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I. Eukaryotic Translation 

Protein synthesis is one of the most important processes in all living cells, leading to the 

synthesis of amino acid polymers based on messenger RNA (mRNA) templates. It is a tightly-

regulated multi-step process occurring in the cytoplasm with the help of ribosome, a 

macromolecular machinery containing mainly ribosomal RNAs (rRNAs) and proteins (r-

proteins), together with transfer RNAs (tRNAs) and other translational factors. The process 

begins when matured mRNAs synthesized in the nucleus by RNA polymerase II based on a 

DNA sequence are transported to the cytoplasm where the ribosome, made up of two subunits 

(60S and 40S), reads these mRNAs to produce corresponding proteins. By this way, the genetic 

information is systemically transferred from DNA to mRNA and finally proteins. 

1. Translational factors and mechanism 

1.1 The ribosome – the protein manufacturer 

The ribosomes are known as ribozymes responsible for protein synthesis in all domains 

of life. They are all composed of two subunits, both built from RNAs and proteins (Figure 1A). 

Compared to bacterial ribosomes (sedimentation coefficient of 70S containing 30S and 50S 

subunits), the eukaryotic ribosomes are about 30 - 40% larger (sedimentation coefficient of 80S) 

and much more intricate (Ben-Shem et al., 2011; Jenner et al., 2012; Klinge et al., 2012). The 

small and large subunits are known as 40S and 60S subunits, respectively. Regarding its 

molecular weight, the eukaryotic 80S ribosome can range from 3.5MDa in lower eukaryotes to 

4.5MDa in metazoa (Yusupova, & Yusupov, 2014).  

1.1.1 Structure 

To this day, several crystal and cryo-electron microscopy (cryo-EM) structures of 

eukaryotic ribosomes alone or in complex with tRNA, mRNA or proteins from different 

organisms have been determined, such as wheat 80S (Armache et al., 2010), yeast 80S (Ben-

Shem et al., 2011), Tetrahymena thermophila 40S and 60S (Rabl et al., 2011; Klinge et al., 

2012), human and Drosophila melanogaster 80S (Anger et al., 2013); Trypanosoma brucei 43S 

initiation complex (Hashem et al., 2013). These structures provide deep insights into structural 

landmarks as well as catalytic mechanism during protein synthesis by this huge machinery.  
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Figure 1. The eukaryotic 80S ribosome. (A) The 80S ribosome with 40S small subunit colored in blue, 

60S large subunit in yellow. Eukaryotic expansion segments are shown in red (Ben-Shem et al., 2010). 

(B-C) Structures of 40S and 60S subunits respectively viewed at the subunit interface. The 40S subunit 

includes a head (H), beak (Be), platform (Pt), body (Bo), right foot (RF) and left foot (LF). The 60S 

subunit exhibits a central protuberance (CP) and P-stalk. A-P-E correspond to A-site, P-site and E-site 

(Adapted from Klinge et al., 2012) 

  

P-stalk 
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In yeast, the small 40S subunit consists of a 18S rRNA and 33 r-proteins, whereas the 

large 60S is formed by three rRNAs (5S, 5.8 S and 25S) and 46 r-proteins (Ben-Shem et al., 

2011). Among those r-proteins, two thirds have homologs in bacteria and archaea, while the 

remaining are specific for eukaryotes (Ramakrishnan, 2011). Compared to their bacterial 

counterparts, the eukaryotic subunits have several additional expansion segments (ES) and 

variable regions (VR) in rRNAs.The r-proteins also have C-terminal insertions/extensions and 

there are eukaryotic-specific proteins, resulting in larger and more complex ribosomes in 

eukaryotes (Ben-Shem et al., 2011; Klinge et al., 2012; Wilson, & Doudna Cate, 2012; Anger et 

al., 2013). 

Structurally, the eukaryotic 40S subunit similarly to prokaryotic 40S is divided into the 

head, body, platform, beak and shoulder, left foot, and right foot regions (Figure 1B) (Klinge et 

al., 2012; Yusupova, & Yusupov, 2014). This subunit contains an mRNA binding site and three 

binding sites for tRNAs at the subunit interface. The A-site binds the incoming aminoacyl-tRNA, 

the P-site holds the peptidyl-tRNA attached to the nascent polypeptide chain, and the E-site 

accommodates the deacylated P-site tRNA after peptide-bond formation before its release from 

the ribosome (Schmeing, & Ramakrishnan, 2009; Klinge et al., 2012). One very important 

feature of this subunit is the presence of the universally conserved decoding center located in the 

interface surface and created by the head, the shoulder and the penultimate stem. This is the 

place where the base-pairing interaction between the mRNA codon and the tRNA anticodon 

occurs (Melnikov et al., 2012; Yusupova, & Yusupov, 2014).  

 Like the prokaryotic 50S, the eukaryotic 60S subunit has a crown-like shape and is 

composed of the central protuberance, the L1 stalk and the P-stalk (Figure 1C) (Klinge et al., 

2012; Wilson, & Doudna Cate, 2012; Yusupova, & Yusupov, 2014). This subunit contains the 

peptidyl transferase center (PTC) where the peptide bond formation takes place. It also harbors 

the ribosomal exit tunnel adjacent to the PTC, which allows the nascent polypeptide chain to 

thread through and access the solvent side in which it undergoes processing and folding (Tu, & 

Deutsch, 2010; Klinge et al., 2012; Yusupova, & Yusupov, 2014). 
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1.1.2 Biogenesis 

Ribosome synthesis is one of the most complex and energetically consuming processes in 

all organisms (Henras et al., 2008; Kressler et al., 2010; Thomson et al., 2013). In eukaryotes, 

this intricate procedure is a multiple-step, error-prone process requiring at least 200 protein 

factors, numerous small nucleolar RNAs and non-ribosomal factors, such as AAA-ATPases, 

ATP-dependent RNA helicases and kinases. These are involved in the synthesis, the maturation 

and the transport of individual ribosomal components and their assembly into ribosomal subunits 

(Kressler et al., 2010) (Figure 2A). 

The eukaryotic ribosome assembly starts in the nucleus where RNA polymerase I 

transcribes rDNA to produce a large polycistronic precursor rRNA (35S pre-rRNA) which then 

undergoes several chemical modifications on specific nucleotides and nucleolytic cleavages to 

obtain mature 5.8S, 18S and 25S rRNAs (Figure 2B). The fourth rRNA (5S) is transcribed by 

RNA polymerase III, whereas the RNA polymerase II synthesizes the pre-mRNAs encoding r-

proteins and other ribosomal assembly-related protein factors (Grandi et al., 2002; Granneman, 

& Baserga, 2004; Henras et al., 2008; Woolford, & Baserga, 2013). During transcription, the 

long 35S pre-rRNA is assembled with r-proteins, assembly factors and small nucleolar RNAs to 

form a large 90S pre-ribosome or SSU processome. Cleavage events at sites A0, A1, and A2 in 

35S pre-rRNA yield to 20S and 27S pre-rRNAs, which are further processed to generate pre-40S 

and pre-60S particles, respectively (Figure 2) (Henras et al., 2008; Kressler et al., 2010; 

Oeffinger, 2016). In the final step, these particles are transported through the nuclear pores to the 

cytoplasm, where numerous maturation steps are required to yield the mature, functional 

ribosomes (Henras et al., 2008; Kressler et al., 2010). It is particularly noteworthy that there are 

several O-methylated sugars and base methylation introduced in rRNAs at early and late stages 

of ribosome biogenesis (Sloan et al., 2016). Details regarding this point will be addressed in the 

next parts of the thesis. 
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Figure 2. Eukaryotic 80S ribosome biogenesis. (A) Summary of 40S and 60S formation and maturation 

(Greber, 2016). (B) Pre-rRNA processing pathway (Woolford & Benserga, 2013). 
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1.2 mRNA – the translational template 

Messenger RNAs (mRNA) carry genetic information transferred from DNA in the 

sequence of nucleotides, which are arranged into three-base codes called codons encoding 

corresponding amino acids. In eukaryotes, a primary precursor of mRNA (pre-mRNA) is 

synthesized by RNA polymerase II and requires a series of processing steps to produce the 

mature mRNA suitable for protein synthesis. These maturation steps include modifications of the 

5 'and 3' ends as well as mRNA splicing. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

1.2.1 Capping at 5’ end 

The nascent mRNA is co-transcriptionally modified by adding a 7-methylguanosine 

(m
7
G) cap at the 5’ end through an unusual 5′ to 5′ triphosphate bond (Figure 3A). The m

7
G cap 

Figure 3. mRNA processing. (A) mRNA capping mechanism; (B) mRNA polyadenylation model 

(Bentley, 2014) 

A. B. 
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is a well-conserved modification feature in eukaryotic mRNAs. The mechanism responsible for 

cap addition is well-known and consists of several enzymes catalyzing different reactions 

(Banerjee, 1980; Ramanathan et al., 2016): (1) RNA triphosphatase cleaves the γ-phosphate at 

the 5′ triphosphate end of mRNA to generate 5′ diphosphate; (2) RNA guanylyltransferase (EC 

2.7.7.50) adds a GMP group from GTP to the 5′ diphosphate via a lysine-GMP covalent 

intermediate, loosing a pyrophosphate and forming the 5′–5′ triphosphate linkage; (3) An mRNA 

(guanine-N7-)-methyltransferase (EC 2.1.1.56), a S-adenosyl-L-methionine (SAM)-dependent 

methyltransferase (MTase), then catalyzes methylation on the N7 atom of guanosine to form the 

m
7
G cap (m

7
GpppN) named cap 0; (4) Optionally, another SAM-dependent MTase modifies the 

nucleotide N on the 2’ OH group of the ribose to generate the cap 1 (m
7
GpppNm). With regard 

to its functions, the m
7
G cap is known to protect mRNAs from the 5'-3' exonucleases (Hocine et 

al., 2010; Furuichi, 2015). It is also involved in splicing and in the regulation of mRNA export to 

the cytoplasm (Izaurralde et al., 1995). Another very important function of the mRNA cap is to 

promote the initiation step of the protein biosynthesis, acting like a signal for the ribosome 

recognition that then scans the mRNA to find the start codon (Hinnebusch, & Lorsch, 2012). 

1.2.2 Polyadenylation at 3’ end 

Like the 5’ end, the 3’ end of the pre-mRNAs also undergoes modifications during the 

maturation process (Figure 3B). The polyadenylation mechanism includes two main steps (K. M. 

Brown, & Gilmartin, 2003; Mangus et al., 2003; Davila Lopez, & Samuelsson, 2008): (1) The 

pre-mRNA is cleaved at a site characterized by two signals, a highly conserved upstream 

AAUAAA sequence and a downstream G/U-rich sequence. This is carried out by a series of 

protein factors including cleavage/polyadenylation specificity factor (CPSF) and the cleavage 

stimulation factor (CstF)…; (2) A polyalanine (poly(A)) tail ranging from 50 to 250 nucleotides 

is added at the 3’ end of the cleaved mRNA. Similarly to the 5’ cap, the poly(A) tail is also 

known to protect mRNA but from the 3’-5’ exonucleases. It also plays a role in mRNA transport 

to cytoplasm as well as in translation (Mangus et al., 2003; Hocine et al., 2010). 

1.2.3 Splicing 

Following transcription, eukaryotic pre-mRNAs contain an alternation of coding 

sequences (exons) and non-coding sequences (introns). In order to be ready for translation, the 
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pre-mRNAs are subjected to splicing steps to remove the introns and join the exons together. 

This is carried out by the spliceosome, a complex of small nuclear ribonucleoproteins (snRNPs), 

through a two-reaction process (Figure 4) (Fica et al., 2013; Scotti, & Swanson, 2016): (1) the 

formation of the intron lariat intermediate is catalyzed by a nucleophilic attack of the 2'OH of a 

specific branch-point nucleotide within the intron on the first nucleotide of the intron at the 5' 

splice site; (2) then the 3'OH of the released 5' exon performs a second nucleophilic attack on the 

nucleotide located just after the last nucleotide of the intron at the 3' splice site, thus connecting 

the exons and removing the intron lariat. Failure in RNA splicing as well as in its regulation can 

result in a growing number of human diseases ranging from retinal and developmental disorders 

to cancers, underlying the important roles of this mRNA maturation process (Scotti, & Swanson, 

2016). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. mRNA splicing mechanism (Bentley, 2014) 
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1.3 tRNA – an adaptor molecule 

The tRNA plays an indispensable role as an adaptor molecule during the decoding 

process by physically linking the mRNA and the polypeptide chain. In eukaryotes, tRNAs are 

synthesized by RNA polymerase III as pre-tRNAs in the nucleus. In order to fulfill their 

complete functions, pre-tRNAs have to be processed by a variety of maturation steps: (1) 

removal of the 5’ leader sequence by RNase P; (2) removal of the 3’ trailer sequence by both 

endonuclease (tRNAse Z) and exonuclease (Rex1) enzymes; (3) addition of CCA; (4) removal of 

introns in some tRNAs by the combined action of an endonuclease and of a ligase; and (5) post-

transcriptional modification of numerous tRNA nucleotides (Hopper, 2013; Wichtowska et al., 

2013). Regarding those chemical modifications, it is known that tRNAs are the most heavily 

modified among the different RNAs and those modifications are required for tRNA folding, 

stability and function (Jackman, & Alfonzo, 2013; Vare et al., 2017). Details about this 

maturation step will be discussed later in the thesis.  

1.3.1 tRNA structure 

Similar to proteins, tRNAs also consist of primary, secondary and tertiary structures. 

1.3.1.1  Primary structure 

Eukaryotes can have tens to hundreds of different tRNAs depending on the organisms 

and some tRNAs can consist of the same anticodons (http://gtrnadb2009.ucsc.edu). In general, 

tRNAs have a sequence ranging from about 70 and up to 100 nucleotides (Figure 5A-B). As a 

conventional nomenclature (Sprinzl et al., 1998), tRNAs are numbered 1 for the nucleotide 

located at the 5' end and 76 for the nucleotide present at the 3' end. Similarly, the nucleotides 

forming the anticodon triplet are always numbered 34, 35 and 36. 

  



 

11 

  

Figure 5. tRNA structures. (A) Primary structure of tRNA; (B) Cloverleaf-like secondary structure of 

tRNA; (C) L-shaped tertiary structure of tRNA 
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1.3.1.2  Secondary structure 

tRNAs fold into a conserved secondary structure known as a cloverleaf (Figure 5B), 

which is formed by a set of canonical Watson-Crick base pairs as well as the wobble pairings (G-

U) (Auffinger, & Westhof, 2001). The cloverleaf structure consists of five regions with four 

helices and 3-4 loops: (1) The acceptor arm helix is formed by the base pairing of the 5’ and 3’ 

ends, with the latter containing the CCA 3’ end which is attached to the cognate amino acid by 

specific aminoacyl tRNA synthetases to form aa-tRNA. This region is normally formed by seven 

base pairs and possesses four unpaired nucleotides which sequence is –RCCA-3’OH at the 3’ 

end. R is always a purine and this position acts as a discriminator for the selection of tRNAs by 

the cognate synthetases (Auffinger, & Westhof, 2001); (2) The dihydrouridine (D) hairpin or D-

arm, which often contains the modified base dihydrouracil. This region generally consists of four 

base pairs and a 7-11 residues variable hairpin loop; (3) The anticodon (A) hairpin contains a 5-

bp helix and a 7-residues loop with the anticodon triplet (residues 34-36). The first position of 

the anticodon is called the wobble base 34 while the position 33 of the loop is always a uridine 

(U33) and the residue 37 is highly modified (Auffinger, & Westhof, 2001; Grosjean et al., 2010); 

(4) The thymine (T) hairpin or T-arm, similarly to the anticodon arm, is composed of a 4-5 bp 

stem and loop with seven residues, which contains a pseudouridine (ψ), a modified nucleotide in 

which the link between the base and the sugar is C(1’)-C5 instead of C(1’)-N1; (5) The last 

region is a variable loop located between anticodon and T loops and present only in some 

tRNAs. The length of this loop can vary between 4 and 21 nucleotides and depending on its size, 

tRNAs are divided into class I (the variable loop has 4-5 residues) or class II (with longer 

variable loop) (Auffinger, & Westhof, 2001). 

1.3.1.3  Tertiary structure 

The three-dimensional structure of the tRNAs was a challenging problem until its crystal 

structure was solved for the first time in 1974 (Suddath et al., 1974; Auffinger, & Westhof, 

2001). Up to now, several structures of free tRNAs and tRNAs in complex with their cognate 

aminoacyl tRNA synthetases and with amino acids exist. The cloverleaf tRNA is folded into a 

compact structure adopting an L shape (Figure 5C). This structure is created by four helical 

regions of the cloverleaf, from which pairs of helices stack on each other coaxially to form two 
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main arms or domains: the acceptor arm is made by the acceptor helix and the T-arm, whereas 

the anticodon arm is formed by the D-arm and the anticodon arm. In this L-shaped architecture, 

the two extremities are the anticodon triplet and the 3’ CCA end, which are 75-80Å away 

(Auffinger, & Westhof, 2001). Moreover, this L-shaped structure is maintained by unusual 

hydrogen bonds occurring between the nucleotides located at invariant or semi-invariant 

positions (Auffinger, & Westhof, 2001; Oliva et al., 2006). 

1.3.2 tRNA function 

As discussed above, the main canonical function of the tRNAs is involved in the 

translation of genetic code as a linker between the mRNA and the amino acid sequence of the 

corresponding proteins by transferring amino acids, which will be inserted into the growing 

polypeptide chain. To perform this function, the 3’-CCA end of tRNAs are covalently attached 

with specific amino acids by their cognate aminoacyl-tRNA synthetases through a process called 

aminoacylation. This process is of particular importance since it affects the fidelity of the 

translation.  

In addition to its well-known role in protein synthesis, tRNAs are known to possess 

additional functions. They are involved in the regulation of gene expression in both prokaryotes 

and eukaryotes (Raina, & Ibba, 2014). Moreover, aminoacylated tRNAs have been implicated as 

substrates for non-ribosomal peptide bond formation, post-translational protein labeling,  

bacterial cell envelope synthesis, and also antibiotic biosynthesis (Raina, & Ibba, 2014). tRNAs 

can act as precursors for the synthesis of other aa-tRNAs and could also have a potential catalytic 

role in certain reactions of peptidyl transfer, aminoacyl transfer and deacylation (Francklyn, & 

Minajigi, 2010). Furthermore, aa-tRNAs are known to be involved in the regulation of protein 

turnover via the N-terminal rule (Francklyn, & Minajigi, 2010). 

1.4 Translation process 

Translation consists of 4 different phases: initiation, elongation, termination and 

recycling of ribosome in all domains of life. 
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Figure 6. Eukaryotic translation initiation model (Adapted from Hinnebusch, 2017) 

http://www.sciencedirect.com/science/article/pii/S096800041730066X
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1.4.1 Translation initiation 

In contrast to bacterial translation initiation, which needs the Shine–Dalgarno sequence of 

the mRNA to locate the start codon and require only three initiation factors (Voigts-Hoffmann et 

al., 2012), the eukaryotic translational initiation step is much more complex, requiring a scanning 

mechanism to identify the start codon and consists of at least 10 core initiation factors (eIFs) 

(Hussain et al., 2014; Aitken et al., 2016). The whole process can be divided into five different 

major steps (Jackson et al., 2010; Hinnebusch, & Lorsch, 2012) (Figure 6). In a first step, a 

methionylated initiator tRNA (Met-tRNA) forms a ternary complex (TC) with eIF2 (composed 

by α, β and γ subunits) and a GTP molecule before delivery to the ribosome. Next, this TC is 

associated with the 40S subunit linked to eIF1A, eIF1, eIF5 and eIF3s to create a pre-initiator 

complex 43S (PIC). Then, the PIC binds to mRNA via its interaction with mRNA cap-binding 

complex eIF4, thereby allowing the scanning of the mRNA in the 5' to 3' direction until the 

recognition of the start codon AUG in the P-site. The start codon recognition results in the 

formation of the 48S complex. This induces conformational changes leading to eIF1 

displacement and to the hydrolysis of eIF2-bound GTP with the help of eIF5. Simultaneously, 

the eIF2-GDP, eIF1, eIF3 and eIF5 factors dissociate and the 60S subunit as well as eIF5B-GTP 

are recruited. Finally, the hydrolysis of the eIF5B-bound GTP is needed for dissociation of 

eIF1A and eIF5B-GDP, leaving the A-site empty to accommodate the first elongator tRNA. At 

the end of the initiation step, the initiator Met-tRNA occupies the P site of the functional 80S 

ribosome, which is ready for the elongation step. 

1.4.2 Translation elongation 

The translational elongation, a highly conserved step between eukaryotes and 

prokaryotes, is the stepwise polymerization of amino acids into the growing protein chain. In this 

step, the ribosome moves along the mRNA on a three-nucleotides basis called a codon in order 

to associate the corresponding aa-tRNA and thus allow the incorporation of the appropriate 

amino acid to the nascent polypeptide chain. This process can be divided into several steps and 

requires two eukaryotic elongation factors (eEFs): eEF1A/B and eEF2 (Figure 7) (Kapp, & 

Lorsch, 2004; Dever, & Green, 2012) (Figure 7).  
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Figure 7. Eukaryotic translation elongation model (Adapted from Dever and Green, 2012) 

 

The elongation step starts with the 80S ribosome poised on an mRNA with the P-site 

occupied by the initiator Met-tRNA containing the anticodon base-paired with the start codon. 

The A-site in which the second codon of the open reading frame (ORF) of mRNA is present is 

empty, awaiting for the cognate aa-tRNA (Kapp, & Lorsch, 2004). The first step of this process 

consists in the formation of a ternary complex between eEF1A and the aa-tRNA complementary 

to the second codon in the presence of GTP. This complex then enters the empty A-site on the 

ribosome, from which the anticodon of the aa-tRNA is matched against the codon positioned in 

the A-site. A correct codon-anticodon match results in the GTP hydrolysis of eEF1A-GTP and 

then dissociation of eEF1A-GDP, enabling the aa-tRNA to be accommodated into the A-site. 

Next, the aa-tRNA at the A-site re-orientates to bring its 3' end closer to that of the tRNA present 
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in the P-site while eEF1A-GDP is recycled to eEF1A-GTP by an exchange factor eEF1B. The 

formation of the peptide bond occurs rapidly upon the nucleophilic attack of the aminoacyl-

tRNA in the A-site on the ester carbon of the P-site tRNA. This reaction is catalyzed by the 

peptidyl transferase center of the ribosome, which ideally positions the substrates for catalysis 

(Dever, & Green, 2012). It is then followed by the tRNAs movement to hybrid states with their 

acceptor arms in the P and E-sites while their anticodon loops still remain in the A and P-sites, 

respectively. The complete translocation of tRNAs from A and P sites to P and E sites, 

respectively requires the recruitment of eEF2-GTP and its GTP hydrolysis. eEF2-GDP is then 

released and the deacylated tRNA in the E-site dissociates from the ribosome (Kapp, & Lorsch, 

2004; Rodnina, & Wintermeyer, 2011; Dever, & Green, 2012). The P-site then encompasses the 

tRNA bearing the elongated polypeptide chain whereas the A-site is empty, and ready for a new 

elongation cycle. This step is repeated until a stop codon (UAA, UAG or UGA) reaches the A-

site, signaling the translation termination step. 

1.4.3 Translation termination 

The termination of protein synthesis takes place when one of the three stop codons 

(UAA, UAG and UGA) is detected in the ribosomal A-site. In eukaryotes, translation 

termination is catalyzed by two classes of release factors (RFs), class I eRF1 and class II eRF3 

(Nakamura, & Ito, 2003) (Figure 8). The class I RF, eRF1 adopts a tRNA-like shape and 

recognizes all stop codons. It is responsible for the release of newly synthesized proteins from 

the tRNA at the P-site by triggering hydrolysis of the ester bond in peptidyl-tRNA. This results 

from the interaction between a universally conserved glycine-glycine-glutamine (GGQ) motif on 

eRF1 and the peptidyl transfer center (PTC)  (Loh, & Song, 2010). Meanwhile, the class II RF, 

eRF3, an eEF1A-related translational GTPase, is associated to eRF1 and GTP and delivers eRF1 

to the ribosome (Preis et al., 2014). eRF3 is required to complete the translation termination by 

enhancing the polypeptide release activity of eRF1 (Fan-Minogue et al., 2008; Eyler et al., 

2013). It is known that eRF1 and the ribosome induce the hydrolysis of the GTP molecule bound 

to eRF3. This leads to dissociation of eRF3 from eRF1, further allowing conformational changes 

of eRF1 to project its GGQ motif into the PTC (Taylor et al., 2012; Preis et al., 2014). 

Structurally, eRF1 consists of three well-defined domains: N, M and C (H. Song et al., 

2000). The domain N (N-terminal) is involved in the recognition of the stop codons thanks to 
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several conserved motifs including GTx, NIKS and YxCxxxF (H. Song et al., 2000; Kryuchkova 

et al., 2013; Blanchet et al., 2015; A. Brown et al., 2015). The M domain (middle domain) 

containing the universally conserved GGQ motif is functionally analogous to the tRNA acceptor 

arm and this GGQ motif extends into the PTC to stimulate the polypeptide release (H. Song et 

al., 2000; Dever, & Green, 2012; Taylor et al., 2012; Wong et al., 2012). The C domain (C-

terminal) is mainly responsible for the interaction with eRF3, mostly through hydrophobic 

interactions (Z. Cheng et al., 2009; Taylor et al., 2012). Moreover, it is particularly interesting to 

note that the glutamine side chain of GGQ motif is N5-methylated by a methyltransferase (Mtq2) 

in complex with a methyltransferase activator (Trm112). The methylation of the glutamine from 

the GGQ motif substantially increases the rate of peptide release on a subset of amino acids in 

vitro in bacteria (Pierson et al., 2016), raising the question of the impact of release factor 

methylation on the translation termination. The details about the methylation of the glutamine of 

GGQ motif by Mtq2-Trm112 complex will be discussed later in this thesis. 

 

    

Figure 8. Eukaryotic translation termination and recycling models (Adapted from Dever and Green, 

2012) 
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eRF3, for which its full-length structure is not yet available, has a variable N-terminal 

region known to be dispensable for translation termination (Kushnirov et al., 1988; Ter-

Avanesyan et al., 1993) and a more conserved functional C-terminal region (Z. Cheng et al., 

2009; Dever, & Green, 2012). The latter consists of a G-domain and of β-barrel domains 2 and 3, 

shares structural homology with elongation factors EF-Tu and eEF1A. It is directly interacting 

with domains M and C from eRF1 (Kong et al., 2004; Z. Cheng et al., 2009; Taylor et al., 2012). 

These interactions are important to stimulate eRF3 GTPase activity by eRF1 and by the 

ribosome, which is necessary for the translation termination (Z. Cheng et al., 2009; Taylor et al., 

2012). 

1.4.4 Recycling step 

The recycling of the ribosome occurs once the complete polypeptide chain has been 

released. After the translation termination, the post-termination complex (post-TC) consisting of 

the 80S ribosome associated with an mRNA and to a deacylated tRNA and eRF1 in its P and A 

sites, respectively, needs to be dissociated (Pisarev et al., 2007; Jackson et al., 2012).  

The exact mechanism of the recycling step is not fully understood to date, but there are 

two proposed mechanisms based on recent studies (Pisarev et al., 2007; Pisarev et al., 2010; 

Franckenberg et al., 2012; Jackson et al., 2012) (Figure 8). In a first model, the in vitro recycling 

of eukaryotic post-TCs is mediated by initiation factors eIF3, eIF1 and eIF1A through an energy-

free mechanism functioning only in a narrow range of low Mg
2+

 concentrations (Pisarev et al., 

2007; Pisarev et al., 2010). A second model has been recently proposed that requires ABCE1 or 

Rli1 in yeast, a highly conserved ATPase protein found in Eukaryotes and Archaea (Figure 8) 

(Pisarev et al., 2010; Kiosze-Becker et al., 2016). Following the dissociation of eRF3-GDP at 

termination step, eRF1 is available to interact with ABCE1, which is introduced between the two 

subunits of the ribosome. This leads to the hydrolysis of the ATP molecule bound to ABCE1 and 

the subsequent conformational changes of this later results in the dissociation of both ribosomal 

subunits (Becker et al., 2012; Kiosze-Becker et al., 2016). At this stage, the 60S subunit is free 

and ready for new cycles of translation while the small 40S subunit still holds the mRNA and the 

tRNA, which are subsequently released from 40S subunits either by eIF1/eIF1A/eIF3 or by 

ligatin (Jackson et al., 2012) (Figure 8). 
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2. Methylation as a major post-transcriptional and translational modification of 

translational machinery 

It is known that eukaryotic protein synthesis is a tightly-regulated process requiring a 

variety of translational components. For their correct biosynthesis and functions, these factors are 

subjected to post-transcriptional and post-translational modifications (PTM). These PTM play 

key roles in enhancing and regulating the activity of the translational components and among 

different PTMs, methylation is the most prominent.  

2.1 Methylation 

 Methylation is a chemical reaction, which catalyzes the transfer of a methyl group from a 

donor to an acceptor molecule in all living cells. Methylation plays an important role in several 

biological processes including biosynthesis, metabolism, detoxification, signal transduction, 

protein sorting and repair, and nucleic acid processing (Martin, & McMillan, 2002). This 

reaction is catalyzed by enzymes called methyltransferases (MTase) acting on a wide range of 

substrates such as nucleic acids, proteins, lipids, polysaccharides, and a range of small molecules 

(X. Cheng, & Roberts, 2001). Meanwhile, S-adenosyl-L-methionine (SAM) is considered as the 

most commonly used methyl donor for the methylation reaction (X. Cheng, & Roberts, 2001; 

Schubert et al., 2003; Fontecave et al., 2004).  

2.1.1 S-Adenosyl-L-methionine (SAM or AdoMet) 

SAM is a conjugate of a nucleotide adenosine and an amino acid methionine, known as a 

sulfonium compound (Figure 9A) (Fontecave et al., 2004; Kozbial, & Mushegian, 2005). SAM is 

known as the second most widely-used enzyme cofactor after ATP (Cantoni, 1975; Schubert et 

al., 2003). This is due to the fact that the strong electrophilic character of the SAM methyl group, 

which is brought into close proximity of a nucleophilic group from the substrate by SAM-

dependent MTases, has highly favorable thermodynamics for SAM-dependent methyl-transfer 

reactions (Fontecave et al., 2004).  

SAM is biosynthesized by SAM synthetase, which catalyzes the reaction between a 

methionine and an ATP. The newly synthesized SAM can further participate in a cycle, which is 

part of the general metabolism of sulfur-containing amino acid derivatives, by being converted to 



 

21 

S-adenosyl-homocysteine (SAH), which is subsequently hydrolyzed into adenosine and 

homocysteine by a SAH hydrolase. Homocysteine can be then either converted into glutathione 

or methylated to form methionine by methionine synthase. A new SAM cycle can start again 

with the resulting methionine (Figure 9B) (Fontecave et al., 2004). In addition to its role as the 

methyl donor for SAM-dependent MTases and its implication in sulfur-containing amino acid 

derivatives metabolism, SAM is known to act as precursor in the biosynthesis of the polyamines, 

nicotianamine and phytosiderophores, ethylene … (Kozbial, & Mushegian, 2005; Roje, 2006). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. S-Adenosyl-L-methionine (SAM). (A) Chemical structure of SAM; (B) SAM cycle   

A. 

B. 

CH3 
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2.1.2 SAM-dependent methyltransferases 

In human, it is estimated that about 1% of all human genes encode for MTases (208 

proteins) while this number is even higher in yeast, constituting around 1.2% of the genome. In 

addition, 30% of human MTases are linked to diseases such as cancers or mental disorders, 

stating the importance of this protein family (Petrossian, & Clarke, 2011).  

2.1.2.1  General mode of action 

The great majority of MTases (EC 2.1.1) are known to use SAM as a methyl donor to 

catalyze the methylation reactions (Martin, & McMillan, 2002; Loenen, 2006). Those MTases 

employ the general action mode for the methyl transfer reaction by promoting favorable 

orientation and bringing the SAM methyl group into close contact with nucleophile targets such 

as carbon, oxygen, nitrogen or sulfur, resulting in nucleophilic attack on the strong electrophilic 

methyl group of SAM and allowing the transfer of the methyl group to the various substrates 

(DNA, RNA, proteins, lipids, polysaccharides…) through an SN2 reaction (O'Hagan, & 

Schmidberger, 2010). 

2.1.2.2  Classification 

Since the first crystal structure of the SAM-dependent C5-cytosine HhaI DNA MTase 

was solved in 1993 (X. Cheng et al., 1993; Schubert et al., 2003), there have been significant 

increases in the number of determined MTase crystal structures thanks to more advanced 

methods in structural biology. Although those SAM-dependent MTases can be defined by their 

action on a variety of substrates (DNA, RNA, proteins, lipids, polysaccharides, small 

molecules...) as well as on different atoms for methylation (nitrogen, oxygen, carbon, sulfur ...), 

they are structurally classified into at least five different classes (class I-V) based on their 

remarkably distinct structural features (Schubert et al., 2003). This characteristic of this protein 

family has been considered as an interesting example of the functional evolutionary 

convergence. 

2.1.2.2.1 Class I SAM-dependent MTases 
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Class I MTases form the largest group with more than 60% of the total MTases in human 

and yeast. It consists almost all DNA MTases, some RNA as well as protein MTases but also 

enzymes acting on small molecules (Schubert et al., 2003; Petrossian, & Clarke, 2011; Struck et 

al., 2012). Despite little sequence identity, members of this class adopt a conserved Rossmann-

like fold including a central seven-stranded β-sheet ending with a reversed β hairpin at the C-

terminal extremity, which is surrounded by α-helices (Figure 10). The order of the β strands is 

↑3↑2↑1↑4↑5↓7↑6, with the β strand 7 being anti-parallel to the other parallel strands. Helices Z, 

A and B are positioned on one side of the β-sheet whereas helices C, D and E are on the other 

side (Martin, & McMillan, 2002; Schubert et al., 2003). 

 

Figure 10. Class I SAM-dependent MTases. An example of class I MTase tertiary structure: M.HhaI 

(pdb: 6MHT) (left) and its topology diagram (right) (Schubert et al., 2003) 

The Rossmann-like fold is organized into two parts: the N-terminal part is responsible for 

SAM binding while the C-terminal part is mostly involved in substrate binding. The latter is 

known to be a tremendously variable region adapted to bind different kinds of substrates varying 

in shapes, sizes and chemistries (Martin, & McMillan, 2002). The SAM binding domain is is 

characterized by five highly conserved motifs (Kozbial, & Mushegian, 2005). Motif I, located in 

the loop between β-strand 1 and α-helix A, consists of the glycine-rich GxGxG sequence (or at 

least a GxG sequence), which directly interacts with the carboxypropyl moiety of SAM and is 

considered the hallmark of the SAM-binding site of the class I SAM-dependent MTases. Motif II 
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forms hydrogen bonds with the ribose hydroxyls of the SAM and is located in β-strand 2 and the 

adjoining turn while motif III is situated at the edge of β-strand 3 in the Rossmann-like fold and 

interacts with the SAM base. Motif IV interacts with the amino and sulfonium groups of the 

methionine moiety of SAM and encompasses β-strand 4 and the flanking loops followed by the 

helix corresponding to the motif V. Moreover, additional motifs such as IV, VI, VIII and/or X 

are known to be involved in substrate specificity whereas the motif V and VII play an important 

role mostly for the structural stability (Kozbial, & Mushegian, 2005). 

2.1.2.2.2 Class II SAM-dependent MTases 

Class II SAM-dependent MTases represent one of the smallest groups of MTases 

(Petrossian, & Clarke, 2011). These differ in their overall structural architecture (Figure 11) or 

their interaction with SAM compared to the class I MTases. This is the case of E.coli C-terminal 

MetH reactivation domain, which reactivates the cobalamin substrate by SAM-dependent 

methylation. This class II MTase has a three-dimensional structure dominated by a long central 

anti-parallel β-sheet flanked by groups of helices at both ends (Schubert et al., 2003). In addition, 

through an extended conformation, SAM binds into a shallow groove alongside the borders of 

the β-sheet and interacts with a conserved RxxxGY motif via hydrogen bonds (Schubert et al., 

2003). In comparison to class I MTases, class II MTases undergo large conformational changes 

in order to position the substrate near the catalytic domain (Schubert et al., 2003).  

 

Figure 11. Class II SAM-dependent MTases. An example of class II MTase tertiary structure: MetH 

(pdb: 1MSK) (left) and its topology diagram (right) (Schubert et al., 2003) 
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2.1.2.2.3 Class III SAM-dependent MTases 

Like class II MTases, class III MTase family constitutes a very small group of MTases 

(Petrossian, & Clarke, 2011). This class of protein was first described in 1998 from the structure 

of CbiF, an MTase catalyzing SAM-dependent methylation on precorrin substrates through 

cobalamin biosynthesis (Schubert et al., 2003). Class III MTases contain two domains, each 

consisting of a five stranded β-sheet and 4 α-helices. The active site is located into a cleft at the 

interface between the two domains (Figure 12) (Schubert et al., 2003). Like class I MTases, 

members of this class exhibit a GxGxG motif at the C-terminal end of the first β-strand, but 

interestingly this motif is not involved in SAM binding. Meanwhile, SAM is bound to the protein 

between the two domains (Schubert et al., 1998; Schubert et al., 2003). 

 

Figure 12. Class III SAM-dependent MTases. An example of class III MTase tertiary structure: CbiF 

(pdb: 1CBF) (left) and its topology diagram (right) (Schubert et al., 2003) 

2.1.2.2.4 Class IV SAM-dependent MTases 

In human and yeast, the class IV MTase family is the third largest group (Petrossian, & 

Clarke, 2011), known as the SPOUT MTase superfamily (shortly for SpoU-TrmD). This goup 

mainly consists of tRNA and rRNA MTases (Anantharaman et al., 2002; Tkaczuk et al., 2007; R. 

J. Liu et al., 2013) but recently some protein MTases have been shown to belong to this group 

(Young et al., 2012; R. J. Liu et al., 2013). This class of MTases contains a unique SPOUT 

domain exhibiting an unusual α/β fold with a very deep topological knot (Figure 13) (Tkaczuk et 

al., 2007; R. J. Liu et al., 2013). This core domain including 5 or 6 parallel β-strands sandwiched 

by α-helices on both sides can be separated into 2 subdomains: (1) the N-terminal subdomain 
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forming a Rossmann-like fold; (2) the C-terminal subdomain with a deep conserved trefoil knot 

known to bind SAM (Tkaczuk et al., 2007; R. J. Liu et al., 2013). The class IV MTases can be 

divided into two subclasses: (1) the smallest SPOUT MTases such as TrmL and RlmH 

containing only the SPOUT domain in which the N-terminal subdomain is involved in substrate 

binding (R. J. Liu et al., 2013); (2) the larger SPOUT MTases like TrmH, RlmB and RsmE 

showing additional domains (for instance THUMP, PUA, OB fold, or L30e….) fused at the N- 

or C-termini or introduced into a linker between two subdomains of the SPOUT domain, 

responsible for the substrate binding (Tkaczuk et al., 2007; Petrossian, & Clarke, 2009; R. J. Liu 

et al., 2013). Another interesting point regarding this class IV MTase family is that almost all 

SPOUT members except the monomeric Trm10 protein reported so far were identified as 

dimeric proteins (Tkaczuk et al., 2007; Oerum et al., 2017). This characteristic is known to 

stabilize the SAM-binding loop in the knot of one monomer through interactions with the other 

monomer and to play an important role in the MTase activity as the active sites are created by 

residues from both monomers (Tkaczuk et al., 2007; Petrossian, & Clarke, 2009; Oerum et al., 

2017). 

 

 

 

 

 

 

Figure 13. Class IV SAM-dependent MTases. An example of class IV MTase tertiary structure: YibK 

(pdb:1MXI) (left) and its topology diagram (right) (Schubert et al., 2003) 

2.1.2.2.5 Class V SAM-dependent MTases 

The second largest family of SAM-dependent MTases is assigned to class V, with 

approximately 27% and 14% of the total MTases in human and yeast, respectively (Petrossian, & 

Clarke, 2011). The class V MTases contain a SET domain (Suppressor of variegation, Enhancer 

of zeste, Trithorax), and hence are also referred as SET-domain MTase superfamily. This family 
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encompasses almost all proteins known to catalyze histone lysine methylations crucial for the 

regulation of chromatin and gene expression. In addition to histones, the SET-domain MTases 

also methylate some other proteins like Rubisco (Dillon et al., 2005). The SET domain consists 

of eight curved β strands organized into three small β-sheets (Figure 14), including the C-

terminus inserted below a surface loop to generate a knot-like structure as seen in the SPOUT 

MTases (Dillon et al., 2005; Petrossian, & Clarke, 2009). Class V MTases have sequence 

similarity in their N-terminal (N-SET) and C-terminal (C-SET) domains, which harbour 

conserved motifs I-II and motifs III-IV, respectively. Those are known to be responsible for 

catalysis, SAM-binding and substrate interaction (Petrossian, & Clarke, 2009). Similarly to class 

III MTases, the SAM bound to the SET domain binds to a shallow groove of the protein, formed 

by motif I, the N-terminal part of motif III and a tyrosine in motif IV (Schubert et al., 2003; 

Petrossian, & Clarke, 2009). One interesting point with regard to the SAM binding mode by 

proteins of this family is the presence of the GxG sequence in motif I similarly to the motif I 

glycine-rich GxGxG sequence found in class I MTases, despite no structural similarity between 

the two protein classes (Petrossian, & Clarke, 2009). Moreover, some MTases have the SET-

domain flanked by diverse sequences named pre- and post-SET motifs. The pre-SET motif is 

known to stabilize the protein structure by interacting with different surfaces of the core SET 

domain while the post-SET motif constitutes part of the active site, vital for the MTase activity 

and maybe involved in the substrate recognition and specificity (Schubert et al., 2003; Qian, & 

Zhou, 2006). 

 

Figure 14. Class V SAM-dependent MTases. An example of class V MTase tertiary structure: Set7/9 

(pdb:1O9S) (left) and its topology diagram (right) (Schubert et al., 2003) 
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2.2  Methylation of translational machinery  

Methylations are by far the most frequent and important PTMs for the control and 

optimal efficiency of mRNA translation. This is particularly the case for tRNAs, which are 

heavily methylated in order to enhance their stability as well as the efficiency and accuracy of 

translation. rRNAs are also targeted by various post-transcriptional modifications including 2'-

OH methylation, base methylation, or more complex modifications for their maturation 

processes and functions (Sharma, & Lafontaine, 2015). Several recently and extensively studied 

modified nucleotides present in mRNAs, including methylations such as N6-methyladenosine 

(m
6
A), N1-methyladenosine (m

1
A), and 5-(hydroxyl)methylcytosine ((h)m

5
C), have led to the 

emergence of the epitranscriptomics field (Dominissini et al., 2016; Gilbert et al., 2016). Finally, 

MTases also target ribosomal proteins and of translational factors (Polevoda, & Sherman, 2007). 

2.2.1 tRNA methylation 

According to the RNA modification database (http://mods.rna.albany.edu/mods/), 112 

different modified nucleosides were found in all kinds of RNA in three domains of life to date. 

Among these, 93 modifications are present on tRNA molecules, with methylation being the 

major one. The four canonical nucleotides are the most regular substrates for tRNA MTases on 

either the base or the ribose moiety but modified nucleotides like pseudouridine (ψ), inosine (I) 

and more complex species are also subjected to methylation (Swinehart, & Jackman, 2015). 

Among tRNA MTases, almost all enzymes known to date belong to the class I Rossmann-like 

fold and class IV SPOUT-domain MTases. It is noteworthy that some recently discovered 

MTases could potentially form a novel class of MTase in the future (Swinehart, & Jackman, 

2015).  

2.2.1.1  Base methylation 

The bases are the most common substrates of the tRNA MTases catalyzing modifications 

mainly at carbon, endocyclic nitrogen and exocyclic nitrogen atoms (Swinehart, & Jackman, 

2015). 

The methylation of the carbon atom at position 5 of pyrimidines (m
5
C and m

5
U) is 

present at multiple positions of tRNAs. These tRNA modifications are found throughout life, 



 

29 

with m
5
U identified in all 3 domains of life while m

5
C is present in Archaea and Eukarya (Hou, 

& Perona, 2010; Motorin, & Helm, 2011; Swinehart, & Jackman, 2015). Most tRNA MTases 

catalyzing m
5
C and m

5
U are class I MTases, with some representative members such as E.coli 

TrmA (yeast Trm2 and human TRMT2 homologs) catalyzing the conserved m
5
U54 (also called 

ribothymidine) in the T-loop of tRNAs and yeast Trm4 (human NSUN2 homolog) generating 

m
5
C at different positions (Hou, & Perona, 2010; Motorin, & Helm, 2011; Towns, & Begley, 

2012; Swinehart, & Jackman, 2015). The catalytic mechanism of those MTases is probably as 

follows. First, a conserved cysteine acts as a nucleophile to attack C6 atom from the base, which 

then allows the C5 atom to attack the SAM methyl group. Second, the C5 proton is abstracted by 

a general base in order to generate the methylated product. For TrmA, the catalytic base has been 

identified as a glutamate while in Trm4, an aspartate fulfills this function (Hou, & Perona, 2010; 

Boschi-Muller, & Motorin, 2013; Swinehart, & Jackman, 2015). Moreover, methylation events 

can also occur on complex modifications such as cm
5
U, mcm

5
(s

2
)U, ncm

5
U… through more 

complex multi-step biosynthetic reactions. This will be discussed in detail in the next part of the 

thesis. 

Methylations on the different endocyclic nitrogen atoms such as m
1
A, m

1
G, m

3
G, m

3
C, 

m
1
ψ and m

7
G are found in almost all living cells except m

3
C and m

1
ψ that are absent in Archaea 

and Bacteria, respectively (Swinehart, & Jackman, 2015). Some examples for this methylation 

group include the class I MTases like yeast Trm5 (human TRMT5) forming m
1
G37 in Archaea 

and Eukarya; the yeast Trm6/Trm61 heterodimer (Trm61 is the catalytic subunit)  (human 

TRM6) catalyzing m
1
A58, a highly conserved modified A58 in the T-loop of tRNAs and also the 

SPOUT domain MTases such as bacterial TrmD forming m
1
G37, yeast Trm10 (human 

TRMT10A) catalyzing formation of m
1
G9 as well as archaeal TrmY for m

1
ψ54 formation 

(Motorin, & Helm, 2011; Towns, & Begley, 2012; Swinehart, & Jackman, 2015; Hori, 2017). In 

term of the potential methylation mechanism, some MTases (for instance Trm5 and Trm10) use 

general bases like glutamate and aspartate residues, respectively, which deprotonate N1 atom. 

This results in the nucleophilic attack of N1 on the SAM methyl group to form the methylated 

targets. In contrast, for m
7
G class I MTases such as eukaryotic Trm8/Trm81 (human METTL1), 

bacterial TrmB or m
3
C MTases like ScTrm140, their catalytic mechanisms have not been 

clarified so far (Swinehart, & Jackman, 2015). 
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Methylation on the exocyclic nitrogen atoms like m
2
G, m

2
2G, m

6
A, and m

6
2A is always 

catalyzed by class I MTases. The eukaryotic Trm112-Trm11 (human TRMT112-TRMT11) 

(where Trm11/TRMT11 are the catalytic subunit) catalyzes the formation of m
2
G10 while 

archaeal TrmG10 is responsible for the formation of both m
2
G10 and m

2
2G10 (Hirata et al., 

2016). In addition, yeast Trm1 (human TRMT1) is known to form m
2

2G26 with m
2
G26 as the 

intermediate while archaeal Aquifex aeolicus Trm1 modifies some tRNAs to generate 

m
2
G26m

2
G27 and m

2
2G26m

2
2G27 (Awai et al., 2009). The bacterial/archaeal Trm1 proteins 

contain a DPFG/DPPY conserved motif in their active site and the aspartate from this motif is 

likely acting as the general base to abstract a proton from N2 atom, then promoting the 

nucleophilic attack on SAM methyl group for methylation to occur (Swinehart, & Jackman, 

2015). Meanwhile, the m
6
A modification also commonly seen in mRNA, rRNA and DNA is 

found in tRNAs at position 37 and is catalyzed by E.coli YfiC by a still unknown mechanism 

(Swinehart, & Jackman, 2015). 

2.2.1.2  Ribose methylation 

This methylation can be found on the 2’ hydroxyl group of the ribose (2’-O-methylation) 

of any canonical nucleotides in all domains of life (Rana, & Ankri, 2016). A famous example for 

this group of MTases is bacterial TrmH (Trm3 in Eukarya), one of the founders for the SPOUT-

domain MTases, generating a highly conserved 2'-O-methylguanosine at position 18 (Gm18). 

This protein has been well-studied and its catalytic mode is proposed to act through a conserved 

arginine playing the role of the general base removing a proton from the 2’-hydroxyl group and 

then allowing the resulting oxygen to attack the SAM methyl group for the reaction to complete 

(Swinehart, & Jackman, 2015; Hori, 2017). Moreover, several important 2'-O-methylations are 

present at positions 32 and 34 in all domains of life. Some examples include SPOUT-domain 

MTases like E.coli TrmJ (Cm32 or Um32), TrmL (Cm34, cmnm
5
Um34), aTrmJ (Cm32) but also 

class I MTases such as such as ScTrm7/Trm732 (Cm32) and Trm7/Trm734 (Cm34) complexes 

or their human orthologues containing TRMT7 (also known as FTSJ1; Cm32, Um32, Cm34, 

Gm34). Meanwhile, some 2'-O-methylations are specific to archaea (Cm56 catalyzed by 

SPOUT-domain aTrm56) or eukarya (Um44 formed by class-I ScTrm44 or human METTL19) 

(Hori, 2017; Marchand et al., 2017).  
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2.2.1.3  Functions of tRNA methylations 

Although the importance of tRNA modifications has often been underestimated as the 

loss of most single modifications usually results in only modest or no phenotypes, the PTMs in 

general and the methylations in particular are crucially involved in every aspects of the tRNA, 

namely its structure, function, and stability (Torres et al., 2014; Swinehart, & Jackman, 2015). 

The effects of these methylations on tRNAs can be classified based on the positions of the 

modifications.  

The methylations in the anti-codon loop and at positions nearby are normally related to 

effects on the tRNA function, namely the fidelity of mRNA decoding. This is the case for 

mcm
5
U, mcm

5
s

2
U, Cm and mnm

5
Um at the wobble position 34, which are directly involved in 

decoding through the anti-codon:codon pairing and are necessary for the translation fidelity and 

efficiency (Letoquart et al., 2015b; Ranjan, & Rodnina, 2016; Tuorto, & Lyko, 2016; Hori, 

2017). Meanwhile, the m
5
C34 modification present in yeast tRNA

Leu(CAA) 
is necessary for 

translation efficiency and its loss renders yeast hypersensitive to oxidative stress because of 

inefficient translation of UUG-containing stress response mRNAs (C. Gu et al., 2014; Swinehart, 

& Jackman, 2015; Ranjan, & Rodnina, 2016). Moreover, several modifications at position 37 

such as a highly conserved m
1
G37 are responsible for enhancing the translational accuracy, 

whereas chemically intricate modifications like wyosine (imG) and its derivative wybutosin 

(yW) in eukaryotic and archaeal phenylalanine-specific tRNA
Phe

 are known to stabilize 

codon:anticodon interactions by providing base-stacking interactions between the anti-codon and 

the A-site codon. Such modifications have a key role in preventing translational frameshifting 

(Ranjan, & Rodnina, 2016; Tuorto, & Lyko, 2016).  

The methylations of nucleotides located in the tRNA body usually affect the folding and 

stability of tRNAs. Some examples are the conserved modifications m
2
G10 and m

2
2G26 at the 

stem of the D-loop, which both maintain the secondary and tertiary structure of tRNAs in the 

three domains of life (Lorenz et al., 2017; Vare et al., 2017). Meanwhile, two modifications 

(m
1
G9 and m

1
A9) have been identified to facilitate the correct folding of mitochondrial tRNAs 

(Vare et al., 2016; Oerum et al., 2017). It is also the case for m
5
C48 and m

5
C49, which are 

located at the junction between the variable loop and the T loop in archaeal and eukaryotic 

tRNAs. Furthermore, the m
5
U54 (forming the conserved T54, also known as ribothymidine), and 
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the m
1
A58 modifications, both located in the T loop of tRNAs, are known to stabilize a reverse 

Hoogsteen base-pairing interaction between those two bases, and thus necessary for the tertiary 

folding of the L-shaped tRNA (Hou, & Perona, 2010). Moreover, lack of m
1
A58 catalyzed by 

Trm6/Trm61 (where Trm61 is the catalytic subunit) and m
7
G46 modification generated by 

Trm8/Trm82 (where Trm8 is the catalytic subunit) results in rapid tRNA degradation 

(Alexandrov et al., 2006). 

Apart from direct roles in tRNA decoding and structure, tRNA methylations also 

encompass other additional functions. For instance the 2´-O-methylation of the tRNA anticodon 

loop is known to ensure effective immune response against pathogens in plants (Ramirez et al., 

2015). In addition, some modifications such as 2´-O-methylations alone or in combination with 

methylated bases have been found crucial for temperature adaptation in thermophilic and 

psychrophilic organisms (Lorenz et al., 2017; Vare et al., 2017). More importantly, growing 

evidence suggests that defects in tRNA methylations and MTases are involved in severe human 

disorders such as cancers, type II diabetes, and neurological diseases. Recent extensive efforts on 

understanding tRNA methylations and the enzymes responsible for these modifications could 

lead to future discovery of novel therapeutics (Torres et al., 2014; Grosjean, 2015). 

2.2.2 rRNA methylation 

Like tRNAs, rRNAs are frequently methylated in all living cells, however numbers and 

types of methylations vary from different organisms (Piekna-Przybylska et al., 2007; Piekna-

Przybylska et al., 2008). E. coli has 19 base methylations and only four 2’-O-methylations. The 

opposite pattern is observed in Eukaryotes. Indeed, budding yeast contains 10 base methylations 

but 55 ribose 2’-O-methylations while in human, the numbers are 10 and around 100, 

respectively (Piekna-Przybylska et al., 2007; Piekna-Przybylska et al., 2008; Sharma, & 

Lafontaine, 2015; Krogh et al., 2016). Meanwhile, in archaea, rRNAs methylations like its 

eukaryotic counterparts are dominated by 2’-O-methylations (Dennis et al., 2015). These 

differences between three domains of life seem to be due to the presence of box C/D snoRNPs in 

Archaea and Eukarya (Watkins, & Bohnsack, 2012; Krogh et al., 2016). Concerning the catalytic 

enzymes, most 2’-O-methylations are catalyzed by small nucleolar RNPs (snoRNPs) guided by 

box C/D sno-RNAs, while base methylations are specifically added by conventional SAM-

dependent MTases (Watkins, & Bohnsack, 2012; Sloan et al., 2016). It is also noteworthy that 
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2’-O-methylations are mostly added during early stages of ribosomal subunits maturation while 

the base modifications are generally believed to appear later despite no precise timing known for 

most of them till now (Sloan et al., 2016). 

2.2.2.1  Base methylation 

In yeast, 10 base methylations have been identified in rRNAs with six methylations 

located on the large subunit and four on the small one ((J. Yang et al., 2016); the enzymes 

responsible for these modifications are indicated in brackets). These SAM-dependent MTases 

catalyze mono- or di-methylation on specific atoms like N or C in both purine and pyrimidine 

rings (Sharma, & Lafontaine, 2015). The yeast 18S rRNAs contain m
1
acp

3
ψ1191 (ScEmg1) 

located at P-site, m
7
G1575 (ScBud23-Trm112) at a P-site/E-site tRNA ridge and two 

m
6
2A1781/m

6
2A1782 (both generated by ScDim1 (Appel, & Maxwell, 2007; Motorin, & Helm, 

2011; Gumienny et al., 2016)) situated close to the decoding center and platform (White et al., 

2008; Sharma, & Lafontaine, 2015; Sharma et al., 2015; Sloan et al., 2016). In the 60S large 

subunit from S. cerevisiae yeast, the 25S rRNA includes two N1-adenosines m
1
A645 (ScRrp8) 

located next to PTC and m
1
A2142 (ScBmt2) at subunits interface, two C5-cytosines m

5
C2278 

(ScRcm1) also at subunit interface and m
5
C2870 (Nop2) in the PTC, and two N3-uridines 

m
3
U2634 (Bmt5) near PTC and m

3
U2843 (Bmt6) near P-stalk (Peifer et al., 2013; Sharma et al., 

2013; Bourgeois et al., 2015; Sharma, & Lafontaine, 2015; Sloan et al., 2016). Most of these 

MTases belong to class-I SAM-dependent MTases including Bud23, Dim1, Rrp8, Bmt2, Rmc1, 

Nop2, Bmt5 and Bmt6, whereas Emg1 is known as class-IV SPOUT-domain MTase (Sloan et 

al., 2016). These base modifications are conserved in human 18S rRNA. However, in human 28S 

rRNA, only 3 base methylations found in the yeast have been detected so far, including 

m
1
A1322 (HsNML), m

5
C3782 (HsNSUN5) and m

5
C4447 (HsNSUN1) (Sharma, & Lafontaine, 

2015). Moreover, there is one 18S rRNA base methylation (m
6
A) in human, at position 1832 

(Maden, 1986), which is absent in yeast. However, no enzyme responsible for this methylation 

has been so far detected. 

2.2.2.2  Ribose methylation 

2’-O-methylation is one of the two most common modifications in eukaryotic rRNAs, 

together with pseudouridine. The 2’-O-methylation is generally catalyzed by an addition of one 
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methyl group at the 2’-O-position of the ribose on all canonical nucleosides. In Bacteria, this 

modification is known to be introduced by site specific or region specific MTases while in 

Eukarya and Archaea it is carried out by box C/D snoRNPs and box C/D sRNPs respectively, 

which are abundant in those organisms (Appel, & Maxwell, 2007; Dennis et al., 2015; Krogh et 

al., 2016; Taoka et al., 2016). Most box C/D snoRNAs consist of four conserved sequence 

motifs: boxes C, C’ (5’-RUGAUGA-3’) and boxes D, D’ (5’-CUGA-3’) in the order C-D’-C’-D 

from the 5’ and 3’ termini of the guide RNA, respectively (Appel, & Maxwell, 2007; Motorin, & 

Helm, 2011; Gumienny et al., 2016). Interestingly, this C/D box snoRNAs forms a classical K-

turn motif facilitated by base pairing between the upstream regions of C and D boxes and then 

servs as a platform for C/D box snoRNP assembly (Appel, & Maxwell, 2007; Gumienny et al., 

2016). In yeast and human, the C/D box snoRNPs contain a C/D box snoRNA associated with a 

core of four conserved proteins Nop1 (SAM-dependent MTase), Nop56, Nop58 and Snu13 while 

in archaea this core includes Nop1, Nop5 and L7Ae (Appel, & Maxwell, 2007; Motorin, & 

Helm, 2011). In this guide RNA complex, a short sequence complementary to the targeted 

position on rRNA is found upstream of boxes D, D’ and the 2’-O-methylation is catalyzed by the 

Nop1 protein (Galardi et al., 2002; Motorin, & Helm, 2011). 

2.2.2.3  Functions of rRNA methylations 

The roles of RNA methylations can be initially related to the stabilization of secondary 

and tertiary structures of rRNAs themselves. For example, 2’-O-methylations are known to 

stabilize helices through enhancing base stacking as well as provide nucleotides with greater 

hydrophobicity potentially benefiting from inter- or intramolecular interactions while base 

methylations such as m
3
U can stimulate hairpin formation and m

5
C improves the stability of 

guanine base-pairing (Liang et al., 2007; Sloan et al., 2016). 

The methylations are not found randomly in rRNAs but occur at specific, highly 

conserved residues of both ribosomal subunits that cluster in crucial regions such as peptidyl 

transferase center, the A-, P- and E-sites, the mRNA binding channel, the polypeptide exit 

tunnel, and the inter-subunit interface, indicating their important roles in the ribosome functions 

and biogenesis (Decatur, & Fournier, 2002; Piekna-Przybylska et al., 2008; Sharma, & 

Lafontaine, 2015; Sloan et al., 2016). In fact, combined loss of some or several 2’-O-

methylations in these functional sites has been reported to result in severe effects such as: (1) 
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reduced translation rates; (2) lowered translation efficiency through increasing stop codon read-

through activity; (3) increased sensitivity to ribosome-based antibiotics; (4) strongly delayed pre-

rRNA processing and reduced RNA levels (Liang et al., 2007, 2009). 

In addition, all base methylations in 18S rRNA and some in 25S rRNA are known to be 

necessary for the ribosome biogenesis. In contrast with most MTases responsible for 25S base 

methylation are not essential, almost all MTases involved in 18S rRNA base methylations are 

essential (Emg1, Nep1 and Dim1) or crucial for growth (Bud23) (Sharma, & Lafontaine, 2015). 

It is interesting to note that these 18S rRNA MTases themselves but not their enzymatic activity 

are important for ribosome biosynthesis (Sharma, & Lafontaine, 2015; Sloan et al., 2016). 

Moreover, it is suggested that some of these MTases (Dim1 and Bud23) take part in robust 

quality control mechanisms during ribosome biogenesis that probe binding of those MTases to 

precursor rRNAs as requirement for processing (Zorbas et al., 2015). Moreover, defects in base 

methylations in conserved ribosomal regions increase translational infidelity as well as 

sensitivity to antibiotics and oxidative stress (Sharma, & Lafontaine, 2015). 

 Importantly there are growing evidences linking rRNA methylation deficiency and 

various human disorders such as cancers, Bowen-Conradi syndrome (neurodegenerative 

disease), obesity, Williams-Beuren syndrome…. This once again highlights the crucial roles 

these methylations play in the cells. However, the mechanisms responsible for these diseases and 

the potential role of these modifications still remain ambiguous for most cases (Sharma, & 

Lafontaine, 2015; Sloan et al., 2016). 

2.2.3 mRNA methylation 

Besides the modifications necessary for the maturation of mRNAs, namely 5’ end 

capping, 3’ end polyadenylation and splicing as discussed previously (section I.2), mRNAs like 

other RNA species are also targeted by methylations (Motorin, & Helm, 2011). However, in 

contrast to tRNA and rRNA methylations, which have been extensively studied for decades, the 

prominence of mRNA methylations has been neglected due to lack of efficient detection 

strategies. History of mRNA methylation started in 1974 when an internal m
6
A was discovered 

in mRNA, followed by more than three-decades gap with less interest and efforts because it was 

thought to originate from contamination. It then made a remarkable comeback with great 
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achievements recently that contributed to the birth of the novel field – Epitranscriptomics (Meyer 

et al., 2012; Schwartz, 2016). So far, eukaryotic mRNAs are known to contain m
6
A, m

1
A and 

m
5
C methylations (Hoernes, & Erlacher, 2017). 

2.2.3.1 m
6
A 

m
6
A is among the first and the most abundant PTM identified in mRNA. It is present in 

most eukaryotes and to some extent in prokaryotes (X. Deng et al., 2015). In eukaryotes, the 

m
6
A constitutes around 1-3 residues per mRNA accounting for 0.1-0.5% of all A nucleotides 

(Gilbert et al., 2016; Hoernes, & Erlacher, 2017). On eukaryotic mRNAs, m
6
A is enriched 

mostly in 3’ UTR, near stop codon, and is also found in long exons as well as transcriptional start 

sites of mRNAs, generally belonging to a consensus motif A/G[G>A]m
6
AC[U>A>C]  

(Dominissini et al., 2012; Meyer et al., 2012; Schwartz et al., 2014; Hoernes, & Erlacher, 2017). 

This m
6
A methylation is reversible, catalyzed and recognized by a set of enzymes including 

writers, erasers and readers. The m
6
A writers are a multi-protein complex acting like a MTase. 

This complex includes METTL3, METTL14 and WTAP proteins. METTL3 is the catalytic 

subunit while METTL14 is its activator and WTAP (Wilms’ tumor 1-associating protein) plays a 

role in the complex localization (J. Liu et al., 2014; Sledz, & Jinek, 2016; P. Wang et al., 2016; 

X. Wang et al., 2016; Hoernes, & Erlacher, 2017). The m
6
A erasers catalyze the demethylation 

of m
6
A into A. So far, two enzymes have been described: FTO (fat mass and obesity-associated 

protein) and ALKBH5 in which the former catalyzes the reaction through two labile 

intermediates, N6-hydroxymethyladenosine (hm
6
A) and N6-formyladenosine (f

6
A) before 

formation of A while the latter directly converts m
6
A to A (Hoernes, & Erlacher, 2017). 

Meanwhile, the roles of m
6
A are to recruit specific binding proteins called m

6
A readers, which 

can be direct or indirect m
6
A-binding proteins. The direct readers have been characterized such 

as YTH domain-containing proteins YTHDF1-3 and YTHDC1, which precise biological roles 

are currently studied. The YTHDF2 is the best characterized one and it is known to target m
6
A 

containing mRNAs to decay sites in mammalian cells by directly recognizing m
6
A and in turn 

determining the half-life of the respective mRNAs. In addition, the YTHDF1 and YTHDF2 

promote translation initiation via interacting possibly with the ribosome initiation factors within 

3’ end and 5’end regions of mRNAs, respectively (Hoernes, & Erlacher, 2017). Meanwhile, an 

indirect reader HNRNPC (heterogeneous nuclear ribonucleoprotein C) binds mRNAs via 
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changed local RNA structures triggered by the m
6
A modification and is known to influence 

alternative splicing (Hoernes, & Erlacher, 2017). 

2.2.3.2 m
1
A 

In addition to being a well-characterized modification in tRNAs and rRNAs, where it has 

crucial impacts on the RNA structure and function, m
1
A is also found on thousands of different 

mRNA transcripts in eukaryotic cells ranging from yeast to mammals, constituting an average of 

20% transcripts in human (Dominissini et al., 2016). However, this m
1
A modification is present 

in mammalian mRNA at a low relative abundance with m
1
A/A ratio of around 0.015%–0.054% 

in cell lines and up to 0.16% in tissues (Dominissini et al., 2016; Y. Wang, & Jia, 2016). In 

contrast to mRNA m
6
A, which still forms base-pair with thymidine through the reverse 

transcription, m
1
A is known to disturb the Watson-Crick base-pairs, leading to reverse 

transcription stops and read-throughs together with mismatches (Y. Wang, & Jia, 2016; J. Song, 

& Yi, 2017). There are two interesting features of m
1
A employed for the identification of its 

location: (1) m
1
A is able to rearrange to m

6
A in mRNA under alkaline conditions (Dimroth 

rearrangement); (2) m
1
A in mRNA is reversible and de-methylated by ALKBH3 (human 

ortholog of E.coli AlkB) (Dominissini et al., 2016; Li et al., 2016; Y. Wang, & Jia, 2016). 

Compared to m
6
A, which is mostly found near stop codons and within 3’ UTR, m

1
A is enriched 

within the 5’ UTR, around the start codon upstream of the first splicing site (Dominissini et al., 

2016; Li et al., 2016). Moreover, while enzymes responsible for m
6
A formation in mRNAs are 

well known, the MTase needed for m
1
A formation is still unknown (J. Song, & Yi, 2017). 

 2.2.3.3 m
5
C 

Like m
1
A, m

5
C is found stable and mostly abundant in tRNAs and rRNAs but is also 

present in mRNAs (Squires et al., 2012; X. Yang et al., 2017). Quite differently from m
6
A and 

m
1
A sites, the m

5
C sites are significantly positioned just downstream of the 5’UTR and 

distributed mostly in the coding sequence comprising 45% while 35% m
5
C are sited at both 5’ 

and 3’ UTRs, and the remaining at intron sequences. Moreover, the consensus motifs for the 

mRNA sequence containing m
5
C modification have been identified, including CG (55%), CHG 

(28%, H = A, C, U) and CHH (17%) (X. Yang et al., 2017). Pertaining to MTases for this 

mRNA modification, it is now known that NSUN2, a m
5
C tRNA MTase, acts as a writer for 
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mRNA m
5
C (Squires et al., 2012; X. Yang et al., 2017), while ALYREF/THOC4, a mammalian 

mRNA export adaptor, was recently identified as mRNA m
5
C reader (X. Yang et al., 2017). 

Interestingly, the mRNA m
5
C can be converted through oxidation to hm

5
C (5-

hydroxymethylcytosine) by Tet proteins (Ten–eleven translocation protein family) in a similar 

manner to that in DNA (Fu et al., 2014; Delatte et al., 2016). 

2.2.3.4 Functions of mRNA methylations 

As part of post-transcriptional modifications, mRNA methylations are involved in 

different steps of gene expression. In fact, m
6
A is known to play crucial roles in several aspects 

of mRNAs: (1) mRNA processing, namely mRNA splicing through a regulatory mechanism of 

FTO-dependent m
6
A demethylation (Zhao et al., 2014); (2) mRNA stability as inversely 

correlated with m
6
A methylation levels since binding of the YTHDF2 reader to m

6
A-containing 

mRNA directs the complex to cellular RNA decay sites (X. Wang et al., 2014) and as deletion of 

METTL3 and METTL14 in mouse leads to increased expression of mRNAs encoding many 

developmental regulators (Y. Wang et al., 2014); (3) mRNA export as knockout of the eraser 

ALKBH5 accelerates mRNA export while that of METTL3 results in delay of mRNA export to 

the cytoplasm (Fustin et al., 2013; Zheng et al., 2013); (4) translation efficiency through a reader 

YTHDF1-mediated mechanism in which YTHDF1 binds mRNAs at m
6
A and then recruits 

translational initiation factor eIF3 for directly promoting the translation of m
6
A-containing 

mRNAs (X. Wang et al., 2015), and also through a direct effect on elongation kinetics (Choi et 

al., 2016). Moreover, m
6
A is also involved in circadian clock function by which the circadian 

period is prolonged in case of clock gene-specific METTL3 silencing (Fustin et al., 2013). 

Meanwhile, the biological function of m
1
A and m

5
C in mRNAs is not well understood although 

those modifications could have a putative role in mRNA translation (J. Song, & Yi, 2017). It is 

also important to mention that the proteins performing those methylations are linked to several 

human disorders such as cancers (Squires et al., 2012; Zhang et al., 2016), obesity (Dina et al., 

2007), Alzheimer’s disease (Keller et al., 2011), and mental disability (Abbasi-Moheb et al., 

2012). 

2.2.4 Translational protein methylation 
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Similarly to nucleic acids, translation-related proteins including translational factors and 

r-proteins are also highly methylated. 

In S. cerevisiae, elongation factors such as eEF1A, eEF2 and the fungal-specific eEF3 are 

heavily methylated. The Sc eEF1A is subjected to several methylation events, i.e. mono-

methylation on lysines 30 (K30) and 390 (K390), di-methylation on lysine 316 (K316) and tri-

methylation on lysine 79 (K79) (Couttas et al., 2012; Dzialo et al., 2014), the recently identified 

tri-methylation on N-terminal glycine 2 (G2) and di-methylation on lysine 3 (K3) (Hamey et al., 

2016). Sc eEF2 is di-methylated on K613 and tri-methylated on K509 while Sc eEF3 is also 

known to be the subject of tri-methylations on three positions, namely K187, K196 and K789 

(Couttas et al., 2012; Dzialo et al., 2014). Until now, the MTases responsible for those 

methylations are well characterized for Sc eEF1A namely Efm1 (K30), Efm4 (K316), Efm5 

(K79), Efm6 (K390) and Efm7 (G2 and K3) and for Sc eEF2 including Efm2 (K613) and Efm3 

(K509); whereas little is known in the case of Sc eEF3 (Hamey et al., 2016). The biological 

functions of those methylations are still unclear for eEF1A and eEF3. However, knockout of 

Efm2 or Efm3 abolishing eEF2 methylations, renders yeast sensitive to a translation inhibitor 

like sordarin and also results in translational infidelity by increasing frameshifting during 

translation, supporting the importance of those methylations for eEF2 function during translation 

elongation (Davydova et al., 2014; Dzialo et al., 2014). 

The class I release factors eRF1 in eukaryotes and RF1, RF2 in bacteria all contain a 

universally conserved GGQ motif, which is N5-methylated on the side chain of the Q residue. In 

bacteria, this methylation is catalyzed by the PrmC MTase (also known as HemK) and this 

modification is known to ensure normal translation termination in vivo as well as to increase 

peptide release activity in vitro (Dincbas-Renqvist et al., 2000; Graille et al., 2005; Mora et al., 

2007; Liger et al., 2011). In yeast, the N5-methylated Q is generated by the Mtq2-Trm112 

complex in which Mtq2 is a class I MTase acting as the catalytic subunit (Heurgue-Hamard et 

al., 2005; Heurgue-Hamard et al., 2006). However, the function of this eRF1 methylation is not 

known to date. 

Furthermore, methylations are also found in ribosomal proteins from a wide range of 

organisms in both prokaryotes and eukaryotes. In bacteria, there are six methylated r-proteins 

including one from the small ribosomal subunit (S11) and five from the large subunit (L3, L11, 
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L7/L12, L16, and L33). Three MTases namely YfcB, PrmA and PrmB specific for L3, L11 and 

L3, respectively, have been characterized so far. Moreover, some of those methylations are 

known to participate in ribosome functions through interaction with translation factors as well as 

in ribosome biogenesis (Nesterchuk et al., 2011). In S. cerevisiae, four r-proteins from the 40S 

are methylated, including Rps2, Rps3, Rps25a/b and Rps27a/b, while six r-proteins (Rpl1a/b, 

Rpl3, Rpl12a/b, Rpl23a/b, Rpl42a/b and Rpl43) from the 60S contain methylations (Shirai et al., 

2010; Al-Hadid et al., 2016a). Several MTases modifying those r-proteins have been studied 

including class I MTases such as Rkm5 (Rpl1a/b on K46), Hpm1 (Rpl3 on H243), Ntm1 

(Rpl12a/b on N-terminal proline and Rps25a/b on N-terminal proline) and Rmt2 (Rpl12a/b on 

R66); SET-domain MTases such as Rkm1 (Rpl23a/b on specific K), Rkm2 (Rpl12a/b on K) and 

Rkm3 and Rkm4 (Rpl42a/b on K) (Young et al., 2012). The biological functions of those r-

protein methylations are quite well characterized, and are known to be involved in ribosome 

biogenesis, translation regulation as well as translation fidelity (Shirai et al., 2010; Al-Hadid et 

al., 2014; Davydova et al., 2014; Al-Hadid et al., 2016a; Al-Hadid et al., 2016b).  

II. Current knowledge about eukaryotic Trm112 network 

In eukaryotes, Trm112 is a small zinc finger protein known to act as an activating 

platform for the functions as well as stability of at least four MTases modifying factors of the 

eukaryotic translational apparatus including rRNA (Bud23), tRNAs (Trm9 and Trm11) and class 

I release factor eRF1 (Mtq2), perfectly illustrating the important effects of methylation in 

translation. This chapter and the next one are adapted from our recent review published in 

Biomolecules, 2017 (Trm112, a protein activator of methyltransferases modifying actors of the 

eukaryotic translational apparatus (Gabrielle Bourgeois, Juliette Létoquart, Nhan van Tran and 

Marc Graille)). 

1. Trm112 

Trm112, a 15 kDa protein, is widely conserved in eukaryotic organisms. It has been mostly 

characterized by studies first conducted in yeast and later in human cells. In baker's yeast, the 

TRM112 gene was initially considered as an essential gene from a large-scale survey of the 

growth phenotype resulting from systematic deletion of individual genes (Giaever et al., 2002). 
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However, further studies revealed that trm112Δ yeast strain is very sick but still viable 

(Purushothaman et al., 2005; Mazauric et al., 2010; Chen et al., 2011; Figaro et al., 2012). 

Studies performed on SMO2, the A. thaliana Trm112 ortholog, have shown that as in S. 

cerevisiae, the inactivation of SMO2 gene leads to a defect in cell growth (Hu et al., 2010). 

SMO2 is also required for proper cell division and development, but the mechanisms underlying 

these phenotypes are still unknown. Finally, mouse Trm112 ortholog is strongly and ubiquitously 

expressed during mouse embryo development (T. Gu et al., 2012). 

Sequence alignment of Trm112 orthologs from the three domains of life and crystal 

structures of eukaryotic Trm112 proteins either in an isolated form (Heurgue-Hamard et al., 

2006) or in complex with MTase partners (see below, (Liger et al., 2011; Letoquart et al., 2014; 

Letoquart et al., 2015a)) have revealed an organization into two domains. The first domain, 

contributed by residues from the N- and C-terminal extremities of eukaryotic Trm112 proteins, is 

conserved within the three domains of life. It folds as a zinc-knuckle (Zn-knuckle) domain, 

composed of a short α-helix (α1) packed against the concave face of a curved anti-parallel β-

sheet (Figure 15A). In the structure of isolated ScTrm112 (Heurgue-Hamard et al., 2006), this β-

sheet is composed of three β-strands and Trm112 C-terminal extremity folds back onto a 

hydrophobic region of the Zn-knuckle domain. In the crystal structures of Trm112-MTase 

complexes (Liger et al., 2011; Letoquart et al., 2014; Letoquart et al., 2015a), this Trm112 C-

terminal extremity adopts a radically different conformation and folds as a fourth β-strand (β4), 

which is engaged in the interaction with the MTase partners . The second domain is contributed 

by residues from the central region of Trm112 eukaryotic proteins and is absent in bacterial as 

well as in some archaeal orthologs. Depending on the solved structures, this later domain is 

formed by 3 or 4 α-helices. 

All structures of eukaryotic Trm112 solved to date are from fungi (S. cerevisiae (Heurgue-

Hamard et al., 2006; Letoquart et al., 2014), Yarrowia lipolytica (Letoquart et al., 2015a)) or 

from an intracellular parasite (Encephalitozoon cuniculi (Liger et al., 2011)) and they all exhibit 

one zinc atom coordinated by four cysteine residues in the so-called Zn-knuckle domain. These 

residues belong to two well-conserved motifs (CX3-4C and CX2C from the N- and C-terminal 

parts, respectively; where X is for any amino acid; Figure 15B). However, these four cysteine 

residues are not conserved in metazoan Trm112 proteins, suggesting that Trm112 does not bind 
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zinc in these organisms. This is indeed the case for human TRMT112 (G. Bourgeois and M. 

Graille, unpublished results). A similar conservation scheme has been already observed for Ski2 

helicase, a component of the SKI complex involved in 3' to 5' mRNA decay in eukaryotic 

organisms. Indeed, fungal Ski2 orthologs harbor a zinc binding site formed by four conserved 

cysteine residues while in metazoan Ski2 proteins, these residues are not conserved but residues 

present at the corresponding positions may play the same structural role (Halbach et al., 2012). 

Moreover, Trm112 orthologs are also found in bacteria, which are typically quite short 

(usual length around 60 residues) and the representative member from this family is YcaR from 

E. coli. According to the few NMR (nuclear magnetic resonance) structures determined by a 

structural genomics consortium (PDB codes 2KPI and 2JS4; Figure 16A, these orthologs contain 

only a Zn-knuckle domain, which is highly similar to the corresponding domain in eukaryotic 

Trm112 proteins (rmsd value of 1.7-1.8Å; Figure 16B). In these proteins, one zinc atom is 

coordinated by conserved cysteine and/or aspartic acid residues. To our knowledge, nothing is 

known about the function of bacterial Trm112 orthologs. No genes with significant sequence 

similarities with eukaryotic MTases known to interact with Trm112 could be detected in 

bacterial genomes. Furthermore, G10 on bacterial tRNAs is not methylated (Cantara et al., 2011) 

and the wobble uridine (U34) from tRNAs reading codons ending with a purine harbors a mnm
5
U 

(5-methylaminomethyl-uridine) modification catalyzed by the MnmE-MnmG complex and the 

MnmC bifunctional enzyme (Armengod et al., 2012). Meanwhile, the bacterial class I translation 

termination factors RF1 and RF2 are methylated on the glutamine side chain of their GGQ motif 

by the PrmC MTase, which is active on its own (Heurgué-Hamard et al., 2002; Nakahigashi et 

al., 2002; Graille et al., 2005). Finally, the only known m
7
G nucleotide found in 16S rRNA is 

located at position 527 in E. coli (Isaksson, & Phillips, 1968), a position differing radically from 

the one in eukaryotic 18S rRNA (G1575), and this modification is catalyzed by the RsmG MTase 

(Nishimura et al., 2007). Hence, bacterial Trm112 are strongly conserved proteins with still 

unknown function. However, in some bacteria, Trm112 is fused to MTase domains, suggesting 

that similarly to eukaryotic Trm112, bacterial orthologs could interact with MTases. This is 

further supported by the strong structural similarity between bacterial and eukaryotic Trm112, in 

particular in the region involved in the interaction with MTases (Figure 16B). Future studies 

aimed at clarifying the role and the potential partners of these bacterial proteins are definitely 

needed.  
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Figure 15. Organization of eukaryotic Trm112 proteins. (A) Ribbon representation of the crystal 

structure of isolated S. cerevisiae Trm112 protein with a schematic representation of eukaryotic Trm112 

shown below with the domain’s color code. (B) Sequence alignment of eukaryotic Trm112 protein 

sequences. Amino acids forming the Zn-knuckle and helical domains are identified by pink and blue bars, 

respectively, above the sequences. The positions of the four cysteine residues coordinating zinc atom in 

the structures of fungal and E. cuniculi Trm112 proteins are indicated by black spheres below the 

alignment. Secondary structure elements as observed in the structure of S. cerevisiae Bud23-Trm112 

complex are indicated above the sequences (Letoquart et al., 2014). Sequences have been divided into two 

subgroups: fungal proteins (subgroup 1) and metazoans (subgroup 2). Strictly conserved residues are in 

white on a red background. Strongly conserved residues are in red. This figure was generated using the 

Espript server (Robert, & Gouet, 2014). 

A. 
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Figure 16. Bacterial Trm112. (A) Ribbon representation of Streptomyces coelicolor SCO3027 protein 

NMR structure (PDB code: 2KPI). Cysteine residues coordinating the zinc atom (grey sphere) bound to 

the protein are shown as sticks. (B) Superimposition of Streptomyces coelicolor SCO3027 structure 

(pink) onto Trm112 in the ScBud23-Trm112 complex (Trm112 and Bud23 are colored red and beige, 

respectively). The SAM molecule bound to Bud23 is shown as grey sticks. 

 

 

2. Eukaryotic Trm112 interaction network 

Eukaryotic Trm112 interaction network is defined as the network mainly studied in yeast 

in which a central conserved Trm112 protein interacts with and activates four MTases (Trm9, 

Trm11, Mtq2 and Bud23) (Figure 17), involved in different steps of protein synthesis. 

A. B. 
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Figure 17. Schematic representation of Trm112-MTase interaction network and of the substrates of 

these complexes. The surface representation of the aRF1-aRF3 complex from Aeropyrum pernix archeon 

was generated using PDB code 3VMF (Kobayashi et al., 2012). Positions 10, 26 and 34 on a tRNA 

molecule are shown in purple, grey and green, respectively. Position of G1575 on 18S rRNA is shown as a 

beige sphere.  

 

2.1. Trm9-Trm112 

The large scale purification of budding yeast complexes using TAP-tag purification 

(tandem affinity purification) highlighted several partners for Trm112 including Trm9 (Gavin et 

al., 2002). The Trm9-Trm112 complex was further shown to be a tRNA MTase involved in the 

formation of mcm
5
(s

2
)U (5-methoxycarbonylmethyl(2-thio)uridine) modifications at position 34 

from the anticodon loop of some tRNAs (Figure 17; (Kalhor, & Clarke, 2003; Mazauric et al., 

2010)). 
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In S. cerevisiae, the formation of mcm
5
(s

2
)U involves at least 15 proteins. The first 

reaction, consisting in the addition of the carboxymethyl group at position 5 of the uracil to form 

5-carboxymethyluridine (cm
5
U), is catalyzed by the Elongator complex (Elp1-Elp6), which 

activity is regulated by seven additional proteins (Huang et al., 2008; S. Glatt et al., 2012; 

Sebastian Glatt et al., 2016). During the second step, the Trm9-Trm112 complex methylates 

cm
5
U to yield mcm

5
U. This modification is present at the wobble position of tRNA

Arg
(UCU), 

tRNA
Gly

(UCC), tRNA
Lys

(UUU), tRNA
Gln

(UUG) and tRNA
Glu

(UUC). In the last three tRNAs, the oxygen 

atom attached to the C2 atom of the uracil ring is further substituted by a sulfur atom via the 

Ncs6/Urm1 synthesis pathway to form mcm
5
(s

2
)U (Noma et al., 2009). The presence of the 

methyl group is important for an efficient thiolation as we detected tRNA mcm
5
U34 product but 

not mcm
5
(s

2
)U34 after in vitro enzymatic reaction of ScTrm9-Trm112 on tRNAs purified from 

trm9Δ yeast strain. Furthermore, several groups observed a drop in cm
5
(s

2
)U34 formation upon 

disruption of TRM9 or TRM112 genes (Mazauric et al., 2010; Chen et al., 2011; Letoquart et al., 

2015a). In S. cerevisiae, this mcm
5
(s

2
)U34 tRNA modification confers susceptibility to zymocin, 

a toxin secreted by the yeast Kluyveromyces lactis, which cleaves specifically the modified 

anticodon loop thereby inhibiting translation and leading to death (Lu et al., 2005).  

The modifications in the anticodon loop of tRNAs are known to influence translation rate 

and fidelity of decoding. Indeed, the mcm
5
(s

2
)U34 of tRNAs is involved in accurate and efficient 

reading of some codons in S. cerevisiae (Begley et al., 2007). Two studies based on integrated 

analysis of proteome, transcriptome and ribosome foot-printing, highlighted the link between 

these tRNA modifications and the regulation of global protein expression (Begley et al., 2007; 

W. Deng et al., 2015). The lack of mcm
5
(s

2
)U34 modifications, upon deletion of TRM9 gene, 

results in an increase of ribosomal pausing on mRNAs enriched with AGA and GAA codons. It 

is noteworthy that a significant portion of these mRNAs encodes proteins involved in protein 

synthesis, cell cycle control or DNA damage response and consequently, those proteins undergo 

a decreased expression in trm9Δ strain. These results rationalize the sensitive phenotype of the 

trm9Δ strain to methyl methanesulfonate (MMS) exposure. Indeed, MMS is a DNA damaging 

agent that methylates DNA mainly on N
7
 and N

3
 atoms of G and A bases, respectively, but also 

at other oxygen and nitrogen atoms of DNA bases, and thereby triggers DNA repair machineries. 

The trm9Δ strain also presents a delay in transition from G1 to S phase upon exposure to MMS 
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(Begley et al., 2007). Likewise, the absence of Trm9-catalyzed methylation causes translational 

infidelity and activation of protein stress response pathways (Patil et al., 2012). 

To obtain information on Trm9 active site and Trm9-Trm112 complex organization, we 

solved the X-ray structure of this complex from the yeast Yarrowia lipolytica (Yl; (Letoquart et 

al., 2015a)). YlTrm9 adopts the classical class I SAM-dependent MTase fold with a central 

seven-stranded β-sheet surrounded by two α-helices on each side. Moreover, a twisted two-

stranded β-sheet forms a lid located on top of the C-terminal extremity of the central β-sheet and 

projects onto the active site (Figure 18A). Based on this structure, we mapped the active site of 

the ScTrm9-Trm112 complex. This led to the identification of several mutants (R29A, H115A, 

R241A, Y243A and N271A) that strongly affect the affinity for tRNA (but not for SAM) as well 

as the enzymatic activity (kcat). This supports a role of these conserved residues in tRNA binding, 

and particularly in the optimal orientation of the cm
5
U34 nucleotide substrate in the active site, 

which is required for an efficient methyl transfer reaction by SN2 mechanism (Figure 18B; 

(Letoquart et al., 2015a)). 

 

Figure 18. Crystal structure of YlTrm9-Trm112 complex. (A) Ribbon representation of YlTrm9-

Trm112 complex. The SAM molecule (grey sticks), which was absent in the crystal structure, has been 

modeled by superimposing the SAM-bound structure of Bud23 onto YlTrm9. Trm9 lid is colored yellow. 

(B) Model of cm
5
U34 (blue sticks) docked into YlTrm9 active site. The SAM methyl group to be 

transferred is depicted as a sphere. Residues are numbered according to S. cerevisiae protein.  
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Trm9 is largely conserved in eukaryotes. In human, two Trm9 orthologs are present: 

ABH8 and hTrm9L. ABH8 is a bifunctional enzyme encompassing a Trm9-like MTase domain 

converting cm
5
U into mcm

5
U, fused to an RRM domain (for RNA-recognition motif) and an 

AlkB-like domain responsible for the hydroxylation of mcm
5
U into (S)-mchm

5
U ((S)-5-

methoxycarbonylhydroxymethyluridine; (D. Fu et al., 2010; Y. Fu et al., 2010; Pastore et al., 

2012)). Similarly to yeast, ABH8 needs to interact with TRMT112 to be active. The ABH8 

protein is highly expressed in a variety of human cancer cells such as bladder cancer cells and its 

silencing suppresses tumor growth, angiogenesis and metastasis by inducing apoptosis of 

urothelial carcinoma cells (Shimada et al., 2009). ABH8 depletion also renders cells sensitive to 

DNA damaging agents (MMS) and to the bleomycin anti-cancer drug (D. Fu et al., 2010). 

Compared to ABH8, hTrm9L is only made of the MTase domain. The hTrm9L protein presents 

a Trm9-like tRNA MTase activity but to our knowledge, its interaction with TRMT112 has not 

been characterized (Begley et al., 2013). It acts as a negative regulator of tumor growth and the 

tumor cells deleted for the gene encoding hTrm9L are sensitive to paromomycin and gentamycin 

antibiotics (Begley et al., 2013). In A. thaliana (At), AT1G31600 (AtTRM9), which is similar to 

Trm9 MTase, catalyzes the formation of mcm
5
U34 and its activity is dependent on two Trm112 

orthologs (AtTRM112a and AtTRM112b; (Leihne et al., 2011)). A second protein AT1G36310 

(AtALKBH8), with similarity to ABH8 RRM and AlkB-like domains, has been shown to 

catalyze the hydroxylation of mcm
5
U into (S)-mchm

5
U (Leihne et al., 2011). 

2.2. Trm11-Trm112 

The first Trm112 partner that has been described is the tRNA MTase Trm11, which 

catalyzes the formation of N
2
-methylguanosine (m

2
G) at position 10 of some tRNAs 

(Purushothaman et al., 2005). This modification is conserved in archaea and eukaryotes but 

absent in bacteria (Cantara et al., 2011). The m
2
G10 is part of the body of the tRNA and is likely 

involved in tRNA folding and stability. The m
2
G10 is stacked onto m

2
2G26 nucleotide (Figure 17), 

which is methylated by Trm1. Interestingly, the simultaneous loss of both modifications induces 

strong growth defects (Purushothaman et al., 2005). 

Bioinformatics analyses of eukaryotic Trm11 sequences suggested the presence of two 

domains. A N-terminal THUMP domain (for ThioUridine synthases, RNA Methyltransferases 

and pseudouridine synthetases; (Aravind, & Koonin, 2001)) formed by a NFLD (N-terminal 
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ferredoxin like domain) subdomain fused to a core-THUMP subdomain, and a C-terminal class I 

SAM-dependent MTase domain (Bujnicki et al., 2004; Purushothaman et al., 2005). Such 

modular organization has been confirmed by the recent crystal structure of the archaeal Trm11 

ortholog from Thermococcus kodakarensis (Hirata et al., 2016) and is shared with archaeal 

Trm14 and bacterial TrmN, which are both responsible for m
2
G formation at position 6 on 

tRNAs (Menezes et al., 2011; Fislage et al., 2012). In the 4-thiouridine synthase enzyme ThiI, 

the THUMP domain was shown to interact with the 3' CCA end (Neumann et al., 2014) and was 

then proposed to position the substrate nucleotide in the enzyme active site. It would then act as a 

molecular ruler that controls the distance between the tRNA CCA end and the nucleotide to be 

modified. 

In S. cerevisiae, Trm112 is needed for the formation of m
2
G10 modification by Trm11 

(Purushothaman et al., 2005) whereas archaeal orthologs studied so far (PAB1283 from P. abyssi 

and aTrm11 from T. kodakarensis) are active on their own (Armengaud et al., 2004; Hirata et al., 

2016). Initially, the m
2
G10 modification could only be recapitulated in vitro using the ScTrm11-

Trm112 complex either purified directly from yeast cells (Purushothaman et al., 2005) or 

produced using wheat germ cell-free translation system (Okada et al., 2009), suggesting that 

post-translational modifications might be necessary for enzymatic activity. More recently, the 

ScTrm11-Trm112 complex purified following co-expression of both subunits in E. coli turned 

out to be active on an in vitro synthesized tRNA. As mass spectrometry analyses showed that 

none of these proteins were post-translationally modified, post-translational/transcriptional 

modifications are then not mandatory for enzymatic activity (Bourgeois et al., 2017). Detailed 

analyses also indicate that Trm112 contributes to tRNA modification activity by influencing both 

SAM and tRNA binding either directly or indirectly (Bourgeois et al., 2017). 

Although studies on Trm11 exclusively focused on S. cerevisiae and archaeal proteins so 

far, an orthologous gene was identified in human genome through BLAST searches. Indeed, the 

product of the C6orf75 gene is annotated as TRMT11, shares 34% identity and 54% similarity at 

the amino acid sequence level with Trm11, respectively, and has the same modular architecture 

as yeast Trm11. Two studies have linked defaults in human TRMT11 gene or transcript with 

advanced prostate cancer (Kohli et al., 2012; Yu et al., 2014) and this protein was shown to 

interact with at least three proteins from p53-family in fruit-fly (Lunardi et al., 2010). We have 
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successfully purified the human TRMT11-TRMT112 complex following co-expression in E.coli 

(unpublished data), indicating that similarly to yeast Trm11, its human counterpart interacts 

directly with TRMT112. Future studies are now needed to characterize the biochemical and 

biological functions of this human complex. 

2.3. Mtq2-Trm112 

 Translation termination occurs when a stop codon is present in the ribosomal A-site. It is 

then not recognized by a cognate tRNA but by a protein factor known as class I release factor 

(RF1 or RF2 in bacteria, eRF1 in eukaryotes and aRF1 in archaea), which triggers the release of 

the newly synthesized proteins. Class I release factors are tRNA mimics as they recognize stop 

codon in the A-site through one domain and project a universally conserved GGQ motif (for 

Gly-Gly-Gln) from another domain into the ribosomal peptidyl transferase center (Klaholz, 

2011; A. Brown et al., 2015). In bacteria, the side chain of the glutamine residue from this motif 

is N
5
-methylated by the PrmC MTase (also known as HemK). This post-translational 

modification is important for normal translation termination in vivo and increases the affinity of 

the release factor for ribosomes (Pavlov et al., 1998; Dincbas-Renqvist et al., 2000; Heurgué-

Hamard et al., 2002; Nakahigashi et al., 2002; Graille et al., 2005; Mora et al., 2007). 

Interestingly, the glutamine side chain of the GGQ motif from the eukaryotic class I release 

factor is also N
5
-methylated (Figure 17; (Heurgue-Hamard et al., 2005; Polevoda et al., 2006)). 

The enzyme responsible for this modification in S. cerevisiae yeast is the Mtq2-Trm112 

complex, where Mtq2 is the MTase catalytic subunit. Furthermore, this enzyme modifies eRF1 

only when this later is associated with the GTP-bound form of class II translation termination 

factor eRF3 (Heurgue-Hamard et al., 2005; Heurgue-Hamard et al., 2006). Mtq2 orthologs have 

been described in human (HEMK2) and mouse (PRED28), where they also form a complex with 

the corresponding Trm112 orthologs and modify eRF1 translation termination factor (Figaro et 

al., 2008).  

 The crystal structure of Mtq2-Trm112 complex from Encephalitozoon cuniculi (Ecu) 

parasite obtained in the presence of SAM bound to the Mtq2 catalytic subunit, has confirmed the 

prediction that Mtq2 is a class I SAM-dependent MTase (Figure 19). It has also revealed the 

presence of a highly conserved surface surrounding the SAM methyl group (Liger et al., 2011). 

This region displays a negatively charged potential, which can ideally interact with the numerous 
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positively charged and conserved residues surrounding eRF1 GGQ motif. Furthermore, the 

crystal structure of the GTP-bound form of the archaeal aRF1-aRF3 complex reveals that aRF3 

switches I and II regions, which are known to adopt different conformations between the GDP- 

or GTP-bound forms, are in close proximity of the GGQ motif (Kobayashi et al., 2012). Hence, 

these switches regions are very likely to interact directly with Mtq2-Trm112 complex, thereby 

explaining its specificity for the eRF1-eRF3-GTP form (Heurgue-Hamard et al., 2006). 

Comparison of the crystal structures of EcuMtq2-Trm112 and E. coli PrmC-RF1 complexes 

reveals that the NPPY active site signature from PrmC, which coordinates RF1 GGQ motif for 

proper methylation, structurally matches with Mtq2 NPPY signature, supporting a similar 

recognition mode of the GGQ motif across domains of life. Finally, it has also been shown that 

in the absence of TRMT112, HEMK2 does not exhibit enzymatic activity and cannot bind SAM 

while the purified HEMK2-TRMT112 complex is active and binds SAM. This indicates that 

TRMT112 activates HEMK2 by stimulating SAM binding (Figaro et al., 2008; Liger et al., 

2011). 

 

Figure 19. Ribbon representation of the crystal structure of EcuMtq2-Trm112 complex bound to 

SAM (grey sticks). 
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To date, the role of eRF1 methylation remains obscure but the conservation of this post-

translational modification on the GGQ motif of at least bacterial and eukaryotic class I release 

factors, which adopt radically different three-dimensional structures, argues in favor of an 

important functional role. This is further supported by the growth defect phenotype of yeast cells 

lacking MTQ2 gene (Polevoda et al., 2006; Mazauric et al., 2010; Chen et al., 2011), the cell 

proliferation defect with arrest in G1 phase of murine embryonic stem cells depleted of 

PRED28α isoform (Nie et al., 2009), the early mouse embryonic lethality upon disruption of 

PRED28α isoform (P. Liu et al., 2010) and the two-fold reduction in HEK293 human cells 

growth rate resulting from stable knock-down of HEMK2 gene (P. Liu et al., 2010). Finally, 

murine PRED28α and human HEMK2 proteins appear to have a broad substrate specificity 

(Kusevic et al., 2016). Hence, future studies aimed at clarifying the role of the eukaryotic Mtq2-

Trm112 complexes and of the methylation it is catalyzing, are needed. 

2.4. Bud23-Trm112 

The deletion of TRM112 gene in S. cerevisiae results in a strong growth defect phenotype 

associated with strong defects in the synthesis of both ribosomal subunits and an increased 

sensitivity to paromomycin, a well-known inhibitor of protein synthesis (Figaro et al., 2012; 

Sardana, & Johnson, 2012). Recent studies have started to decipher Trm112 role in the very 

complex process of ribosome biogenesis. 

2.4.1. The Bud23-Trm112 complex is involved in 40S maturation 

To shed light on Trm112 role in 40S ribosomal subunit synthesis, a TAP-tag purification 

was conducted under milder conditions than in the initial large-scale study performed by Gavin 

and coworkers (Gavin et al., 2002) and new potential partners were identified by mass 

spectrometry analysis. Among these, Bud23, a SAM-dependent MTase involved in ribosome 

biogenesis and catalyzing the methylation of N
7
 atom of G1575 in 18S rRNA, was an attractive 

candidate (Figure 17; (White et al., 2008; Figaro et al., 2012)). The interaction between Bud23 

and Trm112 was shown to be direct by co-purification of both proteins following co-expression 

in E. coli (Figaro et al., 2012; Sardana, & Johnson, 2012). Furthermore, Trm112 is important for 

Bud23 cellular stability and for its activity (Figaro et al., 2012). In S. cerevisiae, the bud23∆ 

strain exhibits a strong growth defect, sensitivity to paromomycin as well as defects in the 



 

53 

synthesis and the nuclear export of the small ribosomal subunit 40S (White et al., 2008; Figaro et 

al., 2012). This bud23∆ mutant is affected in A2 cleavage, resulting in an accumulation of 35S 

and 20S rRNA intermediates, a depletion of 27SA2 rRNA intermediate and consequently a 

reduction of mature 18S rRNA (White et al., 2008; Figaro et al., 2012). Finally, Bud23 

associates with the 90S particle at the intermediate stage before A2 cleavage (Sardana et al., 

2013). 

Crystal structures of ScBud23-Trm112 complex (lacking the Bud23 C-terminal extension 

rich in basic residues) in the presence or absence of SAM have brought useful information 

regarding the interaction mode between both proteins (see section 2.5) but also on G1575 binding 

(Figure 20; (Letoquart et al., 2014)). Indeed, comparison of the crystal structures of ScBud23 and 

Coffea canephora xanthine MTase bound to xanthosine has revealed striking similarities 

between enzyme active sites, suggesting that they both bind the purine ring of their substrates in 

a very similar manner (McCarthy, & McCarthy, 2007; Letoquart et al., 2014). This binding mode 

was validated experimentally by the characterization of Bud23 active site mutants. Based on 

these observations, the ScBud23-Trm112-GMP (guanosine monophosphate) model was 

generated (Figure 20B) and superimposed onto nucleotide G1575 in the structure of the mature S. 

cerevisiae 80S ribosome. Such superimposition reveals large steric clashes between Bud23-

Trm112 and ribosomal components indicating that this Bud23-Trm112 complex cannot bind 

mature ribosomes and has to dissociate from the 40S subunit before completion of its 

biosynthesis. Additional experiments demonstrated that although Bud23 is recruited to pre-

ribosomes at an early nucleolar stage, G1575 methylation, which is not essential for Bud23 

cellular function, is a late event as it occurs on the 20S pre-rRNA (Letoquart et al., 2014). 

Finally, the Bud23-Trm112 complex physically interacts with the Dhr1 DEAH-helicase, which is 

involved in the dissociation of U3 small nucleolar RNA from the pre-40S prior to formation of 

the central pseudo-knot of the 40S subunit (Letoquart et al., 2014; Sardana et al., 2014; Sardana 

et al., 2015). 

The Bud23-Trm112 complex is also found in human cells where TRMT112 interacts 

with the human Bud23 ortholog RNMT2 (also known as WBSCR22/Merm1; (Ounap et al., 

2015; Zorbas et al., 2015)). Similarly to ScBud23, RNMT2 protein but not its MTase activity is 

required for ribosome biogenesis (Ounap et al., 2013; Zorbas et al., 2015). RNMT2 is associated 



 

54 

with several human diseases as it is one of the several genes deleted in the Williams-Beuren 

neurodevelopmental syndrome (Doll, & Grzeschik, 2001; Merla et al., 2002). It was also 

reported as a tumoral marker for invasive breast cancer, myeloma cells and hepatocarcinoma 

(Nakazawa et al., 2011; Tiedemann et al., 2012; Stefanska et al., 2014) and it might be involved 

in lung pathologies (Jangani et al., 2014) . 

 

Figure 20. Crystal structure of ScBud23-Trm112 complex. (A) Ribbon representation of ScBud23-

Trm112 complex bound to SAM. (B) Model of GMP (blue sticks) bound to ScBud23 active site. 

2.4.2. Trm112 also influences 60S formation 

The importance of Trm112 in ribosome biogenesis extends beyond the role of Bud23-

Trm112 complex in 40S maturation as the disruption of TRM112 gene in yeast also causes lower 

levels of 60S subunit (Figaro et al., 2012; Sardana, & Johnson, 2012). The effect of Trm112 

depletion is less pronounced on 60S than on 40S levels but Trm112 is definitely important for 

the synthesis of both subunits. Trm112 role in 60S synthesis is supported by its co-

immunoprecipitation with pre-60S and its association with Nop2 and Rcm1, two 25S rRNA-

MTases involved in 60S biogenesis (Sardana, & Johnson, 2012; Sharma et al., 2013; Bourgeois 

et al., 2015). However, experimental evidences supporting a direct interaction between Trm112 

and these two MTases have not been presented so far. Hence, Trm112 role in 60S synthesis is 

still unclear and future studies addressing this issue are needed. 
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2.5. Common themes in recognition and activation of these MTases partners 

by Trm112 

Despite its small size, eukaryotic Trm112 is part of at least four heterodimeric MTase 

holoenzymes and acts as an activator of the MTase catalytic subunits. The description of the 

molecular mechanisms underlying Trm112 activation role was hindered by the difficulty to 

express and purify most isolated MTase subunits (Trm9, Mtq2 and Bud23) in sufficient amount 

for biochemical and biophysical studies (Heurgue-Hamard et al., 2006; Mazauric et al., 2010; 

Figaro et al., 2012; Sardana, & Johnson, 2012). Indeed, only the co-expression of Trm112 

together with each of these three MTases allows the purification of the corresponding Trm112-

MTase complexes (Heurgue-Hamard et al., 2006; Figaro et al., 2008; Mazauric et al., 2010; 

Chen et al., 2011; Liger et al., 2011; Figaro et al., 2012; Sardana, & Johnson, 2012; Letoquart et 

al., 2015a). This first led to the determination of the crystal structures of three Trm112-MTase 

complexes, namely EcuMtq2-Trm112 (Liger et al., 2011), ScBud23-Trm112 (Letoquart et al., 

2014) and YlTrm9-Trm112 (Letoquart et al., 2015a). These structures revealed that Trm112 

interacts in a very similar way with these three MTase partners (rmsd values lower than 3Å when 

superimposing the structures of the complexes). To date, no crystal structure of a Trm11-Trm112 

complex has been determined. However, information on this complex could be gleaned from the 

possibility to purify S. cerevisiae Trm11 alone in milligram amounts (Bourgeois et al., 2017). 

Hydrogen-deuterium exchange experiments coupled to mass spectrometry revealed that Trm11 

regions involved in Trm112 binding match with the regions from Trm9, Mtq2 and Bud23 MTase 

domains that interact with Trm112. Reciprocally, Trm112 region contacted by Trm11 perfectly 

overlaps with the region involved in the interaction with the other MTases. Hence, these four 

MTases use the same surface of their MTase domain to bind to the same region of Trm112, and 

then compete directly to interact with Trm112. This is in agreement with previous reports 

showing that Trm11 over-expression in yeast reduces the amount of Trm112 co-

immunoprecipitated with Trm9 and that Mtq2 over-expression in yeast results in decreased 

levels of Bud23 (Studte et al., 2008; Figaro et al., 2012). 
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Figure 21. Comparison of the Trm112-MTase interfaces. (A) Ribbon representation of the β-zipper 

interaction between Trm112 and MTases. Hydrogen bonds formed between main chain atoms from both 

partners are depicted by grey dashed lines. (B) Comparison of ScBud23-Trm112 and YlTrm9-Trm112 

structures reveals conserved hotspots involved in complex formation. A structure-based sequence 

alignment of YlTrm9 and of the four S. cerevisiae MTases interacting with Trm112 is shown in the lower 

panel. Only a small region of these MTases is shown for the sake of clarity. 
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These MTases interact mainly with the Zn-knuckle domain from Trm112 and complex 

formation buries a large hydrophobic region on the surface of both partners. This explains the 

requirement of Trm112 to express and purify three of these MTases in their soluble forms in E. 

coli and also to stabilize at least Bud23 in S. cerevisiae yeast cells (Heurgue-Hamard et al., 2006; 

Mazauric et al., 2010; Chen et al., 2011; Figaro et al., 2012; Sardana, & Johnson, 2012). Central 

to the Trm112-MTase interfaces is a β-zipper interaction formed between strand β3 from the 

MTase domain and strand β4 from Trm112 forming a continuous large eleven stranded β-sheet 

(Figure 21A). Such interaction relies on hydrogen bonds formed between main chain atoms from 

both partners and hence is much more dependent on the local three-dimensional structure than on 

conservation of amino acid residues at the positions involved in the formation of this β-zipper. 

Finally, three electrostatic interactions are also observed in both fungal Trm9-Trm112 and 

Bud23-Trm112 complexes. Structure-based sequence alignment between these four MTases 

from the same organism shows that the residues present at each of these three positions are 

strictly conserved or have the same propensity to form similar electrostatic interactions, i.e. basic 

residues (Lys or Arg) or similar hydrogen bonding properties (Asp, Glu or Asn; Figure 21B). 

This observation indicates that these interactions are most likely common to all Trm112-MTase 

complexes. Altogether, such binding mode features explain that Trm112 can interact with several 

MTases sharing less than 20% sequence identity. The ability of plant and metazoan Trm112 or 

MTases orthologs to complement at least partially for the deletion of the corresponding yeast 

gene further supports the plasticity in the interaction mode between these proteins (Figaro et al., 

2008; Begley et al., 2013; Ounap et al., 2013; Letoquart et al., 2015a). Indeed, this indicates that 

chimeric Trm112-MTase complexes can be formed between a yeast protein and an ortholog from 

its binding partner. 
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Figure 22. Trm112 is present in the three domains of life. Simplified phylogenetic tree of Trm112. 

Emphasis is given to archaeal phylogeny. The distribution of Trm11, Trm9, Mtq2 and Bud23 proteins 

within the three domains of life is indicated. The various Trm112 forms identified are schematically 

depicted. 
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III.  Archaeal Trm112-related research  

 Since the initial analyses conducted on archaeal Trm112 sequences (Purushothaman et 

al., 2005; Heurgue-Hamard et al., 2006), many more archaeal genomes have been sequenced and 

the archaeal phylogeny has been revised (Brochier-Armanet et al., 2011). A new sequence 

analysis showed that Trm112 archaeal orthologs cluster into three subfamilies (Figure 22). The 

first one composed of proteins ranging in size from 60 to 80 residues harbors a 

[C/D]PX[C/D]X19-36CX2C signature (where X is any residue). It is predicted to contain only the 

Zn-knuckle domain similarly to bacterial orthologs and is found almost exclusively in 

euryarchaeota. The second corresponds to proteins of about 130-140 amino acids found 

exclusively in crenarchaeota phylum. These proteins contain the Zn-knuckle domain as well as a 

central region. This later displays some similarity with eukaryotic Trm112 helical domain and a 

conserved putative CX3CX15-20CX2C Zn-binding signature. This observation is compatible with 

the eocyte phylogenetic tree proposed by Cox and coworkers (Cox et al., 2008), proposing that 

crenarchaeota are most closely related to eukaryotes. The third subfamily (composed of at least 

29 members) is formed by proteins consisting of a N-terminal Trm112-like Zn-knuckle domain 

fused to a C-terminal SAM-dependent MTase domain. These are found only in some 

euryarchaeota or thaumarchaeota but not in crenarchaeota. Interestingly, bioinformatic analyses 

of the sequence of the MTase domains fused to Trm112 reveal that these MTases do not all 

belong to the same family and that some of these are putative archaeal orthologs of Trm9. 

Finally, no protein with significant sequence similarity with Trm112 could be identified in 

thermococcales and methanobacteriales from euryarchaeota phylum. This is noteworthy as 

Trm11 orthologs from two thermococcales archaea (Pyrococcus abyssi and Thermococcus 

kodakarensis) can form m
2
G (and even m

2
2G) at position 10 of some tRNAs in vitro without 

requirement for a protein partner (Armengaud et al., 2004; Hirata et al., 2016). Bioinformatics 

analysis supports the existence of Trm11 orthologs in all archaea phyla and hence most of the 

time, these proteins co-occur with Trm112 suggesting that with the exception of thermococcales 

and methanobacteriales Trm11, the other archaeal Trm11 orthologs may exist as a complex with 

Trm112 and may require Trm112 to be active as observed in eukaryotes. Similarly, Mtq2 

orthologs are present in all archaea phyla. The presence of Mtq2 orthologs in archaea is fully 

consistent with the conservation of the GGQ signature on eukaryotic (eRF1) and archaeal (aRF1) 
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class I translation termination factors and their strong structural similarity (H. Song et al., 2000; 

Saito et al., 2010; Kobayashi et al., 2012). 

 Modifications of archaeal tRNAs were investigated primarily in Haloferax volcanii and 

U at position 34 of some tRNAs were shown to harbor an unknown modification (Gupta, 1984). 

A more recent study identified 5-carbamoylmethyluridine (ncm
5
U34) at position 34 from 

tRNA
Leu

(UAG) isolated from the Thermoplasma acidophilum (thermoplasmatales; 

euryarchaeota; (Tomikawa et al., 2013)). Several observations led Grosjean and coworkers to 

propose that mcm
5
(s

2
)U could also be present in Haloferax volcanii (halobacteriales; 

euryarchaeota) and Sulfolobus solfataricus (sulfolobales; crenarchaeota) (Grosjean et al., 2008). 

Indeed, Elp3 (HVO_2888), Tuc1 (HVO_0580) and Trm9 (HVO_0574) orthologs were initially 

predicted in both organisms and genes encoding putative Elp3 and Trm9 orthologs are clustered 

in Sulfolobus solfataricus. More recently, HVO_1032 was proposed as a new H. volcanii Trm9 

ortholog due to a better blast score (Phillips, & de Crécy-Lagard, 2011). In addition, recombinant 

Elp3 from Methanocaldococcus infernus archeon (methanococcales, euryarchaeota) was shown 

to catalyze cm
5
U formation on tRNAs in vitro (Selvadurai et al., 2014). Blast analysis of H. 

volcanii HVO_1032 protein sequence against archaeal proteins identified Trm9 putative 

orthologs with E-values lower than 1e
-48

 only in sulfolobales (crenarchaeota) and in 

halobacteriales (euryarchaeota), suggesting a limited distribution of this modification. Finally, no 

protein with significant sequence homology with Bud23 could be identified by bioinformatics 

searches. This is in agreement with the fact that to our knowledge, the nucleotide that structurally 

matches with S. cerevisiae 18S rRNA G1575 has not been shown to be modified in archaeal 16S 

rRNAs analyzed so far. 

Many interesting common features exist between archaeal and eukaryotic Trm112 proteins, 

opening a large field of investigation for future research aimed at understanding the functions of 

Trm112 in archaea. Those studies could also contribute to improving our understanding of the 

role of Trm112 in eukaryotes based on these similarities. Therefore, much more efforts on 

archaeal Trm112 research need to be made in order to expand our knowledge on this interesting 

topic. 
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OBJECTIVES OF THE PROJECT 

The fine-tuning and tight control of protein synthesis process is ensured by PTMs of the 

translational components, with methylation being by far the most frequent. The significance of 

methylation on eukaryotic protein translation is perfectly illustrated by Trm112 protein, which is 

an activating platform, essential for the function and stability of four class-I SAM-dependent 

MTases including Bud23, Trm9, Trm11 and Mtq2. Until now, studies on those Trm112-MTase 

complexes have been extensively performed both functionally and structurally in eukaryotes 

(mostly S. cerevisiae and human). However, although Trm112 orthologs have been found in 

Archaea, little is known about its MTase partners as well as the roles of the methylation they 

catalyze in archaeal protein synthesis. 

In addition, despite much effort made on eukaryotic Trm112-MTase complexes, it is still 

very difficult to study structure of those complexes bound to their substrates in order to get 

insight into the substrate recognition and modification mechanism. This struggle is due to the 

fact that protein complexes in eukaryotes are quite transient and eukaryotic proteins are normally 

larger and longer, containing flexible regions compared to bacterial and archaeal counterparts. 

These make it tough to study X-ray structure for eukaryotic protein complexes. Meanwhile, 

archaeal proteins are known to be more compact than their eukaryotic orthologs. Moreover, 

those archaeal proteins are also stable at extreme conditions like high salt concentration, high 

temperature as well as pH, leading to stronger protein complex formation in principle. In 

addition, the archaeal enzyme-substrate complex can be maintained much longer than the 

eukaryotic counterpart during crystallization process since the archaeal proteins are found less 

active at 20
0
C and 4

0
C, two commonly-used temperatures for crystallization. These 

characteristics can result in increasing chances for solving structure of archaeal protein 

complexes by X-ray crystallography. Therefore, it is worth finding out the Trm112 interacting 

network in Archaea. 

For this project, the following specific aims have been conducted: 

❖ Characterization of the active site of ScTrm9-Trm112 
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Before I joined the lab, a PhD student had solved the crystal structure of Trm9-Trm112 

from the Yarrowia lypolytica yeast and mapped the active site based on the structure, and 

zymocin killer assay. For this goal, some zymocin resistant mutants were selected to examine the 

effects of those mutations on the complex activity. Then kinetic values (Km, kcat) of some 

mutants have been determined to evaluate whether those residues were involved in substrate 

binding and catalysis. 

❖ Identification and characterization of Trm112-like network in Archaea 

Archaea were recognized as the third domain of life in 1977 by Carl Woese and co-

worker (Woese, & Fox, 1977). Those organisms bear characteristics of both bacteria and 

eukaryotes, namely bacteria-similar morphology but eukaryotic-like genetic information 

processing pathways (Yutin et al., 2008). This provides an advantage of studying eukaryotic 

proteins and protein complexes based on their archaeal homologs by making use of their 

extremophilic properties. However, it is not surprising that research in Archaea still lags far 

behind that of in Bacteria and Eukarya. One of the reasons for this is the late availability of 

effective model organisms in Archaea like that in Bacteria (for example, E. coli) and Eukarya (S. 

cerevisiae). Fortunately, extensive efforts on archaeal genetic and biochemical research have so 

far produced some competent model organisms such as Haloferax volcanii (Allers et al., 2010). 

Haloferax volcanii offers benefits as an archaeal model organism: (1) it is easy to grow 

under aerobic condition, optimum temperature of 45
o
C and high salt content (NaCl) of 1.8-3.5M 

(Allers, 2010); (2) its whole genome has been sequenced (Hartman et al., 2010); (3) genetic tools 

have been developed, including effective transformation and gene knock-out systems based on 

selectable markers (Allers et al., 2010); (4) protein expression and purification system are 

developed (Allers, 2010; Allers et al., 2010); (5) there are ease and reduced cost during working 

with H. volcanii by means for example of lysing cells by the addition of water (Allers, 2010). 

The Trm112-like interacting partners in Archaea have been identified using H. volcanii 

as the model organism. To do so, archaeal genetics (pop in/pop out, transformation) have first 

been applied to generate H. volcanii deleted for TRM112 gene for further complementation with 

a vector harboring aTrm112 fused to a FLAG tag to fish Trm112-like partners through co-

immunoprecipitation (Co-IP) based on immuno-affinity between FLAG tag and Anti-FLAG 
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resin. Those partners were then detected by LC-MS/MS. After applying stringent filtering 

criteria, some putative MTase partners were finally confirmed by co-expression and co-

purification in E. coli followed by other confirmation steps by MS and biophysical methods. 

For Trm112-MTase complexes of predictable functions, their activity was determined 

through filter-binding enzymatic assays. Meanwhile, all complexes were subjected to 

crystallization trials resulting in the structure determination by X-ray crystallography for one 

complex. 

❖ Putative MTase partners of eukaryotic Trm112 based on HvoTrm112 network 

Newly identified MTase partners of HvoTrm112 were analyzed with the hope to find out 

their orthologs in Eukaryotes, which could be eukaryotic Trm112 interacting partners.   
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1. MATERIALS 

1.1 Strains 

Table S1. Summary of different strains with their genotypes and purposes used in the thesis 

Strains Genotype Usage Sources 

A. E.coli    

XL1 - blue  
recA1 endA1 gyrA96 thi-1 hsdR17 

supE44 relA1 lac [F´ proAB lacIq 

Z∆M15 Tn10 (Tet
R
 )] 

Cloning and 

plasmid 

preparation 
Stratagene 

BL21 (DE) Gold  
B F

–
 ompT hsdS(rB

 –
 mB 

– 
) dcm

+
 

Tet
R
 gal λ(DE3) endA Hte 

Protein 

expression 
Agilent 

Technologies 

BL21 (DE) Codon plus RIL  
B F

–
 ompT hsdS(rB 

–
 mB

 –
 ) dcm

+
 

Tet
R
 gal λ(DE3) endA Hte [argU 

ileY leuW Cam
R
] 

Protein 

expression 
Agilent 

Technologies 

B. S. cerevisiae    

YDL201 
MATa ura3-52 lys2-801_amber 

ade2-101_ochre trp1-Δ63 his1-

Δ200 leu2-Δ1 TRM9::kanMX6 

tRNA 

purification 
Létoquart et al; 

NAR; 2015 

C. H. volcanii    

H98 pyrE2∆ hdrB∆ 
Pop-in/pop 

out Kind gifts from R. 

Lestini (LOB, Ecole 

Polytechnique) H26 pyrE2∆ 
Pop-in/pop-

out, tRNA 

purification 

H26 trm112∆ pyrE2∆ trm112∆ 
tRNA  

purification 

Kind gifts from J. 

Letoquart  

(Letoquart et al., 

2015) 
H26 trm9∆ pyrE2∆ trm9∆ 

H133 elp3∆ pyrE2∆ trpA∆ leuB∆ hdrB∆ elp3∆ 
tRNA 

purification 

Kind gifts from Pr 

Mevarech/Altman 

(Altman-Price, & 

Mevarech, 2009) 

H98 Trm112-FLAG pyrE2∆ hdrB∆ trm112∆ Co-IP This study 

H26 aRF1-FLAG pyrE2∆ aRF1-FLAG Co-IP This study 

H98 aRF1-FLAG trm112∆ 
pyrE2∆ hdrB∆ trm112∆ aRF1-

FLAG 
Co-IP This study 

H26 aRF1-FLAG mtq2∆ ∆pyrE2 mtq2∆ aRF1-FLAG Co-IP This study 
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1.2 Oligos and generated plasmids 

Table S2. Oligonucleotides and plasmids used for in vivo experiments in H. volcanii 

Hvo genes Names Sequence Enzyme 
Plasmid 

generated 

Hvo_1131-US 

oMG86 
GGGGGATCCCGTCGTGACGGTG

GATTGCG 
BamHI 

pMG613 

oMG87 
CCCTCTAGACGTGCTCGCCGGCC

TCGACG 
XbaI 

Hvo_1131-DS 

oMG88 
GGGCTCGAGCACGTCGACCGGC

GGTTTGC 
XhoI 

oMG89 
CCCGGATCCCACCTCATCGGAC

CTGAACG 
BamHI 

Hvo_Trm112 

(Hvo_1131) 

oMG320 
GGGAACATATGAAAGAATCCCT

GATGGACATCCTCTGTGACCCC NdeI 

pMG772 

oMG321 

TTTTTGCGGCCGCttaCTTGTCGT

CATCGTCTTTGTAGTCGTCGTCTC

GCATGTCCGGCGGTAGG 
NotI 

Hvo_1131-US oMG163 CATCGCCGTCAACCACCTCG - - 

Hvo_1131-DS oMG164 TCGGCTTCGACAGCGTCTCG - - 

Hvo_1032-US 

oMG72 
GGGGGATCCGGACAAAGACCGC

ACGGGTC 
BamHI 

pMG612 
oMG73 

CCCTCTAGAGCGGAACCAGGAG

ATGCTC 
XbaI 

Hvo_1032-DS oMG74 
GGGCTCGAGGCGGAACCGGCCG

TCGTCC 
XhoI 
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oMG75 
CCCGGATCCGCGTTGGTCGGGA

CTGGGGC 
BamHI 

C-terminal 

Hvo_RF1-

FLAG 

oMG347 
CCCGGATCCTTACTTGTCGTCAT

CGTCTTTGTAGTCG 
BamHI 

pMG798 

oMG348 
CCCCTCTAGACCGACCAAGAGG

TCATCAAGG 
XbaI 

Hvo_RF1-DS 

oMG329 
CCCGAATTCATCCTATCGGCGCG

TAGAGCG 
EcoRI 

oMG330 

CCCGGATCCGCGACCTCCTCCTC

GGCGTCCCCGGATCCGCGACCTC

CTCCTCGGCGTC 

BamHI 

Hvo_Mtq2-US 

oMG90 
GGGGGATCCTCGTCGCCTCCCTC

GACGCC 
BamHI 

pMG614 

oMG91 
CCCTCTAGAAGCCTCGTCAACCG

GAGCCG 
XbaI 

Hvo_Mtq2-DS 

oMG92 
GGGCTCGAGCCGGAGAAGGTGA

GTTCGCC 
XhoI 

oMG93 
CCCGGATCCCTAATGCGCATATG

TTGATAC 
BamHI 

Hvo_RF1-US oMG332 
GGGTCTAGATGACCGGTTCGAGC

TCC 
- - 

Restriction sites are highlighted in bold. 

Stop codon is shown in bold lower cases and the DNA sequence encoding for the His6-tag is underlined. 
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Table S3. Oligonucleotides and plasmids used to over-express proteins in E. coli 

Hvo genes 

(Hvo protein) Name 
 

Sequence 
Enzyme 

Plasmid 

generated 

Hvo_0773 

(Hvo0773) 

oMG401 
CCCTTGCCATGGCTAAAGGAAAGGA

GTGGTACCAGGCCGACG 
NcoI 

pMG814 

(pET28b; 

Kan
R
) 

oMG402 
TTTTTAAGCTTttaATGGTGATGGTGA

TGGTGCTCGGCGTCGCTCGCCCGCG 
HindIII 

Hvo_0574 

(Hvo0574) 

oMG403 
CCCTTGCCATGGCTCGACGTTTCTCC

GAATCGTACCTCCG 
NcoI 

pMG813 

(pET28b; 

Kan
R
) 

oMG404 
TTTTTAAGCTTttaATGGTGATGGTGA

TGGTGCACTCGCCCCGTCGTCACGTC 
HindIII 

Hvo_0019 

(Hvo0019) 

oMG405 
CCCTTGCCATGGCTAGCGTCCGCGAC

GAGTTCGACGCCTG 
NcoI 

pMG812 

(pET28b; 

Kan
R
) 

oMG406 

TTTTTAAGCTTttaATGGTGATGGTGA

TGGTGGGGCGCGACGCCGACGGTCA

G 

HindIII 

Hvo_1715 

(Hvo1715) 

oMG407 
CCCTTGCCATGGCTAGCGACGAGAA

ACGCCGAACCGCCG 
NcoI 

pMG811 

(pET28b; 

Kan
R
) 

oMG408 

TTTTTAAGCTTttaATGGTGATGGTGA

TGGTGCTCCGTTCGCGCTCGAACCAG

CGC 

HindIII 

Hvo_0475 

(Hvo0475) 

oMG409 
CCCTTGCCATGGCTCCTACCCGCGAC

CGGTCGCAGTC 
NcoI 

pMG826 

(pET28b; 

Kan
R
) 

oMG410 

TTTTTAAGCTTttaATGGTGATGGTGA

TGGTGATCAACCGCACGCTCGCCAA

CGACCG 

HindIII 

Hvo_2875 

(Hvo2875) 

oMG447 
CCCTTGCCATGGCTCACGGCGCTGGC

GACG 
NcoI 

pMG829 

(pET28b; 

Kan
R
) 

oMG448 

TTTTTAAGCTTttaATGGTGATGGTGA

TGGTGATGGCTCTCCCGCTTTTTTCC

G 

HindIII 
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Hvo_1131 

(HvoTrm112) 

oMG473 
GGGCATATGAAAGAATCCCTGATGG

A 
NdeI 

pMG564 

(pET21a; 

Amp
R
) 

oMG474 
TTTGCGGCCGCtcaGTCGTCTCGCAT

GTCCGGCG 
NotI 

Hvo_1032 

(HvoTrm9) 

oMG469 
GGGCCATGGACGGAGACGAACCCC

G NcoI 

pMG560 

(pET28b; 

Kan
R
) oMG470 

TTTGCGGCCGCtcaATGGTGATGGTG

ATGGTGGCAGCCGGCGACGACGGCG

T 

NotI 

Hvo_2744 

(HvoMtq2) 

oMG327 
CCCTTGCCATGGCTACCGACCTCGC

CGAGCGCCGC 
NcoI 

pMG769 

(pET28b; 

Kan
R
) 

oMG328 

TTTTTGCGGCCGCttaATGGTGATGG

TGATGGTGTTCCAACGCGAGCACCG

TGAGCGTCTCG 

NotI 

Hvo_0156 

(HvoTrm11) 

oMG471 
GGGCCATGGCATACGGATTGGAACT

CGCGCCGG NcoI 
pMG562 

(pET28b; 

Kan
R
) oMG472 

GGGCTCGAGtcaATGGTGATGGTGAT

GGTGCCGATGCAGCAGATGCACGT XhoI 

Hvo_0321 

(HvoaRF1) 

oMG322 
GGGAACATATGAGTAGCGACGCCGA

GGAGGCGAGC 
NdeI 

pMG766 

(pET21a; 

Amp
R
) 

oMG324 

TTTTTGCGGCCGCttaATGGTGATGG

TGATGGTGGACGCCGGTGGAGTACC

GGAGGATGC 

NotI 

Hvo_0359 

(HvoaRF3 or 

HvoaEF1A) 

oMG325 
CCCTTGCCATGGCTAGCGACAAACC

CCACCAGAACCTGGCC 
NcoI 

pMG768 

(pET28b; 

Kan
R
) 

oMG326 

TTTTTGCGGCCGCttaATGGTGATGG

TGATGGTGTCGCTCGTTGACTTCGAG

CACTTTGCCGGC 

NotI 

Restriction sites are highlighted in bold. 

Stop codon is shown in bold lower cases and the his-tag DNA sequence in underlined. 
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Table S4. Oligonucleotides used for site-directed mutagenesis and resulting plasmids 

Hvo genes 

(Hvo protein) Names Sequence Template 
Plasmid 

generated 

HvoaRF1 

Q187A 

oMG387 CAGCGAAAGGGAGGTGCGTCCGC 

pMG766 

pMG797 

(pET21a; 

Amp
R
) 

oMG388 GAAACGCTGGGCGGACGCACCTC 

HvoMtq2 

Y111A 

oMG385 GTTCAACCCGCCGGCCCTCCCCG 

pMG769 

pMG796 

(pET28b; 

Kan
R
) 

oMG386 
GAGGTCCTCGGGGAGGGCCGGC 

 

 

1.3 Media  

1.3.1 Bacteria growth media 

Luria-Bertani broth (LB): Tryptone (Bacto) 10g/l, yeast extract 5g/l and NaCl 5g/l, pH 7.5 

(adjusted by NaOH). 

2YT: Tryptone (Bacto) 16g/l, yeast extract 10g/l and NaCl 5g/l, pH 7.0 (adjusted by NaOH). 

Terrific broth auto inducible (TBAI): Tryptone (Bacto) 12g/l, yeast extract 24g/l and MgSO4 

0.15g/l, (NH4)2SO4 3.3g/l, KH2PO4 6.5g/l, Na2HPO4 7.1g/l, glucose 0.5g/l, Alpha Lactose 

2.0g/l, pH 7.0 (adjusted by NaOH). 

1.3.2 Archaeal growth media 

YPC: 18% salt water (SW: 2.46M NaCl, 90mM MgCl2, 84mM MgSO4, 54mM KCl and 12mM 

Tris HCl pH7.5), yeast extract (Difco) 5g/l, peptone (Oxoid) 1g/l, casamino acid 1g/l, 3mM 

CaCl2. 
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1.4 Buffers 

Table S5. Different buffers used for different protein purifications in different organisms 

Steps 
Buffers 

Components 

H. volcanii A. fulgidus Human 

Cell lysis 
Lysis 

buffer 

2M NaCl, 50mM Tris HCl 

pH7.5, 5mM β-

mercaptoethanol, 10µM ZnCl2 

and 10mM Imidazole 

Similar as 

Hvo’s but 0.5M 

NaCl 

Similar as 

Hvo’s but 

0.2M NaCl 

Ni-NTA 

Washing 

buffer 

Lysis buffer + 20mM 

Imidazole 

Lysis buffer + 

20mM 

Imidazole 

Lysis buffer + 

20mM 

Imidazole 

Elution 

buffer 

Lysis buffer + 350mM 

Imidazole 

Lysis buffer + 

350mM 

Imidazole 

Lysis buffer + 

350mM 

Imidazole 

Ion exchange 

chromatography 

MonoQ or 

Heparin 

Buffer A 
50mM NaCl, 50mM Tris HCl 

pH7.5, 5mM β-

mercaptoethanol, 10µM ZnCl2 

Similar as 

Hvo’s 
Similar as 

Hvo’s 

Buffer B 
1M NaCl, 50mM Tris HCl 

pH7.5, 5mM β-

mercaptoethanol, 10µM ZnCl2 

Similar as 

Hvo’s 

Similar as 

Hvo’s 

Gel filtration 

S75 

S200 
Buffer C 

1M NaCl, 50mM Tris HCl 

pH7.5, 5mM β-

mercaptoethanol, 10µM ZnCl2 

Similar as 

Hvo’s but 0.5M 

NaCl 

Similar as 

Hvo’s but 

0.2M NaCl 
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2. METHODS 

2.1 Cloning 

Several cloning experiments have been performed to generate plasmids containing target 

DNAs (from H. volcanii, Homo sapiens and A. fulgidus) used for protein expressions in E. coli 

or for archaeal genetics in this thesis. In general, DNA sequence encoding for the protein of 

interest was amplified using genomic DNA as templates by PCR with forward and reverse 

primers as listed in Table S2 and S3. All PCR steps were done with Phusion High-Fidelity DNA 

Polymerase (Thermo) or Q5 High-Fidelity DNA Polymerase (Biolabs) and PCR cycling steps 

were conducted according to the manufacturers’ instructions. The PCR products were run on 

agarose gels (0.8-1.2%) and target DNA bands were excised from gels, followed by clean-up 

steps with commercial kits according to the manufacturers’ instructions. Purified PCR fragments 

were digested by corresponding restriction enzymes designed in the oligos (Table S2 and S3) and 

then ligated using DNA T4 ligase into pET21a or pET28b vectors digested by the same 

restriction enzymes as the inserts. The plasmids harboring the target DNAs were transformed 

into chimio-competent E. coli XL1 Blue by the heat-shock transformation method. The 

transformants were then streaked on LB agar plates containing appropriate antibiotics (ampicillin 

(100µg/mL) for pET21a and kanamycin (50µg/mL) for pET28b), followed by o/n incubation at 

37
0
C. Some colonies for each clone were selected to inoculate 5 mL of LB medium 

supplemented with corresponding antibiotics and grown o/n at 37
0
C. The plasmids were then 

extracted by MiniPrep kit (Qiagen) and finally sent for sequencing (Eurofins). 

2.2 Site-directed mutagenesis 

Plasmids encoding for HvoaRF1 Q187A and HvoMtq2 Y111A mutants were generated 

by site-directed mutagenesis using partly overlapping oligos and templates as mentioned in Table 

S4. The PCR were performed using Phusion High-Fidelity DNA Polymerase (Thermo) (PCR 

conditions: one step of 180s at 98°C followed by 30 cycles (30s at 98°C; 30s at 60°C and 8min 

at 72°C) and a final step of 8 minutes at 72°C). The PCR products were subjected to DpnI 

restriction enzyme to remove the non-mutated plasmid templates. The resulting plasmids were 

purified by PCR clean up purification kit and then transformed into competent E. coli XL1 Blue 
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for plasmid production through Miniprep (Qiagen). The correctness of mutants was confirmed 

by sequencing (Eurofins). 

2.3 Pop in/pop out 

2.3.1 Deletion of HvoTrm112 gene in H. volcanii. 

For pop-in step, 1-4 colonies of Haloferax volcanii H98 strain were inoculated to 10 mL 

YPC media supplemented with uracil and thymidine (60 µg/mL) and cultured overnight (o/n) at 

45°C. At OD650nm around 0.8, the cells were harvested by centrifugation at 6000 rpm for 8 

minutes at room temperature (RT). The pellet was then washed by gentle re-suspension in 2 mL 

buffered spheroblasting solution (1M NaCl, 27mM KCl, 50mM Tris HCl pH 8.5, 15% (w/v) 

sucrose) and centrifuged again in the same conditions. The pellet was next gently resuspended in 

600 µL of the same buffer and 200 µL of the resuspended cells were used for one transformation. 

To generate spheroblasts, 20 μL of 0.5M EDTA pH 8.0 were added on the side of the tube 

followed by rapid mixing by inverting the tube and finally incubated 10 minutes at RT. In the 

next step, 30 μL of a mixture containing 15 μL of unbuffered spheroblasting solution (1M NaCl, 

27mM KCl, 15% (w/v) sucrose, final pH 7.5), 5 μL of 0.5M EDTA pH 8.0 and 10 μL of dam
-
 

target DNA (pMG613) (about 1-2 μg) was added in the similar way as EDTA. After 5 minutes 

incubation at RT, 250 μL of a 60% PEG600 solution were added to the mixture and mixed gently 

before incubation at RT for 30 minutes. Next, 1.5 mL spheroblasting dilution solution (23% salt 

water (SW), 15% (w/v) sucrose, 3.75mM CaCl2) was added, mixed by inverting the tube and 

incubated at RT for 2 minutes. The cells were pelleted at 6000 rpm for 8 minutes at RT. The 

supernatant was discarded and 1 mL of regeneration solution (23% SW, 15% (w/v) sucrose, 3 

mM CaCl2, 1xYPC (1.02g Yeast extract (Difco), 0.2 g Peptone (Oxoid), 0.2g Casamino Acids, 

1.76 mM KOH in final 204 mL solution)) supplemented with thymidine (60 µg/mL) was added 

without disturbing the pellet. This mixture was then incubated at 45°C without rotation for 1.5 – 

2 hours, followed by 3 – 4 hours incubation with rotation at 150 rpm. Then cells were harvested 

by centrifuging at 6000 rpm for 8 minutes at RT. The pellet was gently resuspended in 1 mL 

transformant dilution solution (23% SW, 15% (w/v) sucrose, 3mM CaCl2) or SW solution 18%. 

Finally the suspension was plated on Casa-plates at different dilutions and then incubated at 
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45°C for at least 5 days. The grown colonies were then streaked on a new Casa-plate and grown 

at 45°C for at least 5 days. 

For pop-out step, one isolated colony from the pop-in step was used to inoculate 3 mL of 

YPC (supplemented with thymidine 60 µg/mL), grown o/n at 45°C and 150 rpm. In the next day, 

6 µL of o/n culture was inoculated to another 3 mL of YPC (supplemented with thymidine 60 

µg/mL) and incubated o/n at 45°C and 150 rpm. This step was repeated once more. Then, the o/n 

culture was diluted to 10
-2

-10
-3

 in 18% SW and plated on Casa-5-FOA plates and incubated at 

45°C for at least 5 days. 

Colonies were screened by colony lift to check for the deletion of the HvoTRM112 

sequence. All colonies from the pop-out step were transferred to YPC plates (+ thymidine 60 

µg/mL) in a systematic way and then incubated at 45°C for 5 days. The colony lift started by 

transferring all colonies on a cellulose membrane followed by cell lysis by SDS 10%. DNA was 

denatured and neutralized by denaturation solution (1.5M NaCl, 0.5M NaOH) and neutralization 

solution (1.5M NaCl, 1mM EDTA, 0.5M Tris HCl pH7.5), respectively and then fixed on the 

membrane by UV cross-linking (using Biolink cross-linker with program for dosage of 0.120 

J/cm
2
). Next, membrane-bound DNA was hybridized with DIG-labeled HvoTRM112 DNA oligo 

at 65°C o/n with agitation. After several washing steps to remove non-hybridized DNA, the DIG 

detection was done by using DIG Luminescent Detection kit (Roche) and a ChemiDoc MP 

(BioRad).  

An additional validation step was performed by PCR on colony lift-derived colonies 

using the oMG163 and oMG164 oligos (Table S2) to amplify the whole upstream and 

downstream parts of Hvotrm112 (Hvo_1131) gene. Parts of colonies were picked and lysed by 

mixing in 50 µL water, and then used as DNA templates for PCR reactions. The PCR was 

performed with Q5 High-Fidelity DNA Polymerase (Biolabs), according to manufacturer’s 

instruction (PCR conditions: one step of 30s at 98°C followed by 30 cycles (10s at 98°C; 20s at 

62°C and 30s at 72°C) and a final step of 2 minutes at 72°C). 

2.3.2 Generation of H. volcanii strains containing aRF1-FLAG 

The pop in/pop out was done as described previously for gene knockout with the aim of 

replacing the WT allele of aRF1 gene by a FLAG-tagged allele on the chromosome. For that 
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purpose, we constructed plasmid pMG798 containing the C-terminal part of aRF1 with the 

FLAG and the DS sequence of aRF1.  

Pop-in/pop-out was performed with pMG798 using H26 strain to construct the aRF1-

FLAG mutant or using trm112 strain (in H98 background) to construct the trm112 aRF1-

FLAG mutant. In addition, a pop-in/pop-out was performed using plasmid pMG614 and 

HvoaRF1-FLAG mutant (in H26 background) to construct the HvoaRF1-FLAG mtq2 mutant.  

Colonies from pop-in/pop-out experiments were screened by PCR on colony. For that 

purpose colonies were picked and lysed by being just mixed in 50µL water, and then used as 

DNA templates. The PCR was performed with Q5 High-Fidelity DNA Polymerase (Biolabs), 

according to the manufacturers’ instructions. For H26 aRF1-FLAG, PCR were done with oligos 

oMG329 and oMG332 (Table S1) designed to amplify the whole upstream and downstream parts 

of Hvo aRF1. PCR products were cut by BamHI to validate the presence of the FLAG tag (30% 

of colonies were aRF1-FLAG (3 out of 10 tested colonies)). In case of mutants, double checks 

namely presence of both mutants (mtq2∆ (by oligos oMG91-92) and trm112∆ (using oligos 

oMG163-164), Table S1) and aRF1-FLAG (using oligos oMG329 and oMG332) were 

performed by PCR. The aRF1 PCR products were subjected to digestion by BamHI (1.6% of 

colonies from the pop-in/pop-out in Hvotrm112 strain were aRF1-FLAG (2 out of 120 tested 

colonies) and 2% of colonies from the pop-in/pop-out in HvoaRF1-FLAG strain were mtq2 (2 

out of 104 tested colonies)).  

2.4 Co-Immunoprecipitation (Co-IP) 

To identify the partners of the HvoTrm112 protein, we have performed co-

immunoprecipitation under cross-linking conditions as described below. 

For HvoTrm112-FLAG expression, one colony of Hvo strain H98 trm112∆ - pTA962-

Trm112-FLAG transformants was used to over-express HvoTrm112-FLAG. First, the colonies 

were inoculated to 10 mL YPC (supplemented with thymidine 60 µg/mL), incubated o/n at 45°C 

and 150 rpm. In the next day, 2.5 mL o/n culture was applied to 1L YPC (+thymidine 60 µg/mL) 

and grown o/n at 45
0
C and 150rpm. On the third day, 18% SW-dissolved tryptophan was added 

to the o/n culture to the final concentration of 5mM, followed by 6 hours incubating at 45°C and 

150rpm for the protein over-expression. The cells were harvested by centrifuging at 4000rpm for 
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30 mins. For the control, the FLAG only, Hvo strain H98 trm112∆ – pTA927-FLAG 

transformants were used in a similar manner. 

The co-immunoprecipitation (Co-IP) for HvoTrm112-FLAG and the FLAG-only were 

carried out as described in Fischer et al., 2010, with some slight modifications. The pellets were 

washed with enriched PBS (2.5M NaCl, 150mM MgCl2, 1×PBS (137mM NaCl, 2.7mM KCl, 

10mM Na2PO4, 2mM KHPO4, pH 7.4)). The cells were again pelleted and then re-suspended in 

enriched PBS containing 1% formaldehyde followed by incubation for 20 mins at 45 °C. To stop 

the cross-linking reaction, glycine was added to a final concentration of 0.25M and incubated for 

5 mins at 45 °C. The cells were washed twice with enriched PBS at 4°C, and then lysis buffer 

(50mM Tris HCl pH 7.4, 1mM EDTA, 10mM MgCl2, and 1mM CaCl2) containing proteinase 

inhibitor was added. The solution was re-suspended and incubated for 1 hour at 4°C. Then 

RNase A was added to a final concentration of 200μg/mL, and the mixture was incubated for 30 

min at 37°C followed by centrifugation at 20000cpm for 45 mins. Next, the supernatant was 

obtained and NaCl was added to a final concentration of 150mM, ready for the Co-IP.  

The preparation of anti-FLAG M2 affinity gel (Sigma) was conducted as the 

manufacturer’s protocol. For each Co-IP experiment, 1.6 mL of anti-FLAG M2 affinity gel was 

washed 10 times with 10 mL of ice-cold washing buffer (50mM Tris HCl, pH 7.4, 

150mM NaCl) before the lysate was applied. After incubation overnight (14–16 hours) at 4°C, 

incubated anti-FLAG M2 affinity gel was washed eight times with 10 mL of cold washing 

buffer. The elution of the HvoTrm112-FLAG was carried out by using 4 mL of washing buffer 

containing 3×FLAG peptide to the final concentration of 150ng/μL. The samples were incubated 

at 4°C for 1 hour with gentle rotation. For the second elution, the affinity gel was rinsed with 2 

mL of washing buffer. For HvoTrm112-FLAG and FLAG-only, the Co-IPs were performed four 

times and in triplicate, respectively. 

In case of HvoaRF1-FLAG in different H. volcanii strains, the Co-IP experiments were 

done in a similar manner as that for that HvoTrm112-FLAG but with some modifications. First, 

HvoaRF1-FLAG was expressed in native condition since aRF1-FLAG was integrated into H. 

volcanii genome. There was no tryptophan added for the protein induction. Second, no cross-

linking was performed before Co-IP step for HvoaRF1-FLAG purifications. 
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2.5 Mass spectrometry 

 The identification of HvoTrm112 partners were identified by LC-MS/MS on Co-IP 

samples by our collaborators, Leslie Muller, PhD student in the group of Dr. Sarah Cianferani in 

Strasbourg University. The protocol is as the following: 

 After denaturation at 100°C for 10 mins in loading buffer (2% SDS, 0,1M DTT, 10% 

glycerol, 62.5 mM Tris pH 6.8), 20 µg of proteins of each sample were concentrated in one band 

with a 4% stacking SDS-PAGE. The gels were fixed with 45% methanol/3% acetic acid and 

stained with colloidal Silver Blue. Each band was excised and cut in four pieces prior to in-gel 

digestion. The gel pieces were washed four times with 100 μL of 75% acetonitrile (ACN) and 

25% NH4HCO3 at 25 mM and dehydrated with 50 μL of ACN. Cysteine residues were reduced 

by adding 10 mM DTT for 30 min at 60°C and 30 min at room temperature, and alkylated by 

adding 55 mM iodo-acetamide for 20 min in the dark. The bands were then washed three times 

by adding 50 μL of 25 mM NH4HCO3 and 50 μL of ACN. After two dehydration steps with 50 

μL of ACN, gel pieces were stored at -20 °C prior to enzymatic digestion. Proteins were cleaved 

in an adequate volume to cover all the gel pieces with a modified porcine trypsin (Promega) 

solution at a 1:100 w/w enzyme:protein ratio. Digestion was performed overnight at 37°C. 

Tryptic peptides were extracted twice under agitation, first with 40 μL of 60% ACN in 0.1% 

formic acid (FA) for 1 h and then with 30 µL of 100% ACN for 30 min. The collected extracts 

were pooled, the excess ACN was vacuum dried, and the samples were resolubilized with 10 µL 

of H2O/ACN/FA (98/2/0.1 v/v/v). 

 The nanoLC-MS/MS analysis was performed on an Eksigent NanoLC 400 system coupled 

to a TripleTOF 6600 mass spectrometer (Sciex, Framingham, USA). Peptide separation was 

performed on a ZORBAX 300SB-C18 column (150 mm × 300 μm with 3.5 μm diameter 

particles – Agilent Technologies). The solvent system consisted of 0.1% FA in water (solvent A) 

and 0.1% FA in ACN (solvent B). The samples (4.6 μL) were loaded onto the column and the 

peptides were eluted at 5 µL/min with the following gradient of solvent B: from 2 to 35% over 

95 min, and 35 to 80% over 1 min. 

 The Ion Spray Voltage Floating was set to 5.5 kV and the interface heater at 100 °C. The 

system was operated in Data Dependent Acquisition mode with automatic switching between 

MS and MS/MS modes. MS1 spectra were collected at 400-1250 m/z for 250 ms. The most 
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intense ions with charge states 2-4 were selected on each MS spectrum for further isolation and 

collision induced dissociation fragmentation. MS2 spectra were acquired in high sensitivity 

mode at 200-1600 m/z using dynamic accumulation, with an accumulation time for high 

intensity peaks of 25 ms and a total cycle time of 2.8 s. After fragmentation, the precursor ions 

were excluded for 18 s. 

 Raw data were converted into calibrated peak lists .mgf using ProteinPilot™ software (v. 

5.0) before being subjected to a search against a concatenated target-decoy database including 

both forward (target) and reversed (decoy) UniProtKB Haloferax volcanii sequences (4 February 

2016, 9858 total entries) and common contaminants using Mascot search algorithm (v.2.5.1). 

Searches were performed with a mass measurement tolerance of 15 ppm for precursor ions and 

0.05 Da for fragment ions. Oxidation of methionine residues, carbamidomethylation as well as 

propionamidation of cysteine residues were searched as variable modifications. Full trypsic 

peptides only were searched with a maximum of one missed cleavage allowed. Proline software 

(http://proline.profiproteomics.fr; (Carapito et al., 2015)) was used to validate the identification 

results. For each sample, Peptide Spectrum Matches were filtered out if they did not meet 

following criteria: pretty rank ≤ 1, Mascot ion score ≥ 25, minimum peptide length of 7 residues 

and a maximum false discovery rate of 1 % on the adjusted e-value. Then, proteins were filtered 

out in order to obtain a final list with a maximum false discovery rate of 1 % based on the 

modified MudPit score. GO annotations were extracted for the identified proteins using an in-

house developed software suite (Mass Spectrometry Data Analysis, https://msda.unistra.fr; 

(Carapito et al., 2014)). Only proteins identified with at least one unique peptide were 

considered. 

2.6 Protein expression and purification 

 2.6.1 Expression test 

Tests to analyse the expression of single proteins or co-expression of two proteins were 

performed in 5 mL media (TBAI or 2YT) using different E.coli strains (Gold or Codon Plus). 

Protein induction can be examined at different temperatures (18, 30, and 37
0
C) and/or different 

IPTG concentrations (0.01-1mM in case of 2YT). The o/n pre-culture was carried out by 

inoculating the transformants into 5-10 mL LB containing appropriate antibiotics. In the next 

http://proline.profiproteomics.fr/
https://msda.unistra.fr/
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day, 50 µL o/n pre-culture was introduced to 5 mL tested media containing appropriate 

antibiotics, first grown at 37
0
C for 3 hours, then switching to different temperatures and/or 

adding IPTG at different tested concentrations for protein induction. The induction time was 

dependent on the temperature used to induce protein expression, i.e. 4-5 hours at 37
0
C and o/n at 

30
0
C and lower temperatures. Cells were then harvested and lysed in 1 mL lysis buffers (Table 

S5) by sonication, followed by lysate clearance through centrifugation at 13000g at 4
0
C for 30 

min. The supernatant was then subjected to Ni-NTA in small-scale purification followed by 

washing and then eluting steps with corresponding buffers (Table S5). The protein expression 

was checked in SDS-PAGE 12%. 

 2.6.2 Large-scale purification 

Large-scale (co-)expression and (co-)purification of proteins from different species were 

carried out in 1 L of appropriate media using the conditions determined from the expression 

tests. Cells were cultured and harvested as for the expression tests but in a large scale manner. 

Pellets were re-suspended in 30 mL lysis buffer (Table S5) and lysed by sonication on ice, 

followed by lysate clearance by centrifuging at 20000rpm for 45 mins. The supernatant was 

applied on Ni-NTA resin equilibrated with lysis buffer, incubated at 4
0
C with gently rotation for 

30 mins. After the flow-through, the protein-bound Ni-NTA resin was washed with 30 mL 

washing buffer (Table S5). Then 10 mL and 5 mL elution buffer (Table S5) were respectively 

used to elute the His-tagged proteins. The protein solutions were concentrated using a 

concentrator (10kDa cutoff) to 1 mL which was then 5 times diluted with buffer A (Table S5), 

ready for ion exchange chromatography. The next ion exchange and size-exclusion 

chromatography were done using Biologic DuoFlow (BioRad) or AKTA (GE Healthcare) 

systems. For ion exchange, Mono Q or Heparin 5 mL columns (GE Healthcare) were used and 

equilibrated with buffer A before 5 mL protein samples were injected and run at a flowrate of 2.5 

mL/min. The proteins were eluted by NaCl concentration gradient from 50mM (buffer A) to 1M 

(buffer B, Table S5). The protein-containing fractions were analyzed by SDS-PAGE, collected 

and concentrated to 5 mL for the next chromatography step. The size-exclusion chromatography 

was performed by S75 16/60 column equilibrated with buffer C (Table S5). 5 mL protein 

samples were injected and the protein fractions were checked by SDS-PAGE, pooled and 

concentrated to 100-300 µL. 
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 2.7 SEC-MALLS 

To determine molecular weights of Trm112-MTase complexes in solution and then their 

oligomeric states, experiments of size exclusion chromatography coupled to multi-angle laser 

light scattering (SEC-MALLS) were performed. The advantage of this method over the size 

exclusion only is that by SEC-MALLS, we can directly estimate the molecular weight of protein 

complexes of any size and shape through scattered light at different angles without requirement 

for a calibration curve, which is known to be valid only for globular proteins. 

For SEC-MALLS, each complex sample of 100 µL (1 mg/mL) was injected at a flow rate 

of 0.75 mL/min on a Superdex
TM

 200 Increase 10/300 GL column (GE-Healthcare) in buffer C 

(Table S5). Elution was followed by a UV-Visible spectrophotometer, a RID-20A refractive 

index detector (Shimadzu), a MiniDawn TREOS detector (Wyatt Technology). The data were 

collected and processed with the program ASTRA 6.1 (Wyatt Technology). Mw was directly 

calculated from the absolute light scattering measurements using a dn/dc value of 0.183.  

2.8 X-ray crystallography  

2.8.1 Principle of X-ray crystallography 

X-ray crystallography is a key X-ray based technique for determining the three-

dimensional structure of molecules at the atomic level, which in turn provides crucial clues for 

understanding their biological functions. The principle behind this method is that when a crystal 

is subjected to an X-ray source, it will diffract X-rays into different directions, which can be 

recorded as a diffraction pattern containing many spots called reflections. Each reflection can be 

characterized by three parameters: the position (h,k,l), the intensity (Ihkl) and the phase σhkl. 

Knowing all parameters from each spots, we can obtain information about the position of each 

atom in the crystal. However, through diffraction pattern analysis, crystallographer can only 

determine the position and the intensity of the spots while the phase information is still missing. 

Hence, to solve the crystal structure the phase information has to be obtained based on a variety 

of methods. 

 



 

81 

2.8.2 Protein crystallization 

2.8.2.1 Why do we need crystals for X-ray crystallography?  

Diffraction signal of a single molecule will be too weak for measurement while that of 

different single molecules in solution can cause too many noises for detection. To avoid those 

problems, a crystal of molecules is needed. In fact, the crystal is a well-ordered array of 

molecules, which can contain billions of molecules, therefore acting as diffraction signal 

amplifiers. 

2.8.2.2 Principle of protein crystallization 

The first step of protein crystallization is to purify the protein of interest in sufficient 

amounts for crystallization. Keeping in mind that the more purified and homogenous protein 

sample, the more chance the protein crystal will grow. There are a number of commonly-used 

methods available for protein crystallization including liquid-liquid diffusion crystallization 

(batch, dialysis) and vapor diffusion crystallization (sitting drop, hanging drop). The crystal 

growth can be dependent on various conditions such as protein concentration, crystallization 

solutions and their concentration, pH, temperature, and additives.  

 

Figure S1. Protein crystallization phase diagram from different crystallization methods (FID: free 

interface diffusion, dialysis, batch and vapor diffusion) 
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In theory, the proteins can form crystals when the protein-dissolved solution is brought to 

a supersaturated state in a thermodynamic and kinetic favor, which is much dependent on both 

protein concentration and solution conditions. At the beginning of crystallization, the protein is 

dissolved in solution or in undersaturation state where no crystal can be formed. The protein 

concentration is then increased over its solubility curve by different crystallization methods as 

seen in the phase diagram during the crystallization process, reaching the supersaturated state 

(Figure S1). At this state, the system is not at equilibrium and thermodynamically driven to a 

new equilibrium situation with a new minimized free energy. Particular interactions can happen 

between individual molecules, leading to formation of aggregates, known as nucleation. Under 

suitable conditions, these aggregates can reach a critical size, forming stable nuclei. The next 

step is known as the crystal growth resulting from lowering protein concentration through nuclei 

formation in the nucleation to another phase shown in diagram as metastable zone. In this range, 

nucleation does not spontaneously occur and the stable nuclei will play a role as surface suitable 

for crystal growth, putatively leading to diffracting crystals in case suitable conditions are 

observed. 

2.8.2.3 Crystallization techniques 

 Among different crystallization approaches available, in the thesis I have only applied the 

vapor diffusion method including the sitting drop and the hanging drop crystallization. The 

principle behind this method is that the protein sample is mixed with solution buffer normally in 

the ratio of 1:1 while the large solution buffer alone is kept in the reservoir (Figure S2). The 

system is then carefully sealed to make an enclosed environment. As a result of mixing, the 

concentration of precipitants in the sample drop is lower than that in the reservoir, resulting in a 

higher water concentration in the sample drop. In the equilibrium system, the water vapor will 

leave the sample drop and end up in the reservoir, leading to an increase in the concentration of 

both protein and precipitant in the sample drop to reach a level where the crystallization process 

can occur provided that optimal conditions are met. 

For sitting drop crystallization, a Mosquito robot was used to screen hundreds of different 

commercial solution conditions in which 150 nL protein sample was mixed with 150 nL 

reservoir solution while 80 µL solution buffers was used in the reservoir. 
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Hanging drop set-up was used to optimize crystals obtained in the sitting drop by 

changing salt and precipitant concentration through applying hand-made gradients. To do it, 1 

µL of protein sample was mixed with 1 µL of reservoir solution and 500-1000 µL was applied 

for the reservoir solution. 

 

Figure S2. Vapor diffusion crystallization. A. Sitting drop method; B. Hanging drop method 

 

2.9 Hvo tRNA purification 

tRNAs from different H. volcanii strains (wild-type, trm112∆, trm9∆ and elp3∆) were 

purified based on phenol-chloroform extraction method. For each purification, 3 L of YPC (plus 

thymidine (60 µg/mL) in case of elp3∆ Hvo) were used to grow H. volcanii. For Hvo culture, 

100mL YPC pre-culture was o/n performed at 45
0
C. In the next day, 20mL pre-culture was used 

to inoculate into 1 L YPC. The culture was grown at 45
0
C 150rpm for 28-30 hours or until at 

least mid-log phase. The cells were harvested by centrifugation at 4000rpm and 4
0
C for 30 min. 

The cell pellet was re-suspended into sodium acetate 50mM pH 5.0 solution (3 mL for each mg 

of pellet). Then phenol saturated with Sodium acetate 50mM pH 5.0 was added to the suspension 

with the ratio of 1:1. The solution was well mixed, followed by gently shaking incubation at 

room temperature for overnight. In the next day, the mix was centrifuged at 5000rpm at RT for 

20 min. The supernatant (top layer) was recovered followed by an addition of phenol in 1:1 ratio. 

The mix was strongly agitated in 2 min and then centrifuged at 5000rpm at RT for 20 min. The 

top layer supernatant was again collected and chloroform was added in 1:1 ratio, followed by 2-

min vigorous agitation. The solution was centrifuged at 5000rpm at RT for 20 min. The 
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supernatant was recovered and 0.2 volume of isopropanol was added and well mixed, followed 

by 1 hour incubation at -20
0
C. This step is to pellet genomic DNA and long RNAs. The solution 

was next centrifuged at 8000rpm at 4°C for 20 min. The supernatant was collected and 0.6 

volume of isopropanol was added, mixed well and then incubated at -20
0
C for at least 1 hour. 

The mix was centrifuged at 8000rpm at 4°C for 20 min. The supernatant was discarded and the 

pellet was washed by 80% ethanol. The mix was centrifuged at 8000rpm and 4°C for 20 min and 

the pellet was collected and dried. The pellet was then re-suspended in 0.1-1 mL sterile water or 

TE buffer. The total RNA was then run on polyacrylamide-urea gel (6-10%) in which bands 

corresponding to tRNAs (around 75 nucleotides) were cut into small pieces, covered with elution 

buffer (10mM Tris pH 7.5, 1mM EDTA, 0.1% SDS and 300mM NaCl) and then incubated at 

37
0
C with agitation for 30 min. The supernatant was recovered and this step was done in 

triplicate. Next, 2.5 volumes of pure ethanol were added to the supernatant and well mixed 

before incubation at -20
0
C for overnight. The solution was pelleted at 12000rpm 4

0
C for 30 min 

and the pellet was dried and finally re-suspended in 8mM MgCl2. 

10.  Enzymatic assay 

2.10.1 ScTrm9-Trm112 

The methyltransferase activity was determined by filter-binding assay based on the 

principle that the ScTrm9-Trm112 enzyme complex transfers a tritium-labeled methyl group 

from [
3
H]SAM to the tRNA substrates purified from a S. cerevisiae trm9Δ strain, i.e. containing 

cm
5
U34 to generate tritium-labeled mcm

5
U34. The mcm

5
U34-harboring tRNAs were retained on 

glass filters (Whatman GF/C filters), which do not retain free radioactive SAM, and the 

radioactivity was detected using a scintillation counter. Details about these assays were described 

in the enclosed paper in chapter I and can be summarized as the following figure S3. 
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Figure S3. Summary of filter-binding enzymatic assay method. Indicated experimental conditions are 

those used for enzymatic assays on ScTrm9-Trm112 (Adapted from Dr Juliette Létoquart) 

 For calculation, the initial velocity (Vi) was derived from the formula:  

CtRNA = Vi*(1 − exp(− nt))/n where CtRNA is the concentration of methylated tRNA, t the time in 

minutes, and n the relaxation rate constant of Vi by using the ORIGIN software according to Cao 

et al (Cao, & De La Cruz, 2013). The enzyme specific activity was then calculated by dividing 

Vi by enzyme quantity. 

To determine the Km and Vmax values, the reaction velocity was plotted as a function of 

substrate concentration and the data were fitted with the ORIGIN software using the Michaelis-

Menten equation as the following: 

V = Vmax*[S]/(Km + [S]) 

where V is the reaction velocity, Vmax the maximal reaction velocity, [S] the substrate 

concentration and Km the Michaelis-Menten constant. 
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Then, kcat was calculated by dividing Vmax by enzyme concentration. 

2.10.2 HvoMtq2-Trm112 

The methyltransferase assay was performed in a total volume of 10 µL containing 

400mM phosphate buffer pH 7.5, 3M KCl, 2.5mM EDTA, 5mM MgCl2, 5mM NH4Cl, 

0.25mg/mL Bovine Serum Albumin (BSA), 50µM SAM (containing 0.87 Ci/mmol of [3H]-

SAM, Perkin Elmer) and 5 pmol of HvoMtq2-Trm112 complexes. The reaction was initiated by 

adding 100 pmol of HvoaRF1 and HvoaRF3 each to the mixture. The samples were incubated at 

45°C for 2 hours. The reaction was stopped by precipitation with cold trichloroacetic acid (5%), 

followed by filtration on Whatman GF/C filters. The [
3
H] incorporation was measured using a 

Beckman Coulter LS6500 scintillation counter. For buffer optimization, different phosphate 

concentrations (100-400mM) in combination of different concentrations of MgCl2 (5 and 10mM) 

and NH4Cl (5 and 10mM) were examined. 

2.10.3 HvoTrm9-Trm112 

The methyltransferase assay was performed in a total volume of 10 µL containing 

400mM phosphate buffer pH 7.5, 3M KCl, 2.5mM EDTA, 5mM MgCl2, 5mM NH4Cl, 

0.25mg/mL Bovine Serum Albumin (BSA), 50µM SAM (containing 0.87 Ci/mmol of [
3
H]-

SAM, Perkin Elmer) and 2 pmol of HvoTrm9-Trm112 complexes. The reaction was initiated by 

adding 100 pmol of total tRNAs purified from different strains to the enzyme mixture. The 
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samples were incubated at 45°C for 2 hours. The reaction was stopped by precipitation with cold 

trichloroacetic acid (5%), followed by filtration on Whatman GF/C filters. The [
3
H] 

incorporation was measured using a Beckman Coulter LS6500 scintillation counter. 
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CHAPTER I 

CHARACTERIZATION OF ScTRM9-TRM112 ACTIVE SITE  
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When I joined the lab, the crystal structure of a truncated version of the Trm9-Trm112 

complex from Yarrowia lypolytica (YlTrm9N38) had been solved at 2.5Å resolution. Through 

structure comparison with ScBud23-Trm112 bound to SAM and Rhodopseudomonas palustris 

RPA2492 (highly structurally similar to Trm9) as well as by secondary structure prediction for 

the lacking N-terminal region of Trm9, the model of YlTrm9-Trm112 in complex with SAM was 

generated. The sequence conservation was mapped at the molecular surface of this complex and 

several highly conserved residues surrounding the SAM methyl group have been identified. 

Corresponding residues from ScTrm9 (including H24, R29, K31, H115, H116, W145, Q149, 

W168, R241, Y243, D270 and N271) were selected for functional analysis and were mutated to 

alanine. The first round of screening for the effect of these mutants was performed in vivo using 

the zymocin killer assay. This assay is based on the principle that the zymocin secreted from K. 

lactis cleaves SctRNAs containing mcm
5
s

2
 modification on U34, which is in part catalyzed by 

ScTrm9-Trm112, finally leading to cell death. From this analysis, eight zymocin-resistant 

mutants (R29A, D72A, H116A, W145A, W168A, R241A, Y243A and N271A) and two 

zymocin-sensitive mutants (H115A and Q149A) as well as the WT protein as control were 

chosen for further functional investigation through enzyme kinetics. 

The results that I have obtained on the enzymatic characterization of ScTrm9-Trm112 

complex will be presented in details below. Next, I will present the paper in which these results 

have been included and that has been published in Nucleic Acids Research.  
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RESULTS  

1. Optimum pH for ScTrm9-Trm112 enzymatic activity 

To identify optimal pH for the enzymatic activity of ScTrm9-Trm112, phosphate buffers 

with pH ranging from 5 to 8 have been tested. The enzyme specific activity at each pH has been 

calculated by using the initial velocity generated from enzymatic reaction of 1.5 pmol of enzyme 

ScTrm9-Trm112 wild-type on 75 pmol of substrate (total tRNAs purified from Sc trm9∆ strain) 

at different time points. At phosphate pH 5.0, the enzyme was totally inactive (result not shown) 

whereas the enzymatic activity was somehow affected at other different pHs and followed a bell-

shaped curve, with optimal initial velocity at pH 7.5 (Figure 23). Therefore, all the enzymatic 

assays aimed at characterizing the role of some specific residues on catalytic activity were 

performed in phosphate buffer and at pH 7.5. 

 

  

  

 

 

 

 

 

Figure 23. pH dependence enzymatic activity of ScTrm9-Trm112 complex. (A). Effect of different 

pHs on enzyme activity. (B) Plot of initial velocity (Vi) as a function of pH.  

 

 

 

pH 

 
A. B. 
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Table 1. Analysis of pH-dependence enzymatic activity of ScTrm9-Trm112  

pH Initial velocity 

(Vi) 
Standard 

error 

Specific activity 
(fmol of tRNA methylated /min/pmol 

of enzyme) 

5.5 0.018 0.004 12 

6 0.730 0.035 486 

6.5 1.149 0.109 766 

7 1.574 0.117 1049 

7.5 3.157 0.331 2105 

8 1.551 0.121 1034 

 

2. Effect of ScTrm9-Trm112 mutants on the methyltransferase activity 

To evaluate whether analyzed residues were preliminarily involved in catalysis or tRNA 

substrate binding property of ScTrm9-Trm112, the effect of the mutations on the methylation 

activity was determined by measuring apparent specific activity of the enzyme as for pH-

dependence methylation activity. The results showed that zymocin resistant mutants have 

expectedly an impaired methyltransferase activity in which the D72A, H116A, W145A and 

W168A mutants were inactive whereas the R29A, R241A, Y243A and N271A mutants 

displayed severe effects on specific activity compared to wild-type enzyme (Figure 24). The 

zymocin-sensitive mutants (H115A and Q149A), as expected, were only slightly affected 

(H115A) or not at all (Q149A) in the enzymatic activity. This indicates a good correlation 

between zymocin phenotype and enzymatic activity. 
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Figure 24. Enzymatic activity of different ScTrm9-Trm112 mutants 

 

Table 2. Analysis of enzymatic activity of ScTrm9-Trm112 mutants 

Proteins 
Initial velocity  

(Vi) 

Standard 

error 

Specific activity  

(fmol of tRNA methylated/min/pmol of 

enzyme) 

WT 3.157 0.331 2104.66 ± 220.66 

R29A 0.162 0.007 108.00 ± 4.66 

D72A 0 0 0 

H115A 0.775 0.058 516.66 ± 38.66 

H116A 0.005 0.001 <10 

W145A 0 0 <10 

Q149A 3.747 0.223 2498.00 ± 148.67 

W168A 0.011 0.001 <10 

R241A 0.039 0.004 26.00 ± 2.67 

Y243A 0.309 0.007 206.00 ± 4.67 

N271 0.120 0.005 80.00 ± 3.33 
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3. Kinetics analysis 

To get insights into the enzyme catalytic mechanism, we have carried out steady-state 

kinetics analyses to determine apparent Km and kcat for the WT, R29A, H115A, R241A, Y243A 

and N271A Trm9 mutants in the context of the ScTrm9-Trm112 complex. The results revealed 

that all mutants are affected in Km and kcat values. In fact, all tested mutants showed increase in 

Km and decrease in kcat compared to the wild-type enzyme, therefore resulting in low catalytic 

efficiency kcat/Km. This indicates that these residues might directly participate in the binding of 

the tRNA substrate as well as in the catalysis. It is also important to mention that these conserved 

residues may play important role in orienting properly the substrate into the active site required 

for the methyl transfer to occur by means of SN2 reaction, a common mechanism of class I SAM-

dependent MTases. Therefore, mutants in those positions result in decrease in enzyme affinity 

for its substrate, leading to loose binding and coordination of the cm
5
U substrate into the active 

site pocket, thereby decreasing the kcat. 

Table 3. Analysis of kinetics of different ScTrm112-Trm9 mutants 

ScTrm9 

mutants  

Apparent specific 

activity 
(fmol of tRNA 

methylated/min/pmol of 

enzyme) 

Apparent Km 

for tRNA  

(μM) 

Apparent Kcat 

for tRNA 

(10
−3

s
−1

) 

Apparent  

Kcat/Km for  

tRNA  

(M
−1

. s
−1

) 

Sc WT 2105 ± 221 0.08 ± 0.02 32 ± 2 400x10
3 

R29A  108 ± 5 0.936 ± 0.149 1.9 ± 0.15 2.03x10
3
 

H115A  517 ± 39 0.351 ± 0.118 6 ± 0.7 17.1x10
3 

R241A 26 ± 3 0.374 ± 0.008 0.8 ± 0.006 2.14x10
3 

Y243A 206 ± 5 0.851 ± 0.222 4.5 ± 0.5 5.29x10
3 

N271A  80 ± 3 0.337 ± 0.09 1 ± 0.078 2.97x10
3 
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ABSTRACT

Most of the factors involved in translation
(tRNA, rRNA and proteins) are subject to post-
transcriptional and post-translational modifications,
which participate in the fine-tuning and tight con-
trol of ribosome and protein synthesis processes.
In eukaryotes, Trm112 acts as an obligate activat-
ing platform for at least four methyltransferases
(MTase) involved in the modification of 18S rRNA
(Bud23), tRNA (Trm9 and Trm11) and translation ter-
mination factor eRF1 (Mtq2). Trm112 is then at a
nexus between ribosome synthesis and function.
Here, we present a structure-function analysis of
the Trm9-Trm112 complex, which is involved in the
5-methoxycarbonylmethyluridine (mcm5U) modifica-
tion of the tRNA anticodon wobble position and
hence promotes translational fidelity. We also com-
pare the known crystal structures of various Trm112-
MTase complexes, highlighting the structural plastic-
ity allowing Trm112 to interact through a very similar
mode with its MTase partners, although those share
less than 20% sequence identity.

INTRODUCTION

The tRNAs play a central role in protein synthesis by bring-
ing the amino acid corresponding to the mRNA codon
present in the ribosomal A-site to the ribosomal peptidyl
transferase center (PTC) during the elongation step of the
translation process. Post-transcriptional maturation steps
are essential for tRNA function. In particular, around 100
nucleoside modifications have been described for tRNAs
(1) and were shown to mostly ensure either correct tRNA
folding (2) or efficient and accurate decoding (3). Posi-

tion 34 from the tRNA anticodon loop (also known as
wobble) is frequently heavily modified, ensuring transla-
tional fidelity but also the recognition of several codons
by a single tRNA molecule. In Saccharomyces cerevisiae,
13 out of 42 tRNAs have a uridine at position 34 (U34),
which is modified into 5-carboxymethyluridine derivatives
(xcm5U) in 11 of those tRNAs (4). Among these modifica-
tions, 5-methoxycarbonylmethyl-(2-thio)uridine (mcm5U
and mcm5s2U) were shown to enhance accurate and effi-
cient translation and codon pairing (5).

The synthesis of mcm5U34 is very complex and requires
at least 15 proteins in S. cerevisiae. Most of these proteins
are involved in the first step of the reaction, i.e. addition of
a carboxymethyl group at position 5 of the uracil to form
cm5U (6). The enzyme catalyzing this reaction is the Elon-
gator complex composed by six subunits (Elp1–6) (7). This
complex consists of two sub-complexes: a core complex
Elp1–2–3 where Elp3 is the catalytic subunit endowed with
acetyltransferase activity and the Elp4–5–6 complex, an
hexameric ATPase regulating tRNA dissociation from the
Elongator complex (8). The other factors (Kti11–14, Sit4,
Sap185 and Sap190) seem to be involved in the regulation
of the Elongator complex (9). The last step in the synthe-
sis of this modification requires the methylation of cm5U to
form mcm5U by the Trm9 methyltransferase (MTase) (10).
This protein belongs to the class I S-adenosyl-L-methionine
(SAM)-dependent MTase family and is active as a com-
plex with Trm112 (11). The deletion of the gene encod-
ing any of these 15 yeast proteins results in zymocin re-
sistance phenotype (7). Indeed, zymocin, a toxin secreted
by Kluyveromyces lactis, exclusively cleaves the tRNA an-
ticodon loop containing mcm5s2U34, thereby inhibiting
translation and leading to yeast death.

Trm112 is a small zinc binding protein that in addi-
tion to Trm9 interacts with and activates 3 other MTases:
Trm11, Bud23 and Mtq2. These four Trm112-MTase com-
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plexes are involved in processes related to protein synthe-
sis. Similarly to Trm9-Trm112, the Trm11-Trm112 com-
plex methylates many tRNAs in yeast at guanosine 10 to
form 2-methylguanosine (m2G10) and hence is involved
in translational elongation (12). The Mtq2-Trm112 com-
plex methylates translation termination factor eRF1 on the
amide group of the glutamine side chain from the univer-
sally conserved GGQ motif, which enters into the PTC and
triggers the release of newly synthesized proteins (13). The
Bud23-Trm112 complex is implicated in the synthesis of the
small ribosomal subunit by catalyzing the N7-methylation
of guanosine 1575 of 18S rRNA (14,15). Finally, Trm112
is important for synthesis of the large ribosomal subunit
by an unknown mechanism (16). The Trm9-Trm112 com-
plex catalyzed tRNA modification enhances decoding of
AGA, CAA, GAA and, to a lesser extent, AGG codons
(17). Hence, it favors the translation of transcripts specif-
ically enriched in these codons such as those coding for
the DNA damage response key proteins Rnr1 and Rnr3
(18). In S. cerevisiae, the deletion of the TRM9 gene re-
sults in increased sensitivity of the cell to DNA alkylat-
ing agent methyl methanesulfonate (MMS) and in delayed
G1 to S phase transition after MMS treatment. Further-
more, tRNA hypomodification following Trm9 inactivation
results in translational infidelity and triggers the activation
of protein stress response pathways (19). Altogether, this in-
dicates a connection between tRNA modification, regula-
tion of translation in response to stress and DNA damage
response.

The Trm9-Trm112 complex is highly conserved in eu-
karyotes and two Trm9 orthologues exist in human:
ABH8 and hTrm9L (20). Similarly to yeast Trm9-Trm112,
the human ABH8-TRM112 complex converts cm5U into
mcm5U (20). In insects, worms and human, ABH8 pro-
teins are bifunctional enzymes also encompassing an
AlkB-like domain responsible for the hydroxylation of
mcm5U into (S)-5-methoxycarbonylhydroxymethyluridine
((S)-mchm5U)(21). Compared to ABH8, hTrm9L is made
of only the MTase domain (22). The ABH8 protein is highly
expressed in a variety of human cancer cells. Furthermore,
ABH8 silencing induces apoptosis of urothelial carcinoma
cells thereby suppressing tumor growth, angiogenesis and
metastasis (23). On the opposite, hTrm9L has been de-
scribed as a negative regulator of tumor growth (24). In-
terestingly, ABH8 silencing renders cells sensitive to MMS
and to the anti-cancer drug bleomycin, while the loss of
the gene encoding hTrm9L renders tumor cells sensitive to
paromomycin and gentamycin, two antibiotics known to in-
duce translational errors (24). Hence, human hTrm9L and
ABH8 proteins represent potent targets for the develop-
ment of new anti-cancer drugs.

Here, we describe the crystal structure of the Trm9-
Trm112 complex from Yarrowia lipolytica as well as in vivo
and in vitro functional studies of S. cerevisiae enzyme with
the aim of analyzing the mechanism of action of this pro-
tein. From the comparison of the various known crystal
structures of Trm112-MTase complexes, we also unravel
the molecular plasticity allowing Trm112 to interact with
its various MTase partners, which share less than 20% se-
quence identity.

MATERIALS AND METHODS

Yeast strains, media and growth conditions

Saccharomyces cerevisiae strain YPH499 (Agilent technolo-
gies) was used as the wild-type host for all yeast gene manip-
ulations. Kluyveromyces lactis AWJ137 and NK40 strains
were used as source of zymocin and control strain, respec-
tively, in zymocin killer eclipse assay and killer liquid assay
(25).

Cultures were performed at 30◦C in standard rich
medium YEPD (1% yeast extract, 2% peptone, 2% dextrose)
or selective minimal media (SD) with 2% dextrose or galac-
tose. Yeast was transformed by the lithium acetate method
as previously described (26). For selection, YEPD was sup-
plemented with geneticin (200 �g/ml) and SD minus uracil
or tryptophan was prepared.

Yeast strains construction

For clone selection, three steps were systematically consid-
ered: growth on a selective media, polymerase chain reac-
tion (PCR) screening and DNA sequencing. For point mu-
tation strain selection, the presence of the mutation was also
investigated by restriction fragment length polymorphism
prior to DNA sequencing.

Trm9 point mutant strains were generated using genomic
DNA from strain YDL201 (YPH499 TRM9::kanMX6)
as DNA template and the suitable Ftrm9/R1-trm9 set of
primers for initial cassette amplification (27) and the tech-
nique already described (28) (Supplementary Tables S2 and
S3).

Clones expressing wild-type or mutant Trm9–13Myc
were obtained from transformation of the appropriate
strain (encoding wild-type or mutant Trm9) with PCR
product amplified from pFA6a-13Myc-TRP1 plasmid as a
template using F2-Trm9/R1-trm9 primer set (27).

The trm9Δ::URA3 strain was obtained by transform-
ing wild-type strain with PCR product amplified from
plasmid pESC-URA (Agilent Technologies) using F1-
URA-trm9/R1-URA-trm9 primer set. Clones expressing
YlTrm9 or YlTrm9N38 were obtained from a 5-FOA se-
lection after transformation of trm9Δ::URA3 strain with
PCR product amplified from Yarrowia lipolytica genomic
DNA as a template using respectively Ftrm9::YLTRM9 or
Ftrm9::YLTRM9N38 / Rtrm9::YlTRM9 primer sets (Sup-
plementary Table S3).

Zymocin killer eclipse assay

5 �l suspension of the yeast cells to test (OD600nm = 0.5)
were spotted on YEPD plate and air-dried. Next, using the
tip of a toothpick, K. lactis AWJ137 and NK40 cells were
placed onto the edge of the yeast spot. Plate was incubated
at 30◦C for 1–2 days. Sensitivity or resistance to zymocin
was revealed by the presence or absence of a halo zone
around AWJ137 colony.

Zymocin liquid killer assay

Filtered-sterile supernatants from overnight culture of K.
lactis AWJ137 and NK40 were used as source of zymocin
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and as a control, respectively. Serial dilutions of the super-
natants (from 10−1 to 10−4) were prepared in fresh selective
SD media with galactose as carbon source. 5 ml sample of
each dilution was inoculated at OD600nm of 0.1 with yeast
strain to be tested. Cultures were incubated for 20 h at 30◦C.
Growth was calculated as the ratio between the OD600nm
read for the 10−1 and 10−4 dilutions. The 100% sensitivity
to zymocin was obtained from the wild-type strain.

Cloning expression and purification

A DNA sequence optimized for heterologous expression
in E. coli was designed to encode YlTrm112 (UniprotKB
entry: Q6C4P5) and YlTrm9 with a C-terminus His6-tag
(UniprotKB entry: Q6C999). This fragment was obtained
by de novo gene synthesis (GenScript Corporation, Piscat-
away, NJ, USA) and was further subcloned into pET21-
a between NdeI and XhoI sites. Two truncated forms
of YlTrm9 (YlTrm9N19 and YlTrm9N38 encompassing
residues 19–324 and 38–324, respectively) were cloned in
the same operon (Supplementary Tables S4 and S5). These
complexes were expressed in E. coli BL21 (DE3) Gold (No-
vagen) in 800 ml autoinducing media (29) containing 10 �M
ZnCl2 and 100 �g/ml ampicillin, 5 h at 37◦C and 15 h at
15◦C.

Genes encoding wild-type ScTrm9 and ScTrm112 were
amplified from S. cerevisiae S288C genomic DNA and
cloned into a modified pET28a and a pACYCDUET-1 plas-
mids, respectively (Supplementary Tables S4 and S5). Genes
encoding ScTrm9 mutants were amplified from the genomic
DNA isolated from YPH499 mutated strains and then
cloned into pET21-a vector using NdeI and NotI restric-
tion sites and introducing a C-terminal His6-tag (Supple-
mentary Tables S4 and S5). The expression of the ScTrm9-
Trm112 complexes was done in E. coli BL21(DE3)Gold
strain (Novagen) co-transformed with the two vectors and
cultured in 1 l of 2YT medium containing 10 �M ZnCl2,
25 �g/ml chloramphenicol and 100 �g/ml ampicillin. Cul-
tures were done at 37◦C until OD600nm reached 0.5–0.6, they
were then shifted to 20◦C and protein production was in-
duced overnight with IPTG (final concentration of 0.5mM).

Bacteria were harvested and resuspended in 30 ml
buffer A (20mM Tris-HCl pH7.5, 200mM NaCl, 5mM
ß-mercaptoethanol, 10�M ZnCl2) and stored at −20◦C.
Cells were lysed by sonication and the soluble fraction
was cleared by centrifugation (15 000g for 30 min at 4◦C).
All His6-tagged complexes were purified by Ni-NTA chro-
matography (QIAGEN Inc.), followed by an ion-exchange
chromatography (5 ml Heparin column for Sc complexes
and Yl full length complex and 5 ml MonoQ column for the
Yl truncated forms (GE Healthcare)). The last purification
step was performed on a Superdex 75 16/60 size-exclusion
chromatography column (GE Healthcare) in buffer A.

Crystallization and structure solution

Crystals were grown after 3–4 days at 19◦C from a mixture
of YlTrm9N38-Trm112 complex (10 mg/ml) with an equal
volume of the crystallization solution containing 100mM
tri-sodium citrate, 20% polyethylene glycol 4000 (PEG4K),
20% 2-propanol. Crystals were cryoprotected by transfer

into the crystallization solution supplemented with 15 then
30% v/v ethylene glycol and then flash-frozen in liquid ni-
trogen. The data sets were collected at 100 K on Proxima-1
beam line (SOLEIL, St Aubin, France). The structure was
solved by Zn-MAD (Multiple Anomalous Dispersion) us-
ing data sets collected at three wavelengths corresponding
to inflexion, peak and remote of Zn-edge (see Table 1 for
statistics). Data were processed with XDS (30) and scaled
using XSCALE. The space group was I432 (a = b = c =
176.2 Å) with one heterodimer per asymmetric unit, corre-
sponding to a solvent content of 56.4%. As expected from
the presence of one Trm112 protein in the asymmetric unit,
one Zn atom could be located by the HYSS submodule of
the PHENIX package in the 50–3 Å resolution range (31).
Refinement of the Zn atom coordinates, phasing and den-
sity modification were performed with SHARP program us-
ing the 50–3 Å resolution range (32). The ScTrm112 crystal
structure (13) was positioned into the experimental density
maps by molecular replacement using the MOLREP pro-
gram (33) and then modified to match with the YlTrm112
sequence. The Trm9 model was built into these maps us-
ing the COOT molecular modeling program (34). Iterative
cycles of manual model rebuilding using COOT followed
by refinement with PHENIX led to an almost complete
model, which was then completed and refined using a higher
resolution data set (2.5 Å) to yield the final model (final
R and Rfree values of 19.9% and 24.2%, respectively). The
statistics for data collection and refinement are summarized
in Table 1. The final model contains residues 1–124 from
Trm112, residues 39–160 and 172–233 from Trm9, a zinc
atom and 91 water molecules. According to PROCHECK
(35), in this final model, 87% and 13% of the residues are
in the most favored and in the allowed regions of the Ra-
machandran diagram, respectively. Due to the absence of
electron density, the following regions are absent from the
final model: residues 125–130 from Trm112 and 38, 161–
171, 234 and the His6 tag from Trm9.

Enzymatic assay

For enzymatic assays, total tRNAs were purified from S.
cerevisiae trm9Δ and elp1Δ strains (elp1Δ strain is a kind
gift from Dr B. Seraphin, IGBMC, France) using mostly
the protocol described in Chen et al. (36). Yeast cells were
grown in YEPD medium at 30◦C until cell density reached
1 to 2×107 cells/ml. Cells were washed with water and har-
vested. The pellet was resuspended in one pellet volume of
0.9% NaCl then 2 volumes of phenol were added. The mix-
ture was incubated on a rotating wheel for 30 min at room
temperature. One volume of chloroform was added and the
mixture was shaken for 15 min and then centrifuged for 20
min at 13000 rpm at 4◦C. Aqueous phase was precipitated
by 2.5 volumes of ethanol and 0.1 volume of 20% potassium
acetate and washed with cold ethanol 95%. In order to re-
move bound amino acids, the precipitate was resuspended
in 1.5 ml of 2 M Tris-HCl pH 8 (for 10 g of cells) and in-
cubated for 90 min at 37◦C. After ethanol precipitation, the
pellet was resuspended in 3.4 ml of 2 M lithium acetate, 0.1
M potassium acetate pH 5 (for 10 g of cells) to remove ri-
bosomal RNAs as described previously (37). The mix was
shaken for 20 min at 4◦C and centrifuged at 8000g for 20
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Table 1. Data collection, phasing and refinement statistics

Crystal 1 Crystal 2

Data collection
Space group I432 I432
Cell dimensions
a, b, c (Å) 176.40 176.20
�, �, � (◦) 90.00 90.00

Peak Inflection Remote
Wavelength (Å) 1.2819 1.2826 1.2753 0.9801
Resolution (Å) 50–3 (3–3.17) 50–3.3 (3.3–3.5) 50–3.7 (3.7–3.97) 50–2.5 (2.5–2.65)
Rsym or Rmerge (%) 14.8 (67.7) 15.2 (63.6) 17.5(58.9) 6.9(50.1)
I / �I 20.3 (5.1) 22.1 (6.2) 10.9 (3.6) 14.2 (2.6)
Completeness (%) 99.9 (99.7) 99.9 (99.7) 99.9 (100) 97.9 (98.3)
Redundancy 20.9 23.5 6.9 4.8

Refinement
Resolution (Å) 50–2.5
Rwork/Rfree (%) 19.9/24.2
No. atoms
Protein 1496 (Trm9) / 966 (Trm112)
Ligand/ion 1 (Zn)
Water 76
B-factors (Å2)
Protein 49.5 (Trm9) / 64.7 (Trm112)
Ligand/ion 76.6
Water 50.9
R.m.s deviations
Bond lengths (Å) 0.009
Bond angles (◦) 1.193

min at 4◦C. The pellet was extracted a second time with 1.7
ml of 2 M lithium acetate, 0.1 M potassium acetate pH 5.
The pool of supernatants was dialyzed against 10 �M mag-
nesium acetate during 2.5 h. The tRNAs were resuspended
in 1 mM Tris pH 7.5, 10 mM magnesium acetate following
ethanol precipitation.

The methyltransferase assay was performed in a final
volume of 50 �l containing 50 mM phosphate buffer pH
7.5, 0.1 mM EDTA, 10 mM MgCl2, 10 mM NH4Cl, 0.1
mg/ml Bovine Serum Albumin, 10 �M SAM (contain-
ing 0.87 Ci/mmol of [3H]-SAM, Perkin Elmer) and 1.5
pmol of Trm9-Trm112 complexes. The reaction was initi-
ated by adding 1.5 �M of total tRNAs (75 pmol) puri-
fied from trm9Δ strain to the mixture. The samples were
incubated at 37◦C and aliquots were withdrawn at differ-
ent time points. The reaction was stopped by precipita-
tion with cold trichloroacetic acid (5%), followed by filtra-
tion on Whatman GF/C filters. The [3H] incorporation was
measured using a Beckman Coulter LS6500 scintillation
counter. For the pH dependence enzymatic assays, phos-
phate buffer pH7.5 was replaced by other phosphate buffers
ranging from pH 5–8. All reactions were performed in trip-
licates. The initial velocities (Vi) were calculated using the
equation CtRNA = Vi*(1 − exp(− nt))/n where CtRNA is the
concentration of methylated tRNA, t the time in minutes,
Vi the initial enzyme cycling velocity and n the relaxation
rate constant of Vi by fitting the experimental spots with
the software ORIGIN according to Cao et al. (38).

Steady-state kinetics analyses were performed by using
various tRNA (from 0.1 to 1.5 �M) or SAM (from 1 to
20 �M) concentrations. The initial rate calculated for each
tRNA or SAM concentration was plotted as a function
of the concentration. The data were fit to the Michaelis–
Menten equation using the ORIGIN software and the Km,

kcat and kcat/Km values were calculated from the curve fit-
ting.

Equilibrium dialysis

The equilibrium dialysis set up consists of two chambers
separated by a 3 kDa-cut off dialysis membrane. The exper-
iment was performed in 100 mM Tris-HCl pH 7.5, 0.1 mM
EDTA, 10 mM MgCl2, 10 mM NH4Cl. Initially, the ligand
chamber contains 100 �M SAM (containing 0.87 Ci/mmol
of [3H]-SAM, Perkin Elmer) and the protein chamber 120
�M of Trm9-Trm112 complex. After 3 h rotation at 4◦C, the
SAM content of chambers is determined using a Beckman
Coulter LS6500 scintillation counter.

Co-IP and western blot

The preparation of the soluble protein extracts and the co-
immunoprecipitation assays were performed as previously
described (26). Probing was performed using either mouse
9E10 anti-myc (Santa Cruz Biotechnology) or polyclonal
rabbit anti-ScTrm112 antibodies (Agrobio) as primary an-
tibody (1/5000 dilution). Sheep anti-mouse or sheep anti-
rabbit HRP-conjugated IgG were used as secondary anti-
body (1/5000, GE Healthcare).

Generation of YlTrm9N20-Trm112 model

Residues 20–39 from YlTrm9, which are missing in the crys-
tal structure of YlTrm9N38-Trm112 complex, were mod-
eled by superimposing the crystal structure of RPA2492, the
closest structural YlTrm9 homologue (PDB code: 3E23),
onto our structure. The SAM substrate and backbone
atoms from residues 8–27 (corresponding to residues 20–
39 from YlTrm9) were retained from the crystal structure
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3E23. Missing side chains were placed using the SCWRL4
software (39). The cm5U residue was docked manually into
the YlTrm9 active site using constraints issued from the
functional analysis of the various Trm9 mutants and by po-
sitioning the carboxyl group of cm5U at a distance com-
patible with methyl transfer from SAM. Finally, as the
loop containing R40 (corresponding to ScTrm9 R39) is one
residue shorter in YlTrm9 than the corresponding region
from RPA2492, which was used as a template to build this
fragment, we applied a restraint with a force constant of
1000 kcal/mol/Å2 between the carboxyl group of cm5U
and guanidinium group of R40 to position the side chain
of this latter group toward the binding pocket. The atoms
present in the crystal structure of YlTrm9 were restrained to
the experimental crystallographic position with a force con-
stant of 5 kcal/mol/Å2. The CHARMM27 force field was
used (40). The complex was subsequently minimized in the
CHARMM software (41) using the Powell algorithm and
10 000 steps of minimization.

2D thin layer chromatography for detection of modified nu-
cleosides

The tRNAs obtained after in vitro methylation using [14C]-
SAM (containing 6.5 �l of [14C]-SAM (58 mCi/mmol,
Perkin Elmer)) were extracted with phenol/chloroform and
ethanol precipitated. The tRNA pellet was dissolved in 10
�l of 50 mM ammonium acetate pH 5.3 supplemented
with 1 �g of P1 nuclease from Penicillium citrinum (Sigma)
and incubated overnight at 37◦C. Digested tRNAs (2 �l)
were mixed with 12�g of cold 5′ P-mononucleosides pA,
pU, pG and pC and spotted on a CEL-300 cellulose plate
(Merck). 5′ P-mononucleosides were separated using chro-
matographic solvents A, B or C as previously described
(42). First dimension chromatography was performed in
solvent A, and the second in either solvent B or C. The
positions of the four major mononucleosides (pA, pG, pU
and pC) were revealed by UV shadowing. The position of
mcm5U nucleoside carrying radiolabeled methyl group was
revealed by phosphorimaging and compared with that of
reference maps obtained under identical experimental con-
ditions (43).

RESULTS AND DISCUSSION

Structure of the YlTrm9-Trm112 complex

To determine the crystal structure of the Trm9-Trm112
complex, we expressed in Escherichia coli and purified this
complex from different organisms (Saccharomyces cere-
visiae (Sc), Schizosaccharomyces pombe (Sp), Encephalito-
zoon cuniculi (Ec) and Yarrowia lipolytica (Yl)). Unfor-
tunately, no crystals could be obtained from these com-
plexes formed by full-length proteins. Analyses of these pu-
rified complexes stored at 4◦C for several weeks by SDS-
PAGE followed by mass spectrometry peptide mass fin-
gerprint revealed degradation of the N-terminal extremity
from YlTrm9. Therefore, two truncated YlTrm9 forms lack-
ing residues 1–18 or 1–37 (hereafter named YlTrm9N19 and
YlTrm9N38, respectively) were cloned, co-expressed with
YlTrm112 and purified. Compared to full-length YlTrm9-
Trm112 complex, both truncated forms were strongly af-

fected in their enzymatic activity of methylation toward a
tRNA mixture isolated from a S. cerevisiae trm9Δ strain
but displayed the same affinity for SAM, indicating that the
N-terminal residues deleted in these constructs are required
for optimal enzymatic activity (Supplementary Figure S1).
Diffracting crystals were obtained for the YlTrm9N38-
Trm112 complex and its structure was solved by the MAD
method using the anomalous signal of the zinc atom bound
to Trm112. The final model was refined to 2.5 Å and yielded
R and Rfree values of 19.9% and 24.2%, respectively (Table 1,
see Supplementary Figure S2 for electron density maps).

YlTrm9N38 adopts the typical fold of the class I SAM-
dependent MTases composed of a central seven-stranded ß-
sheet surrounded by two �-helices on each side (Figure 1A).
A twisted two-stranded antiparallel ß-sheet (strands ßA
and ßB) is inserted between strand ß5 and helix �E and
forms a lid positioned on top of the C-terminal extrem-
ity of the central ß-sheet. YlTrm112 is formed by a zinc
binding domain made of two �-helices (�1–2) and a four-
stranded antiparallel ß-sheet as well as a helical domain of
3 �-helices (�3 to �5). The YlTrm112 structure is very sim-
ilar to the crystal structures of ScTrm112 either in its free
form (13) or bound to Bud23 (15) (rmsd of 1.21–1.38 Å;
49% sequence identity). The only major difference between
YlTrm112 and free ScTrm112 results from a rearrangement
of the C-terminal extremity from YlTrm112 (correspond-
ing to residues F122–L124). A similar rearrangement of this
Trm112 region is also observed in the Mtq2-Trm112 and
Bud23-Trm112 complexes and is required to avoid a steric
clash between this Trm112 fragment and its MTase partner
(26).

Trm9 binds mainly to Trm112 zinc-binding domain via
a parallel ß-zipper interaction formed by Trm9 strand ß3
and Trm112 strand ß4, which results in the formation of an
extended eleven-stranded ß-sheet (Figure 1A and B). Com-
plex formation engages an interface area of 1160 Å2 in-
volving 20 and 21 residues from Trm112 and Trm9, respec-
tively (Figure 1D and E). At the center of this interface,
hydrophobic residues (M1, F8, V9, F43, M47, I119, P120
and F122) from Trm112 contact hydrophobic side chains
from Trm9 (V59, F78, V102, A110, P112 and F116), thereby
shielding this Trm9 region from exposure to solvent (Fig-
ure 1B and C). This explains the need to express Trm112
with Trm9 in E. coli to obtain soluble and active Trm9. This
hydrophobic core is surrounded by several hydrogen bonds
and salt bridges (see Supplementary Table S1 for details).
Among these, the ß-zipper interaction is realized by two hy-
drogen bonds engaging main chain atoms from Trm9 V103
as well as P120 and F122 from Trm112 (Figure 1B). Other
hydrogen bonds are formed by E100 from Trm9 with K2
and T5 from Trm112, by R115 from Trm9 with N7 and
the carbonyl group of R50 from Trm112 and by A110 and
E113 from Trm9 with Q10 from Trm112 (Figure 1B and
C). Finally, a salt bridge is formed between Trm9 D117 and
Trm112 R50. Among the Trm9 residues engaged in complex
formation, E100, V102 and F116 from YlTrm9 correspond
to N89, L91 and F105 from ScTrm9, which substitutions
by Lys, Arg and Glu, respectively, were previously shown to
disrupt and inactivate the ScTrm9-Trm112 complex (26). It
is noteworthy that the truncation of residues 263–279 from
ScTrm9 resulted in loss of interaction with Trm112 (11).
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Figure 1. Structure of the YlTrm9-Trm112 complex. (A) Ribbon representations of the crystal structure of the YlTrm9N38-Trm112 complex (left) and
of the model of the YlTrm9N20-Trm112 complex (right). On the left panel, residues 39–44, which adopt different conformations between our crystal
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The corresponding residues from YlTrm9 (residues 214–
234) constitute strands ß6 and ß7 and are not directly in-
volved in Trm112 interaction. Hence, the loss of interaction
with Trm112 most likely results from incorrect folding of
this Trm9 truncated form.

Active site mapping

Despite extensive efforts, we could not obtain crystals of the
YlTrm9-Trm112 or YlTrm9N38-Trm112 complexes bound
to SAM or SAH. We have then modeled a SAM molecule
by superimposing onto YlTrm9 structure our SAM-bound
structure of the ScBud23-Trm112 complex (15) (rmsd of
2 Å over 134 C� atoms; 19% sequence identity). We have
further observed that upon SAM binding, ScBud23 N-
terminal region folds as an �-helix that lies onto SAM.
In addition, a similar �-helix is present in the structure
of RPA2492 from Rhodopseudomonas palustris, the protein
sharing the highest structural similarity with Trm9 (Supple-
mentary Figure S3A; rmsd of 1.9 Å over 200 C� atoms; 17%
sequence identity; PDB code: 3E23). Finally, secondary
structure predictions for the N-terminal region from Trm9
proteins strongly suggest that this region has indeed a high
propensity to fold as an �-helix. Based on these observa-
tions, in our model of the YlTrm9-Trm112 complex bound
to SAM, residues 20–45 from YlTrm9 fold as two �-helices
(Figure 1A) and the side chains from YlTrm9 Y29 and F36
(ScTrm9 Y18 and F25) match with RPA2492 Y17 and Y24,
and are located onto SAM, further validating our model
(Supplementary Figure S3B). Finally, in this model, the
Trm9 loop connecting strands ß3 and ß4 is sandwiched be-
tween Trm112 on one side and SAM on the other. As shown
for Mtq2-Trm112 (26), Trm112 could stabilize this loop and
hence confer SAM binding activity to Trm9. This would
then rationalize in part the role of Trm112 in Trm9 acti-
vation.

Mapping of the sequence conservation at the surface of
this model reveals the presence of a patch formed by highly
conserved residues centered on the SAM methyl group (Fig-
ure 2A). Several residues from this patch (H24, R29, K31,
H115, H116, W145, Q149, W168, R241, Y243, D270 and
N271; for clarity, ScTrm9 numbering will be used in this
paragraph as functional analysis were performed in S. cere-
visiae, see Table 2 for correspondence between S. cere-
visiae and Y. lipolytica numbering) or from other Trm9 re-
gions (R122 and E148) were mutated into alanine to test
their role in S. cerevisiae Trm9 activity. As a control, we
have also considered the D72A catalytic mutant deficient
in SAM binding (26). Mutations were introduced into the

chromosomic copy of S. cerevisiae TRM9 gene and the ac-
tivity of these mutants was first tested in vivo using the
zymocin killer eclipse assay. While seven mutants (H24A,
K31A, H115A, R122A, E148A, Q149A and D270A) ex-
hibited the same phenotype as WT Trm9, eight mutants
(R29A, D72A, H116A, W145A, W168A, R241A, Y243A
and N271A) were resistant to zymocin suggesting that their
tRNA modification enzymatic activity is strongly impaired
(Table 2 and Figure 2B). These eight mutants as well as
two zymocin sensitive mutants (H115A and Q149A) af-
fecting residues directly oriented toward the putative ac-
tive site were selected for further functional analyses. Co-
immunoprecipitation experiments demonstrated that the
loss of in vivo activity of these mutants is not due to disrup-
tion of the Trm9-Trm112 complex (Figure 2C). This further
indicated that all these mutants accumulate in the cells al-
though to various extents depending on the mutants and
that these mutations might directly impact the enzymatic
activity of the complex.

All these complexes were expressed in E. coli and ex-
hibited the same purification profile as the wild-type com-
plex strongly suggesting that they are properly folded. The
S. cerevisiae Trm9-Trm112 complex was previously demon-
strated to convert cm5U into mcm5U using SAM as methyl
donor (44) and we have confirmed this by 2D-TLC (Sup-
plementary Figure S4A). We have further measured the in
vitro enzymatic activity of Trm112-Trm9 mutants at pH
7.5, which corresponds to the optimum of activity (Sup-
plementary Figure S4B and C), by using [3H]-SAM and
total tRNAs purified from S. cerevisiae trm9Δ strain as
substrates. As this mixture of tRNAs contains both sub-
strate tRNAs and non-substrate tRNAs, the latter poten-
tially developing inhibitory effect on Trm9 activity, only
apparent kinetic properties (initial velocity, specific activ-
ity, Km and kcat) could be determined. Among the mutants
exhibiting zymocin resistance in vivo, the D72A, H116A,
W145A and W168A mutants were inactive while the R29A,
R241A, Y243A and N271A mutants exhibited apparent
specific activities at least one order of magnitude lower than
the ScTrm9-Trm112 WT enzyme (Figure 2D, Table 2). The
two mutants associated to the zymocin sensitivity pheno-
type proved to be only slightly affected (H115A) or as ac-
tive (Q149A) as the wild-type enzyme, respectively. Hence,
the effect of mutations on both zymocin phenotype and
enzymatic activity are correlated. Interestingly, the H115A
and Y243A mutants, which modify the same amount of
tRNA after 1 h in our experimental conditions, exhibit sen-
sitive and resistant zymocin phenotype, respectively. From
detailed kinetics analysis, it appears that Y243A mutant ex-

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
structure and our model, are colored in blue. On the right panel, the modeled YlTrm9 fragment encompassing residues 20–39 (helix �Y) is shown in blue.
The modeled SAM molecule is shown in sticks. YlTrm112 secondary structure elements are labeled in italics. (B and C) Detailed views of the residues
involved in YlTrm9N38-Trm112 interface. Hydrogen bonds and salt bridges are show by black dotted lines. (D) Sequence alignments of Trm9 orthologs
from Y. lipolytica (YlTrm9), Homo sapiens (ABH8) and S. cerevisiae (ScTrm9). Strictly conserved residues are in white on a black background. Partially
conserved amino acids are boxed. Secondary structure elements assigned from the YlTrm9N38 crystal structure are indicated above the alignment. Black
stars indicate residues involved in complex formation. Filled or open circles below the alignment indicate residues, which mutation into Ala results in
zymocin resistance or sensitivity, respectively. For clarity, both YlTrm9 and ScTrm9 numbering are indicated. Two regions corresponding to fragments
present only in ScTrm9 or ABH8 have been omitted. (E) Sequence alignments of Trm112 orthologs from Y. lipolytica, Homo sapiens and S. cerevisiae.
Strictly conserved residues are in white on a black background. Partially conserved amino acids are boxed. Secondary structure elements assigned from the
YlTrm112 crystal structure are indicated above the alignment. Black stars indicate residues involved in complex formation. Panels D and E were generated
using the ESPript server (49).
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Figure 2. Trm9 active site mapping. (A) Mapping of the sequence conservation score at the surface of the YlTrm9-Trm112 model. Coloring is from gray (low
conservation) to blue (highly conserved). The conservation score was calculated using the CONSURF server (50). (B) Analyses of the zymocin phenotype
of yeast mutant strains by eclipse assay. Each S. cerevisiae mutated strain was subjected to killer eclipse assay with the Kluyveromyces lactis AWJ137
killer strain (top) and the Kluyveromyces lactis NK40 non-killer strain (as a control, bottom). The presence or absence of an eclipse around the killer
strain shows the sensitivity or resistance of the mutated strain to zymocin toxin, respectively. Resistant and sensitive strains are labeled in red and green,
respectively. (C) Effect of Trm9 mutations on ScTrm9/ScTrm112 in vivo interaction. Soluble protein extracts (Input: 1/50th of total proteins, i.e. 10 �g) and
immunoprecipitates (IP: 1/10th of immunoprecipitated material) were subjected to 15% SDS–PAGE analysis and immunoblotted using mouse anti-Myc
(Trm9–13Myc) or rabbit anti-Trm112 as primary antibodies and sheep anti-mouse or sheep anti-rabbit HRP-conjugated IgG as secondary antibodies,
respectively. Note that for the anti-myc probing, the lower bands observed in some of the input lanes result from Trm9-myc protein degradation whereas
the band observed in the IP lanes comes from mouse primary antibody heavy chain cross-reacting with anti-mouse secondary antibody. IP were performed
using 9E10 anti-myc monoclonal antibodies. (D) Enzymatic activity of Trm112-Trm9 mutants. The curves obtained after fitting of the experimental data
with equation given in the Materials and Methods section are shown by lines using the same color code as for the symbols. (E) Detailed representation of
the YlTrm9 active site. Side chains from residues which substitution by Ala strongly (brown) or only weakly (green) affect enzymatic activity are shown
as sticks. For clarity, ScTrm9 numbering is used. A manually docked cm5U nucleotide is shown as beige sticks and potential hydrogen bonds that it could
form with Trm9 active site residues are depicted by dashed black lines. The modeled SAM molecule is shown as blue sticks and the methyl group to be
transferred is shown as a sphere.
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Table 2. Functional and enzymatic analysis of Trm9 mutants

ScTrm9 mutants
(YlTrm9 numbering)

Zymocin
sensitivity

Apparent
specific activitya

SAM binding
(%)b

Apparent Km
for tRNA

(�M)c

Apparent kcat
for tRNA

(10−3 s−1)c

Apparent
kcat/Km for

tRNA
(M−1. s−1)

Apparent Km
for SAM (�M)c

Apparent kcat
for SAM

(10−3 s−1)c

Apparent
kcat/Km for

SAM
(M−1. s−1)

Sc WT + 2105 ± 221 100 0.08 ± 0.02 32 ± 2 400x103 4.9 ± 1.1 23.7 ± 2.2 4837
H24A (H35) + ND ND ND ND ND ND ND ND
R29A (R40) - 108 ± 5 93 ± 21 0.936 ± 0.149 1.9 ± 0.15 2.03x103 5.4 ± 1.6 2.5 ± 0.25 463
K31A (K42) + ND ND ND ND ND ND ND ND
D72A (D83) - 0 0 ND ND ND ND ND ND
H115A (H126) + 517 ± 39 143 ± 18 0.351 ± 0.118 6 ± 0.7 17.1x103 13.5 ± 2.8 11.7 ± 0.1 867
H116A (H127) - < 10 51 ± 5 ND ND ND ND ND ND
R122A (R133) + ND ND ND ND ND ND ND ND
W145A (W156) - < 10 85 ± 12 ND ND ND ND ND ND
E148A (E159) + ND ND ND ND ND ND ND ND
Q149A (Q160) + 2498 ± 149 98 ± 18 ND ND ND ND ND ND
W168A (W179) - < 10 46 ± 16 ND ND ND ND ND ND
R241A (R192) - 26 ± 3 173 ± 11 0.374 ± 0.008 0.8 ± 0.006 2.14x103 19 ± 16 0.85 ± 0.42 45
Y243A (Y194) - 206 ± 5 126 ± 11 0.851 ± 0.222 4.5 ± 0.5 5.29x103 10 ± 3 2.9 ± 0.4 290
D270A (D221) + ND ND ND ND ND ND ND ND
N271A (N222) - 80 ± 3 67 ± 18 0.337 ± 0.09 1 ± 0.078 2.97x103 10 ± 6 0.25 ± 0.07 25
Yl WT ± 678 ± 65 ND ND ND ND ND ND ND

aApparent specific activity (fmol of tRNA methylated/min/pmol of enzyme) calculated from apparent initial velocity. The kinetics were performed with 1.5 pmol of enzyme.
bThese are relative values calculated fixing WT as 100%.
cThese values were determined by fitting the data using the Michaelis–Menten equation.
ND: Not determined.

hibits reduced specific activity compared to the H115A mu-
tant (Table 2). Therefore the threshold of Trm9 specific ac-
tivity determining the cell phenotype toward zymocin lies
somewhere in the window of specific activities defined by
H115A and Y243A mutants. This indicates that the zy-
mocin resistance phenotype in vivo is an effective tool for
selecting mutants with significantly depressed Trm9 activity
compared to the WT, phenotype toward zymocin switch-
ing from sensitive into resistant when in vitro Trm9 appar-
ent specific activity is between 25% (H115A, sensitive) and
10% (Y243A, resistant) of the WT. We finally verified that
the inactivation of these mutants did not result from defect
in SAM binding using equilibrium dialysis (Table 2). As ex-
pected, the D72A mutant is inactive due to its complete loss
of SAM binding capacity. The other mutants were still able
to bind SAM although to different extent compared to WT
complex. For these mutants, we do not observe any cor-
relation between enzyme specific activity and SAM bind-
ing measurements, indicating that the decrease/loss of en-
zyme activity cannot be attributed to its reduced ability to
bind SAM. Altogether, these results strongly suggest that
the H116A, W145A, W168A, Y243A and to a lesser ex-
tent R29A, R241A, N271A and H115A ScTrm9 mutants
affect enzyme activity due to the direct involvement of these
residues in catalysis or in binding of tRNA substrate.

Substrate binding and catalytic mechanism

Our site-directed mutagenesis strategy on strictly con-
served residues surrounding the SAM methyl group in the
YlTrm9N38-Trm112 crystal structure has led to the iden-
tification of several Trm9 residues crucial for formation
of mcm5U34 in some tRNAs (Figure 2B–D). The Trm9-
Trm112 complex catalyzes the O-methylation of the car-
boxylic function of the carboxymethyl group of cm5U34.
Due to the nucleophilic property of oxygen atoms, it is
generally assumed that the methyl transfer reaction oc-
curs through a direct SN2 mechanism with the nucleophilic
attack of the substrate (cm5U) on the electrophilic SAM
methyl group to form the methyl ester product (mcm5U)

and SAH (45). Such reaction requires the strict orientation
of the incoming nucleophile to be optimal.

The comparison of previously described structures of
MTases methylating carboxylic acids (i.e. TYW4 MTase,
which is involved in the synthesis of wybutosine in Phe-
tRNA (46), glutamate MTase CheR (47) and human
LCMT-1 (48), which modifies the C-terminal leucine from
PP2A) shows that two structurally conserved residues, an
Arg and a Tyr (respectively R73 and Y203 in human
LCMT-1), point toward the SAM methyl group and are
ideally positioned to orient the substrate carboxylic group
through electrostatic interactions (Supplementary Figure
S5A). In our structure, the strictly conserved YlTrm9 H127,
corresponding to ScTrm9 H116, which is crucial for enzy-
matic activity, structurally matches with Y203 from LCMT-
1 (Supplementary Figure S5B). The H127 side chain forms
a hydrogen bond with Y193 (Y242 in ScTrm9) carbonyl
group from strand ßB through its N∂1 atom whereas the
N�2 atom forms a hydrogen bond with a water molecule.
This water molecule, also coordinated by H126 (ScTrm9
H115), is 2.75 Å away from the SAM methyl group and
is very likely to occupy the position of one of the oxygen
atoms from the cm5U carboxylic group. In our structure,
no basic residue exactly matches structurally with R73 from
LCMT-1. However, our mutagenesis analysis has revealed
that ScTrm9 R29, which is located in the Trm9 region cor-
responding to LCMT-1 fragment encompassing R73, is im-
portant for activity (R29 mutant enzyme exhibits only 5%
of the specific activity of the WT enzyme). We then sug-
gest that ScTrm9 R29 could play the same role as R73 from
LCMT-1. In YlTrm9N38, R40, corresponding to ScTrm9
R29, is engaged in crystal packing and is oriented in an
opposite direction relative to the active site. In our model
of the YlTrm9 structure bound to SAM, we have oriented
R40 toward the SAM methyl group. This would allow its
side chain to interact with the cm5U carboxyl group and
to contribute to its correct positioning for methyl transfer
(Supplementary Figure S5B). Both R40 and H127 residues
in YlTrm9 would then be ideally positioned to participate
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in the catalysis and might play the same role as the R/Y
dyad in TYW4, CheR and LCMT-1 active sites, i.e. posi-
tioning the substrate carboxylate group (cm5U in the case
of Trm9-Trm112) for the nucleophilic attack onto SAM
methyl group.

Furthermore, most of the strongly affected Trm9 mutants
studied here are oriented toward the SAM methyl group
to be transferred onto the cm5U and are very likely to di-
rectly participate in the optimal orientation of the cm5U34
nucleotide from the tRNA substrates into the active site.
We have then manually docked a cm5U nucleotide into
the YlTrm9-Trm112 active site (Figure 2E). In this model,
N222 side chain (N271 in ScTrm9) forms bidentate hydro-
gen bonds with the O2 and N3 atoms from U34 and then
could be responsible for the selective recognition of pyrim-
idine ring at the wobble position. H126 (H115) forms a hy-
drogen bond with the O4 atom from U34 allowing Trm9 dis-
criminating between U and C. In addition, a slight reorien-
tation of W156 side chain (W145) into the Trm9 active site
would allow it to stack onto the U34 pyrimidine ring. R192
(R241) and Y29 (Y18, not mutated in this study) side chains
are also within hydrogen bond distances from the cm5U
carboxylic group. Finally, the W179 indole ring (W168 in
ScTrm9) is solvent-exposed and could stack against the ring
of a nucleotide adjacent to U34. Last but not least, in this
model, the U34 3′ and 5′ positions are oriented outward the
active site and hence, this model is consistent with the bind-
ing of a tRNA molecule.

We have next performed kinetic analyses on the WT,
R29A, H115A, R241A, Y243A and N271A Trm9 mutants
to investigate the role of these residues in tRNA modifi-
cation (Table 2). Overall, compared to WT Trm9-Trm112
complex, all the mutant complexes are strongly affected in
their apparent Km for tRNA (from 4- to 12-fold increase)
and in their kcat (up to 100-fold decrease) whereas their Km
for SAM is much less affected (up to 4-fold). The R29A,
H115A and Y243A mutants exhibit a strict correlation be-
tween the increase of Km for tRNA and the decrease of kcat
which indicates these residues play an equally important
role in the binding of the tRNA and in the catalysis whereas
their respective Km for SAM are either unchanged (R29A)
or only slightly increased (H115A and Y243A). This clearly
demonstrates the involvement of these residues in the bind-
ing of the tRNA substrate rather than in the binding of
SAM. For the R241A and N271A mutants, the overall ef-
fect on Km is the same as described above (Km for tRNA
significantly more affected than Km for SAM) with a more
dramatic decrease of kcat, which may also account for the
catalytic instability of these complexes during the assay. Al-
together, the joint effect of mutations observed on the Km
for tRNA and kcat support that the conserved residues are
involved in tRNA binding and participate directly in the
proper orientation of the cm5U34 substrate into the active
site, which is required for optimal methyl transfer reaction
by the SN2 mechanism.

Comparison with other Trm112-MTase complexes

Trm112 interacts with and activates four MTases that adopt
(Trm9, Mtq2 and Bud23) or are predicted to adopt (Trm11)
the same fold. To date, we have determined the crystal struc-

tures of complexes between Trm112 and three MTase part-
ners (Mtq2, Bud23 and Trm9, (15, 26) and this study). Inter-
estingly, all these 3 MTases interact in a very similar man-
ner with Trm112 as illustrated by the superimposition of
the YlTrm9-Trm112 complex onto ScBud23-Trm112 (rmsd
value of 2.1 Å) and EcMtq2-Trm112 complexes (rmsd value
of 3 Å; Figure 3A and B). As expected from phylogenetic
distance between these organisms, the Mtq2-Trm112 com-
plex from the E. cuniculi parasite is the most divergent
among the three complexes, and the two complexes formed
by fungal proteins share more similarities. This compari-
son clearly indicates that the previously proposed compe-
tition between these MTases to interact with Trm112 is not
due to slightly overlapping binding sites but to binding of
these MTases to exactly the same region from Trm112. Al-
though these structures are derived from complexes origi-
nating from different organisms, this offers the unique op-
portunity to compare their binding modes and to under-
stand the molecular mechanisms allowing Trm112 to in-
teract with four structurally similar MTases sharing less
than 20% sequence identity within the same organism.
We therefore generated a structure-based sequence align-
ment of YlTrm9, EcMtq2 and ScBud23 and extended this
alignment by including ScMtq2, ScTrm9 and ScTrm11 se-
quences (Figure 3A). From this alignment, we assume that
ScMtq2 and ScTrm9 residues that align with EcMtq2 and
YlTrm9 residues involved in the interaction with EcTrm112
and YlTrm112, respectively, are also contacting ScTrm112.
As previous studies have shown that over-expression of
ScTrm9 decreases the amount of ScTrm11 immunoprecip-
itated with ScTrm112 (11), we also assume that Trm11
and Trm112 interact the same way, although no structure
of this complex is available yet. Hence, we propose that
ScTrm11 residues aligning with interface residues from the
other MTases are engaged in the interaction with ScTrm112
(Figure 3A).

The structural comparison between these Trm112-MTase
complexes as well as the structure-based alignment of the
MTase proteins allow us to identify several common fea-
tures, which could explain the ability of Trm112 to inter-
act with its four MTase partners. First, a ß-zipper interac-
tion is formed between strand ß4 from Trm112 and strand
ß3 from the various MTases (Figure 3B). Such interaction
mode implies formation of a hydrogen bond network be-
tween main chain atoms from both partners and hence is
less altered by side chain variations at these positions of
the four MTases. Second, Trm112 shields from the solvent
a hydrophobic zone on these three MTases. Although the
side chains corresponding to this hydrophobic core in the
four MTases from S. cerevisiae exhibit some degree of vari-
ation (Figure 3C), the hydrophobic character of this core
is conserved thereby explaining Trm112 solubilizing effect
on most of these MTases. Finally, three electrostatic hot
spots are conserved between fungal ScBud23-Trm112 and
YlTrm9-Trm112 crystal structures. The first one involves
E100 from YlTrm9 (N89 from ScTrm9) that forms hydro-
gen bonds with K2 and T5 residues from YlTrm112 (Sup-
plementary Table S1; Figure 3D). YlTrm9 E100 structurally
matches with D94 from ScBud23, which is also engaged in
hydrogen bonds with K2 and T5 residues from ScTrm112.
In ScMtq2 and ScTrm11, the corresponding residues are
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Figure 3. Structural comparison of Trm112-MTase complexes. (A) Structure-based sequence alignment of MTases interacting with Trm112. Only regions
of these MTases that interact with Trm112 are shown. Residues directly contacting Trm112 in the X-ray structures of the complexes are in white on
a black background. Residues from ScTrm9, ScTrm11 and ScMtq2, matching with interface residues from YlTrm9 and EcMtq2, are shown in black
on a yellow background. YlTrm9 secondary structure elements are depicted below the alignment. Stars below the alignment indicate residues strictly
conserved in all 4 ScMTases considered. Residues highlighted in panels C to E are boxed in red. (B) Superimposition of the structures of the YlTrm9-
Trm112, ScBud23-Trm112 and EcMtq2-Trm112 complexes. (C–E) Detailed comparison of the hydrophobic core (C) and electrostatic hot spots (D and E)
involved in YlTrm9-Trm112 and ScBud23-Trm112 complexes. Same color code as panel B. (F) Effect of ectopic plasmid-driven expression of YlTrm112
(+pYlTrm112) and ScTrm112 (+pScTrm112) proteins on the susceptibility to zymocin of S. cerevisiae expressing either ScTrm9 (dark gray) or YlTrm9
(light gray) WT protein from the unique genomic copy of the corresponding gene under the control of ScTRM9 natural promoter.

E101 and D268, respectively. Hence, in S. cerevisiae, the
side chains found at this position of the four MTases have
a similar size and possess a carbonyl group that can be en-
gaged in hydrogen bonds with K2 and T5 from ScTrm112.
This is supported by our earlier observation that the sub-
stitution of N89 by Lys in ScTrm9 (in combination with
L91R mutation) prevents complex formation and there-
fore inactivates Trm9 (26). The second structurally con-
served hot spot is a salt bridge formed between YlTrm9
D117 with YlTrm112 R50 and between ScBud23 D112 with
ScTrm112 R53 (Figure 3E). An Asp residue is conserved at
this position in all MTases interacting with ScTrm112 (Fig-
ure 3A) and we propose that a salt bridge between this Asp
and ScTrm112 R53 occurs in all these Trm112-Mtase com-
plexes. We previously observed that although such interac-
tion did not exist in the structure of the EcMtq2-Trm112
complex due to discrepancy in the Trm112 central domain
containing this Arg residue, the ScTrm112 R53E mutation
strongly reduced the solubility and the stability of ScMtq2
and resulted in complete loss of enzyme activity (26). The
third hot spot consists in three hydrogen bonds formed by

YlTrm9 R115 side chain with N7 main chain and side chain
carbonyl groups and R50 carbonyl group from YlTrm112
(Figure 3E). In our structural alignment, a basic residue
is not conserved at the position corresponding to YlTrm9
R115 (T104 in ScTrm9, Q115 in ScMtq2, V284 in ScTrm11
or S110 in ScBud23). However, the guanidinium group
from ScBud23 R107 occupies exactly the same position as
the guanidinium group from YlTrm9 R115 and forms the
same hydrogen bonding network with the N7 (also N7 in
YlTrm112) main chain and side chain carbonyl groups and
the carbonyl group from ScTrm112 R53 (R50 in YlTrm9).
In our alignment, the residues corresponding to ScBud23
R107 are K101 in ScTrm9, R280 in ScTrm11 and R112 in
ScMtq2, indicating that this interaction network can exist
in all these ScTrm112-MTase complexes. Hence, these three
crystal structures of Trm112-MTase complexes help us to
understand in detail the structural plasticity that allows the
small Trm112 protein to interact through the same mecha-
nism with four MTases adopting the same fold but sharing
less than 20% sequence identity.
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To go deeper into the understanding of Trm112 ability
to interact with various MTases, we have tested whether
YlTrm9, which shares 59% sequence identity with ScTrm9,
could functionally complement for the deletion of TRM9
gene in S. cerevisiae and therefore could form a hybrid com-
plex with ScTrm112. First, we have performed enzymatic
assays with the purified full-length YlTrm9-Trm112 com-
plex and tRNAs purified from S. cerevisiae trm9Δ strain as
substrates. We observe that the Yl complex is functional on
S. cerevisiae tRNAs and exhibits only a 3-fold decrease in
apparent specific activity compared to Sc complex in vitro
(Table 2). Furthermore, according to its apparent specific
activity, the Yl complex should be associated with zymocin
sensitivity phenotype in vivo (Table 2). Next, we have used
an in vivo complementation approach in S. cerevisiae to
characterize the biological activity of full length YlTrm9.
Following the replacement of genomic ScTRM9 gene by
YlTRM9 gene (under the control of the ScTRM9 natural
promoter), the plasmid-driven expression of YlTrm112 ren-
ders the strain sensitive to zymocin, indicating that an ac-
tive YlTrm9-YlTrm112 complex can assemble and methy-
lates Sc tRNAs in vivo (Figure 3F). In the absence of ec-
topic YlTrm112 (i.e. in the presence of the sole endogenous
ScTrm112), the strain is more resistant to zymocin indi-
cating a defect in YlTrm9 activity. As YlTrm9 is proved to
be efficiently expressed and active in S. cerevisiae, the lat-
ter phenotype observed could account for the lack of in-
teraction between YlTrm9 and ScTrm112. To test whether
the likely competition between YlTrm9 and Sc natural part-
ners (Bud23, Mtq2 and Trm11) for ScTrm112 could be
responsible for this phenotype, we considered the poten-
tial effect of increasing ScTrm112 expression level on cell
phenotype toward zymocin. Plasmid-driven expression of
ScTrm112 resulted in zymocin sensitivity level comparable
to the one previously obtained with YlTrm112 (Figure 3F).
This indicates that ScTrm112 (50% sequence identity with
YlTrm112) is able to activate YlTrm9 in vivo to a similar ex-
tent as YlTrm112. This most likely occurs through a direct
interaction between ScTrm112 and YlTrm9 (59% and 79%
sequence identity and similarity with ScTrm9, respectively).
It should be noted that this chimeric YlTrm9-ScTrm112
complex is probably less stable than the corresponding com-
plex formed by proteins from the same organism as it is nec-
essary to increase expression level of ScTrm112 to enhance
zymocin sensitivity. This is further supported by prelimi-
nary co-IP experiments showing that no YlTrm9-ScTrm112
interaction could be characterized using a routine protocol
suitable for measuring ScTrm9-ScTrm112 interaction.

Altogether, these results show that MTase-Trm112 bind-
ing mode is compatible with the formation of chimeric com-
plexes between proteins from different organisms as illus-
trated by the ability of ScTrm112 to activate YlTrm9, which
shares about 60% sequence identity with ScTrm9. This is
further supported by the ability of ABH8 (and hTrm9L)
and WBSCR22 (Bud23 orthologue) human genes to par-
tially complement the deletion of TRM9 and BUD23 genes
in S. cerevisiae, respectively (24).

CONCLUSION

The structure of the Trm9-Trm112 tRNA MTase holoen-
zyme combined with functional studies has allowed the
mapping of its active site and enabled us to propose a model
of the catalytic mechanism and binding mode of the cm5U
moiety of the tRNA substrate. In addition, the detailed
comparison of this structure to those of ScBud23-Trm112
and EcMtq2-Trm112 complexes highlights that during evo-
lution, sequences of all these proteins within the same or-
ganism have evolved in a concerted manner so as to main-
tain the Trm112 ability to interact with its MTase partners
that share less than 20% sequence identity.

ACCESSION NUMBERS

The atomic coordinates and structure factors have been de-
posited into the Brookhaven Protein Data Bank under ac-
cession numbers (5CM2).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

ACKNOWLEDGEMENTS

We are indebted to M. Argentini and D. Cornu for
mass spectrometry analysis (SICaps, IMAGIF Platform,
Gif/Yvette, France), to Dr V. Heurgué-Hamard for her help
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Table S1: Details of the electrostatic interactions involved in YlTrm9N38-Trm112 and 
ScBud23-Trm112 interactions.  

Interactions formed between structurally matching residues from both complexes are shown on the 
same line. 

YlTrm9 YlTrm112 ScBud23 ScTrm112

Hydrogen bonds Hydrogen bonds

Cys48 O Asn49 Nd2

Glu100 Oe1 Lys2 N Asp94 Od2 Lys2 N

Glu100 Oe1 Thr5 Og1 Asp94 Od2 Thr5 Og1

Val103 N Pro120 O Leu97 N Pro126 O

Val103 0 Phe122 N Leu97 O Leu128 N

Arg107 N Phe8 O

Arg115 Nh2 Asn7 Od1 Arg107 Nh2 Asn7 Od1

Arg115 Nh1 Asn7 O Arg107 Ne Asn7 O

Arg115 Nh2 Arg50 O Arg107 Nh2 Arg53 O

Ser110 O Arg53 Nh1

Ala110 O Gln10 N Pro105 O Lys10 N

Glu113 Oe2 Gln10 Ne2

Glu92 O Lys2 Nz

Salt bridges Salt bridges

Arg139 Asp17

Asp117 Arg50 Asp112 Arg53
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Table S2: Yeast strains
Strains Genotype Source

Kluyveromyces lactis

AWJ137 leu2 trp1[k1+k2+] K. Breunig 

(University of Halle, 

Germany)

NK40
ade1 ade2 leu2 [k2+]

R. Schaffrath 

(University of 

Leicester, UK)

Saccharomyces cerevisiae

YPH499 MATa ura3-52 lys2-801 amber ade2-101 ochre trp1-Δ63 his1-

Δ200 leu2-Δ1

Agilent Technologies

YDL201 YPH499 TRM9::kanMX6 This study

YDL202 YPH499 TRM9(D72A)::kanMX6 This study

YDL203 YPH499 TRM9(N89K/L91R)::kanMX6 This study

YDL204 YPH499 TRM9(F105E)::kanMX6 This study

yMG42 YPH499 TRM9(H115A)::kanMX6 This study

yMG43 YPH499 TRM9(H116A)::kanMX6 This study

yMG44 YPH499 TRM9(R29A)::kanMX6 This study

YDL205 YPH499 TRM9(R241A)::kanMX6 This study

YDL301 YPH499 TRM9(W145A)13myc::kanMX6 TRM112-3HA::TRP1 This study

YDL302 YPH499 TRM9(Q149A)13myc::kanMX6 TRM112-3HA::TRP1 This study

YDL303 YPH499 TRM9(W168A)13myc::kanMX6 TRM112-3HA::TRP1 This study

YDL304 YPH499 TRM9(Y243A)13myc::kanMX6 TRM112-3HA::TRP1 This study

YDL305 YPH499 TRM9(N271A)13myc::kanMX6 TRM112-3HA::TRP1 This study

yMG45 YPH499 trm9∆::URA3 This study

yMG46 YPH499 trm9∆::kanMX6 This study

yMG47 YPH499 trm9∆::YlTRM9 This study

yMG48 YPH499 trm9∆::YlTRM9DN37 This study
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yMG5 YPH499 + empty pESC-URA This study

yMG41 yMG46 + empty pESC-URA This study

yMG6 yMG47 + empty pESC-URA This study

yMG8 YPH499 + pMG571 This study

yMG40 yMG46 + pMG571 This study

yMG1 yMG47 + pMG571 This study

yMG37 YPH499 + pU-FSc112 This study

yMG38 yMG46 + pU-FSc112 This study

yMG39 yMG47 + pU-FSc112 This study

yMG24 YPH499 TRM9(H115A)-11Myc::TRP1 This study

yMG25 YPH499 TRM9(H116A) -13Myc::TRP1 This study

yMG23 YPH499 TRM9(R29A) -13Myc::TRP1 This study

yMG29 YPH499 TRM9(R241A) -11Myc::TRP1 This study

BSY2534 BMA64 (MATa ade 2-1 his3-11,15 leu2-3,112 trp1∆ ura3-1 

can1-100) elp1∆::kanMX6

From B. Séraphin

!4

112

tvnhanst@outlook.com
Text Box




Table S3: Primers for yeast constructions
Oligonucleotide Sequence

F2 Trm9 (13myctagging) 5’CTTCGAGCGCGACAATTGGTGGGTGGTGGCCCAGAAGAGA
CGGATCCCCGGGTTAATTAA 3’

F2-YlTrm9(13myctagging) 
oMG220

5’TAATTGGTGGGTGGTAGCCAAGAGAGGTGACGATTGGAGT
CGGATCCCCGGGTTAATTAA 3’

F3 Trm9 5’CTTCGAGCGCGACAATTGGTGGGTGGTGGCCCAGAAGAGA
TGAGGCGCGCCACTTCTAAA 3’

Ftrm9D72A 5'GGAGTGAACCCTGATATATATATTATCGGTTCAGCGCGCTCA
GATGGTCTTATTGAGTGC 3' 

Ftrm9N89K+L91R 5'GCCAGAGGAATAAACCCATCGTATAAATTACGGGTGGCAGA
CGGGCTGAACTTACCACAC 3'

Ftrm9F105E 5'CTGAACTTACCACACAAAAACGAAACAGAAGACTTCGCCA
TCTCAATTGCTGTAGTGCAT3'  

Ftrm9 R29A 5’GTGTATAATGAGATAGCTCCGCATTTCTCGCAAACTGCATAT
AAGCCATGGCCCATAGTG 3’

Ftrm9 R241A 5’GATCAAGAACAGGAAAGAGAAGAGGTAAAATACGCGTACT
ATCACTTATACCGAGAGGGC 3’

Ftrm9 H115A 5’AACATTTGACTTCGCCATCTCAATTGCTGTAGTGGCTCACT
GGTCTACAAGGGAGAGACG 3’

Ftrm9 H116A 5’AACATTTGACTTCGCCATCTCAATTGCTGTAGTGCATGCCTG
GTCTACAAGGGAGAGACG 3’

oMG197 (Ftrm9 W145A) 5’AAGCTACGTCAGGGCGGACAAGCATTAATATATTGTGCCGC
TCTAGAACA GGGCAGCTCC 3’

oMG199 (Ftrm9 Q149A) 5’GCGGACAAGCATTAATATATTGTTGGGCTCTAGAAGCCGGC
AGCTCCCGT AGAGGTTACC 3’

oMG198 (Ftrm9 W168A) 5’TACCATGAAGGTATGGAGCAAGATGTCTTTGTCCCCGCGGT
TCTTCCCAA GAGTAAATCC 3’

oMG200 (Trm9 N271A) 5’GGCGCTGCCGTTCATAGTGAGGGCTTCGAGCGCGACGCTT
GGTGGGTGGTGGCCCAGAAG 3’

oMG201 (Trm9 Y243A) 5’ATCAAGAACAGGAAAGAGAAGAGGTAAAATACCGgTACGC
TCACTTATACCGAGAGGGCG 3’

R1-trm9 5'CCTGCTGCTACAAAATACACTGTCTACCTATATATCACCTGAA
TTCGAGCTCGTTTAAAC3'

Nucleotides corresponding to introduced mutations are underlined and in bold
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F1-URA-trm9 (deletion) 5’AGGTCTCGAAGAGCCAAGAAATAAAAGGTTAAGAACCAAC
TAACTATGCGGCATCAGAGC 3’

R1-URA-trm9 (deletion) 5’CCTGCTGCTACAAAATACACTGTCTACCTATATATCACCTCCT
GATGCGGTATTTTCTCC 3’

F1-URA-trm112 (deletion) 5’TCTCTTCGGCTCTACACATCATATTACTAGCCTAGTCAACTA
ACTATGCGGCATCAGAGC 3’

R1-URA-trm112 (deletion) 5’TTTTCGTCTT GCGTGCCCACACACAGAGATCTCGCTTGAT  
CCTGATGCGGTATTTTCTCC 3’

Ftrm9::YLTRM9 5’ AGGTCTCGAA GAGCCAAGAAATAAAAGGTT 
AAGAACCAACATGGTGGTCGAATCGGTGCCC 3’

Ftrm9::YLTRM9DN38 5’ AGGTCTCGAA GAGCCAAGAA ATAAAAGGTT 
AAGAACCAACATG AACACGCGAT ACAAGCCGTG 3’

Rtrm9::YLTRM9 5’CCTGCTGCTACAAAATACACTGTCTACCTATATATCACCTTC
AACTCCAATCGTCACCTC 3’

F1Trm9 (deletion) 5’AGGTCTCGAAGAGCCAAGAAATAAAAGGTTAAGAACCAAC
CGGATCCCCGGGTTAATTAA 3’
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Table S4: Primers for plasmid constructions 

Nucleotides corresponding to introduced mutations are underlined and in bold 

Oligonucleotide Sequence

oMG5- F-BamH1-Trm112Yl 
(pESC-URA cloning)

5’GGGGGATCCATGAAATTCCTGACCTCAAACTTCG 3’

oMG6-R-NheI-Trm112Yl 
(pESC-URA cloning)

5’ GGGGCTAGCTTAGGCAGCCAGGTGCGGCGGC 3’

F-NcoIYlTrm9N18 5’GGGCCATGGATAATGAACAGCAGCACGTCC 3’

F-NcoIYlTrm9N37 5’GGGCCATGGCAAATACCCGCTATAAACCGTGG 3’

R-XhoIYlTrm9 5’GGGCTCGAGTCAATGGTGATGGTGATGGTG 3’

F-NdeITrm9 5’GCGCATATGGAGATAAACCAAGCGGCTGA 3’

R-NotITrm9his 5’CTAGCGGCCGCTCAGTGATGGTGATGGTGATGTCTCTTCT
GGGCC 3’

oMG196 (N271A Reverse) 5’ACCCACCAAGCGTCGCGCTCGAAGCCCTCA 3’

oMG195 (N271A Forward) 5’ GAGCGCGACGCTTGGTGGGTGGTGGCCCAG 3’

oMG194 (Y243A Reverse) 5’ TATAAGTGAGCGTATCGGTATTTTACCTCT 3’

oMG193 (Y243A Forward) 5’ TACCGATACGCTCACTTATACCGAGAGGGC 3’

oMG192 (W168A Reverse) 5’ GGAAGAACCGCGGGGACAAAGACATCTTGC 3’

oMG191 (W168A Forward) 5’ TTTGTCCCCGCGGTTCTTCCCAAGAGTAAA 3’

oMG190 (Q149A Reverse) 5’ GAGCTGCCCGCTTCTAGAGCCCAACAATAT 3’

oMG189 (Q149A Forward) 5’ GCTCTAGAAGCGGGCAGCTCCCGTAGAGGT 3’

oMG188 (W145A Reverse) 5’ TCTAGAGCCGCACAATATATTAATGCTTGT 3’

oMG187 (W145A Forward) 5’ ATATATTGTGCGGCTCTAGAACAGGGCAGC 3’
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Table S5: plasmids  

Plasmid name Background Gene cloned

pMG546 pET21a YlTRM112-TRM9-His6

pMG547 pET21a YlTRM112-TRM9N19-His6

pMG548 pET21a YlTRM112-TRM9N38-His6

pMG513 pACYCDUET-1 ScTRM112

pMG540 pET28a ScTRM9

pMG576 pET21a ScTRM9-His6 R241A mutant

pMG577 pET21a ScTRM9-His6 R29A mutant

pMG579 pET21a ScTRM9-His6 D72A mutant

pMG580 pET21a ScTRM9-His6 H115A mutant

pMG581 pET21a ScTRM9-His6 H116A mutant

pMG625 pET28a ScTRM9-His6 W145A mutant

pMG626 pET28a ScTRM9-His6 Q149A mutant

pMG627 pET28a ScTRM9-His6 W168A mutant

pMG628 pET28a ScTRM9-His6 Y243A mutant

pMG629 pET28a ScTRM9-His6 N271A mutant

pMG571 pESC-URA YlTRM112 under PGAL1 control

pU-FSc112 pESC-URA FLAG-ScTRM112 under PGAL10 control
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Legends to supplementary figures. 

Figure S1: The truncated forms of YlTrm9-Trm112 bind SAM but are inactive. 
A. ITC measurements. The YlTrm9-Trm112 full-length (left), YlTrm9N19-Trm112 (middle) and 

YlTrm9N38-Trm112 (right) complexes at 100µM were titrated by 20 successive injections of 2µL 

SAM (1.2mM) at 20°C using a Microcal ITC200 machine. The stoechiometry (N), affinity constant 

(K), ΔH and ΔS values obtained with the ORIGIN program using a one binding site model are 

indicated in the inset. Kd values were calculated using the Kd=1/K relationship. 

B. Activity measurements. The curves obtained after fitting of the experimental data with equation 

given in the Materials and Methods section are shown by lines using the same color code as for the 

symbols. The results obtained for S. cerevisiae wild-type and R241A mutant Trm9-Trm112 

complexes are shown for comparison. 

Figure S2: Electron density maps. 

A. Experimental electron density map (contoured at 1 sigma) obtained after Zn-MAD phasing at 3 

Å resolution. The final model is shown as sticks with Trm9 in green and Trm112 in pink. 

B. Final 2Fo-Fc electron density map (contoured at 1 sigma) obtained at 2.5 Å resolution and 

covering the same region as panel A.  

Figure S3: Superimposition of YlTrm9-Trm112 and RPA2492 Xray structures to model Trm9 

N-terminal helix. 

A. Superimposition of R. palustris RPA2492 (deep salmon) onto YlTrm9-Trm112 (in green and 

pink respectively). The modeled N-terminal helix of YlTrm9 is colored in light green. 

B. Superimposition of RPA2492 (deep salmon) onto our model of YlTrm9-Trm112 (green). YlTrm9 

numbering is used. The SAM from RPA2492 structure is shown in blue sticks.  

Figure S4: pH dependence of Sc Trm9-Trm112 enzymatic activity. 
A. Detection of mcm5U-modified nucleotide using 2D-TLC. Upper part shows chromatographic 

mobility in solvent system A+B, lower part in solvent system A+C. Left panels: reference maps 

(adapted  from  (1,2))  showing  the  theoretical  position  of  mcm5U  nucleoside  in  both  solvent 

systems.  Central  and right  panels:  14C-methyl  group incorporated in modified nucleotides was 

detected by phosphor-imaging, and the positions of unmodified nucleotides were superimposed by 

aligning the spots visualized under UV. In the central panels, the negative control consists in the 
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analysis of nucleotides from tRNAs from Δelp1 strain while in the right panels, tRNAs used were 

purified from Δtrm9 strain. Red arrows indicate the position of the labeled mcm5U.

B.pH dependence  of  Trm9-Trm112 enzymatic  activity.  The  curves  obtained  after  fitting  of  the 

experimental data with equation given in the Materials and Methods section are shown by lines 

using the same color code as for the symbols.

C.Table summarizing the apparent specific activities derived from the fitting of the curves shown in 

panel B. Apparent specific activity (fmol of tRNA methylated / min / pmol of enzyme) calculated 

from apparent initial velocity. The kinetics were performed with 1.5 pmol of enzyme.

Figure S5: Comparison of structures of SAM-dependent MTases modifying carboxylic 
functions. 
A. Superimposition of LCMT-1 (purple), CheR (grey) and TYW4 (pink). The SAM analog used to 

trap the C subunit of human PP2A (sand) in LCMT-1 active site is shown in cyan sticks. For clarity, 

only R73 and Y203 from LCMT-1 are labeled. 

B. Superimposition of LCMT-1 (purple) bound to PP2A (sand) onto our model of YlTrm9-Trm112 

(green). YlTrm9 numbering is used. 
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  Bioinformatics analyses have revealed the presence of Trm112 orthologs in bacteria and 

archaea suggesting that its role might extend outside eukaryotic organisms (Purushothaman et 

al., 2005; Heurgue-Hamard et al., 2006; Bourgeois et al., 2017a). While nothing is known on 

bacterial Trm112 orthologs, the detection of Mtq2, Trm9 and Trm11 orthologs in archaeal 

genomes together with the strong similarity between eukaryotic and archaeal translation 

machineries suggest that archaeal Trm112 might play a similar role as eukaryotic Trm112 

(Rivera et al., 1998; Yutin et al., 2008; Lyu, & Whitman, 2017). Indeed, Trm11 orthologs from 

Pyrococcus abyssii and Thermococcus kodakarensis have been biochemically characterized as 

enzymes methylating guanine nucleotide at position 10 of some tRNAs (Armengaud et al., 

2004; Hirata et al., 2016). However, these enzymes not only catalyse the formation of N2-

methylguanosine but also of N2,2-dimethylguanosine and are active on their own. This is of 

particular interest as the analysis of the distribution of Trm112 orthologs within archaeal 

genomes has revealed that Trm112 is absent in thermococcales and methanobacteriales, which 

encompass Pyrococcus abyssii and Thermococcus kodakarensis (Bourgeois et al., 2017a). 

Hence, this raises the question whether Trm112, when it is present in an archaeal organism, is 

important for Trm11 activity. Regarding Trm9, several observations argue in favor of its 

presence in some archaea. First, an initial survey of Haloferax volcanii genome suggested that 

the HVO_0574 gene encodes for a Trm9 ortholog (Grosjean et al., 2008) but a more recent 

analysis identified HVO_1032 as a better candidate (Gabriela Phillips, & de Crécy-Lagard, 

2011). Second, genes encoding for proteins displaying some sequence similarity with the 

various enzymes (Elp3, Tuc1 and Trm9) involved in the formation of mcm
5
s

2
U modification at 

position 34 of tRNAs are present in H. volcanii and genes for Elp3 and Trm9 orthologs cluster 

in Sulfolobus solfataricus (Grosjean et al., 2008). Third, studies in the early 80’s revealed the 

presence of unknown modifications at position U34 of some tRNAs from H. volcanii (Gupta, 

1984). Regarding class I release factors, it is striking that despite radically different 3D-

structures of the bacterial and eukaryotic factors, dedicated machineries have evolved to 

methylate the glutamine side chain of the universally conserved GGQ motif. Hence, one can 

imagine that such modification exists on archaeal aRF1. Considering the structural similarity 

between aRF1 and eukaryotic eRF1 factor (Song et al., 2000; Kobayashi et al., 2012), the 

enzyme responsible for this modification is very likely to be orthologous to Mtq2. This is 

further supported by the presence of a Mtq2 ortholog in all archaeal phyla (Heurgue-Hamard et 
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al., 2006; Bourgeois et al., 2017a). Finally, so far, no m
7
G modification of the nucleotide 

corresponding to S. cerevisiae G1575 in archaeal 16S rRNAs has been found, in agreement with 

the absence of proteins with significant sequence homology with Bud23 in archaeal genomes 

(Bourgeois et al., 2017a). 

  To clarify the roles of archaeal Trm112, I have performed co-immunoprecipitation of 

Trm112 from the H. volcanii model organism to identify putative partners, validated some of 

these partners, characterized the enzymatic activity of two of these partners and solved the 

crystal structure of another one. Altogether, my results show that H. volcanii Trm112 (hereafter 

named HvoTrm112) displays striking similarities with its eukaryotic orthologs but is also able 

to interact with a much larger number of MTases than yeast Trm112.  
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RESULTS 

1. HvoTrm112 interacting network in H. volcanii 

1.1.  Pop-in/Pop-out 

In order to identify interacting partners of H. volcanii Trm112 protein (HvoTrm112), I 

have employed an in vivo co-immunoprecipitation approach based on immuno-affinity of Anti-

FLAG resin for FLAG tag fused to the C-terminal extremity of Trm112 from H. volcanii (Hvo). 

To do so, I first generated the target expression strain by deleting TRM112 gene in Hvo strain 

H98 using homologous recombination-based pop-in/pop-out method. The absence of TRM112 

gene in colonies obtained after pop-in/pop-out was screened by colony lift experiment, which 

showed that the ratio between wild-type and deletion strains was nearly 1:1 as 51 colonies were 

trm112 deleted out of 98 tested colonies (Figure 25A). The pop-in/pop-out result was 

furthermore confirmed by PCR on some colonies, i.e. those expected to be deleted for TRM112 

gene (colonies 1-4, Figure 25B) and those expected to correspond to wild-type strain (colonies 5, 

6 and negative control C, Figure 25B) according to the colony-lift results. Primers hybridizing in 

the upstream and downstream regions of the TRM112 gene in H. volcanii genome were used in 

the PCR reaction. This should result in PCR fragment of 800 bp if the TRM112 gene has been 

successfully deleted and in a PCR fragment of 983 bp in the case deletion failed. As shown in 

Figure 25B, the PCR and colony-lift results are fully consistent as strains 1 to 4, which were 

expected to be deleted for TRM112 gene from colony-lift assay, exhibit a PCR fragment of 

nearly 800 bp while strains 5 to 6 exhibit a PCR fragment of nearly 983 bp. This indicated that 

the trm112∆ H. volcanii strain is viable and hence that the TRM112 gene is not an essential 

gene. 

1.2.  Protein expression and Co-IP 

For co-immunoprecipitation of flagged HvoTrm112, the Hvo TRM112 gene fused with a 

FLAG sequence was cloned into tryptophan-induced vector pTA962 to yield pMG772 plasmid, 

which encodes for a C-terminally HvoTrm112-FLAG. This plasmid was then successfully 

transformed into the trm112-deleted Hvo H98 strain. For the negative control, another 

tryptophan-inducible pTA927 plasmid harboring a sequence encoding the FLAG peptide only 

(kind gift from Pr. Anita Marchfelder, Ulm University, Germany) was also transformed into the 

same H. volcanii strain as the HvoTrm112-FLAG protein. Protein expression was induced by 
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addition of 5mM tryptophan and cell lysis was done by osmotic shock (decreasing the salt 

concentration from 2.5M to around 100 mM). 

As initial co-IP experiments resulted in a low number of specific peptide spectra in the 

mass spectrometry analysis (data not shown), I therefore introduced an in vivo cross-linking step 

with 1% formaldehyde before lysing the Hvo cells as previously described by Fischer and 

colleagues ((Fischer et al., 2010); Figure 26). Indeed, HvoTrm112 could interact with some of its 

partners in a transient manner and such interactions might be maintained by high salt 

concentration while low salt concentration (as used during cell lysis or washing steps on the 

FLAG-resin) could induce dissociation and/or result in aggregation. This resulted in an increased 

number of proteins identified by mass spectrometry coupled to a higher number of specific 

peptide spectra. 
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Figure 25. Validation of the deletion of H. volcanii TRM112 gene by pop-in/pop-out. 

A. Colony lift assay. Out of the 98 colonies transferred onto a nitrocellulose membrane (left panel), 51 

showed no signal on the membrane (right panel), indicating the deletion of Hvo TRM112 gene whereas 

47 clones exhibited signal revealing the presence of Hvo TRM112 gene. The wild-type strain is shown as 

a negative control (C). Colonies labeled 1 to 6 were selected for a second validation step by PCR.  

B. Validation by PCR. L – DNA ladder; 1-4: colonies without signal in the colony lift screen; 5-6 and C 

(control): colonies with signal in the colony lift screen. The lengths of US-DS and of US-Trm112-DS are 

800bp and 983bp, respectively. 
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Figure 26. Co-IP experiments.  

After Co-IPs, the cross-linked proteins were heated at 99
0
C for 20mins to reverse cross-linking before 

running on 15% SDS-PAGE.  

A. Co-IP performed with the HvoTrm112-FLAG construct. This experiment was performed in 

quadruplicate. MW: Molecular weight marker. T: Total extract. W: Washing fraction. E1 and E2: Elution 

fractions. It is noteworthy that the SDS-PAGE for replicate 1 migrated too long and then the Trm112-

FLAG protein ran out of the gel. 

B. Co-IP performed with the FLAG-only construct. This experiment was performed in triplicate. Same 

legend as for panel A. MW: Molecular weight marker. Tn: Total extract for replicate n. E1 and E2: 

Elution fractions. 
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1.3.  Mass spectrometry and Trm112 partners identification 

As suggested by the SDS-PAGE analysis of the co-IP results (Figure 26), more than 1000 

proteins were identified by LC-MS analyses of four independent co-immunoprecipitation 

experiments of HvoTrm112-FLAG whereas only few hundreds of partners were identified in the 

negative control experiment with the FLAG-only construct. To filter out these results, we applied 

the following different filters: (1) proteins with mean number of specific spectra for the four 

HvoTrm112-FLAG co-IP experiments lower or equal to 2 were removed; (2) proteins with ratio 

between mean number of specific spectra for the four HvoTrm112-FLAG co-IP experiments and 

mean number of specific spectra for the three FLAG-only experiments lower or equal to 2 were 

removed; (3) proteins with maximum 2 specific spectra in two out of four HvoTrm112-FLAG 

co-IP experiments were not considered; (4) proteins also identified by Fischer et al (Fischer et 

al., 2010) in their co-immuniprecipitation of HvoLsm-FLAG (performed in the same conditions 

as our analysis) were considered as non-specific interacting partners and were deleted. After 

strictly applying these filtering criteria, we ended up with a final list of 513 proteins.  

We then focused on the 100 proteins that exhibit the higher mean values of specific 

spectra in the HvoTrm112-FLAG co-IP experiments and sorted these in different families 

according to their molecular functions (i.e. nucleic acid binding, nuclease, ligase, MTase, kinase, 

synthase, peptidase, isomerase, …). As seen in Figure 27, four molecular functions (lyase, ligase, 

isomerase and MTase) are strongly enriched in the HvoTrm112-FLAG experiment compared to 

the FLAG-only one while others (transporter, electron carrier, transcription) are completely 

absent. We also noticed a significant over-representation of proteins annotated to participate to 

translation or ribosomal function (translation factors, ribosomal proteins, …). The strong 

enrichment (more than 7-fold) in MTases (Figure 27) and to a lesser extent of proteins involved 

in translation is noteworthy as eukaryotic Trm112 is a well-known partner and activator of 

MTases modifying factors involved in translation (rRNAs, tRNAs, release factors). Further 

analysis of the final list of 513 proteins reveals that 26 MTases out of the 63 identified in H. 

volcanii proteome are detected in our experiment. Of particular interest is the presence in this list 

of proposed orthologs for eukaryotic Trm112 partners: Mtq2 (PrmC or HVO_2744, hereafter 

termed HvoMtq2), Trm9 (HVO_1032, named HvoTrm9; (G. Phillips, & de Crecy-Lagard, 

2011)) but also Trm11 (TrmG10, hereafter termed HvoTrm11). This led us to propose that 
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HvoTrm112 exhibits some similarity with its eukaryotic orthologs but may also have a larger 

number of MTase partners. 

 

 

Figure 27. Trm112 interacting network in H. volcanii. 

Enrichment of major “molecular function” GO terms in the 100 proteins exhibiting the higher mean 

value of specific spectra in the HvoTrm112-FLAG co-IP experiments compared to the entire H. volcanii 

proteome. The dashed lines show an enrichment of one fold. Methyltransferase activity is shown in grey. 

Methyltransferases have not been considered as members of the transferase “molecular function” GO 

term in this analysis. 
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2. HvoTrm112 partners characterization 

To validate our co-IP results, we selected several MTases from this list and investigated 

whether these are indeed bona fide partners of HvoTrm112. Besides putative orthologs of known 

eukaryotic Trm112 partners, namely HvoMtq2, HvoTrm9 and HvoTrm11, six other MTases were 

also chosen: HVO_0773 (exhibiting the largest number of specific spectra), HVO_0475 (third 

MTase with the largest number of specific spectra), HVO_0574 (initially proposed to be Trm9 

archaeal ortholog (Grosjean et al., 2008)), HVO_0019, HVO_2875 and HVO_1715. These 

MTases were heterologously expressed in E. coli as fusion proteins with a N-terminal His-tag 

either alone or with untagged HvoTrm112 and purified on Ni-NTA resin. Interestingly, similarly 

to S. cerevisiae Mtq2, Trm9 and Bud23 (Heurgue-Hamard et al., 2006; Mazauric et al., 2010; 

Figaro et al., 2012), some MTases (HvoMtq2, HvoTrm9, HVO_0019, HVO_1715 and 

HVO_0773) can only be over-expressed as soluble proteins in the presence of HvoTrm112 

(Figure 28A) while others (HVO_0475 and HVO_0574) do not need HvoTrm112 (Figure 28B). 

Furthermore, when co-expressed with these MTases, HvoTrm112 co-purified with all of these as 

well as with HVO_2875 (expression assay was not performed for this protein in the absence of 

HvoTrm112), supporting interaction. Unfortunately, despite extensive efforts (optimized gene, 

fusion with GST,…), it was not possible to express TrmG10/HvoTrm11 as a soluble protein 

alone or in the presence of HvoTrm112 (Figure 29).  

To further confirm that these MTases interact directly with HvoTrm112, a 3-steps (Ni-

NTA, ion-exchange and size-exclusion chromatographies) purification protocol was used from 

E. coli cultures co-expressing each His-tagged MTase with HvoTrm112 (illustrated for 

HvoTrm112-HVO_0019 complex in Figure 30). For each MTase, we could observe a second 

band, which corresponds to HvoTrm112 according to mass spectrometry analyses, on the 

Coomassie stained SDS-PAGE analyses of purified proteins, indicating that HvoTrm112 

interacts with all these MTases and that the resulting complexes are stable. SEC-MALLS 

analyses further revealed that these HvoTrm112-MTase complexes adopt different oligomeric 

states (Table 4; Figure 31), i.e. heterodimers (HvoTrm112-Trm9, HvoTrm112-Mtq2, 

HvoTrm112-HVO_0773, HvoTrm112-HVO_0574 and HvoTrm112-HVO_1715), 

heterotetramers (HvoTrm112-HVO_0019) or heterohexamers (HvoTrm112-HVO_0475). 
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We thus conclude that in the H. volcanii archeon, Trm112 interacts directly with at least 

seven different MTases (HvoMtq2, HvoTrm9, HVO_0019, HVO_0773, HVO_0574, 

HVO_0475, HVO_2875 and HVO_1715) and hence its interaction network is more complex 

than for its eukaryotic orthologs studied so far (Bourgeois et al., 2017a). 

 

 

 

Figure 28. HvoTrm112 solubilizes most of its methyltransferase partners. 

A. HvoTrm112 strongly enhances HVO_0019 solubility. SDS-PAGE analysis of total (T) and Ni-NTA 

elution (E) fractions obtained from expression of HVO_0019-His6 either alone or together with 

HvoTrm112 at 30°C using E. coli Codon+ strain in Terrific Broth Auto-inducible medium. MW: 

Molecular weight ladder (in kDa). 

B. HvoTrm112 has little effect on HVO_0574 solubility. SDS-PAGE analysis of total (T) and Ni-NTA 

elution (E) fractions obtained from expression of HVO_0574-His6 either alone or together with 

HvoTrm112 at 18°C using E. coli Codon+ strain in 2YT medium and upon induction by 0.05 mM 

IPTG. MW: Molecular weight ladder (in kDa). 

  

A. B. 
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Figure 29. Co-expression assay of HvoTrm11-His6 with HvoTrm112. 

H. volcanii Trm11 and Trm112 proteins were co-expressed in E. coli Codon+ strain at 18°C using 2YT 

media. Protein expression was induced by adding IPTG (1mM final concentration) after a cold shock (15 

minutes on ice). Similar results were obtained with either E. coli Gold strain, Terrific Broth Autoinducible 

or LB media, lower IPTG concentrations, optimized HVO_TRM11 gene or at 37°C. The theoretical 

molecular weight for HvoTrm11-His6 protein is 35 kDa. T: Total extract. S: Soluble extract. FT: Flow-

through. Wn: Washing fraction n. E1 and E2: Elution fractions. 
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Ni-NTA chromatography 

 

 

 

 

 

 

 

 

 

Ion-exchange chromatography: Mono Q 

  

 

 

 

 

 

 

 

Size-exclusion chromatography: S75 16/60 

 

 

 

 

 

 

 

Figure 30. An example of HvoTrm112-HvoMTase-His6 purification through 3-step 

chromatographies. The proteins were run on 15% SDS-PAGE gel 
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Figure 31. Analyses of HvoTrm112-MTase complexes by SEC-MALLS. 

A zoom centered on the main peak with the refractive index colored in blue (left y-axis) and the 

distribution of molecular mass calculated from light scattering along this peak colored in red (right y-axis) 

is shown for each HvoTrm112-MTase complex studied. The Coomassie stained SDS-PAGE analyses of 

the proteins present in the main peak are shown. 
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Table 4. Oligomeric states of HvoTrm112-MTase complexes. 

Hvo Trm112-MTase 

complex 

Theoretical MW 

of heterodimer 

(kDa) 

Experimental MW 

determined by SEC-MALLS 

(kDa) 

Oligomeric 

states 

HvoTrm112-Trm9 31 29.5 Heterodimer 

HvoTrm112-Mtq2 28.9 27.3 Heterodimer 

HvoTrm112-HVO_0019 33.2 59.8 Heterotetramer 

HvoTrm112-HVO_0574 36.8 34.6 Heterodimer 

HvoTrm112-HVO_0475 40.1 117 Heterohexamer 

HvoTrm112-HVO_0773 35.4 33.9 Heterodimer 

HvoTrm112-HVO_1715 34.6 32.3 Heterodimer 

HvoTrm112-HVO_2875 28.6 ND ND 
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3. Functional studies 

Among all newly-identified HvoTrm112 partners, two proteins HVO_2744 and 

HVO_1032 are known as homologs of eukaryotic Trm112 partners, namely Mtq2 and Trm9 

respectively, paving the road towards their functional characterization through enzymatic assay. 

3.1.  HvoMtq2-Trm112 

3.1.1 In vitro enzymatic assay 

In eukaryotes, the Trm112-Mtq2 complex has been shown to be enzymatically active on 

class I translation termination factor eRF1 but only when this later exists as a complex with the 

GTP-bound form of class II translation termination factor eRF3 (Heurgue-Hamard et al., 2006; 

Figaro et al., 2008). To characterize the enzymatic activity of the HvoTrm112-Mtq2 complex in 

vitro, I have over-expressed in E. coli and purified HvoaRF1 as well as HvoaRF3 (also known as 

HvoaEF1A). This later is known to contribute to several activities in archaea, namely translation 

elongation, translation termination and quality control pathways dedicated to the release of 

stalled ribosomes as ortholog of eEF1A, eRF3 and Hbs1, respectively (Saito et al., 2010). It is 

noteworthy that from the strong structural similarity between eukaryotic and archaeal class I 

translation termination factors and the striking differences between bacterial and eukaryotic 

enzymes modifying the GGQ motif of class I translation termination factors (Graille et al., 2012; 

Kobayashi et al., 2012), aRF1 is very unlikely to be methylated in E. coli and hence might be 

substrate for the HvoTrm112-Mtq2 complex. First, I compared the enzymatic activity of 

HvoTrm112-Mtq2 complex on HvoaRF1 in presence of HvoaRF3 and GTP, both in the absence 

of KCl or in the presence of 3M KCl, which corresponds to physiological conditions (Meury, & 

Kohiyama, 1989). In agreement with several reports on enzymes from H. volcanii archeon, a 

strong enzymatic activity could be detected only in the presence of 3M KCl (Figure 33). This 

activity also required high concentration (400mM) of phosphate buffer (Figure 32). In these 

conditions, HvoMtq2-Trm112 complex catalyzes the methylation of nearly 26 pmol of HvoaRF1 

out of 100 pmol total substrate in 2 hours. Next, we substituted Tyr111 from the NPPY signature 

in HvoMtq2 by Ala with the aim to inactivate HvoMtq2-Trm112 complex as the corresponding 

mutant of S. cerevisiae Mtq2-Trm112 complex resulted in complete loss of activity (Liger et al., 

2011). The resulting mutant was indeed unable to methylate HvoaRF1, indicating that as 



 

141 

suggested by the required high KCl concentration, the detected enzymatic activity does not 

originate from an E. coli contaminant (Figure 33). In addition, substitution of Gln187 from the 

HvoaRF1 GGQ motif by Ala also resulted in undetectable activity. Finally, HvoaRF3 and GTP 

are necessary for methylation of HvoaRF1 by the HvoMtq2-Trm112 MTase. Altogether, this 

demonstrates that HvoMtq2-Trm112 holoenzyme catalyzes the methylation of HvoaRF1 on the 

glutamine side chain from its GGQ motif in a HvoaRF3- and GTP-dependent manner similarly to 

its yeast and human orthologs (Heurgue-Hamard et al., 2006; Figaro et al., 2008). 

 

 

Figure 32. Buffer optimization for enzymatic activity of HvoMtq2-Trm112. Different buffer 

conditions tested were indicated in the table below the graph. 
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Figure 33. Enzymatic activities of HvoTrm112-Mtq2. The conditions (proteins, salt and ligand) used 

for each experiments are indicated in the table below the graph. The number of methylated substrate (in 

pmol) after a 2 h reaction is indicated for every condition. Errors bars have been calculated from the 

results of three independent experiments.  

 

3.1.2 In vivo methylation identification 

 I have already confirmed the function of HvoMtq2-Trm112 on methylating Hvo aRF1 at 

glutamine side chain of GGQ motif by in intro enzymatic assay. However, the in vivo 

methylation status of this protein is not known. To examine that, I have already purified aRF1-

FLAG from different H. volcanii strains, in particular the wild-type and two control mutants 

(mtq2∆ and trm112∆) by Co-IP experiments (Figure 35). Before doing so, these different H. 

volcanii strains were successfully generated through pop in/pop out method (Figure 34). The 

aRF1-FLAG proteins were already sent for mass spectrometry. For aRF1 purified from wild-type 

strain, preliminary results suggest the presence of two methyl groups on the peptide containing 

the GGQ motif. Results are not clear for aRF1 purified from either mtq2∆ and trm112∆ strains. 

Further studies are needed. 



 

143 

 
 

Figure 34. Pop in/pop out result confirmed by PCR. (A). Presence of aRF1-FLAG in Hvo H26. PCR 

products in all tested clones were subjected to BamHI digestion (the BamHI site is present between the 

last codon of aRF1 gene and the first one of the FLAG tag sequence). Two clones with two fragments 

corresponding to approximately 1500 and 500bp are positive clones and are indicated by (+) sign. (B). 

Presence of both Hvo aRF1-FLAG and trm112 ∆ in Hvo H98. Two positive colonies (1-2) were 

confirmed. For Hvo trm112∆ check, colonies 1-2 contained only the US-DS (800bp) of atrm112 in 

contrast to the US-atrm112-DS (around 980bp) in the negative control (C
-
) while in case of aRF1-FLAG 

confirmation, PCR products amplified for US-aRF1-FLAG-DS from these two colonies cut into two 

fragments by BamHI indicating presence of aRF1-FLAG, which is not the case for the negative control 

(C
-
) which PCR product (US-aRF1-DS) was not cut by BamHI. (C). Presence of both Hvo aRF1-FLAG 

and Hvo mtq2∆ in Hvo H26. For Hvo mtq2∆ check, positive colonies 1-2 contained only the US-DS 

(800bp) of Hvo mtq2 while the positive control (C
+
) was around 1000bp as it was a partly deleted amtq2 

strain. For Hvo aRF1-FLAG check, PCR products amplifying US and DS of aRF1 were cut by BamHI in 

those two colonies, indicating the presence of aRF1-FLAG.  
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Figure 35. Co-IP of aRF1-FLAG. All experiments were done in three repeats which each contained 

elution 1 (E1) and elution 2 (E2). (A). WT Hvo H26 aRF1-FLAG. (B). Hvo H26 trm112∆ aRF1-FLAG. 

(C). Hvo H26 mtq2∆ aRF1-FLAG. 

 

3.2.  HvoTrm9-Trm112 

3.2.1 In vitro enzymatic activity 

In parallel, we have investigated whether the HvoTrm112-Trm9 acts as a tRNA 

modification enzyme similarly to its eukaryotic ortholog. To obtain putative tRNA substrates, we 

have generated an H. volcanii H26 strain deleted for HVO_1032 gene (hereafter termed H. 

volcanii trm9∆), which encodes for HvoTrm9, by the pop-in/pop-out method as described to 

build the H. volcanii trm112∆ (Figure 36). Our ability to obtain this strain indicates that the gene 

encoding for HvoTrm9 is not essential. Total tRNAs purified from this strain as well as those 

purified from S. cerevisiae trm9∆ or elp1∆ strains (Letoquart et al., 2015a) were used for in vitro 

enzymatic assays. Surprisingly, the HvoTrm112-Trm9 complex was active on total tRNAs from 

S. cerevisiae trm9∆ strain as substrates but not from H. volcanii trm9∆ strain (Figure 37A). 

HvoTrm112-Trm9 complex (2 pmol) modifies up to 5.5 pmol of tRNAs from S. cerevisiae 

trm9∆ strain out of 100 pmol while S. cerevisiae Trm112-Trm9 complex (1.5 pmol) was 

modifying up to 7 pmol (out of 75 pmol) of the same tRNAs (Letoquart et al., 2015b). As 

observed for HvoTrm112-Mtq2 complex, this complex is significantly more active in the 

presence of 3M KCl than in the absence of KCl, where only approximately 1.5 pmol of HvoaRF1 
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are modified. Its activity depends on the presence of the cm
5
U modification at position 34 of 

tRNA anticodon loop as tRNAs purified from S. cerevisiae elp1∆ strain are not substrates of this 

complex. Finally, as HVO_0475 gene product, which also interacts with HvoTrm112, was 

initially predicted to be orthologous to eukaryotic Trm9 (Grosjean et al., 2008), we have 

included this purified complex in our enzymatic assay. As shown in Figure 37A, this complex 

does not exhibit enzymatic activity on total tRNAs extracted from both S. cerevisiae trm9∆ and 

H. volcanii trm9∆ strains. Altogether, these results demonstrate that the HvoTrm112-Trm9 

complex is indeed a tRNA methyltransferase, which, by analogy to its eukaryotic ortholog, most 

probably modifies cm
5
U into mcm

5
U at position 34 of the tRNAs as the cm

5
U modification 

catalyzed by the Elp1-6 complex in eukaryotes (S. Glatt et al., 2012; Sebastian Glatt et al., 2016), 

is required for enzymatic activity. 

 

Figure 36. Validation of the deletion of H. volcanii HVO_1032 (TRM9) gene by PCR. PCR were 

performed on several randomly chosen colonies (lanes 1 to 8) as well as on wild-type H. volcanii H26 

strain (C). L – DNA ladder. The theoretical lengths of US-DS and of US-HVO_1032-DS are 840 bp and 

1494 bp, respectively. Colonies 2, 5 and 6 correspond to H. volcanii trm9∆ while colonies 3, 4 and 7 

correspond to wild-type strain. 

 

 

3.2.2 In vivo methylation identification 

In case of HvoTrm9-Trm112, I have detected enzymatic activity of the complex on total 

RNA from trm9∆ S. cerevisiae. Unfortunately no activity has been identified on total tRNAs 

from H. volcanii trm9∆ strain. Next, we plan to check whether tRNAs from different H. volcanii 

strains contain expected methylation modifications such as cm
5
(s

2
)U, mcm

5
(s

2
)U and ncm

5
U. 
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We will also focus on m
2
G and m

2
2G modifications, which are known to be catalyzed by 

archaeal Trm11. In particular, we will examine the possibility that HvoTrm11 requires 

HvoTrm112 for its activity. To achieve these, I purified several total RNAs from different H. 

volcanii strains including the wild-type and mutants (trm9∆, trm112∆ and elp3∆) (Figure 37B-

C). These were sent to a collaborator in USA for identification of tRNA modifications by HPLC 

coupled to MS. This will also be of particular interest as so far only few information is available 

on tRNA modifications in archaea and we cannot exclude that new chemical structures will be 

identified. 
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Figure 37. Enzymatic assay for HvoTrm112-Trm9 complex. (A). Enzymatic activities of HvoTrm112-

Trm9 complex. The conditions (proteins, salt and ligand) used for each experiments are indicated in the 

table below the graph. The number of methylated substrate (in pmol) after a 2 h reaction is indicated for 

every condition. Errors bars have been calculated from the results of three independent experiments. (B). 

Total RNA purification from different H. volcanii strains by phenol-chloroform extraction; (C). tRNA 

purification from different total RNAs by polyacrylamide-urea gel extraction.  

A. 

B. C. 
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4. Structural studies 

4.1 Crystal structure of the HvoTrm112-HVO_0019 complex 

To gain insight into the molecular bases responsible for the interaction between 

HvoTrm112 and its interacting MTase partners, different HvoTrm112-MTase complexes were 

subjected to crystallization trials in the presence or in the absence of SAM. This was initially 

carried out by sitting drop vapor diffusion crystallization method in which 150 nL of the protein 

complexes (9-18mg/ml) with and without SAM was added to 150 nL of crystallization 

commercial crystallization screening kits (PEG Suit II, Crystal Screen 1 + 2, and JCSG) using 

96-well TTP plate (Labtech) by Mosquito robot. The plates were carefully sealed and stored at 

24
0
C.  

           
 

 
 

Figure 38. HVO_0019-Trm112 crystallization. (A). Crystals of HVO_0019-Trm112 obtained from the 

sitting drop method (H10, JGSG: 0.2M Ammonium acetate, 0.1M BIS-TRIS pH5.5, 25% (w/v) PEG 

3350) at 24
0
C; (B). Optimization of crystals of HVO_0019-Trm112 by hanging drop method at 4

0
C 

(0.25M Ammonium acetate, 0.1M BIS-TRIS pH5.5, 25% (w/v) PEG 3350); (C). Confirmation of the 

presence of HVO_0019-Trm112 complex in the crystals. Purified complex (middle lane) and dissolved 

crystals (right lane) were analyzed by SDS-PAGE.   

A. B. 

C. 
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In case of HVO_0019-Trm112 complex, small crystals appeared within few hours after 

setting up drops and then grew larger in the new few days in some conditions. To optimize the 

crystals, condition H10 (0.2M Ammonium acetate, 0.1M Bis-Tris pH 5,5, 25% w/v PEG3350) of 

the JCSG+ crystallization screen was selected for the hanging drop vapor diffusion 

crystallization method by applying hand-made gradients of ammonium acetate concentration (0.1 

to 0.3M) and PEG3350 percentages (15 to 35%) in 24-well plates. Then 1 µL of the protein 

complex (with and without SAM) was mixed with 1 µL of the well solutions on a glass coverslip 

which was then inverted and sealed the well with the help of vacuum grease. The experiment 

was conducted both at 24
0
C and 4

0
C. The crystals were harvested, then cryo-protected by 

glycerol (15-30%) and finally flash-frozen in liquid nitrogen. The content of crystals was 

confirmed to contain HVO_0019 and HvoTrm112 through collecting some crystals, followed by 

carefully washing them in the crystallization solution, then dissolving the crystals in water and 

finally running an SDS-PAGE 12% (Figure 38C). 

 All datasets were collected on beam-line Proxima-2A (Synchrotron SOLEIL, Saint-

Aubin, France) at 100K. The structure was solved by Sulfur-SAD (Single Anomalous 

Dispersion) using a highly redundant dataset (Seven datasets of 1400° each collected on different 

regions of a single crystal) collected at 2.0664 Å to get the higher anomalous signal from sulfur 

atoms (see Table 5 for statistics). A 1.35 Å resolution dataset was obtained by merging two 

datasets collected at different crystal-detector distances on the same crystal (see Table S4 for 

statistics). Data were processed with XDS (Kabsch, 1993) and scaled using XSCALE.  

❖ Crystal space group determination 

In crystals, a unit or motif repeated in three dimensions is known as the unit cell which 

can consist of multiple asymmetric units which are the minimal set of atoms (or ions or 

molecules) that create the whole content of the unit cell by applying the symmetry elements. The 

symmetry operators between the asymmetric units within unit cell are defined by the space group 

of the crystal. There are a possible total of 230 space groups, however only 65 ones are available 

for L-amino acid composed protein crystals, which can be divided in 14 Bravais lattices 

belonging to 7 crystal systems. 
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Data processing by XDS suggests different possible space groups based on parameters 

computed from the reflection data in the IDXREF step. Each possibility contains information 

about symmetry of the crystal and the penalty score (quality of fit). The most suitable space 

group is the case that is a combination of both the highest symmetry and the lowest penalty 

score. In case of HVO_0019-Trm112 crystal, possible space groups are shown in the following 

figure (Figure 39). 

 

Figure 39. Information on possible Bravais lattice of HVO_0019-Trm112 crystal derived from 

IDXREF step of the data processing 

 

From here, the Bravais lattice oP (P2n2n2n, with n=1 for two-fold screw axis), which 

satisfies the criteria of both higher symmetry and lower penalty score is selected. In fact, when 

looking along each axis in reciprocal space namely (h,0,0), (0,k,0) and (0,0,l), we can see the 

signature of a two-fold screw axis for all axes that shows near zero intensity for the odd-

numbered reflections (2n+1) while the even reflections (2n) have medium to strong intensities 

(Figure 40). Hence, the real space group of HVO_0019-Trm112 crystal is very likely to be 

P212121. 
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Figure 40. Statistics on reflection intensity along each axis in reciprocal space (0,0,l), (0,k,0) and 

(h,0,0), taken from CORRECT.LP file. 

 

 

❖ Number of molecules in an asymmetric unit 

Next I estimated the number of molecules present in the asymmetric unit of the crystal. 

This can be done using the Matthews coefficient as the following formula: 

  

 where Vm is the Matthews coefficient (ranging between 1.66 to 4 corresponding to 

crystals with 30% to 75% solvent); Vcell, unit cell volume; Mw, molecular weight; Z, the 

number of asymmetric units in the unit cell; n, number of molecule in an asymmetric unit. 

The number of copies of HVO_0019-Trm112 complex in the asymmetric unit can be 

manually calculated as the following: 

Mw = 33244 Da; Space group: P212121 ➔ Z = 4 

Cell parameters: a = 80.6; b = 82.3; c = 88 and α = β = γ = 90
0
 

➔ Vcell = 80.6*82.3*88 = 583737 Å
3
 

2

 

2

 

2
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So, Vm = 583737/(n*33244*4) 

If n = 1, Vm = 4.39     ➔ too high 

If n =2, Vm = 2.19      ➔ just right 

Hence, there are most likely two copies of HVO_0019-HvoTrm112 complex in the 

asymmetric unit.  

❖ Structure solving solution 

Crystals diffracting up to 1.35Å resolution were obtained for the HvoTrm112-HVO_0019 

complex. The structure of this complex was solved at 2.5Å resolution by the Sulfur-SAD method 

by taking advantage of the high number of sulfur atoms in this complex (11, excluding the initial 

methionine from HVO_0019, which is very likely to be excised in E. coli; (Hirel et al., 1989)). 

Twenty-four sulfur sites (eleven per HVO_0019-Trm112 complex and two from S-adenosyl-L-

homocysteine (SAH) molecules bound to HVO_0019 methyltransferase) were successfully 

located using SHELXD (Schneider, & Sheldrick, 2002). Experimental phasing followed by 

density modification were performed with the PHASER_EP and RESOLVE programs 

implemented in the Phenix program (T. Terwilliger, 2004; McCoy et al., 2007; T. C. Terwilliger 

et al., 2008; Adams et al., 2010) (Figure 41). A first model was obtained by iterative cycles of 

building and refinement performed using COOT (Emsley et al., 2010) and BUSTER (Bricogne 

et al., 2016) programs, respectively (see Table 5). The structure was further refined at high 

resolution using the 1.35Å resolution native dataset. The final structure model was refined to 

1.35Å with R and Rfree values of 18.5% and 20.7%, respectively. The final model for 

HVO_0019-Trm112 complex contains HVO_0019 residues 2-227 (including the first histidine 

from the His6-tag) and 2-12, 15-231 (including the five histidine residues from the His6-tag) for 

protomers A and B, respectively as well as HvoTrm112 residues 1-59 and 1-25, 29-58 for 

protomers C and D. In addition, 387 water molecules, two SAH molecules and two glycerol 

molecules from the cryoprotectant have also been modeled. There are two virtually identical 

copies of the HvoTrm112-HVO_0019 complex in the asymmetric unit (Figure 42A; rmsd value 

of 0.27Å over 211 Cα atoms). Each complex is bound to a SAH molecule, most probably co-

purified with HvoTrm112-HVO_0019 complex.  
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Figure 41. Experimental electron density map calculated at 2.5Å resolution by Sulfur-SAD. 

The experimental electron density map is contoured at 1 sigma. The final model (refined at 1.35Å 

resolution) is shown as yellow sticks. 
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Table 5. Data collection, phasing and refinement statistics 

Data collection S-SAD High resolution 

Space group P212121 P212121 

Unit cell parameters   

a, b, c (Å) 77.35, 89.13, 89.64 80.6, 82.3, 88.0 

α, β, γ (°) 90.00 90.00 

Wavelength 2.0664 0.98007 

Resolution (Å) 50-2.5 (2.57-2.5) 50-1.35 (1.39-1.35) 

Rmerge 10.6 (66.7) 8.4 (172.8) 

I / σI 62.0 (5) 14.4 (1.3) 

Completeness (%) 98.8 (86.8) 100 (100) 

Redundancy 174 12.3 

Observed reflections 7117251 1586836 

Unique reflections 40910 128740 

Refinement   

Resolution (Å)  48.19-1.35 

No. reflections  128738 

R / Rfree  18.5/20.7 

No. atoms   

Protein  4529 

Ligands (Glycerol/SAH)  64 

Water  387 

B-factors (Å
2
)   

Protein  25.6 

SAH  17.2 

Glycerol  59.4 

Water  32.6 

R.m.s deviations   

Bond lengths (Å)  0.01 

Bond angles (°)  0.98 
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❖ Structure description 

Structurally, HVO_0019 adopts the classical class-I SAM-dependent MTase composed of 

a central seven-stranded β-sheet surrounded by three α-helices on one side and two on the other 

side (Figure 42B). On the top of the central β-sheet, four α-helices (αY, the N-terminal half of 

αZ, α1 and α2) contribute to the formation of a cavity centered on the sulfur atom from the SAH 

molecule bound to the HVO_0019 protein. The SAH binds to HVO_0019 in a canonical manner 

compared to class I SAM-dependent MTases. HvoTrm112 structure consists of only the zinc 

finger-like domain previously observed in eukaryotic Trm112 proteins (rmsd values of 1.1-1.4Å 

over around 55 Cα atoms; (Heurgue-Hamard et al., 2006; Liger et al., 2011; Letoquart et al., 

2014; Letoquart et al., 2015a)), including a small N-terminal α-helix (α1) and a four-stranded 

anti-parallel β-sheet (Figure 42B). Contrary to eukaryotic Trm112 proteins and some structurally 

similar bacterial proteins (PDB code: 2KPI) of known structures, there is no zinc bound to 

HvoTrm112 in agreement with the lack of conservation of the cysteine residues involved in zinc 

coordination. The interface between HvoTrm112 and HVO_0019 has an overall area of 975 Å
2
 

and is slightly smaller than the previously described interfaces between eukaryotic Trm112 and 

its MTase partners (Letoquart et al., 2014; Letoquart et al., 2015a). This most likely results from 

the absence of the helical domain, specific to eukaryotic Trm112 proteins, that was contributing 

to these interactions. Complex formation involves 20 and 21 residues from HvoTrm112 and 

HVO_0019, respectively. The core of this interface is formed by hydrophobic residues (M1, L5, 

I8, L9, P12, I50, P51, L53, L54, P55 and M58 from HvoTrm112 and F66, F89, L90, V91, L97, 

P98 and F99 from HVO_0019; Figure 43). Such a large hydrophobic interface rationalizes the 

strong solubilization effect that we observe for HvoTrm112 upon co-expression with HVO_0019 

in E. coli (Figure 28A). This hydrophobic core is surrounded by polar residues (K2, D7, C10, 

K15, E29, N52 and R59 from HvoTrm112 and S2, R64, Q76, R79, D85, D86, S88, D93, D96, 

D100, S103, E125 and R128 from HVO_0019). Six hydrogen bonds and three salt bridges are 

also observed at the interface (Table 6). Two hydrogen bonds formed between V91 main chain 

atoms from HVO_0019 and P51 as well as L53 from HvoTrm112, are responsible for the 

formation of a β-zipper interaction between HvoTrm112 strand β4 and HVO_0019 strand β3 

(Figure 42B), which is also observed in the eukaryotic MTase-Trm112 complexes. Other 

hydrogen bonds are formed between P98, L97, R64 and D100 from HVO_0019 and C10, K15, 
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S4 and I8 from HvoTrm112, respectively. Finally, salt bridges are formed by K15 from 

HvoTrm112 with D96 and E125 from HVO_0019, and by D7 from HvoTrm112 with R64 from 

HVO_0019. 

Table 6. Details of hydrogen bonds and salt bridges involved on HvoTrm112-HVO_0019 interaction 

Hydrogen bonds 

HvoTrm112 HVO_0019 

Cys10 N Pro 98 O 

Lys15 NZ Leu97 O 

Leu53 N Val91 O 

Ser4 O Arg64 NH1 

Ile8 O Asp100 N 

Pro51 O Val91 N 

Salt bridges 

Lys15 Asp96 

Lys15 Glu125 

Asp7 Arg64 

 

 

 

 

 



 

157 

 

 

 

Figure 42. Crystal structure of HvoTrm112-HVO_0019 complex. 

A. Ribbon representation of the heterotetrameric HvoTrm112-HVO_0019 complex. The SAH molecule 

bound to each HVO_0019 monomer is shown as yellow sticks. 

B. Ribbon representation of the HvoTrm112-HVO_0019 heterodimer. 

C. Sequence conservation mapped at the surface of HVO_0019 protein structure. Only the heterodimer 

is shown for the sake of clarity. Conservation scores have been calculated from an alignment of 241 

sequences using the Consurf server (Ashkenazy et al., 2010). The SAM methyl group modeled by 

superimposing the structure of S. cerevisiae Bud23 (Letoquart et al., 2014) onto the structure of 

HVO_0019 is shown as a yellow sphere. 

D. Comparison of HVO_0019 (blue) and NodS (grey) active sites with conserved residues shown in 

sticks. Labels for NodS residues are underlined and in italics. SAH is shown as yellow sticks. It is 

noteworthy that W152 from HVO_0019 adopts an alternate conformation in the crystal structure. 



 

158 

 

As stated above, there are two copies of HvoTrm112-HVO_0019 complex in the 

asymmetric unit and these are related by a two-fold symmetry axis (Figure 42A). As SEC-

MALLS measurements on this complex have revealed that it forms heterotetramer in solution, 

this contact area most likely corresponds to the biological interface responsible for this 

oligomeric state. This homodimerization interface (area of 840 Å
2
) is exclusively formed by 

residues from HVO_0019, more precisely from strands β6 and β7 and helix αZ. Hence, the 

MTase partner seems to rule the formation of oligomeric states, thereby explaining that 

depending on its MTase partner, HvoTrm112 may exist either as heterodimers, heterotetramers 

or heterohexamers according to our SEC-MALLS analyses (Table 4). 

❖ Structure comparison 

BLAST searches to identify proteins sharing sequence similarity with HVO_0019 

identified orthologous proteins mostly from specific archaeal phyla such as halobacteriales and 

thaumarcheota but also from some bacteria (Legionella shakespearei, Agrobacterium 

tumefaciens, rhodobacteriaceae, flavobacteriaceae, acidobacteria). Multiple sequence 

alignments revealed the presence of few highly conserved residues (Figure 43B). Interestingly, in 

HVO_0019 structure, these residues cluster around the expected position of the SAM methyl 

group and form a strongly conserved pocket (Figure 42C). Comparison of HVO_0019 protein 

structure and active site with previously described structures of MTases revealed a significant 

degree of conservation with the MTase NodS from Bradyrhizobium japonicum (Cakici et al., 

2010). NodS is involved in the biosynthesis of the Nod factor, a modified chitosaccharide acting 

as a signal molecule in rhizobia, by catalyzing the methylation of the NH2 group of its 

glucosamine moiety. Indeed, residues R22, E111, Y114, Y115 and W152 from HVO_0019 

structurally match with R21, E115, Y118, Y119 and W156 from NodS, respectively (Figure 

42D). In addition, the side chains from HVO_0019 W10 and NodS W20 are also in close 

vicinity. Altogether, this suggests that HVO_0019 might bind a substrate with an hexose sugar 

ring and modify it. Further studies will be needed to characterize the enzymatic activity of the 

HvoTrm112-HVO_0019 complex. 
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Figure 43. Sequence alignment of HvoTrm112 and HVO_0019 sequences. 

A. Sequence alignments of Trm112 orthologs from eukaryotes (group 1) and archaea (group 2). Strictly 

conserved residues are in white on a black background. Partially conserved amino acids are 

highlighted with a grey background. Secondary structure elements assigned from the S. cerevisiae 

Trm112 (Letoquart et al., 2014) and HvoTrm112 crystal structures are indicated above and below the 

alignment, respectively. Black closed circles indicate residues involved in interaction with 

HVO_0019. Both panels were generated using the ESPript server (Robert, & Gouet, 2014). 

B. Sequence alignments of HVO_0019 orthologs from archaea (group 1) and bacteria (group 2). Strictly 

conserved residues are in white on a black background. Partially conserved amino acids are boxed. 

Secondary structure elements assigned from the HVO_0019 crystal structure are indicated above the 

alignment. Black closed circles indicate residues involved in interaction with HVO_0019. 
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4.2 Other HvoMTase-Trm112 complexes 

In addition to the determined crystal structure of Hvo_0019-Trm112, I have also obtained 

crystals for two other Hvo MTase-Trm112 complexes. Crystals of Hvo_0475-Trm112 diffracted 

up to 3 Å while in case of Hvo_0773-Trm112, tiny crystals diffracting to 7 Å were observed. 

Because the functions of these complexes are not known till now, efforts on solving their crystal 

structure are worth trying to get preliminary insights into their putative functions. In order to 

accomplish this, production and purification of selenomethionine-labeled Hvo_0475-Trm112 

complex will be helpful for solving the complex structure. Meanwhile, for Hvo_0773-Trm112 

complex, several optimization steps through hanging drop method are needed to improve the 

crystal size to get better diffraction. 

4.3  MTase-Trm112 in complex with its substrate 

Although several crystal structures of MTase-Trm112 complexes in different organisms 

have been solved, no crystal structures have been so far achieved for the protein complexes 

bound to their substrates. Knowing the fact that the enzyme-substrate complex structure is very 

useful in deciphering the substrate recognition and modification mechanism of MTase-Trm112 

complexes, I have made several efforts on reconstituting and trying to crystallize the complex 

between Mtq2-Trm112 and its substrate aRF1-aRF3 in different organisms (H. volcanii, 

Aeropyrum pernix and Archaeoglobus fulgidus) during my thesis. However, until now I was only 

able to purify and reconstitute the complex of four proteins in presence of SAM and GTP from 

the latter organism (Figure 44). The crystallization trial has been performed but no crystals were 

obtained. Hence, this exciting structural study still remains to be solved. 
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Figure 44. Reconstitution of A. fulgidus Mtq2-Trm112-aRF1-aRF3 complex in presence of SAM and 

GTP. A. fulgidus Mtq2-Trm112, aRF1 and aRF3 were first purified through 3-steps chromatography. The 

complex formation was performed by mixing 6 mg of each protein in presence of 5mM GTP + 5mM 

MgCl2, followed by o/n incubation. The next day, SAM in excess was added to the mix, and then 

incubated at room temperature for 3hours. The mix was next run on S200 16/60 and different fractions 

were analyzed on SDS-PAGE 12%. The peak corresponding to quaternary complex was labelled by a box 

on both the chromatogram and the gel. 
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CHAPTER III 

HUMAN METTL5-TRMT112 COMPLEX 
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INTRODUCTION 

Sequence analysis through BLAST searches has been performed for putative newly 

identified H. volcanii Trm112 methyltransferase partners originated from our Co-IP experiments. 

For HVO_1475 MTase, we were able to identify a human ortholog – the METTL5 

methyltransferase, which is surprisingly absent in Saccharomyces cerevisiae, the eukaryotic 

model organism.  

This is of particular interest as it may lead to the description of a new Trm112 MTase 

partner in human. So far, our knowledge on human TRMT112 network was mainly based on the 

yeast counterpart. Indeed, TRMT112 has been shown to physically and directly interact with 4 

human MTases, namely TRMT11 (GB and MG, unpublished results), ABH8 (D. Fu et al., 2010; 

Y. Fu et al., 2010), HEMK2 (Figaro et al., 2008) and WBSCR22 (Ounap et al., 2015; Zorbas et 

al., 2015), which are respectively orthologs of Trm11, Trm9, Mtq2 and Bud23 in yeast. As 

HVO_1475 is found in the list of putative HvoTrm112 partners, we checked if these proteins 

indeed form a complex both in H. volcanii but also in human by co-expression and co-

purification in E. coli.  

RESULTS  

1. HVO_1475 is another MTase partner of HvoTrm112 in H. volcanii 

As described for several HvoTrm112 MTase partners in chapter 2, I characterized another 

putative HvoTrm112 partner, HVO_1475 by means of co-expression and co-purification of these 

two proteins in E.coli. First of all, the HVO_1475 gene sequence was cloned similarly to other 

HvoTrm112 MTase partners (as described in details in chapter 2) so as to be express a C-

terminally His-tagged version of HVO_1475 together with untagged HvoTrm112. First, 

expression of HVO_1475 alone in E. coli led to the protein in an insoluble form while upon co-

expression with HvoTrm112, the MTase was expressed as a soluble protein and with higher yield 

(Figure 45A). This is a common trend observed for several Trm112 MTase partners in yeast and 

H. volcanii, which strictly require Trm112 for their solubility. Next, the HVO_1475-HvoTrm112 

complex was expressed and purified through 3-steps chromatography purification (Ni-NTA, 

anion exchange and size-exclusion) (Figure 45B-D). Since the theoretical isoelectric point (pI) of 
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HVO_1475-Trm112 is around 4.4, it is supposed to be negatively charged at the purification 

buffer pH 7.5 and therefore it should bind to positively charged MonoQ column. The result of 

ion exchange chromatography then showed the presence of four main peaks (Figure 45C). The 

first large peak came before NaCl gradient and corresponds to the flow-through fraction, 

indicating no binding of a large proportion of the complex to the column. The fourth peak elutes 

at very high NaCl concentration and its UV signal is higher at 260 nm than at 280 nm, indicating 

that it corresponds most likely to nucleic acids. The second and third peaks were eluted at around 

260mM and 450mM NaCl, respectively. Through SDS-PAGE these peaks were confirmed to 

contain HVO_1475 and Trm112 proteins. However, the asymmetric distribution of the proteins 

along peak 2 suggests that both proteins do not interact together in this peak (Figure 45C). The 

dissociation of the complex in this second peak could be due to the low salt concentration. 

Indeed, to perform the ion exchange chromatography, we had to lower the concentration of NaCl 

to nearly 100mM for the binding to the MonoQ column. We have observed such complex 

dissociation at low salt concentration for other HvoTrm112-MTase complexes. Hence, 

HVO_1475-Trm112 was probably slowly dissociated at 100mM NaCl. Thanks to short-time 

protocol of ion exchange chromatography, some complexes were still there. As a result, three 

different species (the protein complex, HVO_1475 and HvoTrm112 alone) were retained on the 

MonoQ column and eluted at different salt concentration, therefore leading to the formation of 

two peaks corresponding to proteins alone and the protein complex. The fractions corresponding 

to the protein complex, i.e. peak 3, were then collected, injected to gel filtration at 1M NaCl and 

finally eluted in a purer stage. The identities of HVO_1475 and HvoTrm112 were then 

confirmed by MS. SEC-MALLS analysis yielded a measured molecular weight of around 29.9 

kDa which is very similar to the theoretical molecular weight of the HVO_1475-HvoTrm112 

complex (30.05kDa) (Figure 45E). Altogether, this indicates that these two proteins interact 

together and exist as an heterodimer in solution.  
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Figure 45. HVO_1475-Trm112 complex. (A). Expression tests of HVO_1475 in case of absence (band 

1-2 from the left. T: total extract and E: elution) and presence (band 3. E: elution fraction) of 

HvoTrm112.(B-D). 3-steps chromatography purification. (E). SEC-MALLS. The proteins were run on 

12% SDS-PAGE gel.   
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2. Human METTL5 forms heterodimer with hTRMT112 

Blast search analysis of the H. volcanii HVO_1475 protein sequence against all organism 

proteins led to the identification of several putative orthologs including the human putative 

methyltransferase METTL5 (E-value of 3e
−30

). Since I have demonstrated that HVO_1475 forms 

a complex with HvoTrm112, I also tested whether its ortholog, the human METTL5, interacts 

with human TRMT112 or not. In doing so, a DNA sequence encoding human METTL5 fused to 

a His-tag at its C-terminal extremity was initially codon-optimized in silico and synthesized de 

novo (Integrated DNA Technologies, USA) for heterologous expression in E. coli. This synthetic 

DNA fragment was digested by NdeI and NotI and ligated into NdeI-NotI digested pET21a. The 

plasmids containing the target DNAs were transformed into competent E. coli XL1 Blue by the 

heat-shock transformation method. The transformants were then streaked on LB agar plate 

containing ampicillin (100µg/mL), followed by o/n incubation at 37
0
C. Some colonies for each 

clone were selected to inoculate 5mL LB supplemented with ampicillin (100µg/mL) and then 

grown o/n at 37
0
C. The plasmids were then extracted by MiniPrep kit and finally verified by 

sequencing. The plasmid encoding for untagged human TRMT112 is a kind gift from our 

collaborator Dr Valérie Heurgué-Hamard (IBPC, CNRS, Paris). I then co-expressed and co-

purified these two human proteins in E. coli. First, small scale expression tests at different 

induction temperatures (37, 30 and 18
0
C) indicated that the best expression yields are observed 

in E. coli Gold strain with auto inducible TBAI media at 18
0
C overnight (Figure 46A). Similarly 

to several MTases in both yeast and H. volcanii, human METTL5 was also shown to strictly 

require TRMT112 for its solubility (Figure 46B). 

 The complex was then co-expressed in 1 L using the optimal conditions identified from 

the expression assay and co-purified through three steps chromatography purification as 

described in the method part. After the Ni-NTA affinity chromatography step, two main bands, 

migrating at the expected molecular weights for METTL5 and TRMT112, are present on the 

SDS-PAGE analysis of the elution fraction (Figure 46C). Next, as the theoretical pI of METTL5-

TRMT112 complex is nearly 6, indicating that the complex should be negatively charged at pH 

7.5, MonoQ anion exchange chromatography was therefore chosen. The main peak eluting at 

around 300mM NaCl also contains mostly those two proteins (Figure 46D) and it was injected 

on size exclusion chromatography (S75 Superdex 16/60). Analysis of the content of the single 
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peak from SEC also revealed the presence of two main bands (Figure 46E), which were shown to 

be METTL5 and TRMT112 by MS. SEC-MALLS analysis indicated a molecular weight of 

41.6kDa, slightly different from the theoretical molecular weight of the complex (38.7kDa) 

(Figure 46F). Altogether, this indicates that the human METTL5 and TRMT112 proteins form a 

stable complex that exists as a heterodimer in solution. Hence, we have been able to identify a 

previously unanticipated partner of human TRMT112 from our initial study performed in the H. 

volcanii archeon. 

3. Structural studies 

In spite of being predicted as putative DNA/RNA methyltransferase in databases, the real 

functions of both HVO_1475 and its human ortholog METTL5 are still open questions. Taking 

advantage of possibility to obtain high amount of both purified protein complexes, we attempted 

to crystallize them with the hope to solve their crystal structures, which may give preliminary 

clues about their biological functions. Due to lack of time, I have so far tried only one 

crystallization trial for each complex. Unfortunately, no crystals have been so far obtained for 

both complexes.  
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Figure 46. Human METTL4-TRMT112 complex. (A). Expression tests at different temperature (18, 30, 

and 37
0
C). (B). Expression tests of METTL5 in case of absence (band 2-3 from the left. T: total extract 

and E: elution) and presence (band 4. E: elution fraction) of TRMT112. (C-E) 3-step chromatography 

purification: Ni-NTA, Ion exchange (MonoQ) and gel filtration (S75 16/60), respectively. (F). SEC-

MALLS. The proteins were run on 12% SDS-PAGE gel. 
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4. Putative biological function of human METTL5 

Thanks to Trm112 interacting network in H.volcanii, we have so far extended our 

knowledge on the corresponding counterpart in human by characterizing one more MTase 

partner – METTL5, which ortholog is surprisingly not present in S. cerevisiae. 

Grosjean et al, 2008 predicted that HVO_1475 could be the MTase responsible for m
6
A 

modification at position 1432 in 16S rRNA. This modification is also found at the corresponding 

position from small ribosomal rRNAs in other archaea as well as in metazoan including human 

(Maden, 1986, Grosjean et al, 2008) but no m
6
A has been reported in yeast 18S rRNA so far. In 

human, the MTase responsible for this modification has not been identified yet (Maden et al., 

1986). This is of particular interest as bioinformatic analyses strongly suggest that the human 

METTL5 might be responsible for the methylation of ribosomal RNA. Hence, we postulate that  

METTL5, already annotated as RNA/DNA methyltransferase, is responsible for the m
6
A 

formation in 18S rRNA in human and we were are currently testing this hypothesis in 

collaboration with Pr Denis Lafontaine (Belgium). If this hypothesis is true, this would enlarge 

the TRMT112 interaction network in human by including another MTase modifying an actor of 

translation, i.e. the 18S rRNA. Although no clear link has been established between defects in 

METTL5 and human disease, it is well-known that base methylations in rRNA affect the 

ribosome biogenesis, which defects normally link to human diseases (see Introduction I, 2.2.2.3). 

It is noteworthy that the four already-known MTase partners of human TRMT112 (TRM11, 

ABH8, HEMK2 and WBSCR22) have well established implications in human diseases (see 

Introduction II, 2.2). 
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I. DISCUSSION 

Protein translation is one of the most intricate processes in cell biology and requires 

highly numerous factors in a greatly-coordinated manner. Most of these translational factors such 

as tRNA, rRNA and proteins are frequently subjected to post transcriptional and post-

translational modifications to perform correct functions. Methylation is so far known as the most 

prevalent modification. In yeast, effects of methylation on translation are perfectly illustrated by 

Trm112, an obligate activator for at least four methyltransferases, acting on tRNAs (Trm9 

(Letoquart et al., 2015b) and Trm11 (Purushothaman et al., 2005; Bourgeois et al., 2017b)), 18S 

rRNA (Bud23, (Letoquart et al., 2014)) and translation termination factor eRF1 (Mtq2, (Liger et 

al., 2011)). Therefore, this Trm112 interacting network is at the heart of ribosome biogenesis and 

function. The importance of this interacting network is also reflected by its conservation in 

human where these MTases are associated with diseases (Bourgeois et al., 2017a). Through 

sequence analysis, Trm112 ortholog is also found in archaea, raising the question of the 

availability of the orthologous interacting network in this domain of life since it is known that 

most of the translational machineries are very similar between eukarya and archaea. 

In the thesis, the main work was to identify the Trm112 interacting network in archaea 

using H. volcanii as a model organism, followed by its functional and structural 

characterizations. In addition, I have also had opportunities to perform studies on human and 

yeast MTase-Trm112 complexes. All of these will be discussed in the following parts. 
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1. Mechanism of ScTrm9-Trm112 

 In yeast, the ScTrm9-Trm112 complex is known to convert cm
5
U into mcm

5
U at position 

34 in the anti-codon loop from different tRNAs, directly affecting the translation fidelity 

(Kalhor, & Clarke, 2003; Mazauric et al., 2010). In order to measure the enzymatic activity, the 

substrate tRNAs have to contain cm
5
U34, which can be obtained through in vivo purification 

from trm9-deleted yeast based on phenol-chloroform extraction. Since the enzyme substrates 

used in this case are total RNAs, which in addition to tRNA substrates contain non-substrate 

RNAs (other tRNAs as well as rRNAs (Figure 37B, lane 1), and potentially tRNAs containing 

ncm
5
U34, which is not the substrate for Trm9-Trm112 (Chen et al., 2011)), these contaminants 

can develop inhibiting effects on ScTrm9-Trm112 activity, leading to the determination of only 

apparent kinetics parameters (initial velocity, specific activity, Km and kcat). Several conserved 

residues centered on the SAM methyl group were selected for mutations in order to examine 

their effects in vivo and on in vitro enzymatic activity. Results showed a good agreement with 

the zymocin-resistant phenotypes as some mutants (W145A, H116A and W168A) were nearly 

inactive while the remaining (R29A, H115A, R241A, Y243A and N271A) impaired the 

enzymatic activity to different extent. As a SAM-dependent methyltransferase modifying an 

oxygen atom, the catalytic mechanism of ScTrm9-Trm112 is thought to be the conventional SN2 

reaction. For this reaction to occur, a linear orientation of the nucleophile (cm
5
U), the methyl 

carbon atom (CH3), and the thioester leaving group (C-S-C) in the transition state of the reaction 

is required. In fact, several mutants (R29A, H115A, R241A, Y243A and N271A) were 

kinetically shown to strongly affect the binding affinity for tRNA (Km higher) but not for SAM, 

as well as the enzymatic activity (kcat lower) compared to those for the ScTrm9 wild type. This 

supports a model where those residues play a role in locking tRNA substrate in the active site 

pocket through an intricate hydrogen bonds network, so as to bring cm
5
U34 into close proximity 

to the sulfonium group of the SAM for the methylation to be catalyzed (Figure 47).  
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Figure 47. Docking model of cm
5
U into the active site of Y. lipolytica Trm9. The residues are 

numbered based on the S. cerevisiae protein. A manually docked cm
5
U nucleotide is shown as beige 

sticks and potential hydrogen bonds that it could form with Trm9 active site residues are depicted by 

dashed black lines. The modeled SAM molecule is shown as blue sticks and the methyl group to be 

transferred is shown as a sphere (Letoquart et al., 2015b). 

 

2. H. volcanii Trm112 interacting network 

2.1. More MTase partners of Trm112 are present in archaea than in yeast 

 The Trm112 interacting network was initially deciphered in yeast, where Trm112 acts as 

a hub protein interacting with and activating at least four different SAM-dependent 

methyltransferases involved in different facets of protein translation. With Trm9 or Trm11, the 

complex is responsible for tRNA methylation (Letoquart et al., 2015b; Bourgeois et al., 2017b) 

while when bound to Mtq2, the complex is involved in methylation of translation termination 

factor eRF1 (Liger et al., 2011). The last known partner is Bud23, which participates in 18S 

rRNA methylation (Figaro et al., 2012; Letoquart et al., 2014). Meanwhile, although the 

presence of Trm112, Trm9, Mtq2, and Trm11 orthologs in many archaea have been previously 

identified by bioinformatic analysis, no information is available whether the corresponding 
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interacting network exists in archaea. By taking advantage of recent advances in archaeal 

genetics and highly sensitive protein detection method based on liquid chromatography coupled 

to tandem mass spectroscopy (LC-MS/MS), we were able to detect several putative interacting 

partners of Trm112 in H. volcanii using co-immunoprecipitation coupled to in vivo cross-linking. 

So far and because Trm112 is a known interacting partner for several SAM-dependent MTases in 

eukaryotes, we only paid attention on putative or known MTases identified from our Co-IP 

experiments (Table 7). One crucial thing to remark is that comparing our Co-IP result with that 

of Lsm-FLAG (a protein involved in RNA metabolism) from Fischer et al (Fischer et al., 2010) 

reveals that there is no MTase detected in their experiments while in our case, as expected, 

MTases are highly enriched. By means of several rounds of in vitro complex characterizations 

(co-purification in E. coli, SEC-MALLS and MS), we have been able to validate at least 9 

MTase partners for HvoTrm112. In addition to proteins orthologous to known yeast Trm112 

partners, namely Trm9 (HVO_1032), Mtq2 (HVO_2744), 7 other MTases were successfully 

shown to be real HvoTrm112 partners, making the HvoTrm112 interacting network unexpectedly 

much larger than that of the current yeast counterpart. Meanwhile, TrmG10/HvoTrm11, 

orthologous to yeast Trm11, was found on the top of the Co-IP result list based on the high 

number of detected peptides. Unfortunately, we failed to prove the complex formation with 

HvoTrm112 because TrmG10 was recovered in insoluble form despite attempting many efforts. 

It is also noteworthy that this HvoTrm112 network could even be larger because there are still 15 

other putative MTase partners that have not been tested so far (Table 7). 
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Table 7. List of putative HvoTrm112 MTase partners resulting from Co-IP experiments 

 

 

2.2. The role of salt in archaeal protein complex formation 

As living optimally at high salt concentration (1.8-3.5M NaCl), H. volcanii cells have to 

adapt themselves by accumulating high ion concentration in their cytosol to avoid osmotic shock 

(Allers, 2010). As a result, this leads to salt-loving properties of H. volcanii proteins. In fact, in a 

low salt condition, some proteins were shown to be less active (HvoTrm9-Trm112) or totally 

inactive (HvoMtq2-Trm112) (Chapter 2, part 3). Moreover, some protein complexes were 

observed to be salt-sensitive and dissociated under low salt conditions, while being stable under 

high salt conditions. This is for example the case of HVO_0475-Trm112 and to some extent 

HVO_1475-Trm112. As seen in the Figure 48A, at 500mM NaCl, the HVO_0475-Trm112 

complex was nearly completely separated into two single proteins while at 1M NaCl, both 

proteins form a stable complex (Figure 48B). A similar behavior was observed for HVO_1475-

Trm112 complex during ion exchange purification in which at 260mM NaCl, the complex was 
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also dissociated while the complex was stable at 450mM NaCl. This information is very useful 

for the crystallization of those protein complexes. For instance, it might be problematic to 

crystallize HVO_0475-Trm112 at 1M NaCl because through vapor diffusion crystallization 

methods we normally mix protein sample and reservoir solution in 1:1 ratio, resulting in the 

protein complex in a final solution with 500mM NaCl when the crystallization experiment is set-

up. It is possible that this complex is gradually dissociating in this case, leading to heterogeneity 

in the protein sample, normally not good for the crystallization. Hence it is better and necessary 

to increase salt concentration for this complex when performing crystallization. The same is also 

true for HVO_1475-Trm112 complex. 

 

 

Figure 48. HVO_0475-Trm112 complex purification. (A). Purification of the complex by gel filtration 

at 500mM NaCl. The complex was completely dissociated; (B). All fractions from A were collected and 

adjusted to 1M NaCl and incubated for 1hour before loading on another gel filtration. The complex was 

able to form again in this condition. 

 

2.3. Interacting mode between MTases and Trm112 

 In yeast, although Trm9, Mtq2 and Bud23 share very low sequence identity (less than 

20%), the way they interact with Trm112 is very similar (Letoquart et al., 2015b). The same 

seems to be true for Trm11. Indeed, although no crystal structure for Trm11-Trm112 has been so 

A. B. 
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far obtained, hydrogen-deuterium exchange experiments coupled to mass spectrometry have 

shown that the peptides from Trm112 and from Trm11 that are affected upon complex formation 

correspond to the regions involved at the interface between Trm112 and its other partners in the 

crystal structures of Mtq2-Trm112, Trm9-Trm112 and Bud23-Trm112 (Bourgeois et al., 2017b). 

From the crystal structure of HVO_0019-Trm112 complex solved during my thesis – the first 

archaeal Trm112-MTase complex structure, this commonly interacting pattern is once again 

observed in H. volcanii MTase-Trm112 complex, including a number of characteristics. First, 

comparing the crystal structures of HVO_0019-Trm112 and ScBud23-Trm112 complexes, we 

observe the way both MTases interact with corresponding Trm112 proteins is very similar (rmsd 

value is 1.33Å) (Figure 49). HVO_0019 adopts the same Rossmann fold-like domain as all four 

yeast MTases that all interact with ScTrm112 in the same region of Zn-binding domain. This 

later domain is conserved in H. volcanii Trm112 protein, but does not bind Zn
2+

 ion as the Zn-

binding motif (CX3-4C and CX2C from the N- and C-terminal parts in yeasts and some archaea, 

respectively; where X is for any amino acid) is not conserved. Second, the interaction mode 

between MTase and Trm112 is totally similar between yeast and H. volcanii complexes with the 

presence of a β-zipper interaction formed between Trm112 strand β4 and MTase strand β3 

implying formation of hydrogen bonds between main chain atoms. This explains why different 

proteins can maintain a similar interaction mode that is in fact much more dependent on the local 

three-dimensional structure rather than on conservation of amino acid residues at the positions 

involved in the formation of this β-zipper. Third, Trm112-MTase complex formation 

encompasses a large hydrophophic region on the surface of both proteins. This explains the 

prerequisite of Trm112 to stabilize and purify several MTases (Trm9, Mtq2 and Bud23 in S. 

cerevisiae and HVO_0019 and most probably HVO_0773, HVO_1475 as well as human 

METTL5) in their soluble forms in E. coli. In addition, Trm112 is recognized to induce SAM 

binding capability as well as to contribute to substrate binding by Trm11, Mtq2 and probably 

Trm9 and Bud23 in yeast (Liger et al., 2011; Bourgeois et al., 2017b). We cannot exclude these 

characteristics are also present in archaea but more studies are needed. 

  



 

178 

 

Figure 49. The superimposition of ScBud23-Trm112 (blue and light pink, respectively) onto 

HVO_0019-HvoTrm112 (green and pink, respectively) 

 

2.4. Functions of different HvoTrm112 MTase partners 

2.4.1. HvoMtq2 

In spite of having distinct evolutionary origins, both eukaryotic and bacterial class I 

release factor contain a universally conserved GGQ motif which is known to be N5-methylated 

at glutamine side chain, underlying the importance of this modification (Dincbas-Renqvist et al., 

2000; Heurgue-Hamard et al., 2005). In fact, the methylation of Q residue in bacterial RF2 GGQ 

motif is established to affect the efficiency of the polypeptide release (Dincbas-Renqvist et al., 

2000; Pierson et al., 2016). In bacteria, PrmC (or HemK) is the MTase responsible for the RF1 

and RF2 QQG methylation (Heurgue-Hamard et al., 2002; Graille et al., 2005) while in yeast, a 

catalytic subunit Mtq2 in complex with Trm112 is responsible for this methylation on eRF1 in an 

eRF3-dependent manner (Heurgue-Hamard et al., 2005; Polevoda et al., 2006). In archaea, the 

translation termination process is quite comparable to the case of eukaryotes and the archaeal 

class I release factor aRF1 shares similar properties as its eukaryotic counterpart, both differing 

from those in bacteria (Dontsova et al., 2000; Kobayashi et al., 2012). This led to an assumption 
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that aRF1 is also methylated. Initially, as no ortholog of eRF3 was detected in archaeal genomes, 

this process was supposed to be in a class-II release factor (aRF3)-independent manner 

(Heurgue-Hamard et al., 2005). However, since then, it has been shown that in archaea, a single 

protein (aEF1α), in addition to act as elongation factor carrying tRNAs during translation 

elongation also acts in translation termination as eRF3 ortholog as well as in mRNA surveillance 

by interacting with aPelota (Saito et al., 2010). In the thesis, I demonstrated that in archaea, aRF1 

is methylated in a similar manner to the eukaryotic counterpart by a eukaryotic orthologous 

complex between HVO_2744 (HvoMtq2) and HVO_1131 (HvoTrm112) (Figure 33). It is 

remarkable to mention that this methylation is also dependent on salt concentration, a 

commonly-observed property of proteins from halophilic organisms. The role of high salt in this 

case is possibly involved in enhancing the enzyme and substrate stability as well as their 

conformations, which in turn benefit the enzymatic activity by means of conventional SN2 

mechanism of SAM-dependent MTases. The effect of aRF1 GGQ methylation on archaeal 

translation termination as well as the substrate recognition mechanism by archaeal Mtq2-

Trm112, remains to be resolved as it is the case for their eukaryotic counterparts.  

Regarding enzymatic activity assays, it is normally not an easy task for H. volcanii 

proteins in particular and for archaea in general since the optimal conditions for these proteins 

are difficult to be uncovered (high salt, pH, temperature, …). Initially, almost no activity could 

be detected for HvoMtq2-Trm112 enzyme by use of optimal conditions from the yeast enzymes 

(50mM phosphate buffer pH7.5, 0.1mM EDTA, 10mM MgCl2 and 10mM NH4Cl) and even in 

case of high salt concentration (2M KCl). Fortunately, through keeping incubating the reaction 

overnight at 45
0
C, I was able to detect enzymatic activity. This led me to optimize the 

experimental buffer conditions by increasing the concentrations of buffer contents. It is due to 

the fact that incubation at 45
0
C for a long time resulted in water evaporation, therefore gradually 

increasing the reaction solution concentrations which turned out to be the optimal conditions for 

the HvoMtq2-Trm112 activity. At the end of buffer optimization process (Figure 32), I ended up 

with 400mM phosphate as the best condition for enzyme activity among those tested. It is also 

important to note that the high concentration of MgCl2 (5mM instead of 2.5mM) was not a good 

option for the activity, possibly resulting from precipitation trouble as a result of high phosphate 

and high MgCl2 concentration combination. Moreover, to control changes in reaction contents 

via evaporation, all experiments were then carried out in a closed incubator. 
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2.4.2. HvoTrm9 

As the Trm9-Trm112 complex in S. cerevisiae, the complex formed between orthologous 

proteins from H. volcanii (HVO_1032 (Trm9) and HVO_1131 (Trm112)) was shown to be 

active on total tRNAs, thereby most likely catalyzing the conversion of cm
5
U to mcm

5
U. 

However, this activity is only detected for the chimeric enzymatic reaction between the H. 

volcanii Trm9-Trm112 enzyme complex on the yeast substrate. In case of H. volcanii total RNA 

substrates, no activity at all was detected. There are several reasons that could explain this result. 

The most probable is that the tRNA substrates purified from the H. volcanii trm9∆ strain do not 

contain cm
5
U34. Indeed, in S. cerevisiae, deletion of TRM9 gene can result in an accumulation 

of ncm
5
U34 (5-carbamoylmethyl uridine) which is not the right substrate for ScTrm9-Trm112 

(Chen et al., 2011). We cannot exclude this could also occur in H. volcanii where mutant trm9∆ 

could initially lead to accumulation of cm
5
U34, which could then potentially be converted to 

ncm
5
U (or another modification) by an unknown enzyme or an unknown mechanism. The 

quality of tRNA substrates could also be another issue for the absence of enzymatic activity. In 

fact, total RNA purified from H. volcanii trm9∆ contained lots of contaminants such as genomic 

DNA, rRNAs compared to the Sc counterpart (Figure 37B). This could as a result develop 

inhibitory effects on the activity of HvoTrm9-Trm112. We also could not exclude that this buffer 

condition is not optimal for activity of HvoTrm9-Trm112 on Hvo total RNAs, despite the fact 

that it was compatible with the detection of enzymatic activity on Sc total RNAs. Moreover, 

similar to the case of HvoMtq2-Trm112 complex, HvoTrm9-Trm112 requires high salt 

concentration for optimal enzymatic activity. Meanwhile, HVO_0574 was initially proposed as 

Trm9 ortholog (Grosjean et al., 2008; G. Phillips, & de Crecy-Lagard, 2011). In the thesis, I have 

performed enzymatic activity on the HVO_0574-Trm112 complex and could not detect activity 

on tRNAs. Hence, the biochemical function of HVO_0574-Trm112 complex remains to be 

unraveled.  

2.4.3. HvoTrmG10 

Different from other known or putative Trm112 MTase partners, TrmG10 (Trm11 

ortholog) is the only protein already well studied in archaea. Functional and structural 

characterization of TrmG10 has been so far carried out in Pyrococcus abyssi and Thermococcus 
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kodakarensis in which TrmG10 is responsible for the formation of m
2
G10 and m

2
2G10 

(Armengaud et al., 2004; Urbonavicius et al., 2006; Hirata et al., 2016), quite similar to the role 

of Trm11 in yeast, which catalyzes the former modification in some tRNAs (Purushothaman et 

al., 2005; Bourgeois et al., 2017b). However, Trm11 is known to require its Trm112 partner to be 

active in yeast (Purushothaman et al., 2005; Bourgeois et al., 2017b) while its archaeal orthologs 

studied so far were shown to be active on their own (Urbonavicius et al., 2006; Hirata et al., 

2016). This occurrence initially led to the hypothesis that Trm112 was not mandatory for Trm11 

activity in archaea. However, bioinformatics analysis revealed that although Trm11 orthologs are 

present in all archaeal phyla, archaeal Trm112 orthologs are absent in Thermococcales and 

Methanobacteriales from the Euryarchaeota phylum (Figure 22). This then could explain why 

Trm11 orthologs from two Thermococcales archaea (Pyrococcus abyssi and Thermococcus 

kodakarensis) are able to generate m
2
G and/or m

2
2G at position 10 of some tRNAs in vitro 

without the help of Trm112 partner. Meanwhile, for most cases, Trm11 orthologs co-occur with 

Trm112, raising the possibility that with the exception of Thermococcales and 

Methanobacteriales TrmG10, the other archaeal Trm11 orthologs may be in complex with 

Trm112 and also entail Trm112 to be active as demonstrated in eukaryotes. In the thesis, 

HvoTrm11 (Hvo_0156) was found on the top of our Co-IP results and predicted to be an 

HvoTrm112 partner with high confidence. However, although several efforts have been made so 

far to analyse the formation of HvoTrmG10-Trm112 complex, i.e. using different culture media, 

expression strains, inducer concentrations, temperatures and codon-optimized synthetic DNA 

sequence, H. volcanii TrmG10 was found expressed but only in an insoluble form in inclusion 

bodies. Hence, this leaves the question related to HvoTrmG10-Trm112 complex formation still 

opened. One reason for the protein insolubility could be that HvoTrmG10 is a salt-loving protein, 

probably resulting in mis-folding and aggregates under low ionic conditions in E. coli. The next 

attempt to study the interaction of these two proteins should be co-purification of these two 

proteins in their native organism or expression of orthologous proteins from another archaea. 

This would ideally help to characterize their interaction through biochemical and biophysical 

approaches. This task is experimentally feasible since methods to over-express and purify 

proteins directly in H. volcanii have been developed and already performed by Allers and 

colleagues (Allers et al., 2010).  

2.4.4. HVO_0019 



 

182 

Thanks to the crystal structure of HVO_0019-Trm112, we were able to take a first glance 

at the putative HVO_0019 function. Using DALI server (Holm, & Rosenstrom, 2010) to search 

Protein Data Bank (PDB) for proteins sharing strong structural similarity with HVO_0019 

MTase domain, we identified of hundreds of crystal structures of MTases with Z-scores ranging 

from 21 to 10. Among these structures, based on structural analysis, we found out one candidate 

(NodS from Bradyrhizobium japonicum (Cakici et al., 2010)) sharing lots of features in common 

with the HVO_0019 MTase active site. For example, residues R22, E111, Y114, Y115 and 

W152 from HVO_0019 structurally match with R21, E115, Y118, Y119 and W156 from NodS, 

respectively (Figure 42D). In addition, the side chains from HVO_0019 W10 and NodS W20 are 

also seen in close proximity. NodS is known to methylate the NH2 group of its glucosamine 

moiety, then participating in the biosynthesis of the Nod factor, a modified chitosaccharide 

acting as a signal molecule in rhizobia (Cakici et al., 2010). The similarity in the active site of 

both proteins suggests that HVO_0019 might also methylate a substrate with an hexose sugar 

ring. Further biochemical experimental studies will be needed to characterize the enzymatic 

activity of the HvoTrm112-HVO_0019 complex on putative sugar substrates. 

2.4.5. HVO_1475 

Among those newly identified Trm112 MTase partners, HVO_1475, which belongs to 

the Clusters of Orthologous Groups 2263 (COG2263), was proposed to catalyze the formation of 

m
6
A at position 1432 on 16S rRNA (Grosjean et al., 2008). This m

6
A modification is found in 

small ribosomal subunit rRNA from some organisms, in particular archaea H. volcanii and S. 

Solfataricus archeon (Noon et al., 1998) and eukaryotes such as Homo sapiens (Maden, 1986), 

plants (Cecchini, & Miassod, 1979) and other metazoans (Xenopus laevis and Rattus norvegicus) 

but is absent from S. cerevisiae (Grosjean et al., 2008). The COG2263 family annotated as RNA 

MTase or N6-DNA-methylase distributed in most archaea and many eukaryotes was anticipated 

to be responsible for m
6
A modification in those cases (Grosjean et al., 2008). This is quite 

coincident because there is no HVO_1475 ortholog identified in S. cerevisiae whereas this 

ortholog is found in Homo sapiens known as METTL5, which I was able to identify as a new 

MTase partner of human TRMT112 and in our prediction probably to be responsible for the m
6
A 

18S rRNA modification. However, more functional and structural studies on H. volcanii 

HVO_1475-Trm112 and human METTL5-TRMT112 are required to decipher this hypothesis. 
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2.4.6. Other MTase partners 

In addition to HvoTrm112 MTase partners with known or putative functions, there are 

still five other confirmed partners without any information about their functions, including 

HVO_0773, HVO_0574, HVO_0475, HVO_1715 and HVO_2875. Through sequence analysis, 

those MTases are recognized to belong to the class I SAM-dependent methyltransferases. 

However, these proteins have very loose annotations as SAM-dependent MTases in public 

protein databases such as UniProt and NCBI. This is not a surprising issue because these online 

servers are normally suffering from severe annotation errors as a result of automatic annotation 

procedures by computational programs (Pfeiffer, & Oesterhelt, 2015). Thus, experimental 

validations based on structural and biochemical studies for those complexes remain to be made 

in order to provide insight into their specific biological functions. 

3. Human METTL5 

3.1. Human TRMT112 network 

The current human TRMT112 network is characterized based on the yeast counterpart, 

which contain four complexes like those in yeast. Except TRMT11 (Trm11 ortholog) whose 

biochemical and biological functions have not been characterized so far, ABH8 (Trm9 ortholog), 

HEMK2 (Mtq2 ortholog) and WBSCR22 (Bud23 ortholog) are well characterized, requiring 

TRMT112 for enzymatic activity and are involved in human diseases (Bourgeois et al., 2017a). 

One exciting aspect of the results obtained during my thesis is that thanks to Trm112 interacting 

network in H. volcanii, we have so far extended our knowledge on the corresponding counterpart 

in human by characterizing one more MTase partner – METTL5, which ortholog is not present 

in S. cerevisiae.  

3.2. Putative biological function of human METTL5 

The real function of METTL5 is not exactly known so far. In human and some 

metazoans, there is presence of m
6
A in 18S rRNA but no enzyme is currently determined to be 

responsible for this modification (Maden, 1986). Meanwhile, an ortholog of METTL5 in H. 

volcanii, HVO_1475 is predicted to methylate m
6
A at position 1432 of 16S rRNA (Grosjean et 

al., 2008). Coincidently, both the enzyme ortholog and m
6
A modification are not observed in S. 
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cerevisiae. The human METTL5 belonging to COG2263, annotated as RNA/DNA 

methyltransferase, is in our hypothesis linked to the m
6
A formation in 18S rRNA in human. 

However, more experimental attempts are needed to characterize this hypothesis. This would be 

an exciting discovery if it is the case because base methylations in rRNAs are well 

acknowledged to be important for ribosome biogenesis, which defects normally link to human 

diseases (see Introduction I, 2.2.2.3). However, in case this hypothesis is true, it is a very crucial 

but not surprising result because four previously-known MTase partners of human TRMT112 

including TRMT11, ABH8, HEMK2 and WBSCR22 are known to modify translation actors and 

it is well established that they have implications in human diseases (see Introduction II, 2.2). 
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II. CONCLUSION 

Trm112 is a perfect example for investigating the importance of methylations involved in 

translation where a small protein can interact with and activate many MTase partners, 

interestingly in the same way. Knowing the fact that the translation process is very compatible 

between eukaryotes and archaea, we paid our attention on resolving the Trm112 interacting 

network in the latter organism on the purpose of making use of advantages of studying archaeal 

proteins for the dissection of more complex eukaryotic counterparts. The study surprisingly led 

us to a much larger Trm112 interacting network in archaea compared to well-known equivalent 

ones in yeast and human. Moreover, this is not only just findings for archaea; it also in turn 

benefits the human knowledge of TRMT112 network by identifying one more MTase partner. 

Studies of archaeal Trm112 interacting network are still at their infancies and further studies are 

necessary to clarify the role of archaeal Trm112 and its interacting partners in archaeal biological 

functions. 
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RÉSUMÉ DE THÈSE 

 

Lors du processus de traduction, le ribosome, une machinerie très sophistiquée et formée 

des sous-unités 40S et 60S chez les eucaryotes, recrute des ARN de transfert (ARNt) ainsi que 

des facteurs de traduction pour décoder chaque ARN messager (ARNm) et synthétiser les 

protéines correspondantes selon les règles du code génétique. La traduction repose sur une notion 

de haute fidélité dont le but est de réduire au maximum les erreurs lors de la synthèse des 

protéines. Elle est également finement régulée de façon à produire la quantité adéquate de 

chaque protéine et de permettre aux organismes et aux cellules de s’adapter aux stimuli 

environnementaux. Pour ce faire, la grande majorité des facteurs impliqués dans la synthèse des 

protéines subissent des étapes de maturation qui vont optimiser leur mode d’action. Parmi ces 

mécanismes de maturation, les plus fréquents sont les modifications post-transcriptionnelles et 

post-traductionnelles et plus particulièrement les méthylations des divers ARN mais aussi des 

protéines.  

  Mon laboratoire d’accueil s’intéresse à la protéine Trm112 qui chez la levure 

Saccharomyces cerevisiae, interagit avec et active 4 méthyltransférases de classe I ou MTases 

(Mtq2, Trm9, Trm11 et Bud23) qui modifient des acteurs de la traduction. Ces enzymes 

dépendent du donneur de groupement méthyl S-adenosyl-L-méthionine (SAM). Le complexe 

Mtq2-Trm112 méthyle le facteur de terminaison eRF1 au niveau de la chaîne latérale du résidu 

glutamine (Q) du motif GGQ universellement conservé et qui est impliqué directement dans la 

libération des protéines nouvellement synthétisées. Le complexe Trm11-Trm112 catalyse la 

formation de 2-méthylguanosine en position 10 des ARNt, une modification dont le rôle serait de 

stabiliser la structure de ces ARNt. Le complexe Trm9-Trm112 catalyse l’addition d’un 

groupement méthyl sur l’uridine présente en position 34 de la boucle anticodon de certains 

ARNt. Cette modification est très vraisemblablement impliquée dans la fidélité du décodage et 

des expériences suggèrent que cette modification serait impliquée dans la réponse cellulaire aux 

stress génotoxiques. Le complexe Bud23-Trm112 modifie spécifiquement une base de l’ARNr 

18S et intervient dans le mécanisme de biosynthèse de la sous-unité 40S du ribosome. Ces 

complexes sont également présents dans les cellules humaines et leurs défauts de fonctionnement 

ont été associés à des maladies neuro-dégénératives et à des cancers. 

  Lorsque j’ai débuté ma thèse, j’avais deux objectifs: 
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1. Réaliser l’étude enzymatique du complexe Trm9-Trm112 de la levure S. cerevisiae.  

  Avant mon arrivée au laboratoire, la structure cristallographique du complexe Trm9-

Trm112 avait été déterminée et des études in vivo et in vitro avaient été initiées pour 

cartographier le site actif de cette enzyme. Pour ma part, j’ai déterminé les constantes cinétiques 

de mutants alanine de certains résidus très fortement conservés au niveau du site actif de Trm9 

pour les comparer à celles de l’enzyme sauvage. Ces études m’ont permis de montrer que les 

résidus conservés et situés autour du groupement méthyl du SAM sont importants pour la 

fixation du substrat ARNt (augmentation du Km) mais aussi pour l’activité enzymatique 

(diminution du kcat). Ces observations sont en accord avec un mécanisme réactionnel de type 

SN2, qui est fréquemment décrit pour les MTases de classe I qui sont dépendantes du SAM. En 

effet, le mécanisme SN2 consiste en un transfert spontané du groupement méthyl vers son 

substrat à la condition que ce dernier soit parfaitement positionné par rapport au groupement 

méthyl du SAM. Ainsi, les résidus mutés apparaissent comme très importants pour orienter 

idéalement le nucléotide à modifier dans le site actif de l’enzyme pour que le transfert du 

groupement méthyl puisse avoir lieu. A partir de ces expériences, il a été possible de modéliser le 

nucléotide substrat dans le site actif de l’holoenzyme Trm9-Trm112. Ceci pourrait avoir des 

implications futures dans le développement de molécules visant à inhiber l’activité de la protéine 

ABH8 (ou AlkBH8, orthologue humaine de Trm9) dans la mesure où des études sur des cellules 

humaines suggèrent que la déplétion de la protéine ABH8 rend ces cellules plus sensibles à des 

molécules anti-cancéreuses. 

2.  Etudier le réseau d’interaction de la protéine Trm112 chez les archées. 

  Des orthologues de la protéine Trm112 de S. cerevisiae sont présents dans les trois 

domaines du vivant (eucaryotes, procaryotes et archées). Au début de ma thèse, les études 

s’étaient uniquement concentrées sur les complexes formés entre la protéine Trm112 et des 

MTases chez les eucaryotes. Afin de comprendre d’un point de vue évolutif le ou les rôles des 

orthologues de Trm112, j’ai caractérisé le réseau d’interaction de la protéine Trm112 de l’archée 

Haloferax volcanii, un organisme modèle d’études pour lequel des outils génétiques ont été 

développés. De plus, compte-tenu des fortes similarités entre les machineries de traduction 
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eucaryotes et d’archées, les études menées chez les archées pourraient se révéler informatives 

pour une meilleure compréhension des mécanismes de la traduction chez les eucaryotes.  

  J’ai donc généré une souche d’H. volcanii exprimant la protéine Trm112 fusionnée à une 

étiquette “Flag” à son extrémité C-terminale pour réaliser des expériences de co-

immunoprécipitation et identifier les partenaires potentiels par spectrométrie de masse. A partir 

de ces expériences, une liste finale d’environ 500 protéines a été obtenue. De façon très 

intéressante, nous avons noté un enrichissement significatif de protéines annotées comme 

MTases (26 au total). Parmi celles-ci, figuraient les orthologues des protéines Trm11, Trm9 et 

Mtq2 de S. cerevisiae. En co-exprimant Trm112 d’H. volcanii avec plusieurs MTases différentes 

chez E. coli, j’ai pu montrer que chez cette archée, Trm112 interagit avec au moins 9 MTases 

différentes dont les orthologues de Trm9 et de Mtq2. Je n’ai malheureusement pas pu valider la 

formation du complexe Trm11-Trm112 dans la mesure où Trm11 est exprimée uniquement sous 

forme insoluble. Si pour beaucoup de ces MTases, il est compliqué de prédire une fonction 

biochimique, j’ai toutefois pu démontrer par des tests enzymatiques que les complexes Mtq2-

Trm112 et Trm9-Trm112 d’H. volcanii possèdent des activités enzymatiques similaires à leurs 

orthologues eucaryotes, à savoir la méthylation du facteur de terminaison de la traduction aRF1 

et des ARNt, respectivement. J’ai également déterminé la structure cristallographique à 1.35Å de 

résolution d’un complexe d’H. volcanii formé entre Trm112 et une MTase de fonction inconnue. 

Cette structure montre que les bases moléculaires de l’interaction entre Trm112 et cette MTase 

(et donc très vraisemblablement des autres MTases validées comme étant des partenaires de 

Trm112) sont comparables à ce qui a été décrit chez les eucaryotes. Cela permet de rationaliser 

le fait que Trm112 d’H. volcanii puisse interagir avec un si grand nombre de MTases. Des 

cristaux ont été obtenus pour d’autres complexes et diffractent à 3Å de résolution dans un cas et 

7Å de résolution dans un autre mais par manque de temps, je n’ai pas encore pu résoudre leur 

structure. 

  Enfin, parmi les MTases partenaires de Trm112 chez H. volcanii, une est 

particulièrement intéressante dans la mesure où elle possède un orthologue proche chez les 

métazoaires dont l’homme (la protéine METTL5) mais pas chez la levure S. cerevisiae. J’ai donc 

cloné la protéine METTL5 et l’ai co-exprimée avec la protéine humaine TRMT112 chez E. coli. 

Cela m’a permis de mettre en évidence l’interaction directe entre ces deux protéines humaines et 

donc d’identifier un nouveau partenaire de TRMT112. Celui-ci n’avait pas pu être mis en 
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évidence jusqu’à présent puisque les études sur les complexes entre TRMT112 humaine et ses 

MTases partenaires ont toutes été réalisées par analogie à l’état de nos connaissances chez la 

levure S. cerevisiae. A l’heure actuelle, les fonctions biochimiques de METTL5 ne sont pas 

connues mais des analyses bioinformatiques et bibliographiques suggèrent que cette protéine soit 

responsable de la formation de m6A (méthylation de la base sur l’azote en position 6 d’une 

adenine) en position 1832 de l’ARNr 18S. En effet, une co-occurence très claire existe entre la 

présence de la protéine METTL5 (et de ses orthologues) et de la modification m6A en position 

1832 (ou équivalent suivant les organismes) chez les métazoaires et chez les archées. De plus, il 

est intéressant de noter que cette modification est absente chez la levure S. cerevisiae qui ne 

possède pas d’orthologue de METTL5. Des études seront poursuivies en collaboration avec le 

Pr. Denis L.J. Lafontaine (Université Libre de Bruxelles, FNRS, Belgique) afin de caractériser la 

fonction du complexe TRMT112-METTL5.  

  En conclusion, les travaux menés pendant ma thèse m’ont permis d’approfondir l’état de 

nos connaissances du réseau d’interaction de la protéine Trm112 qui joue un rôle très important 

dans le mécanisme global de la traduction des ARNm en protéines comme l’attestent les 

nombreuses maladies décrites pour être associées à des dysfonctionnements des complexes entre 

TRMT112 et des MTases humaines. L’étude du réseau d’interaction de Trm112 chez les archées 

a abouti à plusieurs découvertes surprenantes telles qu’un nombre beaucoup plus important de 

partenaires chez les archées que chez les eucaryotes mais aussi la découverte d’un nouveau 

partenaire de TRMT112 humaine. Ceci suggère que le réseau d’interactions de TRMT112 avec 

des MTases humaines soit plus complexe que précédemment anticipé sur la base des études 

réalisées initialement chez l’organisme modèle eucaryote S. cerevisiae. Cette étude souligne 

également l’intérêt d’utiliser les archées pour obtenir des informations sur des mécanismes 

cellulaires essentiels et conservés entre les archées et les eucaryotes. 
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