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Abstract

Nowadays, the wireless mobile communications are witnessing unprecedented growth
fueled by the huge number of connected devices increasing importantly the demands for
high-volume data traffic, requiring thus intensive computation and leading to high energy
consumption. However, this expansion of wireless services is still restrained by mobile
terminals limitations, in terms of processing capacity, storage and energy. Mobile Edge
Computing (MEC) and Energy Harvesting (EH) schemes have been recently proposed as
promising technologies to extend the battery lives of mobile devices and improve their
computing capabilities. On one hand, MEC enables offloading computation tasks from
mobile devices to nearby Base Station with more energy and computations resources.
On the other hand, EH exploits alternative renewable energy sources to power mobile
devices. However, the stochastic nature of renewable energy may lead to energy outage.
In such cases, the system’s performance can be degraded due to packet loss or intolerable
latency. In order to ensure the system sustainability, efficient transmission policies under
EH constraints are needed. In this thesis, we investigate the joint resource scheduling and
computation offloading in a single user MEC system operating with EH based devices.
The main contribution of this work is the introduction of the strict delay constraint
instead of the average delay constraint to satisfy future requirements of low-latency
communications and critical applications. We study three different setups. In the first
setup, we consider a perfect Channel State Information (CSI) at the transmitting device
and we aim to minimize the packet loss due to delay violation and buffer overflow at the
device’s data buffer. The associated optimization problem is modeled as Markov Decision
Process and the optimal policy is exhibited through Dynamic Programming techniques.
We show that the optimal policy outperforms other policies by adapting the number of
processed packets to the system states. In the second setup, we consider a more realistic
scenario, where the channel is not perfectly known at the transmitter and it is acquired
after an estimation phase. In fact, this estimation can be erroneous degrading thus further
the packet loss rate. Hence, we evaluate the previously obtained optimal policy under
imperfect CSI conditions and we show that it remains robust with respect to other policies.
Finally, we address the setup with no CSI at the transmitter. We therefore assume that
an outdated CSI is only available and we show that the proposed optimal policy can still
achieve good performance compared to other policies.
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Introduction

This thesis is enrolled in the framework of the SCAVENGE (Sustainable CellulAr networks
harVEstiNG ambient Energy) project supported by the “European Union’s Horizon 2020
research and innovation programme under the Marie Skłodowska-Curie grant agreement
No 675891”. It has been carried out since September 2016 at CEA LIST, Saclay, Commu-
nicating Systems Laboratory (LSC) in collaboration with Télécom ParisTech, Communi-
cations and Electronics department (COMELEC), under the supervision of Dr. Mireille
SARKISS and Pr. Philippe CIBLAT.

Project Context

Figure 1 – SCAVENGE Project [1].

Information and Communication Technology (ICT) now penetrates all parts of society,
with 6.8 billion of mobile subscribers approaching the global population, and 750 million
households connected to the Internet forming 41% of the world’s households [2]. The
Fifth Generation (5G) of mobile technology will handle 1, 000 times more capacity per
unit area than previous mobile networks generation, for more than 100 billion devices
with typical user rates of 10 Gb/s, and requirements for dramatically lower latency and
higher reliability. This huge proliferation of devices (see Figure 2) will also bring an
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equally significant increase in the carbon footprint of ICT. According to [3], the global
ICT ecosystem already consumes about 1500 TWh of electricity per year, approximately
10% of the world’s electricity production, 50% more than global aviation energy con-
sumption, with an annual increase of 11 Mto of the emitted carbon footprint as seen in
Figure 3.

(a) Mobile Devices and Connections

(b) Mobile Traffic

Figure 2 – Global growth by device type [4].

A promising solution to limit the negative environmental impact of the ICT sector and
reduce its energy cost, while giving the 5G system sufficient autonomy from the electricity
grid, is to harness the available ambient energy.
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Figure 3 – Worldwide ICT Carbon footprint [5]

The SCAVENGE project proposes a sustainable paradigm for 5G mobile networks based
on the premise that environmental energy can be scavenged through dedicated harvesting
hardware, so as to power all network elements, i.e. Base Station (BS), mobile terminals,
sensors, etc.

Problem Statement

5G on the go promises instant connectivity to billions of devices for the smart cities, the
Internet of Things (IoT) and a truly connected world. There are three main areas of use
cases for 5G

• Massive Machine-to-Machine (M2M) communications: also known as IoT, con-
necting billions of devices without human intervention on a scale never experienced
before. Such a transformation has the potential to revolutionize modern industrial
processes and applications, including agriculture, manufacturing and commercial
communications.

• Ultra-reliable low latency communications: ranging from real-time applications
to opening up a new world where medical care, procedures and remote treatments
are all possible.

• Enhanced mobile broadband: offering considerably faster data speeds and greater
capacity to keep the world connected. New applications include Virtual Reality (VR)
and Augmented Reality (AR) and bring connected experiences beyond what was
previously possible.
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This explosive growth of mobile communications and IoT driven by the huge number
of connected devices and resource-hungry mobile applications is increasing significantly
the demands for high-volume delay-sensitive data traffic. It requires thus intensive com-
putation and leads to high energy consumption. However, this expansion of wireless
services is still restrained by mobile terminals limitations in terms of processing capacity,
storage and energy. Recently, Energy Harvesting (EH) and offloading have been pro-
posed as promising technologies to improve mobile devices computing capabilities and
extend their battery lives.

On one hand, harvesting energy from surrounding environments allows to extend wire-
less devices lifetime by exploiting alternative renewable energy sources, such as solar
power. This improves self-sustainability of wireless networks and limits their dependency
on conventional grid power, reducing thus their growing carbon footprint. Depending on
the environment conditions, the harvested energy arrives in intermittent amount at ran-
dom times. It can be then stored in a capacity-limited energy storage device or battery for
future use. The stochastic behavior and uncertainty of available energy may degrade the
communication performance due to intolerable delay and packet loss. Therefore effective
transmission policies are essential to satisfy Quality-of-Service (QoS) requirements and
ensure the system reliability and sustainability.

On the other hand, offloading enables executing mobile devices tasks at remote cloud
server or at BS with more energy and computation resources. This allows to reduce
locally the consumed energy at the mobile devices and prolong their battery lives.

Figure 4 – Thesis context.

In Figure 4, we roughly draw the communication scheme of the thesis context. A mobile
device is able to harvest energy (see the right hand side of the figure). This device has
heavy tasks to compute in order to satisfy the user’s requirement (see the center of the
figure). This task may be done locally or remotely to a BS with high computational ability
(see the left hand side of the figure).
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This thesis aims at studying optimal data transmission policies with offloading func-
tionalities by leveraging on devices’ energy harvesting capabilities in order to guarantee
better performance in terms of energy consumption, packet error rate, delay, etc. There-
fore, the main objective of this thesis is to design and optimize resource scheduling
and offloading strategies that account for random data arrivals, sporadic energy arrivals,
channel conditions, application type, data buffer status and available energy in the battery.

The main contribution of this work is the introduction of the strict delay constraint instead
of the average delay constraint used in the state-of-the-art. In fact, many applications (real-
time control, industrial robotics, Vehicle-to-Vehicle (V2V) communications and safety
systems, autonomous driving, gaming, etc), the latency requirement is crucial for enabling
application to work properly. For such applications, the average delay constraint is not
strong enough anymore to ensure the well service. Notice that in this thesis, strict delay
does not necessarly mean low delay, but just a strict deadline beyond which the packets
are outdated and useless : therefore, this thesis does not deal with the so-called Ultra-
Reliable, Low-Latency Communication (URLLC) of 5G systems.

Outline and Contributions

This thesis is composed of 4 chapters. Our original contributions are gathered in Chap-
ters 2, 3 and 4 whereas Chapter 1 describes briefly the aforementioned technologies and
presents an overview of the optimization framework used to solve our problems.

In Chapter 1, we first describe the underlying motivations for integrating EH into com-
munication systems and present some of the available sources of this type of energy, in
order to select the most appropriate ones for our system. Then, using the same approach,
we show the importance of computation offloading in future communication systems,
and among the available options, choose the most suitable one for our problem. The
mathematical tool to exhibit powerful schedulers and offloading strategies will be the
Markov Decision Process (MDP). Therefore the end of this Chapter is devoted to the
description of the main results on MDP.

In Chapter 2, we investigate the joint optimization of resource scheduling and computa-
tion offloading for mobile networks, where EH-enabled devices are wirelessly connected
to nearby BS, which can be endowed with some computational capabilities. In this first
setup, we assume that the channel is acquired free-of-charge and error-free by the mobile
device. This case stands for a perfect Channel State Information at the Transmitter (CSIT).
Two special cases of this general problem are also presented, where the problem of re-
source scheduling is investigated for an EH-transmitter (without offloading capabilities),
and for a conventional transmitter (without EH and offloading capabilities), respectively.
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In Chapter 3, we consider a more realistic scenario, where the channel is not perfectly
known at the transmitter. In this setup, we assume that the receiver estimates the channel
and feeds it back to the mobile device. In fact, this acquired Channel State Informa-
tion (CSI) can be erroneous and can lead to a degradation of the system’s performance.
Therefore, we decide to assess the previously obtained optimal policy under imperfect
CSIT conditions. We also consider imperfect CSIT assumption with Automatic Repeat
ReQuest (ARQ) protocol, allowing thus packet re-transmission. This problem is also con-
sidered for an EH-transmitter without offloading ability to study the robustness of the
resource scheduling derived policy under imperfect CSIT scenario.

In the Chapter 4, we investigate another approach dealing with the missing CSIT. We
therefore assume that an outdated CSIT is only available, and we study the system of
Chapter 2 under this condition, in which new types of errors are added. This assumption
implies significant changes in the system description and the optimal policy to be able to
adapt properly within this new context and maintain good performance.

Publications

The work conducted during this thesis has led to the following publications.

Journals

J1. I. Fawaz, M. Sarkiss and P. Ciblat, “Delay-Optimal Resource Scheduling of En-
ergy Harvesting based Devices,” IEEE Transactions on Green Communications and
Networking (TGCN), accepted for publication in June 2019.

International conferences

C5. I. Fawaz, M. Sarkiss and P. Ciblat, “Packet Scheduling and Computation Offload-
ing for Energy Harvesting Devices without CSIT,” submitted to IEEE Vehicular
Technology Conference (VTC), September 2019.

C4. I. Fawaz, M. Sarkiss and P. Ciblat, “Delay-Optimal Resource Scheduling and Com-
putation Offloading for Energy Harvesting Devices,” IEEE International Conference
on Software, Telecommunications and Computer Networks (SoftCom), September
2019.

C3. I. Fawaz, M. Sarkiss and P. Ciblat, “Joint Resource Scheduling and Computation Of-
floading for Energy Harvesting Communications,” IEEE International Conference
on Telecommunication (ICT), June 2018.
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C2. I. Fawaz, M. Sarkiss and P. Ciblat, “Optimal Resource Scheduling for Energy Har-
vesting Communications under Strict Delay Constraint,” IEEE International Con-
ference on Communication (ICC), May 2018.

C1. I. Fawaz, P. Ciblat and M. Sarkiss, “Energy Minimization based Resource Scheduling
for Strict Delay Constrained Wireless Communications,” IEEE Global Conference
on Signal and Information Processing (GlobalSIP), November 2017.
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Chapter 1

Preliminaries

Nowadays, mobile communication systems face unprecedented growth of connected de-
vices which applications require data analysis and heavy computation as well as strict
delay. These requirements lead to an increase in demands for processing capacity, stor-
age and energy. In order to meet these challenges, energy harvesting and computation
offloading schemes have been recently proposed.

In this chapter, we describe these two technologies and we present the mathematical
optimization tools used to achieve the objectives of this work. Namely, we provide a
review of the main MDP concepts and present several algorithms used to solve these
problems.

1.1 Energy Harvesting

Global warming is one of the biggest threats to the natural world. This is caused primarily
by the human use of fossil fuels (oil and coal), which emits greenhouse gases, in particular
Carbon Dioxide (CO2), into the atmosphere. According to [6], a 14% increase in ICT global
emission is expected by the year 2040. Therefore, in an effort to reduce the operational
expenses and environmental footprints, pushing for the integration of renewable energy
technologies to power the communication infrastructures becomes essential.

Energy Harvesting or also known as Energy Scavenging is the process of collecting and
storing ambient energy for future use [7]. The energy can be harvested from a lot of
sources in the surrounding environment, such as solar, thermoelectric, vibration, wind
power and electromagnetic radiations. In this section, we briefly describe each EH source
together with its applicability to mobile phones, to ultimately select the ones that best suit
our system.
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1.1.1 Solar Energy

Figure 1.1 [8] shows the distribution of irradiation and thus the availability of solar power
across the globe. Therefore, solar-powered generators can be deployed anywhere, even
in northern countries (one can mention Germany where solar panels are well deployed
on house’s roofs). In southern countries, the solar energy is even more efficient because of
more sun but also because the electric grid is not available anywhere, and the solar energy
can be produced easily where it is used and does not require grid. Such a deployment
is so easier and cheaper than conventional sources and reduces thus the dependence
on expensive sources like oil. On the other hand, solar power depends on geolocation
and weather. The stochastic nature and thus uncertainty of the available energy is a
major obstacle to the large-scale use of solar energy in many regions. It requires a proper
management to ensure its optimal use and avoid energy shortage.

Figure 1.1 – Map of average solar irradiation across the globe [8].

Solar energy can be accessed by converting light radiation into electricity through a num-
ber of different technologies. Photo-Voltaic (PV) technology is the most used worldwide.
Figure 1.2 shows an example of PV technology.

(a) Fixed tilt [9] (b) Rooftop system [10] (c) Car [11]

Figure 1.2 – Example of PV technology.
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PV solar cells operate at near ambient temperature with no moving parts and their power
efficiency is the same whatever the size of the panels [12]. A solar PV array consists
of one or more electrically connected PV modules, where each module contains many
individual cells [13]. Figure 1.3 shows the inside of a PV cell [14].

Figure 1.3 – Inside a PV cell [14].

When exposed to sunlight, a solar cell connected to an external circuit generates a Direct
Current (DC), and using adequate components (combiners, inverters, and transformers),
this current can be converted into grid-compatible Alternating Current (AC) if needed.
Meanwhile, charge controllers and batteries could be also used to store energy during the
day and provide on-demand power during the night. In peak sunlight, these PV cells are
capable of generating over 50− 100 mw of electrical power per square cm of area [15,16].

Application to mobile phones

Charging the smartphone using solar energy has been a long-standing consideration for
many phone manufacturers to provide their customers with more sustainable alternative
solutions to recharge their phones, especially in rural areas when it is not possible to plug
into the electrical grid, or when the electricity supply is uncertain.

Samsung was officially the first manufacturer to launch a solar phone into the market in
2009. The “Solar Guru E1107” (Figure 1.4a), was launched in India to solve the problem
of regular power outages, before it was expanded to Asia, Africa, and Latin America as
well. The handset was able to provide between 5 and 10 minutes of talk time after one
hour of solar charging using the built-in solar cells in its back plate. Samsung claimed that
the battery is fully charged in about 40 hours of solar charging. Months later, Samsung
released another solar device called “Blue Earth S7550” (Figure 1.4b), branded as an
environmentally friendly product and launched with a bunch of advanced features (web



12 1. Preliminaries

access, YouTube, social networks, internet connection over Wireless Fidelity (WiFi) or 3G,
Global Positioning System (GPS), etc) and in a much wider range of markets, including
the United Kingdom. Similar to the previous model, this phone also had solar cells on its
back providing 10 extra minutes of talk time after an hour of sunlight charging.

(a) Guru E1107 (b) Blue Earth S7550

Figure 1.4 – Samsung EH mobile phones [17].

Concurrently, LG introduced its mobile phone “POP GD510” (Figure 1.5a) integrated
with solar cells in its battery cover. These cells charge in 10 minutes of sunlight enough
energy to provide 2.25 minutes of talk time or 3 hours of standby time.

A year later, in 2010, Puma collaborated with Sagem to launch the “Puma Phone” (Fig-
ure 1.5b), a handset equipped with a solar panel designed to enhance the physical capa-
bilities of this active phone equipped with step tracking and a GPS chip.

(a) LG POP GD510 (b) Puma

Figure 1.5 – LG and Puma EH mobile phones [18].

However, the solar panel was merely there to keep the battery charged, rather than to
provide the main charging source. This is simply explained by the low efficiency of the
solar panel despite the small energy requirements of these phones.
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Since then, a number of manufacturers have been studying the feasibility of solar energy.
For instance, Nokia developed in 2012 a prototype of a phone with a solar charging panel
integrated in the back cover and tested it in different environments. The results con-
firmed that charging a mobile phone using just a solar panel mounted on the back cover
is possible, but challenging. The prototype phones were able, at best, to collect enough
energy to keep the phone in standby mode with very limited talk time, if they were
carefully positioned. The biggest challenge is the limited size of the phone’s rear cover,
which limits the battery’s charging capacity. In practice, the charging capacity is not solely
dependent on the meteorological conditions and the amount of sunlight, but is also signif-
icantly affected by other factors such as lifestyle and the angle of incidence of the sunlight.

Recently, a Russian company called “Caviar”, announced its new “iPhone X Tesla” (Fig-
ure 1.6) which can be fully charged with sunlight. The phone is equipped with a solar
panel mounted on its back, allowing the smartphone to charge its battery from light
using silicone semiconductors. The engineers of this company have performed more
than 100 tests proving the efficiency and safety of this system, although the details re-
garding power specifications are not indicated on the product page. The smartphone is
significantly thicker than its iPhone X counterpart and much more expensive.

Figure 1.6 – IPhone X Tesla [19].

1.1.2 Thermoelectric Energy

Thermoelectric technology has been used in space missions for a long period by exploit-
ing the radioisotope Thermoelectric Generator (TEG), which converts the heat of power
plants, factories, motor vehicles, computers or even human bodies into electricity by the
Seebeck effects, Peltier effect or Thomson effect [20].

In comparison with other sources of energy, the thermoelectric energy source provides
relatively low electrical power levels (few hundreds of µW to mW) [21]. In particular, a
power density of 60 µW/cm2 is achieved from human bodies and can reach 10 mW/cm2

if the heat is extracted from the industry [16, 22]. Moreover, the main challenge of the
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thermoelectric power generation is the low heat-to-electricity conversion efficiency. A
number of research efforts have been undertaken to improve the waste heat recovery
efficiency using heat sources such as power plants, automobiles, geothermal energy and
other heat-generating industries [23]. In addition, the TEG has many advantages such as
no moving parts, no toxic residuals, no chemical reactions, being environmental friendly
and deployable in unmaintained situations [23, 24]. These reasons make this source of
power attractive in wide range of applications such as military, aerospace, biological sys-
tems (powering implanted pacemakers), etc [21].

The basic construction unit of a thermal harvester is a thermocouple shown in Figure 1.7a
[25]. When a temperature difference is applied across this material, heat begins to flow
from the hotter to the cooler side. To boost the output voltage and get more power,
many of these legs are connected electrically in series and thermally in parallel to form
a thermopile, as it is illustrated in Figure 1.7b. In order to create a thermal circuit, the
needed elements are: Thermoelectric Module (TEM), heat source and heat sink. The
heat source provides an elevated temperature and represents the hot side, while the heat
sink represents the cold side and serves as heat dissipation in order to achieve a lower
temperature [23].

(a) Semiconductor thermocouple
[25]

(b) Diagram of a thermocouple [26]

Figure 1.7 – Thermoelectric harvester general scheme

Application to mobile phones

Since thermoelectric energy is based upon the fact that electrons escape from hot to cold
in order to create a current, one can then extract this type of energy from the human body
which acts as a permanent source of heat.
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At the 2010 Glastonbury Festival, the French telecommunications operator Orange pre-
sented a prototype of the “Power Wellies” (Figure 1.8) rubber boots that convert heat into
electricity through a thermoelectric panel fixed in the sole to charge mobile phones. They
claimed that it provides an extra hour for the cell phone after 12 hours of walking.

Figure 1.8 – Orange Power Wellies boots [27].

In turn, Vodafone stepped up the ante at the Isle of Wight Festival in 2013 with power
shorts (Figure 1.9a) and sleeping bags (Figure 1.9b) both with thermoelectric pockets.
These two prototypes are based on the Seebeck effect where the human body provides heat
on the inner layer. The difference between this temperature and the colder temperature
outside produces the power. They stated that 8 hours in the sleeping bag will provide 24
minutes of talk time and 11 hours of standby time, assuming that the inside of the sleeping
bag is at 37◦ (the temperature of the human body). Likewise, a full day of walking in the
power pocket shorts can recharge a smartphone for 4 hours.

(a) Power shorts

(b) Sleeping bags

Figure 1.9 – Vodafone smart fabric [28].
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1.1.3 Vibrations-based Energy

One of the most effective methods of implementing a vibration energy harvester system is
to use mechanical vibration to apply a force to a transducer or displace an electromagnetic
coil. Power generation from mechanical vibration usually uses ambient vibration around
the harvesting device as an energy source and then converts it into electrical energy [29].

In some situations, vibrations can be very high, such as those of civil structures, railways,
ocean waves and even human movements. The mechanical vibration energy is converted
into electrical energy by electrostatic effect, magnetic field or stress on a piezoelectric
material [30]. The amount of harvested power therefore depends on the vibration source
and can provide about 4 µW/cm3 from human motion, and around 800 µW/cm3 from
machine motion [16, 22].

Application to mobile phones

The amount of energy extracted from the vibrations is directly related to the mass vibrating
and the frequency (number of vibrations per second) with which it vibrates. In general,
higher mass and frequency means more energy to collect. Harvesting vibrations with
most harvesting technologies such as piezoelectrics is more appropriate for consistent
high frequency vibrations, which is not the case for the human body, as it is sometimes
active and sometimes completely inactive. Furthermore, the current materials and devices
still cannot collect enough energy to charge mobile phones. This means that there is still
some way to go before a workable and worry-free solution can be found. Therefore,
vibration energy is not an option for our work.

1.1.4 Wind-based Energy

Wind power has been harvested for thousands of years, first to propel sailing boats, then
to drive mechanical systems such as mill, pumps, etc. Nowadays, it can be harvested by
a range of methods to produce electrical power.

Wind is a displacement of air due to different causes, the main one being the sun heat-
ing the non-uniform surface of the earth. The different elements at the surface of the
earth (forest, water, mountains, . . . ) radiate the solar heat in the atmosphere in different
fashions, such that hotter and colder masses of air appear, causing air to move around [31].

There are two main types of wind turbines designs: Horizontal Axis Wind Turbine
(HAWT) and Vertical Axis Wind Turbine (VAWT). HAWT are the most commonly used
type of wind turbines and they are used almost exclusively in high-power installation.
These turbines offer a range of power outputs from a few watts to thousands of kilowatts.
On the other hand, VAWT generally have a lower efficiency than horizontal axis turbines,
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but present some advantages: the turbines are omnidirectional, i.e. they do not need
to be oriented according to the wind direction and the alternator is located at ground
level, reducing the weight on the top of the mast. The turbines are also well adapted
to be installed on existing structures, like on top of buildings. There are however some
drawbacks with the vertical axis turbine design: the omni-directionality of the VAWT
presented as an advantage above requires stronger elements to withstand non constant
torque due to gusts of wind. Thus, the difficulties in modelling them make the design of
vertical axes turbines more complex compared to the horizontal ones.

The amount of harvested power depends primarily on the average wind speed. For
instance, 100 mW of power can be produced at a wind speed between 2 and 9 m/s [32].

Application to mobile phones

Obviously, wind energy is not suitable for our work at all, since it requires large surfaces
and turbines, which is not compatible with a small smartphone.

1.1.5 Electromagnetic Radiations-based Energy

Harvesting power from Electromagnetic (EM) sources, or Wireless Power Transfer (WPT),
has attracted recent interest because of the broadcast nature of wireless communications
and broadcasting infrastructure, such as analog/digital Television, Amplitude Modula-
tion (AM)/Frequency Modulation (FM) radio, WiFi and cellular networks [32]. The system
design is based on a simple concept of capturing the ambient Radio Frequency (RF) energy
using the following equipment: appropriate antenna, tuning circuit, voltage multiplier
and storage capacitor [33].

EM sources can be divided into two categories [33]:

• Ambient: These sources refer to the RF transmitters not destined for RF energy
transfer. This type can provide a power ranging from 0.2 nW/cm2 to 1 µW/cm2 [34].

• Dedicated: These sources can be deployed to provide energy to network nodes
when more predictable energy supply is needed. This type can provide 5 µW at a
distance of 15 m from the source using a transmit power of 4 W [32].

Meanwhile, there are two main types of WPT [32]:

• Near-field: These systems rely on EM induction or magnetic resonance to transfer
power wirelessly. They typically have high transfer efficiency exceeding 80% within
a distance of a wavelength from the source. This approach is only suitable for short-
range applications.
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• Far-field: These systems utilize antennas to collect remotely radiated electromag-
netic waves and rectifier circuits for the RF–DC conversion. This approach is suitable
for long-range applications (up to a few kilometers).

However, the vision of embedding WPT into communication networks creates a techno-
logical need for a technique capable of transferring both information and power simul-
taneously. For this reason, the concept of Simultaneous Wireless Information and Power
Transfer (SWIPT) was first introduced in [35] from a theoretical point of view.

In the era of 5G communication, SWIPT technology can be vitally important for the trans-
mission of information and energy in many types of modern information transmission
systems and communication networks. However, fundamental design modifications are
needed in the wireless communications sector to ensure an efficient SWIPT. In addition,
the trade-off between information rate and harvested energy level becomes an important
factor affecting the system’s performance [36].

Application to mobile phones

Ambient electromagnetic radiation from WiFi transmitters, cell phone antennas, televi-
sion towers and other sources could be converted into sufficient electrical power to sustain
a battery charge.

In 2009, Nokia developed a prototype capable of harvesting from 3 to 5 mW. They pointed
out that work is underway on an improved prototype that could collect up to 50 mW
of energy, which is enough to slowly recharge a phone that is turned off. However,
scientists believe that harvesting 50 mW could require about 1000 strong signals and an
antenna capable of picking up such a wide range of frequencies, which means that a
viable consumer device is still far from reaching the commercial market. Therefore, we
do not rely in this work on this type of EH source.

1.1.6 Adopted EH sources

To sum up, we assume in this work that the energy can be harvested from the solar or
thermoelectric sources. The field of EH remains an area of research and development,
particularly for small devices such as mobile phones. The scavended energy is assumed
to be intermittent, i.e., random. The conventional mathematical model for capturing this
randomness (described in next Chapter) is not well supported by measurements (there
is a lack of works in this topic) and especially the time-scale of the intermittence is not
studied. Here we will assume that the scavenged energy time-variation scales with a slot
(defined in next Chapter). We propose to design efficient transmission policies to use this
random energy in the best possible way and avoid its waste and, of course, to prevent
energy shortages and ensure sustainable communication.
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1.2 Computation Offloading

With the recent expansion of services and applications embracing the Internet, the re-
quirements for data storage and task processing have increased significantly. Meanwhile,
despite all the advances in mobile devices, they are still resource constrained in terms of
battery life, storage capacity and processor performance preventing to comute the tasks
on time. Hence, they cannot meet the requirements of new communications systems.
These constraints can be overcome by computation offloading that consists in sending ex-
tensive computations to resourceful servers to process remotely and send the results back.

This solution was first implemented using Mobile Cloud Computing (MCC), where mo-
bile users can exploit computing and storage resources of powerful distant centralized
clouds, accessible through the Core Network of a mobile operator and the Internet. How-
ever, all the advantages offered by MCC came at the cost of creating a massive overhead
on both radio and mobile network backhauls. Moreover, it introduced high latency as
the data is sent to powerful servers very far from users [37].

To tackle these challenges, Edge Computing has been proposed to provide an intermediate
layer between the terminals and the cloud. This layer can be implemented in different
ways depending on the devices acting as intermediate edge nodes, the communication
protocols and networks, and the services offered to users. Therefore, edge computing
systems can be classified into three categories:

• Multi-Access Edge Computing (MEC) [38]: This approach involves deploying
intermediate nodes with storage and processing capabilities in the BSs of cellu-
lar networks. Thus it provides cloud computing capabilities in the Radio Access
Network (RAN).

• Fog Computing (FC) [39]: This approach incorporates a computing layer that takes
advantage of devices such as M2M gateways and wireless routers. Such nodes are
called FC nodes and are used to compute and store data from end devices locally
before forwarding it to the cloud.

• Cloudlet Computing (CC) [40]: This approach allows terminals to offload their
computation to cloudlet devices located in their logical proximity and offering
similar resources to that of a data center but on a smaller scale.

1.2.1 Adopted offloading approach

In this work, we are mainly dealing with mobile phones which are connected by default
to a BS so that they can communicate, make/receive calls, etc. Therefore, we adopt the
MEC approach for our problems. In other words, mobile users can use the cloud services
embedded within each BS to execute some of their extensive computation.
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1.3 Markovian Model

To study a system that changes over time, it is imperative to find a way to track these
changes. A Markov chain is a particular model for tracking such systems that change
over time according to given probabilities. It is a mathematical model that experiences
transitions from one state to another according to certain probabilistic rules, where the
state refers here to any particular situation that the system may take. The fundamental
characteristic, or the Markov property of a Markov chain is that the probability of being in
a particular state depends only on the current state, i.e.

P(Sn+1 = sn+1|Sn = sn,Sn−1 = sn−1, · · · ,S0 = s0) = P(Sn+1 = sn+1|Sn = sn) (1.1)

Figure 1.10 shows an example of a Markov chain with two states G and B along with the
respective transition probabilities r and w between them. If these two states refer to Good
and Bad communication channels, this model is known as Gilbert-Elliot Channel [41].

G B1 − r

r

1 − w

w

Figure 1.10 – Two-state Markov Chain.

A Markov chain is said to be irreducible if it is possible to get to any state from any state
in a finite time. In other words, there exists a non-zero probability that any state j will be
accessible from any state i at some point of the system’s evolution.

A state i is said to be transient if there is a non-zero probability that the system will never
visit i again after leaving it. If this condition does not hold, the state is said to be recurrent.

A state i has a period k > 1 if the system can return to this state within multiples of k time
steps. If k = 1, then state i is said to be aperiodic.

A state i is said to be ergodic if it is aperiodic and recurrent at the same time. Consequently,
if all states in an irreducible Markov chain are ergodic, then the chain is said to be ergodic
[42]. This propriety has a direct implication in finding an optimal solution for an MDP.

1.3.1 Markov Decision Process

An MDP is a discrete time stochastic control process for sequential decision making.
It provides a mathematical framework for modeling decision making in a stochastic
environment [43, 44]. It can be described formally with four components:
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• State Space S: A state is a combination of the most relevant information needed to
characterize a particular situation of the system. All these possible situations form
the State Space S. In this thesis, we restrict to the case of discrete and finite S.

• Action SpaceU: Actions are used by decision maker to control the system. All the
possible actions that the agent can perform form the Action SpaceU. In this thesis,
we restrict to the case of discrete and finiteU.

• Transition Probabilities p(s′|s,u): The probability of transition is a functionS×U×
S → [0, 1] describing the probability of ending up in the state s′ after taking action
u in state s.

• Cost c(s,u): It is the immediate outcome that the system gets after performing action
u in state s.

The MDP is also known as controlled Markov chain in the sense that instead of having a
process that transitions by itself, we now have a decision-making agent moving through
the process. As shown in Figure 1.11, the agent is interacting with the environment by
taking an action u, and then observe the next state s and the encountered cost c.

Figure 1.11 – MDP agent.

In MDP, the agent’s objective is to minimize the total amount of the cost he receives. In
other words, it aims at minimizing the expected long-term cumulative cost, rather than
the immediate one, considering a:

• Finite Horizon (T): where the agent focuses on the sum of the costs up to stage T.
This approach makes sense in applications where there is a natural notion of final
time steps, i.e. when the agent-environment interaction naturally breaks down into
sub-sequences, such as winning/losing a game and then restarting.

• Infinite Horizon: where the agent takes the long-run cost into account (T → ∞).
In other words, the agent–environment interaction does not break down naturally
and continues without limit, such as on-going process-control task.
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In its simplest form, the cumulative cost can be expressed as the total cost [45], i.e. the
sum of the incurred cost in each time step t:

C = E
[ T−1∑

t=0

c(st,ut)
]

(1.2)

The cost function in Eq. (1.2) is straightforward when considering a finite horizon, but
becomes problematic with infinite horizon problems, because the final time step would
be T = ∞, and the total cost to be minimized, could easily be infinite as well [46]. For this
reason, an alternative definition of cost is proposed for this type of problem, namely the
discounted cost:

C = lim
T→+∞

E
[ T−1∑

t=0

γtc(st,ut)
]

where γ ∈ (0, 1) (1.3)

The cost function in Eq. (1.3) is slightly more complex conceptually than the first definition
(Eq. (1.2)) but much simpler mathematically for MDP. γ is the discount factor that
determines the present value of the future cost. If γ < 1, the infinite sum in Eq. (1.3) has a
finite value as long as the cost sequence c(s,u) is bounded. If γ = 0, the agent is myopic and
is only looking at maximizing the immediate cost. As γ→ 1, the objective function takes
future costs into account more strongly. However, discounting is sometimes inappropriate
and there is no natural cost-free termination state. In such situations, it is often meaningful
to optimize the average cost defined as:

C = lim
T→+∞

1
T
E
[ T−1∑

t=0

c(st,ut)
]

(1.4)

In this work, all our problems fall within the infinite horizon average cost formulation,
since the problem keeps running indefinitely and both present and future costs have the
same impact on the system’s performance.

The goal of an MDP is to find an optimal policy µ?, which is the decision-maker of the
MDP, mapping the state space S to the action space U. In this work, we are interested
in stationary policies, in which the action u does not depend on the time at which the
decision is made. Within this class of policies, we can identify [47]:

• Randomized Policy: Assigns the probability p(u|s) to each action u in every state s.

• Deterministic Policy: This is one-to-one mapping from the state space S to the
action spaceU, performing a unique action u whenever a state s is visited.

Policies can also be classified according to how they are calculated:
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• Offline Policy: When the system states and transitions are fully-known, the opti-
mization problem can be solved once before running system. Then, this policy can
be deployed in the system as long as the input parameters remains the same.

• Online Policy: When some information (transitions for example) is not available,
the optimization problem can be solved by adapting the policy while the system is
running and interacting with the environment.

An optimal deterministic policy is guaranteed to exist and achieve the minimum average
cost for an MDP if the underlying Markov chain is irreducible and aperiodic [48].

Therefore, to solve the MDP problem and find the optimal offline deterministic policy
µ?, one can resort to Dynamic Programming (DP) techniques. Most of DP algorithms
rely on the estimation of value functions, i.e. state functions that evaluate how good it is
for the agent to be in a given state. The concept of “quality” is defined here in terms of
expected cost with respect to a particular policy. Thus, the value function v(s) of a state s
under a policy µ is the expected cost when starting in s and following µ and is defined as

vµ(s) = Eµ[C|st = s] (1.5)

where E is the expectation with respect to the policy µ and C refers to the discounted cost
defined in Eq. (1.3) or the average cost in Eq. (1.4). The value function associated with the
optimal deterministic policy µ? satisfies the following so-called Bellman’s equation

vµ?(s) = min
u∈U

[
c(s,u) + γ

∑
s′∈S

p(s′|s,u).vµ?(s′)
]

(1.6)

Eq. (1.6) considers the discounted cost through γ. However, for average cost problems,
the Bellman equation is slightly different [49] and writes as follows

vµ?(s) = min
u∈U

[
c(s,u) − βµ? +

∑
s′∈S

p(s′|s,u).vµ?(s′)
]

(1.7)

where βµ? corresponds to the optimal average cost.

The optimal policy µ? is the one that achieves the lowest cost in the long term, which is
why it is the action leading to lowest value function for all the states of the system, i.e.

µ?(s) = arg min
u∈U

[
c(s,u) + γ

∑
s′∈S

p(s′|s,u).vµ?(s′)
]

(1.8)

in the discounted case, and

µ?(s) = arg min
u∈U

[
c(s,u) − βµ? +

∑
s′∈S

p(s′|s,u).vµ?(s′)
]

(1.9)

In the following, two algorithms to compute the optimal offline deterministic policy will
be described when only average cost case is considered.
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1.3.1.1 Value Iteration

The first method known as Value Iteration (VI) [49], consists in finding the optimal value
function v(s) that defines the optimal cost-to-go from any state s ∈ S from the Bellman’s
equation given in Eq. (1.7). Belman’s equation corresponds to a fixed-point solution of

the operator v 7→ Tβ(v) = minu∈U

[
c(s,u) − β +

∑
s′∈S p(s′|s,u).v(s′)

]
. So a fixed-point-like

algorithm will be employed. This algorithm is iterative and we denoted these iterations
by n. At iteration 0, we start by arbitrarily selecting the cost function v0(s) and then
successively generates, based on Eq. (1.7), the corresponding optimal n-iteration costs
using the following recursion until convergence

vn(s) = min
u∈U

[
c(s,u) − βn−1 +

∑
s′∈S

p(s′|s,u).vn−1(s′)
]

(1.10)

To avoid the divergence of some components in vn(s), βn−1 is chosen equal to the value
of an arbitrary state s0, i.e., βn−1 = vn−1(s0). Thus, by simply setting Vn(s) = vn(s) − vn(s0),
i.e. by subtracting the same constant from the components of vn(s), the difference remains
bounded and the convergence of the algorithm is guaranteed. Finally, Eq. (1.10) becomes

vn(s) = min
u∈U

[
c(s,u) +

∑
s′∈S

p(s′|s,u).Vn−1(s′)
]

(1.11)

The different steps of VI is summarized in Algorithm 1.

Algorithm 1 VI algorithm

1: Initialization
Set v0(s) = 0 ∀s ∈ S
Choose an arbitrary state s0

Fix a tolerance parameter ε > 0
Set n = 1

2: For each s ∈ S compute

vn(s) = min
u∈U

[
c(s,u) +

∑
s′∈S

p(s′|s,u).Vn−1(s′)
]

Vn(s) = vn(s) − vn(s0)

3: If sp(Vn
− Vn−1) ≤ ε, where sp(V) = maxs∈SV(s) −mins∈SV(s), let

µn(s) = arg min
u∈U

[
c(s,u) +

∑
s′∈S

p(s′|s,u).Vn−1(s′)
]

be the resulting policy and stop; else set n = n + 1 and go to step 2.
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1.3.1.2 Policy Iteration

The second method known as Policy Iteration (PI) [49], consists in finding the optimal
policy according to the following principle: given a policy, the Bellman’s equation is
solved with respect to the value function. Once we have this value function, we update
the policy, and so on. Consequently, the PI can be split into two steps:

1. Policy Evaluation: Using the current deterministic policy µ, compute the average
cost and value function β and v from Eq. (1.7) by solving the following system of
|S| + 1 linear equations with |S| + 1 unknowns at iteration nβ

n−11 + (Id − P)vn−1 = cn−1∑
s∈S vn−1(s) = 0

(1.12)

where

• 1 is the column-vector composed of |S| ones,

• Id is the identity with appropriate size,

• P is the transition matrix of size |S| × |S|, between states under policy µn−1.

• vn−1 is a vector whose the s-th component corresponds to vn−1(s) with s ∈ S,

• and cn−1 is the cost vector whose the s-th component is the cost for the state
s ∈ S and action µn−1(s).

2. Policy Improvement: Obtain an improved policy µn by computing an optimal
action for each state s using

µn(s) = arg min
u∈U

[
c(s,u) +

∑
s′∈S

p(s′|s,u)vn−1(s′)
]

(1.13)

The different steps of PI is summarized in Algorithm 2.

Roughly speaking, the VI and PI have similar complexities. So, there is no solid argument
for using one algorithm over the other.

1.3.2 Constrained Markov Decision Process

Constrained Markov Decision Process (CMDP) is similar to an MDP with the difference
that the admissible policies are those verifying additional cost constraints. An example
of CMDP is given in the following
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Algorithm 2 PI algorithm

1: Select arbitrary policy µ0 and fix a tolerance parameter ε > 0
Let β0 = 0 and set n = 1

2: Given the policy µn−1

Compute the transition matrix P of size |S| × |S| when policy µn−1 is applied
Compute the cost vector cn−1 of length |S| for each state s in Swith action µn−1(s) .

3: Let a scalar βn−1 and a vector vn−1 of length |S| be the solutions of

βn−11 + (Id − P)vn−1 = cn−1∑
s∈S

vn−1(s) = 0

4: Find a policy µn by computing an optimal action for each state s using

µn(s) = arg min
u∈U

[
c(s,u) +

∑
s′∈S

p(s′|s,u)vn−1(s′)
]

5: If µn(s) = µn−1(s) for any state s or |βn
−βn−1

| < ε, then µn is the optimal policy estimate
and stop; else n = n + 1 and go to step 2.

µ? = arg min
µ

lim
T→+∞

1
T
Eµ

[ T−1∑
t=0

c(st,ut)
]

︸                        ︷︷                        ︸
Cµ

s.t. lim
T→+∞

1
T
Eµ

[ T−1∑
t=0

f (st,ut)
]

︸                         ︷︷                         ︸
Fµ

6 ε (1.14)

where Cµ is the cost function to minimize, Fµ is the constraint function that the optimal
policy µ? should respect and ε is a constant.

According to [50], deterministic policies are no longer guaranteed to be optimal for con-
strained problems. Therefore, the previous algorithms cannot be used to solve this type
of decision process. Actually, the optimal policy is a stationary random policy. It can
be obtained by solving a Linear Programming (LP) whose is looking for a probabilistic
mapping from the state space S to the action spaceU.

The optimal policy is exhibited through the so-called occupation measure defined as a
probability measure over the set of state-action pairs and denoted by ρ(s,u). The objective
function and the constraints given in Eq. (1.14) can be expressed with respect to ρ(s,u) as
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ρ? = arg min
ρ

∑
s∈S,u∈U(s)

ρ(s,u)c(s,u) (1.15)

s.t.
∑

s∈S,u∈U(s)

ρ(s,u) f (s,u) 6 ε (1.16)∑
s∈S,u∈U(s)

ρ(s,u) = 1 (1.17)∑
s′∈S,u∈U(s)

ρ(s′,u)p(s|s′,u) = 1, ∀s ∈ S (1.18)

where U(s) is the set of possible actions when the system is in state s. Eq. (1.17) comes
from the fact that ρ(s,u) is a probability measure over the set of state-action pairs, and
Eq. (1.18) from the Markov property of the process (s,u).

The optimal stationary random policy µ? is then obtained from the optimal ρ? according
to the following equation

µ?(u|s) =
ρ?(s,u)∑

u′∈U(s) ρ?(s,u′)
(1.19)

whenever the denominator is non-zero. When it is zero, µ?(.|s) is chosen to be an arbitrary
probability measure overU(s) [47]. Such states are known to be transient states and the
taken actions do not affect the system in the long-term. Moreover the optimal policy for
a CMDP with K constraints requires at most K randomizations [47]. In other words, the
agent can choose between a maximum of K + 1 actions in each state.

1.4 Conclusion

In this chapter, we have started by presenting an overview of the different EH sources,
and we have chosen among them those that best fits our model. Then, we have described
the different offloading approaches and have chosen the one that was best adapted to our
work. Finally, we have shown the mathematical optimization tools that will be used in
the following chapters to solve the problems encountered in this thesis.
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Chapter 2

Joint Resource Scheduling and
Computation Offloading with perfect
CSIT

2.1 Introduction

Nowadays, the unprecedented growth of mobile communications driven by the huge
number of connected devices and new mobile applications is significantly increasing the
demands for high-volume delay-sensitive data traffic, requiring thus intensive compu-
tation and leading to high energy consumption. Therefore, to overcome the limitations
of mobile terminals in terms of processing capacity, storage and energy, EH [32, 51] and
MEC [37, 52] have been recently proposed.

On one hand, EH from surrounding environments allows to prolong the operational life
of mobile devices by leveraging alternative renewable energy sources. Resource schedul-
ing with EH-enabled devices has been also widely studied during the past decade. In
[53], the tradeoff between energy overflow and energy shortage was addressed by max-
imizing the scheduling throughput for capacity-limited EH system. Online algorithms
were proposed to solve this problem for static and fading channels based on a new es-
timation method of future energy arrivals without any prior information. Both offline
and online algorithms were also provided in [54] to maximize the throughput in finite-
horizon scheduling with EH transmitter. The offline solution is expressed in terms of
water levels and the online solution minimizes successively the expected throughput
losses with respect to the offline optimal decision. Finite-horizon optimization problem
was also considered in [55] to minimize the outage probability in an EH system. A low
complexity fixed threshold transmission is proposed based on the offline mixed integer
LP solution. Moreover, [56] minimized the weighted packet loss rate under an average
delay constraint in wireless sensor networks. The constrained MDP was formulated



30 2. Joint Resource Scheduling and Computation Offloading with perfect CSIT

with linear VI approximation that locally determines the energy allocation at every EH
wireless node using multilevel water-filling. Near-optimal control policy was derived by
applying stochastic online learning based on post-decision state framework. In [57], MDP
modeling and online post-decision learning approach were also derived to maximize the
data arrival rate at the transmitter queue under delay and energy constraints.

On the one hand, MEC enables offloading computation tasks from mobile devices to
nearby BSs with more energy and computation resources. In recent years, MEC has
attracted considerable attention [58], and particularly optimizing transmission strategies
[59–64]. In [59], a dynamic offloading algorithm based on Lyapunov optimization is
proposed to determine which software components to offload depending on wireless
conditions. In [60], the energy consumption of the mobile device was minimized by
jointly configuring the clock frequency for the mobile execution, and varying the trans-
mission rate depending on the channel conditions for the cloud execution. The problem
of energy consumption minimization is also studied in [61] by jointly optimizing the ra-
dio resource scheduling and the computation offloading under average delay constraints
using DP techniques. In [62], a similar problem was considered to exploit the tradeoff

between energy consumption and latency. In [63], a delay-optimal task scheduling policy
for single-user systems was developed using MDP formulation. In [64], the trade-off

between the energy consumption and the execution latency of performing mobile tasks
was investigated by jointly considering the computation offloading and communication
resource allocation for single and multi-cell MEC network scenarios.

To take advantage of both technologies, recent studies have integrated EH capabilities
into MEC systems. This recent field opens new opportunities to improve the performance
of mobile devices but also brings new challenges in designing optimal and efficient poli-
cies, taking into account both radio and computation resources under EH constraints.
In parallel to our work, a study on EH-MEC systems proposed a dynamic computation
offloading policy for mobile devices using Lyapunov optimization techniques [65]. In
[66], the resource management problem is also considered for EH-MEC but from the
server side. In [67], Reinforcement Learning (RL) techniques are used to find the optimal
offloading policy without requiring the knowledge of the MEC model, the local compu-
tation and energy consumption models.

Compared to previous works employing an average delay constraint, we force our system
to respect a strict delay constraint, i.e. the age of the packets must not exceed the deadline.
This constraint was initially introduced in [C1] that will be presented as a special case in
Section 2.5.2.

The age of each packet here is different than the famous Age of Information (AoI). The
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AoI concept was first introduced back in 2011 to evaluate the freshness of the information
that is currently available on the status of a remote system [68]. More precisely, AoI is
the time elapsed since the generation of the last successfully received message contain-
ing update information on its source system [69]. Based on this idea, a packet can be
in the buffer but its content is not valid anymore since its AoI metric is abused. This
definition is totally different from ours with regard to the strict delay. In other words,
the content of each packet in the buffer remains valid as long as the deadline is not violated.

In this Chapter, we address joint resource scheduling and computation offloading for a
single EH mobile user served by a BS with perfect CSIT. Then we minimize the number
of discarded packets due to delay violation and buffer overflow, assuming random data
and energy future arrivals, as well as time-varying channel. The problem is formulated as
an MDP and solved using PI algorithm. We compare the proposed policy with different
policies performing immediate scheduling, and two additional ones executing either
only local processing or only offloading decisions. We also investigate the special case of
scheduling resources for:

• an EH-transmitter (we remove offloading capabilities). We formulate the problem
of minimizing the number of discarded packet as an MDP and solve it using VI
algorithm. We compare the proposed policy with different policies performing
immediate scheduling.

• a conventional transmitter (we remove EH and offloading capabilities). We for-
mulate the problem of minimizing the power consumption as a CMDP and solve
it using LP techniques. We compare the proposed policy with one performing
immediate scheduling.

The remainder of this Chapter is organized as follows. In Section 2.2, we describe the
system model. In Section 2.3, we formulate the MDP problem by defining its states, actions
and transitions probabilities and we propose a PI algorithm to solve it. We provide and
analyze numerical results in Section 2.4. In Section 2.5, we present two special cases as the
initial steps of the general problem. Finally, concluding remarks are drawn in Section 2.6.

2.2 System Model

We consider in Figure 2.1 a MEC scenario where an EH mobile user is wirelessly connected
to a BS endowed with some cloud resources. The mobile user stores the harvested energy
from an external source in a limited-capacity battery and the data packets arriving from
the upper layer in a finite buffer. The communication is slotted into consecutive epochs
of equal duration Ts. Type of processing (locally or remotely) as well as the number of
packets to be processed are determined at the beginning of each time slot, depending on
the current channel state and the previous data and energy arrivals.



32 2. Joint Resource Scheduling and Computation Offloading with perfect CSIT

Figure 2.1 – MEC system with an EH mobile device.

In the following, we describe the energy, data and channel models, as well as the different
types of scheduling decisions and their corresponding consumed energy.

2.2.1 Energy model

We assume that the energy arrives in multiple packets of energy units (e.u) of EU Joules
(J) 1. The received energy is stored in a battery of limited capacity Be, and is lost when it
exceeds Be. Then, the energy arrival process, counting as the number of e.u, is modeled as
an independent identically distributed (i.i.d.) Poisson distributed process with an average
arrival rate λe. Thus, let en denote the harvested energy at the beginning of time slot n.
Its probability distribution is given by

p(en = e) = e−λe .
(λe)e

e!
. (2.1)

Let bn denote the energy level of the battery at the beginning of time slot n after receiving
the harvested energy en. We have bn ∈ {0, ...,Be}. Let En be the energy consumed to execute
packets during time slot n. By construction, En 6 bn ∀n. In addition, we suppose causal
Energy State Information at the Transmitter (ESIT), i.e., bn is known when scheduling at
time slot n.

2.2.2 Data queue model and strict delay constraint

The mobile user receives data packets and stores them in a buffer of size Bd packets. We
model the data arrival process as an i.i.d. Poisson distributed process with an average
arrival rate λd. We assume that all packets are of the same size L bits. At the beginning of

1There is a huge amount of literature assuming i.i.d EH processes. We adopted this approach for sake
of clarity. Nevertheless, this work can be easily extended to time-correlated EH processes. This will be
presented in Section 2.4 to plot Figure 2.12.
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time slot n, let an denote the number of received packets with the following probability
distribution

p(an = a) = e−λd .
(λd)a

a!
. (2.2)

A packet is discarded from the buffer if there is a

• buffer overflow, i.e., new packets are discarded if there is no space in the buffer to
store them;

• delay violation, i.e., packets are discarded if they are stored in the queue more than
the maximal delay K0.

To describe the buffer configuration, the age of the packets, i.e., the time spent by the
packets within the buffer is necessary. Therefore, we introduce the notation ki(n) corre-
sponding to the age of the i-th packet at time n in the buffer. By definition, we have
ki(n) ∈ {−1, ...,K0},∀i,n and ki(n) = −1 stands for an empty space in the buffer (i.e., when
the i-th packet does not exist). In Figure 2.2, we provide a buffer state at time n, where qn

is the queue length in the buffer. Notice that k j(n) ≤ ki(n), ∀i 6 j.

Buffer of Bd packets (ordered from the oldest to the newest)

k1(n) ... kqn(n) −1 ... −1

qn packets empty area

Figure 2.2 – Buffer configuration at time slot n.

2.2.3 Channel model

We consider the communication channel between the mobile device and its BS as a flat-
fading channel with bandwidth WDL (Hz) in the downlink and WUL (Hz) in the uplink.
The additive white Gaussian noise has power spectral density N0. During time slot n,
the channel response remains constant with complex-valued amplitude hn, and varies
independently along time slots 2. We define the Rayleigh fading channel hn and its gain
by gn = |hn|

2. Then gn is a continuous random variable distributed exponentially with
probability density function p(g) = 1

ξe−
g
ξ with mean ξ. For the sake of simplicity, we as-

sume only quantized channel state xn = Qg(gn), where Qg(.) represents the quantization
process. This assumption is generally justified in practice to account for the capacity-
limited feedback and has also been adopted in the literature [70–77]. Fixing a sequence

2There is a lot of work involving i.i.d. channels. We have selected this approach for simplicity. However,
this study can be easily generalized to time-correlated channels. In fact, this model will be adopted in
Chapter 4.
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of power quantization thresholds, the channel gain xn is then a discrete variable taking
values from a finite channel state space X.

In order to define the discrete channel states, let M be the number of quantization levels,
{tm}

M−1
m=0 the set of thresholds and {Lm}

M−1
m=0 the set of quantization levels for Qg. The quan-

tization regions of the channels are then given by the intervals Im = [tm, tm+1[ with t0 is
fixed such that the transmission of 1 packet using 1 e.u. is guaranteed and tM = +∞. In
our model, we consider a Uniform quantizer. So, let tmax = tM−1 be the maximal threshold
such that the transmitter can send U0 packets using Be e.u., where Uo is the maximal
number of offloaded packets. By applying Eo(xn,un) = Be and un = Uo in Equations (2.4)
and (2.5) with equality (equations (2.4) and (2.5) are defined in next section 2.2.4), we
obtain the corresponding value for xn which is forced to tmax. The uniform quantization
thresholds are given by tm+1 = tm +δwith m = 0 . . .M−2 and δ = tmax

M−1 . We select the quan-
tization levels as the lower bound of the regions, which is the worst case scenario. Thus,
Lm = tm for m = 0 . . .M−1 and a channel is said to be in state xn = Lm if gn ∈ Im = [tm, tm+1[.

We also assume causal CSIT, i.e. xn is perfectly known without errors at the beginning of
slot n. This assumption is relaxed in Chapter 3 where we suppose that the system relies
on an estimated version (perhaps erroneous) of the channel, i.e. an estimation of xn is
only known when taking the decision at time slot n, and time has been used for doing
this estimation at the expense of the communication time. A more complicated problem
is investigated in Chapter 4 where we consider that the system operates with an outdated
CSI, i.e. xn is totally unknown at the decision instant n, but in that case, a correlation over
time for the channel is assumed.

2.2.4 Execution decisions and related energy consumption

At the beginning of time slot n, three scheduling decisions are possible:

• Local processing: The mobile device uses its own processor to execute u packets
from the buffer (u 6 qn) during time slot n. We assume that processing one packet
locally consumes a power P`. Then the consumed energy, expressed as an integer
multiple of the e.u, is given by

E`(u) =
⌈
u.P`.

Ts

EU

⌉
. (2.3)

• Remote processing: The mobile device transmits u packets to be executed at its BS
and then receives the results. The mobile device thus consumes energy to send data,
to wait for the remote processing and to receive the result. The energy consumption,
expressed as an integer multiple of the e.u, is given by

Eo(xn,u) =
⌈ u
EU

( L.Pt

WUL. log2

(
1 + Pt.xn

WUL.N0

) + Tw.Pw +
LDL.Pr

WDL. log2

(
1 + Ps.xn

WDL.N0

))⌉ (2.4)
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where LDL is the size in bits of the computation result, Pt is the transmission power
of the mobile device, Pr is the power consumed by the mobile device to receive the
result, and Ps is the power used by the BS to send the result. While waiting for the
packets processing, the transmitter consumes a power Pw. Finally, Tw is the time for
the BS to execute one packet. In addition, we require that this offloading procedure
lasts at most one time slot leading to the following constraint

u
( L

WUL. log2

(
1 + Pt.xn

WUL.N0

) + Tw +
LDL

WDL. log2

(
1 + Ps.xn

WDL.N0

)) 6 Ts. (2.5)

Notice that WDL, WUL, N0, LDL, Ps, Pr and Tw are pre-fixed parameters. Forcing
equality in Eq. (2.5) enables us to find Pt which so depends on u and the channel
realization xn and is time-varying along with the time slots.

• Idle: The mobile device does not execute any packet and decides to wait for the
next time slot.For sake of simplicity, we assume that the device electronic circuitry
is sleeping and so the consumed energy is given by

EI = 0. (2.6)

Note that only one of these three decisions is possible in each slot. In other words, the
system cannot choose to execute part of its packets locally and the other part remotely in
the same slot.

2.3 Problem Formulation and Resolution

Now, we aim at finding an optimal policy µ that minimizes the number of discarded
packets due to buffer overflow and delay violation. The policy µ is a sequence of actions
that specify the processing decisions (local processing, offloading or staying idle) and the
number of packets u to be scheduled at each time slot, based on the past system states
and actions. In this section, we characterize the appropriate states and actions and show
that our problem can be formulated as an MDP. We define then the transition matrix and
the reward of this MDP and propose to apply an offline PI algorithm to solve it.

2.3.1 State Space

The state space S is the set of s = (k, b, x) where

• k = [k1, · · · , kBd] is the vector indicating the age of each packet in the data buffer,

• b is the battery level, and

• x is the channel gain.
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Due to the strict delay constraint, we describe the data buffer states using k instead of the
queue length q used in the state-of-the-art [56, 61, 65]. Actually, q can be extracted from k

qn = max {i | ki(n) > 0} . (2.7)

The state space S is finite, and the total number of possible states |S| is upper-bounded
by (K0 + 2)Bd .|Be + 1|.|X|. By assuming that the packets are queued in an increasing order
of their age in the buffer, i.e. k1(n) ≥ k2(n) ≥ · · · ≥ kqn(n), we can significantly reduce the
state space by removing all impossible combinations of components in k. For instance,
with Bd = 8, K0 = 3, Be = 4 and |X| = 5, our system has only 12, 375 states compared to the
upper-bound of 9, 765, 625.

2.3.2 Action Space

The action space V denotes the processing decisions (local processing, offloading or
staying idle) and the number of packets u that the mobile device can schedule during a
slot. Let U` be the maximum number of packets that can be processed locally during a
time slot and Uo be the maximum number of packets that can be offloaded during a time
slot. Uo is a pre-fixed parameter constrained by the buffer size and U` is limited by the
capacity of the internal processor of the mobile device, thus usually U` ≤ Uo. Finally, the
action space is finite with cardinality V = |V| = U` + Uo + 1. The actions are ordered and
the m-th action is as follows:

• if m = 0, idle processing is considered and u = 0.

• if m = m` with m` ∈ {1, · · · ,U`} , local processing is applied and u = m`.

• if m = mo with mo ∈ {U` + 1, · · · ,V − 1} , offloading is applied and u = mo −U`.

At time slot n, νn ∈ {0, , · · · ,V−1} corresponds to the decided action, and uνn is the number
of processed packets, either locally or remotely.

2.3.3 Markov Decision Process

During time slot n, wn = max(uνn ,mn) packets leave the buffer, either executed (locally
or remotely) and/or discarded, where mn is the number of packets reaching the maximal
delay (K0) in the buffer. The age of the remaining packets in the buffer is incremented
by 1. Moreover, an+1 new packets arrive to the buffer with age 0. Some of these arrival
packets are discarded if there is no room in the buffer. Therefore, the vector k can be
updated from slot n to slot n + 1 according to the following rule.

1: for i = 1 to qn − wn do
ki(n + 1) = kwn+i(n) + 1
end for
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2: for i = qn − wn + 1 to qn − wn + an+1 do
ki(n + 1) = 0
end for

3: for i = qn − wn + an+1 + 1 to Bd do
ki(n + 1) = −1
end for

At the same time, en+1 e.u are harvested and stored in the battery while En e.u are used to
execute uνn packets according to Eqs. (2.3), (2.4), or (2.6). Therefore, at time slot n + 1, the
battery state is updated according to

bn+1 = min {bn − En + en+1,Be} (2.8)

We remind that En ≤ bn, ensuring bn+1 ≥ 0. We remark that (kn+1, bn+1) only depends
on previous state (kn, bn), action νn (which provides En since xn is known), and external
perturbation (an+1, en+1), confirming that the problem turns to MDP.

2.3.4 Transition Matrix

The state transition probability of the MDP is defined by p(s′|s, ν) denoting the transition
probability to fall in the future state s′ = (k′, b′, x′) after taking action ν in the current state
s = (k, b, x). Assuming that the buffer, battery and channel states are independent to each
other and channel states are not time-correlated, the transition probability satisfies the
following equation

p(s′|s, ν) = p(k′|k, b, ν).p(b′|b, x, ν).p(x′), (2.9)

where p(x′) is the distribution of the channel states, p(k′|k, b, ν) indicates the probability
transitions between buffer states, and p(b′|b, x, ν) indicates the probability transitions be-
tween battery states.

We first exhibit the set of possible actionsA(s) ⊂ V for each state s. We haveA(s) = A0(s)∩
A1(s) ∩ A2(s), where A0(s), A1(s) and A2(s) are defined through their complementary
sets as follows:

• the set A0(s) is composed by the actions of offloading using a transmit power
Pt > Pmax according to Eq. (2.5);

• the action ν belongs toA1(s) by satisfying at least one of the following conditions

1: uν > q or k′i > ki + 1 or q′ < q − w
2: k′i , ki+uν + 1 and ki+uν , −1
3: k′i > 0 and ki+uν = −1
4: q = Bd and uν , 0 and k′i > 0,∀i ∈ {q − w + 1, ...,Bd}
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• the action ν belongs to A2(s) by satisfying at least one of the following condi-
tions

1: 0 > b − E
2: b′ < b − E

where E is the energy consumed when the action ν is applied.

Secondly, when ν ∈ A(s), the transitions are as follows

1: if q′ < Bd then

p(k′i |ki, b, ν) = e−λd . (λd)q′−q+w

(q′−q+w)!

2: else
p(k′i |ki, b, ν) = 1 −Q(Bd − q + w, λd),

and

1: if b′ < Be then
p(b′|b, x, ν) = e−λe . (λe)b′−b+E

(b′−b+E)!

2: else
p(b′|b, x, ν) = 1 −Q(Be − b + E, λe).

where Q is the regularized Gamma function defined as

Q(x, y) = e−y
x−1∑
i=0

.
yi

i!
(2.10)

2.3.5 Cost

In this thesis, we focus on infinite horizon MDP problem. We consider thus time-averaged
cost, where at a given time slot n ∈ {1, · · · ,N}, the system state is denoted by sn = (kn, bn, xn)
and µ(sn) = νn is the action. Our objective is to minimize the average number of discarded
packets under policy µ. Hence, we define the cost function as

D(µ) = lim
N→+∞

1
N
Eµ

[ N∑
n=1

(
εd(sn, νn) + εo(sn, νn)

)]
, (2.11)

where E is the expectation with respect to the policy µ and where εd(sn, νn) and εo(sn, νn)
are the instantaneous number of discarded packets due to buffer overflow and delay
violation, respectively.

At a given slot n, when the system state is sn and the performed action is νn, the number
of discarded packets due to delay violation is given by

εd(sn, νn) =

 0 if mn = 0 or mn 6 uνn

mn − uνn otherwise.
(2.12)
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The buffer overflow occurs when qn−wn+an+1 > Bd, thus the number of discarded packets
due to buffer overflow is obtained as follows

εo(sn, νn) =

+∞∑
a=Bd−qn+wn+1

(qn − wn + a − Bd).e−λd .
(λd)a

a!
(2.13)

= λd.(1 −Q(Bd − qn + wn, λd)) + (qn − wn − Bd) × (1 −Q(Bd − qn + wn + 1, λd)).

We can then state the MDP optimization problem as

µ? = arg min
µ

D(µ) (2.14)

2.3.6 Optimal Policy Computation

We propose an offline DP approach to solve this problem using PI algorithm presented in
Section 1.3.1. This optimal offline deterministic policy consists in a one-to-one mapping
from the state space S to the action space V, performing a unique action ν whenever a
state s is visited. We remind that it only depends on energy arrival and data arrival a
priori distributions and current channel states at the mobile device.

2.4 Numerical Results

We evaluate numerically the optimal policy devised for the scheduling-offloading prob-
lem. We consider the system described in Section 2.2 and fix its design parameters
as: the slot duration is Ts = 1 ms. The maximum available power at the transmit-
ter is Pmax = 2 mW. Energy arrivals are stored as energy units in a battery of size
Be = 4 e.u, where EU = 50 nJ. During a time slot, a maximum of U` = 2 packets can
be processed locally or a maximum of Uo = 4 packets can be offloaded. The mean
channel is ξ = 1 and the channel state x takes 5 possible values from the finite set
X = {−10,−3.98,−0.97, 0.792, 2.04} dB. These channel values are obtained according to
Section 2.2.3. The noise power spectral density is N0 = −87 dBm/Hz and the allocated
bandwidth is WDL = 5 MHz in the downlink and WUL = 500 kHz in the uplink. Data
packets have equal size L = 5000 bits and are stored in a buffer of size Bd = 6 packets.
The resulting packets from remote processing have also equal size LDL = 500 bits. The
maximum delay of packets in the buffer is K0 = 3 (i.e., in absolute time K0Ts = 3 ms). The
remaining values are chosen as: P` = 30 µW, Pr = 0.2 mW, Ps = 1.6 kW, Pw = 0.1 mW, and
Tw = 0.1 ms.

Convergence of the long-term average cost

In Figure 2.3, we illustrate the average number of discarded packets for the optimal policy
(obtained after the convergence of the PI algorithm) versus N (the horizon on which we
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average the cost) with various energy arrival rates λe and a data arrival rate λd = 1.5.
We can notice that it takes only a few hundreds timeslots for the system to achieve the
long-term cost. In addition, if a large amount of energy can be harvested, λe increases,
and the system is able to execute more packets reducing hence considerably the average
number of discarded packets.

Figure 2.3 – Convergence analysis for the average rate of discarded packets for different
energy arrival rates.

Comparison with other policies

In Figure 2.4, we show the percentage of discarded packets versus the data arrival rate λd

for λe = 0.5 (small) and λe = 2.0 (large) energy arrival rates. We compare the performance
of the optimal policy to three different policies:

• Immediate: This policy processes, locally or remotely, the maximum number of
packets whenever energy is available in the battery.

• Local: This policy is obtained by running the offline PI algorithm taking into account
only local decisions (Uo = 0).

• Remote: This policy is obtained by running the offline PI algorithm considering
only remote decisions (U` = 0).

We can observe that the proposed deterministic offline policy outperforms the other
policies as it can adapt its processing to the energy and data arrivals as well as channel
conditions. Yet, when the data arrival rate λd increases, the number of discarded packets
of all the policies increases because the buffer overflow can happen more often. We can
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also see that for both λe values, the local policy discards the highest number of packets
due to the limited capacity of the mobile device processor. Moreover, whenλe is small, the
remote policy is able to sustain more efficiently the system than the immediate policy by
scheduling more packets depending on the channel states. This situation is reversed when
λe is large since the scavenged energy is sufficiently available to process the maximum
number of packets by the immediate policy irrespective of channel conditions.

Figure 2.4 – Percentage of the discarded packets versus data arrival rate for energy arrival
rates λe = 0.5 and 2.0.

Similar to Fig. 2.4, Fig. 2.5 compares the percentage of discarded packets of the optimal
policy with two other variants of the immediate policy. Unlike the immediate policy
that sends the maximum number of packets using the available energy in the battery, the
introduced p-immediate policy restricts the number of packets sent by the immediate
one by taking the buffer state into account through an additional parameter p in that way:

• fixed p: The policy sends only the packet i from the buffer if ki ≥ p.

• variable p: The policy performs a first step similar to the previous case (fixed p). If
no packet satisfies the condition, p is decreased by 1, and the first step is repeated,
until p = 0.

These two variants are studied to evaluate the influence of the forced number of packets
to be executed on the system’s performance. The immediate policy corresponds to a
0-immediate policy. Here, we choose p = 2 for the p-immediate policy. As we can see,
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taking only the age of the packets into account without adapting carefully the number of
executed packets to the battery level and buffer state leads to decrease the number of sent
packets, and therefore the immediate policy remains much better.

Figure 2.5 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates and different immediate policies.

In Figure 2.6 and Figure 2.7, we plot respectively the average consumed energy and the
average battery state versus the data arrival rate λd for energy arrival rates λe = 0.5 and
2.0. We can observe that local and immediate policies experience the highest energy
consumption since processing packets locally consume more energy, draining thus the
battery level. The optimal proposed policy consumes approximately the same energy
amount as the remote policy while sending more packets. Indeed, it ensures a better
sustainable communication with less number of discarded packets by optimally using
the available energy, leading hence to a higher energy level in the battery.

In Figure 2.8, we display the percentage of processing decisions for the optimal and im-
mediate policies in Figure 2.8(a) and (c) respectively at (λd = 1, λe = 1) , and in Figure 2.8
(b) and (d) respectively at (λd = 2, λe = 2). As we can see, when the data arrival rate
increases, the system schedules more packets either locally or remotely to minimize the
number of discarded packets, which decreases Idle mode events. When more energy is
available in the battery, the immediate policy processes the maximum number of packets,
hence can offload more packets regardless of channel states. Therefore, energy shortage
can occur more often forcing the system to enter Idle mode more than with optimal policy.
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Figure 2.6 – Average consumed energy versus data arrival rate for energy arrival rates
λe = 0.5 and 2.0.

Figure 2.7 – Average battery state versus data arrival rate for energy arrival rates λe = 0.5
and 2.0.
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Figure 2.8 – Percentage of processing decisions at (λd = 1, λe = 1) (a) and (c), and (λd =

2, λe = 2) (b) and (d).

Comparison with the state-of-the-art

In Figure 2.9, 2.10 and 2.11, we compare the performance of our optimal policy to the
optimal policy obtained by forcing the average (instead of the strict) delay to be less than
a pre-defined threshold. Both policies are applied assuming buffer overflow and delay
violation as the way to drop the packets, but the second policy is optimized just in order
to minimize the buffer overflow and keep an average delay small enough.

Therefore, the policy with average delay constraint is obtained as follows: according to
the Little’s law, we propose to convert the average delay constraint Dct into an average
queue length constraint Qct since Qct = λd.Dct where λd is the data arrival rate. The policy
ensuring a bounded average delay can be found by solving the following CMDP:

µ̃Qct = arg min
µ

lim
N→+∞

1
N
Eµ

[ N∑
n=1

εo(sn,un)
]

(2.15)

s.t. lim
N→+∞

1
N
Eµ

[ N∑
n=1

qn

]
6 Qct (2.16)

where qn is the queue length. Notice that we do not consider the delay violation for this
optimization since the strict delay is not taken into account in this policy as we just force
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the average delay to be less than a threshold. So the policy µ̃Qct is done to handle properly
the average delay and not the strict delay.

Our optimal policy adapted to strict delay has been computed with K0 = 3. In order
to compare both policies in the strict delay constraint set up (it means that the packet is
dropped if the delay is strictly larger than K0 even if we apply the policy µ̃Qct), we need
to choose properly Dct. It makes sense to force Dct ≤ 3 in order to have a small amount
of dropped packets due to strict delay violation. In fact, we have found that Dct = 2 or
Dct = 3 can lead to similar performance, thus we have fixed Dct = 3.

As we can see, our policy outperforms the policy considering only the average delay in
terms of percentage of discarded packets, consumed energy (in most cases), and battery
levels (in most cases). So, it was worth to do the effort to optimize the policy by taking
into account the strict delay into the state model rather than just using the optimal policy
adapted to the average delay with a well-tuned threshold, especially for small λe.

Figure 2.9 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates between strict and average delay policies(µ? and µ̃3, respectively).
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Figure 2.10 – Average consumed energy versus data arrival rate with different energy
arrival rates between strict and average delay policies (µ? and µ̃3 respectively).

Figure 2.11 – Average battery state versus data arrival rate with different energy arrival
rates between strict and average delay policies (µ? and µ̃3 respectively).
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Correlated EH process

We now consider that the EH process is time-correlated in order to be more general
and better to capture the different timescales of the randomness. In order to cast this
assumption into an MDP framework, we need to add EH process e to the state of the
system, i.e., s = (k, b, e, x) instead of (k, b, x) as done previously. Then, a new optimal policy
taking into account the EH correlation is re-computed by using PI algorithm. Here, we
assume that the transition probability of the Markov Chain satisfies the following equation

p(s′|s,u) = p(k′|k, b,u).p(b′, e′|b, e, x,u).p(x′), (2.17)

where p(b′, e′|b, e, x,u) is obtained according to the following rules:

1: if E > b then
p(b′, e′|b, e, x,u) = 0

2: else if b′ < b − E then
p(b′, e′|b, e, x,u) = 0

3: else if b′ = min(Be, b − E + e) then
p(b′, e′|b, e, x,u) = p(e′|e)

4: else
p(b′, e′|b, e, x,u) = 0.

In addition, the transition probability from an energy arrival state j at time slot n to
another energy arrival state i at time slot n + 1 is given by

p(en+1 = i|en = j) =
(1 − ρe)|i− j|

|He|−1∑
k=0

(1 − ρe)|k− j|
(2.18)

where ρe is the so-called correlation factor and He is the set of potential energy units
harvested during one time slot.

In Figure 2.12, we compare the performance of the optimal policy (adapted to time-
correlated EH process) with the immediate policy. We setHe = {0, 1, 2} e.u. per slot.
The proposed optimal policy is still better than the immediate policy. The performance
of the system decreases when ρe increases because the system will be trapped in the state
e = 0 for a longer period of time, leading to more discarded packets.
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Figure 2.12 – Percentage of the discarded packets versus data arrival rate with different
correlated energy arrival rates between strict and immediate policies.

2.5 Special Cases

In this section, we present two simplified cases of the previous problem both under per-
fect CSIT and taking strict delay constraint into account. In subsection 2.5.1, an optimal
policy minimizing the number of discarded packets is designed for an EH-transmitter
(We remove the offloading capabilities from the main problem in Section 2.2). In sub-
section 2.5.2, an optimal policy minimizing the power consumption of a conventional
transmitter powered by the grid is presented (We remove the EH and the offloading
capabilities from the main problem in Section 2.2).

2.5.1 Packet Scheduling for EH-Transmitter

In the first case, the adopted system model depicted in Figure 2.13, is similar to the one
described in Section 2.2, but without offloading capabilities. The main problem is reduced
to a packet scheduling problem of an EH-transmitter. Therefore, the concept of executing
packets locally or remotely is no longer applicable, and the system here only needs to
transmit its packets to a receiver. To this end, we denote un (un 6 qn) the number of
packets to be transmitted during slot n of duration Ts, through the channel of gain xn.
The consumed energy to transmit these packets, previously stated in Eq. (2.3), (2.4) and



2.5. Special Cases 49

(2.6), becomes

E(xn,un) =
⌈P(xn,un).Ts

EU

⌉
, (2.19)

where

P(xn,un) =
WN0

xn

(
2

unL
WTs − 1

)
. (2.20)

is the required power for this transmission and W is the allocated bandwidth.

Figure 2.13 – Resource Scheduling for EH-Transmitter.

2.5.1.1 Problem Formulation and Resolution

Regarding the MDP formulation, the same state s = (k, b, x) ∈ S is valid here. However,
the action spaceU in this case denotes the number of packets u that the transmitter can
send during a time slot. This space is finite and the number of actions is |U| = U0 + 1,
where U0 is a pre-defined parameter. The transitions probabilities is again given by

p(s′|s, ν) = p(k′|k, b, ν).p(b′|b, x, ν).p(x′), (2.21)

Our goal is to find the optimal policy µ? minimizing the average number of discarded
packets using the following MDP formulation

µ? = arg min
µ

[
lim

N→+∞

1
N
Eµ

[ N∑
n=1

(
εd(sn, νn) + εo(sn, νn)

)]]
(2.22)

We solve this problem using VI algorithm presented in Section 1.3.1.

2.5.1.2 Numerical Results

To evaluate numerically the obtained policy, we consider the same settings as in Sec-
tion 2.4 with some minor differences: the allocated bandwidth is W = 5 MHz, EU = 100 nJ
and U0 = 6 packets per slot.
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Convergence of the long-term average cost

In Figure 2.14, we illustrate the average number of discarded packets for the optimal
policy (obtained after the convergence of the VI algorithm) versus N (the horizon) with
various energy arrival rates λe and a data arrival rate λd = 1.5. We can notice that it takes
only a few hundreds iterations for the system to stabilize its behavior. In addition, if a
large amount of energy can be harvested, λe increases, and the system is able to execute
more packets reducing hence considerably the average number of discarded packets.

Figure 2.14 – Convergence analysis for the average rate of discarded packets with different
energy arrival rates.

Comparison with other policies

In Figure 2.15, we display the percentage of discarded packets versus the data arrival
rate λd for different energy arrival rates for two policies. we compare the optimal policy
exhibited by the VI algorithm with the immediate one. As we can observe, the proposed
optimal policy provides significantly better performance than the immediate one in terms
of percentage of discarded packets. In fact, this policy can adapt the transmission rate
according to the buffer, battery and channel conditions. In addition, we remark that the
number of discarded packets increases when the data arrival rate λd increases because the
buffer overflow could happen more often. On the one hand, when the energy available
to scavenge is low (small λe), an efficient energy management becomes crucial to ensure
the sustainability of the system, and the gap between both policies increases. On the
other hand, when a large amount of energy is available (large λe), the system can sur-
vive even without controlling relevantly the energy consumption which leads to similar
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performance between the optimal and immediate policies.

Figure 2.15 – Percentage of the discarded packets versus data arrival rate for different
energy arrival rates.

Similar to Figure 2.15, Figure. 2.16 compares the percentage of discarded packets of the
optimal policy with the two other variants of the immediate policy. As we can see, by
considering only the age of the packets without adjusting carefully the number of trans-
mitted packets to the battery level and buffer state leads to decrease the number of sent
packets, and therefore the immediate policy remains much better.

In Figure 2.17, we plot the average consumed energy versus the data arrival rate λd with
different energy arrival rates λe. We observe that the optimal policy consumes less energy
than the immediate one while sending more packets because it adapts the number of
transmitted packets per slot to the channel conditions and the battery state.

In Figure 2.18, we show the average battery state versus the packet arrival rate λd with
different energy arrival rates λe. As the optimal policy offers a lower energy consumption
(see Figure 2.17), the battery is less used and its energy level is thus higher. This ensures
a better sustainable communication with less number of discarded packets.

In Figure 2.19, we show the percentage of discarded packets due to delay among the total
number of discarded packets for different values of the energy arrival rate λe and the data
arrival rate λd. As explained before, a packet can be discarded due to delay or buffer
overflow. When the data arrival rate increases, the probability to discard a packet due to
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Figure 2.16 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates and different immediate policies.

Figure 2.17 – Average consumed energy versus data arrival rate for different energy arrival
rates.



2.5. Special Cases 53

Figure 2.18 – Average battery state versus data arrival rate for different energy arrival
rates.

overflow increases, resulting in a lower contribution of the delay in discarding packets.
On the other hand, when the energy rate decreases, the percentage of discarded packets
due to the delay slightly increases because, in average, a packet remains more often in the
buffer since there is not enough energy to transmit it. Hence, it is flushed from the buffer
for delay’s purpose.

Comparison with the state-of-the-art

In Figure 2.20, 2.21 and 2.22, we compare the performance of our optimal policy to the
optimal policy obtained the same way as before, i.e. by forcing the average (instead
of the strict) delay to be less than a pre-defined threshold using the following CMDP
formulation:

µ̃Qct = arg min
µ

lim
N→+∞

1
N
Eµ

[ N∑
n=1

εo(sn,un)
]

(2.23)

s.t. lim
N→+∞

1
N
Eµ

[ N∑
n=1

qn

]
6 Qct (2.24)

As we can see, our policy outperforms the policy considering only the average delay in
terms of percentage of discarded packets, consumed energy (in most cases), and battery
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Figure 2.19 – Percentage of the discarded packets due to delay versus data arrival rate
and energy arrival rate.

levels (in most cases). It was therefore valuable to do the effort with the strict delay
constraint and not simply use the optimal policy adapted to the average delay constraint
with a well-adjusted threshold, especially for the small λe.

Correlated EH process

In Figure 2.23, we compare the performance of the optimal policy (adapted to time-
correlated EH process) with the immediate policy. The proposed optimal policy is still
better than the immediate policy. The performance of the system decreases when ρe

increases because the system will be trapped in the state e = 0 for a longer period of time,
leading to more discarded packets.

2.5.2 Power Consumption Minimization under Strict Delay Constraint

We consider now in Figure 2.24 a conventional transmitter relying on its own battery. A
different problem is studied here, since there is no replenishing mechanism of the battery.
Therefore, our goal in this case is to minimize the power consumption of the device in
order to prolong the life of its battery. The same system model of Section 2.5.1 is adopted
while removing all the aspects related to EH.
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Figure 2.20 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates between strict and average delay policies(µ? and µ̃3, respectively).

Figure 2.21 – Average consumed energy versus data arrival rate with different energy
arrival rates between strict and average delay policies (µ? and µ̃3 respectively).
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Figure 2.22 – Average battery state versus data arrival rate with different energy arrival
rates between strict and average delay policies (µ? and µ̃3 respectively).

Figure 2.23 – Percentage of the discarded packets versus data arrival rate with different
correlated energy arrival rates between strict and immediate policies.
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Figure 2.24 – Resource Scheduling for EH-Transmitter

2.5.2.1 Problem Formulation and Resolution

The MDP formulation considers the state space s = (k, x) where |S| = (K0 +2)B.|X|with the
same action space as Section 2.5.1, namely the number of transmitted packets u during a
time slot. The battery is not taking part in the description of the states, so all transitions
related to it are omitted.

The problem here is formulated as a CMDP problem. The objective then is to find the
optimal policy µ? minimizing the average consumed power given by

P
µ

= lim
N→+∞

1
N
Eµ

[ N∑
n=1

P(xn,un)
]

(2.25)

where P(xn,un) is the instantaneous power cost when action un is performed at state sn

and can be derived using Eq. (2.20).

At a given slot n, when the system state is sn and the performed action is un, the probability
to discard packets due to delay violation is given by

εd(sn,un) =

 0 if mn = 0 or mn 6 un

1 else.
(2.26)

We define the average delay violation outage probability as

ε
µ
d = lim

N→+∞

1
N
Eµ

[ N∑
n=1

εd(sn,un)
]
. (2.27)

At a given slot n, when the system state is sn and the performed action is un, the buffer
overflow occurs when qn −wn + an+1 > B. The probability of overflow is then obtained as

εo(sn,un) =

+∞∑
a=B−qn+wn+1

e−γ.
γa

a!
= 1 −Q(B − qn + wn + 1, γ). (2.28)

where Q is the regularized Gamma function.
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We define the average buffer overflow outage probability as

ε
µ
o = lim

N→+∞

1
N
Eµ

[ N∑
n=1

εo(sn,un)
]

(2.29)

Finally, our CMDP optimization problem states as

µ? = arg min
µ

P
µ

(2.30)

s.t. ε
µ
d 6 Dout (2.31)

ε
µ
o 6 Oout (2.32)

where Dout and Oout are the pre-defined thresholds for the delay and overflow outage
probabilities respectively.

This problem can be solved using standard LP techniques to find the optimal offline
randomized policy as shown in Section 1.3.1. Therefore, the CMDP problem can be
formulated as an LP problem.

ρ? = arg min
ρ

∑
s∈S,u∈U(s)

ρµ(s,u)P(x,u) (2.33)

s.t.
∑

s∈S,u∈U(s)

ρµ(s,u)εd(s,u) 6 Dout (2.34)∑
s∈S,u∈U(s)

ρµ(s,u)εo(s,u) 6 Oout (2.35)∑
s∈S,u∈U(s)

ρµ(s,u) = 1 (2.36)∑
s′∈S,u∈U(s)

ρµ(s′,u)p(s|s′,u) = 1, ∀s ∈ S (2.37)

The optimal stationary policy µ? is then obtained as defined in Section 1.3.2 according to

µ?(u|s) =
ρ?(s,u)∑

u′∈U(s) ρ?(s,u′)

2.5.2.2 Numerical Results

In the following, the optimal policy obtained for the resolution of the LP Problem is
evaluated numerically. We consider a system with the following characteristics: the slot
duration is Ts = 1 ms, the channel states x takes 3 possible values from the finite set
X = {−5.41,−1.59, 3.18} dB with respective probabilities 0.63, 0.32, and 0.05. The noise
power spectral density is N0 = −87 dBm/Hz and the allocated bandwidth is W = 5 MHz.
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We simulate i.i.d arrivals following a Poisson distribution with mean λd = 2 packets per
slot. We assume that the packets are of equal size L = 5000 bits, and the buffer is of size
B = 5 packets. The maximum delay is K0 = 2 (i.e., in absolute time K0Ts = 2 ms) . The
maximum available power at the transmitter is Pmax = 2 mW and we fix U0 = 5 packets
per slot.

Convergence of the long-term average cost

Figure 2.25 shows the convergence behavior (versus N) of the average power for various
delay outage probabilities where the overflow outage probability Oout is fixed to 0.4. One
can notice that as the delay constraint becomes tighter, the average consumed power
significantly increases. Indeed, when the imposed delay is stricter, the system is forced
to send more packets even if the channel is in a bad state.

Figure 2.25 – Convergence of average power for various delay outage probability con-
straints.

Comparison with other policies

Figure 2.26 compares the average consumed power versus the delay outage probability
for different overflow outage probabilities. Moreover, we compare the optimal and im-
mediate policies. Notice that the system characteristics have been chosen such that the
immediate policy satisfies the overflow outage probability constraint. The delay outage
probability constraint is always satisfied by the immediate policy since the packets do
not stay in the buffer. As one can observe, our policy gives strongly better performance
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in terms of power consumption as it adapts its transmission rate according to the channel
conditions while satisfying the requirements of the system. The overflow constraint is
inactive when Oout = 0.4, because satisfying the delay constraint is more crucial. In con-
trast, when Oout = 0.05, the delay outage probability is inactive. In general, requiring a
stronger overflow constraint increases the energy consumption. Notice that after a certain
value of Dout, the overflow constraint becomes more critical making the delay constraint
inactive leading to an error floor.

Figure 2.26 – Average power versus delay outage probability for different policies.

Comparison with the state-of-the-art

Figure 2.27 compares the average consumed power for average and strict delays. To do
this, we first define the average queue length as

ε
µ
q = lim

N→+∞

1
N
Eµ

[ N∑
n=1

qn

]
(2.38)

And then solved the following CMDP problem devoted to average delay constraint:

µ? = arg min
µ

P
µ

(2.39)

s.t. ε
µ
q 6 Qct (2.40)

ε
µ
o 6 Oout (2.41)
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where Qct = λd.Dct is the average queue length constraint. Qct is chosen to achieve similar
performance, in terms of delay and overflow, between the average and strict schemes.

Figure 2.27 – Average consumed power by schemes with strict and average delay con-
straints.

As one can notice, for the same performance in terms of delay and overflow, the proposed
scheme with the strict delay reduces the power consumption by 20% approximately
compared to the average delay scheme.

2.6 Conclusion

In this chapter, we have investigated resource scheduling and computation offloading
problem from an EH mobile user to its serving resourceful BS under strict delay con-
straint. We have proposed an optimal policy to minimize the packet loss rate using MDP
framework and DP techniques. By leveraging on the knowledge of the available energy
in the battery, the data and energy arrivals as well as the channel states, the optimal offline
policy decides to process locally or remotely while specifying the number of packets to
be processed. We have seen that taking into account the strict delay (at the expense of the
complexity since the number of states dramatically increases) enables a significant gain
in performance compared to the adaptation of the average delay based policy.

In addition, we have studied two special cases of the general problem. In the first one, we
have addressed resource scheduling problem under energy harvesting capabilities with
strict delay constraint. The optimal policy in this case adjusts the number of transmit-
ted packets according to the channel conditions and the available energy in the battery,
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such that the number of discarded packets is minimized. In the second one, we have
studied strict delay constrained scheduling problem. We have solved the power-efficient
optimization problem using CMDP framework and LP techniques. The policy adjusts
the number of transmitted packets according to the channel conditions. In this case, the
power consumed is minimized while maintaining the delay and overflow outage proba-
bilities below pre-defined thresholds given by the application.

The material presented in this Chapter has been published in [J1], [C1], [C2], and [C3].
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Chapter 3

Joint Resource Scheduling and
Computation Offloading with
imperfect CSIT

3.1 Introduction

In Chapter 2, the scheduling-offloading problem and the desired transmission policies
rely on the perfect knowledge of the CSIT and the relevant statistics without cost. In
typical wireless systems, the receiver performs channel estimation and feeds back CSI on
limited-capacity feedback channel to the transmitter in order to design channel-adapted
transmission techniques. In practice, the acquired CSIT have errors due to different factors
such as time-varying channel, inaccurate channel estimation, quantization and feedback
errors, which can inevitably cause performance degradation. In addition, the balance
between the time spent on acquiring the CSI and its quality will also have a significant
impact on the performance of the system. For instance, a higher estimation time will
result in a more accurate channel estimate, but at the cost of losing a considerable part of
the communication time which may increase the communication error and so increase the
delay. Therefore, in this chapter, we are interested in studying the scheduling-offloading
problem under imperfect CSI.

Recently, some works have focused on new design strategies to deal with CSI imperfec-
tions in energy harvesting networks. For instance, in [78], the problem of power man-
agement for energy harvesting sensor nodes with packet retransmissions was addressed
assuming partially observable CSI through an Acknowledgment (ACK)/Negative Ac-
knowledgment (NACK) feedback. The problem was formulated as a Partially observable
Markov Decision Process (POMDP) and efficient suboptimal approches were proposed
based on the belief state of the channel and the solution of the underlying MDP. In [79], a
beamforming problem for multi-antenna broadcast channel was studied under imperfect
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CSI at the transmitter in a simultaneous information and power transmission system. A
solution using relaxed semi-definite programming techniques was presented to maximize
the worst-case harvested energy for an energy receiver while satisfying a required rate
for an information receiver. A point-to-point feedback-enabled Multiple-Input Single-
Output (MISO) channel was also considered in [80] where both the transmitter and the
receiver are energy harvesting devices. The feedback policy and the transmission pol-
icy were jointly optimized to maximize the throughput using multivariate majorization
theory. Considering EH only at the receiver, [81] investigated joint channel resource allo-
cation and beamforming in Downlink (DL) MISO EH systems under imperfect CSI. The
proposed strategy aimed at maximizing the DL data rate while involving both power
and time consumed by the CSI training and feedback process. Moreover, an optimal
transmission power policy based on only 1-bit feedback was proposed in [82] for EH
communications over Rayleigh fading channels. The receiver sends bit 1 if the channel
realization is above a certain threshold. Then, the transmitter does not transmit if the bit
is 0 or transmits with a certain pre-defined power. The related data rate is chosen accord-
ing to the threshold and not to the true value of the channel realization. Consequently,
the selected data rate always ensures a safe transmission but with a pessimistic rate.
The paper found out the optimal feedback channel threshold and the optimal policy that
maximizes the throughput based on finite-horizon constrained MDP formulation. In [83],
the problem of data amount maximization within a fixed duration was studied assuming
imperfect CSIT in point-to-point communications with an EH transmitter. The authors
proposed first a Markov process to model the energy arrivals and the channel impulse
response with strong correlations and then derived the optimal online power scheduling
policy using finite-horizon DP techniques. In addition, they studied the performance
limits of EH systems under imperfect CSIT through an asymptotic analysis of the average
throughput at low and high average energy recharge rates. In [84], they determined the
optimal offline policy for a similar problem.

In this chapter, for realistic imperfect CSI scenario, we consider that acquiring channel
estimates incurs some time and energy costs on the system performance. We assess
the previously obtained optimal policy (in Section 2.3.6) under imperfect CSI conditions
due to channel estimation errors. We also consider imperfect CSI assumption with ARQ
protocol, allowing thus packet re-transmission. Therefore, in these cases, the packet loss
rate is affected twofold:

• On one side, with respect to the imposed strict delay because of a smaller transmis-
sion period of data packets, or because of a longer duration of packets in the buffer
for re-transmission (with ARQ protocols);

• On the other side, with respect to the erroneous channel estimation which can lead
to an increase in the number of discarded packets.
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We analyze the system taking into account these errors and show through numerical
results that an appropriate trade-off is needed between the channel estimation accuracy
and the transmission period in order to reduce the dropped packets depending on the
available energy, energy arrivals and data arrivals.

The chapter is organized as follows. In Section 3.2, we describe the system model. In
Section 3.3, we present the framework of the imperfect CSI scenario. We provide and
analyze numerical results in Section 3.4. In Section 3.5, we present the packet scheduling
problem under imperfect CSI as a special case of the general problem. Finally, we give
some concluding remarks in Section 3.6.

3.2 System model

In wireless communication systems, CSI is not perfectly known at the transmitter and
can include errors. Indeed, in a Time Division Duplex (TDD) Uplink (UL) transmission
between an EH device and a BS, the CSI can be obtained at the EH device by first estimating
the channel at the BS via an UL training process and then feeding back a quantized version
of the estimate to the transmitter. We assume that the feedback channel is error-free and
instantaneous as soon as the receiver has estimated the channel. Therefore, accounting
for the channel estimation phase, the time slot structure, shown in Figure 3.1 is divided
into two parts:

Time slot of duration Ts

τ Ts − τ

channel estimation packets execution

Figure 3.1 – Time slot structure under imperfect CSI scenario.

• A duration of τ ms to acquire CSI at the mobile device

• The remaining (Ts − τ) ms to execute data packets.

In particular, the EH device exploits the acquired CSI to send data whenever offloading
decisions are made. In this section, we aim at evaluating the optimal policy µ? obtained
with PI Algorithm from Section 1.3.1 when the CSI are imperfect which means that the
current states used for computing the output of µ? are not necessary correct.

To this end, the same system model from Section 2.2 is adjusted to the imperfect CSI
scenario, as shown in Figure 3.2. However, with respect to Chapter 2 where the defined
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quantization process and parameters are used by default, i.e. the values of x correspond to
the perfect discrete channel states, in this chapter and under the imperfect CSI scenario,
the channel is first estimated before being quantized. So, let ĥn and ĝn = |ĥn|

2 denote
the estimated channel and the estimated channel gain. Then, the estimated discrete
(quantized) channel states are defined by x̂n accordingly. In this case, a channel is said to
be in state x̂n , xn if ĝn ∈ Im′ while gn ∈ Im with m′ , m.

Figure 3.2 – MEC system with an EH mobile device.

3.2.1 Execution decisions and related consumed energy

Under imperfect CSI scenario, similar expressions to those derived in Section 2.2.4 are
obtained by replacing xn by the estimated channel gain x̂n and Ts by Ts − τ where τ is the
time required to perform channel estimation.

Therefore, at the beginning of time slot n, the consumed energy for Local and Offload
decisions become:

• Local processing: This decision is only affected by the estimation time τ since
neither xn nor x̂n is relevant in this case. The consumed energy, expressed as an
integer multiple of the e.u, is then given by

E`(u) =
⌈
u.P`.

Ts − τ
EU

⌉
. (3.1)

• Remote processing: This decision is affected by the estimation time τ and the esti-
mated channel x̂n between the mobile device and its BS. The energy consumption,
expressed as an integer multiple of the e.u, is then given by

Eo(x̂n,u) =
⌈ u
EU

( L.Pt

WUL. log2

(
1 + Pt.x̂n

WUL.N0

) + Tw.Pw +
LDL.Pr

WDL. log2

(
1 + Ps.x̂n

WDL.N0

))⌉ (3.2)
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Finally, we still require that the offloading procedure lasts at most one time slot,
but now taking into account that a part of the time slot is reserved for channel
estimation, therefore

u
( L

WUL. log2

(
1 + Pt.x̂n

WUL.N0

) + Tw +
LDL

WDL. log2

(
1 + Ps.x̂n

WDL.N0

)) 6 Ts − τ. (3.3)

3.3 Channel estimation

At τ ms after the beginning of time slot n, we consider that the EH mobile device has an
estimated discrete channel state x̂n. This estimated channel can be obtained through a
training sequence of η pilot symbols using a total training power Ptr during the period τ
of the time slot. Then, the required energy to perform this channel estimation is

Ece(x̂n) =
⌈Ptr.τ
EU

⌉
(3.4)

In fact, recalling the channel model described in Section 2.2.3, the channel response is hn

at the BS. Due to the imperfect channel estimation at this BS, we have now

ĥn = hn + ehn (3.5)

where ehn is the estimation error independent of hn and it is a zero-mean i.i.d. complex-
valued Gaussian process with variance σ2

e per complex dimension. According to [85], this
error variance can be expressed in terms of energy per pilot symbol Es, the number of pilot
symbols used for estimation η and the Gaussian noise variance per complex dimension
σ2

w as

σ2
e = E[|ĥ − h|2] =

σ2
w

ηEs
=

N0

τPtr
. (3.6)

As we have defined the channel gain gn = |hn|
2, the estimated channel gain is then

ĝn = |hn + ehn |
2. It is a non central χ2 random variable with 2 degrees of freedom in which

the Gaussian variables are independent with common variance σ2
e/2 and mean gn = |hn|

2.
It has a Probability Density Function (PDF) of the form

PĜ|H(ĝ|h) = PĜ|G(ĝ|g) =
1
σ2

e
e
−

g+ĝ
σ2

e I0

( 2
σ2

e

√
gĝ

)
(3.7)

where I0 is the zero-order modified Bessel function of the first kind [86].

The estimated channel state x̂n is then defined by x̂n = Qĝ(ĝn) according to the quantization
process defined in Section 2.2.3. This quantized value is sent back to the EH device and
will be available at the beginning of each time slot.
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3.3.1 Error probability and packet loss rate

In this section, we analyze the impact of channel estimation on the system performance,
in particular on the packet loss rate. In fact, channel estimation can affect the number of
discarded packets in three ways:

• The transmission period is reduced which offers less time to transmit the same
amount of data, increasing thus the packet loss rate due to delay and buffer overflow.

• If the channel estimate is smaller than the actual channel, less packets can be sched-
uled at decision instants. Thus, more packets can be queued in the data buffer
with higher delays, and may lead to more delay violation and buffer overflow
occurrences.

• If the channel estimate is higher than the actual channel, the scheduled packets are
all dropped. This condition incurs additional loss rate besides the delay violation
and buffer overflow losses given in equations (2.12) and (2.14).

Therefore, we need to take into account such errors in the total error probability. This
extra error probability (called, channel mismatch probability in the rest of the paper) can
be expressed as

Pe,CSI = Prob (x̂ > x) =
∑

m′|m′>m
Prob (ĝ ∈ Im′ , g ∈ Im) (3.8)

where Im = [tm, tm+1[ and Im′ = [tm′ , tm′+1[, m = 0, . . . ,M − 1, m′ > m are the quantization
regions of the perfect channel state and the estimated channel state, respectively.
Then, using Bayes rule and some derivations, we can compute

Prob (ĝ ∈ Im′ , g ∈ Im) =

∫
ĝ∈Im′

∫
g∈Im

P(ĝ, g) dĝ dg (3.9)

=

∫
ĝ∈Im′

∫
g∈Im

PĜ|G(ĝ|g)PG(g) dĝ dg (3.10)

=

∫
g∈Im

( ∫
ĝ∈Im′

PĜ|G(ĝ|g) dĝ
)
PG(g) dg (3.11)

=

tm+1∫
tm

(
Q1

( √
2g
σe

,

√
2tm′

σe

)
− Q1

( √
2g
σe

,

√
2tm′+1

σe

))
PG(g) dg (3.12)

where PĜ|G(ĝ|g) is given in (3.7), Q1 is the Marcum function, and PG(g) is the PDF of the
channel gain with

PG(g) =


1
σ2

h
e
−

g
σ2

h if g ≥ 0

0 otherwise
(3.13)
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At a given time slot n, when the action un is done by applying the optimal policy µ?

(obtained for the perfect channel knowledge case) on the estimated channel state x̂n > xn,
the number of discarded packets due to CSI errors is computed as

εe(un,Pe,CSI) = un × 1(Pe,CSI , 0), (3.14)

and the cost function of our MDP problem under policy µ? and imperfect CSI is given by

D′(µ?) = lim
N→+∞

1
N
Eµ

?

[ N∑
n=1

(
εd(sn,un) + εo(sn,un) + εe(un,Pe,CSI)

)]
. (3.15)

3.4 Numerical Results

In this section, our goal is to evaluate the proposed optimal policy when the transmitter
relies on an estimated version of the channel state. We consider an estimation phase
duration equal to τ = 10 µs (1% of Ts), and a power of Ptr = 4 mW. The corresponding
energy consumption for the estimation phase is thus E = 40 nJ which can be neglected to
the energy unit, and therefore we assume Ece = 0 e.u.

Comparison with other policies

In Figure 3.3, we compare the percentage of discarded packets between perfect and im-
perfect CSI scenarios. For low data arrival rate λd, the gap between both scenarios is
large. Indeed, in our setup, the smallest channel mismatch probability is between 10−3

and 10−2 which implies that the percentage of discarded packets is necessary worse since
as soon as the channel is over-estimated, the packets are dropped. However, when the
data arrival rate increases, the buffer overflow can happen more often and the channel
mismatch probability has less impact, which lead both scenarios to behave similarly.

In Figure 3.4, we compare the optimal and naive policies under perfect and imperfect
CSI scenarios. For small energy arrival rate λe, the optimal policy under imperfect CSI is
better than the naive policy with perfect CSI, because the latter sends packets without any
adaptation to the energy and data arrivals, so energy shortage can happen more often and
the number of discarded packets increases. For high energy arrival rate, imperfect CSI
has stronger impact since the energy has to be controlled in a smarter way and knowing
the channel accurately is more required.

In Figure 3.5, we compare the percentage of discarded packets for different estimation
times τ (expressed in % of Ts). For low energy arrival rate λe, increasing the estimation
time leads to a better channel estimation, which slightly reduces the number of discarded



70 3. Joint Resource Scheduling and Computation Offloading with imperfect CSIT

Figure 3.3 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates between perfect and imperfect CSI scenarios.

packets due to imperfect CSI, but at the cost of increasing the number of discarded packets
due to delay and overflow. Since energy is not available in this situation, and executing
packets locally is costly in most cases, the overall number of discarded packets increases
because the system does not have enough energy to execute packets. For high energy
arrival rate, the system has enough energy to maintain a balance between the decrease
number of discarded packets due to imperfect CSI (when τ increases, the channel is better
estimated) and the increase number of discarded packets due to delay and overflow (the
system has less time for data packets transmission).

In Figure 3.6, we display the nature of discarded packets in percentage due to delay
violation, buffer overflow and channel mismatch with different data and energy arrival
rates. The number of discarded packets due to channel mismatch is significant for low
data arrival rate because the delay violation or the buffer overflow can happen less often.
However, for high data arrival rate, the number of packets discarded due to channel mis-
match is negligible and the policy behaves approximately in the same way for perfect and
imperfect CSI. Nevertheless, the imperfect CSI degrades the whole system (on the delay
violation and buffer overflow) since a part of the time slot is now devoted to perform the
estimation rather than the transmission.



3.4. Numerical Results 71

Figure 3.4 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates for different policies and between perfect and imperfect CSI scenarios.

Figure 3.5 – Percentage of the discarded packets versus the estimation time τ (expressed
in % of Ts) with different data and energy arrival rates.
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(b) λd = 3.0 - λe = 0.5
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(d) λd = 3.0 - λe = 2.0

Figure 3.6 – Percentage of the discarded packets due to delay violation, buffer overflow,
and channel mismatch with different data and energy arrival rates.

Re-transmission with ARQ protocols

Under imperfect CSI assumption, it is usual to allow packet re-transmission through
an ARQ protocol [87], where the receiver sends an ACK if the packet is received suc-
cessfully and a NACK if not, so that the transmitter can re-transmit the packet in the
following time slots. An improvement of this protocol is the Chase Combining Hybrid
ARQ (CC-HARQ), where the receiver keeps the packet even if it is not received correctly.
Then, when the same packet is re-transmitted, all the previous packets in memory will be
combined together on the receiver side to decode it, increasing the correction capability at
each re-transmission. Here, we just run our policy (the optimal one described in Section
2.3) when ARQ and CC-HARQ protocols are carried out. The packets are not discarded
directly because we keep them for a possible re-transmission. So different updating rules
for the buffer state are necessary. So there is a trade-off between the higher probability
for each packet to be correctly decoded at the receiver, the higher duration for the packet
to stay in the buffer while waiting for the feedback and the higher energy consumed for
re-transmitting the packet.

In Figure 3.7, ARQ and CC-HARQ are implemented with at most two transmissions
(one re-transmission is allowed only). When λe is low, using ARQ and CC-HARQ is not
efficient because re-transmitting the same packet twice consumes energy while it is not
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available in large quantities. However, when λe is large, these two protocols significantly
reduce the number of discarded packets due to imperfect CSI.

Figure 3.7 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates between perfect and imperfect CSI scenarios.

3.5 Special Case: Packet Scheduling for EH-Transmitter under
imperfect CSI

This section simplifies the model in Section 3.2 in a similar way to Section 2.5.1 as shown
in Figure 3.8, where the offloading capabilities are removed. We aim now at studying
the robustness of the derived optimal policy under imperfect CSI scenario. Again, the
transmitter starts by performing channel estimation at the BS before taking the decision.

In this case, the energy consumption expressions are similar to those obtained in Sec-
tion 2.5 by replacing xn by the estimated channel gain x̂n and Ts by Ts − τ, i.e.

E(x̂n,un) =
⌈P(x̂n,un).(Ts − τ)

EU

⌉
(3.16)

where

P(x̂n,un) =
WN0

x̂n

(
2

unL
W(Ts−τ) − 1

)
. (3.17)
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Figure 3.8 – Resource Scheduling for EH-Transmitter.

3.5.1 Numerical Results

In this section, our goal is to evaluate the proposed optimal policy when the transmitter
relies on an estimated version of the channel state. The estimation phase duration is equal
to τ = 10 µs (1% of Ts), and a power of Ptr = 4 mW is used. The corresponding energy
consumption for the estimation phase is thus E = 40 nJ which can be neglected to the
energy unit, and therefore we assume Ece = 0 e.u.

Comparison with other policies

In Figure 3.9, we compare the percentage of discarded packets between perfect and im-
perfect CSI scenarios. For low data arrival rate λd, the gap between both scenarios is
large. Indeed, in our set up, the smallest channel mismatch probability is between 10−3

and 10−2 which implies that the percentage of discarded packets is necessary worse since
as soon as the channel is over-estimated, the packets are dropped. However, when the
data arrival rate increases, the buffer overflow can happen more often and the channel
mismatch probability has less impact, which lead both scenarios to behave similarly.

In Figure 3.10, we compare the optimal and naive policies under perfect and imperfect
CSI scenarios. For small energy arrival rate λe, the optimal policy under imperfect CSI is
better than the naive policy with perfect CSI, because the latter sends packets without any
adaptation to the energy and data arrivals, so energy shortage can happen more often and
the number of discarded packets increases. For high energy arrival rate, imperfect CSI
has stronger impact since the energy has to be controlled in a smarter way and knowing
the channel accurately is more required.

In Figure 3.11, we compare the percentage of discarded packets for different estimation
times τ (expressed in % of Ts). For low data arrival rate λd, increasing the estimation
time leads to a better channel estimation, which slightly reduces the number of discarded
packets since the impact of estimation error is high in this configuration (see Figure 4).
Nevertheless, after a certain threshold, for instance τ ≈ 5%, the number of discarded



3.5. Special Case: Packet Scheduling for EH-Transmitter under imperfect CSI 75

Figure 3.9 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates between perfect and imperfect CSI scenarios.

Figure 3.10 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates for different policies and between perfect and imperfect CSI scenarios.
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packets will increase because the remaining communication time of the slot is smaller.
This leads to decrease the number of sent packets and so to increase the number of pack-
ets into the buffer, exhibiting thus more delay violation and buffer overflow. For high
data arrival rate, we know that the estimation accuracy is not required (see Figure 3.9).
Therefore, increasing the estimation time directly decreases the performance since the
system has less time for data packets transmission.

Figure 3.11 – Percentage of the discarded packets versus the estimation time τ (expressed
in % of Ts) with different data and energy arrival rates.

In Figure 3.12, we display the nature of discarded packets in percentage due to delay
violation, buffer overflow and channel mismatch with different data and energy arrival
rates. The number of discarded packets due to channel mismatch is significant for low
data arrival rate because the delay violation or the buffer overflow can happen less often.
However, for high data arrival rate, the number of packets discarded due to channel
mismatch is negligible and the policy behaves approximately in the same way for perfect
and imperfect CSI. Nevertheless, the imperfect CSI degrades the whole system (on the
delay violation and buffer overflow) since a part of the time slot is now devoted to perform
the estimation rather than the transmission.

Re-transmission with ARQ protocols

In Figure 3.13, ARQ and CC-HARQ are implemented with at most two transmissions
(one re-transmission). When λe is low, using ARQ and CC-HARQ is not efficient because
re-transmitting the same packet twice consumes energy while it is not available in large
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Figure 3.12 – Percentage of the discarded packets due to delay violation, buffer overflow,
and channel mismatch with different data and energy arrival rates.

quantities. However, when λe is large, these two protocols significantly improve the
performance by reducing the number of discarded packets due to imperfect CSI.

Figure 3.13 – Percentage of the discarded packets versus data arrival rate with different
energy arrival rates between perfect and imperfect CSI scenarios.
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3.6 Conclusion

In this chapter, we have evaluated the impact of imperfect CSI without and with ARQ
protocols on the optimal policy in terms of additional packet loss due to the channel esti-
mation time and errors. We have also studied the scheduling special case of the general
one under imperfect CSI. The numerical results showed that an appropriate balance is
required between the channel estimation accuracy and the transmission period in order to
reduce the discarded packets depending on the available energy, energy and data arrivals.

The material presented in this Chapter has been published in [J1] and [C4].
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Chapter 4

Joint Resource Scheduling and
Computation Offloading with
unknown CSIT

4.1 Introduction

As we have seen in the previous chapters, the CSI is an important information for our
resource scheduling and computation offloading problem with a single EH device served
by its BS. It affects the decisions and therefore the performance of the whole system.
Indeed, in Chapter 2, we have considered that the CSI is known perfectly at the EH
device before taking any decision which is an ideal assumption, usually unpractical in
real wireless system. We have relaxed this assumption in Chapter 3 considering that the
channel is estimated before taking the decision at the cost of losing time and energy since
a part of the time slot is devoted to perform channel estimation. In this chapter, we are
interested in studying a much complicated problem assuming that the current CSIT is not
known to the mobile device and the only available information is an outdated CSIT, i.e.
the CSIT of the previous slot. But we assume correlation between channels over timeslot.

Lately, some research has concentrated on designing new approaches to cope with the
lack of CSI in the communication system. For instance, in [88], the problem of scheduling
in Multi-Round Multi-User Multiple-Input Multiple-Output (MIMO) systems was con-
sidered under outdated CSI. The authors showed that an adequate training is needed to
achieve the Degree-of-Freedom of these schemes. In [89], the problem of user selection for
downlink of MIMO cognitive radio network was studied assuming that the cross interfer-
ence channel between the BS and the primary users is not known. The proposed selection
scheme, based on a best-effort interference mitigation, aimed at either minimizing the
transmission rank of secondary users or the rank-power product for a given secondary
user data rate requirement. In [90], the problem of layered interference network was
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studied under delayed CSI at all nodes. The authors claimed that the achievable Degree-
of-Freedom under this assumption scales with the number of users. In [91], the problem
of crosstier interference between femto and macro cells BS was studied. The authors pro-
posed a generalized inverse precoder at the macro BS that can achieve perfect interference
nulling to offloaded femto-cell users under perfect CSI and significant interference sup-
pression while maintaining zero macro inter-user interference under imperfect CSI. In
[92], the problem of offloading in heterogeneous cellular networks from congested macro
BS to less congested femto BSs using Non-Orthogonal Multiple Access (NOMA). The au-
thors analyzed the offloading process under imperfect CSIT and claimed that the outage
probability increases compared to the perfect CSI scenario, but implementing NOMA in
such situation can reduce this outage probability. In [93], the scheduling and offload-
ing problem under imperfect CSI is studied. The authors proposed an optimal resource
scheduling and dynamic offloading to balance throughput and fairness using Lyapunov
optimization and Lagrange dual decomposition techniques. In [94], the resource alloca-
tion and computation task offloading optimization problem was studied in MIMO-based
MEC systems considering both perfect and imperfect CSI. The goal was to minimize the
energy consumption subject to available radio and computing resources and allowable la-
tency. The results showed that the proposed design can achieve significant energy saving.

In this chapter, we assume that the current channel state is not available at the device
side before taking the action neither perfectly nor imperfectly. In this case, the decision is
made based on the previous encountered channel which is assumed to be correlated with
the current one. To our best knowledge, such situation is not studied before especially
for EH-MEC systems. This assumption adds a new type of packet loss, called channel
mismatch. Therefore, we aim now at minimizing the number of discarded packets due to
the strict delay violation, the buffer overflow, and the channel mismatch. We formulate
the problem as an MDP and solve it using PI algorithm. We compare the obtained optimal
offline stationary policy as in previous chapters with the immediate scheduling and the
two policies taking into account either local processing or offloading decisions.

The chapter is organized as follows. In Section 4.2, we describe the system model. In
Section 4.3, we formulate the MDP problem by defining its states, actions and transition
probabilities and we propose a PI algorithm to solve it. In Section 4.4, we provide and
analyze the numerical results. Finally, we give some concluding remarks in Section 4.5.

4.2 System Model

The same MEC system model from Section 2.2 is adopted (Figure 4.1). However, since
the CSI is neither known nor estimated, we adopt here a correlated model for the channel
states to keep track of the fluctuations statistically.
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Figure 4.1 – MEC system with an EH mobile device.

4.2.1 Channel model

Recalling the channel model described in Section 2.2.3, we consider here that the channel
gains are time-correlated following a Markovian model, i.e. the current channel state
depends only on the previous channel state. The transition probability from a channel
state j at time slot n to a channel state i at time slot n + 1 is given by

p(xn+1 = i|xn = j) =
(1 − ρ)|i− j|

|X|−1∑
k=0

(1 − ρ)|k− j|
, (4.1)

where ρ ∈ [0, 1[ is the correlation coefficient. We assume outdated CSIT, i.e., only xn−1

is known when taking decision at time slot n. Packets can thus be lost due to a channel
mismatch since the mobile user takes the scheduling decision based on the previous (and
so wrong) channel state.

4.2.2 Execution decisions and related consumed energy

When CSI is unknown, at the beginning of time slot n, the consumed energy for Local
and Remote decisions become:

• Local processing: This decision is not affected at all since using the local processor
is independent from the channel state. Therefore, the same expression under perfect
CSI scenario is applicable here.

• Remote processing: As the current channel state xn is not known, packets are
sent at a rate tuned according to the previous encountered channel state xn−1. As a
consequence, the energy consumption, defined in Section 2.2.4 as an integer multiple
of the e.u is obtained by replacing xn by xn−1 as
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Eo(xn−1,u) =
⌈ u
EU

( L.Pt

WUL. log2

(
1 + Pt.xn−1

WUL.N0

) + Tw.Pw +
LDL.Pr

WDL. log2

(
1 + Ps.xn−1

WDL.N0

))⌉ (4.2)

The first term in the Right Hand Side (RHS) of Eq. (4.2) corresponds to the energy to
send the packets. In fact, each packet has L bits and the number of bits sent in one
second is the rate tuned with the only Shannon capacity we know, i.e., WUL. log2

(
1+

Pt.xn−1
WUL.N0

) adapted to the previous realization of the channel. Obviously, rate mismatch
may occur and lead to error. For the return link (downlink) corresponding to the
third term of the RHS of Eq. (4.2), whereas the BS may adapt its rate to the current
channel (since it can estimate the current channel via the training sequence of the
uplink received packet), we force the BS to select the downlink rate with the channel
that the transmitter has used for optimizing its action (i.e., the rate depending on
xn−1 since the transmitter only knows xn−1 at the beginning of the time slot when it
makes its decision).

As in Chapter 2, this offloading procedure has to be done within the time slot leading
to the following constraint with the channel state xn−1

u
( L

WUL. log2

(
1 + Pt.xn−1

WUL.N0

) + Tw +
LDL

WDL. log2

(
1 + Ps.xn−1

WDL.N0

)) 6 Ts. (4.3)

Notice that WDL,WUL, N0, LDL, Ps, Tw are pre-fixed parameters. Forcing equality in
Eq. (4.3) enables us to find Pt with respect to u and xn−1.

4.3 Problem Formulation and Resolution

We aim at finding an optimal policy µ that minimizes the number of discarded packets
due to buffer overflow, delay violation and channel mismatch. The policy µ specifies
now the processing decisions (local processing, offloading or staying idle), the number
of packets u to be scheduled and the corresponding transmission power Pt at each time
slot, based on the past system states and actions. In this section, we characterize the
appropriate states and actions and present the MDP formulation of our problem. We
define then the transition matrix and the reward of this MDP and propose an offline
policy iteration algorithm to solve it.

4.3.1 State Space

The state space S is the set of s = (k, b, x) where

• k = [k1, · · · , kBd] is the vector indicating the age of each packet in the data buffer,

• b is the current battery level, and

• x is the previous channel gain.
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4.3.2 Action Space

The action spaceV denotes the processing decisions (local processing, remote processing
or staying idle), the number of packets u that the mobile device schedules during a time slot
and the corresponding transmission power Pt. Recall that U` is the maximum number of
packets that can be processed locally during a time slot and Uo be the maximum number of
packets that can be offloaded during a time slot. It is obtained from Eq. (4.3) with equality,
using the maximum transmit power Pmax and the best channel gain xmax = maxx∈X x. For
each remote processing action, the mobile device can choose the transmission power
among those calculated using Eq. (4.3) or to transmit using Pmax if possible. Finally, the
action space is finite with cardinality V = |V| = U` + Uo × (|X| + 1) + 1. The actions are
ordered and the m-th action is as follows:

• if m = 0, idle processing is considered and u = 0.

• if m = m` with m` ∈ {1, · · · ,U`}, local processing is applied and u = m`.

• if m = mo with mo ∈ {U` + 1, · · · ,V− 1}, remote processing is applied. Note that each
block of |X| + 1 elements transmit the same number of packets but using different
transmission power.

At time slot n, νn ∈ {0, · · · ,V − 1} corresponds to the decided action specifying the trans-
mission power Pνn and the number of packets uνn processed either locally or remotely.

4.3.3 Transition Matrix

The state transition probability of the MDP is defined as Section 2.3.4 by

p(s′|s, ν) = p(k′|k, b, ν).p(b′|b, x, ν).p(x′|x), (4.4)

where the channel x is now unknown and p(x′|x) is the distribution of the future channel
states x′ given x exhibited using Eq. (4.1).

4.3.4 Cost

At a given time slot n ∈ {0, · · · ,N}, the system state is denoted by sn = (kn, bn, xn−1) and
the action is µ(sn) = νn. To minimize the average number of discarded packets under
policy µ, we define the cost function as

D(µ) = lim
N→∞

1
N
Eµ

[ N∑
n=1

(εd(sn, νn) + εo(sn, νn) + εc(sn, νn))
]
, (4.5)

where εd(sn, νn), εo(sn, νn) and εc(sn, νn) are the instantaneous number of discarded pack-
ets due to delay violation, buffer overflow and channel mismatch, respectively.
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The first two types of packet loss are derived similarly to Eq. (2.12) and (2.14).

The channel mismatch occurs since the mobile user does not know the current channel
state xn, and takes decisions based on the knowledge of the previous channel state xn−1.
Therefore, the outdated CSI generates another type of errors, called Non-Compatible
Rate. This situation arises when the mobile user decides to offload at the beginning of
time slot n with a rate R(Pt, xn−1) higher than the optimal channel rate. An error also
occurs when the BS uses the rate RDL(Ps, xn−1) higher than the current channel rate.

The rate R(Pt, xn−1) is calculated by knowing only xn−1 and is equal to

R(Pt, xn−1) = log2

(
1 +

Ptxn−1

WULN0

)
(4.6)

while the optimal rate Rn for the transmission according to the current channel state xn is

Rn = log2

(
1 +

Ptxn

WULN0

)
. (4.7)

For the downlink, RDL(Ps, xn−1) is equal to

RDL(Ps, xn−1) = log2

(
1 +

Psxn−1

WDLN0

)
(4.8)

while the current achievable rate is

Rn,DL = log2

(
1 +

Psxn

WDLN0

)
. (4.9)

Therefore, packets are lost when R(Pt, xn−1) > Rn or RDL(Ps, xn−1) > Rn,DL. Both conditions
are equivalent to xn−1 > xn.

Finally, the total number of discarded packets is

εc(sn, νn) = un × Prob(xn−1 > xn), (4.10)

and the MDP optimization problem is as follows

µ? = arg min
µ

D(µ). (4.11)

4.3.5 Optimal Policy Computation

We solve our MDP problem using PI algorithm. Similarly to known channel cases, the
obtained policy is an optimal offline deterministic policy, that depends on the channel,
energy arrival and data arrival a priori distributions.
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4.4 Numerical Results

We evaluate numerically the optimal policy designed for our scheduling/offloading prob-
lem. We consider the system described in Section 4.2 and choose the same design param-
eters as Section 2.2.

In Figure 4.2 and Figure 4.3, we plot the percentage of discarded packets versus the data
arrival rate λd for two correlation factors, ρ = 0.99 and ρ = 0.75, respectively. Two values
of energy arrival rate are also considered, λe = 1 (red) and λe = 2.0 (blue). We compare
the performance of the optimal policy to the three different policies: immediate policy,
local policy and Remote policy. We observe that the proposed policy outperforms the
other policies as it can adapt its processing to the energy and data arrivals. More precisely,
when the data arrival rate λd increases, the number of discarded packets for any policy in-
creases because the buffer overflow happens more often. We also see that for both values
λe, the local policy approaches the optimal policy as channel correlation decreases since
the probability of losing a packet during the transmission increases. When the channel
correlation is high, the performance of the local policy decreases when the data arrival
rate increases due to the limited capacity of the mobile device processor. Moreover, the
gap between the optimal and the immediate policy increases when ρ decreases. Finally,
the performance of the Remote policy decreases when ρ decreases because packets can
be lost at each decision due to channel fluctuation.

In Figure 4.4 and Figure 4.5, we plot the average consumed energy and the average
battery state respectively versus the data arrival rate λd for ρ = 0.99 and energy arrival
rates λe = {1, 2}. We observe that local and immediate policies lead to the highest energy
consumption since processing packets locally consume more energy, draining thus the
battery level. The optimal proposed policy consumes approximately the same energy
amount as the Remote policy while sending more packets. Indeed, it ensures a better
sustainable communication with less discarded packets by optimally using the available
energy, leading hence to a higher energy level in the battery.

In Figure 4.6, we display the percentage of processing decisions of the optimal policy at
λd = {1, 2} for ρ = 0.99 in Figure 4.6(a)(c), and for ρ = 0.75 in Figure 4.6(b)(d). When the
channel correlation decreases, the system executes more packets locally to minimize the
number of discarded packets. When the energy is available (λe large), the system reduces
the offloading decisions in order to prevent the packet loss due to channel mismatch.
However, when λe is small, the system is forced to use offloading because executing
packets locally is costly in terms of energy.
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Figure 4.2 – Percentage of the discarded packets versus data arrival rate for energy arrival
rates λe = {1, 2} and ρ = 0.99.

Figure 4.3 – Percentage of the discarded packets versus data arrival rate for energy arrival
rates λe = {1, 2} and ρ = 0.75.
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Figure 4.4 – Average consumed energy versus data arrival rate for energy arrival rates
λe = {1, 2} and ρ = 0.99.

Figure 4.5 – Average battery state versus data arrival rate for energy arrival ratesλe = {1, 2}
and ρ = 0.99.
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Figure 4.6 – Percentage of processing decisions for ρ = 0.99 (a) and (c), and ρ = 0.75 (b)
and (d).
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4.5 Conclusion

We have addressed resource scheduling-offloading problem for an energy harvesting
mobile device to its serving resourceful base station under a strict delay constraint and
without CSIT. We have proposed an optimal policy to minimize the packet loss rate
using MDP framework. The optimal policy, which decides the number of packets to be
processed locally or remotely, relies on the channel, energy arrival and packet arrival
distributions as well as the current battery level, the current packets’ delays, and the
outdated channel gain.

The material presented in this Chapter has been published in [C5].
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Conclusions and future work

The main objective of this thesis was to propose optimal data transmission policies for
5G mobile systems having the following characteristics:

• Offloading capabilities: The mobile user can execute some of his tasks at its serving
BS. It is an important feature for future mobile systems to overcome the devices’
limitations in terms of processing capacity and storage.

• Energy harvesting: The mobile user relies on collecting energy from renewable
sources to power his communications and computations. It is also a crucial aspect
in future mobile systems to tackle the fast depletion of the devices’ batteries.

• Strict delay: The mobile user should execute his tasks before a certain deadline.
This is an extremely challenging requirement in future mobile systems requiring
more and more stringent delays and very low error rates.

In Chapter 1, we started by describing the underlying motivations for integrating EH and
computation offloading into communication systems. We presented some of the available
EH sources and offloading options, and chose the most suitable schemes for our problem.
Finally, we provided the framework of MDP and detailed various algorithms used to
solve this type of problems.

In Chapter 2, we investigated the joint optimization of resource scheduling and com-
putation offloading for mobile networks, where EH mobile user is wirelessly connected
to nearby BS, which can be endowed with some computational capabilities. The main
contribution of this work was the introduction of the strict delay constraint instead of the
average delay constraint used in the state-of-the-art. Two special cases of this general
problem were also presented. In all three cases, we found under the perfect CSI assump-
tion that our optimal policy outperforms the other policies by adapting the number of
executed packets to the buffer state, the available energy in the battery and the channel
conditions.

In Chapter 3, we assessed the previously obtained optimal policy considering imperfect
CSI with and without ARQ protocol. We found that our optimal policy remains robust
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compared to the other policies, and that an appropriate trade-off should be kept between
channel estimation accuracy and the communication period to maintain good perfor-
mance.

In Chapter 4, we addressed the same problem as in Chapter 2, but considering unknown
CSI. We showed that it is possible to achieve good performance compared to the other
policies by relying on an outdated version of the channel state.

Future Works

The following proposals deserve to be addressed in future works.

Deep Reinforcement Learning Approach

Solving the optimization problem using DP yields the optimal solution, but its derivation
becomes impractical when the system state is large. One way to overcome this constraint
is by using function approximation techniques to estimate the action-value function. This
function, denoted Qµ(s,u), represents the expected cost starting from state s and taking
action u under the policy µ [46]. It is given by

Qµ(s,u) = Eµ[Ci|si = s]

The approximation can be done by using a non-linear function to represent the Q-function
via a Neural Network (NN). This scheme is known as Deep Reinforcement Learning
(DRL) where the NN takes the state vector as input and outputs the Q-value for each
possible action. The DRL field is receiving increasing interest in various systems and
applications [95–100].

DRL Agent.

To this end, let Q(s,u;θ) be an approximate action-value function with parameter θ. The
NN or equivalently the Deep Q-Network (DQN) can be trained to learn the weights θ of
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Q(s,u;θ) by minimizing the Mean Squared Error (MSE) between:

• Target = c(sn,un) + minu Q(sn+1,u;θ)

• Prediction = Q(sn,un;θ)

Note that Q(sn+1,u;θ) and Q(sn,un;θ) are predicted through the Q-Network for the input
sn+1 and sn respectively. Next, the loss function may be optimized using Adam optimizer
[101] with a learning rate α.

However, RL techniques tend to diverge when used with NN. So, in order to solve this
problem, two methods are proposed [102]:

• Experience Replay (ER): The system will interact with the environment and store
the experience (sn,un, c(sn,un), sn+1) in replay memory M. When training the net-
work, random mini-batches of size Bm fromM are used instead of the most recent
transition, which will greatly improve the stability. In this way, the system will
be more robust by learning from more varied past experiences, instead of learning
from the immediate interaction with environment.

• Fixed target Network: This method makes use of a second network during the
training phase to predict Q(sn+1,u;θ). The reason behind this method is that the
Q-network’s values shift at every step of training. The value estimations can easily
diverge if the set of values used to adjust the network values is constantly shifting,
and the network can become unstable by falling into feedback loops between the
target and estimated Q-values. So, in order to mitigate that risk, the second net-
work’s weights are fixed, and only periodically or slowly updated to the primary
Q-network values. In this way, training can proceed in a more stable manner.

During the training phase, the system makes use of an ε-greedy strategy to ensure ad-
equate exploration of the state space. Therefore, the system chooses an action un =

minu Q(sn,u;θ) with probability 1 − ε and selects a random action with probability ε.

The Deep Q-learning algorithm is presented in Algorithm 3.

Nevertheless, the Q-learning algorithm performs poorly in some stochastic environments,
due to the large over-estimations of action values. These over-estimations result from a
positive bias that is introduced because Q-learning uses the maximum action value as
an approximation for the maximum expected action value. The reason is that the same
samples are used to estimate the action-value function and to decide which action is the
best, i.e., with lowest expected cost. As a consequence, at the beginning of the training
the system does not have enough information about the best action to take. Therefore,
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Algorithm 3 Deep Q-Learning algorithm

1: Initialize replay memoryM to capacity M
2: Initialize Q-network with random weights θ
3: Initialize target Q-network with random weights θ′

4: for t = 1, T do
5: Generate random state s0

6: for n = 0, N do
7: un = arg minu Q(sn,u;θ) with probability 1 − ε

Otherwise, un is selected randomly
8: Execute un and observe c(sn,un) and sn+1

9: Store experience (sn,un, c(sn,un), sn+1) inM
10: Sample random minibatch of Bm transitions fromM
11: Set the target to c(sn,un) + minu Q(sn+1,u;θ′)
12: Perform Adam update on θ
13: end for
14: Update target network, i.e. θ′ = θ

15: end for

taking the minimum Q value (which is noisy) as the best action to take can lead to false
positives. If non-optimal actions are regularly given a lower Q value than the optimal
best action, the learning will be complicated, because the accuracy of Q values depends
on what action is tried and what neighboring states is explored.

Thus, to overcome the over-estimation problem of the Q-learning algorithm, Double
Deep Q-Network (DDQN) is proposed [103] where two networks are used to decouple
the action selection from the target Q value generation:

• use the primary DQN network to select what is the best action to take for the next
state (the action with the lowest Q value).

• use the target network to calculate the target Q value of taking that action at the
next state.

Mathematically, this is reflected by the following rule

Target = c(sn,un) + Q(sn+1, arg min
u

Q(sn+1,u;θ);θ′)

Moreover, ER mechanism allows the RL agent to remember and reuse experiences, i.e.,
transitions, from the past. In particular, transitions are uniformly sampled from the replay
memoryM. However, this approach simply replays transitions at the same frequency as
that the agent was originally experienced, regardless of their significance. Therefore, to
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learn more efficiently, a Prioritized Experience Replay (PER) framework was proposed
[103] in order to replay important transitions more frequently.

In other words, the idea is to take in priority experience where there is a big difference
between the prediction and the target, since it means that there is a lot to learn from it.
Therefore, the priority γ of entry i in the replay memory is given by:

γi = |target − prediction| + ε

where ε is a constant to ensure that no experience has 0 probability to be taken.

However, performing just greedy prioritization, will lead to always training on the same
experiences (that have big priority), and thus over-fitting. Therefore, stochastic prioriti-
zation is introduced to generate the probability P(i) of being chosen for a replay

P(i) =
γi
α∑

k pk
α

where α is a hyper-parameter used to introduce some randomness in the experience se-
lection. As consequence, during each time step, a batch of samples with this probability
distribution is used to train the network.

Indeed, with normal experience replay, the experiences are selected randomly. Therefore,
there is no bias, because each experience has the same chance to be taken, so the weights
can be updated normally. But with priority sampling, bias toward high-priority samples is
introduced, and updating the weights normally can cause over-fitting. As a consequence,
the weights will be updated with only a small portion of experiences considered to be
really interesting. Therefore, to correct this bias, Importance Sampling (IS) weights is
used to adjust the updating by reducing the weights of the often seen samples.

IS =
[ 1
MP(i)

]β
where β is used to control how much the IS will affect the learning.

Following this, the weights corresponding to high-priority samples have very little ad-
justment (because the network will see these experiences many times), whereas those
corresponding to low-priority samples will have a full update.

Thus, this kind of DRL techniques may be used to solve the dimensionality issues of our
problem and should be done in a future work.
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Non-Orthogonal Multiple Access protocols

In practical MEC schemes, several users can be served by the same BS, where each of
them has its own tasks and attempts to execute its packets remotely within a reasonable
delay. This scenario can be managed using multiple access protocols.

Over the past decades, Orthogonal Multiple Access (OMA) has been used, in which every
user can exploit orthogonal communication resources within a particular:

• frequency band, like Frequency Division Multiple Access (FDMA) in the first Gen-
eration of mobile networks (1G)

• time slot, like Time Division Multiple Access (TDMA) in 2G

• code, like Code Division Multiple Access (CDMA) in 3G

Despite the fact that OMA techniques can offer good performance even with simple re-
ceivers due to the absence of mutual interference between users in an ideal environment
(as done for 4G that uses Orthogonal Frequency Division Multiple Access (OFDMA)),
NOMA s a key technology for pursuing the growth of the trafic.

In NOMA, several users can use non-orthogonal resources simultaneously. NOMA
schemes can be classified into two main categories [104]:

• Power-based multiplexing: several users are assigned different power coefficients
depending on their channels’ condition. On the transmitter side, the information
signals of multiple users are superimposed. On the receiver side, Successive Inter-
ference Cancellation (SIC) is applied to decode the signals one at a time until the
intended user’s signal is reached.

• Code-based multiplexing: multiple users are assigned different codes and are
multiplexed on the same time-frequency resources.

In fact, the advantages of NOMA over OMA can be highlighted in the following aspects
[105]:

• Spectral efficiency and throughput: In OMA (OFDMA), a specific frequency re-
source is assigned to each user, regardless of its channel state, which results in low
spectral efficiency and throughput in the entire system. In contrast, NOMA assigns
the same frequency resource to several mobile users, with good and bad channel
conditions, at the same time. Hence, the resource allocated to the weak user is also
used by the strong user, and the interference can be mitigated through SIC processes
at the user’s receivers.
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• User fairness, low latency, and massive connectivity: Scheduling in OMA priori-
tizes the user with a good channel state over the user with a poor one, which leads to
an equity issue and high latency. This approach cannot therefore cope with massive
connectivity. This problem can be solved in NOMA because it can simultaneously
serve many users with different channel conditions.

Therefore, our work can be extended to multi-user case using NOMA, espcially the
objective will be to schedule a subset of users at each timeslot. But each user has its own
delay constraints to satisfy. One way to solve this problem is to use the so-called Whittle’s
index which regains a lot of attention recently in the topic of AoI where the goal is to
schedule users’ updates into a capacity-limited link. So adaptation of Whittle’s index to
our NOMA-based context should be a future work [106, 107].
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Titre: Stratégies d’offloading pour les mobiles avec des capacités de récupération d’énergie
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Résumé: Aujourd’hui, les communications
mobiles sans fil sont en pleine croissance, en
raison du grand nombre d’appareils connec-
tés, ce qui augmente considérablement la de-
mande de gros volumes de données, néces-
sitant des calculs intensifs et entraînant une
forte consommation d’énergie. Toutefois, cette
expansion des services sans fil est encore en-
travée par les limitations des terminaux mo-
biles, en termes de capacité de traitement, de
stockage et d’énergie. Récemment, le Mo-
bile Edge Computing (MEC) et la récupéra-
tion d’énergie (EH) ont été proposés comme
des technologies prometteuses pour prolonger
la durée de vie des batteries des appareils mo-
biles et améliorer leurs capacités de traitement.
D’une part, le MEC permet de décharger les
tâches de calcul des appareils mobiles vers
une station de base voisine avec plus d’énergie
et de ressources de traitement. D’autre part,
l’EH exploite des sources d’énergie alternatives
et renouvelables pour alimenter les appareils
mobiles. Cependant, la nature stochastique
des énergies renouvelables peut entraîner des
pénuries d’énergie. Dans ce cas, les perfor-
mances du système peuvent être dégradées en
raison de la perte de paquets ou d’une latence
intolérable. Afin de garantir la durabilité du
système, des politiques de transmission effi-
caces sous les contraintes de l’EH sont néces-
saires. Dans cette thèse, nous étudions la plani-
fication conjointe des ressources et le décharge-
ment des calculs dans un système MEC mono-
utilisateur fonctionnant avec des dispositifs
basés sur l’EH. La contribution principale de

ce travail est l’introduction de la contrainte de
délai stricte au lieu de la contrainte de délai
moyenne pour satisfaire les besoins futurs des
communications à faible latence et des appli-
cations critiques. Nous étudions trois configu-
rations différentes. Dans la première configu-
ration, nous considérons que le canal est par-
faitement connu au niveau de l’émetteur (CSI
parfait) et nous visons à minimiser la perte de
paquets due à la violation du délai et au débor-
dement de la mémoire tampon du dispositif. Le
problème d’optimisation associé est modélisé
comme un processus de décision de Markov et
la politique optimale est donnée par des tech-
niques de programmation dynamique. Nous
montrons que la politique optimale est plus
performante que les autres politiques en adap-
tant le nombre de paquets traités aux états du
système. Dans la seconde configuration, nous
considérons un scénario plus réaliste, où le
canal n’est pas parfaitement connu à l’émetteur
et il est acquis après une phase d’estimation.
En fait, cette estimation peut être erronée en-
traînant une dégradation supplémentaire du
taux de perte de paquets. Par conséquent,
nous évaluons la politique optimale obtenue
précédemment lorsque le CSI est imparfait et
nous montrons qu’elle reste robuste par rap-
port à d’autres politiques. Enfin, nous exam-
inons la configuration sans CSI au niveau de
l’émetteur. Nous supposons donc qu’un CSI
obsolète est seulement disponible et nous mon-
trons que la politique optimale proposée peut
encore atteindre de bonnes performances par
rapport à d’autres politiques.
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Abstract: Nowadays, the wireless mo-
bile communications are witnessing unprece-
dented growth fueled by the huge number of
connected devices increasing importantly the
demands for high-volume data traffic, requir-
ing thus intensive computation and leading to
high energy consumption. However, this ex-
pansion of wireless services is still restrained by
mobile terminals limitations, in terms of pro-
cessing capacity, storage and energy. Mobile
Edge Computing (MEC) and Energy Harvest-
ing (EH) schemes have been recently proposed
as promising technologies to extend the bat-
tery lives of mobile devices and improve their
computing capabilities. On one hand, MEC
enables offloading computation tasks from mo-
bile devices to nearby Base Station with more
energy and computations resources. On the
other hand, EH exploits alternative renewable
energy sources to power mobile devices. How-
ever, the stochastic nature of renewable energy
may lead to energy outage. In such cases, the
system’s performance can be degraded due to
packet loss or intolerable latency. In order
to sensure the system sustainability, efficient
transmission policies under EH constraints are
needed. In this thesis, we investigate the joint
resource scheduling and computation offload-
ing in a single user MEC system operating with
EH based devices. The main contribution of

this work is the introduction of the strict de-
lay constraint instead of the average delay con-
straint to satisfy future requirements of low-
latency communications and critical applica-
tions. We study three different setups. In
the first setup, we consider a perfect Channel
State Information (CSI) at the transmitting de-
vice and we aim to minimize the packet loss
due to delay violation and buffer overflow at
the device’s data buffer. The associated opti-
mization problem is modeled as Markov De-
cision Process and the optimal policy is ex-
hibited through Dynamic Programming tech-
niques. We show that the optimal policy out-
performs other policies by adapting the num-
ber of processed packets to the system states.
In the second setup, we consider a more realis-
tic scenario, where the channel is not perfectly
known at the transmitter and it is acquired after
an estimation phase. In fact, this estimation can
be erroneous degrading thus further the packet
loss rate. Hence, we evaluate the previously
obtained optimal policy under imperfect CSI
conditions and we show that it remains robust
with respect to other policies. Finally, we ad-
dress the setup with no CSI at the transmitter.
We therefore assume that an outdated CSI is
only available and we show that the proposed
optimal policy can still achieve good perfor-
mance compared to other policies.
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