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Chapter 1 Literature review on meshless 

methods 

1.1 Research background 

Numerical simulation on computers has become an important tool to study and 

predict the behavior of physical systems, especially for those who cannot provide 

analytical solutions, as in most nonlinear systems [1]. The procedure of scientific 

computation and solving technical problems consists of several steps, as shown in 

Figure 1.1. 

Practical 

problem

Mathematical 

model

Numerical

method

Programme

design
ComputationSolution

 

Figure 1.1 The procedure of scientific computation 

The premise and basis of scientific computation is modeling practical problems 

based on scientific theory, mathematical theory and some reasonable assumptions. 

However, the key of the procedure is to obtain solutions of mathematical models 

which can meet accuracy requirements using computers. This is a new branch of 

mathematics - Numerical Analysis, including function interpolation, numerical 

differentiation and integration, solving systems of linear and nonlinear equations, 

calculation of matrix eigenvalues and eigenvectors, computational methods for 

optimization problems, numerical solutions of ordinary differential equations and 

partial differential equations, etc. It also involves theoretical research on reliability of 

computational methods, such as convergence, stability and error estimation. 

Numerical analysis is applied widely in fundamental industrial production and 

researches of the most advanced science and technology. It provides an alternative 

way of scientific investigation besides theoretical solutions and expensive, 
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time-consuming experiments, becoming essential in optimization design of 

mechanical and electrical products, geological exploration and oilfield development, 

weather forecast and earthquake prediction, development of cutting-edge weapons 

and aerospace. Furthermore, it has infiltrated into different science fields, generating 

interdisciplinary subjects such as computational physics, digital image processing and 

econometrics. 

On this background, computational mechanics is formed by the interdisciplinary 

of numerical analysis and mechanics, which deals with the use of computational 

methods in engineering practices to study physical phenomena governed by the 

principles of mechanics [2]. Over the past few decades, it has shown huge potential 

for the application on physical and biological systems based on classical mechanics, 

quantum mechanics and biology. The computational mechanics are extended to the 

areas of mechanics, mathematics, computer science, making a significant contribution 

in the design and simulation of new products because of the advantages of 

convenience, effectiveness and high efficiency. The computational method has 

become one of the most important tools in engineering and science, covering various 

topics including thermal, fluid, solid mechanics, vibration, and vehicle dynamics. 

Among numerous computational methods in computational mechanics, the most 

popular ones are finite difference methods (FDM), finite element methods (FEM) and 

boundary element methods (BEM). They are widely used for solving engineering 

problems, especially finite element methods. However, despite of widespread 

applications, they have their own shortcomings and limitations. The advantages and 

disadvantages of these methods are introduced and detailed in this section. 

1.1.1 Finite difference method 

The finite difference methods (FDM) is one of the most traditional and simplest 

methods for solving differential equations by approximating them with difference 

equations, in which finite differences approximate the derivatives [3]. 
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FDM solves the original linear or nonlinear differential equations by converting 

them into a linear system, which can be solved by matrix techniques. The finite 

difference approximation began to develop rapidly with the widespread use of 

computers. The accuracy, stability and convergence of FDM are well studied during 

the last few decades. The calculation format and program design are intuitive and 

simple, making it an important tool in computational mathematics and computational 

physics. 

In FDM, one pays attention to the corresponding functional values of the discrete 

independent variables, neglecting the feature that independent variables are 

continuous in differential equations. The derivatives in the equations are replaced by 

differential quotients. For the one-dimensional case, the derivative of a function u at a 

point x R is defined as 

  
   

0
' lim

h

u x h u x
u x

h

 
  (1.1) 

Nevertheless, the desirable computational accuracy can still be obtained by 

reducing the interval of discrete variables or interpolating the functional values of 

discrete points. In other words, the approximation can be improved by using a smaller

h . The discretization error of the approximate solution comes from the error that is 

committed by going from a differential operator to a difference operator. 

Despite of the simplicity of FDM, it needs a regular mesh of grids, which limits 

the application to problems with regular geometry and simple boundary conditions. 

The treatment quickly becomes complicated when adding some complexities like 

moving boundaries or adaptive mesh grid. Researchers have improved FDM by 

proposing Generalized Finite Differences, making it possible for problems with 

irregular node distribution. However, the bad conditioning is still a problem for dense 

meshes [4]. 

1.1.2 Finite element method 

Finite element method is a very efficient tool for solving complex differential 
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equations. The fundamental principle of finite element analysis is to discretize the 

continuous domain into a family of discrete subdomains by mesh discretization. In 

1960, Clough proposed “Finite Element Method” and used it to solve plane elastic 

problem [5, 6]. In 1967 Zienkiewicz and Cheung published the first book on finite 

element analysis [7]. FEM was used to solve nonlinear and large deformation 

problems after 1970. With the development of computer technology, many 

computational software have been developed based on the principle of finite element 

method, some famous of which are ABAQUS, ANSYS, MSC/NASTRAN and 

IDEAS. 

In FEM, a continuous domain is discretized into finite elements. Then, the 

relation of forces and displacements on all nodes is obtained by element and integral 

analysis. Stress, strain and other fields of each element are computed by introducing 

boundary conditions. FEM does not require high continuity of the interpolation 

functions due to the weak form of the equivalent integral of differential equations. 

Because of the computational stability and high applicability, FEM can deal with 

complex geometry, boundary conditions and material properties. 

Although FEM has many advantages and has been applied in many scientific 

fields, it has some inherent shortcomings:  

(1) FEM has difficulties in dealing with some complex problems. These 

problems mainly include: extremely large deformation problems; dynamic crack 

propagation problems; high-speed impact and geometric distortion problems; material 

fission problems; metal material forming problems; multi-phase transformation 

problems, etc. When analyzing these problems with FEM, large mesh distortion or 

element splitting may bring difficulties or even failure in numerical computation. 

(2) In finite element analysis, meshing consumes too much time. In addition, 

FEM needs complex post processing because it adopts low-order shape functions, 

which leads to relatively lower accuracy. 
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1.2 Meshless methods 

Classical numerical methods have some troubles when dealing with some 

practical problems, such as high velocity impact, material molding, dynamic crack 

propagation, discontinuity problems, fluid-solid coupling and adaptive problems. In 

recent decades, new generation of computational methods - meshless methods - have 

been developed as they are expected to be better than mesh-based FDM and FEM in 

many applications[8]. Similar to conventional FEM, FDM and finite volume methods, 

meshless methods are actually a tool for solving partial differential equations that 

govern physical phenomena [9]. 

In the finite difference method and the finite element method, the spatial domain 

is discretized by predefined grids and meshes, providing a relationship between the 

nodes. The PDEs defined in the domain are discretized by a system of algebraic 

equations based on the grids and meshes. In meshless methods, the solving process 

consists of two steps: the approximation of field functions and the discretization of 

governing equations. The approximation functions and their derivatives, depending on 

the location of discretized points in the domain, are built up without the use of grids or 

meshes, which means that the relationship between the points is not required. This 

main advantage makes meshless methods suitable for problems involving large 

deformation and adaptive meshes, such as high velocity impact, crack propagation 

and fluid-solid coupling [10]. 

Gingold and Monaghan [11] applied smooth particle hydrodynamics (SPH) to 

polytropic stellar models. Lucy [12] used SPH to solve the fission problem for 

optically thick protostarts. These two papers are considered to be the earliest work on 

meshless methods. In the past decades, a number of meshless methods have been 

developed and applied to the corresponding engineering practice based on their own 

characteristics.  They can be classified in terms of different approximation 

approaches of field functions such as moving least-square (MLS), radial basis 

function (RBF), kernel particle (KP), point interpolation (PI) and partition of unity 
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(PU). They can be also classified according to different approaches to discretize the 

governing equations: the weak-form formulation and the strong-form formulation. 

One can assemble various types of meshless methods by combining different 

approximation and discretization approaches. 

The basic idea and research status of meshless methods will be introduced 

hereafter around the approximation approaches of field functions and the discrete 

approaches of algebraic equations. 

1.2.1 Approximation approaches of field functions 

The first and most important step in meshless methods is to approximate the field 

functions and create shape functions of the problem from a cloud of points. The shape 

functions constructed should be stable, consistent, efficient and independent of the 

nodal distribution, so that the implementation and the accuracy of the method can be 

ensured. In this section, various approximations for meshless methods will be 

recalled. 

Kernel particle and reproducing kernel particle approximation 

The kernel methods approximate the field function  u x with a kernel function in 

a domain Ω [13]:  

      ,hu w h u d


  x x s s  (1.2) 

where  hu x is the approximation, x is a vector in 2D and 3D problems, s is the 

integral variable,  ,w hx s is the kernel interpolation function. The kernel functions 

should satisfy the following conditions (see Figure 1.2): 

 

 

 

 

, 0 in

, 0 out of

, 1

i

i

w h

w h

w h d


   


  


  

x s

x s

x s

  (1.3) 
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Besides,  ,w hx s should be a monotonically decreasing function as well as

   ,w h   x s x s when 0h  , where δ is the Dirac-δ function. Common 

kernel functions include exponential form, cubic spline form and quartic spline form. 

The integral term on the right side of Eq.(1.2) is discretized with function values on 

each collocation point satisfying differential equations and boundary conditions. 

i

i



 

Figure 1.2 The cover of the domain by kernel functions 

In 1970s, the kernel approximation was invoked for the first time by Lucy in the 

smoothed particle hydrodynamics (SPH), which is also the oldest meshless method 

[12]. This method is successfully applied to the astrophysical field. In 1980s, 

Monaghan developed SPH to simulate the shocktube phenomena, binary star 

interactions and magnetohydrodynamics [13-18]. Despite of its versatility and 

simplicity, the disadvantage of SPH is its limited accuracy that needs plenty of nodes 

to improve the situation. Nevertheless, the superiority of SPH in fields such as high 

velocity impact makes it one of the few meshless methods that has been applied in 

engineering practice. 

Liu developed reproducing kernel particle method (RKPM) based on SPH, in 

which the kernel particle interpolation function consists of a flexible window function 

and a continuous correction function [19]. It gives more accurate results because of 

the addition of the correction function. He also proposed multiscale reproducing 

kernel particle method based on reproducing kernel and wavelet analysis, 
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implementing adaptive analysis by RKPM [20, 21]. Chen studied hyper-elasticity and 

elasto-plasticity problems based on RKPM [22]. The results indicated that RKPM is 

more effective and accurate than FEMs when dealing with large material distortion 

because of the smoother shape functions. Lin solved time-space fractional diffusion 

equations in 2D regular and irregular domains using RKPM [23]. Wang proposed a 

quasi-convex reproducing kernel meshless method, which has better accuracy 

compared with the conventional RKPM [24]. 

Moving least-squares approximation 

Another approach to construct shape functions in meshless methods is moving 

least-square (MLS) approximation that was proposed by Lancaster for data fitting [25]. 

In the domain Ω, the approximation function  hu x of field function  u x is 

          
1

=
m

h T

i i

i

u b a


x x x b x a x  (1.4) 

where m is the number of terms in the basis functions  ib x and  ia x are the 

corresponding coefficients. The basis functions should satisfy the following 

requirements: 

 

 

    

   

1 1

1,2, , ; 0,1, ,

1,2, , are linearly independe t n

l

i

i

b

b C i m l m

b i m

 


   




x

x

x

 (1.5) 

Commonly used bases are the linear basis of complete polynomials. For example, 

a quadratic basis in 2D is    2 2= 1, , , , ,T x y x xy yb x . In [26], the trigonometric 

function was selected as the basis function to solve some 2D elastostatic problems. 

For singular problems, the characteristic function near the singular point can be used 

as the basis function [27]. 

From Eq.(1.4), the quadratic form by a weighted least-square fit with respect to 

coefficients  ia x can be obtained: 
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2

1

m

j i i j

j i

J w b a u


 
   

 
 x x x x  (1.6) 

The coefficients  ia x  are obtained by calculating the derivative of J. Because 

 h

j ju ux , the weighted function is smooth and continuous, which brings difficulty 

to introduce Dirichlet boundary condition. To get MLS approximation with 

point-passing interpolation character, one can choose singular weighted functions that 

satisfy  h

j ju ux . 

Nayroles et al proposed the diffuse element method (DEM) firstly using moving 

least-square approximations in 1992 [28]. By improving DEM, Belytschko et al 

proposed the famous element-free Galerkin method (EFGM) [29]. With the use of 

Lagrange multipliers, a large number of quadrature points and modified derivatives of 

the interpolants, EFGM has a better performance in accuracy and stability than DEM. 

EFGM was successfully applied to the numerical simulation of crack propagation as it 

overcame the drawback of FEM in remeshing [30-36]. In the next few years, EFGM 

was developed and applied to various fields such as contact [37, 38], vibration 

analysis [39], hydromechanics [40] and heat transfer [41]. 

Onate and Idelsohn proposed the finite point method (FPM) in 1996, which has 

been applied to hydromechanics and aerodynamics successfully [42-45]. However, 

the application of FPM in solid mechanics is limited due the high requirement of point 

symmetry next to boundary segments [46]. Other meshless method using MLS to 

construct shape functions include hp-clouds method [47-49] and Meshless Local 

Petrov-Galerkin Method (MLPG) [50, 51]. 

Polynomial and radial point interpolation approximation 

In MLS approximation, the number of nodes in the neighborhood of point x is 

larger than the number of basis functions. In general case, the least-square fitting does 

not pass the points with continuous and nonsingular weighted functions. This brings 

difficulty for the introduction of Dirichlet boundary conditions. The point 
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interpolation method (PIM) uses the same number of basis functions and nodes in the 

neighborhood of point x. The shape functions satisfy  h

j ju ux on the nodes, making 

it easy to introduce Dirichlet boundary conditions. 

There are two types of basis functions that are used in PIM. Liu and Gu [52] 

developed PIM by using polynomial basis functions. The interpolation coefficients are 

constant while they are functions in MLS. Despite of its simplicity, the polynomial 

PIM may lead to singular moment matrix. Wang and Liu used radial basis functions 

(RBF) as the interpolation functions and they called it radial point interpolation 

method (RPIM) [53]. In the conventional RBF meshless method [54-56], the radial 

basis functions are defined on the global domain and the formed system matrix is full, 

thus it is not suitable for large scale problems. The algebraic model in RPIM is banded, 

which is very important for solving partial differential equations. However, the 

h-convergence of RPIM depends on the selection of RBF’s shape parameters. 

Other meshless approximation methods include partition of unit approximation 

[57, 58] and Taylor series [4]. 

1.2.2 Galerkin formulation and collocation formulation 

The second important step in meshless methods is to build the algebraic 

equations of the discretized model on the basis of approximation functions. There are 

three typical realizing ways: global Galerkin integration, local Galerkin integration 

and collocation formulation, where the first two formulations are weak form and the 

third one is strong form. 

Global Galerkin formulation 

A weak form formulation requires weaker consistency on the approximation 

functions for variables compared with a strong form formulation [10]. Formulation 

based on weak forms produces a stable set of algebraic equations and leads to more 

accurate results with the discretized system. 



Chapter 1 Literature review on meshless methods 

11 

Consider the plane elasticity problem in the domain : 

 

0

u

t

   



  

f x

u = u x

n = t x





 (1.7) 

where is the stress tensor, f is the volume force tensor, u is the given displacement 

boundary condition, t is the given stress boundary condition, n is the normal vector 

on the boundary. The equivalent integral form of the equilibrium equation and the 

stress boundary condition in Eq.(1.7) is 

      , 0
t

i i ij j i i ij j i tu u f d u n t d    
 

         (1.8) 

By using the variation 0
u

iu

 and the symmetric property of the stress tensor

ij , Eq.(1.8) is integrated by parts and becomes 

     0
t

i ij ij i i i i tu u f d u t d    
 

         (1.9) 

which is the equivalent integral weak form of Eq.(1.7). The matrix form of Eq.(1.9) is 

     0
t

T T T

td d   
 

       u u f u t   (1.10) 

where 

 

   1 2 1 2 1 2, , , , ,

, , 2 , , ,

TT T

T T

xx yy xy xx yy xy

u u f f t t

D

     

    

       



u f t

 

 

 (1.11) 

By substituting the approximation function into Eq.(1.10), one can obtain the 

final discrete algebraic equations. The domain in meshless methods is discretized by 

nodes and in general, the approximation functions are not polynomials. Therefore, the 

integral in Galerkin meshless methods is achieved in the ways that differ from FEM. 

In EFGM [29], the integral for the domain is converted to the integral for each cell 

of a regular grid that covers the domain, in which Gauss integration is applied (see 
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Figure 1.3). Even though the cells are simple and arbitrary, EFGM is not a pure 

meshless method due to the presence of background grid. As Gauss integration is time 

consuming in dealing with complex problems, Beissel [59] adopted the nodal 

integration mode, in which the value of the integrand in a neighborhood equals to the 

value at the node. Compared with the approach in EFGM, the nodal integration 

largely improves the computational efficiency. However, the accuracy and the stability 

are decreased in the meantime. Carpinteri [60] proposed the partition of unity 

quadrature, in which the compact support domain is used as the domain of integration 

Background grid

Gauss point

 

Figure 1.3 Background grid of EFGM for integration 

Local Petrov-Galerkin formulation 

The implementation of global Galerkin formulation is based on the integration on 

the whole domain. In general cases, it is difficult to satisfy the equation over the entire 

problem domain. In the meshless local Petrov-Galerkin (MLPG) originated by Atluri 

[51], the equation is satisfied point by point and the integration is implemented in a 

local domain. The equivalent integral weak form of local Petrov-Galerkin at the 

integration point Ix is 

    , 0
I I
te su

ij j i i i i if d u u d   
 

       (1.12) 

where
I

su is the intersection of the displacement boundary and
I

te (see Figure 1.4), is 

the penalty factor for the essential boundary condition. 
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te

te




su

 

Figure 1.4 Domains and boundaries in MLPG 

Collocation formulation 

The system of equations developed with Galerkin and local Petrov-Galerkin 

formulations are weak form system. The integral process and the introduction of the 

displacement boundary condition are complicated in practical operation. In contrast, 

the collocation-based meshless methods have no any background grids and are very 

efficient, making them pure meshless methods. In the collocation formulation, the 

residual of the PDEs and boundaries on a group of discrete points is forced to be 0: 

 

   

   

   

0I I I

I I I u

I I I t

   



  

x f x x

u x = u x x

x n = t x x





 (1.13) 

The number of collocation points should be larger than the number of algebraic 

equations as the result might be instable if the two numbers are equal. The error in 

collocation methods is mainly from the introduction of Neumann boundary condition. 

Zhang [61] adopted a number of auxiliary points that satisfied the equilibrium 

conditions to stabilize the solution and improve the accuracy. Liu [62] proposed 

meshfree weak-strong form method (MWS) by combining the strong form and the 

weak form, in which the Neumann boundary condition was introduced by local 

Petrov-Galerkin method. Sadeghirad [63] improved the stability and accuracy of 

collocation methods by implementing integration on the segments of Neumann 

boundary. 
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1.2.3 Taylor Meshless Method 

Taylor Meshless Method (TMM) is a boundary type meshless method that is 

proposed by Zézé et al [64] in 2010. The field equations are approximated with Taylor 

series and only boundaries are discretized. This method converges fast and requires 

much less degrees of freedoms than finite element method. 

Tampango evaluated the convergence properties of Taylor series [65] and 

introduced the technique of subdomains in the case of a complex domain [66]. Yang 

tested both least-square collocation and Lagrange multipliers to account for boundary 

conditions and solved large-scale 3D problems with TMM [67]. TMM is combined 

with Newton method to solve non-linear elliptic PDEs in [68]. 

The approximation method of the field function in TMM is similar to that in 

point collocated Trefftz methods using general polynomial solutions as shape 

functions. For constant coefficients linear partial differential equations that have 

general solutions, the approximation forms of the field function are the same in TMM 

and Trefftz methods. However, for nonlinear partial differential equations, it is 

difficult to find the general solution that can satisfy the equations exactly. This is the 

limitation of Trettfz methods. In TMM, a truncated interruptive Taylor series is 

introduced into partial differential equations, then the non-independent coefficients 

are eliminated in the approximate solution. The independent coefficients in the 

reduced approximate solution are much less than that in the original Taylor series. 

This is the key advantage of TMM. Although the solution obtained in this way is not 

the exact solution, the residuals of the equations can be reduced to a very small value 

by increasing the degree of Taylor series. This treatment can be applied to any kind of 

elliptic partial differential equations. The governing equation is satisfied by an 

approximate solution, thus only boundary discretization is needed to obtain the 

independent coefficients in the approximate solution. 
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1.2.4 Boundary element method 

Boundary element method (BEM) is an efficient numerical analysis method for 

engineering and scientific problems developed after FEM [69]. Taking the boundary 

integral equations as the mathematical basis and drawing on the discrete element 

technique, BEM becomes an important supplement to the FEM in some areas. The 

discretization is proposed only on boundaries instead of the whole domain. Boundary 

conditions are approximated with functions that satisfy the governing equations. The 

dimension of the problem is reduced and the boundary geometry is simulated with 

simple elements. The analytic fundamental solution of differential operators is used as 

the kernel function of boundary integral equations. 

BEM has some main disadvantages. For complex partial differential equations, it 

is difficult to obtain the fundamental solution. Boundary singular integral is another 

tough problem. The coefficient matrix established in BEM is an asymmetric full array, 

which may limit the extension of problem dimension. 

1.3 Organization of the thesis 

In this work, a boundary collocation meshless method based on Taylor series – 

Taylor Meshless Method – is applied to solve linear and nonlinear thin plate problems. 

The objective is to extend the application of TMM to large deflection problems and 

study the influence of key parameters, proposing a fast and reliable method for 

practical engineering. The thesis is structured into five chapters, which are described 

as follows: 

In Chapter 2, the construction of approximate functions and boundary 

discretization of TMM are introduced. The accuracy and the stability are verified by 

studying a 2D Laplace equation. Then, TMM is used to solve Kirchhoff plate 

problems and bidirectional sandwich plate problems, what has not been done before. 

In Chapter 3, a new numerical technique for post-buckling analysis is presented 

by combining the Asymptotic Numerical Method (ANM) and TMM. The accuracy 
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and efficiency are verified by solving Föppl-von Karman plate problems. The bending 

and buckling of thin plates are studied with various boundary conditions. 

In Chapter 4, the wrinkling of a rectangular membrane is studied. The generation 

of membrane wrinkles is simulated with a three-step loading procedure. The 

sensitivity to imperfection, tension load and number of subdomains is tested to find 

the contribution of each parameter on the wrinkling results. 

In Chapter 5, the main conclusions of the current work and some prospects for 

future work are drawn. 
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Chapter 2 Techniques of Taylor Meshless 

Method 

2.1 Introduction 

The solution process of TMM consists of two basic steps: 1) approximation of 

the unknown field function; 2) introduction of boundary conditions. By using a Taylor 

series expansion, the governing equation is satisfied in the domain. The system is 

largely simplified and solved by applying boundary conditions. 

In a previous study by Yang [70], Lagrange multiplier method and least-square 

collocation were tested to account for boundary conditions. These two methods work 

well and converge about in the same way. As least-square method is more convenient 

and efficient to bring exponential convergence, it is used to discretize boundary 

conditions in this thesis. 

TMM solves problems in their strong form in the area without any background 

mesh. The shape functions are built up with high degree polynomials. With the 

treatment of partial differential equations, the degrees of freedom are reduced 

significantly, which can help to increase the degree of polynomials easily. In this 

chapter, the construction of approximate functions and boundary discretization are 

detailed introduced in detail. A 2D Laplace equation is solved by TMM to test the 

efficiency, robustness and sensitivity to parameters. Then, TMM is used to study 

Kirchhoff plates and bidirectional sandwich plates. 

2.2 Resolution of partial differential equations 

To introduce the techniques of TMM, we consider the Laplace equation: 

 
   

0 in

, , ond

u

u x y u x y

  


 
  (2.1) 

The shape functions are determined by a quasi-exact resolution of the PDE in the 
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domain. The approximate solution of Eq.(2.1) is expressed in the form of the Taylor 

series of degree N expanded at a point  0 0 0,
T

X x y near the domain.: 

       0 0

0 0

, ,
N N m

m n

m n

u x y u m n x x y y


 

     (2.2) 

To facilitate understanding, the approximate solution is supposed to be expanded 

at point (0, 0) with fourth degree polynomial: 
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u x u x y u x y

u x u x y

u x

    

   

  

 



  (2.3) 

where  , ,0 4,0 4u m n m n n     are the coefficients of the Taylor series. For the 

complete polynomial Eq.(2.2), there are 15 coefficients to be found. The second 

partial derivatives of Eq.(2.3) are given as: 

 
       

     

2
2

2

2

, 2 2,0 2 2,1 2 2,2

+6 3,0 6 3,1 12 4,0

u
x y u u y u y

x

u x u xy u x


  



 

  (2.4) 

 
       

     

2
2

2

2

, 2 0,2 6 0,3 12 0,4

2 1,2 6 1,3 2 2,2

u
x y u u y u y

y

u x u xy u x


  



  

  (2.5) 

Eq.(2.4) and Eq.(2.5) can be summarized as: 

       
2 2 2

2
0 0

, 2 1 2,
m

m n

m n

u
x y m m u m n x y

x



 


   


   (2.6) 

        
2 2 2

2
0 0

, 2 1 , 2
m

m n

m n

u
x y n n u m n x y

y



 


   


   (2.7) 

From Eq.(2.1) one knows that the sums of the relevant parts for
m nx y in Eq.(2.6) 

and Eq.(2.7) should be zero respectively:  
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          2 1 2, 2 1 , 2 0m m u m n n n u m n          (2.8) 

where 0 2m  , 0 2n m   . Eq.(2.8) indicates that all coefficients are not 

independent. With initial items  0,0u ,  0,1u ,  0, 2u ,  0,3u ,  0, 4u ,  1,0u ,  1,1u ,

 1, 2u ,  1,3u , the remaining coefficients can be obtained by the recurrence: 

  
  

 
 

2 1
, 2, 2

1

n n
u m n u m n

m m

 
   


  (2.9) 

In this way, the number of independent coefficients for the PDE is reduced from 

15 to 9, which is the amount of initial items. Each initial item i corresponds to an 

independent shape function iP . The approximate solution is the linear combination of 

shape functions: 

 
9

1

h

k k

k

u P


   (2.10) 

In other words, the equation 0u  has been solved in the sense of Taylor series 

by vanishing the Taylor coefficients of the residual u . Eq.(2.10) is the general form 

of solution for a homogeneous equation. Vector  is determined by boundary 

conditions. For inhomogeneous equations, consider Poisson equation for example: 

 u f    (2.11) 

The approximate solution for Eq.(2.11) includes two parts: the general solution 

and a particular solution. To find a particular solution, the right side f is expanded 

with Taylor series at the degree of 2N  , which is consistent with u . 

    
2 2

0 0

, ,
N N m

m n

m n

f x y f m n x y
  

 

    (2.12) 

From Eq.(2.8) and Eq.(2.12) it can be concluded that:  

            2 1 2, 2 1 , 2 ,m m u m n n n u m n f m n          (2.13) 
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where 0 2,0 2m N n N m       . The particular solution for Eq.(2.11) can be 

chosen arbitrarily by setting any initial items satisfied by Eq.(2.13): 

    
0 0

, ,
N N m

m n

s s

m n

P x y u m n x y


 

   (2.14) 

The approximate solution for Poisson equation is in the form: 

      
2 1

1

, ,
N

k k s s

k

u P x y P x y P 




    P   (2.15) 

2.3 Treatment of boundary and interface conditions 



d

n  

Figure 2.1 One domain with Dirichlet and Neumann boundary conditions 

The simplest collocation technique is to choose as many points as shape 

functions. However, the pure boundary collocation may lead to numerical instabilities. 

Yang has applied Lagrange multiplier method to account for boundary conditions, 

which requires additional parameters for radial functions. The least-square collocation 

is validated as an efficient and robust method in most of the cases that were tested, 

bringing exponential convergence with few degrees of freedom [65, 67]. That’s why 

least-square is chosen as the collocation method in this thesis. 

A set of points is collocated on the boundary of the domain. With Md points on 

the Dirichlet boundary Γd and Mn points on the Neumann boundary Γn, the error 

between approximate solution and exact solution for the problem in Figure 2.1 is: 
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  (2.16) 
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The first part of the right side in Eq.(2.16) corresponds to Dirichlet boundary and 

the second part corresponds to Neumann boundary. Q is the first derivative of P and 

Qs is the first derivative of Ps. The principle is to minimize Eq.(2.16) by making the 

first partial derivatives of the function zero: 

 
            

             0

T T T d

s

T T T n

s

J
P u

Q g







   



  

P P P P

Q Q Q Q

 (2.17) 

Eq.(2.17) leads to a linear system: 

     K F   (2.18) 

where 

          
T T

K  P P Q Q  (2.19) 

                T Td n

s sF u P g Q   P Q  (2.20) 

The coefficient vector {α} can be obtained by solving the linear system 

Eq.(2.18). 

 

Figure 2.2 Multidomains and the interface 

Limited to the convergence radius, one Taylor series is not sufficient to describe 

a complex problem. Even though one can increase the degree of polynomials to a high 

level, it is time consuming and may lead to ill conditioning. A better approach is to 

split the whole domain into several subdomains, in which the equations are 

approximated with independent Taylor series. The subdomains are coupled by 

interface conditions that are introduced with a least square collocation[64]. 

In Figure 2.2, two subdomains Ω1 and Ω2 are connected with the interface Γin. 

Boundary conditions for each subdomain are introduced independently with the 
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formulation Eq.(2.16). The interface is collocated with Min points satisfying the 

following continuity condition: 

 

   

   

1 2

1 2

j j

j in
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x x
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x x

 (2.21) 

Now the quadratic sum of the error consists of three parts: the boundary 

conditions for each domain and the continuity condition: 

        
1 2

1 2 1 1 2 2 1 2, ,
in
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    (2.22) 

where 
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x

x x x x  (2.23) 

To compute the coefficient vector {α1} and {α2}, one can minimize Eq.(2.23) by 

making the first partial derivatives of the function zero respectively: 
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 (2.24) 

2.4 Application to 2D Laplace equation 

To test the convergence and the robustness of the method, we consider the 

Dirichlet problem in a circular domain:
2 2 1x y  . 

 
 

   
0

2 2

0 0

0 in

, ond

u

x x
u x y

x x y y

  


  
   

  (2.25) 

The exact solution for the problem is:        
2 2

0 0 0,eu x y x x x x y y     
 

. 

To avoid the influence of the singularity,  0 0 0= ,X x y is chosen as (1.5, 0.2). The error 

is the difference between the exact solution and the approximate solution divided by 



Chapter 2 Techniques of Taylor Meshless Method 

23 

the maximum value of the solution: 

 
 max

e h

e

u u
Error

u


   (2.26) 

 

Figure 2.3 Distribution of collocation points 

Uniformly distributed collocation points are chosen for the calculation (see 

Figure 2.3). The Taylor series for this problem are developed at point  0,0 . Figure 2.4 

is the influence of the number of collocation points for degree N=10, 20 and 30. It can 

be seen that the results may fluctuate and are not accurate enough if the collocation 

points are too few. The results become stable if the number of collocation points M is 

large enough. The degrees of freedom for Eq.(2.25) are 2N+1, thus M should be more 

than 2N+1 because collocation points should be more than the dimension of the vector 

α in least-square method. 

Figure 2.5 shows that the results get accurate with the increase of the degree. The 

maximal error becomes stable when the degree is more than 85. After that the 

accuracy stands under 1410 . 
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Figure 2.4 The influence of the number of collocation points for Eq.(2.25), N=10, 20, 30 

 

Figure 2.5 The influence of the degree N for Eq.(2.25), 4M N  

2.5 Application of TMM to Kirchhoff plate problems 

The Kirchhoff-Love theory of plates is a two-dimensional model for thin plates 

with small deflections. It was developed by extending Euler-Bernoulli beam theory in 

1888 [71]. This theory makes the following assumptions: 

1) The linear strain perpendicular to the middle plane can be disregarded; 

2) The middle plane of the plate remains neutral during the deformation; 

3) Stress components xz , yz and z are much less than the other three components, 
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therefore the deformation from them can be disregarded. 

The governing equation for a Kirchhoff-Love plate under transverse load is a 

fourth order partial differential equation that has no analytical solution except for a 

few plates of simple regular shapes. Thus numerical methods are used to 

approximately solve these problems. The formation of TMM for Kirchhoff plate will 

be introduced. Several cases are studied and results are discussed in the following part 

of this section. 

2.5.1 Calculation of the shape functions 

The governing differential equation for plates in the Kirchhoff plate theory is 

[72]: 

      4

0 , , ,D w x y p x y x y     (2.27) 

where  ,w x y is the lateral deflection,  ,p x y is the lateral load,  3 2

0 12 1D Eh   is 

the flexural rigidity of the plates, E and  are Young’s modulus and Poisson’s ratio 

respectively and h is the plate thickness. 

If one can obtain a solution  ,w x y , satisfying Eq.(2.27) and the given boundary 

conditions, bending moments, twisting moment and shear forces may be defined in 

terms of a function w by: 
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  (2.28) 
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Eq.(2.27) and bending moments in Eq.(2.28) can be written in the form of second 

order derivatives: 
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  (2.30) 

where [D] is the elastic matrix. Dij(i, j = 1, 2, 6) together are called flexural rigidity 

which are determined by the material of the plates. For Kirchhoff plates with isotropic 

materials, the elastic matrix is: 
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1 0
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  (2.31) 

Now we have three equations with second order derivatives: 
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The unknowns M and K are split into two parts: 
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  (2.33) 

This splitting is motivated by the procedure established in [64]and [67] to solve 
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the differential equation: one assumes that the dependence with respect to y is known 

and one considers the equation as a differential equation in x. The last equation in 

Eq.(2.32) can be represented with M and k : 
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  (2.34) 

With the technique in Chapter 2.2, Eq.(2.32), Eq.(2.33) and Eq.(2.34) can be 

expanded with complete polynomials of order N. It can be concluded at the that 

equations at rank(m, n) are: 
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  (2.38) 

Eq.(2.35) - Eq.(2.38) give the recurrence formulae for the elements of TMM, as 

is shown in Table 2.1. 
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Table 2.1 Organization of the computation 
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With the initial data        0, , 1, , 0, , 1,x xw n w n k n k n , the approximate solution 

can be obtained as
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To calculate the thi shape function iP ,  0 4 3j j N    are chosen to be equal to 

1 successively. The algorithm to choose
j is encoded as 

for 0i   to 4 3N    

for 0j   to 4 3N   do 

if j i  then 

   1j i
    

else 

   0j i
   

end if 

end for 

end for 
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With the data  j i
 , all terms of w ,  M and  K can be calculated using 

equations in Table 2.1. 

Data : (0, ),     (1, ),      (0, ),      (1, )x xw n w n k n k n  

Initialisation 

 Step 1:    ),3( ),,2(         ),1( ),,0(
)1(

nwnwnknk xx   

 Step 2:      
(2)       ( )

(0, ),  (1, ), (2, )        (0, ),  (1, )         (0, ),  (1, )
data

w n w n w n k n k n K n K n   

 Step 3:    
 

(0, ),  (1, )           (0, ),  (1, )
Constitutive law

K n K n M n M n   

Iteration,  ( , ),  ( , ), ( , ),  ( 1, )  K m n M m n w m n w m n being given. 

 Step 1: ),1(       ),2(),,1(        ),(),,1(
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)3(
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2.5.2 Kirchhoff plate problem with a circular domain 

Now we consider a circular Kirchhoff plate with clamped edges in Figure 2.6: 

0

0n

 

  


 

Figure 2.6 A circular Kirchhoff plate with clamped edges 

For a circular plate with clamped edge, the problem can be described as: 
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  (2.39) 

where a is the radius of the plate. With these boundary conditions, the theoretical 

solution is [15]: 

  
2

2 2

64

p
w a r

D
    (2.40) 

 

Figure 2.7 The influence of the number of collocation points on the convergence for circular Kirchhoff 

plate 

Figure 2.7 is the convergence of TMM along with the increase of the collocation 

points when 10N  , 20 and 30. The theoretical solution is a polynomial of degree 

four, hence the numerical solution can be very accurate. When the collocation points 

are more than 4N , the error is stable and less than 10-10. 

Figure 2.8 is the convergence of TMM along with the increase of the degree of 

the polynomial. The results get less accurate by increasing the degree. Due to the 

degree of the theoretical solution, the most accurate result is obtained at degree 4. 

However, the accuracy still stands less than 10-11 after degree 4. 
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Figure 2.8 The convergence of TMM for circular Kirchhoff plate 

2.5.3 Kirchhoff plate problem with a rectangular domain 

The domain is a square with the width 1. One chooses a uniformly distributed 

cloud (see Figure 2.9). 

0 x

y

 

Figure 2.9 Rectangular domain and collocation points on the boundaries 

1) Rectangular plate, simply supported, uniform load 

For a rectangular plate, when it is simply supported, the problem can be 

described as: 
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  (2.41) 
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An approximate solution for the problem is: 
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  (2.42) 

where a and b are the side lengths of the plate. 

In the computation, a and b are set to 1, m and n are set to 200 that is enough 

to ensure the accuracy of the result. The result from Eq.(2.42) can be seen in 

Figure 2.10. 

 

Figure 2.10 The distribution of the deflection from Eq.(2.42) 

Figure 2.11 is the convergence for rectangular plate with the degree of the 

polynomial 10N  , 30 and 50. The maximal error becomes stationary if the 

collocation points are enough when the degree is 10. The figures indicate that the 

accuracy becomes better by increasing the degree of the polynomials from 10 to 

30. The maximal error cannot be reduced when the degree is increased from 30 to 

50, but the results become more stable from this process. 

Figure 2.12 is the convergence of TMM along with the increase of the degree 

of the polynomial. The maximal error decreases significantly by increasing the 

degree of the polynomial from 10 to 20. Next, from N=20 to 70, the error stands 

around 10-3 with a small infection. 
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Figure 2.11 The influence of the number of collocation points on the convergence for rectangular 

Kirchhoff plate 

 

Figure 2.12 The convergence of TMM for rectangular Kirchhoff plate 

2) Rectangular plate, clamped edges, uniform load 

A rectangular Kirchhoff plate with clamped edges and uniform load can be 

described as: 
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  (2.43) 

Table 2.2 shows the deflection of the plate center obtained with different 
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methods. Theoretically, Mx should equal to My. Figure 2.13 is the deflection of the 

whole domain, with the boundary conditions 0w  and 0w n   . One can find that 

the accuracy of TMM is on the same level as with other methods. 

Table 2.2 Deflection and moment of the center of a rectangular plate, clamped edges, uniform load 

TMM 

Degree Collocation points 

wmax 

(
4

0D pa ) 

Mx 

( 21 pa ) 

My 

( 21 pa ) 

10 

40 0.00126519 0.0228932 0.0228932 

80 0.00126465 0.0228862 0.0228862 

120 0.00126451 0.0228842 0.0228842 

20 

80 0.00126532 0.0229046 0.0229056 

160 0.00126532 0.0229043 0.0229058 

240 0.00126530 0.0229025 0.0229061 

30 

120 0.00126529 0.0229047 0.0229048 

240 0.00126522 0.0229041 0.0229037 

360 0.00126558 0.0229072 0.0229074 

MLPG [73] 0.001258 0.02288 0.02288 

BEM [74] 0.001260 0.02290 0.02290 

Theoretical Solution [75] 0.001260 0.02310 0.02310 

 

 

Figure 2.13 The distribution of the deflection of a clamped Kirchhoff plate 
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2.6 Application of TMM to sandwich plates 

2.6.1 The loading and the governing equation 

Distributed loading: 

  0 sin sin, pq x x qyy    (2.44) 

where      , , 1,2,3p p n n a q q m m b n m      ,  is a constant value. 

We let 1,a b 1, 1m n     , the loading becomes: 

  0 sin s n, ix yq x y     (2.45) 

The governing equation can be simplified as: 

  11 , 12 21 66 , 22 , 04xxxx xxyy yyyyD w D D D w D w q       (2.46) 

2.6.2 Exact solution 

From the loading Eq.(2.44) and the governing equation Eq.(2.46) one can 

conclude that the exact solution is: 

 sin sine pxw C qy   (2.47) 

where C is a constant. It is determined by bending stiffness Dij and the loading q0. 

 
  2 24 4

11 12 66 222 2
C

pD D D p q D q




 
  (2.48) 

2.6.3 The properties of each case 

The layer material coefficients are: 
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  (2.49) 

where L signifies the direction parallel to the fibers, T the transverse direction, and vLT 

is the Poisson ratio measuring strain in the T-direction under uniaxial normal stress in 

the L-direction. 

The normalized quantities are defined with respect to this data: 
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  (2.50) 

The stiffness coefficients can be expressed in terms of the engineering constants: 
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  (2.51) 

Three problems are considered for laminates (see Figure 2.14). Case 1 and Case 

2 are constructed of the material described by Eq.(2.49): 

Case 1: a symmetric 3-ply laminate with a=b and layers of equal thickness – the 

L direction coincides with x in the outer layers, while T is parallel to x in the central 

layer. 

Case 2: the same laminating geometry as in Case 1, but in this case we take 

b=3a. 

Case 3 is a square (a=b) sandwich plate under the distributed loading considered 



Chapter 2 Techniques of Taylor Meshless Method 

37 

in the previous cases. The material of the face sheets is that defined by Eq.(2.49). The 

thickness of each face sheet is h/10. The core material is transversely isotropic with 

respect to z and is characterized by the following properties: 

 

6 6

6 6
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  (2.52) 

 

Case 1                  Case 2                     Case3 

Figure 2.14 Fiber directions and thickness of each case 

2.6.4 Results 

0 x

y

a

b

(a/2,b/2)

 

Figure 2.15 The coordinate system and expansion point 

The Taylor series is expanded at the center of the plates, (a/2, b/2) (see Figure 

2.15). 

(1) Stresses in Square Sandwich Plate, Case 1 

The convergence of Case 1 is illustrated in Figure 2.16 and Figure 2.17. From 

Figure 2.16 it can be seen that all errors of the stresses decrease with the degree N 

until it is around 15. After that, the errors fluctuate at a higher level of accuracy. 

Compared with Figure 2.16 (b), in which 10N collocation points have been distributed, 

Figure 2.16 (b) shows that all the stresses get their best solution at degree 16 and they 

have smaller errors. However, less collocation points lead to larger errors after degree 



Chapter 2 Techniques of Taylor Meshless Method 

38 

16. 

In Figure 2.17, one can obtain locally optimal solution with about 100 

collocation points when the degree is 16. The errors increase with 0.5 magnitude and 

then decrease to a stable status. 

 

(a) Number of collocation points = 6N      (b) Number of collocation points = 10N 

Figure 2.16 The influence of the degree on the convergence, Case1 

 

Figure 2.17 The influence of the number of collocation points on the convergence, N = 16, Case1 

(2) Stresses and Deflection in Rectangular (b=3a) Laminate, Case 2 

Figure 2.18 and Figure 2.19 are the convergence of the rectangular laminate plate 

(b=3a). Figure 2.18 clearly shows that at degree 16, stresses and deflection get their 

best solution, while the deflection has the smallest error, which is about 10-7. The 

normal stresses ,x y  and shear stress xy have larger errors since they are in direct 
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proportion to the second derivatives of the deflection. The shear stress ,xz yz  have 

the largest errors since they are in direct proportion to the third derivatives of the 

deflection. 

 

(a) Number of collocation points = 6N      (b) Number of collocation points = 10N 

Figure 2.18 The influence of the degree on the convergence, Case2 

 

Figure 2.19 The influence of the number of collocation points on the convergence, N = 16, Case2 

(3) Stresses in Square Sandwich Plate, Case 3 

Figure 2.20 and Figure 2.21 are the convergence of a square sandwich plate with 

two kinds of materials. From Figure 2.20 one checks that the method fails if the 

number of collocation points is too small. The maximal error decreases with the 

number of collocation points until an optimal number where it becomes stable. A 

number of about 4N can already lead to good results. However, the degree of freedom 
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for this problem is 6 2N  . To ensure the best convergence, the number is 

recommended to be larger than 6 2N  . 

 

(a) Number of collocation points = 6N       (b) Number of collocation points = 10N 

Figure 2.20 The influence of the degree on the convergence, Case3 

 

Figure 2.21 The influence of the number of collocation points on the convergence, N = 16, Case3 

We take the normal stress y in Case 3 for example. Figure 2.22 is the influence 

of expand point on the convergence. One can see that the results when the polynomial 

is expanded at (a/2, b/2) are better than that at (0, 0) at each degree. It is because 

Taylor series are suitable for a neighborhood, while point (a/2, b/2) is closer than (0, 0) 

to the whole domain. The technique of subdomains can be applied to get more 

accurate results. 
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Figure 2.22 The influence of expand point on the convergence 

2.7 Conclusion 

A new meshless method – Taylor meshless method has been introduced in this 

chapter. TMM solves quasi-exactly the partial differential equations by using Taylor 

series. This technique reduces the degree of freedom for the problem significantly so 

that one can increase the degree of the polynomials to a very high level. Only 

collocation points on the boundary are needed, which makes TMM a true meshless 

method. In the cases that have been studied, this method is robust and effective. Only 

one domain has been used in this chapter, which is sufficient to solve boundary value 

problems. In the case of rectangular plate with clamped edges, the absence of an 

exponential convergence may be due to the singularity of the exact solution. 

The convergence cannot be guaranteed in some other cases due to the developing 

point of Taylor series and the single domain. In next chapter, multidomain technique 

will be considered to solve nonlinear problems with collocation points on boundaries 

and interfaces. 
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Chapter 3 Application of TMM to large 

deflection of thin plates 

3.1 Introduction 

In the problem of large deflection of a thin plate, the deflection does not linearly 

depend on the external load. The membrane stresses acting in the plane of the plate 

have an effect on the bending or buckling of the plate, which become non-negligible 

as they are not small in comparison with bending stresses. A large deflection theory 

should be employed for these kinds of problems. The nonlinear partial differential 

equations describing large deflection of thin plates usually have no analytical 

solutions, which must be solved by numerical methods. Generally, researchers try to 

solve these problems using finite element method or finite difference method. These 

methods have some inherent weaknesses like mesh distortion, computational 

efficiency or complexity of pretreatment. 

Many progresses have been made over the last forty years concerning the 

numerical computation of bifurcation problems. A first way is to solve the "extended 

system" characterizing the bifurcation points [76]. A simpler technique is to solve a 

continuation problem with an arc-length control for passing limit points [77]. 

Nowadays this standard procedure is available in many existing codes, especially in 

extensively used commercial packages. Note that this continuation technique requires 

the introduction of a perturbation to capture the bifurcation path in a secure manner 

and a balance between a sufficiently large perturbation and a sufficiently small step 

length is required for capturing the post-bifurcation response. This difficulty is 

partially removed with the Asymptotic Numerical Method (ANM), where each step is 

a Taylor series with respect to a control parameter, [78, 79], the key point being an 

adaptive step length related to the radius of convergence of the Taylor series. This 

adaptivity permits to compute the post-bifurcation curves with a very small 

perturbation. Moreover, as underlined in [80], one observes an accumulation of small 
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ANM-steps close to a bifurcation point because the radius of convergence is strongly 

connected with the distance to a neighbor bifurcation point. So an accumulation of 

small ANM-steps is a simple criterion for detecting bifurcations, but there are other 

techniques to analyze bifurcation problems within ANM, for instance by computing a 

bifurcation indicator [81, 82] or by identifying a geometric progression in the 

computed Taylor series [83]. More generally, ANM is an efficient path following 

technique able to solve a number of non-linear problems, including unilateral contact 

or plasticity problems [84]. 

A discretization method has to be associated with a non-linear solver as ANM 

and, in most of the cases, this was the finite element method. Nevertheless one can 

mention several papers where ANM was coupled with a meshless discretization 

method [85-87]. Benefits and drawbacks of meshless techniques are well known and 

will not be re-discussed here. In this chapter, we aim to combine ANM with TMM. 

The latter belongs to the large family of Trefftz methods that use exact solutions of 

the PDE as shape functions, see for example [88]. The Method of Fundamental 

Solution (MFS) is likely the most used Trefftz method [89]. The main advantage of 

Trefftz method and MFS is a strong reduction of the number of unknowns: for 

instance in [65] a problem was solved with only 90 DOFs while it needs more than 

5000 with quadratic finite elements and much more with linear interpolation. The 

main drawback of Trefftz-type methods is matrix ill-conditioning that prevents 

solving large-scale problems [90, 91] , even if there were many works to try to 

improve this condition number, see for instance [92, 93]. Nevertheless, splitting in 

subdomains is a simple manner to control the ill-conditioning and several procedures 

are available [66], what allowed to solve large-scale problems in the Taylor meshless 

framework [67]. 

The treatment of non-linear problems is not straightforward within Trefftz 

methods, because it is not possible to get exact solutions of non-linear or 

nonhomogeneous problems by inverting the exact tangent operator. Thus, one 

generally re-introduces a discretization of the domain by radial functions that are 



Chapter 3 Application of TMM to large deflection of thin plates 

44 

combined with fundamental solutions of a reference operator. Typical applications 

concern Poisson problem [94], Newtonian fluids [95] or plasticity [96] and the 

non-linear problem is solved by Picard iterations, but also by ANM [85, 86]. One can 

avoid the spatial discretization when using the method of Taylor series, in which case 

one can moreover obtain accurately the general solution of the homogeneous tangent 

problem. In the latter paper, the polynomial shape functions were computed via an 

Automatic Differentiation procedure [97], what could permit a wide range of 

applications. 

In the present chapter, ANM will be combined with the Taylor meshless method: 

in other words, we shall perform together Taylor series in space and in load parameter. 

This double Taylor series expansion will be applied to the famous Föppl-von Karman 

plate model [98]. 

3.2 Governing equations 

The fundamental equations for large elastic deflection of thin plates are known as 

Föppl-Von Kármán equations, given in the following form: 
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  (3.1) 

where w is the vertical displacement out of the middle plane of the plate, E is the 

Young's modulus, p is the loading per unit area of the plate, h is the thickness of the 

plate and  3 212 1D Eh   is the flexural rigidity of the plate. The relations between 

the stress function f and the in-plane forces are: 
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3.3 Combination of TMM and ANM 

Asymptotic-numerical method (ANM) was proposed by Damil and Potier-Ferry 

in 1990 [99]. The non-linear branches are expanded in the form of power series. The 

non-linear problem becomes a series of linear problems, which can be solved 

efficiently by using recurrence formulas. Compared with some other methods of 

solving non-linear problem, such as Newton’s method, the step length in ANM is 

determined automatically by a reliable path-following technique. This is a main 

advantage of ANM dealing with problems when there is a sudden change of direction 

[79]. 

In this chapter, ANM is applied to linearize the nonlinear system and TMM is 

used to solve linear partial differential equations obtained by ANM. 

3.3.1 The procedure of ANM 

In the isotropic case and with a transversal force  ,p x y , where is the load 

parameter, Eq.(3.1) can be rewritten as: 
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  (3.3) 

where the bracket operator involves the second derivatives of its arguments: 

  
2 2 2 2 2 2

2 2 2 2
, 2

A B A B A B
A B

x y y x x y x y

     
  
       

  (3.4) 

ANM seeks a family of solutions depending on a scalar parameter " a ". The 

parameter  is also expressed as a function of " a ". First, the variables  ,w x y ,

 ,f x y and the load parameter  are expanded to the form of power series with 

respect to the parameter “ a ” from a starting solution denoted as  0 ,w x y ,  0 ,f x y ,

0 : 
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   (3.5) 

Next, substituting in Eq.(3.3), one derives differential equations for each term of 

the series     , , , ,K K Kw x y f x y  . To define the path parameter " a ", the linearized 

arc length parameter is chosen since it permits a secure guiding near bifurcation points 

[79]: 

  0 1 0 1 0 1, ,a w w w f f f           (3.6) 

At order one, all the items that have a coefficient 1a are picked out. A family of 

linear problems can be obtained as: 
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At order two: 
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  (3.8) 

The items 1w , 1f in the bracket operator are known after the resolution of Eq.(3.7). 

The generic form of the linear problems at order K : 
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where  
1

1
= ,

Knl

K R K RR
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  . Two operators remain at 

any order: 
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Let us start at order one. To solve Eq.(3.7), one supposes that  ˆˆ ,w f is the 

solution of 
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  (3.11) 

The resolution of Eq.(3.11) will be discussed in Section 3.2. Eq.(3.11) is a linear 

equation, thus the solution of Eq.(3.7) is    1 1
ˆ, ,w x y w x y ,    1 1

ˆ, ,f x y f x y . 

One can obtain 1 from the third equation of Eq.(3.7): 

 2

1

1

ˆ ˆˆ ˆ, , 1w w f f
 

 
  (3.12) 

Eq.(3.12) has two solutions because one can move in two directions along the 

branch of solutions. In the first ANM-step, the user has to define the orientation. In 

the next ones the orientation can be chosen with respect to the tangent direction at the 

end of the previous step. 

For the generic case at order K , there are two new polynomials
nl

Kg and
nl

Kh . The 

solution for order K is: 

 ˆˆ ,nl nl

K K K K K Kw w w f f f       (3.13) 

where  ,nl nl

K Kw f  is the solution of: 
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3.3.2 TMM formulation 

In this part, TMM is used to solve the linear systems with variable coefficients 

Eq.(3.11) and Eq.(3.14). The principle of TMM is to expand the unknown fields in 

Taylor series and to solve the PDEs in the sense of Taylor series. The two unknowns 

of Eq.(3.11) or Eq.(3.14) - the transverse displacement w and the stress function f are 

approximated by Taylor series truncated at TMM degree N: 
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   (3.15) 

In these two complete polynomials, there are   1 2N N  coefficients to be 

found. The equations Eq.(3.11) and Eq.(3.14) are also expanded into series up to the 

order 4N  after substituting Eq.(3.15). For instance, the bending equation in Eq.(3.11) 

is approximated by: 
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  (3.16) 

The computation of the Taylor coefficients of the bilaplacian is 
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as well as the tensor of the second derivatives 
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 (3.18) 

For the homogeneous part of Eq.(3.16), all the other coefficients can be deduced 

from initial data
0, 1, 2, 3, 0, 1, 2, 3,

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, , , , , , ,n n n n n n n nw w w w f f f f . The dimension of the initial data 

is 8 4N  . Thus the number of the degrees of freedom for Eq.(3.11) is reduced 

significantly from   1 2N N   to 8 4N  . These initial data are linearly 
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independent. The technique is to set them to 1 successively while others are 0. One 

can obtain 8 4N  complete polynomials respectively     ˆˆ
, , ,w f

i iP x y P x y , which 

build up the shape functions of the problem. For the inhomogeneous part, one can 

easily find a particular solution     ˆˆ
, , ,w f

s sP x y P x y . Finally the solution of each 

problem Eq.(3.11) and Eq.(3.14) is computed in the form 
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   (3.19) 

To solve the linearized PDEs Eq.(3.11) and Eq.(3.14), one has to compute the 

vector α which is determined by boundary conditions. This will be done by 

least-square collocation as in Chapter 2. 

The auxiliary problems Eq.(3.11) and Eq.(3.14) being solved, one can compute 

all the terms of the ANM-series Eq.(3.5), after having obtained those of the path 

parameter K . Last, we have to define the range of validity of the series Eq.(3.5). In 

conformity with the basic ANM algorithm, one requires that the last term of the series 

is small with respect to the first one: 
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This leads to adaptive step lengths and this is very important when dealing with 

bifurcation problems. The radius of convergence is generally governed by the distance 

to the nearest bifurcation point [80]. That is why one observes an accumulation of 

small steps close to the bifurcation: hence, such an accumulation leads to a simple 

bifurcation criterion by sight. Moreover ANM permits to compute response curve 

with a very small perturbation force: one just has to choose a sufficiently small 

accuracy parameter δ. 
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3.3.3 Treatment of boundary and interface conditions 

3.3.3.1 A square plate with movable edges 

 

Figure 3.1 A square and simply supported plate with boundary collocation points 

We consider a square plate with simply supported boundary conditions as in 

Figure 3.1. The dimensionless quantities are introduced as: x x a , y y a ,

4 4p pa Eh , w w h ,
2 2a Eh  . The load is a uniformly distributed pressure p . 

The boundary conditions are: 
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The boundary conditions for stresses are: 
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TMM uses Taylor series to approximate the spatial function of the problem. 

However, a single polynomial is not sufficient if the domain is larger than the radius 

of the series’ convergence. A good idea is to split the whole domain into several 

elements. Each element, which is called a subdomain, has an independent polynomial 
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solution. This operation can help to stabilize the global solution and accelerate the 

convergence. Some additional conditions should be introduced to guarantee the 

continuity of the displacement and stresses between two neighboring subdomains. The 

continuity conditions corresponding to bending are: 
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Vn is an equivalent condition converted by the torque Mxy and shear force Qn: 
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The continuity conditions corresponding to stresses are: 
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3.3.3.2 A square plate with immovable edges 

x

y

 

Figure 3.2 A square plate with immovable edges 
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In the example of Section 3.4.1, the edges can be movable in the plane because 

the normal stresses and shear stresses on boundaries are set to 0 by conditions 

Eq.(3.22). To consider immovable edge conditions ( 0u v  ), one way is to replace 

the first equation in Eq.(3.3) by two partial differential equations in terms of the 

in-plane displacements u and v in addition to the transverse displacement w. However, 

by TMM, the in-plane displacements can be expressed easily by w and stress functions

f . The strain components in the middle surface of the plate are given by: 
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After introducing the stress function, the stress components become: 
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Using Eq.(3.26) and Eq.(3.27), the partial derivatives of in-plane displacements 

can be expressed with w and f : 
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With the technique in Chapter 2, coefficients of Taylor series of u and v are 
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related to the coefficients of w and f through the following relations: 
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where  
2

xx w x    ,  
2

yy w y    ,   xy w x w y      . In ANM, w is expanded 

in the form of power series with respect to the parameter a as in Eq.(3.5): 
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The nonlinear part xx is expanded as the addition of linear components: 
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where K Ks w x   . From Eq.(3.31), one can find the generic expression of xx at 

ANM order K: 
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Similarly, the generic expressions of xx and xy are: 
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where K Kt w y   . With Eq.(3.29) and Eq.(3.32)-(3.34), most Taylor series 

coefficients of u and v at order K can be deduced except  0,0u ,  0,1u ,  0,0v and

 1,0v , which are corresponding to the in-plane rigid displacement and rotation of the 

plate. The expansions of u and v need an extra part to consider these three 

coefficients: 
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The continuity conditions corresponding to bending are the same as those in 

Eq.(3.23). Because of the introduction of in-plane displacements, the continuity 

conditions corresponding to stresses become 
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3.4 Results and discussion 

The numerical method will be assessed by three examples concerning the 

buckling and bending of a simply supported square plate. Various in-plane boundary 

conditions have been accounted for. We are interested by the convergence with respect 

to the degree (p-convergence) and to mesh refinement (h-convergence), as well as its 

ability to compute bifurcating curves with very small imperfections. Our numerical 

results will be compared with analytical and numerical results of these examples, 

mainly from finite element codes. 
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3.4.1 Buckling of a square plate with movable edges 

First, the problem is solved with one domain under conditions in 3.3.3.1. All the 

boundary conditions are accounted by least-square collocation with 240 collocation 

points. The parameters of the algorithm are the ANM-degree 20K  , the spatial 

degree 20N  , what corresponds to 156 degrees of freedom and the accuracy 

parameter δ=10-8 whose smallness is chosen to ensure the path following for a 

quasi-perfect bifurcation. This buckling problem will be solved by the method 

presented here and compared with finite element calculation done with the 

well-established code ANSYS. In the two calculations, a small symmetry breaking is 

needed. In ANSYS, this is done by a small modal geometric imperfection measured 

by the parameter imperfectionw h  called "scaling factor". 

 

Figure 3.3 Effect of small perturbations on the buckling of a simply supported square plate. The 

ANM-TMM algorithm is compared with a commercial finite element code. On the ANM-TMM curve, 

each point corresponds to one ANM step 

The obtained bifurcation plots are presented in the Figure 3.3 and Figure 3.4. 

Within ANSYS, we use a scaling factor of 10-4 and 10-6 and, within the present 

method, a dimensionless transversal pressure
610p  . ANSYS was not able to 

compute the bifurcating curve with a smaller imperfection, even if we suspect that 

some experts in non-linear calculation should be able to do such a calculation with a 

commercial package. Clearly the new technique permitted us to compute the 
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bifurcation plot with a very small imperfection simply by choosing a sufficiently large 

ANM degree and a sufficiently small accuracy parameter . 

 

Figure 3.4 A zoom of Figure 3.3. One sees that the ANM-TMM method permits to compute easily 

quasi-perfect bifurcations. On the ANM-TMM curve, each point corresponds to one ANM step. 

 

Figure 3.5 h-convergence: decimal logarithm of the error on the bifurcation stress, according to the 

degree P and to the number of subdomains. 

Next one discusses the convergence with the number of subdomains 

(h-convergence) and with the degree N of the polynomials (p-convergence). The 

interface and boundary conditions are accounted by the least-square collocation 

method in a similar way as [68]. One looks at the value of the bifurcation stress x . 

The analytic value
analytic

x is 3.6152. One has applied TMM degrees N = 5, 8, 10 and a 
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number of subdomains varying from 1 to 16. The results are reported in Figure 3.5. 

Clearly the method converges with the degree and/or with the number of subdomains, 

but good results (i.e. error less than 310 ) are obtained with 9 subdomains and 8N  or 

with 4 subdomains and 10N  . 

3.4.2 Bending of a square plate with immovable edges 

 

Figure 3.6 Deflection at the center of plate vs. load p  

A bending test of a square plate is studied to check the conditions in 3.3.3.2 and 

the effectiveness of the method. The plate is split into 5×5 subdomains. The boundary 

conditions corresponds to a clamped 0w w n    and 0u v  . Each subdomain is 

approximated with a Taylor series of degree 8 and connected with other subdomains 

using the continuity conditions in 3.3.3.2. The total number of degrees of freedom in 

this case is 1500. The degree of polynomials in ANM is chosen as 20. 

Results are compared with those by FEM and RBF (see Figure 3.2). The RBF 

solutions are from the reference [100]. The FEM analysis is performed with the 

commercial software ANSYS using four-node element shell181. The plate is 

discretized with 50×50 elements and LARGE DISPLACEMENT STATIC option is 

activated to perform a nonlinear analysis. The number of model degrees of freedom is 

15606. Figure 3.6 is the comparison of TMM results with those from FEM and RBF. 
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It shows that they are very close in the range of 0 90p  . Table 3.1 is the detailed 

comparison of the deflection w and the membrane stress m computed at the center of 

the plate for different loads between TMM and FEM. The membrane stress m is 

defined as the stress at the middle surface of the plate. The load is determined 

automatically by ANM that is the value after each ANM step. The errors of the center 

deflection between two methods are at the level of 310 ; while the errors of the 

membrane stress are at the level of 410 , indicating that they are in a very good 

agreement. 

Table 3.1 Deflection and membrane stress at the center of plate vs. load p  

p  
w  m  

FEM TMM ERROR(%) FEM TMM ERROR(%) 

2.29 0.0317 0.0316 0.315 0.0033 0.0033 0.000 

6.80 0.0937 0.0935 0.213 0.0291 0.0291 0.000 

15.96 0.2157 0.2153 0.185 0.1542 0.1543 0.065 

25.12 0.3290 0.3285 0.152 0.3581 0.3583 0.056 

34.12 0.4304 0.4295 0.209 0.6112 0.6114 0.028 

43.06 0.5213 0.5202 0.211 0.8947 0.8946 0.009 

51.94 0.6030 0.6017 0.216 1.1942 1.1940 0.013 

60.81 0.6771 0.6756 0.222 1.5023 1.5020 0.017 

69.61 0.7443 0.7426 0.228 1.8113 1.8109 0.023 

78.46 0.8064 0.8046 0.223 2.1222 2.1213 0.040 

87.32 0.8640 0.8620 0.231 2.4313 2.4305 0.032 

96.10 0.9171 0.9149 0.240 2.7344 2.7331 0.046 

104.79 0.9662 0.9638 0.248 3.0305 3.0287 0.058 

113.46 1.0123 1.0098 0.247 3.3217 3.3197 0.061 
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3.4.3 Buckling of a square plate with immovable edges under uniaxial 

compression 
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Figure 3.7 A square plate with immovable edges 

Consider a simply supported square plate with the same geometric and material 

data as in Section 3.4.1. The displacement loads are u  at 0x  andu   at x L . 

All the edges cannot move in y-direction, while the upper and bottom edge can move 

in x-direction. The plate and boundary conditions can be seen in Figure 3.7. 

In this numerical example, the order of ANM is set to 10. The number of degrees 

of freedom for this problem is  8 4eN N  , where eN is the number of domains. The 

accuracy parameter is 810 . Transverse uniform pressure p is chosen as a small value

610 to produce the initial imperfection of the plate. The boundary conditions are 

accounted by least-square collocation with 32N points in one domain, including the 

boundaries and the interfaces. On the interfaces, two domains share the same 

collocation points. The distribution of these points is shown in Figure 3.7. 
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Figure 3.8 Displacement of center point of the plate vs. load, degree of TMM 8, order of ANM 10 

 

A 

 

B 

 

C 

 

D 

Figure 3.9 The deformation of the plate at point A, B, C, D in Figure 3.8 

To discuss the convergence of the method with the number of domains, we look 

at Figure 3.8. 2×2 domains are not sufficient to get accurate results when centerw is 

larger than 0.5. With more domains, the results converge further along with the 

post-buckling curve. Figure 3.9 is the deformation of the plate at points A, B, C and D 

in Figure 3.8. It shows clearly that with 8×8 domains, the buckling passes from the 

first mode to the third mode. 
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Figure 3.10 Comparison of results by FEM and TMM with degree 8 and 10 

 

Figure 3.11 The deformation of the plate at point E in Figure 3.10 

Figure 3.10 is the result by FEM and TMM with degree 8 and 10. With a larger 

degree of TMM, the post-buckling path converges to the FEM results. In Figure 3.11, 

one can see that the deformation of the plate has no great difference with that at point 

D. The system selects another bifurcation path and begins to enter another mode. 

Table 3.2 and Figure 3.12 present the displacement loads when the displacement 

of center point 1centerw  . They show that degree of TMM 6 is not sufficient to 

converge, even with 8×8 domains. To improve the reliability of the results, one can 

increase the degree of TMM or the number of domains. According to the previous 

study, it is better to compute the problem with smaller degree of TMM and large 

number of domains, because a large degree of TMM may lead to large conditioning 

number of the matrix. It also consumes more computing time than that if we increase 
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the number of domains. In Figure 3.12, the result by degree 20 and 2×2 domains is 

not good as that by degree 8 and 8×8 domains. 

To find the load of FEM at 1centerw  , the data from 
centerw =0.5 to 1.3 by ANSYS 

are fitted with a polynomial of degree 10. From TMM calculating, the reference load 

at 1centerw  is 2.98261 0.00001   . The discrepancy between FEM and TMM is 

about 53.35 10 . 

Table 3.2 Displacement load values when the displacement of center point 1w  , convergence with 

mesh refinement and with the degree 

Number of 

subdomains 

Degree of TMM 

6 8 10 12 15 20 

2×2 3.14120 2.91440 3.00396 2.98004 2.98231 2.98268 

3×3 2.95625 2.98184 2.98279 2.98261 2.98263 2.98263 

4×4 2.96247 2.98271 2.98263 2.98262 2.98262 2.98262 

6×6 2.97156 2.98261 2.98262 2.98262 2.98262 2.98260 

8×8 3.00378 2.98261 2.98262 2.98262 2.98261 2.98260 

 

 

Figure 3.12 Displacement load values when the displacement of center point is 1 
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3.5 Conclusion 

In this chapter, the boundary meshless method TMM (Taylor Meshless Method) 

is combined with ANM (Asymptotic Numerical Method) to solve nonlinear thin plate 

problems. The detailed procedure of this double Taylor series method consists of two 

parts: first, nonlinear partial differential equations are linearized by ANM, producing 

a set of linear equations in each iteration; next, these linearized partial differential 

equations are solved by TMM. The approximate solution obtained by TMM is used as 

the initial solution of next ANM iteration. 

The buckling of thin plate with movable edges is studied. This double Taylor 

series method can compute buckling problems with much smaller perturbations than 

that in FEM. A bending test of thin plate with immovable edges is carried out to 

verify the boundary conditions and convergence of the method before buckling 

analysis. The results are in good agreements with that in FEM. Comparing with FEM 

solutions, the number of domains for buckling of thin plate with immovable edges is 

discussed. 

The study shows that this new method is very efficient to solve a quasi-perfect 

bifurcation response and this does not require a strong numerical expertise. This 

double Taylor series method leads to an efficient path following technique that can be 

easily extended to other hyper-elastic models or to Newtonian fluids. 
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Chapter 4 Application of TMM to 

wrinkling of membranes under 

shear loading 

4.1 Introduction 

Over the past decades, different kinds of thin film structures are designed and 

playing more and more important roles in the fields of aerospace, automobile, 

construction and others. When the largest displacement maxw is much larger than the 

thickness h , the structure is defined as a membrane structure. Membrane structures 

have advantages in weight and storage requirements. Generally, the internal stresses 

of a thin plate under transverse loads consists of bending stress and membrane stress. 

However, a membrane structure cannot support compressive stress because the 

bending stress is so small that it can be ignored compared with the membrane stress 

[101]. When a compressive stress is applied, the structure becomes unstable and 

generates wrinkles. The existence of wrinkled regions has a great influence on the 

strength and reliability of the structure. The deformation and final state may not be 

uniquely determined. It is essential to have a clear understanding on the wrinkle 

phenomenon. Thus many material and mechanical researchers are recently interested 

in the prediction of the behavior of the membrane. 

Previous numerical studies of membranes mostly use finite element models 

based on thin- membrane elements or shell elements [102]. Membrane elements have 

simple construction format, hence they have the advantage of computational cost. 

However, they ignore bending effect so that they cannot obtain accurate transverse 

deformation. Shell elements have overcome shortcomings of membrane elements and 

made models close to practical structures. Nevertheless, complicated mesh generation 

is still needed. By using Taylor Meshless Method, one will reduce the size of the 

discrete problem, what is necessary in cases where there are many wrinkles. Another 
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difficulty is the presence of a number of bifurcating solutions, especially 

corresponding to various wavenumbers, which is due to the very weak bending 

stiffness encountered for very thin membranes. Here ANM will give a more secure 

path following technique to compute the bifurcating curves in such a difficult 

situation. The ANM-TMM method described in the previous chapter will be applied 

to an iconic problem of membrane wrinkling under shear loading. Indeed this 

bifurcation problem is so difficult that these authors have been obliged to add a 

significant tensile load to increase the membrane stiffness and, in this way, to stabilize 

the response in order to be able to achieve the computation. Here the challenge will be 

to minimize this artificial tensile load and the imperfection discussed in the chapter 3. 

This chapter presents a numerical study of rectangular membranes submitted to a 

shear loading. The objective is to simulate the generation of membrane wrinkles using 

TMM. A three-step analysis is introduced in detail. Some parametric studies are 

shown in this chapter, regarding the imperfection, tension load and subdomain 

sensitivity in order to know the contribution of each parameter to the wrinkling 

results. 

4.2 Modelling of the membrane boundary value problem 

To analyze the behavior of the wrinkled membrane, the membrane should be 

modeled numerically. In Chapter 3, the procedure of solving thin plate problems has 

been well established based on partial differential equations. In the development of 

the wrinkles, bending stiffness, although very small, plays an important role in the 

shape and amplitude of the wrinkles. By using the previous model that includes 

bending stiffness, the process of wrinkling is more accurately simulated. 

The imperfection is an important factor affecting the final wrinkling results. 

Similar to the study of buckling of thin plate, generally a perfect membrane cannot be 

analyzed directly because the deformation will be discontinuous at the buckling point. 

Pure in-plane loads will not bring about mechanism on a perfect membrane.  In 

practical simulation, imperfections are usually introduced to avoid bifurcation and get 
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continuous response. 

There are many ways to distribute imperfections to perfect membranes. In FEM, 

for example, the imperfections can be imposed at selected or all interior nodes of the 

originally membrane mesh. The imperfection amplitudes, which are small in 

comparison to the thickness of the membrane, are regulated by a parameter to avoid 

element distortions. However, the imperfections should be large enough to provide 

sufficient bending-to-membrane coupling. 

Another way to impose initial imperfections is seeding several eigenmodes onto 

the finite element model using a scaling factor to control the proportion between the 

imperfections and the membrane thickness. An eigenvalue buckling analysis has to be 

carried out before the membrane wrinkling to obtain eigenmodes. 

In this study, the small out-of-plane deformation is produced by imposing 

transverse pressure onto the membrane. In this way, magnitudes of the imperfections 

are controlled by transverse loads. The deformation is generated on the whole 

membrane without pre-eigenvalue processing. 

When solving buckling problems in Chapter 3, imperfections and in-plane loads 

are imposed from zero at the same time. For membrane wrinkling problems, 

imperfections, tension loads and shear loads should be imposed respectively. This is 

because at first few steps of Asymptotic Numerical Method, imperfections and tension 

are close to 0, leading to the presence of many localized modes and divergence of the 

results. 

The x-axis is parallel to the bottom edge, y-axis is perpendicular to the bottom 

edge, and z-axis is normal to the neutral plane, as defined in Figure 4.1. The 

membrane analyzed in this chapter is a rectangular membrane with an aspect ratio of 

about 3:1. The material shown in Table 4.1 is Kapton coming from the data in [103] 

and [104] 
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b

x
y

δv δu

a    

Figure 4.1 Rectangular membrane with tension v and shear load u  

Table 4.1 Material property 

Width (mm) a 380 

Height (mm) b 128 

Thickness (mm) h 0.025 

Young’s modulus (MPa) E 3500 

Poisson’s ratio υ 0.3 

 

v

 ,p x y u

Step 1 Step 2 Step 3
 

Figure 4.2 Steps of the algorithm 

The loading process consists of three steps as in Figure 4.2: 

The first step of the simulation is pre-tensioning the membrane by moving the 

top edge by a small displacement v in y-direction. All degrees of freedom of the 

bottom edge are constrained. The left and right edges are simply supported. The fixed 

top edge is subjected to a prescribed displacement. A pre-stress is produced to 

increase the out-of-plane stiffness of the thin membrane and avoid local buckling 
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behavior. The initial pre-stress will affect the final amount of the wrinkles. This will 

be discussed later in this chapter. As the pressure p in Von-Karman equations cannot 

be zero, it is set to a very small value 2010p  . 

The second step consists in producing imperfection by imposing transverse 

pressure onto the membrane. Here the membrane is splitted into several domains in 

both directions. The pressure will be positive and negative alternately in x-direction to 

produce sinusoidal deformation in transverse direction. The pressure remains 

consistent in y-direction. Note that the angle between the deformation and x-axis is 

90°, which is different from the final wrinkles. Nevertheless, this treatment is better 

than pseudorandom imperfections produced on nodes or imposing pressure on a single 

direction. An imperfection sample is shown in Figure 4.3. 

In the third and final step, the top edge is moved horizontally by a displacement

u while all other boundary conditions are the same as in the first and second steps. 

The shear displacement is gradually increased until the membrane is fully wrinkled. 

The pressure is set to the small value 2010  as in the first step. 

 

Figure 4.3 An imperfection sample 

The plate is simply supported on vertical edges and clamped on horizontal edges 

with a displacement along the top edge as given by Eq.(4.1). These conditions are 

modeled using the method in Chapter 3. Previous study indicates that the convergence 

of the computation needs a moderate degree of Taylor series and a large number of 

subdomains [68]. The degree of Taylor series is chosen as 8N   that is reasonable 

when the subdomains are sufficient, giving consideration to computational efficiency 

and accuracy. The degree of ANM is chosen as 10. The accuracy factor in ANM is

810 . 
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4.3 Numerical Results 

The material properties, geometric parameters and boundary conditions are 

introduced into the model in Chapter 3. Numerical simulations aim to find the 

important influencing factors of wrinkling of thin membranes with this new meshless 

method. Because of TMM’s advantage on convergence with small loads, as illustrated 

in buckling tests of thin plates, the smallest tension and imperfections  are searched, 

which can bring out bending stiffness and initiate the out-of-plane buckled 

deformations contributing to membrane wrinkling. Different combinations of tension 

loads, imperfections and number of subdomains are considered to test the sensitivity 

of the model to the wrinkling results. 

Different numbers of subdomains are used as it has great influence on the 

convergence and final number of wrinkles. The ratio of the number of subdomains in 

x and y-directions is 3:1, which is roughly consistent with the aspect ratio of the 

membrane. The pre-tensioning displacement is ranged from 0 to 0.08mm. Different 

kinds of imperfections, defined as transverse deformation of the center point, are 

considered from 0 to 0.008mm. 

4.3.1 Generation of membrane wrinkles 

The generation of membrane wrinkles is demonstrated in this section. The 

membrane is splitted into 33 domains in x-direction and 11 in y-direction with a 

pre-tension of 0.02v mm  in the first step. The selection of the number of 

subdomains and tension load will be discussed later in this chapter. The membrane is 

tensioned in y-direction, keeping a flat state. Then the imperfection is produced by 

imposing transverse pressure, generating 0.001mm out-of-plane deformation at the 

center of the membrane. By imposing alternating pressure in x-direction, the 



Chapter 4 Application of TMM to wrinkling of membranes under shear loading 

70 

membrane generates alternating deformation as shown in Figure 4.4. Because of 

simply supported boundary conditions on side edges and bending stiffness produced 

by the pre-tension, the deformation near side edges is larger than that inside the 

membrane. 

 

Figure 4.4 Imperfection of the membrane for wrinkling, tension load 0.02mm, imperfection 0.001mm. 

Wrinkle generation is associated with mode jumps in terms of the interaction of a 

set of bifurcation points. There are several equilibrium paths after each bifurcation 

points. The deformation patterns have many possibilities when the membrane has 

many wrinkles. When the first equilibrium point exist, the wrinkles increase up to a 

certain number without bifurcations by increasing the shear displacement. Then, 

because of the selected imperfections and tension loads, the bifurcation paths 

converge to a single path. In this study, the observation focuses on this period from 

the beginning until the membrane is full wrinkled. 

 
Figure 4.5 Full wrinkled membrane, 33×11 domains, tension load 0.02mm, imperfection 0.001mm. 

Figure 4.5 shows the whole wrinkled patterns in the membrane. The wrinkles in 

the central region cross the whole membrane, making an angle of 45° with x-axis. 

There are two localized wrinkles in the triangular regions of the upper left and bottom 

right corners near the side edges. In this study, only wrinkles crossing the whole 
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membrane are counted. 

4.3.2 Sensitivity with respect to the number of subdomains 

When the deformation of structures becomes complex, two common approaches 

can be used to maintain the accuracy of the simulation: a larger degree of Taylor series 

or the multi-domain technique. A very large degree leads to high computational costs 

and large conditioning number of the matrix, which may decrease the stability of the 

computation. In this study, it is obvious that a single Taylor series is not sufficient to 

approximate the whole wrinkled membrane. Therefore, the membrane is divided to 

several subdomains with independent Taylor series in each part. Two neighboring 

domains are coupled by physical constraints. 

The present parametric study is accomplished by varying the number of 

subdomains in which the membrane is divided. To avoid the influence of distortion, 

domains in x-direction and y-direction keep a quantitative ratio of 3:1, making each 

domain roughly a square. The results from wrinkling analysis are presented in Table 

4.2, related to the final number of wrinkles corresponding to a shear load

0.15u mm  . The problem cannot be simulated if the number of subdomains is less 

than 17×6. The simulation can be proceeded with 21×7 domains and predict 8 

wrinkles shown in Figure 4.6. Three additional sets of domains are tested to 

investigate the effect of number of domains on the final wrinkle number. 33×11, 

45×15 and 63×21 predict the same number of wrinkles, indicating that the results 

become independent when the number of domains is enough. In order to achieve a 

compromise between the computational efficiency and the accuracy of the results, the 

optimal mesh is at least three domains in x-direction to describe one wrinkle. In 

consideration of computational time and convergence of the solution, the set of 33×11 

is selected in previous sections. 
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Table 4.2 Sensitivity of the response (number of wrinkles) to the number of sub-domains. 

Pre-tension 0.02v  mm, imperfection 0.001mm. 

Number of domains Number of wrinkles 

15×5 Not converging 

17×6 Not converging 

21×7 8 

33×11 11 

45×15 11 

63×21 11 

 

Figure 4.6 Full wrinkled membrane. Subdomains: 21×11, tension load 0.02mm, imperfection 0.001mm, 

shear load 0.15mm. 

4.3.3 Sensitivity with respect to tension loads 

The uniaxial tension load in y-direction provides an initial out-of-plane stiffness 

to the membrane, which is an important factor in determining the membrane wrinkles 

and computational stability. To test the sensitivity of tension loads, all the cases in this 

section are applied with an imperfection of 0.001mm and 33×11 subdomains. 

4.3.3.1 A global look 

Table 4.3 shows the final number of wrinkles for 0.15u mm  with different 

tension loads. Patterns are shown in Figure 4.7. The simulation cannot be proceeded 

without this pre-tensioning treatment. With 0.0005mm tension load, the membrane 

generates three main wrinkles and some minor local ones. In the range of 0.001mm to 

0.02mm, the tension load has a strong effect on the number of wrinkles. After 0.02mm, 

the membrane keeps generating 11 wrinkles at the end of the computation. By 



Chapter 4 Application of TMM to wrinkling of membranes under shear loading 

73 

increasing the tension load, the angle between wrinkles and the bottom edge decreases 

to 45°. 

Table 4.3 Number of wrinkles with different tension loads. 

Tension load(mm) Number of wrinkles 

0.0005 3 

0.001 4 

0.01 10 

0.02 11 

0.05 11 

0.08 11 

 

  

a. 0.0005mm b. 0.001mm 

  

c. 0.01mm d. 0.02mm 

  

e. 0.05mm f. 0.08mm 

Figure 4.7 Wrinkle patterns with different tension loads. 

The buckling curves of cases with a wide range of tension loads are shown in 

Figure 4.8. With a very small tension load, for example 0.0005mm or 0.001m, the 

membrane starts global buckling very early. A larger tension load leads to a larger 

critical shear load and a smaller maximum displacement, because of the increase of 

the global stiffness. Table 4.4 is the comparison of the maximum displacements and 
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amplitudes of center wrinkles when the shear load is 0.15mm. 

 

Figure 4.8 Shear load vs maximum displacement, tension loads from 0.0005mm to 0.08mm, 

imperfection 0.001mm. 

Table 4.4 The maximum displacements and amplitudes of center wrinkles, shear load 0.15mm, 

imperfection 0.001mm. 

Tension load(mm) maxw (mm) Amplitude of the central wrinkle(mm) 

0.0005 0.7482 0.5461 

0.001 0.5302 0.4081 

0.01 0.4732 0.1893 

0.02 0.4150 0.1686 

0.05 0.3245 0.1186 

0.08 0.2266 0.0643 

 

4.3.3.2 A closer look 

Now a closer look near the bifurcation point will be taken to observe the 

generation of membrane wrinkles. A zoom of the buckling curve with 0.05mm tension 

load in Figure 4.8 is shown in Figure 4.9. The further zoom of the buckling curve in 

Figure 4.9 indicates that the maximum displacement is monotonically increasing, 

which means the equilibrium continuation path is unique in the wrinkling process. 

The deformations of the membrane on selected points are plotted in Figure 4.10. The 
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membrane is quasi-flat when the shear load is smaller than 0.05mm. The first few 

wrinkles are generated near boundaries with 0.06mm shear load. The position of the 

maximum displacement moves towards the center area while the center area still 

keeps quasi-flat as shown in Figure 4.10(c) and Figure 4.10(d). From Figure 4.10(d) 

to Figure 4.10(e), the maximum position stops moving and wrinkles begin to appear 

in center area. In Figure 4.10(f), the membrane becomes stable and full wrinkled. 

Because of the boundary effect, the membrane starts wrinkling near boundaries and 

extends to the center area with the increase of the shear load. The amplitudes of the 

central wrinkles are much smaller compared with the largest one. 

 

Figure 4.9 A zoom of the buckling curve, tension load 0.05mm. 

In the FEM study by Wong [102] , the attempts to compute the full response in 

ABAQUS by an arc-length method are unsuccessful due to the complex localized 

instability, therefore they use transient dynamics to compute the solution in this case 

0.05u mm  . Using an arc-length method is difficult to find a stable branch in the 

equilibrium path of membrane wrinkling. By using ANM-TMM, however, the 

path-following technique can obtain the whole developing details of a wrinkled 

membrane as discussed in this section. 
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a. 0.0341mm b. 0.0527mm c. 0.0592mm 

   

d. 0.0740mm e. 0.0837mm f. 0.1028mm 

Figure 4.10 Deformations of the membrane with different shear loads, tension load 0.05mm. 

4.3.3.3 Membrane wrinkling with a very small tension load 

Another advantage of this method is that we were able to use a very small 

tension load to accomplish the simulation. The initial pretension in [102], which 

corresponds to the tension load in this thesis, is chosen as 0.05mm. This value is much 

smaller than that in his previous eigenvalue buckling analysis, from which the 

geometrical imperfections are obtained. However, the initial pretension still has to be 

large enough so that the membrane can avoid some localized modes and enter the 

global buckling period. In Figure 4.8, one can see that ANM-TMM works with 

tension loads much smaller than 0.05mm. In this section, the wrinkling development 

with a very small tension load 0.001mm will be discussed. 

A zoom of the buckling curve with 0.001mm tension load in Figure 4.8 is shown 

in Figure 4.11. The further zoom of the buckling curve indicates that the maximum 

displacement has a slight decrease before the global buckling point. The computation 

follows another localized unstable branch then turns to the global one. 

The deformations of the membrane on selected points are plotted in Figure 4.12. 

The membrane keeps quasi-flat before the critical shear load 0.0020mm. In Figure 

4.12(d), four wrinkles are generated uniformly on the whole membrane. From Figure 
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4.12(e) to Figure 4.12(f), the deformation keeps increasing without any new wrinkle 

generated. The small tension load leads to a weak boundary effect, thus the wrinkles 

are generated simultaneously with approximately equal amplitudes. This is the main 

difference between this case and that in 4.3.3.2. Thus, the tension load has a very 

strong effect on all the aspects of the wrinkling process: first bifurcation load, number 

of wrinkles and spatial distribution of the amplitude of wrinkles. 

 

Figure 4.11 A zoom of the buckling curve, tension load 0.001mm. 

   

a. 0.0004mm b. 0.0019mm c. 0.0020mm 

   

d. 0.0025mm e. 0.0071mm f. 0.0135mm 

Figure 4.12 Deformations of the membrane with different shear loads, tension load 0.001mm. 
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4.3.3.4 Membrane wrinkling with a minimum tension load 

The pre-tension process is an important step to stabilize the equilibrium path. If 

the tension load is too small, the simulation may not be accomplished as the algorithm 

could be trapped in the computation of local modes. It will be of important 

significance to find the limitation of ANM-TMM and study the behavior of the 

membrane with the smallest tension load. 

 

Figure 4.13 A zoom of the buckling curve, tension load 0.0005mm. 

Figure 4.13 is a zoom of the buckling curve with 0.0005mm tension load in 

Figure 4.8. The membrane responses quickly with many localized buckling modes 

after the shear load is applied. The further zoom of the curve shows that the algorithm 

chooses an unstable branch automatically and then goes back to the fundamental 

equilibrium path. A stable bifurcated solution is reached after seeking for about 5 

times. This phenomenon does not occur in the section 4.3.3.14.3.3.2 and 4.3.3.3 

because the tension loads are large enough to stabilize the membrane and a stable 

equilibrium path can be sought very easily. 

The deformations of the membrane on selected points in Figure 4.13 are plotted 

in Figure 4.14. At point b, the computation has left the fundamental equilibrium path 

and generated two wrinkles. From point c to point e, the main wrinkles grow up 

coupled with many localized minor ones. On the final pattern, another main wrinkle is 

generated in center area and the center displacement becomes positive, indicating a 
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mode jump between point e and point f. 

   

a. 0.0002mm b. 0.0015mm c. 0.0017mm 

   

d. 0.0024mm e. 0.0078mm f. 0.0276mm 

Figure 4.14 Deformations of the membrane with different shear loads, tension load 0.0005mm. 

4.3.4 Imperfection sensitivity 

Buckling problems cannot be analyzed directly because of the discontinuity at 

the bifurcation point. To obtain a response in the buckling analysis, an imperfection 

should be introduced. The response of some structures may highly affected by the 

imperfections applied to the original geometry. It is necessary to verify the 

imperfection sensitivity of the structure in membrane wrinkling simulation. 

A moderate value 0.02v  mm is chosen as a tension load when testing the 

imperfection sensitivity. The imperfection is introduced into the original geometry 

according to Section 4.2. For each set of imperfections, a complete wrinkling 

simulation was carried out to observe the final number of wrinkles. Normally, the 

magnitudes of the perturbations are small in comparison with the membrane thickness. 

The imperfection, which is defined as the out-of-plane deformation at the center of the 

membrane, is ranged from 0.00006mm to 0.008mm. 

The results from this study are presented in Table 4.5. In a wide range, the 

amplitudes of imperfections are independent with the final number of wrinkles. The 



Chapter 4 Application of TMM to wrinkling of membranes under shear loading 

80 

particular magnitude of the chosen imperfection is not critical. In practice, the optimal 

ratio of the imperfection and thickness is between 0.02 and 0.1. The smallest 

imperfection that can proceed the simulation is very small (0.0001mm, 0.004h ). In 

comparison, the simulations are generally proceeded with imperfections of larger than

0.01h in FEM. The number of wrinkles begins to decrease when the imperfection is 

larger than 0.005mm ( 0.2h ). This means that the number of wrinkles is sensitive to 

imperfections in the range larger than 0.2h . 

Table 4.5 Sensitivity of the response (number of wrinkles) to the imperfection. Pre-tension

0.02v  mm, number of sub-domains: 33×11. 

Imperfection(mm) Imperfection/h Number of wrinkles 

0.0001 0.004 11 

0.0005 0.02 11 

0.001 0.04 11 

0.002 0.08 11 

0.003 0.12 11 

0.005 0.20 10 

0.008 0.32 9 

The largest imperfection that can use to generate reliable wrinkle patterns is 

smaller than that in FEM. This is because the different methods of imposing 

imperfections. In ABAQUS, imperfections are introduced by imposing geometric 

deformation directly on nodes or a linear superposition of buckling eigenmodes from 

the static analysis. In this study, a transverse pressure is imposed to the membrane to 

produce out-of-plane deformation. The stress distribution before wrinkling analysis is 

slightly different from that in ABAQUS. When imperfections are large, the influence 

of the pressure is not negligible. 

4.4 Conclusion 

This chapter is an extension of the previous work on the use of TMM for large 

deflection of thin plates. In this chapter, the membrane wrinkling problem is studied 
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with Taylor meshless method. Based on equilibrium equations and solution process 

established in Chapter 3, the wrinkle patterns are observed by imposing tension loads, 

imperfections and shear loads successively. 

The imperfections are introduced by imposing transverse pressure, instead of 

pseudo-random geometric displacements on nodes or seeding initial buckling modes 

of a perfect membrane. This is an easy way to avoid stress concentration and localized 

buckling modes. 

Different tension loads and imperfections are imposed to test their influence on 

final wrinkle patterns. The results indicate that imperfections should be large enough 

so that they can provide sufficient bending-to-membrane coupling. In a range, the 

magnitude of imperfections has no influence on the final wrinkling results. 

The tension loads provide a small bending stiffness to the membrane, which 

should be considered to accurately calculate out-of-plane deformation. The study 

indicates that tension loads has a great influence on the final number of wrinkles. 

TMM can accomplish convergent simulations with very small imperfections and 

tension loads in comparison with finite element methods. The approach of wrinkled 

membrane analysis by TMM has been well established. The future work includes 

detailed study on wrinkle amplitude and wavelength in membrane wrinkling 

problems. 
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Conclusions and future works 

In this work, the behavior of thin plates and membranes are investigated by using 

a boundary collocation meshless method – Taylor Meshless Method (TMM), in which 

the PDEs are approximated by Taylor series and the boundaries are discretized with a 

least square collocation. Various parameters that govern the bending, buckling and 

wrinkling behaviors of thin structures are identified by numerical simulations. 

First, the basic techniques of TMM is introduced. The degrees of freedom of the 

problem are reduced significantly by seeking independent coefficients in the truncated 

Taylor series that constructs shape functions. The effectiveness and efficiency of 

TMM are verified by solving a 2D Laplace equation. 

Then, TMM is used to study Kirchhoff plates and laminated sandwich plates. 

Techniques in TMM help to reduce the degree of freedoms significantly so that one 

can increase the degree of the polynomials to a very high level. Different cases are 

considered to test the effectiveness and efficiency of the method. The error shows 

exponential convergence with the increase of degree of polynomials. 

Next, TMM is combined with Asymptotic Numerical Method (ANM) to solve 

large deflection problems of thin plates. The nonlinear equations are expanded in the 

form of power series, which leads the problem to a series of linear equations. The step 

length is determined automatically by a reliable path following technique. The 

accuracy and efficiency of ANM-TMM is verified through these examples and the 

method can be easily extended to other nonlinear problems. 

Based on the work of bending problems, the buckling of thin plates are studied. 

This approach fully takes the advantage of the path following technique. Thus the 

buckling process can be illustrated much more accurate than that by other methods. 

The performance of the approach is investigated by a series of benchmark buckling 

problems. 

Last, the membrane wrinkling problems are studied. Different tension loads and 



Conclusions and future works 

83 

imperfections are imposed to test their influence on final wrinkle patterns. The results 

show that TMM can accomplish convergent simulations with very small 

imperfections and tension loads in comparison with finite element methods. The 

tension load has a strong effect on the amplitudes and number of global wrinkles 

while the imperfection affects the number of wrinkles only when it is large enough. 

The approach of wrinkled membrane analysis by TMM has been well established. 

As revealed in this work, TMM is an efficient and robust method for a variety of 

linear and nonlinear elastic problems. Nevertheless, it will be of great significance to 

extend the application of TMM to many other engineering fields. Some further 

explorations could make TMM a more practical numerical tool: 

1) As the algorithm for computing shape functions and introducing boundary 

conditions needs to be optimized, the computational efficiency can be improved 

with the help of techniques such as Automatic Differentiation. 

2) Based on the resolution established in Chapter 3 and Chapter 4, a toolbox for thin 

structure problems can be developed to simplify the procedure in the pretreatment 

and optimize the interaction. 

3) The numerical work on thin plate problems provides a good foundation for 

studying thin shells. It will also be interesting to extend the application of TMM 

to more challenging problems, involving fluid-solid coupling, contact and even 

vibration. 
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Résumé en français de la thèse 

Présentation rapide du chapitre 1. 

Cette thèse a pour objet la simulation numérique de certaines équations aux dérivées 

partielles non-linéaires dont on sait qu’elles sont maintenant très largement utilisées 

dans un grand nombre de domaines. On s’intéressera plus particulièrement à la 

discrétisation spatiale de ces équations. Les méthodes de discrétisation les plus 

utilisées sont la méthode des différences finies (FDM) et la méthode des éléments 

finis (FEM). Pour la mécanique des solides et des matériaux, la méthode des éléments 

finis est de loin la plus importante, avec des logiciels commerciaux comme ABAQUS, 

ANSYS, MSC/NASRAN ou IDEAS. 

Dans la FDM, on résout l’équation sous la forme forte (méthode de collocation) et on 

approche les dérivées par des différences comme dans la formule (1.1). L’équation est 

appliquée en un ensemble de nœuds et ce maillage est structuré, c’est-à-dire qu’on 

doit connaitre les voisins de chaque nœud pour pouvoir calculer les dérivées. Dans la 

FEM, l’équation est satisfaite au sens faible (méthode de Galerkin), c’est-à-dire en 

moyenne pondérée, l’approximation des inconnues et de l’équation étant définie sur 

des petits morceaux appelés éléments. Cet ensemble de nœuds et d’éléments doit être 

structuré pour obtenir la continuité du champ et assurer la convergence de la méthode. 

Ces méthodes fonctionnent bien, ce qui explique leur immense succès. En particulier 

la méthode des éléments finis est suffisamment souple pour permettre la modélisation 

de structures très complexes comme un avion ou une voiture, tout en prenant en 

compte des comportements variés et fortement non-linéaires. Les reproches 

habituellement adressés à ces deux méthodes sont, d’une part le trop grand nombre de 

degrés de libertés qui est dû à une approximation trop pauvre sur chaque élément (en 

général linéaire ou quadratique), d’autre part l’exigence d’un maillage très structuré 

qui est gênante par exemple lorsque de très grandes déformations requièrent une 
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opération de remaillage en cours de calcul. 

Une autre approche est la méthode des éléments frontières (BEM), basée sur une 

transformation de l’équation aux dérivées partielles en équation intégrale de frontière. 

L’avantage obtenu est évident : on aura seulement la frontière à discrétiser, ce qui 

conduit à des modèles avec beaucoup moins de degrés de liberté. C’est très intéressant 

à notre époque, où les méthodes de réduction de modèle sont à la mode. La 

contrepartie, c’est qu’on ne sait construire l’équation intégrale de frontière que pour 

certains cas où les solutions fondamentales sont connues explicitement, en gros les 

systèmes linéaires, elliptiques et à coefficients constants. C’est pourquoi la BEM a des 

applications, en particulier en acoustique, mais il y en a beaucoup moins que pour les 

deux premières méthodes. 

Les méthodes sans maillage (meshless ou meshfree) ont été développées pour éviter la 

construction d’un maillage structuré qui s’avère coûteuse en termes de 

« temps-ingénieur » et qui est une exigence forte en cas de très grandes déformations 

du domaine au cours du calcul. Ici on cherche donc à créer des fonctions de forme et à 

discrétiser les équations uniquement à partir d’un nuage de points sans aucune autre 

structure que la position des points. Les premiers travaux sur les méthodes sans 

maillage datent des années 1970 et on a assisté à une véritable explosion à partir des 

années 1990. De nombreuses versions de ces méthodes ont été proposées, certaines 

reposant sur le concept de noyau (kernel) comme la méthode SPH (smooth particle 

hydrodynamics, voir les équations (1.2) (1.3)), d’autres sur les moindres carrés 

mobiles (MLS : moving least squares, voir les équations (1.4) (1.6)), d’autres encore 

sur le concept de fonctions radiales. Certainement les méthodes les plus populaires 

sont celles déduites du concept MLS. Quant à la discrétisation des équations, on 

retrouve les deux approches de formulation forte ou formulation faible, avec une 

double difficulté : avec une discrétisation par collocation, la convergence est moins 

assurée qu’avec une méthode de Galerkin, mais l’application de la formulation faible 

demande de calculer des intégrales, ce qui n’est pas facile avec des fonctions qui ne 

sont pas des polynômes de bas degré et de plus cette intégration reste coûteuse. Après 
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plus de 25 ans de recherches intensives, il y a quelques beaux succès des méthodes 

sans maillage, par exemple pour des études de déferlement de vagues qui sont 

difficiles à traiter avec d’autres méthodes [105], mais pour l’instant, ces méthodes 

restent assez coûteuses et très peu utilisées dans les calculs pratiques et les principaux 

codes de calcul commerciaux. 

Dans cette thèse, on s’intéresse à la méthode de Taylor sans maillage (Taylor 

Meshless Method, TMM) développée par Zézé [64], Tampango [65] et Yang [70]. 

Dans cette méthode, on propose de résoudre analytiquement l’équation aux dérivées 

partielles par la méthode des séries de Taylor. Cette résolution analytique permet de 

diminuer fortement le nombre de degrés de liberté comme dans la méthode des 

équations frontières (BEM), mais à la différence de la méthode BEM, TMM 

s’applique aisément à des équations non-linéaires, ce qui avait été fait grâce à 

l’algorithme de Newton ou de Newton-Raphson. Ici on couplera « Taylor Meshless 

Method » avec la méthode asymptotique numérique (ANM) pour pouvoir traiter des 

problèmes de plissement de membranes qui sont ingérables avec les codes de calcul 

existants lorsque la membrane est faiblement tendue. 

Organisation de la thèse  

L’objectif de la thèse est d’appliquer la « Taylor Meshless Method » à des problèmes 

d’instabilité de plaques en grands déplacements, en particulier à des problèmes de 

plissement d’une membrane très souple. 

Le chapitre 2 décrit la technique de construction des fonctions de forme, puis 

l’applique aux problèmes de flexion linéaire des plaques, ce qui n’avait pas encore été 

fait. 

Le couplage de la méthode asymptotique numérique (ANM) avec la discrétisation par 

TMM est présenté au chapitre 3 dans le cas du modèle classique des plaques de 

Föppl-von Karman. 

Enfin le chapitre 4 aborde un problème particulièrement complexe étudié 

précédemment par Wong et Pellegrino [102, 103]. Il s’agit d’une plaque souple et 
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mince soumise à un chargement de cisaillement pour laquelle les méthodes classiques 

de type Newton-Raphson ou Riks n’ont pas permis d’obtenir de solution satisfaisante, 

la difficulté principale étant le suivi de courbe pour une membrane peu tendue (slack). 

Présentation rapide du chapitre 2. 

Ce chapitre présente la procédure désormais bien établie de la « Taylor Meshless 

Method », puis il en fait une première application aux problèmes de flexion linéaire 

des plaques élastiques. La clé est le calcul de la solution générale de l’équation aux 

dérivées partielles (PDE) sous forme de polynômes de degré élevé par la méthode des 

séries de Taylor : on demande que la série de Taylor du résidu de l’équation s’annule 

jusqu’à l’ordre p-2, ce qui définit explicitement une solution particulière et la solution 

générale de l’équation homogène associée sous une forme polynomiale. Cette 

construction désormais bien établie est décrite au paragraphe 2.2. Ensuite on applique 

les conditions aux limites et les conditions de transmission dans le cas d’une 

discrétisation en plusieurs sous-domaines, avec une série de Taylor par sous-domaine. 

Plusieurs méthodes ont été proposées pour traduire ces conditions et nous avons 

retenu la méthode de collocation-moindres carrés qui est la plus simple et est au 

moins aussi efficace que les méthodes basées sur les multiplicateurs de Lagrange. Le 

test présenté à la figure 2.4 rappelle la robustesse de la méthode alors que la figure 2.5 

montre la convergence exponentielle avec le degré de l’approximation polynomiale. 

Les paragraphes 2.5 et 2.6 décrivent l’application de la procédure TMM à la flexion 

des plaques isotropes et anisotropes. On se limite ici à un seul sous domaine et donc à 

une seule série de Taylor, ce qui peut être un peu pénalisant pour retrouver de très 

hautes précisions. Le point le plus important est la procédure de calcul des solutions 

polynomiales qui reposent sur les formules de récurrence présentées au tableau 2.1. 

Les tests présentés concernent les cas suivants. 

1. Flexion d’une plaque circulaire encastrée sous pression uniforme. 

2. Flexion d’une plaque carrée en appui sous pression uniforme. 
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3. Flexion de plusieurs plaques anisotropes stratifiées en appui et soumises à une 

force sinusoïdale. 

Ces tests montrent qu’on peut obtenir une très bonne précision sur les déplacements et 

sur les contraintes dans la plaque pour des degrés élevés (entre 10 et 15), même avec 

une seule série de Taylor. 

Présentation rapide du chapitre 3. 

On étudie dans ce chapitre le fonctionnement d’une plaque en grands déplacements, et 

on a choisi le modèle de plaques de Föppl-von Karman. Il s’agit d’un modèle 

non-linéaire qui, contrairement au modèle de Love-Kirchhoff, introduit un couplage 

entre la réponse en membrane et la réponse en flexion. Dans ce chapitre et le suivant, 

nous appliquerons notre modèle numérique à des problèmes de bifurcation de 

structures très minces sous des chargements de compression. 

On dispose de nos jours d’un grand arsenal de méthodes pour traiter numériquement 

des problèmes de bifurcation. On sait par exemple calculer directement les points de 

bifurcation sur une courbe de réponse non-linéaire, mais la procédure la plus simple 

est d’appliquer une méthode de continuation et d’analyser les résultats. De telles 

procédures (Newton, Newton-Raphson, Riks…) sont disponibles dans les codes de 

calculs existants et ils impliquent d’introduire une perturbation en force ou en 

géométrie lorsque la structure est parfaitement symétrique. Dans cette thèse, nous 

avons appliqué la méthode asymptotique numérique (ANM) qui présente plusieurs 

avantages pour traiter ce type de problème : tout d’abord le suivi de courbe est plus 

facile car le pas de calcul est défini a posteriori de manière automatique ; ensuite, et 

c’est une conséquence du point précédent, la méthode fonctionne avec des forces de 

perturbation plus petites, ce qui permet de traiter des structures presque parfaitement 

symétriques ; enfin les longueurs des pas de calcul diminuent automatiquement à 

l’approche d’une bifurcation, ce qui permet de détecter à l’œil des bifurcations 

éventuelles, simplement en regardant les courbes de réponse obtenues par le processus 
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de continuation. 

La méthode proposée consistera à associer la méthode asymptotique-numérique 

(ANM) à une discrétisation spatiale par TMM (Taylor Meshless Method), ce qui sera 

appliqué au modèle de Föppl-von Karman en flèche-fonction de contrainte (3.1). Plus 

précisément l’application d’ANM transforme ce système non-linéaire en une suite 

d’équations linéaires à coefficients variables (3.7) (3.8) (3.9), ces dernières étant 

discrétisées ensuite par TMM. On aura donc une double série de Taylor : d’abord une 

série par rapport au chargement ou plus précisément par rapport à la longueur d’arc 

(3.6), puis une série par rapport aux deux variables d’espace x et y. Les problèmes 

linéaires issus d’ANM se ramènent à la résolution de deux systèmes linéarisés (3.11) à 

l’ordre 1, puis (3.14) aux ordres suivants : c’est ces deux types de problèmes qui 

seront résolus par TMM. 

La procédure TMM appliquée aux équations de Föppl-von Karman est décrite 

brièvement à la section 3.3.2. Elle découle de la formule de récurrence (3.16), les 

coefficients de Taylor apparaissant dans chaque terme de (3.16) s’exprimant 

simplement à partir des coefficients de Taylor des termes calculés aux ordres 

précédents comme dans les formules (3.17) ou (3.18). Une fois que ces séries à deux 

niveaux (ANM et TMM) ont été calculées, la fin du pas ANM est obtenue d’une 

manière classique en demandant que le dernier terme de la série soit assez petit, voir 

l’équation (3.20) : c’est ce calcul de longueur de pas a posteriori qui fait la force de la 

méthode ANM pour les problèmes de bifurcation, un très petit pas pouvant venir juste 

après un pas très long. 

La formulation en fonction de contraintes des équations de Föppl-von Karman est 

élégante et permet un traitement assez facile des séries de Taylor par rapport aux 

variables d’espace, mais il est fréquent qu’on doive écrire des conditions aux limites 

en termes des composantes horizontales du déplacements u et v. Dans le paragraphe 

3.3.3, on a donc exprimé ces déplacements à partir de la fonction de contrainte, voir 

l’équation (3.28) ou sa traduction en termes de coefficients de Taylor (3.29). A noter 

qu’il apparait alors un déplacement rigide, c’est-à-dire trois inconnues 
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supplémentaires notées u, v et  dans l’équation (3.35). La manière d’écrire les 

conditions aux limites et les conditions de transmission est aussi précisée dans ce 

paragraphe 3.3.3. 

Plusieurs applications numériques sont ensuite discutées concernant des plaques 

rectangulaires. Elles sont ensuite comparées avec les résultats obtenus avec le code 

par éléments finis ANSYS. Le premier exemple est le flambage d’une plaque carrée 

en compression bi-axiale en appui. Dans ce cas, on a essayé de prédire le point de 

bifurcation avec l’imperfection la plus faible possible : les figures 3.3 et 3.4 montrent 

que le suivi de courbe par ANM-TMM permet de suivre la bifurcation avec une force 

de perturbation extrêmement faible, beaucoup plus faible qu’avec le code d’éléments 

finis. Après le calcul d’une plaque en flexion, on s’est intéressé au comportement 

post-bifurcation d’une plaque en appui sous chargement uni-axial. A la première 

bifurcation, on obtient un mode sinusoïdal à une bosse et on passe progressivement à 

un mode à trois bosses (figures 3.9 et 3.11) qui demande une discrétisation plus fine 

(ici, 16 sous domaines et un degré 10). La méthode proposée permet donc de prévoir 

ce comportement complexe avec un maillage grossier et un suivi de courbe très 

précis. 

Présentation rapide du chapitre 4. 

Dans ce chapitre, la méthode décrite au chapitre précédent sera appliquée à un 

problème de plissement de membranes. Les membranes et les films très minces sont 

un sujet d’importance croissante, soit pour des raisons de recherche fondamentale 

(compréhension des instabilités), soit pour des raisons technologiques (réduction de 

poids, structures ultralégères…). Le problème choisi est le plissement d’une 

membrane très mince soumise à un chargement de cisaillement. Ce problème très 

simple est une source de difficultés pour le calcul numérique, en particulier pour des 

chargements très faibles car la rigidité quasi nulle en flexion rend la structure 

extrêmement sensible à la moindre compression. Wong et Pellegrino [102] ont étudié 
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ce problème avec un code de calcul commercial. Vu les difficultés numériques 

rencontrées, ils ont choisi d’ajouter un chargement de tension assez important en sorte 

que la rigidité géométrique due à cette tension compense la trop faible rigidité de 

flexion. Nous rediscutons ici ce problème de plaque mince en cisaillement pour 

essayer d’expliquer l’influence de cette tension additionnelle et, si possible, de 

comprendre le comportement de cette structure lorsque cette tension est très faible. 

Le problème de membrane de Wong et Pellegrino est décrit à la Section 4.2. On 

considère une membrane rectangulaire (rapport d’aspect a/b≈3) très mince (b/h≈5000) 

et soumise à un chargement principal de cisaillement. Ce problème apparemment très 

simple s’est avéré ingérable par les méthodes de continuation à longueur d’arc 

imposée. Il avait été traité par une approche pseudo-dynamique, mais il avait fallu 

introduire une imperfection géométrique, ce qui est classique dans l’étude numérique 

des bifurcations, mais aussi une pré-tension qui stabilise le calcul, mais risque de 

modifier fortement le comportement de la membrane. L’influence de cette pré-tension 

est donc un enjeu important qui sera discuté dans ce chapitre. Ici l’imperfection 

géométrique sera produite par une force transversale et non par un défaut initial de 

planéité, le point important étant la très faible valeur de cette imperfection pour 

résoudre presque parfaitement le problème de bifurcation. 

Les résultats numériques sont présentés à la section 4.3. Il apparait clairement que la 

procédure de continuation fonctionne et permet de calculer les solutions plissées, 

même avec une imperfection très faible, et un maillage relativement grossier de 

33×11 sous-domaines. L’algorithme de continuation a donné des résultats cohérents 

même pour des pré-tensions extrêmement faibles (cf Figure 4.8), alors que les 

résultats de la littérature mentionnent tous la difficulté à faire fonctionner un 

algorithme de continuation et qu’ils préfèrent en général l’approche 

pseudo-dynamique et se limitent à des chargements assez grands. Ici on obtient la 

courbe de réponse pour des cisaillements faibles alors que la membrane est très peu 

tendue. 

 Un résultat un peu surprenant est présenté à la Table 4.3 et à la Figure 4.7: pour des 
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pré-tensions très faibles (0.5m et 1m), les modes de déformations n’ont que 3 ou 4 

plis alors que la littérature en trouve au moins 10 ou 11 avec des tensions plus 

importantes. Ces résultats de la littérature ne sont donc pas représentatifs d’une 

membrane chargée presque uniquement en cisaillement, cette pré-tension transversale 

modifiant fortement les modes de déformation et les courbes de réponse (Figure 4.8). 

Une contribution importante de cette thèse, avec le pilotage ANM et la discrétisation 

TMM, est donc de pouvoir faire ces calculs de structures très molles conduisant à des 

modèles mathématiques ayant beaucoup de solutions. 

L’évolution des formes déformées en fonction du chargement de cisaillement est 

présentée pour plusieurs valeurs de la pré-tension. Les figures 4.9 et 4.10 présentent le 

cas d’une pré-tension de 0.05 mm étudié par Wong et Pellegrino : la première 

bifurcation se produit pour un cisaillement ≈0.05 mm et correspond à un mode très 

localisé aux bords. Une seconde bifurcation pour ≈0.08 mm déclenche l’apparition 

de plis plus petits au centre du rectangle, les simulations de Wong et Pellegrino (voir 

leur Figure 9) présentant la suite de l’histoire pour 0.1 mm ≤  ≤ 2.6 mm. Pour une 

pré-tension très faible de 0.001 mm, la bifurcation a lieu beaucoup plus tôt, le nombre 

de plis est bien plus faible (4 à 6) et les amplitudes des oscillations sont plus 

uniformes, sans concentration près des bords. Enfin on a simulé l’apparition des plis 

avec une membrane initialement très molle (pré-tension de 0.0005 mm) : la courbe de 

réponse (Figure 4.13) oscille fortement dès le début du calcul, avec un nombre très 

important de pas ANM, signe de la présence de solutions multiples et de nombreuses 

quasi-bifurcations dues à l’état presque mou de la membrane, les plis correspondant à 

cet état très mou étant très irréguliers, cf Figure 4.14. Enfin, on discute l’influence de 

la petite imperfection transversale ajoutée pour déclencher la bifurcation. Dans le cas 

traité au Tableau 4.5, l’algorithme de continuation fonctionne pour un défaut 

supérieur à 0.1 m (en valeur adimensionnelle 1/250) et prédit 11 plis à condition que 

le défaut ne soit pas trop grand. 

En résumé, la méthode de continuation proposée a permis de résoudre ce problème de 

membrane très difficile, en particulier au début du chargement où la membrane est 
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très molle. Il est apparu que la pré-tension introduite par Wong et Pellegrino a une très 

forte influence sur la réponse de la membrane et qu’il y a des différences importantes 

entre une membrane avec une pré-tension quasi-nulle et celle avec une pré-tension de 

0.05mm utilisée par ces auteurs. 

Conclusions 

Dans cette thèse, on a étudié le comportement des plaques minces et des membranes 

en utilisant une méthode de collocation-frontière sans maillage (TMM), dans laquelle 

l’EDP est résolue analytiquement au sens des séries de Taylor et les conditions au 

bord sont discrétisées par collocation-moindres carrés. Divers paramètres régissant le 

comportement en flexion, flambage ou plissement sont identifiés. 

Tout d’abord, on rappelle les techniques de base de TMM. Ainsi, on réduit fortement 

le nombre de degrés de liberté en construisant des fonctions de forme solutions de 

l’EDP. L’efficacité de TMM est illustrée dans le cas d’une équation de Laplace 2D. 

Ensuite TMM est utilisé pour étudier les plaques de Kirchhoff et les plaques 

composites stratifiés. La réduction du nombre de degrés de liberté permet 

d’augmenter le degré jusqu’à un ordre élevé. Différents tests démontrent l’efficacité 

de la méthode qui converge exponentiellement avec le degré des polynômes. 

Puis on combine TMM avec la méthode asymptotique numérique (ANM) pour étudier 

des problèmes de flexion de plaques en grands déplacements. On développe les 

équations non linéaires sous forme de séries entières, ce qui conduit à une suite de 

problèmes linéarisés. La longueur de pas est déterminée a posteriori à partir des 

propriétés de convergence des séries. La précision et l’efficacité d’ANM-TMM sont 

vérifiées à travers quelques exemples de flexion ou de flambage et la technique peut 

être étendue à d’autres modèles non linéaires. 

Notre modèle numérique permet de simuler des phénomènes de flambage, grâce à la 

technique de continuation. On sait que la méthode de pas adaptatifs d’ANM permet de 
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détecter des points de bifurcation de manière très précise et avec des imperfections 

extrêmement petites. Nous vérifierons cette propriété pour divers benchmarks de 

flambage. 

Enfin on s’intéresse au plissement des membranes avec un benchmark de cisaillement 

d’une membrane rectangulaire très mince qui s’était avérée quasiment impossible à 

modéliser par d’autres modèles de continuation, même en rajoutant une traction 

transversale. Nos tests montrent qu’ANM-TMM permet de le faire avec des 

imperfections très petites et aussi pour des valeurs très petites de la traction 

transversale. On a vu que cette traction a une influence importante sur la réponse et le 

nombre de plis obtenus. 

Notre travail a montré que TMM est un outil robuste et efficace pour discrétiser divers 

problèmes d’élasticité linéaire et non-linéaires. Il serait donc important d’étendre les 

applications de TMM à d’autres domaines des sciences de l’ingénieur. Quelques 

travaux complémentaires pourraient être menés pour approfondir nos résultats /  

1. L’algorithme de calcul des fonctions de forme pourrait être optimisé et 

généralisé, par exemple avec la technique de Différentiation Automatique. 

2. A partir des travaux décrits aux chapitres 3 et 4, une « toolbox » destinée aux 

structures minces pourrait être développée pour simplifier le prétraitement et la 

définition des données. 

3. Nos études sur les plaques minces forment une bonne base pour l’étude des 

coques minces. Il serait aussi intéressant d’étendre le champ d’application de 

TMM à des problèmes difficiles, par exemple les couplages fluides-structures, 

la mécanique du contact ou les vibrations. 



 

 

METHODE SANS MAILLAGE DE TYPE TAYLOR POUR PLAQUES MINCES 

RESUME : Une nouvelle classe de méthodes sans maillage  Taylor Meshless Method 

(TMM)  a été introduite. Elle repose sur une solution explicite des équations aux 

dérivées partielles dans le domaine à l’aide des développements en séries de Taylor. 

Parce que la PDE est résolue analytiquement dans le domaine, on est réduit à un 

problème de frontière discret dont la taille est plutôt petite. L’efficacité de TMM a été 

vérifiée en résolvant certaines PDEs. TMM est utilisé pour résoudre les problèmes de 

plaques de Kirchhoff et de plaques sandwich laminées. L'erreur montre une 

convergence exponentielle avec l'augmentation du degré de polynômes. TMM est 

combiné à la Méthode Asymptotique-Numérique (ANM) pour résoudre les problèmes 

de grands déplacements de plaques minces. La longueur du pas est déterminée 

automatiquement par une technique fiable de suivi de courbe. Cette méthode en double 

série peut facilement être étendue à d'autres problèmes non linéaires. Le processus de 

flambement peut être illustré de manière beaucoup plus précise que celle d'autres 

méthodes. La performance de l'approche est examinée par une série de problèmes de 

flambement de référence. Les problèmes de plissement de membrane sont étudiés. Les 

résultats montrent que TMM peut réaliser des simulations convergentes avec de très 

petites imperfections et des charges de tension comparées aux méthodes par éléments 

finis. L’approche de l’analyse de la membrane ridée par la TMM a été bien établie. 

Mots clés : Méthode sans maillage, Série de Taylor, Collocation 

 

TAYLOR MESHLESS METHOD FOR THIN PLATES 

ABSTRACT: A new class of meshless method – Taylor Meshless Method (TMM)  has 

been introduced that relies on an explicit solution of the partial differential equations 

inside the domain with the help of Taylor series expansions. Because the PDE is solved 

analytically in the domain, one is reduced to a discrete boundary problem whose size is 

rather small. The effectiveness and efficiency of TMM have been verified by solving 

some PDEs. TMM is used to solve Kirchhoff plate and laminated sandwich plate 

problems. The error shows exponential convergence with the increase of degree of 

polynomials. TMM is combined with Asymptotic-Numerical Method (ANM) to solve 

large deflection problems of thin plates. The step length is determined automatically by 

a reliable path following technique. This double series method can be easily extended to 

other nonlinear problems. The buckling process can be illustrated much more accurately 

than that by other methods. The performance of the approach is investigated by a series 

of buckling benchmark problems. The membrane wrinkling problems are studied. The 

results show that TMM can accomplish convergent simulations with very small 

imperfections and tension loads in comparison with finite element methods. The 

approach of wrinkled membrane analysis by TMM has been well established. 

Keywords : Meshless method, Taylor series, Collocation 


	Contents
	List of Tables and Figures
	Chapter 1 Literature review on meshless methods
	1.1 Research background
	1.1.1 Finite difference method
	1.1.2 Finite element method

	1.2 Meshless methods
	1.2.1 Approximation approaches of field functions
	1.2.2 Galerkin formulation and collocation formulation
	1.2.3 Taylor Meshless Method
	1.2.4 Boundary element method

	1.3 Organization of the thesis

	Chapter 2 Techniques of Taylor Meshless Method
	2.1 Introduction
	2.2 Resolution of partial differential equations
	2.3 Treatment of boundary and interface conditions
	2.4 Application to 2D Laplace equation
	2.5 Application of TMM to Kirchhoff plate problems
	2.5.1 Calculation of the shape functions
	2.5.2 Kirchhoff plate problem with a circular domain
	2.5.3 Kirchhoff plate problem with a rectangular domain

	2.6 Application of TMM to sandwich plates
	2.6.1 The loading and the governing equation
	2.6.2 Exact solution
	2.6.3 The properties of each case
	2.6.4 Results

	2.7 Conclusion

	Chapter 3 Application of TMM to large deflection of thin plates
	3.1 Introduction
	3.2 Governing equations
	3.3 Combination of TMM and ANM
	3.3.1 The procedure of ANM
	3.3.2 TMM formulation
	3.3.3 Treatment of boundary and interface conditions
	3.3.3.1 A square plate with movable edges
	3.3.3.2 A square plate with immovable edges


	3.4 Results and discussion
	3.4.1 Buckling of a square plate with movable edges
	3.4.2 Bending of a square plate with immovable edges
	3.4.3 Buckling of a square plate with immovable edges under uniaxial compression

	3.5 Conclusion

	Chapter 4 Application of TMM to wrinkling of membranes under shear loading
	4.1 Introduction
	4.2 Modelling of the membrane boundary value problem
	4.3 Numerical Results
	4.3.1 Generation of membrane wrinkles
	4.3.2 Sensitivity with respect to the number of subdomains
	4.3.3 Sensitivity with respect to tension loads
	4.3.3.1 A global look
	4.3.3.2 A closer look
	4.3.3.3 Membrane wrinkling with a very small tension load
	4.3.3.4 Membrane wrinkling with a minimum tension load

	4.3.4 Imperfection sensitivity

	4.4 Conclusion

	Conclusions and future works
	References
	Résumé en français de la thèse

