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Chapter 1 Literature review on meshless
methods

1.1 Research background

Numerical simulation on computers has become an important tool to study and
predict the behavior of physical systems, especially for those who cannot provide
analytical solutions, as in most nonlinear systems [1]. The procedure of scientific

computation and solving technical problems consists of several steps, as shown in

Figure 1.1.
Practical _| Mathematical | Numerical
problem | model "I method
Y
Solution |« Computation |« Progrgmme
design

Figure 1.1 The procedure of scientific computation

The premise and basis of scientific computation is modeling practical problems
based on scientific theory, mathematical theory and some reasonable assumptions.
However, the key of the procedure is to obtain solutions of mathematical models
which can meet accuracy requirements using computers. This is a new branch of
mathematics - Numerical Analysis, including function interpolation, numerical
differentiation and integration, solving systems of linear and nonlinear equations,
calculation of matrix eigenvalues and eigenvectors, computational methods for
optimization problems, numerical solutions of ordinary differential equations and
partial differential equations, etc. It also involves theoretical research on reliability of

computational methods, such as convergence, stability and error estimation.

Numerical analysis is applied widely in fundamental industrial production and
researches of the most advanced science and technology. It provides an alternative

way of scientific investigation besides theoretical solutions and expensive,
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time-consuming experiments, becoming essential in optimization design of
mechanical and electrical products, geological exploration and oilfield development,
weather forecast and earthquake prediction, development of cutting-edge weapons
and aerospace. Furthermore, it has infiltrated into different science fields, generating
interdisciplinary subjects such as computational physics, digital image processing and

econometrics.

On this background, computational mechanics is formed by the interdisciplinary
of numerical analysis and mechanics, which deals with the use of computational
methods in engineering practices to study physical phenomena governed by the
principles of mechanics [2]. Over the past few decades, it has shown huge potential
for the application on physical and biological systems based on classical mechanics,
guantum mechanics and biology. The computational mechanics are extended to the
areas of mechanics, mathematics, computer science, making a significant contribution
in the design and simulation of new products because of the advantages of
convenience, effectiveness and high efficiency. The computational method has
become one of the most important tools in engineering and science, covering various

topics including thermal, fluid, solid mechanics, vibration, and vehicle dynamics.

Among numerous computational methods in computational mechanics, the most
popular ones are finite difference methods (FDM), finite element methods (FEM) and
boundary element methods (BEM). They are widely used for solving engineering
problems, especially finite element methods. However, despite of widespread
applications, they have their own shortcomings and limitations. The advantages and

disadvantages of these methods are introduced and detailed in this section.

1.1.1 Finite difference method

The finite difference methods (FDM) is one of the most traditional and simplest
methods for solving differential equations by approximating them with difference

equations, in which finite differences approximate the derivatives [3].
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FDM solves the original linear or nonlinear differential equations by converting
them into a linear system, which can be solved by matrix techniques. The finite
difference approximation began to develop rapidly with the widespread use of
computers. The accuracy, stability and convergence of FDM are well studied during
the last few decades. The calculation format and program design are intuitive and
simple, making it an important tool in computational mathematics and computational

physics.

In FDM, one pays attention to the corresponding functional values of the discrete
independent variables, neglecting the feature that independent variables are
continuous in differential equations. The derivatives in the equations are replaced by
differential quotients. For the one-dimensional case, the derivative of a functionU at a

point x e Ris defined as

u(x+h)—u(x) (L.1)

o (x) =ty

Nevertheless, the desirable computational accuracy can still be obtained by
reducing the interval of discrete variables or interpolating the functional values of
discrete points. In other words, the approximation can be improved by using a smaller
h. The discretization error of the approximate solution comes from the error that is

committed by going from a differential operator to a difference operator.

Despite of the simplicity of FDM, it needs a regular mesh of grids, which limits
the application to problems with regular geometry and simple boundary conditions.
The treatment quickly becomes complicated when adding some complexities like
moving boundaries or adaptive mesh grid. Researchers have improved FDM by
proposing Generalized Finite Differences, making it possible for problems with
irregular node distribution. However, the bad conditioning is still a problem for dense

meshes [4].

1.1.2 Finite element method

Finite element method is a very efficient tool for solving complex differential
3
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equations. The fundamental principle of finite element analysis is to discretize the
continuous domain into a family of discrete subdomains by mesh discretization. In
1960, Clough proposed “Finite Element Method” and used it to solve plane elastic
problem [5, 6]. In 1967 Zienkiewicz and Cheung published the first book on finite
element analysis [7]. FEM was used to solve nonlinear and large deformation
problems after 1970. With the development of computer technology, many
computational software have been developed based on the principle of finite element
method, some famous of which are ABAQUS, ANSYS, MSC/NASTRAN and
IDEAS.

In FEM, a continuous domain is discretized into finite elements. Then, the
relation of forces and displacements on all nodes is obtained by element and integral
analysis. Stress, strain and other fields of each element are computed by introducing
boundary conditions. FEM does not require high continuity of the interpolation
functions due to the weak form of the equivalent integral of differential equations.
Because of the computational stability and high applicability, FEM can deal with

complex geometry, boundary conditions and material properties.

Although FEM has many advantages and has been applied in many scientific

fields, it has some inherent shortcomings:

(1) FEM has difficulties in dealing with some complex problems. These
problems mainly include: extremely large deformation problems; dynamic crack
propagation problems; high-speed impact and geometric distortion problems; material
fission problems; metal material forming problems; multi-phase transformation
problems, etc. When analyzing these problems with FEM, large mesh distortion or

element splitting may bring difficulties or even failure in numerical computation.

(2) In finite element analysis, meshing consumes too much time. In addition,
FEM needs complex post processing because it adopts low-order shape functions,

which leads to relatively lower accuracy.
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1.2 Meshless methods

Classical numerical methods have some troubles when dealing with some
practical problems, such as high velocity impact, material molding, dynamic crack
propagation, discontinuity problems, fluid-solid coupling and adaptive problems. In
recent decades, new generation of computational methods - meshless methods - have
been developed as they are expected to be better than mesh-based FDM and FEM in
many applications[8]. Similar to conventional FEM, FDM and finite volume methods,
meshless methods are actually a tool for solving partial differential equations that

govern physical phenomena [9].

In the finite difference method and the finite element method, the spatial domain
is discretized by predefined grids and meshes, providing a relationship between the
nodes. The PDEs defined in the domain are discretized by a system of algebraic
equations based on the grids and meshes. In meshless methods, the solving process
consists of two steps: the approximation of field functions and the discretization of
governing equations. The approximation functions and their derivatives, depending on
the location of discretized points in the domain, are built up without the use of grids or
meshes, which means that the relationship between the points is not required. This
main advantage makes meshless methods suitable for problems involving large
deformation and adaptive meshes, such as high velocity impact, crack propagation

and fluid-solid coupling [10].

Gingold and Monaghan [11] applied smooth particle hydrodynamics (SPH) to
polytropic stellar models. Lucy [12] used SPH to solve the fission problem for
optically thick protostarts. These two papers are considered to be the earliest work on
meshless methods. In the past decades, a number of meshless methods have been
developed and applied to the corresponding engineering practice based on their own
characteristics.  They can be classified in terms of different approximation
approaches of field functions such as moving least-square (MLS), radial basis

function (RBF), kernel particle (KP), point interpolation (PI) and partition of unity

5
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(PU). They can be also classified according to different approaches to discretize the
governing equations: the weak-form formulation and the strong-form formulation.
One can assemble various types of meshless methods by combining different

approximation and discretization approaches.

The basic idea and research status of meshless methods will be introduced
hereafter around the approximation approaches of field functions and the discrete

approaches of algebraic equations.

1.2.1 Approximation approaches of field functions

The first and most important step in meshless methods is to approximate the field
functions and create shape functions of the problem from a cloud of points. The shape
functions constructed should be stable, consistent, efficient and independent of the
nodal distribution, so that the implementation and the accuracy of the method can be
ensured. In this section, various approximations for meshless methods will be

recalled.
Kernel particle and reproducing kernel particle approximation

The kernel methods approximate the field function u(x)with a kernel function in

a domain Q [13]:

u“(x)=J.Qw(x—s,h)u(s)dQ (1.2)

whereu" (x)is the approximation, Xis a vector in 2D and 3D problems, Sis the

integral variable,w(x—s,h)is the kernel interpolation function. The kernel functions
should satisfy the following conditions (see Figure 1.2):
w(x—s,h)>0 inQ,

w(x—s,h)=0 out of Q, (1.3)
I w(x-sh)dQ=1
Q
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Besides,w(||x—s||,h)shou|d be a monotonically decreasing function as well as

W(||x—s||,h)—>5(||x—s||)whenh >0, where ¢ is the Dirac-d function. Common

kernel functions include exponential form, cubic spline form and quartic spline form.
The integral term on the right side of Eq.(1.2) is discretized with function values on

each collocation point satisfying differential equations and boundary conditions.

Figure 1.2 The cover of the domain by kernel functions

In 1970s, the kernel approximation was invoked for the first time by Lucy in the
smoothed particle hydrodynamics (SPH), which is also the oldest meshless method
[12]. This method is successfully applied to the astrophysical field. In 1980s,
Monaghan developed SPH to simulate the shocktube phenomena, binary star
interactions and magnetohydrodynamics [13-18]. Despite of its versatility and
simplicity, the disadvantage of SPH is its limited accuracy that needs plenty of nodes
to improve the situation. Nevertheless, the superiority of SPH in fields such as high
velocity impact makes it one of the few meshless methods that has been applied in

engineering practice.

Liu developed reproducing kernel particle method (RKPM) based on SPH, in
which the kernel particle interpolation function consists of a flexible window function
and a continuous correction function [19]. It gives more accurate results because of
the addition of the correction function. He also proposed multiscale reproducing

kernel particle method based on reproducing kernel and wavelet analysis,

7
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implementing adaptive analysis by RKPM [20, 21]. Chen studied hyper-elasticity and
elasto-plasticity problems based on RKPM [22]. The results indicated that RKPM is
more effective and accurate than FEMs when dealing with large material distortion
because of the smoother shape functions. Lin solved time-space fractional diffusion
equations in 2D regular and irregular domains using RKPM [23]. Wang proposed a
quasi-convex reproducing kernel meshless method, which has better accuracy

compared with the conventional RKPM [24].
Moving least-squares approximation

Another approach to construct shape functions in meshless methods is moving

least-square (MLS) approximation that was proposed by Lancaster for data fitting [25].

In the domain ©, the approximation functionu" (x) of field functionu(x)is

u"(x)=>_b(x)a (x)=b"(x)a(x) (1.4)

where m is the number of terms in the basis functionsb, (x)and a;(x)are the

corresponding coefficients. The basis functions should satisfy the following

requirements:

1
(x)eC'(Q)(i=12,---,m;1 =0,1,---,m) (1.5)
{bi(x) (i=12,---,m)are linearly independent

Commonly used bases are the linear basis of complete polynomials. For example,
a quadratic basis in 2D isb' (x)=(1, X, Y, X2, XY, y2) . In [26], the trigonometric
function was selected as the basis function to solve some 2D elastostatic problems.

For singular problems, the characteristic function near the singular point can be used

as the basis function [27].

From Eq.(1.4), the quadratic form by a weighted least-square fit with respect to

coefficients a; ( x) can be obtained:
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JZZW(x—xj)LZml:bi(x)ai(x)—uJT (1.6)

J

The coefficientsa, (x) are obtained by calculating the derivative of J. Because

u" (xj ) # U, , the weighted function is smooth and continuous, which brings difficulty

to introduce Dirichlet boundary condition. To get MLS approximation with

point-passing interpolation character, one can choose singular weighted functions that

satisfyu" (x;)=u;.

j

Nayroles et al proposed the diffuse element method (DEM) firstly using moving
least-square approximations in 1992 [28]. By improving DEM, Belytschko et al
proposed the famous element-free Galerkin method (EFGM) [29]. With the use of
Lagrange multipliers, a large number of quadrature points and modified derivatives of
the interpolants, EFGM has a better performance in accuracy and stability than DEM.
EFGM was successfully applied to the numerical simulation of crack propagation as it
overcame the drawback of FEM in remeshing [30-36]. In the next few years, EFGM
was developed and applied to various fields such as contact [37, 38], vibration

analysis [39], hydromechanics [40] and heat transfer [41].

Onate and Idelsohn proposed the finite point method (FPM) in 1996, which has
been applied to hydromechanics and aerodynamics successfully [42-45]. However,
the application of FPM in solid mechanics is limited due the high requirement of point
symmetry next to boundary segments [46]. Other meshless method using MLS to
construct shape functions include hp-clouds method [47-49] and Meshless Local
Petrov-Galerkin Method (MLPG) [50, 51].

Polynomial and radial point interpolation approximation

In MLS approximation, the number of nodes in the neighborhood of point x is
larger than the number of basis functions. In general case, the least-square fitting does
not pass the points with continuous and nonsingular weighted functions. This brings

difficulty for the introduction of Dirichlet boundary conditions. The point

9
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interpolation method (PIM) uses the same number of basis functions and nodes in the

neighborhood of point x. The shape functions satisfy u" (xj ) =u; on the nodes, making

it easy to introduce Dirichlet boundary conditions.

There are two types of basis functions that are used in PIM. Liu and Gu [52]
developed PIM by using polynomial basis functions. The interpolation coefficients are
constant while they are functions in MLS. Despite of its simplicity, the polynomial
PIM may lead to singular moment matrix. Wang and Liu used radial basis functions
(RBF) as the interpolation functions and they called it radial point interpolation
method (RPIM) [53]. In the conventional RBF meshless method [54-56], the radial
basis functions are defined on the global domain and the formed system matrix is full,
thus it is not suitable for large scale problems. The algebraic model in RPIM is banded,
which is very important for solving partial differential equations. However, the

h-convergence of RPIM depends on the selection of RBF’s shape parameters.

Other meshless approximation methods include partition of unit approximation

[57, 58] and Taylor series [4].

1.2.2 Galerkin formulation and collocation formulation

The second important step in meshless methods is to build the algebraic
equations of the discretized model on the basis of approximation functions. There are
three typical realizing ways: global Galerkin integration, local Galerkin integration
and collocation formulation, where the first two formulations are weak form and the

third one is strong form.
Global Galerkin formulation

A weak form formulation requires weaker consistency on the approximation
functions for variables compared with a strong form formulation [10]. Formulation
based on weak forms produces a stable set of algebraic equations and leads to more

accurate results with the discretized system.

10
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Consider the plane elasticity problem in the domainQ :

V.o+f=0 xeQ
u=10 xel, (1.7)
o-n=t xeT,

where @ is the stress tensor, f is the volume force tensor, U is the given displacement

boundary condition, t is the given stress boundary condition, Nis the normal vector
on the boundary. The equivalent integral form of the equilibrium equation and the

stress boundary condition in Eq.(1.7) is

ij.j

oI(u) = [ ou (o, + f_i)dQ—th ou, (oyn, —§)dr, =0 (1.8)

By using the variationsu,|  =0and the symmetric property of the stress tensor

IﬂLl

o; , EQ.(1.8) is integrated by parts and becomes
o1(y;) = [ (=650, +0u f)dQ+ | sutdr, =0 (1.9)

which is the equivalent integral weak form of Eq.(1.7). The matrix form of Eq.(1.9) is

M(u)=| (~%"o+5u" F)dQ-| su'tdr, =0 (1.10)

where

=[] F=[T.5] T=[LE]
f::[gxx,gyy,ngy]T ,a:[aXX,GW,JXyT (1.11)

o =De¢

By substituting the approximation function into Eq.(1.10), one can obtain the
final discrete algebraic equations. The domain in meshless methods is discretized by
nodes and in general, the approximation functions are not polynomials. Therefore, the
integral in Galerkin meshless methods is achieved in the ways that differ from FEM.
In EFGM [29], the integral for the domainQ is converted to the integral for each cell

of a regular grid that covers the domain, in which Gauss integration is applied (see

11
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Figure 1.3). Even though the cells are simple and arbitrary, EFGM is not a pure
meshless method due to the presence of background grid. As Gauss integration is time
consuming in dealing with complex problems, Beissel [59] adopted the nodal
integration mode, in which the value of the integrand in a neighborhood equals to the
value at the node. Compared with the approach in EFGM, the nodal integration
largely improves the computational efficiency. However, the accuracy and the stability
are decreased in the meantime. Carpinteri [60] proposed the partition of unity

quadrature, in which the compact support domain is used as the domain of integration

Background grid

Figure 1.3 Background grid of EFGM for integration
Local Petrov-Galerkin formulation
The implementation of global Galerkin formulation is based on the integration on
the whole domain. In general cases, it is difficult to satisfy the equation over the entire
problem domain. In the meshless local Petrov-Galerkin (MLPG) originated by Atluri

[51], the equation is satisfied point by point and the integration is implemented in a

local domain. The equivalent integral weak form of local Petrov-Galerkin at the

integration point x, is
Jop (Gu+ £ )udQ-af, (u-G)vdr=0 (1.12)

where l"lu is the intersection of the displacement boundary and Qt'e (see Figure 1.4), ¢ is

the penalty factor for the essential boundary condition.

12
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Figure 1.4 Domains and boundaries in MLPG

Collocation formulation

The system of equations developed with Galerkin and local Petrov-Galerkin
formulations are weak form system. The integral process and the introduction of the
displacement boundary condition are complicated in practical operation. In contrast,
the collocation-based meshless methods have no any background grids and are very
efficient, making them pure meshless methods. In the collocation formulation, the

residual of the PDEs and boundaries on a group of discrete points is forced to be 0:

V-o(x)+f(x)=0 x eQ
u(x,)=a(x,) X, €T, (1.13)
o(x)n=t(x) X, €T,

The number of collocation points should be larger than the number of algebraic
equations as the result might be instable if the two numbers are equal. The error in
collocation methods is mainly from the introduction of Neumann boundary condition.
Zhang [61] adopted a number of auxiliary points that satisfied the equilibrium
conditions to stabilize the solution and improve the accuracy. Liu [62] proposed
meshfree weak-strong form method (MWS) by combining the strong form and the
weak form, in which the Neumann boundary condition was introduced by local
Petrov-Galerkin method. Sadeghirad [63] improved the stability and accuracy of
collocation methods by implementing integration on the segments of Neumann

boundary.

13
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1.2.3 Taylor Meshless Method

Taylor Meshless Method (TMM) is a boundary type meshless method that is
proposed by Z&éet al [64] in 2010. The field equations are approximated with Taylor
series and only boundaries are discretized. This method converges fast and requires

much less degrees of freedoms than finite element method.

Tampango evaluated the convergence properties of Taylor series [65] and
introduced the technique of subdomains in the case of a complex domain [66]. Yang
tested both least-square collocation and Lagrange multipliers to account for boundary
conditions and solved large-scale 3D problems with TMM [67]. TMM is combined

with Newton method to solve non-linear elliptic PDEs in [68].

The approximation method of the field function in TMM is similar to that in
point collocated Trefftz methods using general polynomial solutions as shape
functions. For constant coefficients linear partial differential equations that have
general solutions, the approximation forms of the field function are the same in TMM
and Trefftz methods. However, for nonlinear partial differential equations, it is
difficult to find the general solution that can satisfy the equations exactly. This is the
limitation of Trettfz methods. In TMM, a truncated interruptive Taylor series is
introduced into partial differential equations, then the non-independent coefficients
are eliminated in the approximate solution. The independent coefficients in the
reduced approximate solution are much less than that in the original Taylor series.
This is the key advantage of TMM. Although the solution obtained in this way is not
the exact solution, the residuals of the equations can be reduced to a very small value
by increasing the degree of Taylor series. This treatment can be applied to any kind of
elliptic partial differential equations. The governing equation is satisfied by an
approximate solution, thus only boundary discretization is needed to obtain the

independent coefficients in the approximate solution.

14
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1.2.4 Boundary element method

Boundary element method (BEM) is an efficient numerical analysis method for
engineering and scientific problems developed after FEM [69]. Taking the boundary
integral equations as the mathematical basis and drawing on the discrete element
technique, BEM becomes an important supplement to the FEM in some areas. The
discretization is proposed only on boundaries instead of the whole domain. Boundary
conditions are approximated with functions that satisfy the governing equations. The
dimension of the problem is reduced and the boundary geometry is simulated with
simple elements. The analytic fundamental solution of differential operators is used as

the kernel function of boundary integral equations.

BEM has some main disadvantages. For complex partial differential equations, it
is difficult to obtain the fundamental solution. Boundary singular integral is another
tough problem. The coefficient matrix established in BEM is an asymmetric full array,

which may limit the extension of problem dimension.

1.3 Organization of the thesis

In this work, a boundary collocation meshless method based on Taylor series —
Taylor Meshless Method — is applied to solve linear and nonlinear thin plate problems.
The objective is to extend the application of TMM to large deflection problems and
study the influence of key parameters, proposing a fast and reliable method for
practical engineering. The thesis is structured into five chapters, which are described

as follows:

In Chapter 2, the construction of approximate functions and boundary
discretization of TMM are introduced. The accuracy and the stability are verified by
studying a 2D Laplace equation. Then, TMM is used to solve Kirchhoff plate

problems and bidirectional sandwich plate problems, what has not been done before.

In Chapter 3, a new numerical technique for post-buckling analysis is presented

by combining the Asymptotic Numerical Method (ANM) and TMM. The accuracy
15
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and efficiency are verified by solving F&pl-von Karman plate problems. The bending

and buckling of thin plates are studied with various boundary conditions.

In Chapter 4, the wrinkling of a rectangular membrane is studied. The generation
of membrane wrinkles is simulated with a three-step loading procedure. The
sensitivity to imperfection, tension load and number of subdomains is tested to find

the contribution of each parameter on the wrinkling results.

In Chapter 5, the main conclusions of the current work and some prospects for

future work are drawn.
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Method

2.1 Introduction

The solution process of TMM consists of two basic steps: 1) approximation of
the unknown field function; 2) introduction of boundary conditions. By using a Taylor
series expansion, the governing equation is satisfied in the domain. The system is

largely simplified and solved by applying boundary conditions.

In a previous study by Yang [70], Lagrange multiplier method and least-square
collocation were tested to account for boundary conditions. These two methods work
well and converge about in the same way. As least-square method is more convenient
and efficient to bring exponential convergence, it is used to discretize boundary

conditions in this thesis.

TMM solves problems in their strong form in the area without any background
mesh. The shape functions are built up with high degree polynomials. With the
treatment of partial differential equations, the degrees of freedom are reduced
significantly, which can help to increase the degree of polynomials easily. In this
chapter, the construction of approximate functions and boundary discretization are
detailed introduced in detail. A 2D Laplace equation is solved by TMM to test the
efficiency, robustness and sensitivity to parameters. Then, TMM is used to study

Kirchhoff plates and bidirectional sandwich plates.

2.2 Resolution of partial differential equations
To introduce the techniques of TMM, we consider the Laplace equation:

{Au =0 inQ
2.1)

u(xy)=u’(x,y) onoQ

The shape functions are determined by a quasi-exact resolution of the PDE in the
17
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domain. The approximate solution of Eq.(2.1) is expressed in the form of the Taylor

series of degree N expanded at a point X, =(,, Y, )T near the domain.:

a(x,y)= 7 Su(mn)(x-x)" (y-¥o)' @2)

To facilitate understanding, the approximate solution is supposed to be expanded

at point (0, 0) with fourth degree polynomial:

u(x,y) =u(0,0)+u(0,1)y+u(0,2)y*+u(0,3)y’+u(0,4)y*
+U(L0)x+u(L1)xy+u(L,2)xy* +u(L3)xy’

+u(2,0)x* +u(2,1)x*y +u(2,2)x*y’ (2.3)
+U(3,0)x° +u(3,1)x’y

(4,0)x

4

whereu(m,n),0<m<4,0<n<4-nare the coefficients of the Taylor series. For the

complete polynomial Eq.(2.2), there are 15 coefficients to be found. The second

partial derivatives of Eq.(2.3) are given as:

o%u

0)+2u(2,1 2u(2,2)y?
2 (% Y)=2(2.0)+2u(21)y+2u(2,2)y (2.4)
+6u(3,0) x +6u(3,1) xy +12u(4,0) x>
o%u 2
—(x,y)=2u(0,2)+6u(0,3)y+12u(0,4)y (25)
+2u(1,2)x+6u(L,3)xy+2u(2,2)x*
Eqg.(2.4) and EQ.(2.5) can be summarized as:
82 2 2-m
(xy)=>.> (m+2)(m+1)u(m+2,n)x"y" (2.6)
m=0 n:O
82 2 2-m
(x,y =Z (n+2)(n+1)u(m,n+2)x"y" (2.7)
m= n:O

From Eq.(2.1) one knows that the sums of the relevant parts for x"y" in Eq.(2.6)

and Eq.(2.7) should be zero respectively:
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(m+2)(m+1)u(m+2,n)+(n+2)(n+1)u(mn+2)=0 (2.8)
where 0<m<2,0<n<2-m. EQ.(2.8) indicates that all coefficients are not
independent. With initial itemsu(0,0),u(0,1),u(0,2),u(0,3),u(0,4),u(1,0),u(11),

u(1,2),u(1,3), the remaining coefficients can be obtained by the recurrence:

(n+2)(n+1)

m(m-1)

u(m,n)=- u(m-2,n+2) (2.9)

In this way, the number of independent coefficients for the PDE is reduced from

15 to 9, which is the amount of initial items. Each initial item «; corresponds to an

independent shape function P,. The approximate solution is the linear combination of

shape functions:
9
u"=> P, (2.10)
k=1

In other words, the equation Au = 0 has been solved in the sense of Taylor series
by vanishing the Taylor coefficients of the residual Au. Eq.(2.10) is the general form
of solution for a homogeneous equation. Vector & is determined by boundary

conditions. For inhomogeneous equations, consider Poisson equation for example:
Au = f (2.11)

The approximate solution for Eq.(2.11) includes two parts: the general solution

and a particular solution. To find a particular solution, the right side f is expanded

with Taylor series at the degree of N — 2, which is consistent with Au .

x y = Zm: f (2.12)

From Eq.(2.8) and Eq.(2.12) it can be concluded that:

(m+2)(m+1)u(m+2,n)+(n+2)(n+1)u(mn+2)= f (m,n) (2.13)
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where0<m<N-2,0<n<N-m-2. The particular solution for Eq.(2.11) can be
chosen arbitrarily by setting any initial items satisfied by Eq.(2.13):

N N-m

=2 > ug(mn)x"y" (2.14)

m=0 n=0

The approximate solution for Poisson equation is in the form:

2N+1

U—Zak (x,y)+P,(x,y)=P{a}+P, (2.15)

2.3 Treatment of boundary and interface conditions

I

r

n

Figure 2.1 One domain with Dirichlet and Neumann boundary conditions

The simplest collocation technique is to choose as many points as shape
functions. However, the pure boundary collocation may lead to numerical instabilities.
Yang has applied Lagrange multiplier method to account for boundary conditions,
which requires additional parameters for radial functions. The least-square collocation
is validated as an efficient and robust method in most of the cases that were tested,
bringing exponential convergence with few degrees of freedom [65, 67]. That’s why
least-square is chosen as the collocation method in this thesis.

A set of points is collocated on the boundary of the domain. With Mg points on
the Dirichlet boundary T's and My points on the Neumann boundary I's, the error

between approximate solution and exact solution for the problem in Figure 2.1 is:

D) TICORTTY RE9 Y| EACHRREY

><el"d 2Xj5rn
- (2.16)
:_ZHP +Ps—udH +EZ;HQ{05}
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The first part of the right side in Eq.(2.16) corresponds to Dirichlet boundary and
the second part corresponds to Neumann boundary. Q is the first derivative of P and
Qs is the first derivative of Ps. The principle is to minimize Eq.(2.16) by making the
first partial derivatives of the function zero:

oJ T T T( 4
o = (PY{PHat+{PY {R}-{P} {u}+ 217
(@} {Q}{a} +{Q} {Q}-{Q} {o"} =0
Eq.(2.17) leads to a linear system:
[Kl{a}={F} (2.18)
where
[K]={P}" {P}+{Q} {Q} (2.19)

(Fr={P} ({t’}-{R})+{Q} ({o"}-{Q.}) (2.20)

The coefficient vector {a} can be obtained by solving the linear system
Eq.(2.18).

r

1

Figure 2.2 Multidomains and the interface

Limited to the convergence radius, one Taylor series is not sufficient to describe
a complex problem. Even though one can increase the degree of polynomials to a high
level, it is time consuming and may lead to ill conditioning. A better approach is to
split the whole domain into several subdomains, in which the equations are
approximated with independent Taylor series. The subdomains are coupled by

interface conditions that are introduced with a least square collocation[64].

In Figure 2.2, two subdomains Qi and Q, are connected with the interface Tin.

Boundary conditions for each subdomain are introduced independently with the
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formulation Eq.(2.16). The interface is collocated with Mi, points satisfying the

following continuity condition:

x el (2.21)
on
Now the quadratic sum of the error consists of three parts: the boundary

conditions for each domain and the continuity condition:

NCAE Jl(al)|r1 +3, (e, )|r2 +3, (a1, 2 )|Fm (2.22)

where

2

ou* ou?
a—l:](xj)—ain(xj)

To compute the coefficient vector {a1} and {a2}, one can minimize Eq.(2.23) by

(a) =2 3 ot (x)-u (x5 2

X el Xjefin

(2.23)

making the first partial derivatives of the function zero respectively:

0J 0J AN
8—%(%%) :a—all(%)Jra—%(%%) =0
A aJ aJ (2.24)
cer (g, a1,) —6—0;2(052)+a—02(a1,a2) =0
2.4 Application to 2D Laplace equation
To test the convergence and the robustness of the method, we consider the
Dirichlet problem in a circular domain: x* + y> <1.
Au=0 in Q
(2.25)

0 on oQ)

The exact solution for the problem is: u®(x, y) = (x—x, )/[(x— X,) +(y— yo)z} .

To avoid the influence of the singularity, X,=(X,, Y, ) is chosen as (1.5, 0.2). The error

is the difference between the exact solution and the approximate solution divided by
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the maximum value of the solution:

L{Jh‘ (2.26)
) .

Error =
max( u®

(15,0.2)]

1 " 1 i 1

-1 0 1

Figure 2.3 Distribution of collocation points

Uniformly distributed collocation points are chosen for the calculation (see

Figure 2.3). The Taylor series for this problem are developed at point(0,0). Figure 2.4

is the influence of the number of collocation points for degree N=10, 20 and 30. It can
be seen that the results may fluctuate and are not accurate enough if the collocation
points are too few. The results become stable if the number of collocation points M is
large enough. The degrees of freedom for Eq.(2.25) are 2N+1, thus M should be more
than 2N+1 because collocation points should be more than the dimension of the vector
a in least-square method.

Figure 2.5 shows that the results get accurate with the increase of the degree. The

maximal error becomes stable when the degree is more than 85. After that the

accuracy stands under 107,
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Figure 2.4 The influence of the number of collocation points for Eq.(2.25), N=10, 20, 30
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+ —e— Number of collocation points=4N\ 1
2k i

Log,,(Maximal error)
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Figure 2.5 The influence of the degree N for Eq.(2.25), M =4N

2.5 Application of TMM to Kirchhoff plate problems

The Kirchhoff-Love theory of plates is a two-dimensional model for thin plates
with small deflections. It was developed by extending Euler-Bernoulli beam theory in

1888 [71]. This theory makes the following assumptions:
1) The linear strain perpendicular to the middle plane can be disregarded,;

2) The middle plane of the plate remains neutral during the deformation;

3) Stress componentsz,,, 7, ando,are much less than the other three components,
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therefore the deformation from them can be disregarded.

The governing equation for a Kirchhoff-Love plate under transverse load is a
fourth order partial differential equation that has no analytical solution except for a
few plates of simple regular shapes. Thus numerical methods are used to
approximately solve these problems. The formation of TMM for Kirchhoff plate will
be introduced. Several cases are studied and results are discussed in the following part

of this section.

2.5.1 Calculation of the shape functions

The governing differential equation for plates in the Kirchhoff plate theory is

[72]:
D,V'W(X,¥)=p(Xy) (xy)eQ (2.27)

wherew(x,y)is the lateral deflection, p(x, y)is the lateral load, D, = Eh®/12(1- 4* ) is

the flexural rigidity of the plates, E and x are Young’s modulus and Poisson’s ratio

respectively and h is the plate thickness.

If one can obtain a solutionw(x, y), satisfying Eq.(2.27) and the given boundary

conditions, bending moments, twisting moment and shear forces may be defined in

terms of a function w by:

MX__D[ZZTVZV ”Z;_Vzv]

oG

M,, :_D(l_“)gxzw

Q. =D viw,Q iDivzw (2.28)
=-DLvwQ,=-D <

(G e
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Eq.(2.27) and bending moments in Eq.(2.28) can be written in the form of second
order derivatives:

2 0*M 0*M 0*M
8M2X+2 Y —2ip=0=>—=14p=0 (2.29)
OX oxoy oy OX,OX 4
_o'w
ox’
M, D, D, Dy 5w
{M}: My +=|D, D, Dy |4— PY :[D]{K} (2.30)
M, Dis Dy Deg o°w
OXoy

where [D] is the elastic matrix. Dj(i, j = 1, 2, 6) together are called flexural rigidity
which are determined by the material of the plates. For Kirchhoff plates with isotropic

materials, the elastic matrix is:

0

0 (2.31)
1

Now we have three equations with second order derivatives:

M,
+p=0
OX,,0X

= (2.32)

(2.33)

This splitting is motivated by the procedure established in [64]and [67] to solve
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the differential equation: one assumes that the dependence with respect to y is known
and one considers the equation as a differential equation in x. The last equation in

Eq.(2.32) can be represented with M andk :

M M X Dll D12 D13 kx Dllkx + D12ky + D13kxy
{m}: My =Dy, D, Dy ky = {D12}k +Dk (2.34)
M Xy DlS D23 D33 kxy DlS "

With the technique in Chapter 2.2, Eq.(2.32), Eq.(2.33) and Eq.(2.34) can be
expanded with complete polynomials of order N. It can be concluded at the that

equations at rank(m, n) are:

oW

kx=—W:>kx(m,n)=—(m+2)(m+1)w(m+2,n) (2.35)
o'w
- oy — [ (n+2)(n+1)w(m,n+2)
=71 o :>k(m'n)__{(m+1)(n+l)w(m+1,n+1) (2.36)
OXoy
M D, Sl — MM Dy, =
M :{ }kX+D.k:>M(m,n):{D }kx(m,n)+D.k(m,n) (2.37)

o’M O*°M,  O°M

L +2 Y+ y
ox? oxoy oy’
{(m+2)(m +1M, (m+2,n)+2(m+1)(n+1)M , (m +l,n+1)} (2.38)

+(n+2)(n+1)M, (m,n+2)+ p(m,n)

+p=0=>

Eq.(2.35) - Eq.(2.38) give the recurrence formulae for the elements of TMM, as

is shown in Table 2.1.
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Table 2.1 Organization of the computation

Equation Derivation
o’w 1
=— 1) w(m,n)=———=k,(m-2,n
=== (@) wm.m) =k, (m=2,n)
o*w
_ 2 — n+2)(n+Y)w(m,n+2
1o @ K| @+20hw(mn+2)
o°w (m+D)(n+DHw(m+1,n+1)
oxoy
V1 D12 ~L V1 D12 =1
M = k,+Dk (3) M(m,n) = K,(m,n)+D.k(m,n)
D13 D13
2 2 2 _ _ —
e AR
X y '
kx = i {M X Dlgky - D13kxy} (5) kx (m! n) = i {M x(m’ n) - Dlzky(m’ n) - D13k><y (m’ n)}
D Dll
11

With the initial dataw(0,n),w(1,n),k,(0,n),k, (1L n), the approximate solution

N

can be obtained asw = ZL “Pa; , where

o 171

w(0, j) 0<j<N

w(l, j-N-1) N+1<j<2N

51k (0,j)-2N -1 2N +1<j<3N-1
k. (L j-3N) 3N < j<4N-3

To calculate thei" shape function P, «; (0 < j <4N —3)are chosen to be equal to

1 successively. The algorithm to choose ¢; is encoded as

fori=0 to4N -3

forj=0 to 4N -3 do
if j==i then
(aj)i=1
else
(aj)izo
end if

end for

end for
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With the data (a;) , all terms of w,{M}and{K} can be calculated using
equations in Table 2.1.
Data :w(0,n), w(,n), k./(O,n), k,(,n)
Initialisation

)
oStep 1: (k (0,n),k, (LN)) <  (w(2,n),w(3,n))
(2) _ _ (data)
e Step 2:(w(0,n), w(L.n),w(2,n) = (k(On), k@n)) = (K@©n), KLn))

Constitutive law

e Step 3:(K(0,n), K(L,n)) = (M(0,n), M(1,n))
Iteration, (K (m,n), M (m,n),w(m,n), w(m+1,n)) being given.

® @
e Stepl: K(m-1n),K(m,n) = w(m+1n),wim+2,n) = k(m+1n)

) ®)
e Step2: M(m,n) = M, (m+Ln) = k. (m+1n)
e Step 3: E(m+1,n),kx(m+1,n) = K(m+1n)

®
e Stepd: K(m+1n),M (m+Ln) = M(m+1n)

2.5.2 Kirchhoff plate problem with a circular domain

Now we consider a circular Kirchhoff plate with clamped edges in Figure 2.6:

8Q=0
0Q/on=0

Figure 2.6 A circular Kirchhoff plate with clamped edges

For a circular plate with clamped edge, the problem can be described as:
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D,V'w=p

w(a)=0 (2.39)

oW

—| =0
on

r=a

whereais the radius of the plate. With these boundary conditions, the theoretical

solution is [15]:

(2.40)

15|
__ 10} -
5 I
o 5} E
® I
=
< Of .
o
é L
© 5L -
>
8 I

10 | -
-15 L 1
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Number of collocation points

Figure 2.7 The influence of the number of collocation points on the convergence for circular Kirchhoff
plate

Figure 2.7 is the convergence of TMM along with the increase of the collocation
points when N =10, 20 and 30. The theoretical solution is a polynomial of degree
four, hence the numerical solution can be very accurate. When the collocation points

are more than 4N , the error is stable and less than 1071,

Figure 2.8 is the convergence of TMM along with the increase of the degree of
the polynomial. The results get less accurate by increasing the degree. Due to the
degree of the theoretical solution, the most accurate result is obtained at degree 4.

However, the accuracy still stands less than 107! after degree 4.
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Figure 2.8 The convergence of TMM for circular Kirchhoff plate

2.5.3 Kirchhoff plate problem with a rectangular domain

The domain is a square with the width 1. One chooses a uniformly distributed

cloud (see Figure 2.9).

Figure 2.9 Rectangular domain and collocation points on the boundaries

1) Rectangular plate, simply supported, uniform load
For a rectangular plate, when it is simply supported, the problem can be

described as:

D,V'w=p

w=0 on oQ° (2.41)
2

a_vzv =0 on o0Q"

on
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An approximate solution for the problem is:

a

o 16 (2m-1)° (2n-1) ]
W(X’y)mzl;(zml)(znpi)ﬂ%o{ T ] (2.42)

sin (2m —1)7rxsin (2n —1)7ry
a b

where a and b are the side lengths of the plate.

In the computation, a and b are set to 1, m and n are set to 200 that is enough
to ensure the accuracy of the result. The result from Eq.(2.42) can be seen in

Figure 2.10.

Figure 2.10 The distribution of the deflection from Eq.(2.42)

Figure 2.11 is the convergence for rectangular plate with the degree of the
polynomial N =10, 30 and 50. The maximal error becomes stationary if the
collocation points are enough when the degree is 10. The figures indicate that the
accuracy becomes better by increasing the degree of the polynomials from 10 to
30. The maximal error cannot be reduced when the degree is increased from 30 to

50, but the results become more stable from this process.

Figure 2.12 is the convergence of TMM along with the increase of the degree
of the polynomial. The maximal error decreases significantly by increasing the
degree of the polynomial from 10 to 20. Next, from N=20 to 70, the error stands

around 1072 with a small infection.
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Figure 2.11 The influence of the number of collocation points on the convergence for rectangular
Kirchhoff plate
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Figure 2.12 The convergence of TMM for rectangular Kirchhoff plate

2) Rectangular plate, clamped edges, uniform load
A rectangular Kirchhoff plate with clamped edges and uniform load can be

described as:

D,V'w=p

w=0 on oQ° (2.43)
w_ 0 on Q"

on

Table 2.2 shows the deflection of the plate center obtained with different
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methods. Theoretically, My should equal to My. Figure 2.13 is the deflection of the

whole domain, with the boundary conditionsw=0andow/on=0. One can find that

the accuracy of TMM is on the same level as with other methods.

Table 2.2 Deflection and moment of the center of a rectangular plate, clamped edges, uniform load

Wmax My My
Degree  Collocation points

(xD/pa’)  (xYpa’)  (x1/pa’)
40 0.00126519 0.0228932 0.0228932
10 80 0.00126465 0.0228862 0.0228862
120 0.00126451 0.0228842 0.0228842
™M 80 0.00126532  0.0229046  0.0229056
20 160 0.00126532 0.0229043 0.0229058
240 0.00126530 0.0229025 0.0229061
120 0.00126529 0.0229047 0.0229048
30 240 0.00126522 0.0229041 0.0229037
360 0.00126558 0.0229072 0.0229074

MLPG [73] 0.001258 0.02288 0.02288

BEM [74] 0.001260 0.02290 0.02290
Theoretical Solution [75] 0.001260 0.02310 0.02310

Figure 2.13 The distribution of the deflection of a clamped Kirchhoff plate
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2.6 Application of TMM to sandwich plates

2.6.1 The loading and the governing equation
Distributed loading:
0o (X, y) = osin pxsinqy (2.44)
where p=p(n)=nz/a,q=q(m)=mz/b(n,m=123.--), oisaconstant value.
We letm=n=1a=b=10 =1, the loading becomes:

0o (X, y)=sinzxsinzy (2.45)
The governing equation can be simplified as:

D11W,xxxx + ( D12 + D21 + 4D66)W,xxyy + D22W,yyyy =0 (2-46)

2.6.2 Exact solution

From the loading Eq.(2.44) and the governing equation Eq.(2.46) one can

conclude that the exact solution is:
w, = Csin pxsinqy (2.47)
where C is a constant. It is determined by bending stiffness Djj and the loading qo.

(o}
C= (2.48)
(D11p4 + 2(D12 + 2D66) p2q2 + D22q4)

2.6.3 The properties of each case

The layer material coefficients are:
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E, =25x10°psi  E, =10°psi
G, =0.5x10°psi G, =0.2x10°psi (2.49)

Vi =v; =025

where L signifies the direction parallel to the fibers, T the transverse direction, and vt
is the Poisson ratio measuring strain in the T-direction under uniaxial normal stress in

the L-direction.

The normalized quantities are defined with respect to this data:

- - 1
(sz’Tyz)zg(sz’Tyz) (250)
v‘\/:looET4W,S =3,Z=5

ohS h h

The stiffness coefficients can be expressed in terms of the engineering constants:

Qll — l_v)’zvzy ’le — Vyx +szvyz Q= sz +Vyxvzy
E, E,.A E, E,A E,E,A
Q, - 1-v,v, Q,, - Vyy Vo Vo Q= 1-v,Vy
Exx EzzA Exx EzzA ExxEyyA (251)

Q44 = Gyz ! Q55 = sz ! Q66 = ny
A= 1- nyvyx - Vyzvzy ViV — 2Vyxvzyvxz

E.E.E

XX —yy —zz

Three problems are considered for laminates (see Figure 2.14). Case 1 and Case

2 are constructed of the material described by Eq.(2.49):

Case 1: a symmetric 3-ply laminate with a=b and layers of equal thickness — the
L direction coincides with x in the outer layers, while T is parallel to x in the central

layer.

Case 2: the same laminating geometry as in Case 1, but in this case we take

b=3a.
Case 3 is a square (a=b) sandwich plate under the distributed loading considered

36



Chapter 2 Techniques of Taylor Meshless Method

in the previous cases. The material of the face sheets is that defined by Eq.(2.49). The
thickness of each face sheet is h/10. The core material is transversely isotropic with

respect to z and is characterized by the following properties:

E,. =E, =0.04x10°psi E,, =0.5x10°psi
G, =G, =0.06x10°psi G,, =0.016x10°psi (2.52)
Vi =Vyy =V,, =025

)

Case 1 Case 2 Case3

Figure 2.14 Fiber directions and thickness of each case

2.6.4 Results

@2.b/2)

a X
Figure 2.15 The coordinate system and expansion point

The Taylor series is expanded at the center of the plates, (a/2, b/2) (see Figure
2.15).
(1) Stresses in Square Sandwich Plate, Case 1

The convergence of Case 1 is illustrated in Figure 2.16 and Figure 2.17. From
Figure 2.16 it can be seen that all errors of the stresses decrease with the degree N
until it is around 15. After that, the errors fluctuate at a higher level of accuracy.
Compared with Figure 2.16 (b), in which 10N collocation points have been distributed,
Figure 2.16 (b) shows that all the stresses get their best solution at degree 16 and they

have smaller errors. However, less collocation points lead to larger errors after degree
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16.

In Figure 2.17, one can obtain locally optimal solution with about 100
collocation points when the degree is 16. The errors increase with 0.5 magnitude and

then decrease to a stable status.

1 T T T T T
= Error of 5 (0/2.0/2.£1/2) == Error of 7 (a/2,b/2,£1/2)
0F @ Error of 3 (2512.4118) . 0 ~@— Error of 3 (a/2,b12,41/6) 4
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Figure 2.16 The influence of the degree on the convergence, Casel
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Figure 2.17 The influence of the number of collocation points on the convergence, N = 16, Casel

(2) Stresses and Deflection in Rectangular (b=3a) Laminate, Case 2
Figure 2.18 and Figure 2.19 are the convergence of the rectangular laminate plate

(b=3a). Figure 2.18 clearly shows that at degree 16, stresses and deflection get their
best solution, while the deflection has the smallest error, which is about 107. The
normal stressesa,,o,and shear stress 7, have larger errors since they are in direct
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proportion to the second derivatives of the deflection. The shear stress 7,,,7,, have

the largest errors since they are in direct proportion to the third derivatives of the

deflection.
1 T T T T T ! T T T T T
48— Error of 5 (a/2.b/2,1/2) ~—Error of 7,(a/2,b/2,£1/2)
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= Eror of ,(0,6/2.0) = Error of T, (0.6/2.0)
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Figure 2.18 The influence of the degree on the convergence, Case2
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Figure 2.19 The influence of the number of collocation points on the convergence, N = 16, Case2

(3) Stresses in Square Sandwich Plate, Case 3
Figure 2.20 and Figure 2.21 are the convergence of a square sandwich plate with

two kinds of materials. From Figure 2.20 one checks that the method fails if the
number of collocation points is too small. The maximal error decreases with the
number of collocation points until an optimal number where it becomes stable. A

number of about 4N can already lead to good results. However, the degree of freedom
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for this problem is 6N -2 . To ensure the best convergence, the number is

recommended to be larger than6N —2.
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Figure 2.20 The influence of the degree on the convergence, Case3
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Figure 2.21 The influence of the number of collocation points on the convergence, N = 16, Case3

We take the normal stress o, in Case 3 for example. Figure 2.22 is the influence

of expand point on the convergence. One can see that the results when the polynomial
is expanded at (a/2, b/2) are better than that at (0, 0) at each degree. It is because
Taylor series are suitable for a neighborhood, while point (a/2, b/2) is closer than (0, 0)
to the whole domain. The technique of subdomains can be applied to get more

accurate results.
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Figure 2.22 The influence of expand point on the convergence

2.7 Conclusion

A new meshless method — Taylor meshless method has been introduced in this
chapter. TMM solves quasi-exactly the partial differential equations by using Taylor
series. This technique reduces the degree of freedom for the problem significantly so
that one can increase the degree of the polynomials to a very high level. Only
collocation points on the boundary are needed, which makes TMM a true meshless
method. In the cases that have been studied, this method is robust and effective. Only
one domain has been used in this chapter, which is sufficient to solve boundary value
problems. In the case of rectangular plate with clamped edges, the absence of an

exponential convergence may be due to the singularity of the exact solution.

The convergence cannot be guaranteed in some other cases due to the developing
point of Taylor series and the single domain. In next chapter, multidomain technique
will be considered to solve nonlinear problems with collocation points on boundaries

and interfaces.
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Chapter 3 Application of TMM to large
deflection of thin plates

3.1 Introduction

In the problem of large deflection of a thin plate, the deflection does not linearly
depend on the external load. The membrane stresses acting in the plane of the plate
have an effect on the bending or buckling of the plate, which become non-negligible
as they are not small in comparison with bending stresses. A large deflection theory
should be employed for these kinds of problems. The nonlinear partial differential
equations describing large deflection of thin plates usually have no analytical
solutions, which must be solved by numerical methods. Generally, researchers try to
solve these problems using finite element method or finite difference method. These
methods have some inherent weaknesses like mesh distortion, computational

efficiency or complexity of pretreatment.

Many progresses have been made over the last forty years concerning the
numerical computation of bifurcation problems. A first way is to solve the "extended
system™ characterizing the bifurcation points [76]. A simpler technique is to solve a
continuation problem with an arc-length control for passing limit points [77].
Nowadays this standard procedure is available in many existing codes, especially in
extensively used commercial packages. Note that this continuation technique requires
the introduction of a perturbation to capture the bifurcation path in a secure manner
and a balance between a sufficiently large perturbation and a sufficiently small step
length is required for capturing the post-bifurcation response. This difficulty is
partially removed with the Asymptotic Numerical Method (ANM), where each step is
a Taylor series with respect to a control parameter, [78, 79], the key point being an
adaptive step length related to the radius of convergence of the Taylor series. This
adaptivity permits to compute the post-bifurcation curves with a very small

perturbation. Moreover, as underlined in [80], one observes an accumulation of small
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ANM-steps close to a bifurcation point because the radius of convergence is strongly
connected with the distance to a neighbor bifurcation point. So an accumulation of
small ANM-steps is a simple criterion for detecting bifurcations, but there are other
techniques to analyze bifurcation problems within ANM, for instance by computing a
bifurcation indicator [81, 82] or by identifying a geometric progression in the
computed Taylor series [83]. More generally, ANM is an efficient path following
technique able to solve a number of non-linear problems, including unilateral contact

or plasticity problems [84].

A discretization method has to be associated with a non-linear solver as ANM
and, in most of the cases, this was the finite element method. Nevertheless one can
mention several papers where ANM was coupled with a meshless discretization
method [85-87]. Benefits and drawbacks of meshless techniques are well known and
will not be re-discussed here. In this chapter, we aim to combine ANM with TMM.
The latter belongs to the large family of Trefftz methods that use exact solutions of
the PDE as shape functions, see for example [88]. The Method of Fundamental
Solution (MFS) is likely the most used Trefftz method [89]. The main advantage of
Trefftz method and MFS is a strong reduction of the number of unknowns: for
instance in [65] a problem was solved with only 90 DOFs while it needs more than
5000 with quadratic finite elements and much more with linear interpolation. The
main drawback of Trefftz-type methods is matrix ill-conditioning that prevents
solving large-scale problems [90, 91] , even if there were many works to try to
improve this condition number, see for instance [92, 93]. Nevertheless, splitting in
subdomains is a simple manner to control the ill-conditioning and several procedures
are available [66], what allowed to solve large-scale problems in the Taylor meshless

framework [67].

The treatment of non-linear problems is not straightforward within Trefftz
methods, because it is not possible to get exact solutions of non-linear or
nonhomogeneous problems by inverting the exact tangent operator. Thus, one

generally re-introduces a discretization of the domain by radial functions that are
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combined with fundamental solutions of a reference operator. Typical applications
concern Poisson problem [94], Newtonian fluids [95] or plasticity [96] and the
non-linear problem is solved by Picard iterations, but also by ANM [85, 86]. One can
avoid the spatial discretization when using the method of Taylor series, in which case
one can moreover obtain accurately the general solution of the homogeneous tangent
problem. In the latter paper, the polynomial shape functions were computed via an
Automatic Differentiation procedure [97], what could permit a wide range of

applications.

In the present chapter, ANM will be combined with the Taylor meshless method:
in other words, we shall perform together Taylor series in space and in load parameter.
This double Taylor series expansion will be applied to the famous F&ppl-von Karman

plate model [98].

3.2 Governing equations

The fundamental equations for large elastic deflection of thin plates are known as

F&ppl-Von Kaman equations, given in the following form:

) o’'w ot o'worf o*w o°f
DA“w- 5t 5 2 =
oX® oy® oy ox OXOYy OXoy
2., A2 2., \?
iAzf oO°'Wo'w [ 0w
Oxoy

3.1)

_l_ —
Eh ox* oy°
where Wis the vertical displacement out of the middle plane of the plate, E is the
Young's modulus, p is the loading per unit area of the plate, h is the thickness of the
plate and D = Eh3/12(1—v2) is the flexural rigidity of the plate. The relations between

the stress function f and the in-plane forces are:

2 2 2
SELCH B P R Vi (3.2)

N , -
oyt Y o2 Y oxoy
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3.3 Combination of TMM and ANM

Asymptotic-numerical method (ANM) was proposed by Damil and Potier-Ferry
in 1990 [99]. The non-linear branches are expanded in the form of power series. The
non-linear problem becomes a series of linear problems, which can be solved
efficiently by using recurrence formulas. Compared with some other methods of
solving non-linear problem, such as Newton’s method, the step length in ANM is
determined automatically by a reliable path-following technique. This is a main

advantage of ANM dealing with problems when there is a sudden change of direction

[79].

In this chapter, ANM is applied to linearize the nonlinear system and TMM is

used to solve linear partial differential equations obtained by ANM.

3.3.1 The procedure of ANM

In the isotropic case and with a transversal forcelp(x,y), where 2 is the load

parameter, Eq.(3.1) can be rewritten as:

DA*w—[w, f|=4p

3.3
iAZerl[w,w]:O 33
Eh 2

where the bracket operator involves the second derivatives of its arguments:

_0°A0°B  0°AOB 262A 0°B

[A'B]_ 2 2 T2 2 (3.4)
ox* oy oy* ox*  Oxoy oxoy

ANM seeks a family of solutions depending on a scalar parameter "a". The

parameter A is also expressed as a function of "a". First, the variablesw(x,y),
f(x,y)and the load parameter A are expanded to the form of power series with
respect to the parameter “a” from a starting solution denoted asw, (X, y), f, (X, y),

Ay :
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weoy) | (W) | (W (X%, Y)
FOy) =1 folxy) p=2.2 f(x.y) (35)
yl A A

Next, substituting in Eq.(3.3), one derives differential equations for each term of

the series(w, (X, Y), fc (X,¥), 4 ). To define the path parameter "a", the linearized

arc length parameter is chosen since it permits a secure guiding near bifurcation points

[79]:

a

(w=wo,w)+(f—f,, f)+(2-4)A4 (3.6)

At order one, all the items that have a coefficienta®are picked out. A family of

linear problems can be obtained as:
DA*w, —[w,, f,]-[w, f,]=4p
%AZ f,+[w,,w]=0 3.7)
1=(w, w ) +( f,, f,)+ 4
At order two:

DA*w, —[w,, f,]-[w,, f,]=4, p+[w,, f,]
1 1
EAZ f2+[w0,w2]:—§[wl,wl] (38)

0={(w,,w)+(f,, f,)+ 4,4,

The itemsw,, f,in the bracket operator are known after the resolution of Eq.(3.7).

The generic form of the linear problems at order K :

DA*w _[Wm fK]_[WK’ f0]=/1K p+0x

1 n
EAZ fi +[Wo, W, | =hy (3.9)

0=(W, W)+ (f, f)+AA

where g7 =>"""[wg, f, ¢ ], h,ﬂ':—(z:;ll[wR,wK_R])/z. Two operators remain at

any order:
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L, (w, f)=DA’w—[w,, f]-[w, f,]
(3.10)

1
L,(w, f)==A%f +[w,,w
2( ) Eh [ 0 ]
Let us start at order one. To solve EQ.(3.7), one supposes that(w, f)is the
solution of

DAW - wy,  [~[W, f,]=p

1

A (3.11)
EAZf +[W0,W] =0

The resolution of Eq.(3.11) will be discussed in Section 3.2. Eq.(3.11) is a linear

equation, thus the solution of Eq.(3.7) isw, (X, y)=A4W(X Y), f,(xy)=4f(xy).

One can obtain A, from the third equation of Eq.(3.7):

2 1
A _<W,W>+<f,f>+1 (5.02)

Eq.(3.12) has two solutions because one can move in two directions along the
branch of solutions. In the first ANM-step, the user has to define the orientation. In
the next ones the orientation can be chosen with respect to the tangent direction at the

end of the previous step.

For the generic case at order K, there are two new polynomials gﬂ' and h;'. The

solution for order K is:
W, = AW+wl fo =2 f+f) (3.13)

where(wy', ') is the solution of:

DA*WE —[ wp, £ |- g, f, | = o
1 2 f nl nl | _ hnl (314)
EA K +[WO,WK]— K
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3.3.2 TMM formulation

In this part, TMM is used to solve the linear systems with variable coefficients
Eq.(3.11) and Eq.(3.14). The principle of TMM is to expand the unknown fields in
Taylor series and to solve the PDEs in the sense of Taylor series. The two unknowns
of Eq.(3.11) or EQ.(3.14) - the transverse displacement w and the stress function f are

approximated by Taylor series truncated at TMM degree N:

{W()X(’ i)}= > () (v {va} (3.19)

m,n

In these two complete polynomials, there are(N +1)(N +2) coefficients to be

found. The equations Eq.(3.11) and Eq.(3.14) are also expanded into series up to the
order N — 4 after substituting Eq.(3.15). For instance, the bending equation in Eq.(3.11)

is approximated by:

D(AW) ~[wo, f| ~[Wf] =pn,0<men<N-4 (3.16)

The computation of the Taylor coefficients of the bilaplacian is

(AZW)m =(m+4)(m+3)(m+2)(m+1)W

+2(m+2)(m+1)(n+2)(n +1)Wm+2’]n+2
+(n+4)(n+3)(n+2)(n+1)W

n

(3.17)

m,n+4

as well as the tensor of the second derivatives

02/ ox? (m+2)(m+1)W,,,,
oWw/ay? + =1(n+2)(n+1)W,,,., (3.18)
otwfoxdy| - |(m+1)(n+1)w

m+1,n+1

For the homogeneous part of Eq.(3.16), all the other coefficients can be deduced

~ A A A

from initial dataw, ,, W, ,, W, ., W, ., f, ., f, ., f, ., f;,. The dimension of the initial data

o,n? *,n? "'2,n? "°3,n? "0,n? "1,n? "2,n?

iIS8N —4. Thus the number of the degrees of freedom for Eq.(3.11) is reduced
significantly from (N+1)(N+2) to 8N -4 . These initial data are linearly
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Chapter 3 Application of TMM to large deflection of thin plates

independent. The technique is to set them to 1 successively while others are 0. One
can obtain 8N —4 complete polynomials respectively{RW(x, y),Pif(x,y)}, which
build up the shape functions of the problem. For the inhomogeneous part, one can
easily find a particular sqution{PSW(x, y),Psf (x, y)} Finally the solution of each

problem Eq.(3.11) and Eq.(3.14) is computed in the form

o] o0 i e R

To solve the linearized PDEs Eq.(3.11) and Eq.(3.14), one has to compute the
vector o which is determined by boundary conditions. This will be done by

least-square collocation as in Chapter 2.

The auxiliary problems Eq.(3.11) and Eq.(3.14) being solved, one can compute
all the terms of the ANM-series Eq.(3.5), after having obtained those of the path

parameter A, . Last, we have to define the range of validity of the series Eq.(3.5). In

conformity with the basic ANM algorithm, one requires that the last term of the series

is small with respect to the first one:

YN, -1
=I5 H{ fl’xl}H

RS

This leads to adaptive step lengths and this is very important when dealing with

a (3.20)

bifurcation problems. The radius of convergence is generally governed by the distance
to the nearest bifurcation point [80]. That is why one observes an accumulation of
small steps close to the bifurcation: hence, such an accumulation leads to a simple
bifurcation criterion by sight. Moreover ANM permits to compute response curve
with a very small perturbation force: one just has to choose a sufficiently small

accuracy parameter 6.
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3.3.3 Treatment of boundary and interface conditions

3.3.3.1 Asquare plate with movable edges

a

T
—_—
_

le |
i

Figure 3.1 A square and simply supported plate with boundary collocation points

We consider a square plate with simply supported boundary conditions as in

Figure 3.1. The dimensionless quantities are introduced as: x=x/a, y=y/a,

p=pa*/Eh* ,Ww=w/h,& =ca’/Eh?. The load is a uniformly distributed pressure p .

The boundary conditions are:

2
x:iE:W:O,ﬁ—\QI—O
2 OX
2
y:iE:W:O,a—\Q’:O
2 oy
The boundary conditions for stresses are:
2 2
x=ig:alea z =—/1,rxy=la f_
2 h oy h oxoy
2 2
y:J_rE:ay:l8 Z :O,rxyzlﬁ f =
2 h ox h oxoy

(3.21)

(3.22)

TMM uses Taylor series to approximate the spatial function of the problem.

However, a single polynomial is not sufficient if the domain is larger than the radius

of the series’ convergence. A good idea is to split the whole domain into several

elements. Each element, which is called a subdomain, has an independent polynomial
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Chapter 3 Application of TMM to large deflection of thin plates

solution. This operation can help to stabilize the global solution and accelerate the

convergence. Some additional conditions should be introduced to guarantee the

continuity of the displacement and stresses between two neighboring subdomains. The

continuity conditions corresponding to bending are:

on on
MY =pm®@
vy @

n

(
n
)

(3.23)

Vi is an equivalent condition converted by the torque Myy and shear force Qn:

o*w
onot?

o*w
Vn :W'F(Z—V)

The continuity conditions corresponding to stresses are:

fO_- @
8f(l) ~ of (2)
on on
aZf(l) aZf(z)
on>  on’
an(l) 63f(2)
E

3.3.3.2 Asquare plate with immovable edges

'/

Figure 3.2 A square plate with immovable edges
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In the example of Section 3.4.1, the edges can be movable in the plane because

the normal stresses and shear stresses on boundaries are set to 0 by conditions

Eq.(3.22). To consider immovable edge conditions (u=v =0), one way is to replace

the first equation in Eq.(3.3) by two partial differential equations in terms of the

in-plane displacements u and v in addition to the transverse displacement w. However,

by TMM, the in-plane displacements can be expressed easily by W and stress functions

f . The strain components in the middle surface of the plate are given by:

~ou 1(ow
T E(a_j
_av 1( ow
YTy E[_ayj
_0u OV OwWOow
oy T Tk oy

After introducing the stress function, the stress components become:

1 (o%f o* f
& =— —V—
Eh\ oy OX

1 (0%f o* f
& _—V_
y Eh 8y2

1
79 =" Gh oxoy

(3.26)

(3.27)

Using Eq.(3.26) and Eq.(3.27), the partial derivatives of in-plane displacements

can be expressed withwand f :

(3.28)

With the technique in Chapter 2, coefficients of Taylor series of u and v are
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related to the coefficients of wWand f through the following relations:

u(m,n) :%[W f(m-1L,n+2)—v(m+1)f(m +1,n)j—%6?xx (m-1,n)

v(m,n):%[&n(mm f(m+2,n-1)-v(n+1)f (m,n+1)j—%9yy (mn-1) (3.29)

(n+1)u(mn+1)+(m+1)v(m+1n)= —%(m +1)(n+1) f (m+Ln+1)-6,,(m,n)

where 8, = (ow/ox)",6,, = (aw/dy), 6, =(ow/ox)(ew/dy). In ANM, w is expanded

in the form of power series with respect to the parameter a as in Eq.(3.5):

W= W, +aw, +a°W, +--- (3.30)

The nonlinear part 6, is expanded as the addition of linear components:

so+
a(2s,s,)+
a’ (s +2s,5, )+

2
0, = (?j = (s, +as, +a’s, +---)2 =| a%(s,S, +5,5, + 25,5, ) + (3.31)
X .

X

r=1

K-1
a“ (Z S,Sy_, +25,5¢ ) +

where s, =ow, /ox . From Eq.(3.31), one can find the generic expression of 6, at

ANM order K:

K-1

(O ) =D SSkr +25:5 (3.32)

r=1

Similarly, the generic expressions of 6, and 6, are:

(6,), = itrtK_r +2tt, (3.33)

r=1
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(6 ), =D 8t +Sote + 3¢k (3.34)

where t, =ow, /oy . With Eq.(3.29) and Eq.(3.32)-(3.34), most Taylor series
coefficients of u and v at order K can be deduced exceptu(0,0),u(0,1),v(0,0)and

v(1,0) , which are corresponding to the in-plane rigid displacement and rotation of the

plate. The expansions of u and v need an extra part to consider these three

coefficients:

HF o

The continuity conditions corresponding to bending are the same as those in
Eq.(3.23). Because of the introduction of in-plane displacements, the continuity

conditions corresponding to stresses become

Jr(11) _ Gr(]z)
W _ @
T, =T
v (3.36)
u® = @
VO — @

3.4 Results and discussion

The numerical method will be assessed by three examples concerning the
buckling and bending of a simply supported square plate. Various in-plane boundary
conditions have been accounted for. We are interested by the convergence with respect
to the degree (p-convergence) and to mesh refinement (h-convergence), as well as its
ability to compute bifurcating curves with very small imperfections. Our numerical
results will be compared with analytical and numerical results of these examples,

mainly from finite element codes.
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Chapter 3 Application of TMM to large deflection of thin plates

3.4.1 Buckling of a square plate with movable edges

First, the problem is solved with one domain under conditions in 3.3.3.1. All the
boundary conditions are accounted by least-square collocation with 240 collocation
points. The parameters of the algorithm are the ANM-degree K =20, the spatial
degree N =20, what corresponds to 156 degrees of freedom and the accuracy
parameter 6=10® whose smallness is chosen to ensure the path following for a
quasi-perfect bifurcation. This buckling problem will be solved by the method
presented here and compared with finite element calculation done with the
well-established code ANSYS. In the two calculations, a small symmetry breaking is

needed. In ANSYS, this is done by a small modal geometric imperfection measured

by the parameter W, e tection / h called "scaling factor".

1 -2 T T T T T T T T
—+— ANM-TMM
10k —— ANSYS with scaling factor 10° i
’ — — ANSYS with scaling factor 10
0.8 E
Zos6r .
B
04 .
0.2F E
OO —l b _-— =
0 1 2 3 5

al

Figure 3.3 Effect of small perturbations on the buckling of a simply supported square plate. The
ANM-TMM algorithm is compared with a commercial finite element code. On the ANM-TMM curve,
each point corresponds to one ANM step

The obtained bifurcation plots are presented in the Figure 3.3 and Figure 3.4.

Within ANSYS, we use a scaling factor of 10* and 10° and, within the present
method, a dimensionless transversal pressure p=10"°. ANSYS was not able to

compute the bifurcating curve with a smaller imperfection, even if we suspect that
some experts in non-linear calculation should be able to do such a calculation with a

commercial package. Clearly the new technique permitted us to compute the
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Chapter 3 Application of TMM to large deflection of thin plates

bifurcation plot with a very small imperfection simply by choosing a sufficiently large

ANM degree and a sufficiently small accuracy parameter & .

0.04 . T - T r T T T
—a— ANM-TMM _
—— ANSYS with scaling factor 10 I
— — ANSYS with scaling factor 10 )
0.03} g | -
!
]
[ ! 3
5 002t / -
8
Iz /
/
/7 b
0.01 , -
rd
-~
- J
0.00 === ] .
" 1 " 1 " 1 " 1
0 1 2 3 4

al

Figure 3.4 A zoom of Figure 3.3. One sees that the ANM-TMM method permits to compute easily
quasi-perfect bifurcations. On the ANM-TMM curve, each point corresponds to one ANM step.

T 3 T s T ) T ' T = T .
ok —4— 1X1 domain | |
2X2 domains
—e— 3X3 domains| |
—&— 4X4 domains |

— -2 B 7
2
w0
3k 4
4k <
-5 1 " 1 " 1 N 1 N 1 N 1
5 6 T 8 9 10
Degree of TMM

Figure 3.5 h-convergence: decimal logarithm of the error on the bifurcation stress, according to the
degree P and to the number of subdomains.

Next one discusses the convergence with the number of subdomains
(h-convergence) and with the degree N of the polynomials (p-convergence). The

interface and boundary conditions are accounted by the least-square collocation

method in a similar way as [68]. One looks at the value of the bifurcation stressa, .
The analytic value ™" is 3.6152. One has applied TMM degrees N = 5, 8, 10 and a
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Chapter 3 Application of TMM to large deflection of thin plates

number of subdomains varying from 1 to 16. The results are reported in Figure 3.5.

Clearly the method converges with the degree and/or with the number of subdomains,

but good results (i.e. error less than10~*) are obtained with 9 subdomains and N > 8 or

with 4 subdomains and N >10.

3.4.2 Bending of a square plate with immovable edges

1.0 T T T T T ’ T J T
—TMM
— —RBF
0.8 ——FEM

0.6 -

center

04} -

0.2 .

0.0 s

0 20 40 60 80 100

P

Figure 3.6 Deflection at the center of plate vs. load p

A bending test of a square plate is studied to check the conditions in 3.3.3.2 and

the effectiveness of the method. The plate is split into 5>5 subdomains. The boundary

conditions corresponds to a clampedw =ow/on =0andu =v =0. Each subdomain is

approximated with a Taylor series of degree 8 and connected with other subdomains
using the continuity conditions in 3.3.3.2. The total number of degrees of freedom in

this case is 1500. The degree of polynomials in ANM is chosen as 20.

Results are compared with those by FEM and RBF (see Figure 3.2). The RBF
solutions are from the reference [100]. The FEM analysis is performed with the
commercial software ANSYS using four-node element shell181. The plate is
discretized with 50>60 elements and LARGE DISPLACEMENT STATIC option is
activated to perform a nonlinear analysis. The number of model degrees of freedom is
15606. Figure 3.6 is the comparison of TMM results with those from FEM and RBF.
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Chapter 3 Application of TMM to large deflection of thin plates

It shows that they are very close in the range of 0 < p<90. Table 3.1 is the detailed

comparison of the deflection w and the membrane stress &,, computed at the center of

the plate for different loads between TMM and FEM. The membrane stressc, is

defined as the stress at the middle surface of the plate. The load is determined

automatically by ANM that is the value after each ANM step. The errors of the center

deflection between two methods are at the level of1072: while the errors of the

membrane stress are at the level of10™, indicating that they are in a very good

agreement.
Table 3.1 Deflection and membrane stress at the center of plate vs. load p
_ w O
p
FEM TMM ERROR(%) FEM TMM ERROR(%)
2.29 0.0317  0.0316 0.315 0.0033  0.0033 0.000
6.80 0.0937  0.0935 0.213 0.0291  0.0291 0.000
15.96 0.2157  0.2153 0.185 0.1542  0.1543 0.065
25.12 0.3290  0.3285 0.152 0.3581  0.3583 0.056
34.12 0.4304 0.4295 0.209 0.6112 0.6114 0.028
43.06 0.5213  0.5202 0.211 0.8947  0.8946 0.009
51.94 0.6030  0.6017 0.216 1.1942  1.1940 0.013
60.81 0.6771  0.6756 0.222 1.5023  1.5020 0.017
69.61 0.7443  0.7426 0.228 1.8113  1.8109 0.023
78.46 0.8064  0.8046 0.223 21222  2.1213 0.040
87.32 0.8640  0.8620 0.231 24313  2.4305 0.032
96.10 0.9171  0.9149 0.240 2.7344  2.7331 0.046
104.79  0.9662  0.9638 0.248 3.0305  3.0287 0.058
113.46  1.0123  1.0098 0.247 3.3217  3.3197 0.061

58



Chapter 3 Application of TMM to large deflection of thin plates

3.4.3 Buckling of a square plate with immovable edges under uniaxial

compression

L O M=0 _
i M G A
¢ * * * ¢
e * * * I
u=1 —e P P * e—u=-41
v=0 ¢ * * * ® v-0
N SN GNP GU G
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M, =0_e ) ® ) oM, =0
¢ ¢ & 4 4
—e * * * < v
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< 7,=0 M =0 -
L

Figure 3.7 A square plate with immovable edges

Consider a simply supported square plate with the same geometric and material
data as in Section 3.4.1. The displacement loads areu=Aatx=0andu=-Aatx=L.
All the edges cannot move in y-direction, while the upper and bottom edge can move

in x-direction. The plate and boundary conditions can be seen in Figure 3.7.

In this numerical example, the order of ANM is set to 10. The number of degrees

of freedom for this problem isN, (8N —4), where N, is the number of domains. The
accuracy parameter & is10™°. Transverse uniform pressure p is chosen as a small value

10~°to produce the initial imperfection of the plate. The boundary conditions are

accounted by least-square collocation with32N points in one domain, including the
boundaries and the interfaces. On the interfaces, two domains share the same

collocation points. The distribution of these points is shown in Figure 3.7.
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Figure 3.8 Displacement of center point of the plate vs. load, degree of TMM 8, order of ANM 10

A B
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Figure 3.9 The deformation of the plate at point A, B, C, D in Figure 3.8

To discuss the convergence of the method with the number of domains, we look

at Figure 3.8. 2>2 domains are not sufficient to get accurate results whenWw,,,., is

larger than 0.5. With more domains, the results converge further along with the

post-buckling curve. Figure 3.9 is the deformation of the plate at points A, B, C and D

in Figure 3.8. It shows clearly that with 8>8 domains, the buckling passes from the

first mode to the third mode.
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Figure 3.10 Comparison of results by FEM and TMM with degree 8 and 10

Figure 3.11 The deformation of the plate at point E in Figure 3.10

Figure 3.10 is the result by FEM and TMM with degree 8 and 10. With a larger
degree of TMM, the post-buckling path converges to the FEM results. In Figure 3.11,
one can see that the deformation of the plate has no great difference with that at point

D. The system selects another bifurcation path and begins to enter another mode.

Table 3.2 and Figure 3.12 present the displacement loads when the displacement

of center pointw,_. =1. They show that degree of TMM 6 is not sufficient to

enter
converge, even with 8>8 domains. To improve the reliability of the results, one can
increase the degree of TMM or the number of domains. According to the previous
study, it is better to compute the problem with smaller degree of TMM and large
number of domains, because a large degree of TMM may lead to large conditioning

number of the matrix. It also consumes more computing time than that if we increase
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the number of domains. In Figure 3.12, the result by degree 20 and 2>2 domains is

not good as that by degree 8 and 8>8 domains.

To find the load of FEM atw_, . =1, the data from w_ =0.5t0 1.3 by ANSYS

center
are fitted with a polynomial of degree 10. From TMM calculating, the reference load

at w__ =1is4=2.98261+0.00001. The discrepancy between FEM and TMM is

center
about3.35x10°°.

Table 3.2 Displacement load values when the displacement of center point W =1, convergence with
mesh refinement and with the degree

Number of Degree of TMM
subdomains 6 8 10 12 15 20
22 3.14120  2.91440 3.00396 2.98004  2.98231  2.98268
33 2.95625  2.98184 298279 298261  2.98263  2.98263
44 2.96247  2.98271  2.98263  2.98262  2.98262  2.98262
6>6 2.97156  2.98261  2.98262 2.98262 2.98262  2.98260
8>8 3.00378  2.98261  2.98262 298262  2.98261  2.98260
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Figure 3.12 Displacement load values when the displacement of center point is 1
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3.5 Conclusion

In this chapter, the boundary meshless method TMM (Taylor Meshless Method)
is combined with ANM (Asymptotic Numerical Method) to solve nonlinear thin plate
problems. The detailed procedure of this double Taylor series method consists of two
parts: first, nonlinear partial differential equations are linearized by ANM, producing
a set of linear equations in each iteration; next, these linearized partial differential
equations are solved by TMM. The approximate solution obtained by TMM is used as

the initial solution of next ANM iteration.

The buckling of thin plate with movable edges is studied. This double Taylor
series method can compute buckling problems with much smaller perturbations than
that in FEM. A bending test of thin plate with immovable edges is carried out to
verify the boundary conditions and convergence of the method before buckling
analysis. The results are in good agreements with that in FEM. Comparing with FEM
solutions, the number of domains for buckling of thin plate with immovable edges is

discussed.

The study shows that this new method is very efficient to solve a quasi-perfect
bifurcation response and this does not require a strong numerical expertise. This
double Taylor series method leads to an efficient path following technique that can be

easily extended to other hyper-elastic models or to Newtonian fluids.
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Chapter 4 Application of TMM to
wrinkling of membranes under
shear loading

4.1 Introduction

Over the past decades, different kinds of thin film structures are designed and

playing more and more important roles in the fields of aerospace, automobile,

construction and others. When the largest displacementw,,, is much larger than the

thicknessh, the structure is defined as a membrane structure. Membrane structures
have advantages in weight and storage requirements. Generally, the internal stresses
of a thin plate under transverse loads consists of bending stress and membrane stress.
However, a membrane structure cannot support compressive stress because the
bending stress is so small that it can be ignored compared with the membrane stress
[101]. When a compressive stress is applied, the structure becomes unstable and
generates wrinkles. The existence of wrinkled regions has a great influence on the
strength and reliability of the structure. The deformation and final state may not be
uniquely determined. It is essential to have a clear understanding on the wrinkle
phenomenon. Thus many material and mechanical researchers are recently interested

in the prediction of the behavior of the membrane.

Previous numerical studies of membranes mostly use finite element models
based on thin- membrane elements or shell elements [102]. Membrane elements have
simple construction format, hence they have the advantage of computational cost.
However, they ignore bending effect so that they cannot obtain accurate transverse
deformation. Shell elements have overcome shortcomings of membrane elements and
made models close to practical structures. Nevertheless, complicated mesh generation
is still needed. By using Taylor Meshless Method, one will reduce the size of the

discrete problem, what is necessary in cases where there are many wrinkles. Another
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Chapter 4 Application of TMM to wrinkling of membranes under shear loading

difficulty is the presence of a number of bifurcating solutions, especially
corresponding to various wavenumbers, which is due to the very weak bending
stiffness encountered for very thin membranes. Here ANM will give a more secure
path following technique to compute the bifurcating curves in such a difficult
situation. The ANM-TMM method described in the previous chapter will be applied
to an iconic problem of membrane wrinkling under shear loading. Indeed this
bifurcation problem is so difficult that these authors have been obliged to add a
significant tensile load to increase the membrane stiffness and, in this way, to stabilize
the response in order to be able to achieve the computation. Here the challenge will be

to minimize this artificial tensile load and the imperfection discussed in the chapter 3.

This chapter presents a numerical study of rectangular membranes submitted to a
shear loading. The objective is to simulate the generation of membrane wrinkles using
TMM. A three-step analysis is introduced in detail. Some parametric studies are
shown in this chapter, regarding the imperfection, tension load and subdomain
sensitivity in order to know the contribution of each parameter to the wrinkling

results.

4.2 Modelling of the membrane boundary value problem

To analyze the behavior of the wrinkled membrane, the membrane should be
modeled numerically. In Chapter 3, the procedure of solving thin plate problems has
been well established based on partial differential equations. In the development of
the wrinkles, bending stiffness, although very small, plays an important role in the
shape and amplitude of the wrinkles. By using the previous model that includes

bending stiffness, the process of wrinkling is more accurately simulated.

The imperfection is an important factor affecting the final wrinkling results.
Similar to the study of buckling of thin plate, generally a perfect membrane cannot be
analyzed directly because the deformation will be discontinuous at the buckling point.
Pure in-plane loads will not bring about mechanism on a perfect membrane. In

practical simulation, imperfections are usually introduced to avoid bifurcation and get
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continuous response.

There are many ways to distribute imperfections to perfect membranes. In FEM,
for example, the imperfections can be imposed at selected or all interior nodes of the
originally membrane mesh. The imperfection amplitudes, which are small in
comparison to the thickness of the membrane, are regulated by a parameter to avoid
element distortions. However, the imperfections should be large enough to provide

sufficient bending-to-membrane coupling.

Another way to impose initial imperfections is seeding several eigenmodes onto
the finite element model using a scaling factor to control the proportion between the
imperfections and the membrane thickness. An eigenvalue buckling analysis has to be

carried out before the membrane wrinkling to obtain eigenmodes.

In this study, the small out-of-plane deformation is produced by imposing
transverse pressure onto the membrane. In this way, magnitudes of the imperfections
are controlled by transverse loads. The deformation is generated on the whole

membrane without pre-eigenvalue processing.

When solving buckling problems in Chapter 3, imperfections and in-plane loads
are imposed from zero at the same time. For membrane wrinkling problems,
imperfections, tension loads and shear loads should be imposed respectively. This is
because at first few steps of Asymptotic Numerical Method, imperfections and tension
are close to 0, leading to the presence of many localized modes and divergence of the

results.

The x-axis is parallel to the bottom edge, y-axis is perpendicular to the bottom
edge, and z-axis is normal to the neutral plane, as defined in Figure 4.1. The
membrane analyzed in this chapter is a rectangular membrane with an aspect ratio of
about 3:1. The material shown in Table 4.1 is Kapton coming from the data in [103]
and [104]
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Figure 4.1 Rectangular membrane with tension oV and shear load ou

Table 4.1 Material property

Width (mm) a 380
Height (mm) b 128
Thickness (mm) h 0.025
Young’s modulus (MPa) E 3500
Poisson’s ratio 0 0.3

bretpay e

Step 1 Step 2 Step 3

Figure 4.2 Steps of the algorithm

The loading process consists of three steps as in Figure 4.2:

The first step of the simulation is pre-tensioning the membrane by moving the
top edge by a small displacementsvin y-direction. All degrees of freedom of the
bottom edge are constrained. The left and right edges are simply supported. The fixed
top edge is subjected to a prescribed displacement. A pre-stress is produced to

increase the out-of-plane stiffness of the thin membrane and avoid local buckling
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behavior. The initial pre-stress will affect the final amount of the wrinkles. This will

be discussed later in this chapter. As the pressure p in Von-Karman equations cannot

be zero, it is set to a very small value p=107°.

The second step consists in producing imperfection by imposing transverse
pressure onto the membrane. Here the membrane is splitted into several domains in
both directions. The pressure will be positive and negative alternately in x-direction to
produce sinusoidal deformation in transverse direction. The pressure remains
consistent in y-direction. Note that the angle between the deformation and x-axis is
90< which is different from the final wrinkles. Nevertheless, this treatment is better
than pseudorandom imperfections produced on nodes or imposing pressure on a single

direction. An imperfection sample is shown in Figure 4.3.

In the third and final step, the top edge is moved horizontally by a displacement
ou while all other boundary conditions are the same as in the first and second steps.

The shear displacement is gradually increased until the membrane is fully wrinkled.

The pressure is set to the small value10™® as in the first step.

Figure 4.3 An imperfection sample

The plate is simply supported on vertical edges and clamped on horizontal edges
with a displacement along the top edge as given by Eq.(4.1). These conditions are
modeled using the method in Chapter 3. Previous study indicates that the convergence
of the computation needs a moderate degree of Taylor series and a large number of
subdomains [68]. The degree of Taylor series is chosen asN =8 that is reasonable
when the subdomains are sufficient, giving consideration to computational efficiency
and accuracy. The degree of ANM is chosen as 10. The accuracy factor in ANM is

1078,
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w=0 ow/dy=0 u=0 v=0 (0<x<ay=0)
w=0 ow/dy=0 u=d6u v=6v (0<x<a,y=b) 4.1)
w=0 M, =0 o,=0 7,=0 (x=0&a,0<y<b)

4.3 Numerical Results

The material properties, geometric parameters and boundary conditions are
introduced into the model in Chapter 3. Numerical simulations aim to find the
important influencing factors of wrinkling of thin membranes with this new meshless
method. Because of TMM’s advantage on convergence with small loads, as illustrated
in buckling tests of thin plates, the smallest tension and imperfections are searched,
which can bring out bending stiffness and initiate the out-of-plane buckled
deformations contributing to membrane wrinkling. Different combinations of tension
loads, imperfections and number of subdomains are considered to test the sensitivity

of the model to the wrinkling results.

Different numbers of subdomains are used as it has great influence on the
convergence and final number of wrinkles. The ratio of the number of subdomains in
x and y-directions is 3:1, which is roughly consistent with the aspect ratio of the
membrane. The pre-tensioning displacement is ranged from 0 to 0.08mm. Different
kinds of imperfections, defined as transverse deformation of the center point, are

considered from 0 to 0.008mm.

4.3.1 Generation of membrane wrinkles

The generation of membrane wrinkles is demonstrated in this section. The
membrane is splitted into 33 domains in x-direction and 11 in y-direction with a
pre-tension of v =0.02mm in the first step. The selection of the number of
subdomains and tension load will be discussed later in this chapter. The membrane is
tensioned in y-direction, keeping a flat state. Then the imperfection is produced by
imposing transverse pressure, generating 0.001lmm out-of-plane deformation at the

center of the membrane. By imposing alternating pressure in x-direction, the
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membrane generates alternating deformation as shown in Figure 4.4. Because of
simply supported boundary conditions on side edges and bending stiffness produced
by the pre-tension, the deformation near side edges is larger than that inside the

membrane.

Figure 4.4 Imperfection of the membrane for wrinkling, tension load 0.02mm, imperfection 0.001mm.

Wrinkle generation is associated with mode jumps in terms of the interaction of a
set of bifurcation points. There are several equilibrium paths after each bifurcation
points. The deformation patterns have many possibilities when the membrane has
many wrinkles. When the first equilibrium point exist, the wrinkles increase up to a
certain number without bifurcations by increasing the shear displacement. Then,
because of the selected imperfections and tension loads, the bifurcation paths
converge to a single path. In this study, the observation focuses on this period from

the beginning until the membrane is full wrinkled.

J

Figure 4.5 Full wrinkled membrane, 3311 domains, tension load 0.02mm, imperfection 0.001mm.

Figure 4.5 shows the whole wrinkled patterns in the membrane. The wrinkles in
the central region cross the whole membrane, making an angle of 45°with x-axis.
There are two localized wrinkles in the triangular regions of the upper left and bottom

right corners near the side edges. In this study, only wrinkles crossing the whole
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membrane are counted.

4.3.2 Sensitivity with respect to the number of subdomains

When the deformation of structures becomes complex, two common approaches
can be used to maintain the accuracy of the simulation: a larger degree of Taylor series
or the multi-domain technique. A very large degree leads to high computational costs
and large conditioning number of the matrix, which may decrease the stability of the
computation. In this study, it is obvious that a single Taylor series is not sufficient to
approximate the whole wrinkled membrane. Therefore, the membrane is divided to
several subdomains with independent Taylor series in each part. Two neighboring

domains are coupled by physical constraints.

The present parametric study is accomplished by varying the number of
subdomains in which the membrane is divided. To avoid the influence of distortion,
domains in x-direction and y-direction keep a quantitative ratio of 3:1, making each
domain roughly a square. The results from wrinkling analysis are presented in Table
4.2, related to the final number of wrinkles corresponding to a shear load
ou=0.15mm. The problem cannot be simulated if the number of subdomains is less
than 17>6. The simulation can be proceeded with 21%7 domains and predict 8
wrinkles shown in Figure 4.6. Three additional sets of domains are tested to
investigate the effect of number of domains on the final wrinkle number. 33x11,
45x15 and 63>21 predict the same number of wrinkles, indicating that the results
become independent when the number of domains is enough. In order to achieve a
compromise between the computational efficiency and the accuracy of the results, the
optimal mesh is at least three domains in x-direction to describe one wrinkle. In
consideration of computational time and convergence of the solution, the set of 3311

is selected in previous sections.
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Table 4.2 Sensitivity of the response (number of wrinkles) to the number of sub-domains.
Pre-tension ov = 0.02 mm, imperfection 0.001mm.

Number of domains Number of wrinkles

15>6 Not converging
17>6 Not converging
217 8
33x11 11
45%15 11
63>21 11

Figure 4.6 Full wrinkled membrane. Subdomains: 2111, tension load 0.02mm, imperfection 0.001mm,
shear load 0.15mm.

4.3.3 Sensitivity with respect to tension loads

The uniaxial tension load in y-direction provides an initial out-of-plane stiffness
to the membrane, which is an important factor in determining the membrane wrinkles
and computational stability. To test the sensitivity of tension loads, all the cases in this

section are applied with an imperfection of 0.001mm and 33x11 subdomains.
4.3.3.1 A global look

Table 4.3 shows the final number of wrinkles for du =0.15mmwith different
tension loads. Patterns are shown in Figure 4.7. The simulation cannot be proceeded
without this pre-tensioning treatment. With 0.0005mm tension load, the membrane
generates three main wrinkles and some minor local ones. In the range of 0.001mm to
0.02mm, the tension load has a strong effect on the number of wrinkles. After 0.02mm,

the membrane keeps generating 11 wrinkles at the end of the computation. By
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increasing the tension load, the angle between wrinkles and the bottom edge decreases

to 45<
Table 4.3 Number of wrinkles with different tension loads.
Tension load(mm) Number of wrinkles
0.0005 3
0.001 4
0.01 10
0.02 11
0.05 11
0.08 11
a. 0.0005mm b. 0.001mm
ﬂ/
¢. 0.01mm d. 0.02mm
e. 0.05mm f. 0.08mm

Figure 4.7 Wrinkle patterns with different tension loads.

The buckling curves of cases with a wide range of tension loads are shown in
Figure 4.8. With a very small tension load, for example 0.0005mm or 0.001m, the
membrane starts global buckling very early. A larger tension load leads to a larger
critical shear load and a smaller maximum displacement, because of the increase of

the global stiffness. Table 4.4 is the comparison of the maximum displacements and
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amplitudes of center wrinkles when the shear load is 0.15mm.
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Figure 4.8 Shear load vs maximum displacement, tension loads from 0.0005mm to 0.08mm,
imperfection 0.001mm.

Table 4.4 The maximum displacements and amplitudes of center wrinkles, shear load 0.15mm,
imperfection 0.001mm.

Tension load(mm)  w,,, (MM) Amplitude of the central wrinkle(mm)

0.0005 0.7482 0.5461
0.001 0.5302 0.4081
0.01 0.4732 0.1893
0.02 0.4150 0.1686
0.05 0.3245 0.1186
0.08 0.2266 0.0643

4.3.3.2 A closer look

Now a closer look near the bifurcation point will be taken to observe the
generation of membrane wrinkles. A zoom of the buckling curve with 0.05mm tension
load in Figure 4.8 is shown in Figure 4.9. The further zoom of the buckling curve in
Figure 4.9 indicates that the maximum displacement is monotonically increasing,
which means the equilibrium continuation path is unique in the wrinkling process.

The deformations of the membrane on selected points are plotted in Figure 4.10. The
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membrane is quasi-flat when the shear load is smaller than 0.05mm. The first few
wrinkles are generated near boundaries with 0.06mm shear load. The position of the
maximum displacement moves towards the center area while the center area still
keeps quasi-flat as shown in Figure 4.10(c) and Figure 4.10(d). From Figure 4.10(d)
to Figure 4.10(e), the maximum position stops moving and wrinkles begin to appear
in center area. In Figure 4.10(f), the membrane becomes stable and full wrinkled.
Because of the boundary effect, the membrane starts wrinkling near boundaries and
extends to the center area with the increase of the shear load. The amplitudes of the

central wrinkles are much smaller compared with the largest one.

0.20 |-

0.15 F o.

go10f
S ,

0.05 |-

0.00 |
0.00 0.05 0.10

Shear load

Figure 4.9 A zoom of the buckling curve, tension load 0.05mm.

In the FEM study by Wong [102] , the attempts to compute the full response in
ABAQUS by an arc-length method are unsuccessful due to the complex localized
instability, therefore they use transient dynamics to compute the solution in this case
ou=0.05mm. Using an arc-length method is difficult to find a stable branch in the
equilibrium path of membrane wrinkling. By using ANM-TMM, however, the
path-following technique can obtain the whole developing details of a wrinkled

membrane as discussed in this section.
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Figure 4.10 Deformations of the membrane with different shear loads, tension load 0.05mm.

4.3.3.3 Membrane wrinkling with a very small tension load

Another advantage of this method is that we were able to use a very small
tension load to accomplish the simulation. The initial pretension in [102], which
corresponds to the tension load in this thesis, is chosen as 0.05mm. This value is much
smaller than that in his previous eigenvalue buckling analysis, from which the
geometrical imperfections are obtained. However, the initial pretension still has to be
large enough so that the membrane can avoid some localized modes and enter the
global buckling period. In Figure 4.8, one can see that ANM-TMM works with
tension loads much smaller than 0.05mm. In this section, the wrinkling development

with a very small tension load 0.0021mm will be discussed.

A zoom of the buckling curve with 0.001mm tension load in Figure 4.8 is shown
in Figure 4.11. The further zoom of the buckling curve indicates that the maximum
displacement has a slight decrease before the global buckling point. The computation

follows another localized unstable branch then turns to the global one.

The deformations of the membrane on selected points are plotted in Figure 4.12.
The membrane keeps quasi-flat before the critical shear load 0.0020mm. In Figure

4.12(d), four wrinkles are generated uniformly on the whole membrane. From Figure
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4.12(e) to Figure 4.12(f), the deformation keeps increasing without any new wrinkle
generated. The small tension load leads to a weak boundary effect, thus the wrinkles
are generated simultaneously with approximately equal amplitudes. This is the main
difference between this case and that in 4.3.3.2. Thus, the tension load has a very
strong effect on all the aspects of the wrinkling process: first bifurcation load, number

of wrinkles and spatial distribution of the amplitude of wrinkles.
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Figure 4.11 A zoom of the buckling curve, tension load 0.001mm.
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Figure 4.12 Deformations of the membrane with different shear loads, tension load 0.001mm.
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4.3.3.4 Membrane wrinkling with a minimum tension load

The pre-tension process is an important step to stabilize the equilibrium path. If
the tension load is too small, the simulation may not be accomplished as the algorithm
could be trapped in the computation of local modes. It will be of important
significance to find the limitation of ANM-TMM and study the behavior of the

membrane with the smallest tension load.
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Figure 4.13 A zoom of the buckling curve, tension load 0.0005mm.

Figure 4.13 is a zoom of the buckling curve with 0.0005mm tension load in
Figure 4.8. The membrane responses quickly with many localized buckling modes
after the shear load is applied. The further zoom of the curve shows that the algorithm
chooses an unstable branch automatically and then goes back to the fundamental
equilibrium path. A stable bifurcated solution is reached after seeking for about 5
times. This phenomenon does not occur in the section 4.3.3.14.3.3.2 and 4.3.3.3
because the tension loads are large enough to stabilize the membrane and a stable

equilibrium path can be sought very easily.

The deformations of the membrane on selected points in Figure 4.13 are plotted
in Figure 4.14. At point b, the computation has left the fundamental equilibrium path
and generated two wrinkles. From point ¢ to point e, the main wrinkles grow up
coupled with many localized minor ones. On the final pattern, another main wrinkle is

generated in center area and the center displacement becomes positive, indicating a
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mode jump between point e and point f.
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Figure 4.14 Deformations of the membrane with different shear loads, tension load 0.0005mm.

4.3.4 Imperfection sensitivity

Buckling problems cannot be analyzed directly because of the discontinuity at
the bifurcation point. To obtain a response in the buckling analysis, an imperfection
should be introduced. The response of some structures may highly affected by the
imperfections applied to the original geometry. It is necessary to verify the

imperfection sensitivity of the structure in membrane wrinkling simulation.

A moderate value sv=0.02mm is chosen as a tension load when testing the
imperfection sensitivity. The imperfection is introduced into the original geometry
according to Section 4.2. For each set of imperfections, a complete wrinkling
simulation was carried out to observe the final number of wrinkles. Normally, the
magnitudes of the perturbations are small in comparison with the membrane thickness.
The imperfection, which is defined as the out-of-plane deformation at the center of the

membrane, is ranged from 0.00006mm to 0.008mm.

The results from this study are presented in Table 4.5. In a wide range, the
amplitudes of imperfections are independent with the final number of wrinkles. The
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particular magnitude of the chosen imperfection is not critical. In practice, the optimal
ratio of the imperfection and thickness is between 0.02 and 0.1. The smallest
imperfection that can proceed the simulation is very small (0.0001mm, 0.004h). In
comparison, the simulations are generally proceeded with imperfections of larger than
0.01hin FEM. The number of wrinkles begins to decrease when the imperfection is
larger than 0.005mm (0.2h). This means that the number of wrinkles is sensitive to

imperfections in the range larger than 0.2h .

Table 4.5 Sensitivity of the response (number of wrinkles) to the imperfection. Pre-tension
oV =0.02 mm, number of sub-domains: 33x11.

Imperfection(mm) Imperfection/n Number of wrinkles

0.0001 0.004 11
0.0005 0.02 11
0.001 0.04 11
0.002 0.08 11
0.003 0.12 11
0.005 0.20 10
0.008 0.32 9

The largest imperfection that can use to generate reliable wrinkle patterns is
smaller than that in FEM. This is because the different methods of imposing
imperfections. In ABAQUS, imperfections are introduced by imposing geometric
deformation directly on nodes or a linear superposition of buckling eigenmodes from
the static analysis. In this study, a transverse pressure is imposed to the membrane to
produce out-of-plane deformation. The stress distribution before wrinkling analysis is
slightly different from that in ABAQUS. When imperfections are large, the influence

of the pressure is not negligible.

4.4 Conclusion

This chapter is an extension of the previous work on the use of TMM for large

deflection of thin plates. In this chapter, the membrane wrinkling problem is studied
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with Taylor meshless method. Based on equilibrium equations and solution process
established in Chapter 3, the wrinkle patterns are observed by imposing tension loads,

imperfections and shear loads successively.

The imperfections are introduced by imposing transverse pressure, instead of
pseudo-random geometric displacements on nodes or seeding initial buckling modes
of a perfect membrane. This is an easy way to avoid stress concentration and localized

buckling modes.

Different tension loads and imperfections are imposed to test their influence on
final wrinkle patterns. The results indicate that imperfections should be large enough
so that they can provide sufficient bending-to-membrane coupling. In a range, the

magnitude of imperfections has no influence on the final wrinkling results.

The tension loads provide a small bending stiffness to the membrane, which
should be considered to accurately calculate out-of-plane deformation. The study

indicates that tension loads has a great influence on the final number of wrinkles.

TMM can accomplish convergent simulations with very small imperfections and
tension loads in comparison with finite element methods. The approach of wrinkled
membrane analysis by TMM has been well established. The future work includes
detailed study on wrinkle amplitude and wavelength in membrane wrinkling

problems.
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In this work, the behavior of thin plates and membranes are investigated by using
a boundary collocation meshless method — Taylor Meshless Method (TMM), in which
the PDEs are approximated by Taylor series and the boundaries are discretized with a
least square collocation. Various parameters that govern the bending, buckling and

wrinkling behaviors of thin structures are identified by numerical simulations.

First, the basic techniques of TMM is introduced. The degrees of freedom of the
problem are reduced significantly by seeking independent coefficients in the truncated
Taylor series that constructs shape functions. The effectiveness and efficiency of

TMM are verified by solving a 2D Laplace equation.

Then, TMM is used to study Kirchhoff plates and laminated sandwich plates.
Techniques in TMM help to reduce the degree of freedoms significantly so that one
can increase the degree of the polynomials to a very high level. Different cases are
considered to test the effectiveness and efficiency of the method. The error shows

exponential convergence with the increase of degree of polynomials.

Next, TMM is combined with Asymptotic Numerical Method (ANM) to solve
large deflection problems of thin plates. The nonlinear equations are expanded in the
form of power series, which leads the problem to a series of linear equations. The step
length is determined automatically by a reliable path following technique. The
accuracy and efficiency of ANM-TMM is verified through these examples and the

method can be easily extended to other nonlinear problems.

Based on the work of bending problems, the buckling of thin plates are studied.
This approach fully takes the advantage of the path following technique. Thus the
buckling process can be illustrated much more accurate than that by other methods.
The performance of the approach is investigated by a series of benchmark buckling

problems.

Last, the membrane wrinkling problems are studied. Different tension loads and
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imperfections are imposed to test their influence on final wrinkle patterns. The results
show that TMM can accomplish convergent simulations with very small
imperfections and tension loads in comparison with finite element methods. The
tension load has a strong effect on the amplitudes and number of global wrinkles
while the imperfection affects the number of wrinkles only when it is large enough.

The approach of wrinkled membrane analysis by TMM has been well established.

As revealed in this work, TMM is an efficient and robust method for a variety of
linear and nonlinear elastic problems. Nevertheless, it will be of great significance to
extend the application of TMM to many other engineering fields. Some further

explorations could make TMM a more practical numerical tool:

1) As the algorithm for computing shape functions and introducing boundary
conditions needs to be optimized, the computational efficiency can be improved

with the help of techniques such as Automatic Differentiation.

2) Based on the resolution established in Chapter 3 and Chapter 4, a toolbox for thin
structure problems can be developed to simplify the procedure in the pretreatment

and optimize the interaction.

3) The numerical work on thin plate problems provides a good foundation for
studying thin shells. It will also be interesting to extend the application of TMM
to more challenging problems, involving fluid-solid coupling, contact and even

vibration.
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Pré&sentation rapide du chapitre 1.

Cette these a pour objet la simulation numé&ique de certaines &juations aux d&ivees
partielles non-linéaires dont on sait qu’elles sont maintenant trés largement utilisées
dans un grand nombre de domaines. On s’intéressera plus particuliérement a la
discréisation spatiale de ces eéguations. Les méhodes de discréisation les plus
utilisées sont la méhode des diffé&ences finies (FDM) et la mé&hode des ééments
finis (FEM). Pour la mé&anique des solides et des mat&iaux, la mé&hode des ééments
finis est de loin la plus importante, avec des logiciels commerciaux comme ABAQUS,

ANSYS, MSC/NASRAN ou IDEAS.

Dans la FDM, on résout 1’équation sous la forme forte (méthode de collocation) et on
approche les dérivées par des différences comme dans la formule (1.1). L’équation est
appliquée en un ensemble de nceuds et ce maillage est structuré, c’est-adire qu’on
doit connaitre les voisins de chaque nceud pour pouvoir calculer les dérivées. Dans la
FEM, I’équation est satisfaite au sens faible (méthode de Galerkin), c’est-adire en
moyenne pondérée, I’approximation des inconnues et de 1’équation étant définie sur
des petits morceaux appelé @éments. Cet ensemble de nceuds et d’éléments doit étre
structurépour obtenir la continuitédu champ et assurer la convergence de la mé&hode.
Ces méhodes fonctionnent bien, ce qui explique leur immense succés. En particulier
la mé&hode des ééments finis est suffisamment souple pour permettre la mod@disation
de structures tres complexes comme un avion ou une voiture, tout en prenant en
compte des comportements vari&s et fortement non-linéires. Les reproches
habituellement adressés a ces deux méthodes sont, d’une part le trop grand nombre de
degreés de libertés qui est dGaune approximation trop pauvre sur chaque éément (en
général linéaire ou quadratique), d’autre part 1’exigence d’un maillage trés structuré

qui est gé&ante par exemple lorsque de tres grandes déormations requigent une
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opé&ation de remaillage en cours de calcul.

Une autre approche est la mé&hode des @éments frontiees (BEM), basé sur une
transformation de I’équation aux dérivées partielles en €juation inté&rale de fronti&re.
L’avantage obtenu est évident : on aura seulement la frontiere adiscréiser, ce qui
conduit a des modéles avec beaucoup moins de degrés de liberté. C’est trés intéressant
anotre @@oque, ou les méhodes de ré&luction de modde sont ala mode. La
contrepartie, c’est qu’on ne sait construire I’équation intégrale de frontiére que pour
certains cas oules solutions fondamentales sont connues explicitement, en gros les
systémes lin&ires, elliptiques et acoefficients constants. C’est pourquoi la BEM a des
applications, en particulier en acoustique, mais il y en a beaucoup moins que pour les

deux premiées mé&hodes.

Les méhodes sans maillage (meshless ou meshfree) ont @éédéveloppées pour &viter la
construction d’un maillage structuré qui s’aveére coliteuse en termes de
«temps-ing&ieur >>et qui est une exigence forte en cas de tres grandes déformations
du domaine au cours du calcul. Ici on cherche donc acreer des fonctions de forme et a
discréiser les éjuations uniquement apartir d’un nuage de points sans aucune autre
structure que la position des points. Les premiers travaux sur les méhodes sans
maillage datent des années 1970 et on a assist€éaune ve&itable explosion apartir des
anné&s 1990. De nombreuses versions de ces mé&hodes ont &€ proposees, certaines
reposant sur le concept de noyau (kernel) comme la mé&hode SPH (smooth particle
hydrodynamics, voir les équations (1.2) (1.3)), d’autres sur les moindres carrés
mobiles (MLS : moving least squares, voir les €juations (1.4) (1.6)), d’autres encore
sur le concept de fonctions radiales. Certainement les méhodes les plus populaires
sont celles dé&luites du concept MLS. Quant ala discré&isation des é&juations, on
retrouve les deux approches de formulation forte ou formulation faible, avec une
double difficulté: avec une discréisation par collocation, la convergence est moins
assurée qu’avec une méthode de Galerkin, mais 1’application de la formulation faible
demande de calculer des intégrales, ce qui n’est pas facile avec des fonctions qui ne

sont pas des polyn@mes de bas degréet de plus cette intération reste colteuse. Apres
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plus de 25 ans de recherches intensives, il y a quelques beaux succes des mé&hodes
sans maillage, par exemple pour des é&udes de déferlement de vagues qui sont
difficiles a traiter avec d’autres méthodes [105], mais pour I’instant, ces méthodes
restent assez coGteuses et tres peu utilisées dans les calculs pratiques et les principaux

codes de calcul commerciaux.

Dans cette thése, on s’intéresse a la méthode de Taylor sans maillage (Taylor
Meshless Method, TMM) dé&eloppé par Z&eé[64], Tampango [65] et Yang [70].
Dans cette méthode, on propose de résoudre analytiquement I’équation aux dérivées
partielles par la mé&hode des sé&ies de Taylor. Cette réolution analytique permet de
diminuer fortement le nombre de degré&s de liberté comme dans la mé&hode des
&uations frontieees (BEM), mais a la diffé&ence de la mé&hode BEM, TMM
s’applique aisément a des équations non-lin&ires, ce qui avait &é fait gr&e a
I’algorithme de Newton ou de Newton-Raphson. Ici on couplera «Taylor Meshless
Method >>avec la méhode asymptotique numé&ique (ANM) pour pouvoir traiter des
problémes de plissement de membranes qui sont ing&ables avec les codes de calcul

existants lorsque la membrane est faiblement tendue.
Organisation de la thése

L’objectif de la these est d’appliquer la « Taylor Meshless Method »ades problémes
d’instabilité de plaques en grands délacements, en particulier &des problémes de

plissement d’une membrane trées souple.

Le chapitre 2 deéerit la technique de construction des fonctions de forme, puis
I’applique aux problemes de flexion linéaire des plaques, ce qui n’avait pas encore été

fait.

Le couplage de la mé&hode asymptotique numé&ique (ANM) avec la discré&isation par
TMM est présentéau chapitre 3 dans le cas du modéde classique des plaques de

Fppl-von Karman.

Enfin le chapitre 4 aborde un probléne particuli@éement complexe é&udié

pre&aemment par Wong et Pellegrino [102, 103]. 1l s’agit d’une plaque souple et
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mince soumise aun chargement de cisaillement pour laquelle les mé&hodes classiques
de type Newton-Raphson ou Riks n’ont pas permis d’obtenir de solution satisfaisante,

la difficultéprincipale &ant le suivi de courbe pour une membrane peu tendue (slack).

Pré&entation rapide du chapitre 2.

Ce chapitre présente la procé&lure désormais bien éablie de la «Taylor Meshless
Method > puis il en fait une premi&e application aux problémes de flexion lin&ire
des plaques ¢lastiques. La cl¢é est le calcul de la solution générale de I’équation aux
dé&iveéss partielles (PDE) sous forme de polyn@mes de degrédevépar la méhode des
s&ies de Taylor : on demande que la série de Taylor du résidu de 1’équation s’annule
jusqu’a I’ordre p-2, ce qui définit explicitement une solution particuliere et la solution
générale de I’équation homogene associée sous une forme polynomiale. Cette
construction désormais bien éablie est déerite au paragraphe 2.2. Ensuite on applique
les conditions aux limites et les conditions de transmission dans le cas d’une
discréisation en plusieurs sous-domaines, avec une sé&ie de Taylor par sous-domaine.
Plusieurs mé&hodes ont &ée proposées pour traduire ces conditions et nous avons
retenu la méhode de collocation-moindres carrés qui est la plus simple et est au
moins aussi efficace que les mé&hodes baséss sur les multiplicateurs de Lagrange. Le
test pré&sentéala figure 2.4 rappelle la robustesse de la mé&hode alors que la figure 2.5

montre la convergence exponentielle avec le degréde 1’approximation polynomiale.

Les paragraphes 2.5 et 2.6 décrivent 1’application de la procédure TMM a la flexion
des plaques isotropes et anisotropes. On se limite ici aun seul sous domaine et donc a
une seule sé&ie de Taylor, ce qui peut &re un peu péalisant pour retrouver de trés
hautes prezisions. Le point le plus important est la procélure de calcul des solutions
polynomiales qui reposent sur les formules de réurrence pré&entées au tableau 2.1.

Les tests présentés concernent les cas suivants.

1. Flexion d’une plaque circulaire encastrée sous pression uniforme.

2. Flexion d’une plaque carrée en appui sous pression uniforme.
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3. Flexion de plusieurs plaques anisotropes stratifiées en appui et soumises aune
force sinusodale.
Ces tests montrent qu’on peut obtenir une tres bonne pré&ision sur les déplacements et
sur les contraintes dans la plague pour des degré éevé (entre 10 et 15), méne avec

une seule sé&ie de Taylor.

Préentation rapide du chapitre 3.

On ¢tudie dans ce chapitre le fonctionnement d’une plaque en grands déplacements, et
on a choisi le modée de plaques de F&ppl-von Karman. Il s’agit d’un modéele
non-lin&ire qui, contrairement au modde de Love-Kirchhoff, introduit un couplage
entre la réonse en membrane et la réponse en flexion. Dans ce chapitre et le suivant,
nous appliquerons notre modde numé&ique a des problemes de bifurcation de

structures trés minces sous des chargements de compression.

On dispose de nos jours d’un grand arsenal de méthodes pour traiter numériquement
des problames de bifurcation. On sait par exemple calculer directement les points de
bifurcation sur une courbe de réonse non-lin&ire, mais la procé&lure la plus simple
est d’appliquer une méthode de continuation et d’analyser les résultats. De telles
proc&lures (Newton, Newton-Raphson, Riks...) sont disponibles dans les codes de
calculs existants et ils impliquent d’introduire une perturbation en force ou en
géomérie lorsque la structure est parfaitement symérique. Dans cette thése, nous
avons appliquéla méhode asymptotique numé&ique (ANM) qui préente plusieurs
avantages pour traiter ce type de probléme : tout d’abord le suivi de courbe est plus
facile car le pas de calcul est défini a posteriori de maniée automatique ; ensuite, et
c’est une conséquence du point précédent, la méthode fonctionne avec des forces de
perturbation plus petites, ce qui permet de traiter des structures presque parfaitement
symériques ; enfin les longueurs des pas de calcul diminuent automatiquement a
I’approche d’une bifurcation, ce qui permet de détecter a 1’ceil des bifurcations

éentuelles, simplement en regardant les courbes de réonse obtenues par le processus

98



Ré&uméen franais de la thése

de continuation.

La mé&hode proposé consistera a associer la mé&hode asymptotique-numeique
(ANM) aune discréisation spatiale par TMM (Taylor Meshless Method), ce qui sera
appliquéau modée de F&ppl-von Karman en fleehe-fonction de contrainte (3.1). Plus
précisément 1’application d’ANM transforme ce systéme non-linéire en une suite
d’équations linéaires a coefficients variables (3.7) (3.8) (3.9), ces derniéres étant
discré&iséss ensuite par TMM. On aura donc une double sé&ie de Taylor : d’abord une
s&ie par rapport au chargement ou plus précisément par rapport a la longueur d’arc
(3.6), puis une série par rapport aux deux variables d’espace x et y. Les problémes
linéaires issus d’ANM se ramenent a la résolution de deux systémes linéarisés (3.11) a
I’ordre 1, puis (3.14) aux ordres suivants : c’est ces deux types de problémes qui

seront résolus par TMM.

La proc&ure TMM appliqué aux é&juations de F&ppl-von Karman est déerite
brievement ala section 3.3.2. Elle déoule de la formule de ré&urrence (3.16), les
coefficients de Taylor apparaissant dans chaque terme de (3.16) s’exprimant
simplement a partir des coefficients de Taylor des termes calculé& aux ordres
pr&élents comme dans les formules (3.17) ou (3.18). Une fois que ces s&ies adeux
niveaux (ANM et TMM) ont été calculées, la fin du pas ANM est obtenue d’une
manié&e classique en demandant que le dernier terme de la s&ie soit assez petit, voir
I’équation (3.20) : c’est ce calcul de longueur de pas a posteriori qui fait la force de la
méhode ANM pour les problémes de bifurcation, un trés petit pas pouvant venir juste

aprés un pas tres long.

La formulation en fonction de contraintes des éjuations de F&ppl-von Karman est
é&ante et permet un traitement assez facile des sé&ies de Taylor par rapport aux
variables d’espace, mais il est fréquent qu’on doive écrire des conditions aux limites
en termes des composantes horizontales du dénlacements u et v. Dans le paragraphe
3.3.3, on a donc expriméces déplacements apartir de la fonction de contrainte, voir
1I’équation (3.28) ou sa traduction en termes de coefficients de Taylor (3.29). A noter

qu’il apparait alors un déplacement rigide, c’est-adire trois inconnues
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supplémentaires noté&s u, v et B dans I’équation (3.35). La maniére d’écrire les
conditions aux limites et les conditions de transmission est aussi preeisée dans ce

paragraphe 3.3.3.

Plusieurs applications numéiques sont ensuite discutées concernant des plaques
rectangulaires. Elles sont ensuite comparées avec les réultats obtenus avec le code
par ééments finis ANSYS. Le premier exemple est le flambage d’une plaque carrée
en compression bi-axiale en appui. Dans ce cas, on a essayéde pré&lire le point de
bifurcation avec I’imperfection la plus faible possible : les figures 3.3 et 3.4 montrent
que le suivi de courbe par ANM-TMM permet de suivre la bifurcation avec une force
de perturbation extrémement faible, beaucoup plus faible qu’avec le code d’¢léments
finis. Apres le calcul d’une plaque en flexion, on s’est intéressé au comportement
post-bifurcation d’une plaque en appui sous chargement uni-axial. A la premiee
bifurcation, on obtient un mode sinuso'al &une bosse et on passe progressivement &
un mode atrois bosses (figures 3.9 et 3.11) qui demande une discré&isation plus fine
(ici, 16 sous domaines et un degré10). La mé&hode proposeée permet donc de prévoir
ce comportement complexe avec un maillage grossier et un suivi de courbe trés

preeis.

Pré&entation rapide du chapitre 4.

Dans ce chapitre, la mé&hode déerite au chapitre pré&élent sera appligué aun
probléne de plissement de membranes. Les membranes et les films tres minces sont
un sujet d’importance croissante, soit pour des raisons de recherche fondamentale
(compréhension des instabilités), soit pour des raisons technologiques (réluction de
poids, structures ultralégeres...). Le probléme choisi est le plissement d’une
membrane tré&s mince soumise aun chargement de cisaillement. Ce probléme trés
simple est une source de difficultés pour le calcul numé&ique, en particulier pour des
chargements trés faibles car la rigidité quasi nulle en flexion rend la structure

extr@nement sensible ala moindre compression. Wong et Pellegrino [102] ont éudie
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ce probléne avec un code de calcul commercial. Vu les difficult&s numé&iques
rencontrées, ils ont choisi d’ajouter un chargement de tension assez important en sorte
que la rigidité gemmérique due acette tension compense la trop faible rigiditéde
flexion. Nous rediscutons ici ce probléne de plague mince en cisaillement pour
essayer d’expliquer I’influence de cette tension additionnelle et, si possible, de

comprendre le comportement de cette structure lorsque cette tension est trés faible.

Le probléne de membrane de Wong et Pellegrino est deerit &la Section 4.2. On
considere une membrane rectangulaire (rapport d’aspect a/b=3) trés mince (b/h=5000)
et soumise aun chargement principal de cisaillement. Ce probléme apparemment trés
simple s’est avéré ingérable par les méhodes de continuation a longueur d’arc
imposee. Il avait &étraitépar une approche pseudo-dynamique, mais il avait fallu
introduire une imperfection géométrique, ce qui est classique dans 1’étude numérique
des bifurcations, mais aussi une prétension qui stabilise le calcul, mais risque de
modifier fortement le comportement de la membrane. L’influence de cette pré-tension
est donc un enjeu important qui sera discuté dans ce chapitre. Ici I’imperfection
gémaérique sera produite par une force transversale et non par un défaut initial de
planété le point important &ant la tres faible valeur de cette imperfection pour

résoudre presque parfaitement le probléme de bifurcation.

Les résultats numé&iques sont pré&senté& ala section 4.3. 1l apparait clairement que la
proc&lure de continuation fonctionne et permet de calculer les solutions plissées,
méne avec une imperfection trés faible, et un maillage relativement grossier de
33%11 sous-domaines. L’algorithme de continuation a donné des résultats cohérents
méme pour des prétensions extr@nement faibles (cf Figure 4.8), alors que les
resultats de la litt&ature mentionnent tous la difficulté & faire fonctionner un
algorithme de continuation et qu’ils préferent en général 1’approche
pseudo-dynamique et se limitent &des chargements assez grands. Ici on obtient la
courbe de réponse pour des cisaillements faibles alors que la membrane est tres peu

tendue.

Un ré&ultat un peu surprenant est pré&sentéala Table 4.3 et ala Figure 4.7: pour des
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prétensions trés faibles (0.5um et 1um), les modes de déformations n’ont que 3 ou 4
plis alors que la litt&ature en trouve au moins 10 ou 11 avec des tensions plus
importantes. Ces résultats de la littérature ne sont donc pas représentatifs d’une
membrane chargee presque uniquement en cisaillement, cette prétension transversale
modifiant fortement les modes de déformation et les courbes de réonse (Figure 4.8).
Une contribution importante de cette these, avec le pilotage ANM et la discré&isation
TMM, est donc de pouvoir faire ces calculs de structures tres molles conduisant ades

modées mathématiques ayant beaucoup de solutions.

L’évolution des formes déformées en fonction du chargement de cisaillement est
pré&entée pour plusieurs valeurs de la prétension. Les figures 4.9 et 4.10 pré&entent le
cas d’une pré-tension de 0.05 mm é&udi€ par Wong et Pellegrino : la premiee
bifurcation se produit pour un cisaillement 6~0.05 mm et correspond a un mode trés
localiséaux bords. Une seconde bifurcation pour 8~0.08 mm déclenche 1’apparition
de plis plus petits au centre du rectangle, les simulations de Wong et Pellegrino (voir
leur Figure 9) présentant la suite de I’histoire pour 0.1 mm < 6 < 2.6 mm. Pour une
prétension tres faible de 0.001 mm, la bifurcation a lieu beaucoup plus t&, le nombre
de plis est bien plus faible (4 &6) et les amplitudes des oscillations sont plus
uniformes, sans concentration prés des bords. Enfin on a simulé 1’apparition des plis
avec une membrane initialement trés molle (prétension de 0.0005 mm) : la courbe de
réponse (Figure 4.13) oscille fortement dés le début du calcul, avec un nombre tres
important de pas ANM, signe de la pré&ence de solutions multiples et de nombreuses
quasi-bifurcations dues a 1’état presque mou de la membrane, les plis correspondant a
cet état trés mou étant tres irréguliers, cf Figure 4.14. Enfin, on discute 1’influence de
la petite imperfection transversale ajoutée pour deelencher la bifurcation. Dans le cas
trait¢ au Tableau 4.5, I’algorithme de continuation fonctionne pour un défaut
supé&ieur &0.1 um (en valeur adimensionnelle 1/250) et predit 11 plis acondition que

le d&aut ne soit pas trop grand.

En résumé la mé&hode de continuation proposee a permis de résoudre ce probléne de

membrane trés difficile, en particulier au déout du chargement otila membrane est
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tres molle. Il est apparu que la prétension introduite par Wong et Pellegrino a une tres
forte influence sur la réponse de la membrane et qu’il y a des différences importantes
entre une membrane avec une prétension quasi-nulle et celle avec une prétension de

0.05mm utilisé& par ces auteurs.

Conclusions

Dans cette thése, on a éudi€éle comportement des plagues minces et des membranes
en utilisant une mé&hode de collocation-frontiée sans maillage (TMM), dans laquelle
I’EDP est résolue analytiquement au sens des séries de Taylor et les conditions au
bord sont discré&isées par collocation-moindres carrés. Divers paramétres regissant le

comportement en flexion, flambage ou plissement sont identifiés.

Tout d’abord, on rappelle les techniques de base de TMM. Ainsi, on réduit fortement
le nombre de degré& de libertéen construisant des fonctions de forme solutions de

I’EDP. L’efficacité de TMM est illustrée dans le cas d’une équation de Laplace 2D.

Ensuite TMM est utilisé pour éudier les plaques de Kirchhoff et les plaques
composites stratifiés. La ré&luction du nombre de degré& de liberté permet
d’augmenter le degré jusqu’a un ordre élevé. Différents tests démontrent 1’efficacité

de la méhode qui converge exponentiellement avec le degrédes polyn@mes.

Puis on combine TMM avec la mé&hode asymptotique numé&ique (ANM) pour éudier
des problémes de flexion de plaques en grands déplacements. On développe les
&uations non lin&ires sous forme de sé&ies entiées, ce qui conduit aune suite de
problémes lin@risés. La longueur de pas est déerminé a posteriori & partir des
propriéés de convergence des s&ies. La preeision et I’efficacité d’ANM-TMM sont
veifiees atravers quelques exemples de flexion ou de flambage et la technique peut

étre étendue a d’autres modeéles non linéaires.

Notre moddée numé&ique permet de simuler des phénomenes de flambage, gr&e ala

technique de continuation. On sait que la méthode de pas adaptatifs d’ANM permet de
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déecter des points de bifurcation de maniée trés preeise et avec des imperfections
extr@nement petites. Nous véifierons cette propriéé pour divers benchmarks de

flambage.

Enfin on s’inté&esse au plissement des membranes avec un benchmark de cisaillement
d’une membrane rectangulaire trés mince qui s’était avérée quasiment impossible a
modéliser par d’autres moddes de continuation, mé&ne en rajoutant une traction
transversale. Nos tests montrent quANM-TMM permet de le faire avec des
imperfections trés petites et aussi pour des valeurs tres petites de la traction
transversale. On a vu que cette traction a une influence importante sur la réonse et le

nombre de plis obtenus.

Notre travail a montréque TMM est un outil robuste et efficace pour discréiser divers
problémes d’élasticité linéaire et non-linéaires. Il serait donc important d’étendre les
applications de TMM a d’autres domaines des sciences de 1’ingénieur. Quelques

travaux complénentaires pourraient &re mené pour approfondir nos résultats /

1. L’algorithme de calcul des fonctions de forme pourrait étre optimisé et
géné&alise€ par exemple avec la technique de Diffé&entiation Automatique.

2. A partir des travaux déerits aux chapitres 3 et 4, une «toolbox »destiné aux
structures minces pourrait &re déseloppee pour simplifier le préraitement et la
définition des donnéss.

3. Nos études sur les plaques minces forment une bonne base pour I’étude des
coques minces. 1l serait aussi inté&essant d’étendre le champ d’application de
TMM ades problénes difficiles, par exemple les couplages fluides-structures,

la meéanique du contact ou les vibrations.
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METHODE SANS MAILLAGE DE TYPE TAYLOR POUR PLAQUES MINCES

RESUME : Une nouvelle classe de mé&hodes sans maillage — Taylor Meshless Method
(TMM) — a é&é€&introduite. Elle repose sur une solution explicite des éjuations aux
dérivées partielles dans le domaine a I’aide des développements en sé&ies de Taylor.
Parce que la PDE est réolue analytiquement dans le domaine, on est ré&luit aun
probléme de frontiée discret dont la taille est plut@ petite. L’efficacité de TMM a été
vé&ifié en réolvant certaines PDEs. TMM est utilis€épour résoudre les problénes de
plaques de Kirchhoff et de plaques sandwich laminées. L'erreur montre une
convergence exponentielle avec l'augmentation du degré de polyn&mes. TMM est
combinéala Mé&hode Asymptotique-Nume&ique (ANM) pour ré&oudre les problénes
de grands deéplacements de plaques minces. La longueur du pas est déerminé
automatiquement par une technique fiable de suivi de courbe. Cette mé&hode en double
sé&ie peut facilement &re é&endue ad'autres problémes non lin&ires. Le processus de
flambement peut é&re illustré de maniée beaucoup plus preésise que celle d'autres
meéthodes. La performance de I'approche est examiné par une s&ie de problénes de
flambement de ré&fé&ence. Les problénes de plissement de membrane sont éudiés. Les
résultats montrent que TMM peut réliser des simulations convergentes avec de tres
petites imperfections et des charges de tension comparés aux méhodes par éénents
finis. L’approche de I’analyse de la membrane ridée par la TMM a é&é&bien &ablie.
Mots clé& : Méhode sans maillage, S&ie de Taylor, Collocation

TAYLOR MESHLESS METHOD FOR THIN PLATES

ABSTRACT: A new class of meshless method — Taylor Meshless Method (TMM) — has
been introduced that relies on an explicit solution of the partial differential equations
inside the domain with the help of Taylor series expansions. Because the PDE is solved
analytically in the domain, one is reduced to a discrete boundary problem whose size is
rather small. The effectiveness and efficiency of TMM have been verified by solving
some PDEs. TMM is used to solve Kirchhoff plate and laminated sandwich plate
problems. The error shows exponential convergence with the increase of degree of
polynomials. TMM is combined with Asymptotic-Numerical Method (ANM) to solve
large deflection problems of thin plates. The step length is determined automatically by
a reliable path following technique. This double series method can be easily extended to
other nonlinear problems. The buckling process can be illustrated much more accurately
than that by other methods. The performance of the approach is investigated by a series
of buckling benchmark problems. The membrane wrinkling problems are studied. The
results show that TMM can accomplish convergent simulations with very small
imperfections and tension loads in comparison with finite element methods. The
approach of wrinkled membrane analysis by TMM has been well established.
Keywords : Meshless method, Taylor series, Collocation
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