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General context

Since the beginning of electricity generation in the 19th century, fossil energies like
coal or gas have been the most used resources. It is a cheap energy but it resulted in
huge greenhouse gases emissions, responsible for global warming and climate change.

To fight climate change and reduce greenhouse gases emissions, governments of most
countries have decided to massively invest in renewable energies such as wind power
or photovoltaic power. These renewable energy generators are connected to the power
system through Power Electronics (PE) converters, which is not the case for the coal,
gas or nuclear power plants that use Synchronous Machines (SM).

In parallel, several High Voltage Direct Current (HVDC) links are built to inter-
connect asynchronous power systems (between France and England for example) or
synchronous power systems on long distances (between France and Spain for example)
between each other, and they too use PE converters. Figure 1 shows the existing HVDC
links (in red) and some planed projects (in blue) in Europe. The green line represents
the France-Spain link that was built recently.

Finally, most of the new generation loads use PE converters as well (like computers
or household appliances). And the fast development of the electric vehicles induces an
increase in the PE penetration too.

For all these reasons, the PE penetration in the power systems hugely increases. It
can be high very soon in some places like Ireland, which is an island with a lot of wind
generation.

But this trend is not without any consequence. The dynamic behaviour of SM
and PE converters are indeed very different. For example, while SM have an inertia
because of their rotating mass, PE devices haven’t got any. Another example is the
over current capability that is way higher for SM than for PE converters. Moreover,
PE converters are currently controlled as simple current sources (they are called grid
feeding or grid following converters). They do not create the voltage like SM. Soon this
will be mandatory for them to create this voltage and replace the SM. This is what is
called a grid forming capability and this necessitates a change in the way the converters
are controlled. But when controlled as voltage sources (grid forming converters), the
converters are even more subject to over current which is a great issue that should be
taken into account in the analysis and simulations.

As a result, if the PE penetration keeps on increasing, which is highly probable,
there is a non negligible possibility that the power system security and stability are not
ensured any more if nothing changes in the way it is controlled. Moreover, protection
issues will arise, as well as power quality challenges.

To anticipate and prepare for this challenge, several European Transmission System
Operators (TSO) and universities have gathered to form a European project to work
on these issues. This is the MIGRATE project, which is presented in the next section.
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Figure 1: Example of HVDC links in Europe

Presentation of the MIGRATE project
MIGRATE stands for Massive InteGRATion of power Electronic devices [1]. It is

an EU-funded project under the framework of European Union’s Horizon 2020.
It gathers several partners, that are presented in Figure 2 [1]. There are 11 TSO, 12

universities and one manufacturer from 13 countries working together in this project.
Their main objective is to propose innovative solutions to progressively adjust the HVAC
system operations.

The different objectives of the project are addressed in 8 work packages that are
presented in Figure 3 [1].

This PhD is part of the work package 3 that aims at developing controls and oper-
ations of a grid with 100% converter based devices.

The goals of this PhD are to simulate and analyse transmission systems with 100%
PE. The increase in the PE penetration is indeed a challenge and it changes the way
we need to simulate transmission systems as their dynamic behaviour greatly changes.
To do so, it aims at developing new tools and methods to analyse and simulate such
systems. Then it can give some insights on how a power system with 100% PE behave
and how it should be modelled to guarantee that the simulations and analyses fit what
is observed in reality. The final aim is to ensure the security and stability of a power
system with 100% PE in the future.
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Figure 2: Members of the MIGRATE project

Figure 3: Work packages of the MIGRATE project
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Contributions
This work has brought several contributions that are listed here.
First, a review of the existing tools and methods to simulate and analyse power

systems has been done. It has been assessed for each one of these tools, whether they
can be used with a large PE penetration and in which cases.

Then three Model Order Reduction (MOR) methods have been developed to reduce
the simulation time and to simplify the analysis by reducing the number of state vari-
ables. Unlike most of the existing methods, these developed methods keep the physical
structure and the variables of the system, making the analysis easier. These methods
are described in details in this report.

The developed methods have been validated and compared using realistic test cases.
Thanks to these applications, the advantages and drawbacks of each method have been
presented. Moreover, the results of these test cases give recommendations on how to
model, simulate and analyse a transmission system with a high PE penetration. Among
these test cases, a real transmission system (the Irish transmission system) has been
modelled using 100% PE generation and it proves to be stable with the converter control
developed in the MIGRATE project.

Outline of the thesis
This report is organized in four chapters.
The first chapter reviews the existing tools and methods that are used to simulate

and analyse transmission systems and the most common MOR methods. The presented
simulation tools are the EMT simulations that use detailed models, the phasor simu-
lations that use a phasor approximation to simplify the models and thus reduce the
simulation time and the dynamics phasor simulations that are a compromise between
the two. The presented analysis tools are the small-signal stability analysis, the sen-
sitivity analysis and the participation factors. The presented MOR methods are the
modal truncation that is based on a modal analysis, the balanced truncation that is
based on a study of the Hankel singular values of the system, the proper orthogonal
decomposition that uses a snapshot of the system taken from a previous simulation or
an experiment and the Krylov methods that use moment matching techniques.

The second chapter presents the models that are used for the rest of the report. Each
element of a transmission system is modelled: converters (grid forming, grid feeding
and modular multilevel converter), lines, transformers, synchronous machines, loads,
etc. In each case, the equations of the model are given in the DQ0 representation and
block diagrams illustrate the different controls.

The third chapter presents the three developed MOR methods. The process is
detailed for each one of them. These methods use the presented analysis tools but they
are also inspired by the existing MOR methods to take the best of them. One method
consists in discarding the fastest poles of the system, the second one discards the poles
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of the system that are linked to the less energetic states in the balanced realization
(link with the balanced truncation) and the third one uses an optimisation to minimize
an error criterion. All the methods preserve the variables, parameters and physical
structure of the system which are important features for a MOR method applied to
power systems.

The fourth and last chapter applies the developed methods to realistic test cases
using the models presented in the second chapter. The conclusions for each test case
are recommendation on how to model, simulate and analyse a transmission system with
a high PE penetration. One conclusion is that depending on the studied converter in
the system and the simulated event, the most adapted reduced model is not the same.
And this is taken into account by the developed MOR methods.

Publications
The work done in this PhD resulted in several publications that are listed below:

• Q. Cossart, F. Colas, X. Kestelyn, "Model reduction of converters for the analysis
of 100% power electronics transmission systems," in 2018 IEEE International
Conference on Industrial Technology (ICIT), Lyon, 2018.
In this paper, the first developed method is presented and applied to a simple test
case consisting in one grid forming converter connected to an infinite grid.

• Q. Cossart, F. Colas, X. Kestelyn, "Modèles réduits de convertisseurs pour l’étude
de réseaux 100% électronique de puissance," in Symposium de Génie Électrique,
Nancy, 2018.
This paper presents the results of the previous paper in french and in a national
conference.

• Q. Cossart, F. Colas, X. Kestelyn, "Simplified converters models for the analysis
and simulation of large transmission systems using 100% power electronics," in
2018 20th European Conference on Power Electronics and Applications (EPE’18
ECCE Europe), Riga, 2018.
In this paper, the first developed method is applied to a test case consisting in a
two-converter system.

• Q. Cossart, F. Colas, X. Kestelyn, "A priori error estimation of the structure-
preserving modal model reduction by state residualization of a grid forming con-
verter for use in 100% power electronics transmission systems," in 15th IET Inter-
national Conference on AC and DC Power Transmission (ACDC 2019), Coventry,
2019.
In this paper, the third developed method (in its first version, with a brute-force
optimization) is applied to a two-converter system. The idea is to find the most
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adequate model for each element of the system (converter and line) depending on
the simulated event and the observed variable.

Two journal papers have been submitted and are under review:

• Q. Cossart, F. Colas, X. Kestelyn, "A novel strategy of modal model order reduc-
tion by state residualization for 100% power electronic-based grids," EPE Journal.
In this paper, the second developed method is applied to the Irish transmission
system in phasor mode. The idea is to find the most adequate model for each
converter in the system depending on the observed variable.

• Q. Cossart, F. Colas, X. Kestelyn, "A novel method for choosing the most suitable
model order reduction of a 100% renewable power grid subject to various events,"
IEEE Transactions on Power Systems.
In this paper, the third strategy (in its final version, with a genetic algorithm
optimization) is applied to the Irish transmission system in EMT mode. The idea
is to find the most adequate model for each element in the system (converter, line,
transformer, load) depending on the observed variable and the simulated event.
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As presented in the introduction, the aim of this thesis is to study transmission
systems with a large PE penetration in order to assess their stability, security and
expected performances. Given the size and the complexity of the transmission systems,
experimentations are limited and at-scale prototypes are nearly impossible to build.
To cope with that, a solution is the use of numerical simulations and analysis tools.
They make it possible to test different test cases and validate the developed controls at
limited cost compared to experimentations.

In this chapter, a bibliographic work has been carried out to set the scientific context
of this work. The first section presents the existing tools to simulate and analyse
transmission systems. It is shown that some tools, especially some approximations,
might not be relevant any more with a large PE penetration. This is why a need for
Model Order Reduction (MOR) is identified, in order to accelerate the simulation and
simplify the analysis of large systems. A focus is made here on the case of a power
system with a high PE penetration.

As a result, the second section presents the existing MOR methods, their charac-
teristics, advantages and drawbacks. It is explained why they are not always suitable
for the study of power systems with a large PE penetration.

1.1 Tools and methods for the simulation and anal-
ysis of transmission systems

This section presents the existing tools to simulate and analyse transmission systems.
The first subsection deals with the simulation tools while the second one is about the
analysis tools. The idea is to assess whether these tools are still relevant when the PE
penetration is very high, and if not, what are the alternatives.

1.1.1 Simulation tools

Electromagnetic transient programs

The Electromagnetic Transient (EMT) programs are software used to simulate
power systems that have been introduced in [2].

As their name says it, they consider the fast electromagnetic transients in addition
to the slow electromechanical transients (see Figure 1.1 [3]). The computation time of
such a simulation is high due to the level of details of the models and the fact that the
time-step needs to be small (tens of µs) to capture the fast transients and simulate the
fast electromagnetic dynamics [4]. Moreover, because of the high number of variables
and parameters of EMT simulations, the analysis is complex. As a consequence, only
local parts of the system are simulated with EMT programs and during a short time-
span.
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Figure 1.1: Time frame of power system transients

Unbalances can be taken into account with EMT programs, and the models are most
of the time in the ABC representation, that uses the natural/physical variables (unlike
the DQ0 representation that uses a basis change. See appendix for more information).

For all these reasons, they are particularly adapted to the simulation of PE devices,
where the switching of the IGBT can be simulated with high-fidelity. Today, EMT
programs are for instance used for the simulation of Modular Multilevel Converter
(MMC) [5], wind turbines converters [6] or switching in transmission lines [7].

An overview of the existing EMT programs have been made in [8]. The most famous
ones are EMTP-RV [9] and PSCAD/EMTDC [10], which are commercial software.

In this work, large systems (transmission systems) are simulated and analysed. It
means that using EMT programs could lead to high computation times and complex
analyses.

Phasor approximation and transient stability programs

The phasor approximation is an approximation that has been used in the power
system community for a long time [11]. It is applied to balanced systems and consists
in neglecting the electromagnetic dynamics of the lines as they are faster (and therefore
less relevant for stability analyses) than the slow electromechanical dynamics of the
SM. As a result, the only dynamics of the model are the dynamics of the SM and their
controls. Moreover, the models for all the elements of the system only take into account
the slow dynamics and not the fastest one. For example, simplified models are used for
the SM.
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For example, consider a model of a line as illustrated in 1.2. This is a simple R,L
model. The system is considered to be balanced. As a result, the DQ0 representation
is used and only the d-axis and q-axis components are considered. The equations
modelling this line are shown in (1.1).

iRL

v1 v2

Figure 1.2: Example of a model of a line


L

ωb

did
dt

= v1d
− v2d

−Rid + ωLiq

L

ωb

diq
dt

= v1q − v2q −Riq − ωLid
(1.1)

With the phasor approximation, the derivative parts of the variables id and iq are
neglected. It leads to (1.2).

{
0 = v1d

− v2d
−Rid + ωLiq

0 = v1q − v2q −Riq − ωLid
(1.2)

It can be seen in these equations that the line behaviour is now quasi-static, which
simplifies the model and accelerate the simulation. It is indeed now possible to use
larger time steps for the simulation and analysing the system becomes faster as there
are less state variables. Of course, this approximation leads to errors when considering
the transient behaviour [12]. The question is to decide whether these transients are
important or not for the study. Over-current transients are for instance less important
with SM (which can handle high over-currents) than with converters (which have a low
over-current capability [13] and therefore need an accurate simulation to ensure that
the device can handle the transient).

Programs that use the phasor approximation are called Transient Stability Programs
(TSP). Examples of TSP are the commercial software EUROSTAG [14], PSS/E (for
Power System Simulator for Engineering) and RAMSES (for RApid Multiprocessor
Simulation of Electric power Systems) [15,16].

This phasor approximation is still widely used today when there are PE devices in
the power system [17, 18]. But the hypothesis on which it is based (which is that the
fast electromagnetic transients can be neglected as they are faster than the electrome-
chanical transients of the SM) might not be verified any more if the SM penetration
decreases and the PE penetration increases.
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Dynamic phasor

The dynamic phasors were developed in [19]. Their advantages are the possibility to
consider the unbalances [20], a better accuracy than the classical phasor approximation
(although the model is more complex), and a lower computation time than with EMT
models (although they are less precise).

This tool is based on a Fourier series decomposition. Consider a nearly-periodical
variable x of a period T and a pulsation ω (which is the case for the currents and
voltages in a power system for example). This variable can be approximated by a
Fourier decomposition in (1.3).

∀τ, ∀t ∈ [τ − T ; τ ], x(t) ≈
+∞∑

k=−∞
Xk(τ)ejkωt (1.3)

The coefficient Xk, called dynamic phasor k is calculated in (1.4).

Xk(τ) = 1
T

∫ τ

τ−T
x(t)e−jkωtdt =< x >k (τ) (1.4)

To go further, the variable x can be approximated with its first K dynamic phasors
in (1.5). The biggerK is, the more accurate the model is but the higher the computation
time is. The choice of K determines the number of equations suitable to model the
system.

x(t) ≈
K∑

k=−K
Xk(τ)ejkωt (1.5)

The following property in (1.6) helps writing the differential equations in the dy-
namic phasor domain and thus writing an entire model in the dynamic phasor domain.

<
dx

dτ
>k (τ) = d < x >k

dτ
(τ) + jkω < x >k (τ) = dXk

dτ
(τ) + jkωXk(τ) (1.6)

One advantage of the dynamic phasors is that it is more accurate than the phasor
approximation and it has a lower computation time than EMT simulations. It is used
today to simulate 2-level VSC [21], MMC [22] or electrical machines [23].

One drawback of the dynamic phasors is that it increases the number of variables
and equations (two for each k), which makes the analysis complicated. Moreover, it is
not easily applicable on the classical simulation software.

Comparison of the three simulation methods on a simple example

To illustrate the three simulation methods (EMT, phasors and dynamic phasors),
consider the simple test case in Figure 1.3.

14



iRL

v1 v2

Figure 1.3: Test case under consideration

The two voltages v1 and v2 are fixed. A short-circuit at v2 is simulated at t = 1s
(v2 = 0 at t = 1s) and cleared after 150ms. The current in the RL line is shown on
Figure 1.4 for each of the three simulation methods. For the dynamic phasors, K = 1.
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Figure 1.4: Comparison of EMT, dynamic phasors and phasors simulations

One can see that the phasor approximation misses the transient during the short-
circuit and the clearing of the fault. On the other hand, the EMT and dynamic phasors
simulations give the same result on this particular test case.

Conclusion

In this subsection, different tools to simulate power systems have been presented:

• The phasor approximation simplifies the equations in the DQ0 representation by
neglecting the fast electromagnetic transients. This approximation is based on the
fact that SM have slow electromechanical dynamics, which are more important
for the stability than the fast electromagnetic transients. As a result, a larger
time step can be used which makes the simulation faster. Moreover, as the num-
ber of state variables has decreased, the analysis gets easier. With a 100% PE
transmission system however, this approximation might not be relevant any more.
Moreover, it is important with PE devices (more than with SM) to capture fast
transients, which can damage the converter (over-current for example).
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• The EMT programs allow to simulate accurately PE converters. However, the
simulation time with these programs is high because of the level of details and the
number of variables and parameters makes the analysis complicated. Moreover,
a small time step needs to be used. As a result, EMT programs cannot easily be
used for simulating large power systems.

• The dynamic phasors are an interesting tool between the phasor simulation and
the EMT simulation. They are based on a Fourier series decomposition of all
the variables in the system. The needed time step is larger than with an EMT
simulation, which decreases the simulation time. However, they induce an increase
in the number of variables and equations that can complicate the analysis, which
is not what is looked for in this report, although they reduce the computation
time compared to EMT simulations [3].

1.1.2 Analysis tools
This subsection presents three analysis tools that are used today to study transmis-

sion systems. The aim here is to check whether they are still relevant when studying
transmission systems with a high PE penetration.

One can remark that these tools are applicable on linear systems only. Several tools
exist for nonlinear systems like the Lyapunov stability [24] or the nonlinear participation
factors [25] but using them is not straightforward and it can complicate the analysis
which is not what is wanted here. As a consequence, it has been chosen here to focus
only on tools for linear systems. To proceed, the studied systems are linearised around
their operating point in steady state.

Small-signal stability analysis

The first analysis tool to be presented here is called small-signal stability analysis.
It is a widely used tool in the power system analysis [26].

First, a nonlinear Differential Algebraic Equations (DAE) system, modelling the
studied transmission system, is considered in (1.7).

dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(1.7)

This system is linearised around its operating point x0 = (xdiff0 , xalg0 , u0) at steady
state. It is important that the system is time-invariant at steady state. This is why
the DQ0 representation is used (see Appendix for more explanation). To simplify the
writing, all the derivatives ∂f

∂x
(x0) are written ∂f

∂x
. It gives (1.8).
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

d∆xdiff
dt

= ∂f

∂xdiff
∆xdiff + ∂f

∂xalg
∆xalg + ∂f

∂u
∆u

0 = ∂g

∂xdiff
∆xdiff + ∂g

∂xalg
∆xalg + ∂g

∂u
∆u

∆y = ∂h

∂xdiff
∆xdiff + ∂h

∂xalg
∆xalg + ∂h

∂u
∆u

∆xdiff ∈ RNdiff ,∆xalg ∈ RNalg ,∆u ∈ Rp,∆y ∈ Rq

(1.8)

If ∂g
∂xalg

is not singular, the following matrices are defined in (1.9).

A = ∂f

∂xdiff
− ∂f

∂xalg
× ∂g

∂xalg

−1
× ∂g

∂xdiff
∈ RNdiff×Ndiff

B = ∂f

∂u
− ∂f

∂xalg
× ∂g

∂xalg

−1
× ∂g

∂u
∈ RNdiff×p

C = ∂h

∂xdiff
− ∂h

∂xalg
× ∂g

∂xalg

−1
× ∂g

∂xdiff
∈ Rq×Ndiff

D = ∂h

∂u
− ∂h

∂xalg
× ∂g

∂xalg

−1
× ∂g

∂u
∈ Rq×p

(1.9)

With these matrices, it is possible to write the system in state-space representation
in (1.10) by injecting the algebraic equations in the differentials equations and in the
output equations. 

d∆xdiff
dt

= A∆xdiff +B∆u

∆y = C∆xdiff +D∆u
∆xdiff ∈ RNdiff ,∆u ∈ Rp,∆y ∈ Rq

(1.10)

To simplify, this system is written as in (1.11). The system is now a simple Linear
Time Invariant (LTI) system represented in state-space.

dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(1.11)

The poles of this LTI system are defined as the eigenvalues of the state matrix A.
The set of the eigenvalues of A is noted σA and is called its spectrum. The eigenvalues
of A are the roots of the characteristic polynomial of A, as presented in (1.12).

λi ∈ σA ⇔ det(A− λiIndiff
) = 0 (1.12)

A LTI system is exponentially stable if the real part of all its poles are strictly
negative. This is explained in (1.13).
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The system is exponentially stable⇔ ∀λi ∈ σA, Re(λi) < 0 (1.13)

An operating point of a non-linear system is stable if the corresponding linearised
system at this operating point is stable.

To illustrate it, ten poles are considered in Figure 1.5. The poles that are on the
left side of the imaginary axis of the complex plane are stable. The one that are on the
right side are unstable.

Real part
-10 -5 0 5

Im
ag
in
ar
y
p
ar
t

-10

-5

0

5

10
Stable pole Unstable pole

Figure 1.5: Example of stable and unstable poles

The analysis of the stability of the poles of the linearised system is what is called the
small-signal stability analysis. This analysis is still relevant with a high PE penetration
and is applied on several test cases in chapter 4.

One can note that a limit to the small-signal stability analysis is that it is only valid
when the system is close to its operating point (small-signal). Moreover, it doesn’t
take into account the non-linearities of the system that can have an impact on the
stability. To cope with that, nonlinear stability analyses using Lyapunov functions can
be used. But there is no systematic method to find the Lyapunov function which makes
it difficult to apply in such complex systems like power systems. This is why the focus
of the report is on small-signal stability analysis.

Sensitivity analysis

The second presented tool is called sensitivity analysis. It is based on the small-
signal stability analysis presented previously.

A pole λi of the A matrix is considered. If this pole is unstable or at risk of becoming
unstable (close to the imaginary axis), it is interesting to know which parameters of
the model influence the most this pole. Knowing this, it might be possible to change
a parameter (the tuning of some PI controllers for instance) in order to stabilize this
pole or improve the performance of the system [27].
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The sensitivity sri,j
of the real part of the eigenvalue λi with respect to the parameter

pj is defined in (1.14).

sri,j
= ∂Re(λi)

∂pj
(1.14)

The sensitivity gives the evolution of the considered eigenvalue when the considered
parameter changes. If it is positive, the real part of the eigenvalue increase when the
parameter increase. If it is negative, the real part of the eigenvalue decrease when the
parameter increase.

As a consequence, if sri,j
is positive, it means that pj must decrease to stabilize the

pole. If it is negative, it means that it must increase to stabilize the pole.
One can remark that the sensitivity depends on the unit and the value of each

parameter. It is thus arduous to compare the sensitivities of an eigenvalues with respect
to different parameters of different values and unit.

This tool is very important for the tuning of the controllers of the converters in a
transmission system with a large PE penetration. It helps tuning the controllers to
obtain a stable power system.

Participation factors

The last presented tool are the participation factors.
The eigenvalues of A, that are defined in (1.12) can also be defined as in (1.15).

λi ∈ σA ⇔ ∃yi ∈ RNdiff/Ayi = λiyi (1.15)

In (1.15), yi is called a right eigenvector of A associated to the eigenvalue λi. In the
same way, the definition in (1.15) can be rewritten with a left eigenvector as in (1.16).

λi ∈ σA ⇔ ∃ui ∈ RNdiff/uTi A = λiu
T
i (1.16)

For each eigenvalue, the left and right eigenvectors are not unique. They can be
chosen to be normalized, which means that they respect (1.17).i = j ⇒ uTi yj = 1

i 6= j ⇒ uTi yj = 0
(1.17)

The participation factors are a linear algebra tool introduced in [28]. They have
been constantly used since in the power system community [29–31] and for MOR [32].
More generally, their meaning and how they can be used for the analysis of dynamical
systems is also still discussed today [33–35].

They give the links between the eigenvalues of a linear system and its state variables.
More precisely, the participation factor pk,i is a complex number whose modulus gives
the participation of the state xk in the eigenvalue λi (and vice-versa). It tells how much
this state variables influences the considered pole. It is calculated as in (1.18).
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pk,i = ui(k)yi(k) (1.18)

In this equation, ui(k) is the kth entry of the left eigenvector of A associated to λi
and yi(k) is the kth entry of the right eigenvector of A associated to λi.

If the left and right eigenvectors of A are normalized, the sum of the participation
factors of a state in all the eigenvalues is equal to 1 and the sum of all the participation
factors of all the states in one eigenvalue is equal to 1 (note that this is not true when
the modulus are summed). This allows comparing the degree of participation of each
state in an eigenvalue (and vice-versa).

The participation factors helps identifying which state variables are critical for the
stability. They are the states that participate the most in the unstable poles or the
poles at risk of becoming unstable.

To better understand the physical meaning of the participation factors, consider the
simple LTI system in (1.19). 

dx

dt
= Ax

A ∈ Rn×n
(1.19)

The solution of this system is given in (1.20).

x(t) =
n∑
i=1

(uTi x(0))eλityi (1.20)

Consider now the initial conditions xk(0) = 1 and xi(0) = 0,∀i 6= k. In these
conditions, the solution of the system can be rewritten in (1.21).

xk(t) =
n∑
i=1

pk,ie
λit (1.21)

This equation clearly shows the role played by the participation factors. They link
the state variables to the the poles of the system.

In this thesis, the participation factors are used for the development of MOR meth-
ods in chapter 3.

1.1.3 Conclusion
In this section, several simulation and linear analysis tools, that can be used to study

transmission systems with a high PE penetration, have been presented: the phasor ap-
proximation and the Transient Stability Programs, the Electromagnetic Transients Pro-
grams, the dynamic phasors, the small-signal stability analysis, the sensitivity analysis
and the participation factors.

As seen in this section, the EMT programs can lead to a too high computation time
and a too complex analysis when applied to large transmission systems, and the phasor
approximation might not be applicable when there are a lot of PE devices. However, to
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study and simulate large systems, like it is the case in this report, simplifications and
approximations, just like the phasor approximation, are needed. These simplifications
are called Model Order Reduction (MOR) in the literature. This is why the focus of
the next section is on MOR. The aim is to list the existing methods and assess if they
are adapted to the study of power systems with a large PE penetration and thus to
simplify an EMT model. And if not, what are the alternatives.
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1.2 Model order reduction
A MOR is a process that finds a model with an output that is close to the output

of the initial model (in other words, the error has to be bounded) but of reduced order.
For example, consider a nonlinear DAE system in (1.22).

dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(1.22)

A second nonlinear DAE system is considered in (1.23).

dxdiffr

dt
= fr(xdiffr , xalgr , u)

0 = gr(xdiffr , xalgr , u)
yr = hr(xdiffr , xalgr , u)

xdiffr ∈ RNdiffr , xalgr ∈ RNalgr , u ∈ Rp, yr ∈ Rq

(1.23)

The system in (1.23) is a reduction of the system in (1.22) if the equation (1.24) is
respected, for a given accepted error ε.{

||y − yr|| < ε

Ndiffr << Ndiff

(1.24)

The principle of MOR is to find the smallest reduced model like (1.23) for a given
reference model like (1.22) and for a given accepted error. It results in a system that
gives approximately the same results but that is faster to simulate and easier to analyse
as it has a reduced number of state variables.

This section presents the most used MOR methods: the modal truncation, the
balanced truncation, the Proper Orthogonal Decomposition (POD) and the Krylov
methods. The first three methods are called Singular Value Decomposition (SVD)
methods as they are based on the SVD of matrices. They are illustrated in this chapter
with a small order 4 example. For each method, the idea is to assess whether it is
relevant for the MOR of transmission systems with a high PE penetration.

1.2.1 Modal truncation
The first method to be presented is called modal truncation [36]. Although not

new [37], it is today a widely used method in the power system community [38,39] as it
is quite easy to apply it and it preserves some physical dynamics of the system, which is
what is looked for in this work. It is indeed based on the preservation of some poles of
the system and the suppression of others. Because it preserves the poles of the system,
it ensures that the operating point remains stable: no pole is moved during the MOR.
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As illustration, the method is applied on the LTI system in (1.25).
dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(1.25)

One can remark that this method can be used only with linear systems.

Eigenvalue decomposition and basis change

First, the Eigenvalue Decomposition (EVD) of A [40] is done using a matrix P that
can easily be found using the eigenvectors of A (see Appendix for more explanation).
This decomposition is presented in (1.26).

A = P−1ΛP = P−1diag(λi)P (1.26)

By writing xm = Px, Bm = PB, Cm = CP−1, the system can be rewritten in (1.27).
For now, no approximation has been made. The system is just written in a different
basis. 

dxm
dt

= Λxm +Bmu

y = Cmxm +Du

xm ∈ RNdiff , u ∈ Rp, y ∈ Rq

(1.27)

Fast poles/Slow poles

The system is organized as follows in (1.28). In this equations, Λ1 contains the
poles to keep and Λ2 the poles to discard. In general, the slowest poles are kept and the
fastest are discarded. In other word, the poles that are the closest to the imaginary axis
(with a real part close to 0) are kept, and the one that are far from it (large negative
real part) are discarded.



d

dt

(
xm1

xm2

)
=
(

Λ1 0
0 Λ2

)(
xm1

xm2

)
+
(
Bm1

Bm2

)
u

y =
(
Cm1 Cm2

)(xm1

xm2

)
+Du

xm1 ∈ RNdiff1 , xm2 ∈ RNdiff2 , u ∈ Rp, y ∈ Rq

(1.28)

The choice of Ndiff1 determines the size of the reduced model.
In the next two parts, the modal truncation is explained in two different represen-

tations: in the state-space representation first and then in the Laplace representation.
One can notice that this is the same approximation in both cases.
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Modal truncation in state-space representation

The modal truncation consists in truncating the model in (1.28) and keeping only
xm1 . It gives the following reduced model in (1.29)

dxm1r

dt
= Λ1xm1r

+Bm1u

yr = Cm1xm1r
+Du

xm1r
∈ RNdiff1 , u ∈ Rp, yr ∈ Rq

(1.29)

The aim is to have the smallest Ndiff1 while still having a good accuracy (error lower
than the chosen maximum accepted error ε).

The poles of the obtained reduced models are Λ1 which are also poles of the initial
full model. The poles in Λ2 are deleted with this reduction.

However, the state variables are not the same any more between the full and the
reduced model because of the basis change and the truncation. As a result, this might
complicate the analysis. It is indeed for example more complicated to identify the
critical variables in the reduced model using the participation factors as these variables
have changed during the process. As a consequence, the structure of the model is not
preserved.

Modal truncation in Laplace representation

Consider the system in (1.27) and apply the Laplace transform to it. The transfer
function of the system can be written as in (1.30).

Y (s) = (Cm(INdiff
s− Λ)−1Bm +D)U(s) = F (s)U(s) (1.30)

The transfer function F can be decomposed in (1.31) using partial fraction decom-
position [40]. In this equation Ri is called residue and can be calculated using the
eigenvectors of A. One can remark that the eigenvalues here are all taken separately,
even the complex ones, that all have their conjugate among the other eigenvalues.

F (s) =
Ndiff∑
i=1

Ri

s− λi
+D (1.31)

The reduced model obtained by modal truncation is written in (1.32). It is the same
model as in (1.29) but represented in the Laplace domain.

Fr(s) =
Ndiff1∑
i=1

Ri

s− λi
+D (1.32)

Error

By subtracting (1.32) to (1.31), an error is obtained in (1.33).
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F (s)− Fr(s) =
Ndiff∑

i=Ndiff1 +1

Ri

s− λi
(1.33)

One advantage of this method is that the error is bounded, as shown in (1.34). This
guarantees the accuracy of the reduced model.

||F − Fr|| ≤
Ndiff∑

i=Ndiff1 +1

||Ri||
|Reλi|

(1.34)

Illustration with an order 4 model

To illustrate the method, the order 4 LTI model in 1.35 is considered.

dx

dt
= Ax+Bu =


−50 −25 5 1
−10 −20 1 1

5 1 −10 −10
10 1 10 −10

x+


1
1
1
1

u

y =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

x
(1.35)

The EVD of A is done and the system is expressed in the modal basis in 1.36.



dxm
dt

=


−9.4 + 10.5i 0 0 0

0 −9.4− 10.5i 0 0
0 0 −13.4 0
0 0 −57.8

xm +


0.9− 0.6i
0.9 + 0.6i

0.9
−1.3

u

y =


0 0 0 0

0.006− 0.028i 0.006 + 0.028i 0.779 −0.257
0 0 0 0
0 0 0 0

xm
(1.36)

The reduced system is then obtained by truncating this system. An example is
given for an order 2 reduced model in 1.37

dxmr

dt
=
(
−9.4 + 10.5i 0

0 −9.4− 10.5i

)
xmr +

(
0.9− 0.6i
0.9 + 0.6i

)
u

yr =


0 0

0.006− 0.028i 0.006 + 0.028i
0 0
0 0

xmr

(1.37)
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One can remark that the system is completely different from the initial one. The
matrices describing it are now complex and not real any more.

1.2.2 Balanced truncation and singular perturbation approxi-
mation

The method presented here is called balanced truncation. It was introduced in 1981
in [41]. It has been widely used since, in different fields, including power systems [42].
Various versions of this method exist [43] but they are all based on the same principles,
which are presented here.

A similar method, the singular perturbation approximation, was introduced in [44].
It is also presented here.

The system to reduce is an LTI system in (1.38). Like the modal truncation, the
balanced truncation can only be applied on linear systems.

dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(1.38)

The reachability and observability Gramians

The first step of the method is to define the reachability Gramian P and the ob-
servability Gramian Q in (1.39).


P =

∫ +∞

0
eAtBBT eA

T tdt

Q =
∫ +∞

0
eA

T tCTCeAtdt
(1.39)

They can be calculated by solving the following Lyapunov equations in (1.40), of
which they are solutions. AP + PAT +BBT = 0

ATQ+QA+ CTC = 0
(1.40)

Consider the system expressed in another basis b in (1.41).
dxb
dt

= Abxb +Bbu

y = Cbxb +Du
(1.41)

The variables and matrices in this new basis are calculated using the Tb matrix as
in (1.42).
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

xb = Tbx

Ab = TbAT
−1
b

Bb = TbB

Cb = CT−1
b

(1.42)

The Gramian in the new basis are then expressed as follows in (1.43). They change
when the basis changes. Pb = TbPT

T
b

Qb = T−Tb QT−1
b

(1.43)

Hankel Singular Values

The Hankel Singular Values (HSV) are defined as the square root of the eigenvalues
of the product PQ and written σi like in (1.44).

σi =
√
λi(PQ) (1.44)

One can remark that in the basis b, the HSV do not change, as explained in (1.45).

σib =
√
λi(PbQb)

=
√
λi(TbPT Tb T−Tb QT−1

b )

=
√
λi(TbPQT−1

b )

=
√
λi(PQ)

= σi

(1.45)

The fact that the HSV don’t change when the basis changes is very important. It
means that they are an inherent characteristic of the system.

Balancing transformation

Consider an upper triangular matrix U and a lower triangular matrix L so that
P = UUT and Q = LLT .

An SVD decomposition of the product UTL is made in (1.46).

UTL = ZΣY T (1.46)

The balancing transformation Tb is then defined in (1.47).

Tb = Σ 1
2ZTU−1 (1.47)

It has been proven that in the new basis b, the Gramians are equal and diagonal,
as in (1.48). And the diagonal contains the HSV of the system.
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Pb = Qb = diag(σi) (1.48)
The way the system is expressed in the new basis is called a balanced realization.

The other way in (1.38) is called a physical realization in this report.

Most reachable and observable states

In these conditions, a HSV σi is associated to each state in the balanced realization
xbi

. It is a positive real which gives the degree of reachability and observability of this
state. The bigger it is, the more reachable and observable the considered state is.

The system is rearranged so that xb1 is the most observable and reachable state
(biggest HSV) and xbNdiff

the less observable and reachable state (lowest HSV).
In these conditions, the model can be expressed as in (1.49). In this model xb1

contains the most observable and reachable states.

d

dt

(
xb1

xb2

)
=
(
Ab11 Ab12

Ab21 Ab22

)(
xb1

xb2

)
+
(
Bb1

Bb2

)
u

y =
(
Cb1 Cb2

)(xb1

xb2

)
+Du

xb1 ∈ RNdiff1 , xb2 ∈ RNdiff2 , u ∈ Rp, y ∈ Rq

(1.49)

Balanced truncation

The balanced truncation consists in truncating the model in (1.49) and keeping only
the most observable and reachable states xb1 . This leads to the reduced model in (1.50).

dxr
dt

= Ab11xr +Bb1u

yr = Cb1xr +Du
(1.50)

Singular perturbation approximation

The singular perturbation approximation consists in transforming the less observable
and reachable states xb2 into a singular perturbation by replacing their derivative part
by 0. This gives the reduced model in (1.51).

(
dxr

dt

0

)
=
(
Ab11 Ab12

Ab21 Ab22

)(
xr
xb2

)
+
(
Bb1

Bb2

)
u

yr =
(
Cb1 Cb2

)(xr
xb2

)
+Du

xr ∈ RNdiff1 , xb2 ∈ RNdiff2 , u ∈ Rp, y ∈ Rq

(1.51)

By injecting the algebraic equations of xb2 into the differential equations of xr, the
model in (1.52) is obtained.
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
dxr
dt

= (Ab11 − Ab12A
−1
b22Ab21)xr + (Bb1 − Ab12A

−1
b22Bb2)u

yr = (Cb1 − Cb2A
−1
b22Ab21)xr + (D − Cb2A

−1
b22Bb2)u

(1.52)

While the balanced truncation provides a reduced-order system which approximates
the original well at high frequencies, the singular perturbation approximation provides
a good approximation at low frequencies [45].

Error

Both the balanced truncation and the singular perturbation approximation have a
bounded error, which is explained in (1.53). In this equation, the reduced system is
supposed to be of order k, that is with the k most observable and reachable states.

||Y (s)− Yr(s)|| ≤ 2(σk+1 + σk+2 + ...+ σNdiff−1 + σNdiff
) (1.53)

Moreover both methods guarantee a stability preservation [46]. It means that if the
full model is stable then the reduced model is stable as well.

Illustration with an order 4 model

To illustrate the method, the order 4 LTI model in 1.54 is considered.

dx

dt
= Ax+Bu =


−50 −25 5 1
−10 −20 1 1

5 1 −10 −10
10 1 10 −10

x+


1
1
1
1

u

y =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

x
(1.54)

The HSV of the systems are computed and the balanced truncation is done for a
desired size of 2 (In chapter 3, when describing the second strategy, more details are
given on how to compute the balanced realization). The obtained reduced model by
balanced truncation is given in 1.55.

dxmr

dt
=
(
−11.64 9.19
−23.21 −144.8

)
xmr +

(
0.8215
−0.9359

)
u

yr =


0 0

0.8701 −0.5459
0 0
0 0

xmr

(1.55)

Again, a projection and a basis change have been done and the reduced model is
not physical any more, which complicates the analysis.
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1.2.3 Proper orthogonal decomposition
The method presented in this subsection is called Proper Orthogonal Decomposition

(POD) [47]. It has mainly been used for fluid mechanics [48]. Then the method gained
some interest in electrical engineering, more precisely in magnetics [49] and to study
semiconductors [50]. In the power system community, the method has been little used
[51].

To start with, a nonlinear Ordinary Differential Equation (ODE) model is considered
in (1.56). 

dx

dt
= f(x, u)

y = g(x, u)
x ∈ RN , u ∈ Rp, y ∈ Rq

(1.56)

One can remark that unlike the two previous MOR methods, the POD can be
applied to nonlinear models.

Snapshots matrix, eigenvalue decomposition and approximation

The first step of the method is to collect snapshots from a simulation of the full
model or an experimentation. This gives the X matrix in (1.57).

X =


x1(t1) . . . x1(tNtime

)
... . . . ...

xN(t1) . . . xN(tNtime
)

 (1.57)

In this matrix the number of time steps Ntime should be way larger than the number
of variables N .

An EVD of the matrix XXT is performed in (1.58).XX
T = UΣV

XXT ∈ RN×N ,Σ ∈ RN×N , U ∈ RN×N , V ∈ RN×N (1.58)

In this equation, Σ is diagonal and contains the eigenvalues of XXT . They corre-
spond to the square of the singular values of X.

The equation (1.58) is reorganised in (1.59) so that σ1 is the largest eigenvalue of
XXT and σN the smallest. In this equation, Σk = diag(σ1, ..., σk) contains the k largest
eigenvalues of XXT . 

XXT =
(
Uk Urest

)(Σk 0
0 Σrest

)(
Vk
Vrest

)
= UkΣkVk + UrestΣrestVrest

(1.59)

The matrix XXT can be approximated in (1.60).
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XXT ≈ UkΣkVk (1.60)

Model order reduction

The MOR by POD consists in defining the reduced system in (1.61).

dxr
dt

= Vkf(Ukxr, u)

yr = g(Ukxr, u)
xr ∈ Rk, u ∈ Rp, yr ∈ Rq

(1.61)

Functions fr and gr are defined in (1.62).
{
fr(xr, u) = Vkf(Ukxr, u)
gr(xr, u) = g(Ukxr, u)

(1.62)

This allows writing the new reduced system in (1.63).

dxr
dt

= fr(xr, u)

yr = gr(xr, u)
xr ∈ Rk, u ∈ Rp, yr ∈ Rq

(1.63)

The smaller k is, the more reduced the model is. To choose k, the decay of the
eigenvalues of XXT must be looked at. For instance, consider that the ten eigenvalues
represented in Figure 1.6 are the eigenvalues of XXT . This figure shows that a good
choice for k could be 3 or 6 because of the way the eigenvalues decrease.
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Figure 1.6: Examples of eigenvalues of XXT
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Remarks on the method

Unlike the modal truncation and the balanced truncation, the POD does not guar-
antee the stability preservation.

Moreover, as it is based on a snapshots matrix resulting from a specific simulation
test case or experimentation, the reduced model obtained with a POD is only valid for
this particular simulation. If the test case is not the same (a change in the simulated
event for instance), the POD has to be done again. This makes this method not very
flexible.

Finally, the induced error is not bounded a priori. There is not known maximum
value for the error like it is the case for the modal truncation or the balanced truncation
and the singular perturbation approximation.

Illustration with an order 4 model

To illustrate the method, the order 4 LTI model in 1.64 is considered.

dx

dt
= Ax+Bu =


−50 −25 5 1
−10 −20 1 1

5 1 −10 −10
10 1 10 −10

x+


1
1
1
1

u

y =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

x
(1.64)

The system is first simulated with a step in the input u. A snapshot matrix X is
created and U2 and V2 are computed (an order 2 model is looked for). The reduced
model is then given in 1.65.



dxmr

dt
=
(
−20 −10
−25 −50

)
xmr +

(
1
1

)
u

yr =


0 0
1 0
0 0
0 0

xmr

(1.65)

1.2.4 Krylov methods
The last presented methods are the Krylov methods [52], which are also referred

to as the moment matching methods. They were introduced by Freund [53] in several
papers and are now widely used in many fields, including power systems [54,55]. They
are briefly described in this subsection.
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To begin with, a LTI system is considered in (1.66). To simplify, the system is
considered to be Single Input Single Output (SISO) instead of Multiple Inputs Multiple
Outputs (MIMO). In other words, p = 1 and q = 1 here.


dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(1.66)

This system is the system to reduce. The moment matching MOR methods are
presented in the following.

The Laplace transformation is applied to this system, which gives the following
transfer function F (s) in (1.67).

Y (s) = (C(INdiff
s− A)−1B +D)U(s) = F (s)U(s) (1.67)

As the system is SISO, this transfer function is a scalar.

Moment matching

The transfer function F (s) is expanded in a Laurent series around s0 ∈ C. This
gives (1.68).

F (s) =
∑
n≥0

an(s− s0)n (1.68)

In this equation, the an are called the moments of F at s0.
The idea of MOR by moment matching is to find a transfer function Fr whose k

first moments at s0 match the k first moments at s0 of F , with k << Ndiff . This is
summed up in (1.69) and (1.70).

Fr(s) =
∑
n≥0

arn(s− s0)n (1.69)

∀n ∈ {1, ..., k}, arn = an (1.70)

If s0 = +∞, the moments are called Markov parameters and the process of moment
matching is called partial realization.

If s0 = 0 the process of moment matching is called Padé approximation.
If s0 is an arbitrary complex the process of moment matching is called rational

interpolation.
One should notice that the calculation of the moments can be problematic and time-

consuming. However, methods exist to find Fr without calculating the moments. One
can cite the Arnoldi or the Lanczos procedures that are presented in [45].
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Remarks on the methods

Several remarks can be made on the Krylov methods:

• The computation time to obtain the reduced model is faster than for SVDmethods
like the balanced truncation.

• There is no error bound with these methods [56].

• The stability may not be preserved. The reduced model can be unstable while
the full model is stable.

1.2.5 Methods comparison and applicability on transmission
systems with a high PE penetration

This section has presented the most used MOR methods, their advantages and their
drawbacks. Other methods like the Proper Generalised Decomposition (PGD) [57], the
Hankel-norm approximation [58] or the SVD-Krylov methods [59] exist in the literature,
but they are less used in power systems than the methods presented here.

Table 1.1 sums up the different characteristics of the presented methods, as well as
the desired characteristics of a MOR methods for the case under consideration, i.e. the
study of transmission systems with a large PE penetration.

The expected characteristics for a MOR are an applicability on nonlinear models
(power systems are indeed nonlinear), a preservation of the physical variables to sim-
plify the analysis and the tuning of new controllers directly on the reduced models, a
poles preservation around the operating point to keep the main physical dynamics and
guarantee that this operating point remains stable and a knowledge of the error.

It can be seen in this table that none of the classical methods meets these require-
ments.

Applicability on Variables Poles Stability Bounded
nonlinear models preservation preservation preservation error

Modal No No Yes Yes Yes
Balanced No No No Yes Yes
POD Yes No No No No
Krylov No No No No No

Expected Yes Yes Yes Yes Yes

Table 1.1: Comparison of the characteristics of the classical MOR methods

To cope with that, research has been made to obtain adequate MOR methods but
none of them is totally satisfying.

[60] generalizes the balanced truncation to nonlinear models but still changes the
variables of the system with the change of basis and the truncation.
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[61] neglects the second derivative of some state variables to reduce the order
of the model. This results in a reduced model that preserves the variables of the
system. Moreover, this method tries to keep the poles of the system as much as possible.
However, it is only applicable on linear system and there is no guarantee that the given
reduced model is the best one for the given size. Some dynamics are indeed neglected
based on a time-scale separation, which might not be the best solution, especially with
PE (see chapter 4 for some examples).

[62] neglects the first derivative of some variables, based on the same time-scale
separation as the previous method. The same remarks apply on this method.

[63] proposes a mix between the modal and the balanced truncation. Yet it doesn’t
keep the variables of the system as it is still based on a truncation.

[64] mixes a MOR by moment matching with a poles preservation. But as for the
other methods, it doesn’t keep the variables of the system.

[65] preserves the poles but not the variables as it is based on a truncation.
[66] uses sparse representations, which preserves the variables of the system. How-

ever, the stability is not guaranteed.
To sum up, each of the solutions to cope with the drawbacks of the classical MOR

methods has its own advantages and drawbacks. The aim of this thesis is to propose
new MOR methods that combine as much as possible the advantages of all of them:
a preservation of the physical variables and the poles, a guarantee that the operating
point remains stable and an applicability on nonlinear models.
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1.3 Chapter conclusion
In this chapter, a literature review on the existing tools and methods to simulate

and analyse power systems has been made.
The analysis tools, which are the small-signal stability analysis, the sensitivity anal-

ysis and the participation factors are used in the rest of this report.
Concerning the simulation tools, the EMT programs are usually used to simulate

PE on a local scale, the phasor approximation is usually used to simulate large systems
with SM and the dynamic phasors are not suitable here as they induce a multiplication
of the variables which makes the analysis more complicated than what is expected. The
question is thus to find how to simulate a large system with a high PE penetration.

The idea is to start from the EMT models and make some adequate approximations
(like the phasor approximation for SM) to have a simplified model of a transmission
system with a high PE penetration. That is why a review of the classical MOR methods
has been made in this chapter to find one that could be suitable for the case under
consideration. The conclusion is that none of them is because they alter the structure
and the variables of the system which is a problem for the analysis. Alternatives have
been found in the literature but they are not completely satisfying.

As a consequence, the focus of this thesis is on the development of MOR methods
that meet some requirements that are specific to the study of transmission systems with
a large PE penetration. These developed methods need to preserve the parameters of
the system as well as its variables to simplify the analysis and allow to tune controllers
directly on the reduced models. It means that basis changes, truncations and projections
are out of concern from now on. Moreover, they need to be applicable on nonlinear
models and to preserve some poles of the system around the operating point to ensure
that this operating point remains stable and keep some important physical dynamics.
Finally they should easily be implemented in the classical DAE solvers (see chapter
4 for more explanations). These new methods are developed using the analysis tools
presented in this chapter and they are inspired by the existing MOR methods to keep
their advantages and try to get rid of their drawbacks for an application to power
systems with a large PE penetration.
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CHAPTER 2

Modelling of transmission systems with a high power electronics
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This chapter presents the different models that are used in this report. For each
model, its differential and algebraic equations are given, as well as some block diagrams
to illustrate them. In all cases, the equations are written in the DQ0 reference frame
(the frequency/angle are specified in each case) and in pu (the basis is also specified in
each case) to simplify the linear analysis and accelerate the simulation (see Appendix for
more explanations). This is possible because all the models are considered as balanced.
This hypothesis is made for the sake of simplicity but the developed MOR methods are
easily applicable to unbalanced systems, provided that the model describing them is
given.

The first section presents the basic elements in a power system: branches, trans-
formers, loads, shunt capacitors and synchronous machines. The second section presents
the different models used for PE converters: grid feeding two-level voltage source con-
verter, grid forming converter and Modular Multilevel Converter (MMC). Finally, the
third section presents how a complete model is deduced when all these elements are
assembled in a transmission system.

2.1 Modelling of the basic elements of a transmis-
sion system

In this section, the models that are used for the branches, transformers, loads, shunt
capacitors and synchronous machines are presented.

2.1.1 Branches
The modelling of the lines has been a particularly important topic in studying

transmission systems [67] and it is still today [68]. Several models exist, from the most
complex one to the simplest one. In this thesis, two models are used: a pi-line model
and an RL-line model. They are presented in the following.

Pi-line model

The Pi-line model is presented in Figure 2.1. This model takes into account the
capacitive effects of the line.

i RL

v1 v2

ii ij

C
2

C
2

Figure 2.1: Pi-line model
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The equations modelling this Pi-line are given in the following in pu and in the DQ0
reference frame of a frequency ω.

L

ωb

did
dt

= v1d
− v2d

−Rid + ωLiq (2.1)

L

ωb

diq
dt

= v1q − v2q −Riq − ωLid (2.2)

C

2ωb
dv1d

dt
= iid − id + ω

C

2 v1q (2.3)

C

2ωb
dv1q

dt
= iiq − iq − ω

C

2 v1d
(2.4)

C

2ωb
dv2d

dt
= id − ijd + ω

C

2 v2q (2.5)

C

2ωb
dv2q

dt
= iq − ijq − ω

C

2 v2d
(2.6)

RL-line model

The RL-line model is presented in Figure 2.2. This model only takes into account
the resistance and the inductive effect in the line.

iRL

v1 v2

Figure 2.2: RL-line model

The equations modelling this RL-line are given in the following in pu and in the
DQ0 reference frame of a frequency ω.

L

ωb

did
dt

= v1d
− v2d

−Rid + ωLiq (2.7)

L

ωb

diq
dt

= v1q − v2q −Riq − ωLid (2.8)

Summary

Two models of lines have been presented and are used in the following for the
simulation. In each case, the dynamics of the line is taken into account (it is not a
phasor model). The Pi-line model is more detailed than the RL-line model. In chapter
4, when doing a simulation, it is said which model is used for the lines.
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2.1.2 Transformers
As for the lines, the choice of the model for transformers is a very important topic

[69]. In this report, a generalized RL-model is used to model them in pu and in the
DQ0 reference frame of a frequency ω. A phase shift δ can be taken into account with
this model, as well as a change in the transformer ratio r. This model is represented in
Figure 2.3.

iRL

v′1 v′2

Ratio Phase
shift

v1 v2

Figure 2.3: Transformer model

The equations corresponding to this model are presented in the following.

L

ωb

did
dt

= v′1d
− v′2d

−Rid + ωLiq (2.9)

L

ωb

diq
dt

= v′1q
− v′2q

−Riq − ωLid (2.10)
(
v′1d

v′1q

)
= 1
r

(
v1d

v1q

)
(2.11)

(
v′2d

v′2q

)
=
(
cos(δ) −sin(δ)
sin(δ) cos(δ)

)(
v2d

v2q

)
= R(δ)

(
v2d

v2q

)
(2.12)

One can note that in nominal conditions r = 1 in pu. And if the phase shift is equal
to 0, the model of the transformer is a simple RL-line model.

2.1.3 Loads
In this report, the loads are modelled as RL-loads, as shown in Figure 2.4.

i

R

L

v

Figure 2.4: Load model
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The dynamic equations modelling this load are given in the following in pu and in
the DQ0 reference frame of a frequency ω.

L

ωb

did
dt

= vd −Rid + ωLiq (2.13)

L

ωb

diq
dt

= vq −Riq − ωLid (2.14)

If the active and reactive power consumed by a load in steady state are known, the
resistance and inductance modelling it can be calculated so that the powers consumed
by the equivalent RL model match the powers actually consumed by the load.

2.1.4 Shunt capacitors
In transmission systems there can be shunt capacitors that are put to help maintain-

ing the voltage at a certain level. In this report, they are modelled as simple capacitors,
as shown in Figure 2.5.

Cv

i

Figure 2.5: Shunt capacitor model

The equations modelling this shunt capacitor are given in the following in pu and
in the DQ0 reference frame of a frequency ω.

C

ωb

dvd
dt

= id + ωCvq (2.15)

C

ωb

dvq
dt

= iq − ωCvd (2.16)

2.1.5 Synchronous machines
In one test case in chapter 4, there is a PE converter but also one SM to study

the interactions between the two. This is why a good synchronous machine model is
needed. It is presented here and is taken from [11]. In this model, the equations are
given in pu and in the reference frame of a frequency ω, the frequency of the SM rotor.
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The general structure, detailed hereafter, is given in Figure 2.6. It is made of the
machine itself, an RL line modelling a transformer and a control. Each part is detailed
in the following.

SM
i

v vg

Lg Rg

Control
ω∗

V ∗

v ω
VeΓm

P ∗

Figure 2.6: Structure of the synchronous machine and its control

Modelling of the machine

The equations modelling the physical part of the SM are given here. The first six
equations model the dynamics of the fluxes in the SM.

1
ωb

dφd
dt

= vd +Rsid + ωφq (2.17)

1
ωb

dφq
dt

= vq +Rsiq − ωφd (2.18)

1
ωb

dφfd

dt
= Ve −Rf ifd

(2.19)

1
ωb

dφ1d

dt
= −R1d

i1d
(2.20)

1
ωb

dφ1q

dt
= −R1q i1q (2.21)

1
ωb

dφ2q

dt
= −R2q i2q (2.22)

The following six equations model the calculation of the fluxes in the SM.

φd = −Ldid + Lad
ifd

+ Lad
i1d

(2.23)

φq = −Lqiq + Laq i1q + Laq i2q (2.24)

φfd
= −Lad

id + Lfd
ifd

+ Lad
i1d

(2.25)
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φ1d
= −Lad

id + Lad
ifd

+ L1d
i1d

(2.26)

φ1q = −Laq iq + L1q i1q + Laq i2q (2.27)

φ2q = −Laq iq + Laq i1q + L2q i2q (2.28)

The following equation models the calculation of the electric torque.

Γe = φdiq − φqid (2.29)

The hereafter two equations model the RL line that connects the SM to the grid.

Lg
ωb

did
dt

= vd − vgd
−Rgid + ωLgiq (2.30)

Lg
ωb

diq
dt

= vq − vgq −Rgiq − ωLgid (2.31)

Finally, the last two equations model the mechanical dynamics of the SM.

2J dω
dt

= Γm − Γe − kd(ω − ωg) (2.32)

1
ωb

dδ

dt
= ω − ωg (2.33)

Modelling of the control

The first six equations model the frequency control of the SM. It uses a droop
control.

md∆P ∗ = ω∗ − ω (2.34)

Td
d∆Pd
dt

= ∆P ∗ −∆Pd (2.35)

Tse
d∆Ps
dt

= P ∗ −∆Ps −∆Pd (2.36)

Tac
d∆Pa
dt

= ∆Ps −∆Pa (2.37)

T1
d∆Pa
dt

+ ∆Pa = T2
dΓm
dt

+ Γm (2.38)

These equations are summed up in the block diagram in Figure 2.7.
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ω∗
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md

∆P ∗
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1+Tds

∆Pd
−
+

P ∗

1
1+Tses

∆Ps
1

1+Tacs

∆Pa
1+T1s
1+T2s

Γm

Figure 2.7: Structure of the frequency control of the synchronous machine

The following equations model the voltage control of the SM.

V =
√
v2
d + v2

q (2.39)

Tr
dVf
dt

= V − Vf (2.40)

u∗ = V ∗ − Vf − Vef
(2.41)

Ta
du∗f
dt

= Kau
∗ − u∗f (2.42)

Te
dVe
dt

= Keu
∗
f − Ve (2.43)

Kf
dVe
dt

= Vef
+ Tf

dVef

dt
(2.44)

These equations are summed up in the block diagram in Figure 2.8.

−
−

+

V
1

1+Trs

Vf

V ∗

u∗
Ka

1+Tas

u∗
f Ke

1+Tes
Ve

Kfs
1+Tfs

Vef

Figure 2.8: Structure of the voltage control of the synchronous machine

Parameters

The parameters of the model are given in Table 2.1.
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Ld 1.22 Lq 1.16 L1d
1.74 L1q 1.52

L2q 1.48 R1d
0.067 R1q 0.0093 R2q 0.023

Lad
1.21 Laq 1.15 Lfd

1.4 Rfd
5e−4

J 4.77 kd 3 ωb 314.159 rad/s Rs 0.004
Rg 0.0055 Lg 0.17 ωg 1 T1 1.4
T2 5 md −0.04 Td 0.083 Tse 0.2
Tac 0.05 Tr 0.06 Ka 25 Ta 0.2
Ke −0.06 Te 0.68 Kf 0.11 Tf 0.35

Table 2.1: Parameters of the synchronous machine

Summary

The SM model studied in this report is an order 18 model. This model contains the
modelling of the physical part of the machine as well of its control, made of a frequency
regulation and a voltage regulation.
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2.2 Converters models
As presented in the introduction, this section focuses on the models of PE converters.

The first subsection presents the model of a grid feeding converter, the second one the
model of a grid forming converter and the third one the model of an MMC.

2.2.1 Grid feeding converter
A grid feeding [70] or grid following converter is a PE converter that just injects

power/current into the grid. Unlike the grid forming converter it is considered as a
current source and not voltage source because it does not create the voltage. It is
the most used type of converter today, mainly to connect renewable sources to the
system [71].

General structure of the grid feeding converter

The structure of the grid feeding converter studied in this thesis and its control is
presented in Figure 2.9.

This figure shows that the grid feeding converter is made of the DC/AC converter
itself (here the DC part is modelled as a perfect voltage source), an RLC filter, an RL
transformer and the control part is made of an external loop, a Phase-Locked Loop
(PLL) to measure the angle and the frequency of the grid, and a current loop. All these
parts are presented in the following.

vDC vm e vg

Lf Rf Lt Rt ig

Cf

is
v∗m

DC

AC

is

q∗

e

i∗s

ωPLL

e ig

p∗

loop
Current

External
loop
+

PLL

Figure 2.9: Structure of the grid feeding converter and its control

Modelling of the physical part of the converter

The equations modelling the RLC filter, the RL transformer and the DC/AC con-
verter are given in the following. These equations are given in the DQ0 reference frame
of the angular frequency ωPLL of the PLL. It can be seen that the DC/AC converter is
supposed to be perfect.
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Lf
ωb

disd

dt
= vmd

− ed −Rf isd
+ ωPLLLf isq (2.45)

Lf
ωb

disq

dt
= vmq − eq −Rf isq − ωPLLLf isd

(2.46)

Cf
ωb

ded
dt

= isd
− igd

+ ωPLLCfeq (2.47)

Cf
ωb

deq
dt

= isq − igq − ωPLLCfed (2.48)

Lt
ωb

digd

dt
= ed − vgd

−Rtigd
+ ωPLLLtigq (2.49)

Lt
ωb

digq

dt
= eq − vgq −Rtigq − ωPLLLtigd

(2.50)

v∗md
= vmd

(2.51)

v∗mq
= vmq (2.52)

Modelling of the PLL

The grid feeding converter needs to measure the frequency and the angle of the
voltage to inject a current at the same frequency. It is called the synchronisation. To
do so, a PLL is used. Its equations are given in the following.

dMPLL

dt
= KiP LL

eq (2.53)

ωPLL = KpP LL
eq +MPLL

ωb
+ ωg (2.54)

1
ωb

dθPLL
dt

= ωPLL − ωg (2.55)

These equations are summed up in the block diagram in Figure 2.10.

KiPLL
1
s

MPLL

KpPLL

+
+

+
+

eq

ωg

1
ωb

ωPLL
+
−

ωg

ωb

s θPLL

Figure 2.10: Structure of the PLL of the grid feeding converter
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Modelling of the external loop

The external loop is made of two parts: one controlling the active power and one
controlling the reactive power. Its equations are given in the following. The first two
equations model the active and the reactive power, that are then controlled using two
PI controllers.

p = edigd
+ eqigq (2.56)

q = eqigd
− edigq (2.57)

dMp

dt
= Kipq(p∗ − p) (2.58)

dMq

dt
= Kipq(q∗ − q) (2.59)

i∗sd
= Kppq(p∗ − p) +Mp (2.60)

i∗sq
= Kppq(q∗ − q) +Mq (2.61)

These equations are summed up in the block diagram in Figure 2.11.

Kipq
1
s

Mp

Kppq

+
+

+
−

p

p∗ i∗sd

Kipq
1
s

Mq

Kppq

+
+

+
−

q

q∗ i∗sq

Figure 2.11: Structure of the external loop of the grid feeding converter

Modelling of the current loop

The equations of the current loop are given in the following. They use PI controllers
to create the voltage reference of the DC/AC converter using the current reference given
by the external loop.

dMCLd

dt
= KiCL

(i∗sd
− isd

) (2.62)
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dMCLq

dt
= KiCL

(i∗sq
− isq) (2.63)

τf
dedf

dt
+ edf

= ed (2.64)

τf
deqf

dt
+ eqf

= eq (2.65)

v∗md
= edf

+KpCL
(i∗sd
− isd

)− ωPLLLf isq +MCLd
(2.66)

v∗mq
= eqf

+KpCL
(i∗sq
− isq) + ωPLLLf isd

+MCLq (2.67)
These equations are summed up in the block diagram in Figure 2.12.

+
−

i∗sd
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KiCL
1
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+i∗sq KiCL

KpCL

1
s

MCLq

−

isq

KpCL

+
+

+

+
+

+

1
1+τfs

ed

1
1+τfs

eq

+
−

Lf

+
+

Lf

×

×

ωPLL

v∗md

v∗mq

Figure 2.12: Structure of the current loop of the grid feeding converter

Parameters

The parameters are given in pu in the basis Sb, Vb corresponding to the nominal
power and voltage of the converter. They are summed up in Table 2.2.

ωb 314.159 rad/s Lf 0.1 Rf 0.015 Cf 0.11
Lt 0.1 Rt 0.0075 τf 0.0003 s ωg 1

KpP LL
120 KiP LL

3603 Kppq 1.5 Kipq 150
KpCL

0.14 KiCL
60.87

Table 2.2: Parameters of the grid feeding converter
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Summary

In this subsection, the equations of the grid feeding converter are given. It leads to
a DAE model with 14 differential equations/variables: it is thus an order 14 model.

2.2.2 Grid forming converter
Grid forming converter is the name given to the converters that form the voltage

in a power system. They are designed to act as voltage sources instead of current
sources (which is the case for the grid feeding converters) and therefore replace the SM
(which create the voltage in today’s power systems). They have been mainly developed
for micro-grids [72, 73] at first but are now of particular interest in power systems [74]
because of the fast increase in the PE penetration in transmission systems, which creates
a need for grid forming capability.

General structure of grid forming converters

The structure of the grid forming converter studied in this thesis and its control is
presented in Figure 2.13. It is a classical structure that can be found in [27] and [13].

This figure shows that the grid forming converter is made of the DC/AC converter
itself (here the DC part is modelled as a perfect voltage source), an RLC filter, an
RL transformer and the control part is made of an external loop, a voltage loop and
a current loop (this structure is called a cascaded loops structure). All these parts are
presented in the following.

vDC vm e vg

Lf Rf Lt Rt ig

Cf

is
v∗m

DC

AC

is

|e|∗
ω

e

i∗s

ω

e ig

e∗

e ig

q∗

p∗

ω∗

loop
Current Voltage

loop
External
loop

Figure 2.13: Structure of the grid forming converter and its control

Modelling of the physical part of the converter

The equations modelling the RLC filter, the RL transformer and the DC/AC con-
verter are given in the following. These equations are given in the DQ0 reference frame

51



of the angular frequency ω given by the external loop. It can be seen that the DC/AC
converter is supposed to be perfect.

Lf
ωb

disd

dt
= vmd

− ed −Rf isd
+ ωLf isq (2.68)

Lf
ωb

disq

dt
= vmq − eq −Rf isq − ωLf isd

(2.69)

Cf
ωb

ded
dt

= isd
− igd

+ ωCfeq (2.70)

Cf
ωb

deq
dt

= isq − igq − ωCfed (2.71)

Lt
ωb

digd

dt
= ed − vgd

−Rtigd
+ ωLtigq (2.72)

Lt
ωb

digq

dt
= eq − vgq −Rtigq − ωLtigd

(2.73)

v∗md
= vmd

(2.74)

v∗mq
= vmq (2.75)

Modelling of the external loop

The external loop is made of two parts: an active power droop control and a reactive
power droop control.

The equations of the active power droop control are given in the following. It is
made of a first equation modelling the active power injected by the converter, a second
one modelling the measure of this power, a third one modelling the droop control and
a fourth one modelling the angle of the converter.

p = edigd
+ eqigq (2.76)

dpm
dt

+ ωfpm = ωfp (2.77)

ω = ω∗ +mp(p∗ − pm) (2.78)

1
ωb

dθ

dt
= ω − ωg (2.79)

These equations are summed up in the block diagram in Figure 2.14
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Figure 2.14: Structure of the active power droop control of the grid forming converter

The equations of the reactive power droop control are given in the following. It is
a made of a first equation modelling the reactive power injected by the converter, a
second one modelling the measure of this power, a third and a fourth one modelling an
active damping and a fifth and a sixth one modelling the reactive power droop.

q = eqigd
− edigq (2.80)

dqm
dt

+ ωfqm = ωfq (2.81)

dMADd

dt
= ωff (Kff igd

−MADd
) (2.82)

dMADq

dt
= ωff (Kff igq −MADq) (2.83)

e∗d = |e|∗ +mq(q∗ − qm) +MADd
−Kff igd

(2.84)

e∗q = MADq −Kff igq (2.85)

These equations are summed up in the block diagram in Figure 2.15.

ωf

ωf+s
q

qm

q∗

−
+

mq

igd KFF
ωff

ωff+s

MADd

igq KFF
ωff

ωff+s

MADq

+
+

|e|∗

+
+
−

e∗d

+
−

e∗q

Figure 2.15: Structure of the reactive power droop control of the grid forming converter
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One can note that instead of using an active power droop control, some authors
use a Virtual Synchronous Machine (VSM) [75], which mimics the behaviour of a SM.
Some comparisons have been made with the droop control [76] and equivalences can be
found between the two methods [77].

Modelling of the voltage loop

The equations of the voltage loop are given in the following. It uses PI controllers
to create the current reference for the current loop using the voltage reference as an
input.

dMV Ld

dt
= KiV L

(e∗d − ed) (2.86)

dMV Lq

dt
= KiV L

(e∗q − eq) (2.87)

i∗sd
= KFFi

igd
+KpV L

(e∗d − ed)− ωCfeq +MV Ld
(2.88)

i∗sq
= KFFi

igq +KpV L
(e∗q − eq) + ωCfed +MV Lq (2.89)

These equations are summed up in the block diagram in Figure 2.16.

+
−

e∗d

ed

KiV L
1
s

MV Ld

+e∗q KiV L

KpV L

1
s

MV Lq

−

eq

KpV L

+
+

+

+
+

+

KFFi
igd

KFFi
igq

+
−

Cf

+
+

Cf

×

×
ω

i∗sd

i∗sq

Figure 2.16: Structure of the voltage loop of the grid forming converter
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Modelling of the current loop

The equations of the current loop are given in the following. It uses PI controllers to
create the voltage reference of the DC/AC converter using the current reference given
by the voltage loop.

dMCLd

dt
= KiCL

(i∗sd
− isd

) (2.90)

dMCLq

dt
= KiCL

(i∗sq
− isq) (2.91)

v∗md
= KFFved +KpCL

(i∗sd
− isd

)− ωLf isq +MCLd
(2.92)

v∗mq
= KFFveq +KpCL

(i∗sq
− isq) + ωLf isd

+MCLq (2.93)

These equations are summed up in the block diagram in Figure 2.17.

+
−

i∗sd
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KiCL
1
s

MCLd

+i∗sq KiCL

KpCL

1
s

MCLq

−
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KpCL

+
+

+

+
+

+

KFFv
ed

KFFv
eq

+
−

Lf

+
+

Lf

×

×
ω

v∗md

v∗mq

Figure 2.17: Structure of the current loop of the grid forming converter

Parameters

The parameters are given in pu in the basis Sb, Vb corresponding to the nominal
power and voltage of the converter. They are summed up in Table 2.3 and are taken
from [78].
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ωb 314.159 rad/s Lf 0.15 Rf 0.005 Cf 0.066
Lt 0.15 Rt 0.005 mp 0.03 mq 0.0001
ωf 31.4 rad/s ωff 16.66 rad/s KFF 0.01 KFFi

1
KpV L

0.8 KiV L
1.16 KFFv 1 KpCL

0.7388
KiCL

1.19 ωg 1

Table 2.3: Parameters of the grid forming converter

Summary

In this subsection, the equations of the grid forming two-level voltage source con-
verter are given. It leads to a DAE model with 15 differential equations/variables: it
is an order 15 model.

One advantage of this model is that it has been validated with experimentations
during the MIGRATE project [79]. It means that if the reduced models obtained with
the developed methods are validated by a comparison with this detailed model, they
are also validated with the experimentations.

2.2.3 Modular multilevel converter

The Modular Multilevel Converter (MMC) is a N-level voltage source converter.
Because it has a lot of levels, there is less need to filter the output voltage which is a
great advantage. However, the control is much more complex than with a 2-level VSC.

Several models exist for the MMC. Some are very detailed and therefore complex
[80]. Other are averaged [81]. Some are adapted to unbalanced conditions [82]. Others
are state-space model adapted to linear analysis [31]. In this report, a rather simple
model taken from [83] is used.

General structure of the MMC

The structure of the MMC studied in this thesis and its control is presented in Figure
2.18. Exceptionally, the model presented here is not in pu for the sake of simplicity.
When connected to another system, it is easy to put the output and input variables of
the MMC in pu using the base voltages and power given in the parameters in Table
2.4.

The physical part of the converter is made of a DC part, an AC part, and a capacitor
between them that stores energy. The DC control is made of an energy loop and a
current loop. The AC control is made of an external loop, a PLL and a current loop.
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Figure 2.18: Structure of the MMC and its control

Modelling of the physical part of the converter

The equations modelling the physical part of the MMC are given in the following.
The first two equations model the equivalent RL of the AC part. The third equation
models the equivalent RL of the DC part and the fourth one models the storage of
energy in the equivalent capacitor in the MMC.

LAC
digd

dt
= vmd

− vgd
−RACigd

+ ωPLLLACigq (2.94)

LAC
digq

dt
= vmq − vgq −RACigq − ωPLLLACigd

(2.95)

LDC
diDC
dt

= vDC − vmDC
−RDCiDC (2.96)

CeqvCtot

dvCtot

dt
= vmDC

iDC − vmd
igd
− vmq igq (2.97)

v∗mDC
= vmDC

(2.98)

v∗md
= vmd

(2.99)

v∗mq
= vmq (2.100)

Modelling of the PLL

The equations modelling the PLL are given in the following.

dMPLL

dt
= KiP LL

vgq (2.101)

ωPLL = KpP LL
vgq +MPLL + ωg (2.102)
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dθPLL
dt

= ωPLL − ωg (2.103)

These equations are summed up in the block diagram in Figure 2.19.

KiPLL
1
s

MPLL

KpPLL

+
+vgq
+

ωg

ωPLL
+
−

ωg

1
s θPLL

Figure 2.19: Structure of the MMC PLL

Modelling of the external loop

The equations modelling the external loop are given in the following. This loop
gives the current reference using the active and reactive power references.

i∗gd
= p∗

vgd

(2.104)

i∗gq
= − q∗

vgd

(2.105)

These equations are summed up in the block diagram in Figure 2.20.

vgd

p∗ i∗gd

vgd

q∗ i∗gq

÷

÷

1

−1

Figure 2.20: Structure of the external loop of the MMC

Modelling of the energy loop

The equations modelling the energy loop are given in the following. This loop uses
a PI controller to give the DC current reference using the energy reference.

pAC = vgd
igd

+ vgq igq (2.106)

Wtot = v2
ctot

(2.107)
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τf
dWtotf

dt
+Wtotf = Wtot (2.108)

dMW

dt
= KiW (W ∗

tot −Wtotf ) (2.109)

i∗DC =
KpW

(W ∗
tot −Wtotf ) +MW + pAC

vDC
(2.110)

These equations are summed up in the block diagram in Figure 2.21.

KiW
1
s

MW

KpW

+
+

+
−

W ∗
tot

1
1+τfsWtot

+

pAC

÷

vDC

i∗DC

Figure 2.21: Structure of the energy loop of the MMC

Modelling of the AC current loop

The equations modelling the AC current loop are given in the following. This loop
uses PI controllers to give the voltage reference of the DC/AC converter using the
current references given by the external loop.

dMCLd

dt
= KiCL

(i∗gd
− igd

) (2.111)

dMCLq

dt
= KiCL

(i∗gq
− igq) (2.112)

v∗md
= vgd

+KpCL
(i∗gd
− igd

)− ωPLLLACigq +MCLd
(2.113)

v∗mq
= vgd

+KpCL
(i∗gq
− igq) + ωPLLLACigd

+MCLq (2.114)

These equations are summed up in the block diagram in Figure 2.22.
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Figure 2.22: Structure of the AC current loop of the MMC

Modelling of the DC current loop

The equations modelling the DC current loop are presented hereafter. This loop
uses a PI controller to give the DC voltage reference to the DC/DC converter using the
DC current reference given by the energy loop.

dMDCCL

dt
= KiDCCL

(i∗DC − iDC) (2.115)

v∗mDC
= vDC −KpDCCL

(i∗DC − iDC)−MDCCL (2.116)

These equations are summed up in the block diagram in Figure 2.23.

KiDCCL

MDCCL

KpDCCL

−
−

+
−

i∗DC

iDC

+

vDC

v∗mDC

1
s

Figure 2.23: Structure of the DC current loop of the MMC

Parameters

As said before this MMC model is not given in pu for the sake of simplicity. Its
parameters are given in Table 2.4.
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LAC 0.083 H RAC 1.024 Ω LDC 0.033 H RDC 0.683 Ω
KpDCCL

33.54 KiDCCL
1.83e4 KpCL

68.8 KiCL
2.99e4

KpP LL
1.48e−3 KiP LL

3.12e−6 KpW
0.0164 KiW 0.703

τf 0.001 ωg 314.159 rad/s Ceq 1.95e−4 F VbAC
320 kV

VbDC
640 kV Sb 1 GV A W ∗

tot V 2
bDC

Table 2.4: Parameters of the MMC

Summary

In this subsection, the equations of the MMC are given. It leads to a DAE model
with 11 differential equations/variables: it is thus an order 11 model.
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2.3 Modelling of a complete transmission system
The models for all the elements in the studied systems have been presented in this

chapter. The only remaining thing to do is to connect them to each other and derive
the connection equations. Two things need to be taken into account carefully:

• Each element is modelled either in pu in its own basis Sb, Vb or in SI (for the
MMC). As a consequence, a proper basis change is needed to connect two elements
whose models are expressed in different unit bases.

• Each model is derived in the DQ0 reference frame of a frequency ω which can be
different for each element. To connect two elements whose models are expressed
in different DQ0 representation, a proper basis change consisting in a rotation
matrix is needed.

Once the adequate variables of two elements are expressed in the same unit basis
and in the same DQ0 representation, the connection equations can be derived. Most of
the time they consist in the Kirchhoff’s laws.

For example, consider the system in Figure 2.24.

Element 1 Element 2
i1 i2

v1 v2

Figure 2.24: Connection of two elements in a power system

In this example, the model of the first element is expressed in the pu basis Sb1 , Vb1 ,
Ib1 (deduced from the two others) and in the DQ0 representation of a frequency ω1 and
an angle θ1. The model of the second element is expressed in the pu basis Sb2 , Vb2 , Ib2

(deduced from the two others) and in the DQ0 representation of a frequency ω2 and
an angle θ2. The two models output are then expressed in the same pu basis Sb, Vb, Ib
and in the same DQ0 representation of a frequency ω and angle θ using the following
basis changes. (

v1dg

v1qg

)
= Vb1

Vb

(
cos(θ1 − θ) −sin(θ1 − θ)
sin(θ1 − θ) cos(θ1 − θ)

)(
v1d

v1q

)
(2.117)

(
i1dg

i1qg

)
= Ib1

Ib

(
cos(θ1 − θ) −sin(θ1 − θ)
sin(θ1 − θ) cos(θ1 − θ)

)(
I1d

I1q

)
(2.118)

(
v2dg

v2qg

)
= Vb2

Vb

(
cos(θ2 − θ) −sin(θ2 − θ)
sin(θ2 − θ) cos(θ2 − θ)

)(
v2d

v2q

)
(2.119)

(
i2dg

i2qg

)
= Ib2

Ib

(
cos(θ2 − θ) −sin(θ2 − θ)
sin(θ2 − θ) cos(θ2 − θ)

)(
I2d

I2q

)
(2.120)
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That being done, the Kirchhoff’s laws can be written:

v1dg
= v2dg

(2.121)

v1qg
= v2qg

(2.122)

i1dg
= −i2dg

(2.123)

i1qg
= −i2qg

(2.124)

In the case of a 100% PE power system, the frequency ω will be chosen as a weighted
average of all the grid forming converters frequencies. One can note that in steady-state,
all the grid forming converters frequencies are equal.

The system to model now consists of all the equations modelling each element of
the transmission system plus the connection equations and the basis changes equations.
This results in a DAE system that can be modelled as in (2.125).

dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(2.125)
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2.4 Chapter conclusion
In this chapter, the models of all the elements forming the studied transmission

systems have been presented. Equations and block diagrams modelling grid forming
converters, grid feeding converters, MMC, lines, transformers, loads, shunt capacitors
and SM have been given, as well as a method to derive the connection equations. This
results in a DAE system modelling the studied transmission system.

The idea now, as written in chapter 1, is to develop new MOR methods that will be
applied on this model of a transmission system with a high PE penetration. And these
new methods should respect some requirements deduced in chapter 1, that are not met
by the usual MOR methods. This is the topic of chapter 3.
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CHAPTER 3

Development of model order reduction methods

Contents
3.1 Common principles of the developed methods . . . . . . . 67

3.1.1 The state residualization . . . . . . . . . . . . . . . . . . . . . 67
3.1.2 The modal approach . . . . . . . . . . . . . . . . . . . . . . . 70
3.1.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Developed strategies to choose the groups of states to
residualize/the groups of poles to discard . . . . . . . . . . 76

3.2.1 Strategy 1: discarding the fastest poles . . . . . . . . . . . . 76
3.2.2 Strategy 2: discarding the poles that depend on the less ob-

servable and reachable states in the balanced realization . . . 79
3.2.3 Strategy 3: discarding some poles to minimize an error criterion 84
3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.3 Chapter conclusion . . . . . . . . . . . . . . . . . . . . . . . 89

65



66



This chapter presents the developed MOR methods and how they meet the require-
ments deduced in chapter 1. It is recalled that these requirements are the preservation
of the physical variables, the parameters and the most relevant dynamics of the system
(i.e. the preservation of some poles), a guarantee that the operating point remains
stable, as well as a simplicity of implementation in the most common nonlinear DAE
solvers and of course a good trade-off between the accuracy and the order of the reduced
model.

Because they keep the variables of the system during the MOR process, the devel-
oped methods simplify the analysis and the tuning of new controls. It is indeed easier to
identify the critical variables during the stability analysis [84] and it is possible to add
new control loops directly on the reduced model. The latter is illustrated in chapter 4.

The first section of this chapter presents the general principles that are common to
all the methods: the residualization of some state variables [44] in the nonlinear model
and the modal approach, so that this residualization discard some poles in the linearised
model and keep the other poles almost unchanged. The second section presents three
developed methods. For each one of them corresponds a strategy to choose the states
to residualize in the nonlinear model and the poles to discard in the linearised one.

3.1 Common principles of the developed methods
As said in the chapter introduction, the general philosophy is the same for all the

developed methods. It is presented in this section in details.
The first idea is the use of a state residualization [45]. It is explained in the first

subsection. The second subsection presents the modal approach of the methods, which
is used to preserve some poles of the system during the MOR and discard others.

3.1.1 The state residualization
In this subsection, the principles of the state residualization are presented. It is

explained how this is an interesting MOR process and why it is chosen here for the
development of the MOR methods.

Nonlinear differential algebraic system

A nonlinear DAE system is considered in (3.1). This is the model that is reduced
with the developed methods as it can describe almost all the transmission systems. One
can note that this is a continuous system. In case of discontinuities like a short-circuit
or a line tripping, it is possible to switch from one continuous DAE system to another.

The size of this model is given by its number of differential variables/equations
Ndiff [85]. In this system xdiff represents the state variables, u the inputs, xalg the
algebraic variables and y the output.
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

dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(3.1)

Residualization principle

The residualization of a state variable consists in changing this state variable into an
algebraic variable by neglecting the derivative part in its associated differential equation,
transforming it into an algebraic equation [45]. It is a well known process that is used
today in the phasor approximation [11].

The reduced system obtained by state residualization can be written as in (3.2).

E
dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)
E = diag(δi), δi ∈ {0; 1},∀i, E ∈ RNdiff×Ndiff

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(3.2)

The introduced E matrix before the derivative of xdiff is called the residualization
matrix and has the following characteristics:

• It is a diagonal of 1 and 0.

• If E = diag(1), the system is not reduced.

• If E = diag(0) the reduced system is an algebraic system corresponding to the
steady state equations.

• Each element E(i, i) gives an indication on whether the state variable xdiff (i) is
residualized or not. If E(i, i) = 0 it is, if E(i, i) = 1 it is not.

• More generally, the size of the reduced system is given by tr(E).

The idea is to choose E to have a trade-off between the order of the reduced model
(to accelerate the simulation and simplify the analysis) and the accuracy.

Example of the phasor approximation using state residualization

As illustration, an R,L line is represented in Figure 3.1.
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iRL

v1 v2

Figure 3.1: Model of an R,L line

The equations of this line, in the DQ0 reference frame of an angular frequency ω
and in pu, are presented in (3.3).

L

ωb

did
dt

= v1d
− v2d

−Rid + ωLiq

L

ωb

diq
dt

= v1q − v2q −Riq − ωLid
(3.3)

With the phasor approximation, these equations are changed into (3.4) by the resid-
ualization of the state variables id and iq. In this case the line equations become alge-
braic. {

0 = v1d
− v2d

−Rid + ωLiq

0 = v1q − v2q −Riq − ωLid
(3.4)

Remarks

One advantage of the state residualization is that it ensures that the steady state
values of the full and the reduced models are the same. They are indeed the solution
of the same system (3.5).

One can remark that for this to be true, the system needs to be steady state time
invariant, which is possible if the DQ0 representation is deduced with the appropriate
ω, the frequency of the system.

0 = f(xdiff , xalg, u)
0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(3.5)

Another advantage is that the variables and the parameters of the full and the
reduced model are exactly the same as no basis change, projection or truncation has
been made. As a consequence, it is easily possible to directly work on the reduced
system for the analysis or even the tuning of some controllers. In chapter 4 it is shown
on an example that it is easily possible to add a new control loop directly on the reduced
model without going back to the full model. Because of all that this method of state
residualization is used for the development of the MOR methods in this thesis. Finally,
the state residualization can easily be implemented in the classical DAE solvers as it
simply consists in replacing some derivatives in the equations by 0.
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Conclusion

The principle of the state residualization has been presented in this subsection. It
has been shown that it can be a way to reduce the order of a system and it is used
in the following because it meets the requirements presented in chapter 1: it keeps the
variables and the parameters of the system during the MOR process and it can easily
be implemented in the classical DAE solvers.

The next subsection presents the second common point between all the developed
methods: the modal approach. It helps preserving some poles of the linearised system
during the MOR in order to preserve some chosen physical dynamics, which is another
requirements for the developed MOR methods. It is a first step in choosing the matrix
E as it adds some constraints on it to preserve these poles.

3.1.2 The modal approach

The nonlinear DAE system to reduce is considered in (3.6).



dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(3.6)

As explained in the previous subsection, the idea of the MOR by state residualization
is to find a matrix E to reduce the order of the model like in (3.7).



E
dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)
E = diag(δi), δi ∈ {0; 1},∀i, E ∈ RNdiff×Ndiff

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(3.7)

In this subsection, the residualization of state variables in the nonlinear model is
linked to the discarding of poles in the linearised model around its operating point and
the preservation of the others. Knowing the links between the states of the nonlinear
model and the poles of the linearised system, it is indeed possible to choose which states
to residualize in order to keep some poles of the system and discard others. This process,
summed up in the synoptic in Figure 3.2 is described step by step in the following. It
is inspired by [32] but unlike it it focuses on all the modes of the system and not only
the inter-zone modes.
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Non linear DAE model

LTI model in state-space

Participation factors

Group of states for each eigenvalue

Groups of eigenvalues and their associated group of states

Figure 3.2: Synoptic describing the modal approach

Linearising the model

The system is first linearised around its operating point in steady state (the solution
of (3.5)), which gives the simple LTI system represented in state-space in (3.8). More
explanations can be found in chapter 1 for the linearisation process.


dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(3.8)

Calculating the participation factors and forming the group of states that
participate in an eigenvalue

The next step of the process consists in calculating the participation factors pk,i of
the system using the method presented in chapter 1.

In the developed methods, the idea is to identify the states that participate the
most in each eigenvalue in order to identify which one to residualize to discard some
eigenvalues (and not the others).

To proceed, a participation criterion εparticipation is chosen. For each eigenvalue λi,
the k state variables corresponding to the k largest participation factors (their modulus)
are retained so that the sum of their participations is higher than εparticipation and the
sum of the participations of the k− 1 state variables corresponding to the k− 1 largest
participation factors is lower than εparticipation. They form the group of states that
participate in λi for the considered participation criterion εparticipation. This group is
noted Pλi,εparticipation

. The forming of this set Pλi,εparticipation
is summed up in (3.9).
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Pλi,εparticipation
= {xk/∀xm /∈ Pλi,εparticipation

, |pk,i| ≥ |pm,i|∑
xk

|pk,i| ≥ εparticipation

∀xl ∈ Pλi,εparticipation
,
∑
xk 6=xl

|pk,i| < εparticipation}
(3.9)

The choice of the participation criterion εparticipation is important. If it is close to 1
the participation is very well taken into account but the result is that the considered
eigenvalue depends on many state variables which can complicate the MOR. This indeed
induces a lot of couplings, as shown in the next paragraph. If this criterion is lower,
the participations are less taken into account but only the most important states are
considered, which facilitates the MOR. A trade-off has to be made and this criterion
must be chosen depending on how fast the participation factors decrease when ranked
from the largest to the lowest.

This process is done for all the eigenvalues of the system. At the end, there should
be Ndiff groups Pλi,εparticipation

, one for each eigenvalue λi.

Forming the groups of eigenvalues in which the same states participate

When the system is coupled, each state variable participates in several eigenvalues
and each eigenvalue depends on several state variables. This means that some of the
previously created groups of states can be merged to form new groups of state variables,
noted Pi, each group associated to one and only one group of eigenvalues in which they
participate. A state variable can only be in one group and an eigenvalue can only be
in one group as well. The state variables in a group only participate in the eigenvalues
of the associated group of eigenvalues and not in the other eigenvalues (provided that
the participation criterion is well chosen).

If the system is totally decoupled, there are as many groups as eigenvalues/state
variables, with one eigenvalue/one state variable in each one of them. If the system is
coupled, there are less groups, but with more states/eigenvalues. This also depends on
the choice of the participation criterion εparticipation. If it is low there are more groups
than if it is high.

This process is done for all the eigenvalues until all the remaining groups are disjoint.
At the end, there are between 1 and Ndiff groups (the latter if the system is totally
decoupled).

These groups can be seen as constraints on the states to residualize in the developed
MOR methods. Residualizing all the states of a same group guarantees that the asso-
ciated poles are discarded, and the other almost unmoved (the bigger the participation
criterion, the less the remaining poles move). And keeping the poles in the linearised
model brings a guarantee that the operating point remains stable during the MOR
process. If no pole is moved, no pole becomes unstable.

A new set Eεparticipation
is created. It contains all the E matrices that are diagonal,

made of 0 and 1 (see the previous subsection on the state residualization) and that

72



respect the constraint deduced from the participation factors analysis in this subsection.
This constraint is explained in (3.10). It means that the states of a same group must be
residualized (or not residualized) at the same time to discard (or keep) the associated
poles and keep (or discard) the others. This also means that the order of the different
possible reduced models is somehow imposed by these constraint. It is not possible to
choose it completely freely.

∀Pi,∀xk ∈ Pi,∀xl ∈ Pi, E(k, k) = E(l, l) (3.10)

From now on, all the E matrices obtained from the MOR methods must be in
Eεparticipation

so that the remaining poles in the reduced model are (almost) the same
as in the full model (almost, because depending on the choice of εparticipation they can
move more or less). This is what we call here a modal approach.

Illustration with an order 4 model

To illustrate this, an order 4 LTI model is considered in 3.11.



dx

dt
= Ax+Bu =


−50 −25 5 1
−10 −20 1 1

5 1 −10 −10
10 1 10 −10

x+


1
1
1
1

u

y =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

x
(3.11)

The participation factors of each state variable in each eigenvalue of A are calculated
and their modulus are given in Table 3.1.

x1 x2 x3 x4
λ1 = −57.8 0.84 0.15 0.01 0.02

λ2,3 = −9.4± 10.5i 0.03 0.04 0.48 0.46
λ4 = −13.4 0.13 0.79 0.04 0.08

Table 3.1: Modulus of the participation factors of A

For each eigenvalue, a group is formed, containing the states that participate the
most in it. This group depends on the choice of εparticipation. Two examples are presented,
εparticipation = 0.7 and εparticipation = 0.9. This gives Table 3.2 and 3.3.
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Eigenvalue Group of states that participate in the eigenvalue
Pλ1,εparticipation

λ1 x1
Pλ2,3,εparticipation

λ2,3 x3, x4
Pλ4,εparticipation

λ4 x2

Table 3.2: Groups of states for εparticipation = 0.7

Eigenvalue Group of states that participate in the eigenvalue
Pλ1,εparticipation

λ1 x1, x2
Pλ2,3,εparticipation

λ2,3 x3, x4
Pλ4,εparticipation

λ4 x1, x2

Table 3.3: Groups of states for εparticipation = 0.9

For both cases, groups of eigenvalues are formed and the groups of states are merged
if necessary. This gives Table 3.4 and 3.5.

Group of eigenvalues Associated group of states
P1 λ1 x1
P2 λ2,3 x3, x4
P3 λ4 x2

Table 3.4: Groups of eigenvalues for εparticipation = 0.7

Group of eigenvalues Associated group of states
P1 λ1, λ4 x1, x2
P2 λ2,3 x3, x4

Table 3.5: Groups of eigenvalues for εparticipation = 0.9

In both cases, the remaining groups are disjoint. This means that the process is
finished. The eigenvalues of a group only depend on the state variables of the associated
group and the states of a group only participate in the eigenvalues of the associated
group.

One can remark that the higher the participation criterion is, the less groups there
are.

Now that the groups are formed, residualizing the states of a same group discards
the associated poles and keeps the other almost unchanged.
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3.1.3 Conclusion
In this section, two important aspects that are common to the developed MOR

methods have been presented:

• The state residualization consists in neglecting the derivative of the considered
state variable and thus transforming it into an algebraic variable, reducing the
order of the model. This is the basis of all the MOR methods that are presented
in the following. This approach has the advantage of keeping the variables of the
system which simplifies the analysis and the tuning of new controllers if necessary
(it is possible to add new loops directly on the reduced model, which is shown on
an example in chapter 4).

• The modal approach analyses the participation factors of the linearised model to
give the dependencies between the state variables and the poles of the system.
Knowing that, groups of eigenvalues/state variables are formed. All the eigen-
values of a same group depend only on the states of the associated group and
all the state variables of a same group participate only in the eigenvalues of the
associated group. These groups add a constraint on the states to residualize: the
states of a same group must be residualized together or not at all. This ensures a
preservation of the poles of the system and thus that the operating point remains
stable. This approach is close to the modal truncation [39]. But unlike it, it keeps
the variables because there is no truncation and no basis change.

The two aspects can be summed up as follows: the developed MOR methods consist
in finding a matrix E to reduce the model by state residualization. This matrix must
be in Eεparticipation

, which means that it should be diagonal, made of 0 and 1, and respect
the constraints deduced from the participation factors analysis. The reduced model is
presented in (3.12): 

E
dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)
E = diag(δi), δi ∈ {0; 1},∀i

(3.12)

The following section presents different strategies to choose this E matrix in order
to have an accurate and sufficiently reduced model that is adapted to the test case
under consideration. In other words, these strategies help identifying the groups of
states to residualize/the groups of poles to discard depending on the test case under
consideration.
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3.2 Developed strategies to choose the groups of
states to residualize/the groups of poles to dis-
card

This section presents the three developed strategies to choose the groups of states
to residualize and the groups of poles to discard.

The first one consists in discarding the fastest poles, i.e. the one with the largest
negative real part. It is inspired by the modal truncation [40].

The second one, inspired by the modal truncation like the first one but also by
the balanced truncation [46], consists in discarding the poles that depend on the less
observable and reachable states in the balanced realization.

The third one is based on an optimization to find a E matrix that minimizes an
error criterion defined in advance.

The advantages and drawbacks of each method are presented here. In this chapter,
each method is applied on a small order 4 example as illustration. Some application on
realistic test cases are shown in chapter 4.

First, the DAE system to reduce is considered in (3.1). The process explained in
the first section of this chapter is performed and Ngroups groups Pi of state variables are
formed, each one associated to a group Li of eigenvalues in which they participate, for
a given participation criterion εparticipation.

3.2.1 Strategy 1: discarding the fastest poles
The synoptic in Figure 3.3 sums up the different steps of the first strategy. They

are explained in details in the following.

Groups of eigenvalues and their associated group of statesFastest eigenvalues

Residualizing the groups of states linked to the fastest eigenvalues

Figure 3.3: Synoptic describing the first strategy

Identifying the fastest poles

The first step in this strategy is to explain when a pole is considered faster than
another. It is explained in (3.13) for two stable poles λi and λj. This time-scale
separation between slow and fast poles is classical in the analysis of power systems [86].
The fast poles are linked to fast transients that quickly reach the steady-state and which
can therefore be neglected in most cases (it is seen on test cases in chapter 4 that this
is not true any more on certain cases when the PE penetration is high).
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∀λi ∈ C, ∀λj ∈ C, λi is faster than λj ⇔ Re(λi) < Re(λj) < 0 (3.13)

When represented on the complex plane, the fastest poles are the one that are the
farther from the imaginary axis, i.e. on the left side of the plane.

Residualizing the groups of states linked to the fastest poles

The idea of this strategy is to residualize the groups of states that are linked to
the fastest poles and keep the dynamics of the groups of states that are linked to the
slowest poles. This approach is classical in the power system community. This is for
example the idea of the phasor approximation.

To proceed, the groups of eigenvalues/state variables obtained with the modal ap-
proach are ranked so that the first group contains the slowest pole.

Then the states of the last groups are residualized to discard the fastest poles of the
system.

With the developed method, based on the participation of the states in the eigen-
values, it is not possible to discard each pole separately and independently. It means
that it is not possible to choose the order of the reduced model completely freely be-
cause of the constraints induced by the groups of poles/state variables deduced from
the participation factors analysis.

Remarks on the strategy

This method is actually similar to the modal truncation [65]. The difference here is
that, by avoiding a truncation, the modal reduction by residualization presented in this
report, preserves the variables of the system, and thus its structure, making it easier to
analyse and to add new control loops (see chapter 4 for an example).

One advantage of choosing to discard the fastest poles and keep the slow ones is
that the process is direct. It is indeed very simple to identify the slow and the fast
poles of the system.

Because it keeps the slow poles, the one that are close to the imaginary axis in the
complex plane, this strategy is particularly adapted to stability analysis. The slow poles
are indeed the most critical in terms of stability, because they can easily be moved to
the right half of the complex plane if a parameter changes. This is why they need to
be kept for this kind of analysis.

On the other hand, this method presents some drawbacks. First, for all observed
variable (a current, a frequency or a voltage for instance) and for all considered event (a
load step, a short-circuit or a line tripping for example), the reduced model, for a given
order, is always the same. The poles are indeed the same in all those cases, so are their
classification (fast/slow). This is not very flexible. One can indeed imagine that the
reduced model should not be the same between a case where the current in a certain
converter is observed during a short circuit close to it and a case where the frequency
of the system is observed during a load step. This problem is solved with the two other
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strategies that are presented in the next two subsections. Second, discarding fast poles
means neglecting fast transients. These fast transients can be over-currents, that are
quickly cleared but that can damage the device (it is especially the case with PE, more
than wit SM). This is why they need to be taken into account when studying over-
current capability. This problem is also solved with the two other strategies presented
hereafter.

Illustration with an order 4 model

To illustrate the strategy, the order 4 LTI model in 3.14 is considered.

dx

dt
= Ax+Bu =


−50 −25 5 1
−10 −20 1 1

5 1 −10 −10
10 1 10 −10

x+


1
1
1
1

u

y =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

x
(3.14)

The previously formed groups of states and eigenvalues in 3.6 and 3.7, corresponding
to this order 4 example, are considered.

Group of eigenvalues Associated group of states
P1 λ1 = −57.8 x1
P2 λ2,3 = −9.4± 10.5i x3, x4
P3 λ4 = −13.4 x2

Table 3.6: Groups of eigenvalues for εparticipation = 0.7

Group of eigenvalues Associated group of states
P1 λ1, λ4 x1, x2
P2 λ2,3 x3, x4

Table 3.7: Groups of eigenvalues for εparticipation = 0.9

The fastest pole is λ1, followed by λ4. Depending on the choice of εparticipation, several
reduced models can be deduced:

• if εparticipation = 0.7:

– an order 3 model that discards λ1 by residualizing x1;
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– an order 2 model that discards λ1 and λ4 by residualizing x1 and x2;

• if εparticipation = 0.9:

– an order 2 model that discards λ1 and λ4 by residualizing x1 and x2;

3.2.2 Strategy 2: discarding the poles that depend on the less
observable and reachable states in the balanced realiza-
tion

The second strategy to choose the groups of poles to discard/the groups of state
variables to residualize, is presented in this subsection. As said previously, it is inspired
by the modal truncation and the balanced truncation. But unlike them, it does not
truncate the system in order to maintain the physical structure and keep the variables
during the MOR.

The synoptic in Figure 3.4 sums up the different steps of the second strategy. They
are explained in details in the following.

Identify the states to residualize
in the physical realization

Compute the Hankel Singular Values
Compute the balanced realization

Groups of eigenvalues and their associated group of states

Identify the most observable and reachable states
in the balanced realization

Identify the poles that are linked to the
most observable and reachable states

Figure 3.4: Synoptic describing the second strategy

Computing the Hankel Singular Values and the balanced realization

The DAE system to reduce is considered in (3.15).
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

dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(3.15)

It is linearised around its operating point, which gives (3.16).
dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(3.16)

This system is rewritten in the balanced realization as in (3.17). It is explained in
chapter 1 how to obtain this balanced realization.

dxb
dt

= Abxb +Bbu

y = Cbxb +Du

xb ∈ RNdiff , u ∈ Rp, y ∈ Rq

(3.17)

The gramians in the balanced realization are diagonal and equal. The HSV in their
diagonal are written σi, as shown in (3.18). The HSV of the system are unique.

Pb = Qb = diag(σ1, ..., σNdiff
), where σ1 > σ2 > ... > σNdiff

(3.18)

One HSV is associated to each state in the balanced realization. It quantifies the
degree of reachability and observability of each state in the balanced realization. The
bigger it is, the more reachable and observable the state is. In this case xb1 is the most
observable and reachable state and xbNdiff

is the less observable and reachable state.

Identifying the group of the most observable and reachable states in the
balanced realization

A criterion εHSV between 0 and 1 is chosen. The HSV are normalized so that their
sum is equal to 1 (each HSV is just divided by the sum of the HSV). A set Pb,εHSV

of
the k most observable and reachable states is created as explained in (3.19).

Pb,εHSV
= {xb1 , ..., xbk

}/
k∑
i=1

σi ≥ εHSV ,
k−1∑
i=1

σi < εHSV (3.19)

One can remark that, as the gramians and the HSV depend on the C matrix, this
group depends on the observed variable. The most observable and reachable states are
not the same when the observed variables y change.

80



Identifying the group of poles in which the most observable and reachable
states participate

A participation factor analysis, made in the balanced realization, can tell in which
poles the selected states participate (see the previous section for more information on
how this is done). Groups of state variables Pbi

, each one with its associated group
of eigenvalues Lbi

in which they participate, are created using the same process as
the one explained in the last section, with the criterion εparticipation. Two new sets
Pb,εHSV ,εparticipation

and Lb,εHSV ,εparticipation
are created using (3.20).

∀xbj
∈ Pb,εHSV

,∀Pbi
, xbj
∈ Pbi

⇒
{
Pbi
⊂ Pb,εHSV ,εparticipation

Lbi
⊂ Lb,εHSV ,εparticipation

(3.20)

One can remark that Pb,εHSV
is included in the new set Pb,εHSV ,εparticipation

. The
difference is that other state variables might be in the new set in order to respect the
constraints deduced from the participation factor analysis. It is indeed possible that
a state with a small HSV participate in the same eigenvalue as a state with a high
HSV. This state needs to be put in the new set to respect the couplings. The new set
Pb,εHSV ,εparticipation

contains not only the most observable and reachable states, but also
the states that participate in the same group of eigenvalues. The set Lb,εHSV ,εparticipation

contains all these eigenvalues.
With this method, the poles to keep are in Lb,εHSV ,εparticipation

, the other can be
discarded. In [63], these poles are discarded by doing a modal truncation. In this
report, another step, consisting in another participation factors analysis, is added to
proceed to a residualization in the physical realization and thus keep the variables and
the structure of the system.

Residualizing the states in the physical realization that participate in the
poles that are linked to the less observable and reachable states in the bal-
anced realization

The main idea here is that the eigenvalues of the system in the balanced and in
the physical realization are the same. This way it is easy to identify the states in the
physical realization that participate in the poles that depend on the less observable
and reachable states in the balanced realization. And these poles have been identified
previously, they are in Lb,εHSV ,εparticipation

.
The two sets Pb,εHSV ,εparticipation

and Lb,εHSV ,εparticipation
are considered. The same

εparticipation is considered here. A participation factors analysis in the physical realization
gives sets Pi and Li (just like in the balanced realization it gave Pbi

and Lbi
).

Two new sets PεHSV ,εparticipation
and LεHSV ,εparticipation

are created as in (3.21).

∀λj ∈ Lb,εHSV ,εparticipation
,∀Li, λj ∈ Li ⇒

{
Pi ⊂ PεHSV ,εparticipation

Li ⊂ LεHSV ,εparticipation

(3.21)
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The new set PεHSV ,εparticipation
contains the state variables in the physical realiza-

tion that participate in Lb,εHSV ,εparticipation
and that are not residualized. All the other

states are. This way, the poles in LεHSV ,εparticipation
are kept and all the other poles

are discarded. One can remark that Lb,εHSV ,εparticipation
is included in the new set

LεHSV ,εparticipation
.

The criterion εHSV is the one that defines the size of the reduced model. If it is
close to 1, the model is less reduced than if it is close to 0.

The desired size for the reduced system can be chosen in advance and then the idea
is to find the biggest εHSV that gives a reduced model with a size that is smaller or
equal to it.

Summary

The strategy presented in this subsection can be summed up in Figure 3.5.

HSV States to keep in the balanced realization

Eigenvalues to keep

States to keep in the physical realization

participation factors in the balanced realization

participation factors in the physical realization

εHSV

εparticipation

εparticipation

Pb,εHSV

Lb,εHSV ,εparticipation

PεHSV ,εparticipation

Figure 3.5: Summary of the second strategy

Remarks on the strategy

With this method, the poles that are discarded are not necessarily the fastest.
Depending on what is observed (which variables), the given reduced model is not the
same (see chapter 4 for some examples). This method proves to be flexible and adapts
to the case under consideration.

Another advantage is that the process to identify the states to residualize/the poles
to discard is quite straightforward and does not require a high computation time.

On the other hand, it is not possible to take into account each simulated event
separately to deduce the reduced model. The B matrix that takes into account the
inputs of the system can not be chosen freely, and is imposed by the model, unlike the
C matrix for the observed variables.

Another remark is that, because it uses two participation factors analyses in a row,
if the system is very coupled, it results in a not very reduced system. For example,
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consider a 10th order model. If the HSV analysis chooses 1 state to keep in the balanced
realization (this is the minimum, with a low εHSV ) and if this state participates in 4
different eigenvalues that each depend on 2 different state variables in the physical
realization, this results in a 8th order reduced model, which is not a good reduction. As
a result, this method is powerful only when the system is well decoupled. A solution
to solve this could be to reduce εparticipation. But there is a risk that the participation
is not enough taken into account any more, which induces a change in the remaining
poles of the system (with the possibility for some of them to become unstable).

Some of these remarks are illustrated in chapter 4 with realistic test cases.

Illustration with an order 4 model

To illustrate the strategy, the order 4 LTI model in 3.22 is considered.

dx

dt
= Ax+Bu =


−50 −25 5 1
−10 −20 1 1

5 1 −10 −10
10 1 10 −10

x+


1
1
1
1

u

y =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

x
(3.22)

In this system, the observed variable is x2.
The HSV are computed. One HSV is associated to each state in the balanced

realization. It gives Table 3.8.

xb1 xb2 xb3 xb4

HSV 0.95 0.04 0.01 0

Table 3.8: Hankel Singular Values of the order 4 system

εHSV is chosen to be equal to 0.9. It means that the only kept state in the balanced
realization is xb1 (with an HSV of 0.95).

The participation factors analysis forms the following groups of eigenvalues and
states in Table 3.9 with εparticipation = 0.7 and in the balanced realization.

Group of eigenvalues Associated group of states
λ1 = −57.8 xb2

λ2,3 = −9.4± 10.5i xb3 , xb4

λ4 = −13.4 xb1

Table 3.9: Groups of eigenvalues in the balanced realization for εparticipation = 0.7

83



From this table, it is deduced that the only pole to keep is λ4.
The previously formed groups of states and eigenvalues in the physical realization

are considered in 3.10, with εparticipation = 0.7.

Group of eigenvalues Associated group of states
λ1 = −57.8 x1

λ2,3 = −9.4± 10.5i x3, x4
λ4 = −13.4 x2

Table 3.10: Groups of eigenvalues in the physical realization for εparticipation = 0.7

From this table, it is deduced that the only state to keep is x2. The other states can
be residualized, which leads to an order 1 reduced model. As expected, the observed
variable is the most important to keep.

3.2.3 Strategy 3: discarding some poles to minimize an error
criterion

The last developed strategy is based on an optimization to find the residualization
matrix E that minimizes an error criterion. The process is explained here step by step
and summed up in the synoptic in Figure 3.6.

Express the energy of the error for
the considered input/output couple

Linearising the system

F
Computing the error matrix

in the ourier domain

Find E to minimize this energy

Groups of eigenvalues and groups of states

Figure 3.6: Synoptic describing the third strategy

Linearisation

Like the two other strategies, the residualization is done on the nonlinear DAE
system in (3.1), but the process to find the residualization matrix E uses a linearisation
of this model, like in (3.23).
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
dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(3.23)

The reduced nonlinear DAE system is also linearised around the same operating
point and it gives (3.24). 

E
dxr
dt

= Axr +Bu

yr = Cxr +Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(3.24)

Error matrix in the Fourier representation

A Fourier transform is applied on the two systems. For (3.23), it leads to (3.25).
For (3.24), it leads to (3.26). {

jωX = AX +BU

Y = CX +DU
(3.25)

{
jωEXr = AXr +BU

Yr = CXr +DU
(3.26)

Some manipulations give the transfer functions in (3.27) and (3.28).

Y = (C(jωINdiff
− A)−1B +D)U (3.27)

Yr = (C(jωE − A)−1B +D)U (3.28)
The difference between these two transfer functions gives (3.29).{

Y − Yr = ε(ω)U
with ε(ω) = C[(jωINdiff

− A)−1 − (jωE − A)−1]B ∈ Cq×p (3.29)

The new matrix ε(ω) is called the error matrix in this report.
One can remark that if E = INdiff

, the system is not reduced and ε(ω) = 0,∀ω, as
expected.

Energy of the error for a specific input-output couple

The error for the output Yi with respect to the input Uj is a scalar given by εi,j(ω),
the element of ε(ω) in the ith row and jth column. It corresponds to the error for a
specific input/output couple, in other words for a specific simulated event/observed
variable couple.
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The energy of this error εi,jεi,jεi,j is defined in (3.30). This is the error criterion to
minimize in the rest of this subsection.

εi,jεi,jεi,j =
∫ ∞
−∞
|εi,j(ω)|2dω (3.30)

The Parseval’s identity gives (3.31).∫ ∞
−∞
|εi,j(ω)|2dω = 2π

∫ ∞
−∞
|εi,j(t)|2dt (3.31)

This means that the energy of the error is the same in time-domain and in Fourier-
domain.

This criterion to minimize is chosen as it allows to have a reduced model that is
specific to each simulated event and observed variable, and because the Parseval identity
proves that it also minimizes the energy error in time-domain.

Other criteria to minimize have been studied in the literature. For instance [87]
studies another criterion that allows to take into account all the possible events and
that is intrinsic to the model. This allows to obtain one model for all the simulated
event.

However, in this thesis, a specific model for each simulated event is looked for and,
for a given size, it should be the most adapted one for this simulation.

Minimization problem for a specific input-output couple

Knowing this, it is possible to choose the E matrix to minimize εi,jεi,jεi,j, which minimizes
the energy of the error in time-domain. This E matrix is specific to the output-input
couple (i,j). There is a different reduced model for each considered test case: observed
variables-output/simulated event-input.

The deduced optimization problem is presented in (3.32). As always in the developed
method, the E matrix must be in Eεparticipation

to respect the couplings of the system
and discard some poles without moving too much the others (see previous section for
more explanation). The desired size for the reduced model is written n.

minimize
E

εi,jεi,jεi,j =
∫ ∞
−∞
|εi,j(ω)|2dω

subject to E ∈ Eεparticipation
, tr(E) ≤ n

(3.32)

The minimization problem to solve is a discrete one. The E matrix to find is
indeed a diagonal matrix made of 0 and 1. As a consequence, the classical optimization
algorithms, like the Newton-Raphson algorithm cannot be used here.

One solution could be to list all the possible E matrices, test all of them, and choose
the one that minimizes the error. This is what has been done in [88] and it is called
brute-force method in this report. This works fine with small problems. However, if the
size of the problem is N , there are 2N possible E matrices, which can quickly become
a problem in terms of computation time.
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Therefore, a method using a genetic algorithm has been used for reducing large
systems. A genetic algorithm is a search heuristic that is inspired by the theory of
evolution. It reflects the process of natural selection where the most adapted individuals
of a generation are selected for reproduction to produce offspring in the next generation.
More information on the theory of this type of algorithm can be found in [89]. The use
of this algorithm allows to have a low computation time compared to the brute-force
method.

Remarks on the strategy

One advantage of this strategy is that it takes into account the observed variable
(the output, here the i in the optimization) and the simulated event (the input, here the
j in the optimization) to give a E matrix that minimizes the proposed error criterion
for this specific input-output couple. This makes it flexible and adaptable.

As this strategy uses an optimization, it can take some time to find the optimal E
matrix for large systems. However, in most cases, the gain in terms of simulation time
with the reduced model compensates it. And the analysis is also simplified because the
number of differential variables has decreased. This is illustrated in chapter 4.

Illustration with an order 4 model

To illustrate the strategy, the order 4 LTI model in 3.33 is considered.



dx

dt
= Ax+Bu =


−50 −25 5 1
−10 −20 1 1

5 1 −10 −10
10 1 10 −10

x+


1
1
1
1

u

y =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

x
(3.33)

The energy of the error εi,jεi,jεi,j is minimized with a genetic algorithm for i = 2 (x2 is
observed), j = 1 (there is only one input in this example) and with a desired size of 1
for the reduced model. The result of this minimization is that the states to residualize
are x1, x3 and x4 just like with the previous strategy.

One can remark that with this method, as it is possible to choose the observed
variables during the optimization, the choice of C has less influence than for the second
strategy. For example, if it had been chosen to be equal to the identity matrix but still
with i = 2 and j = 1 for the optimization, the result would have been the same; which
is not the case with the second strategy.
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3.2.4 Conclusion
This section has presented the three developed strategies to find the groups of poles

to discard/the groups of state variables to residualize:

• The first one consists in residualizing in the nonlinear model the state variables
that participate in the fastest poles of the linearised model.

• The second one consists in residualizing in the nonlinear model the state variables
that participate in the poles in the linearised model that depend on the less
observable and reachable states in the balanced realization.

• The third one consists in residualizing in the nonlinear model some state variables
to minimize an error criterion.

A comparison of the characteristics of the three strategies is proposed in Table 3.11.

Time to find Taking into account Taking into account
the reduced model the observed variable the simulated event

Strategy 1 short no no
Strategy 2 short yes no
Strategy 3 long yes yes

Table 3.11: Comparison of the characteristics of the three developed strategies

The outcome of this comparison is that depending on the type of study and the
knowledge of the test case, a strategy can be proposed:

• For a stability analysis, the first strategy is the most appropriate as it keeps the
slow poles that are the most critical in terms of stability. Moreover, its application
is straight-forward.

• When studying a particular variable (a current in a converter for example), two
cases are possible:

– if there is no information on the simulated events, the second strategy is
recommended,

– if the simulated event is known, the third strategy is the most appropriate.

This is illustrated in more details in chapter 4.
One need to notice that, although the residualization is made on the nonlinear sys-

tem, which allows keeping the non linearities in the reduced model, the residualization
matrix E is deduced, in each strategy, from an analysis of the linearised system.
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3.3 Chapter conclusion
This chapter presented the methodologies of the developed MOR methods. The

three methods are all based on the same two principles:

• The residualization: it consists in transforming differential variables (state vari-
ables) into algebraic variables to reduce the order of the model. Its advantage is
that it keeps the variables of the system and thus its physical structure.

• The modal approach: it consists in choosing the variables that can be residualized
in order to discard some poles of the system and keep the other almost unmoved.
This approach guarantees that the operating point remains stable during the
MOR. It adds a constraint on the variables to be residualized: some variables
must be residualized (or kept) together and not independently.

Then each of the three strategies proposes a different way to choose the variables
to residualize, while respecting the presented constraints at the same time:

• The first strategy proposes to residualize the state variables that participate in
the fastest poles. It is well adapted to stability analysis.

• The second strategy proposes to residualize the state variables that participate in
the poles that depend on the less observable and reachable states in the balanced
realization. It is well adapted when a specific variable is observed.

• The third strategy proposes to residualize some state variables to minimize an
error criterion. It is well adapted when a specific variable is observed and when
the events to simulate are known.

After this theoretical presentation of the methods, the next chapter proposes some
realistic test cases to which they are applied. Some comparisons are then made and the
advantages and drawbacks of each method are illustrated. Moreover this gives some
insights on how power systems with a high PE penetration should be modelled.
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Application of the methods for the simulation and analysis of
transmission systems with a high power electronics penetration
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In this chapter, the methods developed in chapter 3 are applied to several realistic
test cases based on the models presented in chapter 2. The idea is to compare the
different methods, present their advantages and drawbacks and validate them. Also
one goal is to give some insights on how power systems with a high PE penetration
should be modelled for accurate and fast simulations and analyses. All the test cases are
simulated using the Modelica [90] language. This language indeed consists in writing all
the equations directly, which makes the residualization, and therefore the MOR, very
convenient.

4.1 Simple test cases
In this first section, the methods are applied to simple test cases. The aim of the first

test case is to detail the process of each method in a didactic way to precisely understand
how they work. The aim of the second test case is to show that depending on what
is observed, a different reduced model should be used. The aim of the third test case
is to show that depending on what is simulated (the event), a different reduced model
should be used. Moreover, the phasor approximation is not always a good solution and
it is proved with this third test case.

4.1.1 One grid forming converter connected to an infinite grid
The first test case to be studied consists in one grid forming converter connected to

an infinite grid, as shown on Figure 4.1.

vDC vm e vg

Lf Rf Lt Rt ig

Cf

is
v∗m

DC

AC

is

|e|∗
ω

e

i∗s

ω

e ig

e∗

e ig

q∗

p∗

ω∗

loop
Current Voltage

loop
External
loop

Figure 4.1: Structure of the system studied in the first test case

The converter in this system has been presented in the first section of chapter 2. As
a consequence, the studied system here is a 15th order DAE system presented in (4.1).
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

dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff =
(
isd

isq ed eq igd
igq pm θ qm MCLd

MCLq MV Ld
MV Lq MADd

MADq

)T
xalg =

(
vmd

vmq v
∗
md

v∗mq
p ω q e∗d e

∗
q i
∗
sd
i∗sq

vgd
vgd

)T
u =

(
vgdg

vgqg
ω∗ p∗ q∗ |e|∗

)T

(4.1)

The corresponding equations can be found in chapter 2. Two relations have been
added. They correspond to the grid voltage in the DQ0 reference frame of the converter
vgd

and vgq using the grid voltage in the DQ0 reference frame of the grid vgdg
and vgqg

,
which is an input here. They are given in (4.2), with θ the chosen angle for the
transformation.

(
vgd

vgq

)
=
(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)(
vgdg

vgqg

)
(4.2)

The model of the system is now complete and ready to be simulated. For this test
case, a short-circuit at the grid is simulated and cleared after 150ms. The current in
the converter is looked at. The process to find a reduced model with the three methods
is detailed hereafter, starting with the participation factors analysis that is common to
the three strategies.

Groups of states/eigenvalues

First, the system is linearised around its operating point, which gives the LTI system
in (4.3).


dx

dt
= Ax+Bu

y = Cx+Du

x ∈ R15, u ∈ R6, y ∈ Rq

(4.3)

The eigenvalues of A are computed, as well as the participation factors, which are
given in Table 4.1.

94



MCLd
MCLq MV Ld

MV Lq MADd
MADq isd

isq igd
igq pm qm θ ed eq

λ1 = −1.4 0.19 0.08 0.51 0.25 0 0 0 0 0 0 0 0 0 0 0
λ2,3 = −1.5± 0.11i 0.17 0.35 0.16 0.34 0 0 0 0 0 0 0 0 0 0 0

λ4 = −1.7 0.5 0.24 0.19 0.08 0 0 0 0 0 0 0 0 0 0 0
λ5,6 = −15.5± 28.2i 0 0 0 0 0 0 0 0 0 0 0.51 0 0.52 0 0

λ7 = −16.2 0 0 0 0 0.41 0.62 0 0 0 0 0 0 0 0 0
λ8 = −17.2 0 0 0 0 0.62 0.42 0 0 0 0 0 0 0 0 0
λ9 = −31.4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

λ10,11 = −21± 134i 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0
λ12,13 = −759± 3330i 0 0 0 0 0 0 0.13 0.13 0.13 0.12 0 0 0 0.26 0.25
λ14,15 = −790± 3820i 0 0 0 0 0 0 0.13 0.12 0.13 0.14 0 0 0 0.25 0.25

Table 4.1: Modulus of the participation factors for the first test case

The participation criterion εparticipation = 0.99 is chosen. It is then possible to identify
the states that participate the most in each eigenvalue, in Table 4.2.

Eigenvalue State variables
λ1 = −1.4 MCLd

, MCLq , MV Ld
, MV Lq

λ2,3 = −1.5± 0.1i MCLd
, MCLq , MV Ld

, MV Lq

λ4 = −1.7 MCLd
, MCLq , MV Ld

, MV Lq

λ5,6 = −15.5± 28.2i pm, θ
λ7 = −16.2 MADd

, MADq

λ8 = −17.2 MADd
, MADq

λ9 = −31.4 qm
λ10,11 = −21± 134i isd

, isq , igd
, igq

λ12,13 = −759± 3330i isd
, isq , igd

, igq , ed, eq
λ14,15 = −790± 3820i isd

, isq , igd
, igq , ed, eq

Table 4.2: States that participate the most in each eigenvalue for the first test case

This table helps creating the groups of eigenvalues and their associated group of
states that participate in them. This is shown in Table 4.3.

Eigenvalues State variables Group name
λ1, λ2,3, λ4 MCLd

, MCLq , MV Ld
, MV Lq P1

λ5,6 pm, θ P2
λ7, λ8 MADd

, MADq P3
λ9 qm P4

λ10,11, λ12,13, λ14,15 isd
, isq , igd

, igq , ed, eq P5

Table 4.3: Groups of states and eigenvalues for the first test case

This table gives the possible reduced models, which are summed up in Table 4.4. If
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Ngroups is the number of groups created previously, there are 2Ngroups possible models.
Here there are 32 possible reduced models.

Model order Model name Residualized groups Kept groups
0 0 P1, P2, P3, P4, P5
1 1 P1, P2, P3, P5 P4
2 2a P1, P3, P4, P5 P2
2 2b P1, P2, P4, P5 P3
3 3a P1, P3, P5 P2, P4
3 3b P1, P2, P5 P3, P4
4 4a P2, P3, P4, P5 P1
4 4b P1, P4, P5 P2, P3
5 5a P2, P3, P5 P1, P4
5 5b P1, P5 P2, P3, P4
6 6a P3, P4, P5 P1, P2
6 6b P2, P4, P5 P1, P3
6 6c P1, P2, P3, P4 P5
7 7a P3, P5 P1, P2, P4
7 7b P2, P5 P1, P3, P4
7 7c P1, P2, P3 P4, P5
8 8a P4, P5 P1, P2, P3
8 8b P1, P3, P4 P2, P5
8 8c P1, P2, P4 P3, P5
9 9a P5 P1, P2, P3, P4
9 9b P1, P3 P2, P4, P5
9 9c P1, P2 P3, P4, P5
10 10a P2, P3, P4 P1, P5
10 10b P1, P4 P2, P3, P5
11 11a P2, P3 P1, P4, P5
11 11b P1 P2, P3, P4, P5
12 12a P3, P4 P1, P2, P5
12 12b P2, P4 P1, P3, P5
13 13a P3 P1, P2, P4, P5
13 13b P2 P1, P3, P4, P5
14 14 P4 P1, P2, P3, P5
15 15 P1, P2, P3, P4, P5

Table 4.4: Possible reduced models for the first test case

Now that all the possible reduced models are known, the three developed strategies
help choosing which one is the most adapted, depending on the observed variable, the
simulated event and the desired size for the reduced model.
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The desired size for the reduced model is here chosen arbitrarily as 6 (chosen as an
example). The three methods are then applied to the test case to choose the reduced
model between the models 6a, 6b and 6c.

It is a voluntary simple test case study to illustrate the proposed method. More
complex examples are illustrated in the next sections.

First strategy

The application of the first strategy is quite direct. The slowest poles are indeed
λ1, λ2,3, λ4 and λ5,6. As a result, the deduced reduced model is the model 6a that
residualizes the groups P3, P4 and P5, and keeps the dynamics of the states in the
groups P1 and P2.

Second strategy

Before applying the second strategy, the h function is chosen so that the outputs of
the system (the observed variables) are the currents isd

and isq . This function (which
gives the C matrix when the system is linearised) is necessary with this strategy as the
observed variable is considered here (which is not the case with the first strategy).

To apply the second strategy, the HSV and the balanced realization of the model
are computed. The HSV are given in Table 4.5.

xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 xb9 xb10 xb11 xb12 xb13 xb14 xb15

HSV (in %) 11.1 11 10.2 9.1 8.4 8.3 7.1 7 6.3 6.3 6.2 6.1 1.5 1 0.4

Table 4.5: HSV of the model for the first test case

A participation factors analysis in the balanced realization and in the physical re-
alization helps creating the groups of state variables/eigenvalues. They are shown in
Table 4.6, starting from the most observable and reachable states in the balanced real-
ization.

State variables Eigenvalues State variables Group name
xb1 , xb2 λ5,6 pm, θ P2

xb3 , xb4 , xb5 , xb6 λ1, λ2,3, λ4 MCLd
, MCLq , MV Ld

, MV Lq P1
xb7 , xb8 , xb9 , xb10 , xb11 , xb12 λ10,11, λ12,13, λ14,15 isd

, isq , igd
, igq , ed, eq P5

xb13 , xb14 λ7, λ8 MADd
, MADq P3

xb15 λ9 qm P4

Table 4.6: Groups of states and eigenvalues for the first test case in the balanced and
in the physical realization
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In order to obtain a reduced model of order 6, the criterion εHSV = 50% is chosen.
The states to keep in the balanced realization are xb1 , xb2 , xb3 , xb4 , xb5 and xb6 , the poles
to keep are λ1, λ2,3, λ4 and λ5,6 and the states to residualize in the physical realization
are the states in P3, P4 and P5.

One can remark that for this simple test case, the obtained reduced model is the
same as with the first strategy.

Third strategy

To apply the third strategy, the following optimization problem is solved using a
genetic algorithm (see chapter 3 for more information on how this optimization problem
is obtained): 

minimize
E

εi,jεi,jεi,j =
∫ ∞
−∞
|εi,j(ω)|2dω

subject to E ∈ Eεparticipation
, tr(E) ≤ 6

(4.4)

In the considered test case, i = 1, which means that the observed variable is isd

(the same result applies for isq) and j = 1, which means that the considered event is a
change in the grid voltage vgdg

(here a short-circuit in the simulations). Thanks to the
participation factors analysis, Eεparticipation

is defined as follows:

Eεparticipation
= {E ∈ R15×15/E = diag(δi), δi ∈ {0; 1},
∀(i, j) ∈ {1, .., 6}, E(i, i) = E(j, j),
E(7, 7) = E(8, 8),
∀(i, j) ∈ {10, .., 13}, E(i, i) = E(j, j),
E(14, 14) = E(15, 15)}

(4.5)

The optimization finds the following E as a solution:

E =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(4.6)
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This residualization matrix corresponds to the residualization of the states in the
groups P3, P4 and P5. It gives a 6th order model, which in this case, is the same as the
ones obtained with the two other methods.

Simulation results

The full 15th order model and the reduced 6th order model obtained with the three
MOR methods are considered.

First, a look at the poles of the linearised full model and of the linearised reduced
model in Figure 4.2 shows that, as wanted, the slow poles of the system have been kept
and have not moved much.
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Figure 4.2: Comparison of the poles of the full and the reduced models for the first test
case

Consider now the simulation of a short circuit at the grid at t = 1s that is cleared
after 150ms. The current in the converter is observed in Figure 4.3.
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Figure 4.3: Comparison of the current in the converter for the full and the reduced
models for the first test case

Several remarks can be made here. Although the peak current and the fast transient
during the short-circuit are missed by the reduced model, the general shape of the
current is captured by the reduced model and the poles are kept. This means that
the order 6 model is good for stability studies. In both cases, the current during the
short-circuit is way too high, which will damage the converter. This can be solved by
adding a new control loop: the virtual impedance. It is shown hereafter that this loop
can directly be added to the reduced model. This is an important feature as the control
can be easily modified or updated with all the proposed methods.

Adding a new control loop

The virtual impedance, is a control loop that decreases the voltage reference of the
converter when the current becomes too high. This way, it reduces the output current
of the converter. Consider the following equations taken from chapter 2, giving the
voltage reference to the converter using the external loop (reactive droop control here).

e∗d = |e|∗ +mq(q∗ − qm) +MADd
−Kff igd

(4.7)

e∗q = MADq −Kff igq (4.8)
When using a virtual impedance, these equations are replaced by the following four

equations:

e∗d = |e|∗ +mq(q∗ − qm) +MADd
−Kff igd

−∆eV Id
(4.9)

e∗q = MADq −Kff igq −∆eV Iq (4.10)

∆eV Id
= max(0,

√
i2sd

+ i2sq
− 1)(RV Iisd

−XV Iisq) (4.11)
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∆eV Iq = max(0,
√
i2sd

+ i2sq
− 1)(RV Iisq +XV Iisd

) (4.12)
In these equations, RV I = 0.67pu and XV I = 3.35pu. These equations show that

when the current in the converter is higher than 1pu, the voltage reference is decreased to
reduce this current. As the equations, variables and parameters are not changed during
the MOR, these new equations can easily be added to the reduced model, without
applying again a MOR method on the full model.

In Figure 4.4 the current in the converter is observed for the same test case as before.
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Figure 4.4: Comparison of the current in the converter for the full and the reduced
models with a virtual impedance for the first test case

Now the current is limited during the short-circuit in both cases thanks to the virtual
impedance.

Conclusion

In this subsection, the three developed MOR methods have been applied to a simple
test case consisting in one converter connected to an infinite grid. The conclusions are
the following. An order 6 model has been obtained with the three strategies and is
adapted to stability studies. However, it is not accurate enough for sizing studies
and more detailed models should be used. The modal approach works well and the
remaining poles do not move much. The variables, parameters and equations are kept
with the MOR, which allows to add new control loops directly on the reduced model.
This is shown here with a virtual impedance example. This test case has been useful
to illustrate the different methods but no method proves to be better than the others
for this particular test case.

4.1.2 Two-converter system
As seen previously, it is not always possible to highly reduce the system when

simulating events like short circuits (the important fast transients indeed need to be
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captured by the simulation). But this applies to the considered converter. One can ask
if it is possible, when looking at the current in one converter, to reduce the model of the
other converters in the system. This is the topic of this subsection, and the question is
answered using the three developed MOR methods.

The system in Figure 4.5 is considered. The two converters have exactly the same
parameters, nominal power and power reference (0.5pu). The equations modelling them
are the same as in the previous test case and a virtual impedance is used.

Converter 2

Rline Lline

Converter 1
ig1 ig2

iload1
iload2

iline

Rload1
Rload2

Figure 4.5: Structure of the system studied in the second test case

The line between the two converters is modelled as a simple RL line, which adds
two state variables to the model. As a consequence, the system is modelled with a 32th
order model (15 for each converter and 2 for the line).

The parameters of the line and the loads are given in Table 4.7.

Rline 0.02pu Lline 0.2pu
Rload1 2pu Rload2 2pu

Table 4.7: Parameters of the line and the loads for the second test case

Groups of states/eigenvalues

The system is linearised around its operating point and a participation factors anal-
ysis is done for εparticipation = 0.7. The same five groups as the test case with one
converter (see Table 4.3) can be formed for each of the two converters. These groups
are independent and there is no group formed that contains state variables of the two
converters (in this particular test case and because εparticipation has been chosen small
enough). This means that the two converters can be reduced independently with the
developed methods. Another group made of the double eigenvalue λ31,32 is formed and
contains the state variables ilined

and ilineq . As a consequence, this two-converter system
has 11 independent groups of state variables/eigenvalues, which means that there are
211 = 2048 possible models.
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The three developed strategies help choosing which groups of states to residual-
ize/groups of eigenvalues to discard, knowing that the observed variable is the current
in the first converter.

For each of the three strategies, an 18th order model is looked for (instead of 32 for
the full model). The order of the reduced model is here chosen arbitrarily.

First strategy

The first strategy consists in residualizing some state variables to discard the fastest
poles. As a consequence, the proposed 18th order reduced model with this strategy
consists in residualizing the states in the group P5 for each converter and the group
containing the state variables of the line between the two converters. As a result, each
converter is modelled by the same 9th order reduced model and the line between them
is in phasor mode (quasi-static).

Second strategy

The second strategy, as it takes into account the C matrix in the linearised model
and looks for the most observable and reachable states, gives a reduced model that is
adapted to the observed variables (it is not the same whether the current in the first
or in the second converter is observed).

In this study, the proposed reduced model consists in residualizing the states in the
groups P3 and P4 for the first converter and the states in the groups P3, P4 and P5 for
the second converter. In other words, the dynamics of the filter and the transformer
are kept in the model of the first converter (order 12 model) but not in the model of
the second converter (order 6 model). The line between the two converters is in phasor
mode.

Third strategy

As the second strategy, the third strategy takes into account the observed variable
to give a specific reduced model.

For the studied test case, it gives the same reduced model as for the second strategy
(an order 12 model for the first converter, an order 6 model for the second converter
and a phasor line).

Simulation results

From the application of the three strategies, three models need to be compared:

• a reference order 32 model with an order 15 model for each converter and an order
2 model for the line between the two.
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• an order 18 model with an order 12 model for the first converter, an order 6 for
the second converter and a phasor line between the two converters. This model
is given by the second and the third strategies.

• an order 18 model with an order 9 model for each converter and a phasor line
between them. This model is given by the first strategy.

A short-circuit a the first load is simulated at t = 1s and the current in the first
converter is observed in Figure 4.6.

Time [s]
0.99 1 1.01 1.02 1.03 1.04 1.05

C
u
rr
en
t
[p
u
]

0.5

1

1.5

2

Full model 15-15-2

Reduced model 9-9-0

Reduced model 12-6-0

Figure 4.6: Comparison of the current in the first converter for the full and the reduced
models for the second test case

In this figure, it can be seen that, although of the same size, the reduced models
given by the second and the third strategies on one hand and the one given by the first
strategy on the other hand give totally different simulation results. The latter misses
the peak current and the fast transient induced by the short-circuit, which is an issue,
whereas the other one captures them.

It seems like the first strategy is inadequate in this case to look at fast transients
and peak currents. The conclusion here is that it shouldn’t be used for over current
capability studies.

Conclusion

With this second simple test case, it has been shown that the three developed
methods don’t give the same reduced model depending on what is observed (which
variable). The first strategy is not adapted to studies where a specific variable is
observed as it misses fast transients and peak currents that can damage the converters.
For these cases, the second and the third strategies are better. As a consequence, the
first strategy will only be used for stability studies.

This example has shown that, as one would expect, when a different part of the
system is of interest, a different reduced model should be used. There is not one
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reduced model that can be used for all the simulations. For example, in this test case,
if the studied converter had been the second one and not the first one, the proposed
reduced models wouldn’t have been the same with the second and the third strategies.
More generally, what is far from the observed converter can be more reduced than what
is close. This is verified when studying larger systems like is shown in this report when
studying the Irish transmission system.

The conclusion here is that a different model should be used for each converter in
the system, depending on what is studied.

4.1.3 Three-converter system

In the last subsection, it has been shown that the reduced model should be adapted
to the observed variables, which is possible with the second and the third strategy but
not with the first one. In this subsection, it is shown that taking into account the
simulated event is also important.

To do so, a simple system with three converters and one load is considered in Figure
4.7.

K1 K2Converter 1 Converter 2

Converter 3

Sb = 1GV A Sb = 500MVA

Sb = 100MVA

L121 R121 L121 R121

L122 R122

L13

R13

L23

R23

PLoad = 500MW

Figure 4.7: Structure of the system studied in the third test case

In this system, each converter has its own pu system associated to its Sb and Vb.
For the grid between the converters and the load, Sb = 100MVA and Vb = 320kV . The
parameters of the grid are given in Table 4.8.
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R121 1.5e−3pu L121 1.5e−2pu R122 1.5e−3pu L122 1.5e−2pu
R13 7.3e−4pu L13 7.4e−3pu R23 3.7e−3pu L23 3.7e−2pu

Table 4.8: Parameters of the grid for the third test case

Each converter has an order 15 model and the grid between them is of order 10 (2
per RL line). As a result, the whole system is modelled with an order 55 model.

For this test case, only the second and the third strategies are compared.
Two events are simulated and the strategies are applied to the system for each one

of them:

• K1 and K2 are closed and a short-circuit happens in the middle of the line 121.
For this event, the input that is considered in the third strategy is the resistor
modelling the short-circuit.

• The line 121 is short-circuited andK1 andK2 are opened. For this event, the input
that is considered in the third strategy is the resistor modelling the line-tripping
(K1 and K2).

These two events lead to two different system topologies, which means that the
MOR needs to be done separately to both cases to be accurate.

Groups of states/eigenvalues

As for the second test case, five groups for each converter can be independently
formed (with a well chosen εparticipation, here 0.5). A group containing the 10 state
variables of the grid is also formed and is linked to the fastest eigenvalues. As a result,
there are in total 16 groups, which leads to 216 = 65536 possible reduced models. To
simplify, an order 36 model is looked for in the following. The order of the reduced
model is here chosen arbitrarily.

Second strategy

The second strategy takes into account the observed variable but not the simulated
event. It gives the same reduced model for both events (even though the topology is
different in both cases): an order 12 first converter with the residualization of the states
in P3 and P4, an order 7 second converter with the residualization of the states in P3
and P5, an order 7 third converter with the residualization of the states in P3 and P5
and the grid in EMT (order 10).

Third strategy

The third strategy can take into account the simulated event. As a result, it gives
different reduced models for each event:
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• For the short-circuit: an order 12 first converter with the residualization of the
states in P3 and P4, an order 7 second converter with the residualization of the
states in P3 and P5, an order 7 third converter with the residualization of the
states in P3 and P5 and the grid in EMT (order 10).

• For the tripping of the line: an order 12 first converter with the residualization
of the states in P3 and P4, an order 12 second converter with the residualization
of the states in P3 and P4, an order 12 third converter with the residualization of
the states in P3 and P4 and the grid in phasor (order 0).

Simulation results

Three models are compared with time simulations:

• a reference order 55 model (named 15-15-15-10).

• the order 36 model given by the second strategy and the third strategy during
the short-circuit (named 15-7-7-10).

• the order 36 model given by the third strategy during the tripping of the line
(named 12-12-12-0).

The short-circuit is simulated at t = 1s and the tripping of the line 150ms after.
The current in the first converter can be observed in Figure 4.8 during the short circuit
and in Figure 4.9 during the tripping of the line.
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Figure 4.8: Comparison of the current in the first converter for the full and the reduced
models for the third test case during the short-circuit
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Figure 4.9: Comparison of the current in the first converter for the full and the reduced
models for the third test case during the tripping of the line

These figures show that, as stated by the third strategy, a different reduced model
should be used for each simulated event. During the short-circuit, reducing the second
and third converter is indeed the best solution, while during the tripping of the line,
reducing the grid and making the phasor approximation is the best solution. This is
not the case with the second strategy, which misses this.

One can remark that instead of having a different reduced model for each simulated
event, one could try to minimize a combination αεi,j1εi,j1εi,j1 + (1− α)εi,j2εi,j2εi,j2 instead of only εi,j1εi,j1εi,j1
or εi,j2εi,j2εi,j2 separately, with α between 0 and 1. If α = 1, the best reduced model is given for
the short-circuit. If α = 0, the best reduced model is given for the tripping of the line.
By choosing α = 0.5 a compromise could be found. When tested on this particular test
case, this method doesn’t give satisfying results. It indeed gives either the best model
for the short-circuit or the best model for the line tripping but not an intermediate
model, even when several values for α are tested, as can be seen on Table 4.9.

α 0 0.2 0.4 0.6 0.8 1
Model 12-12-12-0 12-12-12-0 12-12-12-0 12-7-7-10 12-7-7-10 12-7-7-10

Table 4.9: Reduced model depending on the value of α

Conclusion

With this test case, it has been shown that to reduce the model of a power system
with a high PE penetration, taking into account the simulated event is of great im-
portance. This is possible with the third developed MOR method in this thesis. As a
conclusion, the third developed MOR method proves to be the best one to study this
type of cases.

Moreover it has also been shown that for events like short-circuits, the phasor ap-
proximation should not be made to have a good accuracy.
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4.1.4 Conclusion
This section has presented three simple test cases to which the developed MOR

methods have been applied:

• a one-converter test case has been studied. The main idea here was to carefully
explain the process of each one of the developed methods. For this particular test
case, the reduced models proposed by the three strategies are the same.

• a two-converter test case has been studied to show that depending on which
converter is of interest in the system, the reduced model should not be the same.
This is what the second and the third strategies showed.

• a three-converter test case has been studied to show that depending on what event
is simulated, the reduced model should not be the same. This is what the third
strategy showed. Moreover it was a first example that showed that the phasor
approximation can not always be made to preserve a good enough accuracy.

109



4.2 Transmission system test case
The developed MOR method now needs to be applied to larger systems. In this

section, the Irish transmission system is taken as an example. All the data are given by
the Irish TSO EirGrid [91]. In order to have a 100% PE power system, all the generators
are replaced with grid forming converters. This system is made of 47 loads (actual loads
and equivalent loads representing the distribution networks), 14 generators, 85 lines,
6 shunt capacitors and 40 transformers. Each generator is a grid forming converter
modelled with a 15th order model. Each transformer and shunt capacitor is modelled
with its 2nd order model. Each line is modelled with its 6th order pi-line model and each
load with its 2nd order model. This leads to a system with 906 differential equations (the
order of the whole system is actually less because some algebraic equations modelling
the nodes reduce the number of state variables. For example, if two inductances are
directly connected in series, there is actually only one state variable and not two).
A representation of the structure of this transmission system is given in Figure 4.10.
The red lines represent the 400kV branches and the green lines represent the 220kV
branches [92].

Figure 4.10: Structure of the Irish transmission system

A short-circuit is simulated at a load at t = 0.1s (Dunstown on the map). The
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current in a converter close to this load (Shellybanks on the map) is observed. Only
the third strategy is applied in this section as it has been shown in the last section that
it is the most adapted one for this type of studies.

Usually, to reduce the model of such a system, the loads, shunt capacitors, trans-
formers and lines are modelled with the phasor approximation. As a result, only the
dynamics of the converters are taken into account and the system is of order 210. But
it has been shown in the test case with three converters that the phasor approximation
is not always valid with a high PE penetration. In this subsection, the developed MOR
method is applied to the Irish transmission system modelled in EMT. The idea is to
compare the phasor model to a reduced model of the same size obtained with the third
strategy and to the full EMT model.

Third strategy

The participation factors analysis creates five groups of states for each converter,
which can be reduced independently. For the lines, transformers, shunt capacitors and
loads, it creates some groups as the dynamics of each one of these elements are not
totally independent and participate in some common poles.

The third strategy is applied to obtain an order 210 model (same size as the phasor
model) when observing the current in a converter (Shellybanks) when a short-circuit
happens at a load (Dunstown) close to it. It gives a model where some converters
are reduced, some are less reduced, some lines are in phasor (the one that are far
from the converter) and some are in EMT (the one that are close to the converter).
The optimisation that finds the reduced model takes 5 minutes and 21 seconds to be
performed on an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz processor, which is
not much compared to the gain in terms of simulation time as can be seen later when
doing the simulations.

For instance, table 4.10 gives the order of the model for each of the 14 converters
when the third strategy is applied. The observed converter is the second one (Shelly-
banks).

Converter 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Order (strategy 3) 12 12 12 12 12 12 12 12 6 6 6 6 6 6

Table 4.10: Model order for each of the converter in the system

On Figure 4.11, the part of the grid that is in EMT and the part that is in Phasor
mode are represented. One can see that the lines close to the observed converter and
the simulated event are in EMT while the one that are far are in Phasor.
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EMT
Phasor

Figure 4.11: Structure of the Irish transmission system after the model order reduction

One can remark that the reduced model proposed by the third strategy makes a
difference between the first 8 converters, that should be modelled with a quite detailed
model, and the last 6 converters, that can be more reduced. When looking at the map
of Ireland, it can be seen that the first group of converters actually corresponds to the
converters in the Republic of Ireland while the converters of the second group are in
Northern Ireland. And these two groups are only connected with one line, which makes
them quite independent dynamically. The same kind of remarks applied when looking
at the model of the lines. The one that are close to the event and the observed converter
are in EMT while the other can be modelled in phasor.

One can also remark that if the observed variable is the current in another converter,
the 12th one for example, the proposed reduced model would have consisted in the first
8 converters (in the Republic of Ireland) more reduced than the last 6 converters (in
Northern Ireland), which is the opposite of what is proposed here. It shows that the
MOR method is flexible and adapts to the test case under consideration.
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Simulation results

Figure 4.12 represents the current in the converter during the short-circuit for the
three models: the full EMT model, the phasor model, and a reduced model of the same
size obtained with the developed strategy.
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Figure 4.12: Comparison of the current in the converter for the full EMT model, the
reduced model obtained with the 3rd strategy and the phasor model during the short-
circuit at the load

It can be seen that the phasor model misses the first peak of the current and the
oscillations of the transient during the short-circuit, which can be dangerous for the
device. On the other hand, the reduced model, as it keeps the most relevant dynamics,
captures this transient with a very good accuracy and has the same simulation time as
the phasor model. It is therefore a better model.

Moreover, the simulation time is reduced by more than four times (5 minutes and
39 seconds with the reduced model against approximately 21 minutes and 13 seconds
with the full detailed model on an Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz
processor).

Conclusion

This section focused on the application of the developed MOR method to a real size
transmission system. Several things have been presented. First, the phasor approxima-
tion is not always valid when studying fast transients and peak currents during events
like short-circuits. It has been shown with the developed method that some lines must
be modelled in EMT whereas others can be modelled using the phasor approximation.
The developed strategy helps choosing which lines to simplify. It gives a reduced model
from the full EMT model that is of the same size as the phasor model but that can
capture the important dynamics during the transients. Then, the developed MOR ap-
plied to a transmission system allows to reduce the size of the model according to what
is observed and what is simulated. This results in a reduced system that is adapted to
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the test case under consideration. Finally, it is possible to use different models for each
converter. The models of the converters that are far from the simulated event and the
observed variable can be more reduced than the models of the other converters. The
same thing applies for the lines and the process is automatic. Simulations have been
made to validate the obtained reduced model. The reduced model is accurate and the
simulation time has been reduced greatly.
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4.3 Test case with one grid forming converter and
one modular multilevel converter

To study the interactions between two different types of PE converters, this test case
deals with a grid forming converter connected to an MMC. They both send power to
a load and are connected to each other through two lines in parallel. A short-circuit is
simulated in the middle of one line at t = 1s. Two cases are considered: in the first one
the current in the grid forming converter is observed and in the second one the current
in the MMC is observed. The models used for the two converters are the one presented
in chapter 2. The system is represented in Figure 4.13. It has 32 state variables and is
thus an order 32 model.

Grid forming converter MMC

Sb = 1GV A Sb = 1GV A

L121 R121 L121 R121

L122 R122

PLoad = 2GW

i1211 i1212

i122

igMMC
igGF

− iload

iload

Figure 4.13: Structure of the system with one grid forming converter and one MMC

Groups of states/eigenvalues

The first step of the developed method consists in forming the groups of states
and eigenvalues deduced from the participation factors analysis. It is done here with
εparticipation = 0.8. These groups are presented in Table 4.11.

This table presents 11 groups of states/eigenvalues. As a result, 211 = 2048 reduced
models are possible.

Third strategy

To simplify, only the third strategy is applied to this system. Instead of choosing
a size for the reduced model, a maximum tolerated error (for the energy of the error.
See chapter 3 for more explanations) is chosen and the idea is to find the most reduced
model that gives an error below this maximum tolerated error.

The strategy is applied to the two considered test cases:

• When the current in the grid forming converter is observed, the method proposes
to residualize the state variables in the groups P5, P7 and P9. It gives an order
24 model made of an order 6 MMC, an order 12 grid forming converter and the
lines in EMT.
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Eigenvalues State variables Group name
λ1 = 0 θGF P1

λ2,3 = −0.002± 0.01i MPLLMMC
, θPLLMMC

P2
λ4,5 = −1.45± 0.04i MV LdGF

, MV LqGF
P3

λ6,7 = −1.6± 0.05i MCLdGF
, MCLqGF

P4

λ8,9 = −16.6± 0.07i MADdGF
, MADqGF

P5

λ10 = −31 pmGF
P6

λ11 = −31.4 qmGF
P7

λ12,13 = −31.4± 320i i1211d
, i1211q

λ29 = −2.3e7, λ30 = −2.5e7 i1212d
, i1212q

P8

λ31 = −2.8e7, λ32 = −8.1e7 i122d
, i122q

λ14 = −73.6, λ15 = −113.3 MDCCLMMC

λ16,17 = −365± 541i vCtotMMC
, MWMMC

P9
λ26 = −1131 WtotfMMC

, iDCMMC

λ18,19 = −420± 428i igdMMC
, igqMMC

P10
λ20,21 = −420± 436i MCLdMMC

, MCLqMMC

λ22,23 = −616± 1374i isdGF
, isqGF

λ24,25 = −807± 2795i igdGF
, igqGF

P11
λ27,28 = −1609± 4409i edGF

, eqGF

Table 4.11: Groups of states and eigenvalues for the test case with one grid forming
converter and one MMC

• When the current in the MMC is observed, for the same accepted error, the
method proposes to residualize the states in the groups P5, P7, P8, P9 and P11.
It gives an order 12 reduced model made of an order 6 MMC, an order 6 grid
forming converter and the lines in phasor mode.

Simulation results

To validate the proposed reduced models, they are compared to the full EMT model
with time simulations. Figure 4.14 presents the evolution of the current in the grid
forming converter. One can see that the proposed order 24 model accurately captures
the transient during the short-circuit while the order 12 model doesn’t. This is why
this is the model proposed by the developed strategy.

Figure 4.15 presents the evolution of the current in the MMC. One can see that the
proposed order 12 and order 24 models accurately both capture the transient during
the short-circuit. This is why the order 12 model is the one proposed by the developed
strategy.

It can be seen that depending on what is looked at (the current in the grid forming
converter or in the MMC), the MOR possibilities are not the same. In some cases it is
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Figure 4.14: Comparison of the current in the grid forming converter for the full EMT
model and the two reduced models obtained with the 3rd strategy during the short-
circuit in the middle of a line

possible to greatly reduce the model while in others it isn’t.

Conclusion

This test case consisting in one grid forming converter and one MMC connected
to the same load highlighted several points. When the current in the grid forming
converter is observed during a short circuit, only the MMC can be reduced much and
some fast poles of the grid forming converter must be kept. Moreover, the grid must be
modelled in EMT. When the current in the MMC is observed there are more possibilities
of reduction. Both the MMC and the grid forming converter can be highly reduced and
the grid can be modelled in phasor mode. These two things are due to the fact that the
grid forming converter, because it is a grid forming converter, handles the fast transient
and the peak current induced by the fault. The MMC, as it is in grid feeding mode,
keeps injecting its reference power/current without too much trouble (it is the same
if it is not an MMC but a 2-level VSC in grid feeding mode). As a conclusion, the
main outcome here is that the converters at risk when simulating are the grid forming
converters and one should be careful when choosing how to model them.
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Figure 4.15: Comparison of the current in the MMC for the full EMT model and the two
reduced models obtained with the 3rd strategy during the short-circuit in the middle of
a line

4.4 Test case with one grid feeding converter and
one synchronous machine

Before being 100% PE, the transmission systems will go through a phase where PE
devices and SM are both connected to the grid. To take this into account, a test case
consisting in one SM connected to a grid feeding converter and a load is studied in
this section. The system is represented in Figure 4.16. It has 32 state variables and is
thus an order 32 model. The models used for the elements of this system are the one
presented in chapter 2.

synchronous machine grid feeding converter

Sb = 125MVA Sb = 12.5MVA

Lline Rline

PLoad = 138MW

iggfigSM
− iload

iload

SM

Figure 4.16: Structure of the system with one synchronous machine and one grid feeding
converter

The simulated test case consists in a short-circuit at the load. Two cases are con-
sidered: in the first one, the current in the SM is observed and in the second one it is
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the current in the converter. Again, only the third strategy is applied here. The idea
is to find the most reduced model for a given maximum accepted error (like in the last
test case with one grid forming converter and one MMC).

Groups of states/eigenvalues

The first step of the method consists as usual in forming the groups of states/eigenvalues
based on the participation factors analysis. It is done here for εparticipation = 0.70 and it
gives Table 4.12. 12 groups are created, which means that there are 212 = 4096 possible
reduced models. The developed MOR method helps us deciding which one is the most
adequate to the test case.

Eigenvalues State variables Group name
λ1 = 0 δSM P1

λ2,3 = −0.13± 0.87i φfdSM
, VeSM

λ4,5 = −0.83± 0.67i φdSM
, φqSM

P2
λ6 = −1.77, λ7 = −3.27 ωSM , ΓmSM

λ23,24 = −641± 184i ∆PsSM
, φ1qSM

λ8,9 = −3.89± 7.32i VefSM
, u∗fSM

P3

λ10 = −13.23 ∆PdSM
P4

λ11 = −15.32 φ2qSM
P5

λ12 = −16.62 VfSM
P6

λ13 = −19.59 ∆PaSM
P7

λ14 = −30.81 φ1dSM
P8

λ15,16 = −51.3± 14i MPLLgf
, θPLLgf

P9
λ18 = −73.04 Mpgf

λ17 = −58.5 Mqgf P10
λ19,20 = −516± 804i isdgf

, isqgf

λ21,22 = −582± 556i igdgf
, igqgf

λ25,26 = −672± 3982i edgf
, eqgf

P11
λ27,28 = −893± 3295i edfgf

, eqfgf

λ29,30 = −1604± 119i MCLdgf
, MCLqgf

λ31,32 = −2.2e8 ± 2.2e8i igdSM
, igqSM

P12

Table 4.12: Groups of states and eigenvalues for the test case with one synchronous
machine and one grid feeding converter

Third strategy

The third strategy is applied in both cases and the idea is to find the most reduced
model for a given accepted error:
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• when considering the current in the SM, the method proposes to residualize the
state variables in the groups P4, P6, P7, P10, P11 and P12. It gives an order 16
model made of an order 3 grid feeding converter, an order 13 SM and a line in
phasor mode.

• when considering the current in the grid feeding converter, the method proposes
to residualize the states variables in the groups P3, P4, P5, P6, P7, P8 and P12. It
gives an order 23 model made of an order 14 grid feeding converter, an order 9
SM and a line in phasor mode.

One can remark that the states in the groups P1, P2 and P9 are never residualized.

Simulation results

To validate the proposed reduced models, they are compared to the full EMT model
with time simulations. Figure 4.17 presents the evolution of the current in the SM. One
can see that the proposed order 16 model accurately captures the transient during the
short-circuit while the order 23 model doesn’t. This is why this is the model proposed
by the developed strategy.
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Figure 4.17: Comparison of the current in the synchronous machine for the full EMT
model and the two reduced models obtained with the 3rd strategy during the short-
circuit at the load

Figure 4.18 presents the evolution of the current in the grid feeding converter. One
can see that the proposed order 23 model and order 16 model both capture the transient
during the short-circuit quite well. This is the same conclusion as with the MMC. The
grid feeding converter can more easily be reduced than a grid forming converter or a
SM.
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Figure 4.18: Comparison of the current in the grid feeding converter for the full EMT
model and the two reduced models obtained with the 3rd strategy during the short-
circuit at the load

Conclusion

This section dealt with the case of a grid feeding converter and a SM connected to
the same load. It highlighted several points. When the current in the SM is observed
during a short-circuit, the grid feeding converter can be highly reduced to an order 3
model and the SM is reduced just a little bit. When the current in the grid feeding
is observed, both can be quite reduced as the model of the grid feeding converter is
less important than the one of a grid forming converter. In both cases, the line can be
modelled in phasor mode. Time simulations validated the proposed reduced models .
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4.5 Chapter conclusion
In this chapter, several test cases have been simulated and studied to validate the

developed MOR and give some insights on how to model and simulate a transmission
system with a high PE penetration. Several conclusions can be drawn from this.

The developed methods, as wanted, preserve the variables, parameters and some
poles of the initial system.

Depending on what is observed (which variable, for example the current in a specific
converter), the reduced model should not be the same.

Depending on what kind of event is simulated and where (for instance a short circuit
or a load connection), the reduced model should not be the same.

These two points help the user identifying zones of the system that should be mod-
elled in details and other zones where the models can be highly reduced. The developed
methods identify the boundaries of these different zones. It is intuitive that what is
close to the studied converter and the simulated event must be modelled with more
details than what is far but the developed methods prove it and give the boundaries.

One consequence of this is that some lines of a transmission system can be modelled
using the phasor approximation while other need to be modelled in EMT. Previously,
either all the lines were in EMT or in phasor. This is now more flexible and the
developed methods identify which lines must be in EMT.

Moreover, it has been shown that the simulation time and the number of variables
have been reduced greatly thanks to the reduced models.

A last conclusion is that depending on the type of converter that is studied, the
degree of the reduction is not the same. Grid forming converters, as they are voltage
sources, are more subject to over current and therefore must be modelled with higher
details than grid feeding converters.
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Conclusion and perspectives
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Conclusion
The context of this thesis was the search for technical solutions, such as new control

laws, to ensure that the massive integration of power electronics in the transmission
systems does not induce a decrease in the system stability and security. The main
objective of the particular work of this thesis is reminded and has consisted in developing
new tools and methods to simulate and analyse transmission systems with a high power
electronics penetration. The different dynamic behaviour of power electronics compared
to synchronous machines and the development of new grid forming capabilities for the
converters indeed necessitate new simulation methods and analysis tools.

The first chapter has presented some common tools that are used today to simulate
and analyse power systems. These tools are the EMT programs, the phasor approxima-
tion and the dynamic phasors for the simulation, and the small signal stability analysis,
the sensitivity analysis and the participation factors for the analysis tools. Thanks to
this state of the art, a need for model order reduction has been identified to accelerate
the simulation and simplify the analysis. This is why the second part of this chapter
was on the presentation of the classical model order reduction methods. The conclusion
then was that the classical methods are not suitable for the simulation and analysis of
power system because they use basis changes and truncations, which change the vari-
ables and the structure of the system. This is why the objective of this thesis was to
develop model order reduction methods that preserve the variables and the physical
structure of the system.

The second chapter has presented the models of the different elements of a trans-
mission system with a high power electronics penetration: the converters (grid forming
converters, grid feeding converters, MMC), the synchronous machines, the lines, the
loads, the transformers and the shunt capacitors. For the sake of simplicity, these mod-
els are all balanced. For each model, its differential and algebraic equations are given,
as well as block diagrams describing them when necessary. These models are used to
create power systems models to which the developed model order reduction methods
are applied later in the report.

The third chapter has theoretically presented the developed model order reduction
methods. These three methods are based on state residualization, a modal approach
and some features inspired by the classical methods presented in chapter 1. As wanted,
the developed methods preserve the variables of the system, its physical structure, the
stability of the operating point and have a limited error. Moreover, some of them give
a reduced model that is specific to the test case under consideration, i.e. the observed
variable and the simulated event. As the developed methods keep the physical structure
and variables of the model, the analysis is simple, it is possible to add new control loops
directly on the reduced model (this has been illustrated in this report by the addition
to the reduced model of a virtual impedance) and it is easy to implement the reduced
models in the classical simulation tools. Moreover, the computation time is highly
reduced.

The fourth chapter has presented the results of the application of the three devel-
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oped methods to realistic test cases. A first test case presented in details how the three
developed methods are applied. Then several test cases, from simple ones to more com-
plicated ones like the Irish transmission system, helped comparing the three developed
methods. The conclusion is that the third one using an optimization is the most adapted
to the test cases under consideration as it can at the same time take into account the
simulated event and the observed variable. Recommendations on how to model, simu-
late and analyse transmission systems with a high power electronics penetration have
also been given. Particularly, the case of the phasor approximation, which is largely
used in power system studies today, has been addressed. It has been shown that it
should not be used for all the lines in the system depending on the simulated event and
the observed converter/variable. It has been proved with the developed method that,
as expected, what is close to the simulated event and the observed converter should
be modelled with more details than the rest of the system. The developed strategy
identifies the boundaries between the detailed and the less detailed zones. Moreover,
the gain in terms of computation time is important as a reduction by five has been
observed.

Perspectives
Several possibilities of future work can be mentioned here.
Even though a real size transmission system has been studied in this report, the

models used for the different elements (converters, lines, transformers and loads) are
quite simple. More detailed models would make the use of model order reduction
methods like the ones developed in this thesis even more relevant. This is why an
application of the developed model order reduction method on more complex models
would be interesting. For example, instead of Pi models, frequency dependent models
could be used for the lines. More complex systems than the Irish transmission system
could also be studied.

Moreover, all the test cases in this thesis focus on balanced systems. A work on
unbalanced systems is an interesting perspective as there is a possibility that the most
adapted reduced model is not the same when the system is unbalanced. Moreover, as
unbalanced models are more complex than balanced ones, the need for model order
reduction is even higher. This is why it should be investigated.

In all test cases, the desired size for the reduced model has been chosen arbitrarily.
A work on the optimal reduced model size could be interesting. For now, the only
solution is to test several sizes, compute the reduced model in each case and choose
the best one. This solution demands a high computation time and should be greatly
improved in the future.

The modal approach is based on the formation of groups of states and eigenvalues
that depend on each other using a participation factors analysis. This approach needs
a criterion εparticipation that defines the degree of participation that is taken into account
when forming the groups. The choice of this criterion is based, in this report, on
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several tests that lead to a specific value that gives a good trade-off between sufficiently
taking into account the couplings and being able to enough reduce the model. A
more systematic method to choose this criterion would be a good improvement of the
developed methods.

Although reducing nonlinear models, the developed model order reduction methods
are based on linear analyses. A study of the degree of validity of this approach could be
done. To which extent a nonlinear reduced model given by a linear analysis is valid ?
This is especially relevant when simulating large disturbances like short-circuits (which
is the case in this work). A first perspective could be to study an extension of the
participation factors to nonlinear models, which has been done in [25]. The nonlinear
participation factors take into account the couplings induced by the non linearities. It
is this way possible that an eigenvalue doesn’t depend on a certain state variable when
looking at the classical participation factors but this is not true any more when taking
into account the nonlinear participation factors.

Other criteria to minimize could be tested for the third strategy and compared to
each others. For example, an application of the criterion presented in [87] could be
interesting.

As seen in this report, a different reduced model is given by the third method for
each different simulated event. One perspective could be to work on how to change the
model of the system during the simulation between two different events and how to do
this change of model properly. It is indeed a scientific challenge to be able to initialize
the new model using the data of the previous one. However, as the developed method
keeps the variables of the system (which are the same for the full or any reduced model),
the switching between two different models becomes easier than with the classical model
order reduction methods, which change the variables of the system during the process.

The gain in computation time makes the developed methods interesting for an ap-
plication to real time simulation test cases and it should be further investigated as a
continuation of this work.

Finally, a toolbox could be developed to integrate the developed methods into the
classical simulation software and make them more automatically applicable.
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The DQ0 transformation
The DQ0 (for Direct-Quadrature-Zero) transformation [11] is a basis change to

represent the studied system in the DQ0 representation, which uses a rotating reference
frame, instead of a fixed one, unlike the common ABC representation.

To illustrate it, consider a three-phase variable
(
xa xb xc

)T
in the ABC represen-

tation and an angle θ such as dθ
dt

= ω. The expression of this variable
(
xd xq x0

)T
in

the DQ0 representation with the angle θ is obtained using the following transformation
in (A.1).

xdxq
x0

 =
√

2
3

 cos(θ) cos(θ − 2π
3 ) cos(θ + 2π

3 )
−sin(θ) −sin(θ − 2π

3 ) −sin(θ + 2π
3 )

1√
2

1√
2

1√
2


xaxb
xc

 = P (θ)

xaxb
xc

 (A.1)

The system is considered to be balanced. Several remarks can be made here. Proofs
can be found in [11].

• The active and reactive power P and Q corresponding to a voltage v and a current
i can be expressed as in (A.2) in the DQ0 representation.

{
P = vdid + vqiq

Q = vqid − vdiq
(A.2)

• Applied to the derivative of
(
xa xb xc

)T
, the transformation gives (A.3)

P (θ) d
dt

xaxb
xc

 = d

dt

xdxq
x0

+

0 −ω 0
ω 0 0
0 0 0


xdxq
x0

 (A.3)

• The 0-axis value is always equal to 0 (if and only if the system is balanced, which
is the case here). In the example, x0 = 0 if the system is balanced. It means
that only xd and xq are of interest in this case. It means that, without doing any
approximation, the complexity of the model is reduced.

• If the variable
(
xa xb xc

)T
is sinusoidal at the frequency ω in steady-state, the

variable
(
xd xq x0

)T
is constant in steady-state. This is interesting because this

simplifies the simulation (a larger time-step can be used in steady-state [3]) and
it allows using the linear analysis tools (which are relevant only when the system
is steady-state time-invariant) in the DQ0 representation, which is not possible
in the ABC representation.
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The eigenvalue decomposition
Consider a square matrix A ∈ Rn×n. The set of the eigenvalues of A is noted σA

and is called its spectrum. The eigenvalues of A are complex values that can be defined
as in (A.4).

λi ∈ σA ⇔ ∃yi ∈ Rn/Ayi = λiyi (A.4)

In (A.4), yi is called a right eigenvector of A associated to the eigenvalue λi.
The matrix P =

(
y1 . . . yn

)
is defined. If P is not singular, the Eigenvalue

Decomposition (EVD) of A is then done and presented in (A.5).

A = PΛP−1 = Pdiag(λi)P−1 (A.5)

The singular value decomposition
Consider a rectangular matrix A ∈ Rn×k. The singular value decomposition of A is

defined in (A.6).

A = UΣV ∗, U ∈ Rn×n, Σ ∈ Rn×k, V ∈ Rk×k (A.6)

In this equation, U and V are unitary (U∗U = UU∗ = I and V ∗V = V V ∗ = I) and
Σ is rectangular diagonal. The diagonal values of Σ are called the singular values of A.

One can note that the singular values of A are the square root of the eigenvalues of
AA∗ and A∗A.
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Introduction

Contexte général
Pour lutter contre le réchauffement climatique et réduire les émissions de gaz à effet

de serre, les gouvernements de la plupart des pays du monde ont décidé d’investir mas-
sivement dans les énergies renouvelables. En parallèle, de nombreuses lignes à courant
continu haute tension sont construites pour connecter des réseaux asynchrones ou syn-
chrones sur de longues distances. Ceci, ajouté à l’arrivé récente des véhicules électriques,
entraîne une forte augmentation de la pénétration de l’électronique de puissance dans
les réseaux de transport d’électricité.

Aujourd’hui, les convertisseurs d’électronique de puissance sont contrôlés comme de
simples sources de courant (on parle de convertisseur « grid feeding »). S’ils viennent à
remplacer les générateurs synchrones, ils devront être contrôlés comme des sources de
tension pour créer la tension du réseau (on parle de convertisseur « grid forming »), et
ces nouveaux types de contrôles restent à développer.

Pour anticiper, différents gestionnaires de réseaux de transport européens et des
universités (voir figure B.1) se sont rassemblés au sein du projet européen MIGRATE
(Massive InteGRATion of power Electronic devices). L’objectif principal du projet
est de proposer des solutions innovantes pour progressivement ajuster les réseaux de
transport à cette augmentation massive de la pénétration de l’électronique de puissance.
Le projet est découpé en 8 groupes de travail présentés dans la figure B.2. Cette thèse
fait partie du groupe 3 qui cherche à développer de nouveaux contrôles pour les réseaux
100% électronique de puissance.

Les objectifs de cette thèse sont la simulation et l’analyse de réseaux de transport
100% électronique de puissance. En effet, puisque les convertisseurs ont des comporte-
ments dynamiques très différents de celui des machines synchrones, rien ne garantit que
les outils actuels ne soient encore valables. En conséquence, cette thèse développe de
nouveaux outils d’analyse et de simulation et donne des conseils dans la manière avec
laquelle un réseau 100% électronique de puissance doit être modélisé, simulé et analysé.

Plan de la thèse
Cette thèse est organisée en quatre chapitres.
Le premier chapitre passe en revue les outils et méthodes existants et utilisés

actuellement pour simuler et analyser des réseaux de transport ainsi que les méthodes
de réduction de modèles les plus couramment utilisées.

Le deuxième chapitre présente les modèles utilisés dans le reste de la thèse. Chaque
élément d’un réseau de transport est modélisé: les convertisseurs, les lignes, les trans-
formateurs, les machines synchrones et les charges.

Le troisième chapitre présente les trois méthodes de réduction de modèles dévelop-
pées. Le processus est détaillé pour chacune d’elles. Ces méthodes utilisent les outils
d’analyse présentés dans le chapitre 1 et s’inspirent des méthodes existantes. Toutes les
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méthodes préservent les variables, les paramètres, la structure physique et la stabilité
du système.

Le quatrième et dernier chapitre applique les méthodes développées à des cas d’études
réalistes en utilisant les modèles présentés dans le chapitre 2. Les conclusions pour
chaque cas sont des recommandations pour modéliser, simuler et analyser un réseau de
transport à forte pénétration d’électronique de puissance. Une des conclusions est que
le meilleur modèle réduit à utiliser est différent selon la variable observée et l’événement
simulé. Et ceci est pris en compte par les méthodes développées.

Figure B.1: Membres du projet MIGRATE
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Figure B.2: Groupes de travail du projet MIGRATE

Chapitre 1: contexte scientifique
Ce chapitre présente le contexte scientifique de la thèse par le biais d’un travail bib-

liographique. La première section présente les outils existants pour simuler et analyser
un réseau de transport tandis que la seconde section présente les méthodes classiques
de réduction de modèles.

Outils et méthodes pour la simulation et l’analyse de réseaux
de transport
Outils de simulation

Logiciels EMT Les logiciels EMT (Electromagnetic Transient) considèrent les tran-
sitoires électromagnétiques rapides en plus des transitoires électromécaniques lents (voir
Figure B.3). Leur temps de simulation est élevé de par le niveau de détails des modèles
utilisés et de par le fait que les pas de calculs utilisés doivent être petits (quelques
dizaines de µs). De plus, le grand nombre de variables complique l’analyse. En con-
séquence, seules des parties locales du système sont simulées et sur une courte période.

Pour toutes ces raisons, ils sont particulièrement adaptés à la simulation de con-
vertisseurs. Mais dans cette thèse, les systèmes simulés et analysés sont grands. Cela
signifie qu’utiliser des logiciels EMT peut mener à des analyses trop complexes et des
simulations trop longues.

L’approximation phaseurs L’approximation phaseurs consiste à négliger les dy-
namiques des lignes car elles sont plus rapides que les dynamiques des machines syn-
chrones.

Par exemple, un modèle de ligne R,L est considéré dans la representation DQ dans
l’équation (B.1).
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Figure B.3: Les transitoires dans les réseaux de transport


L

ωb

did
dt

= v1d
− v2d

−Rid + ωLiq

L

ωb

diq
dt

= v1q − v2q −Riq − ωLid
(B.1)

Avec l’approximation phaseurs, cette équation devient (B.2).
{

0 = v1d
− v2d

−Rid + ωLiq

0 = v1q − v2q −Riq − ωLid
(B.2)

Le comportement de la ligne est désormais quasi-statique, ce qui simplifie le modèle
et accélère la simulation. Il est maintenant possible d’utiliser des pas de calcul plus
grands et l’analyse du système est simplifiée car le nombre de variables d’état a diminué.
Mais cette approximation engendre des erreurs de simulation. La question est de décider
si les transitoires non pris en compte sont importants pour l’étude ou non.

En revanche, l’hypothèse sur laquelle se base l’approximation phaseurs peut ne plus
être vérifiée à l’avenir si la pénétration de l’électronique de puissance augmente et celle
des machines synchrones diminue.

Phaseurs dynamiques Les phaseurs dynamiques sont basés sur une décomposition
en série de Fourier. L’avantage est qu’ils peuvent prendre en compte les systèmes
déséquilibrés, sont plus précis que les simulations phaseurs et moins couteux en temps
de calcul que les logiciels EMT.
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En revanche, ils augmentent le nombre de variables du système ce qui rend l’analyse
compliquée. De plus ils ne sont pas facilement utilisables sur les logiciels de simulation
classiques.

Outils d’analyse

Analyse petits signaux Tout d’abord, un système non linéaire algébro-différentiel
est considéré dans l’équation (B.3).

dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(B.3)

Ce système est linéarisé, ce qui donne l’équation (B.4).
dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(B.4)

Les pôles de ce système sont les valeurs propres de la matrice A. L’ensemble des
valeurs propres de A est noté σA et appelé spectre de A. Les valeurs propres de A sont
les racines du polynôme caractéristique de A, comme présenté dans (B.5).

λi ∈ σA ⇔ det(A− λiIndiff
) = 0 (B.5)

Un système linéaire est exponentiellement stable si tous ses pôles ont une partie
réelle strictement négative, comme expliqué dans (B.6).

Le système est stable⇔ ∀λi ∈ σA, Re(λi) < 0 (B.6)

Analyse de sensibilité La sensibilité sri,j
de la partie réelle du pôle λi en fonction

du paramètre pj est définie dans (B.7).

sri,j
= ∂Re(λi)

∂pj
(B.7)

Elle donne l’évolution du pôle considéré lorsque le paramètre en question change.

Facteurs de participation Les valeurs propres de A, définies dans (B.5) peuvent
aussi être définies dans (B.8).

λi ∈ σA ⇔ ∃yi ∈ RNdiff/Ayi = λiyi (B.8)
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Dans (B.8), yi est appelé vecteur propre à droite de A associé à la valeur propre λi.
De la même façon, la définition dans (B.8) peut être réécrite avec un vecteur propre à
gauche comme dans (B.9).

λi ∈ σA ⇔ ∃ui ∈ RNdiff/uTi A = λiu
T
i (B.9)

Le facteurs de participation pk,i est un nombre complexe qui donne la participation
de la variable d’état xk dans la valeur propre λi. Il est calculé dans (B.10).

pk,i = ui(k)yi(k) (B.10)

Réduction de modèles
Une réduction de modèles est un processus qui trouve un modèle avec une sortie

proche de celle du modèle initial mais de taille réduite. Par example, considérons les
modèle dans (B.11) et (B.12).



dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(B.11)



dxdiffr

dt
= fr(xdiffr , xalgr , u)

0 = gr(xdiffr , xalgr , u)
yr = hr(xdiffr , xalgr , u)

xdiffr ∈ RNdiffr , xalgr ∈ RNalgr , u ∈ Rp, yr ∈ Rq

(B.12)

Le système dans (B.12) est une réduction du système dans (B.11) si l’équation (B.13)
est respectée, pour une erreur acceptée ε donnée.

{
||y − yr|| < ε

Ndiffr << Ndiff

(B.13)

Les méthodes de réduction de modèles les plus courantes sont présentées ici.

Troncature modale

La troncatures modale est basée sur la suppression de certains pôles du système et
la préservation d’autres, assurant ainsi la préservation de la stabilité.

Pour illustrer, la méthode est appliquée au système dans (B.14).
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
dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(B.14)

Décomposition en valeurs propres et changements de base La décomposition
en valeurs propres de A est effectuée dans (B.15).

A = P−1ΛP = P−1diag(λi)P (B.15)

En écrivant xm = Px, Bm = PB, Cm = CP−1, le système peut être réécrit dans
(B.16).


dxm
dt

= Λxm +Bmu

y = Cmxm +Du

xm ∈ RNdiff , u ∈ Rp, y ∈ Rq

(B.16)

Pôles rapides/pôles lents Le système est organisé comme suit dans (B.17). Dans
ces équations, Λ1 contient les pôles à garder et Λ2 les pôles à supprimer. En général les
pôles les plus lents sont gardés (ceux proches de l’axe imaginaire).



d

dt

(
xm1

xm2

)
=
(

Λ1 0
0 Λ2

)(
xm1

xm2

)
+
(
Bm1

Bm2

)
u

y =
(
Cm1 Cm2

)(xm1

xm2

)
+Du

xm1 ∈ RNdiff1 , xm2 ∈ RNdiff2 , u ∈ Rp, y ∈ Rq

(B.17)

Le choix de Ndiff1 détermine la taille du modèle réduit.
La troncature modale consiste à tronquer le modèle dans (B.17) pour ne garder que

xm1 . Cela donne le modèle réduit dans (B.18)

dxm1r

dt
= Λ1xm1r

+Bm1u

yr = Cm1xm1r
+Du

xm1r
∈ RNdiff1 , u ∈ Rp, yr ∈ Rq

(B.18)

Cependant, les variables d’état du modèle complet et du modèle réduit ne sont
plus les mêmes à cause du changement de base et de la troncature, ce qui complique
l’analyse.
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Troncature équilibrée

Le système à réduire est celui dans (B.19).
dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(B.19)

Gramiens d’observabilité et de commandabilité Les Gramiens de command-
abilité P et d’observabilité Q sont définis dans (B.20).

P =
∫ +∞

0
eAtBBT eA

T tdt

Q =
∫ +∞

0
eA

T tCTCeAtdt
(B.20)

Ils peuvent être calculés en résolvant les équations de Lyapunov dans (B.21).AP + PAT +BBT = 0
ATQ+QA+ CTC = 0

(B.21)

Le système est considéré dans une nouvelle base b dans (B.22).
dxb
dt

= Abxb +Bbu

y = Cbxb +Du
(B.22)

Les variables et matrices dans cette nouvelle base sont calculées en utilisant la
matrice Tb comme dans (B.23). 

xb = Tbx

Ab = TbAT
−1
b

Bb = TbB

Cb = CT−1
b

(B.23)

Les Gramiens dans cette nouvelle base sont alors exprimés comme suit dans (B.24).Pb = TbPT
T
b

Qb = T−Tb QT−1
b

(B.24)

Valeurs singulières de Hankel Les valeurs singulières de Hankel (HSV) sont la
racine carrée des valeurs propres du produit PQ et sont notées σi comme dans (B.25).

σi =
√
λi(PQ) (B.25)
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Transformation d’équilibrage Considérons une matrice triangulaire supérieure U
et inférieure L telles que P = UUT et Q = LLT .

Une decomposition en valeurs singulières du produit UTL est faite dans (B.26).

UTL = ZΣY T (B.26)

La transformation d’équilibrage Tb est alors définie dans (B.27).

Tb = Σ 1
2ZTU−1 (B.27)

Dans la nouvelle base b, les Gramiens sont alors égaux et diagonaux comme dans
(B.28). Les valeurs dans la diagonales sont les valeurs singulières de Hankel.

Pb = Qb = diag(σi) (B.28)

États les plus commandables et observables Dans ces conditions, une HSV est
associée à chaque état dans la réalisation équilibrée xbi

. C’est un réel positif qui donne
le degré d’observabilité et de commandabilité de l’état en question.

Le système est réarrangé de façon à ce que xb1 soit l’état le plus commandable et
observable et xbNdiff

le moins.
Dans ces conditions, le modèle peut être exprimé comme dans (B.29).



d

dt

(
xb1

xb2

)
=
(
Ab11 Ab12

Ab21 Ab22

)(
xb1

xb2

)
+
(
Bb1

Bb2

)
u

y =
(
Cb1 Cb2

)(xb1

xb2

)
+Du

xb1 ∈ RNdiff1 , xb2 ∈ RNdiff2 , u ∈ Rp, y ∈ Rq

(B.29)

Troncature équilibrée La troncatures équilibrée consiste à tronquer le modèle dans
(B.29) pour ne garder que les états les plus commandables et observables xb1 . Cela
donne le modèle réduit dans (B.30).


dxr
dt

= Ab11xr +Bb1u

yr = Cb1xr +Du
(B.30)

POD

La POD (Proper Orthogonal Decomposition) est appliquée à système différentiel
ordinaire non linéaire dans (B.31).
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
dx

dt
= f(x, u)

y = g(x, u)
x ∈ RN , u ∈ Rp, y ∈ Rq

(B.31)

Matrice de snapshots, decomposition en valeurs propres et approximation
La première étape de la méthode consiste à collecter des snapshots d’une simulation
précédente. Cela donne la matrice X dans (B.32).

X =


x1(t1) . . . x1(tNtime

)
... . . . ...

xN(t1) . . . xN(tNtime
)

 (B.32)

Une decomposition en valeurs propres de la matrice XXT est effectuée dans (B.33).XX
T = UΣV

XXT ∈ RN×N ,Σ ∈ RN×N , U ∈ RN×N , V ∈ RN×N (B.33)

L’équation (B.33) est réorganisée dans (B.34) de façon à ce que σ1 soit la valeur
propre la plus grande et σN la plus petite. Dans cette équation Σk = diag(σ1, ..., σk)
contient les k valeurs propres les plus grandes de XXT .

XXT =
(
Uk Urest

)(Σk 0
0 Σrest

)(
Vk
Vrest

)
= UkΣkVk + UrestΣrestVrest

(B.34)

La matrice XXT peut être approximée dans (B.35).

XXT ≈ UkΣkVk (B.35)

Réduction de modèle La réduction de modèle par POD consiste à définir le système
réduit dans (B.36). 

dxr
dt

= Vkf(Ukxr, u)

yr = g(Ukxr, u)
xr ∈ Rk, u ∈ Rp, yr ∈ Rq

(B.36)

Les fonctions fr et gr sont définies dans (B.37).{
fr(xr, u) = Vkf(Ukxr, u)
gr(xr, u) = g(Ukxr, u)

(B.37)

Cela permet d’écrire le nouveau système réduit dans (B.38).
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
dxr
dt

= fr(xr, u)

yr = gr(xr, u)
xr ∈ Rk, u ∈ Rp, yr ∈ Rq

(B.38)

Comparaison des méthodes et applicabilité à des réseaux de transport à
forte pénétration d’électronique de puissance

Le tableau B.13 résume les différentes caractéristiques des méthodes présentées ainsi
que les caractéristiques désirées pour la méthode recherchée. Ce tableau montre que
les méthodes classiques ne remplissent pas les critères recherchées.

Applicabilité à des Préservation Préservation Préservation de
modèles non linéaires des variables des pôles la stabilité

Modale Non Non Oui Oui
Équilibrée Non Non No Oui

POD Oui Non Non Non
Attendue Oui Oui Oui Oui

Table B.13: Comparaison des caractéristiques des méthodes de réduction de modèles
classiques

Conclusion du chapitre
Au vu de l’étude bibliographique effectuée dans ce chapitre, cette thèse se concentre

sur le développement de nouvelles méthodes de réduction de modèles. Ces méthodes
devront préserver les variables, les pôles et la stabilité du système de départ.

Chapitre 2: modélisation de réseaux de transport à
forte pénétration d’électronique de puissance

Ce chapitre présente les différents modèles utilisés dans cette thèse.

Modélisation des éléments basiques d’un réseau de transport
Lignes

Modèle en Pi Les équations d’une ligne en modèle en Pi sont données ici.

L

ωb

did
dt

= v1d
− v2d

−Rid + ωLiq (B.39)
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L

ωb

diq
dt

= v1q − v2q −Riq − ωLid (B.40)

C

2ωb
dv1d

dt
= iid − id + ω

C

2 v1q (B.41)

C

2ωb
dv1q

dt
= iiq − iq − ω

C

2 v1d
(B.42)

C

2ωb
dv2d

dt
= id − ijd + ω

C

2 v2q (B.43)

C

2ωb
dv2q

dt
= iq − ijq − ω

C

2 v2d
(B.44)

Modèle RL Les équations d’une ligne en modèle RL sont données ici.

L

ωb

did
dt

= v1d
− v2d

−Rid + ωLiq (B.45)

L

ωb

diq
dt

= v1q − v2q −Riq − ωLid (B.46)

Transformateurs

Les équations du modèle utilisé pour les transformateurs sont données ici.

L

ωb

did
dt

= v′1d
− v′2d

−Rid + ωLiq (B.47)

L

ωb

diq
dt

= v′1q
− v′2q

−Riq − ωLid (B.48)

(
v′1d

v′1q

)
= 1
r

(
v1d

v1q

)
(B.49)

(
v′2d

v′2q

)
=
(
cos(δ) −sin(δ)
sin(δ) cos(δ)

)(
v2d

v2q

)
= R(δ)

(
v2d

v2q

)
(B.50)

Charges

Les équations du modèle des charges sont données ici.

L

ωb

did
dt

= vd −Rid + ωLiq (B.51)

L

ωb

diq
dt

= vq −Riq − ωLid (B.52)

XIV



Condensateurs shunt

Les équations du modèle des condensateurs shunt sont données ici.

C

ωb

dvd
dt

= id + ωCvq (B.53)

C

ωb

dvq
dt

= iq − ωCvd (B.54)

Machines synchrones

Les équations du modèle de la machine synchrone utilisé sont données ici.

1
ωb

dφd
dt

= vd +Rsid + ωφq (B.55)

1
ωb

dφq
dt

= vq +Rsiq − ωφd (B.56)

1
ωb

dφfd

dt
= Ve −Rf ifd

(B.57)

1
ωb

dφ1d

dt
= −R1d

i1d
(B.58)

1
ωb

dφ1q

dt
= −R1q i1q (B.59)

1
ωb

dφ2q

dt
= −R2q i2q (B.60)

φd = −Ldid + Lad
ifd

+ Lad
i1d

(B.61)

φq = −Lqiq + Laq i1q + Laq i2q (B.62)

φfd
= −Lad

id + Lfd
ifd

+ Lad
i1d

(B.63)

φ1d
= −Lad

id + Lad
ifd

+ L1d
i1d

(B.64)

φ1q = −Laq iq + L1q i1q + Laq i2q (B.65)

φ2q = −Laq iq + Laq i1q + L2q i2q (B.66)
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Γe = φdiq − φqid (B.67)

Lg
ωb

did
dt

= vd − vgd
−Rgid + ωLgiq (B.68)

Lg
ωb

diq
dt

= vq − vgq −Rgiq − ωLgid (B.69)

2J dω
dt

= Γm − Γe − kd(ω − ωg) (B.70)

1
ωb

dδ

dt
= ω − ωg (B.71)

md∆P ∗ = ω∗ − ω (B.72)

Td
d∆Pd
dt

= ∆P ∗ −∆Pd (B.73)

Tse
d∆Ps
dt

= P ∗ −∆Ps −∆Pd (B.74)

Tac
d∆Pa
dt

= ∆Ps −∆Pa (B.75)

T1
d∆Pa
dt

+ ∆Pa = T2
dΓm
dt

+ Γm (B.76)

V =
√
v2
d + v2

q (B.77)

Tr
dVf
dt

= V − Vf (B.78)

u∗ = V ∗ − Vf − Vef
(B.79)

Ta
du∗f
dt

= Kau
∗ − u∗f (B.80)

Te
dVe
dt

= Keu
∗
f − Ve (B.81)

Kf
dVe
dt

= Vef
+ Tf

dVef

dt
(B.82)
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Modèles des convertisseurs
Convertisseurs grid feeding

Les équations du modèle des convertisseurs grid feeding sont données ici.

Lf
ωb

disd

dt
= vmd

− ed −Rf isd
+ ωPLLLf isq (B.83)

Lf
ωb

disq

dt
= vmq − eq −Rf isq − ωPLLLf isd

(B.84)

Cf
ωb

ded
dt

= isd
− igd

+ ωPLLCfeq (B.85)

Cf
ωb

deq
dt

= isq − igq − ωPLLCfed (B.86)

Lt
ωb

digd

dt
= ed − vgd

−Rtigd
+ ωPLLLtigq (B.87)

Lt
ωb

digq

dt
= eq − vgq −Rtigq − ωPLLLtigd

(B.88)

v∗md
= vmd

(B.89)

v∗mq
= vmq (B.90)

dMPLL

dt
= KiP LL

eq (B.91)

ωPLL = KpP LL
eq +MPLL

ωb
+ ωg (B.92)

1
ωb

dθPLL
dt

= ωPLL − ωg (B.93)

p = edigd
+ eqigq (B.94)

q = eqigd
− edigq (B.95)

dMp

dt
= Kipq(p∗ − p) (B.96)

dMq

dt
= Kipq(q∗ − q) (B.97)
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i∗sd
= Kppq(p∗ − p) +Mp (B.98)

i∗sq
= Kppq(q∗ − q) +Mq (B.99)

dMCLd

dt
= KiCL

(i∗sd
− isd

) (B.100)

dMCLq

dt
= KiCL

(i∗sq
− isq) (B.101)

τf
dedf

dt
+ edf

= ed (B.102)

τf
deqf

dt
+ eqf

= eq (B.103)

v∗md
= edf

+KpCL
(i∗sd
− isd

)− ωPLLLf isq +MCLd
(B.104)

v∗mq
= eqf

+KpCL
(i∗sq
− isq) + ωPLLLf isd

+MCLq (B.105)

Convertisseurs grid forming

Les équations du modèle des convertisseurs grid forming sont données ici.

Lf
ωb

disd

dt
= vmd

− ed −Rf isd
+ ωLf isq (B.106)

Lf
ωb

disq

dt
= vmq − eq −Rf isq − ωLf isd

(B.107)

Cf
ωb

ded
dt

= isd
− igd

+ ωCfeq (B.108)

Cf
ωb

deq
dt

= isq − igq − ωCfed (B.109)

Lt
ωb

digd

dt
= ed − vgd

−Rtigd
+ ωLtigq (B.110)

Lt
ωb

digq

dt
= eq − vgq −Rtigq − ωLtigd

(B.111)

v∗md
= vmd

(B.112)
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v∗mq
= vmq (B.113)

p = edigd
+ eqigq (B.114)

dpm
dt

+ ωfpm = ωfp (B.115)

ω = ω∗ +mp(p∗ − pm) (B.116)

1
ωb

dθ

dt
= ω − ωg (B.117)

q = eqigd
− edigq (B.118)

dqm
dt

+ ωfqm = ωfq (B.119)

dMADd

dt
= ωff (Kff igd

−MADd
) (B.120)

dMADq

dt
= ωff (Kff igq −MADq) (B.121)

e∗d = |e|∗ +mq(q∗ − qm) +MADd
−Kff igd

(B.122)

e∗q = MADq −Kff igq (B.123)

dMV Ld

dt
= KiV L

(e∗d − ed) (B.124)

dMV Lq

dt
= KiV L

(e∗q − eq) (B.125)

i∗sd
= KFFi

igd
+KpV L

(e∗d − ed)− ωCfeq +MV Ld
(B.126)

i∗sq
= KFFi

igq +KpV L
(e∗q − eq) + ωCfed +MV Lq (B.127)

dMCLd

dt
= KiCL

(i∗sd
− isd

) (B.128)

dMCLq

dt
= KiCL

(i∗sq
− isq) (B.129)
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v∗md
= KFFved +KpCL

(i∗sd
− isd

)− ωLf isq +MCLd
(B.130)

v∗mq
= KFFveq +KpCL

(i∗sq
− isq) + ωLf isd

+MCLq (B.131)

Modular multilevel converter

Les équations du MMC sont données ici.

LAC
digd

dt
= vmd

− vgd
−RACigd

+ ωPLLLACigq (B.132)

LAC
digq

dt
= vmq − vgq −RACigq − ωPLLLACigd

(B.133)

LDC
diDC
dt

= vDC − vmDC
−RDCiDC (B.134)

CeqvCtot

dvCtot

dt
= vmDC

iDC − vmd
igd
− vmq igq (B.135)

v∗mDC
= vmDC

(B.136)

v∗md
= vmd

(B.137)

v∗mq
= vmq (B.138)

dMPLL

dt
= KiP LL

vgq (B.139)

ωPLL = KpP LL
vgq +MPLL + ωg (B.140)

dθPLL
dt

= ωPLL − ωg (B.141)

i∗gd
= p∗

vgd

(B.142)

i∗gq
= − q∗

vgd

(B.143)

pAC = vgd
igd

+ vgq igq (B.144)

Wtot = v2
ctot

(B.145)
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τf
dWtotf

dt
+Wtotf = Wtot (B.146)

dMW

dt
= KiW (W ∗

tot −Wtotf ) (B.147)

i∗DC =
KpW

(W ∗
tot −Wtotf ) +MW + pAC

vDC
(B.148)

dMCLd

dt
= KiCL

(i∗gd
− igd

) (B.149)

dMCLq

dt
= KiCL

(i∗gq
− igq) (B.150)

v∗md
= vgd

+KpCL
(i∗gd
− igd

)− ωPLLLACigq +MCLd
(B.151)

v∗mq
= vgd

+KpCL
(i∗gq
− igq) + ωPLLLACigd

+MCLq (B.152)

dMDCCL

dt
= KiDCCL

(i∗DC − iDC) (B.153)

v∗mDC
= vDC −KpDCCL

(i∗DC − iDC)−MDCCL (B.154)

Conclusion du chapitre

Dans ce chapitre, les modèles des éléments d’un réseau de transport ont été présen-
tés. Cela donne, pour le réseau complet, un système algébro différentiel non linéaire
qui sera réduit grâce aux méthodes de réduction de modèles présentées dans le chapitre
3.

Chapitre 3: développement de méthodes de réduc-
tion de modèles

Ce chapitre présente les méthodes de réduction de modèles développées.
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Principes communs aux méthodes

Résidualisation d’état

Système algébro différentiel non linéaire Un système algébro différentiel non
linéaire est considéré dans (B.155). La taille de ce modèle est donnée par Ndiff . xdiff
représente les variables d’état, u les entrées, xalg les variables algébriques et y les sorties.



dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(B.155)

Principe de la résidualisation La résidualisation d’une variable d’état consiste à
transformer cette variable en une variable algébrique en négligeant la partie dérivée dans
l’équation différentielle correspondante, ce qui la transforme en une équation algébrique.

Le modèle réduit obtenu par résidualisation d’état peut être écrit comme dans
(B.156).



E
dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)
E = diag(δi), δi ∈ {0; 1},∀i, E ∈ RNdiff×Ndiff

xdiff ∈ RNdiff , xalg ∈ RNalg , u ∈ Rp, y ∈ Rq

(B.156)

La taille du modèle réduit est donnée par tr(E).
L’avantage de la résidualisation est qu’elle préserve les variables et la structure

physique du système.

L’approche modale

Le système dans (B.155) est considéré.
Ici, on cherche à relier les états du système à ses pôles de façon à ce que la résid-

ualisation entraine une suppression de pôles tout en gardant les autres pratiquement
inchangés. Cela est résumé dans B.4.
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Non linear DAE model

LTI model in state-space

Participation factors

Group of states for each eigenvalue

Groups of eigenvalues and their associated group of states

Figure B.4: Synoptique décrivant l’approche modale

Linéarisation du modèle Le modèle est dans un premier temps linéarisé dans
(B.157). 

dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(B.157)

Calcul des facteurs de participation et formation de groupes d’états qui par-
ticipent dans une valeur propre La seconde étape consiste à calculer les facteurs
de participation pk,i.

Un critère εparticipation entre 0 et 1 est choisi. Pour chaque valeur propre λi, les k
variables d’état correspondant au k plus grands facteurs de participation sont gardées
de façon à ce que la somme de leur participation soit supérieure à εparticipation. Elles
forment le groupe des états qui participe dans λi. Ce groupe est noté Pλi,εparticipation

.
Tout ceci est résumé dans (B.158).

Pλi,εparticipation
= {xk/∀xm /∈ Pλi,εparticipation

, |pk,i| ≥ |pm,i|∑
xk

|pk,i| ≥ εparticipation

∀xl ∈ Pλi,εparticipation
,
∑
xk 6=xl

|pk,i| < εparticipation}
(B.158)

Ce processus est effectué pour toutes les valeurs propres du système.

Formation de groupes de valeurs propres dans lesquelles les mêmes états
participent Quand le système est couplé, chaque état participe dans plusieurs valeurs
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propres et chaque valeur propre dépend de plusieurs états. De cette façon, certains des
groupes formés précédemment sont fusionnés pour former Pi. Chaque groupe Pi est
associé à un unique groupe de valeurs propres dans lesquelles les états de Pi participent.
Tous les groupes sont disjoints.

Ces groupes ajoutent une contrainte sur la matrice E recherchée. Cela est formalisé
dans Eεparticipation

qui contient toutes les matrices E respectant les couplages identifiés
auparavant. Cela est résumé dans (B.159). Cela signifie que les états d’un même groupe
doivent être résidualisés en même temps.

∀Pi,∀xk ∈ Pi,∀xl ∈ Pi, E(k, k) = E(l, l) (B.159)

Stratégies développées pour choisir les groupes d’états à résid-
ualiser/les groupes de valeurs propres à supprimer

Les groupes Pi d’états sont formés et chacun est associé à un groupe de pôles Li.

Stratégie 1: supprimer les pôles les plus rapides

Le synoptique dans la figure B.5 résume cette stratégie.

Groups of eigenvalues and their associated group of statesFastest eigenvalues

Residualizing the groups of states linked to the fastest eigenvalues

Figure B.5: Synoptique décrivant la stratégie 1

Stratégie 2: supprimer les pôles qui dépendent des états les moins observ-
ables et commandables dans la réalisation équilibrée

Le synoptique dans la figure B.6 résume cette stratégie
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Identify the states to residualize
in the physical realization

Compute the Hankel Singular Values
Compute the balanced realization

Groups of eigenvalues and their associated group of states

Identify the most observable and reachable states
in the balanced realization

Identify the poles that are linked to the
most observable and reachable states

Figure B.6: Synoptic décrivant la stratégie 2

Stratégie 3: supprimer les pôles qui minimisent un critère d’erreur

Le synoptique dans la figure B.7 résume cette stratégie.

Express the energy of the error for
the considered input/output couple

Linearising the system

F
Computing the error matrix

in the ourier domain

Find E to minimize this energy

Groups of eigenvalues and groups of states

Figure B.7: synoptique décrivant la stratégie 3

Linéarisation Les modèles complets et réduits sont linéarisés dans (B.160) et (B.161).
dx

dt
= Ax+Bu

y = Cx+Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(B.160)
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
E
dxr
dt

= Axr +Bu

yr = Cxr +Du

x ∈ RNdiff , u ∈ Rp, y ∈ Rq

(B.161)

Matrice d’erreur dans la representation de Fourier Une transformation de
Fourier et quelques operations mathématiques aboutissent à (B.162).{

Y − Yr = ε(ω)U
avec ε(ω) = C[(jωINdiff

− A)−1 − (jωE − A)−1]B ∈ Cq×p (B.162)

La nouvelle matrice ε(ω) est appelée matrice d’erreur.

Énergie de l’erreur pour un couple entrée-sortie spécifique L’erreur pour la
sortie Yi par rapport à l’entrée Uj est un scalaire donné par εi,j(ω).

L’énergie de cette erreur εi,jεi,jεi,j est définie dans B.163).

εi,jεi,jεi,j =
∫ ∞
−∞
|εi,j(ω)|2dω (B.163)

L’identité de Parseval dans (B.164) nous indique que les énergies dans la represen-
tation de Fourier et en temporel sont égales.∫ ∞

−∞
|εi,j(ω)|2dω = 2π

∫ ∞
−∞
|εi,j(t)|2dt (B.164)

Problème d’optimisation L’idée est alors de trouver E qui minimise l’énergie de
l’erreur. Le problème d’optimisation est présenté dans (B.165). La taille désirée pour
le modèle réduit est notée n.

minimize
E

εi,jεi,jεi,j =
∫ ∞
−∞
|εi,j(ω)|2dω

subject to E ∈ Eεparticipation
, tr(E) ≤ n

(B.165)

Ce problème étant discret, il est résolu en utilisant un algorithme génétique.

Conclusion du chapitre
Ce chapitre a présenté les 3 méthodes développées. Elles sont basées sur deux

principes communs: la résidualisation et une approche modale.
Ensuite chaque méthode adopte une stratégie différent pour choisir les variables à

résidualiser/les pôles à supprimer:

• la première supprime les pôles les plus rapides.
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• la seconde résidualise les états qui participent dans les pôles liés aux états les
moins commandables et observables dans la réalisation équilibrée.

• la troisième minimise un critère d’erreur.

Chapitre 4: application des méthodes pour la sim-
ulation et l’analyse de réseaux de transport à forte
pénétration d’électronique de puissance

Dans ce chapitre, les méthodes développées dans le chapitre 3 sont appliquées à des
cas tests réalistes basés sur les modèles du chapitre 2.

Cas simple à un convertisseur grid forming connecté à un réseau
infini

La figure B.8 présente le système étudié.

vDC vm e vg

Lf Rf Lt Rt ig

Cf

is
v∗m

DC

AC

is

|e|∗
ω

e

i∗s

ω

e ig

e∗

e ig

q∗

p∗

ω∗

loop
Current Voltage

loop
External
loop

Figure B.8: Structure du système étudié

Ce système est modélisé par le système d’équations dans (B.166).
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

dxdiff
dt

= f(xdiff , xalg, u)

0 = g(xdiff , xalg, u)
y = h(xdiff , xalg, u)

xdiff =
(
isd

isq ed eq igd
igq pm θ qm MCLd

MCLq MV Ld
MV Lq MADd

MADq

)T
xalg =

(
vmd

vmq v
∗
md

v∗mq
p ω q e∗d e

∗
q i
∗
sd
i∗sq

vgd
vgd

)T
u =

(
vgdg

vgqg
ω∗ p∗ q∗ |e|∗

)T
(B.166)

Groupes d’états/de valeurs propres Les valeurs propres du système linéarisé et
les facteurs de participation sont calculés et donnés dans le tableau B.14.

MCLd
MCLq MV Ld

MV Lq MADd
MADq isd

isq igd
igq pm qm θ ed eq

λ1 = −1.4 0.18 0.08 0.5 0.24 0 0 0 0 0 0 0 0 0 0 0
λ2,3 = −1.5± 0.1i 0.16 0.34 0.16 0.34 0 0 0 0 0 0 0 0 0 0 0

λ4 = −1.7 0.5 0.24 0.18 0.08 0 0 0 0 0 0 0 0 0 0 0
λ5,6 = −15.5± 28.2i 0 0 0 0 0 0 0 0 0 0 0.5 0 0.5 0 0

λ7 = −16.2 0 0 0 0 0.4 0.6 0 0 0 0 0 0 0 0 0
λ8 = −17.2 0 0 0 0 0.6 0.4 0 0 0 0 0 0 0 0 0
λ9 = −31.4 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

λ10,11 = −21± 134i 0 0 0 0 0 0 0.25 0.25 0.25 0.25 0 0 0 0 0
λ12,13 = −759± 3330i 0 0 0 0 0 0 0.13 0.13 0.12 0.12 0 0 0 0.25 0.25
λ14,15 = −790± 3820i 0 0 0 0 0 0 0.12 0.12 0.13 0.13 0 0 0 0.25 0.25

Table B.14: Facteurs de participation

Le critère de participation εparticipation = 0.99 est choisi, ce qui permet d’identifier les
états qui participent le plus dans chaque valeur propre, ce qui est fait dans le tableau
B.15.
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Valeur propre Etat
λ1 = −1.4 MCLd

, MCLq , MV Ld
, MV Lq

λ2,3 = −1.5± 0.1i MCLd
, MCLq , MV Ld

, MV Lq

λ4 = −1.7 MCLd
, MCLq , MV Ld

, MV Lq

λ5,6 = −15.5± 28.2i pm, θ
λ7 = −16.2 MADd

, MADq

λ8 = −17.2 MADd
, MADq

λ9 = −31.4 qm
λ10,11 = −21± 134i isd

, isq , igd
, igq

λ12,13 = −759± 3330i isd
, isq , igd

, igq , ed, eq
λ14,15 = −790± 3820i isd

, isq , igd
, igq , ed, eq

Table B.15: Etats qui participant le plus dans chaque valeur propre

Ce tableau permet de créer les groupes de valeurs propres et leurs groupes d’états
associés dans le tableau B.16.

Valeurs propres Etats Nom du groupe
λ1, λ2,3, λ4 MCLd

, MCLq , MV Ld
, MV Lq P1

λ5,6 pm, θ P2
λ7, λ8 MADd

, MADq P3
λ9 qm P4

λ10,11, λ12,13, λ14,15 isd
, isq , igd

, igq , ed, eq P5

Table B.16: Groupes d’états et de valeurs propres

Ce tableau donne les modèles réduits possibles qui sont résumés dans le tableau
B.17.
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Ordre Nom Groupes résidualisés Groupes gardés
0 0 P1, P2, P3, P4, P5
1 1 P1, P2, P3, P5 P4
2 2a P1, P3, P4, P5 P2
2 2b P1, P2, P4, P5 P3
3 3a P1, P3, P5 P2, P4
3 3b P1, P2, P5 P3, P4
4 4a P2, P3, P4, P5 P1
4 4b P1, P4, P5 P2, P3
5 5a P2, P3, P5 P1, P4
5 5b P1, P5 P2, P3, P4
6 6a P3, P4, P5 P1, P2
6 6b P2, P4, P5 P1, P3
6 6c P1, P2, P3, P4 P5
7 7a P3, P5 P1, P2, P4
7 7b P2, P5 P1, P3, P4
7 7c P1, P2, P3 P4, P5
8 8a P4, P5 P1, P2, P3
8 8b P1, P3, P4 P2, P5
8 8c P1, P2, P4 P3, P5
9 9a P5 P1, P2, P3, P4
9 9b P1, P3 P2, P4, P5
9 9c P1, P2 P3, P4, P5
10 10a P2, P3, P4 P1, P5
10 10b P1, P4 P2, P3, P5
11 11a P2, P3 P1, P4, P5
11 11b P1 P2, P3, P4, P5
12 12a P3, P4 P1, P2, P5
12 12b P2, P4 P1, P3, P5
13 13a P3 P1, P2, P4, P5
13 13b P2 P1, P3, P4, P5
14 14 P4 P1, P2, P3, P5
15 15 P1, P2, P3, P4, P5

Table B.17: Modèles réduits possibles

Maintenant que tous les modèles réduits possibles sont connus, les trois méthodes
développées aident à choisir le modèle le plus adapté.

La taille voulue pour le modèle réduit est arbitrairement fixée à 6.
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Première stratégie L’application de la première stratégie est plutôt directe et donne
comme modèle réduit le modèle 6a.

Deuxième stratégie La fonction h est choisie afin que les sorties du système soient
les courants isd

et isq .
Les HSV sont calculées et données dans le tableau B.18.

xb1 xb2 xb3 xb4 xb5 xb6 xb7 xb8 xb9 xb10 xb11 xb12 xb13 xb14 xb15

HSV (in %) 11.1 11 10.2 9.1 8.4 8.3 7.1 7 6.3 6.3 6.2 6.1 1.5 1 0.4

Table B.18: HSV du modèle

Une analyse des facteurs de participation dans la réalisation équilibrée et dans la
réalisation physique permet de créer les groupes d’états et de valeurs propres. Ils sont
présentés dans le tableau B.19.

Etats Valeurs propres Etats Nom du groupe
xb1 , xb2 λ5,6 pm, θ P2

xb3 , xb4 , xb5 , xb6 λ1, λ2,3, λ4 MCLd
, MCLq , MV Ld

, MV Lq P1
xb7 , xb8 , xb9 , xb10 , xb11 , xb12 λ10,11, λ12,13, λ14,15 isd

, isq , igd
, igq , ed, eq P5

xb13 , xb14 λ7, λ8 MADd
, MADq P3

xb15 λ9 qm P4

Table B.19: Groupes d’états et de valeurs propres dans les réalisations équilibrée et
physique

Le critère εHSV = 50% est choisi. Les états à garder dans la réalisation équilibrée
sont xb1 , xb2 , xb3 , xb4 , xb5 et xb6 , les pôles à garder sont λ1, λ2,3, λ4 et λ5,6 et les états à
résidualiser dans la réalisation physique sont les états dans P3, P4 et P5.

Troisième stratégie Le problème d’optimisation suivant est résolu en utilisant un
algorithme génétique :


minimize

E
εi,jεi,jεi,j =

∫ ∞
−∞
|εi,j(ω)|2dω

subject to E ∈ Eεparticipation
, tr(E) ≤ 6

(B.167)

Dans le cas considéré, i = 1, la variable observée est isd
et j = 1, l’événement

considéré est un changement de la tension du réseau vgdg
. Grâce à une analyse des

facteurs de participation, Eεparticipation
est défini comme suit:
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Eεparticipation
= {E ∈ R15×15/E = diag(δi), δi ∈ {0; 1},
∀(i, j) ∈ {1, .., 6}, E(i, i) = E(j, j),
E(7, 7) = E(8, 8),
∀(i, j) ∈ {10, .., 13}, E(i, i) = E(j, j),
E(14, 14) = E(15, 15)}

(B.168)

L’optimisation trouve la matrice E suivante comme solution:

E =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



(B.169)

Résultats de simulation Le modèle complet d’ordre 15 et le modèle réduit d’ordre
6 sont considérés ici.

Tout d’abord, on remarque dans la figure B.9 que comme voulu, certains pôles ont
été supprimés et les autres très peu modifiés.
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2000

4000
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Figure B.9: Comparaison des pôles des modèles complet et réduit
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Un court-circuit au niveau du réseau est simulé puis éliminé après 150ms. Le courant
dans le convertisseur est observé dans la figure B.10.

Time [s]
1 1.1 1.2 1.3 1.4 1.5

C
u
rr
en
t
[p
u
]

0

2

4

6

8 Full model

Reduced model

Figure B.10: Comparaison du courant dans le convertisseur pour les modèles complet
et réduit

On remarque que l’allure générale du courant est préservée.

Cas d’un réseau de transport

Le réseau de transport irlandais est considéré. Ce système est composé de 47 charges,
14 convertisseurs, 85 lignes, 6 condensateurs shunt et 40 transformateurs. Le modèle
est d’ordre 906. Une représentation de la structure est donnée dans la figure B.11.
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Figure B.11: Structure du réseau de transport irlandais

Un court-circuit est simulé au niveau d’une charge à t = 0.1s (Dunstown sur la
carte). Le courant dans un convertisseur proche (Shellybanks sur la carte) est observé.
Seule la troisième stratégie est appliquée.

Habituellement, l’approximation phaseur est effectuée, ce qui mène à un modèle
d’ordre 210. L’idée ici est de trouver un modèle réduit de même taille et de le comparer
au modèle complet et à ce modèle phaseur.

Dans le modèle réduit obtenu en appliquant la stratégie 3, certains convertisseurs
sont réduits, d’autres non, de même pour les lignes.

Le tableau B.20 donne l’ordre du modèle pour chacun des convertisseurs du réseau.

Converter 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Order (strategy 3) 12 12 12 12 12 12 12 12 6 6 6 6 6 6

Table B.20: Ordre du modèle pour chaque convertisseur

Sur la figure B.12, la partie du réseau en EMT et la partie en phaseur sont représen-
tées. On peut remarquer que les lignes proches du convertisseur observé et de l’événement
simulé sont en EMT.
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+

EMT
Phasor

Figure B.12: Structue du réseau de transport irlandais après la réduction de modèle

La figure B.13 représente le courant dans le convertisseur pendant le court-circuit
pour les trois modèles : complet, phaseur et réduit.
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Figure B.13: Comparaison du courant dans le convertisseur pour les modèles complet,
réduit et phaseur
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On peut remarquer que le modèle phaseur ne prend pas en compte le pic de courant
alors que le modèle réduit oui. Globalement, ce dernier est plus précis que le modèle
phaseur.

Conclusion
Le contexte de cette thèse était la recherche de solutions techniques, telles que de

nouvelles lois de commande, pour s’assurer que l’intégration massive de l’électronique
de puissance dans les réseaux de transport n’entraîne pas une diminution de la stabilité
et de la sécurité du système. L’objectif principal de cette thèse est rappelé et a con-
sisté à développer de nouveaux outils et méthodes pour simuler et analyser des réseaux
de transport à forte pénétration d’électronique de puissance. Le premier chapitre a
présenté quelques outils communs qui sont utilisés aujourd’hui pour simuler et analyser
les systèmes électriques. Grâce à cet état de l’art, un besoin de réduction de modèles a
été identifié pour accélérer la simulation et simplifier l’analyse. C’est pourquoi la deux-
ième partie de ce chapitre a été consacrée à la présentation des méthodes classiques
de réduction de modèles. La conclusion était que les méthodes classiques ne convien-
nent pas à la simulation et à l’analyse des réseaux électriques parce qu’elles utilisent
des changements de base et des troncatures, qui modifient les variables et la structure
du système. C’est pourquoi l’objectif de cette thèse était de développer des méthodes
de réduction de modèle qui préservent les variables et la structure physique du sys-
tème. Le deuxième chapitre a présenté les modèles des différents éléments d’un réseau
de transport à forte pénétration d’électronique de puissance. Le troisième chapitre a
présenté les méthodes de réduction développées. Ces trois méthodes sont basées sur la
residualisation d’état, une approche modale et certaines caractéristiques inspirées des
méthodes classiques présentées au chapitre 1. Comme souhaité, les méthodes dévelop-
pées préservent les variables du système, sa structure physique, la stabilité autour du
point de fonctionnement et ont une erreur limitée. De plus, certaines d’entre elles don-
nent un modèle réduit qui est spécifique au cas test considéré, c’est-à-dire la variable
observée et l’événement simulé. Comme les méthodes développées conservent la struc-
ture physique et les variables du modèle, l’analyse est simple, il est possible d’ajouter de
nouvelles boucles de contrôle directement sur le modèle réduit et il est facile de mettre
les modèles réduits dans les outils classiques de simulation. De plus, le temps de calcul
est très réduit. Le quatrième chapitre a présenté les résultats de l’application des trois
méthodes développées à des cas test réalistes.
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Outils et Méthodes pour l’Analyse et la Simulation de Réseaux de Transport 100% 

Electronique de Puissance 

RESUME : 

Le développement des énergies renouvelables et des liaisons HVDC conduit à une 

augmentation de la pénétration de l’électronique de puissance dans les réseaux de 

transport d’électricité. Comme les convertisseurs possèdent des propriétés 

physiques différentes de celles des alternateurs synchrones, une évolution des 

contrôles employés s’avère nécessaire. Au vu de la taille des ensembles à simuler, la 

validation de solutions innovantes doit être réalisée par des simulations 

numériques et il est nécessaire d’être vigilant sur les outils utilisés afin d’éviter des 

temps de calcul prohibitifs. Dans cette thèse, des outils et des méthodes pour 

l’analyse et la simulation de réseaux de transport 100 % électronique de puissance 

sont développés. Une partie importante des travaux est consacrée à la modélisation 

des convertisseurs, ce qui permet de réaliser des simulations numériques plus ou 

moins précises en fonction du cahier des charges de l’étude et d’appliquer ou de 

développer des méthodes d’analyse de stabilité. Un modèle simplifié du réseau 

Irlandais est utilisé comme réseau exemple de façon à valider les méthodes et outils 

développés dans le cadre de la thèse. 

Mots clés : Analyse des réseaux de transport, 100% Électronique de Puissance, 

Simulation de réseaux électriques, Réduction de modèles 

Tools and Methods for the Analysis and Simulation of Large Transmission 

Systems Using 100% Power Electronics 

ABSTRACT:  

The development of renewable generation and HVDC links lead to an important 

increase of the penetration of power electronics in the transmission systems. As 

Power Electronics converters have completely different physical behavior than 

synchronous machines, an evolution in the way TSOs control transmission systems 

is needed. It is impossible to build a real size prototype of a transmission system. 

The validation of the solutions must be done using dynamic numerical simulations. 

Because of the size of the studied systems, we have to be careful with the 

simulation tools that we use, in order to reduce the computation time. In this PhD 

tools and methods for the analysis and simulation of large transmission systems 

using 100% power electronics are developed. An important part of the work looks 

at the models of the converters. Those models allow us to do numerical simulations 

and to apply and develop stability and performance analysis methods for the 

considered system.  A simple model of the Irish network will be used as an example 

in order to assess the developed methods. 

Keywords : Power Systems Analysis, 100% Power Electronics, Power System 

Simulation, Model order reduction 
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