HAND-CRAFTED APPROACHES FOR POINT CLOUD PROCESSING 𝜌

𝑟 𝑠 = 𝑟 0 × 𝜑 𝑠 𝑠 𝐶 𝑠 𝑟 𝑠 𝜌 ⁄ 𝜆 1 > 𝜆 2 > 𝜆 3 ∈ ℝ 𝐞 1 , 𝐞 2 , 𝐞 3 ∈ ℝ 3 cov(𝒩) = 1 |𝒩| ∑ (𝐩 -𝐩 ̅)(𝐩 -𝐩 ̅) 𝑇 𝐩∈𝒩 ∑ 𝜆 𝑖 (∏ 𝜆 𝑖 ) 1 3 ⁄ -∑ 𝜆 𝑖 ln(𝜆 𝑖 ) (𝜆 1 -𝜆 2 ) 𝜆 1 ⁄ (𝜆 2 -𝜆 3 ) 𝜆 1 ⁄ 𝜆 3 𝜆 1 ⁄ 𝜆 3 (𝜆 1 + 𝜆 2 + 𝜆 3 ) ⁄ × 2 | 𝜋 2 -angle(𝐞 𝑖 -𝐞 𝑧 )| 𝑖∈[0,2] × 6 1 |𝒩| |∑⟨𝐩 -𝐩 𝟎 |𝐞 𝑖 ⟩ 𝑘 | 𝑖∈[0,1,2] 𝑘∈[1,2] × 2 1 |𝒩| ∑⟨𝐩 -𝐩 𝟎 |𝐞 𝑖 ⟩ 𝑘 𝑘∈[1,2] |𝒩| 𝐩 ̅ 𝒩 (𝜆 1 -𝜆 3 ) 𝜆 1 ⁄ |𝜋/2 -angle(𝐞 𝑖 -𝐞 𝑧 )| 𝐞 𝑧 𝑆 = 8 𝑟 0 = 0.1𝑚 𝜑 = 2 𝜌 = 5 𝑆, 𝑟 0 , 𝜑 ρ 𝐹 1 𝐹 1 = 2𝑇𝑃 2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 IoU = 𝑇𝑃 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 = 𝐹 1 2 -𝐹 1 𝑇𝑃 𝐹𝑃 𝐹𝑁 ± ± ± ± ± ± ± ± ± ± ± ± ± 𝒯
𝑖 𝑚𝑎𝑥 = 20 𝐹 1 𝐹 1 𝐹 1 × 3 1 |𝒩| ∑ 𝑐 × 3 1 |𝒩| -1 ∑(𝑐 -𝑐̅ ) 2 𝑆 = 8 𝑟 0 = 0.05𝑚 𝜑 = 2 𝜌 = 5 𝑆 = 8 𝑟 0 = 0.1𝑚 𝜑 = 2 𝜌 = 5 𝑛 0 = 1,000 𝑛 𝑖𝑛𝑐 = 2,000 𝑖 𝑚𝑎𝑥 = 20 𝜌 𝜌 𝜌 𝜌 = 3 𝜌 𝜌 𝜌 = 5 𝜌 𝜌 𝜌 3 × 3 𝜌        𝐹 𝑔 𝐹 * 𝑔 = ℱ -1 (ℱ(𝐹) ⊙ ℱ(𝑔)) ⊙ * ℱ 𝑈 𝑥 𝑥 ̂= ℱ(𝑥) = 𝑈 𝑇 𝑥 𝑥 = ℱ -1 (𝑥 ̂) = 𝑈𝑥 F * 𝑔 = 𝑈(𝑈 𝑇 𝐹 ⊙ 𝑈 𝑇 𝑔) 𝑈 𝑇 𝑔 𝑈 𝑇 𝑔 Θ 𝐹 * 𝑔 = 𝑈Θ𝑈 𝑇 𝐹 Θ 𝑀𝐿𝑃(ℎ 1 , … , ℎ 𝑙 ) 𝑙 ℎ 𝑖 𝑖 1 × 1 𝑀𝐿𝑃(6,6) ℝ 2 ℝ 2 ℝ 3 ℝ 𝑛 64 × 64 3 × 3 𝑑 𝐼 𝑔 𝑥 (𝐼 * 𝑔)(𝑥) = ∑ 𝑔(𝑥 𝑖 -𝑥)𝐼(𝑥 𝑖 ) 𝑥 𝑖 ∈𝒩 𝑥 𝒩 𝑥 𝑥 𝑥 𝑥 𝑖 ℕ 2 𝑔 𝑥 𝑥 𝑥 𝑖 ℝ 3 𝑔 𝑥 𝑖 𝑓 𝑖 𝒫 ∈ ℝ 𝑁×3 ℱ ∈ ℝ 𝑁×𝐷 ℱ 𝑔 𝑥 ∈ ℝ 3 (ℱ * 𝑔)(𝑥) = ∑ 𝑔(𝑥 𝑖 -𝑥)𝑓 𝑖 𝑥 𝑖 ∈𝒩 𝑥 𝑓 𝑖 ℝ 𝐷 𝑔 ℝ 𝑂 𝑂 𝑔 𝑥 𝑦 𝑖 = 𝑥 𝑖 -𝑥 𝑔 ℝ 3 ℝ 3 𝑔 ℝ 3 𝑔 𝑔 = 𝑀𝐿𝑃(

  { (𝑥 𝑖 , 𝑓 𝑖 ) | 𝑥 𝑖 ∈ ℝ 3 , 𝑓 𝑖 ∈ ℝ 𝐷 } { (𝑥 𝑖 , 𝑓 𝑖 ) | 𝑥 𝑖 ∈ ℝ 3 , 𝑓 𝑖 ∈ ℝ 𝐷 } 𝑦 0 , 𝒫, 𝑟) = { 𝑥 𝑖 ∈ 𝒫 | ‖𝑦 0 -𝑥 𝑖 ‖ ≤ 𝑟 } 𝑦 0 𝑘 𝑦 0 𝒩 𝐾𝑁𝑁 (𝑦 0 , 𝒫, 𝑘) = {𝑥 𝑖 ∈ 𝒫 | ‖𝑦 0 -𝑥 𝑖 ‖ ≤ ‖𝑦 0 -𝑥 𝑖+1 ‖, 𝑖 < 𝑦 0 , 𝒫, 𝑟, 𝐻) = { 𝑥 𝑖 ∈ 𝒫 | ‖𝑃 𝐻 (𝑦 0 ) -𝑃 𝐻 (𝑥 𝑖 )‖ 𝐩 𝟎 ) = 𝒩(𝐩 𝟎 , 𝐶 𝑠 , 𝑟 𝑠 )

  ) = ∑ 𝑊 𝑘 (∑ 𝜒 𝑖𝑘 (𝑥)[𝑀𝐿𝑃(𝑦 𝑖 ), 𝑓 𝑖 ] 𝑖 ) = 𝑔 𝑠𝑡𝑒𝑝 (𝑦 𝑖 ) • 𝑔 𝑇𝑎𝑦𝑙𝑜𝑟 (𝑦 𝑖 ) 𝑔 𝑠𝑡𝑒𝑝 𝑔 𝑇𝑎𝑦𝑙𝑜𝑟 𝑔 𝑔(𝑦 𝑖 ) = 𝑤 𝑖 • 𝑔 𝑇𝑎𝑦𝑙𝑜𝑟 (𝑦 𝑖 ) , 𝑔 𝑑,𝑜 (𝑦 𝑖 ) = 𝑊 𝑑,𝑜 𝑦 𝑖 + 𝑏 𝑑,𝑜 𝐷 × 𝑂 × 4 𝑔 𝑔(𝑦 𝑖 ) = ∑ Φ(|𝑦 𝑖 -𝑥 ̃𝑘|){𝑥 𝑖 ∈ 𝒫 | ‖𝑥 𝑖 -𝑥‖ ≤ 𝑟} 𝑦 𝑖 = 𝑥 𝑖 -𝑥 ℬ 𝑟 3 = {𝑦 ∈ ℝ 3 | ‖𝑦‖ ≤ 𝑟} ℬ 𝑖 , 𝑥 ̃𝑘) = max (0, 1 -‖𝑦 𝑖 -𝑥 ̃𝑘‖ 𝜎 ) 𝑦 𝑖 , 𝑥 ̃𝑘) = max (0, 1 -‖𝑦 𝑖 -𝑥 ̃𝑘‖ 𝜎 ) ℎ 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 (𝑦 𝑖 , 𝑥 ̃𝑘) 𝑖 ) = ∑ ℎ(𝑦 𝑖 , 𝑥 ̃𝑘)𝑊 𝑘 𝑘<𝐾 𝑔(𝑦 𝑖 ) = ℎ(𝑦 𝑖 , 𝑥 ̃𝑘 * )𝑊 𝑘 with 𝑘 𝑔)(𝑥) = ∑ 𝑔 𝑑𝑒𝑓𝑜𝑟𝑚 (𝑥 𝑖 -𝑥, ∆(𝑥))𝑓 𝑖 𝑥 𝑖 ∈𝒩 𝑥 𝑔 𝑑𝑒𝑓𝑜𝑟𝑚 (𝑦 𝑖 , ∆(𝑥)) = ∑ ℎ(𝑦 𝑖 , 𝑥 ̃𝑘 + ∆ 𝑘 (𝑥)𝑥) = ∑ ∑ ℎ(𝑥 ̃𝑘 + ∆ 𝑘 (𝑥), 𝑥 ̃𝑙 + ∆ 𝑙 (𝑥)) , de nouvelles technologies permettent l'acquisition de scènes 3D volumineuses et précises sous la forme de nuages de points. Les nouvelles applications ouvertes par ces technologies, comme les véhicules autonomes ou la maintenance d'infrastructure, reposent sur un traitement efficace des nuages de points à grande échelle. Les méthodes d'apprentissage profond par convolution ne peuvent pas être utilisées directement avec des nuages de points. Dans le cas des images, les filtres convolutifs ont permis l'apprentissage de nouvelles représentations, jusqu'alors construites « à la main » dans les méthodes de vision par ordinateur plus anciennes. En suivant le même raisonnement, nous présentons dans cette thèse une étude des représentations construites « à la main » utilisées pour le traitement des nuages de points. Nous proposons ainsi plusieurs contributions, qui serviront de base à la conception d'une nouvelle représentation convolutive pour le traitement des nuages de points. Parmi elles, une nouvelle définition de voisinages sphériques multi-échelles, une comparaison avec les k plus proches voisins multi-échelles, une nouvelle stratégie d'apprentissage actif, la segmentation sémantique des nuages de points à grande échelle, et une étude de l'influence de la densité dans les représentations multi-échelles. En se basant sur ces contributions, nous introduisons la « Kernel Point Convolution » (KPConv), qui utilise des voisinages sphériques et un noyau défini par des points. Ces points jouent le même rôle que les pixels du noyau des convolutions en image. Nos réseaux convolutionnels surpassent les approches de segmentation sémantique de l'état de l'art dans presque toutes les situations. En plus de ces résultats probants, nous avons conçu KPConv avec une grande flexibilité et une version déformable. Pour conclure notre réflexion, nous proposons plusieurs éclairages sur les représentations que notre méthode est capable d'apprendre.ABSTRACTIn the recent years, new technologies have allowed the acquisition of large and precise 3D scenes as point clouds. They have opened up new applications like self-driving vehicles or infrastructure monitoring that rely on efficient large scale point cloud processing. Convolutional deep learning methods cannot be directly used with point clouds. In the case of images, convolutional filters brought the ability to learn new representations, which were previously hand-crafted in older computer vision methods. Following the same line of thought, we present in this thesis a study of hand-crafted representations previously used for point cloud processing. We propose several contributions, to serve as basis for the design of a new convolutional representation for point cloud processing. They include a new definition of multiscale radius neighborhood, a comparison with multiscale k-nearest neighbors, a new active learning strategy, the semantic segmentation of large scale point clouds, and a study of the influence of density in multiscale representations. Following these contributions, we introduce the Kernel Point Convolution (KPConv), which uses radius neighborhoods and a set of kernel points to play the role of the kernel pixels in image convolution. Our convolutional networks outperform state-of-the-art semantic segmentation approaches in almost any situation. In addition to these strong results, we designed KPConv with a great flexibility and a deformable version. To conclude our argumentation, we propose several insights on the representations that our method is able to learn.MOTS CLÉS3D, apprentissage profond, nuage de points, convolution, sémantisation KEYWORDS 3D, deep learning, point clouds, convolution, semantic segmentation

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

𝒪(𝑛 2 )

𝑂(𝑁)

3 

3 3 3 = 27

∆ 𝑘(𝑥) 

× 1 𝐷 𝑖𝑛 ≠

2𝐷

-2 [0.8, 1.2] 

× 1