (Monchiet and Kondo, 2013). Internal pressure inside voids can also be taken into account (Vincent 

et al., 2014a, 2014b). Models for void nucleation have been less developed even though attempts to describe 

these damage mechanisms have been made (see for instance (Hannard et al., 2018)). Finally the effect of the 

Lode parameter can be described by adding a nucleation-like term in the model as in (Chen et al., 2017; 

Morgeneyer and Besson, 2011; Nahshon and Hutchinson, 2008; Xue, 2008). A detailed review of the 

applications, the advantages and the shortcomings of such continuum damage models can be found in (Besson, 

2010). 

In the last years, these models have been successfully applied to model crack extension, see for instance 

(Besson et al., 2013; Hütter et al., 2013; Xia and Shih, 1995). However, due to the complexity of some of the 

extensions, most applications involving large crack propagation are restricted to the GTN model or its simplest 
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extensions. That is why in this work, for the sake of simplicity, we focus our attention on the isotropic GTN 

model while proposing new solutions to tackle numerical problems linked to the use of these models. 

 

Limitation of “local” approach 

Damage at the continuum level results in strain-softening, i.e. the drop of the stress carrying capability with 

increasing damage. At the structure scale where constitutive behavior is combined with mechanical equilibrium, 

strain-softening is responsible for the spatial localization of strain, plastic strain and damage, in agreement with 

experimental evidences (Morgeneyer et al., 2014). The scale of the macroscopic field variations becomes 

comparable to the microstructure scale (micro-void spacing, for instance). This is in contradiction to the length 

scale separation assumption which underlies the derivation of local constitutive relations, i.e. models that only 

depend on the point-wise state variables (strain, damage, plasticity, hardening and so on). Besides, such local 

models would lead to ill-posed boundary value problems resulting from loss of ellipticity of the rate operator 

(Benallal et al., 1993; Rudnicki and Rice, 1975), spurious mesh-sensitivity and unrealistic physical predictions 

(Besson et al., 2003). 

 

Problems with the finite element simulations of ductile failure 

Diverse problems appear when the local damage models are used in finite element simulations: 

 Mesh-sensitivity: strain/damage localization occurs with the use of constitutive law including softening. 

Numerically, spurious mesh-sensitivity and unrealistic physical predictions may be observed when this 

kind of constitutive law is used in the finite element analysis. Indeed, as the mesh is refined, the 

localization zone narrows and finally vanishes. Thus, the dissipated energy also tends to zero. This is in 

contradiction to the experimental observation where a narrow localization bands depending on material 

exist.  

 Volumetric-locking: Ductile damage/fracture is characterized by a high level of plastic strain. Thus, 

ductile damage models should be formulated at finite strains. Different finite strain formulations (Sidoro 

and Dogui, 2001; Simo and Miehe, 1992) have been proposed in the last years under the assumption of 

isotropic hardening, which may results in different numerical efficiency. Due to the quasi-

incompressibility constraint enforced at each integration points, the effective dimension of the 

displacement space is reduced. The reduction is so drastic that the effective displacement space is no 

more rich enough to ensure spatial convergence. This issue is referred to as “volumetric-locking” which 

appears in standard displacement-based finite element formulations. In numerical simulations, this issue 

is illustrated by the oscillations of stress field which may strongly affect the computational convergence 

and the predicted damage evolution.  

 Material failure: highly distorted elements are often observed in the simulations of large crack 

extensions. This may strongly affect the computational convergence. 

 Crack propagation over long distance: the mesh size in crack propagation area is often about 0.1 mm. 

To advance at least 1 cm in three-dimensional industrial structures, crack should spread over hundreds 

and thousands of finite elements. In presence of this difficulty, crack propagation over long distance is 

often performed using explicit algorithm (Xue and Wierzbicki, 2009) and/or linear finite elements (Cao 

et al., 2013). But these elements are not always suitable for the models requiring different interpolations 

for displacements or other degrees of freedom. The remeshing technique is sometimes used to reduce 

the problem size (Cao, 2014; J. Mediavilla et al., 2006). 
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Aim of PhD thesis 

The PhD thesis has been carried out in the laboratory Centre des Matériaux of école des Mines de Paris at 

Paris-Sciences-et-Lettres (PSL) Research University and in the department of Electrotechnique et Mécanique 

des Structures (ERMES) of the EDF R&D company. The major goal is to propose and establish a robust (high-

quality results in various situations), reliable (the results are not excessively sensitive to the choices of modeling 

such as spatial/temporal discretization and therefore can be reproduced by different engineers) and efficient (in 

terms of computing time) modeling, which allows solving the issues mentioned earlier and predicting crack 

propagation in three-dimensional industrial cases. 

 

Outline of dissertation 

The organization of the dissertation and the main information addressed in each chapter are outlined: 

 Chapter 1: This chapter is devoted to literature review. Different local approaches for the modeling of 

ductile damage/fracture are reviewed. The physical problem (lack of material characteristic length) 

induced by the use of the local approach is emphasized. To solve this problem, different non-local 

models are presented. Moreover, several numerical problems and the corresponding solutions are 

shortly shown. The intention of this chapter is not to give an exhaustive review on ductile fracture but 

rather to explain why we choose the model that is described in chapter 2. 

 Chapter 2: In this chapter, a non-local GTN damage model is presented in detail. Finite strains are taken 

into account so as to describe ductile deformation. To solve the physical problem due to the use of local 

approach, a non-local formulation is adopted. On a numerical ground, the decomposition-coordination 

method is put in practice to reduce the non-linearity in the constitutive law and a mixed element 

formulation is adopted to avoid volumetric locking. Finally a new 5-field finite element is derived from 

the non-local locking-free variational formulation. At the end of the chapter, some simple simulations 

are given. 

 Chapter 3: This chapter concentrates on several numerical techniques such as the treatment of material 

failure, the influence of the penalty parameters introduced in the nonlocal locking-free formulations, 

the convergence criterion, the numerical schemes for the update of the damage variable, adaptive load 

increment, etc. These studies enable us to know how to well use the proposed GTN model so as to make 

the modeling and the simulation of ductile fracture robust, reliable and performant. 

 Chapter 4: The improved GTN model is applied to simulate large crack propagation under small-scale 

yielding and plane-strain mode I conditions. The numerical techniques applied to model small-scale 

yielding and to extract pertinent data from the resulting mechanical fields are described. A parametric 

study is performed for several values of the material properties in order to estimate their influence on 

the crack growth resistance. 

 Chapter 5: The improved GTN model is applied to simulate different experiments carried out in the 

framework of the ATLAS+ (Advanced Structural Integrity Assessment Tools for Safety Long Term 

Operation) project. The experimental results are shortly presented. The model parameters are fitted 

using parts of the experimental results of small specimens. These parameters are then used to predict 

the behavior of other small specimens and a full size case study (cracked pipe).   

 Chapter 6: In the last chapter, the main results, including the numerical developments and the obtained 

results, proposed in the dissertation are summarized. The remaining issues (open questions) are listed 

with some remarks and some recommendations.  

  



Literature review 

5 

 

1 Literature review 

 

 学而不思则罔，思而不学则殆。 

 

L'étude sans raisonnement mène à la confusion ; la 

pensée sans apprentissage est effort gaspillé. 

 

Learning without thought is labor lost; thought without 

learning is perilous. 

 孔子 Confucius 
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Résumé 

 

Ce chapitre a pour l’objectif de présenter l’état de l’art sur la modélisation et la simulation numérique de la 

rupture ductile par approches locales. D’abord, la dérivation des modèles classiques de l’endommagement est 

présentée. Le problème de la localisation pathologique de la déformation, la plasticité et l’endommagement est 

évoqué. Ensuite, différents remèdes à ce problème sont donnés en détail. Le point commun de ces solutions est 

d’introduire une longueur caractéristique qui permet de contrôler la largeur de la bande de localisation. Cinq 

approches de régularisation sont présentées et comparées : méthode de convolution, méthode de gradient 

implicite, approche micromorphique, approche énergétique enrichie (GEE), approche en phase-field. Leurs 

avantages, inconvénients et applications à la rupture ductile sont aussi donnés. Puis, des problèmes numériques 

liés aux simulations par approches locales avec la méthode aux éléments finis sont présentés. Le premier 

problème est la dépendance aux maillages. Il existe différentes solutions (taille d’élément fixée, modèles de 

CZM, modèles non locaux, etc.) pour pallier ce problème. Le deuxième problème est le verrouillage numérique 

qui est lié à l’incapacité des éléments finis standards à trouver une solution de déplacement cohérente avec le 

changement de volume quasi nul. Une courte recherche bibliographique sur différentes solutions est faite. Le 

troisième problème est le coût de calcul lié au nombre de degrés de liberté (nombre d’éléments finis et ordre 

d’interpolation) lors des calculs industriels. Le remaillage adaptative semble un bon choix pour ce problème. 

Le processus de remaillage est brièvement donné. Le quatrième problème concerne le traitement des éléments 

cassés. Ces éléments peuvent devenir très distordus et la robustesse du calcul est ainsi fortement perturbée. 

Quelques solutions de la littérature sont introduites. Enfin, à l’issue de ces études bibliographiques, le modèle 

qui va être utilisé dans ce travail est proposé. 
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1.1 Local approach to ductile damage 

1.1.1 Homogenization 

As we know, heterogeneity is the common point of all real materials, it is mainly due to the existence of 

defects such as inclusions or micro-voids. It can affect the overall properties of the material. For example, 

heterogeneities can act as stress concentrators which may lead to void growth and void coalescence in ductile 

material. 

 

Figure 1.1. Characteristic length scales and homogenization procedure 

 

Different intrinsic length scales can be introduced for a material, as shown in Figure 1.1. In this figure,  𝑙 

stands for the characteristic length of the microstructure and 𝐿  stands for the characteristic length of the 

considered geometry, loading or macroscopic fields (stress field, strain field, etc.). In order to treat 

micromechanical problems in the framework of continuum mechanics, a volume 𝑉 containing defects over a 

length scale 𝑙𝑐 is considered as a material point. In this case, the microstructure is treated in an averaged way 

and the material behavior can be interpreted as the behavior of a material point at the macroscopic level. This 

micro-to-macro process is named “homogenization” (see Figure 1.1). As for the length scale 𝑙𝑐, it should be, on 

the one hand, small enough so that the volume 𝑉 can be considered as a point at the macroscopic level, and on 

the other hand, large enough so that the volume 𝑉 can be considered as a statistically representative volume 

(i.e., containing a sufficiently high number of defects): 

 𝑙 ≪ 𝑙𝑐 ≪ 𝐿 (1.1) 
 

This relation may not hold in some situations. For example, at crack tip nearby zones, macroscopic stress 

and strain strongly vary over a very small distance so that the volume element 𝑉 cannot be considered as a 

representative volume. A specific homogenization process is required for this kind of situation (Gross and 

Seelig, 2011). 

As will be seen later, numerous constitutive models such as the Gurson damage model (Gurson, 1977) can 

be derived from micromechanical analyses (homogenization). 
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1.1.2 Mechanics of ductile damage 

As stated in Section 1.1.1, defects exist in any real material. During a deformation process, defects may grow 

and coalesce while new defects are created at the same time. This leads to a change of material properties, in 

particular, the decrease of material strength. Such a process is called “damage”. Material damage can be further 

classified as brittle damage, ductile damage, creep damage, fatigue damage, etc. In our work, only ductile 

damage will be studied. 

Ductile damage is mainly due to void nucleation, growth and coalescence in ductile materials such as steel, 

aluminum (see for instance (Garrison Jr and Moody, 1987)). In the framework of continuum mechanics, the 

state of damage at a material point (corresponding to a representative volume 𝑉 at the microscopic level) may 

be described by a scalar damage variable in the case of isotropic damage or several damage variables in the case 

of anisotropic damage (Lemaitre et al., 2000), which obey some adequate evolution laws. In our work, only 

isotropic damage is considered. Since the real damage process occurs in the representative volume 𝑉, the 

damage evolution law is generally derived from micromechanical models. In the following, several 

micromechanical models for void growth and void coalescence will be reviewed. 

 

Void growth 

Models proposed by (McClintock, 1968) and (Rice and Tracey, 1969) describe the growth of single 

cylindrical or spherical void in an unbounded region. The material is assumed to be rigid with respect to 

elasticity and perfectly plastic. In the case of spherical void (Rice and Tracey, 1969), the evolution of the void 

radius 𝑅 follows the following rate equation: 

 
�̇�

𝑅
= 𝛼 exp (

3𝜎ℎ
2𝜎0

) 휀�̇�𝑞 (1.2) 

 

where 𝛼 = 0.283 in the original model, 𝜎0 is the yield stress of the matrix and 휀𝑒𝑞 is the von-Mises equivalent 

strain. Several improvements concerning the value of 𝛼 (Huang, 1991) and the strain hardening effects (Becker 

et al., 1989; Budiansky et al., 1982) can be found in the literature. Equation (1.2) can be considered as a damage 

evolution law with 𝑅 a damage parameter. Failure occurs when �̅� > �̅�𝑐 where  �̅� = 𝑅/𝑅0 with 𝑅0 the initial 

void radius and  �̅�𝑐 = (𝑅/𝑅0)𝑐 is a material dependent parameter. These micromechanical models can be used 

in the framework of damage mechanics as long as the interaction among voids is negligible.  

The void interaction is not taken into account in (McClintock, 1968; Rice and Tracey, 1969),  this problem 

is first addressed in (Gurson, 1977) in an upper bound analysis of a finite sphere containing a spherical void in 

the case of a rigid with respect to elasticity (incompressible) perfectly plastic matrix. This analysis yields a 

plastic yield surface 𝐺𝑟: 

 𝐺𝑟 = (
𝜎𝑒𝑞

𝜎0
)
2

+ 2𝑓cosh (
3

2

𝜎ℎ
𝜎0
) − 1 − 𝑓2 = 0 (1.3) 

 

Failure corresponds to a domain where 𝐺𝑟(𝜎) ≤ 0 reduced to 𝜎 = 0. This condition is met when 𝑓 = 1. This 

value is obviously too high; this led to the development of the GTN model (see below) to better describe failure. 

The evolution of the plastic part of the strain tensor can be derived using the normality rule while the evolution 

law for 𝑓 derives from incompressibility (see Equations (1.13)(1.14)(1.15) below). In particular, the evolution 

of 𝑓 is entirely determined by the plastic yield surface. 

Void coalescence 
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Generally, void coalescence may occur through void sheeting or internal necking. The first micromechanical 

analysis of void coalescence (45∘ shear band connecting two voids, i.e., void sheet mechanism) was proposed 

in (Brown and Embury, 1973). The shear band can be formed when the distance between two voids is 

approximately the void size. Coalescence by internal necking is analyzed in (Thomason, 1985a, 1985b), this 

analysis is based on a limit-load analysis of the ligament between voids. Void coalescence occurs when the 

inter-void ligament reaches its plastic limit load. A simple summary of the Thomason-like model is given below. 

 

Figure 1.2. Geometry and loading conditions of the Thomason model 

 

We consider a material which can be regarded as a regular array of cylindrical cells (height 2H and diameter 

2L) containing spherical voids (see Figure 2 for a cell, 𝑅𝑥 = 𝑅𝑦 = 𝑅). It is assumed that the principal directions 

of the voids correspond to the principal directions of the macroscopic stress tensor. The average stress tensor 𝝈 

acting on the cell is assumed to be axisymmetric with 𝜎𝑦𝑦 > 𝜎𝑟𝑟 = 𝜎𝑥𝑥. The axial equilibrium of the cell is: 

 𝜋𝐿2𝜎𝑦𝑦 = 𝐶𝑓𝜋(𝐿
2 − 𝑅2)�̅� (1.4) 

 

where 𝜎𝑦𝑦 = (2/3 + 𝑇𝑟)𝜎𝑒𝑞 with 𝑇𝑟 = 𝜎ℎ/𝜎𝑒𝑞 the macroscopic triaxiality and �̅� is the flow stress of the matrix 

material. Note that a perfectly plastic matrix was assumed in the original work of (Thomason, 1985b, 1985a). 

Equation (1.4) can be interpreted as follows: the external contact force (left hand side) must be equal to the force 

applied to the ligament region along the loading direction (right hand side). The ligament stress triaxiality 

increases due to the stress concentration induced by the void. This effect is described by the plastic constraint 

factor 𝐶𝑓. An empirical expression for 𝐶𝑓 is given in (Thomason, 1985b, 1985a): 

 𝐶𝑓 = 0.1 (
1

𝜒
− 1)

2

+ 1.2 (
1

𝜒
)

1
2
 (1.5) 

 

In the framework of small strains and under the assumption of incompressibility, one have (Zhang et al., 

2000): 

 𝜒 = (
3

2
𝑓𝛾)

1
3
= (

3

2
𝑓𝛾0

(1 + 휀𝑦)

(1 + 휀𝑥)
)

1
3

≈ (
3

2
𝑓𝛾0𝑒

𝜀𝑦−𝜀𝑥)

1
3
 (1.6) 
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In the framework of finite strains and under the assumption of incompressibility, one have (Besson, 2009):  

 𝜒 = (
3

2
𝑓𝛾0𝑒

3
2
𝑘𝜀𝐷,𝑦𝑦)

1
3
 (1.7) 

 

where the definition of 𝜒, 𝛾 can be found in Figure 1.2 , (𝛾0, 𝑘) are material constants and 휀𝐷,𝑦𝑦 is the vertical 

component of the deviatoric part of 𝜺 . The evolution of 𝑓 can be computed using the Gurson model (Zhang et 

al., 2000; Zhang and Niemi, 1994a, 1994b). The value of 𝑓 at the onset of void coalescence is regarded as the 

critical porosity 𝑓𝑐 (Zhang et al., 2000). The suggestion given in (Zhang et al., 2000) does not account for the 

change of the plastic flow direction during void coalescence. One can refer to (Benzerga, 2002; Pardoen and 

Hutchinson, 2000; Torki, 2019) for more sophisticated void coalescence and post-coalescence models. 

 

Micromechanics-based constitutive model 

Models derived from micromechanical analyses (for example the Gurson model (Gurson, 1977)) have been 

used to develop semi-empirical extensions relying on phenomenological descriptions of the different damage 

processes (i.e., nucleation, growth and coalescence). In this part, following (Besson, 2010), we propose to give 

a typical formulation of theses micromechanics-based models.  

It is first assumed that the material has an elastic behavior so that the strain rate tensor can be divided into 

elastic part �̇�𝒆 and plastic part �̇�𝒑: 

 �̇� = �̇�𝒆 + �̇�𝒑 (1.8) 
 

We recall that micromechanical analyses assume that the material is rigid-plastic. The stresses are then 

obtained using the Hooke relation: 

 𝝈 = 𝔼 ∶ 𝜺𝒆 (1.9) 
 

where 𝔼 is the Hooke stiffness matrix (fourth order tensor).  

The plastic strain 𝜺𝒑 is determined from a yield function 𝐹 and a flow rule: 

 �̇�𝒑 = 𝜆
𝜕𝐹

𝜕𝝈
 (1.10) 

 

where 𝜆 is the plastic multiplier. This relation is also based on micromechanical analyses.  

We assume that isotropic hardening is described by a scalar variable 𝜅 which is interpreted as the plastic 

deformation of the matrix material so that: 

 �̇�𝒑: 𝝈 = (1 − 𝑓)�̇��̅� (1.11) 
 

where �̅� is the flow stress depending on 𝜅. In our work, the hardening variable 𝜅 is used as a strain measure. 

For the yield function 𝐹, it is assumed that 𝐹 depends on the hydrostatic and deviatoric part of the stress 

tensor 𝝈, the hardening variable 𝜅 and the damage parameter 𝑓. The consistency condition is: 

 �̇� ≥ 0, 𝐹(𝜎ℎ, 𝜎𝑒𝑞 , 𝑓, 𝜅) ≤ 0, �̇�𝐹 = 0 (1.12) 
 

Plastic flow occurs when 𝐹 = 0. 
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The evolution of 𝑓 is split into the growth part 𝑓�̇� and the nucleation part 𝑓�̇�: 

 𝑓̇ = 𝑓�̇� + 𝑓�̇� (1.13) 
 

where 𝑓𝑔 can be derived from some micromechanical analyses based on microscopic plastic incompressibility 

(the microscopic elastic compressibility is neglected): 

 𝑓�̇� = (1 − 𝑓)tr(�̇�
𝒑) (1.14) 

 

and 𝑓𝑛 can be derived from a purely phenomenological analysis: 

 𝑓�̇� = 𝐵𝑛�̇� (1.15) 
 

where 𝐵𝑛 is the strain rate controlled nucleation rate. Several expressions of 𝐵𝑛 are possible among which the 

expressions proposed in (Chu and Needleman, 1980; Zhang et al., 2000) are widely used in the literature. In 

(Zhang et al., 2000), a continuous nucleation model is proposed: 

 𝐵𝑛(𝜅) = 𝑏0 (1.16) 
 

where 𝑏0 is a constant number. In (Chu and Needleman, 1980), the strain controlled void nucleation mechanism 

is assumed to follow a normal distribution: 

 𝐵𝑛(𝜅) =
𝑓𝑁

𝑠𝑁√2𝜋
𝑒
−
1
2
(
𝜅−𝜅𝑁
𝑠𝑁

)
2

 (1.17) 

 

where 𝜅𝑁 and 𝑠𝑁 are the mean value and the standard deviation of the strain tensor, 𝑓𝑁 is the void nucleating 

particles volume fraction. Compared to the model proposed in (Zhang et al., 2000), the model proposed in (Chu 

and Needleman, 1980) is more sophisticated but less attractive in engineering due to the three parameters to be 

calibrated.  

As for the expression of the yield function 𝐹, various models have been proposed. For example, the GTN 

model, the Rousselier model or their extensions. 

Gurson-Tvergaard-Needleman (GTN) model 

The yield function proposed in (Gurson, 1977) and improved in (Needleman and Tvergaard, 1984; Tvergaard 

and Needleman, 1984) is: 

 𝐹 = (
𝜎𝑒𝑞
�̅�
)
2

+ 2𝑞1𝑓
∗ cosh (

3𝑞2𝜎ℎ
2�̅�

) − 1 − (𝑞1𝑓
∗)2 (1.18) 

 

where (𝑞1, 𝑞2) are two material constants which allow to more accurately describe void growth kinetics observed 

in unit cell computations. Based on (Koplik and Needleman, 1988), the values 𝑞1 = 1.5 or 𝑞1 = 1.25 and 𝑞2 =

1.0 are often used. Then it is pointed out in (Faleskog et al., 1998) that (𝑞1, 𝑞2) depend on the plastic hardening 

exponent and on the ratio of the yield stress over the Young modulus 𝐸. The 𝑓∗ is the effective porosity which 

is defined to account for void coalescence: 

 𝑓∗ = {

𝑓, 𝑓 < 𝑓𝑐

𝑓𝑐 +

1
𝑞1
− 𝑓𝑐

𝑓𝐹 − 𝑓𝑐
(𝑓 − 𝑓𝑐), 𝑓 ≥ 𝑓𝑐

 (1.19) 

 

where 𝑓𝑐 and 𝑓𝐹 represent respectively the porosity at the onset of coalescence and at fracture. 
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Rousselier model 

The Rousselier model (Rousselier, 1981) is derived from a thermo-dynamical approach suggested in 

(Lemaitre and Chaboche, 1978). But it can also be considered as a micromechanics-based model since the void 

evolution law suggested in (Rice and Tracey, 1969) is used. The yield function of the Rousselier model is: 

 𝐹 =
𝜎𝑒𝑞
1 − 𝑓

+ 𝐷𝜎1𝑓exp (
𝜎ℎ

(1 − 𝑓)𝜎1
) − �̅� (1.20) 

 

where (𝜎1, 𝐷) are two material constants. The recommended values are 𝐷 ≈ 2 and 𝜎1 = (𝜎0 + 𝜎𝑚)/3 with 𝜎𝑚 

the ultimate engineering stress. 

An extension of the Rousselier model can be found in (Tanguy and Besson, 2002): 

 𝐹 =
𝜎𝑒𝑞

(1 − 𝑓)�̅�
+
2

3
𝐷𝑅𝑓exp (

3𝑞𝑅𝜎ℎ
2(1 − 𝑓)�̅�

) − 1 (1.21) 

 

where 𝐷𝑅 and 𝑞𝑅 are two new parameters. This extended Rousselier model is comparable to the GTN model, 

as demonstrated in (Tanguy and Besson, 2002). This version of the model is well adapted to rate dependent 

materials and to situations in which adiabatic heating is present. 

 

1.1.3 Material softening and strain localization 

One of the drawbacks to local continuum damage mechanics as presented in the previous part is the problem 

of the localization of plasticity and damage. This problem is mainly due to the instability in the macroscopic 

material behavior (softening) induced by the increase of damage. Softening means the drop of the stress carrying 

capability with increasing deformation. As said in Section 1.1.1, the homogenization process requires an 

intrinsic length scale which satisfies Equation (1.1). However, the localization problem violates this requirement 

and in this case, the continuum damage models which are motivated from the micromechanical models lose part 

of their validity.  

This part is devoted to the illustration of the strain/damage localization problem through a simple one-

dimensional example and to give a necessary condition in three-dimensional cases for the bifurcation of 

deformation. 

 

Illustration of strain localization 

In the spirit of (Doghri, 2013; Gross and Seelig, 2017; Lorentz, 1999; Zhang, 2016), we consider one bar of 

length 𝐿 subjected to a stress-controlled loading and unloading processes with damage model (as shown in 

Figure 1.3(a)(b)): 

 𝜎 = 𝐸(1 − 𝐷)휀 (1.22) 
 

where 𝜎 denotes the stress, 휀 denotes the strain, 𝐸 denotes the Young modulus and 𝐷 denotes the irreversible 

damage parameter which is defined as 𝐷 = 휀/휀𝐹 ∈ [0,1] with 휀𝐹 the strain at fracture.  

At the beginning of loading, one have: 

 𝜎𝑀 = 𝐸 (1 −
휀𝑀
휀𝐹
) 휀𝑀 ,

𝑑𝜎𝑀
𝑑휀𝑀

> 0 (1.23) 
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where 𝜎𝑀 is the macroscopic stress and 휀𝑀 is the macroscopic strain. 

Now we consider a limit case by assuming that the bifurcation occurs when 휀 = 휀𝑝 with 휀𝑝 the peak strain, 

as shown in Figure 1.3(a). From certain loading level, one part of the bar of length 𝐿2 (bar 2 in Figure 1.3) 

remains in plastic loading with increasing damage 𝐷2 = 휀2/휀𝐹, while another part of the bar of length 𝐿1 (bar 1 

in Figure 1.3) is in elastic unloading with constant damage 𝐷1 = 휀𝑝/휀𝐹: 

 𝜎𝑀 = {
𝐸(1 − 𝐷1)휀1, bar 1

𝐸(1 − 𝐷2)휀2, bar 2
 (1.24) 

 

The macroscopic strain 휀𝑀 is: 

 휀𝑀 =
𝐿1휀1 + 𝐿2휀2

𝐿
 (1.25) 

 

Combining Equations (1.24)(1.25), one obtain the overall response of the tensile bar: 

 휀𝑀 =
2𝐿1
𝐸𝐿𝑡

𝜎𝑀 +
휀𝐹𝐿2
2𝐿𝑡

(1 + √1 −
4

휀𝐹𝐸
𝜎𝑀) ,

𝑑𝜎1
𝑑휀1

≥ 0,
𝑑𝜎2
𝑑휀2

≤ 0 (1.26) 

 

Equations (1.23)(1.26) describe the overall material responses before and after bifurcation, respectively. 

Figure 1.3(c) plots this response with different values of 𝐿2/𝐿𝑡 . This figure indicates that infinite possible 

responses exist. Since the one with 𝐿2/𝐿𝑡 → 0 has least dissipation, this process is energetically preferable. 

Therefore, strain (and so damage) proceeds in a zero-thickness region. 

 

Figure 1.3. (a) One dimensional material law with damage; (b) Tensile bar; (c) Overall stress-strain response 
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Condition of bifurcation of deformation 

In 3D cases, the bifurcation of deformation leads to the formation of a localization band characterized by its 

normal �̲�. Similar to 1D cases, the strain rate tensor is discontinuous across the crack surface (𝛥�̇� ≠ 0) while 

the normal stresses (�̲� = 𝝈. �̲�) remains continuous (𝛥�̲̇� = 0̲) due to local equilibrium. In (Hadamard, 1903), it 

was shown that the strain rate tensor depends on �̲� and the direction of the strain rate jump �̲�: 

 Δ�̲̇� =
1

2
(�̲� ⊗ �̲� + �̲� ⊗ �̲�) (1.27) 

 

The 1D case given earlier corresponds to the case �̲� ∥ �̲�. As for the case �̲� ⊥ �̲�, it corresponds to a jump in 

shear strain rate. In the case of elastic-plastic materials, we assume that the constitutive equation is: 

 �̇� = 𝕁𝑠: �̇� (1.28) 
 

where 𝕁𝑠 is the tangent matrix. So the continuity of the stress �̲� can be rewritten as: 

 Δ�̲̇� = (𝕁𝑠1: �̇�1 − 𝕁𝑠2: �̇�𝟐). �̲� = 0 (1.29) 
 

where 𝕁𝑠1 and 𝕁𝑠2 stand for the tangent matrices of the materials located on the two sides of the discontinuous 

surface. Linear solid of comparison gives 𝕁𝑠1 = 𝕁𝑠2 = 𝕁𝑠, so by combining Equations (1.27)(1.29), one can 

obtain: 

 𝕁𝑠: (�̲� ⊗ �̲�). �̲� = 0̲ (1.30) 
 

Equation (1.30) can be rewritten as: 

 𝔸(�̲�). �̲� = 0̲ (1.31) 
 

with 𝔸 = �̲�. 𝕁𝑠. �̲�. To have a solution �̲� ≠ 0̲ for Equation (1.31), it is necessary that: 

 ∃�̲�, det(𝔸(�̲�)) = 0 (1.32) 
 

The positivity of 𝕁𝑠  leads to the fact that if ∃�̲�′, det (𝔸(𝑛 ̲′)) < 0, then ∃�̲�′′, det(𝔸(�̲�′′)) = 0. Equation 

(1.32) is a prerequisite for a bifurcation of deformation. In this case, a crack (�̲� ∥ �̲�), a shear band (�̲� ⊥ �̲�) or a 

mixed band is formed. In other words, the necessary condition to avoid the bifurcation of deformation is: 

 ∀�̲�, det(𝔸(�̲�)) > 0 (1.33) 
 

The condition described in Equation (1.33) corresponds actually to the ellipticity of the (linear) rate problem. 

In (Besson et al., 2003, 2001; Billardon and Doghri, 1989), a localization indicator is defined as followed to 

predict the strain/damage localization: 

 𝐼𝑏 = min
�̲�,||�̲�||=1

det(𝔸(�̲�)) (1.34) 

 

Localization can occur when 𝐼𝑏 = 0. 
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1.2 Nonlocal modification to local approach 

As mentioned in the previous section, damage at the continuum level results in strain-softening, i.e. the drop 

of the stress carrying capability with increasing damage. At the structure scale where constitutive behavior is 

combined with mechanical equilibrium, strain-softening is responsible for the spatial localization of strain, 

plastic strain and damage. The scale of the macroscopic field variations becomes comparable to the 

microstructure scale (micro-void spacing, for instance). This is in contradiction to the length scale separation 

assumption which underlies the derivation of local constitutive relations, i.e. models that only depend on the 

point-wise state variables (strain, damage, plasticity, hardening, etc., see Section 1.1 for more details). Besides, 

such local models would lead to ill-posed boundary value problems resulting from loss of ellipticity of the rate 

operator (see Section 1.1.3), spurious mesh-sensitivity and unrealistic physical predictions. Therefore the non-

local constitutive relations are required as a consequence of overlapping micro and macro length scales. They 

account for a spatial coupling of neighboring material points: the material state is no more characterized by 

point-wise state variables and an interaction distance (also named internal length) appears. Different variants of 

non-local constitutive relations have been proposed in the literature, according to the choice of the effective 

non-local variables and the non-local operators.  

In this section, several ways to introduce the nonlocal effect in the constitutive behavior of materials are 

summarized. Firstly, the integral nonlocal approach is presented in Section 1.2.1. Secondly, a variant of this 

approach, named “implicit gradient approach”, is given in Section 1.2.2. The major goal of the implicit gradient 

approach is to avoid the integral form and thus to reduce the numerical implementation burden. Other classes 

of nonlocal models are based on the introduction of the gradient of some state variables in the constitutive 

energies of the problem (the micromorphic approach in Section 1.2.3, the gradient enhanced energy (GEE) 

approach in Sections 1.2.4 and the phase-field approach in Section 1.2.5). Applications of these approaches to 

ductile failure are also given in each subsection. Finally, a tentative comparison among the different approaches 

is made in Section 1.2.6 so as to choose an appropriate nonlocal model for our work.   

1.2.1 Integral nonlocal approach 

The integral nonlocal approach is proposed to describe the microstructure behavior in an averaged sense.  

The main idea of this approach is to introduce the interaction among material points through a nonlocal quantity 

(referred to as 𝑧̅) defined at a material point �̲�. This quantity is computed from the local quantity 𝑧 over a finite 

volume Ω surrounding �̲�  with a weighted average (Bazant and Pijaudier-Cabot, 1988; Pijaudier-Cabot and 

Bažant, 1987): 

 𝑧̅(�̲�) =
1

Ψ(x̲)
∫𝜓(�̲�, �̲�)𝑧(�̲�)
Ω

𝑑Ω (1.35) 

 

where �̲� is the position of the material point, �̲� is the position of the volume 𝑑𝛺 and Ψ = ∫ 𝜓(�̲�, �̲�)𝛺
𝑑𝛺 with 

𝜓(�̲�, �̲�) the weight function which is assumed to be homogeneous and isotropic. The frequently used form for 

𝜓 in the literature is the Gaussian distribution. For example, in (Peerlings et al., 2001), 

 𝜓(�̲�, �̲�) =
1

(2𝜋)
3
2𝑙𝑐
3
exp(−

|�̲� − �̲�|
2

2𝑙𝑐
2 ) (1.36) 

 

where 𝑙𝑐 is the intrinsic length scale related to the distance at which spatial interactions among different material 

points occur and thus to the scale of the microstructure, the factor (2𝜋)−3/2𝑙𝑐
−3 is given for the normalization 

of the weight function on ℝ3: ∫ 𝜓(�̲�, �̲�)𝑑𝛺
ℝ3

= 1.  
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Historically, nonlocal formulation of elasticity with the integral approach was first proposed in (Eringen and 

Edelen, 1972; Kröner, 1967). Nonlocal formulation of brittle damage of concrete with the integral approach was 

first developed in (Pijaudier-Cabot and Bažant, 1987). This approach is also applied to ductile damage in 

(Leblond et al., 1994).  

Even if the idea of the integral nonlocal approach is simple, it is numerically complex. Indeed,  

 According to Equation (1.35), 𝑧̅(�̲�) depends on �̲�, so the integration of the constitutive law at point �̲� 

depends on the information at other points. The integration of the constitutive law is no longer 

autonomic. 

 A special procedure or search algorithm is needed to identify the Gauss points �̲� over a finite volume 

Ω surrounding the Gauss point �̲�.  In most cases, this procedure is computationally expensive, especially 

in 3D cases. This shortcoming may be overcome by introducing a mathematical array in which the 

numbering of the Gauss points �̲�  is saved if the intrinsic length scale 𝑙𝑐  is introduced in initial 

configuration (Seidenfuss et al., 2011). However, for some commercial finite element software, it is not 

always possible to get the information of the desired Gauss points such as the coordinates, the 

connectivity, etc. Another way is to divide the structure into small cubes and to confine the search area 

to one cube, as described in (Jirásek, 2007). 

 The integral in Equation (1.35) is not quite exact for the points �̲� located near the free surface 𝜕𝛺: (1) 

If the free surface corresponds to the crack lip, then the value of 𝑧̅(�̲�) is affected by the value of 𝑧(�̲�) 

with �̲� the position of the points located on or near the other crack lip, in spite of the gap between the 

two lips. It is meaningless. One solution can be found in (Desmorat and Gatuingt, 2007). (2) If the free 

surface corresponds to the boundary, then the weight function ψ should be modified for �̲� located near 

this free surface (Grassl et al., 2014). 

 

Application to ductile failure 

The integral approach is first used in the framework of ductile damage in (Leblond et al., 1994). The original 

Gurson damage model (Gurson, 1977) is used and the regularized variable is the porosity 𝑓. This proposal is 

studied in (Tvergaard and Needleman, 1997, 1995). The main contribution of (Tvergaard and Needleman, 1995) 

consists in checking and confirming the efficiency of this nonlocal model to eliminate spurious effects arising 

from unlimited localization of strain and damage. Then the results of some micromechanical simulations (i.e., 

formation of shear bands and void coalescence) are used in porous plastic solid to calibrate the value of the 

characteristic length scale 𝑙𝑐 (Tvergaard and Needleman, 1997).It is shown that 𝑙𝑐 is related to the mean void 

spacing or the mean void radius, which depends on the failure mechanism (formation of shear band or void 

coalescence). Then (Enakoutsa et al., 2007) finds that with the nonlocal GTN model proposed in (Leblond et 

al., 1994) an excessive smoothing of the porosity in the ligament ahead of the crack tip is observed in the 

simulation of tensile test (axisymmetric modeling), a theoretical analysis of this phenomenon which reveals the 

origin of the problem is given. To solve this problem, it is proposed to regularize the average of 𝑑(ln 𝑓)/𝑑𝑡 

instead of that of 𝑓̇. With this proposal, excessive smoothing of the porosity is not observed anymore and the 

simulation results agree well with the experimental results. The nonlocal GTN model proposed in (Jackiewicz 

and Kuna, 2003) is based on the regularization of the plastic strain tensor 𝜺𝒑. The reduction of mesh sensitivity 

is also emphasized in their work. A summary of the applications of the integral-type nonlocal approach to ductile 

damage/fracture can be found in Table 1.1. 
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Table 1.1. Applications of the integral-type nonlocal model to ductile failure 

Damage model Kinematic choice Configuration1 Regularized variable Reference 

Gurson model Finite strains - 𝑓 (Leblond et al., 1994) 

GTN model Finite strains Initial 𝑓 
(Tvergaard and Needleman, 

1997, 1995) 

GTN model Finite strains Initial 𝑓 or 𝑑 ln 𝑓 /𝑑𝑡 (Enakoutsa et al., 2007) 

GTN model Finite strains - 𝜺𝒑 (Jackiewicz and Kuna, 2003) 

 

 

1.2.2 Implicit gradient approach 

To avoid the integral form shown in Equation (1.35), a Taylor series expansion of 𝑧 (Bazant et al., 1984) can 

be used to derive the gradient-enhanced models: 

 𝑧(�̲�) = 𝑧(�̲�) +
𝜕𝑧

𝜕𝑥𝑖
(𝑦𝑖 − 𝑥𝑖) +

1

2!

𝜕2𝑧

𝜕𝑥𝑖𝜕𝑥𝑗
(𝑦𝑖 − 𝑥𝑖)(𝑦𝑗 − 𝑥𝑗) + ⋯ (1.37) 

 

where Einstein’s summation convention applies to the indices 𝑖, 𝑗.  If 𝜓 is a Gaussian weight function and 𝛺 =

ℝ3, Equations (1.35)(1.36)(1.37) yield: 

 𝑧̅(�̲�) = 𝑧(�̲�) + 𝑐1𝛁
2z(x̲) + 𝑐2𝛁

4𝑧(�̲�) + ⋯ (1.38) 
 

Otherwise, the odd derivative terms in Equation (1.38) may not vanish. In Equation (1.38), 𝑐1~𝑙𝑐
2 and 𝑐2~𝑙𝑐

4. 

Even if Equation (1.38) is just a special case, it is still convenient to use it since only an approximation of 

Equation (1.35) is required.  

After disregarding the terms of order four and higher, 𝑧̅ is approximately equal to: 

 𝑧̅(�̲�) = 𝑧(�̲�) + 𝑐1𝛁
2𝑧(�̲�) (1.39) 

 

In addition, special conditions should be postulated for the internal boundary between the process zone and 

the remaining material and for the external boundary (Peerlings et al., 2001). 

With Equation (1.39) and the corresponding boundary conditions, the nonlocal quantity 𝑧̅ can be explicitly 

determined from 𝑧. This approach is named “explicit gradient approach”. It can be seen that 𝑧̅ = 𝑧 when 𝑙𝑐 → 0 

or when 𝛁2𝑧 = 0. In the infinitesimal neighborhood of the point �̲� (i.e., all points �̲� satisfying |�̲� − �̲�| ≤ 𝜖 ∈

ℝ with ϵ can be much smaller than 𝑙𝑐), the gradient term 𝛁2𝑧(�̲�) introduces a certain spatial interaction in the 

constitutive law due to the continuity of z. However, mathematically, the gradient or the second order derivative 

is just a quasi-local quantity which does not depend on 𝑧(�̲�) for |�̲� − �̲� | > 𝜖. Therefore, even if 𝑙𝑐 governs the 

intensity of the spatial interaction, the explicit gradient approximation is only weakly non-local.  

An alternative gradient formulation can be derived by applying the Laplacian operator to Equation (1.38) 

(Peerlings et al., 2001, 1996): 

 𝑧̅(�̲�) − 𝑐1𝛁
2𝑧̅(�̲�) = 𝑧(�̲�) + (𝑐2 − 𝑐1

2)𝛁4𝑧̅(�̲�) + ⋯ (1.40) 
 

                                                      
1 The convolution integral form in Equation (1.35) can be performed in the initial or deformed configuration, i.e., the coordinates 

�̲� and �̲� are interpreted as initial or current position. In small strains, the initial and deformed configurations are the same. 
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By disregarding the high terms and by writing 𝑐1 = 𝑙𝑐
2, a partial derivative equation in terms of the non-local 

variable 𝑧̅ of the Helmholtz type is obtained: 

 𝑧̅(�̲�) − 𝑙𝑐
2𝛁2𝑧̅(�̲�) = 𝑧(�̲�) (1.41) 

 

Homogeneous natural boundary conditions (De Borst and Mühlhaus, 1992; Mühlhaus and Alfantis, 1991) 

can be set to complete the definition of 𝑧̅: 

 
𝜕𝑧̅

𝜕�̲�
= 0 on ∂Ω (1.42) 

 

where �̲� is the unit normal to the boundary of 𝛺, i.e., 𝜕𝛺 so as to have ∫ 𝑧̅𝛺
 𝑑𝛺 = ∫ 𝑧

𝛺
𝑑𝛺. This boundary 

condition respects the consistency with Equation (1.35). Note that the quasi-local character induced in the 

explicit formulation is not present in this “implicit gradient” formulation. (See (Peerlings et al., 2001) for the 

demonstration).  

With the implicit gradient approach, the governing equations of the system become: 

 {
𝛁𝝈 + �̲� = 0̲

𝑧̅ − 𝑙𝑐
2𝛁2𝑧̅ = 𝑧

 (1.43) 

 

where �̲�  is the body force. The constitutive behavior determines the relationship between the two partial 

differential equations in (1.43). It should be emphasized that another (set of) degree of liberty 𝑧̅ is introduced. 

Compared to the integral nonlocal approach, the numerical implementation of the implicit gradient approach 

is easier and the computation cost is less expensive. 

 

Application to ductile failure  

Lemaitre-like model 

In order to take into account material degradation, (Lemaitre, 1985) introduces a scalar damage variable 𝐷 ∈

[0,1] in the context of isotropic damage where the two extremes in the interval represent the sound and fully 

damaged states respectively. Macro-crack initiates at 𝐷 = 𝐷𝑐 with 𝐷𝑐 a critical value depending on the material. 

An effective stress �̅� can be defined as: �̅� = 𝝈/(1 − 𝐷). The Hooke law is written as: 

 𝝈 = (1 − 𝐷) 𝔼: 𝜺𝒆 (1.44) 
 

The regularization of the Lemaitre-like model by the implicit gradient approach can be found in (Enakoutsa 

et al., 2007; Engelen et al., 2003; Feld-Payet et al., 2011; Geers, 2004; Geers et al., 2003; J. Mediavilla et al., 

2006a, 2006b, 2006; Seupel et al., 2018; Seupel and Kuna, 2019). In their work, the degradation of the 

mechanical material properties is indeed represented by a scalar damage variable 𝐷, which is coupled to the 

deformation history of the material through a history variable 𝑤: 

 𝐷 = 𝐷(𝑤) (1.45) 
 

The evolution of 𝑤 is related to a non-local damage driving variable 𝑧̅ (the energy density release rate, for 

instance) via the Kuhn-Tucker loading-unloading conditions: 

 �̇� ≥ 0, 𝑧̅ − 𝑤 ≤ 0, �̇�(𝑧̅ − 𝑤) = 0 (1.46) 
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The ductile damage is introduced through a progressive reduction of the yield stress, one proposal form for 

the yield function can be: 

 𝐹 = 𝜎𝑒𝑞 − (1 − 𝐷)�̅�(𝜅) (1.47) 
 

In (Engelen et al., 2003), ductile damage is modeled by a gradient extension elastic-plasticity model in the 

framework of small strains.  It is assumed that the Hooke law is not affected by the damage. The hardening 

variable 𝜅 is regularized so that the hardening depends on the nonlocal variable �̅� in addition to the local variable 

𝜅. The reduction of mesh sensitivity (mesh size and mesh orientation) is confirmed with 1D and 2D finite 

element simulations. The nonlocal model is improved in (Feld-Payet et al., 2011) to solve the problem of 

volumetric locking. Compared to (Engelen et al., 2003), the work in (Geers, 2004; Geers et al., 2003) is 

formulated at finite strains as developed in (Simo and Miehe, 1992). In this case, the Laplacian and the length 

parameter 𝑙𝑐  can be formulated in the undeformed or deformed configurations, leading to either a material 

(Lagrangian) or a spatial (Eulerian) non-local solution. The differences between these two options are 

theoretically highlighted and numerically illustrated by tensile and compression tests in (Geers, 2004). 

Computational examples show that localization takes place in a finite band and never reaches the status of a 

discrete crack (Geers, 2004). The force-displacement curves demonstrate that the results are mesh size-

independent (Geers, 2004). In (J. Mediavilla et al., 2006, 2006a, 2006b; Seupel et al., 2018; Seupel and Kuna, 

2019), the elastic-plastic constitutive law is coupled to damage based on the effective stress concept as well as 

the principle of equivalent strain at finite strains. The remeshing or element-deletion technique is used to 

eliminate large element distortions. In (J. Mediavilla et al., 2006), the regularized variable is also the hardening 

variable κ while in (J. Mediavilla et al., 2006a, 2006b), it becomes 𝑧 satisfying: �̇� =< 1 + 𝐵𝜎ℎ/𝜎𝑒𝑞 > 𝜅
𝐶  �̇� 

with <.>  the Macaulay brackets: < 𝑥 > = (𝑥 + |𝑥|)/2 and (𝐵, 𝐶) two material constants so as to take into 

account the dependence on the triaxiality 𝜎ℎ/𝜎𝑒𝑞. Both the elastic properties and the plastic yielding are affected 

by damage evolution. A comparison with a simplified model in which only the strain hardening is decreased 

with damage yields no significant differences for a special case under monotonic loading conditions and 

prescribed stress states. This conclusion remains true when elastic strains are small (J. Mediavilla et al., 2006). 

In (Seupel et al., 2018; Seupel and Kuna, 2019), the difficulties on the use of the element-deletion method in 

the context of nonlocal damage models are outlined and the efficiency of their nonlocal models are specially 

studied. 

 

Gurson-like model  

The regularization of the Gurson model (Gurson, 1977) by the implicit gradient approach can be found in 

(Hütter et al., 2014a, 2014b, 2013; Linse et al., 2012). In the work of (Linse et al., 2012), the regularized variable 

is the dilatational part of the plastic strain 휀ℎ = tr(𝜺
𝒑)/3, the GTN model is modified by replacing 휀ℎ̇ by its 

non-local counterpart 휀�̇�𝑙 in the evolution equation for void growth. All other equations of the GTN model 

remain untouched. This formulation is able to eliminate the spurious effects due to the material softening, 

according to the simulation results of CT in their work. One problem of the model concerns the treatment of the 

failure zone. In fact, in the broken finite element, the displacement field is not determined anymore while there 

is still non-local flow through the boundary of the broken element 𝜕𝛺𝑒. To exclude nonlocal flow to the fracture 

surface, (Hütter et al., 2013) introduces an additional Dirichlet boundary condition: 휀ℎ
𝐹|𝜕Ω𝑒  = ln ((1 −

𝑓0)/(1 − 𝑓𝐹)) which can be seen as the non-local volumetric plastic strain at fracture.  The nonlocal GTN model 

is then used to simulate large crack growth in the context of plane-strain small-scale yielding conditions. The 

model captures correctly the states of initial crack tip blunting, crack initiation and crack propagation when the 

initial porosity is larger than 0.01 (which is high for usual steels) and when the mesh size is small enough. In 

addition, the experimental results (𝐽 − 𝛥𝑎) of CT is well captured by simulations. Then this nonlocal GTN 

model is combined with cohesive zone model (CZM) to model the ductile-brittle transition area in (Hütter et 
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al., 2014a).  With the same model, the size-effect due to a secondary void population is investigated in (Hütter 

et al., 2014b). In this case, the intrinsic length scale 𝑙𝑐 is related to the size of the secondary voids. 

Rousselier-like model 

The regularization of the Rousselier model (Rousselier, 1981) by the implicit gradient approach can be found 

in (M. K. Samal et al., 2008; Samal et al., 2009; Seidenfuss et al., 2011). In their work, the porosity 𝑓 is 

regularized. CT simulations are realized to see the influence of element size and element orientation on the 

failure behavior. The obtained results are shown to be mesh-independent. 

Table 1.2. Application of the implicit gradient model to ductile failure 

Ductile model Kinematic choice Configuration Regularized variable Reference 

Lemaitre model Small strains - 𝜅 
(Engelen et al., 2003; 

Feld-Payet et al., 2011) 

Lemaitre model Finite strains Initial/Deformed 𝜅 
(Geers, 2004; Geers et 

al., 2003) 

Lemaitre model Finite strains Deformed 𝜅 

(J. Mediavilla et al., 

2006b, 2006a, 2006; 

Seupel et al., 2018; 

Seupel and Kuna, 2019) 

GTN model Finite strains - 휀𝑣 

(Hütter et al., 2014a, 

2014b, 2013; Linse et 

al., 2012) 

Rousselier model - - 𝑓 

(M. K. Samal et al., 

2008; Samal et al., 2009; 

Seidenfuss et al., 2011) 

 

 

1.2.3 Micromorphic approach 

The idea of the micromorphic approach is to model size effects by introducing additional degrees of freedom 

which describe the kinematic state at the microstructural level. A general framework of this approach is 

established in (Forest, 2009). The main procedures of this approach will be recalled in this part. We will see that 

an intrinsic length scale 𝑙𝑐 is introduced. 

The material behavior is characterized by the classical degree of freedom (displacement �̲�) and the state 

variables (the strain tensor 𝜺 and the set of internal variables �̲�).  

Firstly, we introduce the micromorphic variable 𝑧̅ associated with one state variable 𝑧. This 𝑧̅ is considered 

as an additional degree of freedom ({�̲�, 𝑧̅}). The state space is enlarged to {휀, �̲�, 𝑧̅, 𝛁𝑧̅}.  

Secondly, we extend the principle of virtual power for any given kinematically admissible fields (�̲�∗, 𝑧̅∗): 

 𝒫𝑖(�̲�
∗, 𝑧̅ ∗) + 𝒫𝑒(�̲�

∗, 𝑧̅ ∗) = 0 (1.48) 
 

where 𝒫𝑖 is the virtual power of the internal force and 𝒫𝑒 is the virtual power of the external (contact) force: 

 

{
 

 𝒫𝑖 = −∫ (𝝈:𝛁�̲̇� 
∗ + 𝑎𝑧̅ ̇ ∗ + �̲�. 𝛁𝑧̅ ̇ ∗)

Ω

𝑑Ω

𝒫𝑒 = ∫(�̲�. �̲̇� 
∗ + 𝑑𝑧̅ ̇ ∗ + �̲�. 𝛁𝑧̅ ̇ ∗)

Ω

𝑑Ω +∫ (�̲�. �̲̇�∗ + 𝑔𝑧̅ ̇ ∗)
∂Ω

𝑑S
 (1.49) 
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where �̲� is the traction, (𝑎, �̲�) are the generalized stresses associated with (𝑧̅, 𝛁𝑧̅), �̲� is the body force, (𝑑, �̲�) are 

the generalized body forces associated with (𝑧̅, 𝛁𝑧̅) and 𝑔 is the generalized traction associated with 𝑧̅. 

Thirdly, we derive the governing equations from the above equations for any �̲� ∈ 𝛺: 

 {
div 𝝈 + �̲� = 0̲

div (�̲� − �̲�) − (𝑎 − 𝑑) = 0
 (1.50) 

 

and the corresponding boundary conditions for any �̲� ∈ 𝜕𝛺: 

 {
�̲� = �̲�. �̲�
𝑔 = (�̲� − �̲�). �̲�

 (1.51) 

 

Then, the Clausius-Duhem inequality (𝐷 = ∫ 𝝈: �̇� − �̇�𝛺
≥ 0 with 𝐷 the dissipation and 𝐹 = 𝐹(𝜺𝒑, �̲�, 𝑧̅, 𝛁𝑧̅) 

the Helmholtz free energy) should be used to derive the state laws, i.e., the driving forces (𝝈, �̲�, 𝑎, �̲�) associated 

with the state variables (𝜺𝒑, �̲�, 𝑧̅, 𝛁𝑧̅): 

 

{
 
 
 
 

 
 
 
 𝝈 = −

𝜕ℱ

𝜕𝜺𝒑

�̲� =
𝜕ℱ

𝜕�̲�

𝑎 =
𝜕ℱ

𝜕𝑧̅ 

�̲� =
𝜕ℱ

𝜕∇𝑧̅ 

 (1.52) 

 

Finally, the dissipated energy becomes: 

 𝒟 = ∫𝝈: �̇�𝒑 + �̲�. �̲̇�
Ω

𝑑Ω (1.53) 

 

This framework is applied to the elastic-plasticity and brittle damage models, etc in (Forest, 2009). It is stated 

in his work that the partial Equation (1.41) and the corresponding boundary condition (1.42) of the gradient 

implicit method (see Section 1.2.2) can be derived from the micromorphic approach. Indeed, in the context of 

isotropic material behavior and in the absence of body force, if 𝐹 = 𝐹𝑙  (𝜺, 𝜺
𝒑, �̲�) + ∫ (𝑐(𝛁𝑧̅ )2/2 +𝛺

 𝑟𝑛𝑙(𝑧̅ − 𝑧)
2/2)𝑑𝛺 with 𝐹𝑙 the Helmholtz free energy density related to the local formulation of the constitutive 

law and  (𝑟𝑛𝑙, 𝑐) two constants, then 𝑎 = 𝑟𝑛𝑙 (𝑧̅ − 𝑧), �̲� = 𝑐𝛁𝑧̅ and 

 {
𝑧̅ − 𝑙𝑐

2𝛁2𝑧̅ = 𝑧
𝛁𝑧̅. �̲� = 𝑔/𝑐

 (1.54) 

 

where 𝑙𝑐
2 = 𝑐/𝑟𝑛𝑙  is a characteristic length scale. It can be noticed that when 𝑔 = 0, Equation (1.54) is the same 

as Equations (1.41)(1.42)(implicit gradient approach).   

But unlike the implicit gradient formulation, the micromorphic approach can derive the driving forces 

involved in the yield function from the expression of 𝐹. For example, if 𝑧 = 𝜅 and if 

 ℱ = ∫ (
1

2
𝜺𝒆: 𝔼: 𝜺𝒆 +∫ (�̅�(𝑠) − 𝜎0)𝑑𝑠

κ

0

+
1

2
𝑐(𝛁�̅�)2 +

1

2
𝑟𝑛𝑙(�̅� − 𝜅)

2)𝑑Ω
Ω

 (1.55) 

 

then the driving forces associated with the state variable κ are: 
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 𝐴 = 𝜎0 − �̅�(𝜅) + 𝑟𝑛𝑙(�̅� − 𝜅) (1.56) 
 

where �̅� can be derived from Equation (1.54) with 𝑧 = 𝜅. 

The corresponding yield function is: 

 𝐹 = 𝜎𝑒𝑞 − 𝜎0 + 𝐴 = 𝜎𝑒𝑞 − �̅�(𝜅) − 𝑟𝑛𝑙𝜅 + 𝑟𝑛𝑙�̅� (1.57) 
 

Note that if 𝑟𝑛𝑙 (𝜅 − �̅�)
2/2 is considered as a penalty term to ensure the equality between 𝜅 and �̅�, then the 

model becomes a constrained micromorphic model. In this case, the value of 𝑟𝑛𝑙 should be very large, which 

may cause some numerical problems, in particular, in Newton scheme used to integrate constitutive equations.  

Application to ductile failure 

The framework proposed in (Forest, 2009) is used in (Brepols et al., 2017; Diamantopoulou et al., 2017) in 

the field of ductile fracture. 

In (Brepols et al., 2017), damage is assumed to exhibit gradient effects. In particular, damage and plasticity 

are regarded as two independent physical mechanisms. Each mechanism is characterized by its own yield 

function and loading/unloading condition. Several 1D and 2D simulations are carried out. The results are shown 

to be mesh-independent. In addition, this model can well capture crack initiation and crack propagation. In 

(Diamantopoulou et al., 2017), damage is regularized. The comparison between the results obtained by the 

proposed model and that by classical local damage model validates the model implementation. Mesh-

dependency is indeed well reduced. 

In addition to the micromorphic approach proposed in (Forest, 2009), there are some other models which are 

also micromorphic but derived from some special homogenization procedures (Bergheau et al., 2014; Enakoutsa 

and Leblond, 2009; Gologanu et al., 2007; Hütter, 2017) so as to account for the nonlocal effect. These models 

are named “second gradient model”.  

In (Gologanu et al., 2007), the Gurson’s homogenization approach is extended to the strain-gradient theory 

in which an additional gradient term appears in the field function. This model is called the GLPD model, it can 

be classified as a constrained micromorphic theory where microdeformation and macrodeformation are 

constrained to coincide. Numerical results in (Bergheau et al., 2014; Enakoutsa and Leblond, 2009) shows that 

the GLPD model can well reduce the spurious effects induced by the strain and damage localization. The 

problem of the GLPD model is the complex finite element implementation. In addition, the numerical 

implementation needs the second derivatives of the shape function, so elements of class 𝐶1. Even if this problem 

can be solved using penalty formulations, numerical implementation is still difficult since the strain tensor is 

regarded as an additional nodal variable. In order to combine the computational efficiency of the implicit 

gradient models with the micromechanically sound basis of the GLPD model, in (Hütter, 2017), Gurson’s model 

is extended to the theory of unconstrained microdilatational media by homogenization. No simulations are 

introduced in his paper. Further investigation of the efficiency of this model is still expected. 

Table 1.3. Application of the micromorphic model to ductile failure 

Ductile model Selected variable Kinematics Additional DOF Reference 

GLPD model 𝛁𝜺 Small strains 𝛁𝜺 

(Bergheau et al., 2014; 

Enakoutsa and Leblond, 

2009; Gologanu et al., 

2007) 

Gurson-like model 𝜺 - 𝜺, 𝛁𝜺 (Hütter, 2017) 

- Damage variable 𝐷 - 𝐷, 𝛁𝐷 
(Diamantopoulou et al., 

2017) 

- Damage variable 𝐷 - 𝐷, 𝛁𝐷 (Brepols et al., 2017) 
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1.2.4 Gradient enhanced energy (GEE) approach 

In the micromorphic approach, enforcement of the equality between the micromorphic variable and its local 

counterpart would lead to the introduction of the gradient of latter in the Helmholtz free energy: This 

corresponds to gradient enhanced energy (GEE) approach proposed in (Lorentz, 1999; Lorentz and Benallal, 

2005; Lorentz and Godard, 2011; Zhang et al., 2018) which consists in introducing the gradient effect in the 

Helmholtz free energy density: 

 ℱ( 𝜺, 𝜺𝒑, α̲, 𝑧)  =  ∫ ( ϕℓ( 𝜺, 𝜺
𝒑, α̲, 𝑧)  +

1

2
𝑐𝛁𝑧. 𝛁𝑧)𝑑Ω0

Ω

 (1.58) 

 

where 𝑧 is one (set of) state variable(s) (internal variable(s) or strain tensor), �̲� is the internal variables (in 

addition to 𝑧 if 𝑧 is a (set of) internal variable(s)), 𝑐 is a nonlocal parameter of unit “Newton”, 𝜙𝑙 is a point-wise 

contribution to the Helmholtz free energy. It can be seen that the term  𝑐𝛁𝑧. 𝛁𝑧/2 can control the strain and/or 

damage localization if 𝑧 is well chosen and 𝑐 controls the delocalization intensity. Indeed, if 𝑧 is an appropriate 

regularized variable, the term ∫ 𝑐𝛁 𝑧. 𝛁𝑧/2 → ∞ in the case of localization which is impossible since ℱ is finite. 

In the following, for the sake of simplicity, 𝑧 is taken as a scalar. The Clausius-Duhem inequality (𝐷 =

∫ 𝝈: �̇� − ℱ̇𝛺
≥ 0 with D the dissipation and 𝐹 = 𝐹(𝜺𝒑, �̲�) the free energy) can be used to derive the state laws, 

i.e., the driving forces (𝝈, �̲�, 𝑍) associated with the states variables (𝜺𝒑, �̲�, 𝑧): 

 

{
 
 

 
 𝝈 = −

𝜕𝜙𝑙
𝜕𝜺𝒑

�̲� =
𝜕𝜙𝑙
𝜕�̲�

𝑍 =
𝜕𝜙𝑙
𝜕𝑧

+ div(𝑐𝛁𝑧)

 (1.59) 

 

The dissipated energy is finally written in the following form: 

 𝒟 = ∫ (𝝈: �̇�𝒑 + �̲�. �̲̇� + 𝑍𝑧)
Ω

𝑑Ω +∫ (−𝑐𝛁𝑧. �̲�)�̇�
∂Ω

𝑑S ≥ 0 (1.60) 

 

It is assumed that no dissipation stems from the boundary, which leads to the boundary condition: 

 𝛁𝑧. �̲� = 0 on 𝜕Ω (1.61) 
 

The driving force 𝑍 enter in the yield function of the constitutive law so as to account for the nonlocal effect.  

The mathematic and numerical properties of the GEE approach are well posed since all equations involved 

in the GEE approach are derived from the variational analysis. The robusteness is shown in (Lorentz and 

Godard, 2011; Miehe, 2014) by elastic-plasticity or brittle damage simulations.  

 

Application to ductile failure 

Rousselier law 

The GEE approach is first applied to ductile damage in (Lorentz and Cano, 2005). The Rousselier damage 

model is used and the hardening variable 𝜅 is regularized. The results show the good independence of the results 

with respect to the mesh refinement.  
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GTN law 

The GEE approach is recently applied to ductile damage in the framework of finite strains in (Zhang, 2016; 

Zhang et al., 2018). The GTN damage model is used and the hardening variable 𝜅 is regularized. The results 

show that the width of the localization band can be controlled and the crack path does not depend on mesh 

orientation. This model will be presented in detail in the next chapter. 

Table 1.4. Application of the GEE approach to ductile failure 

Ductile model Kinematic choice Configuration Regularized variable Reference 

Rousselier model Fintie strains Initial 𝜅 (Lorentz and Cano, 2005) 

GTN model Finite strains Initial 𝜅 
(Zhang, 2016; Zhang et 

al., 2018) 

 

 

1.2.5 Phase-field approach 

As seen in the previous parts, the micromorphic model and the GEE model do not involve the concept of 

discontinuous crack, which is in contrary to the phase-field approach in which the crack is regularized by a 

phase-field. Most phase-field models are derived from the variational approaches to “Griffith’s theory of brittle 

fracture” proposed by (Francfort and Marigo, 1998). Various phase-field models are proposed/revisited in the 

literature such as (Bourdin et al., 2000; Marigo et al., 2016; Tanné, 2017). We emphasize that a well-established 

phase-field model should tend to the initial cracked problem when the intrinsic length scale(s) introduced in the 

phase-field model tends to zero. 

In this part, we try to establish a general framework in which most of phase-field models can be included. 

The phase-field models can actually be classified into the class of gradient damage models (coupled with 

plasticity in the case of ductile damage). The total internal energy density ℰ of the system can be split into four 

parts (Alessi et al., 2018): 

 ℰ = ∫ (𝐴(𝐷)Φ𝑒(𝜺 − 𝜺
𝒑)⏟          

𝑎

+𝐵(𝐷)Φ𝑝(𝜅, ∇𝜅)⏟          
𝑏

+ 𝜓𝑑(𝐷, ∇𝐷)⏟      
𝑐

+ 𝐶(𝐷)𝜓𝑝(𝜅)⏟      
𝑑

)
Ω0

𝑑Ω0 (1.62) 

 

where 𝐷 is a scalar phase-field (damage) parameter, (𝛷𝑒 , 𝛷𝑝) are respectively the elastic and plastic parts of the 

Helmholtz free energy density, (𝜓𝑑 , 𝜓𝑝) are respectively the dissipated energy density due to damage and 

plasticity, 𝐴: [0,1] → [0,1]  is a scalar degradation function satisfying 𝐴(0) = 1, 𝐴(1) = 0, 𝐴′(𝐷) ≤ 0 . For 

instance, 𝐴 = (1 − 𝐷)2. The same properties as 𝐴 hold for the functions 𝐵 and 𝐶.  Equation (1.62) can be seen 

as a general expression of the phase-field models used in the literature. In this equation, the term 𝑎 is the elastic 

potential density, the term 𝑏 is the plastic hardening contribution, the term 𝑐 is the dissipated damage work 

density which is not linked to the plasticity and the term 𝑑 is the damage-plasticity coupled dissipation density.   

Firstly, the elastic part of the Helmholtz free energy density can be written as: 

 Φ𝑒(𝜺 − 𝜺
𝒑) =

1

2
(𝜺 − 𝜺𝒑): 𝔼: (𝜺 − 𝜺𝒑) (1.63) 

 

Secondly, the plastic part of the Helmholtz free energy density can be written as: 

 Φ𝑝(𝜅, 𝛁𝜅) = ∫ (�̅�(𝑠) − 𝜎0)
𝜅

0

𝑑𝑠 +
1

2
𝑐𝑝(𝛁𝜅)

2 (1.64) 
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where 𝑐𝑝 is a constant value linked to the nonlocal length 𝑙𝑝 for the plasticity.   

Thirdly, the plastic dissipated work 𝜓𝑝 can be: 

 𝜓𝑝(𝜅) ≡ 𝜎0𝜅 (1.65) 
 

Finally, for the dissipated energy density due to damage 𝜓𝑑, a widely used form is: 

 𝜓𝑑(𝐷, ∇𝐷) =
𝐺𝑐
𝑐𝑤
(
𝑤(𝐷)

𝑙𝑑
+ 𝑙𝑑(∇̲𝐷)

2) (1.66) 

 

where 𝐺𝑐 is the critical fracture energy per unit area, 𝑙𝑑 is the length scale for phase-field and (𝑤(𝐷), 𝑐𝑤) are: 

 𝑤(𝐷) = {
𝐷, 𝐴𝑇 − 1

𝐷2, 𝐴𝑇 − 2
 (1.67) 

 

 𝑐𝑤:= 4∫ √𝑤(𝐷)
1

0

𝑑𝐷 = {
8/3, 𝐴𝑇 − 1
2, 𝐴𝑇 − 2

 (1.68) 

 

with 𝐴𝑇 stands for the Ambrosio-Tortorelli functional (Ambrosio and Tortorelli, 1990).  

 

Figure 1.4. Characteristic length sales in phase-field model 

 

It is worth remarking that two length scales are introduced in the current formulation: one for the phase-field, 

i.e., damage (𝑙𝑑) in 𝜓𝑑 and the other for the plasticity (𝑙𝑝) in Φ𝑝 (see Figure 1.4). 

In elastic-plasticity, the damage is not involved and thus 𝐴 = 𝐵 = 𝐶 = 1 and 𝑐 = 0 in Equation (1.62).   

In brittle damage, the scalar phase-field (damage) field 𝐷 is sufficient to represent the material degradation 

since the energy dissipation is mainly due to the creation of new cracked surfaces. Plasticity (휀𝑝 = 0) and 

hardening effects are not involved in brittle material, so 𝑏 = 𝑑 = 0 in Equation (1.62). On the contrary, in 

ductile damage, Plasticity and hardening effects are not negligible and Equation (1.62) holds.  

The governing (equilibrium) equation can be derived from energy balance, i.e., ℰ̇ = �̇� with 𝒲 external 

work density. The Clausius-Duhem inequality should be used to derive the state laws, i.e., the driving forces 

associated with the state variables. These driving forces enter in the yield functions (one yield surface 𝐹𝑝 for the 

plasticity and the other 𝐹𝑑 for the damage) in the constitutive law so as to account for the nonlocal effects. In 

particular, in the absence of damage-plasticity coupling, the plastic yield function does not depend on the 

damage variable(s) and the damage yield function does not depend on the plastic variable(s).  
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Application to ductile failure 

The applications of the phase-field models to ductile failure can be found in (Aldakheel, 2016; Aldakheel et 

al., 2018; Alessi, 2018; Ambati, 2016, 2015; Borden et al., 2016; Brach et al., 2019; Kuhn and Noll, 2016; 

Miehe et al., 2016; Tanné, 2017). All the models can be cast in the same variational framework and differ mainly 

by the four terms 𝑎, 𝑏, 𝑐, 𝑑 in Equation (1.62): 

 For the term 𝑎, the free energy Φ𝑒 remains the same in all models. As for 𝐴(𝐷), quadratic or cubic 

expressions are commonly used. 

 For the term 𝑏, the gradient plasticity is considered in (Miehe et al., 2016) and so a plastic length scale 

𝑙𝑝 is introduced in his model. 

  For the term 𝑐, in all models, a phase-field (damage) length scale 𝑙𝑑 is introduced. The expressions 

used in different models are quite similar.  

 For the term 𝑑, the difference is mainly found on the expression of 𝐶(𝐷), in most cases, the coupling 

between damage and plasticity is taken into account and 𝐶(𝐷) = 𝐴(𝐷). The only exception is in 

(Ambati, 2015) where no coupling is assumed. 

 

von-Mises model with phase-field damage  

The model proposed in (Ambati, 2015) uses a characteristic degradation function to realize the coupling 

between damage and plasticity in a multiplicative format. It is demonstrated in his work that the model can 

predict crack shape and location in a tensile specimen. This work is then extended at finite strains in (Ambati, 

2016).The model suggested in (Borden et al., 2016) introduces a new mechanism to include a measure of stress 

triaxiality as a driving force for crack initiation and propagation. The incorporation of gradient plasticity into 

the phase-field model at finite strains are realized in (Miehe et al., 2016). (Brach et al., 2019; Tanné, 2017) study 

crack initiation and propagation in elastic-perfectly plastic bodies with a variational gradient damage phase-

field formulation. Both plane strain and plane stress are addressed. A variational approach to combine brittle, 

cohesive and ductile fracture is given in (Alessi, 2018).  

 

GTN damage model  

The above works assume that there is no plastic dilatation, i.e., the effect of the hydrostatic pressure on 

plastic flow is not taken into account, which is not in accordance with experimental observations. To this end, 

in (Aldakheel et al., 2018), the phase field modeling is coupled with the GTN damage model. The sharp crack 

surface is regularized by a new function depending on the phase-field parameter 𝐷 and the damage characteristic 

length 𝑙𝑑, as in Equation (1.62). A phase-field driving force related to the porosity is introduced.  Thus the onset 

of fracture is driven by the critical porosity. The numerical simulations show that this model is able to capture 

the cup-cone phenomenon.   

Table 1.5. Application of the phase-field approach to ductile failure 

Constitutive law Kinematic choice Configuration Regularized variable Reference 

von-Mises Small strains - 𝐷 (Ambati, 2015) 

von-Mises Finite strains Initial 𝐷 (Ambati, 2016) 

von-Mises Finite strains Initial 𝐷 (Borden et al., 2016) 

von-Mises Finite strains Initial 𝐷, 𝜅 (Miehe et al., 2016) 

von-Mises Finite strains Initial 𝐷 
(Brach et al., 2019; Tanné, 

2017) 

GTN Finite strains Initial 𝐷 (Aldakheel et al., 2018) 
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1.2.6 Choice of regularization approach and regularized variable 

As mentioned in this section, the implicit gradient approach is derived from the integral nonlocal approach, 

these two approaches are equivalent in some way if the weight function in Equation (1.35) is well chosen. The 

difficulty to use the integral nonlocal approach lies in its complex numerical implementation, its time-

consuming procedures, the special treatment of the points located near/on the free surface. These 

aforementioned problems can apparently be overcome using the implicit gradient approach. Due to its simplicity 

and its efficiency, the implicit gradient approach is very often used in the literature. However, this approach 

leaves many choices for energy regularization and the use of the nonlocal variable 𝑧̅ in the model (see (Lorentz 

and Andrieux, 2003)) while many of them are inadequate, in particular under the background of plasticity: the 

existence of the solution (Polizzotto, 2001) and the regularization of certain constitutive laws (Di Luzio and 

Bažant, 2005) cannot be ensured.  

The micromorphic approach is based on a thermo-mechanical framework. Compared to the implicit gradient 

approach, the micromorphic approach leaves less choices while the regularization effect can be ensured in most 

cases. However, in this approach, some additional degrees of freedom related to strain quantities are introduced 

and controlled, which may be not suitable for the description of crack opening and crack closure. In the 

literature, some internal variables (such as the hardening variable) are sometimes regularized, in this case, the 

formulation of the micromorphic approach is similar to that of the GEE approach. 

Like the micromorphic approach, the GEE approach and the phase-field approach are derived from a 

variational analysis, so that sound mathematical and numerical properties are ensured. Compared to the GEE 

approach, the phase-field approach cannot model the process-zone since this approach consists in regularizing 

a crack. Besides, stress triaxiality on crack initiation and propagation are not (yet) considered in most phase-

field model.  

In this work, the GEE will be used since: 

 Mathematically, the robustness of the model is demonstrated in (Lorentz, 2017; Lorentz and Godard, 

2011) for brittle fracture and in (Zhang, 2016; Zhang et al., 2018) for ductile fracture; 

  Numerically, the usual algorithm can be used and thus it is suitable for standard multi-purpose Finite 

element softwares. 

As for the regularized variable, the most used internal variables in the literature for ductile damage model is 

the damage variable (𝐷 for the Lemaitre model and 𝑓 for the GTN or Rousslier model) and/or the hardening 

variable 𝜅. Note that even if in the work of (Linse et al., 2012), the volumetric part of the plastic strain tensor 

휀𝑣 is regularized, it is directly linked to the porosity 𝑓 in the absence of void nucleation. It is not surprising that 

unsatisfying results may be obtained when the regularized variable is not well chosen, as pointed out by the 

assessment of (Andrade et al., 2014; Jirásek and Rolshoven, 2003). Nevertheless, (Andrade et al., 2014) stated 

that the best regularized variable is the damage variable in the case of the Lemaitre and GTN models. 

Nevertheless, this conclusion should be further verified by visualizing the equivalent plastic strain field. 

Moreover, in all simulations given in (Andrade et al., 2014), the mesh size is very coarse and there is only crack 

initiation (without any propagation) according to their results.  

In this work, the hardening variable 𝜅 will be used to regularize the constitutive law. This choice is believed 

to simultaneously control (1) the plastic localization which may result from geometrical considerations 

(necking) and (2) the damage localization which results from strain softening induced by void growth and void 

nucleation. 
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1.3 Problems with the finite element simulation of ductile failure 

1.3.1 Mesh sensitivity 

As mentioned in Section 1.1.3, strain/damage localization occurs with the use of constitutive law including 

softening. Numerically, spurious mesh-sensitivity and unrealistic physical predictions may be observed when 

this kind of constitutive law is used in the finite element analysis. Indeed, as the mesh is refined, the localization 

zone narrows and finally vanishes. Thus, the dissipated energy also tends to zero. This is in contradiction to the 

experimental observation where a narrow localization bands depending on material exist.  An example of the 

simulations of Compact Tensile (CT) test has been given in (Besson, 2010). Theses simulations are performed 

using the GTN damage model with plane-strain modeling. The force versus Crack Mouth Opening 

Displacement (CMOD) for various mesh sizes has been shown (see Figure 1.5) which clearly illustrates the 

mesh size effect. As explained in (Besson, 2010), for crack initiation, the decrease of the mesh size leads to the 

increase of the value of the equivalent strain at crack tip for a given CMOD and thus to an earlier crack initiation. 

For crack propagation, the energy dissipated per crack extension increment is proportional to the element size 

under certain assumptions, which can obviously affect the global behavior of the structure. 

 

Figure 1.5. (a) Geometry of CT specimen (mm). The black dot corresponds to the location of CMOD measurement; (b) Force-

CMOD curves for different mesh sizes 

 

Possible solutions 

Mesh size as a material parameter 

An engineering solution to solve the spurious mesh sensitivity is to consider the mesh size as an additional 

material parameter. In this case, the value of the mesh size is often assumed to represent the mean distance 𝑙𝑐 
between the inclusions leading to the primary voids (Rousselier, 1981; Sun et al., 1989). The material is seen as 

an assembly of cells of size 𝑙𝑐 containing a single inclusion. Thus, the cell deformation and the role of the 

secondary voids are not taken into account in this simple description of the material. This interpretation is 

supported by some experimental observations (Hahn and Rosenfield, 1975; Steglich and Brocks, 1998). This 

approach is rather simple and many authors show that crack growth and failure behavior can be well predicted 

with a given mesh size (Nonn and Kalwa, 2010; Pavankumar et al., 2005)  

However, it is clear that the simulation results still depend on the mesh orientation and the type of shape 

functions and quadratic rules, so the model is not predictive (Besson et al., 2006). Besides, mesh size is used to 

(1) represent the material characteristic length so as to model the energy dissipated during crack extension and 

(2) discretize structures (notion of spatial convergence). These two roles are to some extent contradictory.  



Literature review 

29 

 

 

Viscosity 

One usual way to reduce the mesh dependency in the literature is to introduce the viscosity in the simulation. 

The idea of this method is based on the fact that the localization leads to high deformation rates, which can be 

redistributed in the finite element mesh by viscosity. Generally, viscosity is directly introduced in the 

constitutive law and thus the material behavior becomes rate dependent. The rate-dependent damage law should 

not result in ill-posed problems. However, the regularization effect on the mesh dependency is not observed in 

(Ljustina et al., 2014) even if the damage law is rate-dependent. The explanation that is given in (Ljustina et al., 

2014) is that the viscous effect is too low and it disappears with time. Another way to introduce the viscosity is 

to use an overlay model in which the constitutive law and the viscous law are independent, as done in (Dias da 

Silva, 2004). In (Dias da Silva, 2004), the regularization effect is observed only in the presence of a very high 

viscosity. In this case, the material is almost viscoelastic, no matter what the constitutive law is.  

The observations in (Dias da Silva, 2004; Ljustina et al., 2014) are not surprising since from a dimensional 

point of view, for quasi-static analysis, the viscous models only introduce a characteristic time, but not a 

characteristic length for the localization band. We recall that mesh dependency is a spatial problem, thus the 

introduction of time scale is not useful.  

Besides, according to the results obtained in (Flatten et al., 2006), spurious mesh-sensitivity cannot be 

prevented by the viscosity even though the model is rate-dependent in the case of a dynamic analysis. In order 

to solve this problem, the concept of bounded damage rate model is proposed in (Allix, 2013; Allix et al., 2003). 

The key idea of this method is to determine the internal variables which governs localization and then to bound 

the rate of these variables. For more details on this model, one can refer to (Allix, 2013; Allix et al., 2003).  

 

Cohesive zone model (CZM) 

 

Figure 1.6. (a) Schematic representation of a cohesive zone; (b) stress-displacement jump curves for a ductile material (Tvergaard 

and Hutchinson, 1992) 

 

An alternative possibility is to bypass the strain localization and introduce a discontinuity as the outcome of 

the strain localization process. This option can be realized with cohesive zone models (CZM). Note that the 

crack path must be known when CZM is used, this crack path is considered as the jump of the displacement 

field. Thus, the relation between the displacement jump and the stress must be given in CZM (see Figure 1.6 
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for one cohesive law for ductile fracture). Since the aim of this part is just to propose some solutions to the 

spurious mesh sensitivity problem, we will not describe different CZM here. Compared to ductile damage 

models, ductile CZM is simpler since only the tensile strength 𝜎𝑐 and the separation work 𝐺𝑐 are involved in the 

constitutive law. In addition, it is possible to account for the shear effect in the cohesive interface. Consequently, 

CZM are commonly recognized to be an important tool for describing fracture in engineering materials. 

Nevertheless, some drawbacks should be emphasized: (1) the model is not predictive since the crack path should 

be known in advance.  (2) The physical description of ductile fracture is not accurate as the triaxiality 

dependence is poorly described. A model, in which the CZM parameters depend on the local triaxiality so as to 

match the GTN model, is proposed in (Siegmund and Brocks, 1999). 

 

Nonlocal model 

As discussed in Section 1.2, during uncontrolled strain localization, the length scale of the macroscopic fields 

becomes of the same magnitude as that of the microscopic fields, so the scale separation assumption in 

homogenization process introduced in Section 1.1.1 is no more valid. It is necessary to enhance the 

homogenization schemes to include this length scale interaction or to introduce a new length scale in a 

phenomenological way. For more details of these models, one can refer to the Section 1.2. The common point 

of their works is the introduction of some length scales into the macroscopic equations. These length scales play 

the role of strain localization limiter. 

 

Comparison of different approaches 

In this part, some approaches to solve the problem of mesh sensitivity are presented. The first approach 

consists in regarding the mesh size as an additional parameter. Even if crack growth and failure behavior of the 

material can be well predicted in some cases, the model is not predictive in terms of crack path. The second 

approach is focused on the control of the dissipated energy by introducing either a dissipated energy term in the 

surface or the viscous phenomenon. The corresponding effect can be observed only when the introduced term 

is important. Moreover, the strain localization is just postponed with the viscosity. The third approach aims at 

using CZM to bypass the uncontrolled strain localization problem. Compared to ductile damage models, CZM 

is simpler but not predictive. The last approach is to introduce a length scale in the constitutive or continuum 

equations (see Section 1.2). Numerically, the width of the localization band can be controlled by the new length 

scale. Of course, other approaches may exist in the literature, for example, the damage model can be combined 

with the discontinuous fields within the elements, and the insertion of the discontinuity occurs when there is 

loss of ellipticity at the local level (Areias and Belytschko, 2005; Feld-Payet et al., 2015; Oliver et al., 2010).   

In this work, the nonlocal model is used to control mesh dependency. 

 

1.3.2 Volumetric-locking 

It is well known that the use of the standard displacement-based finite element formulations leads to too stiff 

solutions and oscillations of the stress field in quasi-incompressible situations. This phenomenon is called 

“volumetric locking”. The (quasi-)incompressible property is characterized by 

 𝐽 = det(𝑭) ≈ 1       or      tr(𝜺) ≈ 0 (1.69) 
 

where 𝐽 is the transformation Jacobian and 𝑭 is the deformation gradient.  



Literature review 

31 

 

Indeed, In the case of linear isotropic elasticity, a material is quasi-incompressible when the Poisson ratio 𝜈 ≈

0.5. In this case, the bulk modulus 𝐾 → ∞ due to the relation 𝐾 = 𝐸/(3(1 − 2𝜈)) and thus tr(𝜺) = tr(𝝈)/𝐾 →

0  according to the Hooke relation. In the framework of elastic-plasticity ( 𝐽2  theory), we have  tr(𝜺𝒑 ) =

tr(3𝝈𝑫/2𝜎𝑒𝑞) = 0. In most cases, the elastic strain is very small compared to the plastic strain which leads 

to tr(𝜺) ≈ 0. In the case of ductile damage, the material is compressible due to the evolution of the porosity.  

However, when the porosity 𝑓 is very small, we still have tr(𝜺) ≈ 0 if the elastic strain is small compared to 

the plastic strain. 

If tr(𝜺) = div(�̲�) ≈ 0, then the effective degrees of freedom of the displacement are reduced. Some material 

points are locked, and the spurious oscillation of the stress fields appears. Therefore, the constitutive constraint 

(div(�̲�) ≈0) should be relaxed. 

Over the past years, various methods have been proposed to deal with this problem such as reduced 

integration, selective integration, B-bar and F-bar methods, enhanced assumed strain (EAS) method, Hybrid 

High-Order (HHO) method and mixed formulations, etc.. This subsection aims to give a short review of each 

of the aforementioned methods and to choose a robust and generic one for the current work.   

 

Review on locking-free proposals 

Reduced integration 

The reduced integration technique is first introduce in (Zienkiewicz et al., 1971). The basic idea is to use 

lower-order quadrature formula for the estimation of the stiffness matrix. The integration points in one finite 

element is reduced accordingly. Hence, there are less constraint div(�̲�) ≈0 to be fulfilled and the richness of 

the degrees of freedom somewhat retrieved. However, this technique sometimes leads to a singular stiffness 

matrix and introduces zero-energy mode (for instance for 𝑄4 and 𝑇6 finite elements). With the 𝑄8 elements, this 

mode does not exist, but volumetric-locking still exists.  

 

Selective integration  

The selective integration technique is first proposed in (Doherty et al., 1969). In selective reduced integration, 

the shear strain and/or volumetric strains are evaluated in the element midpoint only. This technique gives a 

better result than the previous technique since the stiffness associated with 𝜺𝑫(�̲�) is not reduced with the 

selective integration technique. Nevertheless, there are various drawbacks to this technique: (1) It is rather easy 

to use this technique in the isotropic cases while the extension to the anisotropic or orthotropic cases is complex 

(Hughes, 2012); (2) The use of quadratic finite elements with this technique leads to some convergence 

problems since the LBB condition2  is not fulfilled (Zhang, 2016); (3) In GTN law, the hydrostatic and deviatoric 

parts of the constitutive relation cannot be separated: the simplicity is somewhat lost.  

For instance, the selective integration technique can be used for 𝑄4 or 𝑇6 elements.  

                                                      
2 LBB (Ladyzenskaia-Babushka-Brezz) condition: Let 𝑋 and 𝑀 two Hilbert spaces, let 𝑏 a continuous bilinear form on 

𝑋 ×𝑀. The form b satisfies the LBB condition if and only if: 

∃𝛽 > 0, inf
𝑝∈𝑀

sup
𝑣∈𝑋

𝑏(𝑣, 𝑝)

||𝑣||
𝑋
||𝑝||

𝑀

≥ 𝛽 

Discrete LBB condition: Assume that 𝑋ℎ ⊆ 𝑋 and 𝑀ℎ ⊆ 𝑀, to obtain a good approximation of the solution by finite 

element methods, it is necessary to have: 

∃𝛽ℎ > 0, inf
𝑝ℎ∈𝑀ℎ

sup
𝑣ℎ∈𝑋ℎ

𝑏(𝑣ℎ , 𝑝ℎ)

||𝑣ℎ||𝑋|
|𝑝ℎ||𝑀

≥ 𝛽ℎ ≥ 𝛽∗ 

 

 



 

32 

 

B-bar and F-bar 

In order to overcome some limitations introduced in reduced/selective technique, the B-bar technique is 

proposed in (Hughes, 2012, 1980) in the framework of small strains. This method consists in, firstly, dividing 

directly the strain operator �̲� (which relates the strains to the displacements) to the hydrostatic part �̲�ℎ and the 

deviatoric part �̲�𝐷, and secondly, modifying �̲�ℎ to �̲�ℎ
′  so as to reduce its contribution. For instance, the �̲�ℎ

′  can 

be the average of all �̲�ℎ in the finite element and thus tr(𝜺) is the same everywhere. Since the pressure is related 

to the volume change, pressure fluctuations are avoided within elements. The new strain operator becomes �̲� =

�̲�𝐷 + �̲�ℎ
′ . There are several advantages with the B-bar technique. Firstly, it does not require to introduce 

additional degrees of freedom. Secondly, compared to the selective integration method, the B-bar technique is 

easier to be used in the anisotropic cases. 

In the framework of finite strains, the F-bar technique is used. It is based on the multiplicative decomposition 

of the deformation gradient 𝑭 into the hydrostatic and deviatoric parts. The stress tensor is then computed from 

the modified 𝑭. Different versions of the F-bar method have been proposed in the literature (de Souza Neto et 

al., 1996, 2011; Elguedj et al., 2008, 2007) . The F-bar method proposed in (de Souza Neto et al., 1996, 2011)is 

only devoted to linear finite elements. As for the proposal in (Elguedj et al., 2008, 2007), it can be applied to all 

types of finite elements, but some drawbacks still exist at the level of tangent matrix.  

Remark: 

 For 𝑄4 elements, the selective technique and the B-bar technique are the same in the case of rectangular 

elements.  

 For 𝑇6 elements, the selective technique and the B-bar technique are the same if the quadratic nodes are 

located in the center of each edge of the triangle and if 𝐽2 theory is used. But in this case, we lost the 

precision given by quadratic finite element. 

 

Enhanced Assumed Strain (EAS) method 

The EAS method is initially proposed in (Simo and Rifai, 1990) in the framework of small strains. It is based 

on the Hu-Washizu three-field variational formulation in which stress, strain and displacement are regarded as 

three independent variables. The idea of this method is to enhance the strain tensor 𝜺 by an additional term 𝜺′: 

�̃� = 𝜺 + 𝜺′. This new strain tensor is used in the constitutive law and so is involved in the Hu-Washizu mixed 

variational formulation. An orthogonality between 𝝈 and 𝜺′ (∫ 𝝈: 𝜺′𝛺
𝑑𝛺 = 0) is imposed so as to eliminate 𝝈 

from the set of unknowns. Then the enhanced strain tensor is eliminated at element level by some special 

treatment. This method is first extended to finite strains in (Simo and Armero, 1992) by enhancing the 

displacement gradient so as to obtain the enhanced deformation gradient:  �̃� = 𝑰 + 𝛁�̲� + 𝑭′. The drawback to 

this extension is that zero-energy modes can appear in some cases, as shown in (Wriggers, 2008). Some 

stabilization methods can be introduced to avoid this problem, but may be computationally expensive.  

 

Mixed finite element formulation  

The mixed finite element formulation is first introduced in (Herrmann, 1965) for two-field elements and in 

(Simo et al., 1985) for three-field elements. The basic idea of the mixed finite element formulation is to introduce 

some additional variables into the global unknowns (Fortin and Brezzi, 1991). For the case where the pressure 

P and the volume variation θ into the global unknowns: firstly, the strain tensor is enhanced:  �̃� = 𝜺 + 𝜺′ 

with 𝜺′~ (𝜃 − tr(𝜺)). This new strain tensor is used in the constitutive law and so is involved in the Hu-Washizu 

mixed variational formulation. The weak equality between 𝜃 and tr(𝜺) is ensured by introducing a Lagrange 
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multiplier 𝑃, it can be demonstrated that this 𝑃 correspond to the pressure.  More detail will be given in Chapter 

2. 

The two-field or three-field formulation is often used in the literature, as shown in Table 1.6 in the case of 

finite strains. This method is generally an efficient way to reduce the volumetric-locking problem. The 

computational convergence and stability can be ensured when the interpolation order (linear, quadratic, etc.) of 

the different unknowns satisfies the LBB condition. 

Table 1.6. Mixed finite element formulation in finite strains 

Reference Unknowns 

(Cervera et al., 2010) (�̲�, 𝝈) 
(Brink and Stein, 1996; Sussman and Bathe, 1987) (�̲�, 𝑃) 

(Al Akhrass et al., 2014; Brünig, 1999; Taylor, 

2000; Zhang et al., 2018) 
(�̲�, 𝑃, 𝜃) 

(Kasper and Taylor, 2000a, 2000b) (�̲�, ∇𝜺, 𝝈) 

 

Hybrid High-Order method 

Hybrid High-Order methods are initially introduced in (Di Pietro and Ern, 2015) for linear elasticity 

problems and in (Di Pietro et al., 2014) for diffusion problems. In these methods, a finite element is split into 

two parts: faces (element boundary, so line segments in 2D and surfaces in 3D) and cell (element except faces). 

The concept of the nodal unknowns (i.e., the displacement  �̲�) used in classical finite element formulation 

disappears, instead, face-based unknowns �̲�1  and cell-based unknowns �̲�2are introduced. The displacement 

field can be discontinuous between the faces and the cell. The idea of this method is to enhance the strain 

operator �̲� by an additional term �̲�′: �̲� ̃(�̲�1, �̲�2) = �̲�(�̲�1) + �̲�′(�̲�1 − �̲�2) where �̲� is for the cell and �̲�′ is for 

the faces. Moreover, the consistency between the local face unknowns and the cell unknowns is weakly enforced 

by a penalty term. Finally, the cell unknowns can be locally eliminated using a static condensation technique to 

reduce significantly the computing size since only face unknowns are involved in the formulation. Thanks to 

the discontinuity of the displacement field between the faces and the cell, the material point is not rigid anymore, 

volumetric-locking cannot not appear (Abbas et al., 2019a, 2019b, 2018). 

There are several attractive points for this method, for example, the construction is dimension-independent 

and general meshes (including non-conforming meshes) are supported. One of challenge of this method is 

related to the effort which should be made for the numerical implementation in an existing finite element 

software since the classical displacement-based finite element formulation is no longer suitable. Besides, even 

if these methods are already used for elastic-plastic (Abbas et al., 2019a) and hyper-elastic materials (Abbas et 

al., 2018) in the framework of finite strains, its efficiency and the robustness on the treatment of volumetric-

locking should be further investigated in some more complex situations.  

 

Choice of the locking-free model 

As seen in the previous part, various methods have been proposed to overcome volumetric-locking problem. 

All these methods can reduce or solve volumetric-locking. However, the reduced integration method sometimes 

leads to a singular stiffness matrix and introduces zero-energy modes. The selective integration cannot be used 

with the GTN law since the hydrostatic and deviatoric parts of the constitutive relation cannot be separated. The 

EAS method and the mixed element method are all derived from the variational principle, but the former can 

still lead to zero-energy mode and the latter is efficient only if when the interpolation order for each unknown 

is well chosen. The hybrid high-order method is attractive on the long term but in fact complex in terms of 
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numerical implementation. Its efficiency and robustness should be further checked in some more complex 

situations (for example, the coupling with damage laws).  

Each method has its own drawbacks. In this work, the mixed element formulation will be used to treat 

volumetric-locking since the robustness of this method has already been demonstrated in the PhD works of 

(Zhang, 2016) in ductile damage cases. In the work of (Zhang, 2016), the three-field elements (�̲�, 𝑃, 𝜃) in which 

�̲� is interpolated in a quadratic manner while (P,θ) are interpolated in a linear manner, have been used. However, 

it is stated in (Zhang, 2016) that the oscillation of the plasticity occurs for a simple tensile test with axisymmetric 

modeling when the element 𝑃2 𝑃1 𝑃1 (𝑃2 for quadratic interpolation and 𝑃1 for linear interpolation) is used, as 

shown in Figure Figure 1.7. A solution of this problem will be given in Chapter 2. 

 

Figure 1.7. (a) Mesh (b) localization band of the plasticity with 𝑃2 𝑃1 𝑃1 finite element. (Zhang, 2016) 

 

1.3.3 Adaptive mesh refinement 

It is well known that the accuracy of finite element analysis is directly related to the finite element mesh: 

The discretized solution will approach the continuum solution as the mesh is refined. Early in the analysis 

process, it makes sense to start with a coarse mesh which can be used as a rough check on applied loads and 

constraints. After that, the process of mesh refinement begins to get accurate solutions. When it comes to mesh 

refinement, there is a suite of techniques such as decrease of the element size or increase of the element order. 

The easiest and commonly used strategy is to globally or locally reduce the element size during mesh generation. 

Global decrease of the element size is simple to realize but may leads to excessive mesh refinement in regions 

that are of less interest. Local decrease of the element size is attractive but needs to know in advance the 

preferential mesh refinement zone, otherwise global refinement is required.  This is typically problematic when 

it comes to industrial three-dimensional simulations where the zone of interest remains unknown. If the entire 

structure is discretized with fine elements, the required computational complexity 3  (for example time 

complexity, space complexity) would be very large. To solve this problem, global/local adaptive mesh 

refinement is often used. The algorithm of adaptive mesh refinement generally includes three main steps: 

remeshing, field transfer and balance (recovery). In this subsection, these three steps will briefly be reviewed.   

 

                                                      
3 In computer science, the computational complexity, or simply complexity of an algorithm is the amount of resources 

required for running it. The computational complexity of a problem is the minimum of the complexities of all possible 

algorithms for this problem (including the unknown algorithms). The time complexity is the computational complexity that 

describes the amount of time it takes to run an algorithm. 
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Remeshing 

Adaptive mesh refinement uses an error estimation strategy to determine the point where the local error is 

largest (see ((Feld-Payet, 2010)) for different options for error indicator). If this error exceeds a given value, the 

finite element software uses the information to generate a new mesh. This strategy is often regarded as global 

criterion for the onset of remeshing since the error is computed in the whole structure. Some additional local 

criteria can be defined, as described for example in (Ladevèze and Pelle, 2001; Oñate and Castro, 1991). 

Remeshing procedures start once the global and local criteria are met. There are mainly three types of adaptive 

techniques: r-method, h-method and p-method.  

The r-adaptive finite element method was originally proposed in (Carroll and Barker, 1973; Turcke and 

McNeice, 1974), which consists in maintaining mesh topology (position and number of nodes, connectivity, 

etc.) and interpolation types, and relocating the mesh nodes to concentrate them in the zone of interest. The 

advantage of this method is that the mesh changes continuously. However, it is clear that this method is 

computationally expensive since the mesh redistribution procedure normally requires to solve a large number 

of equations in which node coordinates are also unknown variables.  

Different from the r-adaptive finite element method, the h-adaptive finite element method modifies mesh 

topology. The idea is to subdivide some finite elements into elements of the same type in the zone of interest. 

One example of the h-method is shown in Figure 1.8. In this example, in order to ensure the continuity of the 

displacement, some special treatment on disconnected nodes (for example the node 𝐴 in Figure 1.8) or some 

local mesh modification should be done. 

 

Figure 1.8. Subdivision of a finite element 

The p-adaptive finite element method is focus on the polynomial order 𝑝 of the shape functions used in finite 

element method. It converges exponentially if the exact solution is smooth and converges faster than a uniform 

refinement with constant polynomial degree (Rank, 1989). This adaptive method is not often used as on the one 

hand, most commercial finite element software only possesses finite elements with 𝑝 ≤ 2, and on the other 

hand, it is difficult to predict the value of 𝑝 so as to ensure, at the same time, the accuracy of the solutions and 

the reasonableness of time complexity.  

The combination of the h- and p-adaptive finite element methods is called the hp-adaptive finite element 

method. It converges exponentially even in the presence of singularities in the exact solution (Rank, 1989). But 

the drawbacks to the p-method still exist. 

 

Field transfer 

In this step, the displacement, the strains, the stresses and the internal variables are transferred from the old 

mesh to the new mesh. The transfer procedure is not easy since a transfer operator should  preserve consistency 

with the constitutive equations, satisfy equilibrium, minimize or avoid numerical diffusion (for example, 
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damage band should not be modified after adaptive refinement) and ensure compatibility with the boundary 

conditions (J. Mediavilla et al., 2006c; Perić et al., 1996). Generally, it is difficult to respect all constraints in 

the transfer step. The most important point is to reduce the numerical diffusion (Feld-Payet, 2010). Besides, we 

can transfer all state variables or just a reduced but fully representative set of state variables from which the 

remaining variables can be derived using the existent relations among different variables (J. Mediavilla et al., 

2006c).  

There exist two different transfer operators, one is for variables stored at nodes and the other for variables 

stored at integration points.  

Transfer operator for nodal state variables 

For the transfer of state variables at nodes, it is realized by means of interpolation. For each node in new 

mesh, firstly, we geometrically determine the element of the old mesh in which it locates, then we compute the 

new variables using the old shape functions (see Figure 1.9). 

 

Figure 1.9. (a) Old mesh with nodes; (b) New mesh with new nodes 

 

Transfer operator for state variables at integration points 

For the transfer of state variables at integration points, several techniques exist, two of them are presented 

here. 

 Direct transfer: the transfer is realized directly from the old to the new integration points with constant 

values (for instance the value of the closest old integration point) or by means of 

interpolation/extrapolation (Espinosa et al., 1998; Ortiz and Quigley Iv, 1991) (see Figure 1.10). 

 

Figure 1.10. (a) Old mesh with old integration points; (b) New mesh with new integration points 
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 Indirect transfer: Firstly, the state variables are transferred from the old integration points to the old 

nodes by extrapolation/nodal averaging (see Figure 1.11(a)→(b)). This sub-step is the source of 

numerical diffusion (see for instance (Hinton and Campbell, 1974; Loubignac et al., 1977) for the 

improvement). Then, the transfer of variables at nodes should be done (see Figure 1.11(b)→(c)). Finally 

the state variables at new integration points can be computed using the shape functions of the new mesh 

(see Figure 1.11(c)→(d)).  Compared to the direct transfer, the indirect transfer leads to more numerical 

diffusion (Lee and Bathe, 1994), but less inconsistencies (PavanaChand and KrishnaKumar, 1998). 

 

Figure 1.11. (a) Old mesh with old integration points; (b) Old mesh with old nodes; (c) New mesh with new nodes; (d) New mesh 

with new integration points 

 

Restoration of equilibrium 

After the transfer step, the equilibrium equations are generally no more satisfied and the new state variables 

may be incompatible with the traction boundary conditions. So it is necessary to restore equilibrium before 

proceeding to a new load increment to preserve numerical stability.  

In the work of (J. Mediavilla et al., 2006c), the equilibrium step is realized by doing some iterations under 

unchanged external loads and boundary conditions. To ensure convergence, it is assumed that all deformation 

in the balancing-step is elastic since no physical deformation process takes place in this step. 

Another way to ensure the equilibrium is to subdivide the next time increment 𝛥𝑡 into 𝛼𝛥𝑡 and (1 − 𝛼)𝛥𝑡 

with 𝛼 being close to 0 and some iterations under normal external loading are made during 𝛼𝛥𝑡 (Boroomand 

and Zienkiewicz, 1999). The new state variables at the end of the transfer step are regarded as the initial 

conditions 

 

1.3.4 Material failure 

As shown in (Zhang, 2016), highly distorted elements are observed in the case of simulations of large crack 

extensions. This may strongly affect the computational convergence. In this subsection, we will focus on the 

existing literature methods which are used to deal with the distorted elements. 

Element deletion 

The element deletion method is also called “kill element”. This method consists in removing a finite element 

when the necessary condition for element deletion is met during the simulation. The necessary condition can be 

based on the damage value (Li et al., 2011), the stresses value (Phadnis et al., 2013), the strains value (Ko et al., 

1997), etc. As shown in Figure 1.12, the numerical algorithm includes the following steps: (1) Element deletion: 

Elements are removed when the defined criterion is reached. The parameters describing the element connectivity 
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definition, the strains, the stresses and the internal variables such as the damage value are removed.  (2) 

Treatment of the isolated node: after element deletion, some nodes may be isolated and disconnected from the 

neighboring elements. So it is necessary to also remove such nodes. (3) Rearrangement of the boundary 

condition: The element deletion can lead to the generation of some new boundary. Therefore, the boundary 

conditions should be reset accordingly. Otherwise, a re-meshing technique may be applied after removing the 

broken elements to have a smooth boundary.   

 

Figure 1.12. Schematic representation of element-deletion method 

With this method, the highly distorted element can be eliminated, stress concentration near crack surface (if 

discretized crack is modeling) can be avoided which prevents over-estimation of stress and strain value (Lee et 

al., 2009). However, in the context of ductile damage modeling, this method is often used with local damage 

models such as (Li et al., 2011; Lian et al., 2015, 2013). When it comes to nonlocal models, it is only used in 

few cases such as (Seupel et al., 2018) in the framework of implicit gradient nonlocal modeling.  In (Seupel et 

al., 2018), the natural boundary conditions for the non-local field equation is directly satisfied on the new 

element boundary created by element deletion, which may generate a jump-like contribution due to the 

instantaneous change of the nonlocal flow and thus lead to numerical problems (Hütter et al., 2013). A 

redistribution of the nonlocal variables are done in spite of some other questionable effects (Seupel et al., 2018). 

Note that physical inaccuracy may be induced by resetting of the boundary conditions. In addition, it is pointed 

out in (Seupel et al., 2018) that small increments are needed when element-deletion starts even for a simple 

crack growth simulations. The same problems may occur in the framework of enhanced energetic nonlocal 

modeling when “element-deletion” technique is used. Except the special issues concerning the nonlocal 

variables, the general issue regarding loss of mass during element deletion may also lead to physical inaccuracy 

in dynamic simulations. Therefore, the modeling and the simulation of fracture with element deletion should be 

performed and interpreted with caution. 

 

Direct operations on state variables 

In the literature, some authors just do some manipulations on state variables of the broken elements, instead 

of removing these elements. For example, in the work of (Huespe et al., 2012), the damage variable and the 

plastic strain in broken elements remain unchanged such that no more deformation takes place in these elements. 

The drawback to this method is that the residual stresses increase. In the work of (Zhang, 2016), the stresses 

and the rate of the hardening variable are set to be zero in broken points and an artificial tangent stiffness 𝜆𝔼(𝜆 ≈

10−5 and 𝔼 the Hooke matrix) is given to the broken point. However, a very important deformation of the 

broken element is still observed which may be the source of numerical non-convergence. More integration 

points in an element can then be added, but it can just postpone the element distortion. 
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Remeshing technique 

A remeshing strategy can be applied to avoid large element distortion, as done in (J. Mediavilla et al., 2006c). 

For the detail of adaptive mesh refinement, one can refer to the Section 1.3.3. The idea is to replace the distorted 

element by some new undistorted elements with remeshing. Particularly, the element-deletion method can be 

used in combination with the remeshing technique so as to obtain a smooth boundary. Remeshing technique can 

completely avoid element distortion. However, it may become another source of computational convergence 

issues (see Section 1.3.3 for the numerical problems that can be raised in remeshing procedures). Besides, the 

physical inaccuracy caused by remeshing, in particular at the transfer step of remeshing, should be properly 

treated. 
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1.4 Proposed model 

Damage model (Section 1.1) 

The micromechanical based constitutive models for ductile fracture are briefly introduced at the beginning 

of this chapter.  For the sake of simplicity, in this work, we focus on the isotropic ductile damage model initially 

proposed in (Gurson, 1977) and improved by (Needleman and Tvergaard, 1984; Tvergaard and Needleman, 

1984), referred to as the GTN model. This model takes into account the coupling between damage and plasticity.  

 

Nonlocal model (Section 1.2) 

One drawback to the GTN model is that damage at the continuum level results in strain softening leading to 

strain localization. In such cases, the macroscopic length scale becomes comparable to the microscopic length 

scale, which is not in accordance with the homogenization theory. Thus, it is necessary to introduce nonlocal 

effects in the modeling. The regularized methods can be applied either to the equilibrium equation 

(Micromorphic approach, plasticity/damage gradient approach) or the constitutive laws (integral nonlocal 

approach, implicit gradient approach). As discussed in Section 1.2.6, the GEE approach will be used in this 

work for its sound mathematical and numerical properties. The gradient of hardening variable κ will be 

introduced to simultaneously control (1) the plastic localization which may result from geometrical 

considerations (necking) and (2) the damage localization which results from strain softening.   

 

Finite element modeling of ductile failure (Section 1.3) 

The problem of mesh-sensitivity that stems from softening disappears with the use of a gradient model 

provided that the mesh is sufficiently refined.  

Another numerical problem is volumetric locking which results in the oscillations of the stress filed. Several 

methods such as reduced/selective integration, B-bar/F-bar, EAS, HHO, Mixed element methods can be applied 

to handle this problem. Each method has its own drawbacks, as shown in Section 1.3.2. In this work, the mixed 

element formulation will be used to treat the volumetric-locking problem since the robustness of this method 

has already been demonstrated in the PhD works of (Zhang, 2016) in ductile damage case. One problem 

concerning the localization of plasticity is addressed in (Zhang, 2016), an improvement concerning this problem 

will be made in this work.  

Besides, highly distorted elements can appear during the crack growth simulation with damage model. This 

problem is typically related to the zero stiffness in the broken elements. The most direct solution is to eliminate 

these elements with element-deletion method. But in addition to possible physical inaccuracy induced by this 

method, the difficulties on the treatment of nonlocal variables is another reason for which the element-deletion 

is not used in this work. Compared to the element-deletion method, the remeshing technique is more attractive 

but efforts should be made for numerical implementation. In addition, the numerical problems (numerical 

diffusion, the possible computational non-convergence during the balancing-step, etc) induced by the remeshing 

technique are not negligible and thus should be properly treated. As for other solutions (artificial stiffness, zero 

deformation in broken elements), they are rather simple but not really effective.  In this work, a viscoelastic 

regularization is proposed in Chapter 3 to avoid excessively distorted elements. We will see that an additional 

stiffness and a characteristic time will be introduced in this model: the stiffness should preclude distortion, 

resulting in a small viscous stress which vanishes with time.  The efficiency of this strategy will be illustrated 

in Chapter 3. 
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Finally, the adaptive mesh refinement will not be used since in most simulations involved in this work, the 

zone of interest is known a priori (except for ATLAS pipe as introduced in Chapter 5). An initial local refinement 

is sufficient. When done correctly, the savings on time and resources can be significant. 

 

Proposed model 

In conclusion, in this work, the following model will be used: 
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2 A nonlocal GTN model 

 

 天才是百分之一的天分加百分之九十九的努力。 

 

Le génie est fait d’un pourcent d’inspiration et de quatre-

vingt-dix-neuf pourcent de transpiration. 

 

Genius is one percent inspiration, ninety-nine percent 

perspiration. 

  托马斯 阿尔瓦 爱迪生 Thomas Alva Edison 
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Résumé 

 

Dans ce chapitre, le modèle d’endommagement de GTN exprimé en grandes déformations est présenté. Pour 

résoudre le problème de la localisation de déformation,  on adopte un modèle non local qui permet de tenir 

compte de l’interaction entre des points matériels. Plus précisément, une formulation non-locale basée sur le 

gradient de la variable d’écrouissage est adoptée. Ce modèle est censé résoudre le problème de la localisation 

de déformation (un problème physique). On espère qu’il peut améliorer le problème (numérique) de la 

dépendance au maillage observé dans la simulation des éléments finis. Sur le plan numérique, cette formulation 

conduit à des gradients spatiaux des variables internes dans la loi de comportement : la méthode de 

décomposition-coordination est utilisée afin de traiter les termes concernés. Un autre problème numérique à 

traiter dans ce travail est le verrouillage volumique provenant de la quais-incompressibilité plastique, une 

formulation variationnelle de type Hu-Washiwu est mise en œuvre. Un terme d’augmentation supplémentaire 

est introduit dans le Lagrangian correspondant afin d’assurer la coercivité. Finalement, un nouvel élément fini 

à 5-champ est déduit de la formulation variationnelle régularisée. Des résultats de cas-tests employant le modèle 

non-local de GTN sont présentés à la fin du chapitre.  
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 In this chapter, the non-local GTN model originally proposed in (Zhang et al., 2018) and improved in our 

work is recalled. This model brings some answers to the problems of spurious localization. Strain localization 

is controlled by introducing the gradient of the hardening variable into the Helmholtz free energy (formulation 

of gradient plasticity). On a numerical ground, this results in spatial gradients of state variables within the 

constitutive relations: a decomposition-coordination techniques (Fortin and Glowinski, 1983) is used to treat 

the corresponding term. According to (Zhang et al., 2018), this nonlocal model can effectively reduce spurious 

mesh-sensitivity in finite element simulations. Another numerical problem to be solved is volumetric locking 

resulting from plastic quasi-incompressibility (prior to damage), the Hu-Washizu mixed variational principle 

(Hu, 1955, 1954) is put in practice. An additional augmentation term is introduced into the corresponding 

Lagrangian in this work in order to ensure coercivity and thus avoid spurious localization of plasticity. Finally, 

a new 5-field finite element is derived from the non-local locking-free variational formulation. At the end of 

this chapter, some simple test-cases are provided in order to check the numerical implementation. 

2.1 Finite strain modeling 

In the work of (Zhang et al., 2018), the GTN model is cast into the logarithmic finite strain formulation 

proposed by (Miehe et al., 2002; Miehe and Lambrecht, 2001). In this section, this formulation will be described 

brieftly. 

2.1.1 Strain and stress definitions 

The logarithmic strain tensor 𝑬 is defined as: 

 𝑬 =
1

2
ln(𝑭𝑇 . 𝑭) =

1

2
ln(𝑪) (2.1) 

 

where 𝑭 is the deformation gradient tensor and 𝑪 = 𝑭𝑇 . 𝑭 is the Cauchy-Green strain tensor.  

The Stress tensor 𝑻 is defined as the work-conjugated with respect to 𝑬: 

 𝑻(𝑡): �̇�(𝑡) = 𝑺(𝑡):
1

2
�̇�(𝑡), ∀�̇� (2.2) 

 

where 𝑺 is the second Piola-Kirchhoff stress tensor. 

 

2.1.2 Plasticity 

Following (Miehe et al., 2002), the logarithmic strain tensor 𝑬 is assumed to be addictive: 

 𝑬 = 𝑬𝒆 +𝑬𝒑 (2.3) 
 

where 𝑬𝒆 and 𝑬𝒑 are respectively the elastic and plastic parts of the strain tensor 𝑬. Under the assumption of 

pure isotropic hardening, a single scalar variable denoted 𝜅 describes the hardening state. The material state is 

then described by the current strain 𝑬, the hardening variable κ and the plastic strain 𝑬𝒑. 

As shown in (Miehe et al., 2002; Miehe and Lambrecht, 2001), the additive decomposition of 𝑬  is 

particularly attractive since the results obtained by this decomposition are close to those obtained using Lee’s 

multiplicative decomposition of 𝑭 (Lee, 1981), while leading to the same implementation as in the framework 

of small strains.  
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Similar to small strains, we have: 

 {

𝑻 = 𝔼:𝑬𝒆

�̇�𝒑 = �̇�
𝜕𝐹

𝜕𝑻
(𝑻, 𝐴)

𝐹 ≤ 0,   �̇� ≥ 0,   �̇�𝐹 = 0

 (2.4) 

 

where 𝔼 is the Hooke matrix, 𝐹 is the yield function and 𝐴 = 𝐴(𝜅) the hardening function. 

Remark 1: 

One can define the tangent operator 𝕁 as: 

 �̇� = 𝕁: �̇� (2.5) 
 

Remark 2: 

The second Piola-Kirchhoff stress tensor 𝑺 is obtained from Equation (2.2): 

 𝑺 = 𝑻: (2
𝜕𝑬

𝜕𝑪
) (2.6) 

 

The Cauchy stress can be obtained using: 

 𝝈 =
1

𝐽
𝑭. 𝑺. 𝑭𝑻 (2.7) 

 

where 𝐽 = det 𝑭 that measures the volume variation. Note that both 𝑺 and 𝝈 are symmetric.  

The standard tangent modulus 𝕁𝑠 which satisfies �̇� = 𝕁𝑠: �̇�/2 is (Miehe et al., 2002):  

 𝕁𝑠 = (2
𝜕𝑬

𝜕𝑪
)
Τ

: 𝕁: (2
𝜕𝑬

𝜕𝑪
) + 𝑻: (4

𝜕2𝑬

𝜕𝑪2
) (2.8) 

 

Here 𝜕2𝑬/𝜕2𝑪 is a sixth order tensor. The expressions of 𝜕𝑬/𝜕𝑪 and 𝜕2𝑬/𝜕𝑪2 can be found in (Code_Aster 

Documentation R5.03.24, www.code-aster.org). 

 

  

http://www.code-aster.org/
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2.2 Nonlocal modification 

Damage usually results in strain-softening, i.e. the drop of the stress carrying capability with increasing 

damage. At the structure scale where constitutive behavior is combined with mechanical equilibrium, strain-

softening is responsible for the spatial localization of the strain field, the plastic strain field and the damage. The 

scale of the macroscopic field variations becomes comparable to the microstructure scale (micro-void spacing, 

for instance). This is in contradiction to the length scale separation assumption which underlies the derivation 

of local constitutive relations, i.e. models that only depend on the point-wise state variables (strain, damage, 

plasticity, hardening, etc.). Therefore nonlocal constitutive relations are required as a consequence of 

overlapping micro and macro length scales. They account for a spatial coupling of neighboring material points: 

the material state is no more characterized by point-wise state variables and an interaction distance (also named 

internal length) appears.  

In the work of (Zhang et al., 2018), in order to take into account the high gradients of the macroscopic fields 

which result from strain localization, a non-local constitutive relation based on the introduction of the gradient 

of an internal variable into the global Helmholtz free energy density is proposed. In this work, the gradient of 

the hardening variable 𝜅 is introduced into the global Helmholtz free energy density ℱ. The phenomenological 

choice of 𝜅 is led by the fact that this variable reflects localization of both plasticity and plasticity-induced 

damage: 

 ℱ(𝑬, 𝑬𝒑, 𝜅)  =   ℱℓ(𝑬(𝑢), 𝑬
𝒑, 𝜅)  + ∫ (

1

2
𝑐𝛁𝜅. 𝛁𝜅)𝑑Ω0

Ω0

 (2.9) 

 

where ℱ𝑙  is a point-wise contribution to the Helmholtz free energy, �̲�  is the displacement, 𝛺0  is the body 

domain in the initial configuration and 𝑐  is a parameter which weights the non-local interactions among 

neighboring material points. Dimensional considerations show that a non-local length scale can be introduced 

as: 

 𝑙𝑛𝑙  = √
𝑐

𝜎𝑟𝑒𝑓
 (2.10) 

 

where 𝜎𝑟𝑒𝑓 is a reference stress which can be, for example, the initial yield stress 𝜎0 or the mean stress 𝜎𝑚 =

(𝜎0 + 𝜎𝑈𝑇𝑆)/2 with 𝜎𝑈𝑇𝑆 the ultimate tensile strength measured in a tensile test.  

In Equation (2.9), the free energy contribution ℱ𝑙 is divided into an elastic part and a plastic (hardening) part: 

 ℱℓ(𝑬, 𝑬
𝒑, 𝜅) = ∫ (𝜙𝑒(𝑬𝒆) + 𝜙𝑝(𝜅))𝑑𝛺0

𝛺0

 (2.11) 

 

where 𝜙𝑒 and 𝜙𝑝 are the elastic and plastic parts of the local Helmholtz free energy density: 

 

{
 

 𝜙𝑒(𝑬𝒆) ≡
1

2
𝑬𝒆: 𝔼: 𝑬𝒆

𝜙𝑝(𝜅) ≡ ∫ (�̅�(𝑠) − 𝜎0)𝑑𝑠
𝜅

0

 (2.12) 

 

and  �̅� is the flow stress of the matrix material. The latter is a function of 𝜅. In this work, two different form of 

�̅� will be used: 

 Unbounded power law: 
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 �̅�(𝜅) =  𝜎0 (1 +
𝜅

𝜅0
)
𝑛

 (2.13) 

 

 Bounded exponential law: 

 �̅�(𝜅) = 𝜎0 + 𝑟1(1 − 𝑒
−𝑔1𝜅) + 𝑟2(1 − 𝑒

−𝑔2𝜅) (2.14) 
 

where 𝜅0, 𝑟1, 𝑟2, 𝑔1, 𝑔2 are additional material constants, 𝑛 is the hardening exponent with 𝑛 > 0. The first form 

of �̅� is often used in the literature and it is unbounded, while the second form bounds the stress when 𝜅 → ∞. 

In the following, we assume that: (1) The evolution is quasi-static and isothermal; (2) There is no viscosity; 

(3) The strain is involved in a pointwise way only; (4) The forces derive from a potential 𝑊𝑒(�̲�). Under these 

assumptions, the variation of ℱ with respect to �̲� provides the equilibrium equations (in a variational form) for 

any kinematically admissible displacement field: 

 𝛿ℱ = ∫ (𝑻: δ𝐄)𝑑Ω0 = δ𝒲e(𝑢)
Ω0

 (2.15) 

 

and the stress definition thanks to Equation (2.11): 

 𝑻 =
𝜕𝜙e

∂𝐄
= 𝔼:𝑬𝒆 (2.16) 

 

Moreover, the dissipation is provided by the variation of ℱ  with respect to (�̇�𝑝, �̇� ) and should remain 

positive: 

 𝒟 =< 𝛿𝑬𝒑ℱ|�̇�
𝒑 > + < 𝛿𝜅ℱ|�̇� > (2.17) 

 

Combing Equations (2.9)(2.11)(2.17) yields: 

 𝒟 = ∫ (𝑻: �̇�𝑝 + 𝐴𝑛𝑙�̇�)𝑑Ω0 +∫ (−𝑐𝛁𝜅. 𝑛)�̇�𝑑𝑆
𝜕Ω0Ω0

 (2.18) 

 

where the stress tensor 𝑻 is the driving force associated to 𝑬𝒑 and 𝐴𝑛𝑙 is the driving force associated to 𝜅: 

 {
𝑻 = −

𝜕𝜙e

∂𝑬𝒑
= 𝔼: (𝑬 − 𝑬𝒑)

𝐴𝑛𝑙 = −
𝜕𝜙𝑝

𝜕𝜅
(𝜅) + div(𝑐𝛁𝜅) = 𝜎0 − �̅�(𝜅) + div(𝑐𝛁𝜅)

 (2.19) 

 

In addition, it is assumed that no dissipation stems from the boundary, which leads to the following boundary 

condition: 

 𝑐𝛁𝜅. 𝑛 = 0   on ∂Ω0 (2.20) 
 

where �̲� is the normal vector to the surface 𝜕𝛺0. 

Finally, the positivity of the dissipation is written as: 

 𝒟 = ∫ (𝑻: �̇�𝑝 + 𝐴𝑛𝑙�̇�)𝑑Ω0
Ω0

≥ 0 (2.21) 
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2.3 Numerical formulation: relaxed variational formulation 

On a numerical ground, the former non-local formulation leads to spatial gradients of state variables in the 

constitutive law. Moreover, in quasi-incompressible situations, volumetric locking may appear. The numerical 

approach should deal with both difficulties. Following (Lorentz et al., 2008; Taylor, 2000), we introduce a 

relaxed formulation which is equivalent to the initial problem before spatial discretization by finite elements. 

More precisely, a decomposition-coordination technique proposed by (Fortin and Glowinski, 1983) is used 

to treat the non-locality aspect. The hardening variable 𝜅 is duplicated: a first instance (named 𝑎) is used at the 

(global) scale of the structure while a second instance (still named 𝜅) is used at the (local) constitutive law level. 

As 𝑎 and 𝜅 reflect the same field, they should be equal. A Lagrange multiplier 𝑙 is introduced to weakly enforce 

this equality, the corresponding augmented Lagrangian ℒ𝑛𝑙 is: 

  ℒ𝓃ℓ(𝑬, 𝑬
𝒑, 𝜅, 𝑎, 𝑙)  =   ℱℓ(𝑬, 𝑬

𝒑, 𝜅)  + ∫ (
1

2
𝑐𝛁𝑎.𝛁𝑎 + 𝑙(𝑎 − 𝜅) +

1

2
𝑟𝑛𝑙(𝑎 − 𝜅)

2) 𝑑Ω0
Ω0

 (2.22) 

 

The augmentation term 𝑟𝑛𝑙(𝑎 − 𝜅)
2  with 𝑟𝑛𝑙  a penalty parameter is introduced to provide an additional 

coercivity. 

Regarding volumetric locking, the ideas of the Hu-Washizu mixed variational principle (Hu, 1955, 1954) 

are put in practice. The volumetric strain tr(𝑬) = ln (𝐽) with 𝐽 = det 𝑭 is duplicated: a first instance (still name 

𝐽(�̲�) is used at the global level while a second instance name 𝜃 is used at the constitutive law level. Since ln (𝐽) 

and 𝜃 reflect the same field, they should be equal. A Lagrange multiplier 𝑃 is introduced to weakly enforce the 

equality, the corresponding augmented Lagrangian ℒ is: 

 ℒ(𝑬, 𝑬𝒑, 𝜅, 𝑎, 𝑙, 𝑃, 𝜃)  =   ℒnℓ(�̅�, 𝑬
𝒑, 𝜅, 𝑎, 𝑙)  + ∫ (𝑃(ln(𝐽) − 𝜃) +

1

2
𝑟𝑖𝑛𝑐𝑜(ln(𝐽) − 𝜃)

2) 𝑑Ω0
Ω0

 (2.23) 

 

where �̅� is the relaxed strain tensor defined as: 

 �̅�  =  𝑬 +
1

3
(𝜃 − tr(𝑬))𝑰 (2.24) 

 

Compared to the Lagrangian in (Zhang et al., 2018), a new augmentation term 𝑟𝑖𝑛𝑐𝑜(ln 𝐽 − 𝜃)
2/2 has been 

introduced, with 𝑟𝑖𝑛𝑐𝑜  a new penalty parameter. It brings an additional coercivity so as to avoid potential 

appearance of spurious plastic localization (one can refer to chapter 3 for some example of spurious plastic 

localization) and thus help the convergence of simulation.  

As the Lagrangian ℒ corresponds to a relaxed numerical version of the physical Helmholtz free energy ℱ, 

its variation is expected to be equal to that of ℱ for any variation of its variables: 

 𝛿ℒ = 𝛿ℱ, ∀ 𝛿𝑢, 𝛿𝑬𝒑, 𝛿𝜅, 𝛿𝑎, 𝛿𝑙, 𝛿𝑃, 𝛿𝜃 (2.25) 
 

Concerning the variation with respect to �̲�, it results in the equilibrium variational equation: 

 𝛿𝑢ℒ = ∫ (�̃�: 𝛿𝑬)𝑑Ω0 
Ω0

= δ𝑢ℱ =  𝛿𝒲e (2.26) 

 

The expression of  �̃� is 

 �̃� = (�̅�)𝐷 + 𝑃𝑰 + 𝑟𝑖𝑛𝑐𝑜(tr(𝑬) − 𝜃)𝑰 (2.27) 
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where �̅� is the stress tensor used in the constitutive law: 

 �̅� =
𝜕𝜙𝑒

𝜕𝑬
(�̅�, 𝑬𝒑) (2.28) 

 

and (�̅�)𝐷 the deviatoric part of �̅�.  

The variations with respect to (𝑎, 𝑙, 𝑃, 𝜃) should be equal to zero as ℱ is not a function of these four variables: 

 

{
 
 
 
 

 
 
 
 𝛿𝑎ℒ = ∫ (𝑐𝛁𝑎𝛁𝛿𝑎 + (𝑙 +  𝑟𝑛𝑙𝑎 − 𝑟𝑛𝑙𝜅)𝛿𝑎)𝑑Ω0

Ω0

 =  0

𝛿𝑙ℒ = ∫ ((𝑎 − 𝜅)𝛿𝑙)𝑑Ω0 
Ω0

=  0

𝛿𝑃ℒ = ∫ ((tr(𝑬) − 𝜃)𝛿𝑃)𝑑Ω0
Ω0

 =  0

𝛿𝜃ℒ = ∫ ((
1

3
tr(�̅�) − 𝑃 − 𝑟𝑖𝑛𝑐𝑜(tr(𝑬) − 𝜃))𝛿𝜃)𝑑Ω0

Ω0

 =  0

 (2.29) 

 

It can be observed that the initial and the relaxed formulations are equivalent at the continuum level since the 

variations of ℒ with respect to (𝑙, 𝑃) result in the following relations:𝑎 = 𝜅, 𝜃 = tr(𝐸). 

Finally, the variations with respect to 𝑬𝒑 and to 𝜅 lead to the expression of the driving forces: 

 {
�̅� = 𝔼: (�̅� − 𝑬𝒑)

𝑨𝒓𝒍𝒙 = 𝜎0 − �̅�(𝜅) + 𝑙 + 𝑟(𝑎 − 𝜅)
 (2.30) 

 

We can notice that the relaxed stress �̅� is now the driving force associated to the plastic strain. Moreover, 

compared to Equation (2.19), the divergence term of the driving force associated to 𝜅 disappears. As expected, 

𝐴𝑛𝑙 is replaced by 𝐴𝑟𝑙𝑥 in the constitutive law. 
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2.4 Finite element formulation 

We have seen that the problems presented in Section 2.2 and Section 2.3 are equivalent at continuum level, 

but no more after spatial discretization. On the one hand, the variables (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) introduced in the relaxed 

variational formulation are discretized on the basis of Lagrange shape functions. It results in the nodal unknowns 

of the discretized problem. On the other hand, the stress and the internal variables (including 𝜅) are sampled at 

the integration points. They are obtained by the integration of the constitutive law at the integration point level.  

More precisely, the discretization of  (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) ∈ (ℝ𝑑𝑖𝑚, ℝ,ℝ,ℝ,ℝ) reads: 

 

{
 
 
 
 

 
 
 
 
𝑢(𝑥) = 𝑵�̲�(𝑥).𝑈

𝑎(𝑥) = 𝑁𝑎(𝑥)𝐴

𝑙(𝑥) = 𝑁𝑙(𝑥)𝐿

 𝑃(𝑥) = 𝑁𝑃(𝑥)𝑃

𝜃(𝑥) = 𝑁𝜃(𝑥)Θ

𝛁u(𝑥) = �̲��̲�(𝑥).𝑈

𝛁𝑎(𝑥) = �̲�𝑎(𝑥). 𝐴

 (2.31) 

 

where 𝑵�̲� ∈ ℝ𝑑𝑖𝑚 × ℝ𝑛×𝑑𝑖𝑚, 𝑁𝑎 ∈ ℝ𝑛, 𝑁𝑙 ∈ ℝ𝑛, 𝑁𝑃 ∈ ℝ𝑛, 𝑁𝜃 ∈ ℝ𝑛, �̲��̲� ∈ ℝ𝑑𝑖𝑚 ×ℝ𝑑𝑖𝑚 × ℝ𝑛×𝑑𝑖𝑚, �̲�𝑎 ∈

ℝ𝑑𝑖𝑚 × ℝ𝑛, �̲� ∈ ℝ𝑑𝑖𝑚, �̲� ∈ ℝ𝑛×𝑑𝑖𝑚, 𝐴 ∈ ℝ𝑛, 𝐿 ∈ ℝ𝑛, 𝑃 ∈ ℝ𝑛, 𝛩 ∈ ℝ𝑛 with 𝑛 the node numbers and 𝑑𝑖𝑚 the 

space dimension. 

Like in the work of (Zhang et al., 2018), 𝑵�̲� is piecewise quadratic while 𝑁𝑎 , 𝑁𝑙 , 𝑁𝑃 , 𝑁𝜃  are piecewise 

linear. Consequently, the finite element associated with the five variables (�̲�, 𝐴, 𝐿, 𝑃, Θ) is a 𝑃2𝑃1𝑃1𝑃1𝑃1-type 

element where 𝑃1 stands for linear interpolation and 𝑃2 stands for quadratic interpolation. Example of non-local 

locking-free elements with reduced integration (four integration points in each quadrilateral element and three 

integration points in each triangle element) are shown in Figure 2.1. The formulation for incompressibility 

treatment is directly based on the Taylor-Hood element, which is known to fulfil the LBB condition (Ern and 

Guermond, 2013). A linear interpolation for 𝑎 is chosen to be consistent with the strain field obtained from a 

𝑃2 displacement field (Zhang et al., 2018). 

 

Figure 2.1. Examples of non-local locking-free finite elements with reduced integration: (a) triangle element (b) quadrilateral 

element 

 

If we differentiate Equation (2.1), we have: 

 𝛿𝑬 =
𝜕𝑬

𝜕𝑪
: 𝛿𝑪 = ℙ: (𝑭Τ: 𝛿𝑭)   with   ℙ = 2

𝜕𝑬

𝜕𝑪
(𝑪) (2.32) 
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After spatial discretization, the variational equations (2.26)(2.27)(2.28)(2.29)(2.32) result in the following 

non-linear algebraic system: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 �̲�

�̲� =∑𝑤𝑔(�̅�𝐷,𝑔 + 𝑃𝑔𝑰 + 𝑟𝑖𝑛𝑐𝑜(tr(𝑬𝒈) − 𝜃𝑔)𝑰): ℙ𝑔: (𝑭𝒈
𝚻. �̲�𝑔

�̲�
)

𝑔

𝐹𝑎 =∑𝑤𝑔 (𝑐𝛁𝑎𝑔. �̲�𝑔
𝑎 + (𝑙𝑔 + 𝑟𝑛𝑙(𝑎𝑔 − 𝜅𝑔))𝑁𝑔

𝑎)

𝑔

 

𝐹𝑙 =∑ 𝑤𝑔(𝑎𝑔 − 𝜅𝑔)𝑁𝑔
𝑙

𝑔

𝐹𝑃 =∑𝑤𝑔(tr(𝑬𝒈) − 𝜃𝑔)𝑁𝑔
𝑃

𝑔

𝐹𝜃 =∑𝑤𝑔 (
1

3
tr(�̅�𝑔) − 𝑃𝑔 − 𝑟𝑖𝑛𝑐𝑜(tr(𝑬𝒈) − 𝜃𝑔))𝑁𝑔

𝜃

𝑔

 

 

(2.33) 

 

where �̲�𝑖 = (�̲��̲� , 𝐹𝑎 , 𝐹𝑙 , 𝐹𝑃 , 𝐹𝜃)  are the internal forces. It should be equal to the external forces �̲�𝑒 =

(�̲�𝑒𝑥𝑡, 0,0,0,0). 

Equations (2.33) are solved by an iterative Newton-Raphson method with respect to the nodal unknowns 

( �̲�, 𝐴, 𝐿, 𝑃, 𝛩 ). If we note �̲� = (�̲�, 𝐴, 𝐿, 𝑃, 𝛩)  and 𝑗  the 𝑗𝑡ℎ  iteration, then �̲�𝑗+1 = �̲�𝑗 − (𝕂𝑗  )
−1
 (�̲�𝑖 −

�̲�𝑒)
𝑗
 with 𝕂  the stiffness matrix: 𝕂𝑗 = 𝜕(�̲�𝑖 − �̲�𝑒)/𝜕�̲� . The detailed expression of 𝕂  can be found in 

Appendix A2. 
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2.5 Porous plasticity material and application to ductile fracture 

The formulation proposed to handle isochoric plasticity and gradient hardening has been expressed in the 

context of a generic plasticity model. Now we focus our attention on the GTN model. It describes porous ductile 

plasticity with isotropic hardening. The porosity 𝑓 is considered as an isotropic damage factor. For simplicity, 

the strain tensor �̅� and the stress tensor �̅� used in the constitutive law will be denoted 𝑬 and 𝑻, respectively. 

 

2.5.1 Definition of a scalar stress measure 

In the work of (Besson et al., 2001), an effective scalar stress 𝑎∗ associated to stress tensor 𝒂 was introduced. 

The stress 𝑎∗ is a representation of the matrix loading when subjected to a macroscopic stress 𝒂 (stress 𝑻 in the 

following) for a given damage level. In the following, the scalar stress measure 𝑎∗ is defined explicitly or 

implicitly by the following equation: 

 𝐺(𝒂, 𝑎∗, 𝑓) = 0 (2.34) 

One can refer to (Lorentz, 2017) for the mathematical properties of such definition.  

In the following, the 𝑎∗ will be expressed using the porosity 𝑓 and the first two invariants of the 𝒂: its 

hydrostatic part 𝑎ℎ and its von-Mises invariant 𝑎𝑒𝑞. The resulting model is therefore isotropic. To reflect the 

damage effect of porosity, 𝑎∗ must be an increasing function of 𝑓: 

 𝑎∗(𝒂, 𝑓1) < 𝑎∗(𝒂, 𝑓2)      if      𝑓1 < 𝑓2 (2.35) 
 

It is assumed that 𝑎∗ is a homogeneous function of 𝒂 of degree 1 and differentiable. Consequently, 

 𝒂:
𝜕𝑎∗
𝜕𝒂

= 𝑎∗ (2.36) 

 

As seen in the previous parts, the stress tensor in the logarithmic strain space is denoted 𝑻, so we can 

introduce the effective stress tensor 𝑇∗ = 𝑇∗(𝑻, 𝑓) associated to 𝑻.  

In the case of the von-Mises model, the effective stress 𝑇∗ is defined by: 

 𝐺(𝑻, 𝑇∗) ≡ (
𝑇𝑒𝑞
𝑇∗
)
2

− 1 = 0 (2.37) 

 

Now considering the micromechanical-based GTN model proposed by (Gurson, 1977) and improved 

by(Needleman and Tvergaard, 1984; Tvergaard and Needleman, 1984). This model takes into account a strong 

coupling between damage and plastic strain. The effective stress 𝑇∗ is defined by the GTN yield function as: 

 𝐺(𝑻, 𝑇∗, 𝑓) ≡  (
𝑇𝑒𝑞
𝑇∗
 )
2

 +  2𝑞1𝑓
∗ cosh(

3

2
𝑞2
𝑇𝐻
𝑇∗
)  − 1 − (𝑞1𝑓

∗)2  =  0   (2.38) 

 

In Equation (2.38), 𝑇𝐻 and 𝑇𝑒𝑞 are the hydrostatic stress and the von-Mises equivalent stress respectively. The 

parameters 𝑞1 and 𝑞2 are two material constants and 𝑓∗ is the effective porosity which is a function of 𝑓 so as 

to account for the rapid drop in the stress carrying capacity during void coalescence: 
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 𝑓∗ = {

𝑓, 𝑓 < 𝑓𝑐

𝑓𝑐 +

1
𝑞1
− 𝑓𝑐

𝑓𝐹 − 𝑓𝑐
, 𝑓 ≥ 𝑓𝑐

 (2.39) 

 

where 𝑓𝑐 and 𝑓𝐹 represent respectively the porosity at the onset of coalescence and the porosity at fracture. 

Note that Equation (2.37) and Equation (2.38) are obviously equivalent if we set 𝑓∗ = 0 in Equation (2.38). 

 

2.5.2 Yield function and evolution equations 

As long as there is no rotation of the eigenbasis of the stress tensor, the scalar stress measure 𝑇∗ and 𝜎∗ are 

linked by 𝑇∗ = 𝐽𝜎∗  with 𝜎∗  the scalar effective stress associated to Cauchy stress tensor  𝝈 . Therefore, we 

propose the following yield function 𝐹: 

 𝐹 =
𝑇∗
𝐽
− (𝜎0 − 𝐴) (2.40) 

 

where the expressions of the hardening driving force 𝐴 is provided in Equation (2.30) within the context of the 

relaxed numerical formulation.  

The Kuhn-Tucker consistency conditions is: 

 𝜆 ≥ 0, 𝐹 ≤ 0, 𝜆𝐹 =  0  (2.41) 
 

where 𝜆 denotes the plastic multiplier.  

The rate of the plastic strain tensor 𝑬𝒑 and the rate of the hardening variable 𝜅 are given by application of a 

normality flow rule: 

 {
�̇�𝒑  = λ

𝜕F

𝜕𝑻

 �̇� = λ
𝜕𝐹

𝜕𝐴

 (2.42) 

 

 

2.5.3 Void nucleation and void growth 

The evolution of 𝑓 is given by the sum of the rate of the void growth 𝑓�̇� and the rate of the void nucleation 

𝑓�̇�: 

 𝑓̇ = 𝑓�̇� + 𝑓�̇� (2.43) 
 

The void growth rate can be written as: 

 𝑓�̇�  =  (1 −  𝑓)tr(�̇�
𝒑) (2.44) 

 

where �̇�𝒑 represents the rate of the plastic strain tensor and tr(�̇�𝒑) represents the trace of the rate of the plastic 

strain tensor which depicts the rate of volume change.  
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For strain controlled void nucleation mechanism, the rate of void nucleation is defined on the rate of the 

hardening variable 𝜅 by: 

 𝑓�̇� = 𝐵𝑛(𝜅)�̇�      ⟹     𝑓𝑛 = ∫ 𝐵𝑛(𝑠)
𝜅

0

𝑑𝑠 (2.45) 

 

Several expressions of 𝐵𝑛 are possible among which the expressions proposed in (Chu and Needleman, 

1980) and (Zhang et al., 2000) are widely used in the literature. In (Chu and Needleman, 1980), stress or strain 

controlled void nucleation mechanism is assumed to follow a normal distribution: 

 𝐵𝑛(𝜅) =
𝑓𝑁

𝑠𝑁√2𝜋
𝑒
−
1
2
(
𝜅−𝜅𝑁
𝑠𝑁

)
2

 (2.46) 

 

where 𝜅𝑁 and 𝑠𝑁 are the mean value and the standard deviation of the strain tensor, 𝑓𝑁 is the void nucleating 

particles fraction. In the work of (Zhang et al., 2000), a continuous nucleation model is proposed: 

 𝐵𝑛(𝜅) = 𝑏0 (2.47) 
 

where 𝑏0 is a constant number. Compared to the model proposed in (Zhang et al., 2000), the model proposed in 

(Chu and Needleman, 1980) is more sophisticated but less attractive in engineering due to the three parameters 

to be calibrated.  

So far, a complete non-local locking free von-Mises/GTN model for non-porous/porous materials is 

established. This model is implemented in Code_Aster (software for finite element analysis), developed at EDF 

(Electricité De France). The integration of the constitutive equations is realized using a semi-implicit scheme 

(𝑓 is updated explicitly) (Zhang et al., 2018). A further discussion about the purely implicit scheme and the 

semi-implicit scheme will be conducted in Chapter 3. The corresponding numerical implementation can be 

found in (Zhang et al., 2018) for the semi-implicit scheme and in Appendix A4 for the purely implicit scheme. 
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2.6 Model validation with some test-cases 

In this section, the simulations on an elementary cell, a bar and a notch tensile specimen are performed using 

the GTN model described above. The major objective of this section consists in validating our numerical 

implementation and thus providing some reference results. Since these test-cases are just used for the validation 

of our model implementation, no comment will be given to all results. The validation of the numerical 

implementation is done through the comparison between the results obtained by Code_Aster (software for finite 

element analysis developed in EDF) and those obtained by Z-Set (software for finite element analysis developed 

at Centre des Matériaux, Ecole des Mines de Paris). The percentage difference4 between the results obtained by 

the two software is always less than 1%. 

Unless otherwise specified in the text, the values of the model parameters used in the simulations are given 

in Table 2.1. The power law (Equation (2.13)) is used for the flow stress. 

Table 2.1. The nominal values of the parameters used in the test-cases 

Elasticity 
Young modulus 𝐸 200000 MPa 

Poisson ratio 𝜈 0.3 

Plasticity 

Yield stress 𝜎0 500 𝑀𝑃𝑎 

Hardening variable 𝜅0 0.0025 

Hardening exponent 𝑛 0.1 

Damage 

Initial porosity 𝑓0 0.01 

Critical porosity 𝑓𝑐 0.05 

Porosity at failure 𝑓𝐹 0.25 

Material constants (𝑞1, 𝑞2) (1.5,1.0) 

Nonlocality Nonlocal parameter 𝑐 50 𝑁 

Numerical parameters 
Nonlocal penalty parameter 𝑟𝑛𝑙 5000 𝑀𝑃𝑎 

Incompressibility penality parameter 𝑟𝑖𝑛𝑐𝑜 5000 𝑀𝑃𝑎 

 

2.6.1 Simulations of elementary cell 

This part aims at presenting the results of the simulations of an elementary cell (referring to as RVE2D) with 

axisymmetric and plane strain modeling. The initial length and the initial width of RVE2D are the same (𝐿𝑥0 =

𝐿𝑦0 = 𝐿0 = 1 𝑚𝑚). The corresponding mesh is a single quadrilateral element with 4 integration points. Figure 

2.2 shows the boundary and loading conditions for each tests. In this figure, the point 𝐴 corresponds to the origin 

of the Cartesian (or cylindrical) coordinate system.   

For the axisymmetric case, the vertical displacement of all nodes is given: 𝑢𝑦 = 𝛼𝑡𝑦 with 𝛼 = 10. That is to 

say, the vertical component of 𝑭 (deformation gradient tensor) is given: 𝐹𝑦𝑦 = 𝛼𝑡 + 1. Horizontal deformation 

of 𝐴𝐷 is restricted. Horizontal deformation of 𝐵𝐶 remains uniform (see Figure 2.2 (a)). That is to say, the radial 

component of 𝑭 is a constant or only depends on 𝑥: 𝐹𝑟𝑟 = 𝐹𝑟𝑟(𝑥). 

For the plane strain case, four different kinds of boundary conditions are modelled. In particular, the last two 

types are used to illustrate the fact that damage growth under shear loading cannot be captured by the classical 

GTN model. 

                                                      
4 Percentage Difference: if we note 𝑥1 and 𝑥2 two different value, then the percentage difference is defined by: 

1

2
|
𝑥1 − 𝑥2
𝑥1 + 𝑥2

| × 100% 
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 Uniaxial tensile case: the vertical displacement of all nodes is given: 𝑢𝑦 = 𝛼𝑡𝑦  with  𝛼 = 3 , the 

horizontal deformation of 𝐴𝐷 is restricted. Horizontal deformation of BC remains uniform (see Figure 

2.2(b1)). That is to say, the following deformation gradient tensor is imposed: 

 𝑭 = (
𝐹𝑥𝑥 0
0 𝐹𝑦𝑦

) = (
𝐹𝑥𝑥 0
0 𝛼𝑡 + 1

) (2.48) 

 

Here 𝐹𝑥𝑥 can be a constant or depends on 𝑥. 

 Biaxial tensile case: displacement of all nodes are given: 𝑢𝑥 = 𝛼𝑡𝑥  ,𝑢𝑦 = 𝛼𝑡𝑦  with 𝛼 =  0.2  (see 

Figure 2.2(b2)). That is to say, the following deformation gradient tensor is imposed: 

 𝑭 = (
𝛼𝑡 + 1 0
0 𝛼𝑡 + 1

) (2.49) 

 

 Simple shear case: restriction of vertical displacement of all nodes; Horizontal displacement of all nodes 

is: 𝑢𝑥 = 𝛼𝑡𝑦  with 𝛼 = 40 (see Figure 2.2(b3)). That is to say, the following deformation gradient 

tensor is imposed: 

 𝑭 = (
1 𝛼𝑡
0 1

) (2.50) 

 

 Pure shear test: displacement of all nodes are given: 𝑢𝑥 = (cosh(𝛼𝑡) − 1)𝑥 + sinh(𝛼𝑡)𝑦 , 𝑢𝑦 =

 sinh(𝛼𝑡)𝑥 + (cosh(𝛼𝑡) − 1)𝑦  with 𝛼 = 1  (see Figure 2.2(b4)). That is to say, the following the 

deformation gradient tensor is imposed: 

 𝑭 = (
cosh (𝛼𝑡) sinh (𝛼𝑡)
sinh (𝛼𝑡) cosh (𝛼𝑡)

) (2.51) 

 

 

Figure 2.2. Boundary and Loading conditions: (a) axisymmetric and (b) plane-strain modeling ((b1) uniaxial tensile, (b2) biaxial 

tensile, (b3) simple shear and (b4) pure shear cases) 

 

With the above boundary and loading conditions, it is obvious that the material behavior is purely 

homogenous. Nonlocal effect does not exist for any values of 𝑐. In the following, for each test, we will plot: 

 Force – displacement curve 

 Evolution of 𝜅 and 𝑓 with increasing load 

 Evolution of certain components of 𝝈 and 𝑻 with increasing load  
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Remarks: 

 Uniaxial tensile test with axisymmetric modeling  

In Figure 2.3, the force 𝐹 is computed by 𝐹 = 2𝜋𝐹𝑦 with 𝐹𝑦 the resultant force on the top edge CD. 

 Uniaxial tensile test with plane-strain modeling  

In Figure 2.6, the force 𝐹 is computed by F=2𝐹𝑦 with 𝐹𝑦 the resultant force on the top edge CD. 

 Biaxial tensile test with plane-strain modeling  

In Figure 2.9, the force 𝐹 is computed by 𝐹 = 2𝐹𝑦 with 𝐹𝑦 the resultant force on the top edge CD. 

 Simple shear test with plane-strain modeling 

In Figure 2.12, the force 𝐹 is computed by 𝐹 = 𝐹𝑥 with 𝐹𝑥 the resultant force on the top edge CD. The 

force 𝐹, as well as the stress 𝜎𝑥𝑦 decrease from a certain value of the deformation gradient 𝐹𝑥𝑦 even if 

no damage growth occurs. This observation can be explained by the increase of other components of 

the stress.  

 

No further comment will be given to the obtained results. 
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Uniaxial tensile test with axisymmetric modeling 

 

Figure 2.3. Force – displacement (uniaxial tensile test with axisymmetric modeling) 

 

 

Figure 2.4. Evolution of the hardening parameter 𝜅 and the porosity 𝑓 with the stretch (uniaxial tensile test with axisymmetric 

modeling) 

 

 

Figure 2.5. Evolution of the stress 𝜎𝑦𝑦 and the stress 𝑇𝑦𝑦 with the stretch (uniaxial tensile test with axisymmetric modeling) 
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Uniaxial Tensile test with plane-strain modeling 

 

Figure 2.6. Force – displacement (uniaxial tensile test with plane-strain modeling) 

 

 

Figure 2.7. Evolution of the hardening parameter 𝜅 and the porosity 𝑓 with the stretch (uniaxial tensile test with plane-strain 

modeling) 

 

 

Figure 2.8. Evolution of the stress 𝜎𝑦𝑦 and the stress 𝑇𝑦𝑦 with the stretch (uniaxial tensile test with plane-strain modeling) 



A nonlocal GTN model 

61 

 

Biaxial tensile test with plane-strain modeling 

 

Figure 2.9. Force – displacement (bi-axial test with plane-strain modeling) 

 

 

Figure 2.10. Evolution of the hardening parameter 𝜅 and the porosity 𝑓 with the stretch (bi-axial tensile test with plane-strain 

modeling) 

 

 

Figure 2.11. Evolution of the stress 𝜎𝑦𝑦 and the stress 𝑇𝑦𝑦 with the stretch (bi-axial tensile test with plane-strain modeling) 



 

62 

 

Simple shear test with plane-strain modeling 

 

Figure 2.12. Force – displacement (simple shear test with plane-strain modeling) 

 

 

Figure 2.13. Evolution of the hardening parameter 𝜅 and the porosity 𝑓 with the stretch (simple shear test with plane-strain 

modeling) 

 

 

Figure 2.14. Evolution of the stress 𝜎𝑦𝑦 and the stress 𝑇𝑦𝑦 with the stretch (simple shear test with plane-strain modeling) 
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Pure shear test with plane-strain modeling 

 

Figure 2.15. Evolution of the hardening parameter 𝜅 and the porosity 𝑓 with the stretch (pure shear test with plane-strain 

modeling) 

 

 

Figure 2.16. Evolution of the stress 𝜎𝑦𝑦 and the stress 𝑇𝑦𝑦 with the stretch (pure shear test with plane-strain modeling) 
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2.6.2 Simulation of bar  

The simulations of a bar with three-dimensional modeling (referring to as BAR3D) are performed and the 

corresponding results are presented in this part.  The mesh of BAR3D is shown in Figure 2.17. We have 𝐿𝑥0 =

𝐿𝑦0 = 0.1𝐿𝑧0 = 1 𝑚𝑚. The mesh consists of 128 nodes and 10 hexahedral elements. There are 8 gauss points 

in each quadratic element.   

 

Figure 2.17. Mesh of BAR3D 

The value of different model parameters is shown in Table 1 except that the initial porosity 𝑓0 changes with 

the element number: 𝑓0 = {0.0002𝑖, 𝑖 ∈ 1, 2, … , 10]} where 𝑖 stands for the 𝑖𝑒𝑟 element layer, the numbering 

rule is shown in Figure 2.17. Compared to the RVE2D simulations, here the material behavior is not 

homogeneous since 𝑓0 varies with the position. Thus, the change of 𝑐 can effectively change the global/local 

responses. Here, we have 𝑐 = 50 𝑁 corresponding to a nonlocal length around 𝑙𝑛𝑙 = √𝑐/𝜎0 = √50/500 ≈

0.3 mm < 1 mm (1 mm is the mesh size), so the nonlocal effect is low.  

The specimen is stretched in the direction of 𝑥 and 𝑦.  We note 𝑢𝑥 , 𝑢𝑦, 𝑢𝑧 the imposed displacement along 

𝑥, 𝑦 and 𝑧 axis respectively. In our study, 𝑢𝑥 = 𝛽𝑡𝑥 and 𝑢𝑦 = 𝛼𝛽𝑡𝑦 with 𝛼 ∈ ℝ and 𝛽 ∈ ℝ. For the nodes in 

the same 𝑥𝑦 plane, the deformation along 𝑧 remains uniform. In fact, we are in plane-strain case when 𝛼 =

0, 𝛽 ≠ 0 and axisymmetric case when 𝛼 = 1, 𝛽 ≠ 0. These two case will be studied later. For axisymmetric 

case, 𝛼 = 1, 𝛽 = 1.7 and for plane-strain case, 𝛼 = 0, 𝛽 = 7.  

The corresponding prescribed deformation gradient tensor 𝑭 is: 

 𝑭 = (

𝛽𝑡 + 1 0 0
0 𝛼𝛽𝑡 + 1 0
0 0 𝐹𝑧𝑧(𝑧)

) (2.52) 

 

With these boundary and loading conditions, the local response only depends on z. In the following, we plot 

the following curves for the integration point at which the damage is largest (i.e., the point at which 𝑧 is the 

largest): 

 Evolution of 𝜅 and 𝑓 with increasing load 

 Evolution of certain components of 𝝈 and 𝑻 with increasing load 

 Evolution of 𝜅 and 𝑓 with the position 𝑧 

No further comment will be given for the obtained results. 
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Axisymmetric case 

 

Figure 2.18. Evolution of the hardening parameter κ and the porosity f with the stretch (𝛼 = 1, 𝛽 = 1.7) 

 

 

Figure 2.19. Evolution of the stress 𝜎𝑥𝑥 and the stress 𝑇𝑥𝑥 with the stretch (𝛼 = 1, 𝛽 = 1.7) 

 

 

Figure 2.20. Evolution of the hardening parameter 𝜅 and the porosity 𝑓 along z-axis (𝛼 = 1, 𝛽 = 1.7) 
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Plane strain case 

 

Figure 2.21. Evolution of the hardening parameter κ and the porosity f with the stretch (𝛼 = 0, 𝛽 = 7) 

 

 

Figure 2.22. Evolution of the stress 𝜎𝑦𝑦 and the stress 𝑇𝑦𝑦 with the stretch (𝛼 = 0, 𝛽 = 7) 

 

 

Figure 2.23. Evolution of the hardening parameter 𝜅 and the porosity 𝑓 along z-axis (𝛼 = 0, 𝛽 = 7) 
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2.6.3 Simulation of notch tensile test 

Simulations of a notch tensile specimen (referring to as NT) are performed and the corresponding results are 

presented in this part.  A simplified geometry and the corresponding mesh is shown in Figure 2.24. The minimal 

mesh size is 𝑙𝑒 = 120 mm. Generally speaking, for the geometry of NT, there are no specific requirements 

related to the total length 𝐻 and diameter 𝐷 outside the notched area. The requirements are only related to the 

notch geometry and sometimes the length of the material zone of interest  ℎ . To ensure that the plastic 

deformation is limited to the zone of interest, 𝐷𝑛 should not exceed ℎ. The notch should be located in the middle 

of the zone of interest.  

The value of different model parameters is shown in Table 2.1 except for the initial porosity 𝑓0 = 0.001.  

Displacement boundary condition is applied to the top edge, both horizontal deformation of the edge CD and 

vertical deformation of the bottom edge OA are constrained (see Figure 2.24 (b)). 

In the following, we will plot  

 Force – displacement curve and Force – diameter reduction curve (Figure 2.25) 

 Evolution of the porosity 𝑓 as a function of the hardening variable 𝜅 at two material points ((𝑋, 𝑌) =

(1 mm, 0 mm), (𝑋, 𝑌) = (2 mm, 0 mm)) in the ligament. Note that the given coordinates are written 

in initial configuration. (Figure 2.26) 

 The evolution of the stress components 𝜎𝑟𝑟, 𝜎𝑦𝑦, 𝑇𝑟𝑟, 𝑇𝑥𝑥 as a function of the hardening variable 𝜅 at 

((𝑋, 𝑌) = (1 mm, 0 mm) and (𝑋, 𝑌) = (2 mm, 0 mm)). (Figure 2.27 and Figure 2.28) 

 

 

Figure 2.24. (a) Geometry and (b) An example of the mesh of NT 
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Figure 2.25. (a) Force - displacement curve (b) Force - Diameter reduction curve 

 

 

Figure 2.26. f-κ curves 

 

 

Figure 2.27. (a) 𝜎𝑟𝑟 − 𝜅 curves; (b) 𝑇𝑟𝑟 − 𝜅 curves 
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Figure 2.28. (a) 𝜎𝑦𝑦 − 𝜅 curves; (b) 𝑇𝑦𝑦 − 𝜅 curves 
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3 Numerical analyses of the nonlocal GTN model 

 

 我们应该有恒心,尤其要有自信心。我们的天赋是用来做某

种事情的, 无论代价多么大, 这种事情必须做到。 

 

Nous devons avoir la persévérance, surtout la confiance en 

nous-mêmes. Notre talent est utilisé pour réaliser quelque chose 

et on doit la réaliser à n’importe quel prix. 

 

We must have perseverance, especially must have self-efficacy. 

We must believe that our talent is used to do something， no 

matter how big the cost， we must do these things. 

 玛丽 居里  Marie Curie 
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Résumé 

Ce chapitre est dédié aux différents aspects numériques du modèle GTN non local. L’objectif est d’indiquer 

à l’utilisateur comment utiliser ce modèle pour faire des simulations robustes.  

Dans un premier temps, on se concentre sur le traitement des éléments cassés. En effet, les éléments cassés 

peuvent devenir très distordus, ce qui fortement perturbe la convergence du calcul.  Pour résoudre ce problème, 

un modèle viscoélastique qui a un effet de stabilisation est proposé. Avec ce modèle, une petite rigidité 

artificielle est introduite aux points matériels considérés comme rompus, ce qui conduit à des contraintes 

supplémentaires. Ces contraintes diminuent avec le temps et deviennent zéro à la fin. Des analyses de 

convergence de ce modèle sont faites. Des simulations sur éprouvette NT sont réalisées afin de déterminer un 

bon intervalle de valeur pour chaque paramètre du modèle viscoélastique.  

Dans un second temps, on se concentre sur le critère de convergence qui est utilisé dans ce travail. Ce critère 

peut être utilisé même si les différents résidus ont des unités différentes, ce qui rend les simulations numériques 

plus robustes. Le critère permet également de tenir compte des tailles de mailles très différentes dans le maillage. 

Ensuite, on porte notre attention sur les schémas d’intégration pour la mise à jour de la porosité. Deux 

schémas différents, i.e., schéma semi-implicite et schéma implicite, sont étudiés.  La comparaison de ces deux 

schémas montre que les deux schémas peuvent conduire à des erreurs sur la prédiction de l’endommagement et 

de la réponse globale quand le pas de temps de calcul n’est pas suffisamment petit. Les deux schémas donnent 

le même résultat quand le pas de temps tend vers zéro.  

Puis, on propose des méthodes de découpage global et local du pas de temps basées sur le contrôle de 

l’incrément de la porosité afin d’avoir des résultats convergents en temps. Le découpage global permet 

effectivement de réduire l’écart entre la solution convergée et la solution numérique, mais il peut être très 

coûteux en temps, notamment en cas de simulations de structures industrielles dont le nombre de degrés de 

liberté est énorme. En revanche, le découpage local permet non seulement d’obtenir des solutions convergées 

en temps, mais aussi de réduire le temps de calcul à condition que la matrice de rigidité soit bien évaluée.   

Dans la cinquième partie, des simulations avec différentes valeurs de 𝑟𝑛𝑙 (paramètre de pénalisation non 

local) sont réalisées afin d’étudier l’effet de 𝑟𝑛𝑙 sur différents champs mécaniques et sur la réponse globale. Les 

résultats montrent que dans le cas où la valeur de 𝑟𝑛𝑙  est trop petite, des oscillations sur la plasticité et 

l’endommagement peuvent apparaître, ce qui entraine une réponse global fausse.  

Enfin, des simulations avec différents valeurs de 𝑟𝑖𝑛𝑐𝑜 (paramètre de pénalisation pour l’incompressibilité) 

sont réalisés afin d’étudier l’effet de 𝑟𝑖𝑛𝑐𝑜 sur les différents champs mécaniques et sur la réponse globale. Les 

résultats montrent que si la valeur de 𝑟𝑖𝑛𝑐𝑜 est trop petite, des oscillations sur la plasticité et l’endommagement 

peuvent apparaître et la réponse globale prédit devient fausse. Par ailleurs, la value de 𝑟𝑖𝑛𝑐𝑜 ne peut pas être trop 

grande, sinon, le problème de verrouillage numérique apparaît de nouveau. 
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In this chapter, we will study several purely numerical points so as to better understand how to use the 

nonlocal GTN model which has been presented in the previous chapter. This chapter is organized as follow: 

firstly, we propose a viscoelastic model to handle the broken finite elements. Secondly, we present the 

convergence criterion which is used in our work. Thirdly, we compare two different integration schemes for the 

integration of the constitutive law. Then, we focus on the global and local sub-stepping methods in order to 

control the error induced by the large load-increment. Finally, we study the two augmentation terms introduced 

in the model, i.e., 𝑟𝑛𝑙 (𝑎 − 𝜅)
2/2 and 𝑟𝑖𝑛𝑐𝑜(tr(𝑬) − 𝜃)/2. The adequate value ranges for 𝑟𝑛𝑙 and 𝑟𝑖𝑛𝑐𝑜 will be 

derived from some parametric studies. The results of this chapter will be used in the next two chapters. 

3.1 Stabilization with viscoelasticity model 

Crack growth simulations with ductile damage models in the framework of finite strains sometimes raise 

some issues such as highly distorted elements, as shown in (Zhang, 2016) which may strongly affect the 

computational convergence. One way to reduce this problem is to realize a transition from continuous failure to 

a discontinuous material separation (with CZM, XFEM, ZCRACK, etc). In this case, the area near the new 

surfaces should still be properly handled with appropriate techniques (Geers et al., 2003; Seupel et al., 2018). 

Another way is to use the “element-deletion” technique which consists in eliminating the broken elements 

according to some predefined criteria. This technique is often applied to the simulations in the context of local 

damage models (Li et al., 2011; Lian et al., 2015, 2013). When it comes to nonlocal models, this technique is 

used in few cases such as (Seupel et al., 2018) in the framework of implicit gradient nonlocal modeling. The 

traitment of the nonlocal variables in new boundaries is particularly difficult which may induce physical 

inaccuracy and computational non-convergence. Besides, the criteria for element elimination is not quite easy 

to define. For example, it is necessary to think about the following question: a finite element is deleted when 

how many integration points are broken? If the criteria are not well defined, then physical inaccuracy may be 

induced.  Finally, the remeshing technique can also be applied to avoid large element distortion, as done in (J. 

Mediavilla et al., 2006c), but its numerical implementation is rather complex while physical inaccuracy may be 

induced by the remeshing steps. 

This section aims at proposing a simple model to deal with element distortion. We know that when an 

element fails, the material points inside this element lose their stiffness and so the element becomes distorted. 

Therefore, we add a small stiffness to the broken elements. It is obvious that the stiffness can induce additional 

stresses. To limit the additional stiffness and stresses at the end of simulation, we can introduce a time 

dependence. To this end, we propose to use a simple viscoelastic model which allows for stress/stiffness 

relaxation. This viscoelastic model is overlapped with the GTN model, it is referred to as “viscoelasticity-GTN 

overlay model”. 

In the following, we consider the case of small-strains. The strain is denoted 𝜺 and the stress is denoted 𝝈.  

For the finite strains framework presented in the previous chapter, it is sufficient to replace 𝜺 by 𝑬 and 𝝈 by 𝑻. 

3.1.1 Viscoelasticity-GTN overlay model 

Before introducing the proposed viscoelastic model, we explain what an overlay model is. For a simple 

elastic-plastic model, it is rather simple to incorporate the viscous effect into the model. However, when a 

complex material behavior is modeled, the consideration of the viscous effect in the constitutive law may 

become complex. So it is appropriated to use an overlay model in which the material constitutive law and the 

viscoelastic law are in parallel, as shown in Figure 3.1. In the case of the GTN model, we have: 

 𝝈 = 𝝈𝐺𝑇𝑁 + 𝝈𝑣 , 𝜺 = 𝜺𝐺𝑇𝑁 = 𝜺𝑣 ,
𝑑𝝈

𝑑𝜺
=
𝑑𝝈𝐺𝑇𝑁
𝑑𝜺𝐺𝑇𝑁

+
𝑑𝝈𝑣
𝑑𝜺𝑣

 (3.1) 
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Figure 3.1. Overlay model 

 

The proposed viscoelastic model consists of an assembly of an elastic spring of stiffness matrix 𝔼𝑣and a 

viscous dashpot of viscosity 𝔻𝑣, as shown in the upper part of Figure 3.1 for the one-dimensional case. In 1D, 

the stiffness is denoted 𝐸𝑣 and the viscosity is denoted 𝜂. For the viscoelastic model, it can be demonstrated 

that: 

 �̇�𝒗 = 𝔻𝑣
−1: 𝝈𝑣 + 𝔼𝑣

−1: �̇�𝒗 (3.2) 
 

In this thesis, we assume that 𝔻𝑣 = 𝜂(1/𝐸)𝔼  and 𝔼𝑣 = (𝐸𝑣/𝐸)𝔼  with 𝔼  Hooke matrix and 𝐸  Young 

modulus of the standard GTN material. Consequently, 

 �̇�𝒗 +
1

𝜏𝑣
𝝈𝒗 = 𝔼𝑣: �̇�𝒗 (3.3) 

 

where 𝜏𝑣 = 𝜂/𝐸𝑣 is the viscous characteristic time. 

 

3.1.2 Integration of the viscoelasticity model 

It is assumed that the evolution of the viscous strain 𝜺𝒗 is linear in each time step 𝛥𝑡 = 𝑡𝑖+1 − 𝑡𝑖, i.e., 

 ∀𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1], 𝜺𝒗(𝑡) = 𝜺𝒗
𝒊 +

Δ𝜺𝒗
Δ𝑡

(𝑡 − 𝑡𝑖) + 𝑂(𝑡
2) (3.4) 

 

where 𝑖 is the 𝑖𝑒𝑟 time step and the term 𝑂(𝑡2) will be neglected for the integration of the viscoelastic law.  

Knowing the initial condition 𝝈𝒗 (𝑡 = 𝑡𝑖) = 𝝈𝒗
𝒊 , Equation (3.3) with the unknown 𝝈𝒗 can be directly solved: 

 ∀𝑡 ∈ [𝑡𝑖, 𝑡𝑖+1],    𝝈𝒗(𝑡) = 𝑒
−
𝑡−𝑡𝑖
𝜏𝑣 𝝈𝒗

− + (1 − 𝑒
−
𝑡−𝑡𝑖
𝜏𝑣 )

𝜏𝑣
Δ𝑡
𝔼𝑣: Δ𝜺𝒗   with   𝜏𝑣 =

𝜂

𝐸𝑣
  (3.5) 

 

In particular, at 𝑡 = 𝑡𝑖+1, 

 𝝈𝒗
𝑖+1 = 𝑒

−
Δ𝑡
𝜏𝑣𝝈𝒗

𝒊 + (1 − 𝑒
−
Δ𝑡
𝜏𝑣)

𝜏𝑣
Δ𝑡
𝔼𝑣: Δ𝜺𝒗   with   𝜏𝑣 =

𝜂

𝐸𝑣
 (3.6) 

 

The viscous stress increment is: 

 Δ𝝈𝒗 = −(1 − 𝑒
−
Δ𝑡
𝜏𝑣)𝝈𝒗

𝒊 + (1 − 𝑒
−
Δ𝑡
𝜏𝑣)

𝜏𝑣
Δ𝑡
𝔼𝑣: Δ𝜺𝒗 (3.7) 
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and the viscous tangent stiffness is 

 
𝑑Δ𝝈𝒗
𝑑Δ𝜺𝒗

= (1 − 𝑒
−
Δ𝑡
𝜏𝑣)

𝜏𝑣
Δ𝑡
𝔼𝑣 (3.8) 

 

 

3.1.3 Convergence analysis 

In the previous part, we have demonstrated that the viscoelastic problem consists in solving the following 

Cauchy problem: 

 {
�̇�𝒗(𝑡) = −

1

𝜏𝑣
𝝈𝒗 + 𝔼𝑣: �̇�𝒗 = 𝑓(𝑡, 𝝈𝒗), 𝑡 ∈ [0, 𝑇]

𝝈𝒗(𝑡 = 0) = 0

 (3.9) 

 

where 𝑇 is the total loading time and 𝑓(𝑡, 𝝈𝒗 ) = −𝝈𝒗/𝜏𝑣 + 𝔼𝑣: �̇�𝒗 is a continuous function which verifies the 

Lipschitz condition5 since 

 ∀(𝑡, 𝝈𝑣,1, 𝝈𝑣,2), |𝑓(𝑡, 𝝈𝒗,𝟏) − 𝑓(𝑡, 𝝈𝒗,𝟐)| =
1

𝜏𝑣
||𝝈𝒗,𝟏 − 𝝈𝒗,𝟐|| (3.10) 

 

We have also demonstrated that this Cauchy problem can be approximatively solved using the iterative 

method (see Equation (3.6)). Here we rewrite Equation (3.6) in the following form: 

 𝝈𝒗
𝑖+1 = 𝝈𝒗

𝒊 + ((𝑒
−
Δt
𝜏𝑣 − 1)𝝈𝒗

𝒊 + (1 − 𝑒
−
Δ𝑡
𝜏𝑣)

𝜏𝑣
Δ𝑡𝑖

𝔼𝑣: Δ𝜺𝒗) = 𝝈𝒗
𝒊 +Φ(𝝈𝒗

𝒊 , 𝑡𝑖, Δ𝑡) (3.11) 

 

We would like to demonstrate that this iterative method is consistent, stable and convergent. One can refer 

to (Crouzeix and Mignot, 1984) for the detailed description of consistency, stability and convergence. 

 

Consistency 

By definition, the iterative method (Equation (3.11)) is consistent to the Cauchy problem (Equation (3.9)) if 

for all solution 𝝈𝒗 of the Cauchy problem, we have: 

 lim
Δ𝑡→0

∑|𝝈𝒗(𝑡𝑖+1) − 𝝈𝒗(𝑡𝑖) − Δ𝑡Φ(𝑡𝑖, 𝝈𝒗(𝑡𝑖); Δ𝑡)|

𝑛

𝑖=0

= 0 (3.12) 

 

Demonstration 

 

Firstly, we have 

 𝝈𝒗(𝑡𝑖+1)−𝝈𝒗(𝑡𝑖) = ∫ �̇�𝒗
𝑡𝑖+1

𝑡𝑖

𝑑𝑡 = ∫ (−
1
𝜏𝑣
𝝈𝒗)

𝑡𝑖+1

𝑡𝑖

𝑑𝑡 +𝔼𝑣: �̇�𝒗Δ𝑡 (3.13) 

 

Taylor expansion of 𝝈𝒗 gives: 𝝈𝒗 = 𝝈𝒗(𝑡𝑖) + �̇�𝒗
𝒊  (𝑡 − 𝑡𝑖  ) + 𝑂(𝛥𝑡

2 ) = 𝝈𝒗 (𝑡𝑖) + 𝑂(𝛥𝑡), therefore, 

                                                      
5 A function 𝑓 is called Lipschitz continuous if  

∃𝐾 > 0, ∀𝑥1, 𝑥2, |𝑓(𝑥1) − 𝑓(𝑥2)|≤ 𝐾|𝑥1 − 𝑥2| 
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 𝝈𝒗(𝑡𝑖+1)−𝝈𝒗(𝑡𝑖)  ~ −
Δ𝑡

𝜏𝑣
𝝈𝒗𝑖 +𝑂(Δ𝑡)𝔼𝑣: �̇�𝒗Δ𝑡  (3.14) 

 

Secondly,  

 Δ𝑡Φ(𝑡𝑖, 𝝈𝒗(𝑡𝑖); Δ𝑡) = (𝑒
−
Δ𝑡
𝜏𝑣 − 1)𝝈𝒗

𝒊 + (1 − 𝑒
−
Δ𝑡
𝜏𝑣)

𝜏𝑣
Δ𝑡
𝔼𝑣: Δ𝜺𝒗 (3.15) 

 

Thirdly, 

 𝝈𝒗(𝑡𝑖+1)−𝝈𝒗(𝑡𝑖)−Δ𝑡Φ(𝑡𝑖, 𝝈𝒗(𝑡𝑖); Δ𝑡)  ~  (−𝑒
−
Δ𝑡
𝜏𝑣 +1−

Δ𝑡

𝜏𝑣
)𝝈𝒗

𝒊 + (1−
1− 𝑒

−
Δ𝑡
𝜏𝑣

Δ𝑡
𝜏𝑣

)𝔼𝑣: �̇�𝒗Δ𝑡  ~  𝑂(Δ𝑡
2) (3.16) 

 

Finally, we obtain: 

 lim
Δ𝑡→0

∑|𝝈𝒗(𝑡𝑖+1) − 𝝈𝒗(𝑡𝑖) − Δ𝑡Φ(𝑡𝑖, 𝝈𝒗(𝑡𝑖); Δ𝑡)|

𝑛

𝑖=0

= lim
Δ𝑡→0

𝑂(Δ𝑡2) = 0 (3.17) 

 

 

 

Stability 

By definition, the iterative method is stable if there exists a constant 𝑀 independent of 𝛥𝑡 such that for all 

series 𝝈𝑣,1
𝑖 , 𝝈𝑣,2

𝑖  and 𝜖𝑖  with 𝑖 = 0,1, … , 𝑛  satisfying 𝝈𝒗,𝟏
𝒊+𝟏 = 𝝈𝒗,𝟏

𝒊 + 𝛥𝑡𝜙(𝑡𝑖, 𝝈𝒗,𝟏
𝒊 ; 𝛥𝑡)  and 𝝈𝒗,𝟐

𝒊+𝟏 = 𝝈𝒗,𝟐
𝒊 +

𝛥𝑡𝜙(𝑡𝑖, 𝝈𝒗,𝟐
𝒊 ; 𝛥𝑡)  + 𝜖𝑖, we have: 

 max
0≤𝑖≤𝑛

|𝝈𝑣,2
𝑖 − 𝝈𝑣,1

𝑖 | ≤ 𝑀(|𝝈𝑣,2
0 − 𝝈𝑣,1

0 | +∑|𝜖𝑖|

𝑖≤𝑛

) (3.18) 

 

The stability condition tells that a small fluctuation on 𝝈𝒗
𝒊  leads to a small fluctuation on the solution due to 

the existence of the error. The demonstration of Equation (3.18) is not evident. Instead, we can demonstrate the 

following sufficient condition for the stability: 

 ∃𝑁, ∀𝑡, ∀ 𝝈𝑣,1
𝑖 , 𝝈𝑣,2

𝑖 , ∀Δ𝑡, |Φ(𝑡𝑖 , 𝝈𝑣,1
𝑖 ; Δ𝑡) − Φ(𝑡𝑖, 𝝈𝑣,2

𝑖 ; Δ𝑡)|≤ 𝑁|𝝈𝑣,1
𝑖 − 𝝈𝑣,2

𝑖 | (3.19) 
 

In that case, we have 𝑀 = 𝑒𝑁𝑇. 

Demonstration 

 

We have:  

 |Φ(𝑡𝑖, 𝝈𝑣,1
𝑖 ; Δ𝑡) − Φ(𝑡𝑖 , 𝝈𝑣,2

𝑖 ; Δ𝑡)| =
𝑒
−
Δ𝑡
𝜏𝑣 − 1

Δ𝑡
|𝝈𝑣,1
𝑖 − 𝝈𝑣,2

𝑖 | ≤
1

𝜏𝑣
|𝝈𝑣,1
𝑖 − 𝝈𝑣,2

𝑖 | (3.20) 

 

So the iterative method is stable.  

 

Convergence 

The iterative method is consistent and stable, hence, it is convergent (Crouzeix and Mignot, 1984).  
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3.1.4 Illustrations 

In the previous part, we have proposed an analysis of stability, consistency and convergence of the iterative 

method under the assumption that the strain varies linearly in each time step. In this part, we would like to 

illustrate it in the presence of elasticity/plasticity in 1D case, i.e., instead of using the GTN model in Figure 3.1, 

we use here the elastic model or a plastic model, we assume that at 𝑡 = 0−, the total stress is 𝜎 = 0 while at 

𝑡 ≥ 0+, the total stress remains constant: Δ𝜎 = 0. 

 

Illustration in the presence of Elasticity 

It is assumed that the material is elastic with Young’s modulus 𝐸. The constitutive law is 휀̇ = (�̇� − 𝐸휀̇)/𝐸𝑣 +

(𝜎 − 𝐸휀)/𝜂, i.e.,  

 휀̇ +
𝐸𝐸𝑣

𝜂(𝐸 + 𝐸𝑣)
휀 =

𝐸𝑣
𝜂(𝐸 + 𝐸𝑣)

𝜎 +
1

𝐸 + 𝐸𝑣
�̇� (3.21) 

 

Both analytical and numerical methods can be used to compute the value of 휀. 

Analytically, knowing the initial condition 휀(𝑡 = 0) = 𝜎/(𝐸 + 𝐸𝑣), one obtains: 

 휀(𝑡) =
𝜎

𝐸
(1 −

𝐸𝑣
𝐸 + 𝐸𝑣

𝑒
−

𝐸
(𝐸+𝐸𝑣)𝜏𝑣

𝑡
) (3.22) 

 

Numerically, we have  

 Δ𝜎 = Δ𝜎𝑐 + Δ𝜎𝑣 = 𝐸Δ휀 − (1 − 𝑒
−
Δ𝑡
𝜏𝑣)𝜎𝑣

𝑖 +
𝜏𝑣𝐸𝑣
Δt

(1 − 𝑒
−
Δ𝑡
𝜏𝑣)Δ휀 = 0 (3.23) 

 

Therefore,  

 Δ휀 =

(1 − 𝑒
−
Δ𝑡
𝜏𝑣)𝜎𝑣

𝑖

𝐸 +
𝜏𝑣𝐸𝑣
Δt (1 − 𝑒

−
Δ𝑡
𝜏𝑣)

 (3.24) 

 

Knowing that 휀(𝑡 = 0) = 𝜎/(𝐸 + 𝐸𝑣)  and  𝜎𝑣(𝑡 = 0) = 𝐸𝑣휀(𝑡 = 0) , we can update 𝛥휀  using Equation 

(3.24). With 𝜎𝑣
𝑖  and 𝛥휀, we can update 𝜎𝑣

𝑖+1 using Equation (3.6). 

Figure 3.2(a) plots the evolution of the analytical strain 휀𝑎 and the numerical strain 휀𝑛 as a function of 𝑡/𝑇 

for different 𝛥𝑡/𝑇. Here, 𝑇 corresponds to the total loading time. It shows that for any time steps 𝛥𝑡, the 

numerical algorithm is free of oscillation. In particular, the maximum value 휀𝑀 = 0.25% corresponds to the 

case where the viscoelastic model does not exist since in that case we have directly 휀𝑀 = 𝜎/𝐸 = 0.25%. This 

indicates that due to the viscosity, the inviscid solution is slowly attained (stabilization effect). The rate depends 

on the value of 𝜏𝑣. Therefore, it is necessary to have 𝜏𝑣 ≪ 𝑇 so that the viscous effect disappears in the end.   

 Figure 3.2 (b) plots the error 𝜖 as a function of 𝑡/𝑇 for different 𝛥𝑡/𝑇 where the error is defined as: 

 𝜖 = |
휀𝑎 − 휀𝑛
휀𝑎

| × 100% (3.25) 
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From this figure, it can be seen that for a given 𝛥𝑡/𝑇, the error first increases and then decreases which 

indicates again that 𝜏𝑣 should be much smaller than 𝑇 so that the viscous effect disappears in the end. Besides, 

for a given 𝑡/𝑇, the error increases with 𝛥𝑡/𝑇 which reveals that the time step 𝛥𝑡/𝑇 should be sufficiently small 

so as to reduce the oscillation. In conclusion, to obtain a converged solution, we should have: 

 
Δ𝑡

𝑇
<
𝜏𝑣
𝑇
≪ 1 (3.26) 

 

 

Figure 3.2. Evolution of strain and error (𝐸 = 200000 𝑀𝑃𝑎, 𝐸𝑣 = 2000 𝑀𝑃𝑎, 𝜎 = 500 𝑀𝑃𝑎, 𝜏𝑣/𝑇 = 0.1) 

 

Illustration in the presence of plasticity 

It is assumed that the material behavior is elastic-plastic with linear isotropic hardening �̅�(𝜅) = 𝜎0 + 𝑟ℎ𝜅 

with 𝜎0 the yield stress, 𝜅 the hardening variable and 𝑟ℎ > 0 the hardening parameter. Here, the stress and the 

strain in elastic-plastic part are denoted (𝜎𝑐, 휀𝑐).  

It is obvious that there exist three cases: 

 If 𝜎 < 𝜎0, then we have ∀𝑡, 𝜎𝑐(𝑡) < 𝜎 < 𝜎0 since 𝜎 = 𝜎𝑐 + 𝜎𝑣  and ∀𝑡, 𝜎𝑣(𝑡) ≥ 0. In this case, the 

material is always elastic (see the previous part) 

 If 𝜎 ≥ 𝜎0  and 𝜎𝑐(𝑡 = 0) ≤ 𝜎0 , then the material is first elastic and then plastic. In this case, 

𝜎𝑐(𝑡 = 0) = 𝐸𝜎/(𝐸 + 𝐸𝑣) < 𝜎0, i.e., 𝜎0 ≤ 𝜎 ≤ (𝐸𝑣/𝐸 + 1)𝜎0 

 If 𝜎 > 𝜎0 and 𝜎𝑐(𝑡 = 0) > 𝜎0, i.e., 𝜎 > (𝐸𝑣/𝐸 + 1)𝜎0, then the material is always plastic  

It is obvious that in the absence of the viscosity, the second case does not exist. Therefore, it is necessary to 

have 𝐸𝑣/𝐸 ≪ 1 such that the viscosity can be neglected. In the following, we assume that 𝜎 = 500 𝑀𝑃𝑎, 𝐸 =

200000 MPa, 𝐸𝑣 = 2000 MPa, 𝑟ℎ = 2000 MPa and 𝜎0 = 450 MPa. In that case, we have 𝜎 > (𝐸𝑣/𝐸 + 1)𝜎0 

and the material is always plastic.  

The set of equations to be solved is: 

 

{
 
 

 
 
𝜎𝑐 = 𝜎0 + 𝑟ℎ휀𝑐

𝑝

𝜎𝑐 = 𝐸(휀 − 휀𝑐
𝑝
)

𝜎 = 𝜎𝑐 + 𝜎𝑣
�̇�𝑣
𝐸𝑣
+
𝜎𝑣
𝜂
= 휀�̇�

𝑝
+
�̇�𝑐
𝐸

 (3.27) 
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Both analytical and numerical method can be used to solve this equation.  

Analytically, Equation (3.27) leads to a differential equation on 𝜎𝑐 with 𝜎𝑐(𝑡 = 0) = 𝐸𝜎/(𝐸 + 𝐸𝑣): 

 �̇�𝑐 +
1

𝜏𝑐
𝜎𝑐 =

𝜎

𝜏𝑐
 , with  𝜏𝑐 = 𝜂 (

1

𝐸
+
1

𝑟ℎ
+
1

𝐸𝑣
) (3.28) 

 

It yields: 

 𝜎𝑐 = 𝜎 (1 −
𝐸𝑣

𝐸 + 𝐸𝑣
𝑒
−
𝑡
𝜏𝑐) (3.29) 

 

Therefore,  

 휀 = 휀𝑐 =
𝜎𝑐 − 𝜎0
𝑟ℎ

+
𝜎𝑐
𝐸
= (

1

𝑟ℎ
+
1

𝐸
)(1 −

𝐸𝑣
𝐸 + 𝐸𝑣

𝑒
−
𝑡
𝜏𝑐)𝜎 −

𝜎0
𝑟ℎ

 (3.30) 

 

It can be noticed that  휀(𝑡 ≫ 𝜏𝑐) = 𝜎/𝐸 + (𝜎 − 𝜎0)/𝑟ℎ . Apparently, if there is no viscosity, we have 

directly ∀𝑡, 휀(𝑡) = 𝜎/𝐸 + (𝜎 − 𝜎0)/𝑟ℎ.  

Numerically, since 휀̇ = 𝜎�̇�/𝐸 + (𝜎�̇� − 𝜎0̇)/𝑟ℎ, the increment of 𝜎𝑐 is  

 Δ𝜎𝑐 =
𝐸𝑟ℎ
𝐸 + 𝑟ℎ

Δ휀 (3.31) 

 

So the increment of 𝜎 is:  

 

Δ𝜎 = Δ𝜎𝑐 + Δ𝜎𝑣

=
𝐸𝑟ℎ
𝐸 + 𝑟ℎ

Δ휀 − (1 − 𝑒
−
Δ𝑡
𝜏𝑣)𝜎𝑣

𝑖 +
𝜏𝑣𝐸𝑣
Δt

(1 − 𝑒
−
Δ𝑡
𝜏𝑣)Δ휀

= (
𝐸𝑟ℎ
𝐸 + 𝑟ℎ

+
𝜏𝑣𝐸𝑣
Δt

(1 − 𝑒
−
Δ𝑡
𝜏𝑣))Δ휀 − (1 − 𝑒

−
Δ𝑡
𝜏𝑣)𝜎𝑣

𝑖  

(3.32) 

 

Since Δ𝜎 = 0, we have 

 Δ휀 =

𝜎𝑣
𝑖 (1 − 𝑒

−
Δ𝑡
𝜏𝑣)

𝐸𝑟ℎ
𝐸 + 𝑟ℎ

+
𝜏𝑣𝐸𝑣
Δ𝑡 (1 − 𝑒

−
Δ𝑡
𝜏𝑣)

 (3.33) 

 

Knowing that  𝜎𝑣(𝑡 = 0) = 𝐸𝑣𝜎/(𝐸 + 𝐸𝑣) , 𝜎𝑐(𝑡 = 0) = 𝐸𝜎/(𝐸 + 𝐸𝑣)  and  휀(𝑡 = 0) = 𝜎𝑐(𝑡 = 0)/𝐸 +

(𝜎𝑐(𝑡 = 0) − 𝜎0)/𝑟ℎ), we update Δ휀 using Equation (3.33). With 𝜎𝑣
𝑖+1 and Δ휀, we update 𝜎𝑣

+ using Equation 

(3.6). 

Figure 3.3 (a) plots the evolution of the analytical strain 휀𝑎 and the numerical strain 휀𝑛 as a function of 𝑡/𝑇 

for different  Δ𝑡/𝑇 . It shows that for sufficiently small  Δ𝑡  (in our case, Δ𝑡/𝑇 ≤ 0.1~𝜏𝑣/𝑇), the numerical 

algorithm is free of oscillation. The maximum value 휀𝑚𝑎𝑥 = 0.0275  corresponds to the case where the 

viscoelastic model does not exist. This indicates that due to the viscosity, the inviscid solution is slowly attained 

(stabilization effect). The velocity depends on the value of 𝜏𝑣. Therefore, it is necessary to have 𝜏𝑣 ≪ 𝑇 so that 

the viscous effect disappears in the end.   
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Figure 3.3 (b) plots the error 𝜖 as a function of 𝑡/𝑇 for different Δ𝑡/𝑇. From this figure, it can be seen that 

for a given Δ𝑡/𝑇, the error first increases and then decreases which indicates again that 𝜏𝑣 should be much 

smaller than 𝑇 so that the viscous effect disappears in the end. Besides, for a given 𝑡/𝑇, the error increases with 

Δ𝑡/𝑇 which reveals that the time step Δ𝑡/𝑇 should be sufficiently small so as to reduce the numerical oscillation.  

 

 

Figure 3.3. Evolution of strain (𝐸 = 200000 𝑀𝑃𝑎, 𝐸𝑣 = 2000 𝑀𝑃𝑎, 𝜏𝑣/𝑇 = 0.05, 𝜎 = 500 𝑀𝑃𝑎, 𝜎0 = 450 𝑀𝑃𝑎, 𝑟ℎ =
2000 𝑀𝑃𝑎) 

 

3.1.5 Effects of the viscoelastic parameters 

In the previous part, we have illustrated the effect of the viscosity in two simple cases. However, these two 

cases are not quite realistic due to 𝜎 = constant. In this part, we would like to illustrate the effect of the viscosity 

in two real cases: simulations of NT and CT. The nonlocal GTN law is used for the damage part of the law. 

Without otherwise specified, the parameters used in this simulation are shown in Table 3.1. In particular, 𝑇 in 

Table 3.1 is the total load level.  

Table 3.1. The nominal values of the parameters used in the simulations 

Elasticity 
Young modulus 𝐸 200000 MPa 

Poisson ratio 𝜈 0.3 

Plasticity 

Yield stress 𝜎0 500 𝑀𝑃𝑎 

Hardening variable 𝜅0 0.0025 

Hardening exponent 𝑛 0.1 

Damage 

Initial porosity 𝑓0 0.001 

Critical porosity 𝑓𝑐 0.05 

Porosity at failure 𝑓𝐹 0.25 

Material constants (𝑞1, 𝑞2) (1.5,1.0) 

Nonlocality Nonlocal length 𝑙𝑛𝑙 0.3 mm 

Numerical parameters 

Nonlocal penalty parameter 𝑟𝑛𝑙 10𝜎0 

Incompressibility penalty parameter 𝑟𝑖𝑛𝑐𝑜 10𝜎0 

Viscoelastic modulus 𝐸𝑣 0.001𝐸 

Viscoelastic time 𝜏𝑣 0.01𝑇 
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Figure 3.4. Force-displacement curves for different 𝐸𝑣 and 𝜏𝑣 

 

NT simulations 

By performing NT simulations, we would like to evaluate the influence of the viscous parameters on the 

global material response.  

The mesh for the NT specimens can be found in Figure 2.24. Simulations of NT are carried out for 𝜏𝑣/𝑇 =

0.0001, 0.001, 0.01, 0.1, 0.5  and  𝐸𝑣/𝐸 = 0.0001, 0.001, 0.01,0.1 . The predefined time step Δ𝑡/𝑇  is set to 

10−4 to have a time-converged solution. 

Figure 3.4 plots the force-displacement curves obtained from the simulations of NT for different 𝐸𝑣 and 𝜏𝑣. 

The curve obtained from the simulation without viscoelasticity is also shown in this figure. We recall that the 

viscous effect decreases with the value of 𝜏𝑣 and/or 𝐸𝑣. The results show that firstly, a too large value for 𝜏𝑣 or 

𝐸𝑣 may lead to an overestimation on the force and postpone crack initiation, and secondly, the influence of the 

viscosity on global response is negligible when 𝐸𝑣𝜏𝑣 ≤ 10
−5𝐸𝑇. In practice, it is suggested that 𝐸𝑣/𝐸 ≤ 0.01 

such that the viscous stiffness is negligible to the material stiffness. Besides, the result also indicates that as long 

as 𝐸𝑣𝜏𝑣/𝐸𝑇 ≤ 10
−5, the viscous solution converges to the inviscid solution even if 𝜏𝑣/𝑇 ~ Δ𝑡/𝑇. We recall 

here that in the case of a purely viscoelastic material, we should have Δ𝑡/𝑇 <  𝜏𝑣/𝑇 to have a converged 

solution. 

In our work, we use 𝐸𝑣/𝐸 = 0.001 and 𝜏𝑣/𝑇 = 0.01. In this case, the predefined load increment Δ𝑡/𝑇 is 

suggested to be smaller than 𝜏𝑣/𝑇. 
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CT simulations 

Different from NT simulations, ductile tearing (lots of broken elements) can be observed in CT simulations. 

These broken elements can become distorted and thus affect the computational convergence. So here we would 

like to assess the robustness of the adopted numerical viscoelastic scheme for the treatment of element distortion.  

The geometry and the mesh (with reduced integration, i.e., 4 integration points in each quadrilateral element) 

for the CT specimens can be found in Figure 3.5. Usual symmetry and boundary/loading conditions are 

accounted for. The damage parameter 𝑞2 is set to 𝑞2 = 1.2. Two Simulations of CT are carried out: one without 

viscoelasticity and another with viscoelasticity ( 𝜏𝑣/𝑇 = 0.01 ,  𝐸𝑣 = 0.001𝐸 ). Here, the final load level 

corresponds to an 𝐶𝑂𝐷 = 8 mm.  

 

Figure 3.5. (a) Geometry and (b) Mesh of CT 

Figure 3.6 plots the force-COD curves with and without viscosity. It is observed that the results without and 

with viscosity almost overlap, which indicate that the chosen values of 𝐸𝑣  and 𝜏𝑣  do not affect the global 

reponse. Besides, a convergence problem appears when 𝐶𝑂𝐷 ≈ 3  mm for the simulation without 

viscoelasticity, while for the simulation with viscoelasticity, there is not convergence problem.  

Figure 3.7 plots the distribution of the porosity in deformed configuration for 𝐶𝑂𝐷 = 3 mm and 𝐶𝑂𝐷 = 8 

mm. Note that here each quadrangle corresponds to an integration point. For 𝐶𝑂𝐷 = 3 mm, the comparison 

between Figure 3.7(a) (without viscoelasticity) and Figure 3.7(b) (with viscosity) tells that the viscosity can 

reduce the element distortion and stabilize the solution. Note that due to the low triaxiality, one or several 

integration points in the crack-tip nearby zone are never broken. This problem will be discussed later in Chapter 

4 and one solution will be given in Appendix A5.6. Thanks to the viscoelasticity, the simulation is performed 

up to the final load (𝐶𝑂𝐷 = 8 mm). No distorted element is observed during crack propagation.  

In conclusion, the viscoelasticity is capable of reducing, even avoiding element distortion and thus helps the 

convergence of the simulation.  



Numerical analyses of the nonlocal GTN model 

83 

 

 

Figure 3.6. Force-COD curves for the cases without and with viscoelasticity 

 

 

Figure 3.7. Distribution of porosity field in deformed configuration without or with viscoelasticity for different COD 
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3.2 Convergence criterion for Newton-Raphson method at global level 

A system of nonlinear algebraic equations is often solved by means of a Newton-Raphson method. This 

method is iterative and is repeated until the residual vector is “close” to zero. In our work, the residual vector �̲� 

is �̲� = �̲�𝑖 − �̲�𝑒 with �̲�𝑒 = (�̲�𝑒𝑥𝑡 , 0, 0, 0, 0) the external force and �̲�𝑖 = (�̲��̲�, 𝐹𝑎, 𝐹𝑙 , 𝐹𝑃 , 𝐹𝜃) the internal force 

which is: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 �̲�

�̲� =∑𝑤𝑔(�̅�𝐷,𝑔 + 𝑃𝑔𝑰 + 𝑟𝑖𝑛𝑐𝑜(tr(𝑬𝒈) − 𝜃𝑔)𝑰): ℙ𝑔: (𝑭𝒈
𝚻. �̲�𝑔

�̲�
)

𝑔

𝐹𝑎 =∑𝑤𝑔 (𝑐𝛁𝑎𝑔. �̲�𝑔
𝑎 + (𝑙𝑔 + 𝑟𝑛𝑙(𝑎𝑔 − 𝜅𝑔))𝑁𝑔

𝑎)

𝑔

 

𝐹𝑙 =∑ 𝑤𝑔(𝑎𝑔 − 𝜅𝑔)𝑁𝑔
𝑙

𝑔

𝐹𝑃 =∑𝑤𝑔(tr(𝑬𝒈) − 𝜃𝑔)𝑁𝑔
𝑃

𝑔

𝐹𝜃 =∑𝑤𝑔 (
1

3
tr(�̅�𝑔) − 𝑃𝑔 − 𝑟𝑖𝑛𝑐𝑜(tr(𝑬𝒈) − 𝜃𝑔))𝑁𝑔

𝜃

𝑔

 (3.34) 

 

In order to check whether �̲� is close to zero, a classical criterion consists in checking whether the L-infinity6 

norm of �̲� is smaller than a predefined small value 𝜖: 

 ||�̲�||
∞
≤ 𝜖 (3.35) 

 

This criterion is often not satisfactory since the units of the different components of �̲� can be different. 

Indeed, in this work, �̲��̲�, 𝑅𝑎 and 𝑅𝜃 have the same unit as stress, while 𝑅𝑃 and 𝑅𝑙 have the same unit as strain. 

In this case, the value of 𝜖 may be too large for certain residuals and/or too small for others. Moreover, the value 

of each components of �̲�𝑖 depends on local element size, the criterion in Equation (3.35) is easier to be fulfilled 

with smaller element size (Badel and Lorentz, 2011).  

Therefore, it is necessary to use a criterion which is able to overcome these disadvantages. In this work, an 

extension of the criterion proposed in (Badel and Lorentz, 2011) is used. In this criterion, the following 

properties hold: 

 A reference force �̲�𝑟𝑒𝑓 ∈ ℝ
𝑛 (with 𝑛 the number of degrees of freedom) is set up from some user-

defined values; 

 The criterion is controlled by a small dimensionless value 𝜖; 

 The criterion is independent of mesh size. 

The key point of this criterion is to define the reference force �̲�𝑟𝑒𝑓. Each component of �̲�𝑟𝑒𝑓 reflects the 

magnitude of each component of �̲�. Then we compare �̲� and �̲�𝑟𝑒𝑓 component by component: 

 ∀𝑗 ∈ 𝐷𝑂𝐹, |𝑅𝑗| ≤ 𝜖(�̲�𝑟𝑒𝑓)𝑗
 (3.36) 

 

                                                      
6 L-infinity norm: the largest magnitude among each element of a vector. 



Numerical analyses of the nonlocal GTN model 

85 

 

In view of the units of each component of �̲�, the reference force is computed from a user-defined scalar 

stress 𝜎𝑟𝑒𝑓, a user-defined scalar strain 휀𝑟𝑒𝑓 and a user-defined hardening variable 𝜅𝑟𝑒𝑓. The expression of �̲�𝑟𝑒𝑓 

is defined on the basic of the expression of �̲�: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 �̲�𝑟𝑒𝑓

�̲�
=∑(𝑤𝑔(𝜎𝑟𝑒𝑓 �̲� ⊗ �̲� + min(𝜎𝑟𝑒𝑓 , 𝑟𝑖𝑛𝑐𝑜휀𝑟𝑒𝑓) �̲� ⊗ �̲�): |ℙ𝑔: (𝑭𝒈

𝚻. �̲�𝑔
�̲�
)|)

𝑔

− �̲�𝒆

𝐹𝑟𝑒𝑓
𝑎 =∑𝑤𝑔(min (𝜎𝑟𝑒𝑓 , 𝑟𝑛𝑙𝜅𝑟𝑒𝑓)𝑁𝑔

𝑎)

𝑔

 

𝐹𝑟𝑒𝑓
𝑙 =∑ 𝑤𝑔𝜅𝑟𝑒𝑓𝑁𝑔

𝑙

𝑔

𝐹𝑟𝑒𝑓
𝑃 =∑𝑤𝑔휀𝑟𝑒𝑓𝑁𝑔

𝑃

𝑔

𝐹𝑟𝑒𝑓
𝜃 =∑𝑤𝑔(min (𝜎

𝑟𝑒𝑓 , 𝑟𝑖𝑛𝑐𝑜휀𝑟𝑒𝑓))𝑁𝑔
𝜃

𝑔

 (3.37) 

 

where �̲� = (1 1 1)𝑇. Note that the value of �̲�𝑟𝑒𝑓
�̲�

 depends on the chosen basis since |ℙ𝑔: (𝑭𝒈
𝚻. �̲�𝑔

�̲�
)| is not a 

tensor but a matrix7, but the order of the magnitude is preserved for any change of basis. 

With the definition of �̲�𝑟𝑒𝑓 given in Equation (3.37), each component of �̲�𝑟𝑒𝑓 has its correct unit. As for the 

value of (𝜎𝑟𝑒𝑓 , 휀𝑟𝑒𝑓 , 𝜅𝑟𝑒𝑓), one can take for example (𝜎𝑟𝑒𝑓 , 휀𝑟𝑒𝑓 , 𝜅𝑟𝑒𝑓) = (𝜎0, 0.01, 0.01). In this work, the value 

of 𝜖 is set to 10−3.  

 

 

  

                                                      
7 In 2D, a tensor is commonly represented by a matrix that results from applying it to different basis. Do not forget that any such 

matrix is just a representation of the tensor, but not the tensor itself.  Here, assume that a tensor 𝐴 is represented by (𝐴𝑖𝑗)0≤𝑖≤𝑚,0≤𝑗≤𝑛
 in 

a given basis, we define the matrix |A| as |𝐴| = (|𝐴𝑖𝑗|)0≤𝑖≤𝑚,0≤𝑗≤𝑛
. 
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3.3 Staggered and implicit schemes at local level 

3.3.1 Set of equations 

In this work, the displacement �̲�, the nonlocal variable 𝑎, the Lagrange multiplier 𝑙 are discretized on the 

basis of Lagrange shape functions. They correspond to the nodal unknowns of the discretized problem. The 

strain 𝑬, the stress 𝑻, the plastic strain 𝑬𝒑, the hardening variable 𝜅, the porosity 𝑓 are sampled at the integration 

points. The stress 𝑻, the internal variables (𝑬𝒑, 𝜅, 𝑓) are thus obtained through the integration of the constitutive 

equations at the integration point level. We recall the nonlocal GTN constitutive relations: 

 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝑻 = 𝔼: (𝑬 − 𝑬𝒑)

𝐺 =  (
𝑇𝑒𝑞
𝑇∗
 )
2

 + 2𝑞1𝑓
∗ cosh(

3

2
𝑞2
𝑇𝐻
𝑇∗
) − 1 − (𝑞1𝑓

∗)2  ≡  0  

𝐹 =
𝑇∗

𝐽
− �̅�(𝜅) + 𝑙 + 𝑟𝑛𝑙(𝑎 − 𝜅)

�̇� = 𝜆
𝜕𝐹

𝜕𝐴
,    

�̇�𝒑 = 𝜆
𝜕𝐹

𝜕𝝈
𝜆 ≥ 0,   𝐹 ≤ 0,   𝜆𝐹 = 0

𝑓 = 𝑓𝑔 + 𝑓𝑛 = (1 − 𝑓)tr(�̇�
𝒑) + 𝐵𝑛(𝜅)�̇�

𝑓∗ = {

𝑓, 𝑓 < 𝑓𝑐

𝑓𝑐 +

1
𝑞1
− 𝑓𝑐

𝑓𝐹 − 𝑓𝑐
, 𝑓 ≥ 𝑓𝑐

 (3.38) 

 

In order to ensure the existence and the uniqueness of the solution of the above set of equations, (Enakoutsa 

et al., 2007) proposed to use an implicit time-discretization with respect to (𝑬𝒑, 𝜅) for a given value of the 

porosity 𝑓 and then to update the porosity. This proposal corresponds to a staggered scheme. Compared to the 

fully implicit scheme, the staggered scheme allows for easier convergence of the elastoplastic iterations.  

Besides, according to our numerical experience, without any “special” numerical techniques, it is almost 

impossible to carry on the simulation up to complete failure of the structure when the fully implicit scheme is 

used. However, it should be noticed that the staggered scheme leads to a state which does not respect the 

constitutive law at the end of a time step and thus a non-equilibrium is generated in the next time step. 

For the staggered scheme, (Zhang et al., 2018) showed that Equation (3.38) can be simplified as: 

 

{
 

 �̅�(𝑝, 𝑇∗) =  (
𝑇𝑒𝑞
𝑒 �̅�(𝑝, 𝑇∗)

𝑇∗
 )

2

 +  2𝑞1𝑓
∗ cosh (

3

2
𝑞2
𝑇𝐻
𝑒𝑝

𝑇∗
) − 1 − (𝑞1𝑓

∗)2  =  0

�̅�(𝑝, 𝑇∗) = −�̅�∗ (�̅�(𝑝, 𝑇∗)) + 𝑇
∗ = 0

 (3.39) 

 

where 𝑝 and 𝑞 are defined by 𝑇ℎ
𝑒 = 𝑝𝑇ℎ , 𝑇𝑒𝑞

𝑒 = 𝑞𝑇𝑒𝑞 and 
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{
 
 
 

 
 
 
�̅�(𝑝, 𝑇∗) =

𝑇∗Λ̅ (
𝑇ℎ
𝑒𝑝
𝑇∗
)

𝑇∗Λ̅ (
𝑇ℎ
𝑒𝑝
𝑇∗
) +

𝜇
𝜅 𝑇ℎ

𝑒(1 − 𝑝)

�̅�(𝑝, 𝑇∗) =
𝐽𝑇ℎ
𝑒(1 − 𝑝)

3𝐾Λ̅ (
𝑇ℎ
𝑒𝑝
𝑇∗
) Θ̅ (

𝑇ℎ
𝑒𝑝
𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�(𝑝, 𝑇∗)

𝑇∗
)

 (3.40) 

 

with 

 {
Λ̅(𝑥) =

1

2
𝑞1𝑞2𝑓∗ sinh (

3

2
𝑞2𝑥)

Θ̅(𝑥, 𝑦) = (𝑦2 + 3𝑥Λ̅(𝑥))
−1

 (3.41) 

 

The existence and the uniqueness of the solutions (𝑝, 𝑇∗) has been demonstrated in (Zhang et al., 2018).  

For the fully implicit scheme, it can be demonstrated that Equation (3.38) can be reduced to: 

 

{
  
 

  
 �̅�(𝑝, 𝑇∗, 𝑓) =  (

𝑇𝑒𝑞
𝑒 �̅�(𝑝, 𝑇∗, 𝑓)

𝑇∗
 )

2

 +  2𝑞1𝑓
∗  cosh(

3

2
𝑞2
𝑇𝐻
𝑒𝑝

𝑇∗
) − 1 − (𝑞1𝑓

∗)2  =  0

�̅�(𝑝, 𝑇∗, 𝑓) = −�̅�∗ (�̅�(𝑝, 𝑇∗, 𝑓)) + 𝑇
∗ = 0

�̅�(𝑝, 𝑇∗, 𝑓) = 𝛥𝑓 −
1 − 𝑓

𝐽
�̅�(𝑝, 𝑇∗, 𝑓)tr (

𝜕𝑇∗
𝜕𝑻
) − �̅�𝑛 (�̅�(𝑝, 𝑇∗, 𝑓)) �̅�(𝑝, 𝑇∗, 𝑓) = 0 

 (3.42) 

 

where 

 

{
 
 
 
 

 
 
 
 

�̅�(𝑝, 𝑇∗, 𝑓) =
𝑇∗Λ̅ (

𝑇ℎ
𝑒𝑝
𝑇∗
, 𝑓)

𝑇∗Λ̅ (
𝑇ℎ
𝑒𝑝
𝑇∗
, 𝑓) +

𝜇
𝜅
𝑇ℎ
𝑒(1 − 𝑝)

�̅�(𝑝, 𝑇∗, 𝑓) =
𝐽𝑇ℎ
𝑒(1 − 𝑝)

3𝐾Λ̅ (
𝑇ℎ
𝑒𝑝
𝑇∗
, 𝑓) Θ̅ (

𝑇ℎ
𝑒𝑝
𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�(𝑝, 𝑇∗, 𝑓)

𝑇∗
, 𝑓)

𝜕𝑇∗
𝜕𝑻

(𝑝, 𝑇∗, 𝑓) = Θ̅ (
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�(𝑝, 𝑇∗, 𝑓)

𝑇∗
, 𝑓) [

3

2

𝑻𝑫
𝑇∗
+ Λ̅(

𝑇ℎ
𝑒𝑝

𝑇∗
, 𝑓) 𝑰] 

 (3.43) 

 

with 

 {
Λ̅(𝑥, 𝑓) =

1

2
𝑞1𝑞2𝑓∗ sinh (

3

2
𝑞2𝑥)

Θ̅(𝑥, 𝑦, 𝑓) = (𝑦2 + 3𝑥Λ̅(𝑥, 𝑓))
−1

 (3.44) 

 

We did not succeed in demonstrating the existence nor the uniqueness of the solution for the implicit scheme.   

The solution algorithm of the staggered scheme can be found in (Zhang et al., 2018) and the solution 

algorithm of the fully implicit scheme can be found in Appendix A4. These two schemes have been implemented 

in Code_Aster, an open-source finite element software developed at EDF (www.code-aster.org).  
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3.3.2 Comparison  

In order to compare these two schemes, several simulations of simple tensile test on Representative Volume 

Element (RVE) assuming plane strain conditions are performed. The advantage to perform RVE simulations, 

but not NT or CT simulations is that the predefined load-step will not be refined during the simulation in most 

cases. The initial length and the initial width of RVE2D are the same (𝐿𝑥0 = 𝐿𝑦0 = 𝐿0 = 1 mm ). The 

corresponding mesh is a single quadrilateral element with 4 integration points. The prescribed deformation 

gradient tensor is: 

 𝑭 = (
𝐹𝑥𝑥 0
0 𝐹𝑦𝑦

) = (
𝐹𝑥𝑥 0
0 𝛼𝑡 + 1

) (3.45) 

 

where 𝛼 is a constant, 𝑡 ∈ [0,1] is the load level. 

The initial porosity is set to 𝑓0 = 0.01, other material parameters are listed in Table 3.1.  

Figure 3.8 plots the evolution of the porosity  𝑓  and the force  𝐹  as a function of the stretch defined 

by 𝛥𝐿𝑦/𝐿0 = 𝛼𝑡 = 𝐹𝑦𝑦 − 1. It is observed that when the load increment is not small enough, the staggered 

scheme underestimates the porosity and thus overestimates the global force. The opposite trend is observed for 

the implicit scheme. Fortunately, when the load increment is sufficiently small, the two schemes converge to 

the same result. Therefore, both schemes need small load increments to obtain converged solutions.  

 

Figure 3.8. (a) Evolution of the porosity with stretch; (b) Force-displacement curves 

 

 

  



Numerical analyses of the nonlocal GTN model 

89 

 

3.4 Adaptive load increment  

3.4.1 Error estimation  

To see the importance of small load increments, we define the following error estimator: 

 𝜖 (
Δ𝐿

𝐿
) = |

𝑓 − 𝑓𝑐𝑜𝑛𝑣
𝑓𝐹

|
Δ𝐿/𝐿

 (3.46) 

where 𝑓𝑐𝑜𝑛𝑣 is the convergent solution for the porosity.   

We still focus on the simulations presented in Section 3.3.2. Figure 3.9(a) plots the evolution of the error 𝜖 

with the stretch. It is observed that on the one hand, both schemes induce some error on 𝑓 from the very 

beginning of the simulation and this error strongly depends on the predefined load increment Δ𝑡/𝑇and thus on 

the damage increment Δ𝑓; on the other hand, the error increases very rapidly at void coalescence stage (i.e., the 

deformation gradient 𝐹𝑦𝑦 − 1 ≥ 1). These two observations indicate that the error is directly linked to the 

damage increment Δ𝑓. 

Figure 3.9(b) compares the error induced by different predefined load increment (Δ𝑡/𝑇 = 0.005, 0.01). It 

shows that the ratio of 𝜖0.01/𝜖0.005 remains almost constant (around 2). That indicates that the error may be 

proportional to Δ𝑡 (𝜖 ∝ 𝛥𝑡).  

 

Figure 3.9. (a) Evolution of the error on the porosity with the stretch; (b) Comparison of the errors induced by two different load 

increments 

 

3.4.2 Global sub-stepping method 

According to the previous part, the accumulated error on the porosity  𝑓  strongly depends on the load 

increment. So it is necessary to use a sufficiently small load increment to ensure the accuracy of the solutions. 

However, it is difficult to get the value of this small load increment. Thus, it may be preferable to control the 

increment of one variable. In our work, the porosity 𝑓 is controlled: Δ𝑓 = 𝑓𝑖+1 − 𝑓𝑖 ≪ 1 with 𝑖 the 𝑖𝑒𝑟  time 

step. In most cases, the porosity varies from 𝑓0(~10
−4) to 𝑓𝐹(~10

−1), hence it is sufficient to only control the 

increment of ln (𝑓) such that Δ ln(𝑓) = ln(𝑓𝑖+1 ) − ln (𝑓𝑖) ≤ 𝜖 ≪ 1. Indeed, we have Δ ln 𝑓 = Δ𝑓/𝑓 ⟹  Δ𝑓 ≤

0.1Δ ln 𝑓 since 𝑓 ∼ [10−4, 0.1]. This analysis is in agreement with the previous works done in (Zhang, 2016). 

In the work of (Zhang, 2016), an error analysis in purely hydrostatic situation was carried out and it was 

demonstrated that the variable to be controlled is ln (𝑓). Consequently, the control on Δ ln 𝑓 leads to the control 
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on Δ𝑓. As soon as the criterion on ln 𝑓 is not fulfilled, the load step at global level is divided. Here the global 

level refers to the structure scale (mechanical equilibrium). We call this method “global sub-stepping method” 

in the following.  

To evaluate the influence of the values of 𝜖  on the global response, several simulations of CT for 𝜖 =

0.005, 0.01, 0.03, 0.05, 0.1 are performed. The corresponding geometry and mesh can be found in Figure 3.5. 

The model parameters which are used in these simulations can be found in Table 3.1 except for 𝑞2 = 1.2. Usual 

symmetry and boundary/loading conditions are accounted for. The final load level correspond to an 𝐶𝑂𝐷 = 4 

mm. The predefined load increment Δ𝑡/𝑇 = 0.001 with 𝑇 the final load level.  

Figure 3.10(a) plots the curves of force-COD for different 𝜖 with global sub-stepping method. The case 

without any stepping method is also shown in this figure. The converged solution is obtained by doing a 

simulation with Δ𝑡/𝑇 = 0.0001. It is observed that the difference between the result without sub-stepping 

method and the converged solution cannot be neglected. With the global-stepping method, the solution approach 

little by little the converged solution with the decrease of 𝜖. They are almost overlapped when 𝜖 ≤ 0.01.  

However, when it comes to large size computations, the global sub-stepping method may be computationally 

expensive. Indeed, as long as the criterion is not fulfilled at one integration point, then the load step would be 

divided at global level and at all integration points.  

 

Figure 3.10. Force-COD curves for different 𝜖 (a) with global sub-stepping method); (b) with local sub-stepping method 

 

3.4.3 Local sub-stepping method 

The global sub-stepping method may be computationally expensive in some cases. In this part, we would 

like to test a less expensive method, i.e., local sub-stepping method. The idea of this method is to divide the 

load step in several sub-steps only for the integration of the constitutive law where the criterion given on Δln(𝑓) 

is violated. In that case, the strain increment and the nonlocal variables are directly sub-divided (see Figure 

3.11) and the equilibrium equations are fulfilled only at the end of the time step. This approach is thought to be 

less time-consuming than the global one since the global Newton method at equilibrium level with the solution 

of the large linear system is not applied at each sub-increment, that is to say, the intermediate histories of strain 

and nonlocal variables are not linear in each time step with global sub-stepping method. However, with the local 

sub-stepping method, the tangent operator is no more consistent which can postpone or even preclude 

convergence of the global algorithm. Note that a consistent tangent operator can be retrieved with some effort 

but it was not done in this work.  
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Figure 3.11. Schematic local sub-stepping method 

 

In order to compare the accuracy of both methods, the same simulations as in the previous part are performed 

except that the local sub-stepping method is used. 

Figure 3.10(b) plots the curves of force-COD for different 𝜖 with local sub-stepping method. It is observed 

that with the local-stepping method, the solution approach little by little the converged solution with the decrease 

of 𝜖. They are almost overlapped when 𝜖 ≤ 0.01. 

Figure 3.12 compares the results obtained with the global and the local sub-stepping methods for 𝜖 = 0.03 

(no converged solution) and for 𝜖 = 0.01 (converged solution). It is shown that the results obtained with the 

global and local sub-stepping methods almost overlap in both cases, which indicates that the local sub-stepping 

method almost gives the same accuracy as the global one. 

 

 

Figure 3.12. Comparison between the results obtained with the global and the local sub-stepping methods for (a) 𝜖 = 0.03 and (b) 

𝜖 = 0.01 

In conclusion, no loss of accuracy is observed with the local sub-stepping method, which indicates that the 

assumption of linear history of strain and nonlocal variables is reasonable provided that the initial load step is 

not too large. In practice, if the initial load step is too large, convergence will be not ensured with the local sub-

stepping method.  

As for the value of 𝜖, it should be chosen so as to ensure the trade-off between accuracy and performance: 

on the one hand, this value cannot be too large as its effect on error control would become negligible; on the 
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other hand, it cannot be too small, otherwise, too many material points would suffer local division of load steps. 

In view of the previous results, it is suggested that 𝜖 = 0.01. 

Besides, the local and global stepping methods can be used at the same time: if Δ ln 𝑓 > 𝜖, then the local 

stepping is activated. If the global Newton scheme is not convergent due to the non-consistent tangent operator, 

then the global sub-stepping is activated.  
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3.5 Penalty with respect to the plasticity 

We recall here the expression of Lagrangian ℒ𝑛𝑙, mentioned earlier in Chapter 2: 

  ℒ𝓃ℓ(𝑬, 𝑬
𝒑, 𝜅, 𝑎, 𝑙)  =   ℱℓ(𝑬, 𝑬

𝒑, 𝜅)  + ∫ (
1

2
𝑐𝛁𝑎.𝛁𝑎 + 𝑙(𝑎 − 𝜅) +

1

2
𝑟𝑛𝑙(𝑎 − 𝜅)

2) 𝑑Ω0
Ω0

 (3.47) 

 

An augmentation term 𝑟𝑛𝑙(𝑎 − 𝜅)
2/2 with 𝑟𝑛𝑙 a penalty parameter is added in the Lagrangian. This term 

provides an additional coercivity so as to avoid potential oscillation of the accumulated plasticity 𝜅. In the 

following, we will explain the origin of such oscillation. 

The Lagrange multiplier 𝑙 in the vector space 𝕃 ensures that: 

 ∀𝑙 ∈ 𝕃,< 𝑎 − 𝜅, 𝑙 >= 0 (3.48) 
 

Thus, the oscillation of 𝜅 (i.e., 𝜅⊥ = 𝜅 − 𝑎) belongs to the orthogonal space of 𝕃 (i.e., 𝕃⊥): 𝜅⊥ ∈ 𝕃⊥. Some 

degrees of freedom hence exist for 𝜅 and they are not controlled by the gradient term 𝛁𝑎 since this term is only 

applied to the variable 𝑎. Therefore, it is possible that the space 𝕃⊥ is so “large” that the loss of ellipticity related 

to the strain softening character of the constitutive law is triggered. In that case, the oscillation of 𝜅⊥ and thus 

the oscillation of 𝜅 occur. However, at the continuum level, the value of 𝜅⊥ = 𝑎 − 𝜅 should be equal to zero. 

Therefore, a quadratic term 𝑟𝑛𝑙(𝜅
⊥)2, which does not have any effect at the continuum level, can bring additional 

definite positivity with respect to 𝜅⊥ so as to counter balance the loss of ellipticity mentioned above. Indeed, 

this quadratic term can be interpreted as an additional strain hardening of modulus 𝑟𝑛𝑙. In conclusion, the value 

of 𝑟𝑛𝑙 should be large enough so that the constitutive law remains hardening with respect to 𝜅 for any value of 

𝑎 and 𝑙. Of course, the value 𝑟𝑛𝑙 should not be too large since the global Newton algorithm can fail in the case 

of too large 𝑟𝑛𝑙.  

In this section, we would like to illustrate the effects of this term with the simulations of Notched Tensile 

(NT) specimens.  For that, several simulations (axisymmetric modeling) for 𝑟𝑛𝑙 = 10, 100, 1000, 5000, 10000, 

100000 MPa are performed. The geometry and the mesh of NT, as well as the boundary and loading conditions 

are shown in Figure 2.24. The model parameters used in the simulations are listed in Table 3.1 except that the 

mixed element for the treatment of incompressibility is not used.  

The fields of the hardening variable 𝜅 and the porosity 𝑓 for different 𝑟𝑛𝑙 are shown in Figure 3.13. It is 

shown that the oscillation of 𝜅  exists when 𝑟𝑛𝑙  is not large enough (𝑟𝑛𝑙 ≤ 5000 MPa = 10𝜎0). The same 

oscillation is observed in the field of 𝑓 (see Figure 3.14) which is obvious as 𝜅 is linked to the plastic strain 𝑬𝒑 

through the flow rules and 𝑓 is linked to 𝑬𝒑 through the evolution law for the porosity in the GTN model. Due 

to the oscillation of 𝑓, the crack length is not well evaluated. In view of the obtained results, it is suggested 

that 𝑟𝑛𝑙 ≥ 10000 MPa ≈ 20𝜎0 with 𝜎0 the yield stress when the 3-field (�̲�, 𝑎, 𝑙) GTN model is used. We will 

see in the next section and in Appendix 5 that when the 5-field GTN model is used, it is sufficient to take 𝑟𝑛𝑙 ≥

10𝜎0. 
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Figure 3.13. The fields of the hardening variable 𝜅 for different 𝑟𝑛𝑙 (Mean stretch =9.5%) 

 

 

Figure 3.14. The fields of the porosity for different 𝑟𝑛𝑙 (Mean stretch =9.5%) 
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3.6 Penalty with respect to the volumetric strain 

We recall here the expression of Lagrangian ℒ, mentioned earlier in Chapter 2: 

 ℒ(𝑬, 𝑬𝒑, 𝜅, 𝑎, 𝑙, 𝑃, 𝜃)  =   ℒnℓ(�̅�, 𝑬
𝒑, 𝜅, 𝑎, 𝑙)  + ∫ (𝑃(ln(𝐽) − 𝜃) +

1

2
𝑟𝑖𝑛𝑐𝑜(ln(𝐽) − 𝜃)

2) 𝑑Ω0
Ω0

 (3.49) 

 

This mixed element formulation is used to solve volumetric locking. A new augmentation term 
1

2
𝑟𝑖𝑛𝑐𝑜(ln(𝐽) − 𝜃)

2 has been introduced in our work, with 𝑟𝑖𝑛𝑐𝑜 a new penalty parameter. It brings an additional 

coercivity so as to avoid potential appearance of spurious plastic localization. In the following, we will explain 

the origin of the plastic localization.  

Initially, volumetric locking results from the fact that the quasi-incompressibility constraint enforced at each 

integration points reduces the effective dimension of the displacement space. The reduction is so drastic that the 

effective displacement space is no more rich enough to ensure spatial convergence. Therefore, a new kinematic 

degree of freedom 𝜃  is introduced in order to relax this constraint on the displacement: 𝜃  should be 

approximately equal to zero due to the quasi-incompressibility assumption, but not  ln 𝐽(�̲�) . As 𝜃  should 

nevertheless reflect ln 𝐽(�̲�), a Lagrange multiplier 𝑃 ∈ ℙ ensures the correspondence: 

 ∀𝑃 ∈ ℙ,< ln 𝐽(�̲�) − 𝜃, 𝑃 >= 0     ⟹       𝜃 = ln 𝐽(�̲�) + 𝜃⊥, 𝜃⊥ ∈ ℙ⊥ (3.50) 
 

Compared to the initial situation, an additional degree of freedom is introduced through 𝜃⊥ which is expected 

to avoid volumetric locking. The choice of ℙ affects the efficiency of the approach: ℙ should not be too large 

to fulfill the LBB condition and thus to have a well-posed dual problem. The choice of the Taylor-Hood element 

(i.e., quadratic interpolation for �̲� and linear interpolation for 𝑃) fulfills the LBB condition. In addition, ℙ 

should not be too small, i.e., ℙ⊥ should not be too large so that the primal problem remains well-posed with 

respect to the enhance kinematics. This can be achieved by the use of the Taylor-Hood finite element in the 

framework of small strains. However, it is not true anymore in the framework of finite strains, as shown in 

(Auricchio et al., 2013; Lorentz et al., 2008). In finite strains, the primal problem may become ill-posed, leading 

to the oscillation of 𝜃⊥ and thus the plastic oscillations through the constitutive relation. Therefore, the quadratic 

term 𝑟𝑖𝑛𝑐𝑜(𝜃
⊥)2/2  brings an additional coercivity so that the primal problem becomes well-posed again. 

However, the higher the penalty parameter is, the less efficient the additional kinematic freedom provided by 

𝜃⊥ is: volumetric-locking could be retrieved. In conclusion, 𝑟𝑖𝑛𝑐𝑜 should be large enough to ensure the well-

posed primal problem and sufficiently small to avoid volumetric locking.  

In some cases, the control on 𝛁𝑎 proves sufficient to avoid plastic oscillations, providing an indirect control 

on 𝜃⊥, as shown in (Zhang, 2016). Indeed, it is stated in (Zhang, 2016) that the introduction of the nonlocal 

penalty term 𝑟𝑛𝑙(𝑎 − 𝜅)/2  can avoid the oscillation of the plasticity in the absence of the quadratic 

term 𝑟𝑖𝑛𝑐𝑜(𝜃
⊥)2/2 in his case. We will see that this conclusion is not always true. Besides, we have stated in 

the previous section that 𝑟𝑛𝑙 should be large than 20𝜎0 to avoid plastic oscillation when 𝑟𝑖𝑛𝑐𝑜 = 0, we will see 

that when 𝑟𝑖𝑛𝑐𝑜 > 0, we can simply take 𝑟𝑛𝑙 ≥ 10𝜎0 to preclude plastic oscillation.  

In the following, we would like to illustrate the effects of the quadratic term 𝑟𝑖𝑛𝑐𝑜(𝜃
⊥)2/2 in two scenarios: 

(1) pure von-Mises without nonlocal (gradient controlled) effects; (2) GTN with nonlocal effects. The first 

scenario has been studied in (Lorentz et al., 2008) for 𝑟𝑖𝑛𝑐𝑜 = 0 and the oscillation of plasticity was observed. 

So here it is expected that the quadratic term can avoid this oscillation. The second scenario is studied to 

demonstrate that in the absence of 𝑟𝑖𝑛𝑐𝑜(𝜃
⊥)2/2, the nonlocal term 𝑟𝑛𝑙(𝑎 − 𝜅)/2 may not sufficient to avoid or 

postpone the oscillation of the plasticity and the damage.  



 

96 

 

The simulations of NT for different 𝑟𝑖𝑛𝑐𝑜 (𝑟𝑖𝑛𝑐𝑜 = 0, 100, 1000, 5000, 10000, 100000 MPa) are performed. 

The geometry and the mesh of NT, as well as the boundary and loading conditions are shown in Figure 2.24. 

Unless otherwise stated, the material parameters used in the simulations are listed in Table 3.1.  

 

Scenario 1 

For the first case, we set 𝑐 = 0 N and 𝑟𝑛𝑙 ≈ 0 MPa to exclude the nonlocal effect. The von-Mises law is used. 

Figure 3.15 shows the field of the hardening variable 𝜅. It is shown that the oscillation of the plasticity exists in 

the case of small values for 𝑟𝑖𝑛𝑐𝑜, as observed in (Lorentz et al., 2008), and disappears when 𝑟𝑖𝑛𝑐𝑜 is large 

enough (𝑟𝑖𝑛𝑐𝑜~5000 𝑀𝑃𝑎). Similar to 𝑟𝑛𝑙, a too small value of 𝑟𝑖𝑛𝑐𝑜 leads to an incorrect global response, as 

shown in Figure 3.16. 

 

 

Figure 3.15. Hardening parameter with different 𝑟𝑖𝑛𝑐𝑜 (mean stretch 6%) 
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Figure 3.16. Force-Diameter reduction curves for different 𝑟𝑖𝑛𝑐𝑜 (mean stretch 6%) 

 

Scenario 2 

For the second case, we set 𝑐 = 50 N, 𝑟𝑛𝑙 = 5000 MPa. The GTN damage model is used. Figure 3.17 plots 

the profile of the porosity in the ligament for 𝑟𝑖𝑛𝑐𝑜 = 0 and 5000 MPa. The oscillation of the porosity 𝑓 are 

observed for  𝑟𝑖𝑛𝑐𝑜 =  0 MPa and it disappears for  𝑟𝑖𝑛𝑐𝑜 =  5000 MPa. Macroscopically, this oscillation is 

interpreted as a discontinuous crack (some material points never fail), as shown in the same figure. This is 

problematic since the finite elements containing these no-broken points never stop deforming which leads to 

element distortion and thus computational non-convergence. 

Figure 3.18 plots the field of the hydrostatic stress for different 𝑟𝑖𝑛𝑐𝑜. It can be observed that stress oscillation 

inside the localization band becomes non-negligible when 𝑟𝑖𝑛𝑐𝑜 ≥ 10000 MPa, i.e., volumetric-locking appears 

again for large values of 𝑟𝑖𝑛𝑐𝑜. Therefore, the value of 𝑟𝑖𝑛𝑐𝑜 should not be too large. In view of the local and the 

global responses, it is suggested that 𝑟𝑖𝑛𝑐𝑜 ~ 5000 MPa ≈ 10𝜎0 with 𝜎0 the yield stress.  

 

 

Figure 3.17. Evolution of porosity f in the ligament for different 𝑟𝑖𝑛𝑐𝑜 (mean stretch 10%) 
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Figure 3.18. The hydrostatic stress for different 𝑟𝑖𝑛𝑐𝑜 (mean stretch 10%) 
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3.7 Summary 

This chapter consists in discussing different numerical aspects of the nonlocal locking-free GTN model. The 

study of these numerical aspects allows knowing how to correctly use the model so as to perform reliable 

simulations. 

First of all, we focus on the treatment of the broken finite elements. As mentioned in Chapter 1, there exist 

several ways to handle these elements, but each way has its own drawbacks. In this work, it is proposed to use 

a simple viscoelastic model which has a stabilization effect on global problem. With this model, a small and 

time-vanishing stiffness is introduced. This stiffness leads to some additional stresses which vanish with 

increasing time. Two parameters are involved in this model: a viscoelastic stiffness 𝐸𝑣  and a viscoelastic 

characteristic time 𝜏𝑣. The simulations of NT and CT are performed. According to the results, it is suggested 

that 𝐸𝑣 = 0.001𝐸 and 𝑡𝑣 = 0.01𝑇 with 𝐸 Young’s modulus and 𝑇 the total loading time. With these values, the 

element distortion in CT is well reduced. 

Secondly, the convergence criterion which is used in this work is shown. It is based on the derivation of a 

reference nodal vector on the basis of physical engineering quantities. This criterion can be used even when the 

different residuals have different units. By using this criterion, the simulation result should be reliable.  

Thirdly, we compare two different integration schemes for the constitutive law. The first one is called 

“staggered scheme” which consists in doing an implicit time-discretization with respect to (𝑬𝒑, 𝜅) and an explicit 

update of 𝑓. The second one is called “implicit scheme” which consists in doing an implicit time-discretization 

with respect to (𝑬𝒑, 𝜅, 𝑓). Simulations of RVE are performed with both schemes. The results show that the 

accuracy of both schemes is the same and that they are convergent.  

Then, in order to control the error introduced by the large load increment, a global sub-stepping method and 

a local sub-stepping method are proposed. The sub-stepping is based on the control on the increment of ln 𝑓. 

Both methods give a time-convergent results if the criterion defined on Δ ln 𝑓 is correctly chosen. The global 

sub-stepping method can be computationally expensive, especially when it comes to three-dimensional 

simulations with many degrees of freedom. The local sub-stepping method can efficiently solve this issue. But 

it is necessary to well evaluate the tangent matrix for the points at which the local adaptation is activated so as 

to avoid the global non-convergence of Newton-Raphson algorithm due to inconsistent tangent operator.  

Finally, the two augmentation terms introduced in the Lagrangian, i.e., 𝑟𝑛𝑙(𝑎 − 𝜅)
2/2 and 𝑟𝑖𝑛𝑐𝑜(tr(𝑬) − 𝜃)/

2 are studied. Simulations of simple tensile test on NT with different 𝑟𝑛𝑙 or 𝑟𝑖𝑛𝑐𝑜 are performed to see the effects 

of these two terms on the mechanical fields or on the global response. The results indicate that both terms helps 

avoid the oscillations of the plasticity and the damage.  For the value of 𝑟𝑛𝑙, it cannot be too small, otherwise 

the penalty effect becomes negligible. But we can take large values for 𝑟𝑛𝑙 as long as the problem remains well 

conditioned. For the value of 𝑟𝑖𝑛𝑐𝑜, it cannot be too small, otherwise the oscillations of the plasticity and/or the 

damage cannot be reduced. It cannot be too large, otherwise the issue of volumetric-locking appears again. It is 

suggested that 𝑟𝑛𝑙 ≥ 10𝜎0 and 𝑟𝑖𝑛𝑐𝑜 ≈ 10𝜎0. 
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4 Model properties in the context of small-scale yielding 

 

 所谓老练就是既能声明自己的看法,又不得罪人的艺术。 

 

Le tact c'est l'art de proposer un argument sans se faire un ennemi. 

 

Tact is the art of making a point without making an enemy 

 艾萨克 牛顿  Isaac Newton 
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Résumé 

 

Ce chapitre porte sur les propriétés physiques du modèle GTN non-local.  

Le but de ce chapitre est de voir comment le modèle GTN non-local est capable de construire une courbe de 

résistance à la déchirure ductile J-Δa sous les hypothèses de plasticité confinée (« small-scale yielding » en 

anglais), Mode I et déformations planes. En quelque sorte, on cherche à établir une relation entre l’approche 

globale (𝐽) et l’approche locale (GTN).  

Des simulations de la grande propagation de fissure sont réalisées avec le modèle GTN non-local. Une 

nouvelle méthode basée sur le champ de la porosité pour post-traiter la longueur de fissure est introduite. Des 

études paramétriques sur les différents paramètres numériques du modèle sont faites afin d’estimer leur 

influence sur la courbe 𝐽 − 𝛥𝑎.  

Une relation linéaire entre la largeur de la bande de localisation et la longueur intrinsèque non-locale est 

établie. Ensuite, l’émoussement, l’amorçage et la grande propagation (~200 éléments finis cassés) de fissure 

peuvent être prédits par le modèle GTN non-local. En particulier, un état quasi-stationnaire local est constaté 

pour les champs de contraintes, de porosité et de variable d’écrouissage. Par ailleurs, on a constaté que la ténacité 

(𝐽  à l’amorçage) et le comportement à la déchirure peuvent fortement être impactés par les propriétés du 

matériau (porosité initiale, porosité de coalescence, paramètres d’écrouissage, etc.). Enfin, Les résultats 

montrent la robustesse et la fiabilité de la formulation numérique du modèle GTN.  
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The main purpose of this chapter is to investigate how the non-local GTN model is able to construct a 𝐽 −

Δ𝑎 resistance curve in the context of plane strain and mode 𝐼 small-scale yielding and so establish a link between 

the 𝐽 approach and the GTN-based approach. In particular, the effects of the GTN material parameters and the 

internal length of the model on the 𝐽 − Δ𝑎 resistance curve are thoroughly studied. The small-scale yielding 

conditions are fulfilled through the boundary-layer model where the far-field is only characterized by the elastic 

stress intensity factor 𝐾 related to 𝐽 by Irwin’s formula. The small-scale yielding framework hence reflects the 

vicinity of a crack tip without including any geometrical or constraint effect. This is the best adapted 

configuration to apply the global approach to ductile fracture. A second objective of the study consists in 

evaluating the robustness and the reliability of the non-local GTN formulation by performing simulations of 

large crack propagation in small-scale yielding.  

This chapter is organized as follows. Some basic knowledge about Linear Elastic Fracture Mechanics 

(LEFM) and Elastic-Plastic Fracture Mechanics (EPFM) are summarized in Section 4.1. The simulation 

techniques, which will be used in Section 4.3, are described in Section 4.2. Crack initiation and crack 

propagation under small-scale yielding Mode 𝐼 plane-strain conditions is simulated using the nonlocal locking-

free GTN model (see Chapter 2 for model description) and the results are presented in Section 4.3. A short 

conclusion and perspective are given in Section 4.4. 

 

4.1 Crack propagation in small-scale yielding 

4.1.1 Stress analysis of cracks in elasticity 

Under the assumption of isotropic linear elastic material behavior, it is possible to derive closed form 

expressions of the stress tensor for some cracked configurations subjected to external forces, as described in 

(Irwin, 1957; Sneddon, 1946; Westergaard, 1939). If we define a polar coordinate axis with the origin at the 

crack tip, then the stress filed in any linear elastic cracked body is given by: 

 𝝈 =
𝐾

√2𝜋𝑟
𝒇(𝜃) + ∑ 𝐴𝑚𝑟

𝑚
2𝒈𝒎(𝜃)

∞

𝑚=0

 (4.1) 

 

where 𝝈 denotes the stress tensor, (𝑟, 𝜃) denotes the polar coordinates (see Figure 4.1), 𝐾 denotes the stress 

intensity factor, 𝒇 and 𝒈𝒎  denote two dimensionless functions of 𝜃, 𝐴𝑚  denotes the amplitude for the 𝑚𝑡ℎ 

term. 

 

Figure 4.1. Definition of polar coordinate axis ahead of a crack tip 
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Equation (4.1) describes a stress singularity. Indeed, for any given configuration, there exists a leading term 

which is proportional to 1/√𝑟. As 𝑟 → 0, the leading term tends to infinity, while the other terms remains finite. 

In particular, the value of 𝐾 depends on the geometry. 

Generally speaking, a crack can experience three types of loading, i.e., mode I, mode II and mode III. In this 

work, we only focus on mode I loading, where the principal load is applied normal to the crack plane. Mode I 

loading tends to open the crack. The singular stress fields and displacement fields in the case of plane strain for 

Mode I are given in Table 4.1 and Table 4.2. In Table 4.2, the parameter 𝜇 is the shear modulus.  

According to Table 4.1, the stresses on the crack plane (𝜃 = 0∘) near and ahead of the crack tip are: 

 𝜎𝑥𝑥 = 𝜎𝑦𝑦 =
𝐾

√2𝜋𝑟
 (4.2) 

 

while stresses far away from the crack tip are governed by the remote boundary conditions. If the stress intensity 

factor 𝐾 is known, the stress tensor, the strain tensor and the displacement can be solved using Table 4.1 and 

Table 4.2. For simple configurations, closed-form solution of 𝐾 can be derived analytically, one can refer to 

(Anderson, 2017) for closed-form solutions of 𝐾 for common test specimens. Otherwise, 𝐾 should be estimated 

by some experiment techniques (for example strain gage based method (Dally and Sanford, 1987)) or numerical 

analysis (such as finite element method).  It should be noticed that it is difficult, even impossible to measure 𝐾 

completely by experiments. One should keep in mind that the stress intensity factor 𝐾 is a coefficient in William 

solution (Equation (4.1)) but not a physical parameter, hence, it cannot be measured but only calibrated on the 

basis of a stress, strain or displacement measure. For instance, in strain gage method presented in (Dally and 

Sanford, 1987), the William solution (Equation (4.1)) is used to link the strain to the stress intensity factor 𝐾.  

 

Table 4.1. Stress fields ahead of a crack tip for Mode I in a linear elastic isotropic material (plane strain case) 

𝝈𝒙𝒙 
𝐾

√2𝜋𝑟
cos (

𝜃

2
) (1 − sin (

𝜃

2
) sin (

3𝜃

2
)) 

𝝈𝒚𝒚 
𝐾

√2𝜋𝑟
cos (

𝜃

2
) (1 + sin (

𝜃

2
) sin (

3𝜃

2
)) 

𝝈𝒛𝒛 𝜈(𝜎𝑥𝑥 + 𝜎𝑦𝑦) 

𝝉𝒙𝒚 
𝐾

√2𝜋𝑟
cos (

𝜃

2
) sin (

𝜃

2
) cos (

3𝜃

2
) 

𝝉𝒙𝒛 0 

𝝉𝒚𝒛 0 

 

Table 4.2. Displacement fields ahead of a crack tip for Mode I in a linear elastic isotropic material (plane strain case) 

𝒖𝒙 
𝐾

2𝜇
√
𝑟

2𝜋
cos (

𝜃

2
) (2 − 4𝜈 + 2 sin2 (

𝜃

2
)) 

𝒖𝒚 
𝐾

2𝜇
√
𝑟

2𝜋
sin (

𝜃

2
) (4 − 4𝜈 − 2 cos2 (

𝜃

2
)) 
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4.1.2 Energy release rate and path-independent contour integral 

Energy release rate 

By applying the first law of thermodynamics to crack extension, (Griffith, 1921) deduced that a crack can 

form or grow only if such a process does not increase the total energy of the system. An energy release rate 𝐽 is 

defined as the instantaneous loss of total potential energy Π per unit crack growth area 𝐴: 

 𝐽 = −
𝑑Π

𝑑𝐴
 (4.3) 

 

The definition given in Equation (4.3) holds for linear or nonlinear elastic materials.  

Under the assumption of isotropic linear elastic material behavior, Mode I and plane-strain condition, the 

relationship between the stress intensity factor 𝐾 and the energy release rate 𝐽 is (Irwin, 1957): 

 𝐽 =
𝐾2(1 − 𝜈2)

𝐸
 (4.4) 

 

Path-independent contour integral 

The path-independent contour integral 𝐽Rice was proposed in (Rice, 1968) for the analysis of cracks: 

 𝐽Rice = ∫ (𝑤𝑑𝑦 − 𝜏𝑖
𝜕𝑢𝑖
𝜕𝑥
) 𝑑𝑠

Γ

 (4.5) 

 

where 𝑤 is the strain energy density, 𝜏𝑖 are the components of the traction vector, 𝑢𝑖 are the displacement vector 

components and 𝑑𝑠 is the length increment along the arbitrary contour Γ around the crack tip. This 𝐽Rice was 

shown to be equal to the energy release rate 𝐽 in a linear or nonlinear elastic body containing a crack.  

In small-scale yielding conditions, the definition of path integral still holds as long as the chosen contour 

remains in the elastic zone, while the definition of energy release rate 𝐽 does not hold anymore since part of the 

strain energy absorbed by the material is not recovered due to the plasticity when the crack grows. So Equation 

(4.4) does not have too much meaning. Despite all that, the plastic zone is negligible compared to the entire 

structure in small-scale yielding, so later in this thesis, we will see that the contour integral 𝐽𝑅𝑖𝑐𝑒 is (almost) 

equal to 𝐾2(1 − 𝜈2)/𝐸.  

 

4.1.3 Crack tip plasticity in small-scale yielding 

Stresses predicted by Linear Elastic Stress Analysis is infinite at the crack tip, according to Equation (4.1). 

However, due to the finite crack-tip radius and inelastic deformation in real material, stresses should remain 

finite at crack tip. Therefore, the concept of Linear Elastic Fracture Mechanics becomes inaccurate as the 

inelastic region at the crack tip grows. Crack length corrections are available in the case of small-scale yielding. 

In this part, we will give an order of magnitude of the plastic size 𝑟𝑝 in plane strain case.   

On elastic-plastic interface on the cracked plane, we have 𝜎𝑒𝑞 ~ 𝜎(𝑟 = 𝑟𝑝)~ 𝜎0 with 𝜎0 the yield stress. 

According to Equation (4.1)), we have 𝜎(𝑟 = 𝑟𝑝) ~ 𝐾/√𝑟𝑝. Thus, we obtain 𝜎0 ~ 𝐾/√𝑟𝑝, that is to say, 

 𝑟𝑝 ~ (
𝐾

𝜎0
)
2

 (4.6) 
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The detailed expression of Equation (4.6) is given in (Anderson, 2017) as: 

 𝑟𝑝 =
1

3𝜋
(
𝐾

𝜎0
)
2

 (4.7) 

 

For the general cases in which 𝜃 ≠ 0, it is shown in (Anderson, 2017) that:  

 𝑟𝑝(𝜃) =
1

4𝜋
(
𝐾

𝜎𝑒𝑞
)

2

((1 − 2𝜈)2(1 + cos𝜃) +
3

2
sin2 𝜃) (4.8) 

 

4.1.4 Small-scale yielding: J-controlled fracture 

The so-called 𝐽-controlled fracture means that 𝐽 completely characterizes the crack-tip conditions when there 

is not excessive plasticity or significant crack growth. In the context of small-scale yielding, where the plastic 

and cracked zone are assumed to be negligible compared to elastic zone, both 𝐾 and 𝐽 characterize crack-tip 

conditions. Figure 4.2 schematically illustrates the effect of plasticity on the stresses at the crack tip nearby zone 

in small-scale yielding. In this figure, 𝑙𝑐 means the characteristic length scale. A 𝐾-dominated zone where the 

stress is proportional to 1/√𝑟 exists at a short distance from the crack tip. Under the assumption of monotonic 

and quasi-static loading, a 𝐽-dominated zone occurs in the plastic zone where the elastic singularity does not 

exist anymore. In particular, if hardening obeys the Rambert-Osgood law (휀/휀0 = 𝛼(𝜎/𝜎0)
1/𝑛  with 𝛼  a 

dimensionless constant, 휀0 = 𝜎0/𝐸 and 𝑛 the strain-hardening exponent), the HRR solution8 would be valid in 

this plastic zone (Hutchinson, 1968; Rice and Rosengren, 1968). Well inside of the 𝐽-dominated region, a finite 

strain region occurs within around 2𝛿 from the crack tip with 𝛿 the Crack Tip Opening Displacement. The HRR 

solution is not valid anymore (see for example (Hutchinson, 1968) for the explanation). In this region, the 

general solution of the displacement �̲� is known as Williams-series. Only the first term of the series will be 

considered in this work: 

 

{
 

 ux(r, θ) =
K(1 + ν)

E
√
𝑟

2𝜋
 cos (

θ

2
) (3 − 4ν − cosθ)

uy(r, θ) =
K(1 + ν)

E
√
𝑟

2𝜋
 sin (

θ

2
) (3 − 4ν − cosθ)

 (4.9) 

 

It is worth noticing that in the case of elastic-plastic conditions, there is no longer a K field; in the case of 

large-scale yielding, finite strain zone is dominated and K or J-dominated region does not exist anymore. 

However, in small-scale yielding, the K-dominated and J-dominated zones always exist. 

Generally speaking, there are three distinct stages of crack growth resistance behavior in small-scale yielding, 

as shown in Figure 4.3. During crack blunting, the plasticity and the damage grow at the crack-tip nearby zone 

without any crack extension, the slope of 𝐽 resistance curve is constant. Then crack starts to grow at crack 

initiation stage, the crack-tip stresses and strains may be affected by the original blunted crack tip. According 

to (Anderson, 2017), a steady-state can be reached when crack grows well beyond the initial blunted crack tip, 

in this case, the history of local variables (e.g., stresses, strains, state variables) are independent of crack growth. 

A plastic wake can be observed at this stage and the 𝐽 resistance curve becomes flat provided that the material 

                                                      
8 The HRR singularity is : 

𝜎𝑖𝑗 = 𝜎0 (
𝐸𝐽

𝛼𝜎0
2𝐼𝑛𝑟

)

1
𝑛+1

�̃�𝑖𝑗(𝑛, 𝜃) 

where 𝐼𝑛 is an integration constant 
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properties remains the same with position. At this point, the local state of different variables is not uniquely 

characterized by 𝐾 or 𝐽.  

Initially, the curve 𝐽(Δ𝑎) has been thought as an intrinsic property of the material. Further investigations 

have shown that it may depend on the structure geometry and the loading conditions, in particular through the 

triaxiality (T-stress).  

 

Figure 4.2. Effect of plasticity on the crack-tip stress fields in the context of small-scale yielding 

 

 

Figure 4.3. Three distinct stages of crack growth resistance behavior in small-scale yielding 
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4.1.5 Ductile tearing 

For ductile material, 𝐽 increases with crack growth, this increase is normally associated with void growth 

and void coalescence. As shown in Figure 4.4, at crack blunting stage, 𝐽 is linear with crack length Δ𝑎. Here 

𝛥𝑎 =  𝛥𝑎𝑏𝑙  +  𝛥𝑎𝑡𝑒𝑎𝑟 with 𝛥𝑎𝑏𝑙   crack growth due to blunting and 𝛥𝑎𝑡𝑒𝑎𝑟 crack extension corresponding to 

the actual ductile tearing. As load increases, local failure at crack tip occurs. An instability can be encountered 

during crack initiation, especially in the case of load control. Fracture toughness 𝐽𝑐 is generally defined at the 

beginning of crack extension. This critical point gives some information about the fracture behavior of a ductile 

material. However, sometimes, it is difficult to define this critical point. In that case, 𝐽𝑐 is generally defined as 

𝐽𝑐 = 𝐽0.2 with Δ𝑎 = 0.2 mm. The slope of the 𝐽 resistance curve can be quantified by a dimensionless tearing 

modulus 𝑇𝑒𝑎𝑟 which is defined as (Paris et al., 1979): 

 𝑇𝑒𝑎𝑟 =
𝐸

𝜎0
2

𝜕𝐽

𝜕Δ𝑎
=
𝐸

𝜎0

𝜕 (
𝐽
𝜎0𝑙𝑐

)

𝜕 (
Δ𝑎
𝑙𝑐
)

 (4.10) 

 

where 𝑙𝑐  denotes a characteristic length scale for dimensional analysis even though the value of 𝑇𝑒𝑎𝑟  is 

independent of 𝑙𝑐.  

 

Figure 4.4. Schematic J resistance curve for a ductile material 
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4.2 Numerical methodology for small-scale yielding problem 

Crack initiation and crack propagation under small-scale yielding and Mode I plane-strain conditions using 

the non-local GTN model (see chapter 2) are investigated in Section 4.3. The main objectives of this numerical 

study are: 

 To prove the reliability of the model to predict crack initiation and to achieve large amounts of crack 

extension  

 to establish a simple formula allowing to link the width of the localization band to the non-local length 

scale  

 to introduce a reliable way to compute the crack length  

 to investigate the influence of some parameters of the model on the crack resistance curve 

In this section, the framework of the small scale yielding problem and the details of pre-/post-processing are 

introduced. 

 

4.2.1 Framework of the small-scale yielding problem 

The small-scale yielding model consists of a circular region of radius 𝑅𝑒𝑥𝑡 → ∞ containing a crack and 

subjected to increasing displacement of the elastic mode I singular field applied on the far outer boundary, as 

shown in Equation (4.9). The conditions of small-scale yielding is fulfilled using the boundary-layer model 

developed by (McMeeking, 1977; McMeeking and Rice, 1975; Rice and Tracey, 1973). A schematic boundary-

layer geometry is shown in Figure 4.5. This model is generally used to investigate the role of micromechanical 

parameters in relation to ductile crack initiation and growth. 

 

Figure 4.5. Schematic small-scale yielding problem geometry and conventions 

For dimensional analysis, the path integral 𝐽 can be normalized as 𝐽/(𝜎0ℎ) with ℎ being a length scale to be 

defined. We start by giving a short summary of different length scales which are involved in the current problem:  

 The external radius 𝑅𝑒𝑥𝑡 of the boundary-layer model: this quantity is considered as infinity.  
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 The size of the plastic zone  𝑅𝑝 (see Equation (4.7)). Small-scale yielding condition requires 𝑅𝑝 ≪ 𝑅𝑒𝑥𝑡. 

In practice, it is suggested 𝑅𝑝 ≤ 0.05𝑅𝑒𝑥𝑡. Note that 𝑅𝑝 depends on the load level.  

 The size of the process zone 𝑅𝑝𝑧 = 𝐽/𝜎0. A finite deformation zone exists ahead of the crack tip within 

approximately 2𝑅𝑝𝑧. Note that 𝑅𝑝𝑧 also depends on the load level.  

 The non-local length scale  𝑙𝑛𝑙 = √𝑐/𝜎0 or 𝑙𝑛𝑙 = √𝑐/𝜎𝑌 where 𝜎𝑌 = (𝜎0 + 𝜎𝑈𝑇𝑆)/2 with 𝜎𝑈𝑇𝑆 is the 

ultimate tensile stress which is defined by 𝜎𝑈𝑇𝑆 = �̅�(𝜅
′)𝑒−𝜅

′
 where 𝜅′ fulfills the condition �̅�(𝜅′) =

�̅�′(𝜅′).  

For the normalization of 𝐽, it is necessary to use a length scale which remains constant during the simulation. 

For example, in the (Xia and Shih, 1995) in which a purely local model is used, the mesh size 𝐷 is considered 

for the normalization. In this paper, the non-local length scale 𝑙𝑛𝑙 is used.  

In this chapter, the unbounded power hardening law is used. We recall its form: 

 �̅�(𝜅) = 𝜎0 (1 +
𝜅

𝜅0
)
𝑛

 (4.11) 

 

where (𝜅0, 𝑛) are two hardening parameters.  

A dimensional analysis shows that the crack-resistance curve 𝐽(Δ𝑎) can be expressed as follows:  

 𝐽(∆𝑎) = 𝜎0𝑙𝑛𝑙𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(
∆𝑎

𝑙𝑛𝑙
,
𝐸

𝜎0
, 𝑣, 𝜅0, 𝑛, 𝑓0, 𝑓𝑐 , 𝑓𝐹 , 𝑞1, 𝑞2) (4.12) 

 

where Δ𝑎 is the crack length. In Equation (4.12), the parameters (
𝐸

𝜎0
, 𝜈, 𝜅0, 𝑛) characterize the elastic-plastic 

properties of the matrix material and the parameters (𝑓0, 𝑓𝑐 , 𝑓𝐹 , 𝑞1, 𝑞2) characterize the GTN damage model.  

 

4.2.2 Pre-processing: material properties and finite element discretization 

The boundary model is spatially discretized. Only half of geometry needs to be modeled due to symmetry of 

the geometry and the loading condition (except in the case of crack bifurcation). A typical mesh is depicted in 

Figure 4.6. In this mesh, 22962  elements are used to discretize the circular domain with about  10000 

quadrilateral elements refined in the process zone of width 𝐵 (as shown in Figure 4.6(b)). In particular, a small 

initial notch radius 𝑅𝑛 is added in the process zone to improve the computational convergence and to avoid 

excessive element distortion before crack initiation.  

Unless otherwise specified in the text, the normalized model parameters used in the simulations are listed in 

Table 4.3. In particular, the influence of different numerical parameters (mesh size  𝑙𝑒 , nonlocal penalty 

parameter 𝑟𝑛𝑙, incompressibility penalty parameter 𝑟𝑖𝑛𝑐𝑜, two nucleation parameters, the external radius of the 

boundary layer model 𝑅𝑒𝑥𝑡  and the initial notch radius 𝑅𝑛 ) on the global response (𝐽  resistance curve) is 

investigated so as to choose an appropriate (range of) values for each numerical parameter. To avoid repeating 

results already given in Chapter 3, these studies and the corresponding results are put in Appendix A5. Note 

that the yield stress 𝜎0, the total loading time 𝑇 and the non-local length 𝑙𝑛𝑙 are used for the normalization in 

dimensional analysis, so it is meaningless to modify them. Finite element simulations are performed using 

Code_Aster, a software suite for finite element analyses. 
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Figure 4.6. Small-scale yielding mesh (a) in the outer area; (b) in the process-zone 

 

Table 4.3. The normalized nominal values of the parameters used in the simulations 

Elasticity 
Young modulus 𝐸/𝜎0 400 

Poisson ratio 𝜈 0.3 

Plasticity 
Hardening variable 𝜅0 0.0025 

Hardening exponent 𝑛 0.1 

Damage 

Initial porosity 𝑓0 0.001 

Critical porosity 𝑓𝑐 0.05 

Porosity at failure 𝑓𝐹 0.25 

Material constants (𝑞1, 𝑞2) (1.5,1.0) 

Numerical parameters 

Penalty parameter 𝑟𝑛𝑙/𝜎0 10 

Penalty parameter 𝑟𝑖𝑛𝑐𝑜/𝜎0 10 

Viscoelastic modulus 𝐸𝑣/𝜎0 0.4 

Viscoelastic time 𝜏𝑣/𝑇 0.01 

Initial notch radius 𝑅𝑛/𝑙𝑛𝑙 1.4 

Mesh size 𝑙𝑒/𝑙𝑛𝑙 0.35 

 

4.2.3 Post-processing: definition of crack length 

Two types of definitions of the crack length ∆𝑎 will be discussed. The initial crack tip is considered as the 

origin of the axes, as shown in Figure 4.5. We use, in this chapter, the uppercase letters (X, Y) for the coordinates 

in the initial configuration and the lowercase letters (x, y) for the coordinates in the deformed configuration. It 

is important to notice that both definitions of Δ𝑎 are based on the deformed configuration, which is different 

from other studies such as (Hütter et al., 2013; Linse et al., 2012).  

Literature method 

The crack length ∆𝑎 is often defined as: 

 ∆𝑎 ≡  𝑥𝑡𝑖𝑝 − 𝑥𝑟𝑒𝑓 (4.13) 
 

where 𝑥𝑟𝑒𝑓  is the x-coordinates of a defined reference point in the deformed configuration,  𝑥𝑡𝑖𝑝  is the x-

coordinate of the farthest failure point in the ligament in the deformed configuration: 𝑥𝑡𝑖𝑝 = max (𝑥, 𝑓(𝑥) = 𝑓𝐹) 

with 𝑓 the porosity and 𝑓𝐹 the porosity at fracture (see Figure 4.6(b) for the position of ligament). Intuitively, 

for the reference point, it is possible to take the initial crack tip or some other points closed to the initial crack 

tip in the deformed configuration, for example the point just above the initial crack tip. Generally speaking, the 
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position of the initial crack tip in the deformed configuration should not be used as the displacement of this 

point does not have too much meaning any more when the element containing this point fails or distorts.  

In our work, the position of the farthest point satisfying 𝑓 = 𝑓𝐹 in the ligament is used as an indication of the 

current crack tip. In the literature, instead of using the position of the farthest failure point, some authors used 

for example the position of the farthest point satisfying 𝑓 = 𝑓𝑐 (Seidenfuss et al., 2011; Xia and Shih, 1995) or 

the position of the current maximum stress in the ligament (Hütter et al., 2013). 

 

Proposed new method 

This method is based on the assumption that during deformation, the (upper part of the) notch remains almost 

a circle. This allows defining the center (𝑥𝑛, 𝑦𝑛) and the radius 𝑟𝑛 of the current notch. At the beginning, we 

have (𝑥𝑛, 𝑦𝑛) = (−𝑅𝑛, 0) and 𝑟𝑛 = 𝑅𝑛. We distinguish two stages: crack tip blunting stage if max(𝑓(𝑥)) < 𝑓𝐹 

and crack propagation stage if max(𝑓(𝑥)) ≥ 𝑓𝐹  in the ligament. During crack tip blunting stage, the notch 

radius increases with increasing loading and we note 𝑟𝑏𝑙𝑢𝑛𝑡 the radius at the end of the blunting stage. During 

crack propagation, we assume that the notch radius remains constant: 𝑟𝑛 ≈ 𝑟𝑏𝑙𝑢𝑛𝑡 (translation of the notch).  

These assumptions are illustrated in Figure 4.7. They will be numerically validated in Section 4.3. They 

enable two geometrical definitions of the crack extension, whether the blunting should be incorporated or not:  

 ∆𝑎 ∶=  {
𝑥tip − (𝑥𝑛 + 𝑅𝑛), incorporation of blunting stage

𝑥tip − (𝑥𝑛 + 𝑟𝑛), otherwise
 (4.14) 

 

Note that the crack tip blunting length 𝛿 is shown in Figure 4.7, this length corresponds to the displacement 

of the initial crack tip. During crack tip blunting, the crack tip opening displacement CTOD is around 2𝛿.  

A further discussion on these two methods can be found in the next section.  

 

Figure 4.7. Definition of crack propagation length 𝛥𝑎 
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4.3 Results and discussion 

4.3.1 Relation between the width of the localization band and the nonlocal length 

This part aims at establishing the relationship between the width of the localization band 𝑙𝑏 and the non-local 

characteristic length 𝑙𝑛𝑙. The former is defined as the width of the stable crack propagation zone where 𝑓 ≥ 2𝑓𝑐 

(see Figure 4.8) while we recall that 𝑙𝑛𝑙 is derived from the non-local parameter 𝑐 and the initial yield stress 𝜎0 

as: 𝑙𝑛𝑙 = √𝑐/𝜎0 or 𝑙𝑛𝑙 = √𝑐/𝜎𝑌 = √2𝑐/(𝜎𝑈𝑇𝑆 + 𝜎0) = √2𝑐/(𝜎0(𝑛/𝜅0)
𝑛𝑒−𝑛+𝜅0 + 𝜎0).  

Simulations are performed for 𝑛 = 0.15 and for different value of 𝜅0: 𝜅0 = 0.001, 0.002,… , 0.01.  For each 

simulation, the evolution of 𝑙𝑏/𝑙𝑛𝑙  against the position in the ligament is plotted (see Figure 4.8(a) for an 

example), then the maximal value of 𝑙𝑏/𝑙𝑛𝑙  is considered as the width of the localization band for the 

corresponding 𝜅0. We recall that the yield stress 𝜎0 is used for normalization in the dimensional analysis, so it 

is meaningless to modify it. One can observe that during crack growth, the width of the localization band remains 

almost unchanged (see Figure 4.8 (a)). Figure 4.8(b) plots the evolution of 𝑙𝑏/𝑙𝑛𝑙 as a function of 𝜅0, it is shown 

that the relationship between 𝑙𝑏 and 𝑙𝑛𝑙 is rather linear, regardless of the definitions of 𝑙𝑛𝑙. The value of 𝑙𝑏/𝑙𝑛𝑙 

is slightly more stable when 𝑙𝑛𝑙 = √𝑐/𝜎𝑌  than that when 𝑙𝑛𝑙 = √𝑐/𝜎0, which indicates that using 𝜎𝑌 may be 

slightly better than 𝜎0 for the definition of 𝑙𝑛𝑙. 

 𝑙𝑏 = {
(1.3 ± 0.2)𝑙𝑛𝑙, 𝑙𝑛𝑙 = √𝑐/𝜎0

(1.5 ± 0.1)𝑙𝑛𝑙, 𝑙𝑛𝑙 = √𝑐/𝜎𝑌
 (4.15) 

 

 

Figure 4.8. The evolution of 𝑙𝑏/𝑙𝑛𝑙 in the ligament when 𝜅0 = 0.001; (b) the evolution of 𝑙𝑏/𝑙𝑛𝑙 as a function of 𝜅0 

In addition, the definition of 𝑙𝑏 depends on the value of 𝑓𝑐, so it is interesting to see the influence of 𝑓𝑐 on 𝑙𝑏. 

Simulations are performed with 𝑓𝑐 = 0.01, 0.05, 0.1. The definition of 𝑙𝑏 remains unchanged, i.e., the width of 

the zone where 𝑓 ≥ 2𝑓𝑐. The results are given in Table 4.4. It is seen that the value of 𝑙𝑏/𝑙𝑛𝑙 decreases with 

increasing  𝑓𝑐 . This result is not surprising since the definition of the localization band depends on  𝑓𝑐 . 

Consequently, the relation between 𝑙𝑏 and 𝑙𝑛𝑙 should be recalibrated when the value of 𝑓𝑐 changes. Besides, 

with such definition of 𝑙𝑏, the porosity at fracture 𝑓𝐹 should be at least 2𝑓𝑐.  

Table 4.4. Value of 𝑙𝑏/𝑙𝑛𝑙 for different 𝑓𝑐  (𝑓𝐹 = 0.25) 

𝒇𝒄 0.01 0.05 0.10 

𝒍𝒃/𝒍𝒏𝒍 2.66 1.30 0.73 
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4.3.2 Comparison between Irwin formula and path contour integral  

We have seen that in the case of elasticity, the path-independent contour integral 𝐽𝑅𝑖𝑐𝑒 is equal to energy 

release rate 𝐽. Therefore, 𝐽𝑅𝑖𝑐𝑒 = 𝐽 in elasticity. In this part, we would like to demonstrate that in small scale 

yielding, we also have 𝐽𝑅𝑖𝑐𝑒 ≈ 𝐽.  

Figure 4.9 plots the 𝐽 resistance curves for 𝐽 = 𝐾2(1 − 𝜈2)/𝐸 and 𝐽𝑅𝑖𝑐𝑒. In particular, the contour that we 

choose to compute 𝐽𝑅𝑖𝑐𝑒 is well in the elastic zone of the small-scale yielding model. The results show that the 

two methods give almost the same result, which indicates that in small scale yielding conditions, we 

have 𝐽𝑅𝑖𝑐𝑒 ≈ 𝐾
2(1 − 𝜈2)/𝐸. In the following, the Irwin formula will be used for the computation of 𝐽𝑅𝑖𝑐𝑒 . 

Instead of using 𝐽𝑅𝑖𝑐𝑒, we will note 𝐽 for the sake of simplicity. 

 

Figure 4.9. J resistance curves with Irwin formula and path integral 

 

4.3.3 Validation of post-processing technique for blunting assessment 

The objective of this part is to verify whether the proposed new method is satisfactory for extracting Δ𝑎.  For 

the detail of the literature method and the proposed new method, one can refer to Section 4.2.3. Firstly, the 

assumption stated in Section 4.2.3, i.e., the notch remains almost circular during crack propagation, can be 

simply validated by visualizing the notch shape at different load levels (see for example Figure 4.14). In addition, 

Figure 4.10(a) plots the evolution of the notch radius 𝑟𝑛 with increasing loading. It is shown that there is linear 

growth of 𝑟𝑛  during crack tip blunting while during crack propagation, 𝑟𝑛  increases very slowly. This is in 

accordance with our assumption. 

Secondly, two scenarios will be studied: with and without the consideration of crack tip blunting for the 

computation of Δ𝑎. The former corresponds to Δ𝑎 = Δ𝑎𝑏𝑙 + Δ𝑎𝑡𝑒𝑎𝑟 and the latter corresponds to Δ𝑎 = Δ𝑎𝑡𝑒𝑎𝑟 

with Δ𝑎𝑏𝑙 crack growth due to blunting and Δ𝑎𝑡𝑒𝑎𝑟 crack extension corresponding to the actual ductile tearing. 

For the first scenario, only the proposed new method is used while for the second scenario, both the literature 

method and the proposed new method are used. For the second scenario, it is necessary to choose a reference 

point (i.e. 𝑥𝑟𝑒𝑓 in Equation (4.13)) for the literature method. As said in Section 4.2.3, the initial crack tip cannot 

be considered as a reference point as the element containing this point fails during loading and the displacement 

of this point is not reliable any more. Instead of using the initial crack tip, we use the point located above the 

initial crack tip, as shown in Figure 4.10(b). Figure 4.10(b) plots the evolution of the crack length Δ𝑎 as a 

function of increasing load. It shows that:  
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 For the second scenario (without the consideration of crack tip blunting), both methods give almost the 

same results. It reveals that both the literature method and the proposed new method can be used to 

extract the physical crack extension. 

 If we compare the two scenarios, the curve slopes during crack propagation are the same in the three 

cases.  

The literature method is rather simple but it cannot take into account the blunting. Therefore, in the following, 

the proposed new method is used and the crack tip blunting stage is taken into account for the computation of Δ𝑎 

in agreement with experimental practice (Pardoen and Delannay, 2000). 

 

Figure 4.10. Evolution of (a) the notch radius 𝑟𝑛; (b) the crack length 𝛥𝑎 with increasing loading 

 

4.3.4 Crack-tip blunting, crack initiation and crack propagation 

In this part, several simulations are performed using the parameters introduced in Table 4.3. Figure 4.11(a) 

shows the evolution of the porosity 𝑓 ahead of the notch with increasing loading. From this figure, it is observed 

that the porosity at the crack tip grows slowly when compared to that at other nearby points, which results in 

the fact that the first failure (𝑓 = 𝑓𝐹) does not occur at the crack tip (see the enlargement in Figure 4.11 (a) 

for  𝐽/(𝜎0𝑙𝑛𝑙) ≈ 26).  

Figure 4.11(b) plots the corresponding crack opening stress 𝜎𝑦𝑦 . It shows that during crack 

tip blunting, there is a single stress peak and it is far away from the crack tip. After crack initiation, another 

stress peak appears near the current crack tip and the crack propagates slowly at this stage. As loading increases, 

the initial stress peak finally disappears and the crack propagates quickly. After the disappearance of the initial 

stress peak, the stress profile shifts along the ligament with increasing loading. In particular, the maximum crack 

opening stress remains the same. At this stage, the stress profile ahead of the running crack is much steeper than 

that at crack initiation.  



 

116 

 

 

Figure 4.11. Evolution of (a) the porosity f; (b) the crack opening stress 𝜎𝑦𝑦 in the ligament when 𝐽/(𝜎0𝑙𝑛𝑙) ≈

10,14,20,26,33,40,49,58) 

Figure 4.12(a) plots the distribution of the hardening variable κ in the ligament at different load levels. The 

κ profile moves along the ligament with increasing loading, which is similar to that of 𝜎𝑦𝑦. One can observe 

that there exists a critical position 𝑥𝑐 such that κ at the failure points remain almost constant for 𝑥 > 𝑥𝑐. In the 

current case, this constant value is around 𝜅 = 0.4. To further investigate this failure zone, we can, for example, 

plot the history curves at different points in the ligament. For instance, the f - κ curves at some points in the 

ligament are given in Figure 4.12 (b), their location is given in the initial configuration. One can see that the 

𝑓 − κ curves at the Gauss points located ahead of 𝑋 ≈ 18𝑙𝑛𝑙 almost overlap, i.e., all material points located at 

𝑋 ≥ 18𝑙𝑛𝑙 have the same history which may correspond to a steady-state evolution. 

 

Figure 4.12. (a) Distribution of the hardening variable κ when 𝐽/(𝜎0𝑙𝑛𝑙) = 10,14,20,26,33,40,49,58 in the ligament; (b) 𝑓 − 𝜅 

history curves at different positions in the ligament 

Figure 4.14 illustrates crack tip blunting, crack initiation and crack propagation with increasing loading in 

the initial and deformed configurations. During crack tip blunting, the notch remains almost circular. As load 

increases, the crack appears near the initial crack tip and then propagates. Note that the notch still retains a circle 

shape during crack propagation; it is actually the prerequisite to the definition of the crack length ∆𝑎 with the 

proposed new method. In addition, one can observe that damage forms in front of the current crack tip and 

moves along the ligament. A linear crack opening profile is obtained, as predicted by (Rice et al., 1980), 

observed by (Hütter et al., 2013) in the simulations and measured by (Heerens and Schödel, 2003) in the 

experiments. This implies that a crack tip opening angle CTOA can be defined. In the present case, CTOA is 

around 16° at the end of loading, as shown in Figure 4.13. 
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Figure 4.13. CTOA at different load levels 

At the final stage of loading, more than 800 finite elements along the ligament have fully failed (violet part 

in Figure 4.14). Most results in this part correspond to a loading stage at which 180 finite elements along the 

ligament are broken. Note that no element-deletion method is applied in our case. Some authors also succeeded 

in simulating large crack growth by means of local GTN model (Xia and Shih, 1995), or non-local GTN model 

(Hütter et al., 2013). In both cases, the issue of volumetric locking was not dealt with. In the work of (Xia and 

Shih, 1995), the mesh size is considered as a material parameter so that the mesh-dependency problem still 

exists. In the work of (Hütter et al., 2013), the large crack growth was performed with 𝑓0 = 0.1 or 𝑓0 = 0.01, 

values which are not adapted to most materials - modern steels and aluminum alloys are processed so that 𝑓0 is 

below 10−3.  

 

Figure 4.14. Distribution of the porosity f under (a) undeformed and (b) deformed shapes when 𝐽/(𝜎0𝑙𝑛𝑙) = 14,26,40,58 
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Figure 4.15 compares the energies dissipated during crack propagation in the localization band (𝒲𝑙𝑏
𝑝

, the 

localization band is defined as the zone where 𝑓 ≥ 2𝑓𝑐) and in the entire volume (𝒲𝑝). These two quantities 

are defined and computed as: 

 

{
 
 

 
 𝒲𝑝 = ∫ ∫ (𝑻: �̇�𝒑)𝑑𝛺0𝑑𝑡

𝛺0

𝑡

0

𝒲𝑙𝑏
𝑝
= ∫ ∫ (𝑻: �̇�𝒑)𝑑𝛺𝑙𝑏𝑑𝑡

𝛺𝑙𝑏

𝑡

0

 (4.16) 

 

where 𝑡 stands for the current load level and Ω𝑙𝑏 stands for the region in which 𝑓 ≥ 2𝑓𝑐 . Note that Ω𝑙𝑏 can 

change at each time step and 𝒲𝑙𝑏
𝑝
= 0 if 𝑓 < 2𝑓𝑐 for all material points.  

Figure 4.15 (a) plots the evolution of 𝒲𝑝 and 𝒲𝑙𝑏
𝑝

. 𝒲𝑙𝑏
𝑝

 varies linearly with crack advance which indicates 

that the energy dissipated in the localization band per unit crack advance is constant. The evolution of 𝒲𝑝 is 

first rather quadratic and then becomes almost linear. To compare these two energies, Figure 4.15 (b) plots the 

evolution of 𝒲lb
𝑝
/𝒲p and 𝜕𝒲𝑙𝑏

𝑝
/𝜕𝒲𝑝. One can observe that 𝒲𝑙𝑏

𝑝
 is very small when compared to 𝒲𝑝 and 

𝒲lb
𝑝
/𝒲p increases at the beginning and tends to a constant (around 0.001) as crack extends. On the contrary, 

the value of 𝜕𝒲𝑙𝑏
𝑝
/𝜕𝒲𝑝  decreases at first and reaches to the same constant at  Δ𝑎𝑡𝑒𝑎𝑟/𝑙𝑛𝑙 ≈ 10 . This 

observation shows that the energy consumed for crack propagation tends to be proportional to the total dissipated 

energy for long cracks. In some ways, it indicates that the steady state may be reached which is consistent with 

the observed evolutions of opening stress, damage and plastic strain along the crack path (Figure 4.11and Figure 

4.12).  

 

Figure 4.15. Comparison between the energies dissipated during crack propagation in the localization band (𝑊𝑙𝑏
𝑝

) and in the 

entire volume (𝑊𝑝) 

 

4.3.5 Effect of different material parameters  

Influence of hardening exponent 𝒏 on global response 

In this part, the hardening parameter 𝜅0 remains constant. Figure 4.16(a) shows the 𝐽 resistance curves for 

different values of 𝑛. It is seen that 𝑛 can affect crack tip blunting, crack initiation toughness 𝐽𝑐 and tearing 

behavior. Larger values of 𝑛 lead to steeper blunting lines. In particular, if 𝜎𝑌 = (𝜎0 + 𝜎𝑈𝑇𝑆)/2, with 𝜎𝑈𝑇𝑆 =

𝜎0(𝑛/𝜅0)
𝑛𝑒−𝑛+𝜅0   for the selected hardening law, is used for the normalization of 𝐽, the blunting lines for 

different 𝑛 would overlap. This result is in accordance with the ASTM E1820 standard which uses 𝜎𝑌 to define 
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the blunting line.  In addition, crack appears earlier with a smaller value of 𝑛. On the contrary, the tearing 

modulus (𝑇𝑒𝑎𝑟 = Δ𝐽/(𝜎0Δ𝑎) ) decreases for increasing values of 𝑛. One can notice that the simulations are 

performed for 𝑛 ≥ 0.12 as crack bifurcation is observed for 𝑛 < 0.12  as shown in Figure 4.16(b). This could 

correspond to the competition between crack normal opening and shear cracking.  Further investigations on 

crack bifurcation will be conducted in the future work.  

 

Figure 4.16. (a) J resistance curve for different n>0.1; (b) crack bifurcation for n=0.1 in the undeformed configuration 

 

Influence of 𝒇𝟎 and 𝒇𝒄 on global response 

Figure 4.17 (a) plots the 𝐽 resistance curves for different initial porosity 𝑓0. It shows that 𝑓0 affects both crack 

initiation and tearing behavior. To propagate the same crack length ∆𝑎, the smaller 𝑓0 is, the more energy should 

be provided. Indeed, the normal stress required to achieve material separation is high when 𝑓0 is low, so that a 

fully developed plastic zone is formed in front of the crack tip leading to large plastic dissipation as the crack 

advances (Xia and Shih, 1995) . On the contrary, if the value of 𝑓0 is high enough, the 𝐽 resistance curve during 

crack propagation becomes flat and crack extension may become unstable. Like in the case with 𝑛 < 0.12 and 

𝑓0 = 0.001  (see above), crack bifurcation is also observed for the case with 𝑓0~10
−4 and 𝑛 = 0.15. In the 

work of (Hütter et al., 2013), this bifurcation was not observed as large values for  𝑓0 (𝑓0 ≥ 0.01) were used.  

The 𝐽 resistance curves with different 𝑓𝑐 are depicted in Figure 4.17 (b). From the obtained results, one can 

observe that the value of 𝑓𝑐 has influence on both crack initiation and tearing behavior: On the one hand, the 

critical toughness 𝐽𝑐 increases with 𝑓𝑐 as the void coalescence (so the failure) is postponed with the increase 

of 𝑓𝑐. On the other hand, the slope of 𝐽 resistance curve, i.e., tearing modulus 𝑇𝑒𝑎𝑟 = Δ𝐽/ (𝜎0Δ𝑎) increases with 

𝑓𝑐 during crack propagation. 
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Figure 4.17. J resistance curves for (a) different 𝑓0; (b) different 𝑓𝑐 
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4.4 Summary 

In this chapter, the nonlocal GTN model is used to simulate crack extension over relatively long distances 

(> 200 elements) in the case of small scale yielding using the boundary layer model where the material is 

loaded applying a remote stress intensity factor. The use of the boundary layer model allows defining non 

dimensional quantities. 

This technique is first used to study the numerical stability (see Appendix A5). The effect of the penalty 

parameters 𝑟𝑛𝑙 and 𝑟𝑖𝑛𝑐𝑜 on the 𝐽 − Δ𝑎 curves and on the local values of plastic strain, damage and stresses is 

investigated. This allows defining ranges for both parameters so that they solve the purely numerical issues 

without affecting the computed physical quantities of interest. It is also shown that the mesh size in the crack 

propagation area must be at least three times smaller than the model intrinsic length defined as 𝑙𝑛𝑙 = √𝑐/𝜎0 to 

obtain mesh independency. 

Using these optimal numerical parameters, a systematic study of the properties of the proposed model is 

carried out. The highly damaged zone surrounding the crack defined as the area where 𝑓 > 2𝑓𝑐 a thickness 

which is about has 1.3𝑙𝑛𝑙.  After an initial stage corresponding to blunting and initiation of crack growth, a 

stabilized crack propagation stage is reached with damage and stress gradients (Figure 4.11) much sharper than 

during initiation. The non-local framework can nevertheless describe these gradients. This steady state also 

corresponds to a constant cumulated plastic strain at failure (Figure 4.12). Plastic dissipation in the highly 

damage zone (𝒲𝑙𝑏
𝑝
 ) is evaluated as a function of crack advance and compared to the total dissipated energy 

(𝒲𝑝). Both quantities increase as a function of crack advance and it is shown that 𝒲𝑙𝑏
𝑝

 is much smaller than 𝒲𝑝. 

Their ratio tends to be constant for large crack advance which corresponds to steady state crack propagation. 

The effect of model parameters such as 𝑓𝑐 or 𝑓0 is also studied. Standard evolutions (Hütter et al., 2013) are 

obtained. Increasing 𝑓0 or decreasing 𝑓𝑐 leads to lower values of 𝐽/(𝜎0𝑙𝑛𝑙 )  for a given crack advance as well 

as to lower values of the tearing modulus Δ𝐽/(𝜎0 Δ𝑎). Finally crack bifurcation is observed when the hardening 

exponent, 𝑛, decreases. The same phenomenon is observed when the initial porosity 𝑓0 is decreased.  The 

question of whether the effect is a purely numerical artefact or reflects some reality remains open. The simulated 

bifurcation could possibly represent the observed zigzagging cracks observed after blunting (see e.g. (Beachem 

and Yoder, 1973; Handerhan and Garrison Jr, 1992)). 
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5 Industrial applications  

 

 我们可以体验的最美丽的东西是神秘的, 它是所有真正的

艺术和科学的源泉 

 

La plus belle chose que nous puissions éprouver, c'est le côté 

mystérieux de la vie. C'est le sentiment profond qui se trouve au 

berceau de l'art et de la science véritable. 

 

The most beautiful thing we can experience is the mysterious. It 

is the source of all true art and science. 

 阿尔伯特·爱因斯坦 Albert Einstein 
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Résumé 

 

Ce chapitre est dédié aux applications industrielles du modèle GTN nonlocal dans le cadre du projet 

ATLAS+.  

Le but de ce chapitre est de voir si notre modèle est d’une part, capable de prédire le comportement du 

matériau et d’autre part, assez robuste pour pouvoir simuler une grande propagation de fissure dans une structure 

industrielle. 

La première partie de ce chapitre se concentre sur différents essais qui ont été réalisés dans différents 

laboratoires dont EDF et ARMINES, ainsi que les résultats expérimentaux obtenus (courbes de « force-

déplacement », « force-réduction de diamètre », « force – COD », fractographies, etc). Pour la propagation de 

fissure dans le tube, un mode mixte (propagation dans le plan et bifurcation hors-plan) a été observé en début 

de la propagation. Puis la bifurcation complète de la fissure a eu lieu.  

Une partie de ces résultats expérimentaux (à savoir, AE2) sont utilisés pour identifier les paramètres du 

modèle de GTN nonlocal. Ces paramètres sont ensuite utilisés pour prédire les AE4, AE10, AE20, SENT et le 

tube FP1. Selon les résultats obtenus, avec les paramètres identifiés, les comportements globaux de AE4, AE10 

et CT20 sont bien prédits alors qu’une surestimation de force est observée pour les SENT. Quant à la prédiction 

du tube, le comportement global est bien prédit jusqu’à une ouverture de 8 mm. Par ailleurs, on a bien prédit 

une propagation hors plan.  

Ainsi, notre modèle est assez robuste pour pourvoir être appliqué aux cas industriels. 
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5.1 Introduction to European project ATLAS+ 

The European project ATLAS+ (Advanced Structural Integrity Assessment Tools for Safe Long Term 

Operation) has been launched in June 2017. The main mission of this project is to develop advanced structural 

assessment tools to address technological improvements for the safe and long term operation of nuclear reactor 

pressure vessels (Lindqvist et al., 2018). To this end, it is required to study the transferability of the properties 

of ductile materials from small-scale specimens to large-scale structures. 

 

Figure 5.1. Ferritic pipe provided by Framatome GmbH 

 

The fracture experiments were thus decided to be conducted on the ferritic steel 15NiCuMoNb5 (WB36) 

that is used in the secondary feed-water line in German PWR reactors. The material was supplied as a 30 mm 

thick pipe (internal diameter 318 mm and external diameter 378 mm) provided by Framatome GmbH (see Figure 

5.1). In order to characterize the WB36 material, several specimens, which are extracted from the ferritic pipe, 

were tested. The location of each specimen is shown in Figure 5.2. A summary of some ductile fracture tests on 

small specimens (smooth tensile specimens ST, notched tensile specimens NT, compact tension specimens CT, 

single edge notch tension specimen SENT) is given in Table 5.1. 

After material characterization, the 4-point bending tests on three large-scale pre-cracked pipes will be done 

at room temperature. Like the small specimens, these pipes are also made from the pipe provided by Framatome 

GmbH. They have the same geometry and are subjected to the same loading. The difference is that they have 

different initial defects. The bending tests were planned to be done so as to investigate the effect of the crack 

tip constraint at a structural scale. The results will be used to develop and validate advanced tools for structural 

integrity assessment. 

Table 5.1. Ductile fracture tests for material characterization 

Test (20∘) Specimen Orientation (see Figure 5.2) Company 

Tensile tests ST6 L BZN, EDF, KIWA 

Notched tensile tests NT2, NT4, NT10 L ARMINES, CEA, EDF 

𝐽 − Δ𝑎 CT20 LT ARMINES, EDF, KIWA 

𝐽 − Δ𝑎 SENT20 LS ARMINES, EDF 
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Figure 5.2. Location of each specimen (ST, NT, CT, SENT) in the pipe 
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5.2 Experimental results 

5.2.1 Chemical composition 

The analysis of the chemical composition of the WB36 material was performed in the laboratory of the 

French company EDF. Results are shown in Table 5.2.  

Table 5.2. Chemical composition of the ferritic steel 15NiCuMoNb5 

Elements C Si Mn P S Cr Mo Ni 

Content (%) 0.14 0.31 0.94 0.009 0.02 0.4 0.35 1.14 

Elements Al Sn Cu As N V Nb O 

Content (%) 0.15 0.13 0.62 - 0.013 - 0.03 0.003 

 

 

5.2.2 Smooth tensile specimens 

The simple tensile tests were conducted at room temperature (around 20∘C). The geometry of the tensile bar 

is shown in Figure 5.3(a).  

 

Figure 5.3. Geometries of the ST6, NT2, NT4 and NT10 (unit: mm) 

Figure 5.4(a) shows the true stress-strain curves of the material. In total, 17 smooth tensile specimens were 

tested. Figure 5.4(b) plots the corresponding upper, average and lower values. These results show the 

inhomogeneity of the tensile properties of the material (the Relative Average Deviation9 is around 3%).  

                                                      
9  Relative average deviation (RAD) of a data set is a percentage that tells how much, on average, each measurement differs from 

the arithmetic mean of the data. 
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Figure 5.4. Tensile curves of the material WB36 

5.2.3 Notch tensile specimens 

Three types of notched tensile specimens (NT2, NT4 and NT10) were tested at room temperature 

(around 20∘C). For each specimen, three tests were performed by different laboratories (ARMINES, CEA and 

EDF). The geometries of the three NT are respectively shown in Figure 5.3(b) (c) and (d). Note that the index 

𝑥 of NTx is computed as 𝑥 = 10𝑅/Φ0 with 𝑅 the initial notch radius and Φ0 the initial minimum diameter.  

Figure 5.5 (a) plots the obtained normalized force-displacement curves by ARMINES (𝑆0 refers to the initial 

cross section). The longitudinal displacement is measured using an extensometer (gage length 27 mm) located 

on both sides of the notch. Figure 5.5 (b) plots the obtained normalized force-diameter reduction curves by 

ARMINES, CEA and EDF. It shows a good agreement among the results obtained by different laboratories.  

Moreover, the effect of geometry is clearly illustrated by the maximum force and the diameter reduction at 

failure. Note that the sudden load drop in these two figures corresponds to crack initiation at the center of the 

specimens. This point will be called “fracture point” in the following.  

 

Figure 5.5. (a) Force-Displacement curves and (b) force-diameter reduction curves for different NT 

Scanning electron microscope (SEM) fractographs at the center (crack-initiation area) of the fracture surface 

of NT2, NT4 and NT10 samples at magnification 100X and 500X are shown in Figure 5.6. Fracture Mode is 

ductile since lots of large (MnS) and fine (Fe3C) dimples are visible. The proportions of large and fine dimples 

on fracture surface depends on stress state (triaxiality). The triaxiality level in NTx decreases with increasing 

notch radius, i.e., T𝑟(𝑁𝑇2) > T𝑟(𝑁𝑇4) > T𝑟(𝑁𝑇10) with 𝑇𝑟 the triaxiality. It is observed that the size of large 
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dimples does not appear to be significantly modified by triaxiality in the present case. Inclusions tend to be 

aligned. In addition, cup-cone fracture is observed in certain NT specimen: very fine dimples and limited void 

growth are observed in the slanted region (an example of cup-cone on NT2 is shown in Figure 5.7). 

 

Figure 5.6. Fracture surface of NT2, NT4 and NT10 at magnification (a) 100X; (b) 500X 

 

 

Figure 5.7. Cup-cone fracture observed in NT2 

 

5.2.4 Compact tension specimens 

The first ductile tearing tests were conducted on compact tension specimens (CT) with different sizes (CT10, 

CT20), different 𝑎0/𝑊 ratios and different orientations (LT or LS, see Figure 5.2 for the orientation) at room 
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temperature (around 20∘C). All specimens are side-grooved. For each specimen, the tests were done by different 

laboratories (EDF, ARMINES).  

Here we only present the results on CT20 (LT) with 𝐵 = 20 mm, 𝐵𝑁 = 16 mm and 𝑎0/𝑊 = 0.6. Here, 𝐵 

is the specimen thickness, 𝐵𝑁 is the net specimen thickness (𝐵𝑁 = 𝐵 if no side grooves), 𝑎0 is the initial crack 

length (precracked by fatigue) and 𝑊 − 𝑎0 is the size of uncracked ligament. The geometry of CT20 is shown 

in Figure 5.8. 

 

Figure 5.8.geometry of CT20 (unit: mm) 

 

Figure 5.9 plots the force-CMOD curves for the nine tests performed on CT20. A difference is observed 

among the results which is mainly due to slightly different initial crack length (𝑎0 ) and possibly to the 

inhomogeneity of the material. 

Figure 5.10 shows the fracture surface of all CT specimens except CT20-4 at the end of loading. The results 

show that ductile tearing occurs on all specimens. In addition, in most cases, the fracture surface is rather flat.  

Scanning electron microscope (SEM) fractographs at the center and near the side-groove of the CT20-1 

sample at magnification 100X are shown in Figure 5.11. Fracture Mode is ductile. Large dimples are dominant 

while fine dimples can still be found. There are lots of inclusions on the fracture surface and these inclusions 

are aligned along the crack propagation direction. In particular, we estimate that the void distance is 

about 300 𝜇𝑚 (as shown in this figure), which will be considered as the characteristic length in our work.  No 

obvious difference is observed between the center and the side-groove nearby area.  
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Figure 5.9. Force-COD for CT20 

 

 

Figure 5.10. Fracture surface on ARMINES and EDF CT20 specimens 
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Figure 5.11. Fracture surface at the center and on the two sides of CT20-1 specimen 

 

5.2.5 Single edge notch tension specimens 

The second ductile tearing tests were conducted on single edge notch tension specimens (SENT) with the 

same 𝑎0/𝑊 ≈ 0.5  (𝑎0 ≈ 7.5 mm  and  𝑊 = 15 mm ) and the same orientation (LS) at room temperature 

(around 20∘C). All specimens are side-grooved. The tests were conducted in the laboratory of ARMINES and 

EDF. The geometry of SENT is shown in Figure 5.12. 

 

Figure 5.12. Geometry of SENT (from left to right: front view, right view, top view) 

Figure 5.13 plots the force-CMOD curves for all SENT specimens. A good agreement among different 

results is observed. 
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Figure 5.13. Force-CMOD for SENT 

Scanning electron microscope (SEM) fractographs of fracture surfaces at the center and near the side-groove 

of SENT-5 sample at magnification 100X are shown in Figure 5.14. Fracture mode is ductile since as lots of 

(large and small) dimples are visible. There are lots of inclusions on the fracture surface and these inclusions 

are perpendicular to the crack propagation direction which is linked to the orientation of the specimens. We 

estimate that the void distance is about 300 𝜇𝑚 (as shown in this figure). No obvious difference is observed 

between the center area and the side-groove area.  

 

Figure 5.14. Crack surface at the center and near side-groove area of SENT-5 at magnification 100X 

Figure 5.15 shows ductile crack growth along the thickness for 4 SENT specimens. It is observed that the 

maximum ductile crack extension occurs near the side-groove area.  
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Figure 5.15. Ductile crack growth along the thickness on SENT specimens 

 

5.2.6 Large-scale FP1 pipe 

Three pipes (FP1, FP2 and FP3) with the same geometry and loading but with different initial defects were 

manufactured. The geometry of the pipe FP1 is shown in Figure 5.16. The central section of the pipe FP1 are 

made of the WB36 material, while the two extensions are made of the E355 steel. The initial through-wall crack 

created by fatigue is located on the 𝑥𝑦 cross-section plane (or 𝑧 = 0 plane in cylindrical coordinate system), as 

shown in the Figure 5.16. Figure 5.17 shows the FP1 pipe before the bending test. The initial through-wall crack 

is clearly visible in this figure.  

 

Figure 5.16. Geometry of the pipe FP1 (unit: cm) 
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Figure 5.17. View of the FP1 pipe 

The test on the FP1 setup has been successfully finished in May, 2019 at EDF. Figure 5.18(a) shows the pipe 

during the test and Figure 5.18(b) shows the corresponding experimental results (force – COD). As shown in 

this figure, a large ductile crack growth (around 2 cm COD) is realized. Globally, crack bifurcation of about 

45∘ is observed, as shown in Figure 5.19(a). In Figure 5.19(a), we also observe that crack bifurcation occurs 

along two directions at crack initiation and then only one of them continues to propagate. After the test, post-

fatigue was made to propagate the crack so as to facilitate the cutting of the fracture surface. The cut surface is 

shown in Figure 5.19(b). The different “beach marks” (yellow arrows) can be clearly seen in this figure. The 

different beach marks correspond to the complete unloading performed during the test. Figure 5.20 shows the 

beginning of crack propagation. One can observe that there is a flat zone in the center (a triangle shape with a 

maximal crack propagation of 12 mm (Figure 5.20(a)) or 8 mm (Figure 5.20(b))) oriented in the initial (pre-) 

crack plan and shear lips on both sides. In particular, the first beach mark (COD ≈ 6 mm) is located in this zone. 

The intersection between the red line and the blue dashed line indicates that the maximum crack propagation is 

around 4 mm (for Figure 5.20(b)) – 6 mm (for Figure 5.20(a)) in the initial (pre-) crack plane for COD = 6 mm. 

This is a typical value that can be used to validate the simulated results.  

After crack initiation and some crack propagation, the crack goes out of the initial plane, as shown in Figure 

5.19. The internal crack length is around 62 mm and the external crack length is around 70 mm. 

 

Figure 5.18. (a) View of the pipe FP1 during the test (b) Force-CMOD curves 
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Figure 5.19. (a) Crack bifurcation; (b) FP1 cut 

 

 

Figure 5.20. Crack initiation and beginning of crack propagation 

  



Industrial applications 

137 

 

5.3 Calibration of model parameters  

5.3.1 Simulation techniques 

In this part, we summarize the simulation techniques that have been already mentioned in the previous 

chapters and that will be used in the following.  

The non-local GTN model was implemented in Code_Aster (software for finite element analyses), developed 

at EDF (Electricité De France). An implicit time-discretization with respect to (𝑬𝒑, 𝜅) and a staggered update 

with respect to the porosity 𝑓 are used to integrate the constitutive equations. A material point is considered as 

broken when 𝑓 reaches 𝑓𝐹. In that case, the material behavior is only governed by the viscous-elastic part of the 

overlay model which consists of an assembly of an elastic spring of stiffness 𝐸𝑣  and a viscous dashpot of 

viscosity 𝜂, as introduced in Chapter 3. This viscous model is proposed to deal with the distorted broken 

elements.  

The notched tensile specimens are meshed using axisymmetric elements while other specimens (the compact 

tension specimen CT20, the single edge notch tension specimen SENT and the large-scale structure – FP1 pipe) 

are meshed using 3D elements. In all cases, mixed finite elements with 2 × 2 (quadrilateral elements) or 2 ×

2 × 2 (hexahedron elements) integration points by element are used. The mesh size is close to 0.1 mm in areas 

where cracks propagate.  

Meshes of NT, CT20, SENT are shown in Figure 5.21. Usual symmetry conditions are accounted for in order 

to reduce the size of the simulations.  The 5-field finite element is used for the simulation.  

 

Figure 5.21. Meshes for NT, CT20 and SENT 

 

Mesh of pipe is shown in Figure 5.22. Only one quart of the pipe is modeled since crack bifurcation along 

two directions are observed at crack initiation stage. Usual boundary and loading conditions for 4-point bending 

tests are accounted for. The central part is modeled by the GTN model while the extension part is assumed to 

be elastic. The support is modeled by a segment and thus the prescribed displacement loading condition is 
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applied to this segment. But one should notice that the boundary conditions prescribed on a segment is 

mathematically not correct since it may induce an ill-posed variational problem, one can refer to (Lorentz, 2005) 

for the detailed explanation. Numerically, this kind of modeling can induce indentation effects which strongly 

affect computational convergence. In our case, the support is located in the extension parts which are assumed 

to be elastic, the convergence is thus expected to be unaffected by the modeling of the supports. In practice, 

loading is achieved though contact between the supports and the pipe. This is neglected in the current simulation. 

 

Figure 5.22. Mesh of the FP1 pipe 

The goal of our work is to check whether the current model (1) is sufficiently robust so as to be able to 

simulate crack propagation in small-specimens and in a large industrial structure (over a distance of about 1 cm) 

(2) is able to predict the mixed mode propagation at crack initiation and the beginning of crack propagation 

stage. In fact, there is a flat zone in the center (a triangle shape with 12 mm maximal crack propagation) oriented 

in the initial (pre-) crack plan and shear lips on both sides. 

The numbers of degrees of freedoms (DOFs) for each 3D computation are: CT (~400,000 DOFs), SENT 

(~1,190,000 DOFs), Pipe (~1,810,000 DOFs). 

 

5.3.2 Identification procedure 

This section aims at fitting the parameters of the nonlocal GTN model based on some of the experimental 

results presented in the Section 5.2. In particular, void nucleation is not taken into account in this work. Young 

modulus is measured by experiment: 𝐸 ≈ 205000 MPa. Poisson ratio is set to 0.3 (globally acceptable value 

for steel). Consequently, the parameters to be calibrated are: 

 Parameters describing plasticity: the hardening function is assumed to be: 

 �̅�(𝜅) = 𝑟0 + 𝑟1(1 − exp(−𝑔1𝜅)) + 𝑟2(1 − exp(−𝑔2𝜅)) (5.1) 
 

where (𝑟0, 𝑟1, 𝑔1, 𝑟2, 𝑔2) are five hardening parameters. Note that the nonlinear terms are used to obtain 

a good fit over the whole plastic strain range. If 𝑔1 ≫ 𝑔2, then the term 𝑟1(1 − exp(−𝑔1𝜅)) quickly 

reaches a plateau and it would be used to fit the early stages of work hardening, while the second term 

𝑟2(1 − exp(−𝑔2𝜅)) is used to fit hardening for high value of plastic strain.  

 Parameters describing damage: Initial porosity 𝑓0; void growth parameters (𝑞1, 𝑞2); critical porosity 

𝑓𝑐 ; porosity at fracture 𝑓𝐹 
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 Parameters describing non-locality: Nonlocal length scale 𝑙𝑛𝑙. We recall that the definition of 𝑙𝑛𝑙 

leads to the nonlocal parameter 𝑐 (𝑐 = 𝜎0𝑙𝑛𝑙
2 ). The yield stress 𝜎0 is about 500 MPa, according to the 

tensile curves of the WB36 material (see Figure 5.4).  

The following fitting procedure is used in this work: 

 Plasticity parameters are fitted using tensile tests on NT2 specimens. An inverse method is applied to 

match the simulated force-diameter reduction curves with the experiments. Note that this method can 

be used only when the porosity 𝑓 is small, in that case, the coupling between plasticity and damage is 

not significant. 

 Initial porosity 𝑓0 can be evaluated using the Franklin formula. In this formula, the chemical contents 

of the elements Manganese (Mn) and Sulphur (S) are involved:  

 𝑓0 = 0.54 (𝐶𝑆 −
0.001

𝐶𝑀𝑛
) (5.2) 

 

One can refer to Table 5.2 for the value of 𝐶𝑆 and 𝐶𝑀𝑛.  

 Nonlocal length scale 𝑙𝑛𝑙 is set to 300 𝜇𝑚, which is approximatively equal to the void distance shown 

in Figure 5.11 and Figure 5.14. This 𝑙𝑛𝑙 leads to a nonlocal parameter 𝑐 ≈ 50 𝑁. In particular, it was 

checked that for 𝑙𝑛𝑙 ≈ 0.3 mm, the mesh size 𝑙𝑒 (0.1 mm) is sufficiently small such that the simulation 

results are mesh-independent. This is in agreement with the results obtained in Chapter 4 and Appendix 

A5: it is necessary to have 𝑙𝑒 ≤ 𝑙𝑛𝑙/3 to have a spatially converged solution. 

 Void growth parameter 𝑞1  is set to 1.5, the critical porosity 𝑓𝑐  is set to  0.05  and the porosity at 

fracture 𝑓𝐹 is set to 0.25. This is in consistent with the results of unit cell computations obtained in 

(Koplik and Needleman, 1988; Shinohara et al., 2016). 

 Void growth parameter 𝑞2 determines the fracture point in the force-diameter reduction curve of NT2 

tests. 

 Numerical parameters 𝑟𝑛𝑙, 𝑟𝑖𝑛𝑐𝑜, 𝐸𝑣 , 𝑡𝑣 are given according to the recommendations in Chapter 3.  

 

The obtained parameters are gathered in Table 5.3.  

 

Table 5.3. Calibrated model parameters 

Elasticity 
Young modulus 𝐸 205000 MPa 

Poisson ratio 𝜈 0.3 

Plasticity Hardening law 𝜎(𝜅) 300 + 207(1 − exp(−2465𝜅)) + 311(1 − exp(−9.1𝜅)) 

Damage 

Initial porosity 𝑓0 0.001 

Critical porosity 𝑓𝑐 0.05 

Porosity at failure 𝑓𝐹 0.25 

Material constants (𝑞1, 𝑞2) (1.5,1.14) 

Nonlocality Nonlocal length 𝑙𝑛𝑙 0.3 mm 

Numerical parameters 

Penalty parameter 𝑟𝑛𝑙 5000 MPa 

Penalty parameter 𝑟𝑖𝑛𝑐𝑜 5000 MPa 

Viscoelastic modulus 𝐸𝑣/𝐸 0.001 

Viscoelastic time 𝜏𝑣/𝑇 0.01 
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In conclusion, only the NT2 specimens are used to calibrate model parameters. The fitting results are given 

in the Figure 5.23. A very good fit on the plasticity and the fracture point is obtained for NT2. 

 

Figure 5.23. Comparison of experimental and fitted result for NT2 specimen  

 

Figure 5.24 shows the distribution of the hardening variable and the porosity for different loading steps for 

the NT2 specimen. It is observed that the maximum value of the hardening variable is located at the notched 

root, while the crack initiates from the center. This is in agreement with experimental observations. Besides, a 

clear “nonlocal zone” can be seen in the porosity field. Strain/damage localization is well controlled. Similar 

tendency can be observed for NT4 and NT10 except that the plasticity level increases with the notch radius.   

 

Figure 5.24. Distribution of the hardening variable κ and the porosity f for NT2 (undeformed configuration) 

 

To further investigate this nonlocal zone, Figure 5.25 plots the profiles of 𝜅 and 𝑓 in the ligament at different 

load levels for NT2. The x-axis stands for the distance to the center point in the initial configuration. According 

to Figure 5.25(a), the hardening variable increases with 𝑥 when no point is broken. After crack initiation, the 

hardening parameter firstly decreases and then increases with 𝑥 in front of the crack tip. According to Figure 

5.25(b), unlike crack propagation in small-scale yielding where the profile of the porosity shifts along the 

ligament, here the profile of porosity slightly changes during crack propagation. The main difference between 

crack propagation in NT and small-scale yielding is that the ligament length in NT becomes comparable with 

the crack length, thus, the boundary (geometry constraint) has a significant effect on crack propagation in NT 

which never reaches a steady-state.  
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Figure 5.25. Profiles of (a) the hardening parameter and (b) the porosity in the ligament for NT2 
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5.4 Model validation on small specimens 

As said in the previous part, the experimental results on NT2 were used to fit the plasticity parameters and 

the damage parameter 𝑞2. These parameters were then used to predict plasticity and the fracture points for NT4 

and NT10, as well as the global behavior of CT20 and SENT. 

 

5.4.1 Prediction for notch tensile specimens 

Figure 5.26 compares the experimental and simulated force-displacement and force-diameter reduction 

curves for NT4 and NT10 specimens. As can be seen in this figure, a very good fit on the plasticity is obtained. 

As for the fracture points, the parameters predict a slightly later crack initiation than that in experiments.   

 

Figure 5.26. Comparison of experimental and simulated force-displacement and force-diameter reduction curves for NT4 and 

NT10 

 

5.4.2 Prediction for compact tension specimens 

The length of the initial crack 𝑎0 obtained by fatigue was set to 24.3 mm (corresponding to CT20-5 in Figure 

5.10) in the simulation of CT20. The comparison between the experimental and the simulated force-CMOD 

(crack mouth opening displacement) is shown in Figure 5.27. The simulated result agrees very well with the 

experiment result.  
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Figure 5.27. Comparison of the experimental and simulated force-CMOD curves for compact tension specimens test (F: Force, 

Δa: crack length) 

 

In experiments, the crack was determined using the unloading compliance technique. In simulations, the 

crack is defined as the zone where 𝑓 = 𝑓𝐹 (fully broken material). Figure 5.28(a) plots the crack surface at 

different load levels. It can be seen that crack growth is more important in the center than that in the lateral side-

groove area. This observation is different from the experimental observation in which the fracture surface has a 

rather straight front. The difference may be linked to the fact that void nucleation is not taken into account in 

the simulations. The ASTM-1820 9-point method to define crack propagation is then used to post-process the 

simulations to compute a mean simulated crack propagation. Note that the crack length is computed in deformed 

configuration. Figure 5.28(b) compares the experimental and simulated CMOD-Δ𝑎 curves. A good agreement 

is obtained.  

 

Figure 5.28. Comparison of crack propagation between the simulation and the experiment for CT20 (CMOD: crack mouth 

opening displacement, Δa: crack length) 



 

144 

 

5.4.3 Prediction for single edge notched tension specimens 

To further verify the model parameters fitted through the experimental results of NT2, the SENT specimen 

with a different crack tip constraint compared to CT20 was analyzed. However, as shown in Figure 5.29 the 

calibrated parameters overestimate the force, even in the plasticity-dominated phase. Then crack initiates much 

later than that observed in experiments. The discrepancy on plasticity between simulation and experiment can 

be explained by the inhomogeneity of material. The calibrated parameters should be further optimized to well 

predict the damage bahavior in SENT. For example, it may be better to fit at the same time (𝑞1, 𝑞2) instead of 

only fitting 𝑞2. It is also possible to slightly modify the value of 𝑙𝑛𝑙, etc.  

 

Figure 5.29. Force-COD curves for SENT 
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5.5 Model validation on a large-scale structure (FP1 pipe) 

Even if the fitted parameters are not well predictive for SENT, we still used them to predict the behavior of 

the FP1 pipe. By doing so, firstly, we would like to check if the prediction on the FP1 pipe is similar to that on 

SENT knowing that the triaxaility state in pipe is close to that in SENT and thus we may propose some possible 

ways to improve the calibration procedure. Secondly, we want to see whether the nonlocal GTN model can be 

used in one industrial case knowing that nonlocal models were rarely used in industrial 3D cases in the literature. 

Thirdly, it is expected to obtain the mixed mode crack propagation at crack initiation and the beginning of crack 

propagation stage. 

Figure 5.30 plots the experimental and simulated (with GTN and von-Mises) force-COD curves for the FP1 

pipe. Firstly, we compare the simulated curves with the GTN and von-Mises models. Their diffence is not 

significant since crack only propages over a short distance. Then we compare the simulated GTN curve to the 

experimental curve. It can be seen that the simulated result agrees well with the experimental results up to a 

COD ≈ 8 mm: the predicted force is just slightly higher than that measured in experiment, this difference can 

be linked to the modeling strategy (the extension arms are assumed to be elastic) or the inhomogeneity of the 

material. Simulation was not performed for COD > 10 mm since the crack already “escapes” the mesh refined 

zone, as will be shown later. Besides, simulation predicts a crack initiation when COD ≈ 2.2 mm, as shown in 

this figure, which is in agreement with the experimental measure (CODexp ≈ 2.3 mm). 

 

Figure 5.30. Force-COD curves for the FP1 pipe (COD: crack opening displacement) 

 

Now we focus on the predicted crack path. According to the simulation results, the crack is not completely 

located on the symmetry plane (𝑧 = 0 plane in cylindrical coordinate system or initial pre-cracked plane). For 

this, we examine the evolutions of different parameter fields on the quasi-symmetry plane. We will explain 

latter why we use “quasi-symmetry plane” instead of “symmetry plane”. Figure 5.31 shows the distribution of 

porosity, hardening variable 𝜅, crack opening stress and triaxiality (defined by 𝑇ℎ/𝑇∗) on the quasi-symmetry 

plane when COD ≈ 6 mm. This COD corresponds to the first beach mark in the experiment. Several information 

can be obtained: 
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 Figure 5.31(a) shows that crack growth is much more significant in the center than on both sides along 

the circumferential direction. In particular, in the center along the circumferential direction, there are 

around 120 broken finite elements, that corresponds to a crack length of about 5.5 mm in the deformed 

configuration. This result agrees well with the experimental observation where a crack propagation 

around 4-6 mm (in deformed configuration) in the center along the circumferential direction was 

observed. A nonlocal zone is obviously seen in front of the current crack tip. 

 Figure 5.31(b) shows that the hardening variable is around 0.45 in front of the current crack tip. In 

addition, in the initial crack tip nearby zone, plasticity is more important compared to that in other areas 

which causes a high gradient of plastic strains. 

 Figure 5.31(c) shows that in front of the current crack tip and along the circumferential direction, the 

crack-opening stress 𝜎𝑧𝑧 first increases then decreases. Besides, as mentioned in Appendix A5.6, the 

spurious and extremely high crack opening stresses are observed in the vicinity of the initial crack tip 

which is linked to the very high gradient of plastic deformation, this gradient leads to additional 

hardening in the yield function (𝑐Δ𝜅). 

 Figure 5.31(d) shows that in front of the current crack tip, the triaxiality on both sides is much lower 

than that in the center (about 1.8). This explains why damage growth is more significant in the center 

than on both sides. 

 A very special zone (in blue) is observed in Figure 5.31(a). In this zone, the triaxiality is negative and 

the crack opening stress is not zero. It implies that in this zone, the crack is already out of plane. To 

further confirm this conclusion, we plot the projection of the porosity field on the quasi-symmetry plane 

in Figure 5.32. From this figure, it is clear that near this special zone, crack already deviates from the 

symmetry plane. 

 

Figure 5.31. Distribution of the porosity, the hardening variable, the stress 𝜎𝑧𝑧 and the generalized triaxiality on the symmetry 

plane when COD=6 mm 
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Figure 5.32. (a) Distribution of porosity on crack plane; (b) Projection of porosity on symmetry plan 

 

Figure 5.33 shows the fields of the porosity in 𝜃𝑧 plane for 𝑟 = 160, 164, 169, 174, 179, 184, 188 mm (see 

Figure 5.16 for the convention of the cylindrical coordinate system). Each quadrangle corresponds to an 

integration point. We also recall that 𝑅𝑖𝑛𝑡 = 159 mm and 𝑅𝑒𝑥𝑡 = 189 mm.  

From this figure, it can be seen that: 

 The crack tends to leave from the symmetry plane when 𝑟 → 𝑅𝑖𝑛𝑡 = 159 mm or 𝑟 → 𝑅𝑒𝑥𝑡 = 189 mm 

while for 𝑟 → (𝑅𝑖𝑛𝑡 + 𝑅𝑒𝑥𝑡)/2 = 174 mm (i.e., center of the thickness), the crack initiates at the initial 

crack tip and then propagate along the circumferential direction while remaining in the symmetry plane.  

 For 𝑟 = 174 mm, due to an unknown reason (probably due to the fact that the value of 𝑟𝑛𝑙 is not large 

enough), a slight oscillation of damage is observed such that the first layer of the integration points are 

not broken. The results presented above (i.e., Figure 5.31) are extracted from the second layer of 

integration points. That explains why we earlier said “quasi-symmetry plane” instead of “symmetry 

plane”. 

 The localization band is clearly illustrated in Figure 5.33, we also observe here that the gradient of the 

porosity exists in the crack propagation direction and in the band thickness direction. It is thus suggested 

to use the same mesh size in both directions. 

 When 𝑟 → 𝑅𝑖𝑛𝑡 or 𝑟 → 𝑅𝑒𝑥𝑡, crack deviation is observed. This figure is plotted in initial configuration 

(crack propagation in deformed configuration is still too short), so it is difficult to figure out the 

deviation angle. However, the “a-priori” refinement along the axial direction (i.e., z direction) is not far 

enough so that the crack propagates again in a plane parallel to the symmetry plane, as shown in the 

figure for 𝑟 = 184 mm. We recall that according to the study of small-scale yielding in Chapter 4 and 

Appendix A5, it is necessary to have 𝑙𝑒 ≤ 𝑙𝑛𝑙/3 with 𝑙𝑒 the mesh size and 𝑙𝑛𝑙 the nonlocal length so as 

to have a spatial converged solution. This implies that a high number of elements is required to mesh 

the slanted crack path. Such a high number of elements, considering the highly non-linear behavior, is 

out of reach for the time being. 
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Figure 5.33. The distribution of the porosity f along the circumferential direction for different radius r when COD=6 mm 

(integration points view) 

In conclusion, we are able to capture the mixed mode crack propagation observed in experiment with the use 

of the nonlocal GTN model. Before closing this chapter, we would like to give the results obtained by the local 

GTN model. The simulation with the local GTN model was performed using the finite element software Z-set. 

Figure 5.34 shows the distribution of the porosity 𝑓 and the crack opening stress 𝜎𝑧𝑧 on the symmetry plane. 

For the field of crack opening stress, the distribution in front of crack tip are rather similar to that obtained with 

the nonlocal model. For the field of porosity, compared to Figure 5.31, one can see that here the crack remains 

on the symmetry plane without any deviation. Besides, the gradient of the porosity in front of the current crack 

tip is much sharper than that obtained with the nonlocal GTN model. This emphasizes the importance of 

nonlocal models. 
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Figure 5.34. Distribution of the porosity f and crack opening stress 𝜎𝑧𝑧 (results obtained with the local GTN model by Z-set) 

 

 

5.6 Summary 

In this chapter, the nonlocal GTN model is applied to simulate several tests on small-scale specimens 

(notched tensile (NT), compact tension (CT) and single edge notched tension (SENT) pre-cracked specimens) 

and on large-scale industrial structure (pre-cracked pipe). These fracture tests were conducted within the 

framework of the UE project named ATLAS+. Some experimental results, including the chemical contents of 

the WB36 material, the global response (force-displacement, force-CMOD or force-diameter reduction) and 

fractographs, are shortly summarized in the first part. Then, the model parameters are calibrated according to 

the experimental results on NT2. They are used to predict the behavior of other small-scale specimens and the 

large-scale FP1 pipe. The results indicate that the GTN model can well predict the global behavior of NT and 

CT. However, these parameters cannot give a satisfactory result neither on the plasticity nor on the damage for 

SENT. In spite of that, simulation of the FP1 pipe was performed using these parameters. The results are in 

good agreement with the experimental results until a CMOD ≈ 8 mm. Besides, a mixed mode crack propagation 

is obtained thanks to the nonlocal effect, which agrees well with the experimental observation.  
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6 Conclusion and Future work 

6.1 Summary 

The major goal of this work was to propose and establish a robust, reliable and efficient modeling strategy 

for the prediction of crack propagation in three-dimensional industrial cases with a crack extension length equal 

to few centimeters.  

The GTN damage model was chosen in this work for the modeling of ductile fracture. This model is a “local 

approach to fracture” type model. It is well known that this approach leads to a problematic localization of strain 

and damage. Indeed, damage at the continuum level results in strain-softening, which is the source of spatial 

localization of the strain, plastic strain and damage. However using “standard” constitutive equations, the width 

of the localization band remains undetermined whereas it should be related to some material characteristic length 

(i.e., distance between defects). Thus, nonlocal constitutive relations are required so as to be able to explicitly 

introduce a characteristic length in the model. These equations account for a spatial coupling of neighboring 

material points by introducing an interaction distance. Due to some mathematical, numerical reasons, the 

gradient enhanced energy (GEE) approach is used in this work. The hardening variable is regularized to 

simultaneously control plastic localization and damage localization.   

Numerically, the use of local approach leads to a spurious mesh-sensitivity in finite element simulations. It 

is demonstrated in (Zhang, 2016) and in our work that the nonlocal modification of local approach can 

effectively reduce mesh-sensitivity.  

Another numerical problem is volumetric locking which leads to strong oscillations of stress fields in finite 

element simulations. In this work, the mixed element formulation is used since the robustness of this method 

has already been demonstrated in the PhD work of (Zhang, 2016) in the case of ductile damage. As shown in 

(Zhang, 2016), the proposed finite element formulation can lead to very heterogeneous plastic strain fields. The 

method proposed in (Zhang, 2016) was thus improved in our work.  

Besides, highly distorted elements are observed in the simulations of large crack extensions (Zhang, 2016). 

This may strongly affect the computational convergence. In this work, a viscous-elastic regularization is 

proposed to avoid excessively distorted elements. An additional stiffness and a characteristic time are introduced 

in the model. It is seen that the stiffness can preclude distortion, resulting in (small) viscous stresses which 

vanish with time. 

In order to characterize the improved GTN model, to optimize parameters preventing stress and strain 

oscillations and thus to perform reliable simulations, systematic numerical analyses of the model were 

conducted. Theses analyses include: 

 The study of the augmentation terms introduced in the nonlocal locking-free formulation: Two penalty 

parameters (𝑟𝑛𝑙 , 𝑟𝑖𝑛𝑐𝑜) are introduced. Some parametric studies allow giving an appropriate range for 

each penalty parameter. Finally, it is suggested that 𝑟𝑛𝑙 ≥ 10𝜎0 and 𝑟𝑖𝑛𝑐𝑜~10𝜎0. 

 The study of the viscous-elastic parameters: Two parameters (𝐸𝑣 , 𝜏𝑣) are introduced. It is suggested to 

use: 𝐸𝑣 = 0.001𝐸 and 𝜏𝑣 = 0.01Δ𝑡. 

 The comparison between the staggered scheme and the implicit scheme for the update of the porosity 

(damage variable in GTN model): These two schemes lead to the same level of error on the prediction 

of local and global responses. In this work, the staggered scheme is adopted.  

 The global and local sub-stepping methods: in order to control the error introduced by the large load-

increment, the global/local sub-stepping methods based on Δ ln 𝑓 are proposed. The global method may 

be computationally expensive, especially when it comes to three-dimensional industrial simulations. 

The local method can effectively reduce the computational cost. But it requires to well evaluate the 
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tangent stiffness matrices for the points at which the local adaptation is activated so as to avoid the 

global non-convergence of Newton-Raphson algorithm due to a poor estimate of the global stiffness 

matrix.   

In order to study the properties of the improved GTN model, large crack propagation under small-scale 

yielding and plane-strain mode I conditions were simulated. A linear relationship between the non-local intrinsic 

length and the width of the computed damage/strain localization band is established. Crack tip blunting, crack 

initiation and large crack propagation are well captured with the improved model. Wide ranges for the plasticity 

and damage parameters can be used in a reliable way so that toughness at crack initiation as well as ductile 

tearing behavior can be thoroughly studied. All these results highlight the robustness of the improved model. 

In the framework of the UE project ATLAS+, fracture tests are performed on several small-scale specimens 

(notched tensile (NT), compact tension (CT) and single edge notched tensile (SENT) pre-cracked specimens) 

and on large-scale industrial structures (pre-cracked pipes). The parameters are fitted according to the 

experimental results on some of the small-scale specimens. They are used to predict the behavior of other small-

scale specimens. According to the obtained results, the improved GTN model is able to predict crack initiation 

and crack propagation in two-dimensional (NT) and three-dimensional (CT) simulations in a correct way. 

Simulation of large scale test on pipe FP1 confirms again this conclusion. It should be noticed that more than 

one million degrees of freedom can be involved in the simulations of pipe. The robustness, the reliability and 

the performance of the improved model are thus demonstrated once again.  
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6.2 Future work 

Recalibration of model parameters for ATLAS+ project 

It was mentioned in chapter 5 that the calibrated parameters cannot well predict the plastic and the damage 

behaviors of SENT specimens. Discrepancy in the plastic regime may be due to the inhomogeneity of the 

material, Discrepancy for the cracking behavior may be linked to the calibration of the model parameters. 

Therefore, it is necessary to recalibrate the parameters with an optimized fitting procedure. We propose the 

following ways for the improvement: 

 Modification of 𝑐 to have a better result on SENT: the nonlocal parameter 𝑐 is one parameter that is not 

fitted. Since the influence of this parameter on NT is very small, it is possible to slightly decrease this 

value to increase the damage rate in SENT. Attention should be paid to the following two points: (1) 

the nonlocal length 𝑙𝑛𝑙, which is derived from 𝑐, should be at least 3 times larger than the mesh size to 

have a spatially converged solution; (2) The damage rate in CT can also be affected by 𝑐.  

 Parameter fitting on (𝑞1, 𝑞2): in our fitting procedure, the value of 𝑞1 is fixed to 1.5. It may be better to 

fit at the same time (𝑞1, 𝑞2) using NT, CT and/or SENT specimens.  

 Activation of void nucleation: in this work, void nucleation is deactivated since there was no evidence 

of nucleation (possibly on iron carbides). In spite of this, the consideration of void nucleation may give 

a better result.  

Once the optimized parameters are found, the simulation of the pipe FP1 should be performed again.  

 

Modeling of crack initiation 

A special attention is paid to the spurious and extremely high crack opening stress in the vicinity of the initial 

crack tip in the case of CT, SENT, Pipe and small-scale yielding simulations. One example can be found in 

Appendix A5.5 in the case of small-scale yielding simulations. It is observed that the crack opening stress at the 

initial crack tip is large compared to that at other positions with the use of the GTN model when strain nucleation 

is not activated. This result is due to the very high gradient of plastic deformation which causes additional 

hardening in the yield function (𝑐Δ𝜅). In addition, the material point (in the ligament) located at the initial crack 

tip never fails. This is mainly related to the low triaxiality at the initial crack tip. The illustration of this problem 

can be found in Appendix A5.6 in the case of small-scale yielding simulations. A strain-controlled nucleation 

was introduced to break these crack-tip nearby unbroken material points and thus avoid the large crack opening 

stress. Its efficiency is demonstrated in the small-scale yielding simulations. However, this nucleation 

formulation introduces one additional parameter, i.e., the critical equivalent plastic strain 𝐸𝑒𝑞,𝑐
𝑝

 which needs to 

be adjusted. It should not be too small, otherwise other undesired points may fail and the crack path may be 

physically incorrect; on the other hand, it should not be too large as the deformation of the desired point may be 

too large before its failure.  

Another possible solution to solve the problem of the large crack-opening stresses induced by the additional 

hardening 𝑐Δκ in the yield function is to eliminate this additional term by regularizing 𝐸ℎ = tr(𝑬
𝒑), in that case, 

the yield function does not depend on 𝑐Δ𝜅. Note that 𝐸ℎ is directly linked to 𝑓𝑔. The Helmholtz free energy is: 

 ℱ(𝑬, 𝑬𝒑, 𝜅, 𝑓)  =  ℱℓ(𝑬(𝑢), 𝑬
𝒑, 𝜅)  + ∫ (

1

2
𝑐2𝛁𝐸ℎ . 𝛁𝐸ℎ)𝑑Ω0

Ω0

 (6.1) 

 

However, with this formulation, it is necessary to check whether the strain localization and the plastic strain 

localization still exist or not. It is also possible to control at the same time 𝜅 and 휀ℎ, 
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 ℱ(𝑬, 𝑬𝒑, 𝜅)  =  ℱℓ(𝑬(𝑢), 𝑬
𝒑, 𝜅)  + ∫ (

1

2
𝑐𝛁𝜅. 𝛁𝜅)𝑑Ω0

Ω0

+∫ (
1

2
𝑐2𝛁𝐸ℎ. 𝛁𝐸ℎ)𝑑Ω0

Ω0

 (6.2) 

 

where 𝑐 < 𝑐2 so as to reduce the effect of 𝑐Δκ in the yield function. This formulation shares some similarities 

with certain formulations of phase-field in which the plasticity and the damage are regularized at the same time 

(see Chapter 1). 

Besides, we could also use a convex function of 𝛁𝜅. 𝛁𝜅 in the Helmholtz free energy such that when 𝛁𝜅 is 

too large, the term 𝑐Δ𝜅 tends to zero or at least tends to a value comparable to 𝜎0. But in that case, the nonlocality 

effect is lost when 𝛁𝜅 is large.  

 

Modeling of void coalescence 

As stated in Chapter 1, the critical porosity 𝑓𝑐 in the GTN model is often considered as a material constant. 

However, according to the results of some RVE simulations presented in Appendix A6, it is observed that the 

critical porosity 𝑓𝑐  depends on the stress triaxiality 𝑇𝑟  and the initial porosity  𝑓0 . Therefore, it may be 10 

preferable (1) to predict the value of 𝑓𝑐 using RVE simulations or other criteria such as the Thomason-type 

criterion and (2) to take into account the change of the plastic flow direction during void coalescence, as 

mentioned in Chapter 1.  

 

Shear failure 

Within the range of high levels of stress triaxialities, the GTN model has very good predictive performance. 

However, as shown in Section 2.6.1, the GTN model predicts no damage growth under zero or negative mean 

stress. To describe damage and failure due to shear deformation, some rather phenomenological models have 

been proposed to represent the mechanism of shear softening (Chen et al., 2017; Malcher et al., 2014; Nahshon 

and Hutchinson, 2008; Xue, 2008). In their work, the Lode angle is used to describe the combined stress state. 

A second-phase nucleation mechanism due to void sheeting and localization under shear condition is proposed. 

The acceleration of void growth and coalescence by shear softening and localization are taken into account. 

These models have shown great improvement in predicting the damage and failure of ductile materials, 

especially in the case of simple shear loading.  

For example, in the work of (Xue, 2008), the void growth is described by an additional term: 

 𝑓�̇� = (1 − 𝑓)tr(�̇�
𝑝) + 𝑔𝑞3𝑓

𝑞4𝐸𝑒𝑞�̇�𝑒𝑞 (6.3) 
 

where (𝑞3, 𝑞4) = (3.72, 0.5) for the 2D case and (𝑞3, 𝑞4) = (3.79, 0.33) for the 3D case, 𝐸𝑒𝑞 is the equivalent 

strain and  𝑔 is the normalized Lode angle: 

 𝑔 = 1 −
6

𝜋
|tan−1 (

1

√3
(2 (

𝑠2 − 𝑠3
𝑠1 − 𝑠3

) − 1))| (6.4) 

 

with 𝑠1, 𝑠2, 𝑠3 the principal deviatoric stress components and 𝑠1 ≥ 𝑠2 ≥ 𝑠3. The value of 𝑔 can vary from 0 to 

1: 𝑔 = 0 for tensile stress state, 𝑔 = 1 for pure shear state and 0 < 𝑔 < 1 for combined stress states.  

                                                      
10 It should still be noticed that the conclusions obtained from the RVE simulations are sometimes not suitable for the structural 

simulations. So it is possible that the value of 𝑓𝑐  does not depend on stress triaxiatliy or initial porosity. That is why we use the word 

“may be” instead of using “is”.  
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Numerical implementation of the model of (Xue, 2008) is very simple since the porosity is updated using an 

explicit scheme in our work. Thus, we just need to add an additional term in the evolution equation of void 

growth. 

 

Adaptive mesh refinement with remeshing technique  

It is well known that the accuracy of finite element analysis is directly related to the finite element mesh: 

The computed solution will approach the exact solution as the mesh is refined. To avoid too large computing 

size, local refinement is attractive but the preferential mesh refinement zone must be known a priori, otherwise 

global refinement is required. This is typically problematic when it comes to industrial three-dimensional 

simulations where the zone of interest remains unknown or large compared to the desired mesh size. In this 

case, the required computational complexity would be very large. For example, for the mesh of the FP1 pipe in 

ATLAS+, in our work, one quarter of the geometry is discretized: in the area of interest, there are 6 elements in 

axial direction, around 140 elements in circumferential direction and 64 elements in radial directions, thus in 

total, there are 2 × 6 × 140 × 64 ≈ 106,000 3D elements (the total number of element to discretize the entire 

structure is two times larger), which corresponds to about 450,000 nodes. The computing time that we use for 

the propagation of 1cm CTOD is already around 1-2 months. However, this mesh is not really suitable for the 

prediction of 45∘  crack bifurcation observed in experiments: firstly, due to crack bifurcation, we lost one 

symmetric plane (i.e., the plane at which the initial fatigue crack is located); secondly, the mesh should be 

further refined along the axial direction. Assume that we still have 64 elements in the radial direction, while 

along the circumferential and axial direction, we refine 1.4 cm with a mesh size 0.1 mm. In this case, the area 

of interest contains about 140 × 140 × 64 > 1.25  millions 3D elements. The total number of element to 

discretize the entire structure can even reach 2 million elements. The required computing time can be more than 

1 year for a propagation of just 1.4√2 ≈ 2 cm.    

One way to deal with this problem is to use remeshing technique. The basic process of this technique can be 

found in Chapter 1.  With this technique, the fine mesh is only used in a small area of interest (i.e., in front of 

the current crack tip) while the coarse mesh is used far from the crack front. This can significantly reduce the 

problem size.  

Besides, the remeshing strategy can also avoid large element distortion, as mentioned in Chapter 1. The idea 

is to replace the distorted elements by some new elements using remeshing. Particularly, the element-deletion 

method or crack insertion can be used in combination with the remeshing technique so as to obtain a smooth 

boundary.  

 

  



 

156 

 

 

 

 

  



Appendices 

157 

 

7 Appendices 

A1 Class of Generalized standard materials 

The concept of Generalized Standard Materials (GSM) was initially introduced in (Halphen and Nguyen, 

1975) as a type of elastic-plastic models and was then extended to several dissipative phenomena (Nguyen, 

1993). Assume that the material state is simply described by (𝜺, �̲�). The concept of GSM is based on the 

following four hypotheses: 

 The Helmholtz free energy Φ(𝜺, �̲�) is convex with respect to each internal variable belong to �̲�. 

 The Helmholtz free energy Φ(𝜺, �̲�) can be divided into two parts: 

 Φ(𝜺, �̲�) = Φ1(𝜺) + Φ2(�̲�) (7.1) 
 

where Φ1 is a quadratic function and Φ2 is a function strictly convex with respect to each internal 

variable belong to �̲�. 

The stress tensor 𝝈 and the driving force �̲� associated to �̲� are given by the state equations which derive 

from the second principle of thermodynamics under the form of the Clausius-Duhem inequality: 

 𝝈 =
𝜕Φ

𝜕𝜺
(𝜺, �̲�), �̲� = −

𝜕Φ

𝜕�̲�
(𝜺, �̲�) (7.2) 

 

With these definitions, the dissipation becomes: 

 𝒟 = 𝝈: �̇� − Φ̇ = �̲�. �̲̇� (7.3) 
 

In particular, it can be demonstrated that the driving force associated to 𝜺𝒑 ∈ �̲� is the stress tensor 𝝈. 

 The driving forces �̲� govern �̲̇� through flow rules 

 �̲̇� ∈
𝜕Φ

𝜕�̲�
(�̲�) (7.4) 

 

If we note 𝐹 the yield function and 𝜆 the Lagrange multiplier, then the flow rule can be written as: 

 �̲̇� = 𝜆
𝜕𝐹

𝜕�̲�
(�̲�), 𝐹 ≤ 0, 𝜆 ≥ 0, 𝜆𝐹 = 0 (7.5) 

 The yield function 𝐹 is convex with respect to �̲�.  

A constitutive law can be classified into the GSM if the third hypothesis is fulfilled. Moreover, the solution 

is unique if all hypotheses are satisfied. The GTN damage model can be classified into the GSM if the porosity 

is integrated in an explicit manner, i.e., we “forget” the evolution of porosity during the integration of the GTN 

constitutive law. One can refer to (Enakoutsa et al., 2007) for more detail. 
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A2 Stiffness matrix for Newton algorithm at global level  

 

A2.1 Continuum level 

The partial derivatives of the function 𝛿𝑢ℒ with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝜕(𝛿𝑢ℒ)

𝜕𝑬
= ∫ (𝛿𝑬: (

𝜕�̅�𝑫

𝜕�̅�
: (𝕀 −

1

3
𝑰⊗ 𝑰) + 𝑟𝑖𝑛𝑐𝑜𝑰 ⊗ 𝑰) : 𝛿𝑬)𝑑𝛺0

𝛺0

𝜕(𝛿𝑢ℒ)

𝜕𝑎
= ∫ ((𝛿𝑬:

𝜕�̅�𝑫
𝜕𝑎
)𝛿𝑎)𝑑𝛺0

𝛺0

𝜕(𝛿𝑢ℒ)

𝜕𝑙
= ∫ ((𝛿𝑬:

𝜕�̅�𝑫
𝜕𝑙
) 𝛿𝑙)𝑑𝛺0

𝛺0

𝜕(𝛿𝑢ℒ)

𝜕𝑃
= ∫ ((𝛿𝑬: 𝑰)𝛿𝑝)𝑑𝛺0

𝛺0

𝜕(𝛿𝑢ℒ)

𝜕𝜃
= ∫ ((𝛿𝑬: (

𝜕�̅�𝑫

𝜕�̅�
:
1

3
𝑰 − 𝑟𝑖𝑛𝑐𝑜𝑰))𝛿𝜃)𝑑𝛺0

𝛺0

 (7.6) 

 

The partial derivatives of the function 𝛿𝑎ℒ with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝜕(𝛿𝑎ℒ )

𝜕𝑬
= ∫ (((−𝑟𝑛𝑙

𝜕𝜅

𝜕𝑬
) : 𝛿𝑬)𝛿𝑎)𝑑Ω0 

Ω0

𝜕(𝛿𝑎ℒ )

𝜕𝑎
= ∫ ((𝑐𝛿𝑎𝛁𝛿𝑎 + 𝛿𝑎𝑟𝑛𝑙 (1 −

𝜕𝜅

𝜕𝑎
)𝛿𝑎))𝑑𝛺0

𝛺0

𝜕(𝛿𝑎ℒ )

𝜕𝑙
= ∫ (𝛿𝑎 (1 − 𝑟𝑛𝑙

𝜕𝜅

𝜕𝑙
) 𝛿𝑙) 𝑑Ω0

Ω0

𝜕(𝛿𝑎ℒ )

𝜕𝑃
= 0

𝜕(𝛿𝑎ℒ )

𝜕𝜃
= ∫ (𝛿𝑎 (−𝑟𝑛𝑙

𝜕𝜅

𝜕�̅�
: (
1

3
𝑰))𝛿𝜃)𝑑Ω0

Ω0

 (7.7) 

 

The partial derivatives of the function 𝛿𝑙ℒ with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 

 
 
 
 
 
𝜕(𝛿𝑙ℒ)

𝜕𝑬
= ∫ (𝛿𝑙 (−

𝜕𝜅

𝜕𝑬
) : 𝛿𝑬) 𝑑𝛺0

𝛺0

𝜕(𝛿𝑙ℒ)

𝜕𝑎
= ∫ (𝛿𝑙 (−

𝜕𝜅

𝜕𝑎
)𝛿𝑎) 𝑑𝛺0

𝛺0

𝜕(𝛿𝑙ℒ)

𝜕𝑙
= ∫ (𝛿𝑙 (−

𝜕𝜅

𝜕𝑙
) 𝛿𝑙) 𝑑𝛺0

𝛺0

𝜕(𝛿𝑙ℒ)

𝜕𝑃
= 0

𝜕(𝛿𝑙ℒ)

𝜕𝜃
= ∫ (𝛿𝑙 (−

𝜕𝜅

𝜕�̅�
:
1

3
𝑰) 𝛿𝜃)𝑑𝛺0

𝛺0

 (7.8) 
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The partial derivatives of the function 𝛿𝑃ℒ with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 

 
 
 
 
 
𝜕(𝛿𝑃ℒ)

𝜕𝑬
= ∫ (𝛿𝑃𝑰: 𝛿𝑬)𝑑𝛺0

𝛺0

𝜕(𝛿𝑃ℒ)

𝜕𝑎
= 0

𝜕(𝛿𝑃ℒ)

𝜕𝑙
= 0

𝜕(𝛿𝑃ℒ)

𝜕𝑃
= 0

𝜕(𝛿𝑃ℒ)

𝜕𝜃
= ∫ (𝛿𝑃(−1)𝛿𝜃)𝑑𝛺0

𝛺0

 (7.9) 

 

The partial derivatives of the function 𝛿𝜃ℒ with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝜕(𝛿𝜃ℒ)

𝜕𝑬
= ∫ (𝛿𝜃 (

𝜕�̅�𝑯

𝜕�̅�
: (𝕀 −

1

3
𝑰⊗ 𝑰) − 𝑟𝑖𝑛𝑐𝑜𝑰) : 𝛿𝑬)𝑑𝛺0

𝛺0

𝜕(𝛿𝜃ℒ)

𝜕𝑎
= ∫ (𝛿𝜃 (

𝜕�̅�𝑯
𝜕𝑎

)𝛿𝑎) 𝑑𝛺0
𝛺0

𝜕(𝛿𝜃ℒ)

𝜕𝑙
= ∫ (𝛿𝜃 (

𝜕�̅�𝑯
𝜕𝑙
)𝛿𝑙) 𝑑𝛺0

𝛺0

𝜕(𝛿𝜃ℒ)

𝜕𝑃
= ∫ (𝛿𝜃(−1)𝛿𝑃)𝑑𝛺0

𝛺0

𝜕(𝛿𝜃ℒ)

𝜕𝜃
= ∫ (𝛿𝜃 (

𝜕�̅�𝑯

𝜕�̅�
: (
1

3
𝑰) + 𝑟𝑖𝑛𝑐𝑜)𝛿𝜃)𝑑𝛺0

𝛺0

 (7.10) 

 

A2.2 Discretized level 

In discretized space, the partial derivatives of the function �̲��̲� with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝜕�̲��̲�

𝜕𝑬
=∑𝑤𝑔 (ℙ𝒈: (𝑭𝒈

𝜞 . �̲�𝑔
�̲�
): (
𝜕�̅�𝑫,𝒈

𝜕�̅�𝑔
: (𝕀 −

1

3
𝑰⊗ 𝑰) + 𝑟𝑖𝑛𝑐𝑜𝑰 ⊗ 𝑰)) :ℙ𝑔: (𝑭𝒈

𝜞 . �̲�𝑔
�̲�
)

𝑔

𝜕�̲��̲�

𝜕𝑎
=∑𝑤𝑔 (ℙ𝑔: (𝑭𝒈

𝜞 . �̲�𝑔
�̲�
):
𝜕�̅�𝑫,𝒈

𝜕𝑎𝑔
)

𝑔

𝑁𝑔
𝑎

𝜕�̲��̲�

𝜕𝑙
=∑𝑤𝑔(ℙ𝑔: (𝑭𝒈

𝜞 . �̲�𝑔
�̲�
):
𝜕�̅�𝑫,𝒈

𝜕𝑙𝑔
)

𝑔

𝑁𝑔
𝑙

𝜕�̲��̲�

𝜕𝑃
=∑𝑤𝑔(ℙ𝑔: (𝑭𝒈

𝜞 . �̲�𝑔
�̲�
): 𝑰)

𝑔

𝑁𝑔
𝑃

𝜕�̲��̲�

𝜕𝜃
=∑𝑤𝑔 (ℙ𝑔: (𝑭𝒈

𝜞 . �̲�𝑔
�̲�
): (
𝜕�̅�𝑫,𝒈

𝜕�̅�𝑔
: (
1

3
𝑰) − 𝑟𝑖𝑛𝑐𝑜𝑰))𝑁𝑔

𝜃

𝑔

 (7.11) 
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The partial derivatives of the function 𝐹𝑎 with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝜕𝐹

𝑎

𝜕𝑬
=∑𝑤𝑔 (𝑁𝑔

𝑎 (−𝑟𝑛𝑙
𝜕𝜅𝑔

𝜕𝑬𝑔
) : ℙ𝑔: (𝑭𝒈

𝜞 . �̲�𝑔
�̲�
))

𝑔

𝜕𝐹𝑎

𝜕𝑎
=∑𝑤𝑔 (𝑁𝑔

𝑎𝑟𝑛𝑙 (1 −
𝜕𝜅𝑔

𝜕𝑎𝑔
)𝑁𝑔

𝑎 + 𝑐�̲�𝑔
𝑎 . �̲�𝑔

𝑎)

𝑔

𝜕𝐹𝑎

𝜕𝑙
=∑𝑤𝑔 (𝑁𝑔

𝑎 (1 − 𝑟𝑛𝑙
𝜕𝜅𝑔

𝜕𝑙𝑔
)𝑁𝑔

𝑙)

𝑔

𝜕𝐹𝑎

𝜕𝑃
= 0

𝜕𝐹𝑎

𝜕𝜃
=∑𝑤𝑔 (𝑁𝑔

𝑎 (−𝑟𝑛𝑙
𝜕𝜅𝑔

𝜕�̅�𝒈
:
1

3
𝑰)𝑁𝑔

𝜃)

𝑔

 (7.12) 

 

The partial derivatives of the function 𝐹𝑙 with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝜕𝐹

𝑙  

𝜕𝑬
=∑𝑤𝑔 (𝑁𝑔

𝑙 (−
𝜕𝜅𝑔

𝜕𝑬𝑔
) :ℙ𝑔: (𝑭𝒈

𝚪 . �̲�𝑔
�̲�
))

𝑔

𝜕𝐹𝑙  

𝜕𝑎
=∑𝑤𝑔 (𝑁𝑔

𝑙 (−
𝜕𝜅𝑔

𝜕𝑎𝑔
)𝑁𝑔

𝑎)

𝑔

𝜕𝐹𝑙  

𝜕𝑙
=∑𝑤𝑔 (𝑁𝑔

𝑙 (−
𝜕𝜅𝑔

𝜕𝑙𝑔
)𝑁𝑔

𝑙)

𝑔

𝜕𝐹𝑙  

𝜕𝑃
= 0

𝜕𝐹𝑙  

𝜕𝜃
=∑𝑤𝑔 (𝑁𝑔

𝑙 (−
𝜕𝜅𝑔

𝜕�̅�𝒈
:
1

3
𝑰)𝑁𝑔

𝜃)

𝑔

 (7.13) 

 

The partial derivatives of the function 𝐹𝑃 with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 
𝜕𝐹𝑃

𝜕𝑬
=∑𝑤𝑔 (𝑁𝑔

𝑃𝑰: ℙ𝑔: (𝑭𝒈
𝚪 . �̲�𝑔

�̲�
))

𝑔

𝜕𝐹𝑃

𝜕𝑎
= 0

𝜕𝐹𝑃

𝜕𝑙
= 0

𝜕𝐹𝑃

𝜕𝑃
= 0

𝜕𝐹𝑃

𝜕𝜃
=∑𝑤𝑔(𝑁𝑔

𝑃(−1)𝑁𝑔
𝜃)

𝑔

 (7.14) 
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The partial derivatives of the function 𝐹𝜃 with regard to (�̲�, 𝑎, 𝑙, 𝑃, 𝜃) are: 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 𝜕𝐹

𝜃

𝜕𝑬
=∑𝑤𝑔 (𝑁𝑔

𝜃 (
𝜕�̅�𝐻,𝑔

𝜕�̅�𝑔
: (𝕀 −

1

3
𝑰⊗ 𝑰) − 𝑟𝑖𝑛𝑐𝑜𝑰)) :ℙ𝑔: (𝑭𝒈

𝚪 . �̲�𝑔
�̲�
))

𝑔

𝜕𝐹𝜃

𝜕𝑎
=∑𝑤𝑔 (𝑁𝑔

𝜃 (
𝜕�̅�𝐻,𝑔

𝜕𝑎𝑔
)𝑁𝑔

𝑎)

𝑔

𝜕𝐹𝜃

𝜕𝑙
=∑𝑤𝑔 (𝑁𝑔

𝜃 (
𝜕�̅�𝐻,𝑔

𝜕𝑙𝑔
)𝑁𝑔

𝑙)

𝑔

𝜕𝐹𝜃

𝜕𝑃
=∑𝑤𝑔(𝑁𝑔

𝜃(−1)𝑁𝑔
𝑃)

𝑔

𝜕𝐹𝜃

𝜕𝜃
=∑𝑤𝑔 (𝑁𝑔

𝜃 (
𝜕�̅�𝐻,𝑔

𝜕�̅�𝑔
:
1

3
𝑰 + 𝑟𝑖𝑛𝑐𝑜)𝑁𝑔

𝜃)

𝑔

 (7.15) 
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A3 Integration of the von-Mises 5-field law 

In chapter 2, the von-Mises constitutive relations have already been shown, we recall here the main 

equations: 

 

{
 
 
 
 
 

 
 
 
 
 

𝑻 = 𝔼: (𝑬 − 𝑬𝒑)
𝑉 ≡ 𝑇𝑒𝑞 − 𝑇∗ = 0 

Δ𝑬𝒑 = 𝜆
𝜕𝑇∗
𝜕𝑻

Δ𝜅 = 𝜆 ≥ 0
𝐹 = 𝑇∗ − �̅�(𝜅) + 𝑙 + 𝑟𝑛𝑙𝑎 − 𝑟𝑛𝑙𝜅 ≤ 0
𝜆𝐹 = 0
Δ𝑓𝑛 = 𝐵𝑛(𝜅)Δ𝜅

Δ𝑓𝑔 = (1 − 𝑓)tr(Δ𝑬
𝒑)

Δ𝑓 = Δ𝑓𝑛 + Δ𝑓𝑔

 (7.16) 

 

The input data consists of (𝑬, 𝑎, 𝑙) and the output data are (𝑻, 𝜅). Here and subsequently, unless otherwise 

stated, we note 𝑧−, 𝑧 and Δ𝑧 the values of the quantity 𝑧 at the beginning of the current time step, at the end of 

the current time step and its increment during the current time step.  

 

A3.1 Solution algorithm 

Elasticity 

We focus on the case corresponding to 𝑇∗ ≠ 0. The trial stress tensor is computed as followed: 

 𝑻𝒆 = 𝔼: (𝑬 − 𝑬𝒑−) (7.17) 
 

The value of 𝑇∗ can be obtained using 𝐺(𝑇∗, 𝑻
𝒆) = 0. If 𝐹(𝜅−, 𝑇∗) ≤ 0, then the solution corresponds to the 

elastic domain characterized by 𝜆 = 0.  

 

 

Plasticity 

Now consider the case 𝐹(𝜅−, 𝑇∗) > 0. The consistency condition shows that 𝜆 > 0, 𝐹 = 0. In this case, the 

Equation (7.16) can be reduced to: 

 

{
 
 

 
 
𝑇𝐻 = 𝑇𝐻

𝑒

 𝑻𝑫 = 𝑻𝑫
𝒆 − 2𝜇∆𝑬𝒑

∆𝑬𝒑 = 1.5∆𝜅
𝑻𝑫
𝒆

𝑇𝑒𝑞
𝑒

0 = 𝑇𝑒𝑞
𝑒 − 3𝜇∆𝜅 − �̅�(𝜅) − 𝑟𝑛𝑙𝜅 + 𝑟𝑎 + 𝑙

 (7.18) 

 

where 𝜅 = 𝜅− + Δ𝜅. This set of equations can be easily solved: firstly, the value of  Δ𝜅 can be obtained through 

the equation 𝑇𝑒𝑞
𝑒 − 3𝜇∆𝜅 − �̅�(𝜅) − 𝑟𝜅 + 𝑟𝑎 + 𝑙 = 0. Then ∆𝑬𝒑  can be easily computed once Δ𝜅  is known. 

Finally, 𝑻𝑫 can be derived from ∆𝑬𝒑. 
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Singularity 

The solution algorithm described above relies on the assumption that 𝑇∗ ≠ 0, which is used in the derivation 

of the flow rule for 𝑬𝒑. This assumption holds in the case of local models with nonlocal modification. But for 

the nonlocal model, the elastic domain can reduce to a point due to the term 𝑙 + 𝑟𝑎 in the yield function. Indeed, 

if  𝑇∗ = 0, then 𝑻 = 𝟎 and thus 𝑬 = 𝑬𝒑 according to the Hooke law. The singularity occurs if and only if  

 πN(Δ𝐸
𝑝, 𝑓) = sup

𝝈,𝜎∗≤1
{𝝈: Δ𝑬𝒑} ≤ Δ𝜅 (7.19) 

 

where the function πN is strictly positive, homogeneous of degree one and πN(Δ𝐸
𝑝) = 0 ⇔ Δ𝐸𝑝 = 0. In the 

case of the von-Mises law, it can be demonstrated that: 

 𝜋𝑁(𝛥𝑬
𝒑) = 𝛥𝐸𝑒𝑞

𝑝
 (7.20) 

 

It can be demonstrated that in singular case, Equation (7.16) can be reduced to: 

 {

𝟎 = 𝑻𝑫
𝒆 − 2𝜇∆𝑬𝑫

𝒑

𝑇𝐻 = 𝑇𝐻
𝑒

0 = �̅�(𝜅) − 𝑟𝑛𝑙𝜅 + 𝑟𝑛𝑙𝑎 + 𝑙

 (7.21) 

 

where 𝜅 = 𝜅− + Δ𝜅 with Δ𝜅 a value fulfilling Equation (7.19).  

 

A3.2 Tangent matrix 

In the following, for the enhanced strain tensor and the corresponding stress tensor, instead of noting �̅� 

and �̅�, we note 𝑬 and 𝑻.  If we note 𝑚 = 𝑙 + 𝑟𝑎, then the tangent matrix is  

 𝕁 = (

𝜕𝑻

𝜕𝑬

𝜕𝑻

𝜕𝑚
𝜕𝜅

𝜕𝑬

𝜕𝜅

𝜕𝑚

) (7.22) 

 

Elasticity 

In elastic case, the only non-zero term is 
𝜕𝑻

𝜕𝑬
= 𝔼 with 𝔼 the Hooke’s matrix which is: 

 𝔼 =

(

 
 
 

𝜆 + 2𝜇 𝜆 + 2𝜇 𝜆 + 2𝜇 0 0 0
𝜆 + 2𝜇 𝜆 + 2𝜇 𝜆 + 2𝜇 0 0 0
𝜆 + 2𝜇 𝜆 + 2𝜇 𝜆 + 2𝜇 0 0 0
0 0 0 2𝜇 2𝜇 2𝜇
0 0 0 2𝜇 2𝜇 2𝜇
0 0 0 2𝜇 2𝜇 2𝜇)

 
 
 

 (7.23) 

 

where λ = (3K − 2μ)/3 with λ Lamé’s first parameter, K bulk modulus and μ shear modulus.  
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Plasticity 

In plastic case, the expression of 𝜕𝑻/𝜕𝑬 is: 

 𝜕𝑻

𝜕𝑬
= 
𝜕(𝑇𝐻𝐼 + 𝑻𝑫)

𝜕𝑬
= 𝔼 − 3𝜇

𝑻𝑫
𝒆 ⊗

𝜕𝜅
𝜕𝑬

𝑇𝑒𝑞
𝑒 + 3𝜇∆𝜅

𝑻𝑫
𝒆 ⊗

𝜕𝑇𝑒𝑞
𝜕𝑬

𝑇𝑒𝑞
𝑒 2

− 3𝜇
∆𝜅

𝑇𝑒𝑞
𝑒

𝜕𝑻𝑫
𝒆

𝜕𝑬
 (7.24) 

 

The expression of 𝜕𝑻/𝜕𝑚 is: 

 
𝜕𝑻

𝜕𝑚
=
𝜕(𝑇𝐻𝐼 + 𝑻𝑫)

𝜕𝑚
= −3𝜇

𝑻𝑫
𝒆

𝑇𝑒𝑞
𝑒

𝜕𝜅

𝜕𝑚
 (7.25) 

 

The expression of 𝜕𝜅/𝜕𝑬 is: 

 
𝜕𝜅

𝜕𝑬
=
𝜕𝜅

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑬
 (7.26) 

 

The expression of 𝜕𝜅/𝜕𝑚 is: 

 

𝜕𝜅

𝜕𝑚
= −

𝜕�̅�

𝜕𝑚
(
𝜕�̅�

𝜕𝜅
)

−1

 

 

(7.27) 

 

The terms appeared in Equations (7.24)(7.25)(7.26)(7.27) are listed in the following: 

 The expression of 
𝜕𝑻𝑫

𝒆

𝜕𝑬
 

 
𝜕𝑻𝑫

𝒆

𝜕𝑬
=

(

 
 
 
 

𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0

𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0
𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0

0 0 0 2𝜇′ 2𝜇′ 2𝜇′

0 0 0 2𝜇′ 2𝜇′ 2𝜇′

0 0 0 2𝜇′ 2𝜇′ 2𝜇′)

 
 
 
 

 (7.28) 

 

where λ′ = −2μ/3, 2𝜇′ = 2𝜇 with K bulk modulus and μ shear modulus. 

 Function �̅� and its partial derivatives  

 

{
 
 
 

 
 
 

�̅� = 𝑇𝑒𝑞
𝑒 − 3𝜇∆𝜅 − �̅�(𝜅) − 𝑟𝜅 +𝑚 

𝜕�̅�

𝜕𝜅
= −3𝜇 −

𝜕�̅�

𝜕𝜅
(𝜅) − 𝑟

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 = 1

𝜕�̅�

𝜕𝑚
= 1

 (7.29) 
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 Derivatives of 𝑇ℎ
𝑒 , 𝑇𝑒𝑞

𝑒  with respect to 𝑬 

 

{
 
 

 
 𝜕𝑇ℎ

𝑒

𝜕𝑬
= 𝐾𝑰

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑬
= 3𝜇

𝑻𝑫
𝒆

𝑇𝑒𝑞
𝑒

 (7.30) 

 

 

 Derivatives of 𝜅 with respect to 𝑇𝑒𝑞
𝑒 , 𝑚 

 

{
 
 

 
 𝜕𝜅

𝜕𝑇𝑒𝑞
𝑒 = −

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 (
𝜕�̅�

𝜕𝜅
)

−1

𝜕𝜅

𝜕𝑚
= −

𝜕�̅�

𝜕𝑚
(
𝜕�̅�

𝜕𝜅
)

−1  (7.31) 

 

 

Singularity 

In singular case, 𝑇∗ = 0 and thus 𝑇𝑒𝑞 = 0 for any input (𝑬,𝑚). The tangent matrix can be directly computed: 

 

{
 
 
 
 

 
 
 
 
𝜕𝑻

𝜕𝑬
=
𝜕𝑇ℎ

𝑒

𝜕𝑬
𝑰

𝜕𝑻

𝜕𝑚
= 𝟎

𝜕𝜅

𝜕𝑬
= 0

𝜕𝜅

𝜕𝑚
= −

𝜕�̅�∗
𝜕𝑚

(
𝜕�̅�∗
𝜕𝜅
)

−1

 (7.32) 

 

The terms appeared in Equations (7.32) are listed in the following: 

 The expression of 
𝜕𝑇ℎ

𝑒

𝜕𝑬
 

 
𝜕𝑇ℎ

𝑒

𝜕𝑬
=

(

 
 
 
 

𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0

𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0
𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0

0 0 0 2𝜇′ 2𝜇′ 2𝜇′

0 0 0 2𝜇′ 2𝜇′ 2𝜇′

0 0 0 2𝜇′ 2𝜇′ 2𝜇′)

 
 
 
 

 (7.33) 

 

where 𝜆′ = 𝐾, 2𝜇′ = 0 with 𝐾 bulk modulus and 𝜇 shear modulus. 

 Function �̅�∗ and its derivatives with respect to (𝜅,𝑚) 

 

{
 
 

 
 
�̅�∗ (𝜅) = �̅�(𝜅) + 𝑟𝑛𝑙𝜅 −𝑚

𝜕�̅�∗ 

𝜕𝜅
(𝜅) =

𝜕�̅�

𝜕𝜅
(𝜅) + 𝑟𝑛𝑙

𝜕�̅�∗ 

𝜕𝑚
(𝜅) = −1

 (7.34) 
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A4 Integration of the GTN 5-field law (implicit scheme) 

In chapter 2, the GTN constitutive relations have already been shown, we recall here the main equations: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑻 = 𝔼: (𝑬 − 𝑬𝒑)

𝐺 ≡  (
𝑇𝑒𝑞
𝑇∗
 )
2

 +  2𝑞1𝑓
∗ cosh (

3

2
𝑞2
𝑇𝐻
𝑇∗
) − 1 − (𝑞1𝑓

∗)2  =  0 

Δ𝑬𝒑 =
𝜆

𝐽

𝜕𝑇∗
𝜕𝑻

Δ𝜅 = 𝜆 ≥ 0

𝐹 =
𝑇∗
𝐽
− �̅�(𝜅) + 𝑙 + 𝑟𝑛𝑙𝑎 − 𝑟𝑛𝑙𝜅 ≤ 0

𝜆𝐹 = 0
Δ𝑓𝑛 = 𝐵𝑛(𝜅)Δ𝜅

Δ𝑓𝑔 = (1 − 𝑓)tr(Δ𝑬
𝒑)

Δ𝑓 = Δ𝑓𝑛 + Δ𝑓𝑔

 (7.35) 

 

The input data consists of (𝑬, 𝑎, 𝑙) and the output data are (𝑻, 𝜅). The internal variables are (𝑓, 𝑬𝒑). Here and 

subsequently, unless otherwise stated, we note 𝑧−, 𝑧 and Δ𝑧 the values of the quantity 𝑧 at the beginning of the 

current time step, at the end of the current time step and its increment during the current time step. To obtain 

the solutions of Equation (7.35), as mentioned in previous sections, a semi-explicit scheme with respect to the 

porosity 𝑓  is possible. The solution algorithm of this scheme has already been described in (Zhang et al., 2018). 

In this section, we will describe the solution algorithm of the fully implicit scheme with respect to (𝑓, 𝑬𝒑, 𝜅).  

 

A4.1 Solution algorithm 

Elasticity 

We focus on the case corresponding to 𝑇∗ ≠ 0 and 𝑞1𝑓
∗ < 1. The trial stress tensor is computed as followed: 

 𝑻𝒆 = 𝔼: (𝑬 − 𝑬𝒑−) (7.36) 
 

The value of 𝑇∗ can be obtained using 𝐺(𝑇∗, 𝑻
𝒆, 𝑓−) = 0. If 𝐹(𝜅−, 𝑇∗) ≤ 0, then the solution corresponds to 

the elastic domain characterized by 𝜆 = 0. Another method is that we compute  𝑇∗ using 𝐹(𝜅−, 𝑇∗) = 0. Then 

we evaluate 𝐺(𝑇∗, 𝑻
𝒆, 𝑓−), if 𝐺 ≤ 0, then the solution corresponds to the elastic domain characterized by 𝜆 = 0. 

This method is simpler than the previous one. 

 

Plasticity 

Now consider the case 𝐹(𝜅−, 𝑇∗) > 0. The consistency condition shows that 𝜆 > 0, 𝐹 = 0. In this case, the 

Equation (7.35) can be reduced to: 

 

{
  
 

  
 �̅�(𝑝, 𝑇∗, 𝑓) =  (

𝑇𝑒𝑞
𝑒 �̅�(𝑝, 𝑇∗, 𝑓)

𝑇∗
 )

2

 +  2𝑞1𝑓
∗ cosh (

3

2
𝑞2
𝑇𝐻
𝑒𝑝

𝑇∗
) − 1 − (𝑞1𝑓

∗)2  =  0

�̅�(𝑝, 𝑇∗, 𝑓) = −�̅�∗ (�̅�(𝑝, 𝑇∗, 𝑓)) + 𝑇
∗ = 0

�̅�(𝑝, 𝑇∗, 𝑓) = 𝛥𝑓 −
1 − 𝑓

𝐽
�̅�(𝑝, 𝑇∗, 𝑓)tr (

𝜕𝑇∗
𝜕𝑻
) − �̅�𝑛 (�̅�(𝑝, 𝑇∗, 𝑓)) �̅�(𝑝, 𝑇∗, 𝑓) = 0 

 (7.37) 
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where (𝑝, 𝑞) are defined by (𝑇ℎ = 𝑝𝑇ℎ
𝑒 , 𝑇𝑒𝑞 = 𝑞𝑇𝑒𝑞

𝑒 ) and  

 

{
 
 
 
 

 
 
 
 

�̅�(𝑝, 𝑇∗, 𝑓) =
𝑇∗Λ̅ (

𝑇ℎ
𝑒𝑝
𝑇∗
, 𝑓)

𝑇∗Λ̅ (
𝑇ℎ
𝑒𝑝
𝑇∗
, 𝑓) +

𝜇
𝜅
𝑇ℎ
𝑒(1 − 𝑝)

�̅�(𝑝, 𝑇∗, 𝑓) =
𝐽𝑇ℎ
𝑒(1 − 𝑝)

3𝐾Λ̅ (
𝑇ℎ
𝑒𝑝
𝑇∗
, 𝑓) Θ̅ (

𝑇ℎ
𝑒𝑝
𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�(𝑝, 𝑇∗, 𝑓)

𝑇∗
, 𝑓)

𝜕𝑇∗
𝜕𝑻

(𝑝, 𝑇∗, 𝑓) = Θ̅ (
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�(𝑝, 𝑇∗, 𝑓)

𝑇∗
, 𝑓) [

3

2

𝑻𝑫
𝑇∗
+ Λ̅(

𝑇ℎ
𝑒𝑝

𝑇∗
, 𝑓) 𝑰]

 (7.38) 

 

The hardening function can be assumed to be: 

 σ̅(𝜅) = 𝑟0 + 𝑟ℎ𝜅 + 𝑟1(1 − 𝑒
−𝑔1𝜅) + 𝑟2(1 − 𝑒

−𝑔2𝜅) + 𝑟3(𝜅 + 𝜅0)
𝑔3 (7.39) 

 

where r0, 𝑟ℎ , 𝑟1, 𝑟2, 𝑟3, 𝑔1, 𝑔2, 𝑔3, 𝜅0 are the hardening parameters.  

The Equation (7.37) can be solved using Newton-Raphson algorithm. We note  �̲� = (𝑝, 𝑇∗, 𝑓)  and  �̲� =

(�̅�, �̅�, �̅�). In the current time step, at iteration 𝑗 + 1, we have �̲�𝑗+1 = �̲�𝑗 − (𝕁𝑅
𝑗
)
−1
�̲�𝑗 with 𝕁𝑅

𝑗
=
𝜕�̲�

𝜕�̲�
(�̲�𝑗). The 

solution is convergent when ||�̲�𝑛|| < �̲� with 𝑛 the total iteration numbers and �̲� a value near 0̲. The Jacobian 

matrix 𝕁𝑅
𝑗

 is defined as: 

 𝕁𝑅
𝑗
=

(

 
 
 
 

𝜕�̅�

𝜕𝑝

𝜕�̅�

𝜕𝑇∗

𝜕�̅�

𝜕𝑓

𝜕�̅�

𝜕𝑝

𝜕�̅�

𝜕𝑇∗ 

𝜕�̅�

𝜕𝑓

𝜕�̅�

𝜕𝑝

𝜕�̅�

𝜕𝑇∗

𝜕�̅�

𝜕𝑓)

 
 
 
 

 (7.40) 

 

The partial derivatives of the function �̅� with regard to (𝑝, 𝑇∗, 𝑓) are: 

 

{
  
 

  
 
𝜕�̅�

𝜕𝑝
(𝑝, 𝑇∗, 𝑓) =

𝜕𝐺

𝜕𝑝
+
𝜕𝐺

𝜕𝑞

𝜕�̅�

𝜕𝑝

𝜕�̅�

𝜕𝑇∗
(𝑝, 𝑇∗, 𝑓) =

𝜕𝐺

𝜕𝑇∗
+
𝜕𝐺

𝜕𝑞

𝜕�̅�

𝜕𝑇∗
𝜕�̅�

𝜕𝑓
(𝑝, 𝑇∗, 𝑓) =

𝜕𝐺

𝜕𝑓
+
𝜕𝐺

𝜕𝑞

𝜕�̅�

𝜕𝑓

 (7.41) 

 

The partial derivatives of the function �̅� with regard to (𝑝, 𝑇∗, 𝑓) are: 

 

{
  
 

  
 
𝜕�̅�

𝜕𝑝
(𝑝, 𝑇∗, 𝑓) = −

𝜕𝑇∗̅
𝜕𝜅

𝜕�̅�

𝜕𝑝

𝜕�̅�

𝜕𝑇∗
(𝑝, 𝑇∗, 𝑓) = −

𝜕�̅�∗
𝜕𝜅

𝜕�̅�

𝜕𝑇∗
+ 1

𝜕�̅�

𝜕𝑓
(𝑝, 𝑇∗, 𝑓) = −

𝜕𝑇∗̅
𝜕𝜅

𝜕�̅�

𝜕𝑓

 (7.42) 
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The partial derivatives of the function �̅� with regard to (𝑝, 𝑇∗, 𝑓) are: 

 

{
 
 
 

 
 
 
𝜕�̅�

𝜕𝑝
(𝑝, 𝑇∗, 𝑓) = −(

𝜕�̅�𝑔

𝜕𝑝
+
𝜕�̅�𝑛
𝜕𝑝
)

𝜕�̅�

𝜕𝑇∗
(𝑝, 𝑇∗, 𝑓) = −(

𝜕�̅�𝑔

𝜕𝑇∗
+
𝜕�̅�𝑛
𝜕𝑇∗

)

𝜕�̅�

𝜕𝑓
(𝑝, 𝑇∗, 𝑓) = −(

𝜕�̅�𝑔

𝜕𝑓
+
𝜕�̅�𝑛
𝜕𝑓
) + 1

 (7.43) 

 

where (�̅�𝑔, �̅�𝑛) correspond to the evolution of the porosity due to void growth and void nucleation, respectively.  

The terms appeared in Equations (7.41)(7.42)(7.43) are listed in the following:  

 Function 𝐺 and its partial derivatives 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝐺(𝑝, 𝑞, 𝑇∗, 𝑓) =  (

𝑇𝑒𝑞
𝑇∗
 )
2

 +  2𝑞1𝑓
∗ cosh (

3

2
𝑞2
𝑇𝐻
𝑇∗
) − 1 − (𝑞1𝑓

∗)2  =  0

𝜕𝐺

𝜕𝑝
(𝑝, 𝑞, 𝑇∗, 𝑓) = 3𝑞1𝑞2𝑓∗

𝑇ℎ
𝑒

𝑇∗
sinh(

3

2
𝑞2
𝑇ℎ
𝑒𝑝

𝑇∗
)

𝜕𝐺

𝜕𝑞
(𝑝, 𝑞, 𝑇∗, 𝑓) = 2(

𝑇𝑒𝑞
𝑒

𝑇∗
)

2

𝑞

𝜕𝐺

𝜕𝑇∗ 
(𝑝, 𝑞, 𝑇∗, 𝑓) = −2

(𝑇𝑒𝑞
𝑒 𝑞)

2

𝑇∗
3

− 3𝑞1𝑞2𝑓
∗
𝑇ℎ
𝑒𝑝

𝑇∗
2
sinh(

3

2
𝑞2
𝑇ℎ
𝑒𝑝

𝑇∗
)

𝜕𝐺

𝜕𝑓 
(𝑝, 𝑞, 𝑇∗, 𝑓) = 2𝑞1 cosh(

3

2
𝑞2
𝑇ℎ
𝑒𝑝

𝑇∗
)
𝜕𝑓∗

𝜕𝑓
− 2𝑞1

2𝑓∗
𝜕𝑓∗

𝜕𝑓

 (7.44) 

 

 Hardening function �̅� and its derivatives 

 {

�̅�(𝜅) = 𝑟0 + 𝑟ℎ𝜅 + 𝑟1(1 − 𝑒
−𝑔1𝜅) + 𝑟2(1 − 𝑒

−𝑔2𝜅) + 𝑟3(𝜅 + 𝜅0)
𝑔3  

𝜕�̅�

𝜕𝜅
(𝜅) = 𝑟ℎ + 𝑟1𝑔1𝑒

−𝑔1𝜅 + 𝑟2𝑔2𝑒
−𝑔2𝜅 + 𝑟3𝑔3(𝜅 + 𝜅0)

𝑔3−1
 (7.45) 

 

 Function 𝐵𝑛 and its derivatives  

 

{
 
 

 
 𝐵𝑛(𝜅) =

𝑓𝑁

𝑠𝑁√2𝜋
𝑒
−
1
2
(
(𝜅−𝜅𝑁)
𝑠𝑁

)
2

𝜕𝐵𝑛
𝜕𝜅

(𝜅) = −𝑓𝑁
(𝜅 − 𝜅𝑁)

𝑠𝑁
2√2𝜋

𝑒
−
1
2
(
(𝜅−𝜅𝑁)
𝑠𝑁

)
2 (7.46) 

 

 Function 𝑇∗ and its derivatives  

 {

�̅�∗(𝜅) = 𝐽(�̅�(𝜅) + 𝑟𝑛𝑙𝜅 − 𝑙 − 𝑟𝑛𝑙𝑎)

𝜕�̅�∗
𝜕𝜅

= 𝐽 (
𝜕�̅�

𝜕𝜅
(𝜅) + 𝑟𝑛𝑙)

 (7.47) 
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 Function 𝛬 and its partial derivatives 

 

{
  
 

  
 𝛬(𝑥, 𝑓) =

1

2
𝑞1𝑞2𝑓

∗ sinh (
3

2
𝑞2𝑥)

𝜕𝛬

𝜕𝑥
(𝑥, 𝑓) =

3

4
𝑞1𝑞2

2𝑓∗ sinh (
3

2
𝑞2𝑥)

𝜕𝛬

𝜕𝑓
(𝑥, 𝑓) =

1

2
𝑞1𝑞2

𝜕𝑓∗

𝜕𝑓
sinh (

3

2
𝑞2𝑥)

 (7.48) 

 

 Function �̅� and its partial derivatives 

 

{
 
 
 

 
 
 �̅�(𝑥, 𝑓) = 𝛬 (

𝑇ℎ
𝑒𝑝

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑝
(𝑥, 𝑓) =

𝑇ℎ
𝑒

𝑇∗

𝜕𝛬

𝜕𝑥
(
𝑇ℎ
𝑒𝑝

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑓
(𝑥, 𝑓) =

𝜕𝛬

𝜕𝑓
(
𝑇ℎ
𝑒𝑝

𝑇∗
, 𝑓)

 (7.49) 

 

 Function 𝛩 and its partial derivatives 

 

{
 
 
 
 

 
 
 
 𝛩(𝑥, 𝑦, 𝑓) = (𝑦2 + 3𝑥𝛬(𝑥, 𝑓))

−1

𝜕𝛩

𝜕𝑥
(𝑥, 𝑦, 𝑓) =

−3𝛬 + 3𝑥
𝜕𝛬
𝜕𝑥

(𝑦2 + 3𝑥𝛬)2

𝜕𝛩

𝜕𝑦
(𝑥, 𝑦, 𝑓) =

−2𝑦

(𝑦2 + 3𝑥𝛬)2

𝜕𝛩

𝜕𝑓
(𝑥, 𝑦, 𝑓) =

−3𝑥
𝜕𝛬
𝜕𝑓

(𝑦2 + 3𝑥𝛬)2

 (7.50) 

 

 Function �̅� and its partial derivatives 

 

{
 
 
 
 

 
 
 
 �̅� = 𝛩 (

𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑝
=
𝑇ℎ
𝑒

𝑇∗

𝜕𝛩

𝜕𝑥
(
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓) +

𝑇𝑒𝑞
𝑒

𝑇∗

𝜕𝛩

𝜕𝑦
(
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑝

𝜕�̅�

𝜕𝑞
=
𝑇𝑒𝑞
𝑒

𝑇∗

𝜕𝛩

𝜕𝑦
(
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑓
=
𝜕𝛩

𝜕𝑓
(
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓) +

𝑇𝑒𝑞
𝑒

𝑇∗

𝜕𝛩

𝜕𝑦
(
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑓

 

 

(7.51) 
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 Function �̅� and its partial derivatives 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 �̅�(𝑝, 𝑇∗, 𝑓) =

𝑇∗�̅�

𝑇∗�̅� +
𝜇
𝜅
𝑇ℎ
𝑒(1 − 𝑝)

𝜕�̅�

𝜕𝑝
(𝑝, 𝑇∗, 𝑓) =

𝑇ℎ
𝑒 𝜕�̅�
𝜕𝑥
(𝑇∗�̅� +

𝜇
𝜅 𝑇ℎ

𝑒(1 − 𝑝)) − 𝑇∗�̅� (𝑇ℎ
𝑒 𝜕�̅�
𝜕𝑥
−
𝜇
𝐾 𝑇ℎ

𝑒)

(𝑇∗�̅� +
𝜇
𝜅
𝑇ℎ
𝑒(1 − 𝑝))

2

𝜕�̅�

𝜕𝑇∗
(𝑝, 𝑇∗, 𝑓) =

(�̅� −
𝑇ℎ
𝑒𝑝
𝑇∗

𝜕�̅�
𝜕𝑥
)(𝑇∗�̅� +

𝜇
𝜅
𝑇ℎ
𝑒(1 − 𝑝)) − 𝑇∗�̅� (�̅� −

𝑇ℎ
𝑒𝑝
𝑇∗

𝜕�̅�
𝜕𝑥
)

(𝑇∗�̅� +
𝜇
𝜅 𝑇ℎ

𝑒(1 − 𝑝))
2

𝜕�̅�

𝜕𝑓
(𝑝, 𝑇∗, 𝑓) =

𝑇∗
𝜕�̅�
𝜕𝑓
(𝑇∗�̅� +

𝜇
𝜅 𝑇ℎ

𝑒(1 − 𝑝)) − 𝑇∗�̅� (𝑇∗
𝜕�̅�
𝜕𝑓
)

(𝑇∗�̅� +
𝜇
𝜅
𝑇ℎ
𝑒(1 − 𝑝))

2

 (7.52) 

 

 Function λ̅ and its partial derivatives 

 

{
 
 
 
 
 

 
 
 
 
 �̅�(𝑝, 𝑇∗, 𝑓) =

𝐽𝑇ℎ
𝑒(1 − 𝑝)

3𝐾�̅��̅�

𝜕�̅�

𝜕𝑝
(𝑝, 𝑇∗, 𝑓) =

−
𝐽
3𝐾
𝑇ℎ
𝑒(1 − 𝑝) (

𝜕�̅�
𝜕𝑝
�̅� + �̅�

𝜕�̅�
𝜕𝑝
) −

𝐽
3𝐾
𝑇ℎ
𝑒�̅��̅�

(�̅��̅�)2

𝜕�̅�

𝜕𝑇∗
(𝑝, 𝑇∗, 𝑓) =

−
𝐽
3𝐾 𝑇ℎ

𝑒(1 − 𝑝) (
𝜕�̅�
𝜕𝑇∗

�̅� + �̅�
𝜕�̅�
𝜕𝑇∗
)

(�̅��̅�)2

𝜕�̅�

𝜕𝑓
(𝑝, 𝑇∗, 𝑓) =

−
𝐽
3𝐾 𝑇ℎ

𝑒(1 − 𝑝) (
𝜕�̅�
𝜕𝑓
�̅� + �̅�

𝜕�̅�
𝜕𝑓
)

(�̅��̅�)2

 

 

(7.53) 

 

 Function 𝒗 = 𝜕�̅�∗/𝜕𝑻 and its partial derivatives 

 

{
 
 
 
 

 
 
 
 𝒗(𝑝, 𝑇∗, 𝑓) = Θ̅ (

3

2

𝑻𝑫
𝑇∗
+ Λ̅𝑰)

𝜕�̅�

𝜕𝑝
(𝑝, 𝑇∗, 𝑓) =

𝜕Θ̅

𝜕𝑝
(
3𝑻𝑫

𝒆 �̅�

2𝑇∗
+ Λ̅𝑰) + Θ̅ (

𝜕Λ̅

𝜕𝑝
𝑰 +

3𝑻𝑫
𝒆

2𝑇∗

𝜕�̅�

𝜕𝑝
)

𝜕�̅�

𝜕𝑇∗
(𝑝, 𝑇∗, 𝑓) =

𝜕Θ̅

𝜕𝑇∗
(
3𝑻𝑫

𝒆 �̅�

2𝑇∗
+ Λ̅𝑰) + Θ̅ (

𝜕Λ̅

𝜕𝑇∗
𝑰 +

3𝑻𝑫
𝒆

2𝑇∗

𝜕�̅�

𝜕𝑇∗
−
3𝑻𝑫

𝒆 �̅�

2𝑇∗
2 )

𝜕�̅�

𝜕𝑓
(𝑝, 𝑇∗, 𝑓) =

𝜕Θ̅

𝜕𝑓
(
3𝑻𝑫

𝒆 �̅�

2𝑇∗
+ Λ̅𝑰) + Θ̅ (

𝜕Λ̅

𝜕𝑓
𝑰 +

3𝑻𝑫
𝒆

2𝑇∗

𝜕�̅�

𝜕𝑓
)

 (7.54) 
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 Function �̅�𝑔 and its derivatives 

 

{
 
 
 
 
 

 
 
 
 
 �̅�𝑔(𝑝, 𝑇∗, 𝑓) =

1 − 𝑓

𝐽
�̅�(𝒗: 𝑰)

𝜕�̅�𝑔

𝜕𝑝
(𝑝, 𝑇∗, 𝑓) =

1 − 𝑓

𝐽
(
𝜕�̅�

𝜕𝑝
(𝒗: 𝑰) + �̅� (

𝜕𝒗

𝜕𝑝
: 𝑰))

𝜕�̅�𝑔

𝜕𝑇∗
(𝑝, 𝑇∗, 𝑓) =

1 − 𝑓

𝐽
(
𝜕�̅�

𝜕𝑇∗
(𝒗: 𝑰) + �̅� (

𝜕𝒗

𝜕𝑇∗
: 𝑰))

𝜕�̅�𝑔

𝜕𝑓
(𝑝, 𝑇∗, 𝑓) =

1 − 𝑓

𝐽
(
𝜕�̅�

𝜕𝑓
(𝒗: 𝑰) + �̅� (

𝜕𝒗

𝜕𝑓
: 𝑰)) −

1

𝐽
�̅�(𝒗: 𝑰)

 

 

(7.55) 

 

 Function �̅�𝑛 and its derivatives (𝐵𝑛 = 𝐵𝑛(𝜅
− + �̅�) and 

𝜕�̅�𝑛

𝜕𝜅
=
𝜕�̅�𝑛

𝜕𝜅
(𝜅− + �̅�)) 

 

{
 
 
 
 

 
 
 
 
�̅�𝑛(𝑝, 𝑇∗, 𝑓) = 𝐵𝑛�̅�

𝜕�̅�𝑛
𝜕𝑝

(𝑝, 𝑇∗, 𝑓) =
𝜕�̅�

𝜕𝑝
(
𝜕�̅�𝑛
𝜕𝜅

�̅� + �̅�𝑛)

𝜕�̅�𝑛
𝜕𝑇∗

(𝑝, 𝑇∗, 𝑓) =
𝜕�̅�

𝜕𝑇∗
(
𝜕�̅�𝑛
𝜕𝜅

�̅� + �̅�𝑛)

𝜕�̅�𝑛
𝜕𝑓

(𝑝, 𝑇∗, 𝑓) =
𝜕�̅�

𝜕𝑓
(
𝜕�̅�𝑛
𝜕𝜅

�̅� + �̅�𝑛)

 

 

(7.56) 

 

Singularity 

The solution algorithm described above relies on the assumption that 𝑇∗ ≠ 0, which is used in the derivation 

of the flow rule for 𝑬𝒑. This assumption holds in the case of the local GTN model. But for the nonlocal model, 

the elastic domain can reduce to a point due to the term 𝑙 + 𝑟𝑎 in the yield function. Indeed, according to (Zhang 

et al., 2018), if 𝑞1𝑓
∗ < 1  and  𝑇∗ = 0 , then  𝑻 = 𝟎  and thus 𝑬 = 𝑬𝒑  according to the HOOKE law. The 

singularity occurs if and only if  

 πN(Δ𝑬
𝒑, 𝑓) = sup

𝝈,𝜎∗≤1
{𝝈: Δ𝑬𝒑} ≤

Δ𝜅

𝐽
 (7.57) 

 

where the function πN is strictly positive, homogeneous of degree one and πN(Δ𝑬
𝒑) = 0 ⇔ Δ𝑬𝒑 = 0:  

 𝜋𝑁(𝛥𝑬
𝒑, 𝑓) =

2

𝑞2
arccosh(1 + 𝐶∗) |𝛥𝐸𝐻

𝑝
| +

2

3
(1 − 𝑞1𝑓

∗)√1 − 𝛾𝐶∗𝛥𝐸𝑒𝑞
𝑒  (7.58) 

 

with 
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{
 
 
 
 
 

 
 
 
 
 
𝐶∗ = −𝑠 +√𝑠2 +

2

𝛾
(𝑠 − 1) =

2 (1 −
1
𝑠
)

𝛾 (1 + √1 +
2
𝛾
(
1
𝑠
−
1
𝑠2
))

𝑠−1 =

(

 
 𝑞2

2𝛥𝐸𝑒𝑞
𝑝 2

+
9|𝛥𝐸𝐻

𝑝
|
2

𝑞1𝑓
∗

𝑞2
2𝛥𝐸𝑒𝑞

𝑝 2   

)

 
 

−1

𝛾−1 =
(1 − 𝑞1𝑓

∗)2

2𝑞1𝑓
∗

 (7.59) 

 

It can be demonstrated that in singular case, Equation (7.35) can be reduced to: 

 {
�̅�∗(𝜅) = 0

Δ𝑓 = (1 − 𝑓− + Δ𝑓)(Δ𝑬: 𝑰) + 𝐵𝑛(𝜅)Δ𝜅
 (7.60) 

 

where 𝜅 = 𝜅− + Δ𝜅 with Δ𝜅 a value fulfilling Equation (7.57).  

 

A4.2 Tangent matrix 

In the following, for the enhanced strain tensor and the corresponding stress tensor, instead of noting �̅� 

and �̅�, we note 𝑬 and 𝑻.  If we note 𝑚 = 𝑙 + 𝑟𝑎, then the tangent matrix is  

 𝕁 = (

𝜕𝑻

𝜕𝑬

𝜕𝑻

𝜕𝑚
𝜕𝜅

𝜕𝑬

𝜕𝜅

𝜕𝑚

) (7.61) 

 

Elasticity 

In elastic case, the only non-zero term is 
𝜕𝑻

𝜕𝑬
= 𝔼 with 𝔼 the Hooke’s matrix which is: 

 𝔼 =

(

 
 
 

𝜆 + 2𝜇 𝜆 + 2𝜇 𝜆 + 2𝜇 0 0 0
𝜆 + 2𝜇 𝜆 + 2𝜇 𝜆 + 2𝜇 0 0 0
𝜆 + 2𝜇 𝜆 + 2𝜇 𝜆 + 2𝜇 0 0 0
0 0 0 2𝜇 2𝜇 2𝜇
0 0 0 2𝜇 2𝜇 2𝜇
0 0 0 2𝜇 2𝜇 2𝜇)

 
 
 

 (7.62) 

 

where λ = (3K − 2μ)/3 with λ Lamé’s first parameter, K bulk modulus and μ shear modulus.  

 

Plasticity 

In plastic case, the expression of 𝜕𝑻/𝜕𝑬 is: 

 
𝜕𝑻

𝜕𝑬
=  
𝜕(𝑇ℎ

𝑒𝑝𝑰 + �̅�𝑻𝑫
𝒆 )

𝜕𝑬
= 𝑇ℎ

𝑒𝑰 ⊗
𝜕𝑝

𝜕𝑬
+ 𝑻𝑫

𝒆 ⊗
𝜕�̅�

𝜕𝑬
+ 𝔼′ (7.63) 
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The expression of 𝜕𝑻/𝜕𝑚 is: 

 
𝜕𝑻

𝜕𝑚
=
𝜕(𝑇ℎ

𝑒𝑝𝑰 + �̅�𝑻𝑫
𝒆 )

𝜕𝑚
= 𝑇ℎ

𝑒
𝜕𝑝

𝜕𝑚
𝑰 +

𝜕�̅�

𝜕𝑚
𝑻𝑫
𝒆  (7.64) 

 

The expression of 𝜕𝜅/𝜕𝑬 is: 

 
𝜕𝜅

𝜕𝑬
=
𝜕𝜅

𝜕𝐽

𝜕𝐽

𝜕𝑬
+
𝜕𝜅

𝜕𝑇ℎ
𝑒

𝜕𝑇ℎ
𝑒

𝜕𝑬
+
𝜕𝜅

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑬
=
𝜕�̅�

𝜕𝐽

𝜕𝐽

𝑬
+
𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕𝑇ℎ
𝑒

𝜕𝑬
+
𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑬
 (7.65) 

 

The expression of 𝜕𝜅/𝜕𝑚 is: 

 
𝜕𝜅

𝜕𝑚
=
𝜕𝜅

𝜕𝑇∗

𝜕𝑇∗
𝜕𝑚

+
𝜕𝜅

𝜕𝑓

𝜕𝑓

𝜕𝑚
+
𝜕𝜅

𝜕𝑝

𝜕𝑝

𝜕𝑚
=
𝜕�̅�

𝜕𝑇∗

𝜕𝑇∗
𝜕𝑚

+
𝜕�̅�

𝜕𝑓

𝜕𝑓

𝜕𝑚
+
𝜕�̅�

𝜕𝑝

𝜕𝑝

𝜕𝑚
 (7.66) 

 

The terms appeared in Equations (7.63)(7.64)(7.65) (7.66) are listed in the following: 

 The matrix 𝔼′ 

 𝔼′ =

(

 
 
 
 

𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0
𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0

𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 𝜆′ + 2𝜇′ 0 0 0

0 0 0 2𝜇′ 2𝜇′ 2𝜇′

0 0 0 2𝜇′ 2𝜇′ 2𝜇′

0 0 0 2𝜇′ 2𝜇′ 2𝜇′)

 
 
 
 

 (7.67) 

 

where 𝜆′ = (3𝑝𝐾 − 2𝑞𝜇)/3, 2𝜇′ = 2𝑞𝜇 with 𝐾 bulk modulus and 𝜇 shear modulus. 

 

 Function 𝐺 and its partial derivatives  

 

{
 
 
 

 
 
 𝐺 = (

𝑇𝑒𝑞
𝑒 𝑞

𝑇∗
 )

2

 +  2𝑞1𝑓
∗ cosh (

3

2
𝑞2
𝑇𝐻
𝑒𝑝

𝑇∗
) − 1 − (𝑞1𝑓

∗)2 

𝜕𝐺

𝜕𝑇ℎ
𝑒 = 3𝑞1𝑞2𝑓∗

𝑝

𝑇∗
sinh(

3

2
𝑞2
𝑇ℎ
𝑒𝑝

𝑇∗
)

𝜕𝐺

𝜕𝑇𝑒𝑞
𝑒 = 2(

𝑞

𝑇∗
)
2

𝑇𝑒𝑞
𝑒

 (7.68) 

 

 Function 𝑇∗ and its derivatives  

 

{
 
 

 
 
�̅�∗(𝜅) = 𝐽(�̅�(𝜅) + 𝑟𝑛𝑙𝜅 −𝑚)

𝜕�̅�∗
𝜕𝐽

= �̅�(𝜅) + 𝑟𝑛𝑙𝜅 −𝑚

𝜕�̅�∗
𝜕𝑚

= −𝐽

 

 

(7.69) 
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 Function �̅� and its partial derivatives 

 

{
 
 

 
 �̅� = 𝛬(

𝑇ℎ
𝑒𝑝

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑇ℎ
𝑒 =

𝑝

𝑇∗

𝜕𝛬

𝜕𝑥
(
𝑇ℎ
𝑒𝑝

𝑇∗
, 𝑓)

 (7.70) 

 

 Function �̅� and its partial derivatives 

 

{
 
 
 

 
 
 �̅� = 𝛩 (

𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑇ℎ
𝑒 =

𝑝

𝑇∗

𝜕𝛩

𝜕𝑥
(
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓) +

𝑇𝑒𝑞
𝑒

𝑇∗

𝜕𝛩

𝜕𝑦
(
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓)

𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕𝛩

𝜕𝑇𝑒𝑞
𝑒 =

�̅�

𝑇∗

𝜕𝛩

𝜕𝑦
(
𝑇ℎ
𝑒𝑝

𝑇∗
,
𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
, 𝑓)

 (7.71) 

 

 Function �̅� and its partial derivatives 

 

{
 
 
 
 
 

 
 
 
 
 �̅� =

𝑇∗�̅�

𝑇∗�̅� +
𝜇
𝜅 𝑇ℎ

𝑒(1 − 𝑝)

𝜕�̅�

𝜕𝑇ℎ
𝑒 =

𝑇∗
𝜕�̅�
𝜕𝑇ℎ

𝑒 (𝑇∗�̅� +
𝜇
𝜅 𝑇ℎ

𝑒(1 − 𝑝)) − 𝑇∗�̅� (𝑇∗
𝜕�̅�
𝜕𝑇ℎ

𝑒 +
𝜇
𝐾
(1 − 𝑝))

(𝑇∗�̅� +
𝜇
𝜅
𝑇ℎ
𝑒(1 − 𝑝))

2

𝜕�̅�

𝜕𝑬
=
𝜕�̅�

𝜕𝐽

𝜕𝐽

𝜕𝑬
+
𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕𝑇ℎ
𝑒

𝜕𝑬
+
𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒

𝜕�̅�

𝜕𝑬
=
𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕𝑇ℎ
𝑒

𝜕𝑬

𝜕�̅�

𝜕𝑚
=
𝜕�̅�

𝜕𝑇∗

𝜕𝑇∗
𝜕𝑚

+
𝜕�̅�

𝜕𝑝

𝜕𝑝

𝜕𝑚
+
𝜕�̅�

𝜕𝑓

𝜕𝑓

𝜕𝑚
+
𝜕�̅�

𝜕𝑚
=
𝜕�̅�

𝜕𝑇∗

𝜕𝑇∗
𝜕𝑚

+
𝜕�̅�

𝜕𝑝

𝜕𝑝

𝜕𝑚
+
𝜕�̅�

𝜕𝑓

𝜕𝑓

𝜕𝑚

 

 

(7.72) 

 

 Function �̅� and its partial derivatives 

 

{
 
 
 
 
 

 
 
 
 
 �̅� =

𝐽𝑇ℎ
𝑒(1 − 𝑝)

3𝐾�̅��̅�

𝜕�̅�

𝜕𝑇ℎ
𝑒 =

−
𝐽
3𝐾 𝑇ℎ

𝑒(1 − 𝑝) (
𝜕�̅�
𝜕𝑇ℎ

𝑒 �̅� + �̅�
𝜕�̅�
𝜕𝑇ℎ

𝑒) −
𝐽
3𝐾 (1 − 𝑝)�̅��̅�

(�̅��̅�)2

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 =

−
𝐽
3𝐾
𝑇ℎ
𝑒(1 − 𝑝) (

𝜕�̅�
𝜕𝑇𝑒𝑞

�̅� + �̅�
𝜕�̅�
𝜕𝑇𝑒𝑞

)

(�̅��̅�)2

𝜕�̅�

𝜕𝐽
=
𝑇ℎ
𝑒(1 − 𝑝)

3𝐾�̅��̅�

 (7.73) 
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 Function 𝒗 =
𝜕�̅�∗

𝜕𝑻
 and its partial derivatives 

 

{
  
 

  
 𝒗 = �̅�(

3

2

𝑻𝑫
𝑇∗
+ �̅�𝑰)

𝜕�̅�

𝜕𝑇ℎ
𝑒 =

𝜕�̅�

𝜕𝑇ℎ
𝑒 (
3𝑻𝑫

𝒆 �̅�

2𝑇∗
+ �̅�𝑰) + �̅� (

𝜕�̅�

𝜕𝑇ℎ
𝑒 𝑰 +

3𝑻𝑫
𝒆

2𝑇∗

𝜕�̅�

𝜕𝑇ℎ
𝑒)

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 =

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 (
3𝑻𝑫

𝒆 �̅�

2𝑇∗
+ �̅�𝑰)

 (7.74) 

 

 Function �̅�𝑔 and its derivatives 

 

{
 
 
 
 

 
 
 
 �̅�𝑔(𝑝, 𝑇∗, 𝑓) =

1 − 𝑓

𝐽
�̅�(𝒗: 𝑰)

𝜕�̅�𝑔

𝜕𝑇ℎ
𝑒 (𝑝, 𝑇∗, 𝑓) =

1 − 𝑓

𝐽
(
𝜕�̅�

𝜕𝑇ℎ
𝑒 (𝒗: 𝑰) + �̅� (

𝜕𝒗

𝜕𝑇ℎ
𝑒 : 𝑰))

𝜕�̅�𝑔

𝜕𝑇𝑒𝑞
𝑒 (𝑝, 𝑇∗, 𝑓) =

1 − 𝑓

𝐽
(
𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 (𝒗: 𝑰) + �̅� (

𝜕𝒗

𝜕𝑇𝑒𝑞
𝑒 : 𝑰))

𝜕�̅�𝑔

𝜕𝐽
(𝑝, 𝑇∗, 𝑓) = 0

 (7.75) 

 

 Function �̅�𝑛 and its derivatives (𝐵𝑛 = 𝐵𝑛(𝜅
− + �̅�) and 

𝜕�̅�𝑛

𝜕𝜅
=
𝜕�̅�𝑛

𝜕𝜅
(𝜅− + �̅�)) 

 

{
 
 
 
 

 
 
 
 
�̅�𝑛 = 𝐵𝑛�̅�

𝜕�̅�𝑛
𝜕𝑇ℎ

𝑒 =
𝜕�̅�

𝜕𝑇ℎ
𝑒 (
𝜕�̅�𝑛
𝜕𝜅

�̅� + �̅�𝑛)

𝜕�̅�𝑛
𝜕𝑇𝑒𝑞

𝑒 =
𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 (
𝜕�̅�𝑛
𝜕𝜅

�̅� + �̅�𝑛)

𝜕�̅�𝑛
𝜕𝐽

=
𝜕�̅�

𝜕𝐽
(
𝜕�̅�𝑛
𝜕𝜅

�̅� + �̅�𝑛)

 (7.76) 

 

 Function �̅� and its partial derivatives 

 

{
 
 
 
 
 

 
 
 
 
 �̅� =  (

𝑇𝑒𝑞
𝑒 �̅�

𝑇∗
 )

2

 +  2𝑞1𝑓
∗ cosh (

3

2
𝑞2
𝑇𝐻
𝑒𝑝

𝑇∗
) − 1 − (𝑞1𝑓

∗)2 

𝜕�̅�

𝜕𝑇ℎ
𝑒 =

𝜕𝐺

𝜕𝑇ℎ
𝑒 +

𝜕𝐺

𝜕𝑞

𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 =

𝜕𝐺

𝜕𝑇𝑒𝑞
𝑒 +

𝜕𝐺

𝜕𝑞

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒

𝜕�̅�

𝜕𝐽
= 0

𝜕�̅�

𝜕𝑚
= 0

 (7.77) 
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 Function �̅� and its partial derivatives (�̅�∗ = �̅�∗(�̅�)) 

 

{
 
 
 
 
 

 
 
 
 
 

�̅� = 𝑇∗ − �̅�∗
𝜕�̅�

𝜕𝑇ℎ
𝑒 = −

𝜕�̅�

𝜕𝜅

𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 = −

𝜕�̅�

𝜕𝜅

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒

𝜕�̅�

𝜕𝐽
= −

𝜕�̅�

𝜕𝜅

𝜕�̅�

𝜕𝐽
−
𝜕�̅�

𝜕𝐽

𝜕�̅�

𝜕𝑚
= 𝐽

 (7.78) 

 

 Function �̅� and its partial derivatives  

 

{
 
 
 
 
 

 
 
 
 
 

�̅� = 𝛥𝑓 − �̅�𝑔 − �̅�𝑛

𝜕�̅�

𝜕𝑇ℎ
𝑒 = −(

𝜕�̅�𝑔

𝜕𝑇ℎ
𝑒 +

𝜕�̅�𝑛
𝜕𝑇ℎ

𝑒)

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒 = −(

𝜕�̅�𝑔

𝜕𝑇𝑒𝑞
𝑒 +

𝜕�̅�𝑛
𝜕𝑇𝑒𝑞

𝑒 )

𝜕�̅�

𝜕𝐽
= −(

𝜕�̅�𝑔

𝜕𝐽
+
𝜕�̅�𝑛
𝜕𝐽
)

𝜕�̅�

𝜕𝑚
= 0

 (7.79) 

 

 Derivatives of 𝑝, 𝑇∗, 𝑓 with respect to 𝑇ℎ
𝑒 , 𝑇𝑒𝑞

𝑒 , 𝐽, 𝑚 

According to the theorem of implicit function, we have 

 

(

 
 
 
 

𝜕𝑝

𝜕𝑇ℎ
𝑒

𝜕𝑝

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑝

𝜕𝐽

𝜕𝑝

𝜕𝑚

𝜕𝑇∗
𝜕𝑇ℎ

𝑒

𝜕𝑇∗
𝜕𝑇𝑒𝑞

𝑒

𝜕𝑇∗
𝜕𝐽

𝜕𝑇∗
𝜕𝑚

𝜕𝑓

𝜕𝑇ℎ
𝑒

𝜕𝑓

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑓

𝜕𝐽

𝜕𝑓

𝜕𝑚)

 
 
 
 

= −𝕁R
−1𝕁𝐼 (7.80) 

 

where 𝕁𝑅 can be found in Equation (7.40) and  

 𝕁𝐼 =

(

 
 
 
 
 

𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒

𝜕�̅�

𝜕𝐽

𝜕�̅�

𝜕𝑚

𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒

𝜕�̅�

𝜕𝐽

𝜕�̅�

𝜕𝑚

𝜕�̅�

𝜕𝑇ℎ
𝑒

𝜕�̅�

𝜕𝑇𝑒𝑞
𝑒

𝜕�̅�

𝜕𝐽

𝜕�̅�

𝜕𝑚)

 
 
 
 
 

 (7.81) 
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 Derivatives of 𝐽, 𝑇ℎ
𝑒 , 𝑇𝑒𝑞

𝑒  with respect to 𝑬 

 

{
  
 

  
 

𝜕𝐽

𝜕𝑬
= 𝐽𝑰

𝜕𝑇ℎ
𝑒

𝜕𝑬
= 𝐾𝑰

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑬
= 3𝜇

𝑻𝑫
𝒆

𝑇𝑒𝑞
𝑒

 (7.82) 

 

 Derivatives of 𝑝 with respect to 𝑬 

 
𝜕𝑝

𝜕𝑬
=
𝜕𝑝

𝜕𝐽

𝜕𝐽

𝜕𝑬
+
𝜕𝑝

𝜕𝑇ℎ
𝑒

𝜕𝑇ℎ
𝑒

𝜕𝑬
+
𝜕𝑝

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑇𝑒𝑞
𝑒

𝜕𝑬
 (7.83) 

 

 

 

Singularity  

In singular case, we have directly: 

 

{
 
 
 
 

 
 
 
 
𝜕𝑻

𝜕𝑬
= 0

𝜕𝑻

𝜕𝑚
= 0

𝜕𝜅

𝜕𝑬
=
𝜕𝜅

𝜕𝐽

𝜕𝐽

𝜕𝑬
= −

𝜕�̅�∗
𝜕𝐽
(
𝜕�̅�∗
𝜕𝜅
)

−1
𝜕𝐽

𝜕𝑬

𝜕𝜅

𝜕𝑚
= −

𝜕�̅�∗
𝜕𝑚

(
𝜕�̅�∗
𝜕𝜅
)

−1

 (7.84) 
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A5 Numerical stability (small-scale yielding) 

In this section, the influence of different numerical parameters on the global response (J resistance curve) is 

investigated. The proposed new method, which is presented in Chapter 4, will be used to compute the crack 

length ∆a. The main numerical parameters involved are: the mesh size in the process zone, the non-local penalty 

parameter, the incompressibility penalty parameter, two artificial nucleation parameters, the external radius of 

the boundary layer model and the initial notch radius. The aim of these studies is to choose an appropriate (range 

of) value(s) for each numerical parameter, then these values will be used in the simulations presented in Chapter 

4. 

 

A5.1 Element size 

The boundary layer model is spatially meshed. Different element sizes 𝑙𝑒 are used to discretize the process 

zone so as to find out a critical one below which the global response is spatially converged. Figure 7.1 shows 

the 𝐽 resistance curves when 𝑙𝑒 ∈  [0.35𝑙𝑛𝑙 , 0.70𝑙𝑛𝑙] with 𝑙𝑛𝑙 the non-local length scale. On the one hand, crack 

initiation can be well captured for 𝑙𝑒 < 0.63𝑙𝑛𝑙, on the other hand, the curves overlap for 𝑙𝑒 ≤ 0.42𝑙𝑛𝑙 . Thus, it 

is convenient to take 0.35𝑙𝑛𝑙 for the mesh size in the process zone for the study of crack propagation. This value 

is retained in the following study.  

 

Figure 7.1. J resistance curves for different mesh sizes 

 

A5.2 Nonlocal penalty parameter 

As mentioned in Chapter 2, a purely numerical parameter 𝑟𝑛𝑙  is introduced in the non-local discretized 

formulation to enforce the equality between a and 𝜅 . Obviously, the value of 𝑟𝑛𝑙  should not be too small, 

otherwise, its effect becomes negligible. (Zhang et al., 2018) observed oscillations on the κ field when 𝑟𝑛𝑙 is not 

large enough in spite of the effect of the Lagrange multiplier 𝑙. On the contrary, one can take any large value 

for 𝑟𝑛𝑙 as it will not affect the computational precision on 𝑎 − 𝜅.  
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Since the influence of 𝑟𝑛𝑙 on local responses has already been studied in the work of (Zhang et al., 2018), we 

only focus on the influence of 𝑟𝑛𝑙 on the J resistance curves. Four values of 𝑟𝑛𝑙 (𝑟𝑛𝑙/𝜎0 =  0.1, 1, 10,100) are 

studied and no difference is found among the corresponding J resistance curves. It can be concluded that the 

value of 𝑟𝑛𝑙 does not affect the global response. In view of the local/global response and the computational 

convergence, the value of 𝑟𝑛𝑙/𝜎0 is set to 10 from now on. 

 

A5.3 Incompressibility penalty parameter 

In the locking-free mixed element formulation, we also added a purely numerical parameter 𝑟𝑖𝑛𝑐𝑜 to add a 

control on the value of  𝜃 − 𝑡𝑟(𝑬) through a penalty. Its effects on global and local responses are studied in this 

part.  

Five values of 𝑟𝑖𝑛𝑐𝑜  (𝑟𝑖𝑛𝑐𝑜/𝜎0 = 0, 0.1, 1, 10,100) are used to perform the simulations. No difference is 

found among the corresponding 𝐽 resistance curves. Figure 7.2 plots the porosity (𝑓) profile along the ligament 

in the deformed configuration at a load level of  𝐽/(𝜎0𝑙𝑛𝑙) ≈ 28. Spurious oscillations of 𝑓 are observed for 

𝑟𝑖𝑛𝑐𝑜/𝜎0 = 0 and 𝑟𝑖𝑛𝑐𝑜/𝜎0 = 0.1, they disappear for larger values of 𝑟𝑖𝑛𝑐𝑜. Figure 7.3 plots the field of the crack 

opening stress 𝜎𝑦𝑦  for different 𝑟𝑖𝑛𝑐𝑜 . It can be observed that stress oscillations are very important in case 

of 𝑟𝑖𝑛𝑐𝑜/𝜎0 = 100, especially in the initial crack tip nearby zone. They are much less pronounced for small 

values of 𝑟𝑖𝑛𝑐𝑜.  In view of the local/global responses, 𝑟𝑖𝑛𝑐𝑜 should not be too small neither too large since on 

the one hand, a too small value for 𝑟𝑖𝑛𝑐𝑜 can lead to an incorrect local response (for instance the 𝑓 field in our 

case) and can hinder the computational convergence, on the other hand, a too large value for 𝑟𝑖𝑛𝑐𝑜 prescribes θ −

𝑡𝑟(𝐄) ≈ 0 at each integration point, resulting in volumetric locking again. In the following study, the value of 

𝑟𝑖𝑛𝑐𝑜/𝜎0 is set to 10. 

 

 

Figure 7.2. Evolution of porosity f in the ligament for different 𝑟𝑖𝑛𝑐𝑜 when 𝐽/(𝜎0𝑙𝑛𝑙) ≈ 28 
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Figure 7.3. Crack opening stress field for different 𝑟𝑖𝑛𝑐𝑜 when 𝐽/(𝜎0𝑙𝑛𝑙) ≈ 28 

 

 

A5.4 External radius 

As said before, small-scale yielding condition requires that the size of the plastic zone 𝑅𝑝 be much smaller 

than the outer radius 𝑅𝑒𝑥𝑡 (𝑅𝑒𝑥𝑡 /𝑅𝑝 ≥  20) . To check this requirement and choose a convenient value for 𝑅𝑒𝑥𝑡, 

we set a value for the maximal load level 𝐽/𝜎0𝑙𝑛𝑙 ≈ 58. In this case, the final size of the plastic zone is 𝑅𝑝 ≈

2700𝑙𝑛𝑙 . Five values of 𝑅𝑒𝑥𝑡  are studied (𝑅𝑒𝑥𝑡/𝑅𝑝  =  0.25, 2.5, 25, 250, 2500) . Figure 7.4 shows the 𝐽 

resistance curves for different 𝑅𝑒𝑥𝑡. The global response does not depend on the value of 𝑅𝑒𝑥𝑡 for 𝑅𝑒𝑥𝑡/𝑅𝑝 ≥

25. On the contrary, for 𝑅𝑒𝑥𝑡/𝑅𝑝 < 25, the curve becomes steeper and steeper with the decrease of 𝑅𝑒𝑥𝑡 as the 

small-scale yielding condition is not fulfilled anymore. Therefore, in the following study, in order to respect the 

SSY condition, 𝑅𝑒𝑥𝑡/𝑅𝑝 is set to 25 with 𝑅𝑝 is obtained at maximal load level. 
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Figure 7.4. . J resistance curve for different 𝑅𝑒𝑥𝑡 

 

A5.5 Initial notch radius  

As stated in (Hütter et al., 2013), pure crack tip blunting is expected in the initial stage of loading, this 

phenomenon leads to element distortion (Linse et al., 2012; M. Samal et al., 2008a, 2008b). To overcome this 

difficulty, (McMeeking, 1977) suggested to introduce an initial notch radius 𝑅𝑛 at the crack. This study showed 

that the introduction of 𝑅𝑛 only has little influence on the final results provided that 𝛿/𝑅𝑛 ≥ 5 (where 𝛿 is the 

crack tip blunting radius) as the theoretical solution for an ideal sharp crack tip can be obtained for this condition. 

This conclusion will be shown again in this part with a mesh size much smaller than that in the work of  

(McMeeking, 1977). 

Unlike in the other sections where the GTN damage law is used, the von-Mises law is used in this part, 

following the work of (McMeeking, 1977). Several initial notch radii 𝑅𝑛 are studied: 𝑅𝑛/𝑙𝑛𝑙 = 1.4, 2.1, 2.8, 3.5.  

The evolution of the maximum opening stress in the ligament 𝜎𝑦𝑦
𝑚𝑎𝑥  as a function of 𝛿/𝑅𝑛 is illustrated in 

Figure 7.5(a). This figure shows that an asymptotic value is reached when 𝛿/𝑅𝑛 ≈ 8. This conclusion is in 

accordance with (McMeeking, 1977) as the asymptotic value is almost reached for 𝛿/𝑅𝑛 ≥ 5. In addition, 𝜎𝑦𝑦
𝑚𝑎𝑥  

belongs to the range from 4𝜎0 to 5𝜎0, a value increasing with the hardening level 𝑛. This observation agrees 

with the result obtained in (McMeeking and Parks, 1979), who applied the slip line theory to estimate the stresses 

under plane-strain small-scale yielding conditions. 

However, it is observed that the stress tends to a very large value at the initial crack tip. This problem will 

be analyzed in the next part. In Figure 7.5(a), the stress in the vicinity of the crack tip was not accounted for. 
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Figure 7.5. (a) Evolution of the maximum opening stress in the ligament; (b) J-δ curves 

 

A5.6 Additional void nucleation  

In this part, a special attention is paid to the spurious and extremely high crack opening stress in the vicinity 

of the initial crack tip, as mentioned in the previous part. It is observed that the crack opening stress at the initial 

crack tip is large compared to that at other positions when von-Mises law is used. This result is due to the very 

high gradient of plastic deformation which causes additional hardening in the yield function (𝑐Δ𝜅). The same 

problem can be found with the use of the GTN model when strain nucleation is not active.  In addition, the 

material point (in the ligament) located at the initial crack tip never fails. This is mainly related to the low 

triaxiality at the initial crack tip. To illustrate it, a simulation without void nucleation is performed using the 

GTN damage model. Figure 7.6(a) plots the evolution of the extended triaxiality 𝑇𝑟 = 𝑇𝐻/𝑇
∗  against the 

equivalent plastic strain defined as 𝐸𝑒𝑞
𝑝
= √2/3𝑬𝒑: 𝑬𝒑 (including both volumetric and deviatoric parts) at four 

material points near the crack tip. It shows that at the beginning of loading, triaxiality is very low at the material 

point located just against the crack tip (𝑋 = 0.07𝑙𝑛𝑙) and it increases along the ligament. Figure 7.6(b) plots the 

hardening variable 𝜅 against the equivalent plastic strain 𝐸𝑒𝑞
𝑝

, it indicates that:  

 Within a certain range for 𝐸𝑒𝑞
𝑝

, the equivalent plastic strain 𝐸𝑒𝑞
𝑝

 is very close to the hardening variable 𝜅.  

 For the material point which never fails at the end of loading (𝑋 = 0.07𝑙𝑛𝑙), 𝜅 increases much more 

slowly than 𝐸𝑒𝑞
𝑝

 when Eeq
p
> 2.3.  

 For the material points near the initial crack tip, the deformation level at fracture decreases along the 

ligament.  
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Figure 7.6. Evolution of (a) the extended triaxiality ; (b) the hardening variable κ as a function of equivalent plastic strain 𝐸𝑒𝑞
𝑝

 

for the materials points located at X in the ligament when 𝐽/(𝜎0𝑙𝑛𝑙) ≈ 58 

 

In some cases, for example when an element deletion technique is used, it is imperative that all the material 

points located in front of the current crack tip in the ligament be in failure. Indeed, with an element deletion 

technique, elements are removed when the necessary condition for element deletion is met, which would be for 

instance 𝑓 = 𝑓𝐹  for all material points of an element. So it is interesting to introduce an artificial void 

nucleation 𝑓𝑛,𝑎. As regards the form of 𝑓𝑛,𝑎, a very simple formulation is used as below:  

 𝑓𝑛,𝑎 = {
0                                    if  𝐸𝑒𝑞

𝑝
< 𝐸𝑒𝑞,𝑐

𝑝

𝑏0( 𝐸𝑒𝑞
𝑝
− 𝐸𝑒𝑞,𝑐

𝑝
)              otherwise

 (7.85) 

 

where 𝑏0 is a constant and 𝐸𝑒𝑞,𝑐
𝑝

 is the critical equivalent plastic strain. Note that instead of using 𝜅, we use 𝐸𝑒𝑞
𝑝

 

as the argument of the function 𝑓𝑛,𝑎 since 𝜅 is likely to be bounded, as shown in Figure 7.6(b). 

This formulation enables the material point near the crack tip to locally fail. Attention should be paid to the 

choice of 𝑏0 and 𝐸𝑒𝑞,𝑐
𝑝

. The coefficient 𝑏0 should be large enough so that the material points can quickly fail 

and the deformation of the element containing these points would not be too large. Regarding 𝐸𝑒𝑞,𝑐
𝑝

, on the one 

hand, it should not be too small, otherwise other undesired points may fail and the crack path may be physically 

incorrect; on the other hand, it should not be too large as the deformation of the desired point may be too large 

before its failure. 

In order to check whether the artificial nucleation affects the global material response, three complementary 

simulations are performed with 𝐸𝑒𝑞,𝑐
𝑝

= 100%, 200%, 300% and with the same value 𝑏0 = 0.25. The case 

without nucleation can be seen as 𝑏0 = 0.25, 𝐸𝑒𝑞,𝑐
𝑝

= ∞ . No significant discrepancy has been observed. In this 

paper, we set 𝑏0 = 0.25 and 𝐸𝑒𝑞,𝑐
𝑝

= 2. 
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A6 Influence of initial porosity and stress triaxiality on critical porosity 

In this part, we aims at studying the effects of stress triaxiality 𝑇𝑟 and the initial porosity 𝑓0 on the critical 

porosity 𝑓𝑐 using the simulations of the representative material volume element RVE. 

It is assumed that the solid is made of an array of cylindrical unit cells. Each unit cell is considered as a RVE 

of initial height 2𝐻0  and initial radius 2𝐿0  containing a spherical void of radius 𝑅0 . The initial porosity is 

thus 𝑓0 = 2𝑅0
3/3𝐻0𝐿0

2 .  

 

A6.1 Constant triaxiality 

In order to study the effect of the triaxiality 𝑇𝑟 on the critical porosity 𝑓𝑐, it is necessary to know how to 

prescribe a constant triaxiality to RVE. 

It is assumed that the deformed boundaries of RVE remain parallel to the undeformed boundaries. Under 

this assumption, the macroscopic logarithmic principal strains and effective strain are given by:  

 𝐸𝑥 = 𝐸𝑧 = ln (
𝐿

𝐿0
) , 𝐸𝑦 = ln (

𝐻

𝐻0
) , 𝐸𝑒 =

2

3
|𝐸𝑦 − 𝐸𝑥| (7.86) 

 

where 𝐻  is the current height and 𝐿  is the current radius of RVE. The stresses conjugate to (𝐸𝑥 , 𝐸𝑦, 𝐸𝑧) 

are (Σ𝑥 , Σ𝑦, Σ𝑧). These stresses represent the average reaction forces per unit area of the deformed cell boundary. 

It can be demonstrated that the hydrostatic stress Σℎ and the effective stress Σ𝑒 are:  

 Σℎ =
1

3
(Σ𝑦 + 2Σ𝑥);  Σ𝑒 = |Σ𝑦 − Σ𝑥| (7.87) 

 

The stress triaxiality is: 

 𝑇 =
Σℎ
Σ𝑒
=
Σ𝑦 + 2Σ𝑥

3|Σ𝑦 − Σ𝑥|
=
1 + 2𝜌

3|1 − 𝜌|
  with  𝜌 =

Σ𝑥
Σ𝑦

 (7.88) 

 

If 𝐹𝑥 denotes the resultant of all traction 𝑡𝑥 acting on the lateral surface of RVE and 𝐹𝑦 the resultant of all 

traction 𝑡𝑦 acting on the top surface, according to (Lin et al., 2006), we have  

 Σ𝑦 =
2𝜋𝐿𝑡𝑦

𝜋𝐿2
=
𝐹𝑦

𝜋𝐿2
, Σ𝑥 = Σ𝑧 =

2𝜋𝐿𝑡𝑥
2𝜋𝐻𝐿

=
𝐹𝑥

2𝜋𝐻𝐿
 (7.89) 

 

Note that all shear stress components on RVE are zero to keep symmetry conditions and uniform deformation 

on RVE’s surfaces. According to (Lin et al., 2006), replacing the edge traction 𝑡𝑥 and 𝑡𝑦 by the axial and radial 

tractions, 𝑇𝑥 and 𝑇𝑦, distributed uniformly on the top and the lateral surfaces, we have: 

 Σ𝑦 = 𝑇𝑦, Σ𝑥 = Σ𝑧 = 𝑇𝑥 (7.90) 
 

These relations are quite useful for the traction control technique for constant triaxiality (Lin et al., 2006). 

This strategy is set up by prescribing the dependency between the uniform radial and axial tractions acted on 

the lateral and top surfaces, respectively. That is to say, uniform radial and axial tractions should be prescribed 

such that 𝜌 = Σ𝑥/Σ𝑦 remains constant during the loading history.  
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A6.2 Numerical strategy 

Mesh and boundary conditions 

The RVE considered here has the same initial height and radius (𝐻0 = 𝐿0). The axisymmetric modeling is 

considered. The mesh consists of 480 quadrilateral, axisymmetric elements (with reduced integration) of which 

24 elements are located around the void and 20 in the radial direction.  

In our work, we slightly modify the traction control technique introduced in (Lin et al., 2006). Here, the 

constant triaxiality is piloted by the displacement 𝑢𝐴𝐵. The tractions 𝑇𝑦 and 𝑇𝑥 are always respectively 𝑇𝑦 =

𝑎 cos(arctan(𝜌))  and 𝑇𝑥 = 𝑎 sin(arctan(𝜌))  with 𝑎  a value changing with  𝑢𝐴𝐵 . This technique is called 

“PILOTAGE” in Code_Aster. Besides, the deformation of 𝐴𝐵, as well as the deformation of 𝐵𝐶 are uniform. 

One can refer to Figure 7.7 for more detail.  

 

Figure 7.7. Mesh and boundary/loading conditions of RVE 

 

Material properties 

The numerical analyses use the standard von-Mises constitutive model following 𝐽2  flow theory. The 

material is supposed to obey an isotropic hardening (Zhang, 2016):  

 �̅�(𝜅) = 545 + 239(1 − 𝑒−10.3𝜅) (7.91) 
 

For the initial porosity and the stress triaxiality, the following combinations have been investigated.  

 𝑓0 = 10
−3, 5 × 10−3, 10−2 

 𝑇𝑟 = 0.7, 0.8, 0.9, 1.0, 1.3, 1.5, 2.0, 2.5, 3.0 

The value of 𝑓0  and 𝑇𝑟  cover the range of the initial porosity and the triaxiality in common structural 

applications.  



 

186 

 

The current porosity 𝑓 of RVE can be computed via the condition of plastic incompressibility of the material 

surrounding the void (Koplik and Needleman, 1988):  

 𝑓 = 1 − (1 − 𝑓0)
𝑉0
𝑉
(1 +

3(1 − 2𝜈)

𝐸
Σℎ) (7.92) 

 

where 𝑉0 and 𝑉 represent the initial and current volume of RVE.  

 

A6.3 Results 

Figure 7.8(a) shows the evolution of the radial stretch Δ𝐿/𝐿0 with increasing macroscopic effective strain 

𝐸𝑒 in the case of 𝑓0 = 0.001, 𝑇𝑟 = 3. It is observed that Δ𝐿/𝐿0 increases at the beginning since the effect of 𝑇𝑟 

is larger than the Poisson effect11 induced by 𝑇𝑦. Then, Δ𝐿/𝐿0 decreases since the material is assumed to be 

incompressible. Finally, it becomes a constant which indicates that further deformation takes place in a uniaxial 

straining mode. This shift to a macroscopic uniaxial strain state indicates the onset of void coalescence.  

Figure 7.8(b) shows the corresponding variation of 𝑑𝐿/𝑑𝐸𝑒 (i.e., slope of Figure 7.8(a)) with 𝐸𝑒. The critical 

effective strain 𝐸𝑐 is defined as the value of 𝐸𝑒 corresponding to min
𝑑𝐿/𝑑𝐸𝑒=0

𝐸𝑒. The corresponding effective stress 

is 𝑇𝑐 and the corresponding porosity is 𝑓𝑐. 

These results are in line with the results obtained in (Kim et al., 2004). 

 

 

Figure 7.8. (a) Evolution of the radial stretch with equivalent strain; (b) Evolution of 𝑑𝐿/𝑑𝐸𝑒𝑞  with Ee (𝑓0 = 0.001,𝛤 = 3) 

 

Figure 7.9(a) plots the macroscopic effective stress-strain curve for 𝑓0 = 0.001. The competition between 

strain hardening and porosity-induced softening are clearly illustrated in this figure. The effective stress 

decreases when the softening is dominant. A rapid drop on 𝑇𝑒 is observed once 𝐸𝑒 reaches its critical value 𝐸𝑐. 

Figure 7.9(b) shows the evolution of the porosity 𝑓 with 𝐸𝑒. It can be seen that 𝑓𝑐 depends on Γ.  

                                                      
11 Poisson effect: the phenomenon in which a material tends to expand in directions perpendicular to the direction of compression. 

Poisson ratio is a measure of the Poisson effect.   
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Figure 7.9. (a) Macroscopic effective stress-strain curve (𝑓0 = 0.001); (b) Evolution of the porosity with 𝐸𝑒𝑞 (𝑓0 = 0.001) 

 

Similar results were obtained for 𝑓0 = 0.005 and 0.01. Figure 7.10 shows the evolution of 𝑓𝑐 with the stress 

triaxiality 𝑇𝑟 for different 𝑓0. It can be seen that an increase of 𝑇𝑟 leads to an increase of 𝑓𝑐 at low triaxiality 

level and a decrease of 𝑓𝑐 at other triaxiality level. Besides, the value of 𝑓𝑐 increases with 𝑓0 for a given 𝑇𝑟𝑠. 

 

Figure 7.10. Effects of 𝑇𝑟 and 𝑓0 on 𝑓𝑐  
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ABSTRACT 
 

The major goal of this work is to establish a robust, reliable and efficient modeling technique so as to describe ductile 

tearing over a distance of several centimeters in industrial cases. The GTN damage model expressed in the context of 

finite strains is chosen to model ductile damage. Generally, the model leads to strain localization in agreement with 

experimental observations. The characteristic length scale of this phenomenon is introduced into the constitutive 

equations through the use of a nonlocal formulation. 

On a numerical ground, the nonlocal model controls the width of the localization band as soon as the mesh is 

sufficiently refined. Besides, the issue of volumetric-locking associated with plastic incompressibility is handled using 

a mixed finite element formulation. Finally, the distortion of broken elements (i.e. without any stiffness), which may 

affect the computational convergence of numerical simulations, is treated using a viscoelastic regularization. 

The improved GTN model is applied to simulate crack propagation under small-scale yielding conditions, so as to 

establish a relation with the global (J-Δa) approach. Crack tip blunting, crack initiation and (large) crack propagation 

are well captured. The model is also applied to a full-scale metallic pipe in the framework of the UE project Atlas+. 

After a phase of parameter calibration based on the experimental results on some small specimens, the global and local 

responses of other small specimens and of the full-scale pre-cracked pipe are compared with the experimental results. 

The results illustrates the robustness, the reliability and the efficiency of the current model. 

MOTS CLÉS 
 

Endommagement ductile ; GTN ; Dépendance au maillage ; Verrouillage volumique ; Eléments distordus ; 

Régularisation nonlocale ; Eléments mixtes ; Modèle viscoélastique ; Plasticité confinée ; Grande propagation ; 

Simulation ; Essai ; Applications industrielles 

RÉSUMÉ 
 

Cette étude a pour objectif principal d’établir une stratégie de modélisation robuste, fiable et performante pour 

décrire des propagations de fissures d’échelle centimétrique en régime ductile dans des composants industriels. Le 

modèle d’endommagement de GTN écrit en grandes déformations est utilisé pour modéliser l’endommagement ductile. 

Ce modèle conduit généralement à une localisation de la déformation, conformément à l’expérience. L’échelle 

caractéristique de ce phénomène est introduite dans les équations de comportement via l’adoption d’une formulation 

non locale. 

Sur le plan numérique, ce modèle non local rend bien compte de la localisation dans une bande d’épaisseur donnée 

lorsqu’on raffine suffisamment le maillage. Par ailleurs, le problème de verrouillage numérique associé au caractère 

initialement isochore de la déformation plastique est limité en utilisant une formulation à base d’éléments finis mixtes. 

Enfin, la distorsion des éléments totalement cassés (i.e. sans rigidité apparente), qui pourrait nuire à la bonne 

convergence des simulations numériques, est traitée par une régularisation viscoélastique.  

L’ensemble de ces ingrédients sont appliqués pour simuler la propagation de fissure dans un milieu infini plasticité 

confinée), de sorte à établir un lien avec les approches globales en J-Δa. L’émoussement, l’amorçage et la (grande) 

propagation de fissure sont bien prédits. Le modèle est également appliqué à une tuyauterie métallique testée en grandeur 

réelle dans le cadre du projet européen Atlas+. Après une phase d’identification des paramètres sur éprouvette, les 

réponses globales et locales d’autres éprouvettes et du tube sont confrontés aux résultats expérimentaux. Ces résultats 

illustrent le degré de robustesse, de fiabilité et de performance qu’on peut attendre du modèle. 

KEYWORDS 
 

Ductile damage; GTN; Mesh sensitivity; Volumetric-locking; highly distorted elements; Non-local regularization; 

Mixed finite elements; Viscoelastic model; Small-scale yielding; Large crack propagation; Simulation; Experiment; 

Industrial applications 


