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Résumé
Cette thèse est consacrée au développement de modèles semi-analytiques précis

pour le calcul numérique de dispositifs nanophotoniques résonants. Il s’agit en parti-
culier de membranes à cristaux photoniques, qui supportent des résonances avec des
très grands facteurs de qualité, et d’ensembles composés de plusieurs nano-antennes
plasmoniques, qui présentent des résonances avec des faibles facteurs de qualité. La
thèse est divisée en deux parties.

La première partie présente un modèle semi-analytique pour le calcul des modes
supportés par des membranes à cristaux photoniques. Les modes à fuite (leaky
modes) supportés par ces membranes structurées sont modélisés comme une résonance
Fabry-Perot transverse composée de quelques ondes de Bloch propagatives qui vont
et viennent verticalement à l’intérieur de la structure. Ce modèle est appliqué à
l’étude des états liés dans le continuum (bound states in the continuum, ou BIC).
Nous montrons que le modèle Fabry-Perot multimode est parfaitement adapté pour
prédire l’existence des BICs ainsi que leur position dans l’espace des paramètres.
Grâce à la semi-analyticité du modèle, nous étudions la dynamique des BICs avec
l’épaisseur de la membrane pour des structures symétriques et asymétriques. Dans ce
dernier cas, nous étudions des objets présentant soit une symétrie horizontale brisée,
soit une symétrie verticale brisée (ajout d’un substrat). Le modèle Fabry-Perot nous
permet d’obtenir des informations importantes sur la nature et le comportement des
BICs. Nous démontrons que lorsque la symétrie miroir horizontale est brisée, les BICs
dus à la symétrie du système, qui existent dans les structures symétriques au point
Gamma du diagramme de dispersion, restent des BICs malgré l’absence de symétrie
mais changent de nature. Ils deviennent des BICs dus à des interférences destructives
entre les ondes de Bloch.

La deuxième partie est consacrée au développement d’une théorie modale originale
pour modéliser la diffusion de la lumière par des structures complexes composées d’un
ensemble de plusieurs nano-antennes. L’objectif est de pouvoir modéliser la diffusion
de la lumière par des métasurfaces à partir de la seule connaissance des modes de
leurs constituants individuels. Pour ce faire, nous combinons un formalisme modal
basé sur l’utilisation des modes quasi-normaux (QNM) avec la théorie multipolaire de
la diffusion multiple basée sur le calcul de la matrice de transition (matrice T) d’un
diffuseur unique. La matrice T fournit la relation entre le champ incident et le champ
diffusé dans la base des harmoniques sphériques vectorielles. Elle contient toutes les
propriétés de diffusion intrinsèques à l’objet. Le calcul de cette matrice représente une
charge numérique lourde car elle nécessite de nombreux calculs rigoureux du champ
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diffusé. L’utilisation d’une décomposition modale avec des QNMs nous permet d’une
part de rendre une partie du calcul analytique et d’autre part d’apporter une meilleure
compréhension physique. Nous dérivons une décomposition modale de la matrice T
et testons sa précision sur le cas de référence d’une nanosphère métallique.

Enfin, la décomposition modale de la matrice T est appliquée à des cas pratiques
d’intérêt en nanophotonique. A partir de la seule connaissance de quelques modes
d’un nanocylindre plasmonique unique, nous calculons analytiquement la diffusion
multiple de la lumière par un dimère et par une antenne Yagi-Uda composés de
ces nanocylindres. La comparaison avec les résultats d’une méthode numérique
rigoureuse démontre un bon accord avec le calcul modal. Par rapport à des cal-
culs entièrement rigoureux, la décomposition modale de la matrice T permet une
réduction significative du temps de calcul. Comme les calculs sont analytiques une
fois que les modes ont été calculés, l’approche modale est extrêmement utile pour les
problèmes d’optimisation.
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Thesis summary
The presented thesis is dedicated to the development of semi-analytical accurate

models for the numerical calculation of resonant nanophotonic devices. In particular,
it concerns photonic crystal slabs, which can support resonances with high quality
factors, and ensembles composed of several plasmonic nanoantennas, which exhibit
resonances with low quality factors. The structure of the thesis is two-fold.

In the first part, a semi-analytical model for the calculation of the modes supported
by photonic crystal slabs (their dispersion and quality factors) is presented. Leaky
modes supported by photonic crystal slabs are modeled as a transverse Fabry-Perot
resonance composed of a few propagative Bloch waves bouncing back and forth ver-
tically inside the slab. This model is applied to the study of bound states in the
continuum (BICs). We show that the multimode Fabry-Perot model is perfectly suit-
able to predict the existence of BICs as well as their precise positions in the parameter
space. We show that, regardless of the slab thickness, BICs cannot exist below a cut-
off frequency, which is related to the existence of the second-order Bloch wave in
the photonic crystal. Thanks to the semi-analyticity of the model, we investigate
the dynamics of BICs with the slab thickness in symmetric and asymmetric pho-
tonic crystal slab. In the latter case, we investigate structures with either a broken
horizontal symmetry or a broken vertical symmetry (addition of a substrate). As a
result, we obtain some important insights into the nature and behavior of BICs. We
evidence that, as the horizontal mirror symmetry is broken, the symmetry-protected
BICs that exist in symmetric structures at the Gamma-point of the dispersion dia-
gram are still BICs despite the absence of symmetry but change their nature. They
become resonance-trapped BICs, but only for specific values of the slab thickness.

The second part of the thesis is dedicated to the development of an original modal
theory to model light scattering by complex structures composed of a small ensemble
of plasmonic nanoantennas. The objective is to be able to model light scattering
by metasurfaces from the sole knowledge of the eigenmodes of their individual con-
stituents. For that purpose, we combine a quasi-normal mode (QNM) formalism
with the multipole multiple-scattering theory based on the calculation of the so-
called transition matrix (T-matrix) of a single scatterer. The T-matrix provides the
relation between the incident and scattered fields in the vectorial spherical harmonics
basis. It captures all the intrinsic scattering properties of the object that are due to
its shape and refractive index distribution. Computation of the T-matrix is a heavy
numerical burden since it requires numerous rigorous calculations of the scattered
field – one for each harmonic in the basis. Using a modal expansion of the scattered
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field with QNMs allows us to bring both analyticity and physical understanding into
the calculation. We derive a modal expansion of the T-matrix and test its accuracy
on the reference case of a metallic nanosphere.

Finally, we apply the modal expansion of the T-matrix to practical cases of interest
in nanophotonics. From the sole knowledge of a few modes of a single plasmonic
nanorod, we calculate analytically multiple light scattering by a dimer and a Yagi-
Uda antenna composed of these nanorods. We apply also the modal approach to
a periodic two-dimensional array of nanorods. Comparison with the results of a
rigorous Maxwell’s equations solver demonstrates a good agreement with the QNM-
based calculation. Compared to fully rigorous calculations, the QNM expansion of
the T-matrix allows for a significant reduction of the computation time. Since the
calculations are analytical once the modes have been calculated, the QNM approach
is extremely useful for optimisation problems.
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Chapter I
Introduction

Shaping and manipulation of electromagnetic waves is a widespread technique in
modern life from radio and microwaves to visible light and X-rays. Glass optical
lenses were among the first devices on this path. Now, we use electromagnetic waves
in one form or another in virtually every aspect of life, science, and technology, in a
way that was not possible before (not to count examples from nature, like eyesight
and magnetic-field sensitivity in some birds). As it often happens with a successful
piece of technology, we are approaching the limits that conventional optical devices,
like common lenses, hit. At the same time, novel technological endeavours and as-
pirations demand radically new performance of optical elements. Among them are
sub-diffraction limit imaging, smaller footprint, lower energy usage, and higher de-
gree of beam manipulation and steering. The field of nanophotonics has emerged as
a result with the aim to overcome the Abbe-Rayleigh diffraction limit, developing
technology able to manipulate light on a deep-subwavelength scale [1]. As we peer
down into the nanoworld, shrinking the photons to atomic sizes, new fundamental
physics awaits with the potential of providing monumental technological leaps.

In order to stand up to these challenges we cannot get away with an incremental
progress, gradually refining old techniques – totally new approaches are required.
Since the advent of micro and nanotechnologies, there have been several new concepts
introduced in the optics and optoelectronics communities. A non-exhaustive list
includes the keywords photonic crystals, plasmonics, nanoantennas, metamaterials,
and metasurfaces.

Historically, we can probably begin the countdown with photonic crystals – struc-
tures with a periodic variation of optical refractive index, which would act on photons
in a similar way a periodic potential acts on electrons in a common solid-state crys-
tal [2–8]. Even if surface and volume plasmons were known in solid-state physics
[9], plasmonics started to become a research field in its own right with the work
on extraordinary optical transmission [10]. The rise of metamaterials started with
the experimental demonstration of a negative index of refraction and the theoretical
proposal for an appealing application, a perfect lens [11–13]. Nowadays, these are



Chapter I: Introduction

all well-known building blocks in the nanophotonics toolbox, which are used for an
increasingly large number of applications.

In this introduction, we describe a few of these nanophotonic structures and their
applications (Section I.1), as well as the numerical methods that can be used to design
their optical properties (Sec. I.2). We focus on resonant devices (i.e., devices whose
spectral response is characterised by a resonance) for applications in free-space optics.
Even if it concerns a large and active community, we do not consider in this thesis
nanophotonic structures working in a guided-wave configuration. The last section of
this introduction (Sec. I.3) details the outline of the thesis.

1 Resonant optical nanostructures

Resonant nanostructures are key components of modern photonics. They are used
for applications as varied as the realisation of nanosources (nanolasers, non-classical
light sources), the exploitation of hot spots for the detection of chemical or biological
species, the control of light extraction/absorption (LEDs, photovoltaic cells, photode-
tectors)... Such a list can only be non-exhaustive as resonant nanostructures occupy
a central place in current nanophotonic applications.

If fundamental studies can be realised with single objects, applications often re-
quire the use of large-scale arrays, whether periodic, non-periodic, or fully disordered.
The large family of resonant nanostructured arrays can be separated into two main
categories: the ones with either resonant or non-resonant unit cells. In the latter
case, the resonance results from collective effects between several unit cells; typical
examples are the phenomena of guided-mode resonance in photonic crystal slabs and
light localization in disordered media. In the former case, the resonance of an array
can be directly related to the intrinsic resonance of its constituents. Metamaterials
and metasurfaces usually belong to this second category.

In the following Sections, we briefly introduce the concepts of photonic crystal
slabs, metamaterials, and metasurfaces, as well as their main applications.

1.1 Photonic crystal slabs

Photonic crystals are structures with a periodic variation of refractive index, which
would act on photons in a similar way a periodic potential acts on electrons in a
common solid-state crystal. First known important endeavours were undertaken by
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1 Resonant optical nanostructures

Lord Rayleigh around 1887 when his nascent experiments with periodic multi-layer
dielectric stacks demonstrated a possibility to achieve a photonic band gap in one
dimension. A modern phase of these experiments were started almost exactly 100
years later in 1987 by the works of Eli Yablonovitch [3], who coined the term “photonic
crystal”, which is so widespread nowadays, and Sajeev John [4].

Figure I.1.: Schematic examples of (a) bulk photonic crystals (PhC) with one-,
two-, and three-dimensional index modulation; (b) one-dimensional PhC slab;
(c) two kinds of 2D PhC slabs – rod slab (square array of dielectric rods in air,
left), hole slab (triangular array of air holes in a dielectric slab, right). Images
(a) and (c) adapted from [2]

Usually, photonic crystals are made of a high-index dielectric material such as Si or
III-V semiconductors with air slits or holes that introduce the periodic order. When
their periodicity approaches the wavelength of light, new diffraction effects appear,
most notably, a photonic band gap [7], in full analogy with the electronic band gap
in a semiconductor. This way, light propagation can be restricted in the direction
of periodicity, in one, two, or three dimensions. Then, by introducing defects or
wave guiding homogeneous regions, light can be localized or directed in the desired
direction [2]. Selecting the geometric parameters of a photonic crystal may not be
easy, but if done right we would have a very broad control over light dispersion and
therefore also over the propagation speed of a signal.

Photonic crystal slabs (PhC slabs) are formed by etching a one- or two-dimensional
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(1D or 2D) photonic crystal in a dielectric layer of finite (usually subwavelength)
thickness. Compared to three-dimensional (3D) photonic crystals, the simplified
architecture of PhC slabs makes them attractive for on-chip integrated photonics
[14, 15]. In addition, their peculiar diffraction properties have been used in a wide
variety of applications, including filters [16–20], vertical-cavity surface-emitting lasers
(VCSEL) [21–23], photovoltaics [24, 25], thermal emission [26], and structural colour
generation [27].

The unit cell of a PhC slab is usually non-resonant on its own. The resonances
that can be observed in their reflection and transmission result from the phenomenon
of guided-mode resonance, i.e., the coupling of the incident light to a leaky mode
supported by the periodic structure [17, 28–33].

1.2 Metamaterials

When the period is much smaller than the operating wavelength, a periodic medium
can be accurately described as a homogeneous one with some effective index. This
is the basis of so-called Effective Medium Theory (EMT) [34, 35]. By modifying the
geometry, the effective index can in principle be engineered to be a specific value thus
offering an optical response unavailable using conventional materials. Such structures
became known as metamaterials [36–38]. Metamaterials, in broad terms, are artifi-
cially designed and fabricated composite materials engineered to have a specific set
of predefined desired properties.

Metamaterials with a negative index of refraction are emblematic examples of such
artificial structures [11, 12, 39, 40]. However, the concept of structuring a material at
a subwavelength scale for modifying its macroscopic properties is more general and
has given birth to a much wider range of optical functionalities. A non-exhaustive
list includes form birefringence, as originally used by Hertz to polarise radio waves,
anti-reflection coatings, diffractive optical elements with enhanced capabilities, and
more recently magnetism at optical frequencies and cloaking.

Although this is not always the case, the constituent elements of metamaterials
are often resonant on their own. Metamaterials can be ordered, as well as disor-
dered, or possessing some far order [38, 43–46]. In the simplest case of ordered
deep-subwavelength metamaterials, homogenisation techniques can be applied and
the metamaterial can be treated as a homogeneous medium with effective permit-
tivity and permeability values. In this regime, the design is greatly simplified since
one can use well-known analytical results from the theory of homogeneous media. In
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1 Resonant optical nanostructures

Figure I.2.: Typical examples of a split-ring (SSR) resonator for achieving neg-
ative effective index of refraction. (a) Schematic of single unit cells orientation
with respect to incident wave polarisation and direction. A major parameter is
the gap size. (b) SEM image of fabricated sample. Unit cell size is 7 × 7μm,
nanoring side length is 5 μm. (c) A different example of an asymmetric SSR
with additional degrees of tunability, which are the angles indicated in the fig-
ure. (d) An image of a fabricated SSR-based metamaterial for the microwave
regime. (a,b) adapted from [41], (c) – [42], (d) – [12].

general, metamaterials in the homogenisation regime are equivalent to anisotropic
homogeneous media [47–51]. Mostly because of fabrication constraints, as the work-
ing wavelength decreases, the characteristic dimensions of the metamaterial unit cell
are not much smaller than the wavelength but only slightly smaller. Thus, opti-
cal metamaterials often operate in an intermediate, mesoscopic, regime and their
homogenisation becomes questionable [52–54].

1.3 Metasurfaces

Fabricating a bulky piece of 3D metamaterial is a very challenging task, partic-
ularly in the frequency range going from the visible to the infrared [38, 43]. As a
consequence, last 10 years witnessed a growing interest in 2D planar structures that
can be realised with standard nanofabrication processes while preserving an excep-
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tional control over the flow of light. The study of planar devices is also driven by
the need to mitigate losses and to ease integration into optical elements and circuits.
Such metamaterials with a reduced dimensionality are currently called metasurfaces,
in the sense that they possess optical properties that go far beyond those offered by
conventional flat surfaces [55, 56]. In some sense, by going from 3D to planar struc-
tures, the optical metamaterials community has followed a similar path compared to
the photonic crystal community with the development of photonic crystal slabs.

Generally, metasurfaces (also known as metalattices or metagratings) come in a
form of a two-dimensional array whose unit cells are specifically chosen resonant
nanoscatterers, sometimes referred to as meta-atoms. Like metamaterials, subwave-
length (especially deep subwavelength) metasurfaces can be efficiently modelled as
homogenised planar sheets (films) with effective parameters [57–62]. The term “met-
alens” is often used for metasurfaces that are designed to mimic (and improve upon)
the performance of optical lenses [63–68]. They are aimed at achieving wavefront
shaping in a general sense (not simply light focusing), mostly in the visible range,
while keeping their thickness subwavelength. To achieve a specific wavefront transfor-
mation, we need to have a full 2𝜋 phase modulation capability. This requires working
close to the resonance of the meta-atoms, often packing multiple elements within one
unit cell (itself smaller than the wavelength) each giving a certain phase change in
the interval [0, 2𝜋] [69, 70].

In general terms, phase discontinuities on the interface that transform the incident
electromagnetic wave into a desired one is the fundamental basis for the functionality
of metasurfaces. This idea can be traced back to the Schelkunoff-Huygens princi-
ple [71]. Over the years, a substantial work was done to improve the metasurface
efficiency [72] and to explore new designs (see, for instance, reviews [55, 73, 74]).
Without a doubt, this kind of work will be carried on and expanded further in the
following years [75–77].

There are two different types of metasurfaces for the visible and the infrared (see
Fig. I.3). The first one employs strongly localised optical resonances induced by
metallic nanostructures. This strategy has produced a wide range of devices, such as
ultrathin lenses, beam steering devices, and generators of orbital angular momentum
of light [78]. The second type of metasurfaces uses arrays of dielectric nanostructures
that exhibit geometric Mie-type resonances. This second strategy largely reduces
absorption losses [70, 79], enabling high-efficiency beam steering [80], refraction [81],
light focusing [82], sensing [83, 84], and holography [85].

Let us now discuss with more detail their differences and commonalities.

14



1 Resonant optical nanostructures

Figure I.3.: Scanning electron microscope (SEM) images of two metasurfaces
representing important design principles for plasmonic (a) and dielectric (b)
devices. The unit cell in (a) is comprised of eight gold nanoantennas optimised
to gradually increase the phase delay of the reflected field to cover the whole
[0, 2𝜋] interval. The unit cell of the metasurface (b) also has a gradient nature.
In this case, however, the size, rather than angle of the nanoantenna is modified
in order to achieve a similar effect. Image used in (a) is adapted from [69], (b)
– [86].

Metallic nanoparticles, such as silver or gold, are called plasmonic, because their
resonant nature results from the free electron collective oscillations (plasmons), which
leads to the appearance of localised modes known as localised surface plasmon reso-
nances. The resonance (spectral confinement) is associated with a spatial confinement
of the electromagnetic field in a small mode volume. However, because of inherent
Ohmic losses, especially for infrared and visible regimes, the quality factor of plas-
monic resonances remain quite modest, typically in the range 10–50. Ohmic losses
mean that some optical energy is being absorbed and transformed into heat. These
losses are obviously detrimental for realising efficient optical devices with a high trans-
mission or reflection. On the other hand, absorption is the governing effect for other
applications, such as biomedical [87] and photo-/thermo-voltaic [88] among others
[89].

Increasing the efficiency of metasurfaces by reducing absorption was a major ar-
gument for the study of dielectric (with a large refractive index) nanostructures sup-
porting Mie-type resonances. Of a particular importance to the field is silicon (other
popular choices include germanium, gallium phosphide, titanium dioxide, indium tin
oxide or silicon nitride, see, for example, review [84] and references therein). The op-
tical properties of such high-index materials are build upon the polarisation charges,
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which present inherently lower Ohmic losses. Silicon loss is intrinsically low in the
spectral range 0.9—1.65 𝜇𝑚 which has led to the design and implementation of sev-
eral Si-based metasurfaces with transmission higher than 90% and full phase agility
over the [0, 2𝜋] range [86].

Low losses, while very favourable, is not the only reason for such an enthusiastic
development of all-dielectric devices. Planar on-chip fabrication technologies, such
as CMOS (Complementary Metal–Oxide–Semiconductor), are well-developed, which
would facilitate basic research on metasurfaces, prototyping and eventual potential
commercialisation. More crucially, high-index materials possess magnetic-type reso-
nances of comparable strength to the electric ones [90, 91]. A strong magnetic dipole
resonance occurs due to a coupling of incoming light to a mode characterised by a
circular displacement current. This becomes possible when the wavelength 𝜆/𝑛 inside
the particle of refractive index 𝑛 becomes comparable to the particle dimension. In
contrast, achieving a similar magnetic response with a plasmonic particle requires
complex shapes such as split ring resonators [41, 92] or metallo-dielectric composites,
such as metal-insulator-metal (MIM) structures [93–95]. In turn, enhanced electro-
magnetic fields due to the excitation of the localised surface plasmon resonance in
metallic particles can be reproduced with their dielectric counterparts [96]. This is
significant as one of the foundational concepts in plasmonics is the large enhancement
of the electric field in so-called hot spots. Now, high-index structures are being used
to recreate these high electric and magnetic fields concentration spots, while keeping
the low losses, to enhance non-linear effects, such as Raman scattering or harmonic
generation (see, for example, review [84] and references therein).

The large variety of resonances in dielectric nanostructures enables complex inter-
ference phenomena between several excited modes, which in turn drives many novel
effects, such as unidirectional scattering [97–101], optical antiferromagnetism [102],
optical bound states in the continuum [103, 104], or optical anapoles [103, 105, 106].

2 Electromagnetic modelling in nanophotonics

Since Maxwell’s equations are exact for linear materials, their resolution using
rigorous numerical methods has always played a very important role in all fields of
electromagnetism. Nanophotonics is a perfect example of this statement. The need
for numerical computation is even greater because the cost of manufacturing and
characterising a structured object at the nanoscale remains high. Thus, to design a
photonic component, it is often better to rely on numerical computations rather than
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2 Electromagnetic modelling in nanophotonics

multiple fabrication-characterisation steps.
However, numerical calculation is not necessarily an easy solution. Indeed, one has

to calculate light scattering by 3D structures of complex geometry composed of mate-
rials with strong refractive index contrasts (thus, far from the perturbation regime).
In the case of metasurfaces, the optical response is a complex interplay between the
direct scattering from a single unit cell and the multiple scattering between adjacent
unit cells. Moreover, non-periodic metasurfaces are characterised by the coexistence
of several length scales with large and small dimensions compared to the wavelength.
Finally, given the large number of degrees of freedom, the design and optimisation
of devices requires tons of calculations. For these reasons, even though today one
has easy access to efficient electromagnetic solvers (both commercial and open-source
software products) and powerful computers, and recently optimisation techniques
have seen huge progress, modelling the optical response of resonant nanostructures
is not an easy task.

As a consequence, a variety of different modelling approaches coexist, from simple
toy models to rigorous numerical calculations. In the ensuing sections, we give a brief
overview of the main techniques used to model the optical properties of resonant
nanostructures.

2.1 Exact analytical solutions

Maxwell’s equations can be solved exactly and analytically for a few specific prob-
lems. By analytical, we do not mean here that no computer has to be used, we
mean that the electromagnetic field does not need to be discretised, neither spatially
nor spectrally. These “analytical” methods rely on the solving of a linear systems of
equations. Among these simple geometries, two are of particular interest, even for
real devices:

1. Spherical scatterers. Closed form solutions of Maxwell’s equations are provided
by Mie theory [107]. Generalisations to spheroids, core-shell spheres, and infi-
nite cylindrical rods are available [108–111];

2. Stratified media. Reflection and transmission by a stack of homogeneous layers
can be calculated by stacking 2 × 2 matrices that simply contains the Fresnel
coefficients, the refractive indices, and the thicknesses of the different layers.

These two theories can be extended and combined for the calculation of multiple
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scattering by an ensemble of spheres in a homogeneous medium or in a stratified
medium [112–115].

2.2 Rigorous numerical methods

Numerical methods that discretise Maxwell’s equations have the advantage to be
versatile and can be used, in principle, for any geometry.

The family of finite difference time domain methods (FDTD), along with the related
finite difference in the frequency domain methods, is largely used in nanophotonics
[116, 117]. Probably, the most widely used version is the one based on the Yee’s
algorithm [118]. Yee suggested to have E and H shifted by half of the grid step with
respect to each other, and to use central spatial and leapfrog time differences for the
derivatives. Finite difference algorithms can be implemented on a 1D, 2D, as well as
3D grid. The meshing typically used is cubic, which suits best for dealing with rect-
angular ridges and leads to step-sensitive approximation of curved surfaces (staircase
effect). Even though the computations can be parallelised, a typical Cartesian grid
causes them to be usually very computationally expensive.

In contrast stand the finite elements methods (FEM) [116, 119]. They do not expe-
rience the same hurdles accounting for the geometry as the finite difference methods
do thanks to a tetrahedral mesh. Typically, FEM are used in the frequency domain
and are built to solve the inhomogeneous vector wave equation, rather than two
Maxwell’s equations (Faraday and Ampere’s laws), which is the general approach of
the FDTD. The tetrahedral mesh does not just model irregularities in the structure
better, it also can accommodate smaller meshing size around features that require
finer details, and larger one in the bigger homogeneous regions. This increases the
overall computational efficiency greatly compared to FDTD.

Another interesting option is the discrete dipole approximation [116, 120]. The idea
is to represent a given nanoparticle with a cubic array of small polarisable blocks
with dipolar polarisabilities. Despite not being an exact method and employing a
discretisation that may neglect some of nanoparticles fine and curved features, this
approach has showed promising performance [121].

These methods rely on a full 3D spatial discretisation of the electromagnetic field
and require a large amount of memory in the case of 3D complex objects. On the
other hand, modal methods are based on a 2D discretisation and an analytical inte-
gration along the third dimension. Such techniques usually handle smaller matrices
and result in a smaller computational burden. On the other hand, the matrices are
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2 Electromagnetic modelling in nanophotonics

full in contrast to FDTD and FEM that work with sparse matrices. A widely used
modal method is the so-called Rigorous Coupled-Wave Analysis (RCWA) [122–127],
also known as the Fourier Modal Method. It is based on an expansion of the electro-
magnetic fields onto a basis of Fourier harmonics. RCWA is dedicated to scattering
problems with periodic arrays but can also be extended to aperiodic structures [128,
129].

The main advantage of rigorous numerical methods is their versatility. However,
they behave as a black box and do not allow for a clear physical understanding of
the results. Moreover, as the complexity of the structures to be modelled increases,
the number of degrees of freedom explodes, and the optimisation of devices with a
rigorous solving of Maxwell’s equations becomes extremely time-consuming.

2.3 Approximate methods

Finally, it is important to mention that numerous approximate methods have been
developed for resonant nanophotonics, from toy models to more refined approximate
theories. The development of approximate methods is mainly driven by two aspects.
First of all, one is rarely fully satisfied with a brute-force calculation and is generally
eager to understand the underlying physical mechanism. Secondly, one is always
looking for faster calculations in order to accelerate the design and the optimisation
of a device.

Widely-used approximate models in nanophotonics are based on the quasi-static
approximation. It can be used when the size of the object is much smaller than
the wavelength of light. In the context of light scattering by a single object, this
approximation stands for the modelling of the scatterer as an electric dipole, whose
polarisability is given by a simple analytical expression [116, 130]. In the context
of periodic media (photonic crystals, metamaterials), the quasi-static approximation
leads to the homogenisation of the structure, so that the new (in general, anisotropic)
homogeneous medium can be described by effective optical parameters [34, 130, 131].

In practice, nanophotonic devices do not necessarily fulfil the conditions of the
quasi-static approximation. Using such models is then only qualitative. They can
help to obtain a coarse physical understanding but they cannot provide accurate
predictions. There is clearly some room for improvement, a demand for approxi-
mate models that can provide both a good physical understanding and an accurate
prediction (i.e., without using fit parameters) of the optical response.
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3 Outline of the thesis

The objective of this thesis is to develop semi-analytical models for an efficient mod-
elling of periodic and compact resonant optical nanostructures. By semi-analytical,
we mean that the models rely on analytical derivations and closed-form expressions
that include some physical parameters, which are calculated with a rigorous numerical
method. Such an efficient mix between theory and numerical calculation is realised
by starting from a rigorous treatment of the electromagnetic problem and substitut-
ing some of the steps with well-chosen analytical approximations. In practice, modal
methods constitute a perfect choice for applying this recipe. Indeed, taking into ac-
count a large number of modes provides a rigorous, virtually exact, result. On the
other hand, if the system response is dominated by the excitation of a few modes,
neglecting most of the modes still provides accurate, but now semi-analytical, results.
This thesis is divided into three chapters.

In Chapter II we present a semi-analytical model for guided-mode resonances in
PhC slabs. By making well-chosen approximations in the RCWA, we show that the
problem can be treated as a few-modes Fabry-Perot resonator. Further assumptions
allow us to derive analytical expressions of the dispersion curve and the quality factor
of leaky modes supported by PhC slabs above the light cone. The multimode Fabry-
Perot model provides an insightful and efficient procedure to find and study the
so-called bound states in the continuum (BICs) – leaky modes of the PhC slab whose
coupling to the continuum of the surrounding space vanishes. Thanks to the semi-
analyticity of the multimode Fabry-Perot model, we investigate the dynamics of BICs
with the slab thickness in symmetric and asymmetric PhC slabs.

Chapter III switches from PhC slabs to finite 3D scatterers, whose resonant na-
ture can be accurately described by considering their eigenmodes. This approach,
known as quasi-normal mode expansion (or resonant-state expansion), has recently
undergone very important developments. Considering a large number of modes pro-
vides, in principle, a rigorous solution of the electromagnetic problem. On the other
hand, neglecting weakly excited modes to keep only a few dominant ones provides
approximate but accurate systems. The semi-analyticity comes in that case from the
fact that, once the modes have been calculated rigorously, their excitation coefficient
(how strongly a mode is excited by a given incident field) can be derived analyt-
ically. We apply quasi-normal mode expansion to the calculation of the scatterer
T-matrix, which is an intrinsic characteristic of a scatterer that relates linearly any
incident field to the corresponding scattered field. The objective is to subsequently
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3 Outline of the thesis

use the semi-analytical calculation of the T-matrix in a multiple scattering formalism
to calculate the response of an ensemble of scatterers from the sole knowledge of a few
eigenmodes of its constituents. Despite recent important developments, quasi-normal
mode expansion techniques are still less mature than other rigorous numerical meth-
ods. Because of this, we test the accuracy of our modal expansion of the T-matrix
in cases when either a small or a large number of modes is taken into account. We
propose two different modal decompositions and show that one of them provides
improved accuracy and convergence speed.

Finally, in Chapter IV, we use the results of the previous chapter and combine the
modal expansions of the T-matrices of different objects with a multiple scattering
theory. We first calculate analytically the T-matrix of a metallic nanorod from the
knowledge of its eigenmodes. Then, we use this modal expansion of the T-matrix
to calculate scattering by a dimer of metallic nanorods, emission of a dipole source
inserted in a Yagi-Uda antenna composed of metallic nanorods, and absorption in
a periodic array of the same nanorods. In each case, the sole knowledge of the
fundamental mode of the nanorods allows for an approximate reconstruction, which
contains most of the physics. Increasing the number of modes improves the accuracy.
The results are compared with the rigorous FEM calculation. The strengths and
weaknesses of the modal expansion are discussed.
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Chapter II
Bound states in the continuum in
photonic crystal slabs

In this chapter we present a multimode Fabry-Perot model that allows for a simple
yet quantitative analysis of the interference mechanism at the origin of the existence
of leaky modes in one-dimensional photonic crystal (PhC) slabs. We apply the mul-
timode Fabry-Perot model with either two or three Bloch waves (BWs) inside the
photonic crystal. For some specific values of the optogeometric parameters, a leaky
mode supported by a PhC slab can become a truly guided mode, even if it lies above
the light cone, i.e., within the radiation continuum. These are the so-called bound
states in the continuum (BICs). Thanks to its semi-analytical character, the model
allows for easy calculations of the bound states in the continuum positions in the
dispersion diagram and their variation as a function of the slab thickness.

We apply the multimode Fabry-Perot model to the calculation of the dispersion
curve and the quality factor of leaky modes supported by 1D PhC slabs of varying
thickness. We show that the model is able to quantitatively predict the appearance
of bound states in the continuum and their position in the parameter space. We show
that, regardless of the slab thickness, BICs cannot exist below a cut-off frequency,
which is related to the existence of the second-order Bloch wave in the photonic
crystal. Thanks to the semi-analyticity of the model, we investigate the dynamics of
BICs with the slab thickness in symmetric and asymmetric photonic crystal slabs.

This chapter is structured as follows. Fist of all, Section II.1 defines and briefly
discusses the BIC phenomenon. Following, Sec. II.2 introduces the concept of a PhC
slab made of a high refractive index material and comments on its principal opti-
cal properties. In Sec. II.3 we introduce and discuss in details to different kinds of
BICs that can exist in 1D photonic crystal slabs: symmetry-protected and resonance-
trapped. Section II.4 is dedicated to the multimode Fabry-Perot model itself. We
begin by presenting the BWs that propagate in a periodic medium and how they can
be used to calculate PhC slab dispersion (Subsec. II.4.1). Subsection II.4.2 consid-
ers the simplest case of a single propagative BW. Successive Subsections II.4.3 and
II.4.4 expand the model for the cases of two and three BWs by reducing them to



Chapter II: Bound states in the continuum in photonic crystal slabs

the single BW case with effective reflection coefficients. The accuracy of the model
is further verified against the Rigorous Coupled Wave Analysis (RCWA) calculation,
which takes into account a large set of BWs (Sec. II.5). Its limitations are discussed in
Sec. II.6. Finally, leveraging on the semi-analyticity of the model, in Sec. II.7 we study
and discuss the behaviour of BICs with varying slab thickness for symmetric (Sub-
sec. II.7.1), asymmetric (Subsec. II.7.2), and mounted on a substrate (Subsec. II.7.3)
PhC slabs.

1 What is a bound state in the continuum?

In recent years, a lot of interest was generated around the phenomenon of what
is now commonly known as bound states in the continuum [103, 104, 132, 133].
A BIC (also called embedded eigenvalue [134]) is a bound state that exists at the
same energy level as a continuum of radiation modes [135, 136]. In PhC slabs, it
corresponds to an eigenmode that is truly guided (no radiative leakage) despite the
fact that it lies above the light cone in the dispersion diagram 𝜔 = 𝑓(k), with 𝜔

the angular frequency and k the wave vector. In principle, eigenmodes lying above
the light cone should be leaky; they are expected to decay as they propagate due to
radiative leakage.

The absence of leakage (the fact that the state is bound) originates from two dif-
ferent physical mechanisms: symmetry incompatibility between the mode and the
radiation continuum for so-called symmetry-protected BICs or destructive interfer-
ence between different leakage channels for so-called resonance-trapped or Friedrich-
Wintgen BICs [104, 133, 136].

From a strictly theoretical point of view, BICs, and especially the ones resulting
from an interference mechanism, are definitely counter-intuitive and intriguing modes.
From a practical point of view, however, BICs do not really exist. Indeed, in a
real non-ideal structure, they are anyway faintly coupled to the radiation continuum
because of technological imperfections, roughness, or finite size of the device. A
BIC thereby becomes a leaky mode with extremely low leakage, i.e., with a very
large quality factor 𝑄. Therefore, if a PhC slab can be fabricated with geometrical
parameters close enough to the ideal ones, it would exhibit a very sharp resonance
with an extremely high quality factor whose value is only limited by technological
constraints. Such high-𝑄 resonances that result from the existence of a BIC nearby
in the parameter space have been recently investigated [137–139] and exploited for
lasing [140, 141] and sensing applications [83, 142, 143].
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2 High-contrast photonic crystal slab

Up to now, the existence of BICs and their location in the parameter space has
been calculated either with rigorous numerical methods [104, 140, 144–148] or with
various perturbative techniques based on coupled-wave theory [132, 149–152]. Fully
numerical approaches are cumbersome even for simple geometries since the whole
parameter space has to be explored blindly to find a BIC. In addition, this blind
exploration has to be done with a very fine grid since BICs are usually narrow features
in the parameter space. Using a perturbation approach is an interesting alternative.
However, if coupled-wave theory is accurate for PhC slabs with a low refractive index
contrast, the accuracy drops as the contrast increases. Iterative schemes have been
proposed to improve the accuracy of the coupled-wave formalism for high refractive
index contrasts but at the cost of a drastic loss in simplicity [150].

To ease the practical implementation of PhC slabs supporting BICs, in particu-
lar with semiconductor materials, one needs approximate models that yield fast yet
accurate predictions of the BIC location in the parameter space. Improving the un-
derstanding of the physical mechanisms that lead to the BIC formation is also an
important issue. We propose a semi-analytical model that does not rely on a per-
turbative approach. The model presents a couple of major advantages. First, it
explicitly contains the interference mechanism that leads to the formation of a BIC.
And second, it yields quantitative predictions of the corresponding optogeometric
parameters for any refractive index contrast.

2 High-contrast photonic crystal slab

We start with a glance at the optical properties of a lamellar 1D PhC slab, that
is, a periodic array of slits in a dielectric membrane with refractive index 𝑛𝑑 = 3.5
embedded in air, as shown in Fig. II.1(a). The PhC period, the membrane thickness,
and the filling factor in dielectric material are respectively denoted with 𝑎, ℎ, and 𝐹 .
We study the leaky modes supported by this structure in Transverse Electric (TE)
polarisation, i.e., with electric field polarised along the slits in the 𝑦 direction. This
structure is also known as a high-contrast grating [153–155].

When a plane wave is incident on the photonic crystal slab, we can distinguish
two main operation regimes of a subwavelength photonic crystal slab: resonant and
broadband reflector [155]. The two corresponding reflection spectra are depicted in
Fig. II.1(b). Since the material is transparent, the transmission is simply given by
𝑇 = 1 − 𝑅. In the resonant regime we can observe sharp Fano features, which is an
indication of a plane wave (continuum of the outside free-space modes) coupling to
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Figure II.1.: (a) Schematic of the symmetric 1D PhC slab under study. Main
parameters are the PhC period 𝑎, the filling factor F, defined as the fraction
of the dielectric material, the refractive index 𝑛𝑑, and the slab thickness ℎ.
TE-polarised incident field is schematically marked as well. (b) Two regimes
of the PhC slab (HCG): broad band reflector (blue line) and resonant (yellow).
Parameters are taken from [155]. Namely, for the blue line: 𝑎 = 772 nm,
ℎ = 502 nm, 𝐹 = 0.77, 𝑛𝑑 = 3.2137, TM-polarisation; for the yellow one:
𝑎 = 716 nm, ℎ = 1494 nm, 𝐹 = 0.7, 𝑛𝑑 = 3.48, TE-polarisation. (c) Reflectivity
contour of a 1D PhC slab [parameters same as for the reflective regime in (b)]
as a function of excitation wavelength 𝜆 and slab thickness ℎ. Black dashed
lines mark second to fourth Bloch waves cuttoffs respectively from the right.
Arrows point to a region where the Fano resonance feature disappears and BIC
emerges.

a discrete leaky state of the PhC slab. This phenomenon is known as a guided-mode
resonance. By tuning optogeometric parameters, this feature can be made infinitely
narrow until it eventually disappears [see the arrows in Fig. II.1(c)] when leaky mode
of the PhC slab becomes a BIC [138]. This means that the discrete leaky state is no
longer coupled to the outside space and a BIC emerges.

Figure II.1(c) shows the slab reflectivity colour map versus the normalised 𝜆/𝑎 and
the thickness for the case of normal incidence and TE-polarisation. This characteristic
pattern exhibits a few distinct regimes of the slab performance, divided by the vertical
dashed lines, which correspond to the cut-offs of the BWs that propagate vertically in
the periodic medium. The right-most region is the deep-subwavelength (homogenisa-
tion) regime, where only a single BW is propagative. One can immediately recognise
interference fringes due to the Fabry-Perot mechanism in a homogeneous slab. To
the left of it, roughly between 𝜆/𝑎 = 2.5 and 3.3, is the two BWs region. We do
not, however, see any interference pattern yet, as, at the normal incidence, the sec-
ond BW is decoupled from the outside space and cannot be excited with an incident
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plane wave. Shifting farther to the left, we observe an intricate pattern created by
the first three BWs interference. Precisely this interference, when totally destructive,
leads to the total cancellation of the radiation and emergence of a BIC, and lies in
the foundation of the semi-analytical model introduced later in this chapter. As we
move further to smaller wavelengths, adding more and more propagating BWs, this
pattern becomes more and more complex. The complexity is further exacerbated
when diffraction orders emerge, as the wavelength becomes smaller than the period.

Let us emphasise that the multimode Fabry-Perot model is particularly well-suited
for the study of the resonant behaviour (such as appearance of BICs) of PhC slabs.
First, it is derived from a rigorous theory (the RCWA) simply by neglecting evanes-
cent waves. Therefore, the BWs used in the model to build the transverse resonance
are not virtual intermediary means for the calculation; they have a clear physical
meaning, even in the case of structures far from the perturbation regime. They ex-
actly correspond to the channels that destructively interfere to form a BIC. Secondly,
the BWs are bouncing back and forth vertically inside the PhC slab. The slab thick-
ness is thus a crucial parameter to understand the formation of BICs by destructive
interference. The model predictions are analytical with respect to this geometrical
parameter. Thirdly, BWs possess cut-off frequencies below which they cannot propa-
gate. Since the multimode Fabry-Perot model contains them explicitly, the zones in
the (𝜔, k) space where BICs of different composition, judging by the number of con-
stituent BWs, can exist become apparent with very few calculations. In particular,
the model allows us to evidence the existence of a cut-off frequency (related to the
second-order BW) below which no BIC can exist, regardless of the slab thickness.

3 Two types of BICs

The eigenmodes of the PhC slab are characterised by a wavevector k = (𝑘𝑥, 𝑘𝑦)
and an eigenfrequency �̃� = 2𝜋𝑐/�̃�. Because of radiative leakage – for modes with a
real wave vector located above the light cone – the eigenfrequencies are complex with
a non-zero imaginary part. The latter is related to the mode quality factor,

𝑄 = Re(�̃�)/[2Im(�̃�)]. (II.1)

Numerical calculations are performed with the RCWA [123]. The leaky modes (or in
fact quasi-normal modes, see Chapter III) of the PhC slab are calculated by searching
for the poles of the scattering matrix in the complex frequency plane [156, 157]. The
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number of Fourier harmonics retained in the expansion of the electromagnetic field
is 2𝑀 + 1 with 𝑀 = 30.

Figure II.2 shows the different types of BICs that can exist in a symmetric 1D
PhC slab. It also evidences the crucial role of the slab thickness in the formation of
BICs. Figure II.2(b) displays the dispersion curves of the four leaky modes with the
lowest frequency for ℎ = 0.71𝑎 and 𝐹 = 0.6. The normalised frequency 𝑎/Re(�̃�) of
the modes has been calculated as a function of the normalised 𝑥-component of the
wavevector 𝑘𝑥𝑎/(2𝜋), which is varied inside the first Brillouin zone, for a fixed 𝑘𝑦 = 0
(non-conical mount). The quality factors of the four modes are shown in Fig. II.2(c).
Two modes (green and blue curves) exhibit a BIC along their dispersion curve while
the other two (black curves) do not. Indeed, the quality factor of the green mode
diverges for 𝑘𝑥 = 0 and that of the blue mode diverges for 𝑘𝑥 = 0.046(2𝜋/𝑎). The
locations of these two BICs in the dispersion diagram are shown with dots labelled (1)
and (2) in Fig. II.2(b). The corresponding electric fields are displayed in Fig. II.2(d).

The existence of the BIC labelled (1) at 𝑘𝑥 = 0 (Γ point) can be easily understood:
radiative leakage is prohibited due to symmetry incompatibility. The field profile of
the mode is antisymmetric with respect to 𝑥, 𝐸𝑦(−𝑥, 𝑧) = −𝐸𝑦(𝑥, 𝑧), and it cannot
couple to the symmetric profile of a plane wave with 𝑘𝑥 = 0. 1 These non-leaky
modes had been identified in earlier works on PhC slabs without referring to them as
BICs. In recent literature they are often defined as symmetry-protected BICs [104,
133].

The existence of the BIC labelled (2) is more intriguing. Since 𝑘𝑥 = 0, its field
does not present any symmetry. It should, in principle, be coupled to the radiation
continuum. However, radiative leakage is exactly suppressed at 𝑘𝑥 = 0.046(2𝜋/𝑎).
This “accidental” disappearance of leakage results from destructive interference be-
tween several leakage channels [104]. In the literature, this type of BIC is referred to
as resonance-trapped BIC [133, 140] or Friedrich-Wintgen BIC [136].

As the slab thickness increases to ℎ = 1.62𝑎 (same filling factor 𝐹 = 0.6), more
modes appear in the spectral range of interest and the number of BICs increases as
well, see Figs. II.2(e)-(h). Our calculations show five BICs whose locations in the
dispersion diagram of Fig. II.2(f) are marked with the dots labelled from (1) to (5).
The corresponding electric fields are shown in Fig. II.2(h). Figure II.2(g) displays
the quality factors of the three leaky modes that exhibit one or two BICs along their
dispersion curve. The green mode has a diverging quality factor at 𝑘𝑥 = 0 and

1Since we plot the absolute value of 𝐸𝑦 in Fig. II.2, we identify the ones which have zero field
magnitude in the centre of symmetry as antisymmetric. Similarly, a field profile with non-zero
magnitude in the central cross-section of the ridge is called symmetric.
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Figure II.2.: BICs in symmetric PhC slabs for two different values of the slab
thickness, ℎ = 0.71𝑎 (a)-(d) and ℎ = 1.62𝑎 (e)-(h). (a) and (e) Schematics
of the structure. The filling factor and the refractive index of the dielectric
material are fixed, F = 0.6 and 𝑛𝑑 = 3.5. (b) and (f) Dispersion diagrams of
the leaky modes above the light cone (grey line). The bands represented with
coloured curves exhibit BICs for some particular values of the wave vector 𝑘𝑥

shown by coloured dots. (c) and (g) Quality factors 𝑄 of the leaky modes with
the same colours as in the dispersion diagram. BICs correspond to Q-factors
that tend to infinity (numerically larger than 109). (d) and (h) Electric-field
distributions |𝐸𝑦(𝑥, 𝑧)| of the BICs shown by coloured dots in (b) and (e). A
single period is represented; edges of the dielectric ridge are shown with white
lines.

another one at 𝑘𝑥 = 0.235(2𝜋/𝑎). The first one is a symmetry-protected BIC with
an antisymmetric field profile (1) while the second one is a resonance-trapped BIC
with a field profile (2) that is almost antisymmetric but not fully. Similarly, the red
mode is a symmetry-protected BIC at 𝑘𝑥 = 0 [antisymmetric field profile (3)] and
a resonance-trapped BIC at 𝑘𝑥 = 0.3587(2𝜋/𝑎) [field profile (4)]. It is important to
note that the latter has an almost symmetric field profile, see (4) in Fig. II.2(h), in
contrast to the resonance-trapped BIC labelled (2), which has a quasi-antisymmetric
field. Finally, the blue mode exhibits a BIC at 𝑘𝑥 = 0. Since its field profile (5) is
symmetric, it cannot be a symmetry-protected BIC but rather a resonance-trapped
BIC resulting from destructive interference.

So far, we can only observe in Figs. II.2(f)-(h) that four BICs among five are dif-
ferent in nature. Only BICs (1) and (3) are similar; they are symmetry-protected
BICs at 𝑘𝑥 = 0 with an antisymmetric field profile. The usual classification with two
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Chapter II: Bound states in the continuum in photonic crystal slabs

categories (symmetry-protected and resonance-trapped BICs) is clearly not sufficient
to fully characterise BICs in 1D PhC slabs. We summarise in Table II.1 the four dif-
ferent types of BICs that can be inferred from Fig. II.2(f)-(h). We will see in Sec. II.4
that the multimode Fabry-Perot model provides a clear physical understanding of the
differences between all four types BICs.

First, as already discussed in the literature, BICs can be separated in two families,
symmetry-protected BICs and resonance-trapped BICs. For the first ones, leakage is
forbidden because of symmetry incompatibility between the mode of the PhC slab and
the radiative plane wave. These BICs can only exist at 𝑘𝑥 = 0; they have necessarily
an antisymmetric field profile. Their existence does not depend on the geometrical
parameters of the PhC slab, provided that the horizontal symmetry is conserved.
Secondly, leakage can also be suppressed by destructive interference, resulting in the
appearance of a resonance-trapped BIC. Figures II.2(f)-(h) evidence that this BIC
family can be split in three different subcategories. Resonance-trapped BICs can
exist at 𝑘𝑥 = 0 with a symmetric field profile or at 𝑘𝑥 ̸= 0. In the latter case, the field
profile presents no strict symmetry, but it is either quasi-symmetric [e.g., BIC (4) in
Fig. 1(h)] or quasi-antisymmetric [e.g., BIC (2) in Fig. 1(h)]. By the prefix quasi,
we mean that the BIC belongs to the dispersion curve of a leaky mode that is either
symmetric or antisymmetric at 𝑘𝑥 = 0. In contrast to the symmetry-protected BICs,
the existence of resonance-trapped BICs formed by destructive interference strongly
depends on the geometrical parameters. It is thus difficult to predict their precise
position along the dispersion curve.

4 Multimode Fabry-Perot model

Bound states in the continuum in PhC slabs are leaky modes whose radiative leak-
age vanishes for a particular set of parameters. Their modelling is intrinsically linked
to the phenomenon of guided-mode resonance, which corresponds to the resonant ex-
citation of a leaky mode. Over the years, guided-mode resonance has been described
by several theoretical formalisms, such as, for instance, coupled-wave theory [30],
perturbation methods [32], or polology framework [28, 31]. Of particular interest to
the objectives of this thesis is an approach that consists of modelling the reflection
and transmission of a PhC slab as a transverse Fabry-Perot resonance composed of
a small number of BWs bouncing back and forth inside the slab. This approach
has been first proposed as a qualitative interpretation of the high reflectivity of PhC
slabs [29]. It has been made quantitative with 𝑁 = 2 waves in 2006 [33]. Then, this
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4 Multimode Fabry-Perot model

Table II.1.: Classification of BICs in symmetric 1D PhC slabs according to their
symmetry properties along the horizontal 𝑥-axis. The symmetry-protected BICs
that result from a symmetry incompatibility necessarily have an antisymmetric
field profile at 𝑘𝑥 = 0 and cannot exist at 𝑘𝑥 ̸= 0. The resonance-trapped
BICs formed by destructive interference can exist equally at 𝑘𝑥 = 0 (with a
symmetric field profile) or at 𝑘𝑥 ̸= 0. An antisymmetric (resp. symmetric) field
corresponds to 𝐸𝑦(−𝑥, 𝑧) = −𝐸𝑦(𝑥, 𝑧) [resp. 𝐸𝑦(−𝑥, 𝑧) = 𝐸𝑦(𝑥, 𝑧)]. By quasi-
symmetric (resp. quasi-antisymmetric), we mean that the field profile of the
BIC is almost symmetric (resp. almost antisymmetric), see BICs labelled (2)
and (4) in Fig. II.2(h). The last line of the Table gives the number of BWs that
interfere to form a BIC. This can be learned from the multimode Fabry-Perot
model.

Symmetry-protected Resonance-trapped
BICs BICs

𝑘𝑥 = 0 𝑘𝑥 ̸= 0 𝑘𝑥 = 0 𝑘𝑥 ̸= 0
antisym — sym quasi-sym quasi-antisym
2nd BW — 3rd BW 3rd BW 2nd BW

+1st BW +1st BW +1st BW
+2nd BW

multimode Fabry-Perot model has been used by several authors to study the optical
properties of high contrast gratings [153–155].

In what follows, we derive a semi-analytical model that predicts the dispersion
curve and the quality factor of leaky modes supported by a PhC slab. We extend the
approach proposed in Ref. [33] for the calculation of the reflection and transmission
of a PhC slab. In particular, we introduce more analyticity in the calculation. A
leaky mode is nothing but a transverse Fabry-Perot resonance composed of several
BWs bouncing back and forth vertically inside the slab. This description is perfectly
rigorous as long as a sufficiently large number 𝑀 of waves is taken into account.
This is the mathematical ground of RCWA [123]. In the case of subwavelength
periodic structures, only a small number 𝑁 of BWs are propagative, the other ones
being evanescent [33, 158]. Neglecting the impact of the evanescent waves provides
approximate closed-form expressions that can be very accurate, provided that the
slab thickness is large enough, typically larger than the decay length of the least
attenuated evanescent wave [33].
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Chapter II: Bound states in the continuum in photonic crystal slabs

4.1 Photonic crystal modes as a mixture of Bloch waves

Before building a multimode Fabry-Perot resonance in a PhC slab of thickness ℎ,
we need to solve the problem of a single interface between a semi-infinite PhC and a
semi-infinite homogeneous medium [see Fig. II.3(a)]. We denote by 𝛽𝑖 the propagation
constant of the 𝑖tℎ BW along the vertical 𝑧 direction. In a non-absorbing PhC, 𝛽𝑖

is either purely real (propagative wave) or purely imaginary (evanescent wave). The
number of propagative BWs depends on the geometry. For example, for 𝑘𝑥 = 0,
𝐹 = 0.6, and 𝑛 = 3.5, only up to three BWs are propagative in the band 𝑎/𝜆 < 0.6.
Their propagation constants are shown in Fig. II.3(b), where we can observe the
second and third BW cut-offs at 𝑎/𝜆 = 0.327 and 𝑎/𝜆 = 0.45, respectively. Note
that the fundamental BW (largest propagation constant, blue curve) has no cut-off
and is propagative regardless of the 𝑎/𝜆 value. The corresponding field profiles 𝐸𝑦(𝑥)
are shown in Fig. II.3(c). The fundamental BW is symmetric and the higher-order
BWs have alternately an antisymmetric or a symmetric field profile. For 𝑘𝑥 ̸= 0, the
cut-off frequencies vary with 𝑘𝑥 and the BWs are no longer strictly symmetric nor
antisymmetric.

As the 𝑖tℎ BW is incident on an interface with a homogeneous medium, it is re-
flected with a reflection coefficient 𝑟𝑖𝑖. In addition, it is reflected into a different BW
with a cross-reflection coefficient 𝑟𝑖𝑗, and transmitted as a propagative plane wave
with a transmission coefficient 𝑡𝑖. The coefficients 𝑟𝑖𝑖, 𝑟𝑖𝑗, and 𝑡𝑖 are the generalised
Fresnel coefficients for an interface between homogeneous and periodic media. Note
that we limit ourselves to the case where a single plane wave is propagative in the
homogeneous medium – the zeroth diffraction order of the PhC slab. The energy
contained in this plane wave corresponds to the radiative leakage.

In a PhC slab of thickness ℎ, the BWs are reflected at the top and bottom interfaces.
Thus, they propagate back and forth inside the slab, as illustrated in Fig. II.3(d).
We denote by 𝑢+

𝑖 and 𝑢−
𝑖 the amplitudes of the up- and down-propagating 𝑖tℎ wave,

respectively. The phase origin for the amplitude 𝑢+
𝑖 (resp. 𝑢−

𝑖 ) is taken at the bottom
interface (resp. the top interface).

Leaky modes of a PhC slab are solutions of Maxwell’s equations in the absence
of an incident wave. If one considers a finite number 𝑀 of BWs (propagative and
evanescent BWs), the amplitudes 𝑢+

𝑖 and 𝑢−
𝑖 are related by
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Figure II.3.: Multimode Fabry-Perot model. (a) Interface between a semi-
infinite PhC and a homogeneous medium. The refractive index of the homoge-
neous medium 𝑛𝑠 can be different from the index 𝑛gap inside the slits of the PhC.
At the interface, the Bloch waves (propagation constants 𝛽𝑖) propagating in the
periodic medium are reflected with a reflection coefficient 𝑟𝑖𝑖, cross-reflected
with a reflection coefficient 𝑟𝑖𝑗, or transmitted with a transmission coefficient
𝑡𝑖. (b) Normalised propagation constants of the BWs for 𝐹 = 0.6 as a function
of the frequency at the Γ-point (𝑘𝑥 = 0) and at 𝑘𝑥 = 0.2𝑎/(2𝜋). The cut-off
frequencies of the second and third BWs are shown by vertical dashed lines.
(c) Electric-field profile |𝐸𝑦(𝑥)| of the three propagative BWs for 𝑎/𝜆 = 0.526.
(d) Principle of the multimode Fabry-Perot model. In the spectral range of
interest, up to three BWs can propagate back and forth inside the PhC slab,
all other BWs being evanescent. Each BW is transmitted in the surrounding
medium with its own phase. The amplitude 𝐴 of the plane wave propagat-
ing away (radiative leakage) results from the interference between these three
contributions.

𝑢+
𝑖 =

𝑀∑︁
𝑗=1

𝑟𝑗𝑖𝑢
−
𝑗 exp(𝑖𝛽𝑗ℎ),

𝑢−
𝑖 =

𝑀∑︁
𝑗=1

𝑟𝑗𝑖𝑢
+
𝑗 exp(𝑖𝛽𝑗ℎ).

(II.2)

The number 𝑀 of BWs is equal to the truncation rank of the Fourier series in
RCWA [123], 𝑀 = 30 for the calculations shown in Fig. II.2. For the sake of simplic-
ity, we consider a PhC slab surrounded by the same homogeneous medium above and
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Chapter II: Bound states in the continuum in photonic crystal slabs

below. The equations can be straightforwardly generalised to the case of two different
media (e.g., for a PhC slab lying over a substrate, as discussed in Subsec. II.7.3); two
different families of reflection coefficients 𝑟𝑇

𝑗𝑖 and 𝑟𝐵
𝑗𝑖 have to be considered [159].

Equations (II.2) can be rewritten in a matrix form

R(𝑘𝑥,𝜆)U = 0, (II.3)

where the vector U is built with the amplitudes 𝑢+
𝑖 and 𝑢−

𝑖 , U = [𝑢+
1 ,𝑢−

1 , ...,𝑢+
𝑀 ,𝑢−

𝑀 ]𝑡,
and the matrix R(𝑘𝑥,𝜆) contains all reflections and cross-reflection coefficients. A
leaky mode is a non-trivial solution of this linear system of equations; it corresponds
to a pair (𝑘𝑥, �̃�) (with 𝑘𝑥 a real number and �̃� a complex number) that satisfies [146]

det
[︁
R(𝑘𝑥, �̃�)

]︁
= 0, (II.4)

with det being the determinant of a matrix. We calculate rigorously with RCWA the
parameters of a single interface (𝛽𝑖, 𝑟𝑖𝑖, 𝑟𝑖𝑗, 𝑡𝑖), and thus the matrix R(𝑘𝑥,𝜆), as a
function of the wavelength for a fixed value of the wave vector 𝑘𝑥. Then, Eq. (II.4)
can be solved, typically with an iterative procedure such as the Newton algorithm or
a different method using a Padé approximation [156], to find the complex wavelength
�̃� of the leaky mode. The dispersion curve and the quality factor are then given
respectively by 𝑎/Re(�̃�) = 𝑓(𝑘𝑥) and 𝑄 = Re(�̃�)/[2Im(�̃�)].

Regarding the radiative leakage, the amplitude of the outgoing propagative plane
wave is given by

𝐴 =
𝑀∑︁

𝑗=1
𝑡𝑗𝑢

+
𝑗 exp(𝑖𝛽𝑗ℎ). (II.5)

The radiative leakage results from the interference of the BWs amplitudes being
transmitted by the interface. Therefore, the leaky mode of the PhC slab is a BIC if,
and only if, the interference is perfectly destructive. One readily realises the crucial
role of the slab thickness ℎ in this mechanism since it drives the value of the phase
difference between the different BWs.

Solving Eq. (II.4) for a large number 𝑀 of BWs, hence containing a bunch of
evanescent waves, yields a rigorous and exact result for the dispersion curve and
quality factor. On the other hand, since the period of the PhC slab is subwavelength,
neglecting all the evanescent BWs to keep only a small number 𝑁 < 𝑀 of propagative
BWs drastically reduces the size of the linear system in Eq. (II.2). Within this
approximation, it is possible to derive closed-form expressions for the dispersion curve,
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4 Multimode Fabry-Perot model

the quality factor 𝑄, and the radiative leakage 𝐴, as shown hereafter. In particular,
these expressions provide analytical results with respect to the thickness ℎ. Note that
each of the N propagative BWs is calculated rigorously with 2𝑀 + 1 Fourier terms.

4.2 Transverse resonance for 𝑁 = 1 wave

Let us start with the simplest case 𝑁 = 1 when a single BW is propagative inside
the PhC slab, all the other waves being evanescent. Although self-evident, this case
allows us to introduce the main equations of the model. The single-mode regime
occurs when the period-to-wavelength ratio 𝑎/𝜆 is small, typically between the limit
𝑎/𝜆 → 0 (quasi-static limit) and the cut-off of the second BW. For the example in
Fig. II.3(b), it corresponds to 𝑎/𝜆 < 0.272 for all 𝑘𝑥 values from zero to the light line.

For a single propagative BW, Eq. (II.4) simply reduces to the usual resonance
condition of a Fabry-Perot resonator

1 − 𝑟2
11 exp(2𝑖𝛽1ℎ) = 0 . (II.6)

With no further assumption, the complex wavelengths that satisfy Eq. (II.6) has to
be found numerically, typically with an iterative algorithm. In order to derive closed-
form expressions of the dispersion curve and, most of all, of the quality factor, we make
two additional assumptions. We assume that (i) the quality factor of the resonance
is large, 𝑄 ≫ 1, and (ii) the modulus of 𝑟11 varies slowly with the wavelength over
the resonance bandwidth, 𝜕|𝑟11|/𝜕𝜆 ≈ 0. The validity of these assumptions will be
discussed in Sections II.5 and II.6. They are important to really reach closed-form
expressions of the dispersion curve and the quality factor. Without them, one would
have to solve Eq. (II.6) iteratively for every value of the slab thickness and the model
would not be analytic with respect to ℎ.

With these two assumptions, an eigenmode of the PhC slab corresponds to a BW
that returns in phase after half a round trip [160, 161],

Φ𝑇 (𝜆0, 𝑘𝑥) = 𝛽1ℎ+ arg(𝑟11) = 𝑝𝜋 , (II.7)

where 𝜆0 = Re(�̃�) and 𝑝 is an integer. The phase Φ𝑇 is the total phase accumulated
by the BW after half a round trip inside the slab. This phase-matching condition
gives an implicit definition of the dispersion curve. The quality factor 𝑄 is given
by [161, 162]
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𝑄 = − 𝜆0

1 − |𝑟11|2
𝜕Φ𝑇

𝜕𝜆
, (II.8)

where the derivative and the reflection 𝑟11 are taken at 𝜆 = 𝜆0.

Within the Fabry-Perot model with 𝑁 = 1 propagative BW, the amplitude 𝐴 of
the radiated plane wave is simply proportional to the BW amplitude inside the slab,

𝐴 = 𝑡1𝑢
+
1 exp(𝑖𝛽1ℎ) . (II.9)

In this case, the leakage does not result from the interference between several channels.
It vanishes if, and only if, the transmission 𝑡1 is strictly equal to zero. This, however,
never happens for symmetry reasons. It means that in order for Bloch-wave-to-plane-
wave transmission 𝑡𝑖 to disappear, the BW must have an antisymmetric field profile at
𝑘𝑥 = 0, in contrast to the symmetric profile of the plane wave. Since the fundamental
Bloch wave 𝑖 = 1 has a symmetric field profile at 𝑘𝑥 = 0, 𝑡1 has always a non-zero
value.

The Fabry-Perot model allows us to draw an important conclusion: no BIC can
exist at a frequency where a single BW is propagative. This result sets a spectral
cut-off to this existence of BICs, see Fig. II.3(b). We emphasise that this cut-off is
independent of the slab thickness.

4.3 Transverse resonance for 𝑁 = 2 waves

For larger period-to-wavelength ratios, the second BW, which has an antisymmetric
field profile, becomes propagative, see Fig. II.3(b). Let us start with the situation 𝑘𝑥 =
0. Since the fundamental BW is symmetric whereas the second BW is antisymmetric,
see Fig. II.3(c), the cross-reflections 𝑟12 and 𝑟21 are equal to zero and Eqs. (II.2) reduce
to two uncoupled sets of two equations each:

𝑢+
𝑖 = 𝑟𝑖𝑖𝑢

−
𝑖 exp(𝑖𝛽𝑖ℎ),

𝑢−
𝑖 = 𝑟𝑖𝑖𝑢

+
𝑖 exp(𝑖𝛽𝑖ℎ),

(II.10)

with 𝑖 = 1, 2. As a consequence, leaky modes result from a transverse resonance built
either with the fundamental BW alone or with the second BW alone. The dispersion
curve and the quality factor are given by Eqs. (II.7) and (II.8) with either (𝛽1, 𝑟11)
or (𝛽2,𝑟22).

Because of the symmetry mismatch between the BW and the propagative plane

36



4 Multimode Fabry-Perot model

wave, |𝑟22| = 1 and 𝑡2 = 0. Therefore, the mode of the PhC slab that corresponds to
a transverse resonance built with the second BW alone is necessarily a BIC whatever
the geometrical parameters. In particular, varying the slab thickness ℎ shifts the
dispersion curve according to the phase-matching condition but the Q-factor remains
infinite (since |𝑟22| = 1) and this mode at 𝑘𝑥 = 0 is truly guided with no radia-
tive leakage. It is the aforementioned symmetry-protected BIC, which results from
symmetry incompatibility (see Table II.1).

As we depart from the Γ-point, the BWs become coupled, since 𝑟12 ̸= 0 and 𝑟21 ̸=
0. As a consequence, Eqs. (II.2) become a set of four coupled equations and any
transverse resonance results from the interplay between both BWs.

𝑢+
1 = 𝑟11𝑢

−
1 exp(𝑖𝛽1ℎ) + 𝑟21𝑢

−
2 exp(𝑖𝛽2ℎ),

𝑢−
1 = 𝑟11𝑢

+
1 exp(𝑖𝛽1ℎ) + 𝑟21𝑢

+
2 exp(𝑖𝛽2ℎ)

𝑢+
2 = 𝑟12𝑢

−
1 exp(𝑖𝛽1ℎ) + 𝑟22𝑢

−
2 exp(𝑖𝛽2ℎ),

𝑢−
2 = 𝑟12𝑢

+
1 exp(𝑖𝛽1ℎ) + 𝑟22𝑢

+
2 exp(𝑖𝛽2ℎ).

(II.11)

It is possible to replace such two-waves resonator with the usual single-wave Fabry-
Perot by introducing an effective reflection coefficient 𝑟eff [159]. The effective reflec-
tion fully includes the impact of the second wave. For 𝑘𝑥 = 0, a leaky mode is a purely
single-wave transverse resonance built either with the fundamental BW or with the
second BW. When 𝑘𝑥 becomes non-zero, both BWs are mixed but one keeps a larger
contribution than the other. For instance, for a band with a symmetry-protected BIC
at 𝑘𝑥 = 0 [green curves in Figs. II.2(b) and (f)], |𝑟11| < |𝑟22| and |𝑟12| < |𝑟22|. In that
case, the second BW is dominant and we incorporate the effect of the first BW in the
effective reflection coefficient. The resonance condition given by Eq. (II.4) becomes

1 −
(︁
𝑟

(12)
eff

)︁2
exp(2𝑖𝛽2ℎ) = 0 , (II.12)

where the effective reflection 𝑟(12)
eff is given by

𝑟
(12)
eff = 𝑟22 + 𝛼𝑟11𝑟21𝑟12 exp(2𝑖𝛽1ℎ)

1 − 𝛼𝑟21𝑟12 exp [𝑖(𝛽1 + 𝛽2)ℎ] , (II.13)

with 𝛼 = [1 − 𝑟2
11 exp(2𝑖𝛽1ℎ)]−1. The superscript (12) stands for the fact that 𝑟(12)

eff

includes the multiple cross-reflections between BWs 1 and 2. Note that for 𝑘𝑥 = 0,
since 𝑟12 = 𝑟21 = 0, we recover 𝑟(12)

eff = 𝑟22. Details on the derivation of Eq. (II.12)
can be found in the Appendix A.

We can thus apply the usual equations of a Fabry-Perot resonator provided that
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Figure II.4.: Effective transmission 𝑡
(12)
eff (solid lines) for 𝑁 = 2 propagative

BWs in a 1D symmetric PhC slab with 𝐹 = 0.6. The first cancellation of 𝑡eff for
𝑘𝑥 = 0 results from symmetry arguments. The second cancellation for 𝑘𝑥 ̸= 0
results from destructive interferences between both BWs and varies with the
slab thickness. The frequency follows the dispersion curve of the leaky mode
shown by the green curve in Fig. II.2(f). Dashed lines show the transmission
coefficent 𝑡2 alone and evidence the impact of the first BW on the radiative
leakage.

|𝑟(12)
eff | varies smoothly with the wavelength. The dispersion curve and the quality

factor of a leaky mode composed of two BWs are given by Eqs. (II.7) and (II.8) by
replacing 𝛽1 and 𝑟11 by 𝛽2 and 𝑟

(12)
eff . The amplitude of the radiated plane wave is

now given by the superposition of both BWs, 𝐴 = 𝑡1𝑢
+
1 exp(𝑖𝛽1ℎ) + 𝑡2𝑢

+
2 exp(𝑖𝛽2ℎ).

Similarly to the resonance condition, an effective transmission coefficient can be in-
troduced,

𝐴 = 𝑡
(12)
eff 𝑢+

2 exp(𝑖𝛽2ℎ) , (II.14)

with

𝑡
(12)
eff = 𝑡2 + 𝑡1𝛼𝑟21𝑒

𝑖𝛽1ℎ
[︁
𝑟

(12)
eff 𝑒𝑖𝛽2ℎ + 𝑟11𝑒

𝑖𝛽1ℎ
]︁

. (II.15)

Again, for 𝑘𝑥 = 0, 𝑡(12)
eff = 𝑡2 since 𝑟21 = 0. One readily realises that the effective

transmission can be cancelled if the second term in Eq. (II.15) is equal to −𝑡2. In
that case, both BWs interfere destructively to cancel the overall leakage, leading
to the formation of a BIC. Figure II.4 illustrates the interference mechanism as a

38



4 Multimode Fabry-Perot model

function of 𝑘𝑥 for different values of the slab thickness. For 𝑘𝑥 = 0, 𝑡(12)
eff = 𝑡2 = 0

for symmetry reasons. For 𝑘𝑥 ̸= 0, 𝑡(12)
eff is largely different from 𝑡2 due to the impact

of the first BW. The second cancellation of 𝑡(12)
eff is due to destructive interferences

between both BWs. The slab thickness drives the phase difference between both BWs
and the wave vector that corresponds to destructive interference increases with ℎ.

The multimode Fabry-Perot model allows us to understand that the resonance-
trapped BIC labelled (2) in Figs. II.2(f)-(h) is formed by the interference between
the first and the second BW, with a dominant contribution from the second BW. This
is because it has an antisymmetric field profile for 𝑘𝑥 = 0 and a quasi-antisymmetric
one for 𝑘𝑥 ̸= 0, which causes the BIC labelled (2) in Figs. II.2(f)-(h) to have a
quasi-antisymmetric profile as well (see Fig. II.2(h) and Table II.1).

Note that Eqs (II.12)-(II.15) have been written in the case where the second BW
is dominant over the first one. Conversely, when the first BW is dominant over the
second one, we have 1 − 𝑟2

11 exp(2𝑖𝛽1ℎ) ≈ 0 and the coefficient 𝛼 becomes extremely
large. Calculations are thus more stable if we keep the first BW and incorporate the
second BW into the effective reflection. In that case, the subscripts 1 and 2 have
simply to be inverted in Eqs. (II.12)-(II.13).

4.4 Transverse resonance for 𝑁 = 3 waves

As the period-to-wavelength ratio is further increased, the third BW becomes prop-
agative, see Fig. II.3(b). For 𝑘𝑥 = 0 and 𝐹 = 0.6, this corresponds to 𝑎/𝜆 > 0.45. In
that case, Eqs. (II.2) become a 6 × 6 system.

𝑢+
1 = 𝑟11𝑢

−
1 exp(𝑖𝛽1ℎ) + 𝑟21𝑢

−
2 exp(𝑖𝛽2ℎ) + 𝑟31𝑢

−
3 exp(𝑖𝛽3ℎ),

𝑢−
1 = 𝑟11𝑢

+
1 exp(𝑖𝛽1ℎ) + 𝑟21𝑢

+
2 exp(𝑖𝛽2ℎ) + 𝑟31𝑢

+
3 exp(𝑖𝛽3ℎ)

𝑢+
2 = 𝑟12𝑢

−
1 exp(𝑖𝛽1ℎ) + 𝑟22𝑢

−
2 exp(𝑖𝛽2ℎ) + 𝑟32𝑢

−
3 exp(𝑖𝛽3ℎ),

𝑢−
2 = 𝑟12𝑢

+
1 exp(𝑖𝛽1ℎ) + 𝑟22𝑢

+
2 exp(𝑖𝛽2ℎ) + 𝑟32𝑢

+
3 exp(𝑖𝛽3ℎ)

𝑢+
3 = 𝑟13𝑢

−
1 exp(𝑖𝛽1ℎ) + 𝑟23𝑢

−
2 exp(𝑖𝛽2ℎ) + 𝑟33𝑢

−
3 exp(𝑖𝛽3ℎ),

𝑢−
3 = 𝑟13𝑢

+
1 exp(𝑖𝛽1ℎ) + 𝑟23𝑢

+
2 exp(𝑖𝛽2ℎ) + 𝑟33𝑢

+
3 exp(𝑖𝛽3ℎ).

(II.16)

Although more tedious, it is still possible to replace the complex interplay between
the three BWs by effective reflection and transmission coefficients.

As for 𝑁 = 2, let us start the discussion with the case 𝑘𝑥 = 0. At the Γ-point,
the first and third BWs have a symmetric field profile while the second BW is anti-
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Chapter II: Bound states in the continuum in photonic crystal slabs

symmetric. The latter is thus decoupled from BWs 1 and 3. Even if three BWs are
propagative, the leaky modes of the PhC slab are either formed by the second BW
alone (symmetry-protected BIC) or by the interplay between first and third BWs. In
that case, we can apply the results from previous section by introducing an effective
reflection coefficient 𝑟(13)

eff instead of 𝑟(12)
eff . Such a leaky mode formed by BWs 1 and

3 is a BIC if the interference leads to |𝑟(13)
eff | = 1 and 𝑡(13)

eff = 0. This is the case of the
blue mode labelled (5) in Figs. II.2(f)-(h).

For 𝑘𝑥 ̸= 0, the three BWs are coupled and we introduce an effective reflection
coefficient 𝑟(123)

eff , whose closed-form expression can be found below. Similarly to
the 𝑁 = 2 case, we keep the BW that has the most important contribution and
incorporate the impact of the two other BWs inside the effective reflection. For a
band with a symmetry-protected BIC at 𝑘𝑥 = 0, the dominant BW is the second one;
for a band without symmetry-protected BIC at 𝑘𝑥 = 0, the dominant BW is usually
the third one. In the latter case, the resonance condition given by Eq. (II.4) simply
becomes

1 −
(︁
𝑟

(123)
eff

)︁2
exp(2𝑖𝛽3ℎ) = 0 , (II.17)

where the effective reflection 𝑟(123)
eff is given by

𝑟
(123)
eff exp(𝑖𝛽3ℎ) = 𝑟

(13)
eff exp(𝑖𝛽3ℎ) +𝑅(23)Δ + 𝛿13𝛾

1 −𝑅(23)𝛾 − 𝛿13Δ
, (II.18)

with

Δ = 𝛼
(12)
eff 𝑅(32)𝑟

(12)
eff exp(𝑖𝛽2ℎ) + 𝛼

(12)
eff 𝛿12, (II.19)

𝛾 = 𝛼
(12)
eff 𝛿12𝑟

(12)
eff exp(𝑖𝛽2ℎ) + 𝛼

(12)
eff 𝑅(32), (II.20)

𝑅(23) = 𝑟23 + 𝛼𝑟11𝑟13𝑟21 exp(2𝑖𝛽1ℎ)
1 − 𝛼𝑟13𝑟31 exp [𝑖(𝛽1 + 𝛽3)ℎ] exp(𝑖𝛽2ℎ), (II.21)

𝛿12 = 𝛼𝑟12𝑟31 exp [𝑖(𝛽1 + 𝛽3)ℎ]
1 − 𝛼𝑟12𝑟21 exp [𝑖(𝛽1 + 𝛽2)ℎ] , (II.22)

𝛼
(12)
eff =

[︂
1 −

(︁
𝑟

(12)
eff

)︁2
exp(2𝑖𝛽2ℎ)

]︂−1
, (II.23)

𝛼 =
[︁
1 − 𝑟2

11 exp(2𝑖𝛽1ℎ)
]︁−1

. (II.24)

In these expressions, the coefficient 𝑅(32) has the same expression as 𝑅(23) but with
indices 2 and 3 swapped. The coefficient 𝛿13 can be deduced from 𝛿12 by replacing
the index 2 by 3. The effective reflection coefficients 𝑟(1𝑗)

eff have the same expression

40



5 Model validation

as in Eq. (II.13) with 𝑗 = 2, 3:

𝑟
(1𝑗)
eff = 𝑟𝑗𝑗 + 𝛼𝑟11𝑟𝑗1𝑟1𝑗 exp(2𝑖𝛽1ℎ)

1 − 𝛼𝑟𝑗1𝑟1𝑗 exp [𝑖(𝛽1 + 𝛽𝑗)ℎ] . (II.25)

The details on the derivation of Eq. (II.18) can be found in Appendix A.
We can thus apply the usual equations of a Fabry-Perot resonator, provided that

|𝑟(123)
eff | varies smoothly with the wavelength. The dispersion curve and quality factor

of a leaky mode composed of three BWs are given by Eqs. (II.7) and (II.8) by replacing
𝛽1 and 𝑟11 by 𝛽3 and 𝑟(123)

eff .
The multimode Fabry-Perot model with 𝑁 = 3 propagative BWs allows for the

understanding of the formation of the symmetric resonance-trapped BICs at 𝑘𝑥 = 0
and of the quasi-symmetric resonance-trapped BICs at 𝑘𝑥 ̸= 0 identified in Table II.1
and Figs. II.2(f)-(h). The first ones arise from the interference between two symmetric
BWs, the first and third ones, which are not coupled to antisymmetric BWs at 𝑘𝑥 = 0.
The second ones are formed by the interference between three BWs (first, second, and
third) with a dominant contribution from the third BW, whose field profiled is almost
symmetric for 𝑘𝑥 ̸= 0.

Finally, the multimode Fabry-Perot model used either with 𝑁 = 2 or 𝑁 = 3
propagative BWs allows for the understanding of all four types of BICs observed in
Fig. II.2 and summarised in Table II.1.

5 Model validation

To validate the multimode Fabry-Perot model, we consider the symmetric 1D PhC
slab of Fig. II.2(e). We apply the model, either with 𝑁 = 2 or 𝑁 = 3 BWs, and
calculate the dispersion curves and quality factors of the different leaky modes sup-
ported by the PhC slab. The model prediction for the dispersion curves and for
the Q-factors (see Fig. II.5) are in quantitative agreement with the rigorous RCWA
calculation, which takes into account a large number of evanescent BWs (𝑀 = 30).
It is noteworthy that the semi-analytical model accurately predicts all four types of
BICs supported by a 1D symmetric PhC slab, as summarised in Table II.1.

From a numerical point of view, the analyticity of the multimode Fabry-Perot
model relies on Eqs. (II.7) and (II.8). In practice, one simply needs to calculate
numerically with the RCWA the single-interface quantities defined in Fig. II.3 (𝛽𝑖,
𝑟𝑖𝑖, and 𝑟𝑖𝑗) over the spectral range of interest. Then, one can apply Eq. (II.7) for any
value of the slab thickness ℎ to find analytically the eigenfrequencies 𝜆0 for a given
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Chapter II: Bound states in the continuum in photonic crystal slabs
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Figure II.5.: Quality factors of three leaky modes supported by a 1D symmetric
PhC slab with 𝑛𝑑 = 3.5, 𝐹 = 0.6, and ℎ = 1.62𝑎, see Fig. II.2(e). The predic-
tions of the multimode Fabry-Perot model (solid lines) are in excellent agree-
ment with the exact calculations (markers). The model accurately reproduces
the existence and positions of all four types of BICs. The discrepancies between
the red curve and the yellow circles for 𝑘𝑥 ≈ 0.215(2𝜋/𝑎) and 𝑘𝑥 ≈ 0.3(2𝜋/𝑎)
are explained in the text.

value of the integer 𝑝. Finally, Eq. (II.8) gives the corresponding quality factor with
no further calculations. The model is therefore extremely efficient to investigate the
dynamics of BICs with the slab thickness.

The model also provides some physical insight into the nature of the BICs, which
before we could only qualitatively infer from the field profiles. The green mode in
Fig. II.2(f) is mostly given by the second antisymmetric BW, with a small contribu-
tion of the fundamental BW for 𝑘𝑥 ̸= 0. To calculate it we used the phase matching
condition Eq. (II.12) with 𝑟

(12)
eff from Eq. (II.13). The blue mode in Fig. II.2(f) is

dominated by the third BW with a small impact of the first and second BWs. For
this mode, 𝑟(123)

eff with the phase factor exp(𝑖𝛽3ℎ) was used, see Eq. (II.17).

We can also assert that the BIC labelled (5) in Fig. II.2(f) is fundamentally different
from the ones labelled (1) and (3), which are also lying at the Γ-point. Indeed, it is a
resonance-trapped BIC resulting from the destructive interference between the first
and third BWs whereas BICs (1) and (3) are symmetry-protected BICs. Similarly,
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6 Limitations of the model

the red leaky mode is also formed by three BWs. However, it couples with a different
leaky mode around 𝑘𝑥 ≈ 0.3(2𝜋/𝑎), see the anti-crossing between the red and black
dispersion curves in Fig. II.2(f). Because of this coupling, the red leaky mode changes
its symmetry from quasi-antisymmetric (for 𝑘𝑥 < 0.3(2𝜋/𝑎)) to the quasi-symmetric
(for 𝑘𝑥 > 0.3(2𝜋/𝑎)), which is reflected in the BIC field profiles labelled (3) and (4)
in Fig. II.2(h). In this case, different phase-matching equations have to be used for
the left and right parts of the dispersion curve. Basically, indices 2 and 3 have to
be interchanged in the expression of 𝑟(123)

eff and in the phase matching condition, to
reflect the fact that on one side of the coupling region the second BW is dominant
while on the other side the third BW is dominant. Then 𝑟

(123)
eff becomes equal to 𝑟22

at 𝑘𝑥 = 0 and gives rise to the symmetry-protected BIC labelled (3). In contrast, the
other BIC at 𝑘𝑥 ≈ 0.36(2𝜋/𝑎) stems from the interference of three BWs, the third
(symmetric) being the dominant one.

This aspect of the model can be a source of erroneous results. The algebraic
manipulations that lead to the definition of an effective reflection assume that some
quantities (such as 𝛼−1 in Eq. (II.13)) are different from zero. As a consequence,
some roots of the two-waves or three-waves resonance condition are not contained
in the single-wave resonance condition given by Eqs. (II.12) and (II.17). The phase-
matching condition gives thus a crossing of the dispersion curves instead of an anti-
crossing. This is the reason why the model fails in Fig. II.5 for the red curve around
𝑘𝑥 ≈ 0.3(2𝜋/𝑎). This point is further discussed in the following section.

Finally, we would like to clarify the obviously false feature of the red curve around
𝑘𝑥 ≈ 0.215(2𝜋/𝑎). As mentioned in previous sections, the resonance condition and
quality factor can be written in the form of Eqs. (II.7) and (II.8) only under the
assumption that the modulus of the reflection coefficient varies smoothly with the
wavelength. However, this assumption is not always valid when we deal with effective
reflection coefficients. The appearance of an erroneous resonance in the dispersion
curve predicted with the Fabry-Perot model (see the red solid curve in Fig. II.5) is due
to this situation: |𝑟(123)

eff | experiences a sudden resonance-like variation as a function
of the wavelength (see Fig. II.7 of the ensuing section), which causes Eqs. (II.7)
and (II.8) to lose their accuracy.

6 Limitations of the model

Coupling of two leaky modes manifests itself as an anti-crossing in the band dia-
gram. When it occurs, two modes swap their symmetries: the branches of increasing
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Chapter II: Bound states in the continuum in photonic crystal slabs

frequency with 𝑘𝑥 are quasi-symmetric, while the ones of decreasing frequency are
quasi-antisymmetric. Since the principal symmetry of a leaky mode is determined
by the choice of the main BW, which is fixed, the model treats such anti-crossings,
as crossings. In other words, as mentioned in the main text, since we approximate
the system as a Fabry-Perot resonator with one mode and an effective reflection co-
efficient 2, we get a dispersion diagram of an unperturbed setup. Because the two
modes have to maintain different symmetries, anti-crossings are only present above
the third BW cut-off. An example is shown in Fig.II.6.
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Figure II.6.: Demonstration of a limitation of the model. The dispersion (a)
and quality factors (b) of two leaky modes that couple [the red one and one of
the black ones in Figs. II.2(f,g)]. The solid lines are the outputs of the model,
the circles and diamonds – the exact calculation. The modes coupling is not
taken into account in the model and incorrect prediction is made in the vicinity
of the anti-crossing.

Another erroneous feature of Fig. II.5 is the case when |𝑟(123)
eff | varies rapidly with

𝜆. Under this assumption we cannot safely rely on Eq. (II.7) for the phase-matching
condition. Figure II.7 illustrates the point. There, we superimpose the curve, that
corresponds to phase-matching condition of the form of Eq. (II.7) over the colour map
of |𝑟(123)

eff |. The jump around 𝑘𝑥 = 0.215(2𝜋/𝑎) causes the incorrect Q-factor values
(shown in Fig. II.5, red curve) and dispersion (black curve in Fig. II.7) around this
point.

2Neglecting the evanescent Bloch waves does not break the coupling mechanism. The coupling
mechanism is probably lost in the algebraic process of introducing an effective reflection coeffi-
cient. The latter is done by introducing several parameters (in particular, in the 𝑁 = 3 case)
whose denominator has to be non-zero.
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7 Dynamics of BICs with the slab thickness
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Figure II.7.: Square of the absolute value of 𝑟(123)
eff . Black line indicates the

phase matching condition (essentially the dispersion curve for the selected leaky
mode). Around 𝑘𝑥 = 0.215(2𝜋/𝑎), it crosses a sharp variation of 𝑟(123)

eff .

7 Dynamics of BICs with the slab thickness

Thanks to the analyticity of the model with respect to the slab thickness, it can
be applied for a large number of ℎ values to observe the dynamics of BICs with no
additional RCWA calculations. In this section, we look at the evolution of BICs in
PhC slabs as ℎ is varied in three cases: (i) symmetric structure, (ii) broken horizontal
symmetry, (iii) broken vertical symmetry (substrate).

7.1 Symmetric one-dimensional photonic crystal slabs

7.1.a Two propagating BWs regime

Figure II.8 shows the variation of the quality factor of a leaky mode of the PhC
slab depicted in Fig. II.2(e), in the spectral range between the second and third
BW cut-offs, as a function of the thickness ℎ/𝑎 and the wave vector 𝑘𝑥𝑎/(2𝜋). We
have chosen to follow the dynamics of the mode represented with the green curve in
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Chapter II: Bound states in the continuum in photonic crystal slabs

Fig. II.2(f)-(g).
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Figure II.8.: Quality factor (logarithmic scale) of the green leaky mode in
Fig. II.2(f) as a function of ℎ/𝑎 and 𝑘𝑥𝑎/(2𝜋). The wavelength range speci-
fied during the calculations is such that only the first two BWs are propagating.
The integer 𝑝 from Eq. (II.7) is set to 1, which corresponds to the green line
in Figs. II.2(f)-(g). Three branches (light yellow to white) showing an infinite
Q-factor (BICs positions) are clearly visible. Dashed white lines indicate the
positions two more such branches for 𝑝 = 0, which correspond to a different
leaky mode also formed by the first and second BWs.

We can clearly see three branches where 𝑟(12)
eff equals exactly 1, leading to an infinite

Q-factor. The first branch is vertical at 𝑘𝑥 = 0 and corresponds to the symmetry-
protected BIC, which exists regardless of the value of ℎ. The two other branches
mark the (ℎ, 𝑘𝑥) values for which the interference between the first and second BWs
is perfectly destructive and results in the formation of a resonance-trapped BIC.
The dashed lines show the positions of similar resonance-trapped BICs for 𝑝 = 0 in
Eq. (II.7). They belong to the dispersion curve of a different leaky mode.

7.1.b Three propagating BWs regime

Figure II.9(a) shows a colour map of the Q-factor for a leaky mode that consists of
three propagative BWs. This figure demands a few more explanations and clarifica-
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7 Dynamics of BICs with the slab thickness

tions. Unlike Fig. II.8, here we do not see the Q-factor of a single selected leaky mode
everywhere, rather, a different mode is confined between a pair of consecutive dashed
blue lines. The lines themselves are the positions of the anti-crossings between the
pairs of neighbouring modes. As explained in the previous section, this is a pitfall
of the model. Depending on the BW that we choose to keep in the matrix R, either
number two or three, the model “looks for” a leaky mode with the same principal
field symmetry, quasi-antisymmetric and quasi-symmetric, respectively. This causes
it to treat anti-crossings as plain crossings. The values predicted before and after
the anti-crossings are correct, but belong to different leaky modes. In the vicinity
of the anti-crossing itself, where the dispersion curves experience a bend, it gives
non-physical noisy-looking results.

(b)

(d)

(c)

(e)

(a)

h
/a

k
x
a/(2p)

h
/a

k
x
a/(2p) k

x
a/(2p)

k
x
a/(2p)

2.58

2.54

2.5

2.46

2.42

h
/a

2.58

2.54

2.5

2.46

2.42

0 0.1 0.2 0.3 0.4

k
x
a/(2p)

0 0.1 0.2 0.3 0.4

102

104

106

108

1010

h
/a

2.58

2.54

2.5

2.46

2.42

102

104

106

108

1010

h
/a

2.58

2.54

2.5

2.46

2.42

0.2 0.25 0.3 0.35 0.4

0.2 0.25 0.3 0.35 0.4

0.495

0.5

0.505

0.51

0.515

0.52

0.525

0.485

0.49

0.495

0.5

0.505

0.51

0 0.1 0.2 0.3 0.4
1

1.5

2

2.5

3

102

104

106

108

1010

Figure II.9.: (a) Colour map of the Q-factor, calculated with the help of
Eq. (II.18). Dashed blue lines indicate the position of anti-crossings in the
dispersion diagram. The Q-factors immediately to the left and right of these
curves belong to two different leaky modes. The white box indicates the region
of the (𝑘𝑥,ℎ) space that we look closer into in (c-e). (b), (c) Q-factor and 𝑎/𝜆

ratio (normalised frequency), respectively, for one mode that is coupled [the
one to the right in the box]. Similarly, (d), (e) – 𝑄 and dispersion of the other
[the one to the left in the box]. Note that the horizontal axis of (b) and (d) is
different from those of (c) and (e).

To further investigate this issue, we zoom in to a smaller region in the (𝑘𝑥,ℎ) space,
traced with a white box in Fig. II.9(a). Figures II.9(b,c) display the Q-factor and
dispersion, respectively, of the leaky mode in the right part of the box (above the
anti-crossing line) in Fig. II.9(a). Similarly, the other mode occupies Figs. II.9(d,e).

The mode in Fig.II.9(b,c) has the quasi-antisymmetric field profile to the left of
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Chapter II: Bound states in the continuum in photonic crystal slabs

the anti-crossing line, and quasi-symmetric to the right. Vice versa for the mode
in Fig.II.9(d,e). A couple of interesting observations can be made. Firstly, as can
be seen in Fig.II.9(b) we could have four BICs due to a single mode when ℎ/𝑎 ∈
(2.42, 2.45) at different 𝑘𝑥 and 𝜆. Secondly, the diverging Q-factor curve displays
one or multiple bends. If we were to plot several Q-factor curves, increasing ℎ, past
the point of the bend, we would register an “annihilation” of the BICs – two BICs
coming closer to each other on the 𝑘𝑥 axis until they “collide” and none is present
any longer, as previously reported in Ref. [146], where the parameter that had been
gradually changed was the refractive index of the surrounding space. This point is
also illustrated in Fig. II.4, where the zero of |𝑡(12)

e𝑓𝑓 | is moving toward the light line cut-
off with ℎ. The parameter region in the vicinity of the bend possesses extremely high
𝑄’s for a range of optogeometric parameters, which might be appealing for practical
realisations and applications.
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Figure II.10.: Position of two BICs, as a function of 𝑘𝑥𝑎/(2𝜋) and ℎ/𝑎. Black
lines were obtained using the model only with the first two symmetric BWs
(number one and three) that have the major contribution. Red circles – exact
calculation, connected with a red line, acting as a guide to an eye.

Ever so slight perturbation by a BW of a different symmetry is crucial to get the
correct Q-factor values. However, their position and the dispersion curves are less
sensitive. To qualitatively illustrate this point, on Fig. II.10 we plot the dynamics
of two resonance-trapped BICs that consist of three BWs versus ℎ/𝑎 and 𝑘𝑥𝑎/(2𝜋).
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7 Dynamics of BICs with the slab thickness
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Figure II.11.: Schematics of the asymmetric 1D PhC slab. The newly introduced
parameter for the asymmetric PhC slab is a slit of width 𝑠 (no asymmetry for
𝑠 = 0) that divides the dielectric ridge into a bigger and smaller part of size
5/6𝐹𝑎 and 1/6𝐹𝑎, respectively, preserving the total filling factor of material
used throughout this chapter, 𝐹 = 0.6

Black solid curves are the predictions of the model, with the second BW deliberately
excluded,3 while red circles were obtained with the exact calculation. Other parame-
ters of the PhC slab are the same as in Fig. II.2. As can be seen, ℎ (and therefore 𝜆0)
that produce a BIC can be predicted reasonably well, even though the PhC modes
are considered as purely symmetric, and the value of the Q-factor is completely off.

7.2 Asymmetric one-dimensional photonic crystal slabs

In this subsection, we use the multimode Fabry-Perot model to study the behaviour
of BICs under broken mirror symmetry. We consider a 1D PhC slab with a vertical
mirror symmetry but no horizontal mirror symmetry as depicted in Fig. II.11. The
asymmetry parameter 𝑠 is the size of the air gap that divides the dielectric ridge into
a bigger and a smaller part of size 5/6𝐹𝑎 and 1/6𝐹𝑎, respectively. Note that the total
filling factor in dielectric material is preserved, 𝐹 = 0.6. Recently, a study of a PhC
slab with a slot in different positions for a fixed thickness and normal incidence angle
has been published [145]. We evidence that symmetry-protected BICs, which exist
in symmetric structures at the Γ-point of the dispersion diagram, become resonance-
trapped ones when the horizontal mirror symmetry is broken, but only for specific
values of the slab thickness.

Figure II.12 shows the variation of the Q-factor of a leaky mode in different sit-
uations. In Fig. II.12(a) we plot 𝑄 as a function of the slab thickness ℎ and the
asymmetry parameter 𝑠 for a fixed 𝑘𝑥 = 0 in a spectral range where only two BWs

3In this case, we do not see a sharp infinite-𝑄 resonances, but broad and finite ones. Black solid
lines in Fig. II.10 simply trace their maxima.
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Chapter II: Bound states in the continuum in photonic crystal slabs
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Figure II.12.: Quality factor (logarithmic scale) for the asymmetric PhC slab
with two propagative BWs. (a) Q-factor as a function of the slab thickness ℎ/𝑎
and the asymmetry parameter 𝑠/𝑎 for 𝑘𝑥 = 0. The leaky mode is calculated
with 𝑝 = 1 in Eq. (II.7). A BIC (diverging quality factor) is clearly visible
whatever the value of the asymmetry parameter. It is a symmetry-protected
BIC for 𝑠 = 0 (𝑟12 = 0 and |𝑟22| = 1) but a resonance-trapped BIC for 𝑠 ̸= 0
(𝑟12 ̸= 0, |𝑟22| < 1, and |𝑟(12)

eff | = 1). The dashed white line indicates the
position of a similar BIC for 𝑝 = 0 and the dashed magenta line indicates the
position of a BIC formed by three BWs with 𝑝 = 0. (b) Same as (a), but for
𝑘𝑥 ≈ 0.235(2𝜋/𝑎). (c) Q-factor as a function of ℎ/𝑎 and 𝑘𝑥𝑎/(2𝜋) for 𝑠 = 0.05𝑎.
Colour scale and other optogeometric parameters are the same for all three
subfigures.
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7 Dynamics of BICs with the slab thickness

are propagative. We readily observe two branches that correspond to a diverging
𝑄, and thus a BIC. The vertical branch for 𝑠 = 0 signifies a symmetry-protected
BIC. As the horizontal symmetry is broken (𝑠 ̸= 0), the symmetry-protected BIC
cannot exist anymore. Nevertheless, for specific values of the pair (ℎ, 𝑠), it becomes a
resonance-trapped BIC, as evidenced by the second white branch in Fig. II.12. Under
the broken symmetry, 𝑟12 no longer vanishes for 𝑘𝑥 = 0, which allows us to observe
this trajectory of a resonance-trapped BIC.

Figure II.12(b) displays the Q-factor as a function of ℎ and 𝑠 for 𝑘𝑥 ̸= 0. In that
case, a BIC can only exist in symmetric structures for 𝑠 = 0; it is the resonance-
trapped BIC labelled (2) in Fig. II.2(f). This BIC disappears (𝑄 < 109) when the
symmetry is broken. Lastly, Fig. II.12(c) displays the Q-factor of the same leaky mode
as a function of ℎ and 𝑘𝑥 with a fixed asymmetry parameter 𝑠 = 0.05𝑎. A resonance-
trapped BIC exists for 𝑘𝑥 = 0 [the one shown in Fig. II.12(a)] and disappears for
𝑘 ̸= 0.

To sum up, resonance-trapped BICs can exist in asymmetric 1D PhC slabs with a
broken horizontal symmetry, but only for 𝑘𝑥 = 0.

7.3 Case of a substrate: broken vertical symmetry

Finally, let us consider a symmetric PhC slab on a substrate. The substrate can
either have a finite thickness or be considered infinite. Such a case of broken vertical
symmetry means that the reflection coefficients of the BWs, and thus the effective
quantities as well, have to be calculated separately for the upper and lower interfaces
[33]. The factor |𝑟(12)

eff |2 in Eq. II.12 has to be substituted with |𝑟(12),𝑇
eff 𝑟

(12),𝐵
eff |, where

superscripts 𝑇 and 𝐵 stand for top and bottom interfaces, respectively. Two dif-
ferent RCWA problems between a semi-infinite periodic medium and a semi-infinite
homogeneous medium [see Fig. II.3(a)] with dissimilar refractive indices of the homo-
geneous space region have to be solved. Note that the coefficients 𝑟(12),𝑇

eff and 𝑟
(12),𝐵
eff

do not contain the reflection coefficients of their respective interface exclusively (see
Appendix A for their expressions).

Figure II.13(a) confirms the fact that has been already understood that no resonance-
trapped BICs are possible in this case [139, 163], while the Q-factor for 𝑘𝑥 = 0 still
goes to infinity (symmetry-protected BIC). We note that the location of the max-
imum has shifted slightly in terms of ℎ and 𝜆 (assuming 𝑘𝑥 is fixed) and that the
resonance has also become broader, but the Q-factor still reaches extremely huge
values around 106.
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Figure II.13.: (a) Same as Fig. II.8, but with the refractive index 𝑛 = 1.45
of the semi-infinite homogeneous space on one side of the slab, and 𝑛 = 1 on
the other. Dashed lines in (a) indicate the infinite 𝑄 branches location in the
case when the PhC slab is in the air, i.e. the two branches in Fig. II.8. (b)
The spectra of |𝑟(12),𝑇

eff 𝑟
(12),𝐵
eff | for a PhC slab (ℎ = 1.6𝑎) lying on a substrate of

thickness 0.8𝑎 with the refractive index 𝑛 = 1.5 and 𝑛 = 3.5 (same as the slab)
for top and bottom, respectively; 𝑘𝑥 = 0.23(2𝜋/𝑎). (c) Field profiles of the PhC
modes that are excited in the corresponding (top and bottom) configurations.
Their wavelengths are marked with dashed lines in (b). White lines trace the
border of the refractive index contrast. The wavelength range is such that only
two Bloch waves are propagative.

It worth mentioning that a substrate of a particular thickness and refractive index
may introduce a large number of new resonances and reflections, which can result
in the appearance of a resonance-trapped BIC [148, 164]. These resonances will, in
turn, bring sharp features to |𝑟(12),𝐵

eff |, rendering the model unusable by violating the
conditions for phase-matching [Eq. (II.7)]. This point is illustrated in Fig. II.13(b,c).
In the case when no guided modes are excited in the substrate (top row), both
effective reflection coefficients vary smoothly, allowing for a phase-matching in the
form of Eq. (II.7). If, however, the refractive index contrast is removed (bottom
row), or, alternatively, thickness or wavelength might be modified, we observe sharp
resonances in the spectrum of |𝑟(12),𝑇

eff 𝑟
(12),𝐵
eff |, due to the guided mode excitation, which

requires Eq. (II.12) to be solved numerically for complex �̃�, which would obviously
negate its semi-analytical nature.

From our calculations it appears that two BW in the weak coupling regime with
the substrate are not sufficient to produce the required destructive interference for
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8 Conclusion

an accidental BIC. We note, however, that a resonance-trapped BICs was recently
revealed in a high-contrast PhC slab with an index-matched substrate of a finite
thickness, under the conditions of three propagating BWs [148].

8 Conclusion

To sum up, in this chapter we have used a multimode Fabry-Perot model to cal-
culate the dispersion curves and the quality factors of leaky modes supported by
1D symmetric and asymmetric PhC slabs. Leaky modes are transverse Fabry-Perot
resonances composed of a few propagative BWs bouncing back and forth vertically
inside the slab. This multimode Fabry-Perot model, which does not rely on a per-
turbative approach, accurately predicts the existence of BICs and their positions in
the parameter space regardless of the refractive index contrast. The model equally
applies to symmetry-protected BICs (absence of leakage is due to symmetry incom-
patibility between a single BW composing the mode and the radiative plane waves)
and resonance-trapped BICs (radiative leakage accidentally disappears because the
contributions of several BWs interfere destructively).

The multimode Fabry-Perot model allows us to show that, regardless of the slab
thickness, BICs cannot exist below a cut-off frequency, which is related to the exis-
tence of the second-order BW in the PhC. In other words, BICs cannot exist in the
homogenisation regime. Thanks to the semi-analyticity of the model, we investigate
the dynamics of BICs with the slab thickness in symmetric and asymmetric photonic
crystal slabs. Our calculations show that resonance-trapped BICs can exist in asym-
metric 1D PhC slabs with a broken horizontal symmetry, but only for 𝑘𝑥 = 0. We
evidence that the symmetry-protected BICs that exist in symmetric structures at the
Γ-point of the dispersion diagram can still exist when the horizontal mirror symmetry
is broken, but only for specific values of the slab thickness.

Since the multimode Fabry-Perot model yields fast yet accurate predictions of the
BIC location in the parameter space and provides a better understanding of the
physical mechanisms that lead to the BIC formation, we think that it can become
an important tool for designing PhC devices relying on the existence of a BIC. The
model can also be applied to 1D PhC slabs in TM polarisation and to 2D PhC slabs.
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Chapter III
Modal expansion of T-matrix with
quasi-normal modes

A powerful and widespread mathematical tool for representing light scattering by
an arbitrary-shaped object is the System Transfer (or Transition) Operator approach,
usually shortened to the T-matrix approach [165, 166]. It defines an operator T
that relates linearly the incident field to the scattered field. It is intrinsic to the
scatterer and captures all the complexity of the object. Once the T-matrix has been
determined, it can be used with any excitation field to calculate the corresponding
scattered field. Most importantly, the T-matrix can be used to calculate the optical
response of an ensemble of scatterers, be it an aggregation of a finite number of objects
or a periodic arrangement. Indeed, multiple scattering between several scatterers
can be efficiently calculated from the sole knowledge of the individual T-matrices
of each object (as we explore in Chapter IV) [167]. The scatterers can be located
in a homogeneous environment or inside a stratified medium [115]. This rigorous
semi-analytical method to compute multiple scattering by arbitrary-shaped objects
is often referred to as the T-matrix method or the multipole method [112–114, 168].

In the process of calculating multiple scattering by an ensemble of scatterers with
the T-matrix approach, the difficult part is the computation of the T-matrix of a single
object. For spherical scatterers (homogeneous or core-shell spheres), the T-matrix is
diagonal and can be analytically calculated from Mie theory [107]. However, for non-
spherical objects, the form of the T-matrix is more complex and one has to rely on
numerical calculations. Earlier works have used the Null-Field Method (also known
as the Extended Boundary Condition Method) to compute the T-matrix [165]. A
huge bulk of literature is devoted to this approach (see, for instance, a substantial
reference database in [169] and later updates). However, the null-field method can
only be applied to calculate the scattering by homogeneous objects. Moreover, since
it is not based on a rigorous solution of Maxwell’s equations everywhere inside the
scatterer, the accuracy and stability of the null-field method are questionable for
scatterers with a large aspect ratio. Combining the null-field method with discrete
sources has been proposed to improve the calculation of objects with a large aspect
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ratio [168, 170]. However, this extension of the null-field method suffers from similar
limitations: the scattering problem is not solved rigorously everywhere inside the
scatterer. Recent works have proposed to use the well-established Finite Element
Method (FEM) to compute the T-matrix [171, 172]. This solution has the advantage
to be rigorous and applicable to arbitrary-shaped and inhomogeneous scatterers. Its
main limitation is a heavy numerical burden for three-dimensional objects with a
complex geometry since numerous rigorous calculations of the scattered field have to
be performed for different incident fields to get the full T-matrix.

In this chapter, we develop an original approach for a fast and accurate calcula-
tion of the T-matrix of a single resonant scatterer. Our approach is based on recent
developments on modal theories for nanoresonators [173]. We apply a powerful tech-
nique, called quasi-normal mode (QNM) expansion (or resonant-state expansion), to
calculate the electromagnetic field scattered by a resonant scatterer. After a projec-
tion of the modal expansion on the Vector Spherical Harmonics (VSHs, sometimes
also referred to as vector partial waves or vector spherical waves) basis, we obtain
the T-matrix. In contrast to previous works that have used QNM expansions to
study light scattering by isolated resonant scatterers [156, 174, 175] or by periodic
arrays of resonant scatterers [174, 176], we do not simply calculate observables such
as cross-section, reflection, or transmission. We recover the full T-matrix, which can
be used in a second step as a building block to solve any scattering problem involving
the considered scatterer, be it alone or inside a more complex ensemble. During the
preparation of this thesis, a QNM expansion of the T-matrix based on Mie theory
has been proposed for lossless and dispersionless dielectric spheres [177]. Since our
approach relies on a more general formalism, the modal decomposition of the T-
matrix that we have developed can be applied to arbitrary-shaped objects composed
of dispersive and absorptive materials.

The main advantages of using a modal formalism are: (i) it introduces semi-
analyticity to the computation and (ii) it brings some physical insight into the nature
and interference of the scatterer’s resonances. By combining these two techniques
(T-matrix and modal expansion), we aim at transmitting these advantages into the
calculation of light scattering by an ensemble of resonant scatterers. Our approach
should make it possible to study how the resonances of an individual nanoresonator
translate into the collective response of a periodic or non-periodic arrangement of
these resonators.

We introduce in Sec. III.1 the theoretical concepts used to derive a modal expansion
of the T-matrix. Subsection III.1.1 is devoted to a brief presentation of the T-matrix.
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1 Theoretical introduction

We first define the T-matrix and then we show that it can be evaluated from a
calculation of the scattered field either over a closed surface outside the scatterer or
inside the volume of the scatterer. In Subsec. III.1.2, we review recent results on
quasi-normal mode expansion that we use in Sec. III.2 to derive a modal expansion
of the T-matrix. We evidence that two different formulations of the modal expansion
can be derived. Finally, we validate our modal approach in Sec. III.3 by considering
the test case of a metallic nanosphere. We show that if both QNM expansions of the
T-matrix provide accurate results for a large number of modes, they do not converge
with the same speed as the number of modes is increased. Our results show that
only one formulation guarantees a good accuracy of the modal expansion for a small
number of modes.

1 Theoretical introduction

We review in this section the theoretical concepts used for the derivation of a
modal expansion of the T-matrix. First of all, we briefly recall the definition of the
T-matrix and the different methods that can be used to calculate it. As a second
step, we present the main ingredients of the quasi-normal mode theory.

1.1 T-matrix: Definition and calculation

The T-matrix method was formally introduced by Waterman in 1965 [165], further
developed in the 1970s [167, 178, 179], and then extended by numerous works, see for
instance [169, 180, 181] and references therein. Within this formalism, the incident
and scattered time-harmonic electromagnetic fields are expanded in the basis of VSHs.
The linear relation between the respective expansion coefficients is provided by the
T-matrix. This concept is general and has been applied to individual scatterers, their
clusters and ensembles, as well as separate parts of composites [169, 181].

In a nutshell, T-matrix coefficients are the projections onto the VSHs basis of the
fields scattered by the object illuminated by each VSH. We present in Subsec. 1.1.a a
brief definition of the T-matrix and show in Subsec. 1.1.b that there are two equivalent
possibilities to evaluate the projection of the scattered field. Indeed, the projection
onto the VSHs basis can be evaluated either from a calculation of the scattered field
over a closed surface outside the scatterer or from a calculation of the total field
inside the volume of the scatterer.
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

1.1.a Definition of the T-matrix

Let us consider an inhomogeneous object with an arbitrary shape located in a
homogeneous medium of refractive index 𝑛𝑏, see Fig. III.1. The object is illuminated
by an incident electromagnetic field Ψinc = (Einc, Hinc) and the scattering process
gives rise to a scattered field Ψ𝑠 = (Es, Hs). The total field is (E, H) = (Einc, Hinc)+
(Es, Hs). Since VSHs are solutions of Maxwell’s equations (expressed in spherical
coordinates) in a homogeneous medium, they form a convenient basis that can be
used to express both incident and scattered field outside a circumscribing sphere Σ,
see Fig. III.1.

Y
inc

Y
s

S

n
b

O
n
1 n

2

Figure III.1.: Schematic of the problem. The E- and H-fields are collectively
denoted as Ψ = (E, H). An incident field is illuminating an object of arbitrary
shape within a homogeneous environment characterised by the refractive index
𝑛𝑏, producing a scattered field. An imaginary sphere Σ that includes the entire
scatterer with the centre in 𝑂 is traced with a dashed line.

Regular VSHs, denoted as RgM𝑚𝑛 and RgN𝑚𝑛 for magnetic and electric waves,
respectively, serve as a basis for the incident field. On the other hand, the scattered
field can be decomposed into outgoing VSHs, labelled as M(+)

𝑚𝑛 and N(+)
𝑚𝑛 . We expand

the incident and scattered fields in VSH (or multipole expansion) as follows [166,
182]:
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1 Theoretical introduction

Einc(r) =
∞∑︁

𝑛=1

𝑛∑︁
𝑚=−𝑛

[𝑎𝑚𝑛RgM𝑚𝑛(𝑘r) + 𝑏𝑚𝑛RgN𝑚𝑛(𝑘r)] , (III.1)

Es(r) =
∞∑︁

𝑛=1

𝑛∑︁
𝑚=−𝑛

[︁
𝑝𝑚𝑛M(+)

𝑚𝑛(𝑘r) + 𝑞𝑚𝑛N(+)
𝑚𝑛(𝑘r)

]︁
, (III.2)

where 𝑘 = 𝑘0𝑛𝑏 = 2𝜋/𝜆𝑛𝑏, r is the space coordinate vector, 𝑛 is the VSH degree
(𝑛 = 1 corresponds to dipolar terms), and 𝑚 ∈ [−𝑛,𝑛] is the azimuthal number. The
coordinate origin is the centre of a virtual sphere, which circumscribes the resonator
as shown in Fig. III.1. The detailed expressions of the regular and outgoing VSHs
are given in Appendix B.

For the sake of convenience, we adopt a more compact notation, which is adapted
from the one used in [166]. We introduce a single index 𝐿 that gathers the indices 𝑛
and𝑚, as well as the polarisation label (electric or magnetic), as defined in Table III.1.
Since we have chosen to combine both electric and magnetic VSHs into the new index
𝐿, we have to introduce a new notation for the VSHs. As detailed in Table III.1,
we denote the outgoing (resp. incoming) electric and magnetic VSHs N(+)

𝑚𝑛 and M(+)
𝑚𝑛

(resp. N(−)
𝑚𝑛 and M(−)

𝑚𝑛) as Ξ(+)
𝐿 (resp. Ξ(−)

𝐿 ). Regular VSHs are denoted by 𝜉𝐿. Odd
values of the index 𝐿 correspond to magnetic VSHs while even values correspond to
electric VSHs.

With the notation in Table III.1, Eqs. (III.1) and (III.2) can be rewritten in a
compact form as

Ei𝑛𝑐(r) =
∞∑︁

𝐿=1
𝑎𝐿𝜉𝐿(𝑘r), (III.3)

Es(r) =
∞∑︁

𝐿=1
𝑝𝐿Ξ(+)

𝐿 (𝑘r). (III.4)

The outgoing and incoming VSHs, Ξ(+)
𝐿 and Ξ(−)

𝐿 , are singular at the origin r = 0.
The regular VSHs 𝜉𝐿 are defined as the half-sum of incoming and outgoing VSHs,

𝜉𝐿 = Ξ(−)
𝐿 + Ξ(+)

𝐿

2 . (III.5)

These are regular (non-singular) functions at the origin. Note that, in the following,
the notations Ξ(±)

𝐿 and 𝜉𝐿 will be used indifferently for an electric field E or for a
pair (E, H). The presence or absence of other magnetic fields in the equations lifts
possible ambiguities.
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

Combined index 𝐿 1 2 3 4 5
𝑛 1 1 1 1 1
𝑚 -1 -1 0 0 1

Polarisation magn. elec. magn. elec. magn.
Ξ(±)

𝐿 M(±)
1,−1 N(±)

1,−1 M(±)
1,0 N(±)

1,0 M(±)
1,1

𝜉𝐿 RgM1,−1 RgN1,−1 RgM1,0 RgN1,0 RgM1,1

Combined index 𝐿 6 7 8 9 10
𝑛 1 2 2 2 2
𝑚 1 -2 -2 -1 -1

Polarisation elec. magn. elec. magn. elec.
Ξ(±)

𝐿 N(±)
1,1 M(±)

2,−2 N(±)
2,−2 M(±)

2,−1 N(±)
2,−1

𝜉𝐿 RgN1,1 RgM2,−2 RgN2,−2 RgM2,−1 RgN(±)
2,−1

Table III.1.: Definition of a combined index 𝐿 that gathers the VSH degree
𝑛, the azimuthal number 𝑚 ∈ [−𝑛,𝑛], and the electric/magnetic polarisation.
Since we have chosen to combine both electric and magnetic VSHs into the
new index 𝐿, we introduce also a combined notation for the VSHs, Ξ(±)

𝐿 for
outgoing/incoming VSHs and 𝜉𝐿 for regular VSH.

In any scattering problem, the expansion coefficients for Es(r), the 𝑝𝐿’s, are the
unknowns to be determined from their counterparts for Ei𝑛𝑐(r), the 𝑎𝐿’s, which are
known. They are linearly related through the T-matrix as follows

𝑝𝐿 =
∞∑︁

𝐾=1
𝑇𝐿𝐾𝑎𝐾 , (III.6)

or in the matrix notation [︁
p
]︁

= T
[︁
a
]︁

, (III.7)

where [a] and [p] are the column vectors formed by the expansion coefficients 𝑎𝐿 and
𝑝𝐿 of the incident and scattered in the VSH basis.

The key feature of the T-matrix is that its elements 𝑇𝐿𝐾 are independent of the
incident field. They depend only on the permittivity and permeability distributions
inside the circumscribing sphere, i.e., on the geometry of the scatterer, on the per-
mittivity and permeability distributions inside the scatterer, and on the refractive
index of the surrounding medium, as well as on the scatterer orientation with re-
spect to the coordinate system. Once the T-matrix is known for a given orientation
of the scattering object, another T-matrix for any rotation of the scatterer can be
deduced analytically [180]. As a result, once the T-matrix corresponding to one scat-
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1 Theoretical introduction

terer in a given homogeneous medium is known, we are able to calculate analytically
the scattering for any incident field, any scatterer orientation, and any assembly of
this scatterer, as long as the incident field is represented in the basis formed by the
regular VSHs. It is noteworthy that the T-matrix method is not limited to a homo-
geneous environment. It can also be used to calculate light scattering by scatterers
in a stratified medium [115].

Let us finally briefly comment on the limitations of the T-matrix applicability
to multiple scattering by an ensemble of objects. Within this framework of VSH
expansion, it is impossible to obtain the total field distribution inside the scatterer,
or anywhere within the circumscribing sphere, except, of course, for spherical objects.
This is the origin for the two main limitations of the T-matrix approach: (i) it cannot
be used to calculate the multiple scattering by elongated objects separated by a
distance smaller than the largest dimension of the scatterers and (ii) it cannot be
used for an object close to an interface. These two cases are schematically depicted
in Fig. III.2.

1.1.b Calculation of the T-matrix

In the first presentation of the System Transfer Operator approach [165], the T-
matrix was calculated with the so-called Null-Field Method (or Extended Boundary
Condition Method). It relies on the Schelkunoff’s equivalence theorem, which states
that the field in a source-free region bounded by a surface Σ could be produced by a
distribution of electric and magnetic currents on this surface, and, in this sense, the
actual source distribution can be replaced by an equivalent one [179, 182]. In addi-
tion, the Null-Field Method relies on a decomposition of the field inside the scatterer
in the VSH basis. However, such a decomposition is only rigorous for homogeneous
scatterers inside the inscribed sphere of the scatterer. As a result, the Null-Field
Method cannot be applied to inhomogeneous objects and it is only approximate for
non-spherical homogeneous objects; the more the object is elongated, the more inac-
curate the method is. Combining the Null-Field Method with the concept of discrete
sources has allowed to partially circumvent the issue of the scatterer shape [168, 170],
but the inapplicability to inhomogeneous objects remain.

The only way to calculate rigorously the T-matrix for an inhomogeneous scatterer
with an arbitrary shape is to use a rigorous numerical method to compute the scatterer
field. In a second step, the scattered field has to be projected onto the VSH basis.
For this projection, the scattered field should be calculated either on a spherical
surface around the object [171], on an arbitrary-shaped closed surface [172], or in the
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

(a) (b)

(c) (d)

Figure III.2.: Schematic of different use-cases for calculating multiple scattering
with the T-matrix method and their limitations. An elongated object is con-
fined within an imaginary sphere, inside which the field cannot be determined.
When multiple such objects are being brought together it is important to pay
attention that their ‘excluded’ regions do not cross. Otherwise, it will give rise
to numerical errors. (a) and (b) show, respectively, configurations of two elon-
gated objects in a homogenous environment that can and cannot be treated
with the T-matrix method. Subfigures (c) and (d) show similarly allowed and
forbidden configurations when two scatterers are placed in a stratified medium.
In that case , if two identical scatterers are located in two layers with differ-
ent refractive indices, two different T-matrices have to be calculated, one for
each refractive index. The objects cannot lie directly on top of a substrate, or,
equally, touch the superstate, as shown in (d). Some gap has to be introduced,
so that the circumscribing spheres do not cross any interface, see (c).
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scatterer volume [183, 184].

We provide hereafter a brief demonstration of two equivalent closed-form expres-
sions of the T-matrix elements 𝑇𝐿𝐾 . The first one involves the scattered field on a
closed surface surrounding the scatterer, while the second one involves the total field
inside the scatterer.

Since the operational basis is fixed, the T-matrix elements can be worked out col-
umn by column by successively computing the scattered fields upon the illumination
with each regular VSH. For an incident field Ei𝑛𝑐(r) = 𝜉𝑃 (𝑘r), the expansion co-
efficients 𝑝𝐿 of the scattered field are simply 𝑝𝐿 = 𝑇𝐿𝑃 since the coefficients 𝑎𝐾 in
Eq. (III.6) are equal to 0 for 𝐾 ̸= 𝑃 and 1 for 𝐾 = 𝑃 . Thus, calculating the scattered
field for an incident field equal to a regular VSH and projecting it on the set of out-
going VSHs provides one column of the T-matrix. By repeating this calculation for
all the desired regular VSHs (up to a chosen truncation rank), we obtain the whole
T-matrix.

Let us now detail the projection of the scattered field onto the VSH basis. In other
words, let us derive the closed-form expression of T-matrix elements 𝑇𝐿𝑃 as a function
of the scattered field and the VSHs of order 𝐿 and 𝑃 .

The incoming/outgoing VSHs Ξ(±)
𝐿 defined in Table III.1 are orthogonal to each

other, ⎧⎪⎨⎪⎩
Ξ(±)

𝐿 ⊗ Ξ̆
(±)
𝐾 = ±4𝛿𝐿𝐾 ,

Ξ(±)
𝐿 ⊗ Ξ̆

(∓)
𝐾 = 0,

(III.8)

where 𝛿𝐿𝐾 is the Kronecker symbol and a breve above Ξ transforms an outgoing
(resp. incoming) VSH with an azimuthal number𝑚 into an incoming (resp. outgoing)
VSH with an azimuthal number −𝑚, Ξ̆

(±)
𝐿(𝑛,𝑚) = Ξ(∓)

𝐿(𝑛,−𝑚). The operator ⊗ denotes
the following inner product between two electromagnetic fields Ψ1 = (E1, H1) and
Ψ2 = (E2, H2),

Ψ1 ⊗ Ψ2 ≡
∫︁∫︁

Σ
(E2 × H1 − E1 × H2) · dS (III.9)

with Σ a closed surface around the origin.

By combining the multipole expansion of the scattered field Ψ𝑠 = (E𝑠, H𝑠) in
Eq. (III.4) and the orthogonality of the VSHs, we get

Ψ𝑠 ⊗ Ξ̆
(+)
𝐿 = 4𝑝𝐿,

Ψ𝑠 ⊗ Ξ̆
(−)
𝐿 = 0.

(III.10)
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

The half-sum of these two equations provides a closed-form expression of the T-matrix
elements

𝑇𝐿𝑃 = 1
2Ψ(𝑃 )

𝑠 ⊗ �̆�𝐿, (III.11)

where �̆�𝐿 is the regular VSH with an opposite azimuthal number compared to 𝜉𝐿.
We have added the superscript (𝑃 ) to the scattered field to stress that it is the field
scattered by the object for an incident VSH of order 𝑃 , Ei𝑛𝑐 = 𝜉𝑃 .

Equation (III.11) gives a closed-form expression of the T-matrix elements 𝑇𝐿𝑃

as a function of the scattered field evaluated over a closed surface surrounding the
scatterer. With this formulation, the calculation of the T-matrix amounts to calculate
the scattered field on this surface for different incident harmonics.

When using QNM theories for calculating light scattering, it is in general preferable
to work with the field inside the scatterer [173]. We now show by using Lorentz reci-
procity theorem that Eq. (III.11) is completely equivalent to a different closed-form
expression that involves the total field inside the scatterer instead of the scattered
field outside.

Lorentz reciprocity theorem relates two different solutions of Maxwell’s equations.
Two time harmonic electromagnetic fields Ψ1 = (E1, H1) and Ψ2 = (E2, H2) gener-
ated by current distributions J1 and J2 at the same frequency 𝜔 in the same medium
(be it homogeneous or inhomogeneous) are related by

Ψ1 ⊗ Ψ2 =
∫︁∫︁

Σ
(E2 × H1 − E1 × H2) · 𝑑S =

∫︁∫︁∫︁
𝑉

(J2 · E1 − J1 · E2) 𝑑r3, (III.12)

where Σ is a closed surface encompassing a volume 𝑉 . Note that the shape and
position of the surface Σ are arbitrary. The demonstration of Lorentz reciprocity
theorem and its most general expression for different frequencies and different media
are given in Appendix C.

Let us apply Eq.(III.12) with (E1, H1) = �̆�𝐿. The latter is solution of Maxwell’s
equations at the frequency 𝜔 without source (J1 = 0) in the homogeneous medium
of permittivity 𝜀𝑏 = 𝜀0𝑛

2
𝑏 . As a second solution (E2, H2), we consider the scattered

field Ψ(𝑃 )
𝑠 = (E(𝑃 )

𝑠 , H(𝑃 )
𝑠 ) generated by an incident VSH of order 𝑃 . As shown in

Appendix D, the scattered field is solution of Maxwell’s equations in the homogeneous
medium of permittivity 𝜀𝑏 for a current distribution J2 = −𝑖𝜔Δ𝜀(𝜔)E with Δ𝜀(𝜔) =
𝜀(𝜔)−𝜀𝑏. In this expression, 𝜀(𝜔) is the permittivity distribution of the scatterer and
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E = Einc + E𝑠 is the total field. Equation(III.12) becomes

�̆�𝐿 ⊗ Ψ(𝑃 )
𝑠 = −𝑖

∫︁∫︁∫︁
𝑉
𝜔Δ𝜀(𝜔)(Einc + E(𝑃 )

𝑠 ) · �̆�𝐿𝑑r3. (III.13)

Finally, by using Eq. (III.11) and replacing the incident field by its value we obtain

𝑇𝐿𝑃 = 1
2𝑖

∫︁∫︁∫︁
𝑉scat

𝜔Δ𝜀(𝜔)(𝜉𝑃 + E(𝑃 )
𝑠 ) · �̆�𝐿𝑑r3. (III.14)

Note that the volume integral is limited to the scatterer volume 𝑉scat since Δ𝜀 = 0
outside the scatterer.

As a result of the orthogonality of the VSHs and Lorentz reciprocity theorem, we
can compute the T-matrix elements either as an integral of the scattered field over
a closed surface outside the scatterer [see Eq. (III.11)] or as an integral of the total
field inside the volume of the scatterer [see Eq. (III.14)].

In the former case, the scattered field on a surface around the object has to be calcu-
lated. Some numerical methods (e.g., FEM) can accurately approximate a spherical
surface with a tetrahedron mesh and calculate the field on the curved surface. Other
are better fitted to produce the field on a rectangular box. On the other hand,
Eq. (III.14) relates the total field inside the scatterer to a T-matrix element. This is
the equation we will use in the following. To get the total field inside the object, we
will use the QNM theory. Since to obtain the full T-matrix we have to recalculate the
scattered field multiple times, we will greatly benefit from the semi-analytical nature
of the QNM approach.

1.2 Quasi-normal mode formalism

Resonant physical systems support eigenmodes, which are non-trivial solutions of
the underpinning state equations. In a closed (or periodic) conservative system they
describe oscillations that can be sustained with a fixed frequency – the resonance
frequency of the system.

Optical micro and nanoresonators make possible a number of modern optical de-
vices and technologies, such as integrated photonic circuits, non-classical light sources
(e.g., single photon sources), sensors, metamaterials, metasurfaces, etc. In optics we
often deal with open non-conservative (non-Hermitian) systems, whose natural reso-
nant modes are known as quasi-normal modes (QNMs) or resonant states. The prefix
“quasi” is used to stress that they are the modes of non-conservative systems with
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

complex frequencies, whose imaginary part describes energy damping [173, 185–187].
Once a resonator is pumped and the excitation is removed, it begins to give off the
energy through its modes via radiative channels or non-radiative ones (material ab-
sorption). This is why they are also known as leaky modes [188] or decaying states
[189].

Resonances are commonly characterised by their quality factor 𝑄 – the ratio be-
tween the resonance frequency and its full width at half maximum. Any resonance
with a finite Q-factor can be attributed to the excitation of a QNM. There are two gen-
erally distinguished types of optical resonances: (i) high-𝑄 ones, typically achieved in
lossless dielectric materials, where the sole decay channel is radiative; (ii) low-𝑄 ones,
typically in plasmonic cavities, where, in addition to radiation, a strong absorption
is present.

Since they are the natural modes of the system, QNMs are very attractive to
describe light interaction with optical resonators. However, because of the non-
hermiticity of the system, a wide use of QNM-expansion formalisms has been hindered
for a long time by mathematical and numerical difficulties. These difficulties were
tackled in the 90s for 1D cavities and spherical resonators [186], but general QNM the-
ories for 3D systems were still lacking. Recent works have made important progress
in the development of modal theories based on QNM expansions for arbitrary 3D
structures [156, 157, 175, 177, 190–193]. Quasi-normal mode theories now start to be
mature and are used for an increasing number of applications thanks to the numerical
efficiency they might offer, along with an improved physical interpretation [194].

This section is divided into four parts. First, in Subsection 1.2.a we lay out the for-
mal definition of QNMs. Then, in Subsec. 1.2.b we briefly review current techniques
for the calculation of QNM fields and complex frequencies. We use Subsec. 1.2.c to
address the question of the QNM field normalisation. Finally, in Subsec. 1.2.d we
discuss the representation of scattered fields as a weighted sum of QNMs. Analytical
expressions for the excitation coefficients (‘weights’) are presented.

1.2.a Definition of quasi-normal modes

Any damped resonator, mechanical, acoustic or electromagnetic, exhibit multiple
resonances of different frequencies and damping rates. In the frequency domain they
correspond to sharp variations (e.g., maxima, minima, Fano line shapes) in the spec-
trum of the resonator response to an external excitation (transmission, absorption,
scattered power, etc.). Within the framework of modal theories, the scattered field
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of a resonator is represented as a sum of its different resonant modes,

Ψ𝑠(r,𝜔) =
∑︁
𝑚

𝛼𝑚(𝜔)Ψ̃𝑚(r), (III.15)

with 𝜔 the angular frequency of the excitation, Ψ̃𝑚 = (Ẽ𝑚, H̃𝑚) the field vector
that consists of the electric and magnetic fields, Ẽ𝑚 and H̃𝑚, of the 𝑚th QNM, and
𝛼𝑚 the complex excitation coefficient of the 𝑚th QNM. The value of the excitation
coefficient depends on the incident field. In addition to its field Ψ̃𝑚, the 𝑚th QNM
is characterised by its complex eigenfrequency

�̃�𝑚 = 𝜔𝑚 − 𝑖
𝜔𝑚

2𝑄𝑚

, (III.16)

with 𝜔𝑚 the resonance frequency and 𝑄𝑚 the quality factor.

Eigenmodes are intrinsic quantities of the system, independent of the excitation
field. They are the solutions of time-harmonic source-free Maxwell’s equations

∇ × Ẽ𝑚 = 𝑖�̃�𝑚𝜇(r, �̃�𝑚)H̃𝑚, (III.17)

∇ × H̃𝑚 = −𝑖�̃�𝑚𝜀(r, �̃�𝑚)Ẽ𝑚, (III.18)

with outgoing-wave boundary conditions. The materials, characterised by the per-
mittivity 𝜀(r,𝜔) and the permeability 𝜇(r,𝜔), can be inhomogeneous, dispersive
(frequency-dependent), and absorptive. The system of equations takes the form of
an eigenproblem with �̃�𝑚 as eigenvalues and the fields Ψ̃𝑚 as eigenvectors,

⎡⎣ 0 −𝑖𝜇−1(r, �̃�𝑚)∇×
𝑖𝜀−1(r, �̃�𝑚)∇× 0

⎤⎦⎡⎣H̃𝑚

Ẽ𝑚

⎤⎦ = �̃�𝑚

⎡⎣H̃𝑚

Ẽ𝑚

⎤⎦ . (III.19)

For non-dispersive materials, the eigenvalue problem is linear (the left-hand side does
not depend on the frequency), of the form Mu + 𝜔u = 0 with M some operator
matrix and u a vector. In contrast, for dispersive materials, Eq. (III.19) corresponds
to a non-linear eigenvalue problem of the form M(𝜔)u + 𝜔u = 0. The latter can be
solved with different strategies, which are briefly presented in the next subsection.
The permittivity and permeability have to be defined at the complex frequency �̃�𝑚,
thus, their analytical continuation in the complex frequency plane is required, see for
instance [195].
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1.2.b Calculation of quasi-normal modes

Nowadays, there exist several different methods to calculate QNMs, which can
be sorted in two main categories: the pole-search approach and the auxiliary-field
approach. In the following, we briefly describe each approach. In this thesis, we have
used the pole-search approach to calculate QNMs but we have also used theoretical
concepts belonging to the auxiliary-field approach to derive a modal expansion of
the T-matrix. More details on each approach can be found in [173] and different
implementations of each method are described in a recent benchmark [157].

When driving excitation frequency approaches the one of the resonance in the com-
plex plane, the system response diverges. This fact is commonly used to identify the
resonant frequencies and to calculate QNMs by calculating poles of a given quantity.
The diverging quantity may be the field itself or the determinant of the scattering
matrix. For a 3D object (with the exception of a perfect sphere), an analytical form
of the scattering matrix is not available, so it has to be computed numerically. One
approach is to use an iterative method to converge on the pole value by searching for
the complex zero of the diverging quantity inverted. To be efficient, such methods
require a starting point (guess value) not to far in the complex plane from the pole.

In practice, to find the starting point for the iterations, we use Cauchy integrals
with a crude mesh to obtain approximate locations of the poles in the region of the
complex frequency plane under study. Then, we apply an iterative procedure based on
an approximation of the inverse of the system response with a Padé approximant [156].

A completely different way to calculate QNMs is the auxiliary-field approach. It is
based on the idea of introducing auxiliary fields to linearise the eigenvalue problem
in Eq. (III.19), bringing it to the form of an augmented eigenvalue problem [175, 191,
196]. Here, the term “augmented” means that the eigenvector has a dimension larger
than (E, H). This approach is more suitable than the pole-search approach when a
large number of QNMs is searched for.

For the sake of illustration, let us consider a particular case, where the materials
are non-magnetic (𝜇 = 𝜇0) and their permittivity can be described by a single-pole
Lorentz model,

𝜀(𝜔) = 𝜀∞ − 𝜀∞
𝜔2

𝑝

𝜔2 − 𝜔2
0 + 𝑖𝜔𝛾

, (III.20)

where the standard notations for the plasma frequency, 𝜔𝑝, the damping rate, 𝛾,
the resonant frequency, 𝜔0, and the high-frequency permittivity, 𝜀∞, are used. For
𝜔0 = 0, the Lorentz model reduces to the usual Drude model that can be used to
describe metals at visible and near-infrared frequencies. The following equations
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can be straightforwardly modified to accommodate for multiple Lorentz poles, i.e.,
multiple terms in Eq. (III.20) with different values of the parameters 𝜔𝑝, 𝜔0, and 𝛾.

For such dispersions, the eigenvalue problem can be linearised by introducing two
auxiliary fields [175, 191, 196]. Namely, the polarisation P = −𝜀∞𝜔

2
𝑝 (𝜔2 − 𝜔2

0 + 𝑖𝜔𝛾)−1 E
and the current J = −𝑖𝜔P. Incorporating these two definitions into Maxwell’s equa-
tions, we obtain an augmented but linear eigenvalue problem

⎡⎢⎢⎢⎢⎢⎢⎣
0 −𝑖𝜇−1

0 ∇× 0 0
𝑖𝜀−1

∞ ∇× 0 0 −𝑖𝜀−1
∞

0 0 0 𝑖

0 𝑖𝜔2
𝑝𝜀∞ −𝑖𝜔2

0 −𝑖𝛾

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
H̃𝑚

Ẽ𝑚

P̃𝑚

J̃𝑚

⎤⎥⎥⎥⎥⎥⎥⎦ = �̃�𝑚

⎡⎢⎢⎢⎢⎢⎢⎣
H̃𝑚

Ẽ𝑚

P̃𝑚

J̃𝑚

⎤⎥⎥⎥⎥⎥⎥⎦ (III.21)

An additional pair of auxiliary fields J and P are required for each new Lorentz pole,
which, in case of a N-pole model of the permittivity, leads to a 2(𝑁 + 1) × 2(𝑁 + 1)
matrix. On the other hand, the particular case of a Drude model (𝜔0 = 0, the pole
of the function 𝜀(𝜔) becomes purely imaginary, 𝜔 = −𝑖𝛾), a single auxiliary field J
suffices. This is the model used later in this work.

Equation (III.21) is a generic expression written with operators. In practice, it has
to be discretized by using a numerical method. Finite Element Method is well suited
for this purpose; different FEM implementations of the auxiliary-field approach are
described in [157, 175, 197]. The auxiliary-field approach has also been implemented
with the Finite Difference (FD) method in the frequency domain [191, 196].

1.2.c Normalisation of quasi-normal modes

Normalisation is an important issue to handle when using QNMs. The known and
obvious hurdle for normalising QNMs is the fact that, for open systems, the QNM field
diverges exponentially away from the resonator for r → ∞. This singular behaviour
of the field in the frequency domain (there is no divergence in the time domain)
is due to the presence of the imaginary part of �̃�𝑚. Energy of a non-conservative
system is necessarily damped in time, which imposes a negative imaginary part for
�̃�𝑚 when using the exp(−𝑖𝜔𝑡) convention for time-harmonic fields, see Eq. (III.16). As
a consequence, in the far field, an outgoing wave of the form (1/𝑟) exp[−𝑖�̃�𝑚(𝑡−𝑟/𝑐)]
grows exponentially as (1/𝑟) exp[𝜔𝑚𝑟/(2𝑄𝑚𝑐)] because of the necessary minus sign
in the propagation term (𝑡 − 𝑟/𝑐). The field divergence is obviously problematic
to normalise a QNM with some integral of the electromagnetic field over the whole
space.

Two main normalisation approaches that solve the divergence issue have been re-
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cently proposed. The first one is based on an integration along a well-chosen axis in
the complex r plane that allows cancelling the exponential growth of the field, as orig-
inally proposed in [186] for 1D systems. For 3D geometries with an arbitrary shape,
this integration in the complex plane can be realised by using perfectly matched lay-
ers (PMLs). A PML is a complex anisotropic refractive index transformation in the
space surrounding the scattering object in the calculation domain. They cause the
field strength to decrease exponentially inside this region. Thus, the field can be
integrated in the ‘whole space’ without encountering any divergent quantities. The
normalisation condition is [190]

∫︁∫︁∫︁
Ω∪ΩPML

[︃
Ẽ𝑚 · 𝜕𝜔𝜀

𝜕𝜔
Ẽ𝑚 − H̃𝑚 · 𝜕𝜔𝜇

𝜕𝜔
H̃𝑚

]︃
d3r = 1, (III.22)

where the integration is over all computational space including the PML. QNM nor-
malisation can also be performed by replacing the volume integral in the PML domain
by a surface integral that avoids the divergence by compensating for the exponential
increase [198]. A detailed discussion of these normalisation approaches can be found
in [173, 199].

A totally different normalisation method is the pole-response normalisation [156,
173]. It relies on the fact that QNMs are poles of the scattering matrix. It is more gen-
eral than the normalisation with PMLs, working with any type of numerical boundary,
and directly provides the normalised mode that fulfils Eq. (III.22) without the need
to calculate an integral of the electromagnetic field. As one approaches the QNM
eigenfrequency, the scattered field goes to infinity and becomes dominated by the
corresponding QNM:

Ψ𝑠(r) ≈ 𝛼𝑚(𝜔, �̃�𝑚, Ψ̃𝑚)Ψ̃𝑚(r), (III.23)

where the 𝑚th QNM field Ψ̃𝑚 is assumed to be normalised. Since the sum over the
modes is absent, a closed form expression for the normalised mode Ψ̃𝑚 as a function
of the scattered field Ψ̃𝑠 can be derived from Eq. III.23, as shown in [156]. This
approach requires the knowledge of the source and the scattered field at a complex
frequency close to the pole 𝜔 ≈ �̃�𝑚. This is the normalisation approach used in this
work.

1.2.d QNM expansion of the scattered field: excitation coefficient 𝛼𝑚 expression

Within the framework of modal theories, the scattered field of a resonator is rep-
resented as a sum of its different resonant modes. In practice, the sum is truncated
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to a finite number 𝑀 of QNMs,

E𝑠(𝜔, r) ≈
𝑀∑︁

𝑚=1
𝛼𝑚(𝜔)Ẽ𝑚(r). (III.24)

The accuracy of the field decomposition over the QNM basis directly depends on
how many (and which) modes we take into account. The method is most efficient
and convenient when a relatively small number of QNMs is sufficient to reach the
desired accuracy. The mode excitation coefficient, 𝛼𝑚(𝜔), is a quantity that explicitly
depends on the excitation and can be given by a closed-form expression. Thus, once
the modes frequencies �̃�𝑚 and their fields Ẽ𝑚(r) are pre-calculated rigorously, the
scattered field E𝑠(𝜔, r) can be obtained analytically. This will be especially useful
when calculating the full T-matrix, as we have to iterate over all VSHs.

Different expressions for the 𝛼𝑚(𝜔) coefficients can be found in the literature [173].
In this thesis, we use the expression derived in [175] for resonators composed of
dispersive materials. We briefly present hereafter the key points of the derivation,
which is based on the use of Lorentz reciprocity theorem.

Let us apply Lorentz reciprocity theorem [Eq. (C.6), see derivation in Appendix C]
to the following solutions of Maxwell’s equations. The first solution (E1, H1) is the
field scattered by the resonator at the frequency 𝜔. As shown in Appendix D, the
scattered field is the field radiated by a current source −𝑖𝜔Δ𝜀E𝑏 in a medium de-
scribed by the permittivity and permeability distributions 𝜀(r,𝜔) and 𝜇(r,𝜔). As a
second solution (E2, H2), we consider the 𝑛tℎ QNM, which is solution of Maxwell’s
equations without source at the complex frequency �̃�𝑛. The volume enclosed by the
surface Σ in Eq. (C.6) is taken as the integration domain Ω ∪ ΩPML used in the QNM
norm. Since the field vanishes at the PML outer boundary, the surface integral in
the left-hand side of Lorentz reciprocity theorem vanishes. Finally, we arrive at the
following equation

∫︁∫︁∫︁
Ω∪ΩPML

{︁
E𝑠 · [𝜔𝜀(r,𝜔) − �̃�𝑛𝜀(r, �̃�𝑛)] Ẽ𝑛 − H𝑠 · [𝜔𝜇(r,𝜔) − �̃�𝑛𝜇(r, �̃�𝑛)] H̃𝑛

}︁
𝑑𝑉 =

− 𝜔
∫︁∫︁∫︁

𝑉scat
Δ𝜀(r,𝜔)E𝑏 · Ẽ𝑛𝑑𝑉 , (III.25)

with 𝑉scat the volume of the scatterer where Δ𝜀 ̸= 0.

Plugging in the expansion of the scattered field in the form of Eq.(III.24), this
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equation is transformed into

𝑀∑︁
𝑚=1

𝐵𝑛𝑚(𝜔)𝛼𝑚(𝜔) = −𝜔
∫︁∫︁∫︁

𝑉scat
Δ𝜀(r,𝜔)E𝑏 · Ẽ𝑛𝑑𝑉 , (III.26)

where

𝐵𝑛𝑚(𝜔) =
∫︁∫︁∫︁

Ω∪ΩPML

{︁
E𝑚 ·[𝜔𝜀(𝜔) − �̃�𝑛𝜀(�̃�𝑛)] Ẽ𝑛 − H𝑚 ·[𝜔𝜇(𝜔) − �̃�𝑛𝜇(�̃�𝑛)] H̃𝑛

}︁
𝑑𝑉 .

(III.27)
Solving this system of 𝑀 equations will yield the 𝛼𝑚’s. In the general case of some
arbitrary 𝜀(𝜔) function, the system has to be solved numerically. However, two
particular cases that are of a significant importance in practice allow for a derivation
of a closed-form solution for the 𝛼𝑚’s. These are the non-dispersive case and the
Lorentz (or Drude) dispersion.

For non-dispersive materials, we get 𝐵𝑛𝑚(𝜔) = 0 for 𝑛 ̸= 𝑚 due to the QNM
orthogonality [190] and 𝐵𝑚𝑚(𝜔) = (𝜔− �̃�𝑚)

∫︀∫︀∫︀ (︁
Ẽ𝑚 · 𝜀Ẽ𝑚 − H̃𝑚 · 𝜇H̃𝑚

)︁
𝑑𝑉 . There-

fore, the system of equations (III.26) is diagonal and gives trivially

𝛼𝑚(𝜔) = − 𝜔

𝜔 − �̃�𝑚

∫︁∫︁∫︁
𝑉scat

Δ𝜀(r)E𝑏 ·Ẽ𝑚𝑑𝑉 (III.28)

where we have taken into account the normalisation condition (III.22). The integra-
tion is performed inside the resonator, since Δ𝜀 is zero outside.

The second important case corresponds to materials that can be described by the
Lorentz-Drude dispersion model. In that case, it has been demonstrated that the
augmented eigenmodes composed of the electromagnetic field and the auxiliary field
[see Eq. (III.21)] are also orthogonal, but with respect to a different inner product,
which incorporate the auxiliary fields J and P [175]. The derivation follows the same
idea as in the case of non-dispersive materials, but Lorenz reciprocity theorem has to
be modified to take into the auxiliary fields, which makes the process more algebra
heavy. The detailed derivation can be found in the Supplemental Material of [175]
and yields the following closed-form expression for the excitation coefficients

𝛼𝑚(𝜔) =
[︂
𝜀𝑏 − 𝜀∞ − �̃�𝑚

𝜔 − �̃�𝑚

(𝜀(�̃�𝑚) − 𝜀𝑏)
]︂ ∫︁∫︁∫︁

𝑉scat
E𝑏(r)Ẽ𝑚𝑑𝑉 . (III.29)

We have considered here a homogeneous scatterer (𝜀 is constant inside the volume
𝑉scat), but a similar expression exists for the inhomogeneous ones [175].

72



2 T-matrix quasi-normal mode expansion

2 T-matrix quasi-normal mode expansion

In this section we derive the QNM expansion of the T-matrix. We show that the
same QNM formalism [same excitation coefficient 𝛼𝑚(𝜔)] can lead to two different
formulations of the T-matrix modal decomposition. We derive a first “direct” formu-
lation of the T-matrix modal expansion in Subsec. III.2.1. This formulation directly
combines the expression of the T-matrix elements given in Eq. (III.14) as a function
of the total field and the permittivity difference Δ𝜀 with the QNM expansion given
in Eq. (III.24). We refer to this expression as the field-based formulation. Then,
we show in Subsec. III.2.2 that a different QNM decomposition is obtained if one
introduces the current auxiliary field J in the expression of the T-matrix elements.
We refer to this second formulation as the current-based formulation. The differences
between both formulations and their origin are discussed in Subsec. III.2.3.

2.1 Field-based formulation of the T-matrix modal decomposition

For the sake of convenience, let us first recall the expression of the T-matrix ele-
ments as a function of the total field inside the scatterer [Eq. (III.14)] and the QNM
decomposition of the scattered field [Eq. (III.24)].

The T-matrix elements can be expressed as

𝑇𝐿𝑃 = 1
2

∫︁∫︁∫︁
𝑉scat

(−𝑖𝜔)[𝜀(𝜔) − 𝜀𝑏]E · �̆�𝐿𝑑r3, (III.30)

where the total field inside the volume 𝑉scat is given by E = 𝜉𝑃 + E(𝑃 )
𝑠 , with 𝜉𝑃 the

regular VSH of order 𝑃 that serves as the incident field and E(𝑃 )
𝑠 the corresponding

scattered field defined as E𝑠 = E − Einc.
Within the QNM formalism, the scattered field can be expressed as a sum of QNMs,

𝐸(𝑃 )
𝑠 (r,𝜔) =

∑︁
𝑚

𝛼(𝑃 )
𝑚 (𝜔)Ẽ𝑚(r), (III.31)

where we have used the superscript (𝑃 ) on the excitation coefficient to keep in mind
that it depends on the incident field 𝜉𝑃 .

By combining these two equations we directly obtain a QNM expansion of the
T-matrix

𝑇𝐿𝑃 = 1
2

∫︁∫︁∫︁
𝑉scat

(−𝑖𝜔)[𝜀(𝜔) − 𝜀𝑏]
(︃
𝜉𝑃 +

∑︁
𝑚

𝛼(𝑃 )
𝑚 (𝜔)Ẽ𝑚

)︃
·�̆�𝐿𝑑r3, (III.32)
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which can be rewritten in the form of a non-resonant term (independent of the QNMs)
and a sum over modal quantities weighted by the excitation coefficient 𝛼(𝑃 )

𝑚

𝑇𝐿𝑃 = 𝜔

2𝑖

∫︁∫︁∫︁
𝑉scat

[𝜀(𝜔) − 𝜀𝑏]𝜉𝑃 ·�̆�𝐿𝑑r3 +
∑︁
𝑚

𝛼(𝑃 )
𝑚 (𝜔)

[︂
𝜔

2𝑖

∫︁∫︁∫︁
𝑉scat

[𝜀(𝜔) − 𝜀𝑏]Ẽ𝑚 ·�̆�𝐿𝑑r3
]︂

.

(III.33)
This equation is the field-based formulation of the T-matrix QNM expansion. For
the excitation coefficient 𝛼(𝑃 )

𝑚 , we use the expression derived in [175] for dispersive
systems, see Eq. (III.29).

We will see now that, if one introduces the QNM formalism in a slightly modified
expression of the T-matrix elements, we get a different modal decomposition.

2.2 Current-based formulation of the T-matrix modal decomposition

The T-matrix elements depend on the current induced inside the scatterer, −𝑖𝜔[𝜀(𝜔)−
𝜀𝑏]E. In a dispersive material, the permittivity 𝜀(𝜔) results from the movement of the
free electrons in a medium of permittivity 𝜀∞. Thus, the current induced inside the
scatterer is given by the sum of two contributions: a polarisation current proportional
to (𝜀∞ − 𝜀𝑏) and a current J that results from the movement of the free electrons,

J = −𝑖𝜔
−𝜀∞𝜔

2
𝑝

𝜔2 − 𝜔2
0 + 𝑖𝜔𝛾

E = −𝑖𝜔[𝜀(𝜔) − 𝜀∞]E. (III.34)

The latter exactly corresponds to the auxiliary field introduced in the QNM formalism
of dispersive resonators, see Eq. (III.21). Note that the quantity 𝜀(𝜔) − 𝜀∞, which
corresponds to the free-electrons contribution to the scatterer permittivity, is different
from Δ𝜀(𝜔) = 𝜀(𝜔)−𝜀𝑏 in Eq. (III.30), which is the difference between the permittivity
distribution inside the scatterer and the permittivity of the surrounding medium.

By reintroducing the hidden auxiliary field J in Eq. (III.30), the expression of the
T-matrix elements becomes

𝑇𝐿𝑃 = 1
2

∫︁∫︁∫︁
𝑉scat

[︁
(−𝑖𝜔)(𝜀∞ − 𝜀𝑏)(𝜉𝑃 + E(𝑃 )

𝑠 ) + J(𝑃 )
]︁
·�̆�𝐿𝑑r3. (III.35)

Again, the superscript (𝑃 ) is used to keep in mind that E(𝑃 )
𝑠 and J(𝑃 ) are produced by

considering the regular VSH of order 𝑃 as an incident field. Of course, Eq. (III.35)
is completely equivalent to Eq. (III.30).

Within the QNM formalism based on the introduction of auxiliary fields [175], both
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2 T-matrix quasi-normal mode expansion

the scattered field E(𝑃 )
𝑠 and the current J(𝑃 ) are expanded onto the set of QNMs.

Therefore, in addition to Eq. (III.31), we also have

J(𝑃 )(r,𝜔) =
∑︁
𝑚

𝛼𝑚(𝜔)(𝑃 )J̃𝑚(r). (III.36)

According to the linearised eigenvalue problem given by Eq. (III.21), the following
relation holds between the modal field Ẽ𝑚 and the modal current J̃𝑚,

J̃𝑚 = −𝑖�̃�𝑚[𝜀(�̃�𝑚) − 𝜀∞]Ẽ𝑚. (III.37)

By combining Eqs. (III.35)-(III.37), as well as Eq. (III.31), we obtain the second
QNM expansion of the T-matrix

𝑇𝐿𝑃 = 𝜔

2𝑖

∫︁∫︁∫︁
𝑉scat

(𝜀∞ − 𝜀𝑏)𝜉𝑃 ·�̆�𝐿𝑑r3+

+
∑︁
𝑚

𝛼(𝑃 )
𝑚 (𝜔)

[︂
𝜔

2𝑖

∫︁∫︁∫︁
𝑉scat

(𝜀∞ − 𝜀𝑏)Ẽ𝑚 ·�̆�𝐿𝑑r3 + �̃�𝑚

2𝑖

∫︁∫︁∫︁
𝑉scat

[𝜀(�̃�𝑚) − 𝜀∞]Ẽ𝑚 ·�̆�𝐿𝑑r3
]︂

.

(III.38)

This equation is the current-based formulation of the T-matrix QNM expansion. We
use the same excitation coefficient 𝛼(𝑃 )

𝑚 as in Eq. (III.33), namely the expression
derived in [175] for dispersive systems, see Eq. (III.29). We would like to stress that
even though Eq. (III.38) was derived using the auxiliary field J, only the electric field
of a QNM finally appears in the formula. This is an important point, which makes
Eq. (III.38) usable with any QNM solver, even one which does not rely on auxiliary
fields [157].

2.3 Discussion on the difference between the field and the current-based
formulations

Both Eqs. (III.33) and (III.38) are written in the form of a non-resonant term (in-
dependent of the QNMs) and a sum over modal quantities weighted by the excitation
coefficient 𝛼(𝑃 )

𝑚 . However, if one compares carefully both equations, one readily sees
that the non-resonant terms are slightly different and the modal quantities are also
slightly different. Since the starting points, Eqs. (III.30) and (III.35), are completely
equivalent, the differences can only come from the application of the QNM formalism.

In the field-based formulation, the total current induced inside the scatterer, −𝑖𝜔
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Δ𝜀(𝜔)E, is split in two parts: the first one results from the incident field while the
second one is proportional to the scattered field. This separation between both contri-
butions is imposed by QNM theory, which expands the scattered field onto the QNM
set, and not the total field. On the other hand, in the current-based formulation, we
reintroduce the hidden contribution of the free electrons. The latter is, in the QNM
formalism developed in [175], entirely expanded onto the QNM set without separating
the part proportional to the incident field from the one proportional to the scattered
field. This is the origin of the difference between Eqs. (III.33) and (III.38). The frac-
tion of the induced current that is due to the movement of the free electrons driven
by the incident field is expressed as a sum of QNMs in the current-based formulation,
while it is incorporated in the non-resonant term in the field-based formulation.

At first sight, this point seems to be the signature of an inconsistency in the
QNM formalism. In fact, the issue of the role and the expression of non-resonant
contributions in QNM decompositions is currently an open issue in the community.
Recent works on QNM theory have proposed different expressions of the non-resonant
contribution [175–177, 200]. In order to test this point, we compare in Sec. III.3
the convergence of both formulations as the number of QNMs in the expansion is
increased. We show that Eqs. (III.33) and (III.38) both provide a good accuracy for a
large enough number of modes. However, the convergence speed of both formulations
for a small number of modes is different.

2.4 Cross-sections

Cross-section (scattering, absorption, extinction) is an important physical quantity
that is often used to characterise a scatterer resonant behaviour. In this section,
for completeness, we provide expressions to derive extinction and scattering cross-
sections (absorption is equal to their difference) from a given T-matrix.

The extinction cross-section 𝜎ext is proportional to the real part of the T-matrix:

𝜎ext = − 1
4𝑆0

∑︁
𝐿

∑︁
𝑃

ℜe [(B*BT)𝐿𝑃 ] , (III.39)

where 𝑆0 is the time-averaged Poynting vector of the incident plane-wave, B a diag-
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onal matrix, such that

⎧⎪⎪⎨⎪⎪⎩
𝐵𝐿𝐿 = 𝑖𝑛

𝑘0

√︃
2𝜋
√
𝜀𝑏

(2𝑛+ 1), if |𝑚| = 1,

𝐵𝐿𝐿 = 0, if 𝑚 ̸= 1
(III.40)

where 𝑛 and 𝑚 are the degree and the azimuthal number, respectively, that corre-
spond to a given 𝐿 index (see Table III.1) and the asterisk stands for the complex
conjugation.

The scattering cross-section, on the other hand, and therefore the absorption one
as well, since 𝜎abs = 𝜎ext − 𝜎sca, does not depend linearly on the QNMs, which does
not allow for the separation of their contributions. The scattering cross-section is
related to the T-matrix according to the following relation:

𝜎sca = 1
4𝑆0

∑︁
𝐿

∑︁
𝑃

| (BT)𝐿𝑃 |2. (III.41)

3 Test case of a sphere

In this section, we test the accuracy of the modal decompositions of the T-matrix
derived above. We test both the field and the current-based formulations, Eqs. (III.33)
and (III.38), respectively, and compare their convergence speed as the number of
QNMs retained in the expansion is increased. In order to really test the modal
decomposition and not the accuracy of a given numerical method, we need a system
whose T-matrix can be calculated analytically.

We consider a metallic nanosphere for which exact values of the T-matrix elements
can be calculated with Mie theory. In addition, the QNMs of a sphere can also be
easily calculated by taking advantage of the analytic form of the scattering matrix. It
is thus feasible to calculate an arbitrary large number of QNMs. A Drude model [see
Eq. (III.20)] with 𝜔0 = 0, 𝜀∞ = 1, 𝜔𝑝 = 1.26×1016rad · s−1, and 𝛾 = 0.01125𝜔𝑝 will be
used throughout this section. This model can closely represent the dispersion of gold
in the infra-red band and was previously used in [190]. We study two spheres with
different radii: 𝑅 = 25 nm and 𝑅 = 100 nm. Since the resonances are less pronounced
for larger metallic spheres, the convergence of the QNM decomposition is expected
to be slower. Therefore, the 𝑅 = 100 nm case constitutes a more demanding test.
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3.1 Quasi-normal modes

To get the QNMs frequencies of a homogeneous sphere, we have calculated the
poles of the scattering matrix (S-matrix) in the complex plane. For a sphere, the
scattering matrices for electric and magnetic polarisations are known analytically.
They are given by [201]

𝑆(𝑒)
𝑛 = −ℎ(−)

𝑛 (𝑘𝑏𝑅)
ℎ

(+)
𝑛 (𝑘𝑏𝑅)

𝜀𝑠(𝜔)𝜙(−)
𝑛 (𝑘𝑏𝑅) − 𝜙(1)

𝑛 (𝑘𝑠𝑅)
𝜀𝑠(𝜔)𝜙(+)

𝑛 (𝑘𝑏𝑅) − 𝜙
(1)
𝑛 (𝑘𝑠𝑅)

, (III.42)

𝑆(ℎ)
𝑛 = −ℎ(−)

𝑛 (𝑘𝑏𝑅)
ℎ

(+)
𝑛 (𝑘𝑏𝑅)

𝜙(−)
𝑛 (𝑘𝑏𝑅) − 𝜙(1)

𝑛 (𝑘𝑠𝑅)
𝜙

(+)
𝑛 (𝑘𝑏𝑅) − 𝜙

(1)
𝑛 (𝑘𝑠𝑅)

, (III.43)

where 𝑘𝑏 = 𝑘0𝑛𝑏 and 𝑘𝑠 are the wavenumbers in the surrounding medium and in-
side the sphere, respectively, 𝜙(±)

𝑛 (𝑧) = 𝜉′(±)
𝑛 (𝑧)/ℎ(±)

𝑛 (𝑧), 𝜙(1)
𝑛 (𝑧) = 𝜓′

𝑛(𝑧)/𝑗𝑛(𝑧), with
𝑗𝑛(𝑧) and 𝜓𝑛(𝑧) being respectively the spherical Bessel and Riccati-Bessel functions,
ℎ(+)

𝑛 (𝑧) and 𝜉(+)
𝑛 (𝑧) – spherical Hankel and Riccati-Hankel functions of the first kind

(superscript ‘−’ denotes their counterparts of the second kind). The superscripts (𝑒)
and (ℎ) denote electric and magnetic polarisations and index 𝑛 indicates the degree.

The S-matrix has a similar physical sense to the T-matrix: it relates the incoming
field to the outgoing. They are related in a linear manner as S = 2T+I, with I being
the identity matrix. The S-matrix elements of a sphere are diagonal and degenerate
with respect to the azimuthal number 𝑚 ∈ [−𝑛,𝑛]. As a consequence, the QNMs of a
sphere are also degenerate with respect to 𝑚. Each value of the degree 𝑛 corresponds
to a different set of complex frequencies, see Fig. III.3. For 𝑛 = 1, each QNM is
threefold degenerate, for 𝑛 = 2, each QNM is fivefold degenerate, etc.

An iterative method is most suitable and efficient to get the QNM complex fre-
quencies by searching for the roots of the S-matrix denominator of Eqs. (III.42) and
(III.43) for electric and magnetic polarisations, respectively. Since the calculations
are rapid, it is feasible to select almost arbitrary starting points on the complex grid.1

A better approach might be to map the values of the inverse of the denominator in
the complex plane and use the Cauchy integral theorem to determine the locations
of the poles with a good approximation which can later be refined in a few iterations
of a root-search method.

Figure III.3 shows the calculated QNM frequencies (for electric polarisation) 𝑘𝑚 =
�̃�𝑚/𝑐 = 2𝜋/�̃�𝑚 in the complex plane for a sphere of 𝑅 = 25 nm in air. An infinite

1S-matrix poles of a sphere can be imagined as positioned on a single curve in the complex wavenu-
mer space (see Fig. III.3), rather than scattered randomly, which is helpful for an arbitrary, but
educated, guess of a starting point.
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Figure III.3.: Frequencies 𝑘 = �̃�/𝑐 in 𝜇𝑚−1 of the modes in the complex plane,
as indicated by the circles of four different colours, corresponding to the values
of 𝑛 between one and four, as labelled on the figure (a). The mode with 𝑛 = 1
closest to the imaginary axis, but not lying on it, is the electric dipole mode. It is
pointed out with an arrow in (b); its field profile is displayed in (d). Subfigure
(c) shows the enlarged region where the stationary modes (purely imaginary
eigenfrequency) accumulate around the pole of the Drude model 𝜔 = −𝑖𝛾.
Sphere radius is 𝑅 = 25 nm, surrounding space index 𝑛𝑏 = 1, Drude dispersion
parameters are specified in the introduction of this chapter.

discrete set of modes exists for each value of the degree 𝑛; we have gathered in
Fig. III.3 73 modes for 𝑛 = 1 (blue dots), 88 for 𝑛 = 2 (green dots), 68 for 𝑛 = 3
(yellow dots), and 87 for 𝑛 = 4 (red dots). Three distinct categories of modes can
be identified for each value of the degree 𝑛. First, a long tail formed by QNMs with
a very large frequency (both real and imaginary parts) that tends to infinity can
be seen in Fig. III.3(a). A second category of QNMs highlighted in Fig. III.3(b)
corresponds to the well-known electric dipole resonance (𝑛 = 1, see the arrow), the
electric quadrupole resonance (𝑛 = 2), etc. The complex frequencies of these modes
have a small imaginary part (compared to all other modes) and a real part that lie
in the visible part of the spectrum. These modes are responsible for the resonances
that can be observed in the spectrum of the sphere response to any incident field.
Finally, a third category of QNMs is shown in Fig. III.3(c). It is a infinite family of
stationary modes (real part of the frequency equals to zero) with an accumulation
point at 𝜔 = −𝑖𝛾. This value corresponds to the pole of the Drude model used
for the metal permittivity. For a structure composed of a material described by a
Lorentz model [see Eq. (III.20)] with 𝛾 ≪ 𝜔0, the accumulation point will be located
at 𝜔 = 𝜔0 − 𝑖𝛾/2 in the complex plane.
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

If we are concerned with a working frequency close to the electric-dipole resonance
in the visible [see the arrow in Fig. III.3(b)], the excitation coefficient of a given mode,
and thus its contribution to the reconstruction of any physical quantity, decreases
rapidly with its eigenfrequency, as we move farther from the resonance in the complex
plane. So much so that, beyond a certain point, the contribution of the stationary
modes (purely imaginary eigenfrequency) becomes larger than the contribution of the
modes in the high frequency tail.

If 𝜔 and (E, H) are solutions of Maxwell’s equations without source, then −𝜔*

and (E*, H*) are as well, where the asterisk indicates complex conjugation, since
𝜀(−𝜔*) = 𝜀*(𝜔) due to the Hermitian symmetry of real Fourier transforms. This
means that there is a second family of modes (with Re(�̃�𝑚) < 0 and Im(�̃�𝑚) < 0)
symmetrically located in the complex plane with respect to the imaginary axis to
the ones in Fig. III.3. They have to be included in the QNM expansion as well and,
obviously, no additional numerical calculations are required since these modes can be
deduced from the ones with Re(�̃�𝑚) > 0 by complex conjugation.

Having computed 𝑘 for a given 𝑛 and polarisation, the field of the mode can be
calculated for a fixed azimuthal number 𝑚, as a harmonic of the corresponding degree
𝐿 defined in Table III.1 (see, for example, Ref. [201]).

For objects that possess rotation symmetry, the volume integrals in the modal
expansion of the T-matrix can be easily transformed to surface integrals, by switching
to the spherical coordinates and integrating over the azimuthal angle 𝜙 analytically.
This greatly reduces the time and memory requirements of the calculation, making
this approach even more attractive for cylindrical scatterers, as will be demonstrated
in the following chapter.

3.2 Reconstruction of the T-matrix

In this subsection we study the convergence of the two QNM decompositions for the
T-matrix coefficients, the field-based formulation [see Eq. (III.33)] and the current-
based formulation [see Eq. (III.38)].

Because the sphere we take as a study example is small compared to the wave-
length (radius 𝑅 = 25 nm ≈ 𝜆/10 in air) and the Drude model approximates the
permittivity of gold in the infra-red part of the spectrum, its scattering properties
can be reasonably well approximated with the electric dipole mode (𝑛 = 1), which
gives the major contribution to the most significant T-matrix elements, in the visible
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3 Test case of a sphere

spectral range around the resonance. The complex frequency of the electric dipole
mode is 𝑘𝑚 = 21.42 − 1.26𝑖 𝜇𝑚−1; it is shown by the arrow in Fig. III.3(b). The
T-matrix elements with electric polarisation have a much larger contribution than the
magnetic ones. Furthermore, the magnitude of T-matrix elements of degree 𝑛 = 2 is
five times smaller than the dipolar one. The first complex frequency of the dominant
𝑛 = 2 mode is 𝑘𝑚 = 25.6 − 0.26𝑖 𝜇𝑚−1. The magnitude of the T-matrix elements of
degree 𝑛 = 3 is about 50 times smaller than the one of 𝑛 = 2.
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Figure III.4.: Diagonal T-matrix elements with 𝐿 = 6 (𝑛 = 1, 𝑚 = 1, electric)
and 𝐿 = 14 (𝑛 = 2, 𝑚 = 1, electric) for (a) and (b), respectively, as a function
of the frequency for a sphere of radius 𝑅 = 25 nm in air (same sphere as in
Fig. III.3). Circles mark the exact Mie theory solution and solid lines show
the results obtained using Eq. (III.38) with a single QNM that corresponds to
the appropriate resonance. Colour is used to tell the real part (blue) from the
imaginary part (red). Additionally, in (a) cyan and yellow lines (for real and
imaginary parts, respectively) are used for the results obtained with 40 QNMs.
The dashed black vertical line shows Re(𝑘𝑚) of the principal QNM that were
singled out for each case.

The above point is illustrated in Fig. III.4, where we plot the T-matrix elements
with 𝐿 = 6 (𝑛 = 1, 𝑚 = 1, electric) and 𝐿 = 14 (𝑛 = 2, 𝑚 = 1, electric) as a function
of the frequency 𝑘0 = 𝜔/𝑐 = 2𝜋/𝜆. The T-matrix elements are rigorously calculated
with Mie theory (circles) and the results are compared with the modal decomposition
of Eq. (III.38). For both values of 𝐿, a single mode of the corresponding degree 𝑛
is sufficient for an accurate reconstruction of the resonant spectrum. By adding
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

additional QNMs, the accuracy improves and for the 𝑇6,6 elements the two solutions
become indistinguishable with the naked eye after a few dozen of modes are included.
For 𝑇14,14 one QNM is sufficient for the two curves to practically overlay, because its
resonance has a higher quality factor than the one for 𝑇6,6.

Let us now study more precisely the convergence of the modal expansion as the
number of modes is increased. Figure III.5 overlays the results for a sphere of 𝑅 =
25 nm in air obtained using Eq. (III.33) (blue lines) and Eq. (III.38) (orange lines).
The QNM excitation coefficients 𝛼𝑚(𝜔) were calculated using Eq. (III.29) in both
cases. We show the relative error on the real part and the imaginary part of the
T-matrix elements, |Re(𝑇modal −𝑇Mie)|/|Re(𝑇Mie)| and |Im(𝑇modal −𝑇Mie)|/|Im(𝑇Mie)|,
versus the number of modes we take into account in the expansion [𝑀 in Eq. (III.24)].
Subfigures (a) and (c) show the error on the real part of the diagonal T-matrix
element with 𝐿 = 6 (𝑛 = 1, 𝑚 = 1, electric) for 𝑘0 = 22𝜇𝑚−1 and 𝐿 = 14 (𝑛 = 2,
𝑚 = 1, electric) for 𝑘0 = 26𝜇𝑚−1, respectively. The values for 𝑘0 were chosen close
to the respective resonance for quicker convergence in order to better test the limits.
Similarly, (b) and (d) show the error on the imaginary parts of the same T-matrix
elements.

In Fig. III.5, a given mode with an eigenfrequency 𝑘𝑚 is considered separately from
its −𝑘*

𝑚 cousin. The modes are sorted according to their contribution to modulus
of the T-matrix elements. The −𝑘*

𝑚 modes have a smaller contribution then the 𝑘𝑚

modes. For the high frequency modes, both contributions from 𝑘𝑚 and −𝑘⋆

𝑚 are
almost equal and can be of a different sign (positive or negative). This results in the
oscillations that can be observed in Fig. III.5, either on the real or the imaginary
part of T. In Fig. III.5(a), the first mode is the electric-dipole mode, 𝑘1, the second
mode is the next closest to it in the complex plane (𝑘2 = 99.4−78𝑖), followed by −𝑘*

2

and −𝑘*
1, and so on. The stationary (purely imaginary) modes have a contribution

on the order between 10−7 and 10−13 (the closer to −𝑖𝛾, the higher the contribution)
relative to the absolute value of the T-matrix element, which means that in Fig. III.5
they are spread in the second part of the curve. There is an additional stationary
mode for even values of the degree 𝑛. Its role is more significant, however. In fact, it
is the fourth most significant mode in Fig. III.5(c,d), between −𝑘*

2 and −𝑘*
1.

We can see that the current-based formulation shows a quicker convergence than
the field-based one. The relative error of the current-based formulation is smaller than
10−3 for only 5 modes in the expansion, whereas the field-based formulation needs
more than 50 modes to reach the same accuracy. The relative error on Im(𝑇6,6) stays
even above 10−3 for a modal expansion with 200 modes. However, the current-based
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Figure III.5.: Relative error on the real [(a) and (c)] and imaginary [(b) and (d)]
parts of the diagonal T-matrix elements with 𝐿 = 6 (𝑛 = 1, 𝑚 = 1, electric)
[(a) and (b)] and 𝐿 = 14 (𝑛 = 2, 𝑚 = 1, electric) [(c) and (d)] versus the
number of QNMs taken into account. The sphere radius is 𝑅 = 25 nm and its
permittivity is given by the Drude model specified in the introduction to this
section. Index of the surrounding medium 𝑛𝑏 = 1. The frequency is chosen close
to the resonance of the T-matrix elements (see black dashed lines in Fig. III.4),
𝑘0 = 22𝜇𝑚−1 for 𝑇6,6 in (a) and (b) and 𝑘0 = 26𝜇𝑚−1 for 𝑇14,14 in (c) and (d).
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

formulation seems to converge towards a value slightly different from the correct one,
as evidenced by a “saturation” of the error for a large number of modes, especially
for the imaginary part of the T-matrix. We believe that this behaviour could be
improved with a modified QNM formulation with a different non-resonant term.

Finally, in Fig. III.6 and III.7 we provide the same results as in Figs. III.4 and III.5,
but for a bigger sphere of radius 𝑅 = 100 nm. Since the resonances of a larger
plasmonic object are less pronounced due to stronger radiation losses, the spectrum
of the T-matrix elements cannot be as accurately represented with a single mode,
see Fig. III.6. As a consequence, both formulations of the modal decomposition
convergence more slowly, as seen in Fig. III.7. In addition, the saturation of the
current-based formulation for a large number of modes appears sooner, i.e., for a
larger relative error.
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Figure III.6.: Diagonal T-matrix elements with 𝐿 = 6 (𝑛 = 1, 𝑚 = 1, electric)
and 𝐿 = 14 (𝑛 = 2, 𝑚 = 1, electric) for (a) and (b), respectively, as a function of
the frequency for a sphere of radius 𝑅 = 100 nm in air. Circles mark the exact
Mie theory solution and solid lines show the results obtained using Eq. (III.38)
with a single QNM that corresponds to the appropriate resonance. Colour is
used to tell the real part (blue) from the imaginary part (red). Additionally,
cyan and yellow lines (for real and imaginary parts, respectively) are used for the
results obtained with 40 QNMs. The dashed black vertical line shows Re(𝑘𝑚)
of the principal QNM that were singled out for each case.
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Figure III.7.: Relative error on the real [(a) and (c)] and imaginary [(b) and (d)]
parts of the diagonal T-matrix elements with 𝐿 = 6 [(a) and (b)] and 𝐿 = 14
[(c) and (d)] versus the number of QNMs taken into account. The sphere radius
is 𝑅 = 100 nm and its permittivity is given by the Drude model specified in
the introduction to this section. Index of the surrounding medium 𝑛𝑏 = 1. The
frequency is chosen close to the resonance of the T-matrix elements (see black
dashed lines in Fig. III.6), 𝑘0 = 9𝜇𝑚−1 for (a) and (b) and 𝑘0 = 16𝜇𝑚−1 for (c)
and (d).
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Chapter III: Modal expansion of T-matrix with quasi-normal modes

4 Conclusion

In this chapter we have introduced a QNM expansion of the T-matrix of 3D reso-
nant scatterers. We have derived and tested two different formulations. The first one,
referred to as the field-based formulation, is based on a the expression of the T-matrix
as a function of the total field and the total permittivity difference resulting from the
presence of the scatterer. The second formulation, referred to as the current-based
formation, is based on the expression of the T-matrix as a function of an auxiliary
field that represents the current induced inside the scatterer due to the excitation
of free charges. Both formulations provide closed-form expressions for the T-matrix
elements that depend only on overlap integrals between VSHs and the electric field
of the scatterer eigenmodes, which makes them readily usable with any QNM solver.

As a demonstrative example, we have considered a metallic sphere and looked at
the accuracy of the QNM expansion with respect to the number of modes taken
into account. Mie theory provides an exact reference for the T-matrix, which is not
available for an object of arbitrary shape (or even for a finite-length cylinder). In
addition, the QNMs of a sphere are the VSHs at a complex frequency, and thus can
be calculated analytically. This allows us to look at the contribution of the very
high-frequency modes, for which 𝜀 → 𝜀∞. We observe a few common trends: (i)
real part of T converges more quickly than the imaginary part; (ii) current-based
formulation provides a quicker convergence than the field-based one; (iii) current-
based formulation seems to converge toward a slightly incorrect value. This last
point is probably due to the non-resonant term in the QNM expansion, which is
different in both formulations. This issue clearly requires further investigations.
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Chapter IV
Quasi-normal modes based
calculation of nonspherical
nanoantennas

In this chapter we apply the modal decomposition of the T-matrix outlined in
Chapter III to the calculation of light scattering by ensembles of nonspherical nanores-
onators. We start by looking at a single metallic nanorod (cylinder of finite length).
Such plasmonic scatterers, rod or disk-shaped, are interesting by themselves, thanks
to the electric dipole mode they sustain, or as a building block for clusters, metasur-
faces, etc. [27, 86, 202–209]. We focus on the T-matrix of a single nanorod because
one can then calculate the response of any ensemble of nanorods inside a homoge-
neous environment or a layered medium from the knowledge of the T-matrices of each
individual scatterer. The theory behind this calculation, the multipolar multiple-
scattering theory, was thoroughly developed over the years. A comprehensive list
of links is available in Ref. [169], as well as in later updates to the database from
Mishchenko and colleagues.

We use a multipolar multiple-scattering code that was already implemented at Lab-
oratoire Charles Fabry for calculating the multiple scattering by ensembles of spheres.
We have extended it by using as an input a T-matrix calculated semi-analytically with
a QNM expansion. We would like to stress that this approach is particularly well-
suited for structures that consist of several instances of identical scatterers (dimer,
trimer, clusters, Yagi-Uda antennas, periodic arrays, gradient metasurfaces) [1, 73,
210–213].

This chapter is divided into five sections. Firstly, in Section IV.1 we calculate the
QNMs and reconstruct the T-matrix of an individual metallic nanorod with a few
tenth of modes. It will be the basis for further calculations. Using this T-matrix,
we calculate in Sec. IV.2 the scattering and absorption cross-sections of a dimer
comprised of two identical nanorods. In Sec. IV.3 we further test the QNM expansion
by calculating the emission of a dipole source inside a Yagi-Uda antenna made of six
metallic nanorods. Section IV.4 is devoted to the calculation of the absorption inside
a periodic array of nanorods. In each case (dimer, Yagi-Uda antenna, periodic array),



Chapter IV: Quasi-normal modes based calculation of nonspherical nanoantennas

the semi-analytical results obtained with the modal decomposition of the T-matrix
are compared with rigorous numerical calculations performed with an in-house FEM
code. Finally, in Sec. IV.5 we discuss the different steps of the T-matrix calculation
with the QNM theory, focusing on the computation times and comparing them to
the FEM calculation.

1 Metallic cylindrical nanorod

As an illustrative example of a 3D cylindrical scatterer, we take a 30 nm wide,
100 nm long nanorod studied in Refs. [156, 190], with the same permittivity as the
sphere in Sec. III.3 (see Fig. IV.1). This time, however, we consider a non-unitary
refractive index for the outside space, 𝑛𝑏 = 1.5. In this environment, such a nanorod
has its electric dipole (ED) resonance in the near infrared around 𝜆 = 920 nm and
can be accurately represented by a single mode over quite a broad spectral range.
Such condition is most favourable for the QNM approach.

h

R

n
b

O

Figure IV.1.: Schematic of the metallic nanorod. The major geometrical param-
eters are its length, ℎ, and radius, 𝑅, which are 100 and 15 nm, respectively,
for the nanorod studied in this section. The constant index of the surrounding
space is labelled with 𝑛𝑏. Gray dashed circle traces the boundary of the imag-
inary sphere with the centre in 𝑂 inside which the T-matrix method does not
permit to obtain the scattered field.
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1 Metallic cylindrical nanorod

1.1 Quasi-normal modes

As mentioned in Subsec. III.1.2, in general, QNM frequencies can be numerically
found by iteratively computing a response (S-matrix, field, etc.) of the resonator to a
closely located source with a complex emission frequency, and converging to a point
in the complex frequency space where this response diverges.1 This is the first step
in this method. In order not to look blindly in the complex plane, we first calculate
a map of the resonator response as a function of the real and imaginary parts of the
frequency. Then, we use the local extrema as starting points for the iterative root-
search algorithm, as done in Sec. III.3. The frequency step is a crucial parameter
that determines the time-efficiency and the accuracy of the method, as some QNMs,
especially for larger wavenumbers, can be located close together and, as a result, fail
to be distinguished. In addition, a smaller step will provide a starting point closer
to the real value. However, in practice, this is not necessarily useful, as the time
increase required to calculate the response on a finer grid outweighs (often by more
than one order of magnitude) the time needed for one or two additional iterations of
the root-search algorithm. Therefore, the optimal step size is not grounded in some
simple physical or numerical considerations, rather it requires developing intuition or
a rule of thumb for a given set of conditions. Further discussion of this crucial step
is provided in Sec. IV.5.

In order to obtain the normalised field of a QNM, various solvers and options are
available [157]. For instance, the same solver as the one used to calculate iteratively
the QNM frequency can be used. The source will be driven at a complex frequency
close to the one of the mode, 𝜔 ≈ 𝜔𝑚 and the normalised QNM field can be deduced
from the scattered field, see Eq. (8) in Ref. [156] and the discussion in Subsec. 1.2.c.

Because of the rotational symmetry, the QNMs of a nanorod are degenerate with
respect to the sign of the azimuthal number 𝑚. This fact reduces the number of
unknown T-matrix elements almost in half, as the ones which differ only by the
sign of 𝑚 are identical to each other. Due to this degeneracy, the QNM fields and
complex frequencies have to be calculated only for each non-negative value of 𝑚. The
frequency for −𝑚 is identical and the field for −𝑚 can be obtained by changing the
sign of the 𝑦-component of the electric field Ẽ and the 𝑥− and 𝑧-components of the
magnetic field H̃. Depending on the type of solver used, symmetry conditions or
positions of the excitation source can prevent some modes from being found. Unlike
the case of a sphere discussed in the previous chapter, QNMs of a cylinder cannot be

1In practice, it is numerically preferable to look for the zeros of the inverse value.
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Chapter IV: Quasi-normal modes based calculation of nonspherical nanoantennas

sorted beforehand by the value of the degree 𝑛. To distinguish the modes, we have
to either look at their field profile, or at which T-matrix element it contributes the
most.

Figure IV.2(a) marks the locations in the complex frequency plane of several modes
with 𝑚 values ranging from zero to three. The principal ED resonance is the one
with the smallest real part of 𝑘𝑚 = �̃�𝑚/𝑐 (𝑐 is the speed of light in vacuum) for
𝑚 = 0 (pointed at with an orange arrow). Its field profile is plotted in Fig. IV.2(b).
This mode can be excited with a plane wave incident perpendicularly to the rod axis
and with its electric field polarised along it. All other modes are relatively distant
in terms of the real part, which is a manifestation of the fact that a single QNM
accurately describes the behaviour of the nanorod over a relatively broad spectral
range. In addition, there is no mode with the same value of 𝑚 and a large imaginary
part, which would result in a spectrally broad contribution due to a large resonance
width.
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Figure IV.2.: (a) QNM frequencies of the metallic nanorod in the complex plane
(blue circles) for different values of the azimuthal number 𝑚, 𝑚 = 0, 1, 2, and
3 from top to bottom. The mode closest to the imaginary axis is the electric
dipole mode (indicated with an orange arrow), whose field profile is displayed
in (b). The blue arrow points at a mode with a large imaginary part, which has
a broad (albeit relatively weak in our band) contribution to the spectrum.

In the case of a sphere, a mode of a particular 𝐿 number (set of 𝑛, 𝑚, and polari-
sation, see Table III.1 for the definition) contributes only to the 𝐿th diagonal element
of the T-matrix, and 𝑇𝐿𝑃 = 0 for 𝐿 ̸= 𝑃 . This property is due to the orthogonality of
the VSHs. For a nonspherical body of revolution (e.g., a nanorod or a disk), however,
the modes are only characterised by their azimuthal number 𝑚. As a consequence,
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1 Metallic cylindrical nanorod

the T-matrix is not diagonal and some off-diagonal elements are not equal to zero.2

The relation 𝑇𝐿𝑃 = 0 only holds for 𝐿 and 𝑃 values such that their azimuthal numbers
𝑚 are unequal.

We use an aperiodic Fourier modal method dedicated to body-of-revolution ob-
jects and developed at the Laboratoire Charles Fabry [214] to calculate the QNMs
up to 𝑚 = 10. Normalisation is done according to Eq. (8) of Ref. [156]. In addition,
throughout this chapter we are using Eq. (III.29) for calculating the excitation coef-
ficients 𝛼(𝜔) of the modes and the current-based formulation for the modal decom-
position of the T-matrix, see Eq. (III.38). We have chosen to use the current-based
formulation because, even if it seems to converge towards a slightly incorrect value,
it provides a smaller error than the field-based formulation for a small number of
modes, which will be our case here. In addition, when we say we consider a mode
𝑘𝑚, we automatically include the contribution of the mode with −𝑘*

𝑚.

1.2 Reconstruction of the T-matrix

Figure IV.3 shows the results for the T-matrix calculation in the spectral range
around the nanorod fundamental resonance. We have calculated the modal expansion
of the T-matrix and we compare the modal expansion with the values labelled with
circles. We call these values “exact”, even if, strictly speaking, they are not. They
were obtained as follows. The nanorod is illuminated by 𝑀 point sources. The
radiation of each is expanded in a set of 𝐿 regular VSHs, according to the degree 𝑛
that we chose for the T-matrix. This gives 𝑀 vectors of length 𝐿, which we combine
in a rectangular matrix A of size 𝐿 × 𝑀 . The scattered fields generated by each
source individually are expanded in a set of outgoing VSHs and brought together as
a second rectangular matrix B of size 𝐿 × 𝑀 . The T-matrix T is defined through
B = T ·A and can be obtained with the pseudo-inverse of A, as T = B ·A−1. We
have checked the validity of this approach with FEM calculations (not shown here).
However, even though they proved useful as a general reference, these results cannot
be as accurate as Mie theory in the case of a sphere and should be taken with a grain
of scepticism, as small discrepancies are to be expected, especially for higher-order
elements, due to numerical and methodological reasons. Indeed, the sources used to

2See VSH orthogonality condition [Eq. (III.10)]. This fact also becomes readily evident if we
consider an overlap integral used for 𝑇𝐿𝑃 matrix element calculation, e.g., Eq. (III.38). The
total field depends on 𝜙 as exp(𝑖𝑚𝑃 𝜙), while the �̆�𝐿 harmonics as exp(−𝑖𝑚𝐿𝜙), where 𝑚𝑃 and
𝑚𝐿 are the azimuthal numbers corresponding to 𝐿 and 𝑃 , respectively. Unless 𝑚𝐿 = 𝑚𝑃 , this
exponential term with make the integral equal to zero.
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generate the incident fields have to mimic VSHs with a high degree in order to fully
explore the T-matrix. This is all the more difficult as the degree increases.
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Figure IV.3.: Diagonal T-matrix elements versus 𝑘0 = 2𝜋/𝜆 = 𝜔/𝑐 for 𝐿 = 4,
6, and 12 for (a), (b), and (c), respectively. The legend is valid for all three
subfigures. Circles are used to indicate the reference T-matrix calculation, solid
lines – a single QNM contribution, dashed – 20 first QNMs.

The three subfigures differ from each other only by the value of the 𝐿 index of
a diagonal element that they depict. Figure IV.3(a) shows 𝑇4,4 as a function of
the wavenumber 𝑘0 = 2𝜋/𝜆 = 𝜔/𝑐, which corresponds to 𝑛 = 1,𝑚 = 0, electrical
polarisation. The resonant behaviour is accurately described with a single mode
[the one indicated with an orange arrow in Fig. IV.2(a)] [190]. Adding additional
modes with the same azimuthal number 𝑚 does not significantly influence the result,
as the convergence is rather slow. Figure IV.3(b) and (c) display 𝑇6,6 and 𝑇12,12,
respectively, which correspond to (𝑛 = 1, 𝑚 = 1, electric) and (𝑛 = 2, 𝑚 = 0,
electric). In this spectral range the magnitude of these T-matrix elements is much
smaller (one and two orders of magnitude smaller, respectively) than the one of 𝑇4,4,
because the object is small compared to the wavelength and we are far away on the
spectral axis from their resonances. As a result, a single mode often is not sufficient
to accurately represent these higher-order elements of the T-matrix. In Fig. IV.3(b)
for demonstration purposes we single out the mode with the largest imaginary part of
all those corresponding to 𝑚 = 1 [blue arrow in Fig. IV.2(a)], which causes it to have
a broad and significant contribution. Naturally, the modes used in Fig. IV.3(c) are
the same as the ones for Fig. IV.3(a) since 𝑚 = 0 in both cases. For the two cases in
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Fig. IV.3(b,c) adding more QNMs (at least 20 in total) results in a good agreement
with the “exact” calculation.

Now, without additional numerical computations, we can use this T-matrix to
calculate the scattering properties of more complex structures composed of several
nanorods with the help of the multipolar multiple-scattering theory [112–115, 169,
215]. All semi-analytical calculations obtained with a QNM expansion are the results
of a two-steps procedure: first, the calculation of the T-matrix with a QNM expansion
as shown in this section and secondly the multiple scattering calculation with the
multipole method and the T-matrix of a single nanorod as an input parameter. For
this second step, I have used a multipole method that was available at Laboratoire
Charles Fabry.

2 Metallic nanorod dimer

As a first simple example let us consider scattering by a dimer that consists of
two nanorods positioned on the same axis (see insets of Fig. IV.4). The nanorod
dimensions, dispersion, and the surrounding medium index are the same as in the
previous section, i.e., we use the same T-matrix here. The gap between the two faces
of the nanorods is fixed to 25 nm. Figure IV.4 shows the scattering and absorp-
tion cross-sections of the dimer under plane wave illumination for normal and 45∘

incidence.
We compare the results obtained with the modal expansion of the T-matrix (degree

𝑛 = 5, i.e., a 70 × 70 matrix) with those obtained with our in-house FEM code. The
latter calculates directly the scattering by the dimer without using the T-matrix. We
observe a good agreement with the FEM calculation for all cases. The discrepancy is
higher for longer illumination wavelengths, as expected, since larger wavelength-to-
gap ratios increase the high-order multipolar interaction between the nanorods, which
requires more modes (or denser mesh for finite-difference methods) to accurately
simulate. The closeness of the two results depend rather weakly on the number of
QNMs, even though, as anticipated, additional modes provide better agreement.

We would like to emphasise that the T-matrix calculated semi-analytically with
a single QNM of an isolated nanorod is sufficient for an accurate reconstruction
of the two peaks in the dimer spectra for the oblique incidence. They correspond
to the excitation of the symmetric and anti-symmetric modes of the dimer, which
eigenfrequencies are different from the ones of a single nanorod. To illustrate this
point, in Fig. IV.5 we plot the extinction cross-section calculated with two QNMs of
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Figure IV.4.: (a-b) Scattering and absorption cross-sections of the dimer under
normal plane wave illumination of wavelength 𝜆. Blue circles indicate the FEM
results; solid and dashed lines show the multipole multiple-scattering calculation
using only the resonant and 71 QNMs of a single nanorod, respectively. (c-d)
Same for the 45∘ incidence. The insets schematically depict the object and
incident plane wave propagation vector. The T-matrix degree 𝑛 is set to 5.

the dimer. The FEM and multiple-scattering theory (T-matrix reconstruction with
the modes of a single nanorod) calculations are the same as in Fig. IV.4.

In the case of the normal incident plane wave, only one mode (symmetric) is excited.
When the symmetry is broken by an oblique incidence, both modes are excited [see
dashed curve in Fig. IV.5(b)], their sum providing the correct overall extinction.

Even though one individual rod mode provides a good agreement for this geometry,
it is important to keep the rank of the T-matrix (and thus the multipolar degree in
the multiple-scattering theory) high enough to correctly account for the interaction
between the rods and the field enhancement in the gap. As mentioned above, the ED
mode can have a non-zero contribution to high-order T-matrix elements 𝑇𝐿𝑃 such
that 𝐿 and 𝑃 both correspond to 𝑚 = 0. For instance, for this nanorod the main
contribution of the principal mode is to 𝑇4,4 as shown in Fig. IV.3. But the ED mode
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Figure IV.5.: Extinction cross-section of the same dimer as in Fig. IV.4 under
normal and oblique (45∘) plane wave (of wavelength 𝜆) illumination for (a) and
(b), respectively. Same line styles are kept across the two subfigues: blue circles
indicate the FEM calculation results, solid red lines show the results of the
T-matrix approach with the QNMs of the single nanorod, dashed lines show
the contributions to the cross-section of the dimer QNMs, in contrast to the
individual nanorod QNMs, solid green line is given by their sum.

has also a non-zero contribution to 𝑇4,24 = 𝑇24,4 and 𝑇24,24,3 which are two and four
orders of magnitude smaller, respectively.

It is worth being stressed that for the above figures the full (especially when the
oblique incidence breaks symmetry of the system) FEM calculation had to be redone
from scratch, when the incidence angle was changed. Whereas for the T-matrix-based
calculations only the incidence parameter in the multipole multiple-scattering theory
software had to be adjusted, which results in much faster calculations, as discussed
in Sec. IV.5.

Our next step would be to add more nanorods to this dimer creating a Yagi-Uda
inspired nanoantenna to further test the practical accuracy of the QNM T-matrix
expansion.

3𝐿 = 24 stands for 𝑛 = 3, 𝑚 = 0, electric.
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3 Yagi-Uda nanoantenna

In this section, we consider a very practical device – the Yagi-Uda antenna, which
was relatively recently brought to the visible/infra-red world from the radio frequency
domain [213]. The typical design is depicted in Fig. IV.6. The antenna can be divided
into three sections: feed, reflector, director.

Reflector
Feed

Directors

ý ÷ ÷ ÷ ÷ ÷ ÷ ÷ øö ÷ ÷ ÷ ÷ ÷ ÷ ÷ ÷

xz

y

~l/3.5-l/3
~l/4 ~l/4.5

~l/6

~l/30

Figure IV.6.: Schematic of a typical Yagi-Uda nanoantenna design with metal-
lic nanorods acting as the feed, reflector, and directors. Typical dimensions
deduced from a rule of thumb are indicated.

In the heart of a typical Yagi-Uda antenna lies the feed component. In the original
configuration it is electrically driven. In the visible and telecommunication ranges,
it can be powered with a localised source (quantum emitter) [216, 217], polarisation
selective incidence [218], focused beam [219], etc. In the simplest case, a physical feed
element could be missing. Instead, a dipole or similar source would be present [113,
220, 221]. To the one side, at some distance 𝑑𝑟𝑒𝑓 from the feed, a reflective element
is located. The reflector usually has a larger size than the feed, which enables its
functionality. Its role is to reroute feed emission to the semi-space opposite from it,
where a set of director elements is placed in order to channel the electromagnetic
energy forward by constructive interference. The characteristic size of the individual
director is typically smaller than the one of the feed and reflector. An important
parameter is the distance 𝑑dir between each neighbouring director. In some previous
works, the distance between the feed and the first director was optimised individually
while, in other works, it is taken equal to the distance 𝑑dir between the directors. In
the radio frequency domain 𝑑ref < 𝑑dir, which is not necessarily the optimal choice
in nano-optics. The number of the director elements can go from one to more than
ten, but usually the designs are optimised with three, being faithful to the original
Yagi-Uda configuration [213]. The director elements can be identical to each other
[113, 220–222], or gradually vary in size [223–225]. The latter kind is often referred to

96



3 Yagi-Uda nanoantenna

as tapered nanoantenna [213]. The additional directors focus light increasingly more
narrowly in the forward direction of the antenna, which can be undeniably helpful
when it is pointed straight at the transmitter, but its performance will greatly decline
for the signals coming from other directions.

The T-matrix approach combined with the multipolar multiple-scattering theory
has a potential to provide significant gains to the Yagi-Uda antenna optimisation.
Since most of the designs involve individual scatterers of two or three kinds, the time
spent for the T-matrix calculation will be quickly made up when optimising for the
distances between the elements. Potentially more so for tapered designs. In general,
computing T-matrices with common rigorous methods (e.g., FEM) for a large number
of non-spherical scatterers would require a CPU time too great to be compensated by
the efficiency of the multipole theory. In the case of a tapered (gradient) antenna, the
QNM approach has an additional advantage. For each new subantenna the complex
QNM frequency can be found by an iterative search starting from a known value of
a slightly bigger or smaller object, saving us the time needed for the search in the
complex plane, which often takes the longest of all the steps, especially when we are
clueless of the approximate values of the poles.

As for the restrictions that are imposed, there is a major one to consider when we
deal with non-spherical building blocks. This has to do with the T-matrix method
itself. As already discussed in Subsec. 1.1.a, the technique provides the scattered field
outside an imaginary sphere that circumscribes the scattering elements. Because of
that, we are limited in terms of how close we can bring them to each other or to a
substrate, which might prohibit us from exploring some interesting options [226]. For
instance, imagine we deal with two elongated rods with their axes parallel to each
other. The minimal axis-to-axis distance between them would be slightly bigger than
the average of their heights. Nevertheless, we are still left with a vast practical design
range to explore.

3.1 Nanoantenna geometry

Since we are not faced with an objective to find the best performing Yagi-Uda
design we can, we are going to simply build from what we have already introduced.
The design studied in this section is schematically depicted in Fig. IV.7. The Yagi-
Uda is known to provide a good directivity of the emission. However, it does not
provide a strong enhancement (acceleration) of the spontaneous emission, except if
we use as a feed a combined system: a dipole source plus a plasmonic nanoresonator
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that emits like a dipole source [227]. Therefore, we use the dimer from the previous
section as a feed. It is well-known that a point source in the middle of a dimer gap
experiences a strong spontaneous emission enhancement [190, 228]. The triplet of the
same nanorods positioned in parallel would make the director component. Finally,
we choose a longer nanorod with ℎ = 175 nm and the same radius 𝑅 = 15 nm to
act as a reflector. A similar design has been previously explored for surface enhanced
Raman scattering applications [229]. In order to use the same QNMs and T-matrix
as in Sec. IV.1, the index of the outside space 𝑛𝑏 = 1.5.

d
gap

d
1 d

2

d
3

xz

y

Figure IV.7.: Schematic of the considered Yagi-Uda nanoantenna. Feed dimer,
along with the director component consist of the nanorods from Sec. IV.1. Re-
fractive index of the surrounding space 𝑛𝑏 = 1.5. The reflector element differs
only in its length, which is chosen to be 175 nm. Labels used for distances are
marked. Lengths in the horizontal direction are taken axis-to-axis.

In the following sections we are going to look at how different distances between
the nanoantenna elements influence its performance as a directional emitter.

3.2 Purcell factor of a point source coupled to a dimer antenna

The Purcell effect is the modification of a quantum system’s spontaneous emission
rate by its environment, the magnitude of which is given by the Purcell factor [230].
As is often done in nano-optics, we define the Purcell factor as a ratio of the total
power emitted by a dipole source in the presence of a scattering element to the one
radiated in free space by the same source. In the case of a dimer antenna, Purcell
factor generally increases as the gap width is decreased for a dipole source oriented
along the axis, since the field enhancement is increased. The frequency of the peak
enhancement will be the central operational frequency of the Yagi-Uda antenna. In
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Fig. IV.8 we plot the Purcell factors versus the wavelength of the source for two values
of the gap width, 25 and 50 nm, calculated using either QNM-derived T-matrix of a
single rod or FEM. We also show the non-radiative power, i.e., the power absorbed in
the nanorods. This in itself also serves as an illustrative test of the QNM calculation.
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Figure IV.8.: (a) and (b) – Schematic of the dimer structure and its Purcell
factor 𝑃tot/𝑃0 for a gap value of 50 mn. 𝑃tot is the total power emitted by the
dipole source in the presence of the dimer and 𝑃0 is the power emitted by the
same source in a homogeneous medium of refractive index 𝑛𝑏 = 1.5. (c) and
(d) – similarly for the gap size of 25 mn. The dimer consists of two nanorods
introduced in Sec. IV.1. In (b) and (d) circles mark the FEM calculation results,
solid line – calculation with the nanorod T-matrix obtained with a single QNM
mode (ED, indicated with the orange arrow in Fig. IV.2), dashed lines – with
15 QNMs, all of which correspond to 𝑚 = 0. T-matrix degree 𝑛 = 10.

Figure IV.8 tells us that the ED nanorod mode could be sufficient for an approx-
imate value of the wavelengths corresponding to the highest Purcell factor, which is

99



Chapter IV: Quasi-normal modes based calculation of nonspherical nanoantennas

given by the real part of the eigenfrequency of the ED mode. However, it proves in-
adequate to obtain the correct value of the maximum emission enhancement. What
is more, as with the cross-section, the agreement is worse for longer wavelengths.
Adding 14 additional QNMs helps to improve the agreement. More could poten-
tially decrease the error even further, though it is more numerically challenging to
calculate high-frequency QNMs. For this nanorod we have searched the space where
Re(𝑘) < 23 𝜇𝑚−1.

For Fig. IV.8 it is worthwhile to include only QNMs with 𝑚 = 0, as other are not
excited with such a source. For a complete Yagi-Uda design, however, this is no longer
the case due to multipolar interaction. Unlike in Sec. IV.2, here we use a higher degree
for the T-matrix (principally it matters for the multipolar multi-scattering theory,
as high-order T-matrix entries are very weak for our geometry) – 𝑛 = 10, instead of
𝑛 = 5. This improves the accuracy of the Purcell factor calculation. We will use the
same degree for the Yagi-Uda calculations as well.

Even though the minimum gap size due to the aforementioned T-matrix constraints
is 𝑑gap ≈ 4.5 nm, we do not expect the calculations to be easy for the gap sizes of
several nanometres. Two closely positioned nanorods pose a more complex problem
for the QNM expansion based on the T-matrix of a single rod. Indeed, the interaction
between two objects at a deep-subwavelength distance involves high-order multipoles,
i.e., high-order T-matrix elements. The latter are, in most cases, non-resonant in the
spectral range of interest and it is difficult to represent them accurately with a finite
sum of modes. In such cases, it might be a better idea to use the QNMs of the
dimer itself. Instead of using the multiple scatterer theory with two rods and a point
source, we would use the analytic expression of the point source field as Einc(r,𝜔)
for the integrals evaluation. However, it would not be possible to obtain the field
inside or around the gap, as it would be in the centre of the circumscribing imaginary
sphere. Also, the minimal 𝑑1 and 𝑑2 distances for our Yagi-Uda nanoantenna design
would be larger if we were to use dimer T-matrix, instead of two T-matrices of
individual nanorods. The discussion of these distances will be the subject of the
ensuing subsection.

3.3 Optimisation of the geometry

This subsection is dedicated to the choice of some geometrical parameters for the
Yagi-Uda design in Fig. IV.7.

The analytical nature of our combined approach QNM expansion + multipolar
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multiple-scattering theory is extremely valuable to perform a fast parameter sweep
to find the best directivity of the Yagi-Uda nanoantenna. The latter can be quantified
with the front-to-back ratio, defined as the ratio between the power emitted forward
in the positive 𝑥-direction to the power emitted backward (negative 𝑥-direction).
Figure IV.9(a) displays the predicted values of the front-to-back ratio as a function of
the distances 𝑑1 and 𝑑2 defined in Fig. IV.7. We have taken 𝑑2 = 𝑑3. The wavelength
is chosen equal to 975 nm, where the spontaneous emission enhancement provided
by the dimer is the highest. The optimum values for our configuration seem to be
𝑑1 ∈ [130, 150] nm and 𝑑2 ∈ [115, 130] nm. In contrast to a typical radio frequency
Yagi-Uda antenna, our calculations show that 𝑑1 > 𝑑2 for an optimum Yagi-Uda
antenna in the near infrared. The lower limits for 𝑑1 and 𝑑2 in Fig. IV.9(a) are fixed
by the limitations of the T-matrix method.
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Figure IV.9.: (a) Front-to-back ratio as a function of 𝑑1 and 𝑑2 = 𝑑3. (b) Front-
to-back ratio as a function of the number of nanorods that act as directors. In
(a) we use three director nanorods. In (b) 𝑑1 and 𝑑2 = 𝑑3 are chosen according
to the maximum in (a) – 130 and 125 nm, respectively. Dimer gap 𝑑gap = 50 nm
and point source wavelength 𝜆 = 975 nm for both subfigures.

Figure IV.9(b) shows the variation of the front-to-back ratio with the number of
director nanorods. As expected, the general trend is such that the more of them there
are, the better the directivity. This relation, however, is not monotonous, which is a
manifestation of the interference nature of this effect.

The figure was computed with two different T-matrices, one for each kind of a
nanorod: the 100 and 175 nm one. For the smaller one we have identified 71 QNMs
(with Re(𝑘𝑚) < 23 𝜇𝑚−1, plus their sister-modes with −𝑘*

𝑚, as always), and for the
bigger one – 53 (with Re(𝑘𝑚) < 30 𝜇𝑚−1), for 𝑚 up to 10. 4

4As already mentioned, the modes cannot be automatically sorted by their degree 𝑛. Performing
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Ultimately, we have chosen 𝑑1 = 150 nm, 𝑑2 = 𝑑3 = 125 nm, and three director
nanorods. It is possible that a better performance could be achieved with 𝑑2 ̸=
𝑑3. Calculated radiation patterns of this configuration are presented in the ensuing
subsection, along with direct FEM calculations.

3.4 Computation of the radiation pattern

The main characteristic of a Yagi-Uda nanoantenna is its directivity, i.e. a degree
to which a radiation is concentrated in a preferred direction. In this section we look
at how accurately our QNM-derived T-matrix can reconstruct the radiation pattern
of the antenna sketched in Fig. IV.7. The radiation pattern shows the power radiated
in the far field in an elementary solid angle 𝑑Ω around a direction fixed by the angles
(𝜃,𝜙) of the spherical coordinates, normalised by the point source emission in free
space. We show in Fig. IV.10 two cross-sections of the 3D radiation pattern. We
compare the results obtained with the QNM expansion of the T-matrix and the
multipole method with direct FEM calculations. In both cases, we calculate the near
field around the antenna and use a near-to-far field transformation described in [231]
to calculate the radiation pattern.

Figure IV.10 compares obtained radiation patterns. The reference rigorous calcula-
tion is, as before, provided with our in-house FEM code. For the T-matrix approach,
we first use only seven principal QNMs (dashed curves): two for the smaller nanorod
– the principal ED mode for 𝑚 = 0 and the broad mode (also ED) for 𝑚 = 1; five
for the bigger nanorod – three modes for 𝑚 = 0 (two that contribute principally to
the T-matrix elements with 𝑛 = 1, one to 𝑛 = 2), and two for 𝑚 = 1 (both 𝑛 = 1)
(see red-circled poles in Fig. IV.11). The threshold to include a given QNM was
that its contribution is at least 1% of the dominant one. We would like to point out
that, since the object is not a sphere, a QNM can have hybrid nature and contribute
to different T elements, and vice-versa, distinct modes can contribute to the same
resonance.

The solid curve in Fig. IV.10 shows the T-matrix-based results using 71 and 53
QNMs (up to𝑚 = 10) for the smaller and larger nanorod. Intriguingly, they are not so
unambiguous. Clearly, for 𝑑gap = 50 nm, adding additional modes leads to improved
agreement, as anticipated. However, the situation seems to be flipped backwards for
𝑑gap = 25 nm, where the calculation with more QNMs shows a larger error, when

QNM calculations for a given azimuthal number 𝑚 means finding modes that will be excited y
a VSH with 𝑛 ≥ |𝑚| of any of the two polarisations.
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Figure IV.10.: Radiation pattern of the Yagi-Uda antenna with 𝑑gap = 25 and
50 nm for (a) and (b), respectively. We plot two cross-sections of the 3D ra-
diation pattern in polar coordinates in XZ (left) and XY (right) planes. Blue
circles are obtained with a direct FEM calculation. The yellow dashed line is
calculated with two T-matrices that describe both types of nanorods. They
were approximated with only two QNMs for the smaller nanorod, five QNMs
for the longer nanorod. Similarly, the red solid line is calculated with 71 and
53 QNMs for the smaller and longer nanorod, respectively. 𝑛 = 10.
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Figure IV.11.: Complex 𝑘𝑚 of found modes for the two nanorods of ℎ = 100 nm
and 175 nm, (a) and (b), respectively. Colour marks the 𝑚 value in the pole
search calculation. Red circles indicate the modes that have been used to cal-
culate the yellow dashed line in Fig. IV.10.

compared to FEM. We suspect that this discrepancy is due to poor convergence for
the high-frequency QNM fields calculation. This issue merits further studies.

Similar conclusions can be drawn from Fig. IV.10, as for Fig. IV.8: (i) the agree-
ment is better for smaller sizes and (ii) a few QNMs that correspond to the principal
nanorod resonances are adequate for an approximate radiation pattern reconstruc-
tion.

4 Periodic array

Finally, we look at the periodic array of nanorods, as an example metasurface.
With only the nanorod T-matrix we are able to simulate the reflection, transmission,
absorption, scattered fields, etc. of a periodic array. The structure is schematically
depicted in Fig. IV.12. We have chosen 𝑑𝑥 = 150, 𝑑𝑦 = 200 to define the unit cell, with
no prior parameter optimisation. These values give a typical unit cell to meta-atom
characteristic size ratio.

Calculating a spectrum of such a metasurface is an easier task for our approximated
T-matrix, as nanorods are quite distanced from each other, with no abrupt or localised
features, like gaps, so the higher order multipole interaction is rather weak, or even
negligible. For our chosen parameters, the gap between two neighbours in 𝑥-direction
is 50 nm, same as in the studied dimer. Figure IV.13 shows the final results for
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Figure IV.12.: Schematic of the periodic nanorod array. Dimensions of an indi-
vidual nanorod are identical to the ones used in Sec. IV.1, 𝑛𝑏 = 1.5. For normal
incidence, the electric field E is aligned with the nanorod axis. The incidence
angle 𝜃 is the angle between the vectors k and u𝑧 in the (𝑥, 𝑧) plane.

absorption of a metasurface from Fig. IV.12 under the normal and oblique (60∘)
incidence. T-matrix based calculations show an excellent agreement with the FEM.
We can clearly see that the agreement is great and a single QNM T-matrix provides
almost as good of a result, as the one with 51 QNMs (of different 𝑚 up to 5, as the
degree was fixed 𝑛 = 5).

Figure IV.14 shows absorption in the same array as a function of 𝜃 for a fixed illu-
mination plane wave wavelength 𝜆 = 950 nm. We can clearly see that the importance
of additional QNMs increases with the angle.

5 Computational times

In this closing section let us discuss and compare computational times required
by FEM and by the QNM expansion approach. This discussion, along with the time
measurements, should only be used as an approximate order-of-value estimation, since
they are highly sensitive to the QNM solver used and the parameter set for achieving
converged results. This benchmark was performed on a desktop workstation with a
3.6 GHz Intel® Xeon® Gold 5122 CPU.

In the case of a point source or normal incidence, the FEM code leverages on the
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Figure IV.13.: Absorption of a 2D periodic array of metallic nanorods under the
normal and oblique (60∘) plane wave incidence, for (a) and (b), respectively.
Circles are used to mark the FEM results, lines – multiple multi-scattering
theory with the T-matrix calculated with one (dashed) or 51 (solid) QNMs.
Degree 𝑛 = 5, 𝑑𝑥 = 150, 𝑑𝑦 = 200.
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Figure IV.14.: Absorption of the 2D periodic array as a function of incidence
angle 𝜃 for a fixed illumination plane wave wavelength 𝜆 = 950 nm. The
notations and parameters are the same as Fig. IV.13.
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symmetry of the structure with respect to 𝑦 and 𝑧-planes, resulting in the need to
mesh only one fourth of the structure. Taking symmetries into account provides a
factor of 16 reduction in calculation time and memory requirements. For the oblique
incidence the symmetry with respect to 𝑧-plane is broken, and we have to stimulate
a half structure (factor of four gain). Typically, mesh calculations are not carried
out on laptops due to high memory requirements. Indeed, the provided results for
the Yagi-Uda antenna of Fig. IV.7 required up to 47 Gb of RAM accommodating
∼ 450 000 degrees of freedom5 for the 25 nm gap configuration and ∼ 480 000 for
the 50 nm gap. The increase is due to a larger overall structure size. This number
will grow further, if more director nanorods are desired for a better directivity. For
the periodic array of nanorods, the peak RAM usage was over 30 Gb (for half of
the structure with almost 400 000 degrees of freedom). The QNM-based approach,
on the other hand, has significantly lower memory requirements. Even if the modes
are calculated with a FEM solver [157], the simulation domain is much smaller, as
we have to consider only a single nanorod at a time. In addition, for cylindrical
structures, numerical methods that take advantage of the rotational symmetry exist
and can be used to decrease the CPU time and the memory requirements. This is
the case of the aperiodic Fourier modal method that we are using [214].

Let us revisit the QNM-based routine steps, focusing on the time they take. Since
we have used an iterative pole-search approach to calculate the QNM fields and
frequencies, we need, at first, to find starting points (guess values) for the iterative
calculation. Other QNM solvers that solve the non-linear eigenvalue problem exist
[157]. In those cases, the mode calculation is done in a single step and can be faster
when a large number of modes needs to be calculated.

1. Search in the complex plane for the approximate 𝑘𝑚 values. As already men-
tioned before, the step in real and imaginary 𝑘 is a crucial value that can either
help distinguish neighbouring modes, or add time with no additional benefits.
In Fig. IV.15 we show two colour maps of the response (one S-matrix element,
which is proportional to the field at the point of the exciting source) of the
nanorod introduced in Sec. IV.1. In Fig. IV.15(a) using a relatively large step
we are able to get five starting points, which later gave us four modes (second

5Degrees of freedom in the FEM context indicate points in the middle of a hexagon edge (in 3D).
This way, one hexagon has 6 degrees of freedom. For the so-called elements of the second order,
which better approximate the finite sums, this number goes up to 20 (each edge has two points
that divide it into three equal segments, plus two degrees in for the each size in the centre of
each hexagon face). Most of these degrees of freedom are shared between the neighbours. The
rule of thumb is that their number grows by a factor slightly larger than 6 with the number of
hexagonal elements.
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one from the left appears to be a numerical artefact), in a bit over two minutes.
When we decreased the step by a factor of four along the real axis, increasing
the time requirement by the same factor, two faint peaks became more appar-
ent. Just one of them later appeared to represent a real mode. Even though
this step does not take a prohibitive amount of time, another option besides de-
creasing the step, would be to add more starting points manually in the vicinity
of observed mode conglomeration. This is more useful for the higher 𝑚-values,
when all the modes are gathered close together and the full complex plane sweep
is not necessarily merited (see Fig. IV.2). Depending on the method used such
a calculation might be needed to be conducted twice – once with an electric
and once with magnetic source, in order to excite all the modes.
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Figure IV.15.: Colour maps of the field response due to a closely located
point source for 1596 and 6321 complex 𝑘’s for (a) and (b), respectively.
Starting points obtained taking advantage of the Cauchy integral theorem
are marked with red plus signs, converged modes – with black circles.

2. Iterative calculation of the exact 𝑘𝑚 value, along with the fields take just a
couple of seconds for each mode. The fields are obtained with the aperiodic-
Fourier modal method [214].

3. With the studied nanorod example, along as with potentially many other, we
verified that fixing 𝑛 = 5 is enough for a good numerical accuracy. This leads to
T-matrix size of 70×70. It takes a bit over a second to calculate the T-matrix of
this size for one value of 𝑘0 with one mode, and the time increases quite slowly
with the number of modes. However, for some cases (Figs.IV.8 and IV.10) it was
proven helpful increasing the degree to 10 of the multipole multiple-scattering
theory. This is why for our calculations we have taken 𝑛 = 10, which meanT-
matrix size of 240 × 240 and took 3-4 seconds for each 𝑘0. Numerically, the
values of T for 𝑛 > 5 are so small, that they might as well be zero.

4. Multipole multiple-scattering theory computation thanks to its analyticity takes
just around 14 seconds for 𝑛 = 10 (and only about 3 s for 𝑛 = 5) regardless
of the gap size for the Yagi-Uda geometry, and a bit over 6 seconds (4-5 s for
𝑛 = 5) for the periodic array, for a single 𝑘0 and incidence angle.
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6 Conclusion

For completeness, we would like to mention that the numerical T-matrix calculation
mentioned in Subsec. IV.1.2 takes around 100 s for a single 𝑘0 to achieve results of
comparable or better accuracy (notably for dimer cross-sections and periodic arrays)
than the ones of the QNM-derived T-matrix. However, poor convergence, especially
for the higher order elements, could lead to incorrect predictions for more complex
and demanding setups (gap source excitation). A good convergence has to be ensured,
which could blow up the time requirements by a factor of 10 or more.

We note that for some steps (complex plane search and any calculation for different
𝑘0’s) it is possible to distribute the for-loops computations using, for instance, built-in
parallel tools of MatLab, thanks to the low memory requirements of the analytical
steps and shared numerically pre-computed data. With four workers working in
parallel the computational time decreases almost by a factor of four.6

To sum up, in practice, when calculating several poles for multiple 𝑚’s, this first
step can take anywhere from several minutes to hours, depending on the implemen-
tation details and object spectral properties. However, this, along with the following
step of getting the Ẽ𝑚’s needs to be done only once for a single geometry to be used
with any excitation field type, angle, or frequency.

For comparison, a scattering problem for a given oblique incidence and a single
wavelength is solved with FEM in our realisation in ∼ 700 and ∼ 850 seconds for the
Yagi-Uda antenna with a 25 and 50 nm dimer gap, respectively, and ∼ 900 seconds for
the periodic arrangement of nanorods. For normal incidence, the simulation domain
can be reduced by a factor 2 because of symmetry reasons (from a half structure to
a quarter) and the time of the computation decreases by a factor of 4.

6 Conclusion

To sum up this chapter, we have demonstrated that QNM expansion of an individ-
ual scatterer T-matrix combined with the multipolar multiple-scattering theory is a
viable solution for accurate and efficient modelling of complex ensembles of optical
nanoresonators. The gains in CPU time are especially favourable for optimisation
problems where a large number (often into several thousands) of simulations has to
be performed.

We have shown that for a typical periodic reflector/absorber array configuration,

6The workstation used for the measurements in this section has two CPUs. When the distributed
for-loop (parfor in Matlab) was used on a laptop with a single CPU, the gain was half that – a
bit under a factor of two.
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a minimal number of QNMs is sufficient due to a period size comparable to the
meta-atom characteristic length. For more closely packed localised nanostructures,
additional modes, especially those contributing to the T-matrix elements with a large
degree 𝑛, gradually improve the accuracy.

The multipolar multiple-scattering theory is a powerful analytical tool for the mod-
elling of multi-element nanoantennas, ensembles, and clusters of nanoparticles, or
metalattices. The main difficulty is calculation of an individual element, nanoparti-
cle, or meta-atom T-matrix. Analytical solutions exist only for a homogeneous (or
a layered core-shell) spheres and infinite rods. A rigorous T-matrix calculation for
an arbitrary shaped object would take a significant amount of time, even though it
has to be done only once for a single excitation wavelength to be later used with any
field. Performing the QNM expansion of the T-matrix aims to render this calculation
semi-analytical with respect to the wavelength, meaning that only the QNM calcula-
tion (which has to be performed only once for a given geometry in a given spectrum
band) is numerical, subsequent T-matrix computations are analytical.

Rigorous methods, like FEM, require new full computation for any new modifica-
tion of the geometry or excitation parameters. Even though for a single fixed set
of parameters the calculation of a complex structure spectrum could be done in a
reasonable amount of time, the hybrid approach described in this and previous chap-
ters provides significant computational gains for multiple illumination and geometry
optimisation (distances between scatterers, rather than their size) problems.
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Conclusion

In conclusion, this thesis explored the use of semi-analytical approaches for solving
the scattering problem in resonant nanophotonics. Three different cases were con-
sidered: (i) infinite periodic 1D photonic crystal slabs, whose period is of the order
of the wavelength, and which can support resonances with high quality factors; (ii)
ensembles composed of several plasmonic nanoresonators, which exhibit resonances
with low quality factors; (iii) infinite periodic arrays of such subwavelength nanores-
onators.

We have first presented a multimode Fabry-Perot model for the calculation of the
leaky modes supported by a PhC slab (their dispersion and quality factors). We have
used this semi-analytical model to study bound states in the continuum. Since these
peculiar states are created by an interference mechanism inside the slab, the thickness
of a PhC slab is an important parameter that determines the existence of BICs. It
is also the parameter that the model is analytical with respect to. As a result, one is
able, with no additional numerical calculations, to change its value and re-calculate
the dispersion and quality factors of the PhC modes, showing the Q-factor variation
with ℎ. This, in particular allows us to quickly determine for which values of ℎ a
symmetry-protected BIC will become resonance-trapped, when we move away from
the Γ-point in the dispersion diagram. We can also find regions in the parameter
space, where Q-factors are very high. This might be useful for practical applications.
In addition, the modal nature of the approach gives some additional physical insight
into the composition of a PhC mode and determine a frequency cut-off beyond which
no BICs can exist, regardless of the slab thickness.

We have also developed a modal theory to solve light scattering problems by com-
plex structures composed of small ensembles or periodic arrays (metasurfaces) of
plasmonic nanoresonators. The described approach allows us to model light scatter-
ing by metasurfaces from the sole knowledge of the eigenmodes of their individual
constituents. We have combined a quasi-normal mode (QNM) formalism with the
multipole multiple-scattering theory based on the T-matrix of a single scatterer. We
have shown that often one or a few QNMs are sufficient to achieve a good accuracy
for the reconstruction of the T-matrix itself, and thus for the reconstruction of impor-
tant physical quantities, like cross-sections, absorption, radiation pattern, etc. This
approach provides significant computational gains, when compared to fully numerical
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rigorous methods such as a Maxwell’s equation solver on a discrete mesh (FEM).
Though both the field-based and the current-based formulations of the T-matrix

modal expansion provide accurate results, they do not converge with the same speed.
The current-based formulation provides a smaller error for a small number of modes.
However, its predictions seem to converge towards an incorrect value. This issue,
which is probably related to the choice of the non-resonant term in the modal expan-
sion, deserves further studies.

Finally, we would like to put in words a link between the two parts of the thesis:
the study of BICs in PhC slabs and the use of quasi-normal modes. In the second
part, we have calculated rigorously the eigenmodes of a resonant object and used
them to calculate its optical properties. On the other hand, in the first part, we have
developed an approximate model to calculate the eigenmodes of a resonant object.
Clearly, the leaky modes of a PhC slab that we have studied in the first part are the
quasi-normal modes of the PhC slab. With this in mind, it could be interesting to
revisit the theory of BICs with the QNM formalism. Since a BIC is a true guided
mode, it is a QNM with a purely real eigenfrequency. Moreover, since a BIC cannot
couple to an incident plane wave, the coupling coefficient 𝛼(𝜔) of the QNM should
vanish at the BIC position. The cancellation of the excitation coefficient is probably
due to particular symmetries of the mode profile. The study of BICs with the QNM
formalism could then provide useful insight into the field profile of a BIC.
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Appendix A
Derivations of the effective reflection
coefficients

1 Effective coefficients for 𝑁 = 2 waves

This Appendix section provides the steps to derive the effective reflectivity coeffi-
cient that takes into account the interference of two Bloch waves (BWs), when the two
sets of BW reflection coefficients are different for the two interfaces (e.g. substrate
or a stratum preset). The procedure follows Ref. [159]. A mode propagating upward
(positive 𝑧-direction) is reflected at the top interface (indicated with superscript 𝑇 )
into the same mode with reflection coefficients either 𝑟11 or 𝑟22, or cross-reflected as
the other one, with 𝑟12 or 𝑟21, accordingly:

𝑢+
1 = 𝑟𝑇

11𝑢
−
1 exp(𝑖𝛽1ℎ) + 𝑟𝑇

21𝑢
−
2 exp(𝑖𝛽2ℎ),

𝑢+
2 = 𝑟𝑇

12𝑢
−
1 exp(𝑖𝛽1ℎ) + 𝑟𝑇

22𝑢
−
2 exp(𝑖𝛽2ℎ),

(A.1)

where 𝑢+(−)
𝑖 is the amplitude of the upward (downward) propagating 𝑖th BW, 𝛽𝑖 – its

propagation constant. An almost identical pair of equations is to be written down
additionally, exchanging plus and minus signs for the amplitudes and substituting
the superscript 𝑇 with 𝐵 to mark a coefficient for the bottom interface. The values
of 𝛽𝑖’s and 𝑟𝑖𝑗’s are calculated using rigorous coupled wave analysis (RCWA) [123,
215] individually for each interface to get the sets of 𝑟𝑇 ’s and 𝑟𝐵’s. BWs propaga-
tion constants do not depend on the outside space index, only on the periodicity
conditions.

In matrix terms, Eqs. (A.1) can be rewritten in the form

R(𝑘𝑥,𝜆)U = 0, (A.2)

where U = [𝑢+
1 ,𝑢−

1 ,𝑢+
2 ,𝑢−

2 ]𝑇 , and the matrix R(𝑘𝑥,𝜆) contains all reflections and
cross-reflection coefficients. The mathematical challenge is now bring the matrix R
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to the following form:⎛⎜⎜⎜⎜⎜⎜⎝
1 0
0 1

M

0 0
0 0

𝑟
(12),𝐵
eff exp(𝑖𝛽2ℎ) −1

−1 𝑟
(12),𝑇
eff exp(𝑖𝛽2ℎ)

⎞⎟⎟⎟⎟⎟⎟⎠ , (A.3)

so that its determinant yields the Fabry-Perot resonance condition:

1 − 𝑟
(12),𝐵
eff 𝑟

(12),𝑇
eff exp(2𝑖𝛽2ℎ) = 0, (A.4)

where we have introduce an effective reflectivity that takes into account all the inter-
ferences in the system:

𝑢−
2 = 𝑟

(12),𝐵
eff 𝑢+

2 exp(𝑖𝛽2ℎ),

𝑢+
2 = 𝑟

(12),𝑇
eff 𝑢−

2 exp(𝑖𝛽2ℎ),
(A.5)

with
𝑟

(12),𝑇
eff = 𝑟𝑇

22 + 𝛼𝑟𝐵
11𝑟

𝑇
21𝑟

𝑇
12 exp(2𝑖𝛽1ℎ)

1 − 𝛼𝑟𝑇
21𝑟

𝐵
12 exp [𝑖(𝛽1 + 𝛽2)ℎ] , (A.6)

𝛼 =
[︁
1 − 𝑟𝑇

11𝑟
𝐵
11 exp(2𝑖𝛽1ℎ)

]︁−1
. M in Eq. (A.3) is some 2×2 matrix that does not im-

pact the determinant. The expression for 𝑟(12),𝐵
eff is trivially obtained by interchanging

subscripts 𝑇 and 𝐵.

2 Effective coefficients for 𝑁 = 3 waves

In a perfectly similar fashion, the task of deriving closed-form expressions for 𝑟(123)
eff

(for simplicity we assume equal refractive indices from both sides; derivation can be
straightforwardly modified if it is not the case) boils down to transforming a 6 × 6 R
matrix from

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑟11 exp(𝑖𝛽1ℎ) −1 𝑟21 exp(𝑖𝛽2ℎ) 0 𝑟31 exp(𝑖𝛽3ℎ) 0
−1 𝑟11 exp(𝑖𝛽1ℎ) 0 𝑟21 exp(𝑖𝛽2ℎ) 0 𝑟31 exp(𝑖𝛽3ℎ)

𝑟12 exp(𝑖𝛽1ℎ) 0 𝑟22 exp(𝑖𝛽2ℎ) −1 𝑟32 exp(𝑖𝛽3ℎ) 0
0 𝑟12 exp(𝑖𝛽1ℎ) −1 𝑟22 exp(𝑖𝛽2ℎ) 0 𝑟32 exp(𝑖𝛽3ℎ)

𝑟13 exp(𝑖𝛽1ℎ) 0 𝑟23 exp(𝑖𝛽2ℎ) 0 𝑟33 exp(𝑖𝛽3ℎ) −1
0 𝑟13 exp(𝑖𝛽1ℎ) 0 𝑟23 exp(𝑖𝛽2ℎ) −1 𝑟31 exp(𝑖𝛽3ℎ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(A.7)
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2 Effective coefficients for 𝑁 = 3 waves

to

R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0
0 1

M N

0 0
0 0

1 0
0 1

P

0 0
0 0

0 0
0 0

𝑟
(123)
eff exp(𝑖𝛽3ℎ) −1

−1 𝑟
(123)
eff exp(𝑖𝛽3ℎ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A.8)

where M, N, P are some 2 × 2 matrices that do not impact the determinant. After
the required algebraic transformations, we arrive at Eq. (II.18).

Here we have derived 𝑟(123)
eff considering BW 3 as the dominant one. Similarly it can

(and sometimes should, as discussed Section II.6) be done with the second BW as
the dominant one. In order to update the equations, indices 2 and 3 have to simply
be interchanged.
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Appendix B
Definition of the vectorial spherical
harmonics

This appendix section gives the explicit form of the vectorial spherical harmonics
(VSH) as implemented in the Reticolo software package [215] used for this thesis.
The main parameters are

r 𝜖, 𝜇 – media permittivity and permeability, respectively

r 𝑛0 = √
𝜖𝜇 – refractive index

r 𝑍0 =
√︁

𝜇0
𝜀0

– free-space impedance, 𝜇0 and 𝜀0 are free-space permeability and
permittivity, respectively

r 𝑘 – wavenumber

r 𝑛, 𝑚 – degree and azimuthal number

r 𝑟, 𝜃, 𝜙 – radial distance, polar, and azimuthal angles, respectively, as commonly
defined in the spherical coordinate system

Define:

Fac = 𝑘 (√𝑛0)𝑝
√︁

(−1)𝑚

√︃
2

𝑛(𝑛+ 1)e𝑖𝑚𝜙, (B.1)

where 𝑝 = 1 for electric and −1 for magnetic. Then, the VSH are as follows:

M±
𝑛,𝑚 =

⎡⎢⎢⎢⎣
(︁
M±

𝑛,𝑚

)︁
𝑟(︁

M±
𝑛,𝑚

)︁
𝜃(︁

M±
𝑛,𝑚

)︁
𝜙

⎤⎥⎥⎥⎦ = −𝑖√
𝑍0

Fac ·

⎡⎢⎢⎢⎣
0

𝑖ℎ±
𝑛 (𝑘𝑟)�̂�𝑚

𝑛 (𝜃)
−ℎ±

𝑛 (𝑘𝑟)𝜏𝑚
𝑛 (𝜃)

⎤⎥⎥⎥⎦ , (B.2)

N±
𝑛,𝑚 =

⎡⎢⎢⎢⎣
(︁
N±

𝑛,𝑚

)︁
𝑟(︁

N±
𝑛,𝑚

)︁
𝜃(︁

N±
𝑛,𝑚

)︁
𝜙

⎤⎥⎥⎥⎦ =
√︁
𝑍0 Fac ·

⎡⎢⎢⎢⎣
𝑛(𝑛+ 1)ℎ±

𝑛 (𝑘𝑟)
𝜖𝑟

�̂�
𝑚

𝑛 (cos 𝜃)
𝜎±

𝑛 (𝑘𝑟)
𝜖𝑟

𝜏𝑚
𝑛 (𝜃)

𝑖𝜎±
𝑛 (𝑘𝑟)

𝜖𝑟
�̂�𝑚

𝑛 (𝜃)

⎤⎥⎥⎥⎦ , (B.3)
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where the normalised Legendre functions are⎧⎪⎪⎪⎨⎪⎪⎪⎩
�̂�

𝑚

𝑛 (𝜃) = 𝛾𝑛𝑚𝑃
𝑚
𝑛 (cos 𝜃), �̂�

−𝑚

𝑛 (𝜃) = (−1)𝑚 �̂�
𝑚

𝑛 (𝜃),
𝜏𝑚

𝑛 (𝜃) = 𝛾𝑛𝑚𝜏
𝑚
𝑛 (𝜃), 𝜏−𝑚

𝑛 (𝜃) = (−1)𝑚 𝜏𝑚
𝑛 (𝜃),

�̂�𝑚
𝑛 (𝜃) = 𝛾𝑛𝑚𝜋

𝑚
𝑛 (𝜃), �̂�−𝑚

𝑛 (𝜃) = (−1)𝑚+1 �̂�𝑚
𝑛 (𝜃),

(B.4)

with the normalisation factor 𝛾𝑛𝑚 =
√︂

(2𝑛+1)(𝑛−𝑚)!
4𝜋(𝑛+𝑚)! ,

𝑃𝑚
𝑛 (𝑥) = (−1)𝑚

2𝑛𝑛!
(︁
1 − 𝑥2

)︁𝑚
2 d𝑚+𝑛

d𝑥𝑚+𝑛

(︁
𝑥2 − 1

)︁𝑛
(B.5)

being the associated Legendre polynomial,

𝜏𝑚
𝑛 (𝜃) = d𝑃 𝑚

𝑛 (cos 𝜃)
d𝜃

, (B.6)

𝜋𝑚
𝑛 (𝜃) = 𝑚𝑃 𝑚

𝑛 (cos 𝜃)
sin 𝜃

, (B.7)

ℎ±
𝑛 (𝑟) =

√︁
𝜋
2𝑟
𝐻±

𝑛+ 1
2
(𝑟) – spherical Hankel functions, 𝜎±

𝑛 (𝑟) = d
d𝑟

(𝑟ℎ±
𝑛 ).
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Appendix C

Lorentz reciprocity formula

This Appendix comments on the derivation steps of the Lorentz reciprocity formula.
It lies in the foundation of the T-matrix calculations in this thesis. It relates two
pairs of fields, both solutions to the time-harmonic Maxwell’s equations, {E1, H1}
and {E2, H2}, taken with their respective frequencies, (𝜔1,𝜔2), and driving currents,
(J1, J2):

∇ × E𝑖 = 𝑖𝜔𝑖𝜇(r,𝜔𝑖)H𝑖, (C.1)

∇ × H𝑖 = −𝑖𝜔𝑖𝜖(r,𝜔𝑖)E𝑖 + J𝑖(r,𝜔𝑖), (C.2)

where 𝑖 = 1, 2, 𝜖(r,𝜔) gives the permittivity distribution in the whole space, namely,
it is equal to the material dispersion inside a scatterer, and to the background per-
mittivity (usually constant) outside. The time convention exp(−𝑖𝜔𝑡) is used.

Let us define ‘Lorentz product’ the following way

Ψ1 ⊗ Ψ2 ≡
∫︁∫︁

(E2 × H1 − E1 × H2) dS, (C.3)

where Ψ𝑖 = {E𝑖, H𝑖}, vector S defines a closed surface. According to the divergence
theorem, this integral is equivalent to

Ψ1 ⊗ Ψ2 =
∫︁∫︁∫︁

∇ · (E2 × H1 − E1 × H2) d𝑉 , (C.4)

where the integration volume 𝑉 is the one enclosed by S. The integrand can be
expanded using the vector identity ∇ · (E × H) = H · (∇ × E) − E · (∇ × H), giving

Ψ1 ⊗ Ψ2 =
∫︁∫︁∫︁

H1 · (∇ × E2) − H2 · (∇ × E1) −

E2 · (∇ × H1) + E1 · (∇ × H2) d𝑉 . (C.5)

Finally, upon substituting the curls of the fields according to the Maxwell’s equations
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and grouping the terms, we arrive at the Lorentz reciprocity formula

Ψ1 ⊗ Ψ2 =
∫︁∫︁∫︁

[J2 · E1 − J1 · E2] d𝑉

+ 𝑖
∫︁∫︁∫︁

{E1 · [𝜔1𝜖(𝜔1) − 𝜔2𝜖(𝜔2)] · E2 − H1 · [𝜔1𝜇𝜔1) − 𝜔2𝜇(𝜔2)] · H2} d𝑉 . (C.6)
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Appendix D
Scattered field formulation

This Appendix section introduces the scattered field Maxwell’s equations used in
Chapter III.

At the absence of a scattering object, the Maxwell’s equations simply describe a
propagation of the wave, generated by the source, which is the incident wave in the
problem:

∇ × E𝑏 = 𝑖𝜔𝜇(r,𝜔)H𝑏, (D.1)

∇ × H𝑏 = −𝑖𝜔𝜖𝑏(r,𝜔)E𝑏 + J(r,𝜔), (D.2)

where E𝑏 and H𝑏 are the electric and magnetic ‘background’ fields, meaning in the
surrounding medium only, and J is the source term. Taking a point source, located
far away from a point r, is a common way of generating a plane wave in the region
around said point. In the presence of a scattering media characterised by permittivity
𝜖(r,𝜔) and permeability 𝜇(r,𝜔), Maxwell’s equations are satisfied with the total fields
(E, H) and the same source term J(r,𝜔):

∇ × E = 𝑖𝜔𝜇(r,𝜔)H, (D.3)

∇ × H = −𝑖𝜔𝜖(r,𝜔)E + J(r,𝜔). (D.4)

The scattered field simply defined as the difference (E𝑠, H𝑠) = (E, H) − (E𝑏, H𝑏) has
to satisfy

∇ × E𝑠 = 𝑖𝜔𝜇(r,𝜔)H𝑠, (D.5)

∇ × H𝑠 = −𝑖𝜔𝜖(r,𝜔)E𝑠 − 𝑖𝜔Δ𝜖(r,𝜔)E𝑏(r), (D.6)

with Δ𝜖(r,𝜔) = 𝜖(r,𝜔) − 𝜖𝑏(r,𝜔). These equations give us the scattered field in the
region, generated by a current distribution −𝑖𝜔Δ𝜖(r,𝜔)E𝑏(r), which depends on the
incident field and background material.

By substituting 𝜖(r,𝜔) in Eq. (D.6) with the identical Δ𝜖(r,𝜔) + 𝜖𝑏(r,𝜔), we arrive
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at
∇ × H𝑠 = −𝑖𝜔𝜖𝑏(r,𝜔)E𝑠 − 𝑖𝜔Δ𝜖(r,𝜔)E(r), (D.7)

which is mathematically identical, but carries a slightly different physical mean-
ing. What we have is the scattering object represented as a current distribution
−𝑖𝜔Δ𝜖(r,𝜔)E(r), which acts as a source for the scattered fields (E𝑠, H𝑠) propagat-
ing in the surrounding medium given by 𝜖𝑏(r,𝜔). Now, the source depends on the
E𝑠, which could pose additional difficulty when solving the equations numerically.
However, if we have the field inside the object, the solution becomes simpler, as the
scattered fields are to be defined in the background permittivity, which is in the
overwhelming number of cases dispersionless and lossless.
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[76] A. Alù and N. Engheta, “Enabling a new degree of wave control with meta-
materials: a personal perspective”, Journal of Optics 19, 84008 (2017) (cit. on
p. 14).

[77] F. Capasso, The future and promise of flat optics: a personal perspective, 2018
(cit. on p. 14).

[78] N. Meinzer, W. L. Barnes, and I. R. Hooper, “Plasmonic meta-atoms and
metasurfaces”, Nat Photon 8, 889–898 (2014) (cit. on p. 14).

[79] S. Jahani and Z. Jacob, “All-dielectric metamaterials”, Nature Nanotechnology
11, 23–36 (2016) (cit. on p. 14).

[80] W. Liu and A. E. Miroshnichenko, “Beam Steering with Dielectric Metalat-
tices”, ACS Photonics 5, 1733–1741 (2018) (cit. on p. 14).

129

https://doi.org/10.1126/sciadv.aap9957
https://doi.org/10.1126/science.1210713
https://doi.org/10.1126/science.1253213
https://doi.org/10.1515/nanoph-2017-0117
https://doi.org/10.1038/srep43722 http://10.0.4.14/srep43722 https://www.nature.com/articles/srep43722{\#}supplementary-information
http://science.sciencemag.org/content/354/6314/aag2472.abstract
http://science.sciencemag.org/content/354/6314/aag2472.abstract
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1016/j.physrep.2016.04.004
https://doi.org/10.1002/lpor.201600295
https://doi.org/10.1088/2040-8986/aa7790
https://doi.org/10.1038/nphoton.2014.247
https://doi.org/10.1038/nnano.2015.304
https://doi.org/10.1038/nnano.2015.304
https://doi.org/10.1021/acsphotonics.7b01217


References

[81] D. Sell, J. Yang, E. W. Wang, T. Phan, S. Doshay, and J. A. Fan, “Ultra-High-
Efficiency Anomalous Refraction with Dielectric Metasurfaces”, ACS Photonics
5, 2402–2407 (2018) (cit. on p. 14).

[82] S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable
elastic dielectric metasurface lenses”, Laser & Photonics Reviews 10, 1002–1008
(2016) (cit. on p. 14).

[83] F. Yesilkoy, E. R. Arvelo, Y. Jahani, M. Liu, A. Tittl, V. Cevher, Y. Kivshar,
and H. Altug, “Ultrasensitive hyperspectral imaging and biodetection enabled
by dielectric metasurfaces”, Nature Photonics 13 (2019) (cit. on pp. 14, 24).

[84] A. Krasnok, M. Caldarola, N. Bonod, and A. Alú, “Spectroscopy and Biosens-
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Titre : Modélisation de nanostructures optiques résonantes avec des méthodes semi-analytiques 
utilisant les modes propres de l'objet 

Mots clés : Métasurfaces optiques, Nanoantennes optiques, Plaques de cristaux photoniques 

Résumé : Cette thèse est consacrée au développement de modèles semi-analytiques précis pour le 
calcul numérique de dispositifs nanophotoniques résonants : les membranes à cristaux photoniques 
l’ensembles composés de plusieurs nano-antennes plasmoniques. La thèse est divisée en deux parties. 
 La première partie présente un modèle semi-analytique pour le calcul des modes supportés par 
des membranes à cristaux photoniques. Ce modèle est appliqué à l'étude des états liés dans le 
continuum (bound states in the continuum, ou BIC). Grâce à la semi-analyticité du modèle, nous 
étudions la dynamique des BICs avec l'épaisseur de la membrane pour des structures symétriques et 
asymétriques. 
 La deuxième partie est consacrée au développement d'une théorie modale originale pour 
modéliser la diffusion de la lumière par des structures complexes composées d'un ensemble de 
plusieurs nano-antennes. L'objectif est de pouvoir modéliser la diffusion de la lumière par des 
métasurfaces à partir de la seule connaissance des modes de leurs constituants individuels. Pour ce 
faire, nous combinons un formalisme modal basé sur l’utilisation des modes quasi-normaux (QNM) 
avec la théorie multipolaire de la diffusion multiple basée sur le calcul de la matrice de transition 
(matrice T) d'un diffuseur unique. L'utilisation d'une décomposition modale avec des QNMs nous 
permet d’une part de rendre une partie du calcul analytique et d’autre part d'apporter une meilleure 
compréhension physique. 
 Enfin, la décomposition modale de la matrice T est appliquée à des cas pratiques d'intérêt en 
nanophotonique. A partir de la seule connaissance de quelques modes d'un nanocylindre plasmonique 
unique, nous calculons analytiquement la diffusion multiple de la lumière par un dimère et par une 
antenne Yagi-Uda composés de ces nanocylindres.

Title : Modelling of resonant optical nanostructures with semi-analytical methods based on the object 
eigenmodes 

Keywords : Optical Nanoantennas, Optical metasurfaces, Photonic crystal slabs 

Abstract:  The presented thesis is dedicated to the development of semi-analytical accurate models 
for the numerical calculation of resonant nanophotonic devices: photonic crystal slabs and ensembles 
composed of several plasmonic nanoantennas. The structure of the thesis is two-fold.  
 In the first part, a semi-analytical model for the calculation of the modes supported by 
photonic crystal slabs (their dispersion and quality factors) is presented. This model is applied to the 
study of bound states in the continuum (BICs). Thanks to the semi-analyticity of the model, we 
investigate the dynamics of BICs with the slab thickness in symmetric and asymmetric photonic 
crystal slab. 
 The second part of the thesis is dedicated to the development of an original modal theory to 
model light scattering by complex structures composed of a small ensemble of plasmonic 
nanoantennas. The objective is to be able to model light scattering by metasurfaces from the sole 
knowledge of the eigenmodes of their individual constituents. For that purpose, we combine a quasi-
normal mode (QNM) formalism with the multipole multiple-scattering theory based on the calculation 
of the so-called transition matrix (T-matrix) of a single scatterer. Using a modal expansion of the 
scattered field with QNMs allows us to bring both analyticity and physical understanding into the 
calculation. 
 Finally, we apply the modal expansion of the T-matrix to practical cases of interest in 
nanophotonics. From the sole knowledge of a few modes of a single plasmonic nanorod, we calculate 
analytically multiple light scattering by a dimer and a Yagi-Uda antenna composed of these nanorods.
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