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Chapter 1 Literature review on meshless methods

Research background

Numerical simulation on computers has become an important tool to study and predict the behavior of physical systems, especially for those who cannot provide analytical solutions, as in most nonlinear systems [START_REF] Huang | Numerical calculation method[END_REF]. The procedure of scientific computation and solving technical problems consists of several steps, as shown in The premise and basis of scientific computation is modeling practical problems based on scientific theory, mathematical theory and some reasonable assumptions.

However, the key of the procedure is to obtain solutions of mathematical models which can meet accuracy requirements using computers. This is a new branch of mathematics -Numerical Analysis, including function interpolation, numerical differentiation and integration, solving systems of linear and nonlinear equations, calculation of matrix eigenvalues and eigenvectors, computational methods for optimization problems, numerical solutions of ordinary differential equations and partial differential equations, etc. It also involves theoretical research on reliability of computational methods, such as convergence, stability and error estimation.

Numerical analysis is applied widely in fundamental industrial production and researches of the most advanced science and technology. It provides an alternative way of scientific investigation besides theoretical solutions and expensive, time-consuming experiments, becoming essential in optimization design of mechanical and electrical products, geological exploration and oilfield development, weather forecast and earthquake prediction, development of cutting-edge weapons and aerospace. Furthermore, it has infiltrated into different science fields, generating interdisciplinary subjects such as computational physics, digital image processing and econometrics.

On this background, computational mechanics is formed by the interdisciplinary of numerical analysis and mechanics, which deals with the use of computational methods in engineering practices to study physical phenomena governed by the principles of mechanics [START_REF] Ghaboussi | Numerical methods in computational mechanics[END_REF]. Over the past few decades, it has shown huge potential for the application on physical and biological systems based on classical mechanics, quantum mechanics and biology. The computational mechanics are extended to the areas of mechanics, mathematics, computer science, making a significant contribution in the design and simulation of new products because of the advantages of convenience, effectiveness and high efficiency. The computational method has become one of the most important tools in engineering and science, covering various topics including thermal, fluid, solid mechanics, vibration, and vehicle dynamics.

Among numerous computational methods in computational mechanics, the most popular ones are finite difference methods (FDM), finite element methods (FEM) and boundary element methods (BEM). They are widely used for solving engineering problems, especially finite element methods. However, despite of widespread applications, they have their own shortcomings and limitations. The advantages and disadvantages of these methods are introduced and detailed in this section.

Finite difference method

The finite difference methods (FDM) is one of the most traditional and simplest methods for solving differential equations by approximating them with difference equations, in which finite differences approximate the derivatives [START_REF] Leveque | Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems[END_REF].

FDM solves the original linear or nonlinear differential equations by converting them into a linear system, which can be solved by matrix techniques. The finite difference approximation began to develop rapidly with the widespread use of computers. The accuracy, stability and convergence of FDM are well studied during the last few decades. The calculation format and program design are intuitive and simple, making it an important tool in computational mathematics and computational physics.

In FDM, one pays attention to the corresponding functional values of the discrete independent variables, neglecting the feature that independent variables are continuous in differential equations. The derivatives in the equations are replaced by differential quotients. For the one-dimensional case, the derivative of a function u at a point xR  is defined as
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Nevertheless, the desirable computational accuracy can still be obtained by reducing the interval of discrete variables or interpolating the functional values of discrete points. In other words, the approximation can be improved by using a smaller h . The discretization error of the approximate solution comes from the error that is committed by going from a differential operator to a difference operator.

Despite of the simplicity of FDM, it needs a regular mesh of grids, which limits the application to problems with regular geometry and simple boundary conditions.

The treatment quickly becomes complicated when adding some complexities like moving boundaries or adaptive mesh grid. Researchers have improved FDM by proposing Generalized Finite Differences, making it possible for problems with irregular node distribution. However, the bad conditioning is still a problem for dense meshes [START_REF] Liszka | The finite difference method at arbitrary irregular grids and its application in applied mechanics[END_REF].

Finite element method

Finite element method is a very efficient tool for solving complex differential equations. The fundamental principle of finite element analysis is to discretize the continuous domain into a family of discrete subdomains by mesh discretization. In 1960, Clough proposed "Finite Element Method" and used it to solve plane elastic problem [START_REF] Clough | Thoughts about the origin of the finite element method[END_REF][START_REF] Ray | Early history of the finite element method from the view point of a pioneer[END_REF]. In 1967 Zienkiewicz and Cheung published the first book on finite element analysis [START_REF] Zienkiewicz | The finite element method in structural and continuum mechanics[END_REF]. FEM was used to solve nonlinear and large deformation problems after 1970. With the development of computer technology, many computational software have been developed based on the principle of finite element method, some famous of which are ABAQUS, ANSYS, MSC/NASTRAN and IDEAS.

In FEM, a continuous domain is discretized into finite elements. Then, the relation of forces and displacements on all nodes is obtained by element and integral analysis. Stress, strain and other fields of each element are computed by introducing boundary conditions. FEM does not require high continuity of the interpolation functions due to the weak form of the equivalent integral of differential equations.

Because of the computational stability and high applicability, FEM can deal with complex geometry, boundary conditions and material properties.

Although FEM has many advantages and has been applied in many scientific fields, it has some inherent shortcomings:

(1) FEM has difficulties in dealing with some complex problems. These problems mainly include: extremely large deformation problems; dynamic crack propagation problems; high-speed impact and geometric distortion problems; material fission problems; metal material forming problems; multi-phase transformation problems, etc. When analyzing these problems with FEM, large mesh distortion or element splitting may bring difficulties or even failure in numerical computation.

(2) In finite element analysis, meshing consumes too much time. In addition, FEM needs complex post processing because it adopts low-order shape functions, which leads to relatively lower accuracy.

Meshless methods

Classical numerical methods have some troubles when dealing with some practical problems, such as high velocity impact, material molding, dynamic crack propagation, discontinuity problems, fluid-solid coupling and adaptive problems. In recent decades, new generation of computational methods -meshless methods -have been developed as they are expected to be better than mesh-based FDM and FEM in many applications [START_REF] Liu | Meshless methods[END_REF]. Similar to conventional FEM, FDM and finite volume methods, meshless methods are actually a tool for solving partial differential equations that govern physical phenomena [START_REF] Zhang | Meshless methods[END_REF].

In the finite difference method and the finite element method, the spatial domain is discretized by predefined grids and meshes, providing a relationship between the nodes. The PDEs defined in the domain are discretized by a system of algebraic equations based on the grids and meshes. In meshless methods, the solving process consists of two steps: the approximation of field functions and the discretization of governing equations. The approximation functions and their derivatives, depending on the location of discretized points in the domain, are built up without the use of grids or meshes, which means that the relationship between the points is not required. This main advantage makes meshless methods suitable for problems involving large deformation and adaptive meshes, such as high velocity impact, crack propagation and fluid-solid coupling [START_REF] Liu | Meshfree methods: moving beyond the finite element method[END_REF]. [START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF] applied smooth particle hydrodynamics (SPH) to polytropic stellar models. Lucy [START_REF] Lucy | A numerical approach to the testing of the fission hypothesis[END_REF] used SPH to solve the fission problem for optically thick protostarts. These two papers are considered to be the earliest work on meshless methods. In the past decades, a number of meshless methods have been developed and applied to the corresponding engineering practice based on their own characteristics. They can be classified in terms of different approximation approaches of field functions such as moving least-square (MLS), radial basis function (RBF), kernel particle (KP), point interpolation (PI) and partition of unity (PU). They can be also classified according to different approaches to discretize the governing equations: the weak-form formulation and the strong-form formulation.

Gingold and Monaghan

One can assemble various types of meshless methods by combining different approximation and discretization approaches.

The basic idea and research status of meshless methods will be introduced hereafter around the approximation approaches of field functions and the discrete approaches of algebraic equations.

Approximation approaches of field functions

The first and most important step in meshless methods is to approximate the field functions and create shape functions of the problem from a cloud of points. The shape functions constructed should be stable, consistent, efficient and independent of the nodal distribution, so that the implementation and the accuracy of the method can be ensured. In this section, various approximations for meshless methods will be recalled.

Kernel particle and reproducing kernel particle approximation

The kernel methods approximate the field function   u x with a kernel function in a domain Ω [START_REF] Monaghan | Why particle methods work[END_REF]:
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where   h u x is the approximation, x is a vector in 2D and 3D problems, s is the integral variable,   , wh  xs is the kernel interpolation function. The kernel functions should satisfy the following conditions (see Figure 1.2): In 1970s, the kernel approximation was invoked for the first time by Lucy in the smoothed particle hydrodynamics (SPH), which is also the oldest meshless method [START_REF] Lucy | A numerical approach to the testing of the fission hypothesis[END_REF]. This method is successfully applied to the astrophysical field. In 1980s,
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Monaghan developed SPH to simulate the shocktube phenomena, binary star interactions and magnetohydrodynamics [START_REF] Monaghan | Why particle methods work[END_REF][START_REF] Monaghan | An introduction to SPH[END_REF][START_REF] Monaghan | Shock simulation by the particle method SPH[END_REF][START_REF] Lattanzio | Controlling penetration[END_REF][START_REF] Gingold | The Roche problem for polytropes in central orbits[END_REF][START_REF] Phillips | A numerical method for three-dimensional simulations of collapsing, isothermal, magnetic gas clouds[END_REF]. Despite of its versatility and simplicity, the disadvantage of SPH is its limited accuracy that needs plenty of nodes to improve the situation. Nevertheless, the superiority of SPH in fields such as high velocity impact makes it one of the few meshless methods that has been applied in engineering practice.

Liu developed reproducing kernel particle method (RKPM) based on SPH, in which the kernel particle interpolation function consists of a flexible window function and a continuous correction function [START_REF] Liu | Reproducing kernel particle methods[END_REF]. It gives more accurate results because of the addition of the correction function. He also proposed multiscale reproducing kernel particle method based on reproducing kernel and wavelet analysis, implementing adaptive analysis by RKPM [START_REF] Liu | Wavelet and multiple scale reproducing kernel methods[END_REF][START_REF] Liu | Generalized multiple scale reproducing kernel particle methods[END_REF]. Chen studied hyper-elasticity and elasto-plasticity problems based on RKPM [START_REF] Chen | Reproducing kernel particle methods for large deformation analysis of non-linear structures[END_REF]. The results indicated that RKPM is more effective and accurate than FEMs when dealing with large material distortion because of the smoother shape functions. Lin solved time-space fractional diffusion equations in 2D regular and irregular domains using RKPM [START_REF] Lin | Reproducing kernel particle method for two-dimensional time-space fractional diffusion equations in irregular domains[END_REF]. Wang proposed a quasi-convex reproducing kernel meshless method, which has better accuracy compared with the conventional RKPM [START_REF] Wang | Quasi-convex reproducing kernel meshfree method[END_REF].

Moving least-squares approximation

Another approach to construct shape functions in meshless methods is moving least-square (MLS) approximation that was proposed by Lancaster for data fitting [START_REF] Lancaster | Surfaces generated by moving least squares methods[END_REF].

In the domain Ω, the approximation function  
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where m is the number of terms in the basis functions   (1.5) Commonly used bases are the linear basis of complete polynomials. For example, a quadratic basis in 2D is     22 = 1, , , , ,
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. In [START_REF] Belytschko | Smoothing and accelerated computations in the element free Galerkin method[END_REF], the trigonometric function was selected as the basis function to solve some 2D elastostatic problems.

For singular problems, the characteristic function near the singular point can be used as the basis function [START_REF] Szabo | Computation of the amplitude of stress singular terms for cracks and reentrant corners[END_REF].

From Eq.(1.4), the quadratic form by a weighted least-square fit with respect to coefficients   i a x can be obtained:
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The coefficients   Nayroles et al proposed the diffuse element method (DEM) firstly using moving least-square approximations in 1992 [START_REF] Nayroles | Generalizing the finite element method: diffuse approximation and diffuse elements[END_REF]. By improving DEM, Belytschko et al proposed the famous element-free Galerkin method (EFGM) [START_REF] Belytschko | Element-free Galerkin methods[END_REF]. With the use of Lagrange multipliers, a large number of quadrature points and modified derivatives of the interpolants, EFGM has a better performance in accuracy and stability than DEM.

EFGM was successfully applied to the numerical simulation of crack propagation as it overcame the drawback of FEM in remeshing [START_REF] Belytschko | Fracture and crack growth by element free Galerkin methods[END_REF][START_REF] Belytschko | Element-free Galerkin methods for static and dynamic fracture[END_REF][START_REF] Lu | Element-free Galerkin method for wave propagation and dynamic fracture[END_REF][START_REF] Belytschko | Crack propagation by element-free Galerkin methods[END_REF][START_REF] Belytschko | Dynamic fracture using element-free Galerkin methods[END_REF][START_REF] Fleming | Enriched element-free Galerkin methods for crack tip fields[END_REF][START_REF] Krysl | The element free Galerkin method for dynamic propagation of arbitrary 3-D cracks[END_REF]. In the next few years, EFGM was developed and applied to various fields such as contact [START_REF] Li | Element-free Galerkin method for contact problems in metal forming analysis[END_REF][START_REF] Singh | Heat transfer analysis of two-dimensional fins using meshless element free Galerkin method[END_REF], vibration analysis [START_REF] Chen | An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape[END_REF], hydromechanics [START_REF] Huerta | Pseudo-divergence-free element free Galerkin method for incompressible fluid flow[END_REF] and heat transfer [START_REF] Singh | Meshless element free Galerkin method for unsteady nonlinear heat transfer problems[END_REF].

Onate and Idelsohn proposed the finite point method (FPM) in 1996, which has been applied to hydromechanics and aerodynamics successfully [START_REF] Onate | A finite point method in computational mechanics. Applications to convective transport and fluid flow[END_REF][START_REF] Onate | A stabilized finite point method for analysis of fluid mechanics problems[END_REF][START_REF] Löhner | A finite point method for compressible flow[END_REF][START_REF] Dalayeli | Improvement of the flow formulation by recovery of the hydrostatic pressure using the finite point method[END_REF]. However, the application of FPM in solid mechanics is limited due the high requirement of point symmetry next to boundary segments [START_REF] Oñate | A finite point method for elasticity problems[END_REF]. Other meshless method using MLS to construct shape functions include hp-clouds method [START_REF] Duarte | An hp adaptive method using clouds[END_REF][START_REF] Liszka | hp-Meshless cloud method[END_REF][START_REF] Oden | Solution of singular problems using hp clouds[END_REF] and Meshless Local Petrov-Galerkin Method (MLPG) [START_REF] Atluri | A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[END_REF][START_REF] Atluri | The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics[END_REF].

Polynomial and radial point interpolation approximation

In MLS approximation, the number of nodes in the neighborhood of point x is larger than the number of basis functions. In general case, the least-square fitting does not pass the points with continuous and nonsingular weighted functions. This brings difficulty for the introduction of Dirichlet boundary conditions. The point interpolation method (PIM) uses the same number of basis functions and nodes in the neighborhood of point x. The shape functions satisfy   h jj uu  x on the nodes, making it easy to introduce Dirichlet boundary conditions.

There are two types of basis functions that are used in PIM. Liu and Gu [START_REF] Liu | A point interpolation method for two-dimensional solids[END_REF] developed PIM by using polynomial basis functions. The interpolation coefficients are constant while they are functions in MLS. Despite of its simplicity, the polynomial PIM may lead to singular moment matrix. Wang and Liu used radial basis functions (RBF) as the interpolation functions and they called it radial point interpolation method (RPIM) [START_REF] Wang | Radial point interpolation method for elastoplastic problems[END_REF]. In the conventional RBF meshless method [START_REF] Kansa | Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates[END_REF][START_REF] Edward | Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations[END_REF][START_REF] Franke | Solving partial differential equations by collocation using radial basis functions[END_REF], the radial basis functions are defined on the global domain and the formed system matrix is full, thus it is not suitable for large scale problems. The algebraic model in RPIM is banded, which is very important for solving partial differential equations. However, the h-convergence of RPIM depends on the selection of RBF's shape parameters.

Other meshless approximation methods include partition of unit approximation [START_REF] Melenk | The partition of unity finite element method: basic theory and applications[END_REF][START_REF] Strouboulis | The generalized finite element method[END_REF] and Taylor series [START_REF] Liszka | The finite difference method at arbitrary irregular grids and its application in applied mechanics[END_REF].

Galerkin formulation and collocation formulation

The second important step in meshless methods is to build the algebraic equations of the discretized model on the basis of approximation functions. There are three typical realizing ways: global Galerkin integration, local Galerkin integration and collocation formulation, where the first two formulations are weak form and the third one is strong form.

Global Galerkin formulation

A weak form formulation requires weaker consistency on the approximation functions for variables compared with a strong form formulation [START_REF] Liu | Meshfree methods: moving beyond the finite element method[END_REF]. Formulation based on weak forms produces a stable set of algebraic equations and leads to more accurate results with the discretized system.

Consider the plane elasticity problem in the domain  : 
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By using the variation 0 u i u    and the symmetric property of the stress tensor ij  , Eq.(1.8) is integrated by parts and becomes
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which is the equivalent integral weak form of Eq.(1.7). The matrix form of Eq.(1.9) is
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By substituting the approximation function into Eq.(1.10), one can obtain the final discrete algebraic equations. The domain in meshless methods is discretized by nodes and in general, the approximation functions are not polynomials. Therefore, the integral in Galerkin meshless methods is achieved in the ways that differ from FEM.

In EFGM [START_REF] Belytschko | Element-free Galerkin methods[END_REF], the integral for the domain  is converted to the integral for each cell of a regular grid that covers the domain, in which Gauss integration is applied (see Figure 1.3). Even though the cells are simple and arbitrary, EFGM is not a pure meshless method due to the presence of background grid. As Gauss integration is time consuming in dealing with complex problems, Beissel [START_REF] Beissel | Nodal integration of the element-free Galerkin method[END_REF] adopted the nodal integration mode, in which the value of the integrand in a neighborhood equals to the value at the node. Compared with the approach in EFGM, the nodal integration largely improves the computational efficiency. However, the accuracy and the stability are decreased in the meantime. Carpinteri [START_REF] Carpinteri | The partition of unity quadrature in meshless methods[END_REF] proposed the partition of unity quadrature, in which the compact support domain is used as the domain of integration Background grid Gauss point 

Local Petrov-Galerkin formulation

The implementation of global Galerkin formulation is based on the integration on the whole domain. In general cases, it is difficult to satisfy the equation over the entire problem domain. In the meshless local Petrov-Galerkin (MLPG) originated by Atluri [START_REF] Atluri | The meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics[END_REF], the equation is satisfied point by point and the integration is implemented in a local domain. The equivalent integral weak form of local Petrov-Galerkin at the
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where

I su
 is the intersection of the displacement boundary and I te  (see Figure 1.4), is the penalty factor for the essential boundary condition. 

Collocation formulation

The system of equations developed with Galerkin and local Petrov-Galerkin formulations are weak form system. The integral process and the introduction of the displacement boundary condition are complicated in practical operation. In contrast, the collocation-based meshless methods have no any background grids and are very efficient, making them pure meshless methods. In the collocation formulation, the residual of the PDEs and boundaries on a group of discrete points is forced to be 0:
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The number of collocation points should be larger than the number of algebraic equations as the result might be instable if the two numbers are equal. The error in collocation methods is mainly from the introduction of Neumann boundary condition.

Zhang [START_REF] Zhang | Least-squares collocation meshless method[END_REF] adopted a number of auxiliary points that satisfied the equilibrium conditions to stabilize the solution and improve the accuracy. Liu [START_REF] Liu | A meshfree method: meshfree weak-strong (MWS) form method, for 2-D solids[END_REF] proposed meshfree weak-strong form method (MWS) by combining the strong form and the weak form, in which the Neumann boundary condition was introduced by local Petrov-Galerkin method. Sadeghirad [START_REF] Sadeghirad | Equilibrium on line method (ELM) for imposition of Neumann boundary conditions in the finite point method (FPM)[END_REF] improved the stability and accuracy of collocation methods by implementing integration on the segments of Neumann boundary.

Taylor Meshless Method

Taylor Meshless Method (TMM) is a boundary type meshless method that is proposed by Zé zé et al [START_REF] Zé Zé | A boundary meshless method with shape functions computed from the PDE[END_REF] in 2010. The field equations are approximated with Taylor series and only boundaries are discretized. This method converges fast and requires much less degrees of freedoms than finite element method.

Tampango evaluated the convergence properties of Taylor series [START_REF] Tampango | Convergence analysis and detection of singularities within a boundary meshless method based on Taylor series[END_REF] and introduced the technique of subdomains in the case of a complex domain [START_REF] Tampango | Coupling of polynomial approximations with application to a boundary meshless method[END_REF]. Yang tested both least-square collocation and Lagrange multipliers to account for boundary conditions and solved large-scale 3D problems with TMM [START_REF] Yang | Solving large-scale problems by Taylor Meshless Method[END_REF]. TMM is combined with Newton method to solve non-linear elliptic PDEs in [START_REF] Yang | Taylor meshless method for solving non-linear partial differential equations[END_REF].

The approximation method of the field function in TMM is similar to that in point collocated Trefftz methods using general polynomial solutions as shape functions. For constant coefficients linear partial differential equations that have general solutions, the approximation forms of the field function are the same in TMM and Trefftz methods. However, for nonlinear partial differential equations, it is difficult to find the general solution that can satisfy the equations exactly. This is the limitation of Trettfz methods. In TMM, a truncated interruptive Taylor series is introduced into partial differential equations, then the non-independent coefficients are eliminated in the approximate solution. The independent coefficients in the reduced approximate solution are much less than that in the original Taylor series. This is the key advantage of TMM. Although the solution obtained in this way is not the exact solution, the residuals of the equations can be reduced to a very small value by increasing the degree of Taylor series. This treatment can be applied to any kind of elliptic partial differential equations. The governing equation is satisfied by an approximate solution, thus only boundary discretization is needed to obtain the independent coefficients in the approximate solution.

Boundary element method

Boundary element method (BEM) is an efficient numerical analysis method for engineering and scientific problems developed after FEM [START_REF] Cheng | Heritage and early history of the boundary element method[END_REF]. Taking the boundary integral equations as the mathematical basis and drawing on the discrete element technique, BEM becomes an important supplement to the FEM in some areas. The discretization is proposed only on boundaries instead of the whole domain. Boundary conditions are approximated with functions that satisfy the governing equations. The dimension of the problem is reduced and the boundary geometry is simulated with simple elements. The analytic fundamental solution of differential operators is used as the kernel function of boundary integral equations.

BEM has some main disadvantages. For complex partial differential equations, it is difficult to obtain the fundamental solution. Boundary singular integral is another tough problem. The coefficient matrix established in BEM is an asymmetric full array, which may limit the extension of problem dimension.

Organization of the thesis

In this work, a boundary collocation meshless method based on Taylor series -Taylor Meshless Methodis applied to solve linear and nonlinear thin plate problems.

The objective is to extend the application of TMM to large deflection problems and study the influence of key parameters, proposing a fast and reliable method for practical engineering. The thesis is structured into five chapters, which are described as follows:

In In Chapter 4, the wrinkling of a rectangular membrane is studied. The generation of membrane wrinkles is simulated with a three-step loading procedure. The sensitivity to imperfection, tension load and number of subdomains is tested to find the contribution of each parameter on the wrinkling results.

In Chapter 5, the main conclusions of the current work and some prospects for future work are drawn.

Chapter 2 Techniques of Taylor Meshless Method

Introduction

The solution process of TMM consists of two basic steps: 1) approximation of the unknown field function; 2) introduction of boundary conditions. By using a Taylor series expansion, the governing equation is satisfied in the domain. The system is largely simplified and solved by applying boundary conditions.

In a previous study by Yang [START_REF] Yang | Least-square collocation and Lagrange multipliers for Taylor Meshless Method[END_REF], Lagrange multiplier method and least-square collocation were tested to account for boundary conditions. These two methods work

well and converge about in the same way. As least-square method is more convenient and efficient to bring exponential convergence, it is used to discretize boundary conditions in this thesis.

TMM solves problems in their strong form in the area without any background mesh. The shape functions are built up with high degree polynomials. With the treatment of partial differential equations, the degrees of freedom are reduced significantly, which can help to increase the degree of polynomials easily. In this chapter, the construction of approximate functions and boundary discretization are detailed introduced in detail. A 2D Laplace equation is solved by TMM to test the efficiency, robustness and sensitivity to parameters. Then, TMM is used to study Kirchhoff plates and bidirectional sandwich plates.

Resolution of partial differential equations

To introduce the techniques of TMM, we consider the Laplace equation:
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The shape functions are determined by a quasi-exact resolution of the PDE in the domain. The approximate solution of Eq.(2.1) is expressed in the form of the Taylor series of degree N expanded at a point

  0 0 0 , T X x y  near the domain.:        00 00 ,, N N m mn mn u x y u m n x x y y       (2.2)
To facilitate understanding, the approximate solution is supposed to be expanded at point (0, 0) with fourth degree polynomial:

                                2 3 4 23 2 2 2 2 33 4 , 0, 0 0,1 0, 2 0,3 0, 4 1, 0 1,1 1, 2 1,3 2, 0 2,1 2, 2 3, 0 3,1 4, 0 u x y u u y u y u y u y u x u xy u xy u xy u x u x y u x y u x u x y ux               (2.3) where   , ,0 4,0 4 u m n m n n  
   are the coefficients of the Taylor series. For the complete polynomial Eq.(2.2), there are 15 coefficients to be found. The second partial derivatives of Eq.( 2.3) are given as:

              2 2 2 2 , 2 2, 0 2 2,1 2 2, 2 +6 3, 0 6 3,1 12 4, 0 u x y u u y u y x u x u xy u x       (2.4)               2 2 2 2 , 2 0, 2 6 0,3 12 0, 4 2 1, 2 6 1,3 2 2, 2 u x y u u y u y y u x u xy u x         (2.5)
Eq.(2.4) and Eq.(2.5) can be summarized as:

       2 22 2 00 , 2 1 2, m mn mn u x y m m u m n x y x          (2.6)        2 22 2 00 , 2 1 , 2 m mn mn u x y n n u m n x y y          (2.7)
From Eq.(2.1) one knows that the sums of the relevant parts for mn xyin Eq.(2.6) and Eq.(2.7) should be zero respectively:

          2 1 2, 2 1 , 2 0 m m u m n n n u m n         (2.8)
where 02 m , 02 nm    . Eq.(2.8) indicates that all coefficients are not independent. With initial items  

0, 0 u ,   0,1 u ,   0, 2 u ,   0,3 u ,   0, 4 u ,   1, 0 u ,   1,1 u ,   1, 2 u ,   1,3 u
, the remaining coefficients can be obtained by the recurrence:

         21 , 2, 2 1 nn u m n u m n mm       (2.9)
In this way, the number of independent coefficients for the PDE is reduced from 15 to 9, which is the amount of initial items. Each initial item i  corresponds to an independent shape function i P . The approximate solution is the linear combination of shape functions: The approximate solution for Eq.(2.11) includes two parts: the general solution and a particular solution. To find a particular solution, the right side f is expanded with Taylor series at the degree of

2 N  , which is consistent with u  .     22 00 ,, N N m mn mn f x y f m n x y       (2.12)
From Eq.(2.8) and Eq.(2.12) it can be concluded that: 

            2 1 2, 2 1 , 2 , m m u m n n n u m n f m n         (2.13) where 0 2, 0 2 m N n N m        .
      21 1 ,, N k k s s k u P x y P x y P         P (2.15)

Treatment of boundary and interface conditions

 d  n  Figure 2.

One domain with Dirichlet and Neumann boundary conditions

The simplest collocation technique is to choose as many points as shape functions. However, the pure boundary collocation may lead to numerical instabilities.

Yang has applied Lagrange multiplier method to account for boundary conditions, which requires additional parameters for radial functions. The least-square collocation is validated as an efficient and robust method in most of the cases that were tested, bringing exponential convergence with few degrees of freedom [START_REF] Tampango | Convergence analysis and detection of singularities within a boundary meshless method based on Taylor series[END_REF][START_REF] Yang | Solving large-scale problems by Taylor Meshless Method[END_REF]. That's why least-square is chosen as the collocation method in this thesis.

A set of points is collocated on the boundary of the domain. With Md points on the Dirichlet boundary Γd and Mn points on the Neumann boundary Γn, the error between approximate solution and exact solution for the problem in Figure 2.1 is:

              2 2 22 11 22 
11 22 i d j n i d j n h h d n i i j j x dn ss x u J u u g n P u Q g                     x x x x x x PQ (2.16)
The first part of the right side in Eq.( 2 

                          0 T T T d s T T T n s J Pu Qg             P P P P Q Q Q Q (2.17)
Eq.(2.17) leads to a linear system:

     KF   (2.18)
where

          TT K  P P Q Q (2.19)                   TT dn ss F u P g Q     PQ (2.20)
The coefficient vector {α} can be obtained by solving the linear system Eq.(2.18). Limited to the convergence radius, one Taylor series is not sufficient to describe a complex problem. Even though one can increase the degree of polynomials to a high level, it is time consuming and may lead to ill conditioning. A better approach is to split the whole domain into several subdomains, in which the equations are approximated with independent Taylor series. The subdomains are coupled by interface conditions that are introduced with a least square collocation [START_REF] Zé Zé | A boundary meshless method with shape functions computed from the PDE[END_REF].

In Figure 2.2, two subdomains Ω1 and Ω2 are connected with the interface Γin.

Boundary conditions for each subdomain are introduced independently with the formulation Eq.(2.16). The interface is collocated with Min points satisfying the following continuity condition:

        12 12 jj j in jj uu uu nn           xx x xx (2.21)
Now the quadratic sum of the error consists of three parts: the boundary conditions for each domain and the continuity condition:

        12 1 2 1 1 2 2 1 2 ,, in in J J J J             (2.22)
where

          2 12 2 12 12 11 , 22 j in j in in i i j j x uu J u u nn           x x x x x (2.23)
To compute the coefficient vector {α1} and {α2}, one can minimize Eq.(2.23) by making the first partial derivatives of the function zero respectively:

            1 1 2 1 1 2 1 1 1 2 1 2 2 1 2 2 2 2 , , 0 
, , 0 in in J J J J J J                            (2.24)

Application to 2D Laplace equation

To test the convergence and the robustness of the method, we consider the Dirichlet problem in a circular domain: 22 

1 xy  .       0 22 00 0 in , on d u xx u x y x x y y               (2.25)
The exact solution for the problem is:

        22 0 0 0 , e u x y x x x x y y        .
To avoid the influence of the singularity,

  0 0 0 =, X
x y is chosen as (1.5, 0. 

Application of TMM to Kirchhoff plate problems

The Kirchhoff-Love theory of plates is a two-dimensional model for thin plates with small deflections. It was developed by extending Euler-Bernoulli beam theory in 1888 [START_REF] Love | The small free vibrations and deformation of a thin elastic shell[END_REF]. This theory makes the following assumptions:

1) The linear strain perpendicular to the middle plane can be disregarded;

2) The middle plane of the plate remains neutral during the deformation;

3) Stress components xz  , yz  and z  are much less than the other three components, therefore the deformation from them can be disregarded.

The governing equation for a Kirchhoff-Love plate under transverse load is a fourth order partial differential equation that has no analytical solution except for a few plates of simple regular shapes. Thus numerical methods are used to approximately solve these problems. The formation of TMM for Kirchhoff plate will be introduced. Several cases are studied and results are discussed in the following part of this section.

Calculation of the shape functions

The governing differential equation for plates in the Kirchhoff plate theory is [START_REF] Timoshenko | Theory of elastic stability[END_REF]:

      4 0 , , , D w x y p x y x y     (2.27)
where  

,

w x y is the lateral deflection,   , p x y is the lateral load,   32 0 12 1 D Eh   is
the flexural rigidity of the plates, E and  are Young's modulus and Poisson's ratio respectively and h is the plate thickness.

If one can obtain a solution   , w x y , satisfying Eq.(2.27) and the given boundary conditions, bending moments, twisting moment and shear forces may be defined in terms of a function w by: 

     
Q D w Q D w x y w w Q D x x y w w Q D y x y                                                                                                 (2.28)
Eq.(2.27) and bending moments in Eq.(2.28) can be written in the form of second order derivatives: 

22 2 2 22 2 0 0 xy y x MM M M pp x x y y x x                   (2.29)     
w x M D D D w M M D D D D K y D D D M w xy                                      (2.30)
where [D] is the elastic matrix. Dij(i, j = 1, 2, 6) together are called flexural rigidity which are determined by the material of the plates. For Kirchhoff plates with isotropic materials, the elastic matrix is:

  0 10 10 0 0 1 DD           (2.31)
Now we have three equations with second order derivatives:

     2 2 0 M p xx w k xx M D K                       (2.32)
The unknowns  M and  K are split into two parts:

    , , x y xy x y xy M M MM M M k k Kk k k                              (2.33)
This splitting is motivated by the procedure established in [START_REF] Zé Zé | A boundary meshless method with shape functions computed from the PDE[END_REF]and [START_REF] Yang | Solving large-scale problems by Taylor Meshless Method[END_REF] 

D k D k D k M D D D k M M D D D k D k D k M M D D D k D                                                   (2.
     2 2 ( , ) 2 1 2, xx w k k m n m m w m n x           (2.35)             2 2 2 2 1 , 2 , 1 1 1, 1 w n n w m n y k k m n m n w m n w xy                                 (2.36) 12 12 13 13 
.

( , ) ( , ) . ( ,

) xx DD M k D k M m n k m n D k m n DD                  (2.37)                  22 2 22 20 2 1 2, 2 1 1 1, 1 2 1 , 2 , xy y x x xy y MM M p x x y y m m M m n m n M m n n n M m n p m n                                   (2.38)
Eq.(2.35) -Eq.(2.38) give the recurrence formulae for the elements of TMM, as is shown in Table 2.1. 

   (1) ) , 2 ( ) 1 ( 1 ) , ( n m k m m n m w x                         y x w y w k 2 2 2 (2)                ) 1 , 1 ( ) 1 )( 1 ( ) 2 , ( ) 1 )( 2 ( ) , ( n m w n m n m w n n n m k k D k D D M x . 13 12         (3) ) , ( . ) , ( ) , ( 13 12 n m k D n m k D D n m M x         p y M y x M x M y xy x            2 2 2 2 2 2
(4) 

                        ) 2 , 2 ( ) 1 )( 2 ( ) 1 , 1 ( ) 1 )( 1 ( 2 ) , 2 ( ) 1 ( 1 ) , ( n m M n n n m M n m n m p m m n m M y xy x   xy y x x k D k D M D k 13 12 11 1    (5)   ) , ( ) , ( ) , ( 1 ) , ( 13 12 11 n m k D n m k D n m M D n m k xy y x x    With the initial data         0, , 1, , 0, , 1,
        0, 0 1, 1 1 2 0, 2 1 2 1 3 1 1, 3 3 4 3 j x x w j j N w j N N j N k j N N j N k j N N j N                         
To calculate the th i shape function i P ,   

for 0 i  to 43 N  for 0 j  to 43 N  do if ji  then   1 j i   else   0 j i   end if end for end for With the data   j i
 , all terms of w ,   M and   K can be calculated using equations in Table 2.1.

Data : (0, ), (1, ), (0, ), (

) xx w n w n k n k n Initialisation  Step 1:     ) , 3 ( ), , 2 ( ) , 1 ( ), , 0 ( ) 1 ( n w n w n k n k x x   Step 2:       (2) ( ) (0, ), (1, ), (2, ) (0, ), (1, ) (0, ), (1, ) data w n w n w n k n k n K n K n    Step 3:     (0, ), (1, ) (0, ), (1, ) Constitutive law K n K n M n M n  Iteration,   ( , ), ( , ), ( , ), ( 1, ) K m n M m n w m n w m n  1, 
being given.

 Step 1: ) , 1 ( ) , 2 ( ), , 1 ( ) , ( ), , 1 
( ) 2 ( ) 1 ( n m k n m w n m w n m K n m K        Step 2:
) ,

n m k n m M n m M x x      Step 3: ) , 1 ( K ) , 1 ( ), , 1 ( n m n m k n m k x      Step 4: ) , 1 ( M ) , 1 ( M ), , 1 ( K ) 3 ( x n m n m n m     1 ( ) , 1 ( ) , ( ) 5 ( ) 4 ( 

Kirchhoff plate problem with a circular domain

Now we consider a circular Kirchhoff plate with clamped edges in Figure 2.6: For a circular plate with clamped edge, the problem can be described as:

0 0 n      
  4 0 0 0 ra D w p wa w n                  (2.39)
where a is the radius of the plate. With these boundary conditions, the theoretical solution is [START_REF] Monaghan | Shock simulation by the particle method SPH[END_REF]: However, the accuracy still stands less than 10 -11 after degree 4. 

 

Kirchhoff plate problem with a rectangular domain

The domain is a square with the width 1. One chooses a uniformly distributed cloud (see Figure 2.9). 

                (2.41)
An approximate solution for the problem is: where

            
                (2.43)
      , , 1, 2,3 p p n n a q q m m b n m       ,  is a constant value. We let 1, a b 1, 1 mn      
, the loading becomes:

  0 sin s n , i xy q x y   (2.45)
The governing equation can be simplified as:

  

The properties of each case

The layer material coefficients are: The normalized quantities are defined with respect to this data: 

        2 4 1 , , , , 1 ,, 100 , , 
                  (2.50)
The stiffness coefficients can be expressed in terms of the engineering constants: 

v v v v v v v v Q Q Q E E E E E E v v v v v vv Q Q Q E E E E E E G G G v v v v v v v v v E E E                          (2.51)
Three problems are considered for laminates (see Figure 2.14). Case 1 and Case 2 are constructed of the material described by Eq.(2.49):

Case 1: a symmetric 3-ply laminate with a=b and layers of equal thicknessthe L direction coincides with x in the outer layers, while T is parallel to x in the central layer.

Case 2: the same laminating geometry as in Case 1, but in this case we take b=3a.

Case 3 is a square (a=b) sandwich plate under the distributed loading considered in the previous cases. The material of the face sheets is that defined by Eq.(2.49). The thickness of each face sheet is h/10. The core material is transversely isotropic with respect to z and is characterized by the following properties: (1) Stresses in Square Sandwich Plate, Case 1

E E E G G G                 (2.52) Case 1 Case 2 Case3
The convergence of Case 1 is illustrated in Figure 2.16 and Figure 2.17. From

Figure 2.16 it can be seen that all errors of the stresses decrease with the degree N until it is around 15. After that, the errors fluctuate at a higher level of accuracy.

Compared with Figure 2.16 (b), in which 10N collocation points have been distributed, Figure 2. 16 (b) shows that all the stresses get their best solution at degree 16 and they have smaller errors. However, less collocation points lead to larger errors after degree 16.

In Figure 2.17, one can obtain locally optimal solution with about 100 collocation points when the degree is 16. The errors increase with 0.5 magnitude and then decrease to a stable status. We take the normal stress y  in Case 3 for example. 

Conclusion

A new meshless method -Taylor meshless method has been introduced in this chapter. TMM solves quasi-exactly the partial differential equations by using Taylor series. This technique reduces the degree of freedom for the problem significantly so that one can increase the degree of the polynomials to a very high level. Only collocation points on the boundary are needed, which makes TMM a true meshless method. In the cases that have been studied, this method is robust and effective. Only one domain has been used in this chapter, which is sufficient to solve boundary value problems. In the case of rectangular plate with clamped edges, the absence of an exponential convergence may be due to the singularity of the exact solution.

The convergence cannot be guaranteed in some other cases due to the developing point of Taylor series and the single domain. In next chapter, multidomain technique will be considered to solve nonlinear problems with collocation points on boundaries and interfaces.

Chapter 3 Application of TMM to large deflection of thin plates

Introduction

In the problem of large deflection of a thin plate, the deflection does not linearly depend on the external load. The membrane stresses acting in the plane of the plate have an effect on the bending or buckling of the plate, which become non-negligible as they are not small in comparison with bending stresses. A large deflection theory should be employed for these kinds of problems. The nonlinear partial differential equations describing large deflection of thin plates usually have no analytical solutions, which must be solved by numerical methods. Generally, researchers try to solve these problems using finite element method or finite difference method. These methods have some inherent weaknesses like mesh distortion, computational efficiency or complexity of pretreatment.

Many progresses have been made over the last forty years concerning the numerical computation of bifurcation problems. A first way is to solve the "extended system" characterizing the bifurcation points [START_REF] Seydel | Numerical computation of branch points in nonlinear equations[END_REF]. A simpler technique is to solve a continuation problem with an arc-length control for passing limit points [START_REF] Riks | An incremental approach to the solution of snapping and buckling problems[END_REF].

Nowadays this standard procedure is available in many existing codes, especially in extensively used commercial packages. Note that this continuation technique requires the introduction of a perturbation to capture the bifurcation path in a secure manner and a balance between a sufficiently large perturbation and a sufficiently small step length is required for capturing the post-bifurcation response. This difficulty is partially removed with the Asymptotic Numerical Method (ANM), where each step is a Taylor series with respect to a control parameter, [START_REF] Cochelin | A path-following technique via an asymptotic-numerical method[END_REF][START_REF] Cochelin | Asymptotic-numerical methods and Padé approximants for non-linear elastic structures[END_REF], the key point being an adaptive step length related to the radius of convergence of the Taylor series. This adaptivity permits to compute the post-bifurcation curves with a very small perturbation. Moreover, as underlined in [START_REF] Baguet | On the behaviour of the ANM continuation in the presence of bifurcations[END_REF], one observes an accumulation of small ANM-steps close to a bifurcation point because the radius of convergence is strongly connected with the distance to a neighbor bifurcation point. So an accumulation of small ANM-steps is a simple criterion for detecting bifurcations, but there are other techniques to analyze bifurcation problems within ANM, for instance by computing a bifurcation indicator [START_REF] Boutyour | Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants[END_REF][START_REF] Guevel | Automatic detection and branch switching methods for steady bifurcation in fluid mechanics[END_REF] or by identifying a geometric progression in the computed Taylor series [START_REF] Cochelin | Power series analysis as a major breakthrough to improve the efficiency of Asymptotic Numerical Method in the vicinity of bifurcations[END_REF]. More generally, ANM is an efficient path following technique able to solve a number of non-linear problems, including unilateral contact or plasticity problems [START_REF] Potier-Ferry | Traitement des fortes non-liné arité s par la mé thode asymptotique numé rique[END_REF].

A discretization method has to be associated with a non-linear solver as ANM and, in most of the cases, this was the finite element method. Nevertheless one can mention several papers where ANM was coupled with a meshless discretization method [START_REF] Tri | High order continuation algorithm and meshless procedures to solve nonlinear Poisson problems[END_REF][START_REF] Tri | Bifurcation indicator based on meshless and asymptotic numerical methods for nonlinear Poisson problems[END_REF][START_REF] Assari | A meshless method based on the moving least squares (MLS) approximation for the numerical solution of two-dimensional nonlinear integral equations of the second kind on non-rectangular domains[END_REF]. Benefits and drawbacks of meshless techniques are well known and will not be re-discussed here. In this chapter, we aim to combine ANM with TMM.

The latter belongs to the large family of Trefftz methods that use exact solutions of the PDE as shape functions, see for example [START_REF] Kołodziej | Boundary collocation techniques and their application in engineering[END_REF]. The Method of Fundamental Solution (MFS) is likely the most used Trefftz method [START_REF] Fairweather | The method of fundamental solutions for elliptic boundary value problems[END_REF]. The main advantage of Trefftz method and MFS is a strong reduction of the number of unknowns: for instance in [START_REF] Tampango | Convergence analysis and detection of singularities within a boundary meshless method based on Taylor series[END_REF] a problem was solved with only 90 DOFs while it needs more than 5000 with quadratic finite elements and much more with linear interpolation. The main drawback of Trefftz-type methods is matrix ill-conditioning that prevents solving large-scale problems [START_REF] Schaback | Error estimates and condition numbers for radial basis function interpolation[END_REF][START_REF] Cheng | Exponential convergence and H-c multiquadric collocation method for partial differential equations, Numerical Methods for Partial Differential Equations[END_REF] , even if there were many works to try to improve this condition number, see for instance [START_REF] Alves | On the choice of source points in the method of fundamental solutions[END_REF][START_REF] Antunes | Reducing the ill conditioning in the method of fundamental solutions[END_REF]. Nevertheless, splitting in subdomains is a simple manner to control the ill-conditioning and several procedures are available [START_REF] Tampango | Coupling of polynomial approximations with application to a boundary meshless method[END_REF], what allowed to solve large-scale problems in the Taylor meshless framework [START_REF] Yang | Solving large-scale problems by Taylor Meshless Method[END_REF].

The treatment of non-linear problems is not straightforward within Trefftz methods, because it is not possible to get exact solutions of non-linear or nonhomogeneous problems by inverting the exact tangent operator. Thus, one generally re-introduces a discretization of the domain by radial functions that are combined with fundamental solutions of a reference operator. Typical applications concern Poisson problem [START_REF] Balakrishnan | Osculatory interpolation in the method of fundamental solution for nonlinear Poisson problems[END_REF], Newtonian fluids [START_REF] Nath | One-stage Method of Fundamental and Particular Solutions (MFS-MPS) for the steady Navier-Stokes equations in a lid-driven cavity[END_REF] or plasticity [START_REF] Jankowska | A study of elastic-plastic deformation in the plate with the incremental theory and the meshless methods[END_REF] and the non-linear problem is solved by Picard iterations, but also by ANM [START_REF] Tri | High order continuation algorithm and meshless procedures to solve nonlinear Poisson problems[END_REF][START_REF] Tri | Bifurcation indicator based on meshless and asymptotic numerical methods for nonlinear Poisson problems[END_REF]. One can avoid the spatial discretization when using the method of Taylor series, in which case one can moreover obtain accurately the general solution of the homogeneous tangent problem. In the latter paper, the polynomial shape functions were computed via an Automatic Differentiation procedure [START_REF] Griewank | Evaluating derivatives: principles and techniques of algorithmic differentiation[END_REF], what could permit a wide range of applications.

In the present chapter, ANM will be combined with the Taylor meshless method:

in other words, we shall perform together Taylor series in space and in load parameter.

This double Taylor series expansion will be applied to the famous Föppl-von Karman plate model [START_REF] Ciarlet | A justification of the von Ká rmá n equations[END_REF].

Governing equations

The fundamental equations for large elastic deflection of thin plates are known as Föppl-Von Ká rmá n equations, given in the following form: 

                                           (3.1)
where w is the vertical displacement out of the middle plane of the plate, E is the Young's modulus, p is the loading per unit area of the plate, h is the thickness of the plate and
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is the flexural rigidity of the plate. The relations between the stress function f and the in-plane forces are:
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Combination of TMM and ANM

Asymptotic-numerical method (ANM) was proposed by Damil and Potier-Ferry in 1990 [START_REF] Damil | A new method to compute perturbed bifurcations: application to the buckling of imperfect elastic structures[END_REF]. The non-linear branches are expanded in the form of power series. The non-linear problem becomes a series of linear problems, which can be solved efficiently by using recurrence formulas. Compared with some other methods of solving non-linear problem, such as Newton's method, the step length in ANM is determined automatically by a reliable path-following technique. This is a main advantage of ANM dealing with problems when there is a sudden change of direction [START_REF] Cochelin | Asymptotic-numerical methods and Padé approximants for non-linear elastic structures[END_REF].

In this chapter, ANM is applied to linearize the nonlinear system and TMM is used to solve linear partial differential equations obtained by ANM.

The procedure of ANM

In the isotropic case and with a transversal force   , p x y  , where  is the load parameter, Eq.(3.1) can be rewritten as:

    2 2 , 11 ,0 2 D w w f p f w w Eh             (3.3)
where the bracket operator involves the second derivatives of its arguments:

  2 2 2 2 2 2 2 2 2 2 ,2 A B A B A B AB x y y x x y x y                  (3.4)
ANM seeks a family of solutions depending on a scalar parameter " a ". The parameter  is also expressed as a function of " a ". First, the variables   , w x y ,   , f x y and the load parameter  are expanded to the form of power series with respect to the parameter " a " from a starting solution denoted as   0 ,

w x y ,   0 , f x y , 0  : 0 0 1 0 ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) A K N K K K K w x y w x y w x y f x y f x y a f x y                               (3.5)
Next, substituting in Eq.(3.3), one derives differential equations for each term of the series

      , , , , K K K
w x y f x y  . To define the path parameter " a ", the linearized arc length parameter is chosen since it permits a secure guiding near bifurcation points [START_REF] Cochelin | Asymptotic-numerical methods and Padé approximants for non-linear elastic structures[END_REF]:

  0 1 0 1 0 1 ,, a w w w f f f          (3.6)
At order one, all the items that have a coefficient 1 a are picked out. A family of linear problems can be obtained as:
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D w w f w f p f w w Eh w w f f                  (3.7)
At order two:
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The items 1 w , 1 f in the bracket operator are known after the resolution of Eq.(3.7).

The generic form of the linear problems at order K :

      2 00 2 0 1 1 1 ,, 1 , 0 , , nl K K K K K nl K K K K K K D w w f w f p g f w w h Eh w w f f                     (3.9) where   1 1 =, K nl K R K R R g w f     ,     1 1 = , 2 K nl K R K R R h w w     
. Two operators remain at any order:

          2 1 0 0 2 20 , = , , 1 , = , w f D w w f w f w f f w w Eh          L L (3.10)
Let us start at order one. To solve Eq.(3.7), one supposes that   , wf is the

solution of     2 0 0 2 0 ˆ,, 1 ˆ,0 D w w f w f p f w w Eh               (3.11)
The resolution of Eq.(3.11) will be discussed in Section 3. One can obtain 1  from the third equation of Eq.(3.7):

2 1 1 ˆ, , 1 w w f f    (3.12) 
Eq.(3.12) has two solutions because one can move in two directions along the branch of solutions. In the first ANM-step, the user has to define the orientation. In the next ones the orientation can be chosen with respect to the tangent direction at the end of the previous step.

For the generic case at order K , there are two new polynomials nl K g and nl K h . The solution for order K is:

,

nl nl K K K K K K w w w f f f      (3.13)
where  

, nl nl KK wf
is the solution of:
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TMM formulation

In this part, TMM is used to solve the linear systems with variable coefficients Eq. (3.11 is approximated by:

    2 0 0 , , , , ˆ, , , 0 4 
mn mn mn mn D w w f w f p m n N           (3.16)
The computation of the Taylor coefficients of the bilaplacian is 
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To solve the linearized PDEs Eq.(3.11) and Eq.(3.14), one has to compute the vector α which is determined by boundary conditions. This will be done by least-square collocation as in Chapter 2.

The auxiliary problems Eq. (3.20) This leads to adaptive step lengths and this is very important when dealing with bifurcation problems. The radius of convergence is generally governed by the distance to the nearest bifurcation point [START_REF] Baguet | On the behaviour of the ANM continuation in the presence of bifurcations[END_REF]. That is why one observes an accumulation of small steps close to the bifurcation: hence, such an accumulation leads to a simple bifurcation criterion by sight. Moreover ANM permits to compute response curve with a very small perturbation force: one just has to choose a sufficiently small accuracy parameter δ. 

Treatment of boundary and interface conditions 3.3.3.1 A square plate with movable edges

            (3.21)
The boundary conditions for stresses are: 
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TMM uses Taylor series to approximate the spatial function of the problem.

However, a single polynomial is not sufficient if the domain is larger than the radius of the series' convergence. A good idea is to split the whole domain into several elements. Each element, which is called a subdomain, has an independent polynomial solution. This operation can help to stabilize the global solution and accelerate the convergence. Some additional conditions should be introduced to guarantee the continuity of the displacement and stresses between two neighboring subdomains. The continuity conditions corresponding to bending are: 

               
               (3.23)
Vn is an equivalent condition converted by the torque Mxy and shear force Qn:

  33 32 2 n ww V n n t         (3.24)
The continuity conditions corresponding to stresses are: In the example of Section 3.4.1, the edges can be movable in the plane because the normal stresses and shear stresses on boundaries are set to 0 by conditions Eq. (3.22). To consider immovable edge conditions ( 0 uv ), one way is to replace the first equation in Eq.(3.3) by two partial differential equations in terms of the in-plane displacements u and v in addition to the transverse displacement w. However, by TMM, the in-plane displacements can be expressed easily by w and stress functions f . The strain components in the middle surface of the plate are given by: 
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A square plate with immovable edges
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After introducing the stress function, the stress components become: 
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With the technique in Chapter 2, coefficients of Taylor series of u and v are related to the coefficients of w and f through the following relations:
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where

  2 xx wx     ,   2 yy wy     ,    xy w x w y       .
In ANM, w is expanded in the form of power series with respect to the parameter a as in Eq.(3.5):

2 0 1 2 w w aw a w     (3.30)
The nonlinear part xx  is expanded as the addition of linear components: 
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Similarly, the generic expressions of xx  and xy  are: The continuity conditions corresponding to bending are the same as those in Eq. (3.23). Because of the introduction of in-plane displacements, the continuity conditions corresponding to stresses become 
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Results and discussion

The numerical method will be assessed by three examples concerning the buckling and bending of a simply supported square plate. Various in-plane boundary conditions have been accounted for. We are interested by the convergence with respect to the degree (p-convergence) and to mesh refinement (h-convergence), as well as its ability to compute bifurcating curves with very small imperfections. Our numerical results will be compared with analytical and numerical results of these examples, mainly from finite element codes.

Buckling of a square plate with movable edges

First, the problem is solved with one domain under conditions in 3. , what corresponds to 156 degrees of freedom and the accuracy parameter δ=10 -8 whose smallness is chosen to ensure the path following for a quasi-perfect bifurcation. This buckling problem will be solved by the method presented here and compared with finite element calculation done with the well-established code ANSYS. In the two calculations, a small symmetry breaking is needed. In ANSYS, this is done by a small modal geometric imperfection measured by the parameter imperfection wh called "scaling factor". . ANSYS was not able to compute the bifurcating curve with a smaller imperfection, even if we suspect that some experts in non-linear calculation should be able to do such a calculation with a commercial package. Clearly the new technique permitted us to compute the bifurcation plot with a very small imperfection simply by choosing a sufficiently large ANM degree and a sufficiently small accuracy parameter  . Next one discusses the convergence with the number of subdomains (h-convergence) and with the degree N of the polynomials (p-convergence). The interface and boundary conditions are accounted by the least-square collocation method in a similar way as [START_REF] Yang | Taylor meshless method for solving non-linear partial differential equations[END_REF]. One looks at the value of the bifurcation stress x  . Clearly the method converges with the degree and/or with the number of subdomains, but good results (i.e. error less than 3 10  ) are obtained with 9 subdomains and Results are compared with those by FEM and RBF (see Figure 3.2). The RBF solutions are from the reference [START_REF] Al-Gahtani | RBF meshless method for large deflection of thin plates with immovable edges[END_REF]. The FEM analysis is performed with the commercial software ANSYS using four-node element shell181. The plate is discretized with 50×50 elements and LARGE DISPLACEMENT STATIC option is activated to perform a nonlinear analysis. The number of model degrees of freedom is 15606. Figure 3.6 is the comparison of TMM results with those from FEM and RBF.

The analytic value

Bending of a square plate with immovable edges

It shows that they are very close in the range of 0 90 p  . Table 3.1 is the detailed comparison of the deflection w and the membrane stress m  computed at the center of the plate for different loads between TMM and FEM. The membrane stress m  is defined as the stress at the middle surface of the plate. The load is determined automatically by ANM that is the value after each ANM step. The errors of the center deflection between two methods are at the level of 3 10  ; while the errors of the membrane stress are at the level of 4 10  , indicating that they are in a very good agreement. All the edges cannot move in y-direction, while the upper and bottom edge can move in x-direction. The plate and boundary conditions can be seen in Figure 3.7.

In this numerical example, the order of ANM is set to 10. The number of degrees of freedom for this problem is   Table 3.2 and Figure 3.12 present the displacement loads when the displacement of center point 1 center w  . They show that degree of TMM 6 is not sufficient to converge, even with 8×8 domains. To improve the reliability of the results, one can increase the degree of TMM or the number of domains. According to the previous study, it is better to compute the problem with smaller degree of TMM and large number of domains, because a large degree of TMM may lead to large conditioning number of the matrix. It also consumes more computing time than that if we increase the number of domains. In Figure 3.12, the result by degree 20 and 2×2 domains is not good as that by degree 8 and 8×8 domains.

To find the load of FEM at 

Conclusion

In The study shows that this new method is very efficient to solve a quasi-perfect bifurcation response and this does not require a strong numerical expertise. This double Taylor series method leads to an efficient path following technique that can be easily extended to other hyper-elastic models or to Newtonian fluids.

Chapter 4 Application of TMM to wrinkling of membranes under shear loading

Introduction

Over the past decades, different kinds of thin film structures are designed and playing more and more important roles in the fields of aerospace, automobile, construction and others. When the largest displacement max w is much larger than the thickness h , the structure is defined as a membrane structure. Membrane structures have advantages in weight and storage requirements. Generally, the internal stresses of a thin plate under transverse loads consists of bending stress and membrane stress.

However, a membrane structure cannot support compressive stress because the bending stress is so small that it can be ignored compared with the membrane stress [START_REF] Kumar | Wrinkling simulation of membrane structures under tensile and shear loading[END_REF]. When a compressive stress is applied, the structure becomes unstable and generates wrinkles. The existence of wrinkled regions has a great influence on the strength and reliability of the structure. The deformation and final state may not be uniquely determined. It is essential to have a clear understanding on the wrinkle phenomenon. Thus many material and mechanical researchers are recently interested in the prediction of the behavior of the membrane.

Previous numerical studies of membranes mostly use finite element models based on thin-membrane elements or shell elements [START_REF] Wong | Wrinkled membranes III: numerical simulations[END_REF]. Membrane elements have simple construction format, hence they have the advantage of computational cost.

However, they ignore bending effect so that they cannot obtain accurate transverse deformation. Shell elements have overcome shortcomings of membrane elements and made models close to practical structures. Nevertheless, complicated mesh generation is still needed. By using Taylor Meshless Method, one will reduce the size of the discrete problem, what is necessary in cases where there are many wrinkles. Another difficulty is the presence of a number of bifurcating solutions, especially corresponding to various wavenumbers, which is due to the very weak bending stiffness encountered for very thin membranes. Here ANM will give a more secure path following technique to compute the bifurcating curves in such a difficult situation. The ANM-TMM method described in the previous chapter will be applied to an iconic problem of membrane wrinkling under shear loading. Indeed this bifurcation problem is so difficult that these authors have been obliged to add a significant tensile load to increase the membrane stiffness and, in this way, to stabilize the response in order to be able to achieve the computation. Here the challenge will be to minimize this artificial tensile load and the imperfection discussed in the chapter 3.

This chapter presents a numerical study of rectangular membranes submitted to a shear loading. The objective is to simulate the generation of membrane wrinkles using TMM. A three-step analysis is introduced in detail. Some parametric studies are shown in this chapter, regarding the imperfection, tension load and subdomain sensitivity in order to know the contribution of each parameter to the wrinkling results.

Modelling of the membrane boundary value problem

To analyze the behavior of the wrinkled membrane, the membrane should be modeled numerically. In Chapter 3, the procedure of solving thin plate problems has been well established based on partial differential equations. In the development of the wrinkles, bending stiffness, although very small, plays an important role in the shape and amplitude of the wrinkles. By using the previous model that includes bending stiffness, the process of wrinkling is more accurately simulated.

The imperfection is an important factor affecting the final wrinkling results.

Similar to the study of buckling of thin plate, generally a perfect membrane cannot be analyzed directly because the deformation will be discontinuous at the buckling point.

Pure in-plane loads will not bring about mechanism on a perfect membrane. In practical simulation, imperfections are usually introduced to avoid bifurcation and get continuous response.

There are many ways to distribute imperfections to perfect membranes. In FEM, for example, the imperfections can be imposed at selected or all interior nodes of the originally membrane mesh. The imperfection amplitudes, which are small in comparison to the thickness of the membrane, are regulated by a parameter to avoid element distortions. However, the imperfections should be large enough to provide sufficient bending-to-membrane coupling.

Another way to impose initial imperfections is seeding several eigenmodes onto the finite element model using a scaling factor to control the proportion between the imperfections and the membrane thickness. An eigenvalue buckling analysis has to be carried out before the membrane wrinkling to obtain eigenmodes.

In this study, the small out-of-plane deformation is produced by imposing transverse pressure onto the membrane. In this way, magnitudes of the imperfections are controlled by transverse loads. The deformation is generated on the whole membrane without pre-eigenvalue processing.

When solving buckling problems in Chapter 3, imperfections and in-plane loads are imposed from zero at the same time. For membrane wrinkling problems, imperfections, tension loads and shear loads should be imposed respectively. This is because at first few steps of Asymptotic Numerical Method, imperfections and tension are close to 0, leading to the presence of many localized modes and divergence of the results.

The x-axis is parallel to the bottom edge, y-axis is perpendicular to the bottom edge, and z-axis is normal to the neutral plane, as defined in Figure 4.1. The membrane analyzed in this chapter is a rectangular membrane with an aspect ratio of about 3:1. The material shown in Table 4.1 is Kapton coming from the data in [START_REF] Wong | Wrinkled membranes I: experiments[END_REF] and [START_REF] Inoue | Prediction methods of wrinkling in thin-membrane[END_REF] b x y δv δu a Step 1

Step 2

Step 3 The loading process consists of three steps as in Figure 4.2:

The first step of the simulation is pre-tensioning the membrane by moving the top edge by a small displacement v  in y-direction. All degrees of freedom of the bottom edge are constrained. The left and right edges are simply supported. The fixed top edge is subjected to a prescribed displacement. A pre-stress is produced to increase the out-of-plane stiffness of the thin membrane and avoid local buckling behavior. The initial pre-stress will affect the final amount of the wrinkles. This will be discussed later in this chapter. As the pressure p in Von-Karman equations cannot be zero, it is set to a very small value 20 10 p   .

The second step consists in producing imperfection by imposing transverse pressure onto the membrane. Here the membrane is splitted into several domains in both directions. The pressure will be positive and negative alternately in x-direction to produce sinusoidal deformation in transverse direction. The pressure remains consistent in y-direction. Note that the angle between the deformation and x-axis is 90°, which is different from the final wrinkles. Nevertheless, this treatment is better than pseudorandom imperfections produced on nodes or imposing pressure on a single direction. An imperfection sample is shown in Figure 4.3.

In the third and final step, the top edge is moved horizontally by a displacement u  while all other boundary conditions are the same as in the first and second steps.

The shear displacement is gradually increased until the membrane is fully wrinkled.

The pressure is set to the small value 20 10  as in the first step. The plate is simply supported on vertical edges and clamped on horizontal edges with a displacement along the top edge as given by Eq.(4.1). These conditions are modeled using the method in Chapter 3. Previous study indicates that the convergence of the computation needs a moderate degree of Taylor series and a large number of subdomains [START_REF] Yang | Taylor meshless method for solving non-linear partial differential equations[END_REF]. The degree of Taylor series is chosen as 8 N  that is reasonable when the subdomains are sufficient, giving consideration to computational efficiency and accuracy. The degree of ANM is chosen as 10. The accuracy factor in ANM is

8 10  .       0 0 0 0 0 , 0 0 0 0 , 0 0 0 0 0 & ,0 x x xy w w y u v x a y w w y u u v v x a y b w M x a y b                            (4.1)

Numerical Results

The material properties, geometric parameters and boundary conditions are introduced into the model in Chapter 3. Numerical simulations aim to find the important influencing factors of wrinkling of thin membranes with this new meshless method. Because of TMM's advantage on convergence with small loads, as illustrated in buckling tests of thin plates, the smallest tension and imperfections are searched, which can bring out bending stiffness and initiate the out-of-plane buckled deformations contributing to membrane wrinkling. Different combinations of tension loads, imperfections and number of subdomains are considered to test the sensitivity of the model to the wrinkling results.

Different numbers of subdomains are used as it has great influence on the convergence and final number of wrinkles. The ratio of the number of subdomains in

x and y-directions is 3:1, which is roughly consistent with the aspect ratio of the membrane. The pre-tensioning displacement is ranged from 0 to 0.08mm. Different kinds of imperfections, defined as transverse deformation of the center point, are considered from 0 to 0.008mm.

Generation of membrane wrinkles

The generation of membrane wrinkles is demonstrated in this section. The membrane is splitted into 33 domains in x-direction and 11 in y-direction with a pre-tension of Wrinkle generation is associated with mode jumps in terms of the interaction of a set of bifurcation points. There are several equilibrium paths after each bifurcation points. The deformation patterns have many possibilities when the membrane has many wrinkles. When the first equilibrium point exist, the wrinkles increase up to a certain number without bifurcations by increasing the shear displacement. Then, because of the selected imperfections and tension loads, the bifurcation paths converge to a single path. In this study, the observation focuses on this period from the beginning until the membrane is full wrinkled. 

Sensitivity with respect to the number of subdomains

When the deformation of structures becomes complex, two common approaches can be used to maintain the accuracy of the simulation: a larger degree of Taylor series or the multi-domain technique. A very large degree leads to high computational costs and large conditioning number of the matrix, which may decrease the stability of the computation. In this study, it is obvious that a single Taylor series is not sufficient to approximate the whole wrinkled membrane. Therefore, the membrane is divided to several subdomains with independent Taylor series in each part. Two neighboring domains are coupled by physical constraints.

The present parametric study is accomplished by varying the number of subdomains in which the membrane is divided. To avoid the influence of distortion, domains in x-direction and y-direction keep a quantitative ratio of 3:1, making each domain roughly a square. The results from wrinkling analysis are presented in Table 4.2, related to the final number of wrinkles corresponding to a shear load 0.15 u mm   . The problem cannot be simulated if the number of subdomains is less than 17×6. The simulation can be proceeded with 21×7 domains and predict 8 wrinkles shown in Figure 4.6. Three additional sets of domains are tested to investigate the effect of number of domains on the final wrinkle number. 33×11, 45×15 and 63×21 predict the same number of wrinkles, indicating that the results become independent when the number of domains is enough. In order to achieve a compromise between the computational efficiency and the accuracy of the results, the optimal mesh is at least three domains in x-direction to describe one wrinkle. In consideration of computational time and convergence of the solution, the set of 33×11 is selected in previous sections. 

Sensitivity with respect to tension loads

The uniaxial tension load in y-direction provides an initial out-of-plane stiffness to the membrane, which is an important factor in determining the membrane wrinkles and computational stability. To test the sensitivity of tension loads, all the cases in this section are applied with an imperfection of 0.001mm and 33×11 subdomains. 4.7. The simulation cannot be proceeded without this pre-tensioning treatment. With 0.0005mm tension load, the membrane generates three main wrinkles and some minor local ones. In the range of 0.001mm to 0.02mm, the tension load has a strong effect on the number of wrinkles. After 0.02mm, the membrane keeps generating 11 wrinkles at the end of the computation. By increasing the tension load, the angle between wrinkles and the bottom edge decreases to 45°. The buckling curves of cases with a wide range of tension loads are shown in 

A global look

A closer look

Now a closer look near the bifurcation point will be taken to observe the generation of membrane wrinkles. A zoom of the buckling curve with 0.05mm tension load in Figure 4.8 is shown in Figure 4.9. The further zoom of the buckling curve in Figure 4.9 indicates that the maximum displacement is monotonically increasing, which means the equilibrium continuation path is unique in the wrinkling process.

The deformations of the membrane on selected points are plotted in In the FEM study by Wong [START_REF] Wong | Wrinkled membranes III: numerical simulations[END_REF] , the attempts to compute the full response in ABAQUS by an arc-length method are unsuccessful due to the complex localized instability, therefore they use transient dynamics to compute the solution in this case 0.05 u mm   . Using an arc-length method is difficult to find a stable branch in the equilibrium path of membrane wrinkling. By using ANM-TMM, however, the path-following technique can obtain the whole developing details of a wrinkled membrane as discussed in this section. 

Membrane wrinkling with a very small tension load

Another advantage of this method is that we were able to use a very small tension load to accomplish the simulation. The initial pretension in [START_REF] Wong | Wrinkled membranes III: numerical simulations[END_REF], which corresponds to the tension load in this thesis, is chosen as 0.05mm. This value is much smaller than that in his previous eigenvalue buckling analysis, from which the geometrical imperfections are obtained. However, the initial pretension still has to be large enough so that the membrane can avoid some localized modes and enter the global buckling period. In Figure 4.8, one can see that ANM-TMM works with tension loads much smaller than 0.05mm. In this section, the wrinkling development with a very small tension load 0.001mm will be discussed.

A zoom of the buckling curve with 0.001mm tension load in The deformations of the membrane on selected points are plotted in Figure 4.12.

The membrane keeps quasi-flat before the critical shear load 0.0020mm. In Figure 4.12(d), four wrinkles are generated uniformly on the whole membrane. From Figure 4.12(e) to Figure 4.12(f), the deformation keeps increasing without any new wrinkle generated. The small tension load leads to a weak boundary effect, thus the wrinkles are generated simultaneously with approximately equal amplitudes. This is the main difference between this case and that in 4.3.3.2. Thus, the tension load has a very strong effect on all the aspects of the wrinkling process: first bifurcation load, number of wrinkles and spatial distribution of the amplitude of wrinkles. 

Membrane wrinkling with a minimum tension load

The pre-tension process is an important step to stabilize the equilibrium path. If the tension load is too small, the simulation may not be accomplished as the algorithm could be trapped in the computation of local modes. It will be of important significance to find the limitation of ANM-TMM and study the behavior of the membrane with the smallest tension load. 

Imperfection sensitivity

Buckling problems cannot be analyzed directly because of the discontinuity at the bifurcation point. To obtain a response in the buckling analysis, an imperfection should be introduced. The response of some structures may highly affected by the imperfections applied to the original geometry. It is necessary to verify the imperfection sensitivity of the structure in membrane wrinkling simulation.

A moderate value 0.02 v   mm is chosen as a tension load when testing the imperfection sensitivity. The imperfection is introduced into the original geometry according to Section 4.2. For each set of imperfections, a complete wrinkling simulation was carried out to observe the final number of wrinkles. Normally, the magnitudes of the perturbations are small in comparison with the membrane thickness.

The imperfection, which is defined as the out-of-plane deformation at the center of the membrane, is ranged from 0.00006mm to 0.008mm.

The results from this study are presented in Table 4.5. In a wide range, the amplitudes of imperfections are independent with the final number of wrinkles. The particular magnitude of the chosen imperfection is not critical. In practice, the optimal ratio of the imperfection and thickness is between 0.02 and 0.1. The smallest imperfection that can proceed the simulation is very small (0.0001mm, 0.004h ). In comparison, the simulations are generally proceeded with imperfections of larger than 0.01h in FEM. The number of wrinkles begins to decrease when the imperfection is larger than 0.005mm ( 0.2h ). This means that the number of wrinkles is sensitive to imperfections in the range larger than 0.2h . The largest imperfection that can use to generate reliable wrinkle patterns is smaller than that in FEM. This is because the different methods of imposing imperfections. In ABAQUS, imperfections are introduced by imposing geometric deformation directly on nodes or a linear superposition of buckling eigenmodes from the static analysis. In this study, a transverse pressure is imposed to the membrane to produce out-of-plane deformation. The stress distribution before wrinkling analysis is slightly different from that in ABAQUS. When imperfections are large, the influence of the pressure is not negligible.

Conclusion

This chapter is an extension of the previous work on the use of TMM for large deflection of thin plates. In this chapter, the membrane wrinkling problem is studied with Taylor meshless method. Based on equilibrium equations and solution process established in Chapter 3, the wrinkle patterns are observed by imposing tension loads, imperfections and shear loads successively.

The imperfections are introduced by imposing transverse pressure, instead of pseudo-random geometric displacements on nodes or seeding initial buckling modes of a perfect membrane. This is an easy way to avoid stress concentration and localized buckling modes.

Different tension loads and imperfections are imposed to test their influence on final wrinkle patterns. The results indicate that imperfections should be large enough so that they can provide sufficient bending-to-membrane coupling. In a range, the magnitude of imperfections has no influence on the final wrinkling results.

The tension loads provide a small bending stiffness to the membrane, which should be considered to accurately calculate out-of-plane deformation. The study indicates that tension loads has a great influence on the final number of wrinkles.

TMM can accomplish convergent simulations with very small imperfections and tension loads in comparison with finite element methods. The approach of wrinkled membrane analysis by TMM has been well established. The future work includes detailed study on wrinkle amplitude and wavelength in membrane wrinkling problems.

imperfections are imposed to test their influence on final wrinkle patterns. The results

show that TMM can accomplish convergent simulations with very small imperfections and tension loads in comparison with finite element methods. The tension load has a strong effect on the amplitudes and number of global wrinkles while the imperfection affects the number of wrinkles only when it is large enough.

The approach of wrinkled membrane analysis by TMM has been well established.

As revealed in this work, TMM is an efficient and robust method for a variety of linear and nonlinear elastic problems. Nevertheless, it will be of great significance to extend the application of TMM to many other engineering fields. Some further explorations could make TMM a more practical numerical tool:

1) As the algorithm for computing shape functions and introducing boundary conditions needs to be optimized, the computational efficiency can be improved with the help of techniques such as Automatic Differentiation.

2) Based on the resolution established in Chapter 3 and Chapter 4, a toolbox for thin structure problems can be developed to simplify the procedure in the pretreatment and optimize the interaction.

3) The numerical work on thin plate problems provides a good foundation for studying thin shells. It will also be interesting to extend the application of TMM to more challenging problems, involving fluid-solid coupling, contact and even vibration.
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 233222 Figure 2.19 The influence of the number of collocation points on the convergence, N = 16, Case2 (3) Stresses in Square Sandwich Plate, Case 3Figure 2.20 and Figure 2.21 are the convergence of a square sandwich plate with two kinds of materials. From Figure2.20 one checks that the method fails if the number of collocation points is too small. The maximal error decreases with the number of collocation points until an optimal number where it becomes stable. A number of about 4N can already lead to good results. However, the degree of freedom

Figure 2 .

 2 [START_REF] Chen | Reproducing kernel particle methods for large deformation analysis of non-linear structures[END_REF] is the influence of expand point on the convergence. One can see that the results when the polynomial is expanded at (a/2, b/2) are better than that at (0, 0) at each degree. It is because Taylor series are suitable for a neighborhood, while point (a/2, b/2) is closer than (0, 0) to the whole domain. The technique of subdomains can be applied to get more accurate results.

Figure 2 .

 2 Figure 2.22 The influence of expand point on the convergence

  2. Eq.(3.11) is a linear equation, thus the solution of Eq.(3.7) is    

4 N

 4 ) and Eq.(3.14). The principle of TMM is to expand the unknown fields in Taylor series and to solve the PDEs in the sense of Taylor series. The two unknowns of Eq.(3.11) or Eq.(3.14) -the transverse displacement w and the stress function f are approximated by Taylor series truncated at TMM degree N: In these two complete polynomials, there are    12 NN  coefficients to be found. The equations Eq.(3.11) and Eq.(3.14) are also expanded into series up to the order  after substituting Eq.(3.15). For instance, the bending equation in Eq.(3.11)

( 3 .

 3 [START_REF] Gingold | Smoothed particle hydrodynamics: theory and application to non-spherical stars[END_REF] and Eq.(3.14) being solved, one can compute all the terms of the ANM-series Eq.(3.5), after having obtained those of the path parameter K  . Last, we have to define the range of validity of the series Eq.(3.5). In conformity with the basic ANM algorithm, one requires that the last term of the series is small with respect to the first one:
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 3131 Figure 3.1 A square and simply supported plate with boundary collocation points

Figure 3 . 2 A

 32 Figure 3.2 A square plate with immovable edges

  Eq.(3.26) and Eq.(3.27), the partial derivatives of in-plane displacements can be expressed with w and f :

  Eq.(3.29) and Eq.(3.32)-(3.34), most Taylor series coefficients of u and v at order K can be deduced except   corresponding to the in-plane rigid displacement and rotation of the plate. The expansions of u and v need an extra part to consider these three coefficients:

20 K

 20 3.3.1. All the boundary conditions are accounted by least-square collocation with 240 collocation points. The parameters of the algorithm are the ANM-degree

Figure 3 . 3

 33 Figure 3.3 Effect of small perturbations on the buckling of a simply supported square plate. The ANM-TMM algorithm is compared with a commercial finite element code. On the ANM-TMM curve, each point corresponds to one ANM step

Figure 3 . 4 A

 34 Figure 3.4 A zoom of Figure 3.3. One sees that the ANM-TMM method permits to compute easily quasi-perfect bifurcations. On the ANM-TMM curve, each point corresponds to one ANM step.

Figure 3 .

 3 Figure 3.5 h-convergence: decimal logarithm of the error on the bifurcation stress, according to the degree P and to the number of subdomains.



  is 3.6152. One has applied TMM degrees N = 5, 8, 10 and a number of subdomains varying from 1 to 16. The results are reported in Figure3.5.
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 36 Figure 3.6 Deflection at the center of plate vs. load p

3. 4 . 3 Figure 3 . 7 A

 4337 Figure 3.7 A square plate with immovable edges

84 eNN 10 

 8410  , where e N is the number of domains. The accuracy parameter  is8 10  . Transverse uniform pressure p is chosen as a small value 6 to produce the initial imperfection of the plate. The boundary conditions are accounted by least-square collocation with 32N points in one domain, including the boundaries and the interfaces. On the interfaces, two domains share the same collocation points. The distribution of these points is shown in Figure3.7.
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 3839 Figure 3.8 Displacement of center point of the plate vs. load, degree of TMM 8, order of ANM 10
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 3103103 Figure 3.10 Comparison of results by FEM and TMM with degree 8 and 10
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 3 Figure 3.12 Displacement load values when the displacement of center point is 1

Figure 4 . 1

 41 Figure 4.1 Rectangular membrane with tension v  and shear load u 

Figure 4 . 2

 42 Figure 4.2 Steps of the algorithm

Figure 4 . 3

 43 Figure 4.3 An imperfection sample

  step. The selection of the number of subdomains and tension load will be discussed later in this chapter. The membrane is tensioned in y-direction, keeping a flat state. Then the imperfection is produced by imposing transverse pressure, generating 0.001mm out-of-plane deformation at the center of the membrane. By imposing alternating pressure in x-direction, the membrane generates alternating deformation as shown in Figure4.4. Because of simply supported boundary conditions on side edges and bending stiffness produced by the pre-tension, the deformation near side edges is larger than that inside the membrane.

Figure 4 . 4

 44 Figure 4.4 Imperfection of the membrane for wrinkling, tension load 0.02mm, imperfection 0.001mm.

Figure 4 . 5

 45 Figure 4.5 Full wrinkled membrane, 33×11 domains, tension load 0.02mm, imperfection 0.001mm.

Figure 4 .

 4 Figure 4.5 shows the whole wrinkled patterns in the membrane. The wrinkles in the central region cross the whole membrane, making an angle of 45° with x-axis. There are two localized wrinkles in the triangular regions of the upper left and bottom right corners near the side edges. In this study, only wrinkles crossing the whole

Figure 4 . 6

 46 Figure 4.6 Full wrinkled membrane. Subdomains: 21×11, tension load 0.02mm, imperfection 0.001mm, shear load 0.15mm.

Figure 4 . 7

 47 Figure 4.7 Wrinkle patterns with different tension loads.

Figure 4 . 8 .

 48 Figure 4.8. With a very small tension load, for example 0.0005mm or 0.001m, the membrane starts global buckling very early. A larger tension load leads to a larger critical shear load and a smaller maximum displacement, because of the increase of the global stiffness.Table 4.4 is the comparison of the maximum displacements and

Figure 4 . 8

 48 Figure 4.8 Shear load vs maximum displacement, tension loads from 0.0005mm to 0.08mm, imperfection 0.001mm.

Figure 4 .

 4 [START_REF] Liu | Meshfree methods: moving beyond the finite element method[END_REF]. The membrane is quasi-flat when the shear load is smaller than 0.05mm. The first few wrinkles are generated near boundaries with 0.06mm shear load. The position of the maximum displacement moves towards the center area while the center area still keeps quasi-flat as shown in Figure 4.10(c) and Figure 4.10(d). From Figure 4.10(d) to Figure 4.10(e), the maximum position stops moving and wrinkles begin to appear in center area. In Figure 4.10(f), the membrane becomes stable and full wrinkled. Because of the boundary effect, the membrane starts wrinkling near boundaries and extends to the center area with the increase of the shear load. The amplitudes of the central wrinkles are much smaller compared with the largest one.

Figure 4 . 9 A

 49 Figure 4.9 A zoom of the buckling curve, tension load 0.05mm.

Figure 4 .

 4 Figure 4.10 Deformations of the membrane with different shear loads, tension load 0.05mm.

Figure 4 .8 is shown in Figure 4 . 11 .

 4411 The further zoom of the buckling curve indicates that the maximum displacement has a slight decrease before the global buckling point. The computation follows another localized unstable branch then turns to the global one.

Figure 4 .Figure 4 .

 44 Figure 4.11 A zoom of the buckling curve, tension load 0.001mm.

Figure 4 .

 4 Figure 4.13 A zoom of the buckling curve, tension load 0.0005mm.

Figure 4 .Figure 4 . 8 .Figure 4 .

 4484 Figure 4.13 is a zoom of the buckling curve with 0.0005mm tension load in Figure 4.8. The membrane responses quickly with many localized buckling modes after the shear load is applied. The further zoom of the curve shows that the algorithm chooses an unstable branch automatically and then goes back to the fundamental equilibrium path. A stable bifurcated solution is reached after seeking for about 5 times. This phenomenon does not occur in the section 4.3.3.14.3.3.2 and 4.3.3.3 because the tension loads are large enough to stabilize the membrane and a stable equilibrium path can be sought very easily.

Pré sentation rapide du chapitre 4 .

 4 On étudie dans ce chapitre le fonctionnement d'une plaque en grands déplacements, et on a choisi le modè le de plaques de Föppl-von Karman. Il s'agit d'un modèle non-liné aire qui, contrairement au modè le de Love-Kirchhoff, introduit un couplage entre la ré ponse en membrane et la ré ponse en flexion. Dans ce chapitre et le suivant, nous appliquerons notre modè le numé rique à des problè mes de bifurcation de structures trè s minces sous des chargements de compression.On dispose de nos jours d'un grand arsenal de méthodes pour traiter numériquement des problè mes de bifurcation. On sait par exemple calculer directement les points de bifurcation sur une courbe de ré ponse non-liné aire, mais la procé dure la plus simple est d'appliquer une méthode de continuation et d'analyser les résultats. De telles procé dures (Newton, Newton-Raphson, Riks…) sont disponibles dans les codes de calculs existants et ils impliquent d'introduire une perturbation en force ou en gé omé trie lorsque la structure est parfaitement symé trique. Dans cette thè se, nous avons appliqué la mé thode asymptotique numé rique (ANM) qui pré sente plusieurs avantages pour traiter ce type de problè me : tout d'abord le suivi de courbe est plus facile car le pas de calcul est dé fini a posteriori de maniè re automatique ; ensuite, et c'est une conséquence du point précédent, la méthode fonctionne avec des forces de perturbation plus petites, ce qui permet de traiter des structures presque parfaitement symé triques ; enfin les longueurs des pas de calcul diminuent automatiquement à l'approche d'une bifurcation, ce qui permet de détecter à l'oeil des bifurcations é ventuelles, simplement en regardant les courbes de ré ponse obtenues par le processus de continuation. La mé thode proposé e consistera à associer la mé thode asymptotique-numé rique (ANM) à une discré tisation spatiale par TMM (Taylor Meshless Method), ce qui sera appliqué au modè le de Föppl-von Karman en flè che-fonction de contrainte (3.1). Plus précisément l'application d'ANM transforme ce système non-liné aire en une suite d'équations linéaires à coefficients variables (3.7) (3.8) (3.9), ces dernières étant discré tisé es ensuite par TMM. On aura donc une double sé rie de Taylor : d'abord une sé rie par rapport au chargement ou plus précisément par rapport à la longueur d'arc (3.6), puis une série par rapport aux deux variables d'espace x et y. Les problèmes linéaires issus d'ANM se ramènent à la résolution de deux systèmes linéarisés (3.11) à l'ordre 1, puis (3.14) aux ordres suivants : c'est ces deux types de problèmes qui seront ré solus par TMM. La procé dure TMM appliqué e aux é quations de Föppl-von Karman est dé crite briè vement à la section 3.3.2. Elle dé coule de la formule de ré currence (3.16), les coefficients de Taylor apparaissant dans chaque terme de (3.16) s'exprimant simplement à partir des coefficients de Taylor des termes calculé s aux ordres pré cé dents comme dans les formules (3.17) ou (3.18). Une fois que ces sé ries à deux niveaux (ANM et TMM) ont été calculées, la fin du pas ANM est obtenue d'une maniè re classique en demandant que le dernier terme de la sé rie soit assez petit, voir l'équation (3.20) : c'est ce calcul de longueur de pas a posteriori qui fait la force de la mé thode ANM pour les problè mes de bifurcation, un trè s petit pas pouvant venir juste aprè s un pas trè s long. La formulation en fonction de contraintes des é quations de Föppl-von Karman est é lé gante et permet un traitement assez facile des sé ries de Taylor par rapport aux variables d'espace, mais il est fréquent qu'on doive écrire des conditions aux limites en termes des composantes horizontales du dé placements u et v. Dans le paragraphe 3.3.3, on a donc exprimé ces dé placements à partir de la fonction de contrainte, voir l'équation (3.28) ou sa traduction en termes de coefficients de Taylor (3.29). A noter qu'il apparait alors un déplacement rigide, c'est-à -dire trois inconnues supplé mentaires noté es u, v et  dans l'équation (3.35). La manière d'écrire les conditions aux limites et les conditions de transmission est aussi pré cisé e dans ce paragraphe 3.3.3. Plusieurs applications numé riques sont ensuite discuté es concernant des plaques rectangulaires. Elles sont ensuite comparé es avec les ré sultats obtenus avec le code par é lé ments finis ANSYS. Le premier exemple est le flambage d'une plaque carrée en compression bi-axiale en appui. Dans ce cas, on a essayé de pré dire le point de bifurcation avec l'imperfection la plus faible possible : les figures 3.3 et 3.4 montrent que le suivi de courbe par ANM-TMM permet de suivre la bifurcation avec une force de perturbation extrêmement faible, beaucoup plus faible qu'avec le code d'éléments finis. Après le calcul d'une plaque en flexion, on s'est intéressé au comportement post-bifurcation d'une plaque en appui sous chargement uni-axial. A la premiè re bifurcation, on obtient un mode sinusoï dal à une bosse et on passe progressivement à un mode à trois bosses (figures 3.9 et 3.11) qui demande une discré tisation plus fine (ici, 16 sous domaines et un degré 10). La mé thode proposé e permet donc de pré voir ce comportement complexe avec un maillage grossier et un suivi de courbe trè s pré cis. Dans ce chapitre, la mé thode dé crite au chapitre pré cé dent sera appliqué e à un problè me de plissement de membranes. Les membranes et les films trè s minces sont un sujet d'importance croissante, soit pour des raisons de recherche fondamentale (compré hension des instabilité s), soit pour des raisons technologiques (ré duction de poids, structures ultralégères…). Le problème choisi est le plissement d'une membrane trè s mince soumise à un chargement de cisaillement. Ce problè me trè s simple est une source de difficulté s pour le calcul numé rique, en particulier pour des chargements trè s faibles car la rigidité quasi nulle en flexion rend la structure extrê mement sensible à la moindre compression. Wong et Pellegrino [102] ont é tudié ce problè me avec un code de calcul commercial. Vu les difficulté s numé riques rencontrées, ils ont choisi d'ajouter un chargement de tension assez important en sorte que la rigidité gé omé trique due à cette tension compense la trop faible rigidité de flexion. Nous rediscutons ici ce problè me de plaque mince en cisaillement pour essayer d'expliquer l'influence de cette tension additionnelle et, si possible, de comprendre le comportement de cette structure lorsque cette tension est trè s faible. Le problè me de membrane de Wong et Pellegrino est dé crit à la Section 4.2. On considère une membrane rectangulaire (rapport d'aspect a/b≈3) très mince (b/h≈5000) et soumise à un chargement principal de cisaillement. Ce problè me apparemment trè s simple s'est avéré ingérable par les mé thodes de continuation à longueur d'arc imposé e. Il avait é té traité par une approche pseudo-dynamique, mais il avait fallu introduire une imperfection géométrique, ce qui est classique dans l'étude numérique des bifurcations, mais aussi une pré -tension qui stabilise le calcul, mais risque de modifier fortement le comportement de la membrane. L'influence de cette pré-tension est donc un enjeu important qui sera discuté dans ce chapitre. Ici l'imperfection gé omé trique sera produite par une force transversale et non par un dé faut initial de plané ité , le point important é tant la trè s faible valeur de cette imperfection pour ré soudre presque parfaitement le problè me de bifurcation. Les ré sultats numé riques sont pré senté s à la section 4.3. Il apparait clairement que la procé dure de continuation fonctionne et permet de calculer les solutions plissé es, mê me avec une imperfection trè s faible, et un maillage relativement grossier de 33×11 sous-domaines. L'algorithme de continuation a donné des résultats cohérents mê me pour des pré -tensions extrê mement faibles (cf Figure 4.8), alors que les ré sultats de la litté rature mentionnent tous la difficulté à faire fonctionner un algorithme de continuation et qu'ils préfèrent en général l'approche pseudo-dynamique et se limitent à des chargements assez grands. Ici on obtient la courbe de ré ponse pour des cisaillements faibles alors que la membrane est trè s peu tendue. Un ré sultat un peu surprenant est pré senté à la Table 4.3 et à la Figure 4.7: pour des pré -tensions trè s faibles (0.5m et 1m), les modes de déformations n'ont que 3 ou 4 plis alors que la litté rature en trouve au moins 10 ou 11 avec des tensions plus importantes. Ces résultats de la littérature ne sont donc pas représentatifs d'une membrane chargé e presque uniquement en cisaillement, cette pré -tension transversale modifiant fortement les modes de dé formation et les courbes de ré ponse (Figure 4.8). Une contribution importante de cette thè se, avec le pilotage ANM et la discré tisation TMM, est donc de pouvoir faire ces calculs de structures trè s molles conduisant à des modè les mathé matiques ayant beaucoup de solutions. L'évolution des formes déformées en fonction du chargement de cisaillement est pré senté e pour plusieurs valeurs de la pré -tension. Les figures 4.9 et 4.10 pré sentent le cas d'une pré-tension de 0.05 mm é tudié par Wong et Pellegrino : la premiè re bifurcation se produit pour un cisaillement ≈0.05 mm et correspond à un mode très localisé aux bords. Une seconde bifurcation pour ≈0.08 mm déclenche l'apparition de plis plus petits au centre du rectangle, les simulations de Wong et Pellegrino (voir leur Figure 9) présentant la suite de l'histoire pour 0.1 mm ≤  ≤ 2.6 mm. Pour une pré -tension trè s faible de 0.001 mm, la bifurcation a lieu beaucoup plus tôt, le nombre de plis est bien plus faible (4 à 6) et les amplitudes des oscillations sont plus uniformes, sans concentration prè s des bords. Enfin on a simulé l'apparition des plis avec une membrane initialement trè s molle (pré -tension de 0.0005 mm) : la courbe de ré ponse (Figure 4.13) oscille fortement dè s le dé but du calcul, avec un nombre trè s important de pas ANM, signe de la pré sence de solutions multiples et de nombreuses quasi-bifurcations dues à l'état presque mou de la membrane, les plis correspondant à cet état très mou étant très irréguliers, cf Figure 4.14. Enfin, on discute l'influence de la petite imperfection transversale ajouté e pour dé clencher la bifurcation. Dans le cas traité au Tableau 4.5, l'algorithme de continuation fonctionne pour un défaut supé rieur à 0.1 m (en valeur adimensionnelle 1/250) et pré dit 11 plis à condition que le dé faut ne soit pas trop grand.En ré sumé , la mé thode de continuation proposé e a permis de ré soudre ce problè me de membrane trè s difficile, en particulier au dé but du chargement où la membrane est trè s molle. Il est apparu que la pré -tension introduite par Wong et Pellegrino a une trè s forte influence sur la réponse de la membrane et qu'il y a des différences importantes entre une membrane avec une pré -tension quasi-nulle et celle avec une pré -tension de 0.05mm utilisé e par ces auteurs.ConclusionsDans cette thè se, on a é tudié le comportement des plaques minces et des membranes en utilisant une mé thode de collocation-frontiè re sans maillage (TMM), dans laquelle l'EDP est résolue analytiquement au sens des séries de Taylor et les conditions au bord sont discré tisé es par collocation-moindres carré s. Divers paramè tres ré gissant le comportement en flexion, flambage ou plissement sont identifié s.Tout d'abord, on rappelle les techniques de base de TMM. Ainsi, on réduit fortement le nombre de degré s de liberté en construisant des fonctions de forme solutions de l'EDP. L'efficacité de TMM est illustrée dans le cas d'une équation de Laplace 2D.Ensuite TMM est utilisé pour é tudier les plaques de Kirchhoff et les plaques composites stratifié s. La ré duction du nombre de degré s de liberté permet d'augmenter le degré jusqu'à un ordre élevé. Différents tests démontrent l'efficacité de la mé thode qui converge exponentiellement avec le degré des polynômes.Puis on combine TMM avec la mé thode asymptotique numé rique (ANM) pour é tudier des problè mes de flexion de plaques en grands dé placements. On dé veloppe les é quations non liné aires sous forme de sé ries entiè res, ce qui conduit à une suite de problè mes liné arisé s. La longueur de pas est dé terminé e a posteriori à partir des proprié té s de convergence des sé ries. La pré cision et l'efficacité d'ANM-TMM sont vé rifié es à travers quelques exemples de flexion ou de flambage et la technique peut être étendue à d'autres modèles non linéaires.
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  The particular solution for Eq.(2.11) can be chosen arbitrarily by setting any initial items satisfied by Eq.(2.13):

	N N m 	
	  ,,   00 ss mn P x y u m n x y mn   	(2.14)
	The approximate solution for Poisson equation is in the form:	

  .16) corresponds to Dirichlet boundary and the second part corresponds to Neumann boundary. Q is the first derivative of P and Qs is the first derivative of Ps. The principle is to minimize Eq.(2.16) by making the first partial derivatives of the function zero:

  to solve the differential equation: one assumes that the dependence with respect to y is known and one considers the equation as a differential equation in x. The last equation in Eq.(2.32) can be represented with M and k :
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Table 2 .

 2 [START_REF] Ghaboussi | Numerical methods in computational mechanics[END_REF] shows the deflection of the plate center obtained with different methods. Theoretically, M x should equal to M y . Figure2.13 is the deflection of the whole domain, with the boundary conditions . One can find that the accuracy of TMM is on the same level as with other methods.
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Table 2 .

 2 2 Deflection and moment of the center of a rectangular plate, clamped edges, uniform load

					wmax					Mx					My	
	Degree Collocation points	(		0 D pa	4	)	(		1 pa	2	)	(		1 pa	2	)
		40	0.00126519	0.0228932	0.0228932
	10	80	0.00126465	0.0228862	0.0228862
		120	0.00126451	0.0228842	0.0228842
	TMM	80	0.00126532	0.0229046	0.0229056
	20	160	0.00126532	0.0229043	0.0229058
		240	0.00126530	0.0229025	0.0229061
		120	0.00126529	0.0229047	0.0229048
	30	240	0.00126522	0.0229041	0.0229037
		360	0.00126558	0.0229072	0.0229074
	MLPG [73]			0.001258		0.02288	0.02288
	BEM [74]			0.001260		0.02290	0.02290
	Theoretical Solution [75]		0.001260		0.02310	0.02310

Figure 2.13 The distribution of the deflection of a clamped Kirchhoff plate 2.

6 Application of TMM to sandwich plates 2.6.1 The loading and the governing equation

  

	Distributed loading:		
	  , qx 0 y  	sin sin p x qy	(2.44)
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Table 3 .

 3 1 Deflection and membrane stress at the center of plate vs. load p

			w				m
	p						
		FEM	TMM	ERROR(%)	FEM	TMM		ERROR(%)
	2.29	0.0317	0.0316	0.315	0.0033	0.0033	0.000
	6.80	0.0937	0.0935	0.213	0.0291	0.0291	0.000
	15.96	0.2157	0.2153	0.185	0.1542	0.1543	0.065
	25.12	0.3290	0.3285	0.152	0.3581	0.3583	0.056
	34.12	0.4304	0.4295	0.209	0.6112	0.6114	0.028
	43.06	0.5213	0.5202	0.211	0.8947	0.8946	0.009
	51.94	0.6030	0.6017	0.216	1.1942	1.1940	0.013
	60.81	0.6771	0.6756	0.222	1.5023	1.5020	0.017
	69.61	0.7443	0.7426	0.228	1.8113	1.8109	0.023
	78.46	0.8064	0.8046	0.223	2.1222	2.1213	0.040
	87.32	0.8640	0.8620	0.231	2.4313	2.4305	0.032
	96.10	0.9171	0.9149	0.240	2.7344	2.7331	0.046
	104.79	0.9662	0.9638	0.248	3.0305	3.0287	0.058
	113.46	1.0123	1.0098	0.247	3.3217	3.3197	0.061

  [START_REF] Huang | Numerical calculation method[END_REF] 

							center w	 , the data from center w	=0.5 to 1.3 by ANSYS
	are fitted with a polynomial of degree 10. From TMM calculating, the reference load
	at	center w	1  is	2.98261 0.00001  . The discrepancy between FEM and TMM is
	about	5 3.35 10  	.	
		Table 3.2 Displacement load values when the displacement of center point	1 w  , convergence with
							mesh refinement and with the degree
	Number of				Degree of TMM
	subdomains		6	8	10	12	15	20
		2×2		3.14120	2.91440	3.00396	2.98004	2.98231	2.98268
		3×3		2.95625	2.98184	2.98279	2.98261	2.98263	2.98263
		4×4		2.96247	2.98271	2.98263	2.98262	2.98262	2.98262
		6×6		2.97156	2.98261	2.98262	2.98262	2.98262	2.98260
		8×8		3.00378	2.98261	2.98262	2.98262	2.98261	2.98260

  this chapter, the boundary meshless method TMM (Taylor Meshless Method)

	is combined with ANM (Asymptotic Numerical Method) to solve nonlinear thin plate
	problems. The detailed procedure of this double Taylor series method consists of two
	parts: first, nonlinear partial differential equations are linearized by ANM, producing
	a set of linear equations in each iteration; next, these linearized partial differential
	equations are solved by TMM. The approximate solution obtained by TMM is used as
	the initial solution of next ANM iteration.

The buckling of thin plate with movable edges is studied. This double Taylor series method can compute buckling problems with much smaller perturbations than that in FEM. A bending test of thin plate with immovable edges is carried out to verify the boundary conditions and convergence of the method before buckling analysis. The results are in good agreements with that in FEM. Comparing with FEM solutions, the number of domains for buckling of thin plate with immovable edges is discussed.
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			1 Material property
	Width (mm)	a	380
	Height (mm)	b	128
	Thickness (mm)	h	0.025
	Young's modulus (MPa)	E	3500
	Poisson's ratio	υ	0.3
		v	
			  , p x y		u

Table 4 .

 4 2 Sensitivity of the response (number of wrinkles) to the number of sub-domains.

	Pre-tension	v  	0.02	mm, imperfection 0.001mm.
	Number of domains Number of wrinkles
	15×5		Not converging
	17×6		Not converging
	21×7		8
	33×11		11
	45×15		11
	63×21		11

Table 4
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	.3 shows the final number of wrinkles for	u  	0.15 mm	with different
	tension loads. Patterns are shown in Figure			

Table 4 .

 4 3 Number of wrinkles with different tension loads.

Table 4 .

 4 [START_REF] Liszka | The finite difference method at arbitrary irregular grids and its application in applied mechanics[END_REF] The maximum displacements and amplitudes of center wrinkles, shear load 0.15mm,

		imperfection 0.001mm.	
	Tension load(mm)		
	0.0005	0.7482	0.5461
	0.001	0.5302	0.4081
	0.01	0.4732	0.1893
	0.02	0.4150	0.1686
	0.05	0.3245	0.1186
	0.08	0.2266	0.0643

max w (mm) Amplitude of the central wrinkle(mm)

Table 4
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	.5 Sensitivity of the response (number of wrinkles) to the imperfection. Pre-tension
	v  	0.02	mm, number of sub-domains: 33×11.
	Imperfection(mm) Imperfection/h Number of wrinkles
	0.0001		0.004	11
	0.0005		0.02	11
	0.001		0.04	11
	0.002		0.08	11
	0.003		0.12	11
	0.005		0.20	10
	0.008		0.32	9

  Cette thè se a pour objet la simulation numé rique de certaines é quations aux dé rivé es partielles non-linéaires dont on sait qu'elles sont maintenant très largement utilisées dans un grand nombre de domaines. On s'intéressera plus particulièrement à la discré tisation spatiale de ces é quations. Les mé thodes de discré tisation les plus utilisé es sont la mé thode des diffé rences finies (FDM) et la mé thode des é lé ments finis (FEM). Pour la mé canique des solides et des maté riaux, la mé thode des é lé ments finis est de loin la plus importante, avec des logiciels commerciaux comme ABAQUS, Une autre approche est la mé thode des é lé ments frontiè res (BEM), basé e sur une transformation de l'équation aux dérivées partielles en é quation inté grale de frontiè re. Aprè s plus de 25 ans de recherches intensives, il y a quelques beaux succè s des mé thodes sans maillage, par exemple pour des é tudes de dé ferlement de vagues qui sont difficiles à traiter avec d'autres méthodes[START_REF] Idelsohn | The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves[END_REF], mais pour l'instant, ces méthodes restent assez coûteuses et trè s peu utilisé es dans les calculs pratiques et les principaux codes de calcul commerciaux.Dans cette thèse, on s'intéresse à la méthode de Taylor sans maillage (Taylor Meshless Method, TMM) dé veloppé e par Zé zé[START_REF] Zé Zé | A boundary meshless method with shape functions computed from the PDE[END_REF], Tampango[START_REF] Tampango | Convergence analysis and detection of singularities within a boundary meshless method based on Taylor series[END_REF] et Yang[START_REF] Yang | Least-square collocation and Lagrange multipliers for Taylor Meshless Method[END_REF].Dans cette méthode, on propose de résoudre analytiquement l'équation aux dérivées partielles par la mé thode des sé ries de Taylor. Cette ré solution analytique permet de diminuer fortement le nombre de degré s de liberté comme dans la mé thode des é quations frontiè res (BEM), mais à la diffé rence de la mé thode BEM, TMM s'applique aisément à des équations non-liné aires, ce qui avait é té fait grâ ce à à un chargement de cisaillement pour laquelle les mé thodes classiques de type Newton-Raphson ou Riks n'ont pas permis d'obtenir de solution satisfaisante, la difficulté principale é tant le suivi de courbe pour une membrane peu tendue (slack).Ce chapitre pré sente la procé dure dé sormais bien é tablie de la « Taylor Meshless Method » , puis il en fait une premiè re application aux problè mes de flexion liné aire des plaques élastiques. La clé est le calcul de la solution générale de l'équation aux dé rivé es partielles (PDE) sous forme de polynômes de degré é levé par la mé thode des sé ries de Taylor : on demande que la série de Taylor du résidu de l'équation s'annule Les paragraphes 2.5 et 2.6 décrivent l'application de la procédure TMM à la flexion des plaques isotropes et anisotropes. On se limite ici à un seul sous domaine et donc à une seule sé rie de Taylor, ce qui peut ê tre un peu pé nalisant pour retrouver de trè s hautes pré cisions. Le point le plus important est la procé dure de calcul des solutions polynomiales qui reposent sur les formules de ré currence pré senté es au tableau 2.1. . Flexion de plusieurs plaques anisotropes stratifié es en appui et soumises à une force sinusoï dale.Ces tests montrent qu'on peut obtenir une trè s bonne pré cision sur les dé placements et sur les contraintes dans la plaque pour des degré s é levé s (entre 10 et 15), mê me avec une seule sé rie de Taylor.

	L'avantage obtenu est évident : on aura seulement la frontiè re à discré tiser, ce qui
	conduit à des modèles avec beaucoup moins de degrés de liberté. C'est très intéressant Pré sentation rapide du chapitre 2.
	à notre é poque, où les mé thodes de ré duction de modè le sont à la mode. La
	contrepartie, c'est qu'on ne sait construire l'équation intégrale de frontière que pour
	certains cas où les solutions fondamentales sont connues explicitement, en gros les
	systè mes liné aires, elliptiques et à coefficients constants. C'est pourquoi la BEM a des
	applications, en particulier en acoustique, mais il y en a beaucoup moins que pour les
	deux premiè res mé thodes.
	Organisation de la thè se
	L'objectif de la thèse est d'appliquer la « Taylor Meshless Method » à des problè mes
	d'instabilité de plaques en grands dé placements, en particulier à des problè mes de
	plissement d'une membrane trè s souple.
	hydrodynamics, voir les équations (1.2) (1.3)), d'autres sur les moindres carrés
	Ces mé thodes fonctionnent bien, ce qui explique leur immense succè s. En particulier mobiles (MLS : moving least squares, voir les é quations (1.4) (1.6)), d'autres encore Le chapitre 2 dé crit la technique de construction des fonctions de forme, puis
	la mé thode des é lé ments finis est suffisamment souple pour permettre la modé lisation sur le concept de fonctions radiales. Certainement les mé thodes les plus populaires l'applique aux problèmes de flexion linéaire des plaques, ce qui n'avait pas encore été
	de structures trè s complexes comme un avion ou une voiture, tout en prenant en sont celles dé duites du concept MLS. Quant à la discré tisation des é quations, on fait.
	compte des comportements varié s et fortement non-liné aires. Les reproches retrouve les deux approches de formulation forte ou formulation faible, avec une Le couplage de la mé thode asymptotique numé rique (ANM) avec la discré tisation par
	habituellement adressés à ces deux méthodes sont, d'une part le trop grand nombre de double difficulté : avec une discré tisation par collocation, la convergence est moins TMM est pré senté au chapitre 3 dans le cas du modè le classique des plaques de
	degré s de liberté s qui est dû à une approximation trop pauvre sur chaque é lé ment (en Föppl-von Karman. Les tests pré senté s concernent les cas suivants.

ANSYS, MSC/NASRAN ou IDEAS.

Dans la FDM, on résout l'équation sous la forme forte (méthode de collocation) et on approche les dérivées par des différences comme dans la formule

(1.1)

. L'équation est appliquée en un ensemble de noeuds et ce maillage est structuré, c'est-à -dire qu'on doit connaitre les voisins de chaque noeud pour pouvoir calculer les dérivées. Dans la FEM, l'équation est satisfaite au sens faible (méthode de Galerkin), c'est-à -dire en moyenne pondérée, l'approximation des inconnues et de l'équation étant dé finie sur des petits morceaux appelé s é lé ments. Cet ensemble de noeuds et d'éléments doit être structuré pour obtenir la continuité du champ et assurer la convergence de la mé thode. général linéaire ou quadratique), d'autre part l'exigence d'un maillage très structuré qui est gê nante par exemple lorsque de trè s grandes dé formations requiè rent une opé ration de remaillage en cours de calcul.

Les mé thodes sans maillage (meshless ou meshfree) ont é té dé veloppé es pour é viter la construction d'un maillage structuré qui s'avère coûteuse en termes de « temps-ingé nieur » et qui est une exigence forte en cas de trè s grandes dé formations du domaine au cours du calcul. Ici on cherche donc à cré er des fonctions de forme et à discré tiser les é quations uniquement à partir d'un nuage de points sans aucune autre structure que la position des points. Les premiers travaux sur les mé thodes sans maillage datent des anné es 1970 et on a assisté à une vé ritable explosion à partir des anné es 1990. De nombreuses versions de ces mé thodes ont é té proposé es, certaines reposant sur le concept de noyau (kernel) comme la mé thode SPH (smooth particle assurée qu'avec une méthode de Galerkin, mais l'application de la formulation faible demande de calculer des intégrales, ce qui n'est pas facile avec des fonctions qui ne sont pas des polynômes de bas degré et de plus cette inté gration reste coûteuse. l'algorithme de Newton ou de Newton-Raphson. Ici on couplera « Taylor Meshless Method » avec la mé thode asymptotique numé rique (ANM) pour pouvoir traiter des problè mes de plissement de membranes qui sont ingé rables avec les codes de calcul existants lorsque la membrane est faiblement tendue. Enfin le chapitre 4 aborde un problè me particuliè rement complexe é tudié pré cé demment par Wong et Pellegrino [102, 103]. Il s'agit d'une plaque souple et mince soumise jusqu'à l'ordre p-2, ce qui dé finit explicitement une solution particuliè re et la solution générale de l'équation homogène associée sous une forme polynomiale. Cette construction dé sormais bien é tablie est dé crite au paragraphe 2.2. Ensuite on applique les conditions aux limites et les conditions de transmission dans le cas d'une discré tisation en plusieurs sous-domaines, avec une sé rie de Taylor par sous-domaine. Plusieurs mé thodes ont é té proposé es pour traduire ces conditions et nous avons retenu la mé thode de collocation-moindres carré s qui est la plus simple et est au moins aussi efficace que les mé thodes basé es sur les multiplicateurs de Lagrange. Le test pré senté à la figure 2.4 rappelle la robustesse de la mé thode alors que la figure 2.5 montre la convergence exponentielle avec le degré de l'approximation polynomiale. 1. Flexion d'une plaque circulaire encastrée sous pression uniforme. 2. Flexion d'une plaque carrée en appui sous pression uniforme.
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Conclusions and future works

In this work, the behavior of thin plates and membranes are investigated by using a boundary collocation meshless method -Taylor Meshless Method (TMM), in which the PDEs are approximated by Taylor series and the boundaries are discretized with a least square collocation. Various parameters that govern the bending, buckling and wrinkling behaviors of thin structures are identified by numerical simulations.

First, the basic techniques of TMM is introduced. The degrees of freedom of the problem are reduced significantly by seeking independent coefficients in the truncated Taylor series that constructs shape functions. The effectiveness and efficiency of TMM are verified by solving a 2D Laplace equation.

Then, TMM is used to study Kirchhoff plates and laminated sandwich plates.

Techniques in TMM help to reduce the degree of freedoms significantly so that one can increase the degree of the polynomials to a very high level. Different cases are considered to test the effectiveness and efficiency of the method. The error shows exponential convergence with the increase of degree of polynomials.

Next, TMM is combined with Asymptotic Numerical Method (ANM) to solve large deflection problems of thin plates. The nonlinear equations are expanded in the form of power series, which leads the problem to a series of linear equations. The step length is determined automatically by a reliable path following technique. The accuracy and efficiency of ANM-TMM is verified through these examples and the method can be easily extended to other nonlinear problems.

Based on the work of bending problems, the buckling of thin plates are studied. This approach fully takes the advantage of the path following technique. Thus the buckling process can be illustrated much more accurate than that by other methods.

The performance of the approach is investigated by a series of benchmark buckling problems.

Last, the membrane wrinkling problems are studied. Different tension loads and dé tecter des points de bifurcation de maniè re trè s pré cise et avec des imperfections extrê mement petites. Nous vé rifierons cette proprié té pour divers benchmarks de flambage.

Enfin on s'inté resse au plissement des membranes avec un benchmark de cisaillement 

METHODE SANS MAILLAGE DE TYPE TAYLOR POUR PLAQUES MINCES RESUME :

Une nouvelle classe de mé thodes sans maillage  Taylor Meshless Method (TMM)  a é té introduite. Elle repose sur une solution explicite des é quations aux dérivées partielles dans le domaine à l'aide des dé veloppements en sé ries de Taylor. Parce que la PDE est ré solue analytiquement dans le domaine, on est ré duit à un problè me de frontiè re discret dont la taille est plutôt petite. L'efficacité de TMM a été vé rifié e en ré solvant certaines PDEs. TMM est utilisé pour ré soudre les problè mes de plaques de Kirchhoff et de plaques sandwich laminé es. L'erreur montre une convergence exponentielle avec l'augmentation du degré de polynômes. TMM est combiné à la Mé thode Asymptotique-Numé rique (ANM) pour ré soudre les problè mes de grands dé placements de plaques minces. La longueur du pas est dé terminé e automatiquement par une technique fiable de suivi de courbe. Cette mé thode en double sé rie peut facilement ê tre é tendue à d'autres problè mes non liné aires. Le processus de flambement peut ê tre illustré de maniè re beaucoup plus pré cise que celle d'autres mé thodes. La performance de l'approche est examiné e par une sé rie de problè mes de flambement de ré fé rence. Les problè mes de plissement de membrane sont é tudié s. Les ré sultats montrent que TMM peut ré aliser des simulations convergentes avec de trè s petites imperfections et des charges de tension comparé es aux mé thodes par é lé ments finis. L'approche de l'analyse de la membrane ridée par la TMM a é té bien é tablie. Mots clé s : Mé thode sans maillage, Sé rie de Taylor, Collocation

TAYLOR MESHLESS METHOD FOR THIN PLATES

ABSTRACT: A new class of meshless method -Taylor Meshless Method (TMM)  has been introduced that relies on an explicit solution of the partial differential equations inside the domain with the help of Taylor series expansions. Because the PDE is solved analytically in the domain, one is reduced to a discrete boundary problem whose size is rather small. The effectiveness and efficiency of TMM have been verified by solving some PDEs. TMM is used to solve Kirchhoff plate and laminated sandwich plate problems. The error shows exponential convergence with the increase of degree of polynomials. TMM is combined with Asymptotic-Numerical Method (ANM) to solve large deflection problems of thin plates. The step length is determined automatically by a reliable path following technique. This double series method can be easily extended to other nonlinear problems. The buckling process can be illustrated much more accurately than that by other methods. The performance of the approach is investigated by a series of buckling benchmark problems. The membrane wrinkling problems are studied. The results show that TMM can accomplish convergent simulations with very small imperfections and tension loads in comparison with finite element methods. The approach of wrinkled membrane analysis by TMM has been well established. Keywords : Meshless method, Taylor series, Collocation