
HAL Id: tel-02464021
https://pastel.hal.science/tel-02464021v1

Submitted on 2 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Novel memory and I/O virtualization techniques for
next generation data-centers based on disaggregated

hardware
Maciej Bielski

To cite this version:
Maciej Bielski. Novel memory and I/O virtualization techniques for next generation data-centers
based on disaggregated hardware. Hardware Architecture [cs.AR]. Université Paris Saclay (COmUE),
2019. English. �NNT : 2019SACLT022�. �tel-02464021�

https://pastel.hal.science/tel-02464021v1
https://hal.archives-ouvertes.fr


Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LT
02

2

Nouvelles techniques de virtualisation de
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répartis déstructurés
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Acknowledgments

The work presented in this dissertation was carried out by the author when he was an employee

of Virtual Open Systems. This work was supported by the dReDBox project. This project has

received funding from the European Union’s Horizon 2020 research and innovation program

under grant agreement No. 687632. This work reflects only authors’ view and the EC is not

responsible for any use that may be made of the information it contains.

At the end of my doctorate I would like to acknowledge everyone who helped me to reach this

stage of my education track.

I would like to thank teachers and professors who introduced me to science and engineering and

somehow made me interested in exploring them on my own. In particular, I would like to thank

Professor Renaud Pacalet for supervising my PhD and providing substantial help in improving

the thesis manuscript. Several improvements was also suggested by Professor Frédéric Pétrot

and Professor Alain Tchana, who spent their time on reviewing the manuscript for which I am

immensely grateful. I would also like to thank fellow members of LabSoC, including Professor

Ludovic Apvrille who actually brought me to the laboratory where I was making my first steps

in hacking Linux kernel during my internship.

While working on my PhD I was employed by Virtual Open Systems and therefore I would like

to thank Daniel Raho, CEO of the company, for offering me this opportunity. Moreover, I thank

all colleagues I worked with, especially Alvise Rigo, who was my company supervisor for most

of the time and helped me to solve many technical challenges.

Last but not least, my family and my friends deserve big words of thank for keeping me

happy everyday. In particular, I would like to thank my parents who substantially supported

my education from the very beginning. Although it required an effort and determination from

myself, all of that could go for nothing without a solid foundation they provided.

Finally, I would like to especially thank my beloved Magda, a hero in the shadows who was

accompanying me for all this time with a profound understanding and made me enjoy life more

than ever before.

1



2



Contents

List of Figures 7

List of Tables 9

List of Terms 11

List of Publications 13

1 Introduction 15

1.1 Data centers — current state . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Clustered architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Virtualization role . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.4 Clustering drawbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.5 Disaggregated architecture . . . . . . . . . . . . . . . . . . . . . . . . 28

1.6 Disaggregated systems and virtualization . . . . . . . . . . . . . . . . 31

1.7 Focus and scope of this work . . . . . . . . . . . . . . . . . . . . . . . 32

2 Related work 35

2.1 Memory disaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2 VM memory provisioning and balancing . . . . . . . . . . . . . . . . . 47

2.3 Uniform address space . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4 Inter-VM memory sharing and migration . . . . . . . . . . . . . . . . . 54

2.5 Devices disaggregation . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3 Guest memory provisioning in a disaggregated system 65

3.1 Chapter introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3



3.2 Proposed system architecture . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Resize volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.4 Live VM balancing: guest parameters visibility . . . . . . . . . . . . . 72

3.5 Explicit resize requests . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.6 Request path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Resize granularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.8 Disaggregation context . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.9 Guest memory isolation . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.10 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4 VM memory sharing and migration 79

4.1 Chapter introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Memory sharing — overview . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 VM migration — overview . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Software modifications . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Proposed system architecture . . . . . . . . . . . . . . . . . . . . . . . 83

4.6 Sharing disaggregated memory . . . . . . . . . . . . . . . . . . . . . . 83

4.7 VM migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.8 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5 Disaggregated peripherals attachment 103

5.1 Chapter introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Device emulation and direct attachment . . . . . . . . . . . . . . . . . 104

5.3 Disaggregated passthrough design . . . . . . . . . . . . . . . . . . . . 108

5.4 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Implementation and evaluation 109

6.1 Memory provisioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7 Conclusion 119

7.1 Perspectives and future works . . . . . . . . . . . . . . . . . . . . . . 121

Appendices 131

4



A Disaggregated peripherals attachment - confidential part 133

A.1 Disaggregated passthrough design . . . . . . . . . . . . . . . . . . . . 134

A.2 Infrastructure setup in more details . . . . . . . . . . . . . . . . . . . . 140

A.3 IOMMU maps update on guest RAM resize . . . . . . . . . . . . . . . 145

A.4 Disaggregated device detachment . . . . . . . . . . . . . . . . . . . . 146

5



6



List of Figures

1-1 Clustered system architecture . . . . . . . . . . . . . . . . . . . . . . . 22

1-2 Disaggregated system architecture . . . . . . . . . . . . . . . . . . . . 28

2-1 Categorization of works related to memory disaggregation . . . . . . . 36

2-2 Comparison of runtime guest memory resizing methods . . . . . . . . . 47

2-3 Simple illustration of a Uniform Address Space concept . . . . . . . . . 53

2-4 Hardware-based remote device sharing methods . . . . . . . . . . . . . 58

3-1 Guest memory provisioning from isolated pool . . . . . . . . . . . . . 66

3-2 Dynamic memory resize . . . . . . . . . . . . . . . . . . . . . . . . . 71

3-3 Different moments of issuing memory resize request . . . . . . . . . . 73

4-1 Virtualization framework components . . . . . . . . . . . . . . . . . . 84

4-2 Sharing disaggregated memory . . . . . . . . . . . . . . . . . . . . . . 84

4-3 Mapping a disaggregated arbitration unit located at a memory node . . 90

4-4 Disaggregated shared memory attachment . . . . . . . . . . . . . . . . 93

4-5 VMs of the same sharing group reusing dedicated slots . . . . . . . . . 95

4-6 Dedicated slot initialization from an existing RAM . . . . . . . . . . . 96

4-7 Two meanings of a disaggregated VM migration . . . . . . . . . . . . . 97

4-8 Interconnect reconfiguration steps . . . . . . . . . . . . . . . . . . . . 100

5-1 Direct attachment compared to device emulation . . . . . . . . . . . . . 104

5-2 Standard passthrough not possible on disaggregated system . . . . . . . 105

6-1 System prototype components . . . . . . . . . . . . . . . . . . . . . . 110

6-2 Latency results from Redis-benchmark against the SimpleDB ap-

plication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7



A-1 Disaggregated passthrough — architecture design . . . . . . . . . . . . 135

A-2 Direct attachment initialization . . . . . . . . . . . . . . . . . . . . . . 137

A-3 Device attachment configuration at GSO side . . . . . . . . . . . . . . 141

A-4 Updating directly attached device after guest memory resize . . . . . . 145

A-5 Updating directly attached device after — GSO part . . . . . . . . . . . 147

8



List of Tables

2.1 Inter-VM memory sharing methods . . . . . . . . . . . . . . . . . . . 55

6.1 Latencies of memory resize steps . . . . . . . . . . . . . . . . . . . . . 113

9



10



List of Terms

AU Arbitration Unit, a module granting an access right to a region of memory shared

between multiple virtual machines using it in a concurrent way.

BAR Base Address Register

CPU Central Processing Unit

DRAM Dynamic random-access memory

GPA Guest Physical ADdress space, an address space created by a virtual machine and

exposed to the guest OS, which will consider it as if it was a HPA.

GSO Global System Orchestrator, a central (at least logically) management unit of a

data-center handling configuration of all nodes and the interconnect to keep the

system working. Holds the registry of all deployed VMs and their configurations

at any given moment. Physically can be implemented as a single machine or in a

distributed way.

GVA Guest Virtual Address space, same as HVA but in the guest OS.

HPA Host Physical Address space, used to describe a physical layout of resources

available at each system node. Different ranges correspond to registers of dif-

ferent physical resources. This is a base addressing scheme determined during

hardware production time.

HVA Host Virtual Address space, maintained by an operating system by building trans-

lation maps (called page tables), usually traversed by the memory management

11



unit (MMU) for better performance. In fact, some operating system may not use

virtual addresses, especially small embedded ones.

IC Interrupt Controller

IOMMU Input-output memory management unit, connects DMA-capable devices to

the main memory, provides address translation between a device address space

and the host physical address space and filters accesses to the memory at the

same time.

MMU Memory Management Unit

MPI Message Passing Interface

NVM Non-volatile memory

RDMA Remote Direct Memory Address

TCO Total Cost of Ownership

TLB Translation Lookaside Buffer, buffer caching recent virtual-to-physical address

mappings translated by the MMU.

UPA Uniform Physical ADdress space, a very large address space mapping a HPA of

each system node as a distinctive range.

VM Virtual Machine, a software abstraction of a computer system hardware, optionally

supported by hardware extensions in order to accelerate certain operations.

12



List of publications
Conference papers:

• M. Bielski, C. Pinto, D. Raho, R. Pacalet, Survey on memory and devices disag-

gregation solutions for HPC systems, 19th International Conference on Compu-

tational Science and Engineering (CSE 2016)

• D. Syrivelis, A. Reale, K. Katrinis, I. Syrigos, M. Bielski, D. Theodoropoulos, D.

N. Pnevmatikatos and G. Zervas, A Software-defined Architecture and Prototype

for Disaggregated Memory Rack Scale Systems, International Conference on Em-

bedded Computer Systems: Architectures, Modelling, and Simulation, (SAMOS

XVII 2017)

• D. Theodoropoulos, A. Reale, D. Syrivelis, M. Bielski, N. Alachiotis, D. Pnev-

matikatos, REMAP: Remote mEmory Manager for disAggregated Platforms, 29th

International Conference on Application-specific Systems, Architectures and Pro-

cessors, (ASAP 2018)

• M. Bielski, I. Syrigos, K. Katrinis, D. Syrivelis, A. Reale, D. Theodoropoulos,

N. Alachiotis, D. Pnevmatikatos, G. Zervas, V. Mishra, A. Saljoghei, A. Rigo,

M. Enrico, V. Mishra, A. Saljoghei, E. Pap, , O. González de Dios, Dionisios N,

Pnevmatikatos, J. Fernando Zazo, S. Lopez-Buedo, M. Torrents, F. Zyulkyarov,

dReDBox: Materializing a Full-stack Rack-scale System Prototype of a Next-

Generation Disaggregated Datacenter, prototype demonstration and publication

in Design, Automation and Test in Europe, (DATE 2018)

• M. Enrico, V. Mishra, A. Saljoghei, M. Bielski, E. Pap, I. Syrigos, O. González de

Dios, D. Theodoropoulos, D. N Pnevmatikatos, A. Reale, D. Syrivelis, G. Zervas,

N. Parsons, K. Katrinis, Demonstration of NFV for Mobile Edge Computing on

an Optically Disaggregated Datacentre in a Box, Optical Fiber Communication

Conference, (OFC 2018)

• A. Saljoghei, V. Mishra, M. Bielski, I. Syrigos, K. Katrinis, D. Syrivelis, A. Reale,

D. N. Pnevmatikatos, D. Theodoropoulos, M. Enrico, N. Parsons, G. Zervas,

13



dReDBox: Demonstrating Disaggregated Memory in an Optical Data Centre,

Optical Fiber Communication Conference, (OFC 2018)

• M. Bielski, A. Rigo, R. Pacalet, Dynamic guest memory resizing for disaggre-

gated systems – paravirtualized approach, 27th Euromicro International Confer-

ence on Parallel, Distributed, and Network-Based Processing (PDP 2019) [ac-

cepted]

Patents:

• M. Bielski, A. Rigo, M. Paolino, D. Raho, Disaggregated computing architecture,

Owner:Virtual Open Systems, (proposal submitted)

Open source contributions:

• M. Bielski, A. Reale, Memory hotplug support for arm64, Linux kernel patch,

link: https://lkml.org/lkml/2017/11/23/182

14



Chapter 1

Introduction

This dissertation is positioned in the context of the system disaggregation - a novel ar-

chitectural approach expected to gain popularity in the data center sector. In traditional

clustered systems resources are provided by one or multiple machines characterized

by a fixed amount of memory, CPU cores and set of available devices. Differently to

that, in disaggregated systems resources are provided by discrete nodes, with each node

providing only one type of resources. Instead of a machine, the term of a slot is used

to describe a workload deployment unit. The crucial difference is that a slot does not

provide a fixed amount of resources but it is dynamically assembled before a workload

deployment by the unit called system orchestrator.

In the following sections of this chapter, we present the drawbacks of the clustering

approach and motivate the architecture disaggregation. Furthermore, we add the virtual-

ization layer to the picture as it is a crucial part of data center systems nowadays and it is

expected to retain its position also in disaggregated ones. That is because virtualization

provides an isolation between deployed workloads and a flexible resources partitioning.

However, it needs to be adapted in order to take full advantage of disaggregation. Thus,

the main contributions of this work are focused on the virtualization layer support for

disaggregated memory and devices provisioning.

In the chapter 2 we present the state of the art analysis related to the subject of this

dissertation. The analysis is divided into few sections, according to specific aspects

of disaggregation like Virtual Machine (VM) memory provisioning, inter-VM memory

sharing and remote device attachment.
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Our first main contribution is described in Chapter 3. It presents the software stack

modifications related to VM memory provisioning, which allow to adjust the amount of

guest (running in a VM) RAM at runtime on a memory section granularity. From the

software perspective it is transparent whether they come from local or remote memory

banks.

In Chapter 4 we extend the proposals of Chapter 3 to allow inter-VM memory sharing

and VM migration on a disaggregated architecture. That is the second main contribution

of this dissertation. First, we present how regions of disaggregated memory can be

shared between VMs running on different nodes. This sharing is designed in a way that

involved guests are oblivious to the fact of being co-located on the same computing node

or not. Additionally, we discuss different flavors of concurrent accesses serialization

methods. We then explain how the VM migration term gained a twofold meaning.

Because of resources disaggregation, a workload is associated to at least one computing

node and one memory node. It is therefore possible that it is migrated to a different

computing node and keeps using the same memory, or the opposite. We discuss both

cases and describe how this can open new opportunities for server consolidation.

Chapter 5 provides our last main contribution related to disaggregated peripherals vir-

tualization. Starting from the assumption that the architecture disaggregation brings

many positive effects in general, we explain why it breaks the passthrough peripheral

attachment technique (also known as a direct attachment), which is very popular for

its near-native performance. To address this limitation we present a design that adapts

the passthrough attachment concept to the architecture disaggregation. By this novel

design, disaggregated devices can be directly attached to VMs, as if they were plugged

locally. Moreover, all modifications do not involve the guest OS itself, for which the

setup of the underlying infrastructure is not visible.

Chapter 6 presents a prototype that we used to evaluate the implementation of our ideas

and provides preliminary results about flexible guest memory resizing.

Finally, Chapter 7 concludes the dissertation and proposes several directions of future

works.
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1.1 Data centers — current state

Perhaps the first image, derived from news media or movie scenes, that one associates

with the term data center is a very large facility filled with multiple server cabinets

and connected by hundreds of meters of cables. Typically thousands of blinking diodes

and a constant noise produced by air-conditioning are the only indicators that there is

actually something going on there. Such a description is only roughly accurate. Many

data centers are indeed occupying a surface from hundreds up to millions of square

meters and hosting huge and powerful installations called sometimes supercomputers

(see the TOP500[8] list, ranking the most powerful computers in the world). But most

of them are much smaller, for example private enterprise installations may occupy just

one or few rooms but still provide enough resources to serve well a small- and medium-

sized company or institution.

As of 2018, when talking about a data center we consider an installation hosting at

least a dozen of Central Processing Unit (CPU) cores together with available memory

in the order of at least several dozens of gigabytes. A crucial role in the system is

also played by installed accelerators, which are off-loading CPUs from certain types of

computations. Definitely, the volume of resources is much bigger than what is offered

by personal computers or mobile devices nowadays.

As a consequence of the desired performance level and the number of components,

these systems typically require significant investments in order to be deployed and

consume a big amount of electrical energy. This is commonly described by the To-

tal Cost of Ownership (TCO) term, which is one of the most important factors determin-

ing whether a given data-center technology will be successful or not. A system can also

be characterized by performance-per-dollar, a ratio between the offered operational

capabilities and the cost.

Not surprisingly, such large-sized installations are meant to be shared by multiple work-

loads (or users) in order to maximize the utilization factor (and an associated prof-

itability factor) and minimize energy consumption (and related heat production) per

workload, while still keeping the offered performance aligned with modern applications

requirements. Resource partitioning is usually done by virtualization techniques, which

allow to abstract underlying physical resources so that they are provided in the form of a
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Virtual Machine (VM), which is a workload deployment vehicle and, from a workload’s

perspective, creates an impression that it uses the system exclusively.

Trends

The fact of exporting both computations and data to an external data center is commonly

known as cloud computing. Services offered by cloud system providers are usually

falling into one of three basic models, namely Infrastructure-/Platform-/System-as-

a-Service (IaaS, PaaS and SaaS, respectively) [3]. Without going into details and

differences between them, which are not important here, a common incentive for users

is to focus on their particular mission while moving the responsibility of computing

resources provisioning to an external provider [34]. Additionally, it can be a way to

optimize the operational costs since the subscription can usually be flexibly changed

according to customer requirements at a given moment, instead of purchasing physical

industry-grade and expensive hardware to fulfill the peak-usage scenario. Subscription

fees, similarly to other goods available on the market, consist of two parts. The first one

is governed by purely business factors like product popularity or market competition

level — these are out of interest in this work. The second one, though, is determined

by technical factors, like an amount of resources reserved for a given workload and

therefore unavailable for other system users.

A very important aspect is that not all reserved resources may be effectively used by the

customer. For example several machines may be necessary to provide the required

amount of memory resources, but not all of associated CPUs may be needed. In

consequence, the corresponding computational power will be wasted because, in a

clustered architecture, there is no way to attach unused CPUs to other machines. This

is clearly an inefficiency which a customer needs to pay for.

Important examples of data-center usage are computations typically categorized as Big

Data, processing large amounts of data from various sources and for different analytics

purposes. Tasks of this type are very often leveraging distributed/parallel processing

algorithms and thus require significant processing power as well as storage for input

and output data. For such use-cases the cloud computing model fits very well.

A recent literature study [34] provides real-world examples that help to create an image
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of different computation volumes (these are numbers from 2014, they can be even

higher in 2018). The Large Hadron Collider at CERN is expected to produce around

15 petabytes of data every year. A Boeing jet engine can generate up to 20 terabytes of

data during one hour of operation. Facebook servers are processing about 500 terabytes

of user log data and hundreds of terabytes of image data on a daily basis. Similarly,

servers used by eBay are achieving a hundred of petabytes processed within the same

period of time.

Browser requests, social media applications, customers profiling algorithms, personal

health care monitoring, blockchain transactions or manufacturing chains — every day

we are surrounded by myriad of situations in which data is produced, collected and

analyzed. With the upcoming era of 5G communication and IoT (Internet of Things)

this tendencies will likely get reinforced.

Global impact

It has been estimated that the global data traffic grew 56 times from 2002 until 2009,

while the computational power increased 16 times in the same period. By extrapolation,

it was expected to take around 13 years for a 1000-fold increase in computational power

— theoretically (as of 2014). However, hardware energy efficiency is not expected to

grow more than 25-fold at the same time. Such divergence of trends indicates that

data centers growth may imply a significant increase in a global energy consumption

or non-sufficient energy supply may become an actual limit for the development of the

sector [34]. Another publication reported that US data centers contributed to 2.2% of

the country total electricity consumption in 2013, corresponding to 100 million metric

tons of carbon pollution [44]. It was also predicted that between 2012 and 2020 the

carbon footprint of the sector will globally grow by 7% year-to-year, which makes it

the fastest growing ICT sector in this regard [49].

A conclusion that one may draw from the presented numbers is that there is definitely

an urgent need for limiting the amount of energy consumed by data centers worldwide.

One way to achieve this would be decreasing the number of data centers but the fea-

sibility of it is questionable, to say the least. Another approach consists in improving

the energy efficiency of data centers, with a two-fold meaning. Firstly, by making
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them consume less energy for the same given amount of work. Secondly, by reducing

the amount of wasted energy, that is, situations where some resources remain powered

while they are not efficiently used. The latter is indeed reported as the easiest way to

lower the total energy expenditure [60]. A characteristic associated to energy efficiency

is the server consolidation term. It is not an absolute metric but it describes the ability

of a server to execute a maximum amount of computations on a minimal amount of

resources.

The need for more energy efficient data centers was already postulated in the literature

and supported with real-world examples [27]. On a Twitter production cluster, for

instance, it was measured that the aggregated CPU utilization is constantly lower than

20%, while the reservation is between 60% and 80%. This means that 40% to 60% of

CPUs remain ready to perform computations but stay idle. With regard to memory

utilization, between 40% and 50% is actively used, while around 80% is reserved,

therefore 30% to 40% of the memory resource is wasted. In Google clusters, another

example from the top-tier operators, it was observed that typically from 25% to 35%

of CPUs are actively used, while 75% are reserved. This gives from 40% to 50% of

computing power loss. And 40% of the memory resource is actively used, while 60%

in average is reserved. Still, in both cases there is no information about non-reserved

resources, the authors do not specify whether they are consuming any energy or not.

In addition, the authors explain that the above numbers are representing only a small

group gathering the biggest market players, accounting for 5% to 7% of the total number

of installed servers. These major players can probably afford the adoption of standard

and/or custom solutions in order to improve the energy efficiency of their servers. They

might even be forced to do so because, for them, a limited energy supply at a given

location may otherwise become a scalability issue. Other small- and medium-sized

data centers have neither such incentives nor comparable resources. Moreover, they

often stay conservative in terms of technology upgrades because of the risks related to

modifying an already working infrastructure, even if it is sub-optimal [60]. Therefore,

for the majority of the global data-center market, the energy effectiveness is probably

even worse than the numbers presented above.

Another frequently mentioned problem is the correct estimation of resources. Ac-
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cording to one study, 70% of workloads overestimate their required resources up to

10 times [27]. Exact numbers would vary for each workload but the most important

message is the high level picture. It shows that workloads are either profiled with low

accuracy or a substantial estimation margin is introduced by purpose to avoid potential

performance issues.

It was suggested that, in a global perspective, it would be more efficient if the work-

loads of multiple medium- and small- installations could be aggregated and deployed

together on bigger systems offered by multi-tenant providers [30]. Such data centers

are expected to offer a logical slice of resources to rent, according to customer needs.

However, under the hood all workloads would run on the same physical hardware taking

advantage of efficient balancing techniques for better utilization level. Moreover, such

providers, which business is focused on infrastructure provisioning, are also supposed

to enhance their technology more frequently in order to keep the energy efficiency level

as high as possible. Especially, they could adopt architecture disaggregation, which

underlies our work.

Regardless of whether one would consider only the financial aspect or also the en-

vironmental impact, the problem of low energy efficiency of the data centers sector

should definitely not be neglected. In the following we discuss how the situation can be

improved by switching to a novel, disaggregated hardware architecture.

1.2 Clustered architecture

At present, the data-center sector is dominated by cluster systems that achieve their

great capabilities by combining together multiple smaller machines, as illustrated on

figure 1-1. Each machine, also referred by the term of a slot is built in a traditional way,

in the sense of being composed of CPUs and operating memory banks, both physically

bound to the same motherboard [28]. In addition, different types of devices attached

may also be attached to the slot (e.g. hard disks, network interface cards, GPUs or

accelerators).

The whole system is managed by the Global System Orchestrator (GSO). Different im-

plementations may use different naming for this module but its purpose stays the same.
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Amongst others, it decides on which machine a given workload will be deployed (load

balancing), establishes intra-cluster connectivity, monitors various system parameters

or manages machine upbringing and shutdown. This is also the unit which usually

provides an administrative interface for system configuration.

The interconnect provides a high-speed connectivity between all machines so that they

are capable of passing messages as well as exchange data. Typically, this is used by

distributed programming frameworks (like OpenMPI, an open-source implementation

of the MPI standard [19]) in order to partition a computational problem into smaller

chunks that can be processed in parallel on multiple machines with proper synchroniza-

tion.

Figure 1-1: Clustered system architecture

1.3 Virtualization role

An essential part of nowadays data-center systems is the virtualization layer, provided

by the software stack component called hypervisor. The hypervisor is tightly coupled

with an operating system kernel and it is responsible for management of VMs. Virtual-

ization benefits the system in several ways:

1. Virtualization abstracts the underlying physical resources and makes (usually a

slice of) them accessible to the user in a convenient way — as a logical unit

called Virtual Machine (VM). A user needs to know neither the physical system
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architecture nor the actual location of the components. According to a variable

system load a VM could be migrated to a different slot and such operation,

ideally, should be barely noticeable from the workload perspective (in practice,

a temporary performance drop is possible). Without the virtualization layer each

workload would either need to support migration in its own specific way or it

would simply need to be terminated and spawned on a different slot.

2. Physical resources partitioning performed by the hypervisor allows to allocate

them in an optimal way to perform a maximum amount of computations on a

given amount of resources. With respect to the utilization factor, it is much more

efficient than the bare-metal deployment of each workload on a separate machine.

Such allocation flexibility applies to both an initial VM setup as well as to runtime

resource resizing. The situation is the most straight-forward in the case of device

sharing: an accelerator can be attached by a VM either periodically or all the

time but in a shareable manner. Regarding the amount of CPU cores used by a

VM, it can be changed as long as there are enough resources available on a given

machine. Concerning the amount of RAM attached to a VM, a very negative

phenomenon is the memory overprovisioning. That is when the amount of RAM

reserved for a VM exceeds the needs of a workload for most of its execution time

and only during rare peak usage moments all memory resources are effectively

used. It is the role of a virtualization layer to support the dynamic resize of

VM memory volume in order to limit memory overprovisioning (although the

situation is still far from good, as mentioned in section 1.1).

3. Multiple VMs are running independent workload-specific software stacks, in-

cluding their own guest operating systems, which provides a strong isolation

between VMs hosted by the same data-center. This feature is a great advantage

weighted in favor of virtualization in terms of system security. For example, a

critical error within an application executed in one VM may cause a system crash

but it will not affect other workloads running in different VMs. The latter could

be the case without virtualization, if all workloads were executed as a separate

processes of the same operating system.
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4. Regarding the guest OS, a strongly desired characteristic provided by virtualiza-

tion is the ability of VMs to host standard operating systems, optionally equipped

with additional installable software modules. From a potential user perspective

this greatly facilitates the migration from a workstation to the cloud as the original

working environment can stay almost unmodified and the compatibility between

an OS and customer’s software is not threatened.

Eventually, having enumerated multiple reasons for virtualization adoption, it is criti-

cally important that this convenient abstraction does not incur significant performance

overhead. The key point here is that the heaviest operations performed by the hypervisor

are accelerated by the underlying hardware (e.g. nested paging [7]).

1.4 Clustering drawbacks

In a clustered system, resource provisioning is performed on a slot basis. While slots

may be divided into groups of different resource proportions, these proportions are

fixed and therefore a given amount of workloads deployed on a given slot may consume

completely one type of resources while leaving the others underutilized.

For example, the memory of a slot, which CPUs are powered-off, cannot be easily

shared with other slots. Although distributed algorithms are capable of involving multi-

ple machines providing different resources, all worker slots need to communicate with

a root slot in order to synchronize the execution or transfer data. Even if one machine

in a cluster has a certain amount of memory available, it still needs at least one CPU

core in addition, to execute the synchronization code.

Therefore, the crucial problem of clustering is that underutilized resources of one slot

cannot be easily attached to another one while they remain powered-on. This leads

to an inefficient utilization at a single machine level and further magnified at scale

as typically data center installations are composed of numerous slots. The powered-

on and non-used resources contribute to the system total energy footprint as well as

they produce additional heating — which boils down to yet additional chunk of energy

spent in order to dissipate the heat. All in all, clustered systems are marked by the

energy proportionality issue, in the sense that the total system power consumption is
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not proportional to the load. Instead, the power consumption is determined by the

number of machines that have to be kept active in order to meet the load requirements.

Assuming that a fraction of resources within each machine is likely underutilized, the

sum of associated power consumed by all such fractions yields the disproportion [45].

Additionally to allocation inefficiency, recent observations and predictions suggest that

the way how resources are provided in clustered architectures does not fit requirements

of current workloads. The number of CPU cores per socket is expected to grow up to

two times every two years. At the same time, the observed number of VMs per core

is also increasing, as is the memory footprint per VM. This means that there is a large

demand for bigger and bigger amount of memory to be available per CPU socket. In

contrast, the growth of the memory capacity per socket is projected to be much slower

and it is stated that an inadequate memory supply may become a scalability limitation

(which phenomenon is referred as the memory capacity wall). Together with this

observation there is postulated a need for new architectural approaches that would allow

to expand the available memory independently from the computing resources [39].

Currently, the recommended amount of supplied resources differs depending on the

performance benchmarking suite used (High Performance Linpack [6], used to rank the

TOP500 list [8] vs. High Performance Conjugate Gradients [4]), however it has been

estimated that a modern system should offer at least 0.5GB of main memory per core

for the optimal system performance [65]. For example, the first machine on the TOP500

list as of June 2018 is the IBM Summit with a ratio of 1.23 GB of RAM per core [18].

Going further, clustering suffers from yet another drawback related to the availability

of accelerators, especially of specialized ones with a relatively high price tag. They

are used to accelerate particular types of computing operations (e.g. GPUs for vector

or matrix operations), and thus to save CPU clocks, but it is usually not required to

have them attached permanently to all machines; many applications might not be able

to make use of them. Therefore, it has been noticed that it is in general good to have

few of them globally accessible to accelerate some workloads [30].

Efficient peripherals sharing between different slots in a cluster is not straightforward.

When a workload needs to use a peripheral which is not available from its current

machine, and assuming it runs in a virtualized environment, it must be migrated. This
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incurs a significant operation downtime because of the volume of data to be transferred

(typically several gigabytes). Additionally, a limited availability of the powerful accel-

erators may constrain the slot selection algorithms in such a way that the selection will

become sub-optimal with regard to the overall server consolidation level. For example,

in order to be able to use an accelerator, a workload may have to be deployed on

a machine that could otherwise remain powered-off. But once deployed it may not

effectively use all the available computing power or RAM, which, in such a case, will

be wasted.

Finally, the machine-centered architecture is characterized by a low flexibility of modi-

fications at hardware components level. As the memory banks and CPUs of a machine

are physically attached to a common motherboard, the possibilities of upgrading inde-

pendently only one of those resources may be limited, if not impossible, because of

hardware compatibility constraints. This may even lead to vendor lock-in situations

and impose significantly higher costs for such hardware upgrades, even in the case of

commodity systems. This actually limits market competition, which is another negative

aspect.

The aforementioned inefficiencies and limitations stem from the presented system ar-

chitecture. In order to thoroughly address them, there is a need for a novel solution

bringing a transparent resource allocation across machines, breaking the fixed pro-

portionality limitation and therefore redefining the notion of a slot [39]. It has been

proposed to significantly reshape the hardware topology and improve the overall system

heterogeneity such that different types of resources may be reserved separately, accord-

ing to a workload profile, regardless of the motherboard they are plugged into. This

new approach is called disaggregation and opens for an improved consolidation level of

data-center systems, an increased resources utilization, improved energy proportionality

and lower maintenance costs. This is because the new approach assumes that what is

currently considered a slot will no longer mean a physical machine of fixed resource

proportions but a dynamically assembled instance with different types of resources

provided according to workload requirements.

Furthermore, in order to stamp a meaningful mark, such technological shift is expected

from commodity-grade products used by small- and medium-sized as well as corporate
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data centers, which represent the majority of the sector players (for example, in 2011

their market share in U.S. was estimated to 70% in terms of number of servers and 76%

with respect to electricity consumption [60]). Otherwise, a heavily customized technol-

ogy would be affordable only to a small number of top-tier providers and therefore it

wouldn’t have a chance to significantly change the situation in a global perspective.
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1.5 Disaggregated architecture

Motivation

As discussed in the previous chapter, the data center sector is currently facing several

problems which induce both economical and environmental effects on a global scale.

To wit, an accurate estimation of the required workload resources is very difficult and

they are usually over-provided to satisfy the worst-case scenario [47]. Furthermore,

resource sharing flexibility is limited and for that reason a certain fraction of them is

not used, except for burst periods of maximum demand. On top of that, within a single

machine different types of resources are attached to a common motherboard. Therefore,

underutilized resources still remain powered-on and the associated chunk of consumed

energy is wasted, which is an energy proportionality issue.

In order to address these problems, a new disaggregated architecture has been proposed

which structure and characteristics are the subject of this chapter.

Design

Figure 1-2: Disaggregated system architecture

Data-center resources may be divided into three main groups: CPUs, memory and pe-

ripherals [1, 35]. Instead of being contributed by a number of conventional monolithic
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machines (as illustrated on figure 1-1), in a disaggregated architecture they are provided

independently and form pools of resources. Each pool may consist of one or multiple

nodes of a given type and all system nodes are attached to a reconfigurable interconnect,

as shown on figure 1-2. It is therefore possible to update only one type of resources, for

example by attaching more memory nodes. This is not a one-time improvement (like,

for example, plugging more DIMM modules into vacant slots of a motherboard): such

a flexible resource proportionality holds at scale. Figure 1-1 is a general illustration of

the concept, in a particular implementation compute nodes may also be equipped with

a limited amount of local RAM. This may be necessary to bring up a host operating

system containing software modules responsible for registering the node to the system.

What was being considered a machine in the context of conventional architectures

essentially becomes a CPU node with the amount of other resources adjusted in a

dynamic manner. As a result, the aforementioned notion of a slot no longer describes

a monolithic unit characterized by a fixed resources proportionality. Instead, the slot is

dynamically assembled now, with the amount of resources following requirements of a

given workload. This requirements can vary over time, thus the slot capabilities can be

also adjusted at runtime, for example by adding or removing devices or memory.

Thus, because of disaggregation, different types of resources can be reserved indepen-

dently. For example, the problem of memory capacity wall (described in section 1.4) is

bypassed as the amount of RAM required for a workload does not impose the amount

of CPUs anymore because they are not physically bound to the same motherboard.

Therefore, there are no CPUs which have to be reserved (and powered-on) only because

of physical dependencies. In a disaggregated system the amount of reserved CPUs is

only determined by the requirements of a workload. In this way disaggregation aims to

improve the energy efficiency of the system by reducing energy wastes.

Such flexibility in resources allocation is a crucial novelty of the design that opens

for more efficient balancing, less defensive estimation and finally increased utilization

level, that means reduced energy losses. At the same time, reduced hardware dependen-

cies make potential hardware upgrades (or failure recovery) easier and cheaper because

a replacement of one type of resource does not enforce any changes to other resources.
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Resource scheduler role

The relaxation of dependencies between resources is a crucial trait of the novel architec-

ture for the aforementioned reasons. Nevertheless, it also makes the logic of the system

scheduler more complex and the following section explains why.

Referring to figure 1-2, the scheduler is a submodule of the Global System Orchestrator

(GSO). Being at heart of the system, the GSO is the only system component connected

to all nodes via the control network, in order to pair selected nodes by establishing inter-

connect links. Additionally, it performs system-wide power management and provides

a system administration interface.

With conventional architectures the scheduler has only to select a machine (of a fixed re-

source proportionality) and potential losses of underutilized resources are inescapable.

This is changed due to disaggregation: instead of selecting a physical slot, the scheduler

needs to dynamically define it by composing different resources together. At first, the

scheduler has to select a computing node (an equivalent step to machine selection), on

which a workload will be executed, and subsequently determine which memory and

peripheral nodes should be attached to it, in order to meet the workload requirements.

After computing node selection it may happen that other required peripherals are al-

ready attached. Otherwise, a proper new connectivity needs to be established between

selected nodes. As a result, system resources may be used more efficiently but the

scheduler logic is more complex. This is because the number of possible configurations

is much higher (compared to a cluster of machines) and increases together with the

number of nodes. However, in practice, there might exist boundaries limiting the

number of combinations, related, for example, to a maximum allowed distance between

two nodes or a maximum number of adjacent nodes that a CPU node can attach to.

Furthermore, because of the variability of the data-center load, new workloads can be

deployed over time and others can terminate or get killed. Such fluctuations change

values of parameters considered by the scheduler logic. In addition to proper resources

arrangement at a workload deployment time, the scheduler has to monitor workload

termination events in order to be able to dynamically reconfigure the system and keep

the resource utilization factor at an acceptable level. For example, it may happen that

after several applications terminated, there is only a few left running on a given CPU
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node and it would be optimal to migrate them to another node and to power-off the now

unused one. However, As this could temporarily slow down a workload execution, such

a reconfiguration can probably not be performed too often: the utilization level benefits

could be overshadowed by the operation overhead.

1.6 Disaggregated systems and virtualization

So far, this chapter discussed how the clustered system architecture looks like and what

is the role of a virtualization layer in such systems. Furthermore, it was described

what are disadvantages of the clustered approach and how the system architecture was

disaggregated in order to eliminate them. Then, the question addressed in this section is

whether the virtualization layer is still needed in a disaggregated system or not. Indeed,

it is, and there are several good reasons to keep the additional level of abstraction

between deployed workloads and the physical hardware.

The main assumption is that such a radical architectural shift as disaggregation is, while

benefiting a system provider in many ways, should affect the way how the system is

used as little as possible. From the user standpoint, the most important (in authors’ sub-

jective opinion) aspects of a cloud-computing service are: secure and stable workload

execution (related to proper isolation between different workloads) and the lowest costs

possible. As discussed in section 1.1, the costs are derivative of the utilization factor,

which is further related to resource resizing flexibility. The improved resource arrange-

ment flexibility, brought by disaggregation, encourages users to avoid overprovisioning

and leverage the pay-as-you-go resource reservation model. The point is that users do

not care about the system architecture; whether it is clustered or disaggregated, ideally

they should be able to deploy their workloads the same way in both cases, in order to

avoid additional engineering effort.

Therefore, similarly to clustered systems, virtualization is also an important layer of

disaggregated ones. It abstracts underlying hardware and software infrastructure and

provides a workload deployment unit that users are familiar with, that is a VM. For

users, the crucial difference between clustered and disaggregated systems is that pa-

rameters of a VM (like memory volume or attached devices) can be adjusted more
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flexibly or service price can become more competitive (no overprovisioning means less

energy wasted).

Additionally, the level of a workload execution security should be at least the same as

above. As mentioned in section 1.3, different workloads deployed as separate VMs are

well isolated. A crashing workload within one VM is not be able to disturb others.

Moreover, each VM runs its own software stack, for example with a customized oper-

ating system kernel. Such software dependencies are definitely an important decision

factor for users considering migration of their business environments to the cloud.

Finally, as described in section 1.5, the job of a resource scheduler is more complex,

in comparison with clustered systems. Nevertheless, thanks to the virtualization layer,

the scheduler is able to perform resource management on a per workload basis. For

example, a VM parameters definition allows to determine the optimal workload place-

ment. Moreover, until a certain extension, a VM itself is able to perform a runtime

monitoring of a workload execution. It can effectively support resources management

across the system in a way, which does not require any modifications at the workload

side. Similarly, the whole workload can be migrated to other system node simply by

moving its enclosing VM. Otherwise, without the abstraction that virtualization brings,

a system-specific support for migration would need to integrated in each workload,

which would be an additional engineering effort at a user side.

1.7 Focus and scope of this work

This chapter introduced the context of this work, that is data-center systems. It pre-

sented the status of the sector and observed trends, with respect to workload character-

istics. There were discussed inefficiencies of nowadays systems (like overprovisioning

and low energy efficiency) and why they are related to clustered hardware architecture.

In turn, there was presented a new architectural approach, which was postulated as a

solution for aforementioned problems. Finally, this chapter justified why the virtualiza-

tion layer is a crucial part of the clustered systems and why it will remain its important

role also on disaggregated ones.

The point is that the virtualization layer needs to be modified in order to make the best
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use of disaggregation benefits. Therefore, the main focus of this work is the adaptation

of the virtualization layer to a disaggregated system, divided into several parts. They

all depend on the assumption that there is a way to attach disaggregated memory to

the host OS as well as there exists an interface to communicate with GSO in order to

request for operations that affect other nodes of the system (like requesting for a chunk

of disaggregated RAM, attaching a device or obtaining a shared memory lock). This

work is associated to the project dReDBox and its scope presents only a fraction of all

efforts conducted in the project[35].

The contributions described in the next chapters are related to flexible VM memory pro-

visioning, inter-VM memory sharing, migration and disaggregated devices attachment.

In order to position this work amongst related works from recent literature, respective

analysis was performed and is presented in the next chapter. Although building the

hardware and software components related to disaggregated memory provisioning at

the host OS level is out of scope of this work, it is an important part which virtual-

ization enhancements are built on top of. Therefore, this aspect is also present in the

state-of-the-art analysis.

With respect to the term of disaggregation, the memory provisioning design presented

in this work assumes that a VM is executed on a single computing node only (refer

to figure 1-2). Although a VM can be migrated, this work is not dealing with VMs

distributed over multiple computing nodes. It should be noted when comparing with

other approaches, which assume the latter to be true[53].
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Chapter 2

Related work

This chapter presents various works related to the subjects of disaggregated systems

and virtualization. The presented positions are outcomes of the state-of-the-art analysis

carried out by the author by putting in his best effort. The whole chapter is divided into

five sections, according different topics, as indicated by the title of each section.

2.1 Memory disaggregation

This section presents in a high-level how the disaggregated memory is provided in

the dReDBox prototype and how it compares to other solutions addressing the same

problem. It presents methods allowing a CPU of one node to access the memory

attached to another node. This ability is required to implement a disaggregated system

but it can also be used in order to make use of underutilized memory in clustered one.

In general, the survey of the recent literature indicates that remote memory attachment

may be done by software or hardware means. Orthogonally, a system may have either

a traditional clustered architecture, or a disaggregated one, where different types of

resources are provided by independent nodes. With respect to these two factors, all

works discussed in the following part of this section were collated on figure 2-1.
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Figure 2-1: Categorization of works related to memory disaggregation

The labels correspond to names of first authors of discussed publications. In few cases

the names are also followed by a digit indicating a variant of the presented approach (if

there are multiple ones), in the order aligned with the description.

The presented approaches are assessed especially with regard to the level of system

heterogeneity between computational and memory resources, the required hardware or

software modifications as well as the support for virtualization they offer.

Velegrakis: "Operating System Mechanisms for Remote Resource

Utilization in ARM Microservers"

Velegrakis [58] presented a small prototype, built with two nodes1 connected by an

FMC cable and a custom FPGA block called Chip2Chip. The custom hardware expands

an on-chip interconnection in order to forward memory access transactions from the

CPU of a node to the memory of the other (the disaggregated memory). The access can

be performed in two ways.

The first one consists in reaching the remote memory through the CPU cache and

it can be done using the cache of a local or remote CPU. The principle is similar

to what is normally done for a local RAM, with one caveat that the cache can be

remote. This access method is completely transparent for the host operating system,

which only needs to know the physical address ranges associated to the disaggregated

1Avnet Zedboards, based on Xilinx Zynq cores that embed an ARM CPU and an FPGA fabric in the
same chip.
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memory. Once the host OS is notified about address ranges, the remote memory can

be initialized as any other memory, although the author suggests that remote memory

should be only used when the locally available one is full because of the performance

overhead (latency, bandwidth). Zhang et al. took the same approach of attaching the

remote memory at the on-chip interconnection level and accessing it at the cache-line

granularity [64].

In our work the disaggregated memory is also attached transparently to the host OS and

represented by physical address ranges but we took an alternative approach at the host

OS level: the disaggregated memory ranges are initialized in a distinctive way. They

are kept separate from the local RAM and not used by the default memory allocator in

order to have a better control over the allocation of the disaggregated memory sections.

The same author also presented a second method of accessing the remote memory,

which is using it as a swap partition. With this approach, the disaggregated resources

are automatically used by an operating system to evict pages in case of high memory

pressure. The most important difference is that disaggregated memory pages are not

directly addressed but they are transferred back into local RAM by an I/O operation

managed by the kernel swapping thread. Other works also use this technique. They are

discussed in the following.

An interesting feature of this prototype is that the remote memory comes from a dif-

ferent node than the CPU node and the memory access can be handled completely

in hardware (the first method). However, the prototype does not allow to test how

the routing of the memory transactions would perform at scale, when a system would

consist of multiple disaggregated memory nodes.

Although no specific virtualization support is mentioned, the system could be well

integrated with the virtualization layer. It would be the easiest with the first access

method, where the remote memory access is performed by the hardware, however the

second one (swap device) is reported to perform better. In order to partition such a

swap device amongst all deployed VMs, each one would need to obtain some amount

of local RAM at first, where the data would be rotatively swapped-in. Although the

author suggests that this is the way how disaggregated memory should be used (as a

secondary resource), the work presented in this dissertation has been demonstrated on
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a prototype (described in the following) based on different assumptions. To wit, in

our work the deployed VMs are supposed to use only disaggregated memory, so the

swapping technique cannot be used for the lack of local RAM.

Lim et al.: "Disaggregated memory for expansion and sharing in

blade servers"

In [39], Lim et al. present a prototype of a system consisting of a disaggregated memory

blade (equipped with a large volume of memory cells) connected to several compute

nodes by a fast communication fabric. A distinctive feature of this design is that the

virtualization layer is a complementary part of it. Each compute node runs a hypervisor

that cooperates with the blade’s management software in order to get assigned with

segments of disaggregated memory. Subsequently, a hypervisor maps ranges of disag-

gregated RAM into its own physical address space, next to the local memory. Similarly

to the previous work, two methods of remote memory provisioning are presented.

The first one is a hypervisor-level page fetching that copies remote data into local

memory. It assumes that remote memory pages are marked as “poisoned” in the guest

page table, in order to enforce a trap to the hypervisor on each access, trigger the

remote data transfer and map the VM page to the fetched one. This method is reported

to perform relatively well on average when a page fetching delay is distributed over

multiple sequential accesses within its boundaries. If the memory access pattern is

more random, the average performance decreases due to following reasons:

• More frequent page fetching require more exits to hypervisor, and more I/O

operations that are expensive.

• Newly fetched data overwrite previous data, pointed to by some guest address.

Therefore, a translation between the guest and hypervisor addresses has to be

marked as “poisoned” again, because the same hypervisor page will now be

reused to back a different address of the guest. This step requires an address

translation table update as well as discarding the invalidated mapping from a

translation cache, if it was there.

This approach would benefit from increasing the size of a local memory buffer assigned
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to each VM but, with a given amount of RAM available in the hypervisor, the larger

the buffer, the less VMs can run in parallel without overwriting each other’s data.

Moreover, in order to make use of disaggregated resources, this approach still needs

locally available memory buffers, into which data can be fetched. A strong advantage

of this approach, from an adoption effort point of view, is that it can be deployed with

standard compute nodes; the only new component is the memory blade.

The second remote memory provisioning method presented is the remote access at

cache-block granularity, which requires a custom hardware component in each compute

node, redirecting cache fill requests to the memory blade. In return, no hypervisor

modifications are necessary in order to access the remote memory: data fetching is

performed by the hardware. Nevertheless, each access contributes a fixed delay to reach

the memory blade. This is similar to local RAM accesses and therefore performance

would greatly improve if the custom hardware component supported caching.

This work is very interesting because it presents a fully disaggregated system prototype

with an integrated virtualization support. The system is composed of heterogeneous

compute nodes and a common memory blade. Since the latter is a central element

of the architecture, it can affect the system scalability in the most profound way, for

example a maximum limit of addressable memory determines how many VMs can be

feasibly deployed.

Montaner et al.: "A practical way to extend shared memory support

beyond a motherboard at low cost"

A prototype by Montaner et al. [43] is also capable of expanding memory beyond

the local motherboard by reserving subranges from other system nodes. A distinctive

feature of this method is that it is based on the AMD HyperTransport technology [15],

which supports a distributed (within a single motherboard) memory architecture out of

the box. Each CPU has part of the physical memory available through a local controller

and the rest is attached to other CPUs, all linked by a common interconnect. This work

extends the interconnect in order to reach out to other system nodes. In addition to

local memory controller(s), each node is also equipped with an additional controller

used to redirect non-local memory accesses to remote nodes. Moreover, all of them
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are assumed to be connected for the purpose of a memory reservation phase. While

the reservation is handled by software, further accesses are performed completely in

hardware. The high-level concept is similar to one presented by Velegrakis [58], Zhang

et al. [64] and the dReDBox prototype [56], that is to perform memory transactions

redirection at the on-chip interconnect level, with the help of a custom hardware. But

differently to them, this work presents a system that is not disaggregated, in the sense

that changing the amount of available memory entails changing the number of CPUs,

as they are provided together by each system node.

Except for that, this work presents a system that helps to improve global memory uti-

lization level by sharing non-used memory regions between different nodes. Although

it is not discussed in the paper, this system design does not prevent virtualization

layer integration. Only the memory reservation phase is performed by software and

it could be performed at VM boot time. Then, further accesses to remote memory are

completely transparently from the software perspective. Perhaps the only indication of

reaching the remote memory may be a lower access performance.

Hou et al.: "Cost effective data center servers"

Hou et al. proposed a system leveraging the PCIe SR-IOV2 in order to share memory

across nodes[30]. The prototype consists of one root node connected to a PCIe switch

through a transparent bridge (TB) port and four other leaf nodes attached through non-

transparent bridges (NTB). The root node serves as a root complex, in terms of the PCIe

standard. Each node runs an OS with a custom driver responsible for initializing address

translation mappings in NTB ports and exposing a simple interface to applications,

providing remote_alloc and remote_free calls. A given memory region can be

accessed by exactly one node at any given time and the access can be performed in two

ways.

The first one consists in direct relaying of each load/store instruction. At first it happens

at the local memory controller and further the instruction is dispatched by the PCIe

switch. The performance of this method is reported as not good due to the configura-

tions steps performed by software as well as the lack of data caching.

2Single-Root I/O virtualization, an extension of the PCI Express standard
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Alternatively a batch transfer may be configured, using the DMA engine located at the

NTB port. It copies the data and emits an interrupt to the sender on completion. In this

mode, the remote memory is exposed as a virtual block device, which can be used as a

swap partition in order to extend the local RAM. This configuration offers much better

performance, in comparison with the first method. This is another hybrid approach,

combining both local and remote memory to be used by a host process (for example a

VM).

A primary objective of this work was to design a system offering effective resource

sharing built with commodity equipment, no custom hardware components were used.

In terms of scalability, the root node may impose a maximum number of attached

system nodes. Although the virtualization aspect is not discussed in this work, similarly

to the work presented by Montaner et al., a swap space could be partitioned between

all VMs deployed on a given host and the remote memory reservation phase integrated

with the virtualization layer. Also, this approach allows to share memory resources

between different system nodes but they are not disaggregated, the proportionality

between computing and memory resources is fixed as they are provided together by

each system node.

Samih et al.: "A collaborative memory system for high-performance

and cost-effective clustered architectures"

Samih et al. presented a work, in which nodes of a cluster collaborate together in

order to share memory across each other [51]. There is a software management layer

distributed across the system, which leverages a dynamic negotiation protocol. It allows

a node to request for memory from other nodes as well as offer its own memory for

them. A node can also perform none of this and stay in a neutral state. As mentioned, it

is a dynamic protocol and therefore the state of a node may evolve at runtime, according

to the current memory pressure.

When reserved, the remote memory is exposed to the host OS as a swap partition and

the underlying data transfers between nodes are performed as DMA operation. In this

aspect, this the same approach as the batch transfers approach of the work by Hou et

al.[30]. The difference is that the interconnect type is Ethernet and the communication
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protocol is TCP/IP, however the system could be as well based on InfiniBand or PCIe.

With regard to the virtualization and disaggregation criteria, the same comments apply

as for the previous work [30]. Moreover, with regard to scalability, it should be noted

that the convergence time of the negotiation protocol may increase with the number of

system nodes.

Svärd et al.: "Hecatonchire: Towards Multi-host Virtual Machines

by Server Disaggregation"

Similarly to previous works ([30] and [51]), the system proposed by Svärd et al. also

supports remote memory sharing between nodes based on DMA transfers. However,

differently from them, it is well integrated with the virtualization layer [55]. The

memory from other nodes is provided to the host (hypervisor) as a block device but it is

then abstracted in the VM by a guest address space. Upon guest’s access, if the accessed

page is not already present locally, a page fault is generated. Subsequently, a custom

host module handles it by fetching the page from the remote location and mapping it

properly to the guest. Thus, this approach is very similar to the one presented by Lim

et al. [39] and holds the same characteristics.

Nitu et al.: "Welcome to zombieland: practical and energy-efficient

memory disaggregation in a datacenter"

In the paper by Nitu et al. there is presented another approach dedicated for clustered

systems, which allows to access memory of another machine by leveraging RDMA

technique, here over Infiniband. Each machine can consume memory resources of other

machines or donate its own RAM. It can also make an exclusive use of its own RAM

and not expose it to others. Such roles are assigned by a global management layer

and can be changed dynamically. Pages of remote memory are provided as a swap in

two variants, either to hypervisor or directly to a VM. In the second case a page is

also swapped to a VM-local disk as a fault tolerance mechanism. In a high-level of

description, so far this work seems to be similar to the previous one by by Svärd et al.

[55]. Indeed, in some aspects it is. However, a distinctive trait of the paper is the focus
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on energy efficiency.

Authors stress that the shift to a disaggregated architecture is a fundamental change at

the bottom of the system. Therefore, they proposed a solution that can be successfully

adapted to traditional clustered systems as a half-way solution. Instead of enforcing

a physical hardware disaggregation they suggest to disaggregated memory and CPUs

logically, at the power supply level. It means that the power management logic can

handle both types of resources independently and reduce energy wastes in this way.

They developed a novel "zombie" state of a power management framework, in which the

whole board is powered-off except for its memory banks and part of network. Thanks

to that, the memory can be accessed by other system nodes while consuming much

less energy, comparing to the situation when all board components are active. This

paper provides a nice way of improving energy efficiency in already deployed systems.

Moreover, it points out an important matter, that is applicability. Large-scale systems

are expensive installation, thus changing radically the architecture may not always be

affordable. In such situations evolutionary modifications seem to be preferable, not

revolutionary ones.

Shan et al.: "LegoOS: A Disseminated, Distributed OS for Hard-

ware Resource Disaggregation"

Shan et al. predict that future data centers will adopt the concept of hardware resource

disaggregation and propose a dedicated operating system for them called LegoOS [53].

In a high-level description, it is composed of multiple single-purpose nodes installed,

meaning that each node provides only one type of resources. There are processing,

memory and storage nodes, interconnected with a network in order to build up a fully

functional system. Similarly to other mentioned positions, there is a global management

layer orchestrating the whole architecture.

The operating system, proposed by the authors, has a splitkernel structure, which means

that it is distributed over multiple heterogeneous modules called monitors, with names

associated to managed hardware nodes. A monitor acts locally to perform its purpose-

specific tasks as well as it exchanges messages with others in order to use remote

resources. From a workload perspective resources are visible as a virtual server. Each
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virtual server can be composed of multiple different monitors, as well as each monitor

can be used by more than one virtual server.

Comparing to all other works presented, a distinctive feature of this design is that one

process, for example a VM cannot know on which processing node it will run. Different

processes of the same application may be executed by different computing nodes. Such

transparency stands out this paper as the one of the highest degree of disaggregation.

Other literature positions described in this chapter present how to leverage remote mem-

ory or devices but with execution of a workload always bound to a single processing

node (except for explicitly distributed application which in this sense can be seen as

separate workloads). Therefore, the work by Shan et al. being a reference, it should be

stated that all other publications mentioned in this chapter do not present the same level

of disaggregation. Nevertheless, usually such information is not explicitly specified

and can be only derived from the description, thus the categorization may be slightly

ambiguous. All in all, instead of abstracting the hardware by VMs bound to a single

processing nodes, the LegoOS proposes concept of virtual nodes split over multiple

hardware components. Provided the network performance will significantly improve in

future, such approach is a very interesting alternative to traditional virtualization.

Syrivelis et al.: "A Software-defined Architecture and Prototype for

Disaggregated Memory Rack Scale Systems"

The dReDBox project [56], which this dissertation is associated with, applies concept

of memory disaggregation similar to the one found in the works by Velegrakis [58] and

Zhang [64].

Reaching the remote memory is similarly done by forwarding on-chip interconnec-

tion transactions to remote nodes. This is transparent to the software stack; from its

perspective the disaggregated resources are directly accessible as ranges of physical

address space. The dReDBox paper [56] presents the first prototype version, equipped

only with one compute node and one memory node. However, at the time of writing,

the system is ready to receive multiple nodes of each type. This makes it much different

from the other referred works, in the sense that it presents a fully-disaggregated and

scalable system with resources provided independently to each other. Moreover, in
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addition to the startup configuration, sections of disaggregated memory can also be

added or removed at runtime in a hot-plug manner. The connections between the nodes

are established dynamically by the system orchestration logic.

A practical limitation of both aforementioned works is that they are based on 32-

bit platforms (also by ARM), which are not very interesting in a data-center context

because of the limited amount of directly addressable RAM, far less than required

nowadays by server workloads. Reportedly, in this sector, at least 95% of market share

is currently owned by Intel (as of 2018) and other chip manufacturers hope to increase

the popularity of 64-bit ARMv8 platforms [26]. For this reason, it is more relevant

to see the disaggregation concept implemented on this architecture. Moreover, porting

the software stack from a 32-bit to a 64-bit ARM platform is not a straight-forward

task. Other domains, where 32-bit platforms are more widespread (IoT devices, mobile

devices, automotive), do not currently seem to require the large amounts of memory

that would justify disaggregation.

Summary

Regarding remote memory attachment, the first alternative refers to the question whether

a remote memory cell is attached to the same motherboard (or integrated in the same

chip in case of SoC platforms) as the CPU or not. In the second case, the local on-chip

interconnect needs to be bridged with the remote one, as in case of A1, B2, C, D1 and

I on the figure 2-1. This seem to be the most elegant solution as it directly addresses

the root limitation and is completely transparent from the software point of view at

the same time. Nevertheless, in practice these approaches may be characterized by

inferior performance, in comparison with swapping approaches, as shown in A, B and

D. That is because a direct access is performed usually at cache-block granularity by

issuing a local interconnect transaction. Each transaction introduces a delay related to

the distance between two nodes as well as interconnect packets processing and routing.

This delay is accumulating for multiple subsequent direct accesses. This situation

could perhaps be improved with proper cache hierarchy scaling and prefetching, as

it is for local memory accesses, where the difference in access latency between a first

level cache (L1) and a memory cell is typically larger than an order of magnitude (for
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example, for a typical PC it is about 5 ns vs. about 100 ns).

If not by hardware, data from remote memory is fetched in a page granularity by

software means, as shown in A2, B1, D2, E, F, G and H on the figure 2-1. This may

offer better performance, especially in case of sequential memory access patterns, as the

penalty of copying one page of disaggregated memory will be distributed over multiple

cache blocks it contains. Another characteristic of this approach is that it does not

require any hardware customizations, which can be considered as an advantage. For

example, modifying hardware that is already deployed may be difficult, expensive and

requires a lot of engineering effort, in comparison with a software-based solution. On

the other hand, as the name swapping indicates, this method requires a certain amount of

local memory pages to serve as a destination buffer for data incoming from the remote

memory. The bigger the disproportion between the size of local and remote memory

is, the more often local pages will be overwritten. If there are too many overwrites at

the same time, it may happen that all system threads will be waiting on I/O operations

to complete and the guest will be idle at that time. This situation is known as memory

congestion and it degrades the system performance.

In general, remote memory access techniques are mandatory for scalable disaggregated

systems composed of heterogeneous nodes of different types. Traditional clustered

installations may also take advantage of them in order to make use of underutilized

memory of other machines and improve the global memory utilization factor. Moreover,

as presented by the position G of figure 2-1, it is also possible to improve the energy

efficiency of existing clustered systems by smarter power management, thus without the

need discarding existing hardware in favour of disaggregated systems. Indeed, from the

practical point of view the latter is a very important remark.

Works B and F of figure 2-1 show that either way of reaching the remote memory

can be integrated with the virtualization layer. Though, with the swapping approach,

each VM also requires a certain amount of local memory for the reasons described

before. Assuming that each host would run multiple VMs, this may actually create a

requirement of a significant amount of RAM being available locally, while the remote

memory will be considered a secondary resource. Instead of implementing such a

hybrid system, the dReDBox project (I on figure 2-1) aims for a higher degree of

46



heterogeneity, in the sense that locally available RAM is only supposed to be used for

the host OS purpose but all VMs will be using the remote memory obtained from dis-

aggregated nodes. For this reason the project prototype employs a hardware attachment

method so that the disaggregated memory is visible from the host OS perspective as

ranges of a physical address space. The ranges are also isolated from the standard host

memory allocator, which will be described in Chapter 3 presenting the virtualization

layer memory provisioning.

2.2 VM memory provisioning and balancing

Figure 2-2: Comparison of runtime guest memory resizing methods

In this section, there are discussed different ways of guest memory resizing at runtime.

For an illustrative purpose, they are all collated on the figure 2-2, together with the

most important characteristics as well as example positions from recent literature, which

leverage a given approach.
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A comment on assumptions of our project

Based on the dReDBox prototype, capable of allocating memory coming from the dis-

aggregated pool, one of our main objective was to enhance the virtualization framework

so that hosted VMs would take full advantage of the non-local resources.

The idea is that a compute node may have attached locally only a very limited amount of

RAM, necessary to boot the host OS (serving as a hypervisor) and to execute auxiliary

software components. As mentioned at the end of Section 1.7, such approach may be

considered as semi-disaggregated for two reasons that follow. Firstly, the hypervisor

itself relies on a certain amount of memory being available locally on the computing

node. Therefore, such requirement bends a little the principle of a complete indepen-

dence between CPUs and RAM in a disaggregated system. Secondly, although the

attached memory comes from remote nodes, a VM process is bound to the HPA of a

single computing node as is the hypervisor. For such reason, a VM can be migrated

to a different computing node but it cannot be distributed over multiple ones at the

same time. Different nodes run different hypervisor instances. This is way different

comparing to the LegoOS design, where the hypervisor is built on top of a splitkernel

architecture [53]. Thus, although our approach as well as similar ones are often de-

scribed in the literature as disaggregated, the level of disaggregation is different when

compared to a system like the LegoOS.

Additional processes executed by the hypervisor next to VMs are required to integrate

the compute node with the rest of the system. For example, the host OS is notified by

the system manager when a VM process should be started or migrated. Moreover, a

compute node also needs a way to request the attachment of a portion of disaggregated

memory and receive the corresponding parameters in return, in order to properly config-

ure its local interconnect adapter logic and establish a link to the new resources. These

tasks are handled by software components running in local RAM for the obvious reason

that the disaggregated memory cannot be used before it is attached. Differently to that,

all the buffers supposed to build up the guest’s RAM come only from the disaggregated

pool.

Building on top of these assumptions, the virtualization framework is supposed to

obtain buffers of disaggregated RAM and attach them to a VM at its boot time. Corre-
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spondingly, they are released when a VM is terminated. Moreover, VMs are expected

to dynamically change the amount of provided RAM at runtime so that a running

guest may increase or decrease its memory capacity without reboot. This functionality

underlies the memory balancing logic at the host level. The host can shuffle already

reserved buffers between all hosted VMs and, when these are not sufficient, it can

request the attachment of additional ones.

In this section, the problem of memory provisioning and balancing is just introduced in

order to position it properly between similar state-of-the-art approaches. Chapter 3 is

devoted to the detailed presentation of how the guest’s RAM is provided and how its

dynamic resize is implemented. Other works are not necessarily deployed on disaggre-

gated systems because memory balancing between VMs operates on ranges of HVA.

Whether these ranges are linked to local memory banks or remote ones is not relevant

for the balancing mechanism.

Overcommitment

Most prior works related to guest memory balancing implement different flavors of

page-based techniques, also referred to as the overcommitment approach. Its principle

of operation is that, at any given moment, only a fraction of a guest’s RAM is actually

mapped to physical resources owned by the host. While the guest is running, these

mappings are dynamically modified in order to support the working set of the guest,

that is the set of pages it is actually using.

The most straight-forward method is the uncooperative swapping, that enables over-

committed pages (beneficiary) to be accessed at the cost of moving victim pages to

swap storage in order to release physical resources. Therefore, during guest’s operation,

memory pages are constantly juggled to back up currently used working set. Since it

is performed by the hypervisor, this technique suffers from a so called semantic gap,

meaning that the hypervisor cannot optimally select guest pages to be evicted for the

lack of precise information bout the guest memory usage [20, 21]. Another drawback,

from the performance perspective, is that each page replacement requires a context

switch to the hypervisor in order to perform an I/O operation.

It should be noted that examples employing this method were also mentioned in Sec-
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tion 2.1. The first variant presented by Lim et al. [39] as well as the work by Svärd [55],

are both operating according this principle, however they are using the disaggregated

memory, instead of a disk, as a swap storage.

Ballooning

Ballooning was proposed to address the semantic gap problem by delegating the page

selection process to the guest [59], which reserves a page of memory using a standard

memory allocator and passes its address to the hypervisor. The latter translates the

address into a valid one in the host address space and marks a page as temporarily

released by a given VM (it can later be claimed back). Using a standard memory

allocator implies that the guest balloon driver has no direct control over the physical

address of the selected page. Although the guest has access to all statistics to make an

optimal choice from its performance perspective, this method has other drawbacks. A

VM that needs more pages relies on other VMs on the host to relinquish them but it is

not guaranteed to succeed as the ballooning scope can be limited or disabled by other

guests. Moreover, other guests may additionally need to store data from some pages to

disk, before they will be able to release them. Therefore, ballooning is less deterministic

and can be slower than uncooperative swapping. It cannot help rapid bursts in memory

needs [32], but, on the other hand, the uncooperative swapping may also degrade the

performance if executed frequently.

Combined approaches

Several combinations of both mechanisms have been proposed to select the best candi-

dates for eviction as well as to improve the balancing responsiveness [32, 21, 36, 38].

For example, it is preferable to evict guest pages keeping data that were read from disk

(this is known as the page cache). They are already present in a persistent storage so

the step of dumping page contents is spared.

Nevertheless, all page-based techniques operate within the range of guest memory

defined at boot time. Thus, they are able to reclaim pages already owned by a VM

but cannot obtain more memory than it was launched with. Moreover, these techniques

are also known to introduce guest memory fragmentation. That is because they are
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reserving pages without any control over their physical address (decided internally by

the memory allocator). For this reason, after running for a long time a guest OS can

become unable to find a range of contiguous memory to fit a large object [40, 52].

Expanding declared RAM capacity

Up to the author’s best knowledge, only one paper by Liu et al. [40] combines the

memory hot-plug mechanism (that is hot-add and hot-remove operations) together with

ballooning.

The memory hot-add expands a system’s physical address space, at runtime, by a

contiguous range of addresses called memory section. A section of memory corresponds

to attached memory resources in the sense of hardware connectivity (or virtualized

hardware, in case of VMs). Symmetrically, memory hot-remove does the opposite

operation. The hot-add/-remove operates on a memory section granularity, which length

is a platform-dependent parameter (for example, in Linux it is 1GB by default for

the ARMv8 architecture). This is a coarse-grained resizing mechanism, compared to

page-oriented methods, as one section of memory may contain hundreds of thousands

of pages (the page size is typically 4KB, although 64KB is more and more common

for systems with large amount of RAM). The hot-add/-remove perform actual resource

attachment/detachment in the same way as at VM boot time or termination. This is

crucially different from swapping pages, as with overcommitment, or from marking

them as unavailable, as with ballooning.

The authors of the aforementioned work extended the Xen virtualization framework

with a component responsible for periodic collection of runtime memory usage statistics

in all running VMs. Based on these observations a decision about a VM memory resize

is made. Primarily, the resize is performed on a section granularity. Since only an

integer number of sections may be added, if the attached resources are bigger than the

requested amount, the outstanding pages are set as offline. In this state they are not

usable for the guest memory allocator and can be reclaimed by the hypervisor in a

ballooning-like way. The reclamation process starts from the highest page index (an

upper part of a virtual address). Moreover, if not used by other guests, the same pages

can later be quickly switched to online state in order to increase the guest’s available
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memory in a fine-grained granularity. This hybrid system allows to maximize the host’s

memory utilization level better than by memory hot-plug alone. At the same time it

does not drastically increases the guest memory fragmentation level (as with classic

ballooning).

Approach presented in this work

Similarly to the work by Liu et al. [40], the virtualization framework presented in

Section 3 also takes advantage of a section-based memory resizing. Nevertheless, in our

system the VM memory provisioning is tightly coupled with memory disaggregation.

Sections of disaggregated memory are attached to the host as isolated, that is not

passed to the default host memory allocator. Subsequently, the system presented in this

dissertation does not take advantage of the host memory allocator. Instead, at VM boot

time, the virtual RAM of a guest is constructed from one or multiple isolated chunks.

Because of that, each guest memory section is also contiguous in a host physical address

space, and each isolated chunk at host level is always attached only to one VM.

This guest memory provisioning design simplifies the integration with a disaggregated

system. Neither do we employ any periodic guest memory usage statistics collection

nor ballooning, although the system does not prevent that. The rationale behind this

choice is that it would introduce additional complexity to the system, while, in the

light of having a (supposedly very large) disaggregated memory pool, it is affordable

to loose the fine-grained memory regulation in order to keep the host memory frag-

mentation low. Page-based balancing methods are only secondary techniques, they

cannot overcome a maximum guest memory size declared at boot time, as mentioned

above. Moreover, classic ballooning may block a guest memory section from being

unplugged until the conflicting page owned by the balloon driver will be migrated to

one from other sections. The process of looking for a replacement page imposes an

additional indeterministic performance overhead. This problem could be tackled by

limiting ballooning to only one isolated section of the host, shared by multiple VMs.

This section would need to be always present in all guests. But on the other hand, it

would require a dedicated allocator used by the balloon driver and synchronized with

the host side. This allocator would only operate within the boundaries of the specific
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section.

In the design presented later in Section 3 this problem is avoided. At each VM ter-

mination, it is always known which isolated chunks of disaggregated memory a VM

was using and these chunks are released. It is also guaranteed that these sections were

not used by any other VM (except for explicitly shared sections, which are one of the

subjects of Chapter 4). On the other hand, if, for any reason, a host is supposed to

release a particular chunk of isolated memory, there is always only one VM affected.

The total host memory utilization factor may be lower than it was with page-based bal-

ancing methods included, but, provided an expectedly large amount of RAM available

in a disaggregated system, this is most likely acceptable. Additionally, this simplifies

the management of the disaggregated memory, improves the determinism of the resizing

delay and does not introduce an excessive memory fragmentation in the host.

The presented approach is not a magic bullet, it is not supposed to handle instant

bursts in memory demand but ballooning also does not do it, while bringing the other

difficulties mentioned above.

2.3 Uniform address space

Figure 2-3: Simple illustration of a Uniform Address Space concept
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Except for memory provisioning to virtual machines, in this dissertation we also discuss

the concepts of memory sharing between VMs, VM migration and device pass-through

assignment — all in the context of a disaggregated architecture. These ideas are pre-

sented using a global picture of the system, in which all available resources are de-

scribed by the Uniform Physical Address space (UPA), simply illustrated on figure 2-3.

This is only one of many possible ways of illustration, it does not mean to express any

particular relations between UPA ranges mapped to particular resources.

Typically, the different resources of a given system node are described by distinctive

ranges of a physical address space (referred to as HPA on the picture) and the layout

is usually determined at hardware production stage. In a disaggregated architecture

the multitude of separate nodes makes such a description ambiguous as the same HPA

range may refer to different resources at different nodes. Therefore, in order to be able to

uniquely index all resources available across the system, they are mapped on a (possibly

very large) uniform address space. This mapping can be, for example, managed by

the global system orchestrator when a node is first registered. The mapping should

describe all resources of a node that are globally relevant, especially the ones that are

going to be shared with other nodes (memory and devices). This is because a pair

of UPA addresses allows to describe an interconnect link. This approach is not new,

regardless of the actual term used to name it. It simplifies the description of various

mechanisms affecting multiple nodes, while the complexity of an actual implementation

is hidden [22, 43].

2.4 Inter-VM memory sharing and migration

In Chapter 4 we will discuss inter-VM memory sharing and VM migration on a dis-

aggregated system. Both are presented from the virtualization framework perspective,

building on top of custom libraries available at host level. The libraries are respon-

sible for operating parts of system-wide infrastructure involved in memory sharing or

migration.

Inter-VM memory sharing is mostly mentioned in the literature in the sense of commu-

nication and data exchange between VMs co-located on the same host. On a traditional
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architecture this allows a zero-copy sharing as data is all the time in the same physical

location, mapped to all participating VMs. In this context the main challenge is to

assure proper serialization of concurrent accesses in order to avoid data corruption. The

related signaling is usually held by a server running in the hypervisor and dispatching

the virtual interrupts between the participating VMs.

First author VM abstraction User interface Comments

Huang [31] Virtual device Socket Standard communication interface optimized for co-
located VMs

Mohebbi [42] Custom PCI device POSIX shmem Sharing between VMs as if between guest processes

Kurtadikar [37] IVSHMEM mmap Switching to TCP/IP for VMs on separate nodes, migra-
tion breaks performance

Ivanovic [33] IVSHMEM MPI Optimizing parallel framework with IVSHMEM

Zhang [63] IVSHMEM MPI Optimizing parallel framework with IVSHMEM

Nitu [45] N/A N/A Memory sharing not discussed explicitly but not forbid-
den

dReDBox Custom PCI device POSIX-like Unified memory sharing regardless of VM co-location

Table 2.1: Inter-VM memory sharing methods

The table 2.1 puts together a set of works proposing differnt methods of sharing memory

between different VMs. They are also described in a slightly more detailed way in the

following.

Except for dReDBox, all presented examples are using zero-copy memory sharing only

when all participating VMs are running on the same system node, that is using the

same HPA. In one case this approach is used to provide an efficient socket-based com-

munication, not affected by the overhead of a networking stack [31]. Other works

integrate it with HPC programming models (like MPI) in order to optimize inter-VM

communication for co-located VMs [33, 63]. Nevertheless, because of clustered archi-

tecture limitations, once VMs are hosted by different system nodes they fall back to

mechanisms based on data copying, that is TCP/IP or Remote Direct Memory Access

(RDMA). The latter can be over PCIe, as in [30, 57], or InfiniBand — very popular in

HPC domain [63]. Amongst them, the most efficient is when copying is initialized by

software but the actual data transfer is performed only by hardware.

The same applies, for example, when one VM, initially capable of zero-copy data
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sharing with others, is migrated to another node. The data sharing scheme has to be

changed to a copy-based one and the data exchange performance will decrease as a

result. In such scenario VM migration is considered harmful, while ideally it would be

almost transparent to the deployed workloads.

Huang et al.: "Virtual machine aware communication libraries for

high performance computing"

One approach, by Huang et al. [31], is based on the Xen virtualization framework. It

establishes memory sharing through the grant tables mechanism. It allows a VM to

share its own memory regions with other participating VMs. They can see the shared

region as a virtual device. The device contains a data section divided into several

fixed-size chunks and a ring-buffer with the same number of slots, used for access

synchronization. The mechanism supports socket-like reads and writes and therefore it

can be transparently used by applications leveraging standard network communication

between VMs.

Mohebbi et al.: "Zivm: A zero-copy inter-vm communication mech-

anism for cloud computing"

In another work by Mohebbi et al. [42], shared memory is provided to guest applications

through the standard POSIX interface. Practically, it eases the application development

process as it allows to test an application on a single machine and then deploy it on a

target system without changing the corresponding code. A shared host memory region

is virtualized as a standard PCI device and, for better portability between different

hypervisors, communication with the guest is done over a VirtIO channel.

IVSHMEM-derived approaches

Eventually, several authors leveraged the IVSHMEM technique, which exposes shared

memory obtained from the host as a PCI device in the VM. Each such device con-

tains the respective Base Address Register (BAR) registers representing the shared

regions [12]. With the help of the IVSHMEM-server running on the host, the access
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shared between several VMs hosted on the same system node can be properly synchro-

nized [37, 33, 63].

Nitu et al.: "Welcome to zombieland..." - migration aspect

As described in Section 2.1, the solution proposed by Nitu et al. [45] postulates a logical

disaggregation between memory and CPUs, performed at power management level in

order to improve memory utilization and energy efficiency of clustered servers. By

introducing the novel zombie power state this approach allows to use remote memory

of other nodes, even if their CPUs are powered-off.

There is also discussed the VM migration aspect in this position. Although another

power state complicates the migration task, this work mentions the benefits of having

part of guest’s RAM located at remote node. In such case, this part does not have to

be moved anywhere, only the VM before and after the migration needs to point to the

same remote resources. Moreover, the publication explains how it can be integrated

with live-migration mechanism.

In comparison with the dReDBox approach presented in this dissertation, in the latter,

there is a broader discussion of the distinction between local and remote part of VM

memory footprint as well as expected benefits for the resource management. On the

other hand, the subject of integration with live-migration techniques is only mentioned

in proposed future works.

Summary

In Chapter 4 we will discuss how the architecture disaggregation affects both memory

sharing between running VMs as well the notion of VM migration. Up to the author’s

best knowledge, no position in the recent literature covers these topics. Nevertheless,

thanks to the fact that CPUs executing VMs and their disaggregated memory are located

at separate system nodes, the inter-VM memory sharing can always be implemented in

a unified zero-copy manner. A particular case of having associated VMs executed by

the same node creates only additional optimization opportunities. For the same reason

of disaggregation, moving a VM that uses a shared memory region from one computing

node to another affects only the VM itself. In particular it does not affect other VMs
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participating in a sharing group. Moreover, it does not change the way of accessing the

shared region, especially no additional data copies are necessary. In this context, the

migration (referred to as CPU migration in further chapters) is not harmful anymore for

established sharing instances. Eventually, regarding the term “migration”, we present

how it gains a twofold meaning in the light of disaggregation, with respect to CPU and

memory resources, which are migrated independently.

2.5 Devices disaggregation

Figure 2-4: Hardware-based remote device sharing methods

Analogously to the previous sections, this one presents an overview of relevant literature

positions discussing the subject of device disaggregation. Related works are graphically

collated on the figure 2-4 and further described below. Not all of them are implemented

on disaggregated architectures but they could be adapted appropriately and therefore it

is useful to have a look at them. In all cases, the common main purpose is to allow

an application running on a computing node (also inside a VM) to use a device that

is not directly attached to the node. A reason for that is to have less devices installed

across the system but keep them busy all the time instead of attaching a given type of
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peripheral to each node, even if it would be underutilized.

Hou et al.: "Cost effective data center servers"

The PCIe-based system by Hou et al. [30] also presents a method for devices sharing in

two examples: a general-purpose graphic card (GPGPU) and a network interface card

(NIC).

A GPGPU is a great example of an accelerator that only a limited set of workloads can

effectively use, while it is marked by a non-negligible price tag. However, for applica-

tions that are indeed capable of making use of it, the performance can be significantly

improved. Because of that, it is recommended to have at least few such devices installed

and shared across the system.

In Hou et al. [30] work sharing is based on exposing address ranges, corresponding to

memory-mapped registers, to other nodes through an NTB port. Additionally, input and

output data buffers have to be allocated at both nodes and the data needs to be copied

(by DMA engine of an NTB port) before and after operation of the device, respectively.

Therefore, this method of remote device attachment is almost identical to the memory

sharing scheme presented in the same work. The biggest drawback of this solution is

that input data needs to be copied to a node that has the device directly attached, before

its operation can be launched. The same happens to output data after processing is

completed. This is because the device cannot directly operate on ranges coming from

an address space of a remote node. Moreover, it is possible that some operations would

not require the processing of the whole input. In such cases a fraction of the time spent

on data copying would be wasted. Instead, it would be perhaps more efficient if such

a device could fetch input data directly from the remote node on a per-need basis and

could transfer the output along the operation. Additional optimizations would assume

that copying unmodified bytes from input to output buffers could be also performed

directly on a remote node’s memory, without transferring it back and forth to the node

that has the device locally attached.

The second presented example figures a shared network interface card (NIC). In order

to access a remote NIC, each node has an associated virtual NIC (vNIC), emulated by

a driver and having a unique MAC address. The software emulates the IP layer over
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existing PCIe links. Each vNIC has its own routing table that associates the MAC

address of a destination card with the proper PCIe link. Similarly to the previous

example, data transfers between vNIC and NIC are performed by the DMA engine of an

NTB port. The weakest point of this approach is that the emulation is done completely

by software and that additional data copy between the vNIC node and a NIC node is

required. A device cannot therefore be attached to a hardware-only node, it needs to be

able to execute software drivers.

PCI Express standard evloution

A step towards an easier device sharing, with virtualization support included, was

made by the PCI Express standard itself [48, 46]. Two extensions were proposed: a

single-root I/O virtualization (SR-IOV) and a multi-root (MR-IOV), the second being

a superset of the first. They aim at multiplexing a device in hardware, so that it is

perceived by a software stack as multiple devices. Registers of an SR-IOV compatible

device are presented as one physical function (PF), a fully fledged device register, and

multiple virtual functions (VF), of limited capabilities, but sufficient to use a properly

initialized peripheral. By principle, the host (hypervisor) is supposed to initialize an

SR-IOV device using the PF and then assign VFs to virtual machines (one VF per

VM) to let them use it as if the device was assigned directly. A limitation of the

SR-IOV is that it offers a hardware-supported device multiplexing on a single system

node (being a root complex, in the standard terminology) only, which is not sufficient

for a disaggregated architecture. The MR-IOV, instead, requires a dedicated switch

connecting multiple root-complex nodes in order to enable the association of VFs with

devices attached to remote nodes. Moreover, a PCIe chipset at each node has to sup-

port MR-IOV functionalities. The technology is supposed to serve well up to 16 or

32 root-complex nodes. Supporting more is not forbidden but the performance may

be suboptimal [48]. It looks very promising although, reportedly, the availability of

conforming hardware is very limited [61].
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Tu et al.: "Marlin: a memory-based rack area network"

One PCIe based system by Tu et al. [57] enables sharing SR-IOV devices (specifically

NICs) across disaggregated architecture. However, in this case the system architec-

ture is slightly different. It is composed of one PCIe switch with the shared NICs

attached to it together with the management host (connected through the transparent

bridge (TB) port) and several compute hosts (connected through non-transparent bridge

(NTB) ports). The management host is responsible for NICs enumeration and for the

programming of translation tables at NTB ports, also at device discovery time. Each

machine can get assigned one or multiple VFs associated to a given NIC and the NTB

port is responsible for performing data transfers.

As in the case of all hardware-based solutions of a star architecture, the scalability of

the system is determined by the capabilities of the central node, here specifically a PCIe

switch. Thanks to the device enumeration and mapping to compute nodes, performed

by the management host, no specific software negotiation phase is needed, as in the

work by Hou et al. [30].

Suzuki et al.: "Multi-root share of single-root I/O virtualization

(SR-IOV) compliant PCI Express device"

Facing the limited availability of a commodity MR-IOV-compliant hardware, Suzuki

et al. [54] described a prototype system that attempts to achieve similar functionality

of sharing SR-IOV endpoints (devices) among multiple hosts using custom compo-

nents. The system does not require any modifications at a device side or its driver

(differently from a standard MR-IOV approach) at the cost of lower performance. A

virtual distributed PCIe switch (with a single virtual PCIe tree) is constructed over an

Ethernet-based interconnect. In order to attach a node to the interconnect, two types

of custom adapters are used, responsible for tunneling PCIe packets over Ethernet: a

downstream bridge — attached to a device — and an upstream bridge — attached to a

host. Each downstream bridge is identified by a VLAN number and a separate system

manager host reconfigures the network for proper device assignment.

In one presented variant, with a single VLAN number per host, a peripheral can be
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shared with other hosts only by taking turns. Before each assignment an update of the

current configuration is required. Still, within a single machine, all hosted VMs could

access the device simultaneously through a dedicated VF. Therefore, referring to [30],

this kind of sharing could be sufficient for a GPGPU or devices that are not necessarily

supposed to serve multiple hosts at the same time. However, this sharing scheme may

not work well for peripherals that are routinely interleaving inputs from multiple hosts,

like a NIC. If all VMs of a given host do not generate enough traffic, a NIC will remain

underutilized. On the other hand, frequent reconfigurations may generate by itself such

a significant overhead that the device utilization level will also be suboptimal.

In another variant, peripherals can be shared simultaneously between multiple hosts at

the cost of each host having only one VF attached. Therefore, an additional device

multiplexing between VMs has to be performed in software, which certainly would be

marked by lower performance.

LegoOS and dReDBox

From the device disaggregation perspective, both the LegoOS by Shan et al. as well as

the dReDBox design are very similar as they provide a peripheral attached to a device

node (refer to figure 1-2) to the workload being executed on a computing node [53, 35].

In both cases, no specific requirements related to a device type is stated, the mechanism

is supposed to support a generic device. Similarly, in both works there is assumed

a custom hardware support and integration at the global system management level in

order to perform steps like a device instance selection, interconnect configuration and

mapping device registers.

Nevertheless, the difference is that in this dissertation there is addressed the subject of

direct-attachment of a disaggregated device to a VM. In Chapter 5, there is explained

why disaggregation broken the traditional way of configuring devices in this way and

how it can be re-enabled again.

Summary

Plugging devices to a PCIe bus is the most common way of attachment nowadays and

its recent extensions introduce hardware-based device multiplexing facilities. From
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the virtualization point of view, it is especially important for the device pass-through

attachment mode, in which a device is assigned exclusively to a single VM. The VM

can use it directly, without exits to hypervisor. Logically (in terms of device drivers

assignment), the device is in fact detached from the host OS. Such a configuration

offers a near-native performance but disables the sharing of a device with other VMs.

The SR-IOV extension of the PCI standard addresses that problem but only for devices

attached to a single root-complex. In a disaggregated system, it is highly desirable to be

able to configure any device (or associated VF) in a pass-through mode, regardless of

the actual node it is attached to. The MR-IOV is supposed to bring such functionality,

also performed in hardware, but currently its adoption is very limited.

In Chapter 5, we present the design of a device sharing framework supporting archi-

tecture disaggregation from the ground up. Up to the author’s best knowledge, systems

with both disaggregated memory and devices (as depicted on figure 1-2) at the same

time are not described by any position of the recent literature. The principle of this

design is that a VM executed on a compute node uses only a disaggregated memory

coming from a memory node. This VM is capable of configuring a peripheral (or

a VF, depending of available hardware capabilities) attached to a device node in a

pass-through mode in such a way that the peripheral may operate directly on the input

and output buffers residing in a disaggregated RAM.
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Chapter 3

Guest memory provisioning in a

disaggregated system

3.1 Chapter introduction

Previous chapters introduced the context of this dissertation and discussed related posi-

tions from recent literature. In this chapter, we present the first main contribution, which

is the design of a virtualization layer, enhanced with respect to memory provisioning.

A workload deployed in a Virtual Machine (VM) is capable of using only a certain

fraction of system resources, accordingly to respective VM parameters. They are ini-

tially specified when a VM is started but it is also strongly desired that they can be

dynamically adjusted at runtime for a flexible resource balancing. As explained in

Section 1.3, the virtualization layer is essential for a data-center system and therefore

the primary goal of all design choices and introduced components is to support it.

The enhancements presented in this chapter provide the functionality of a runtime

adjustment of the guest RAM with a strong emphasis on an easy integration with a

disaggregated architecture.

Different ways of guest memory balancing were discussed in the Section 2.2, especially

the part presenting an approach adopted in this work discusses rationales behind the

memory provisioning approach. Regarding the presentation structure, subjectively it

made the most sense for the author to present a complete picture of the design upfront

and provide justification or alternatives discussion afterwards.
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3.2 Proposed system architecture

In the design presented in this dissertation, when a VM starts, the guest’s virtual RAM

buffers are not reserved using the default host memory allocator (e.g. using the malloc()

function). Instead, they are obtained from a custom host driver managing isolated

ranges of Host Physical Address space (HPA). On a disaggregated system, resources

coming from remote memory nodes are supposed to be mapped to these ranges at

host level. Because of that, each guest memory section is also contiguous in HPA,

as well as each isolated range is used by only one VM maximum (except for explicit

memory sharing). Eventually, guest’s virtual RAM is constructed of one or multiple

such isolated chunks, which amount can be adjusted at runtime. This approach makes

the virtualization layer easy to integrate with the architecture disaggregation.

Figure 3-1: Guest memory provisioning from isolated pool

The related enhancements of the virtualization framework span three levels. In order to

simplify their relative positioning, it is useful to have a look on the figure 3-1, although

it will be better described in the further part of this chapter.

The first ehnancement is a custom host kernel driver that allocates the proper data

structures related to the isolated memory. A description of this resource has to be

given to the system at boot time in order to initialize the underlying hardware properly.

For example, in the dReDBox prototype we used, this is done with the device-tree, a
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description of the underlying hardware platform, typically used to inform the Linux

kernel about the available resources and their parameters. Alternatively, this could be

signaled by other components of the software stack which are executed on a platform

next to the OS and capable of discovering the hardware topology (for example a UEFI

firmware implementation [17]). The initialization process of the isolated RAM (repre-

senting the disaggregated memory) is very similar to that of the regular memory, but the

corresponding ranges of HPA are not eventually passed to be managed by the system

allocator (for example, the buddy allocator in Linux). In this way, they are not available

for regular user-space processes running on the host. Instead, this memory is available

solely for VMs.

The second level affected by the design-specific customizations is a software layer,

depicted as a VM_state, which creates the Virtual Machine (VM) itself. As in a

conventional approach, it is responsible for proper initialization of guest memory,

which addresses undergo a two-stages translation (from Guest Virtual Address space

(GVA) to Guest Physical Address space (GPA) and then from GPA to Host Physi-

cal Address space (HPA)), unlike for the memory allocated for a typical user-space

process, where there is only one translation stage (Host Virtual Address space (HVA) to

HPA). In our architecture each VM instance is spawned in the host local RAM, like for

regular processes, but all memory buffers obtained to build up the RAM of the guest are

allocated from the isolated memory pool. Moreover, while a guest is running, a VM is

capable of expanding and shrinking the volume of the virtualized RAM. This operation

is called the guest-physical memory resize. Finally, a VM interacts with the guest OS to

receive resize requests and to coordinate the respective logical memory resize at guest

side.

The guest OS is the third modified level, presented as part of the VM_payload on the

figure 3-1. The guest exchanges messages with the VM and, based on the parameters

it receives about the guest-physical memory chunks, it adapts the logical memory by

performing hot-add/-remove operations. This includes the adaptation of the memory-

related data structures that guarantee that the underlying physical resources are used in

a correct manner.
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A detailed description of design components

Figure 3-1 shows a detailed view of the components of the virtualization framework.

The core components and their roles are described below. The less relevant ones

are grayed out as they are not crucial for the mechanism itself but serve as a context

illustration for the following sections of this chapter.

GMk: Guest memory backends — chunks of physically contiguous memory iso-

lated from the host allocator and used exclusively to build guest RAM, k ∈

[1, 2, . . . , n]. On a disaggregated architecture they represent resources from re-

mote memory nodes.

RAMlink_k: VM-internal data structures abstracting guest RAM resources. Mapped

1-to-1 to GMk, k ∈ [1, 2, . . . , n], during initialization by the host driver GM_mgr.

From a guest OS perspective they are considered as physical RAM.

GM_mgr: Guest memory manager implemented as a host driver. Upon request from

a VM, selects a GMk region and maps it to the VM process address space, specif-

ically to the RAMlink_k range.

VM_state: A set of data structures describing a guest system execution manage-

ment and providing an auxiliary VM functionalities.

VM_payload: An actual memory range where the guest OS code has been loaded

and is executed by a VM. Its size can vary over time but is upper bounded to

the amount of memory provided by all backends attached to this VM at a given

moment.

MON_if: VM component exposing an interface for external processes that could

perform various management operations, for example stop a VM, resume it, query

its parameters or trigger reconfiguration (e.g. memory resize). The interface can

be, for example, a telnet server.

GM_drv: Guest-side driver, responsible for the communication with the VM and

triggering the logical memory resize.
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GM_if: A VM communication interface. In order to initiate the memory resize and

exchange corresponding messages it interacts with several other components:

• Guest driver GM_drv; to exchange addresses of added/removed memory

sections and corresponding signal messages.

• VM monitor interface (MON_if) to receive memory resize request (alterna-

tive way) signaled by external processes.

• Host driver (GM_mgr), to requests the binding of a RAMlink_k instance

to an actual host memory chunk GMk.

The manager module (GM_mgr) is responsible for selecting a range of isolated memory

(GMk) that will be linked to a given VM by a RAMlink_l. There are two cases to

consider: the GMk to RAMlink_l linkage happens either when a new VM is launched

or at runtime, when its RAM volume is resized.

• The first case is the most straightforward of the two because resources are prop-

erly initialized at host side and from the guest’s perspective they are statically

predefined, for example by the provided device-tree.

The guest memory initialization takes place when a VM process builds a machine

abstraction and allocates buffers that will constitute its RAM. Instead of using

standard means (for example the malloc() call) to obtain resources from the

host memory allocator, a VM (GM_if) uses a specific driver (GM_mgr) to reserve

one or multiple backends (GMk). In this way, the guest RAM is comprised of one

or multiple chunks of isolated RAM.

• In the second case (dynamic memory resize) additional steps are required. A VM

has to receive a reconfiguration request in order to modify its current setup, so

messages exchange is necessary between a VM communication interface (GM_if)

and either a VM monitor interface (MON_if) or a proper guest driver (GM_drv);

these are two different usage variants and they are discussed in sections 3.4

and 3.5, respectively.

Additionally, respective runtime modifications are needed at guest side in order to

make new memory resources available for guest processes, or, symmetrically, to
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properly stop using the resources that are about to be detached. In Linux parlance,

the former and latter are called memory hot-add and hot-remove, respectively.

They modify the amount of guest memory at memory section granularity. A

memory section is a physically contiguous range of memory. Its size is platform-

dependent (for example 1 GB).

Whether it is a guest or a VM, that performs the reconfiguration first, depends on

the type of operation. In the event of guest RAM expansion, new guest-physical

memory resources have to become available before the guest can start using

them. Therefore, the reconfiguration is done at VM side first, before notifying the

guest. Symmetrically, in case of RAM shrinking, the guest has to stop using the

involved sections first, before a VM can safely release the corresponding memory

backends. Figure 3-2 presents a flow diagram of these operations in both cases,

assuming they are triggered by an external process that sends a resize request to

a VM through the monitor interface MON_if.

As a side note, when looking on the figure 3-1, it may seem that GM_if and MON_if

could as well be merged into one module. Although that could simplify the presentation,

it would obscure the functional separation. The former is specific to the presented

memory resize method, whereas the latter encapsulates the communication logic in

general. It can receive requests for different operations and thus interact with many

other VM submodules, including, but not limited to GM_if.

3.3 Resize volume

The resize request received by a VM specifies a desired amount of memory, which, after

comparing it against the currently available amount, allows to determine whether the

guest’s RAM should be extended (positive difference) or shrunk (negative difference).

The absolute value of the computed difference must be converted to a multiple of a

backend’s size. In case of expansion, the safe assumption (from the guest workload

perspective) is that at least the requested amount of RAM should be provided, therefore

the absolute value of the difference is rounded up. Conversely, when shrinking the

memory, one can assume that the workload is ready to execute with no less than
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Figure 3-2: Dynamic memory resize
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indicated amount of RAM, thus the absolute value of the difference is rounded down.

Since each initialized section has to be associated to a VM backend, the size of a

backend should equal to a multiple of the size of a section (possibly one). Additionally,

the smaller the VM backend size, the better the granularity of the RAM resizing.

Therefore, a VM backend size equal to the size of the guest memory section seems

optimal.

3.4 Live VM balancing: guest parameters visibility

The diagram on figure 3-2 presents a situation in which a resize request is emitted

through the MON_if component. Referring to figure 3-1, MON_if exposes an external

interface, for example used by a monitoring software (MON) responsible for managing

all hosted VMs and balancing the available resources between them. Such a software

could make an arbitrary decision about changing the amount of a VM’s RAM based on

internal logic and usage data. Data could be periodically collected either from each VM

process (through the same MON_if interface) or directly from the running guests, for

example through an independent path, like a socket.

Observing only a VM_state (as opposed to considering also guest-internal parame-

ters) has the advantage of no requirements towards the software installed on the guest

but can only provide memory consumption data of limited accuracy. For example, a VM

can possibly monitor the access frequency to backends (assuming that the monitoring

overhead is acceptable) but it is hard to derive from that whether a backend can be

reclaimed with no or negligible impact on the guest’s performance. It could be that it

has not been accessed for a period of time but is still needed. At most, it could be a

good candidate for swapping the data to disk in case of high memory pressure on the

host. However, on a disaggregated system, swapping should ideally not be needed. At

least the process should store pages in remote memory instead of disk. Moreover, in

order to reduce the amount of I/O operations, the Linux kernel leverages on unused

pages and caches open files’ content there. This mechanism is known as the page cache

and the memory it uses is indistinguishable from regular data when observed from the

host’s perspective. If not limited by a specific system parameter, it can consume almost
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all unused pages and thus create an impression that the guest is about to run out of

memory, since cached files are not evicted until it is necessary. From the point of view

of a VM the memory consumption of the guest is thus not a reliable indicator that the

guest’s memory should be expanded.

More precise data can be collected directly from a running guest, however this requires

a dedicated service (depicted as MON_agent on figure 3-1) to maintain the communi-

cation and query proper parameters. Such a service could be running as an independent

daemon process, alternatively accompanied by a supplementary guest kernel module

if some required information could not be obtained with standard user-space tools.

Although this would require guest OS modification, the components can be provided

for a one-time installation, which is most likely acceptable. In this scenario, the host

VM manager (MON) could collect more precise data (e.g. regular memory vs. page

cache consumption) and resize the guest’s RAM when really needed.

3.5 Explicit resize requests

Orthogonally to live VMs balancing, a RAM resize request could also be emitted by the

guest itself, with two different possible strategies: pro-active and reactive, with respect

to the moment when the guest runs out of memory, as illustrated on figure 3-3.

Figure 3-3: Different moments of issuing memory resize request
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The pro-active strategy assumes that this situation could be avoided since the need for

additional RAM can be anticipated. It can itself be split in two different scenarios:

• In the first scenario, a guest component (MON_agent) performs continuous mon-

itoring of the relevant parameters and emits a request in case some of them

(singularly or in a combination) cross over a given threshold. This scenario

does not significantly involve a workload owner, which is good, especially for

legacy applications that cannot be adapted to the system. Also, the monitoring

logic could detect cases when there are not enough or too many sections attached

and could thus handle both memory under-provisioning and over-provisioning.

The drawback of this approach is that a continuous monitoring could imply a

significant performance overhead, depending on the number of observed param-

eters [62, 20].

• In the second scenario, instead of being a standalone guest component, the MON_agent

would be integrated with a user workload (APP on the figure 3-1), for example

as a shared library. This requires that an application can notify the environment

in advance about its need for more memory as well as it should cooperatively

signal when the amount of attached RAM can be decreased in order to make them

available for other VMs. This approach is much more precise and lightweight

as the application knows exactly when and how much more resources will be

needed. A continuous monitoring is expendable in this case at the price of an

application logic being well integrated with a resize library that is an additional

engineering effort at user’s side.

The reactive strategy is conceptually the most straightforward, as no guest monitoring

or application integration is performed. Instead, the guest is allowed to run out-of-

memory (OOM), in which case it will ask for more resources before handling the

situation by taking standard steps like page swapping or selecting a process to be killed

in order to reclaim its memory. One potential drawback is that the process of RAM

expanding needs a certain amount of memory itself in order to initialize the kernel data

structures describing the new section, whereas the system just exceeded all its resources.

Therefore, there is a need for a buffer, reserved a priori to serve such situations. There
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should be at least one temporary buffer reserved for such metadata of a section attached

in OOM state. However after the operation succeeds, its contents should be moved

elsewhere, to allow for the next resize. Specifically, it cannot be moved to the newly

attached section because it would render it impossible to detach later. Optimally, some

data should be rearranged so that the metadata of all sections would be stored in the

first one. This would allow all other ones to be removed at runtime, which gives the

maximum flexibility possible.

Another drawback is that this strategy can only attach more resources and does not

help with detecting sections that could be potentially detached. Therefore, the reactive

approach seems more like a last resort solution in case pro-active techniques would not

be applicable or sufficient.

3.6 Request path

The last element of figure 3-1 that we did not discuss yet is the GM_lib, exemplify-

ing an alternative communication path between a workload and the host environment.

Instead of using an independent channel to trigger memory resize, this component

interacts directly with the GM_drv guest driver, the same that is responsible for passing

the parameters between guest and VM during operations. This can be useful, for

example, for guests that do not support networking or in a situation where there is

no monitoring software running on the host, capable of receiving notifications over the

network. Regarding figure 3-2, the execution flow is almost the same, with the only

difference that MON_if is replaced by GM_drv.

Considering the presented framework as a paravirtualized guest memory manager,

GM_if can be considered as a back-end while the GM_drv plays the role of a front-end.

3.7 Resize granularity

The presented system provides a section-based technique for dynamic memory bal-

ancing between VMs running on the same host. This is different from traditional

page-based mechanisms like memory ballooning [59], which operates within the scope

of the VM memory defined at boot time. As discussed in Section 2.2, our approach aims
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to keep the runtime flexibility and to avoid the drawbacks of the page-based methods.

The resize is based on memory section granularity in order not to introduce additional

host’s memory fragmentation and not to be constrained by a maximum value declared at

launch-time. The price of this approach may be a lower consolidation level since frac-

tions of sections from several VMs cannot be efficiently reused. However, page-based

approaches are known to increase system fragmentation, which can effectively cause

similar effects when the system having multiple tiny pieces of free memory will not be

able to use them to allocate a larger object. Additionally, assuming that a typical cloud

server machine is equipped with hundreds of gigabytes of RAM, a section granularity

seems to be acceptable: its size is platform-dependent but typically not more than 1GB.

Moreover, since applications’ requirements are usually changing over time, operating

at a coarser granularity (section instead of page) limits the volume of control signals

traffic between host and VMs, otherwise required to pass a page ownership to another

guest.

3.8 Disaggregation context

A re-sizable memory virtualization layer based on isolated backends, as described above,

is ready to be adapted for disaggregated architectures. The GMk backends need to be

associated with actual memory resources by the GM_mgr module at the host level but

for a VM it is completely transparent whether they are backed up by local or remote

RAM. Considering the fact that the amount of locally available RAM would no longer

be a limit and the memory-to-CPU ratio per VM would be flexible, the granularity of

a section size seems to be even more reasonable, as the amount of globally available

memory may be in the range of terabytes.

3.9 Guest memory isolation

As mentioned before, the memory resources exposed as GMk backends are not handed to

the host memory allocator but managed exclusively by GM_mgr instead, which always

knows whether a backend has been mapped to a VM or is unmapped. Thanks to that,

an unmapped backend can be detached from the host. This allows for a clean host
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memory regulation, which can help optimal resources arrangement on a disaggregated

system. Without this strict separation, all physical memory would be considered as a

local memory on figure 3-1. Buffers of multiple guest-physical memory could then be

interleaved with other host processes and the host memory fragmentation could increase

over time. This, in effect, could result in one VM using multiple smaller buffers from

several host memory sections, rendering them nondetachable, which could eventually

lead to lower flexibility of resources arrangement in a disaggregated system.

3.10 Chapter conclusion

In this chapter we proposed the design of virtualization layer enhancements that can be

easily integrated with disaggregated systems and support flexible guest memory resize

at runtime. In Chapter 4 we will build on that in order to support also memory sharing

between VMs and VM migration.
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Chapter 4

VM memory sharing and migration

4.1 Chapter introduction

Building on top of the design from Chapter 3, in this chapter we present further en-

hancements of the virtualization layer taking full advantage of the resources provided

from disaggregated memory pool. The design retains a full compatibility with runtime

guest memory resize. However, the main subjects of this chapter are memory sharing

between different VMs running across the system, a lightweight VM migration between

different compute nodes as well as transparent VM data migration between two memory

nodes. These two subjects of memory sharing and migration make the second main

contribution of this dissertation.

As explained in Section 1.5, thanks to more a flexible hardware arrangement, resource

scheduling can be much more efficient on a disaggregated architecture. In particular,

a higher utilization level can be achieved with runtime workloads balancing. Ideally,

the distribution of all deployed VMs can be periodically re-configured, such that only

a minimum number of necessary computing nodes is active and the other ones remain

powered-off.

Another important aspect of virtualization is memory sharing. In a disaggregated sys-

tem shared regions are also coming from remote memory nodes and therefore they can

be used by different VMs, not necessarily co-located on the same computing node, with

no additional data copied by software means. The access is performed similarly to a

regular memory region, only with additional synchronization steps. Most importantly,
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there is no need to switch to network-based communication in case of VMs launched at

different computing nodes, as in some works mentioned in Section 2.4.

4.2 Memory sharing — overview

This section is related to the concept of inter-VM disaggregated memory sharing and

corresponding access serialization, both based on a POSIX-like API, thus easy to adopt

by existing applications.

Just like with classic clustered data centers, there are two different situations to consider:

VMs may be running on the same computing node or different ones.

In the first case, provided that enough memory is available, the shared memory could

come from the local RAM (similarly to IVSHMEM [12]). This would perhaps result

in a lower access latency, compared to memory of a different node. On the other hand,

this would increase the amount of data to be copied in case of a VM_state migration

(described below). Moreover, it prevents VMs running on other computing nodes from

joining the sharing group after it is created. In case of a disaggregated memory range

being shared by VMs on the same CPU node, the Global System Orchestrator (GSO)

still needs to be aware of that. It is indeed necessary, although it may seem to be

avoidable, to register the fact that a certain memory region is accessed by multiple

Virtual Machine (VM) so that it will not be detached from a compute node until the last

user releases it.

In the second situation multiple computing nodes are attached to the same memory node

and capable of accessing the same region(s) within. Because it affects multiple system

nodes, such sharing needs to be established through the GSO.

The second case is more generic in the context of disaggregation and therefore it is dis-

cussed in details in the following. Regarding concurrent accesses to shared resources,

a new software component the — the Arbitration Unit (AU) module — is introduced

in this chapter. It is an abstract system module responsible for granting access rights to

requesting workloads. Different possible locations of the module are compared, with

respect to system scalability or required independent signaling channel between nodes.

We also discuss the implications of implementing a strict lock enforcement mechanism
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for shared accesses, instead of using locks as a programming convention only. Further-

more, different mechanisms of shared memory attachment are elaborated, taking into

consideration the size of a region as well as the minimization of the proportion of HPA

ranges of a given compute node that are reserved but not effectively used. Finally, we

present a way to turn an already used region of regular memory into a shared one, with

a zero-copy approach.

4.3 VM migration — overview

In this section, we describe an evolved notion of VM migration. Traditionally, VM

migration meant taking a snapshot of guest memory together with the CPU and devices

states, which usually represent altogether a large amount of data, and copying it from

one machine to another. In the disaggregation context, a VM’s memory footprint

spans multiple different locations, the local CPU node and at least one memory node,

which parts are described as VM_state and VM_payload, respectively. Both were

already introduced in Section 3.4 and are also illustrated on figure 4-1. Thus, in the

disaggregation context the term of migration gains a twofold meaning.

• VM state migration, consists in moving the VM_state data from the local

RAM of the source (outgoing) computing node to the local RAM of the desti-

nation (incoming) computing node. This is probably the most intuitive meaning

of the term migration because of the similarity with its meaning in conventional

systems. The difference is that all guest memory buffers (VM_payload), rep-

resenting the huge majority of the total volume of a VM’s snapshot, come from

disaggregated memory pool and they are not moved. Instead, the incoming com-

puting node must be connected to these resources and make them available to a

new VM process, that will receive the copy of the VM state from the outgoing

CPU node. The interconnect reconfiguration is a responsibility of the GSO,

which is also initiating the operation at the very beginning. In order to avoid data

corruption, the incoming VM should start guest execution after the outgoing VM

is stopped. Nevertheless, the expected downtime is relatively low as the amount

of data to be copied is typically less than 1MB. Therefore, the VM_state

81



migration is a very lightweight operation which may open new opportunities for

server consolidation improvements. The resource scheduler logic (introduced in

Section 1.5) could take advantage of VM state migration more frequently for its

tiny implied service downtime.

• VM payload migration consists in moving from one memory node to another

only data residing in a disaggregated memory pool. The whole VM payload can

be migrated or only a part of it, if it is spread across multiple memory nodes.

Ideally, this should be almost transparent to the associated computing node, in

the sense that there is no specific action required from the VM side. However,

with the simplest stop-migrate-resume approach, the VM may experience longer

memory access latencies along the process, because the volume of data to move

is typically large (in the order of several gigabytes) and therefore, it is preferable

to not withhold all memory accesses for the whole operation time. This is a major

difference with the VM state migration. The operation cost could be reduced with

hardware acceleration or by adopting live migration techniques ([24, 25, 29, 41,

45]). Also, an intermediate memory cache could help hiding this overhead.

4.4 Software modifications

Migration implies no guest kernel modification at all and this is because of the operation

concept itself. It is not a guest’s responsibility to decide whether it should be migrated

(in any of the two ways discussed above) as the fact of running inside a VM is almost

completely transparent to it. Except for some additional software components it may

have installed, a guest is executing as if it was running on a physical hardware. The

migration logic is divided only between the GSO and the VM. Ideally, the guest and

processes it executes would not even notice the fact of being migrated, however, in

practice, its execution may need to be stopped for the VM_state migration or its

memory access latency may be longer while the VM_payload is being copied.

Regarding disaggregated memory sharing, in addition to the virtual device which is

a VM component, an associated guest kernel driver is needed. This is because an

interaction with the GSO is performed at host side. Therefore the driver only ex-
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poses an interface to guest user-space workloads and delegates most of the work to the

VM. Additionally, having a shared memory region successfully attached and reachable

through a range of GPA addresses, the driver also maps it to the GVA of the requesting

workload. Eventually, the driver is used to obtain (and release afterwards) a lock for

proper serialization of concurrent accesses to shared resources.

4.5 Proposed system architecture

This chapter further expands the system architecture presented previously, which was

related to provisioning guest memory as isolated sections coming from a disaggre-

gated memory pool. Therefore, crucial components of the system design illustrated

on figure 3-1 remain unchanged and they were repeated below in figure 4-1 for the

convenience of the reader. However, several less relevant components were removed for

the clarity of the presentation. The connectivities with the Global System Orchestrator

(GSO) and the interconnect were emphasized.

The GSO is a heart of the systems, performing various management and configuration

operations. In the context of memory disaggregation, it is the only component that

can establish an interconnect link necessary to attach a range of remote memory to a

computing node. Except for that, it also keeps a database of existing connections both

for regular and shared memory regions. Finally, all that can be done on demand, through

an interface used by computing nodes.

4.6 Sharing disaggregated memory

In the virtualization context, memory sharing means allowing multiple Virtual Machine

(VM) to access the same range of physical RAM. With a disaggregated architecture,

these VMs are, in the most generic case, located on different computing nodes and

they need to access the same regions of one or multiple memory nodes. This situation

is simply illustrated on figure 4-2, where two computing nodes have attached multiple

sections from different memory nodes and mapped them to local HPA ranges. The GSO

needs to uniquely enumerate all resources available across the system to be able to setup

the interconnect paths accordingly. As introduced in Section 2.3, for this purpose we
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Figure 4-1: Virtualization framework components

adopted the Uniform Physical Address space (UPA) concept, describing each physical

range of each system node.

Figure 4-2: Sharing disaggregated memory

For the user space processes of the computing node, the attached memory ranges can be

subsequently mapped to Host Virtual Address space (HVA). But the most important is

that these ranges are also translated to Guest Physical Address space (GPA) of a given

VM, and further to Guest Virtual Address space (GVA) of a guest kernel or guest user

space processes. In this way, chunks of disaggregated memory are exposed as guest
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RAM.

In figure 4-2, range UPA7 is attached to ranges UPA2 and UPA3 of computing nodes 1

and 3, respectively. Subsequently, it is accessed by multiple VMs. Note that there could

be more than 2 attached ranges and computing nodes. This is a simplified concept of

disaggregated memory sharing and a careful reader will quickly realize that additional

aspects have to be considered:

• Which component decides which ranges can be shared?

• How is the sharing established?

• How can the accesses be synchronized?

• How big can these ranges be?

These questions and a few other related questions are discussed in the following where

we present the API of a library executed at the host user-space level and used by VM

processes. However the guest is also equipped with its own paravirtualized version,

such that guest workloads are using exactly the same APIs and the corresponding

computations are conducted at the host side, with respective addresses translation along

the way. For further reasoning, we assume that a VM has a way to derive an UPA

address from the HPA it is passed (specific to a given computing node) and conversely.

Shared memory initialization

Similarly to well know approaches (like POSIX shared memory), in the proposed design

we assume that a memory range is shared between a group of VMs and that one group

is associated to one shared range, indicated by the owner. The latter, one per group, is

a VM that invokes the initialization routine:

shmem_init(upa_addr_buff, size) -> shm_id

shmem_init takes two arguments, completely describing a contiguous range: a pointer

to the buffer (upa_addr_buf) containing the UPA range address and a size of the

range. The request is received at the GSO side, which registers a range as shareable

and returns the sharing group identifier shm_id back to the caller. This identifier is

globally unique and has to be used by other VMs wishing to join the group.
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Additionally, we envision that, instead of turning already possessed memory into shared

memory, a VM may wish to obtain a new region to be shared. In this case upa_addr_buff

is set to NULL by the caller and the GSO fills it after selecting and attaching new

resources to a given computing node. Together with the shm_id, this address is a

second information passed back to a VM. It allows to correctly map the shared region

to the guest. This situation is actually very close to what happens after joining a sharing

group, as described in the next paragraph, with the difference that the VM becomes the

group owner automatically.

Joining memory sharing group

In order to use a range of memory shared by the owner, an accessor sends a request to

the GSO by calling the shmem_join routine:

shmem_join(shm_id, upa_addr_buff, size_buff) -> result

The routine indicates which region is to be joined (specified by shm_id) as well as

it passes pointers to two buffers where the GSO writes the UPA address at which a

new section was attached (upa_addr_buff) and its size size_buff. The returned

result value indicates whether the values stored in these buffers are meaningful (on

success) or not. Given that, a VM can map the shared memory region to the guest. The

methods for the attachment of shared disaggregated memory are discussed in the next

sections.

Up to now we silently assumed that all accessors have a way to discover the proper

shm_id. By default it is generated by the GSO and returned to the owner when

a sharing group is initialized. This is the easiest way because the shm_id is then

guaranteed to be unique across the system. But of course, there is a need for an

independent signaling channel in order to pass the identifier to all accessors.

For example, all VMs that are expected to share memory could be connected by the

network and have their IP addresses coming from the same VLAN. It would then be quite

straightforward to design a protocol for an owner discovery and shm_id exchange.

Otherwise, if VMs cannot be interconnected, they must possess a piece of a priori

information in order to identify a sharing group. Still, we should avoid setting the
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shm_id to a fixed value, in the sense that a VM knows all possible ones at boot

time. To simply illustrate, all VMs running the same workload could be identified

by a workload_id, known to them at VM boot time. The owner could provide the

workload_id and an optional label string (both as additional API parameters) when

requesting for a shared region initialization. This would allow the GSO to associate

it with the newly generated shm_id. Then, the workload_id could be used by

accessors to discover all initialized shared memory groups (thus shm_ids) relevant

for a given application. Additionally, as a part of the discovery response, each shm_id

could be as well accompanied by a label (like “Input1”, “Output2” etc.), meaningful

for a given workload, so that a correct range can be easily figured out by the workload.

This kind of approach no longer requires the VMs to have an independent signaling

channel, at the cost of additional identifiers and, most importantly, of involving the

GSO in the shm_id discovery. The latter is a central component of the system, so

any additional processing load should be put on it carefully, otherwise it can affect the

system scalability.

Leaving and destroying shared memory

Symmetrically to shared range initialization and joining, two routines allow to leave

and destroy a shared memory region.

shmem_leave(shm_id)

is used by accessors to indicate the GSO that a mapping between a shared memory

region and a given computing node can be torn down. At the same time, it is up to the

VM to clean the corresponding mappings at the compute node side.

shmem_destroy(shm_id)

is invoked only by the shared region owner, to instruct the GSO to invalidate the

shm_id, which renders the region no longer shareable. What happens if there are

still accessors of the registered region is up to a particular implementation: the routine

could return a failure status, the region could be forcefully detached, the behavior

could depend on additional flags passed to the routine. . . Eventually, it is also up
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to a particular implementation to decide whether the owner should remain capable of

accessing the region as a regular memory or if the region should be detached afterwards.

For example, the first option could be used when the shared memory was created from

previously possessed RAM and the second option could be used when a new dedicated

range was obtained by the owner for sharing purpose. Other implementation choices

are possible.

Preventing data races

As with most resource sharing situations, concurrent accesses to the same range of

disaggregated memory must be serialized to avoid data corruption. In this work we do

not consider time windowed mechanisms where accesses are granted according some

predefined scheme because they are usually tuned for a specific use-case. Instead,

the presented approach fits better a generic data-center, which can host workloads

of different type at the same time. It is therefore assumed that the members of the

sharing group can perform accesses concurrently without any particular pattern. Like

in well known solutions based on mutexes or semaphores, we propose an access locking

mechanism based on a condition testing, performed atomically by the AU, introduced

before in the Section 4.2

Two routines are called by competing VMs wishing to access the shared memory:

shmem_lock(shm_id) -> result

shmem_unlock(shm_id) -> result

shmem_lock is invoked to obtain an exclusive access to a shared memory region. It

returns a code indicating whether the operation was successful or not. Symmetrically,

shmem_unlock releases the lock. Differently from mutexes or semaphores, the above

functions do not provide a generic locking mechanism to be used between different

computing nodes, they are purpose-specific because of the shm_id argument.

The routine invocations are received by the AU module. There are several candidate

locations for the AU module:

• As a part of the GSO — this may be the first intuitive idea as the GSO, at the heart

of the system, is already involved in establishing the interconnect paths between
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computing and memory nodes as well as it is connected to all system nodes.

But the memory attachment or detachment is a relatively rare event, compared

to the number of shared accesses that require serialization. Therefore, involving

a central component of the system in the access rights alternation for all shared

memories is probably a bad design choice: it would create a bottleneck and limit

the system’s scalability.

• As a part of the owner VM — this assumes that during the shared region ini-

tialization (shmem_init), the owner starts a dedicated AU service receiving

lock requests and sending responses to a given sharing group. Provided that

all accessors are connected to the owner, like for the shm_id discovery, this

approach seems better than the previous one. It does not limit the system’s

scalability because the lock contention depends only on the number of members

of the sharing group, not on the total number of members of all sharing groups.

The main drawback is that handling a very high rate of incoming requests may

take over the execution time. Other tasks running on the same computing node

might be affected, including completely independent VMs (this kind of negative

phenomenon is called cross-VM interferences).

• At a memory node — this technique requires that, instead of an owner, each

memory node hosting at least one shared region runs the logic handling lock

requests, as presented on figure 4-3 (similar to figure 4-2). All memory nodes

with shared regions must be equipped with additional processing power. On the

other hand, this may be a solution for scenarios where an owner and accessors

VMs cannot be interconnected by an independent channel (like for shm_id

discovery). When an accessor is joining a sharing group it must map the AU

interface registers, together with the disaggregated memory ranges, and in the

same manner. Moreover, since this is an external device, a corresponding inter-

rupt must also be routed to the computing node and subsequently to the proper

VM. We assume here that requesting a lock (that is, writing to a device register) is

an atomic operation done by a VM, which is afterwards notified by the interrupt

when exclusive access rights are granted.
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Figure 4-3: Mapping a disaggregated arbitration unit located at a memory node

Regardless of the method employed to obtain a lock, a general rule of thumb is that a

shared memory region can be accessed only with a lock held. There are optimization

techniques that can be build on top of this. For example, multiple read-only accesses

could be allowed when no writing is performed at the same time.

The requirement of holding a lock is very often only a programming convention, which

means that a careless user is still capable of accessing the shared memory without it,

with data being possibly corrupted in an unpredictable way. Fortunately, the presented

architecture allows to implement a lock-enforcement mechanism, for example as a 1-bit

flag associated to the page address mapping. This flag could be set or unset by internal

code of the shmem_lock and shmem_unlock routines, respectively, in order to

allow an access only when the lock is granted. The enforcement could be implemented

at the level of UPA–HPA translation, by a proper logic (which presence is presumed but

not discussed here). Then, even inadvertent accesses performed from the host would

be filtered. Alternatively, the lock-enforcement could be performed at higher level, by

a VM process, with the flag embedded in the GPA–HPA mappings, traversed by the

Memory Management Unit (MMU). Moving the mechanism to GVA–GPA translation

tables makes less sense as these are managed by the guest OS and it is usually preferable

to keep it as generic as possible.
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Finally, this lock-enforcement provides an explicit protection against data races but at

the cost of changing the flag for multiple entries (one per memory page by default)

at each locking and unlocking operation (which may be very often). The number of

modifications could be minimized if one flag would describe a contiguous block of the

size of a minimal shareable region, and covering multiple subsequent pages instead of

one. Nevertheless, most recently resolved page address translations are cached because

they will be likely used again in a close future so the cached values can be reused.

For example, inside a MMU, this is usually done using a Translation Lookaside Buffer

(TLB). The additional cost of the lock-enforcement mechanism is related to the fact

that, when a given translation map entry has one of its flags modified, its previously

cached version has to be invalidated. The benefit of caching is lost in this case, which

can significantly degrade the system’s performance. For all these reasons the frequently

preferred way consists in only using the locking as a programming convention.

Size of a shared region

Up to now we presented a simplified view where the whole section of disaggregated

memory, attached to computing nodes, is shared (figures 4-2 and 4-3). But this is a very

unlikely scenario because shared regions are typically smaller.

It is possible that only a subrange of a section could be mapped to the GVA of an

accessor VM process, but the whole slot of a memory section would be occupied

anyway. It means that the non-mapped part of the address space would be wasted, first

at a computing node level (HPA) and then at a VM level (GPA) too. The reason is that

both physical (HPA) and guest-physical (GPA) RAM is managed at section granularity.

Moreover, it would be the guest OS responsibility to let the requesting workload access

only the specific shareable subrange of the whole section. That is, again, because mem-

ory resize operates on a section granularity, the OS cannot attach only a fraction of the

section. An access filtering in the guest introduces additional guest OS customizations

(which should be avoided as much as possible) as well as it creates a risk that, in case of

an exploited vulnerability, the workload could potentially gain an unauthorized access

to a larger part of the shareable section than what is actually permitted. Since the

whole section is attached anyway, it could stealthily reach the remote resources used,
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for example, by different sharing group of VMs.

Furthermore, each computing node can run multiple VMs with multiple sections from a

disaggregated pool attached as regular guest RAM. Each VM may also want to access

multiple shared regions of disaggregated memory and, in the worst-case, each one could

imply attaching another separate section to the node. If this is the case, there is a

possibility that a large number of shared regions (coming from different disaggregated

memory sections) could prevent a section of regular RAM to be attached. This is

because, in practice, the amount of supported memory slots (GMk on the figure 4-1)

is limited by many assumptions existing in the operating system code. This means that

a new VM could not be scheduled on the computing node, while several slots with

shared memory regions are only partially used effectively. Therefore, a certain fraction

of occupied memory slots would be wasted in this case.

In order to improve the utilization level of occupied HPA (and then GPA) ranges, we

propose an additional way of attaching shared memory regions. For the purpose of

this discussion, the RAM sections, both at HPA and GPA level, will be referred to as

regular regions. In addition, the term “dedicated regions” is introduced to indicate

smaller ranges to which a shared disaggregated memory is attached.

We propose an approach where a disaggregated shared memory is attached at the CPU

node level (HPA) through either regular or dedicated slots, but, at the VM level (GPA),

is only mapped to dedicated slots (except for the very specific case of the whole mem-

ory section being shareable, which will not be further discussed). Both regular and

dedicated attachments are shown on figure 4-4 which depicts only the crucial changes

from the already presented design.

In addition to non-shared RAM, mapped to regular slots, each computing node has

also a reserved pool of dedicated slots of different sizes, meant to be used as a primary

choice for attaching shared regions, as shown on figure 4-4a. Alternatively, if for any

reason a dedicated slot of a desired size is not available on a computing node, a regular

one can be used as a fallback solution, as depicted on figure 4-4b. However, the guest

OS stays oblivious to that because, at VM level, the shared subregion would be still

mapped to a dedicated slot. Thanks to this the access control logic is implemented in

the VM code and at the HPA to UPA translation level. In both cases, there are also slots
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(a) Dedicated slots at both CPU node and guest

(b) Dedicated slot at CPU node not available

Figure 4-4: Disaggregated shared memory attachment
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for AUs mappings, used as described before for the synchronization of the accesses to

both dedicated and regular shared memory regions.

We propose that the dedicated pool has several groups of slots of different sizes reserved

in the physical memory layout of the computing node, with each group containing

multiple slots of the same size. Group sizes should span a spectrum from a few kilobytes

up to a major fraction of a memory section size (for example 75% of it). Larger shared

regions would then use the approach of figure 4-4b. Up to author’s best knowledge,

there is no straight-forward formula, specifying how many slots of each size should be

available for an optimal system performance. It depends on the total amount of memory

supported and the demand for shared regions (thus, on the memory profile of deployed

workloads). Therefore, we suggest that during the system calibration process related

heuristics should be figured out, that make the system working fine. Building such a

statistic memory model is out of scope this work and probably a complete research topic

by itself.

Similarly, each VM should have a corresponding pool of reserved ranges of the exact

same sizes but of lower quantity per each group because the pool of a computing node

is supposed to be shared between all hosted VMs. There is only one VM on figure 4-4

but a computing node would typically run multiple ones. A VM would attach dedicated

regions to the guest OS as memory-like devices at startup or dynamically at runtime, as

if a device was plugged-in.

Referring to figure 4-1, a dedicated slot is attached on demand to a computing node by

the GSO when the GM_drv of an accessor VM requests to join a sharing group (by

calling shmem_join). Once received by the GM_if, the request is then passed to the

GM_mgr component of the host, which is responsible for obtaining shared resources

from the GSO and mapping them to the VM process (VM_state). On top of that the

VM builds the regular or dedicated memory regions and exposes them to the guest.

As already mentioned, in order to share disaggregated memory regions, the dedicated

slots of a computing node are preferable. The regular slots should only be used for

shared memory as a fallback solution because they increase the amount of wasted HPA

ranges. It is important that the slot selection is performed by the GM_mgr logic and

that it is transparent to the guest OS, otherwise wrong configuration of one VM (for
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example enforcing regular slots for all shared memory regions) could potentially affect

the consolidation level of a given computing node.

As a matter of fact, different computing nodes might use dedicated host slots of different

sizes (depending on the slots’ availability at each node) in order to map the same shared

range of disaggregated memory.

Additionally, multiple VMs hosted on the same computing node and participating to

the same sharing group will use the same dedicated slot to access a given shared region

(figure 4-5). Therefore, such a slot will not be released as long as there is at least one

active user of it. The same applies when a shared memory is attached to the computing

node as a regular section, as on figure 4-4b. The main rationale is to minimize the

amount of HPA ranges that are occupied but not effectively used. In this particu-

lar case they could be shared with standard mechanisms oblivious to disaggregation

(for example IVSHMEM [12]), however this would be incompatible with the assumed

locking mechanism. Additionally, the GSO, if unaware of the established sharing, could

decide to migrate either of participating VMs to another computing node without proper

memory remapping, which would break its workload execution.

Figure 4-5: VMs of the same sharing group reusing dedicated slots

Initialization with existing data

Mapping of dedicated shared regions is always created on demand and it can be ini-

tialized by the owner (as mentioned at the beginning of in Section 4.5) with data from

a non-shared guest RAM, that is a regular slot. For this purpose, the address of an
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existing data buffer can be stored in the buffer passed to the shmem_init function, to

request the GSO for a new dedicated region initialization.

This case is illustrated by figure 4-6. When a subrange of a regular guest RAM is about

to be shared, it will be remapped at the interconnect level to a dedicated shared region

of the same computing node but no data needs to be copied. An important step is that

Figure 4-6: Dedicated slot initialization from an existing RAM

the previously used mapping is marked as unavailable. It should not be completely

erased, however, as the region can be turned back to a non-shared one at a further

stage of execution, but the point is that a shared disaggregated memory region can only

be accessed through pointers obtained through the shmem_init or shmem_join

routines. Only these pointers are compatible with the locking mechanism described

above and guarantee correct data access serialization.

In other cases where no regular RAM range is indicated at shared region initialization,

a dedicated region will be mapped to a newly allocated range coming from any memory

node, selected by the GSO.

4.7 VM migration

As mentioned in the Section 4.3, the term of VM migration became ambiguous in the

disaggregation context, as there can be distinguished VM_state migration and VM_payload
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migration. The figure 4-1 presents the difference between those two in terms of system

components involved, while this section is focused on an actual data location and dis-

cusses how both types of migration are moving the data and reconfigure the interconnect

accordingly.

(a) VM state migration

(b) VM memory migration

Figure 4-7: Two meanings of a disaggregated VM migration

VM state migration

Migrating the VM_state means moving the part of the VM’s memory footprint re-

siding in the local RAM to another computing node. The migrated data describe the

current state of the CPU, device registers, list of devices configured in a pass-through

mode (physical devices used directly by guest drivers) as well as links to buffers from
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disaggregated memory that are building up the guest physical RAM. . . Therefore, the

VM_state can be seen as a set of guest metadata describing the current state of its

execution environment.

The VM_state migration process is conducted by cooperation between the outgoing

VM, the Global System Orchestrator (GSO) and the incoming VM as illustrated on

figure 4-7a.

1. The GSO makes a decision that the outgoing VM will be migrated, for example,

in order to release its current outgoing computing node and eventually power it

down.

2. Using the MON_if interface, the GSO fetches the parameters of the outgoing

VM and, with the help of the GM_mgr interface, detects the UPA1 and UPA2

ranges that are linked to respective disaggregated memory sections. By looking

up the current configuration of the interconnect, from the UPA1 and UPA2, the

GSO derives the UPA6 and UPA7 ranges, that need to be attached to the incoming

VM.

3. Based on the obtained parameters, the GSO selects an incoming computing node

that is capable of attaching UPA6 and UPA7 as well as meeting other require-

ments of the outgoing VM.

4. The GSO triggers the incoming computing node to spawn a new VM process but

in the incoming mode, that is, it will be initialized and waiting for the outgoing

VM’s state to be provided. At this point, it is important that the GSO obtains

a handle (for example an IP address and port) at which the outgoing VM is

waiting. Also, with the help of the GM_mgr of the incoming computing node, it

discovers the UPA3 and UPA4 ranges which need to be linked to proper sections

of disaggregated memory.

5. The GSO modifies the interconnect configuration in order to connect the UPA6

and UPA7 ranges to UPA4 and UPA3, respectively. For a short duration the UPA6

and UPA7 ranges are attached by two computing nodes but the incoming VM is

not executing yet so this is harmless.
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6. The GSO passes the address of the awaiting incoming VM to the outgoing one,

using the MON_if. Upon reception acknowledgment, the GSO is sure that the

outgoing VM stopped its execution and started sending the snapshot of its state

to the incoming VM. The GSO can then safely tear down the connections of the

UPA1 — UPA6 and UPA2 — UPA7 pairs. This is the last step performed by the

GSO.

7. The transfer of the VM_state is performed directly between the outgoing and

incoming VMs. Once this is done, the outgoing VM process terminates and the

incoming one resumes the guest execution stopped before the migration.

Thanks to the fact that all guest memory comes from the disaggregated pool, only

interconnect paths between a VM and respective memory buffers (including the shared

ones) need to be updated during VM_state migration, instead of performing an actual

VM_payload transfer. Only the guest metadata, which volume is typically quite

small, are copied between outgoing and incoming computing nodes, so the operation

should take very short time. Another important point is the minimal GSO involvement.

Its mediation is indispensable at the operation setup phase but eventually, the copying

itself is done between two computing nodes, independently from the central module of

the system. Otherwise this could be a scalability bottleneck.

An alternative approach would be to migrate the VM_state between two computing

nodes over a temporarily established shared memory. Again, this removes the necessity

of having the nodes connected, but on the other hand, the GSO will have to perform

additional steps (setting the shared memory before migration and tearing it down after-

wards).

VM payload migration

As illustrated on figure 4-7b, VM_payload migration is defined as copying the part

of a VM’s memory footprint residing in a disaggregated memory pool. We assume that

the transfer is performed from one outgoing memory node, selected to be unloaded,

to one or multiple incoming ones, which will take over migrated data of the guest.

The operation is performed by the remote direct memory access (RDMA) engine, a
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(a) (b) (c)

Figure 4-8: Interconnect reconfiguration steps

hardware component located at the outgoing memory node, optimized for rapid memory

transfers between two memory nodes. The rationale here is that the main purpose of

VM_payloadmigration is global data defragmentation, where a specific memory node

(the outgoing one) is selected to be powered-down, provided that few remaining regions

still in use could be migrated to other memory nodes. This way, it makes more sense

to always program a RDMA engine of the outgoing node, instead of one or multiple

engines of incoming nodes, which would be an alternative approach.

The VM_payload migration is conducted in the following steps (using the examples

from figures 4-7 and 4-8):

1. The GSO makes a decision that the UPA6 and UPA7 ranges should be migrated

to other memory nodes, for example as part of a periodic defragmentation task.

At the beginning, the configuration of the interconnect paths looks like shown on

figure 4-8a.

2. The GSO looks up its internal database to discover one or multiple VMs using

these ranges as well as the UPA1 and UPA2 that they are connected with.

3. The GSO reserves ranges UPA8 and UPA9 at other memory nodes, capable of

receiving the migrated data.

4. Through the GSO_if interface, the GSO stops the execution of a VM (one or

multiple), which data are about to be migrated, and establishes proper connec-

tivity between outgoing and incoming memory ranges, as shown on figure 4-8b.

After that, the GSO programs the RDMA engine of an outgoing memory node

and triggers the data transfer.
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5. Once the data migration is done, the GSO modifies the interconnect for the second

time, as shown on figure 4-8c, so that a VM is again capable of accessing its data.

6. Finally, the VM’s execution is resumed.

In the presented situation, the amount of data to be transfered will be typically much

bigger than in the VM_state migration case, for example a typical VM can use dozens

of gigabytes or RAM, although not necessarily all of them would come from the same

memory node. An important aspect is that the operation is performed directly between

two memory nodes and no computing node is actually involved in it, except for a VM

being temporarily stopped. Additionally, an RDMA engine handling the transfer can

read the locally available data (at the outgoing memory node it is part of) and write them

to UPA ranges corresponding to the incoming memory node. This does not require any

intermediate data copying, which would otherwise have a significant performance cost.

The presented approach is a simple one, in which the guest execution is stopped for the

time of the operation (stop-migrate-resume) in order not to break guest data coherency.

In this case, the VM payload migration boils down to properly managing the mapping

of UPA ranges and transferring data but the virtualization layer remains unmodified.

Enhanced approaches could potentially employ various live VM migration techniques

(for example live checkpointing, pre-copy or post-copy migration [24, 25, 29, 41]),

adapted for a disaggregated system, in order to reduce the downtime perceived by the

guest.

With regard to memory sharing, if a migrated VM_payload contains a shared range,

then all affected VMs have to be stopped during the migration until the interconnect is

properly updated (this is subject to the same caveat as live migration techniques).

4.8 Chapter conclusion

In this chapter we expanded the design of flexible guest memory provisioning in order

to provide the support for inter-VM memory sharing and VM migration. We proposed

the interaction interface allowing to share a region of disaggregated memory between

different VMs. Moreover, we discussed the subjects of memory or CPU migration and

how it can support server consolidation efforts. In Chapter 5 we will change the focus
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and move to the problem of configuring disaggregated devices in a direct attachment

mode.
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Chapter 5

Disaggregated peripherals attachment

5.1 Chapter introduction

In order to satisfy the requirements of workloads executed in a virtualized environment,

in addition to memory provisioning that we broadly discussed in Chapter 3 and Chap-

ter 4, another crucial aspect is related to the sharing of the various devices available

across the system. In case of conventional server architectures, a very popular way of

providing a device to a Virtual Machine (VM) is the passthrough method, which gives

a VM an exclusive control over a device with no intermediate software emulation. This

allows the guest device driver to access the device registers directly with near-native

performance.

As mentioned in Section1.5 the architecture disaggregation has many advantages in

general. It allows to increase the resource utilization factor, improves the resource bal-

ancing flexibility and potentially decreases the system operational costs. However, the

passthrough technique cannot be implemented in its traditional form on a disaggregated

system, as will be explained in Section . Therefore, it is highly desirable to adapt the

technique so that the architectural switch to disaggregation does not imply an inferior

performance of devices virtualization.

We propose a method and associated components necessary to re-enable the passthrough

technique on a disaggregated architecture. Thanks to that, a guest device driver code,

running on a computing node, is capable of accessing the device registers directly as

well as the device can directly access the guest’s RAM located on a remote memory
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node. This constitutes the third main contribution of this dissertation.

5.2 Device emulation and direct attachment

A direct attachment, also known as device passthrough, is a device virtualization tech-

nique. In its principle, a dedicated passthrough driver, upon a VM request, maps the

registers of a device (that is ranges of Host Physical Address space (HPA)), to the

Guest Physical Address space (GPA). Thanks to that, the guest’s device driver can read

and write them directly, without any further host mediation, as illustrated on the right

side of figure 5-1.

Otherwise (left side of the figure), a VM must emulate the device in software and serve

as an intermediate layer between a guest device driver and a host device driver. This

introduces additional performance overhead because it involves traps to the hypervisor,

execution of emulation code and it may require data copying between guest and host.

Figure 5-1: Direct attachment compared to device emulation

One downside of the device passthrough method is that a device can be attached to only

one guest at a given time. Nevertheless, with hardware-provided device multiplexing,

like the PCIe SR-IOV mentioned in Section2.5, the problem is well mitigated. An

SR-IOV device can be efficiently shared between multiple guests, almost as if several

separate devices were available.
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Limitations in the context of disaggregation

The direct device attachment cannot be used for disaggregated peripherals in a straight-

forward way: switching to a disaggregated architecture changes fundamental assump-

tions underlying this method, as depicted on figure 5-2.

Figure 5-2: Standard passthrough not possible on disaggregated system

1. The device is physically attached to a remote device node and therefore its regis-

ters are mapped to a different HPA than the one visible by the passthrough driver.

2. A device may wish to perform direct accesses to the guest’s memory, while it is

located on yet another node (this is not shown on the figure for simplicity).

In order to workaround these limitations and enable direct device attachment on a

disaggregated architecture, the driver must cooperate with other system components.

Specifically it needs their help to setup proper connectivity between the involved system

nodes and create proper address mappings.

Disaggregation challenges

The first requirement of a design proposal is the fact that disaggregation should stay

transparent to a guest device driver. Indeed, ideally, the same driver should be used both
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on disaggregated and clustered systems. It is also the same driver that would be used

on the host with a device attached locally. Because of this requirement, all necessary

modifications are performed by the VM, the passthrough driver and the Global Sys-

tem Orchestrator (GSO). The guest remains oblivious to that.

In order to specify further design requirements we first analyze the behavior of a generic

(without specify any particular type of a device) guest device driver. Since it should

remain unchanged, the analysis indicates functionalities expected from other system

components.

Assuming that a device is successfully configured in the passthrough mode, the princi-

ple of operation of the driver is the following:

1. A user-space workload requests the driver to launch a device operation; the work-

load also indicates the type of operation and GVA pointers to input and output

data buffers.

2. The driver translates the addresses of the buffers from GVA to GPA because only

these are valid for a device’s DMA engine.

3. Input data is written to the proper device registers, also mapped to the proper

ranges of the GPA, and this schedules the device processing.

4. Once the processing completes, the driver receives an interrupt, at which point

output data is available in the previously indicated output buffer.

This short overview already reveals the following challenges:

Ch.1 The device control registers are mapped to the HPA range of the device node,

not to the HPA range of the computing node. Therefore, the latter must reserve a

corresponding range locally and connect it with the former.

Ch.2 All the guest RAM comes from a memory node, which ranges are linked with

respective ranges of the computing node, as explained in Chapter 3. The GPA

addresses generated by the guest driver are mapped to HPA addresses of the

computing node, which allows to reach the correct HPA addresses of the memory

node. In order to allow the DMA engine to access the same guest RAM, there
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must be similar ranges allocated at the device node and linked with the same

destination HPA ranges of the memory node.

Ch.3 The peripheral is not the only component in the device node, there are three

complementary components:

• an actual device processing unit (PU), which performs the computation,

• a DMA engine, used to fetch input data from guest’s memory and to store

output data to guest’s memory — all this is done by hardware and does not

require any action from the CPU,

• an Input-output memory management unit (IOMMU), processing all mem-

ory accesses performed by the DMA engine. Addresses emitted by the

DMA engine are translated before reaching the memory buffers. The trans-

lation maps must be programmed beforehand by the device driver, otherwise

the accesses are not allowed. Therefore, this unit serves both for mapping

purpose and to prevent the device from accessing memory regions it is not

authorized to access.

The first two pieces of hardware are commodity components and may be im-

plemented as one single or two different units. The third one is specific to the

disaggregated architecture and therefore presented as a separate system mod-

ule. Since the DMA engine operates on GPA addresses generated by the guest

driver, it is therefore the role of the IOMMU to translate these addresses to UPA

addresses of the device node, which are linked with respective ranges on the

memory node. Guest-specific address translation maps have to be properly build

during the device attachment process.

Ch.4 The communication between a guest driver and the device is based on the former

reading and writing device registers and the latter sending interrupts. An interrupt

is usually received in the host by the Interrupt Controller (IC), a piece of hardware

supporting an operating system in proper interrupt servicing. For example, if an

interrupt controller supports virtualization, a hardware interrupt may be directly

dispatched to the guest, with no return to hypervisor. Since a device is attached
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to a different system node, it has no way to plug its interrupt line to the IC, as it is

expected. Therefore, an additional interrupt routing is needed so that the IC of a

computing node can receive interrupts originated at remote peripherals, as if they

were attached locally.

The management of the interconnect paths, the selection of the corresponding Uni-

form Physical Address space (UPA) ranges and the establishment of the corresponding

IOMMU translation maps are beyond the capability of the guest device driver or of a

single VM. Thus, a disaggregated device attachment and detachment must be performed

in cooperation with the GSO, as presented below.

5.3 Disaggregated passthrough design

The following part of this chapter is the core of a novel design enabling the passthrough

attachment on a disaggregated system. The design is part of the patent application

prepared by us and filed in November 2018. Therefore this is a confidential part of the

dissertation and was moved to Appendix A

5.4 Chapter conclusion

In this chapter we explained why the passthrough method cannot be used on a disaggre-

gated system in its default shape. Moreover, in Appendix A we proposed how to adapt

the passthrough method in order to remove such limitation. That was the last chapter

providing core contributions of this work. In the following, Chapter 6 evaluates the

prototype of a design described in Chapter 3 and Chapter 7 concludes this dissertation.
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Chapter 6

Implementation and evaluation

This chapter presents a prototype implementation of a system based on the architecture

presented in the previous chapters. It provides a preliminary performance evaluation, in

the sense that a real disaggregated system was not yet available at the time of gathering

performance numbers. The best possible solution was to emulate such a system. Thus,

its scale is not the same; there are only a few gigabytes of memory available, instead of

terabytes. Additionally, it was not possible to observe potential throughput or latency

overheads introduced by a real communication network between disaggregated system

nodes. Despite its limitations, the presented prototype allows to assess the functional

correctness and the technical feasibility of the proposed software architecture. It also

allows to investigate the performance overheads related to the various software tasks of

our architecture.

6.1 Memory provisioning

The prototype targets the memory provisioning and the flexible guest RAM resize

introduced in chapter 3. Relevant system components are illustrated on figure 6-1.

The work was conducted within the dReDBox project, which target platform was ARMv8

[56]. Nevertheless, except for some parts of the memory hot-plug functionality of the

guest kernel, the rest of the implementation is platform-agnostic. The prototype is

based on open-source software: the Linux kernel running both as host and guest OS

and QEMU being the host user-space process that communicates with the KVM Linux
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Figure 6-1: System prototype components

driver in the host and handles VM emulation.

The runtime adjustment of the guest RAM is enabled without relying on the ACPI

standard [9] support. Indeed, some operating systems on some platforms do not support

the ACPI standard at all [2], or the support may rely on a closed-source proprietary

firmware. The latter was intentionally avoided in the context of the dReDBox project as

well as also to guarantee a broader scope of the research outcomes.

Instead, in the presented implementation, the interaction between a guest and an un-

derlying VM is handled in a paravirtualized manner. Paravirtualization is a technique

especially popular for guest device drivers, where the driver is split in two parts. The

front-end is installed in the guest and exposes an API expected by a client workload.

However, all the processing is delegated to the back-end, installed in the host, that

eventually performs the intended task, for example, operating the underlying hardware.

An example implementation is the VirtIO [50] framework using a memory region shared

between the host and the guest as a communication medium.

KVM is the Linux kernel module that enables virtualization features by reusing the

infrastructure already present inside the kernel and turning it into a hypervisor. As a

driver, KVM exposes only the minimum required functionalities. It needs a comple-

mentary user-space client providing a virtual machine emulation to form a full-featured

virtualization framework capable of launching guest operating systems.

The user space component is QEMU. QEMU provides an access to various platform
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hardware (for example disk storage, network interface card). It also initializes memory

buffers which, from the guest’s perspective, are perceived as physical RAM. As a matter

of fact, QEMU is perhaps the most popular and feature-rich KVM client but it is not

the only one. For example, kvmtool has a much smaller code base and is often used by

KVM developers for testing purposes [13]. Another similar piece of software is crosvm,

used to run Linux virtual machines on Chrome OS [11].

QEMU interacts with KVM through the ioctl() system calls and the information

passing between the guest OS and QEMU is based on emulated virtual devices exposed

to the guest as GPA ranges.

Implementation details

The QEMU process (VM_state) runs in the host local memory and only the resources

allocated for a VM_payload are mapped to isolated memory chunks, as described

in section 3.2. This mapping is performed by the GM_mgr host driver that, based on

information from the device-tree structure, initializes subsequent GMk (k ∈ [1, 2, . . . n])

GPA ranges as a custom flavor of reserved memory (in Linux kernel parlance). These

GMk GPA ranges are not passed to the system memory allocator (the buddy allocator in

Linux). This effectively provides memory isolation since the access can be granted only

by the GM_mgr driver. For the purpose of communication with user-space, the driver

exposes the GMk ranges as separate character devices, each one of guest memory section

size (512 MB for the prototype purpose). On QEMU side, the crucial modifications

developed for the system prototype are the following:

1. A reused custom backend, based on existing ones created for non-uniform mem-

ory access (NUMA) abstraction. The backend allows to construct resizeable

guest memory out of preallocated buffers instead of obtaining it from the host

memory allocator (the default behavior). Instances of the backend (Backend_k)

acquire resources from GM_mgr, which maps GM_k ranges to the virtual address

space of a given VM process.

2. A new command in the QEMU monitor that allows to ask for guest memory

resize. The monitor is a VM service exposing an interface (MON_if) typically
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used for VM diagnostics and orchestration by external tools (Monitor, for

example libvirt [5]).

3. A modification of the control register of a virtio-balloon emulated device,

necessary for communication with the respective driver at guest side. This is

a device implementing the memory ballooning technique on top of the Virtio

framework and providing a communication mechanism based on unidirectional

queues located in the memory shared between the host and the guest. The memory

ballooning mechanism is not used but it was just convenient to reuse an existing

virtual device and its driver for the paravirtualized communication.

4. A custom state-machine that takes care of guest-to-host (GM_if to GM_drv)

event signaling and correct data transfer, also placed within the virtio-balloon

implementation.

Additionally, on the guest kernel side, the virtio-balloon driver was properly

modified (GM_drv), correspondingly to the device part described above.

Linux memory hot-plug patch

As a crucial component of the system, the missing parts of the memory hot-plug func-

tionality in the Linux kernel were developed. A generic hot-add/-remove framework

had been already present in the Linux kernel but the support for the ARMv8 platform-

specific steps was missing. This part of the work has been published to the Linux

community in the form of code patches [14]. Initially, we only implemented the hot-add

part, then another version of the patch included also the hot-remove functionality and

this one was released once again, with additional fixes included. Our contributions

received some comments from the community as well as we few industry partners

expressed their interest in the status of this feature. This proofs that our work has a

good chance to be merged into upstream version of the kernel in the future. However,

for now it is not and there are two main reasons for that. Firstly, the patch is a research

work and it is still not perfect. The hot-remove crashes occasionally on some boards

and it is not trivial to find the reason why. Secondly, the kernel maintainers do not

seem to be strongly motivated to accept this patch because there are no well-known
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contributors (or industry partners) behind it, who claim that they really need the feature

and will maintain it in the future. The Linux kernel development is typically driven

by demand from the industry in order to limit the growth rate of the (already huge)

codebase volume.

Testbed configuration

The prototype implementation of the presented architecture has been tested on the Xilinx

Ultrascale+ MPSoC ZCU 102 (rev. 1.0) board, equipped with 4 Cortex-A53 ARM cores

and hosting 4 GB of external memory [10]. The host OS was based on a manufacturer’s

fork of the Linux kernel (version xilinx-v2016.4), QEMU on upstream version stable-2.5

and the guest Linux kernel on upstream version v4.14-rc8.

The device-tree used by the host OS was modified in order to split the available RAM

in two parts: 2 GB backing up the local memory and 2 GB serving as isolated backends.

The system was configured so that the size of the guest memory sections is 512 MB.

For example, when a VM is started with only one section, it can be scaled up to 2 GB

in 3 steps of one added section each.

Memory resize latency

Stage Min [us] Max [us] Median [us]

Add

backend reservation 140690 147315 145794

page table build 89 62664 30254

section init 32349 38923 32472

pages onlining 64802 87691 80878

guest subtotal 97331 182258 142914

request-reply 113411 206678 167870

total 254541 353043 313403

Remove

pages offlining 57173 720117 127242

section clean-up 1868 10462 2489

page table destroy 30049 33135 30206

guest subtotal 89551 756366 160055

request-reply 101252 806490 197394

backend release 122196 127283 126329

total 224368 933459 323071

Table 6.1: Latencies of memory resize steps

113



In order to investigate the resize request path, a VM was started and orchestrated

through the QEMU monitor by a simple script. Initially launched with 512 MB of

RAM, the VM was scaled up to 2 GB in 3 steps (512 MB each), then scaled down in 3

other steps to return to the initial configuration. After each step the script was waiting

a few seconds before triggering the next resize. There were 40 rounds conducted of 6

such steps each. Multiple time samples were collected from both QEMU and the guest

kernel side. Subsequently the samples were processed to obtain the statistics presented

in table 6.1. The table shows the delays contributed by each resize stage. It is split in

two parts: the scale-up (upper half) and the scale-down (lower half).

The resize request is always received first by QEMU, which triggers further steps and

receives an acknowledgment at the end (as depicted on figure 3-2). The total latency is

derived from these measurements. It consists of the backend reservation or the backend

release at host side, plus the request-reply latency perceived by QEMU, that is the

communication delay and the respective reconfiguration delay at guest OS side (guest

subtotal). The communication is based on accessing the device registers together with

handling the related interrupt and can be simply computed as:

communication_delay = request_reply − guest_subtotal

The order of execution is reflected within both Add and Remove sections of table 6.1.

For the scale-up, memory backends are reserved before the guest can use them. Sym-

metrically, for scale-down, QEMU has to request the guest OS to relinquish the memory

sections first, before the corresponding backends can be safely released. The signaling

overhead is larger in the scale-down case because of the additional interaction that is

necessary at the beginning to trigger the guest action first.

The guest subtotal values can be decomposed in three main steps, done symmetrically

for the Add and Remove part:

• Building or thrashing the page tables used by the Memory Management Unit

(MMU),

• Initialization and cleaning of the virtual memory map (so called vmemmap) data

structures,
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• Pages onlining or offlining, that stands for passing or withdrawing pages to/from

the system allocator and flushing the Translation Lookaside Buffer (TLB) entries

in the offlining case,

Several stages with a particularly high latency variance deserve more comments.

First, the page table building requires to fill the entries of the 4-fold-nested address

translation tables (this is the default configuration in the Linux kernel for ARMv8),

which tree-like structure is determined by the MMU. Each entry of a level-N table (that

is one memory page) corresponds to one table of level-(N+1). The level-1 table and

some lower level tables are allocated at boot time, but in order to increase the amount

of addressable memory, further pages may need to be allocated for lower levels. The

deeper the level is, the faster the corresponding table is populated and the more frequent

additional allocations are. Therefore, three subsequent allocations for one mapping may

account for the worst case latency and none of them for the best case.

Another large variance is observed in the case of the pages offlining stage, where pages

of a given section are reclaimed. The pages to be reclaimed may be owned by the

guest memory allocator or entailed on per-CPU lists of each CPU core (in Linux a

core is considered a separate CPU). The operation may not be successful at the first

attempt, especially in the second case. The operation is thus repeated on each core until

it is accomplished, otherwise the process cannot advance. Depending on how long the

system was running and on the allocations and deallocations performed by the different

cores, the number of pages of a given section owned by per-CPU lists ranges from 0 to

many and the introduced delay can also vary.

The section init and clean-up stages embody the virtual memory map (so called vmemmap)

management, that is instantiation and clean-up of struct page objects, respectively.

Although the delay introduced by the clean-up step is also variable in the removal case,

it does not significantly contribute to the overall latency.

In general, the execution time when adding the memory section is typically above

300ms, up to above 350ms in the worst case. Out of this, around 45–50% is spent in the

guest, 40–45% in QEMU and about 8% is consumed by the communication between

them. The biggest variability is related to the page table building stage. The median

execution time of section removal is 320ms, with QEMU accounting for about 40% of

115



it, guest for 50%, and more than 11% devoted to communication. But the dispersion

of this operation is much larger at the guest side: in the worst case it can take almost 5

times longer than the median value, mainly because of the page offlining latency. The

numbers in table 6.1 are derived statistically from the set of samples for each stage so

the above percentage values do not add up exactly to 100%.

It should be noted that these numbers do not consider the situation where some outgoing

pages of a section being hot-removed are still in use. In such cases, free pages from

other sections have to be found to substitute them and data must be copied. This can

further delay the offlining stage or, if substitution cannot be found, the whole operation

can be refused. This is a good example of how memory fragmentation can be harmful

and why it should be prevented.

Eventually, a crucial aspect is how much a guest workload would be affected by scale-

up and scale-down operations. At guest side one CPU core is involved in the whole

reconfiguration process. Other cores can still execute the workload in parallel. The

only exception is the offlining step, where all cores have to release their respective

pages from their per-CPU lists. Similarly, the workload does not have to be stopped

while QEMU is reserving or releasing backends. Therefore, the downtime perceived by

workloads can be partially mitigated, provided that it is capable to actually advance its

execution without additional memory resources.

SimpleDB use-case

As an example use-case of dynamic memory resizing we measured the performance of a

custom in-memory key-value database storing pairs of [domain name, TLS certificate]:

the SimpleDB example application. SimpleDB is compatible with the Redis API. This

allows to evaluate its performance with a standard Redis-benchmark program.

It is also possible to resize its internal cache using the Redis-CLI tool [16]. Our

benchmark issues 100K GET requests in total. Each request queries the certificate of a

key containing a randomly chosen 12-digit value in the [0, 200K[ range. To answer

a request the database primarily looks up its internal cache (of tunable size). If that

fails, it reaches out to disk to obtain the value from a file. Note that in order to reduce

the amount of I/O operations, the Linux kernel leverages on the aforementioned page
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(a) Server cache impact

(b) Page cache impact

Figure 6-2: Latency results from Redis-benchmark against the SimpleDB applica-
tion

cache. Therefore, there are 2 types of software caching: server-internal and the page

cache.

Figure 6-2a presents the request service latencies that were measured during the ex-

periments. For better readability only the part of the results exposing performance

differences is presented on the plot.

The configuration for the first benchmark presented on figure 6-2a (vm1G_cache_default)

is the following. At start, the server has been launched inside a VM with 1 GB of RAM

with the internal cache set to 100 MB. The mock database had been filled with 200K

generated certificates (each of size 4096 B). The page cache usage (observable with the

free command for example) was then occupying 280 MB. Subsequently, the guest’s

RAM has been extended up to 2 GB by hot-adding two memory sections. Then, the

server’s cache has been gradually increased in several steps (200 MB each). After each
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step the redis-benchmark has been launched. During this operation the page cache

occupancy did not change, which means that the server was able to increase its internal

cache by exploiting the memory attached at run-time and therefore still benefit from

the cached I/O operation results when necessary. The mean response time improved.

For example, the first configuration was able to serve 87% of requests in up to 7ms,

compared to 99% or more with bigger internal caches. Since the database was able to

store more data internally, it spared time required for, at least, context switches (if data

would be in page cache) or possibly disk I/O operations.

To better excercise the page cache impact, se performed another set of tests which

results are shown on figure 6-2b. As in the first experiment the server has initially

been launched in a VM equipped with 1 GB of RAM (vm1G_page_cache), but

then an auxiliary application has been used to allocate most (600 MB) of the memory

previously used for file caching (vm1G_NO_page_cache). For 90% of requests this

resulted in the mean response time growing from 7ms to 22ms, which is more than

3 times slower. Then, the guest RAM has been expanded to 2 GB and another run

(vm2G_page_cache) showed that the performance was very similar to the first setup

(slightly better perhaps because the auxiliary application did not destroy the initial page

cache completely and a small fraction did not have to be recovered again). On top of

that, for the last test, the server cache was enlarged from the default 100 MB to about

780 MB and the mean response rate improved even more.
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Chapter 7

Conclusion

This dissertation started with a presentation of system disaggregation and the rationales

behind it, especially relevant for the data-center sector. In this context the main part of

the work focuses on operating systems and virtualization enhancements. The proposed

solutions are related to provisioning of disaggregated memory and peripherals to guests

executed in VMs.

In Chapter 3, we described the design of a guest memory provisioning scheme enabling

flexible RAM resizing at runtime. The solution makes use of dedicated HPA ranges

isolated from the default memory allocator. Although the ranges are supposed to repre-

sent resources from remote memory nodes, the approach can be adapted on traditional

systems as well. In fact, it was the only possible way of evaluating the prototype

implementation, as presented in Chapter 6. The design allows to perform runtime

memory balancing on a section granularity, which simplifies management logic and

reduces memory fragmentation. The necessary communication between guest and host

components is realized in a paravirtualized manner and does not require any specific

software parts (for example it does not require the ACPI standard emulation). In this

way, it is not bound to any specific virtualization framework or the hardware platform

type.

On top of the memory provisioning scheme, Chapter 4 presented the concept of inter-

VM memory sharing adapted to a disaggregated system. By design, regions of memory

can be shared across the system in a zero-copy manner, regardless of an actual location

of involved VMs. The approach relies on a disaggregated system infrastructure and
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the Global System Orchestrator (GSO) to attach the memory to the host. On a VM

level, several ways to attach a shared region have been discussed together with the

serialization of concurrent accesses. Additionally, Chapter 4 explained why the VM

migration term gained a twofold meaning in a disaggregation context and how this can

open new opportunities for server consolidation.

Additionally to memory provisioning, Chapter 5 focused on devices disaggregation. It

showed why disaggregated devices cannot be directly attached to VMs as it is possible

on traditional architectures. Subsequently, we proposed an approach to compensate

this limitation and to configure devices in the passthrough mode with the help of the

GSO and the reconfigurable interconnect. Thanks to our scheme, a VM can operate the

device as if it was attached locally to the host as well as the device itself can access

regions of disaggregated guest memory using the GPA addresses. On top of that, the

attachment configuration can be updated so that the design is fully compatible with the

flexible guest memory provisioning presented in Chapter 3. Thanks to that, adopting the

architecture disaggregation does not forbid the passthrough-attachment, which would

otherwise be a great limitation.

Finally, Chapter 6 provided the evaluation of the resizeable guest memory prototype

implementation. It proved that the memory resizing framework adoption is feasible,

with respect to the operation overhead. The chapter also presented one use-case, rep-

resenting a group of workloads taking advantage of the in-memory storage. Thanks to

a flexible memory provisioning these workloads do not have to use secondary storage

(disk) or be migrated to a VM having more RAM. Instead, they can benefit from a

dynamic guest memory adjustment and continue execution without interruption.

Modifications performed at the hardware architecture level require corresponding adap-

tation of the software stack, including the virtualization support. Authors believe that

what makes this dissertation useful and interesting (also outside of the scientific com-

munity) is the way how the subject of virtualization layer adaptation was explored.

Presented concepts are discussed on a theoretical level but they are also strongly related
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to pieces of software widely used in industry (Linux kernel, QEMU). Compatibility

with industry-level solutions allowed to provide a design that is feasible to deploy. We

did our best to provide rationale behind various design choices as well as discuss alter-

natives. We managed to present a prototype implementation of flexible guest memory

provisioning and expand the design further to provide the support for memory sharing

and migration. With regards to devices provisioning we explained how a disaggregated

system can be designed in order not to compromise a popular technique, which is the

direct device attachment. Our concept requires both hardware and software components

but, except for that, we did not enforce any modifications at the level of guest operating

system or used devices.

Definitely, the weakest point of this work is the prototype evaluation part. Although

we hoped to do it, for the lack of a disaggregated hardware prototype at the time of

writing, we did not integrate the inter-VM memory sharing and VM migration features.

Thus, we were not able to get any performance numbers that would allow us to asses

the solution. Also the design of direct attachment of disaggregated devices was not

implemented however it was not meant to be for the time constraints.

7.1 Perspectives and future works

As presented in Chapter 1, disaggregation is definitely an interesting approach in de-

signing large scale systems. Together with solutions presented in this dissertation, its

wide adoption by providers will be possible if it lowers the TCO so that the cost of

investment is paid back in a reasonable time and generate a higher income than current

systems afterwards.

Except for that, the adoption depends also on the availability of alternative solutions

for challenges currently faced by providers. For example, there already exist Non-

volatile memory (NVM) devices that can offer latencies only less than an order of

magnitude higher than Dynamic random-access memory (DRAM) [23]. Assuming

that its performance may improve while the technology matures, NVM devices may

be used as a swap space, of an access latency few orders of magnitude smaller than a

disk. Comparing to disaggregation, installing a new type of memory devices does not
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affect the whole system architecture so heavily, which can be a very important decision

factor considered by providers. Other relevant factors are energy consumption of NVM

devices, their lifetime duration and finally the total investment cost.

As a future work, ideas presented in this work could be expanded in several ways.

Firstly, the section-based guest memory balancing scheme could be combined with the

page-based one. However, as discussed in Section 2.1 the range from which pages

would be selected should be limited in order not to increase the memory fragmentation.

Secondly, it could be better analyzed how to reserve resources that can be used to add

a section of memory when the system is already in the out-of-memory state. Switching

from the out-of-memory state in this way spare the necessity to swap pages to disk or

kill user space processes.

Further, the VM payload migration introduced in Section 4.3 could be integrated with

live migration techniques. The live migration techniques allow a VM to continue

execution while the data is being moved so that the operation is almost unnoticed from

the workload perspective (partial performance degradation for a short period of time is

typically accepted).

Finally, the whole design could be examined and enhanced from the security point of

view.

For example the inter-VM memory sharing mechanism, introduced in Section 4.2, could

be improved with the help of asymmetric cryptography. It is crucial that only authorized

VMs are able to join a shared region. Thus, instead of a shared region identifier, VMs

would obtain its ciphered version. In order to compute the deciphered identifier, a VM

would need a key, which could be handed only after a successful authorization.
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Appendix A

Disaggregated peripherals attachment

- confidential part
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This is a confidential part of Chapter 5. For the best presentation coherence it should

be moved to Section 5.3.

A.1 Disaggregated passthrough design

Design components

Figure A-1 presents a detailed architecture of the system capable of attaching disaggre-

gated peripherals in the passthrough mode.

The global addressing scheme is illustrated by the UPA axis on which all UPA ranges

can be cast as non-overlapping sections. An interconnect path is established by the

Global System Orchestrator (GSO) and expressed as a link between several pairs, which

means that an access to one side is directly forwarded to the other. For example, for

the purpose of device configuration, we assume that a guest has its memory already

attached, thus the connection between upa_c_ram and upa_m_ram is represented

as a solid line. Three newly established links are drawn using dashed lines. Finally, the

dotted connections represent the control network, that is a network between the GSO

and all system nodes, used to exchange configuration messages.

Internally, each system node is designed over its own Host Physical Address space

(HPA). However, because this addressing is ambiguous in the global perspective, each

range that can be accessed by other nodes is allotted with a unique UPA range. The

translation is performed by the piece of hardware called interconnect interface, separate

for each node, and respective translation maps are also programmed by the GSO, using

the control network.

On figure A-1 address ranges consist of three parts separated by underscore characters:

<ADDRESS-SPACE>_<NODE-TYPE>_<ROLE-NAME>

The first part specifies in which address space the range is allocated and the vertical

arrows between blocks express the mapping of a given range across multiple address

spaces. The second part specifies the type of system node the range refers to: “c”

stands for computing node, “a” for device node (the letter itself comes from the word

accelerator) and “m” for memory node. The last part of the name refers to a particular
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Figure A-1: Disaggregated passthrough — architecture design
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role of the range and serves for the purpose of easier description. For example the

upa_a_ram is an address range in UPA belonging to a device node and representing

guest RAM. The role of other ranges will be explained in the next section, together

with the attachment configuration. The lines between the different ranges with same

role represent the interconnect path between them.

Some ranges can be established statically, for example upa_m_ram can be assigned

at system start, based on the provided resources description. Additionally, provided

that the system supports dynamic hardware discovery, it may also be assigned when

a new memory module is plugged in. The situation is slightly different in the case of

upa_a_ram as its size depends on the amount of guest RAM that a device should be

able to access. On one hand, the maximum size and the number of such ranges could

be upper bounded by the implementation. Nevertheless, for the design presentation

purpose, we assume that the upa_a_ram is allotted dynamically. This is because the

presented design also takes into consideration the possibility of a runtime RAM resize.

A guest device driver is a device-specific software module, which role is obvious. For

a direct device attachment a crucial component is the passthrough driver running in

the host system. During the attachment configuration, this driver is responsible for

mapping the device registers, available as HPA ranges, to GPA. It has a full visibility

of all hpa_c_ram ranges used by a VM. Therefore, it is capable of deriving the corre-

sponding upa_c_ram ranges that will be passed to the GSO as a part of the attachment

request, performed on behalf of the guest. The passthrough driver is common to all

types of devices.

Infrastructure setup overview

In order to initiate a device attachment, there are several configuration steps to be done

by different system components, as mentioned in Section . Referring to figureA-2, this

section covers the GSO part.

At the beginning, the process starts upon request by the passthrough driver, a generic

driver responsible for direct attachment configuration and agnostic to a device type.

The driver communicates with the GSO on behalf of the VM and provides all necessary

parameters (device type and others, skipped for a moment for better readability). Sub-
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Figure A-2: Direct attachment initialization
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sequently, the four main stages of a direct attachment configuration performed by the

GSO are:

• Selection of a particular instance of the peripheral, according to the indicated

type.

• Reservation of the UPA ranges for the computing node to attach the device regis-

ters, and for the device node to attach ranges of guest’s disaggregated RAM.

• Initialization of the device’s IOMMU translation map building so that addresses

generated by the guest driver allow the device to reach the guest RAM on a

memory node.

• Setup of the interconnect paths between proper upa ranges to enable data transfers

between nodes.

When the attachment is completed, further configuration steps need to be done by the

passthrough driver.

Passthrough driver setup overview

This section refers to the passthrough driver part, as on figure A-2. The driver maps

HPA ranges of the device registers to GPA ranges used by the VM. The Virtual Machine

(VM) cannot do it by itself as a user-space process, only the passthrough driver (a host

OS module) has the visibility of HPA ranges assigned to the registers of the device.

If a device instance, selected previously by the GSO, is already attached to the comput-

ing node the GSO may decide to reuse the same upa_c_devctl and upa_c_iommu

registers and only assign another pair of hpa_c_devctl2 and hpa_c_iommu2

to them. Registers operations will not conflict at device side, provided that they are

tagged by the VM_GID – a globally unique guest identifier, used also to differentiate

the IOMMU translation maps.

Once the disaggregated device is attached by GSO, the passthrough driver in the host

can complete its configuration.

First, using the hpa_c_iommu, the driver sends a list of GPA ranges describing guest’s

RAM in order to complete the IOMMU translation maps building (initialization men-
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tioned in a previous section) for a given VM. This allows the remote device to receive

GPA pointers as parameters of an operation request, and, with the help of the DMA

engine and the IOMMU, to fetch data from the disaggregated guest RAM.

Then, the remote interrupt, which routing to the local IC was already configured, is

properly set to be received by the VM.

Next, the control registers of the device, attached to the host as hpa_c_devctl are

mapped to the VM as gpa_c_devctl. From this moment on, the guest driver can

operate the device as if it was available locally.

Finally, marked as a VM part on figure A-2, the VM configures a memory resize notifier

to notify the passthrough driver about all guest RAM extension or shrinking events.

After the direct attachment is configured, this is necessary in order to keep the IOMMU

translations maps up to date before each operation. Otherwise, the guest could ask the

device for processing data which the IOMMU is not aware of, or worse, a malicious

workload could use outdated mappings to access ranges of disaggregated memory that

are no longer used by a given VM. It should be noted that the IOMMU provides a good

memory protection as long as it is properly configured.

Sharing a device between VMs

If a device can emit only one interrupt but the device can be attached by multiple VMs,

there is an additional serialization needed. It is up to the logic of the computing node’s

interconnect interface to interleave processing requests in a transactional manner. A

transaction starts when an operation is triggered and lasts until a completion interrupt

arrives. It is only after an interrupt has been correctly redirected that another transaction

can be processed. Interleaving processing requests in a way that ignores interrupts

is not allowed because to which VM an interrupt should be dispatched would not be

known. The interrupt would thus be injected to all guests sharing a device and all but

one would eventually ignore it, although their execution would still be disturbed – this

is suboptimal.

With such a transactional shared configuration the requirements of a direct attachment

mode are still met, but of course the device’s throughput will be shared between all

participating VMs. This type of configuration is also often referred to as a mediated
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passthrough. Sharing a device in this way can be especially useful for peripherals that

do not support hardware multiplexing, for example non SR-IOV peripherals.

Design comments

With a given heterogeneous system architecture the presented approach seems to be the

best analogy to the passthrough attachment in its traditional shape.

Alternatively, in order to rule out the GSO role, a device would need to have an access

to the HPA ranges of the computing node. For example it would need to be attached to

the PCIe bus either directly or through a PCIe switch. Nevertheless, it is not the same

level of disaggregation if a device is not attached to a fully independent system node.

Furthermore, the design could eliminate the IOMMU programming but then a VM

would need to intercept each device access to capture the GPA addresses generated

by the guest device driver. Subsequently, they would need to be translated to HPA ad-

dresses of the computing node and further to corresponding UPA ranges of the memory

node providing guest’s RAM resources. The latter, however, can be only done by the

GSO, which means that a central system component would need to be involved in each

device transaction. This is a bad design choice as the GSO would very likely become

a scalability bottleneck. Except for that, intercepting each device registers access is

against the principles of a direct attachment configuration.

A.2 Infrastructure setup in more details

This section expands Section , in which many details were intentionally omitted for

better readability.

The idea is that the passthrough driver, on behalf of a VM, sends only one request to the

GSO and receives back one response as an operation result. This is a clear approach,

because the attachment can only succeed or fail; from a VM point of view it cannot be

partially completed. It is a GSO responsibility to perform a sequence of configuration

steps and, in case one of them fails, to rollback the previous ones in order to return to a

clean setup.

The device attachment configuration is presented in more details on figure A-3. It is
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Figure A-3: Device attachment configuration at GSO side
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also useful to refer to figure A-1 as a complementary illustration.

Both the request and the response provide additional parameters:

device_type : A flag specifying the kind of device that the guest asks for. This

assumes that flags are assigned up to a common system convention.

VM_GID : A globally unique guest identifier, provided by the GSO at VM boot time,

used to associate reserved resources with a VM in the GSO registers and to

differentiate IOMMU mappings, which are guest-specific.

upa_c_ram[] : A list of UPA ranges associated with the remote RAM of the guest.

Although the driver can directly see only the corresponding hpa_c_ram[]

visible by the host, we assume that it has a way to query the related UPA ranges

at the local interconnect interface. Otherwise, this translation needs to be done

by the GSO, which would need to keep track of each binding of each VM. This is

an additional bulk of information to store and process at the central system node.

Thus the latter approach is better avoided.

hpa_c_devctl : A reserved HPA region representing the device control registers, to

be mapped by the GSO with the upa_c_devctl during the attachment process.

Its size depends on the device type.

hpa_c_iommu : A reserved HPA region representing the remote IOMMU unit, to be

mapped by the GSO with the upa_c_iommu during the attachment process. Its

size may also depend on the device type.

Upon receiving a request, the execution moves to step 2) on figure A-3. The GSO

selects new UPA ranges that will act as end-points of interconnect paths created at later

stages: the upa_c_devctl and upa_c_iommu ranges discussed above, plus the

upa_a_ram allotted to the device node. The last range will allow the IOMMU to

reach the guest’s RAM on a remote memory node and addresses the challenge Ch.2.

These ranges are selected on-demand because which VM will need which device is

not known. Except for established connectivity (done at the end) the challenge Ch.1 is

addressed at this point.
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In the most generic case, upa_a_ram mirrors the upa_c_ram, which means that the

whole guest’s RAM is available for the device. Nevertheless, it is possible that only a

subrange of it should become available for a particular device, for example when it is

possible to narrow down the scope that will contain input data.

Subsequently, in step 3), a particular instance of the requested device_type is

selected, according to the internal policies of the GSO. For example, it may be prefer-

able to involve a device node already used by other workloads, in order to keep a

minimum number of device nodes powered-on. Or oppositely, a guest may prefer to

attach a device exclusively, which is still possible, although a general idea is to share

installed peripherals as much as possible. This is up to a workload-specific deployment

policy, not the mechanism itself. The device instance selection automatically deter-

mines upa_a_devctl and upa_a_iommu, which were assigned to it when it was

registered to the system. Another outcome of this step is the DEV_ID, a globally unique

identifier of the selected instance attachment, which will be returned to the VM when

the operation completes.

Having the upa_a_ram reserved, as a step 4), the GSO must figure out the upa_m_ram

range to be paired with the first one. It was not directly received with the driver request,

which has no visibility of it. Instead, the driver can provide the upa_c_ram and the

corresponding upa_m_ram is looked-up in a registry of existing interconnect links.

At this point all pieces of information required to configure the interconnect inter-

faces at the computing node and at the device node are collected. In step 6) the

computing node receives new mappings for the device control registers and the associ-

ated IOMMU registers (hpa_c_devctl: upa_c_devctl and hpa_c_iommu:

upa_c_iommu, respectively). A remote device interrupt line (subrange of the upa_c_devctl)

is attached to the local Interrupt Controller (IC).

The device node is programmed in step 7). A subset of the IOMMU registers is

already mapped to upa_a_iommu. It was statically assigned when the node was

registered to the system because this UPA range is a fixed part of the interconnect

interface. Nevertheless, the rest of the IOMMU address range is built dynamically

by VM-specific translation maps building. The IOMMU is supposed to translate the

GPA addresses used by the guest driver (input column of a map), to UPA addresses
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from the upa_a_ram range (output column of a map). The GSO initiates building

the translation map by passing the upa_a_ram ranges, which stand for the output

column. The input column will be provided later by the driver.

There is a way to make sure that entries of both columns will be properly matched, even

if created by two different system components. A guest RAM is already known and can

be expressed, in general, as a list of contiguous ranges, with each range described by

a pair of (offset, length). For a given guest, the offsets may be different in different

address spaces (gpa_c_ram vs. upa_a_ram) but lengths are equal. Therefore, by

keeping a consistent list ordering, different components are able to build the translation

map correctly.

Example: Guest’s RAM is reachable through a list of ranges:

gpa_c_ram = [(gcr_offset1, len1), (gcr_offset2, len2)]

Therefore, in the UPA, it is expressed as:

upa_c_ram = [(ucr_offset1, len1), (ucr_offset2, len2)]

During the UPA ranges reservation for a device node, a corresponding list is:

upa_a_ram = [(uar_offset1, len1), (uar_offset2, len2)]

It may happen that uar_offset1 > uar_offset2 but it does not matter. It is

important that corresponding ranges have the same positional index in the list. Subse-

quently, when building the IOMMU translation map, the GSO provides the upa_a_ram

in a given order for an output column. After that the guest has to provide the gpa_c_ram

as an input column in the same order, to keep the mapping correct.

Having it done, the challenge Ch.3 is solved.

In addition to guest RAM access configuration, the Proxy IC module (pretending a

standard IC from a device perspective) has to be configured. Interrupts generated by the

device and destined for a configured guest are redirected to a dedicated subrange of the

upa_a_devctl, which pairs up with the upa_c_devctl side. This step solves the

challenge Ch.4.

Finally, in step 8), the GSO must establish new interconnect paths in order to enable

the communication between the following ranges:
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Figure A-4: Updating directly attached device after guest memory resize

upa_c_devctl <-> upa_a_devctl

upa_c_iommu <-> upa_a_iommu

upa_a_ram <-> upa_m_ram

Eventually, in step 9), the DEV_ID is returned to the guest and it is used to complete

the configuration, as well as any further reconfigurations.

A.3 IOMMU maps update on guest RAM resize

As mentioned at the end of section , in the last part of direct device attachment configu-

ration a VM installs a memory resize notifier in order to detected when a guest RAM is

enlarged or shrank. This is necessary to keep the IOMMU address translation mapping

always up to date; this process is explained in this section.

Figure A-4 illustrates the workflow performed for each device attached in passthrough

mode during an update of the memory mappings.

Normally, if no guest RAM resize happened since the last configuration update, a

processing request issued by the guest driver should be directly transferred to the re-

mote device. Otherwise, once a VM is notified about the resize, it sets a trap on the
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gpa_c_devctl register access, so that the next processing request is intercepted

and the IOMMU updated beforehand. For example, if there are multiple RAM resizes

between two processing requests, it could be better to batch them together and update

the IOMMU mappings in a lazy manner, that is, just before the next operation. Chances

are that a memory section was added to handle a short-time burst and removed just after,

so no actual update is necessary from the IOMMU perspective. After the update, the

configuration is considered clean and the trap is disabled, until next resize.

On the other hand, if a device processing latency must be invariant and predictable,

for example in case of real-time operations, a completely opposite approach can be

preferred and the update of the IOMMU mappings can be performed immediately after

each RAM resize.

The steps of a configuration update are a subset of those performed during attach-

ment since only memory mappings are changed, control registers and interrupt redi-

rections are not affected. First, as figure A-4 shows, the passthrough driver collects

the upa_c_ram_diff[] array describing the ranges of disaggregated guest RAM

that were added or removed since the last device configuration. Then, most of the

modification is done by the GSO. It is only in case of a guest’s memory extension that

the passthrough driver has to complete the corresponding IOMMU mappings at the end,

analogously as described in A.2 for gpa_c_ram[] (now the new guest memory would

be expressed as gpa_c_ram_diff[]).

The part of reconfiguration done by the GSO is presented in more details on figure A-5.

The GSO is the only component capable of computing the upa_m_ram_diff and re-

serving the corresponding upa_a_ram_diff ranges, based on upa_c_ram_diff

passed by the passthrough driver. Then, the IOMMU mappings of the device node are

updated and the proper interconnect paths are created or destroyed, depending on the

type of update.

A.4 Disaggregated device detachment

After describing in details how a disaggregated device can be attached to a VM and

how its configuration supports runtime guest memory RAM resizing, we conclude

146



Figure A-5: Updating directly attached device after — GSO part
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this discussion with the detachment of a disaggregated device. Eventually, when a

disaggregated device is going to be detached, all associated resources must be cleaned

up at the device node (IOMMU translation maps, device-internal setup), in the GSO

logic (release of UPA ranges, cleanup of interconnect paths) and at the computing node

(interrupt reception, registers mapping to GPA). Upon detachment the sequence of steps

is actually just the reverse of the sequence described in Section .

A device may be detached for several reasons:

• For example, a VM may voluntarily decide to release a device, knowing that

it will not need it anymore. Assuming that a single VM is running a single

workload, this situation can occur when the deployed application needs the device

only temporarily and releases it in an explicit way.

• Similarly, a VM may simply terminate. The device detachment would then be

one of the steps of an overall resources cleanup.

• Finally, as any other piece of software, deployed workloads may occasionally

crash and it can affect a VM state in such a way that it needs to be restarted. The

detachment must then be conducted without any guest cooperation as the guest

can be inoperable. Note that in theory, VMs may also get into erroneous state that

would require reboot. However, an industry level system should be characterized

by a high stability and such a scenario should remain unlikely.
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Titre: Nouvelles techniques de virtualisation de la mémoire et des entrées-sorties vers les périphériques
pour les prochaines générations de centres de traitement de données basés sur des équipements répartis
déstructurés

Mots clés: virtualisation, mémoire, systèmes désagrégées

Résumé: Cette thèse s’inscrit dans le contexte
de la désagrégation des systèmes informatiques -
une approche novatrice qui devrait gagner en popu-
larité dans le secteur des centres de données. A la
différence des systèmes traditionnels en grappes, où
les ressources sont fournies par une ou plusieurs ma-
chines, dans les systèmes désagrégés les ressources
sont fournies par des nœuds discrets, chaque nœud
ne fournissant qu’un seul type de ressources (unités
centrales de calcul, mémoire, périphériques). Au lieu
du terme de machine, le terme de créneau (slot)
est utilisé pour décrire une unité de déploiement de
charge de travail. L’emplacement est assemblé dy-
namiquement avant un déploiement de charge de tra-
vail par l’orchestrateur système.
Dans l’introduction nous abordons le sujet de la
désagrégation et en présentons les avantages par
rapport aux architectures en grappes. Nous ajoutons
également au tableau une couche de virtualisation car
il s’agit d’un élément crucial des centres de données.
La virtualisation fournit une isolation entre les charges
de travail déployées et un partitionnement flexible des
ressources. Elle doit cependant être adaptée afin
de tirer pleinement parti de la désagrégation. C’est
pourquoi les principales contributions de ce travail se
concentrent sur la prise en charge de la couche de
virtualisation pour la mémoire désagrégée et la mise
à disposition des périphériques.
La première contribution principale présente les mod-
ifications de la pile logicielle liées au redimension-
nement flexible de la mémoire d’une machine virtuelle
(VM). Elles permettent d’ajuster la quantité de RAM
hébergée (c’est à dire utilisée par la charge de
travail en cours d’exécution dans une VM) pen-
dant l’exécution avec une granularité d’une section
mémoire. Du point de vue du logiciel il est transpar-
ent que la RAM proviennent de banques de mémoire

locales ou distantes.
La deuxième contribution discute des notions de
partage de mémoire entre machines virtuelles et de
migration des machines virtuelles dans le contexte
de la désagrégation. Nous présentons d’abord com-
ment des régions de mémoire désagrégées peuvent
être partagées entre des machines virtuelles fonc-
tionnant sur différents nœuds. De plus, nous dis-
cutons des différentes variantes de la méthode de
sérialisation des accès simultanés. Nous expliquons
ensuite que la notion de migration de VM a acquis une
double signification avec la désagrégation. En rai-
son de la désagrégation des ressources, une charge
de travail est associée au minimum à un nœud de
calcul et a un nœud mémoire. Il est donc possible
qu’elle puisse être migrée vers des nœuds de cal-
cul différents tout en continuant à utiliser la même
mémoire, ou l’inverse. Nous discutons des deux cas
et décrivons comment cela peut ouvrir de nouvelles
opportunités pour la consolidation des serveurs.
La dernière contribution de cette thèse est liée à la
virtualisation des périphériques désagrégés. Partant
de l’hypothèse que la désagrégation de l’architecture
apporte de nombreux effets positifs en général, nous
expliquons pourquoi elle n’est pas immédiatement
compatible avec la technique d’attachement direct,
est pourtant très populaire pour sa performance
quasi native. Pour remédier à cette limitation,
nous présentons une solution qui adapte le con-
cept d’attachement direct à la désagrégation de
l’architecture. Grâce à cette solution, les dispositifs
désagrégés peuvent être directement attachés aux
machines virtuelles, comme s’ils étaient branchés lo-
calement. De plus, l’OS hébergé, pour lequel la con-
figuration de l’infrastructure sous-jacente n’est pas
visible, n’est pas lui-même concerné par les modifi-
cations introduites.
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Title: Novel memory and I/O virtualization techniques for next generation data-centers based on disaggre-
gated hardware.

Keywords: virtualization, memory, disaggregated systems

Abstract: This dissertation is positioned in the con-
text of the system disaggregation - a novel approach
expected to gain popularity in the data center sec-
tor. In traditional clustered systems resources are pro-
vided by one or multiple machines. Differently to that,
in disaggregated systems resources are provided by
discrete nodes, each node providing only one type of
resources (CPUs, memory and peripherals). Instead
of a machine, the term of a slot is used to describe
a workload deployment unit. The slot is dynamically
assembled before a workload deployment by the unit
called system orchestrator.
In the introduction of this work, we discuss the sub-
ject of disaggregation and present its benefits, com-
pared to clustered architectures. We also add a vir-
tualization layer to the picture as it is a crucial part
of data center systems. It provides an isolation be-
tween deployed workloads and a flexible resources
partitioning. However, the virtualization layer needs
to be adapted in order to take full advantage of disag-
gregation. Thus, the main contributions of this work
are focused on the virtualization layer support for dis-
aggregated memory and devices provisioning.
The first main contribution presents the software stack
modifications related to flexible resizing of a virtual
machine (VM) memory. They allow to adjust the
amount of guest (running in a VM) RAM at runtime
on a memory section granularity. From the software
perspective it is transparent whether they come from
local or remote memory banks.
As a second main contribution we discuss the no-
tions of inter-VM memory sharing and VM migration

in the disaggregation context. We first present how
regions of disaggregated memory can be shared be-
tween VMs running on different nodes. This sharing
is performed in a way that involved guests which are
not aware of the fact that they are co-located on the
same computing node or not. Additionally, we discuss
different flavors of concurrent accesses serialization
methods. We then explain how the VM migration term
gained a twofold meaning. Because of resources dis-
aggregation, a workload is associated to at least one
computing node and one memory node. It is there-
fore possible that it is migrated to a different comput-
ing node and keeps using the same memory, or the
opposite. We discuss both cases and describe how
this can open new opportunities for server consolida-
tion.
The last main contribution of this dissertation is
related to disaggregated peripherals virtualization.
Starting from the assumption that the architecture dis-
aggregation brings many positive effects in general,
we explain why it breaks the passthrough peripheral
attachment technique (also known as a direct attach-
ment), which is very popular for its near-native perfor-
mance. To address this limitation we present a de-
sign that adapts the passthrough attachment concept
to the architecture disaggregation. By this novel de-
sign, disaggregated devices can be directly attached
to VMs, as if they were plugged locally. Moreover, all
modifications do not involve the guest OS itself, for
which the setup of the underlying infrastructure is not
visible.
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