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The problem of fracture is of practical interest in a wide range of engineering applications

such as transport, aerospace, nuclear, civil structures, medical implants and microelectronics.

It is indeed challenging to think of a process or application in which the structural integrity

or lifetime expectancy of solid components are not of prime importance. Of course, not all

solid components are meant to withstand mechanical loadings. In the process of design of a

plastic toothbrush, for example, its mechanical resistance might not be the first priority in

the mind of an engineer. He might however worry about thermo-mechanical fatigue of the

injection mold used to create it. Even when fracture is not the main concern in the final use

of an object, it is often an important concern during processing.

Structure-property relationships are at the core of the problem of fracture. Processing

history and microstructure play an essential role in the final properties of a piece. Fracture is

thus an an active research field for materials science and engineering. Although it has been

studied for decades and seen many and considerable advances, many open questions remain.

To put it more broadly, it is desirable to improve the ability to predict fracture for existing

and new materials.

Fracture is a complex problem. It is very material-specific. It can occur differently in static

or dynamic conditions. The fracture properties of a material are also temperature-dependent.

Cyclic loadings result in particular fracture processes known as fatigue. If fracture occurs

after a small amount of plastic deformation, it is denoted brittle fracture. If, on the contrary,

it is preceded by considerable plastic deformation, it is denoted ductile fracture. The present

work restricts its focus to ductile fracture of metallic materials. More specifically, most of

the results concern the ductile fracture of nodular cast iron. The methodology and numerical

developments, however, can be extended to other heterogeneous materials made of 3 phases

(matrix, particles and voids).

This work, carried out at the Center for Material Forming - MINES ParisTech (Cemef -

MINES ParisTech) is part of the ANR COMINSIDE project, which constitutes a collaboration

with the Centre des Matériaux (MINES ParisTech) and the Laboratoire de Mécanique et

Technologie Cachan (LMT Cachan - Ecole Normale Supérieure Paris-Saclay). The global

objective corresponds to the meaning of the COMINSIDE acronym, to contribute to the

understanding, observation, modeling and simulation of ductile damage mechanisms. The

interaction between strain and damage mechanisms at the micrometer scale is of particular

interest.

To introduce ductile damage, a metallic tensile specimen is evoked. Initially, the material

deforms elastically until the plastic threshold is reached. Then, during plastic deformation,

work hardening takes place and the stress in the specimen continues to increase. Eventually,

a decrease in the stress will be observed despite work hardening. The responsible mechanism

for the subsequent loss of load-bearing capacity is ductile damage and it competes with work

hardening. The softening effect of ductile damage increases with deformation and finally
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leads to fracture of the specimen. This simple description concerns the macroscale.

At the microscale, the evoked specimen presents an initial population of inclusions dis-

persed in the metallic matrix. These inclusions induce local heterogeneities that will trigger

ductile damage mechanisms at the microscale. When the specimen is sufficiently deformed,

after entering the plastic range, an initial population of voids nucleate either by particle

fracture or decohesion of the matrix-particle interface. If the specimen is deformed further,

these nucleated voids will grow through plastic deformation of the matrix. Eventually, after

significant growth, interactions between different voids will arise. With these interactions

voids will unite or coalesce through different possible mechanisms. The result of this process

is the initiation and propagation of macroscopic cracks which will lead to specimen failure.

These are the micromechanisms of ductile damage and the object of study of this work: void

nucleation, growth and coalescence.

Simple evidence of the micromechanisms of ductile damage can be obtained from the

observation of a fracture surface. Fracture surfaces for Al0.2Fe, Al0.8Fe, Al1.2Mn [1] are

shown in Figure 1.1. Dimples of different sizes are observed. These dimpled surfaces are

characteristic of ductile fracture. Non-destructive three-dimensional imaging techniques have

enabled the evolution of the micromechanisms to be observed during in-situ mechanical tests.

An example of this type of observation is shown in Figure 1.2 for a a plate-like specimen of

2139 Al–Cu alloy in naturally aged T3 condition [2, 3]. These observations provide a fully

three-dimensional description of crack initiation and propagation in the plate-like specimen.

Figure 1.1: Fracture surfaces for (a) Al0.2Fe, (b) Al0.8Fe, (c) Al1.2Mn, and (d) AlMgSi.
Figure reproduced from [1].
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Figure 1.2: Three-dimensional view of ductile crack initiation and propagation in a
plate-like specimen of 2139 Al–Cu alloy in naturally aged T3 condition. The voids are

represented in blue. Figure reproduced from [3].

This is a simple and general description of ductile damage. The real process is complex and

depends on the material and loading conditions. A material may contain particles of different

natures, shapes and sizes, as well as different populations of voids. Other microstructural

phenomena related to the crystallographic structure can also play a role and interact with

the micromechanisms of ductile damage. The thermomechanical history of the material must

not be neglected.

To model this complex process at the macroscopic scale, methods of different natures

have been proposed. Fracture criteria with uncoupled damage indicators constitute a simple

approach. In this approach, a function of the stress state is integrated over the strain path and

fracture is considered to occur when the integral reaches a given threshold. This approach

is easy to implement, it can be carried out entirely as postprocessing since the impact of

damage on the material behavior is neglected. This points at a shortcoming of this approach:

it is appropriate only when softening due to damage is negligible.

Coupled approaches can provide more accurate predictions since they take into account

softening. These models can be phenomenological or based on micromechanics. Phenomono-

logical approaches often require modifications to provide accurate predictions in different

situations, such as different loading conditions. The nature of models inspired by the mi-

cromechanics of ductile damage should provide more universal predictions. However, since

they are derived from very idealized situations, they present similar shortcomings and phe-

nomonological extensions are very common. With these extensions, new parameters are

introduced and parameter identification becomes more complex. Two additional challenges

are handling multi-axial and non-proportional loadings [4, 5].

These shortcomings and challenges explain the motivation to explore the micromecha-

nisms of ductile damage. Indeed, modeling the microstructure could provide more accurate

predictions. However, modeling the microscopic scale in the whole geometry of interest is

unfeasible due to the computational resources it would require. Many numerical studies have
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been dedicated to the study of ductile damage at the microscale through different approaches

and numerical techniques such as finite elements (FE) [6], cellular automaton [7] or fast

Fourier transform [8]. Most studies resort to simplified or idealized configurations such as

periodic microstructures in unit-cell approaches. Modeling microstructural evolutions induc-

ing severe topological changes such as nucleation and coalescence is a challenging task in

three-dimensional configurations.

This is the context in which the COMINSIDE project started. The numerical develop-

ments previously carried out during the COMINSIDE project made it possible to robustly

model ductile damage at the microscale from void nucleation to coalescence and up to large

plastic strains. This numerical framework allowed for reasonable computational costs, which

made fully three-dimensional simulations of complex Representative Volume Elements (RVE)

possible. This numerical framework was then integrated in a numerical-experimental frame-

work [9,10] that combines Synchrotron Radiation Computed Laminography, Digital Volume

Correlation and FE simulations. This framework allows FE simulations to be carried out

with immersed microstructures and realistic boundary conditions and constitutes the main

methodology of this work and will be described in detail in Chapter 2.

1.1 Objectives and outline

The current PhD thesis started in the COMINSIDE project in a stage of further improve-

ment of the framework and exploitation. The global objective of this work is to contribute

to the understanding of the micromechanisms of ductile damage through numerical simu-

lations with immersed microstructures and realistic boundary conditions in heterogeneous

microstructures. The contributions made to the COMINSIDE project are documented in

this manuscript.

• Chapter 2 provides the state of the art of ductile damage and fracture modeling at

different scales and a detailed description of the experimental-numerical framework.

• Since this is a recent framework, not all of the related uncertainties are known. Mi-

crostructure immersion is an important part of the methodology and it requires a pro-

cedure known as image segmentation. Chapter 3 constitutes an exploration of the

uncertainties caused by image segmentation and a quantification of the impact of these

uncertainties on the final mechanical observables.

• Once the order of magnitude of the implied uncertainties is known, global and local

strain measures are compared with experimental measurements to validate the results

of the FE simulations in Chapter 4.

• Chapter 5 constitutes a parenthesis in terms of methodology. In an effort to clarify the
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observed coalescence mechanisms in nodular cast iron, a purely numerical parametric

study of a three voids cluster is carried out with a proposed ad-hoc approach.

• The main experimental-numerical methodology is exploited in Chapter 6 in an attempt

to establish a new coalescence criterion.

• The conclusions and perspectives are discussed in Chapter 7.

1.2 Publications

Articles in peer-reviewed international journals

As lead author

• V. M. Trejo Navas, M. Bernacki, P.-O. Bouchard, Void growth and coalescence in a

three-dimensional non-periodic void cluster, International Journal of Solids and Struc-

tures, 139 (2018):65-78.

• V. M. Trejo Navas, A. Buljac, F. Hild, T. Morgeneyer, L. Helfen, M. Bernacki, P.-O.

Bouchard, A comparative study of image segmentation methods for micromechanical

simulations of ductile damage, Computational Materials Science, 159 (2019): 43-65.

• V. M. Trejo Navas, A. Buljac, F. Hild, T. Morgeneyer, M. Bernacki, P.-O. Bouchard, An

examination of microscopic precoalescence strain measures in ductile cast iron through

micromechanical simulations based on 3D imaging, in progress.

• V. M. Trejo Navas, A. Buljac, F. Hild, T. Morgeneyer, M. Bernacki, P.-O. Bouchard,

Towards a micromechanical coalescence model in nodular cast iron,in progress.

As co-author

• A. Buljac, V. M. Trejo Navas, F. Hild, T. Morgeneyer, M. Bernacki, P.-O. Bouchard, On

the calibration of elastoplastic parameters at the microscale via X-ray microtomography

and digital volume correlation for the simulation of ductile damage, European Journal

of Mechanics-A/Solids 72 (2018):287-297.

• M. Shakoor, V. M. Trejo Navas, D. Pino Muñoz, M. Bernacki, P.-O. Bouchard, Com-

putational methods for ductile fracture modeling at the microscale, Archives of Com-

putational Methods in Engineering (2018):1-40.
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Participation in international conferences

As presenting author

• V. M. Trejo Navas, M. Shakoor, M. Bernacki and P.-O. Bouchard, Ductile fracture –

Influence of heterogeneous microstructure on nucleation, growth and coalescence mech-

anisms, Conference on Numerical Methods in Industrial Forming Processes (NUMI-

FORM). Troyes (France), July 4-7, 2016.

• V. M. Trejo Navas, M. Shakoor, A. Buljac, F. Hild, T. Morgeneyer, M. Bernacki,

P.-O. Bouchard, A micromechanical study of ductile damage with a laminography-

digital volume correlation- finite element framework, 14th International Conference on

Fracture (ICF 14). Rhodes (Greece), June 18-23, 2017.

• V. M. Trejo Navas, M. Shakoor, A. Buljac, F. Hild, T. Morgeneyer, M. Bernacki, P.-O.

Bouchard, A micromechanical study of void nucleation mechanisms in aluminum alloys,

6th European Conference on Computational Mechanics (ECCM 6). Glasgow (United

Kingdom), June 11-15, 2018.

• V. M. Trejo Navas, M. Shakoor, A. Buljac, F. Hild, T. Morgeneyer, M. Bernacki, P.-

O. Bouchard, Microscopic strain calculations at the onset of coalescence in nodular

cast iron, 22nd European Conference on Fracture (ECF22). Belgrade (Serbia), August

26-31, 2018.

As co-author

• P.-O. Bouchard, M. Shakoor, V. M. Trejo Navas, M. Bernacki, Numerical modeling of

failure mechanisms in complex heterogeneous microstructures, 21st European Confer-

ence on Fracture (ECF21). Catania (Italy), June 20-24, 2016.

• P.-O. Bouchard, V. M. Trejo Navas, M. Shakoor, M. Bernacki, T. Morgeneyer, A.

Buljac, F. Hild, Numerical modeling of ductile fracture at the microscale combined

with x-ray laminography and digital volume correlation, 20th International ESAFORM

Conference on Material Forming (ESAFORM 2017). Dublin (Ireland), April 26-28,

2017.

• P.-O. Bouchard, M. Shakoor, V. M. Trejo Navas, M. Bernacki, Numerical modeling

of ductile fracture mechanisms in complex heterogeneous microstructures (plenary

session), Fifth International Conference on Computational Modeling of Fracture and

Failure of Materials and Structures (CFRAC 2017). Nantes (France), June 14-16, 2017.

• P.-O. Bouchard, M. Shakoor, V. M. Trejo Navas, M. Bernacki, A parametric analysis of

void coalescence mechanisms based on 3D finite element microscale computations, XIV
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International Conference on Computational Plasticity (COMPLAS 2017). Barcelona

(Spain), September 5-7, 2017.

• A. Buljac, M. Shakoor, V. M. Trejo Navas, M. Bernacki, P.-O. Bouchard, A. Bouterf, L.

Helfen, F. Hild, T.F. Morgeneyer, J. Neggers, S. Roux, On the integration of measured

data in numerical simulations at the microscale, IDICs conference, Barcelona (Spain),

November, 2017.

• P.-O. Bouchard, V. M. Trejo Navas, M. Shakoor and M. Bernacki, Numerical modeling

of nucleation mechanisms for 3D heterogeneous microstructures (keynote presenta-

tion), 13th World Congress in Computational Mechanics (WCCM2018). New York

(USA), July 22-27, 2018.

• P.-O. Bouchard, V. M. Trejo Navas, M. Shakoor, A. Buljac, M. Bernacki, T. Mor-

geneyer, F. Hild, Analysis of local strain in nodular graphite cast iron at the onset

of coalescence by means of 3D numerical modeling combined with X-Ray laminogra-

phy and digital volume correlation, 13th World Congress in Computational Mechanics

(WCCM2018). New York (USA), July 22-27, 2018.

• P.-O. Bouchard, V. M. Trejo Navas, M. Shakoor, T. Morgeneyer, A. Buljac, L. Helfen, F.

Hild and M. Bernacki, Recent advances in the finite element modelling of ductile fracture

at mesoscale (plenary session), 17th International Conference on Metal Forming.

Toyohashi (Japan), September 16-19 September, 2018.

Participation in national conferences

As presenting author

• V. M. Trejo Navas, M. Shakoor, M. Bernacki and P.-O. Bouchard, Influence of het-

erogeneous microstucture on the micromechanisms of ductile fracture, CSMA 2017 -

13ème colloque national en calcul des structures. Giens (France), May, 2017.

• V. M. Trejo Navas, M. Shakoor, M. Bernacki and P.-O. Bouchard, A study of the

effect of microstructural heterogeneities on ductile damage, 3es Journées Matériaux

Numériques. Tours (France), Janvier 31 - Fevrier 2, 2017.
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2.1 Bibliograhic review

Modeling ductile damage at the macroscale can be split in two main approaches: un-

coupled fracture criteria and coupled damage models. Within each approach, criteria and

models can have either physical bases or phenomenological ones. The purpose of this section

is not to provide an exhaustive review of damage models and failure criteria, but to give

useful information of the most common approaches for a better understanding of the work

that will be discussed in the rest of the manuscript.

2.1.1 Numerical modeling of ductile damage at the macroscale

Uncoupled fracture criteria

Uncoupled approaches were briefly commented upon in Chapter 1. In this approach, the

ductile damage process is summarized in a single damage parameter (or damage indicator)

D that is calculated as the integral of a function of the stress state along the strain path [4]:

D =
∫

f (σ) dε̄p, (2.1)

where σ is the stress tensor and ε̄p the equivalent plastic strain. Generally these uncoupled

models or fracture criteria are expressed in terms of functions of the three invariants of the

stress tensor. Namely, they are expressed in terms of the stress triaxiality ratio T , the von

Mises equivalent stress σeq and the Lode parameter L:

T =
σ1 + σ2 + σ3

3σeq
, (2.2)

L =
2σ2 − σ1 − σ3

σ1 − σ3
, (2.3)

where σi is the ith principal stress and σ1 > σ2 > σ3.

The uncoupled damage parameter D does not affect the material behavior, i.e., no

damage-induced softening affects the load-bearing capacity of the material. This means

that it can be calculated simply during postprocessing.

Some fracture criteria are based on micromechanical considerations. The Rice-Tracey

fracture criteria, for instance, is based on a void growth model derived for a spherical void in a
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perfectly plastic material under hydrostatic stress [11]. This analysis revealed the exponential

influence of the stress triaxiality ratio for predominantly hydrostatic conditions. Using this

void growth model as fracture criterion amounts to considering that fracture occurs when a

critical void fraction is reached.

Other fracture criteria are phenomenological. This is the case of the Bai-Wierzbicki

fracture criterion [12]. At this point, it was well established that, just as the Rice-Tracey

fracture criterion predicts, the fracture strain decreases as the stress triaxiality ratio increases.

Recent experimental results showed considerably different degrees of ductility for mechanical

tests at low triaxiality levels. Bai and Wierzbicki designed their fracture criterion to explain

these differences by introducing dependency from the third invariant of the the stress tensor

through the Lode angle.

Many other phenomenological or micromechanics-based fracture criteria have been pro-

posed [13–18].

Continuum damage mechanics

From the macroscopic point of view, damage can be introduced through an internal

variable D that represents the stage of the material in the irreversible fracture process: a

value of D = 0 corresponds to a sound material and D = 1 to a completely damaged material.

This phenomenological approach does not consider the micromechanisms of ductile damage.

It was initially proposed by Kachanov in his study of creep [19] with the introduction of the

effective stress σ̄:

σ̄ =
σ

1 −D
. (2.4)

The constitutive equations may be used without modification by substituting the stress

by the effective stress and adopting the hypothesis of strain equivalence. This hypothesis

assumes the strain associated to a given damaged state with the applied stress is equivalent

to the strain associated with the corresponding undamaged state with the corresponding

effective stress.

Continuum damage mechanics constitute a thermodynamically sound framework for duc-

tile damage. The evolution of D is derived from a potential and it may never decrease.

Different models have been proposed in this framework such as the Rousselier model [20,21]

and the Lemaitre model [22]. Since the Lemaitre model is arguably the most extensively

adopted one, a brief explanation is presented in this section.

The energy density release rate Y can be derived from the state potential and expressed
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as follows [23]:

Y =
σ2

eq

2E (1 −D)2





2
3

(1 + ν) + 3 (1 − 2ν)

(

−p
σeq

)2


 , (2.5)

where E is the Young modulus, ν the Poisson ratio, and p is the pressure, defined as:

p = −σ1 + σ2 + σ3

3
. (2.6)

The following expression was proposed for the damage dissipative potential FD by Lemaitre

[22]:

FD =
S

(b+ 1)(1 −D)

(

Y

S

)b+1

, (2.7)

where S and b are two material parameters. The damage evolution is obtained with:

Ḋ = λ̇
∂FD

∂Y
. (2.8)

where λ̇ is the plastic multiplier.

The Lemaitre model has been modified to account for plastic anisotropy [24] and to

improve its prediction capacity, for example, under compressive charges [25] or for low stress

triaxialities [26].

Porous plasticity - the Gurson model

The Gurson model is a widely adopted porous plasticity behavior law derived with an

upper bound approach in a spherical model with a concentric void surrounded by a perfectly

plastic matrix [27]. The resulting yield surface is:

φ (p, σeq) =
(

σeq

σ0

)2

+ 2fcosh
(

−3
2
p

σ0

)

− 1 − f2, (2.9)

where σeq the equivalent stress, σ0 the flow stress and f the void fraction. Since the Gurson

model overestimated the localization strain in a periodic array of voids, Tvergaard [28] added

three additional parameters q1, q2 and q3 to the model:
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φ (p, σeq) =
(

σeq

σ0

)2

+ 2q1fcosh
(

−3q2

2
p

σ0

)

− 1 − q3f
2. (2.10)

To account for the accelerated void growth at the onset of coalescence, Tvergaard and

Needleman [29] introduced an effective porosity f∗ in the model:

φ (p, σeq) =
(

σeq

σ0

)2

+ 2q1f
∗cosh

(

−3q2

2
p

σ0

)

− 1 − q3f
∗2. (2.11)

The effective porosity f∗ is equal to f up to a critical value of fc and then increases faster

to account for coalescence:

f∗ =











f if f < fc

fc + f∗

u−fc

ff −fc
(f − fc) if f ≥ fc,

(2.12)

where fc, f∗
u and ff are material parameters related to the coalescence mechanisms.

The Gurson model with these two heuristic extensions, the introduction of coefficients to

match predictions in a periodic array of voids and the introduction of an effective porosity

to account for accelerated void growth at the onset of coalescence, is known as the Gurson-

Tvergaard-Needleman (GTN) model and is extensively used. The total rate of increase of

the void fraction is usually expressed as a superposition of the effect of void growth and void

nucleation [30]:

ḟtotal = ḟnucleation + ḟgrowth. (2.13)

The contribution of void growth to the increase rate of the porosity can be expressed

straightforwardly in terms of the void fraction and the increase rate of the equivalent plastic

strain ε̇P if the contribution of elastic strain is neglected:

ḟgrowth = (1 − f)tr
(

ε̇P
)

. (2.14)

Chu and Needleman [30] proposed to express the contribution void nucleation with a

normal distribution that depends on the equivalent plastic strain ε̄P :

ḟnucleation =
ψ

S
√

2π
e

1/2

(

ε̄P − ε̄N
S

)2

˙̄εP l, (2.15)
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where S is the standard deviation and ψ is the coefficient used to link the nucleated void

volume and the void fraction.

Extensions of the GTN model have been developed in an effort to extend its utility be-

yond the simplifying hypothesis present in its derivation. A very common heuristic extension

consists in introducing hardening in the model by simply calculating the flow stress σ0 with

a hardening law [31]. Gologanu et al. [32] proposed an extension for elliptical voids under

axisymmetric loading. To improve the model’s prediction ability for shear-dominated load-

ings, Nahshon and Hutchinson proposed an extension detailed in [33]. Other extensions aim

at accounting for void size effect [34], plastic anisotropy [35], micro-inertia [36], presence of

particles [37] and kinematic hardening [38]. Most of these extensions introduce additional

parameters that need to be identified.

2.1.2 Numerical modeling of ductile damage at the microscale

This section presents a brief and non-exhaustive overview of micromechanical studies.

The different approaches are presented in increasing order of complexity in terms of how

realistically the microstructure is modeled.

The unit-cell approach [28, 39] has been very important in the development of the local

approach to fracture. A great number of studies have been and continue to be carried out with

this approach. Typically, in the unit-cell approach, a single inclusion or void is embedded in a

unit-cell surrounded by periodic boundary conditions. This greatly simplifies the study of the

micromechanisms of ductile damage and allows the effect of many microstructural variables

to be assessed. Doing so, however, imposes an important simplifying hypothesis: that the

studied microstructure can be represented by a periodic arrange of microstructural features.

The hypothesis of a periodic microstructure is not always an appropriate approximation.

This constitutes a compelling reason to enrich the available tools and methodologies for the

study of ductile damage. Within the unit-cell framework, different works have extended

the original framework by considering unit-cells with multiple voids/particles. Thomson et

al. [40] studied the effect of the orientation of a particle cluster with respect to the main

loading direction, on void nucleation and growth. The study was later extended to assess

void coalescence [41]. McVeigh et al. [42] studied the onset of the void-sheet mechanism with a

unit-cell submitted to shear loading. In plane strain conditions, Tvergaard compared clusters

with different numbers of voids, but equal total void volume, and concluded that void clusters

grow more rapidly [43]. The role of secondary voids and their spatial distribution on void

growth and coalescence was assessed by Tekoglu [44] and by Khan and Bhasin [45]. Tekoglu

found that the stress at the onset of coalescence decreases when the secondary porosity volume

increases.
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A second group of studies has investigated non-uniform distributions of voids without

recurring to the unit-cell approach. Ohno and Hutchinson [46] studied the effect of void

clustering on plastic flow localization by modeling a band of non-uniformly distributed voids

between two bands of homogeneous material. Horstemeyer et al. [47] quantified coalescence

effects based on temperature for different arrangements of voids. Bandstra and Koss [48]

investigated void-sheet coalescence with a computational model of two voids for stress state

and proposed a critical local strain value for the onset of void-sheet coalescence based on

the nucleation strain for secondary particles. Bandstra et al. [49] examined the deformation

localization behavior with void arrays based on experimentally observed microstructures.

Tvergaard and Needleman [50] assessed the effect of two populations of second-phase particles

on crack growth and observed that crack growth resistance decreases for random arrays of

particles. Bandstra and Koss [51] assessed the sensitivity of void growth and coalescence to

intervoid spacing. Shakoor et al. [52] compared uniform and random arrangements of voids

to investigate the resulting difference in ductility and showed that coalescence occurs faster

for random arrangements of voids compared to periodic distributions. This makes some of

the results obtained with the unit-cell approach questionable.

A third group of works has focused on modeling realistic microstructures based on exper-

imental images. Sun et al. [53] modeled an actual microstructure based on scanning electron

microscrope (SEM) image, under plane stress conditions. Vanderesse et al. [54] meshed a vol-

umetric image obtained by X-ray microtomography and carried out FE simulations. Padilla

et al. [55] carried out FE simulations of a microstructure obtained via X-ray microtomogra-

phy in order to assess the evolution of damage in a single lap shear joint. Buljac et al. [9]

used synchrotron 3D imaging to immerse microstructures and carry out FE analyses with

realistic boundary conditions [10] obtained via digital volume correlation (DVC) and in-situ

laminography tests.

Coalescence modeling

The Rice-Tracey or the Gurson void growth model could be used to predict void coales-

cence. Coalescence through void impingement would occur when the void diameter equals

the distance between the center of the two voids. Basing a coalescence criterion on a critical

void fraction or void growth ratio and using a void growth model seems natural, however, this

critical value depends strongly on the stress state [56]. This fact can be illustrated by consid-

ering two different stress states: a hydrostatic stress and pure shear. Under hydrostatic stress,

considerable void growth will precede coalescence, while under pure shear, voids will rotate

and extend in the shear direction until coalescence without any void growth. Moreover, for a

periodic microstructure, a fracture strain can be derived with this methodology. This leads,

however, to unrealistically high fracture strains and critical void growth ratio [57]. Both,

the Rice-Tracey and the Gurson void growth model overestimate ductility. For this reason,

smaller values of critical void growth ratios were then proposed by different authors [29,58].
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In a periodic microstructure, the void growth stage is followed by strain localization in

the intervoid ligament which accelerates coalescence. The beginning of this localization stage

is usually referred to as the onset of coalescence. Void growth models are thus insufficient to

predict void coalescence and final material failure. The work of Brown and Embury [59] and

of Thomason [60] are early efforts to take into account this localization strain.

Although the treatment of coalescence in the GTN model (see Equation 2.12) is common

given the popularity of the model, it is a simple approach that has seen little evolution

from its creation. The Thomason model is also widespread and has benefited from several

extensions. Thomason also developed a three-dimensional version [61]. This version of the

Thomason model resulted from the analysis via upper-bound methods of a three-dimensional

and periodic array of square-prismatic voids. A layer of these voids is limited by two rigid

regions. The Thomason model can be summarized as a threshold condition on the stress

normal to the planar region containing the void arrangement:

σT (χ, ω) = σ0

(

1 − χ2
)

[

α

(

χ−1 − 1
ω

+ β
√

χ−1

)]

, (2.16)

where σT is the threshold stress, σ0 is the equivalent stress of the perfectly plastic matrix

material, α is equal to 0.1, and β is equal to 1.2. The threshold stress is a function of the

void geometry, represented by the void aspect ratio ω and of the void spacing, represented

by the ratio χ of void radius and void spacing.

Since the original Thomason model included no evolution laws for χ and ω, it was capable

of predicting the onset of coalescence only and could not be used afterward. Evolution laws for

these two parameters have been proposed by other authors [62, 63] extending the usefulness

of the model. The Thomason model has also been extended through unit-cell calculations

to account for strain hardening in the matrix by making α and β functions of the hardening

parameters [64]. No coalescence is predicted by the Thomason model for penny-shaped

cracks, i.e., for very small values of the void aspect ratio. Extensions have been proposed to

overcome this drawback [65]. Micro-inertia has been accounted for in the extension proposed

by Molinari et al. [66]. The original model and its extensions are valid only for tensile loadings.

Efforts to generalize the model to other loading conditions were carried out by Torki et al. [67]

and Tekoglu et al. [68] for combined tension and shear. Since the derivation of the Thomason

model relies on periodicity, it’s application to complex heterogeneous microstructures is not

straightforward and its validity for realistic topologies is not clear.
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2.1.3 Numerical techniques to model ductile damage at the microscale

This section offers a brief overview of four numerical approaches to model ductile fracture

at the microscale and is inspired from [69]. These approaches have the potential to improve

on the limitations of the macroscopic approach. There are, however, general challenges that

must be overcome. The large strains associated to ductile damage and the topological changes

that occur in the microstructure are at the origin of these challenges.

Element erosion

In the element erosion or element deletion method, a damage indicator is used. When the

value of the damage indicator is beyond a given threshold in an element of a finite element

(FE) mesh, this element is eliminated from the mesh [70]. The damage indicator may be the

strain itself. The behavior of the elements may or may not be coupled with the evolution of

the damage indicator, i.e., softening may or may not be considered.

This method allows multiple cracks to be inserted dynamically during the FE simulation.

Its main advantages are its low computational cost and ease of implementation. The obtained

results are, however, very sensitive to mesh size and element shape [71]. Mass loss is also

an important concern. Despite its shortcomings, recent applications can be found in the

literature. For example, Perzynski et al. [72] used the technique to model ductile fracture in

a dual phase steel with two-dimensional (Figure 2.1) and three-dimensional simulations.

Figure 2.1: FE mesh of a dual phase microstructure after element deletion. Figure
reproduced from [72].

More recent methods have been defined in order to eliminate the shortcomings related to
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the element erosion method.

Enriched finite element methods

In order to model discontinuities without element erosion or remeshing, a family of

enriched FE methods have been developed and have been documented by different au-

thors [73–75]. The most popular of these methods is the eXtended Finite Element Method

(X-FEM) [76], which is based on the partition of unity concept [77]. The Generalized Finite

Element Method (GFEM) is another relevant enriched method [78]. Initially, in GFEM, all

the nodes in the discretization were enriched; later, local enrichment was adopted. The dis-

tinction between X-FEM and GFEM has become less clear as the methods have evolved [75].

A very attractive feature of these methods is the fact that discontinuities might be modeled

independently of the mesh, i.e., conformity is not required. Most of the applications of en-

riched FE methods have been dedicated to brittle fracture. This subsection discusses some

of the works that have dealt with ductile fracture.

Strong discontinuities such as cracks and holes can be modeled with enriched FE methods.

The material/void interface is captured thanks to a discontinuous enrichment, typically using

the Heaviside function as enrichment function [76]. To capture the stress singularity in the

near crack tip region, an additional enrichment is necessary [79]. The latter requires careful

choice of the enrichment function, and knowledge of the analytic solution. These enrichment

techniques are usually implemented locally and not in the whole FE mesh. This constitutes

the basis of X-FEM.

The basic methodology has been extended to account for arbitrary branched and intersect-

ing cracks in two-dimensional cases [80]. The X-FEM methodology has also been extended to

3D by enriching the elements near the crack front with the radial and angular behavior of the

2D asymptotic crack tip displacement field. Analogous development have been made with

the GFEM [81]. Further flexibility in the description of the crack geometry was introduced by

coupling the Level-Set (LS) method [82] to the X-FEM: the zero isovalue of a signed distance

function gives the position of the crack surface, and its intersection with a second and almost

orthogonal signed distance function describes the crack front [83].

When the X-FEM is used to model a strong discontinuity, the crack is embedded within

some FE elements, that will distort significantly due to the displacement jump. The X-

FEM can also be used to define a stress/strain jump with a continuous displacement. This

is relevant for the modeling of inclusions in ductile fracture simulations. In the elements

containing the matrix-inclusion interface, i.e., the weak discontinuity, the absolute value of

an LS function can be used as enrichment function [84]. More sophisticated approaches for

modeling inclusions with the X-FEM have been developed more recently [85].

22



Enriched FE methods provide the capability of modeling weak and strong discontinuities,

i.e., interfaces between two material phases [84] and void-material interfaces [76], as well as

stress singularities [79]. These methods can handle branching and intersecting cracks [80],

non planar cracks [83] and complex 2D and 3D geometries [86]. These features are relevant

for the study of ductile damage.

Yet, most of the literature is dedicated to brittle fracture. Even in works in which ductile

materials are the object of study [87], the focus is on the calculation of stress intensity factors

and large deformations are not pursued. These methods were conceived precisely to avoid

remeshing, which might be necessary if the considerable deformation associated to ductile

fracture is to be accounted for, even with an enriched FE formulation.

The practical application of enriched FE formulations is less straightforward than the

implementation of its basic techniques; limitations and additional complications arise. Their

implementation can be burdensome depending on the structure of the FE code due to the

variable number of degrees of freedom that comes with local enrichment [88].

Traditional Gauss quadrature is not adequate for enriched elements. There are different

strategies to tackle this problem, but the most common one is subpartioning of enriched

elements, with higher order integration for crack tip elements [76].

In the first X-FEM implementations, topological enrichment was used for the crack tip

enrichment, i.e., only those nodes whose support contained the crack tip were enriched. This

resulted in a deteriorated order of convergence. To solve this issue, a geometric enrichment

was proposed where enrichment is added for all nodes within a distance to the crack tip [89].

Although this improves the convergence rate, the conditioning is deteriorated and the problem

size increases [90].

Ill-conditioning can also arise if an element is cut by an interface such that one of the

resulting subvolumes is comparatively very small with respect to the other. To alleviate the

conditioning problems associated to XFEM, ad hoc preconditioners have been proposed [91].

An additional obstacle to the application of enriched FE methods to ductile fracture

problems is related to their application beyond elastic problems. Even though bimaterial

interfaces or void-material interfaces can be handled transparently independently of the be-

havior of the material, crack tip enrichment functions depend on material behavior. Although

some developments have been made for elasto-plastic materials [92], their application remains

restricted to confined plasticity, and enriching crack tip elements for more advanced material

laws remains a considerable challenge.

These drawbacks of X-FEM might deter from its application to ductile fracture problems.

Indeed, the number of works that employ it to study ductile fracture is very small with respect

to brittle fracture. It should nevertheless not be discarded as it can be applied to model the
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fracture of brittle components in ductile materials’ microstructures. For instance, the failure

of ductile dual phase steels has been studied at the microscale by applying the X-FEM to

the brittle martensitic phase [72, 93, 94]. As shown in Figure 2.2, interesting results can be

obtained using this approach.

Void nucleation by fracture of brittle components within ductile materials’ microstructures

can hence be modeled using X-FEM. Enriched FE methods are nevertheless not yet applicable

to model the growth of these cracks into large voids.

Figure 2.2: Micromechanical simulation of a 2D dual phase steel microstructure showing the
ductile fracture of the ferrite phase modeled using element deletion and the brittle failure of

the martensite phase modeled using X-FEM. (a) Microstructure with ferrite in gray and
martensite in red. (b) Damage variable in ferrite phase. (c) Von Mises stress field. (d)

Equivalent plastic strain field. Figure reproduced from [72].

Phase-field method

The phase-field method is based on the notion of diffuse interface proposed by Cahn and

Hilliard [95]. In the phase-field method, damage is described with a bulk variable φ that takes

values from 0 to 1. When φ = 0, the material is completely undamaged and when φ = 1,

the material has lost all of its load-bearing capacity. Mathematically, this method consists in

the minimization of a potential energy, from which the evolution of the phase-field variable

φ is derived. A defining feature of the phase-field method is the presence of a characteristic

length scale lc. Discontinuities in the interfaces are smeared out along this characteristic

24



length. This makes interface-capturing easier to handle, which is an attractive feature of the

method. Its ease of implementation is another advantage.

Most of the applications of the method to fracture problems have been dedicated to brittle

fracture [96,97]. In a simple application for brittle materials, the minimization functional can

expressed as the superposition of the elastic potential energy and the fracture energy. Since

loss of load-bearing capacity occurs only in tension, the elastic potential can be decomposed in

a tensile and a compressive component. Minimization of the potential through the Clausius-

Duhem inequality results in the means to update the stress state and the phase-field variable.

Care must be taken to enforce the irreversibility of the process, i.e., to avoid a decrease of

φ [98].

Although no variational theory that describes the full complexity of ductile damage has

been proposed, some extensions have been put forward [99]. A necessary ingredient for the

study of ductile damage with the phase-field approach is the inclusion of the plastic energy in

the minimization functional. An inadequate formulation of the plastic energy term can lead

to wrong predictions of the onset of damage [100]. This is one difficulty associated to the

application of the phase-field method to ductile fracture. Another difficulty is the formulation

of a comprehensive functional that takes into account failure mechanisms of ductile damage

such as particle fracture and debonding of the matrix-inclusion interface. The method does

have the potential to combine different physics into an unified framework. An example is

given by the work of Shanthraj et al. [101], who modeled a highly anisotropic polycrystalline

metallic material and observed damage nucleate at a triple junction.

Recently, the phase-field method with a voxel-based approach has been successfully used

to model the brittle fracture of real concrete heterogeneous microstructures with realistic

boundary conditions coming from DVC [102]. The employed framework is able to model

crack propagation in the particle-matrix interface [103,104].

Mesh modification

This section presents a brief bibliographic review of approaches based on mesh modifica-

tion to model the micromechanisms of ductile damage. The term mesh modification is used

here to denote global or local remeshing or global or local adaptive mesh refinement. Only

automatic mesh modification methodologies that require no human intervention are consid-

ered here. Although challenging, mesh modification approaches are appropriate for modeling

ductile damage at the microscale since they are capable of avoiding element inversion [105]

associated to large strains, and of dealing with the topological changes of the microstructure.

Mesh adaption consists in locally scaling mesh size with a factor based on an approxima-

tion error such as the well known ZZ estimator [106]. The ZZ estimator is an estimation of
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the error of the FE solution of a given variable by comparison with a reconstructed higher

order approximation of the same variable. A possible technique for the reconstruction of

this higher order approximation is the Superconvergent Patch Recovery technique [106,107].

As illustrated by the work of El Khaoulani and Bouchard [108], the use of anisotropic mesh

adaption can reduce the mass loss and mesh dependence that results from element deletion.

The employed anisotropic mesh adaption strategy used the interpolation error of a damage

variable and its gradient [109]. Although these techniques are more common in macroscopic

ductile damage applications, there is no reason why they could not be used in microscopic

modeling.

A form of mesh adaption that has been employed at the microscale is geometry-based

mesh adaption. More specifically, in a first order FE scheme, the principal curvatures of

geometric boundaries can be used to calculate a geometric error. The principal curvatures

can be obtained from the first and second derivatives of the distance functions that describe

the geometry [52, 110]. If this methodology is used to model cracks, a minimum mesh size

needs to be prescribed in the crack tip region to limit refinement since one of the principal

curvatures is guaranteed to be infinite [111]. Isotropic and anisotropic mesh adaption are

possible with this methodology.

Mesh adaption techniques are attractive to model microstructures with inclusions and

voids since the computational cost can be considerably reduced with respect to a uniform

mesh. One important aspect that demands consideration is the treatment of the interfaces.

Mesh adaption techniques do not handle interfaces as naturally as the enriched FE methods.

Distance functions have been used to describe interfaces [110, 111]. The zero isovalue of the

distance function indicates the position of the interface. In the general case, elements will be

crossed by the interface. To deal with this complication, the most common approach is to

use a mixing or transition law in these elements to attribute them values of the mechanical

properties. An additional complication is volume conservation, which is more critical in large

strains. If acceptable volume conservation is to be achieved, the mesh must be refined severely

at interfaces.

These complications can be avoided if the FE mesh is conform to the interfaces. An early

example is the work of Antretter and Fischer [112], who modeled a two-phase composite at

the microscale. Their two-dimensional model included two brittle inclusions, one of which

was initially fragmented. The propagation of this crack onto the matrix followed a predefined

path. Arbitrary crack paths require robust mesh modification operations.

Shortly after, a remeshing technique for crack propagation was proposed by Bouchard et

al. [113]. The crack was advanced a given length at each load with a stress based crack initi-

ation and propagation criterion. Mid-side nodes were used to represent the stress singularity

at the crack tip. Global remeshing of the domain was carried out after each propagation step.

A similar approach was followed by Mediavilla et al. [71], who payed special attention to field
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transfer. In this methodology, the crack was first inserted in the FE mesh without any open-

ing. An appropriate field operator was then applied to history variables. The crack nodes

were finally duplicated and the strain and stress fields were recalculated. The objective of

these procedures is to ensure mechanical equilibrum and avoid energy diffusion during crack

propagation. An application of this methodology in a compact tension specimen is depicted

in Figure 2.3. This work illustrates a general difficulty of mesh modification methodologies:

consistent field transfer.

The framework of Mediavilla et al. [71] was extended to 3D by Javani et al. [114]. Cracks

are inserted following a non-local damage field. The evolution of the crack geometry is

dictated by the damage field at the crack tip. Global frequent remeshing occurs during crack

initiation and propagation. An application is shown in Figure 2.4 for a three-dimensional

double notched specimen. Feld-Payet et al. [115] proposed a crack path tracking algorithm

that extends this methodology to arbitrarily branching cracks according to a scalar variable.

The discussed crack propagation approaches so far require global remeshing. This can be

very expensive even if mesh adaption is used. In this situation, local mesh refinement would

be desirable. A methodology for crack propagation in two-dimensional triangular meshes

with local mesh refinement was proposed by Areias et al. [116]. Arbitrary crack propagation

is possible thanks to an arbitrary mesh splitting methodology. To achieve this, edge and

node splitting is carried out and followed by node repositioning to improve the quality of the

modified elements. This approach is also able to handle crack or void coalescence.

Figure 2.3: Crack propagation in compact tension test. (a)Dimensions and boundary
conditions, (b) initial configuration and (c) final configuration. Figure reproduced from [71].

A different way to address the aforementioned drawbacks of the approach proposed by

Roux et al. [110, 111] was proposed by Shakoor et al. [52]. This approach consists in lo-

cal remeshing operations able to dynamically construct explicit interfaces in a monolithic

framework. Mixing laws are thus avoided and volume conservation dramatically improved.

Two-dimensional void coalescence and micro-cracking of inclusions were modeled with this

framework. Further developments later allowed three-dimensional simulations to be carried
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Figure 2.4: Crack surface corresponding to the bottom notch of a double notched specimen.
Figure reproduced from [114].

out with particle fragmentation and debonding as well as plasticity driven void growth and

coalescence [117]. An example of the capabilities of this framework is shown in Figure 2.5 in

a micromechanical simulation of a metal matrix composite with void nucleation by particle

debonding and fragmentation, growth and coalescence are taking into account.

Mesh modification techniques are a promising approach for the micromechanical study of

ductile damage. The developments in this area have been steadily increasing the capabilities

of mesh modification techniques. Most studies are limited to two-dimensional applications,

but three-dimensional applications are becoming more common. Linear tetrahedral elements

have proved easier to handle than hexahedral elements or higher order elements. The main

hindering factor is the difficulty of implementation of these techniques. Although challenging,

they are appropriate for managing the large strains and complex topological changes that

manifest in the micromechanisms of ductile damage.

2.2 Material and methodology

2.2.1 Nodular cast iron

The main material studied in this work is nodular cast iron or spheroidal graphite.

Namely, a commercial nodular graphite cast iron with commercial code EN-GJS-400, is stud-

ied. This carbon-rich iron alloy is used in many engineering applications such as gearboxes,

crankshafts, pipes and nuclear or transportation casks [118, 119]. It is used in the transport

industry for railway wheels [120], for example, and in the energy industry for an important

number of wind turbine parts [121]. The capability to predict its failure is thus of practical

importance.
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Figure 2.5: Micromechanical simulation of a metal matrix composite with void nucleation
by particle debonding and fragmentation, growth and coalescence for an applied tensile

strain of (a) 25% and (b) 50%. Figure reproduced from [6].

As opposed to gray cast iron, it is considerably ductile, which is why it is also referred

to as ductile cast iron. The reason for its ductility is its microstructure. Instead of lamellar

graphite as in classical cast iron, the graphite is present in the form of approximately spherical

nodules. This results in increased strength and toughness similar to some grades of steel. The

graphite volume fraction varies from 7% to 15% and have a diameter between 10 µm and 15

µm [119]. Figure 2.6 shows three different types of nodular cast iron: ferritic, ferritic-pearlitic,

and pearlitic. Only ferritic cast iron is studied in this work.

Figure 2.6: Microstructures of different kinds of nodular cast iron. (a) Ferritic
microstructure. (b) Ferritic-pearlitic microstructure. (c) Pearlitic microstructure. Figure

reproduced from [122].

Under monotonic static loading, debonding of the matrix-nodules interface is observed

29



as soon as plastic activity starts [123]. Plasticity-driven void growth is observed with fur-

ther straining. In a ferritic nodular cast iron, the prevailing mechanism of coalescence is

internal necking, although local void sheeting events have been identified [123]. A secondary

population of voids also intervenes in the coalescence process [123,124].

Several studies have approached nodular cast iron with unit-cell models [125–132]. In

some of these studies, the graphite was modeled as void [125–128]. The conclusions of these

studies regarding the effect of stress triaxiality on void shape evolution and growth, coincide

with the trends observed for materials with considerably smaller void fraction [133]. This

encouraged the use of the GTN model for nodular cast iron, which was often calibrated with

the results of the uni-cell calculations.

Uniform and non-uniform void distributions were studied by Zhang et al. [128] with the

unit-cell approach. Void size and spacing were found to influence void growth and coalescence.

The effect of the graphite on the fracture process has also been assessed. No remarkable

difference was observed when deformation was not enough to reach the void coalescence

stage [130]. When the unit cells are deformed further, however, a considerable effect of the

graphite inclusions on void coalescence is observed [125]. After sufficient deformation, lateral

contraction of the voids is hindered by the particles and earlier coalescence results through

necking of the matrix.

A few studies have assessed the effect of the secondary voids on the fracture process.

Brocks et al. [125] did not find a noticeable effect, while Kuna and Sun [126] observed that

coalescence between the primary voids occurred earlier in the presence of secondary voids.

After studying side effects due to secondary voids in ductile crack propagation, Hütter et

al. [134] highlighted the need for simulations with more realistic microstructures. Scanning

Electron Microscope (SEM) observations of the fracture surface of the nodular cast iron

studied in this work have confirmed the presence of a population of secondary voids [123].

2.2.2 General methodology

In the framework of the COMINSIDE project, an experimental-numerical framework was

recently developed to study ductile fracture at the microscale. It is composed of three key

techniques. First, three-dimensional images of specimens under load are acquired in-situ

via Synchrotron Radiation Computed Laminography (SRCL) [135]. Second, Digital Vol-

ume Correlation (DVC) [136] enables kinematic data to be measured from the registration

of SRCL images. Last, Finite Element (FE) simulations with advanced meshing/remeshing

techniques [117] are carried out on immersed microstructures and realistic boundary condi-

tions extracted from SRCL images via DVC analyses. Details about these three techniques

are given in the following sections. This framework will be referred to as SRCL-DVC-FE and

constitutes the main methodology of the present work. A simple scheme of the SRCL-DVC-
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FE methodology is depicted in Figure 2.7

Figure 2.7: A simple scheme of the SRCL-DVC-FE methodology.

Laminography

Laminography is a non-destructive three-dimensional X-ray imaging technique for flat,

laterally extended objects [135]. Soon after the discovery of X-ray radiation, medical [137] and

non-medical [138] applications soon appeared [139]. During an X-ray computed tomography

scan, X-rays are directed from an X-ray source, go through the scanned object and reach an

X-ray sensor. Three-dimensional images can be obtained if multiple scans at different angles

are performed. To obtain the final three-dimensional image from these scans, a technique

called reconstruction is required [140].

The X-ray absorption of a material dictates how easy it is for X-rays to penetrate this

material. Metals present high X-ray absorption. For this reason, high energy sources are

employed. This also limits the geometries that can be used for observation. Round tensile

experiments with a radius of approximately 1mm are usually employed. Laminography allows

this limitation to be partially overcome and other stress states to be accessed [3, 141, 142].

Experimental setups for tomography and laminography are schematized in Figure 2.8.

The achievable spatial resolution with tomography and laminography is in the micrometer

scale. Although this resolution is lower than the resolution achievable with Scanning Electron

Microscopy, it is enough to provide three-dimensional details of the micromechanisms of
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ductile damage in combination with in-situ tests.

Very detailed experimental information at the microscale have been made available thanks

to three-dimensional non-destructive imaging. Tomography [143,144] and laminography [135,

145] provide unprecedented detail on the evolution of the micromechanisms of ductile damage.

In this work, reconstructed three-dimensional volumes originated during in-situ mechan-

ical tests of nodular cast iron specimens, are used. This data had been obtained at beamline

ID16 of the European Synchrotron Radiation Facility (ESRF).

Figure 2.8: Schematic representations of experimental setup for (a) tomography and (b)
laminography. Figures reproduced from [136] and [146], respectively.

Digital volume correlation

In Digital Image Correlation (DIC), a succession of two-dimensional images of the surface

of a specimen during a mechanical test are used to obtain the kinematic field at the surface

through a minimization problem that relates successive images. This is a widely used tech-

nique for identification of material properties [147, 148]. Digital Volume Correlation (DVC)

constitutes the extension of this technique to 3D [149,150].

Grayscale images are used in this project. In this type of image, each voxel presents a
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gray scale value that positions it in the scale from black to white. If the difference between

two grayscale images is calculated, the gray level residuals are obtained. If two images are

identical, the gray level residuals will be zero. DVC consists in finding the displacement field

u(x) that minimizes the gray level residuals ρ(x) between the reference configuration f and

the deformed configuration g:

ρ(x) = f(x) − g[x + u(x)]. (2.17)

In DIC, the surface of the specimen is speckled to enhance contrast and facilitate the

residual minimization procedure. This is not possible in the bulk material for DVC. Instead,

the natural contrast provided by the microstructural heterogeneities must be used. This

has an impact on the spatial resolution of the solution. If the DVC element is too small,

the problem becomes ill-defined. This is illustrated by the relationship between element size

and strain uncertainty. When the element size decreases, the strain uncertainty increases

[142]. A high volume fraction of microstructural heterogeneities, such as in nodular cast

iron, favors contrast and convergence of DVC calculations. Other measures may be taken to

favor convergence, such as mechanical regularisation in which resulting kinematic fields are

required to comply with mechanical admissibility [151]. DVC analyses have been successful

in an aluminum alloy with a very low content of inclusions [136].

The first DVC analyses were local in nature [152]. This means that local kinematic fields

could be calculated with local information. If the kinematic degrees of freedom are considered

to be spatially coupled, the problem becomes a global minimization problem. This is referred

to as global DVC [153] and facilitates the minimization procedure by imposing displacement

continuity.

In this work, data resulting from global DVC analysis of laminography images, are used.

High strain gradients and displacement discontinuities such as that manifest in the mi-

cromechanisms of ductile damage are challenging for DVC and require special attention.

For more details, the reader can refer to the review by Buljac et al. [150].

Finite elements

The finite element method [154, 155] is used here to model ductile damage at the mi-

croscale with a monolithic multiphase framework in the CimLib library [156]. The term

monolithic refers to the solution of the governing equations with a single mesh and a global

framework for all of the present phases. Small deformation theory is used with an additive

decomposition of the strain tensor for elasto-plasticity. This section summarizes the used

Lagrangian framework.
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Governing equations

The governing equations in the mechanical problem are the conservation of momentum

and the conservation of mass. The conservation of momentum can be written as:

ρ
Dv

Dt
= ∇ · σ + f , (2.18)

where ρ is the density of the material, v the velocity,
Dv

Dt
its material derivative, σ the

Cauchy stress tensor and f the volume forces. Mass conservation can be expressed as:

∂ρ

∂t
+ ∇ · (ρv) = 0. (2.19)

Appropriate boundary conditions on the boundary Γ = Γv ∪ Γt of the domain Ω for the

velocity and the stress tensor, must be used:

v = vapp on Γv, (2.20)

σn = tapp on Γt, (2.21)

where tapp is the traction vector t on boundary Γt.

If inertia is neglected and the deformation can be described as quasi-static, and if volume

forces are negligible, the conservation of momentum can be reduced to:

∇ · σ = 0. (2.22)

The Cauchy stress tensor can be decomposed into its deviatoric and spherical components.

After this decomposition, the conservation of momentum can be re-expressed as:

∇ · S − ∇p = 0, (2.23)

where p is the pressure and S the deviatoric stress tensor.

It is possible to express the continuity equation explicitly in terms of the pressure by
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introducing the bulk modulus χ:

χ = ρ
∂p

∂ρ
. (2.24)

In a Lagrangian framework, after dropping the advection term, introducing the bulk

modulus, and expressing the divergence of the velocity as the trace of the strain rate tensor

ε̇, the mass conservation equation can be expressed as:

tr(ε̇) +
1
χ

∂p

∂t
= 0. (2.25)

Weak formulation

The FE method provides approximate solution of the governing equations. Their weak

form can be obtained by multiplying the equations by test functions v∗ ∈ V and p∗ ∈ P

where V and P are appropriate functional spaces given by:



















V = {v,v ∈ H1(Ω)d|v = vapp on Γv},
V0 = {v,v ∈ H1(Ω)d|v = 0 on Γv},
P = {p, p ∈ L2(Ω)},

(2.26)

where d is the space dimension, V the space of kinematically admissible velocity fields and

V0 the space of kinematically admissible velocity fields to zero. Integration over the volume

of the domain Ω and the use of the Green formula yields the associated variational problem:

find (v, p) ∈ (V, P ) such that ∀(v∗, p∗) ∈ (V0, P ):















∫

Ω
S(v) : ε̇dΩ −

∫

Ω
p · ∇v∗dΩ −

∫

Γ
t · v∗dΓ = 0,

∫

Ω

(

tr(ε̇) +
1
χ

∂p

∂t

)

p∗dΩ = 0.
(2.27)

An implicit Euler scheme is used. The domain Ω is discretized in the following way:

Ωh =
⋃

K∈Th(Ω)

K, (2.28)

where Ωh is a discretization of the domain Ω, Th(Ω) a finite element mesh of the domain

Ω, K a simplex of a given mesh size h.
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In order to apply the finite element approach, vector spaces of finite dimensions Vh and Ph

close to the continuous spaces V and P of infinite dimension, such that the discrete solution

(vh, ph) ∈ (Vh, Ph) approximates the solution of the continuous problem (v, p) ∈ (V, P ).

The existence and uniqueness of the solution depends on the choice of the space functions

Vh and Ph. In particular, they have to satisfy the Brezzi Babuska stability conditions [157].

The MINI element or bubble element is used [158]. This tetrahedral element provides an

approximation of the pressure in P1 space. An enriched P1 space or P1+ space is used to

approximate the velocity. In the P+ space, besides the 4 basis linear functions (in 3D), an

extra basis function contributes to the approximation. This additional basis function is equal

to one in the center of the element and equal to zero in all of the nodes. This introduces an

additional degree of freedom with an additional unknown. The calculation of the introduced

unknown can be avoided if static condensation is carried out [159]. The Newton-Raphson

method is used to solve the global problem and the return mapping algorithm is used at the

element level of the integration of the behavior law [160].

Mesh adaption

A specific body-fitted mesh adaption strategy was developed [52] to mesh heterogeneous

microstructures with conform meshes at interfaces. The position of an interface is described

by the zero isovalue of a signed distance function ψ. To perform element splitting, the cut-

cell method is used [161]. The intersection of the interface with an edge of the mesh is

detected when there is a change of sign of the distance function at the nodes connected by

the edge. Linear interpolation allows the intersection point to be obtained. In the parallel

implementation of this methodology, each process operates independently and the inter-

partition boundaries are not modified. In a second step, repartitioning is performed in order

to deal with unfitted elements [162].

Since the fitting methodology can produce bad quality elements, a star-connecting op-

timization process is carried out. Figure 2.9 schematizes some of the operations included

in the star-connection procedure. To preserve the internal boundaries, node creation, node

deletion and star-reconnection are constrained when faces that carry the interfaces are oper-

ated upon. Special care is taken to conserve the volume of the phases present in a patch. A

good compromise between volume conservation and element quality is the objective of these

considerations [117].

Isotropic or anisotropic [163] mesh adaption may be combined with the interface-fitting

procedure [52]. In this work, isotropic adaption with respect to the maximum principal

curvature λmax is used. In this case, the isotropic metric M can be constructed as follows:

36



Figure 2.9: Some examples of operations included in the star-connecting procedure. Figure
reproduced from [52].

M = diag
(

1
h2

)

, (2.29)

where h is the mesh size. The mesh size can be expressed as a function of the curvature

as follows:

h = max
(

min
(

hc

λmax
+
(

hmax − hc

λmax

)

φ

ǫh
, hmax

)

, hmin

)

, (2.30)

where hc corresponds to the mesh size that would be imposed if λmax = 1, hmin and hmax

are the smallest and largest allowed mesh sizes respectively, φ the distance function of the

interface, and ǫh a fixed user-controlled thickness along which the mesh size varies linearly

from
hc

λmax
to hmax.

2.2.3 Studied specimens

Nodular cast iron presents a high volume fraction of graphite nodules, which makes it

attractive for DVC. DVC relies on contrast of the SRCL images due to microstructural

heterogeneities, which is provided by the difference of density between the graphite nodules

and the ferritic matrix.

Two different nodular cast iron specimens that were previously studied [123] are considered

in this work. Each of them contains two holes with a diameter of 500 µm that were machined

by Electrical Discharge Machining (EDM). The ligament connecting the centers of these two

holes forms an angle of 90° with the loading direction in the first geometry, and 45° in the

second geometry. The geometries of the specimens are shown in Figure 2.10
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(a)

(b)

(c)

Figure 2.10: (a) Geometry of the two studied specimens and zoom around the scanned zone
for the (b) 90° and (c) 45° specimens.
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2.2.4 Microstructure immersion

The immersion of the microstructures of the laminography images in the FE mesh como-

prises the following stages:

• Image processing and segmentation is carried out, i.e., each voxel is assigned a physical

phase based on its gray level and possibly other topological information.

• A signed distance function to the interfaces is calculated in the image.

• The distance function is interpolated onto the FE mesh through trilinear interpolation.

• Direct reinitialization of the distance function is carried out [164].

• A FE mesh is generated.

Figure 2.11 illustrates this procedure.

2.2.5 Mechanical behavior

The ferritic matrix is considered to be elastoplastic with Ludwik’s isotropic hardening

law:

σeq = σy +Kεn
pl, (2.31)

where σeq is the von Mises equivalent stress, εpl the cumulated plastic equivalent strain,

σy the yield stress, K the hardening modulus and n the hardening exponent. The employed

values for the Young’s modulus E, and Poisson’s ratio ν were E = 210 GPa, and ν = 0.3.

The values for σy, K, and n were previously calibrated at the microscale by means of X-ray

microtomography, DVC, and FE simulations [165]. The scheme in Figure 2.12 presents the

parameter identification methodology in detail. The values obtained through this procedure

were σy = 245 MPa, K = 330 MPa, and n = 0.21.

Since the graphite nodules present very early debonding and have a very low load-bearing

capacity [119, 166], they will be considered as voids in the FE simulations. The term ‘void’

will thus be used to refer to the volume corresponding to the nodules and actual voids.

This hypothesis has been adopted and validated previously [9] and will be discussed during

this work. The void phase is modeled as a compressible Newtonian fluid with viscosity

η = 2.1 MPa s−1. This viscosity value is chosen after a sensitivity analysis to ensure that the

stress levels induced in the matrix are negligible. This approach facilitates handling the void

phase in the present monolithic framework [110].
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Figure 2.11: Immersion of the microstructure in the FE mesh. (a) Two-dimensional section
of laminography image. (b) Signed distance function. (c) Signed distance function after

interpolation on the FE mesh. (d) Interface-fitted FE mesh adapted to the local maximum
curvature. (e) Zoom on the FE mesh. (f) Comparison between original image and obtained

interface in the FE mesh. Figure adapted from [10].

The FE domain is contained in the Region Of Interest (ROI) analyzed via DVC. This is

done so to ensure that boundary conditions are available during the whole simulation. The

largest domain that provides boundary conditions for all of the available DVC increments, is

chosen.
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Figure 2.12: Scheme presenting the methodology for parameter identification at the
microscale. Global DVC with 8-noded elements is carried out on a series of volumes It to
obtain kinematic information based on the reference configuration I0. The resulting gray

level residuals ρC8 and displacements uC8 are interpolated on a FE mesh of 4-noded
tetrahedra. FE simulations with a set of parapeters p are performed. The resulting

displacement field uT 4 and reaction forces F T 4 are used to compute global equilibrium
residuals δF and local gray level residuals ρT 4. Figure adapted from [165].

2.2.6 Boundary conditions

The DVC analysis produces three dimensional displacement fields. These heterogeneous

displacement fields are interpolated onto the border of the FE domain and applied as Dirichlet

boundary conditions at each loading step [10]. Each loading step constitutes an increment

for the FE simulations. A manual testing device is used to apply a displacement via screw

rotation. The corresponding screw displacements are summarized in Table 2.1.

2.2.7 Closing comments

In this PhD work, improvements to the SRCL-DVC-FE framework were developed in

order to enhance the automatic analysis of void nucleation, growth and coalescence.

Thee-dimensional simulations of realistic microstructures are undoubtedly a rich source
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Table 2.1: Screw displacement applied to each of the specimens.

Increment
Screw displacement [µm]

45° specimen 90° specimen

0 0 0
1 248 186
2 372 248
3 496 289
4 620 330
5 744 372
6 868 413
7 992 454
8 1074 496
9 1136 537
10 1198 578
11 1260 599
12 - 620
13 - 641
14 - 661
15 - 682
16 - 703
17 - 722
18 - 744
19 - 765

of information. This information is not necessarily easy to extract, however. To facilitate

this task, the postprocessing capabilities of the CimLib library were extended. One initial

limitation was that it was not possible to obtain information of particular microstructural

feature such as a single void or particle. The use of a single level-set function per phase and

frequent remeshing complicated this task. This first limitation was removed with develop-

ments carried out during this PhD work, which made it possible, for example, to follow the

evolution of the void volume of a single void or the average equivalent stress in a particle

up to the end of the simulation. An additional difficulty came up later when topological

changes such as coalescence occurred. A coalescence detection technique was implemented

to overcome this difficulty.

Although the framework was already able to handle the evolution of ductile damage from

void nucleation to coalescence, a problem was identified when nucleation occurred in multiple

particles simultaneously in the same strain increment. The consequence of this problem were

non-deterministic results of the simulations. Different nucleation patterns were obtained each

time the same simulations was run. The cause of this problem was identified and was related

to remeshing after nucleation in parallel computations. The solution of this problem required

complete reformulation of the model that manages void nucleation. With this development,

deterministic nucleation patterns were obtained.
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In the study of void coalescence, additional developments were necessary to evaluate

different variables in the intervoid ligaments of each void pair present in the simulations in

an automatic and efficient manner. These are used in Chapters 5 and 6.

Since this is a recent framework, it is important to make sure that the possible uncer-

tainties present in all of the stages of the methodology are small enough. The uncertainty

associated to image segmentation is analyzed and quantified in Chapter 3. The capabilities

of the model are validated in Chapter 4 through a detailed comparison with DVC results for

local strain measurements all the way up to coalescence.

Résumé en français

Ce chapitre présente une revue bibliographique et la méthodologie générale suivie dans

ce travail.

La revue bibliographique couvre la modélisation numérique de l’endommagement ductile

à l’échelle macroscopique et microscopique, ainsi que des techniques numériques permettant

de modéliser l’endommagement ductile à l’échelle microscopique.

La modélisation à l’échelle macroscopique de l’endommagement ductile peut être classée

en deux catégories principales : les critères de rupture non couplés et les modèles d’endommagement

couplés. Les modèles de chaque catégorie peuvent être phénoménologiques ou avoir des bases

physiques. Les critères de rupture non couplés négligent l’adoucissement du matériau. Dans

cette approche, un paramètre d’endommagement est calculé comme l’intégrale d’une fonc-

tion de l’état de contrainte le long du chemin de déformation. La rupture survient lorsque ce

paramètre atteint un seuil critique.

Concernant les modèles couplés, deux modèles très populaires ont été présentés et discutés

: les modèles de Lemaitre et de Gurson. Le premier est phénoménologique et s’appuie sur des

bases thermodynamiques tandis que le second repose sur les micromécanismes d’endommagement

ductile. Tous deux ont fait l’objet de plusieurs extensions heuristiques pour améliorer leurs

capacités prédictives.

Les approches à l’échelle microscopique ont été présentés par ordre croissant de complexité

en termes de modélisation réaliste de la microstructure, en commençant par l’approche « unit-

cell » pour terminer par des microstructures réalistes et entièrement tridimensionnelles. Les

approches les plus courantes de modélisation de la coalescence à l’échelle microscopique ont

été présentées en mettant l’accent sur le modèle de Thomason.

Quatre techniques numériques différentes de modélisation de l’endommagement ductile à

l’échelle microscopique ont été décrites et leurs avantages et inconvénients ont été discutés.
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Ces techniques sont l’érosion d’éléments, les méthodes d’éléments finis étendus, la méthode de

champ de phase et l’approche basée sur l’adaptation de maillage et le remaillage automatique.

La méthodologie principale, développée dans le cadre du projet COMINSIDE, est com-

posée de trois techniques clés. Premièrement, les images tridimensionnelles des spécimens

sous charge sont acquises in situ par laminographie sous rayonnement synchrotron (SRCL).

Deuxièmement, la corrélation d’images volumiques (DVC) permet de mesurer les données

cinématiques à partir de l’enregistrement des images SRCL. Enfin, des simulations par élé-

ments finis (FE) utilisant des techniques avancées de maillage et remaillage sont effectuées sur

des microstructures immergées et des conditions limites réalistes extraites d’images SRCL via

des analyses DVC. Cette méthodologie a été appliquée principalement à la fonte à graphite

sphéroïdal, un alliage de fer riche en carbone utilisé dans plusieurs applications d’ingénierie.
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Chapter 3

A comparative study of image

segmentation methods for

micromechanical simulations of

ductile damage
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3.1 Introduction

Micromechanical simulations based on three-dimensional imaging techniques are becom-

ing more common to study the behavior of heterogeneous microstructures [9, 10, 54, 55, 165].

In the context of ductile damage, this route enhances the possibilities for studying the cor-

responding micromechanisms (i.e., void nucleation, growth, and coalescence). With the cou-

pling of imaging techniques and numerical simulations, new challenges arise. One of them

is to define an accurate and efficient technique for image segmentation, namely, determining

to which physical phase each of the voxels belongs to. The objective of this chapter is to

assess the influence of the image segmentation technique on the results of numerical simula-

tions dedicated to ductile damage. The focus is on the SRCL-DVC-FE methodology and the

impact of this segmentation stage on the accuracy of the FE predictions.

Image segmentation is a well established field with a large number of methods adapted

to different types of images and applications. These techniques range from medical applica-

tions [167] to quantification and analyses of porous microstructures [168]. Segmentation can

be as simple as global thresholding [169] or as complex as more recently developed techniques

based on machine learning [170,171].

One application in which the fields of image segmentation and mechanics have con-

verged is the determination of mechanical properties of complex structures or microstruc-

tures [9, 10, 165, 172, 173]. This coupling provides an opportunity to better understand the

relationship between microstructure and properties. For example, Madra et al. [172] an-

alyzed qualitatively and quantitatively porosity in woven glass fiber reinforced composites

via various segmentation methods. Another example is the study of complex metallurgical

microstructures through pattern recognition techniques [173].

Although some studies have addressed the relevance of the employed segmentation method

[168,172,173], the focus was generally restricted to the result of the segmentation step. The

present chapter aims at assessing the effect of image segmentation up to its final use in the

context of a micromechanical study of ductile damage applied to nodular graphite cast iron.

More specifically, this chapter is dedicated to understanding and quantifying the effect of

image segmentation on the final mechanical observables of interest (global stress and strain

measurements and local strain measurements as well as void fraction and volume). If image

segmentation introduces considerable uncertainty on the desired micromechanical quantities,

these quantities cannot be used reliably. To the best of the author’s knowledge, this work

constitutes the first effort of documentation and quantification of this problem.

The measurement uncertainties of DVC applied to laminography data were evaluated for

cast iron [174]. The present chapter aims at assessing the uncertainties in the results of the

FE simulations in the SRCL-DVC-FE framework that could be expected to originate from the

segmentation of SRCL images. The SRCL-DVC-FE framework is a recent methodology and
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understanding the uncertainties in the chain of different employed techniques is necessary.

Thus, the objective of this chapter is to understand and quantify the influence of image

segmentation on the final FE results. This is of prime importance not only for the SRCL-

DVC-FE methodology, but for any two-dimensional or three-dimensional numerical studies

of immersed microstructures.

The chosen mechanical quantities that result from simulations carried out with the SRCL-

DVC-FE framework can be used for calibrating void nucleation, growth or coalescence models.

Sensible input is required for these tasks to be successful. For this reason, it is important to

assess the magnitude of the uncertainty introduced during image segmentation.

In order to assess the effect of the segmentation procedure in the results of the FE sim-

ulations within the SRCL-DVC-FE framework, three different established approaches were

chosen (Section 3.2). They had to be able to deal with the measurement noise during image

acquisition as well as with artefacts resulting from incomplete sampling of the 3D Fourier

domain [175]. An additional criterion for the selection of the segmentation methods was

their ability of being automated in the SRCL-DVC-FE chain of techniques, i.e., the desired

methods should be able to produce satisfactory results without requiring excessive fine-tuning

of their intrinsic parameters. Micromechanical FE simulations are then carried out by im-

mersing each of the segmented images and comparisons are made between the resulting

predictions. This analysis has the objective of assessing the effect of image segmentation on

the results of FE simulations of immersed microstructures. The comparisons have another

practical consequence; the uncertainty introduced during image segmentation of the results

of the simulations can be estimated based on these comparisons. The comparative study and

the subsequent uncertainty estimation are presented in Section 3.3.

3.2 Methodology

3.2.1 Image segmentation

Before immersing the microstructures in the FE mesh, it is necessary to differentiate the

various phases in the 3D SRCL images of the reference configurations. This task is called

image segmentation. In this work, the image segmentation is conducted in FIJI [176], a

distribution of the ImageJ software [177]. Three different image segmentation procedures

were employed. Although each procedure consists of several operations, they will be referred

to by the name of the defining method or algorithm. The first method, which is based on

thresholding by inspection of the images, will be referred to as Thresholding. The second

method employs an automatic thresholding procedure, and will be referred to as Automatic

Thresholding. The third and last method, which is based on machine learning, will be

referred to as Random Forest.
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Other methods such as region-growth segmentation [178], fast marching algorithm and

Level-set segmentation [179], were briefly tested. They were not selected since they required

excessive user input or calibration, were very time-consuming, or provided unsatisfactory

results.

Although entire slices of laminography images are presented, only the volume inside of

the so-called reconstruction circle is subsequently used in the simulations. The reason is that

information outside of this zone is incomplete [174] and hence not suitable for any quantitative

analysis.

Ring artefacts are observed in the laminography images. The origin of these artefacts

is related to the characteristic modulated intensity pattern of the cross-section of the beam.

These modulations cause the manifestation of ring artefacts after reconstruction [174]. An

additional requirement on the chosen segmentation methods is to be capable of dealing with

the presence of these artefacts.

Thresholding

Thresholding is a very simple segmentation operation that consists in determining the

phase of a voxel based on its gray level, and it is particularly adapted for images where only

two phases exist [169]. A unique thresholding by inspection was defined and applied to both

specimens and will be illustrated only for the 90° specimen for the sake of brevity. This

procedure involves four steps.

The first step consists of a three-dimensional averaging filter, i.e., the gray level in a voxel

is replaced with the average gray level in its immediate neighborhood. This operation results

in smoother albeit coarser images. A mid-thickness slice of the 90° specimen is shown in

Figure 3.1 in its original version (Figure 3.1a) and after applying the 3D-mean filter (Figure

3.1b).

The effect of the increased smoothness on the gray level histogram is illustrated in Fig-

ure 3.2. The gray level histogram of the original image is bimodal and presents considerable

overlap between the two superimposed distributions. This makes the original image difficult

to segment through simple thresholding. Applying the 3D-mean filter has the effect of reduc-

ing the spread of each of the superimposed distributions. Choosing a reasonable threshold is

thus possible. The chosen value was 120 for both images.

Buljac et al. [123] proposed another methodology for reducing the subjectivity in the

choice of the threshold. It consisted in using the strain tensor trace obtained from DVC

analyses to obtain void growth during the in-situ test, and comparing this history with the

void growth obtained via segmentation of the 3D images with different thresholds. The

chosen threshold was then the one that better matched the void growth evaluated with the
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(a) (b)

Figure 3.1: (a) Original slice at mid-thickness of the 90° specimen, and (b) after applying
the 3D-mean filter.

Figure 3.2: Gray level histogram of the original image and after applying the 3D-mean filter.
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strain tensor trace (i.e., 115). Although in the current work the threshold was determined

by simple inspection of the images and their gray level histogram, it is close to that chosen

by Buljac et al. [123].

The result of the thresholding procedure is illustrated in Figure 3.3a. Figure 3.3b shows

the final segmented image after applying two additional filters. The first one carries out a fill-

hole operation to eliminate white voxels within voids. The second (median) filter is typically

used to eliminate salt-and-pepper noise. It is applied to remove isolated black voxels in the

matrix (Figure 3.3b).

(a) (b)

Figure 3.3: Slice at mid-thickness of the 90° specimen after (a) thresholding, and (b)
applying the fill-hole and despeckle filters.

Automatic thresholding

A segmentation procedure with an automatic thresholding technique is described in this

section. It is carried out in three steps. First, Gaussian blur with standard deviation of

5 voxels is applied to the original image. The automatic thresholding technique is then

applied, and finally, a fill-hole operation is performed.

The Gaussian blur accomplishes the same function as the 3D-mean filter applied in the

manual thresholding procedure (see Section 3.2.1). The objective of this work is not to carry

out a detailed comparison of different segmentation methods under the same condition. The

deliberate choice of different preprocessing steps before the segmentation helps emphasizing

the effect of the human factor in the entire segmentation procecure.
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The automatic thresholding algorithms that are available in FIJI were tested on the

mid-thickness slice of the 45° specimen, and the results are summarized in Figure 3.4. The

tested techniques are, in order of appearance, the IsoData algorithm [180], Huang’s fuzzy

thresholding method [181], the Intermodes method [182], a second implementation of the

IsoData algorithm, an iterative version [183] of Li’s Minimum Cross Entropy method [184],

a Maximum Entropy method [185], using the mean of the gray levels as a first guess for the

threshold value [186], an iterative version of the Minimum Error method [187], the so-called

Minimum method with histogram smoothing [182], the moment-preserving method [188], the

clustering algorithm [189], the so-called Percentile method, which assumes a given fraction

of foreground voxels (0.5 by default) [190], the Maximum Entropy method with Renyi’s

entropy [191], the Information Measure method [192], the Triangle method [193], and the

automatic multilevel method [194].

The results of the employed automatic thresholding techniques reported in Figure 3.4 were

qualitatively examined through comparison with the original image (Figure 3.7c). Similar and

satisfactory results were provided by both IsoData methods, Huang’s method, the Intermodes

method, Li’s method, the Minimum method, and Otsu’s method. The IsoData algorithm was

selected because of its simplicity and applied for segmenting the 3D images of both specimens.

The iterative IsoData algorithm classifies the voxels into two categories with an initial

threshold value, and the average gray level of each category is calculated. The average of

the latter is then proposed as a new threshold until convergence. The algorithm was applied

separately for each slice, i.e., a threshold value was calculated for each individual slice of the

volumetric images. This choice was made to be consistent with the Random forest procedure

which is too costly to be applied to the whole image.

Random forest procedure

The random forest procedure is based on machine learning [195], and involves two steps,

namely, training and classification. After classification, fill-hole and median filters were also

applied. During training, a classification model was created. The data used for training were

the mid-thickness slice of the specimen, and twenty freehand traces were chosen for each of

the two classes (i.e., matrix and voids). The training features were Gaussian blur, Sobel and

Hessian filters, difference of Gaussians and membrane projections.

A random forest is a machine learning classification method in which many decision

trees vote and the resulting most popular category is retained. A decision tree is a simpler

classification model that consists of nodes and branches. The initial node is the root and the

terminal nodes are denoted as leafs. Each node, except for leafs, represents a test and each

subsequent branch corresponds to the result of a test. The classification ends at the leafs,

which contain the label of a class. In this work, the classes are either void or matrix. An
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Figure 3.4: Mid-thickness slice of the 45° specimen segmented with different automatic
thresholding methods.
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example of a possible decision tree for a given voxel is schematized in Figure 3.5. The depicted

tree uses two training features, namely, the gray level and the first principal curvature.

Figure 3.5: Example of a possible decision tree for a voxel with two features (gray level and
first principal curvature).

Five Gaussian (blur) filters, with different standard deviations ranging from 1 to 16 voxels,

were used. The Sobel filter provides an approximation of the gray level derivative and helps

locating interfaces. Information on the curvature of the interfaces is provided by the Hessian

filter. The difference of Gaussians filter is useful for blob detection due to laminography

artefacts or the nearby presence of voids in the thickness direction. Membrane projections

may provide additional information on the location of boundaries. More information on these

filters can be found in the documentation of the Weka Trainable Segmentation library [196].

The use of filters and their combinations provide a total of 76 training features. Three of

these features are exemplified in Figure 3.6 along with the original image (Figure 3.6a) for the

slice at mid-thickness of the 90° specimen. Figure 3.6b shows the result of applying the Sobel

filter after Gaussian blur with a standard deviation of 4 voxels. This operation highlights

the void/matrix interfaces. Figure 3.6c shows the square difference of the first and second

eigenvalues of the Hessian after Gaussian blur with a standard deviation of 16 voxels, i.e.,

the high curvature zones are determined. Ring-shaped artefacts are brought into evidence

with a lesser curvature than the contour of the voids. Membrane projections with the mean

of the voxels provides a marginal enhancement of the interfaces and an overall smoothing of

the image.

Two features per tree and 200 trees were used in the classification stage. A classifier

model for each of the specimen was created. The original and classified images for the slice

at mid-thickness of the 90° and 45° specimen are shown in Figure 3.7.
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(a) Original image (b) Sobel filter

(c) Hessian filter (d) Membrane filter

Figure 3.6: Original mid-thickness slice of the 90° specimen, and the result of applying
three different filters to the same slice.
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(a) (b)

(c) (d)

Figure 3.7: Original slice at mid-thickness of the (a) 90° and (c) 45° specimens and the
same slice after classification with the random forest procedure. for the (b) 90° and (d) 45°

specimens.
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3.2.2 Observables

Global and local quantities were considered for each specimen. The global information

was calculated in the whole domain for the 45° specimen and in a fraction of the domain for

the 90° specimen. The purpose of the latter choice is to exclude the EDM-machined holes

from the global calculation since they lie partially inside of the domain for the 90° specimen,

and would have led to inaccurate void volume quantification. The domain for the calculation

of the global quantities in the 90° specimen is shown in Figure 3.8 as a semi-transparent blue

volume. The term global volume will be used to make reference to the whole domain in the

case of the 45° specimen simulation, and to the volume depicted in Figure 3.8 for the 90°

specimen.

(a)

(b)

Figure 3.8: Two different views of the domain for the 90° specimen simulation. The domain
where the global quantities are calculated is shown as a semi-transparent blue volume.

Voids are shown in gray.

The global observables are the volume-averaged (or macroscopic) von Mises equivalent

strain, the (macroscopic) von Mises equivalent stress, the void volume fraction, and void
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growth. The latter is defined as the ratio between the current void volume and the initial

void volume.

Additionally, the volume-averaged equivalent strain in two local probes per specimen is

assessed. The local probes are displayed as a blue cube (probe 1) and as a red cube (probe 2)

in Figure 3.9a for the 90° specimen, and in Figure 3.9b for the 45° specimen. The positions

of the probes are exactly the same as those analyzed by Buljac et al. [123]. These volumes

enable for the study of void coalescence by ligament failure. The probe volume corresponds,

except for probe 2 of the 90° specimen, to that of C8 elements with an edge of 35.04 µm, in

DVC calculations. The size of probe 2 of the 90° specimen had to be reduced to 1/16th of

the volume of the other probes so that it could fit in the intervoid ligament without being

in contact with the voids. The initially cubic shape of the probes corresponds to the DVC

elements, and evolves with deformation, i.e., the probed volumes are Lagrangian.

A total of six observables per specimen will be assessed and were chosen in accordance with

future work related to experimental-numerical comparisons as well as parameter identification

of macroscopic damage laws.

3.3 Results

The results of a mesh sensitivity analysis are first presented for all of the considered

observables and both specimens. A comparison of the predictions of the three segmentation

procedures is reported in terms of their effect on the observables. Finally, an uncertainty

estimation method is proposed.

3.3.1 Mesh sensitivity analysis

In addition to the curvature-based mesh adaption described in Section 2.2.2, an additional

local refinement was carried out around the probes to ensure mesh-independent local values

without significantly increasing the computational cost with further global refinement. The

isotropic mesh size h was forced to take the value h =
hmin

4
(see Equation (2.30)) in the

probe and its surroundings. This extended locally refined volume was constructed by adding

2hmin to the distance function that describes the probes. The local refinement is illustrated

for probe 1 of the 45° specimen in Figure 3.10.

To simplify the mesh sensitivity analysis, two scaling factors F1 and F2 are introduced.

The first one, F1, multiplies hc, hmin and hmax, while the second one, F2, multiplies hc

and hmin. The values of the original mesh parameters are set to hc = 2.5 × 10−3 µm,

hmin = 2.5 × 10−1 µm, and hmax = 5 µm. When the scaling factors are introduced, the mesh
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(a)

(b)

Figure 3.9: 3D view of the computational domain for the (a) 90° specimen and (b) the 45°
specimen. Local probes are shown in blue (probe 1) and red (probe 2). A local zoom

displays probe 2 of the 90° specimen.
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Figure 3.10: Probe 1 (in blue) in the 45° case with the mesh in a 2D slice of the domain
showing the local refinement. The extended refined volume around the probe is indicated in

orange. The voids are shown in red.
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size is calculated as

h = F1max
(

min
(

hcF2

λmax
+
(

hmax − hcF2

λmax

)

φ

ǫh
, hmax

)

, hminF2

)

. (3.1)

The effect of F1 is straightforward, namely, modifying F1 is equivalent to scaling the

calculated mesh size h. The effect of F2 is slightly more subtle. When F2 decreases, the mesh

size close to the interfaces decreases, but the maximum mesh size far away from the interfaces

is unchanged. This effect results in an increased mesh size gradient. Table 3.1 summarizes

the effect of F1 and F2 parameters for the 45° specimen for different combinations.
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Table 3.1: Mesh parameters and corresponding number of elements for the 45° specimen. A
close-up view of a slice of the mesh is shown for each case. The matrix is shown in blue and

voids in red.

Case F1 F2
Number of
elements

Mesh

1 4 4 424,806

2 3 4 749,875

3 2 4 1,706,833

4 4 3 753,754

5 4 2 1,685,267

6 4 1.5 2,968,499
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Effect of F1

Simulations were carried out with meshes with three different F1 values (i.e., F1 = 4,

F1 = 3 and F1 = 2). Decreasing F1 is equivalent to carrying out a global mesh refinement.

90° specimen

In the case of the 90° specimen, the results are shown in Figure 3.11 for the six observables.

All observables seem to approach mesh independence as F1 decreases, i.e., the gap between

the results with F1 = 2 and F1 = 3 is smaller than that when F1 = 3 and F1 = 4. The

most sensitive variables are the macroscopic equivalent stress (Figure 3.11b) and the void

volume fraction (Figure 3.11c). The void volume fraction presents significant differences

since the microstructure cannot be described properly by a coarse FE mesh. As the mesh

size decreases, the microstructural features are better described. The small decrease of the

equivalent strain in probe 2 for the coarsest mesh in the last increment is caused by numerical

diffusion of the probe volume during remeshing operations, i.e., this mesh is not fine enough

to appropriately handle numerical diffusion.

45° specimen

The effect of varying F1 is shown in Figure 3.12 for the six observables. Contrary to the

simulation of the 90° specimen, an unexpected response is found for the 45° specimen when

F1 is varied. The gap between the results with F1 = 2 and F1 = 3 is greater than that

between F1 = 3 and F1 = 4.

The reason for this trend is that there are microstructural features that the meshes with

F1 = 3 and F1 = 4 are too coarse to capture. This explanation is consistent with the trend

followed by the void volume fraction (Figure 3.12c) and the macroscopic equivalent stress

(Figure 3.12b). When F1 decreases, the mesh is able to capture smaller voids, as well as

the shape of the bigger voids. Hence, the void volume fraction increases, and the loss of

load-bearing capacity induces a decrease in the macroscopic equivalent stress.

The equivalent strain in probe 1 barely changes when the mesh size decreases (Fig-

ure 3.12e). In probe 2, however, when F1 = 2, the equivalent strain experiences an unexpected

and significant decrease (Figure 3.12f).

The reason for this effect is that this mesh captures microstructural features that coarser

meshes could not, and these features modify the local heterogeneous partition of strain in

the vicinity of probe 2. This is illustrated in Figure 3.13 at increment 11 in the slice of

the computational domain that contains the center of probe 2 for F1 = 4 (Figure 3.13a)
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11: Mesh sensitivity in terms of F1 for (a) macroscopic equivalent strain, (b)
macroscopic equivalent stress, (c) void volume fraction, (d) void growth, and equivalent

strain in (e) probe 1 and (f) probe 2 in the 90° specimen.
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and F1 = 2 (Figure 3.13b). Although the general strain distribution is similar for both

meshes, local differences in topology and strain distribution are observed at different locations

including the position of probe 2.

The mesh sensitivity of the void volume fraction in the 90° specimen simulation is too

substantial to consider that convergence was achieved. For the 45° simulation, verification

of mesh independence is inconclusive because of the unexpected behavior found when F1 is

decreased for the void volume fraction as well as for the strain in probe 2. For these two

reasons, it is desirable to extend the mesh verification analysis. However, further refinement

of the mesh with a decrease of F1 is very costly. A different strategy is adopted and described

in Section 3.3.1.

Effect of F2

To extend the sensitivity analysis, the effect of varying F2 is assessed in this section.

Decreasing F2 results in a better description of the interfaces while retaining a fixed mesh

size far from them, i.e., this strategy aims at providing a satisfactory description of the

geometry while decreasing as much as possible the computational cost. A fixed value of

F1 = 4 is used and results for F2 = 3, F2 = 2, and F2 = 1.5 are presented. As a reference to

the analysis in Section 3.3.1, the results with F1 = 2 and F1 = 4 are included in the figures

as a black solid line.

90° specimen

The effect of varying F2 in the 90° simulation is illustrated for the six observables Fig-

ure 3.14. All observables seem to approach mesh convergence as F2 decreases. The curves

with F2 = 2 match very well those when F1 = 2. In general, when F2 is further decreased to

F1, the resulting curves stay satisfactorily close to those corresponding to F2 = 2. The void

volume fractions remain the most sensitive observable and the variation it undergoes when

F2 decreases from 2 to 1.5 is not negligible.

45° specimen

The sensitivity of the observables for the 45° simulation when F2 is varied is shown in

Figure 3.15. For all observables in the 45° simulation, the trend is the same as for the

90° specimen, namely, the gap between two successive curves decreases monotonically as F2

decreases. In this case too, the curve with F2 = 2 matches very well the reference curve with

F1 = 2. The observable most sensitive to the mesh is again the void volume fraction.

64



(a) (b)

(c) (d)

(e) (f)

Figure 3.12: Mesh sensitivity in terms of F1 for (a) macroscopic equivalent strain, (b)
macroscopic equivalent stress, (c) void volume fraction, (d) void growth, and equivalent

strain in (e) probe 1 and (f) probe 2 in the 45° specimen.
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(a) (b)

Figure 3.13: Strain distribution at increment 11 in the slice of the computational domain
that contains the center of probe 2 for the 45° specimen for (a) F1 = 4 and (b) F1 = 2.

Although the results are satisfactory for most of the observables, given the acceptably

small yet non-negligible variations exhibited by the void volume fraction for the simulations

of both specimens, further refinement could be considered. The associated computational

costs would make further refinement impractical, and more importantly, attention must be

paid to the relative order of magnitude of the minimum mesh size with respect to resolution

of the laminography images. For example, for the finest employed mesh with F1 = 4 and

F2 = 1.5, the resulting minimum allowed mesh size is 1.5 µm, which is of the same order of

magnitude of the laminography resolution with cubic voxels of edge length 1.1 µm [9]. The

mesh with F1 = 4 and F2 = 1.5 is selected for the remainder of the study.

3.3.2 Model cross comparison

For the random forest procedure, a simple training procedure was carried out on a single

slice for each specimen. However, the training stage is critical and can be tedious in more

complex cases. For this reason, it would be convenient to be able to train a single classifier

model in a chosen image and subsequently use the model in other images of similar features.

To explore the feasibility of reusing a model in different specimens, a cross comparison is

carried out. There are two factors that can play an important role in the comparison, namely,

the criterion of the operator who trained the models, and differences between images due to,

for example, the variation in beam intensity during laminography acquisitions.

Two simulations were carried out for each specimen, namely, one with the model created

for the same specimen, and one with the model created for the other specimen. The results of
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(a) (b)

(c) (d)

(e) (f)

Figure 3.14: Mesh sensitivity in terms of F2 for (a) macroscopic equivalent strain, (b)
macroscopic equivalent stress, (c) void volume fraction, (d) void growth, and equivalent

strain in (e) probe 1 and (f) probe 2 in the 90° specimen.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.15: Mesh sensitivity in terms of F2 for (a) macroscopic equivalent strain, (b)
macroscopic equivalent stress, (c) void volume fraction, (d) void growth, and equivalent

strain in (e) probe 1 (f) probe 2 in the 45° specimen.
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the comparison between each pair of simulations are reported in Figure 3.16 (90° specimen)

and Figure 3.17 (45° specimen). Additionally, an absolute difference calculated with respect

to the smallest of two compared quantities is reported for each observable.

The comparison for both specimens leads to similar results. The maximum absolute

difference for the macroscopic equivalent strain, macroscopic equivalent stress, and for the

equivalent strain in probe 1, is of the order of or less than 3 × 10−3. The void growth

has a maximum absolute difference of 1.5 × 10−2 for the 90° specimen and of approximately

3.5 × 10−2 for the 45° specimen. The void volume fraction is less sensitive in terms of absolute

differences. A maximum absolute difference of 6.2 × 10−3 was obtained for the 90° case, and

4.2 × 10−3 for the 45° sample.

The equivalent strain in probe 2 exhibits a maximum absolute difference of 9 × 10−3 for

the 45° simulation. For the 90° simulation, probe 2 is very sensitive since a maximum absolute

difference of approximately 8 × 10−2 is noted. The increased sensitivity of probe 2 in the 90°

specimen is due to its size in comparison with the intervoid ligament, which makes it more

sensitive to small changes in the surrounding microstructure when different classifier models

are used.

Given these results, the re-utilization of a properly trained classifier model for different

specimens of the same nature seems feasible. However, care must be exercised when dealing

with sensitive variables or with very local information close to the boundaries of the segmented

phases.

3.3.3 Comparison of segmentation methods

Numerical simulations were carried out after immersing the segmented images of the

microstructures obtained by means of the segmentation procedures. The results of the nu-

merical simulations are compared to assess the effect of the segmentation procedures on the

observables described in Section 3.2.2.

First, a qualitative comparison of the images segmented with the three different methods

is reported in Figure 3.18 alongside the original slice. The chosen slice is the mid-thickness of

the 90° specimen. The three segmented images are similar, albeit with some differences. The

image segmented through simple thresholding includes very small voids and some apparent

noise. The resulting segmented images from the IsoData and Random forest algorithms are

smoothed out in terms of lost features. However, secondary effects are related to filtering out

the finest microstructural features and slightly smoothing the interfaces.

From a quantitative point of view, gray level differences can be computed between the

original image f and its thresholded (and binarized) copy fth after accounting for global gray
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(a) (b)

(c) (d)

(e) (f)

Figure 3.16: (a) Macroscopic equivalent strain and (b) stress, (c) void volume fraction, (d)
void growth, and equivalent strain in (e) probe 1 (f) probe 2 for the 90° simulation obtained

after segmentation with two different classifier models.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.17: (a) Macroscopic equivalent strain and (b) stress, (c) void volume fraction, (d)
void growth, and equivalent strain in (e) probe 1 (f) probe 2 for the 45° simulation obtained

after segmentation with two different classifier models.
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(a) Original image (b) Thresholding

(c) IsoData (d) Random forest

Figure 3.18: Original mid-thickness slice of the 90° specimen, and the same slice segmented
with three different procedures.
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level corrections. In the following, linear corrections are considered

gth = afth + b (3.2)

where a and b are obtained by least squares minimization of the sum of squared gray level

differences over the region of interest (ROI) so that

r(x) = f(x) − gth(x) (3.3)

will measure the gray level residuals that are computed for any voxel location x in the ROI. In

Table 3.2, the three different methods are compared for both specimens in terms of their root

mean square residuals rRMS. The rRMS values are very similar across the three procedures

and both specimens, i.e., the segmented images are of comparable quality irrespective of the

segmentation procedure.

Table 3.2: Comparison of the gray level residuals for the three thresholding methods for the
entire ROI in both specimens.

Procedure a b RMS(r) Specimen

Thresholding -0.256 151.7 22.3 90°

IsoData -0.243 151.1 23.5 90°

Random forest -0.241 150.5 24.1 90°

Thresholding -0.261 151.7 22.0 45°

IsoData -0.249 150.9 23.3 45°

Random forest -0.260 151.3 22.5 45°

The calculated gray level residuals are shown in Figure 3.19 for the mid-thickness slice of

the 90° specimen. The residuals show a very similar behavior in the bulk of the matrix and

present more significant differences close to the interfaces.

For the FE simulations, neither the amount of noise left by the thresholding procedure,

nor the loss of the smallest microstructural features with the other two procedures are prob-

lematic. The minimum allowed FE mesh size, which was based on the resolution of the

images (Section 3.3.1), does not capture the remaining noise or the smallest features. The

differences that can be perceived by the FE mesh are the non-negligible void shape variations

and difference in void volume fraction due to how each method handles partial-volume effects,

i.e., how the position of the interfaces is determined.

The results for the six observables with the three segmentation procedures are shown in

Figure 3.20 for the 90° specimen and in Figure 3.21 for the 45° specimen. The maximum

absolute difference is also reported in the figures for all the observables, and it is calculated

as the maximum difference between the three results.
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(a) Original image (b) Thresholding

(c) IsoData (d) Random forest

Figure 3.19: (a) Original mid-thickness slice of the 90° specimen, and the corresponding
gray level residuals for the segmented image with (b) thresholding, (c) IsoData and

(d) random forest algorithms.
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In the simulation of the 45° specimen, the macroscopic equivalent strain and stress (Fig-

ure 3.21) exhibit a very small absolute difference. The maximum difference for the macro-

scopic equivalent strain is 0.0025, and 1.1 MPa for the macroscopic equivalent stress. For the

90° specimen (Figure 3.20), these variables are slightly higher, but sufficiently small, namely

0.005 and 5.2 MPa for the macroscopic equivalent strain and stress, respectively.

The void growth presents a maximum absolute difference of 0.015 for the 45° specimen

(Figure 3.21d), and 0.03 for the 90° specimen (Figure 3.20d). The void volume fraction

exhibits higher absolute difference than the void growth for both specimens. In the 45° sim-

ulation (Figure 3.21c), the void volume fraction has a maximum absolute difference of 0.005,

and 0.014 in the 90° simulation (Figure 3.20d). In the former specimen, the IsoData and Ran-

dom forest algorithms coincide remarkably, while for the latter specimen, both thresholding

methods produce similar results and the void volume fraction predicted with the random

forest algorithm is farther away.

The results in the local probes are more sensitive than the macroscopic observables. For

both specimens (Figure 3.20e for the 90° specimen and Figure 3.21e for the 45° specimen),

the equivalent strain in probe 1 has a lower maximum absolute difference (i.e., 0.013 for the

90° specimen, and 0.007 for the 45° sample) than the equivalent strain in probe 2 (0.085 for

the 90° specimen, and 0.014 for the 45° sample). The absolute difference for probe 2 in the

90° simulation is notably high. Since probe 2 of the 90° specimen is smaller and located in a

shorter intervoid ligament, it is more sensitive to changes in its neighborhood due to the use

of different segmentation procedures. In general, the proximity of a probe to void interfaces

is correlated with higher levels of absolute differences. The DVC standard equivalent strain

resolutions were estimated to be 0.78% for the 90° configuration and 0.73% for the 45° [123].

The segmentation-related uncertainty is at best equivalent (probe 1 of the 45° specimen) to

the DVC uncertainties, but between 2 and 10 times higher for the other magnitudes.

The comparisons carried out herein show that the results of the FE simulations with

immersed images stemming from the employed segmentation methods, are sufficiently small

so that physical conclusions may be drawn from the results of the simulations and the seg-

mentation procedures are hence considered to be successful. The most sensitive variables to

the choice of segmentation method could be identified, namely, the local strain values and

the void volume fraction.

In terms of user input, automatic thresholding with the IsoData algorithm is the least

demanding methodology since it requires no user intervention. It is followed by simple thresh-

olding by inspection for which the threshold is set from the gray level histogram. The Random

forest procedure needs user input for the training of the model, and possibly the choice of

parameters and filters if their default values are unsatisfactory. The need for user input may

hinder the application of a methodology in an automatic procedure starting at the image

acquisition and continuing all the way up to the postprocessing of the FE simulations. How-
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(a) (b)

(c) (d)

(e) (f)

Figure 3.20: (a) Macroscopic equivalent strain and (b) stress, (c) void volume fraction, (d)
void growth, and equivalent strain in (e) probe 1 (f) probe 2 for the 90° simulation obtained

after segmentation with three different segmentation procedures.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.21: (a) Macroscopic equivalent strain and (b) stress, (c) void volume fraction, (d)
void growth, and equivalent strain in (e) probe 1 (f) probe 2 for the 45° simulation obtained

after segmentation with three different segmentation procedures.
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ever, the two latter methodologies may also be incorporated into a fully automated procedure

given that the step that requires user input can be carried out once and applied to several

cases of similar features.

The manual and automatic thresholding procedures may easily be carried out with limited

computing resources. The random forest procedure does require more significant resources in

terms of memory and computing time. For this reason, it may be reserved for more complex

cases in which thresholding is not viable if the needed computational capacity is not available.

More generally, even in cases when thresholding is feasible, it may still be desirable to use

the random forest algorithm to provide means for cross-verification.

3.3.4 Uncertainty quantification

The comparison of segmentation procedures discussed in Section 3.3.3 is summarized

via uncertainty estimations. Three different predictions resulting from the three considered

segmentation procedures are available for each observable. To estimate its uncertainty, the

average and standard deviation are calculated. This is done separately for each of the observ-

ables. The calculated averages and standard deviations are not statistically representative

quantities because they are calculated based on only three data sets. They are used here as

a concise way of presenting a single measurement and its associated uncertainty. This will be

useful when this data is later compared with experimental measurements. The uncertainty

estimation was carried out for all of the observables and both samples. The results described

in Section 3.3.3 showed that global volume-averaged strain and stress, as well as void growth,

are not very sensitive to the choice of the segmentation procedures employed in this chapter.

For the sake of brevity, the uncertainty for the most sensitive variables is discussed in this

section.

Figure 3.22 shows the change of the average void volume fraction for both specimen, and

Figure 3.23, that of the average equivalent strain for the two probes of the 90° simulations.

In both figures, the corresponding standard deviation is presented as error bars.

The difference of uncertainties reported for the void volume fraction between the two

specimens in Figure 3.22 is noteworthy. This difference exists even though the same segmen-

tation methodologies were applied. Ambiguous determination of the position of interfaces

due to partial-volume effects and human factors during data treatment are at the origin of

this difference. This observation highlights the importance of dedicating sufficient effort to

the image segmentation step and uncertainty estimation when feasible. A disregard of present

uncertainties may lead to biased physical conclusions.

Since probe 2 is located in a small intervoid ligament, i.e., it is closer to the void-matrix

interface, it presents larger uncertainties than probe 1. For both probes the uncertainty,
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(a) 90° specimen (b) 45° specimen

Figure 3.22: Average of the results of the three segmentation procedures for the void volume
fraction with its estimated uncertainty in (a) the 90° simulation, and (b) the 45° simulation.

(a) Probe 1 (b) Probe 2

Figure 3.23: Average of the results of the three segmentation procedures in the 90°
simulation for the equivalent strain (a) in probe 1 and (b) probe 2.
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depicted in Figure 3.23, increases during the simulation, but remains satisfactorily small.

3.4 Conclusions and perspectives

A comparative study of three segmentation procedures dedicated to the SRCL-DVC-FE

methodology was carried out in the context of micromechanical studies of ductile damage.

The focus of the conducted analysis was on the effect of image segmentation techniques on the

results of FE simulations. Different segmentation procedures were considered, and three were

selected and presented in detail. They satisfactorily segmented the three-dimensional images.

Six different observables were taken into account for each of the two studied nodular graphite

cast iron samples (i.e., macroscopic equivalent strain and stress, void volume fraction and

growth, and local equivalent strain in two probes in different intervoid ligaments). To the

best of the author’s knowledge, this is the first work to document and quantify the effect of

image segmentation on the mechanical results of simulations of immersed microstructures.

This is relevant for all simulations with immersed microstructures and not only for the SRCL-

DVC-FE framework.

The three segmentation procedures were compared in terms of the resulting gray level

residuals, of the required computing power and of the required user input. The gray level

residuals were very similar for the different procedures. For this reason, the choice of preferred

segmentation method depends on the complexity of the problem, the available computing

power and the acceptable level of user input. Multiple methods should be employed and

compared whenever possible.

First, a mesh sensitivity analysis was conducted to check that the influence of the spatial

discretization on the observables was sufficiently small. Care was taken not to use mesh

sizes smaller than the order of magnitude of the laminography images resolution. The most

sensitive parameters were identified, namely, the local strain values and the void volume

fraction, and sufficiently small mesh dependence was reached.

Second, the segmented images were then immersed in an FE mesh and micromechanical

calculations with realistic boundary conditions were carried out. The results were compared

in terms of the six different observables. A small sensitivity for the macroscopic behavior

was found. A maximum relative difference less than 3% was obtained for the macroscopic

strain and stress. It is believed that this overall agreement is mainly due to the fact that the

(same) measured boundary conditions were prescribed. The void volume fraction and the

local strains were the most sensitive variables. The void volume fraction was considerably

more sensitive for the 90° specimen (maximum absolute difference of 0.014) than for the

45° specimen (maximum absolute difference of 0.005). The maximum difference in the local

strain measures varied from 0.007 to 0.085 and increased with the proximity of the probed

volume to the void-matrix interface.
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The differences in uncertainty for the void volume fraction across specimens resulted from

applying the same segmentation procedures in the same material by the same operator. This

highlights the challenges associated with the use of immersed images in FE simulations. They

originate from two factors, namely, the ambiguity in the position of the segmented interfaces

due to partial-volume effects, and the possible bias introduced by the operator.

An uncertainty quantification based on the comparison of segmentation methods was

proposed. Since FE simulations were based on three different segmentation procedures, the

uncertainty of an observable was estimated as the standard deviation of the results of the three

FE simulations and reported alongside the corresponding average. The estimated uncertainty

will be used in the following chapters to compare in detail numerical results with experimental

observations for validation purposes.

Résumé en français

Une étude comparative de trois procédures de segmentation dédiées à la méthodologie

SRCL-DVC-FE a été réalisée dans le cadre d’études micromécaniques sur l’endommagement

ductile. L’analyse menée a porté principalement sur l’effet des techniques de segmentation

d’images sur les résultats des simulations par éléments finis. Différentes procédures de seg-

mentation ont été envisagées, et trois ont été sélectionnées et présentées en détail dans ce

chapitre pour segmenter de manière satisfaisante les images volumiques.

Six observables différentes ont été prises en compte pour chacun des deux échantillons de

fonte à graphite sphéroïdal qui ont été étudiés (c’est-à-dire contrainte et déformation macro-

scopiques équivalentes, fraction volumique de porosité et croissance, et déformation équiva-

lente locale dans deux capteurs différents dans des ligaments inter-cavités). À la connaissance

de l’auteur, il s’agit du premier travail à documenter et à quantifier l’effet de la segmentation

d’images sur les résultats mécaniques de simulations de la rupture ductile de microstructures

immergées. Ceci est pertinent pour toutes les simulations avec des microstructures immergées

et pas seulement pour la méthodologie SRCL-DVC-FE.

Les trois procédures de segmentation ont été comparées en termes de résidus de niveau de

gris, de la puissance de calcul requise et du degré requis d’intervention de l’utilisateur l’entrée

utilisateur. Les résidus de niveau de gris se sont avérés très similaires pour les différentes

procédures. Pour cette raison, le choix de la méthode de segmentation préférée dépend de

la complexité du problème, de la puissance de calcul disponible et du niveau acceptable

d’intervention de l’utilisateur. Tout d’abord, une analyse de sensibilité au maillage a été

réalisée pour vérifier que l’influence de la discrétisation spatiale sur les observables était

suffisamment faible. On a pris soin de ne pas utiliser des mailles de taille inférieure à l’ordre

de grandeur de la résolution des images de laminographie. Les paramètres les plus sensibles

ont été identifiés, à savoir les valeurs de déformation locales et la fraction volumique de
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porosité. Une dépendance suffisamment faible au maillage a été observée.

Deuxièmement, les images segmentées ont ensuite été immergées dans un maillage FE

et des calculs micromécaniques ont été effectués avec des conditions limites réalistes. Les

résultats ont été comparés pour 6 observables différentes. Une faible sensibilité pour le

comportement macroscopique a été trouvée. Une différence relative maximale inférieure à 3%

a été obtenue pour la déformation et la contrainte macroscopiques. On pense que cet accord

général est principalement dû au fait que les conditions limites mesurées ont été prescrites. La

fraction volumique de porosité et la déformation dans les capteurs locaux sont les variables

les plus sensibles. La fraction volumique de porosité s’est révélée considérablement plus

sensible pour l’échantillon à 90° (différence absolue maximale de 0,014) que pour l’échantillon

à 45° (différence absolue maximale de 0,005). La différence maximale entre les mesures de

déformation locales variaient de 0,007 à 0,085 et augmentaient avec la proximité du capteur

vis-à-vis de l’interface matrice-porosité.

Les différences d’incertitude concernant la fraction volumique de porosité entre les échan-

tillons résultent de l’application des mêmes procédures de segmentation dans le même matériau

par le même opérateur. Cela met en évidence les défis associés à l’utilisation d’images im-

mergées dans les simulations FE. Ils proviennent de deux facteurs, à savoir l’ambiguïté de la

position des interfaces segmentées due aux effets de volume partiel et le biais possible introduit

par l’opérateur. Une quantification de l’incertitude basée sur la comparaison des méthodes

de segmentation a été proposée. Les simulations FE étant basées sur trois procédures de seg-

mentation différentes, l’incertitude d’une observable a été estimée en tant qu’écart-type des

résultats des trois simulations et rapportée avec moyenne correspondante. L’incertitude es-

timée sera utilisée dans les chapitres suivants pour comparer en détail les résultats numériques

aux observations expérimentales pour valider la méthodologie mise en place.
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Chapter 4

An examination of microscopic

precoalescence strain measures in

ductile cast iron through

micromechanical simulations based

on 3D imaging
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4.1 Introduction

Previous studies have investigated microscopic strain measures in cast iron. Kasvayee et

al. [197] carried out a comparison between strain measures predicted by finite element (FE)

simulations and local strain measured with digital image correlation (DIC) in nodular cast

iron. Salomonsson et al. [198] studied strain localization via 3D finite element simulations

of heterogeneous cast iron microstructures and highlighted the three dimensional complexity

of the strain field as the possible reason for disagreement between local predictions of strain

and digital volume correlation strain measures. Buljac et al. [123] used bulk strain measures

obtained with digital volume correlation (DVC) to study void coalescence mechanisms in

nodular cast iron.

Critical values of local strain have been investigated as a microscopic coalescence indicator

for internal necking [123, 199], void-sheet or shear band formation [48, 123, 199] and fatigue

crack formation [200].

In Chapter 3, the uncertainties associated to image segmentation on mechanical observ-

ables were assessed. In this chapter, precoalescence strain measurements obtained with the

SRCL-DVC-FE framework are compared with DVC strain measurements. The probed zones

correspond to the same four probe volumes studied in Chapter 3. This allows the estimated

uncertainties to be taken into account in the comparison. The objective is to validate the FE

strain measurements. If the validation is satisfactory, the complementarity of the DVC and

FE techniques can be exploited in a more complete study of coalescence. A first discussion

of strain as a coalescence indicator is presented.

4.2 Observables

The observables assessed in this chapter were already presented in Chapter 3, but are

recalled here for the sake of readability. Local strain measures at two different locations as well

as a global (or macroscopic) are employed as observables for each specimen. The local strain

measures correspond to the accumulated equivalent strain in cubic probes of the size of a DVC

element (unless otherwise stated). The shape and size of the probes were chosen in order to

facilitate a direct comparison with DVC strain results. The simulated microstructural region

is shown in Figure 4.1a and in Figure 4.1b for the 90° and 45° specimens, respectively. Probe

1 (in blue) of each specimen has previously been associated with the void-sheet coalescence

mechanism and probe 2 (in red) with internal necking. Two-dimensional slices showing the

observed coalescence instances are presented in Figure 4.2 for the 90° specimen and in Figure

4.3 for the 45°.
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(a)

(b)

Figure 4.1: 3D view of the simulated microstructure for the a) 90° specimen and the b) 45°
specimen. Local probe volumes are shown in blue (probe 1) and red (probe 2). A local

zoom displays probe of the 90° specimen.
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(a) (b)

Figure 4.2: Slices containing the observed coalescence instances for (a) internal necking and
(b) void-sheet coalescence in the 90° specimen.

(a) (b)

Figure 4.3: Slices containing the observed coalescence instances for (a) internal necking and
(b) void-sheet coalescence in the 45° specimen.
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4.3 Comparison of DVC and FE strain measures

In this section, a comparison of macroscopic and local strain measures obtained from DVC

and FE calculations, is presented for the 90° and 45° specimens. The local FE strain measures

are calculated in cubic probes with the size of a DVC element in order to be as consistent as

possible with the DVC measurements. An estimation of the segmentation-related uncertainty

was previously carried out in Chapter 3, and the FE strain measures presented in this section

are a result of this procedure. The procedure consisted in carrying out three different FE

simulations, each with an immersed microstructure originated from a segmented image with

a different segmentation method. Each FE strain measure corresponds thus to the average

of these three strain measures and the corresponding standard deviation is reported as the

estimated uncertainty.

4.3.1 90° specimen

Figure 4.4 shows the comparison of DVC and FE results in terms of the macroscopic

equivalent strain of the 90° specimen along with the absolute difference between the two

datasets. A very good agreement is observed up to increment 10. Afterwards the FE simu-

lation overestimates the DVC results with an increasing difference that reaches 2% of strain

at the final increment. A good agreement for the macroscopic strain was expected since the

FE simulations are driven by displacements obtained by means of DVC.

A comparison of the DVC and FE strain measures in probe 1 of the 90° specimen is

presented in Figure 4.5. A remarkably good agreement is observed between the two measures

except for the last increment where the DVC strain experiences an accelerated increase that

the FE simulation does not manage to capture. Figure 4.5 also presents the contours of the

void phase obtained from the FE simulation superimposed with the corresponding slice of

the laminography images for three different increments. The approximate position of probe

1 is indicated by a blue square.

DVC and FE strain measures in probe 2 of the 90° specimen are reported in Figure

4.6. Although coalescence occurs at increment 11 by internal necking in the ligament that

contains probe 2, the results are reported up to the end of the simulation for the sake of

completeness. It is possible to do this with the FE results because the probe deforms with

the matrix and during coalescence, it flows out of the disappearing intervoid ligament. The

reported strain measure in probe 2 is in this sense no longer associated to the intervoid

ligament after increment 11. DVC results are also reported after coalescence since the DVC

analysis provides kinematic fields in the whole ROI independently of the phases.

The DVC and FE results in probe 2 present a very good agreement up to increment

16 with an approximately constant strain difference in the order of 0.01. In the following
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Figure 4.4: Comparison of DVC and FE macroscopic equivalent strain measures for the 90°
specimen. The absolute difference is reported as a gray line.

increments and up to the end of the simulation, the DVC values increase at a much higher

rate than the FE values. A final and maximum strain difference of 0.20 is obtained.

In the 90° specimen simulation, the magnitude of the reported segmentation-related un-

certainty for the macroscopic strain and the strain in probe 1, is negligible with respect to the

magnitude of the difference between the DVC and FE measures [201]. However, for the strain

in probe 2, the uncertainty increases considerably during the simulation and is in the same

order of magnitude as the strain. The reason for this difference between probe 1 and probe 2

is that the intervoid ligament in which probe 2 is located is not big enough to accommodate

the whole DVC probe. This makes the results in probe 2 very sensitive to the position of the

void-matrix interface.

As evidenced in Figures 4.5 and 4.6, void growth and shape evolution are generally de-

scribed satisfactorily. There are, however, some minor discrepancies in the position of the

interfaces between the FE simulations and the laminography images. In some instances, void

growth is underestimated and in others, overestimated. The magnitude of these discrepancies

increases during the simulation.
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Figure 4.5: Comparison of DVC and FE equivalent strain measures in probe 1 of the 90°
specimen. For 3 different increments, a slice of the original image is superimposed with the

interface according to the FE simulation. The approximate position of the probe 1 is
marked with a blue square. The absolute difference is reported as a gray line.
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Figure 4.6: Comparison of DVC and FE equivalent strain measures in probe 1 of the 90°
specimen. For 3 different increments, a slice of the original image is superimposed with the

interface according to the FE simulation. The approximate position of the probe 2 is
marked with a red square. The absolute difference is reported as a gray line.
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4.3.2 45° specimen

In the case of the 45° specimen (Figure 4.7), the FE macroscopic equivalent strain over-

estimates slightly the DVC value for the first two increments. Then the two values coincide

remarkably well up to increment 7 where the DVC strain values start to show an accelerated

increase that is not well reprocuded by the FE simulation. At the end of the simulation, a

maximum strain difference of 0.04 is registered.

Figure 4.7: Comparison of DVC and FE macroscopic equivalent strain measures for the 45°
specimen. The absolute difference is reported as a gray line.

Although the FE simulation of the 45° specimen reproduces well the rate of increase of

strain at the local probes, it significantly overestimates the DVC strain values for probe 1

(Figure 4.8) and underestimates the DVC strain values for probe 2 (Figure 4.9). Similarly

to the macroscopic equivalent strain, the DVC measured values at the probe volumes show

an accelerated increase towards the end of in-situ test, that is not reproduced by the FE

simulation. A maximum strain difference of 0.08 is observed for probe 1, and of 0.10 for

probe 2.

In contrast with the 90° specimen, an initial gap between both strain measurements is

observed. The rate of increase, however, is very well captured except towards the end of the

simulation. Probe 1 is close to a nodule whose shape is not well captured despite the use

of the meshing methodology described in Chapter 2. This nodule is surrounded by a green

circle in Figure 4.8 and could have an impact on the local distribution of strain.
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Figure 4.8: Comparison of DVC and FE equivalent strain measures in probe 1 of the 45°
specimen. For 3 different increments, a slice of the original image is superimposed with the

interface according to the FE simulation. The approximate position of the probe 1 is
marked with a blue square. The absolute difference is reported as a gray line.
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Figure 4.9: Comparison of DVC and FE equivalent strain measures in probe 1 of the 45°
specimen. For 3 different increments, a slice of the original image is superimposed with the

interface according to the FE simulation. The approximate position of the probe 2 is
marked with a red square. The absolute difference is reported as a gray line.
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Similarly to the 90° case, in the shown slices (Figures 4.8 and 4.9) of the 45° case, albeit

some local differences, an overall good agreement between the predicted position of the in-

terfaces by the FE simulations, and the laminography images, is observed. The differences

increase towards the end of the simulation.

The magnitude of the segmentation-related uncertainty is significantly smaller than the

difference between the DVC and FE results for the macroscopic equivalent strain of the 45°

specimen and the local strain at the two probes. This uncertainty was significant only for

the strain at probe 2 for the aforementioned reason (see Section 4.3.2). The influence of

the segmentation procedure on the results of the simulations has been previously discussed

thoroughly in Chapter 3. The comparison with the DVC results presented in this section while

taking into account this uncertainty leads to the conclusion that the differences between the

DVC and the FE results are attributable to current limitations in the physical and numerical

framework and can be used as hints to improve the current framework.

One possible limitation of the physical modeling is pointed out by the inability of the FE

simulations to reproduce the strain increase acceleration towards the end of the simulation for

both specimens. This is observed in spite of efforts to calibrate the elasto-plastic material pa-

rameters at the microscale via an experimental-computational identification framework with

X-ray microtomography [165]. This might point out a deficiency of the employed hardening

law: excessive hardening for large strain values. A solution can be the use of hardening

laws that saturate for large values of strain such as the Voce hardening law [202]. This is

consistent with previous observation via post mortem Scanning Electron Microscopy (SEM)

fractography of a smaller void population that is not visible in the laminography images due

to their small size with respect to the laminography spatial resolution (2.19 µm voxel size).

These smaller voids are neither modeled explicitly in the FE mesh nor considered implicitly

in the behavior law. Accounting for the softening induced by the smaller void population

is a perspective of this work. This could be done for example through the use of a coupled

damage model in the matrix.

Despite the differences in local strain measures between DVC measurements and FE

predictions in the 45° case, the results are considered satisfactory. Very good agreement

was obtained for the macroscopic strain of both specimens and for the precoalescence local

strains of the local probes of the 90° specimen. The local strain values in the probes of the

45° specimen were not predicted accurately, but their rate of increase was well reproduced.

The FE strain predictions are thus considered satisfactory and can now be used for the study

of void coalescence.
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4.4 Strain field evolution

The strain results provided by the FE simulations were validated via comparison with

DVC strain measurements in Section 4.3 and their limitations as well as future aspects to

be improved were discussed. After this validation, the FE results can be analyzed with

confidence in a study of void coalescence. To initiate this study, the evolution of the strain

field in given slices of the domain is presented in this section.

Figure 4.10 presents the evolution of the strain field for the 90° specimen in the slice that

contains probe 1 superimposed with the corresponding slice of the laminography images. The

approximate location of the probe is indicated by a blue square for the first increment. Al-

though considerable void growth is evidenced, no coalescence instances are observed. Intense

strain bands are developed between neighboring voids. The strain bands can span multiple

voids. The invervoid ligament that contains probe 1 is larger than those ligaments that typ-

ically present strong strain concentration bands. This intervoid ligament presents a strain

band in zigzag pattern and a round and more intense strain concentration zone in a corner of

this zigzag pattern. A green line indicates the position of the zigzag pattern in Figure 4.10c.

The strain field evolution in the slice containing probe 2 of the 90° specimen is described

in Figure 4.11. In this slice, intense strain bands can be observed between neighboring voids

that are very close to each other as early as at increment 5 (Figure 4.11b). Coalescence by

internal necking is observed in some of these strain bands at increment 11 (Figure 4.11c)

including the position of probe 2.

The evolution of the strain field of the 45° in the slice containing probe 1 is presented in

Figure 4.12. Only one instance of coalescence by internal necking is observed in a particularly

small intervoid ligament. The strain band that covers the location of probe 1 is straight and

diffuse.

Figure 4.13 describes how the strain field evolves in the slice of the 45° specimen that

contains probe 2. Increment 6 (Figure 4.13b) exhibits a few intense strain concentration

bands that result in coalescence at increment 11 (Figure 4.13c). Intense concentration strain

bands are observed at increment 11. The intervoid ligament where probe 2 is located does

not present a distinct strain concentration band.

4.4.1 Discussion

The positions of the probes were chosen in the work Buljac et al. [123] to study, via DVC

measurements, void coalescence through two different mechanisms: void sheet coalescence

(probe 1 of both specimens) and internal necking (probe 2 of both specimens). The authors

of this study found the equivalent strain to be a promising local indicator of coalescence and a
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(a)

(b)

(c)

Figure 4.10: Strain distribution in the slice of the computational domain that contains the
center of probe 1 for the 90° specimen at increments (a) 1, (b) 10, and (c) 19. The

approximate position of probe 1 is indicated by a blue square for increment 1.
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(a)

(b)

(c)

Figure 4.11: Strain distribution in the slice of the computational domain that contains the
center of probe 2 for the 90° specimen at increments (a) 1, (b) 5, and (c) 11. The

approximate position of probe 2 is indicated by a red square for increment 1.
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(a) (b) (c)

Figure 4.12: Strain distribution in the slice of the computational domain that contains the
center of probe 1 for the 45° specimen at increments (a) 1, (b) 6, and (c) 11. The

approximate position of probe 1 is indicated by a blue square for increment 1.

(a) (b) (c)

Figure 4.13: Strain distribution in the slice of the computational domain that contains the
center of probe 2 for the 45° specimen at increments (a) 1, (b) 6, and (c) 11. The

approximate position of probe 1 is indicated by a blue square for increment 1.
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strain threshold value of approximately 40% for the void sheet mechanism and of 45% for the

internal necking mechanism, was observed and discussed. However, if the observed instance

of coalescence is taken into account for probe 2 of the 90° specimen, which corresponds to

increment 11 in Figure 4.6, the observed precoalescence strain value corresponds to 20%.

In the present chapter, the notion of the equivalent plastic strain as a local indicator

of void coalescence is revisited with the results of the FE simulations that provide an im-

proved spatial resolution with respect to the DVC measurements. If the equivalent strain is

a sufficient and accurate coalescence indicator, coalescence should be observed wherever the

threshold is exceeded. To test this idea precoalescence strain fields will be compared with

the postcoalescence laminography image in the slices where the probes lie.

Figure 4.14 shows the precoalescence strain field in the slice where probe 1 is located

at increment 19 (Figure 4.14a) and the corresponding slice postcoalescence at increment 20

(Figure 4.14b). The slice exhibits a crack that crosses most of the specimen section. The

position of the crack follows the strain localization pattern, the less intense part of which

corresponds precisely to the ligament that contains probe 1. Two instances of highly strain

intervoid ligaments that do not present coalescence are observed and are reported with green

arrows in Figure 4.14a.

The ligament that contains probe 1 presents the previously described strain band in zigzag

pattern which could be an indicator of interactions with microstructural heterogeneities in

depth direction. In fact, white contours (shown by a white arrow in Figure 4.14a) to the left

of the blue square confirm the presence of a void in approximately the same position of the

probe hidden in depth direction. Three-dimensional interactions such as this one could be

at the origin of apparent void-sheet instances that are in fact a combination of two internal

necking instances in a three voids cluster. This possibility is studied in Chapter 5. This does

not rule out the presence of pure void-sheet instances as the examination of fracture surfaces

has provided hints of the presence of this mechanism in this specimen [123]. However, the

confirmed presence of the third void hidden in the ligament in depth direction cannot be

neglected in this particular instance.

The precoalescence strain field for the 90° specimen at increment 10 (Figure 4.15a) and the

corresponding postcoalescence slice at increment 11 (Figure 4.15b) are presented in Figure

4.15 for the slice corresponding to probe 2. Six intervoid ligaments present concentration

bands with high strain values, two of which do not present coalescence in the following

increment.

The strain field prior to coalescence and the corresponding postcoalescence configuration

for the 45° specimen are presented for the slice corresponding to probe 1 in Figure 4.16 and to

probe 2 in Figure 4.17. Figure 4.16b evidences a crack at approximately 45° with respect to

the loading (vertical) direction. The crack position does not correspond to the most strained
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(a)

(b)

Figure 4.14: Slice containing probe 1 of the 90° specimen (a) before (increment 19) and (b)
after coalescence (increment 20). For increment 19, the strain field predicted by the FE

simulation is superimposed with the microstructure and the approximate position of probe
1 is indicated by a blue square.
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(a)

(b)

Figure 4.15: Slice containing probe 2 of the 90° specimen (a) before (increment 10) and (b)
after coalescence (increment 11). For increment 10, the strain field predicted by the FE

simulation is superimposed with the microstructure and the approximate position of probe
2 is indicated by a red square.
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parts of the domain and it crosses a ligament that did not present a strain concentration

band. A highly strain ligament that does not undergo coalescence is observed in this slice

(marked with a green arrow). Similarly, in the slice corresponding to probe 2 (Figure 4.17b),

the observed crack crosses ligaments that gave no indication of coalescence based on the

strain levels, while two highly strained ligaments do not present coalescence.

(a) (b)

Figure 4.16: Slice containing probe 1 of the 45° specimen (a) before (increment 10) and (b)
after coalescence (increment 11). For increment 10, the strain field predicted by the FE

simulation is superimposed with the microstructure and the approximate position of probe
1 is indicated by a blue square.

Although the equivalent strain can be a reliable indicator of coalescence, such as in the

slice containing probe 1 of the 90° specimen (Figure 4.14), the observation of these slices

shows that highly strained instances that do not experience coalescence immediately after

attaining high levels of strain, are not uncommon. This suggests that the equivalent strain

alone is not an appropriate indicator of coalescence. For this reason, Chapter 6 presents a

more extensive quantitative analysis that includes, in addition to the equivalent strain, stress

measures and topological information such as initial intervoid distance.

Time discretization could be an intervening factor. Between two consecutive increments,

the unobserved microstructural evolution could induce changes in the strain distribution.

This could explain why some apparently less strained ligaments seem to undergo coalescence

before apparently more strained ligaments. Additional scans would be necessary to improve

the temporal discretization and confirm this.

Using cubic probes of the size of a DVC element in the FE simulation was useful for

validation purposes, but a more appropriate probe shape and size could be used to take

advantage of the spatial resolution of the FE simulations. Section 4.5 discusses this aspect.
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(a) (b)

Figure 4.17: Slice containing probe 2 of the 45° specimen (a) before (increment 10) and (b)
after coalescence (increment 11). For increment 10, the strain field predicted by the FE

simulation is superimposed with the microstructure and the approximate position of probe
2 is indicated by a red square.

4.5 Effect of probe size on FE strain measures

The local strain measures that were presented in Sections 4.3 and 4.4 were calculated

in cubic probes with the size of a DVC element in order to establish a direct comparison.

Since the FE simulations allow for more local strain measures, the effect of the probe size

is studied in this section. First, a mesh sensitivity analysis is carried out to verify that the

results remain adequately mesh-independent when smaller probe sizes are employed 4.5.1.

Then the effect of the probe size on local strain measures is assessed 4.5.2. The edge of the

cubic probe will be scaled with a factor f . When f = 1, the probe size corresponds to the

size of the DVC element.

4.5.1 Mesh sensitivity analysis

A local mesh refinement was carried out around the probes to reduce mesh dependence

and to correctly reproduce the desired cubic shape. This mesh refinement is depicted in Figure

4.18. To achieve this, in the refined volume, the isotropic metric M was not calculated with

Equation (2.29). Instead, it was affected with the following value:
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M refined volume = diag

(

1

(fm hmin)2

)

, (4.1)

where fm is a coefficient that will be varied to produce different levels of local refinement.

For the sake of brevity, the analysis is presented only for the 90° specimen. In this analysis,

the probe size corresponds to an edge scaling factor f of 0.25. This means that the volume

of the probe size corresponds to
1

64th
the volume of a DVC element.

Figure 4.18: Probe 2 of the 45° specimen is shown in red with the local mesh refinement
around it for a slice of the domain. The voids are shown in blue.

The employed values of fm are 1, 0.5 and 0.25. Figure 4.19 and Figure 4.20 present

the mesh sensitivity results for probe 1 and probe 2, respectively. The maximum absolute

difference between the three data sets are also presented. The equivalent strain in probe 1 is

not sensitive to the variations of fm in the chosen range, and a maximum strain difference

of 0.02 is registered at the end of the simulation. The equivalent strain in probe 2 is more

sensitive. A maximum strain difference of 0.175 is obtained at the end of the simulation. The

strain difference between the results with fm = 0.5 and fm = 0.25 is barely 0.03. A value of

fm = 0.5 is hence considered to produce mesh-independent results and will be used in the

remainder of the study. The drop of strain in the final increment for probe 2 is caused by

increased numerical diffusion of the probe volume due to an insufficiently fine mesh in the

case with fm = 1.
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Figure 4.19: Mesh sensitivity of the equivalent strain in probe 1 of the 90° specimen. The
absolute difference is reported as a gray line.

Figure 4.20: Mesh sensitivity of the equivalent strain in probe 2 of the 90° specimen. The
absolute difference is reported as a gray line.
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4.5.2 Probe size sensitivity analysis

The sensitivity of the local strain measures to the probe size is assessed in this section.

The reported strain measurements correspond to a volume-average of the equivalent strain

in the probe volume. Thus, if significant strain gradients are present, the strain measure

are sensitive to the probe volume size. Three different values of the edge scaling factor f

are employed. The used values are 1, 0.5 and 0.25. In order to have at least two different

probe sizes that can be entirely accommodated in the intervoid ligament of probe 2, for this

probe only, the values of f used are 1, 0.4 and 0.25. An additional strain measure is provided

for each of the probes. This strain measure corresponds to the most local strain measure

possible with the resolution of the FE mesh, i.e., to the strain in the element that contains

the coordinates of the center of the probe, and will be referred to as point probe.

Figure 4.21 and Figure 4.22 provide three-dimensional views of the different employed

probe sizes for the 90° and 45° specimens, respectively. In the case of probe 2 of the 90°

specimen, only the probe sizes corresponding to f = 0.4 and f = 0.25 are shown in order

to provide a clearer visualization. The probe size corresponding to f = 1 of this probe was

shown in Figure 4.1a.

Figure 4.21: Three-dimensional view of the microstructure of the 90° specimen with the
used probe sizes.

The sensitivity of the equivalent strain in probe 1 of the 90° specimen with respect to

the probe size is shown in Figure 4.23. Very little variation is observed across the four
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Figure 4.22: Three-dimensional view of the microstructure of the 45° specimen with the
used probe sizes.

probe sizes. A maximum strain difference of 0.03 is obtained at the end of the simulation.

This is consistent with the observed strain fields (Figure 4.10). The probe is located in a

diffuse zigzag strain pattern without sharp gradients and, for this reason, the local measure

of equivalent strain is not very sensitive to probe size.

Figure 4.24 presents the sensitivity of the equivalent strain of probe 2 of the 90° specimen

with respect to the probe size. The probe size corresponding to f = 1 predicts strain values

that are considerably lower than those predicted by the rest of the probe sizes. When f = 1,

the probe is not small enough to fit in the intervoid ligament and the presence of the void

phase in the probe volume alters the resulting averaged strain. The remaining three probe

sizes correspond to probes that fit in the intervoid ligament and present very similar results

up to increment 14. In the subsequent increments, the prediction of the point probe starts

to diverge from the predictions of the f = 0.40 and f = 0.25 probes and at the end of

the simulation, the former is lower than the latter with a strain difference of approximately

0.1. This difference results from the sharp gradients to which the probe is submitted after

flowing out of the intervoid ligament, which are illustrated in Figure 4.25 Coalescence occurs

at increment 11 for this ligament. The strain values for probes with f = 0.40 are significantly

larger than those reported by Buljac et al. [123]. The results are satisfactory in the sense

that the FE simulations can provide a sensible strain measurements from the beginning of

the simulation and up to coalescence even in very narrow intervoid ligaments.

The sensitivity to probe size of the strain measures associated to probes 1 and 2 of the
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Figure 4.23: Probe size sensitivity of the equivalent strain in probe 1 of the 90° specimen.
The absolute difference is reported as a gray line.

Figure 4.24: Probe size sensitivity of the equivalent strain in probe 2 of the 90° specimen.
The absolute difference is reported as a gray line.
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Figure 4.25: Strain gradient in the neighborhood of probe 2 of the 90° specimen at
increment 19. Probe 2 with f = 0.40 is shown in light blue.
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45° specimen are presented in Figures 4.26 and 4.27 respectively. For probe 1, the four

strain measures are similar with a final maximum strain difference of 0.025. When the probe

size decreases (from f = 1 to f = 0.25), the strain increases monotonically. When the

probe size further decreases, however, the strain measure of the point probe is between those

corresponding to f = 0.25 and f = 0.5. For probe 2, a maximum strain difference of 0.0275 is

obtained and although the results of probe sizes associated to 0.5 and below are considerably

close during the whole simulation, a non monotonic behavior is again observed with respect

to probe size.

Figure 4.26: Probe size sensitivity of the equivalent strain in probe 1 of the 45° specimen.
The absolute difference is reported as a gray line.

To explore the non monotonic behavior found for the strain in probes 1 and 2 of the 45°

specimen, the distribution of the equivalent strain in a slice containing probe 2 of the 45° is

depicted in Figure 4.28 for increments 1, 4 and 8. The probes corresponding to f = 1, f = 0.5

and f = 0.25 are also shown. The heterogeneity of the strain field in the intervoid ligament

explains the non monotonic behavior. For example, part of the largest probe is very close to

the void-matrix interface, which corresponds to the most strained zones. This can increase

the strain measure in the probe beyond the strain registered in the smaller probes. This also

illustrates how the strain measures in the probes depend on its size, shape and orientation.

This dependency is avoided with the use of the point probe. For this reason, the point probe

strain is considered a less ambiguous and more local strain measure. Chapter 6 contains a

discussion on an appropriate strain measure for a coalescence criterion.
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Figure 4.27: Probe size sensitivity of the equivalent strain in probe 2 of the 45° specimen.
The absolute difference is reported as a gray line.

4.6 Conclusions

In this chapter, a detailed comparison of DVC and FE strain measures was carried out.

A macroscopic and two local measures were considered for two different specimens and image

segmentation-related uncertainties were taken into account.

A very good agreement was observed for the macroscopic equivalent strain of both speci-

mens as well as for the precoalescence local strains of the 90° specimen. The rate of increase of

the strain was well predicted for the local measures of the 45° specimen, but the strain values

showed larger discrepancies. The FE strain measures are overall considered satisfactory and

suitable to be used in the study of void coalescence.

The comparison between DVC measurements and FE predictions revealed that the image

segmentation-related uncertainties are negligible with respect to the differences between the

strain measures. This implies that the obtained differences can be used to identify limitations

of the physical and numerical framework.

When the specimen approaches final fracture, an acceleration of the rate of increase of

strain was observed in the DVC results. The FE simulations failed to capture this accelera-

tion. This is thought to be a deficiency of the hardening law for very large strain values since

it does not saturate. This can be improved in future work by using a hardening law with

saturation for large strain values or a behavior law for porous plasticity or a coupled damage

model such as the Lemaitre model [22]. To do so, a new parameter identification procedure

at the microscale would be necessary.
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(a)

(b)

(c)

Figure 4.28: Distribution of the equivalent strain in a slice containing probe 2 of the 45°
specimen for increments (a) 1, (b) 4 and (c) 8. The three used probe sizes are shown.
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To assess the suitability of the equivalent strain as a coalescence indicator, the strain field

evolution was described in detail for different slices of the three-dimensional simulations.

The precoalescence strain fields were compared with the corresponding postcoalescence slices

of the laminography images. The precoalescence equivalent strain proved to be a reliable

coalescence indicator in several instances, but a non negligible number of highly strained

instances that do not undergo coalescence were observed.

The results presented in this chapter call into question the possibility of using the pre-

coalescence strain as a local coalescence criterion. The DVC analyses are less suitable for

this than the FE simulations because of their limited spatial resolution. The improved local

precision of the FE simulations highlights the importance of the combined SRCL-DVC-FE

approach. The FE simulations also open up the possibility of introducing the stress state in

the analysis. A more extensive quantitative analysis considering topological information as

well as strain and stress measures is presented in Chapter 6.

A sensitivity analysis of the local strain measures with respect to the probe size was

carried out. The strain measures were most sensitive in small intervoid ligaments. A point

probe of the size of a FE element provides the most local information without dependence on

probe size, shape and spatial orientation. The punctual information will be used in Chapter

6 in a more complete study of void coalescence. Before that, however, a numerical study of

void coalescence in a three voids cluster is presented in Chapter 5 as an effort to clarify the

observed coalescence mechanisms.

Résumé en français

Dans ce chapitre, une comparaison détaillée des mesures de déformation DVC et FE

(éléments finis) a été réalisée. Une mesure macroscopique et deux mesures locales ont été

analysées pour deux échantillons différents et les incertitudes liées à la segmentation d’images

ont été prises en compte.

Un très bon accord a été observé pour la déformation équivalente macroscopique des deux

échantillons ainsi que pour les déformations locales de précoalescence de l’échantillon à 90°. Le

taux de croissance de la déformation a été bien prédit pour les mesures locales de l’échantillon

à 45°, mais les valeurs de la déformation ont montré des écarts plus importants. Les mesures

de la déformation FE sont globalement considérées comme satisfaisantes et appropriées pour

être utilisées dans l’étude de la coalescence des pores.

La comparaison entre les mesures DVC et les prédictions FE a révélé que les incerti-

tudes liées à la segmentation d’images sont négligeables par rapport aux différences entre les

mesures de déformation. Cela implique que les différences obtenues peuvent être utilisées

pour identifier les limites du cadre physique et numérique.
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Lorsque l’échantillon approche de la rupture finale, une accélération de la vitesse de

déformation a été observée dans les résultats de la DVC. Les simulations FE n’ont pas réussi

à capturer cette accélération. Ceci est considéré comme une déficience de la loi d’écrouissage

pour des très grandes valeurs de déformation, car cette loi ne sature pas. Cela peut être

amélioré dans des travaux futurs en utilisant une loi d’écrouissage avec saturation pour des

valeurs de déformations importantes, une loi de comportement pour la plasticité poreuse ou

un modèle d’endommagement couplé tel que le modèle de Lemaitre [22]. Pour ce faire, une

nouvelle procédure d’identification des paramètres à l’échelle microscopique serait nécessaire.

Pour évaluer la pertinence de la déformation équivalente en tant qu’indicateur de coales-

cence, l’évolution du champ de déformation a été décrite en détail pour différentes tranches

des simulations tridimensionnelles. Les champs de déformation de pré-coalescence ont été

comparés aux tranches post-coalescence correspondantes des images de laminographie. La

déformation équivalente de pré-coalescence s’est révélée être un indicateur de coalescence

fiable dans plusieurs cas, mais un nombre non négligeable d’instances très sollicitées ne subis-

sant pas de coalescence ont été observées. Les résultats présentés dans ce chapitre remettent

en question la possibilité d’utiliser la déformation de pré-coalescence comme critère de coa-

lescence locale. Les analyses DVC s’y prêtent moins bien que les simulations FE en raison

de leur résolution spatiale limitée. La précision locale améliorée des simulations FE souligne

l’importance de l’approche combinée SRCL-DVC-FE. Les simulations FE ouvrent également

la possibilité d’introduire l’état de contrainte dans l’analyse. Une analyse quantitative plus

approfondie prenant en compte des informations topologiques ainsi que des mesures de dé-

formation et de contrainte est présentée dans le chapitre 6.

Une analyse de sensibilité des mesures de déformation locales par rapport à la taille du

capteur a été réalisée. Les mesures de la déformation étaient les plus sensibles dans les petits

ligaments inter-cavités. Un capteur de la taille d’un élément FE fournit les informations les

plus locales sans dépendre de la taille, de la forme et de l’orientation spatiale de la sonde.

Les informations ponctuelles seront utilisées dans le chapitre 6 dans une étude plus complète

de la coalescence des pores. Avant cela, cependant, une étude numérique de la coalescence

des pores dans un groupe de trois pores est présentée dans le 5 dans le but de clarifier les

mécanismes de coalescence observés.
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Chapter 5

Void growth and coalescence in a

three-dimensional non-periodic void

cluster
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5.1 Introduction

Void coalescence is usually categorized into three different mechanisms [57,62]. The first

and most common mechanism is coalescence by internal necking of the intervoid ligament. In

the second mechanism, two voids seemingly wide apart, are suddenly united by a narrow void

sheet. This is referred to as void-sheet mechanism. The third and less common mechanism is

known as necklace coalescence or coalescence in columns, in which voids link up along their

length.

Void-sheet coalescence was observed by Cox and Low [203] in an AISI 4350 alloy (see

Figure 5.1). The authors identified these void sheets as planar features formed by small voids,

and oriented at 45° with respect to the tensile axis. The orientation of this feature coincides

with the direction of maximum shear. This void-sheet mechanism can have a negative impact

on the ductility of the material [203,204].

Figure 5.1: Instance of void-sheet mechanism observed by Cox and Low [203] in an AISI
4350 alloy.

Recent efforts have employed three-dimensional imaging techniques, such as X-ray to-

mography or Synchrotron radiation computing tomography (SRCT), to study and improve

the understanding of ductile damage mechanisms [143–145,205].

Babout et al [206] studied damage in model metallic materials via X-ray tomography by

carrying out in situ tensile tests in two different aluminum matrices reinforced with spherical

hard ceramic particles. The authors observed coalescence (Figure 5.2) in the highest strained

regions between voids at approximately 45 deg from the tensile direction.

In the analysis of SRCL images of nodular graphite cast iron, various instances of ap-

parent void-sheet coalescence have been observed [123]. Two examples of these instances are

presented in Figure 5.3. The tensile direction corresponds to the vertical direction. Two
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(a) Hard matrix (b) Soft matrix

Figure 5.2: Coalescence instances observed by Babout et al. [206]. Figures adapted
from [206].

coalescence instances are indicated in red in Figure 5.3b. As noted in Chapter 4, even though

the two-dimensional slices suggest the occurrence of the void-sheet mechanism, the three-

dimensional images hint at a possible intervention of voids located close to the observed

coalescence; the work presented in this chapter aims at investigating numerically the possible

intervention of neighboring voids on such coalescence modes.

(a) Before coalescence (b) After coalescence

Figure 5.3: Apparent void-sheet instance observed in a two-dimensional slice of a
laminography scan of nodular cast iron [9, 10].

This chapter constitutes a parenthesis in terms of methodology. Instead of the SRCL-

DVC-FE framework, a simpler ad-hoc numerical methodology is proposed to investigate three-

dimensional effects on the apparent void-sheet mechanisms. A three-dimensional non-periodic

117



cluster of three voids is investigated in a parametric study. Since a classical unit-cell approach

is not suitable for this task, a methodology for the study of three-dimensional non-periodic

clusters of voids and/or particles is proposed. In section 5.2, the proposed methodology and

the parametric study are described. Results are presented and discussed in Section 5.3, and

conclusions are drawn in Section 5.4.

5.2 Methodology

5.2.1 Methodology for the study of void and/or inclusion clusters

Motivation

The use of three-dimensional imaging in conjunction with FE modeling brings about

opportunities to study ductile damage in more realistic situations. This increase in realism

implies an increase in complexity and microstructural parameters are observed rather than

controlled. For example, in a typical unit-cell, the intervoid distance is constant and imposed

with the cell geometry; in a FE analysis of an immersed microstructure, an intervoid distance

distribution is obtained when the image is immersed. To verify an hypothesis or investigate

a specific effect without necessarily recurring to periodic arrangements and idealized shapes,

it might be desirable 1. to control a given microstructural variable or 2. to study a certain

isolated configuration or clusters of voids and/or particles. This is the main motivation for

the methodology proposed in this work.

Description

A methodology for the study of void and/or inclusion clusters, is proposed here as a

complement to FE analysis of realistic microstructures. It has the following defining charac-

teristics:

• dedicated to the study of void and/or inclusion non-periodic clusters.

• Possibility of using microstructural features of non-idealized shapes.

• Reference to a far-field stress.

• The calculations can be controlled with a given stress state in terms of stress triaxiality

ratio and Lode parameter.

• Possibility of imposing arbitrary non-proportional loadings.
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• Possibility of obtaining detailed information of the studied configuration such as the

individual void volume evolution or the evolution of the minimum intervoid distance

between two voids. (See Section 5.3 for an example).

A domain with an embedded microstructural configuration is modeled. The size of the

domain is considerably larger than the embedded configuration to assure negligible interaction

with the boundaries. The microstructural configuration analyzed in this study is depicted in

Figure 5.4a.

The cubic domain is depicted in Figure 5.4b and the boundary conditions are schematized.

Three symmetry planes are used (red arrows in Figure 5.4b). The vertical velocity is imposed

on the top plane (green arrow in Figure 5.4b), and is calculated to impose a given vertical

logarithmic strain. The horizontal velocities corresponding to the perpendicular directions

of the two remaining faces (blue arrows in Figure 5.4b) are imposed. In order to obtain a

desired stress state in the domain, these horizontal velocities are iteratively calculated during

the simulations via an optimization algorithm. A simplex algorithm [207] implemented in

the open-source nonlinear-optimization library NLopt [208] and coupled with CimLib [156],

was used. The stress state is imposed in terms of stress triaxiality ratio T and normalized

Lode angle θ̄. For all the simulations presented here, constant values of T = 1 and θ̄ = 0.34

were used; a high triaxiality value was chosen to promote void growth, and value of the

normalized Lode angle is similar to those found locally in the vicinity of void-sheet like

instances in micromechanical FE simulations with immersed microstructures and realistic

boundary conditions such as those documented in the work of Shakoor et al. [10].

The described methodology differentiates itself from unit-cell studies such as, for example,

the works of Tvergaard [43] or Khan and Bhasin [45], by its focus on a isolated non-periodic

void cluster. Although the applied boundary conditions result in periodicity, the relative

size of the void cluster with respect to the domain ensures that the interaction with the

boundaries is inconsequential.

5.2.2 Parametric study

This parametric study has two objectives. The first one is to provide a general description

of the behavior of a three voids cluster during the stages of growth and coalescence. The

second objective is to assess if such a configuration can be related to the observed instances

of void-sheet coalescence (See section 5.1). In this study, the term coalescence refers to actual

void impingement and not to the plastic localization stage that precedes it. A pair of voids

is herein said to undergo coalescence when the intervoid distance reaches zero.

Since the parametric study is computationally demanding, the matrix is initially consid-

ered elasto-perfectly plastic (Young’s modulus E = 210000MPa, Poisson’s ratio ν = 0.3 and
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(a) (b)

Figure 5.4: (a) Scheme of initial configurations of the three voids and (b) scheme of
computational domain.

yield stress σy = 290MPa) and the void phase is modeled as a compressible Newtonian fluid

(viscosity η = 2.1MPa s−1)

Studied configuration

The three voids cluster is depicted in Figure 5.4a. It is constituted by three voids with a

radius R = 50µm: two of them will be referred to as external voids and the third one will be

referred to as the internal void. The line that connects the centers of the two external voids

forms 45° with the main loading direction (the vertical direction). The vertical position (y-

direction) of the center of the internal void is located exactly at mid-height of the domain and

hence between the two external voids. The internal void is shifted in the thickness direction

(z-direction) by a given distance.

Parameters

To construct different initial configurations, the relative positions of the voids in the three

voids cluster were described with two parameters, which are depicted in Figure 5.4a along

with a scheme of a given initial configuration. The two adimensional parameters are: d1 the

distance between the center of the domain and the center of the external voids divided by

R, and d2, the distance between the center of the domain and the center of the internal void

divided by R.

The explored parametric space is summarized in Table 5.1; the accomplished simulations
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Table 5.1: Explored parametric space.

are indicated by a cross. A total of 16 simulations were carried out. The range between 1

and 3.25 was used for d1, and the range between 1 and 4 was used for d2.

5.3 Results

Results for a single simulation with d1 = 1 and d2 = 1 are first discussed in Section 5.3.1.

Subsequently, the results of the parametric study are presented in Sections 5.3.2, 5.3.3 and

5.3.4.

5.3.1 Results for the case with d1 = 1 and d2 = 1

The results for the case with d1 = 1 and d2 = 1, indicated in red in Table 5.1, are now

discussed. A plastic localization band, shown in Figure 5.5 at 0.7% of imposed macroscopic

equivalent strain, is formed between the two external voids. The internal void presents

a heterogeneous growth acceleration. The preferred growth direction points towards the

position of the acceleration band between the external voids. These accelerated void growth

eventually leads to coalescence by internal necking between the internal void and the external

voids.

Figure 5.6a shows a three-dimensional view of the voids after coalescence at 0.13% of

macroscopic equivalent strain. The shape of the internal void significantly deviates from a

spheroidal shape; the void develops a high curvature zone that extends towards the strain lo-

calization band between the external voids. This deviation puts in evidence the heterogeneous

acceleration of void growth due to the interaction with the external voids.

Figure 5.6b presents a two-dimensional cut of the same simulation also after coalescence

at 0.13% of macroscopic equivalent strain. In this depiction of the void arrangement, the
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Figure 5.5: Strain localization band in a plane containing the external voids at 0.7% of
imposed macroscopic equivalent strain. The minimum intervoid distance is indicated by a

red line and its middle point by a black dot.

bulk of the internal void cannot be seen. Instead, a narrow void band between the external

voids is visible. This narrow region is the part of the internal void that coincides with the

shown cross-section. If only this image of the void arrangement is available and the presence

of a third void is ignored, it might be interpreted as an instance of void-sheet coalescence.

This supports the hypothesis that three-dimensional interactions between voids can produce

coalescence of multiple voids that highly resemble the void-sheet mechanism if observed from

a two-dimensional perspective.

This coalescence mechanism between 3 voids will be described by considering three ob-

servables: the normalized void volume of each void (Figure 5.7), the minimum intervoid

distance for each pair of voids (Figure 5.8) , and the equivalent plastic strain at the middle

point of the shortest path between each pair of voids (Figure 5.9). The minimum intervoid

distance and the middle point of the shortest path are schematized in Figure 5.5 for a pair

of voids with a red line and a black dot, respectively.

In Figure 5.7, the normalized void volume is presented for each void as a function of the

imposed macroscopic equivalent strain εyy; the end of the curves corresponds to the value

of εyy at the moment of coalescence. The behavior of the two external voids is identical

since there is no asymmetry to differentiate them. The internal void, however, presents an

accelerated void growth that, at coalescence, represents an additional 10% volume increase
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(a) Three-dimensional view (b) Two-dimensional view

Figure 5.6: Configuration of voids after coalescence at 0.13% of macroscopic equivalent
strain for d1 = 1 and d2 = 1.

with respect to the external voids. Since all the voids are subject to the same macroscopic

stress state, it is the local differences of stress state, i.e., the interaction with the external

voids, that induce this accelerated void growth and promote the formation of the observed

high curvature zone (Figure 5.6a). This high curvature region will, in turn, modify the stress

state ahead of the resulting notch-like feature and further accelerate void growth.

Since the behavior of the two external voids is identical, only two pairs of voids are con-

sidered in the following: the external-external pair and one of the two internal-external pairs.

Figure 5.8 presents the evolution up to coalescence of the minimum intervoid distance for

these two pairs of voids. As the domain is deformed, both curves decrease monotonically and

almost linearly with nearly identical rates of decrease. The internal-external pairs experience

coalescence when their minimum intervoid distance approaches zero.

Figure 5.9 exhibits the evolution of the plastic strain at the middle point of the shortest

path between voids. At the middle point of the external-external pair, the equivalent strain

evolves linearly with a slope of approximately 7.8, i.e., even if no exponential trend is observed,

this local strain increases a lot more rapidly than the strain imposed on the domain. The

equivalent strain at the middle point of the internal-external pair increases exponentially. This

is consistent with the observed final configuration since it is the internal-external pair that

undergoes coalescence by internal necking. Coalescence occurs at a macroscopic equivalent

strain of 0.11.

The analysis of the case with d1 = 1 and d2 = 1 provided evidence of the heterogeneous

void growth that results from the interaction between the three voids in the cluster. The
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Figure 5.7: Normalized void volume for d1 = 1 and d2 = 1.

coalescence of the cluster was described through three observables: the normalized void

growth, the minimum intervoid distance and the equivalent strain at the middle point of the

shortest path between each pair of voids. Sections 5.3.2 and 5.3.3 investigate further the

described coalescence mechanism by exploring how these three observables evolve when the

relative positions of the voids in the cluster change.

5.3.2 Effect of d2

The effect of d2 is examined in this subsection, i.e., the position of the external voids

is fixed (d1 = 1), and the effect of changing the position of the internal void is examined.

This corresponds to exploring the design space in the sense indicated in blue in Table 5.1.

The evolution of void volume, intervoid distance and local plastic strain as functions of the

macroscopic equivalent strain, change with increasing d2. These evolutions are described in

Figures 5.10, 5.11 and 5.12, respectively. Figure 5.13 presents three-dimensional views of the

voids just after coalescence.

As described in section 5.3.1, the case with d2 = 1 (Figure 5.10a) presents a linear

evolution in terms of void volume. When d2 increases, the void volume evolution changes
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Figure 5.8: Minimum intervoid distance for d1 = 1 and d2 = 1.

and presents an exponential behavior. The d2 = 1 case (Figure 5.10a) presents a normalized

void growth of about 1.95 for the internal void at coalescence, and it increases up to 7.8 for

the case with d2 = 4 (Figure 5.10d).

Even when d2 is 4 times d1, the internal void presents more void growth than the external

voids. Since all voids are subject to the same macroscopic stress state, this shows that amount

of void growth undergone by a given void can be a complex function of its position in a given

void cluster.

The evolution of the relationship intervoid distance-macroscopic equivalent strain is de-

picted in Figure 5.11. In the same manner as for the normalized void volume, the linear

behavior of the intervoid distance observed for d2 = 1 disappears when d2 increases.

For the cases with d2 = 1 (Figure 5.11a) and d2 = 1.75 (Figure 5.11b), the internal-

external pair of voids are closer in the initial configuration and coalesces first. Also for the case

d2 = 3.25 (Figure 5.11c), coalescence of the internal-external pair is observed first even if the

initial intervoid distance of this pair represents approximately 140% of the intervoid distance

of the external-external pair. For the case d2 = 4 (Figure 5.11d), the initial intervoid distance

of the internal-external pair is 160% that of the external-external pair, and a simultaneous
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Figure 5.9: Equivalent plastic strain at middle point of shortest path between voids for
d1 = 1 and d2 = 1.

coalescence between the 3 voids is observed (Figure 5.13d).

Figure 5.12 presents the evolution the equivalent plastic strain at the middle point of the

shortest path between each pair of voids, for four different values of d2. The last value of the

macroscopic equivalent strain of each pair of curves represents the value for which coalescence

was observed; it increases monotonically with d2, and goes from 0.11 (Figure 5.12a) to 0.39

(Figure 5.12d). Irrespectively of the value of the macroscopic equivalent strain, the local

strain just before coalescence is in the range of 2.5-3.0

The plastic strain in the middle of the internal-external pair behaves exponentially for all

four cases. For the the external-external pair, it goes from a linear behavior to an exponential

behavior as d2 increases, and it is practically superimposed with that of the internal-external

pair when d2 reaches a value of 4.

Figure 5.13 presents three-dimensional views of the configuration of the voids just after

coalescence for the four cases described in this section. The perspective in each image was

adjusted to try to capture well the resulting arrangement. The notch-like feature resulting

from the formation of the high curvature region is present in all four cases even if the void

shapes vary considerably between the different configurations. For d2 inferior to 4, the co-
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(a) d2 = 1 (b) d2 = 1.75

(c) d2 = 3.25 (d) d2 = 4

Figure 5.10: Effect of d2 on the normalized void volume for a fixed value of d1 = 1.

alescence by internal necking is observed between the internal-external pairs. For d2 = 4

simultaneous coalescence between the three voids is obtained.

Effect of the internal void on void growth

In this section, the effect of the presence of the internal void on void growth is studied.

Figure 5.14 presents the normalized void volume of the external voids for different values of

d2 and a fixed value of d1 = 1. As the internal void moves away from the void cluster, the

external void grows more slowly and the domain deforms further before coalescence. In the

limit case, the internal void is so far away from the cluster that there is no more influence of

this void on the growth of the external voids. This case was modeled by simulating only the

two external voids in absence of the internal void and is also represented in Figure 5.14. In

this case, coalescence occurs later and the void growth rate is lower.

Figure 5.14 also presents the prediction of the Rice-Tracey model [11] along with a simu-
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(a) d2 = 1 (b) d2 = 1.75

(c) d2 = 3.25 (d) d2 = 4

Figure 5.11: Effect of d2 on the minimum intervoid distance for a fixed value of d1 = 1.

lation with a single void under the same conditions. The single void simulation is reasonably

close to the Rice-Tracey prediction. The slight underestimation produced by the Rice-Tracey

model is consistent with the analysis provided by Huang [209] on dilatation rates of spheri-

cal voids. The presence of a second void (simulation with no internal void) accelerates void

growth and thus the result deviates from the Rice-Tracey prediction. When a third void

is introduced (the rest of the simulations presented in Figure 5.15), the results deviate even

further from the Rice-Tracey model even for large values of d2. Given that all the simulations

were carried out under the same stress triaxiality ratio, these results illustrate the importance

of considering the interactions between voids in heterogeneous arrangements.

Figure 5.15 depicts the final configuration after coalescence of the void cluster in the

presence of the internal void (Figure 5.15a) and in the absence of the internal void (5.15b).

When the internal void is present, coalescence between the internal void and the external

voids occurs very early (imposed equivalent strain of 0.11). In the absence of the internal

void, coalescence between the external voids occurs much later (imposed equivalent strain

of 0.46), i.e., four times later than in the presence of the internal void. The appearance of
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(a) d2 = 1 (b) d2 = 1.75

(c) d2 = 3.25 (d) d2 = 4

Figure 5.12: Effect of d2 on the equivalent plastic strain at middle point of shortest path
between voids for a fixed value of d1 = 1.

the coalesced voids in Figure 5.15b resembles the experimental observations of Weck and

Wilkinson [199] in metallic sheets with laser drilled holes when the holes were oriented at

45 deg with respect to the loading direction; the voids first undergo considerable volume

change by mainly elongating in the loading direction, and then present coalescence far from

their equator.

5.3.3 Effect of d1

This section describes how the evolution of normalized void volume, minimum intervoid

distance and plastic strain in the middle point between the shortest path between voids,

changes with d1 for a fixed value of d2 of 1.75; the position of the internal void will be fixed

and the external voids will change their position (sense indicated in green in Table 5.1). Four

cases are examined. The fourth case (d1 = 3.25), does not present coalescence up to the end

of the simulation which corresponds to a final macroscopic equivalent strain of 0.5.
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(a) d2 = 1 (b) d2 = 1.75

(c) d2 = 3.25 (d) d2 = 4

Figure 5.13: Final configuration of voids after coalescence for d1 = 1 and different values of
d2.

The way how the evolution of void volume changes with d1, is depicted in Figure 5.16. In

all cases an exponential increase is observed, and the increase of the internal void volume is

superior to that of the external voids. The difference of normalized void growth between the

internal and external voids increases with d1 and goes from 0.3 when d1 = 1 (Figure 5.16a)

to 0.95 when d1 = 2.5 (Figure 5.16c).

Figure 5.17 demonstrates the effect of d1 on the evolution of the minimum intervoid

distance. In these four cases, the initial intervoid distance in the external-external pair is

greater than that of the internal-external pair. The internal-external pair presents a higher

rate of decrease. The curves change in a similar manner when d1 is increased: an accelerated

decrease of the intervoid distance is observed for lower values of d1, and it decreases more

linearly as d2 increases.

The effect of d1 on the evolution of the equivalent plastic strain at the middle point of

the shortest paths between voids, is illustrated in Figure 5.18. For both pairs, the evolution

of the equivalent strain is exponential for low values of d1 and transitions towards linearity

when d1 increases. The value of the macroscopic equivalent strain at coalescence increases
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Figure 5.14: Effect of the internal void on the growth of the external void.

(a) With internal void (d2 = 1) (b) Without internal void

Figure 5.15: Final configuration of voids after coalescence.

monotonically with increasing d1. The cases with d1 = 1 and d1 = 1.75 present, like the

cases in section 5.3.2, a value of equivalent strain at coalescence in the middle of the internal-
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(a) d1 = 1 (b) d1 = 1.75

(c) d1 = 2.5 (d) d1 = 3.25

Figure 5.16: Effect of d1 on the normalized void volume for a fixed value of d2 = 1.75.

external in the range between 2.5 and 3.0. The case with d1 = 2.5 presents a higher value

with 3.8, and case with d1 = 3.25 presents no coalescence and a smaller value of plastic strain

of 1.7.

5.3.4 Global results and discussion

In Figure 5.19, a response surface is depicted. This response surface presents the macro-

scopic equivalent strain at coalescence as a function of d1 and d2. Accomplished simulations

are indicated as a blue dot. The white zones indicate that coalescence was not observed up

to the end of the simulation, i.e., up to 0.5 of macroscopic equivalent strain. Coalescence was

observed for a wide range of strains: from 0.1 up to 0.5.

The parametric space could be explored more assiduously if the presented coalescence

mechanisms is to be described more in detail. In particular, the transitions between the

parameter combinations that exhibit coalescence and those that don’t should be further
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(a) d1 = 1 (b) d1 = 1.75

(c) d1 = 2.5 (d) d1 = 3.25

Figure 5.17: Effect of d1 on the minimum intervoid distance for a fixed value of d2 = 1.75.

explored if quantitative information is to be used. However, the objective of the parametric

study was to show that the coalescence mechanisms between three voids can be observed

for many different initial configurations. Figure 5.19 demonstrates that this mechanism is

obtained for a wide range of values of d1 and d2 given that the domain is sufficiently deformed.

The acceleration increase of the local equivalent strain with respect to the far-field strain

has already been reported in the work of Bandstra and Koss [48] for a Gurson material model;

the authors observed a more complex localization behavior. The use of an elastic-perfectly

plastic material in this work highlighted the interaction of the voids while neglecting the

effect of secondary voids, which was desirable to study the hypothesis that three dimensional

interactions could lead to apparent void-sheet coalescence instances.

As seen in sections 5.3.2 and 5.3.3, most of the observed coalescence instances in the

parametric study present a local strain before coalescence in the range of 0.25-0.3. The

evolution of the intervoid distance provides a very natural threshold for coalescence by internal

necking: coalescence occurs when the minimum intervoid distance for a pair of voids reaches
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(a) d1 = 1 (b) d1 = 1.75

(c) d1 = 2.5 (d) d1 = 3.25

Figure 5.18: Effect of d1 on the equivalent plastic strain at middle point of shortest path
between voids for a fixed value of d2 = 1.75.

zero. The simple trends observed for this variable in the results of the simulations, are

promising in the sense that they could be described with simple evolution laws. This idea is

explored in Chapter 6.

5.3.5 Effect of hardening

The initial parametric study presented in this chapter used an elasto-perfectly plastic

material to decrease the computational burden. This allowed to confirm that a three-voids

cluster can coalesce in such a way that resembles the void-sheet mechanism when a two-

dimensional slice is observed. This mechanical behavior, however, is not representative of

the studied nodular cast iron. In order to assess the influence of hardening on this coales-

cence mechanism, the parametric study was extended considering hardening. The Ludwik

hardening law was used:
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Figure 5.19: Equivalent strain of the domain at coalescence as a function of d1 and d2. The
blue dots indicate the accomplished simulations.

σeq = σy +Kεn
pl. (5.1)

A total of 85 additional FE simulations were carried out for three different levels of

hardening corresponding to K = 95.5 MPa, K = 191 MPa and K = 382 MPa and a

constant value of n = 0.35. A two dimensional response surface for each value of K is

provided in Figure 5.20. The blue dots indicate accomplished FE simulations. The white

zones denote lack of information and the black zones denote parameters for which coalescence

was not observed. As hardening increases, the black zone extends in the parametric space,

i.e., coalescence is observed less frequently. When hardening is present, the hardened zones

become more difficult to deform, which promotes a more diffuse and uniform deformation

distribution. The observed coalescence mechanism between the three voids is still present

even for K = 382 MPa and is illustrated for d1 = 1 and d2 = 1 in Figure 5.21.

5.4 Conclusions

A methodology for the study of three-dimensional non-periodic clusters of voids and/or

particles was proposed as a complementary approach in the study of the micromechanisms

of ductile damage.

The proposed methodology was put in use to assess if the interaction with neighboring

voids could play a role in apparent void-sheet instances observed in different materials. The

135



(a) K = 95.5 MPa

(b) K = 191 MPa

(c) K = 382 MPa

Figure 5.20: (a) Original slice at mid-thickness of the 90° specimen, and (b) after applying
the 3D-mean filter.

FE simulations of a cluster with three voids show that accelerated and non-homogeneous void

growth is promoted in the vicinity of the plastic localization band; a high curvature region

that grows towards the localization band is formed. The coalescence mechanism between the

voids corresponds to internal necking.
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(a) Three-dimensional view (b) Two-dimensional view

Figure 5.21: Configuration of voids after coalescence for simulation with hardening and for
d1 = 1 and d2 = 1.

If a two-dimensional cut of the voids after coalescence is made, the resulting image con-

siderably resembles the experimental observations. This supports the hypothesis that three

dimensional interactions can play a role in the apparent void sheet instances. More gener-

ally, these results point at the importance of considering three-dimensional and non-periodic

phenomena in the study of ductile damage at the microscale.

The predictions of the Rice-Tracey void growth model were compared with simulations

with one, two, and three voids. When one void is considered, the results of the simulation are

close to the Rice-Tracey prediction. When two or three voids are simulated, the Rice-Tracey

model deviates significantly from the numerical results. This highlights the importance of

considering the effect of intervoid interactions in non-simplified configurations.

The results of the parametric study provided a detailed description of the void growth

and coalescence of the studied three voids cluster and the effect of the initial configuration

on the coalescence was studied. It was observed that under an identical far-field stress, the

growth undergone by a void depends on its relative position in the cluster. Further work is

necessary to better understand the complex interactions between voids in realistic clusters.

The described coalescence mechanism was observed in the absence and in the presence of

strain hardening. The latter represents more realistically the mechanical behavior of nodular

cast iron. This shows that three-dimensional effects can indeed be at the origin of the pre-

viously observed void-sheet instances. Analysis of the fracture surfaces have, however, given

evidence of the intervention of a secondary population of voids in the coalescence mecha-

nisms [123]. This suggests that in nodular cast iron, coalescence occurs by void impingement
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in some instances by pure internal necking and in some instances with internal necking with

the intervention of secondary voids.

Results from the parametric study suggest that the equivalent plastic strain at the middle

point of the shortest path between voids or the evolution of the minimum intervoid distance,

might be appropriate coalescence indicators. Chapter 6 explores this further.

Résumé en français

Dans ce chapitre, une méthodologie pour l’étude des groupes tridimensionnels non péri-

odiques de pores et/ou de particules a été proposée comme approche complémentaire dans

l’étude des micromécanismes d’endommagement ductile. La méthodologie proposée a été

utilisée pour évaluer si l’interaction avec les pores voisins pouvait jouer un rôle dans les

occurrences apparentes du mécanisme « void-sheet » observées dans différents matériaux.

Les simulations FE d’un groupe de trois pores montrent que la croissance accélérée et

non homogène des pores est favorisée dans le voisinage de la bande de localisation plastique

; une région à forte courbure qui se développe vers la bande de localisation est formée. Le

mécanisme de coalescence entre les pores correspond à la striction interne.

Si une visualisation bidimensionnelle des pores après la coalescence est réalisée, l’image ré-

sultante ressemble considérablement aux observations expérimentales. Cela confirme l’hypothèse

voulant que des interactions tridimensionnelles puissent jouer un rôle dans les instances du

mécanisme « void-sheet » apparent. Plus généralement, ces résultats soulignent l’importance

de prendre en compte les phénomènes tridimensionnels et non périodiques dans l’étude de

l’endommagement ductile à l’échelle microscopique.

Les prédictions du modèle de croissance de pores de Rice-Tracey ont été comparées à des

simulations avec un, deux et trois pores. Lorsqu’un seul pore est considéré, les résultats de

la simulation sont proches de la prédiction de Rice-Tracey. Lorsque deux ou trois pores sont

pris en compte, le modèle de Rice-Tracey s’écarte considérablement des résultats numériques.

Cela souligne l’importance de prendre en compte l’effet des interactions entre pores dans des

configurations non simplifiées.

Les résultats de l’étude paramétrique ont fourni une description détaillée de la croissance

et de la coalescence des pores dans le groupe de trois pores étudié et l’effet de la configuration

initiale sur la coalescence a été analysé. Il a été observé que sous un champ de déformation

lointain identique, la croissance subie par un pore dépend de sa position relative dans le

groupe. Des travaux supplémentaires sont nécessaires pour mieux comprendre les interactions

complexes entre les pores dans une porosité réaliste.
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Le mécanisme de coalescence décrit a été observé en l’absence et en présence d’un écrouis-

sage. Ce dernier représente de manière plus réaliste le comportement mécanique de la fonte

à graphite sphéroïdal. Cela montre que les effets tridimensionnels peuvent en effet être à

l’origine des occurrences précédemment observées du mécanisme « void-sheet ». L’analyse de

la surface de rupture a toutefois mis en évidence l’intervention d’une population secondaire

de pores dans les mécanismes de coalescence [123]. Ceci suggère que dans la fonte nodulaire,

la coalescence se produit par striction interne pure dans certains cas ; et, dans d’autres cas,

par striction interne avec intervention de pores secondaires.

Les résultats de l’étude paramétrique suggèrent que la déformation plastique équivalente

au milieu du plus court chemin entre pores ou l’évolution de la distance minimale entre pores

pourrait constituer un indicateur de coalescence approprié au sein de la porosité globale du

matériau. Le chapitre 6 explore cela plus avant.
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Chapter 6

Towards a micromechanical

coalescence model in nodular cast

iron
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6.1 Introduction

In general, void coalescence can occur by three different mechanisms: coalescence by in-

ternal necking, void-sheeting, and coalescence in columns (necklace mode) [62]. In Chapter

3, the uncertainty related to image segmentation in the SRCL-DVC-FE framework was es-

timated. Chapter 4 validated the FE strain measurements by comparison with DVC. The

results of Chapter 5 suggest that only internal necking, with our without the intervention of

secondary voids, is present in the mechanical the studied nodular cast iron specimens. This

chapter constitutes a study of void coalescence by internal necking in nodular cast iron.

At the macroscale, when using porous plasticity behavior laws such as the Gurson model

[27], coalescence criteria based on critical porosity [13, 210], critical stress values [133], or

average inter-cavities distance [210] have been employed.

A micromechanical model for void coalescence was proposed by Thomason [61]. The

critical stress value that signals the onset of coalescence in this model depends on void spacing

and aspect ratio. The Thomason model has seen different extensions and improvements.

Localization in planes not perpendicular to the principal loading direction was accounted for

in the extension by Scheyvaerts et al. [211]. Other works have focused on accounting for a

second population of voids [212].

Efforts to advance coalescence modeling have relied heavily on unit-cell calculations [133,

213,214]. This imposes periodicity in the studied microstructure.

The term coalescence is often used to describe the transition from diffuse plastic defor-

mation to a localized phase of plastic deformation during which the material outside of the

localization band undergoes unloading [63]. Although this terminology is useful in unit-cell

studies, these two distinct phases are harder to recognize in the simulation of complex and

heterogeneous non-periodic microstructures. For this reason, in this work, the term coales-

cence is used to describe actual void impingement.

This chapter documents recent efforts towards establishing a micromechanical coalescence

criterion by means of the SRCL-DVC-FE framework. The accuracy of the FE simulations

is discussed in light of a comparison with the laminography images in Section 6.2.1 Then,

the feasibility of using the precoalescence strain in the intervoid ligament as a coalescence

indicator, is assessed in Section 6.2.3. An attempt to describe the precoalescence strain as

a function of the stress state is presented in Section 6.2.4. The suitability of three different

damage criteria as coalescence indicators is assessed in Section 6.2.5. A coalescence criterion

based on the evolution of the intervoid distance is proposed in Section 6.2.6 and a probabilistic

approach is proposed in Section 6.2.7. A discussion of the results is presented in Section 6.3

and Section 6.4 summarizes the conclusions and perspectives of this chapter.
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6.2 Results and analysis

The analysis in this chapter is restricted to the 90° specimen. A simple automatic co-

alescence detection algorithm was implemented in the FE framework. It is a fully three-

dimensional methodology to avoid misinterpretations based on two-dimensional slices. Its

use allowed 18 potential coalescing void pairs to be identified among the 7626 possible void

pairs corresponding to the 124 voids present in the computational domain. Figure 6.1 dis-

plays the position of the intervoid ligaments connecting the 18 void pairs. Out of these 18

void pairs, 12 of them are retained for the rest of the study and the remaining 6 are used for

validation purposes.

Figure 6.1: Three-dimensional view of the simulated microstructure. The voids are shown
in gray and the positions of the 18 chosen intervoid ligaments are displayed in red.

The 12 retained void pairs will be analyzed in this work to evaluate the feasibility of

establishing a micromechanical void coalescence criterion in nodular cast iron.

A thorough mesh verification procedure has been carried out in Chapter 3. Local mesh

refinement is employed in selected intervoid ligaments to provide strain measurements that

are mesh-independent [215]. This is illustrated in Figure 6.2 for a pair of voids. In the gray

volume, a mesh size of hmin/4 is imposed.

6.2.1 Comparison with laminography images

In chapter 4, a detailed comparison of strain measurements obtained from DVC and

the current FE simulations was carried out at two different probe volumes. The conclusion

from this study was that the FE simulations provided accurate strain values, but had the

tendency to underestimate the strain acceleration during the last two increments. Based on

this previous study, the FE strain measurements are considered here as accurate and reliable.

To evaluate the capacity of the FE simulations of predicting the correct instant of coa-
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Figure 6.2: Local mesh refinement in the intervoid ligament of a pair of voids (blue and red
volumes). The gray volume indicates the zone affected by the local refinement.

lescence, a complementary comparison is presented in this section. Determining the instant

of coalescence of a void pair in the FE simulations is straightforward with the use of the

coalescence detection algorithm. With this information, the effort required to determine the

instant of coalescence according to the laminography images of the in-situ test, is reduced

since a good approximation of the position of the void pair is provided by the FE simulation.

The instant of coalescence according to the laminography images was determined by careful

examination of these three-dimensional images.

The comparison of the instant of coalescence is expressed in Figure 6.3 in terms of the

volume-averaged strain in the computational domain or macroscopic equivalent strain. In

3 of the 12 void pairs, coalescence is observed at the same macroscopic strain in the FE

simulation and the laminography images. For only 1 of the 12 void pairs the FE simulation

predicts coalescence earlier than observed in the laminography images. For the remaining 8

void pairs, coalescence in the laminography images is observed earlier than predicted by the

FE simulation with corresponding macroscopic strain differences ranging from approximately

0.01 to 0.06.

The fact that the FE simulations predict coalescence later than observed in the laminog-

raphy images is consistent with the simulations’ tendency to underestimate the strain accel-

eration rate towards the end of the simulation. This could be a consequence of the use of

a hardening law with no saturation since it’s use neglects the effect of a second population

of voids in the matrix [123] despite calibration of the matrix’s mechanical properties at the

microscale [165]. This is to be improved in future work, but doing so demands consider-

able calibration efforts at the microscale. Nevertheless, the results of the FE simulations are

considered satisfactory given that they provide accurate measurements of strain [215] and
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gray level residuals similar to those provided by DVC [9]. Efforts towards establishing a

coalescence criterion at the microscale are documented in the following sections.

Figure 6.3: Equivalent macroscopic strain at the moment of coalescence for 12 different void
pairs according to laminography images and the FE simulations.

6.2.2 Strain evolution in the intervoid ligament

In this section, the evolution of the plastic equivalent strain in the intervoid ligament

of the 12 voids is assessed. More specifically, the shortest path between each void pair was

identified and the evolution of the local punctual strain in this path was obtained from the

FE simulation for each of the void pairs at each increment. The voids will be referred to with

an index in the range from 0 to 11.

Figure 6.4 shows the strain in a cutting plane that contains the shortest path between

the voids of pair 9 at increment 8. The localization band does not coincide perfectly with

the direction of the shortest path. Examination of the strain field for the other void pairs

confirms this observation. In general, the shortest path between voids forms a certain angle

with the corresponding strain localization band in the intervoid ligament.
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Figure 6.4: Strain concentration band in the intervoid ligament of pair 9 at increment 8 in a
cutting plane. The shortest path between the voids is signaled with a green dashed line.

The evolution of the equivalent plastic strain along the shortest path between voids is

shown in Figure 6.5 for void pair 6. The strain evolution for the 12 void pairs is presented

in the appendices. The length of the shortest path or minimum intervoid distance evolves

during the simulation. For this reason, to facilitate the understanding of the strain profiles,

the strain is presented as a function of a normalized distance along the shortest path between

voids. In this normalized intervoid distance, the value 0 represents the interface of the first

void of the pair, and 1 the interface of the second void of the pair.

The strain profiles are shaped differently, with different symmetry levels. In general,

however, a constant strain value could be a reasonable approximation at a given increment.

Observation of the strain band in Figure 6.4 suggests that the strain level in the middle of the

shortest path between voids could be used as a strain level representative of the concentration

band in the intervoid ligament. This measurement of the equivalent plastic strain in the

middle of the shortest path between voids is hence chosen as a first approximation of a

representative strain measurement for a void pair for the remainder of the study. This allows

the analysis to be greatly simplified.

The strain profiles also suggest a nonlinear evolution of the strain levels during the sim-

ulation. This idea is explored further in Section 6.2.4.

The initial and postcoalescence configurations of the void pairs 6-8 are shown in Figures

6.6, and for the rest of the void pairs in the appendices. In the postcoalescence configurations,

a red arrow points at the location where coalescence occurred.
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Figure 6.5: Strain profiles in the shortest path between two voids obtained from the FE
simulation for the void pair 8.
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(a) Pair 6 - Initial (b) Pair 6 - Postcoalescence

(c) Pair 7 - Initial (d) Pair 7 - Postcoalescence

(e) Pair 8 - Initial (f) Pair 8 - Postcoalescence

Figure 6.6: Three-dimensional views of the void pairs in their initial (left column) and
postcoalescence (right column) postcoalescence configurations for void pairs 6-8.
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6.2.3 Precoalescence strain as coalescence criterion

Local values of equivalent strain at the microscale have been proposed as possible coales-

cence indicators for the internal necking mechanism [123, 199]. Mixed and inconclusive evi-

dence for the suitability of the strain as coalescence indicator was found in Chapter 4. Possible

reasons for the inconclusiveness of the analysis were the limited amount of analyzed infor-

mation and probable misinterpretation of results due to the examination of two-dimensional

slices in a complex three-dimensional simulation. To improve on this study, instead of the

original 2 probe volumes, the strain value at 12 different intervoid ligaments is analyzed here

and no use of two-dimensional slices is made.

In this section, the suitability of the precoalescence equivalent strain as coalescence cri-

terion is assessed. Figure 6.7 presents the evolution of the equivalent plastic strain in the

intervoid ligament for the 12 analyzed void pairs as a function of the macroscopic equivalent

strain. An apparent exponential trend is observed for all of the void pairs with different

degrees of increase rate. The registered precoalescence strain values are in the range from

1.40 to 1.96.

Figure 6.7: Strain evolution in the intervoid ligament for 12 void pairs.

In order to quantify how efficiently the precoalescence strain value can predict coalescence,

a Probit analysis [216] is carried out. This is a regression analysis applied to binary data. In
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the present case, the binary variable is the occurrence or absence of coalescence and the inde-

pendent variables is the local equivalent strain. Expressed in terms of coalescence probability,

this corresponds to 100% or 0% of coalescence probability, respectively. Figure 6.8 presents

the obtained precoalescence strain values as red dots (100% of coalescence probability). To

carry out the Probit analysis, data associated to absence of coalescence is needed. This data

is obtained from the local strain in the previous increment to the precoalescence increment

for each void pair, and is presented in blue in Figure 6.8 (0% coalescence probability).

An ideal coalescence indicator would present no overlap between the ranges corresponding

to the data points with 100% and 0% of coalescence probability. This is not the case, an

overlap is observed. The probit analysis consists in fitting the probit function, the inverse

cumulative distribution function of the normal distribution, to the binary data. The resulting

curve is shown in Figure 6.8 as a dashed black line. Based on this analysis, a strain threshold

could be established by choosing the strain value corresponding to 50% coalescence proba-

bility. Simple inspection of Figure 6.8 shows, however, that using this value as a coalescence

criterion would result in multiple mistaken predictions of coalescence. To quantify this, Mc-

Fadden’s pseudo-R-squared [217] can be employed. A pseudo-R-squared value of 0.35 was

obtained, which is not satisfactory.

Since the local equivalent strain alone did not perform well as a coalescence indicator, the

stress state is incorporated in the analysis in the next section.

6.2.4 Precoalescence strain in the stress space

In the previous section, it was found that the precoalescence strain values varied in a

range from 1.40 to 1.96 for the 12 analyzed void pairs. Since the stress field is heterogeneous,

the different intervoid ligaments are subject to different stress states. Perhaps incorporating

the stress state in the analysis will reveal a relation between the precoalescence strain and

the stress state that will explain the observed variability of precoalescence strain values. This

idea is explored in this section.

Figures 6.9a and 6.9b present the evolution of the stress triaxiality ratio T and the Lode

parameter L, respectively, in the middle of the shortest path between voids for the 12 analyzed

void pairs. The definitions of the stress triaxiality ratio and of the Lode parameter are recalled

for clarity:

T =
σ1 + σ2 + σ3

3σeq
, (6.1)

L =
2σ2 − σ1 − σ3

σ1 − σ3
, (6.2)
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Figure 6.8: Probit regression for the equivalent strain in the intervoid ligament.

where σi is the ith principal stress and σ1 > σ2 > σ3, and σeq is the von Mises equivalent

stress.

Strain-averaged measures of T and L were calculated up to coalescence as follows:

Taverage =

∑

i

Ti∆εi

∑

i

∆εi

, (6.3)

Laverage =

∑

i

Li∆εi

∑

i

∆εi

, (6.4)

where ∆ε is the increment of equivalent strain.

Figure 6.10a presents the precoalescence strain values as a function of the average stress

triaxiality ratio for the 12 studied void pairs. Pearson’s correlation coefficient was calculated

and a value of -0.13 was obtained. Similarly, Figure 6.10b shows the precoalescence strain
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(a) Stress triaxiality ratio

(b) Lode parameter

Figure 6.9: Evolution of the (a) stress triaxiality ratio and of the (b) Lode parameter in the
intervoid ligaments.

as a function of the average Lode parameter. The associated value for Pearson’s coefficient

is -0.20. Indeed, Figures 6.10a and 6.10b do not suggest a clear trend. To further verify

this, the precoalescence strain is presented in Figure 6.11 as a function of both, average Lode

parameter and triaxiality. The resulting response surface clearly illustrates the absence of a

relation between the precoalescence strain and the stress state.

This approach is thus considered unfruitful and another approach based on damage indi-
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cators is explored in the next session.

(a)

(b)

Figure 6.10: Precoalescence strain in the intervoid ligament as a function of the (a) stress
triaxiality ratio and of the (b) Lode parameter.

6.2.5 Uncoupled damage parameters as coalescence indicators

In this section, the possibility of using uncoupled damage parameters as coalescence in-

dicators, is explored. To do this, three different criteria are considered. The general form of

a damage parameter D is as follows:

D =
∫ ε̄

0
f (σ) dε̄, (6.5)

where f (σ) is a function of a stress state, and ε̄ is the equivalent strain.

The first considered damage indicator is the Cockcroft-Latham [14] damage indicator. It

has an associated stress state function fCL with the following expression:
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Figure 6.11: Precoalescence strain in the intervoid ligament as a function of the stress
triaxiality ratio and the Lode parameter

fCL (σ) = max (σ1, 0) . (6.6)

The Rice-Tracey damage indicator [11] is the second considered damage indicator and

has the following associated stress state function fRT :

fRT (σ) = exp
(

3
2
T

)

. (6.7)

The third and final considered damage parameter is the Lou damage parameter [18],

which has the following stress state function fLou:

fLou (σ) =
(

2√
L2 + 3

)C1
(

max (1 + 3T, 0)
2

)C2

, (6.8)

where C1 and C2 are coefficients to be identified, but that will both be considered equal

to unity in this work.
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Figures 6.12a, 6.12b and 6.12c present the evolution of the damage parameters for the 12

void pairs. The precoalescence values of the Cockcroft-Latham damage parameter exhibit a

high variability. This impedes the definition of a threshold value beyond which coalescence is

considered to occur. The Rice-Tracey and Lou damage parameters present a smaller spread

in the precoalescence values.

To quantify these observations, a Probit analysis is performed for each of the damage

parameters and the resulting curves are depicted in Figures 6.13a, 6.13b and 6.13c. For

the Cockcroft-Latham parameter (Figure 6.13a), the ranges of the data points with 100%

coalescence probability and those with 0% coalescence probability, overlap almost entirely.

The corresponding overlaps for the Rice-Tracey and Lou damage parameters are considerably

smaller.

The fitting accuracy for the Probit regression is summarized in Table 6.1 for the three

damage parameters as well as for the precoalescence strain Probit regression presented in

Section 6.2.3. The poorest fitting accuracy is exhibited by the Cockcroft-Latham criterion

with a pseudo-R-squared value of 0.06. The Rice-Tracey criterion, based on the stress triaxi-

ality ratio, represents a considerable improvement over the Cockcroft-Latham criterion, with

a pseudo-R-squared of 0.29. The inclusion of the Lode parameter in the analysis through the

Lou damage parameter improves slightly the fitting accuracy by reaching a pseudo-R-squared

value of 0.35. The latter is, however, only marginally superior to the plastic equivalent strain

as coalescence criterion, which presented a pseudo-R-squared of 0.35. The use of a fail-

ure criterion does not seem to improve the coalescence prediction capability compared to a

strain-based approach.

Table 6.1: Fitting accuracy for Probit regression of three different damage indicators and of
the plastic equivalent strain

Criteria Pseudo R2 [-]

Plastic equivalent strain 0.35
Cockcroft-Latham 0.06

Rice-Tracey 0.29
Lou 0.35

6.2.6 Intervoid distance as coalescence criterion

In this section, the possibility of a coalescence criterion based on the evolution of the

intervoid distance is studied. The basic idea is that the moment of coalescence can be known

if the evolution of the intervoid distance can be predicted. The first step towards examining

such a model is then examining the evolution of the intervoid distance. This differs with the

work of Fansi [210], who proposed a critical value for fracture in three different dual phase

steels based on in-situ measurement via X-ray tomography of inter-cavity distance carried
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(a) Cockcroft-Latham (b) Rice-Tracey

(c) Lou (d) Strain

Figure 6.12: Evolution of the (a) Cockcroft-Latham, (b) Rice-Tracey, and (c) Lou damage
indicators and of the (d) local equivalent strain in the intervoid ligaments.

out by Landron et al. [218].

Figure 6.14 presents the evolution of the intervoid distance for the 12 void pairs as a

function of the macroscopic strain. Very linear trends with varying slopes, are observed.

Linear regression was carried out for each of the curves. The minimum obtained coefficient

of determination R2 was 0.98 and the average R2 was 0.99. Similarly linear trends have been

reported by Landron et al. [219] for the average inter-cavity distance in three different dual

phase steels.

The simplicity of a linear trend is an attractive feature for a distance-based coalescence

criterion. Since the initial intervoid distance is known, it would be enough to predict the slope

of the curve to determine the moment of coalescence. The problem translates into predicting

the slope m.

When the evolution of the equivalent strain in the intervoid ligament was examined (Fig-
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(a) Cockcroft-Latham (b) Rice-Tracey

(c) Lou (d) Strain

Figure 6.13: Probit regression for the (a) Cockcroft-Latham, (b) Rice-Tracey, and (c) Lou
damage indicator and (d) local equivalent strain in the intervoid ligament.

ure 6.7), an exponential trend was observed with different increase rates. To test if the

distance slopes are correlated with the strain increase rate in the intervoid ligaments, regres-

sion with an exponential function with the following form, is carried out:

εlocal = −1 + exp (baccεmacro) , (6.9)

where εlocal is the equivalent plastic strain in the ligament, εmacro the macroscopic equiv-

alent strain and bacc is a fitting constant that represents the increase rate of the local strain.

The minimum and maximum obtained R2 are 0.95 and 0.98 respectively.

Correlation between the distance slope and three variables will be assessed. These vari-

ables are the bacc coefficient, the initial intervoid distance d0 and the initial angle α formed

between the loading direction and the shortest path between two voids. The distance slope

does not present a clear trend with respect to any of these three variables. The Pearson

correlation coefficient was calculated and -0.65, -0.48 and -0.09 was obtained for bacc, d0 and

α respectively.

156



Figure 6.14: Evolution of the minimum intervoid distance.

Since the three considered variables do not explain the variability of the distance slope,

a combination of these variables will be employed in linear multivariate regression. A first

model to predict the distance slope is proposed with the following expression:

m = A+B d0 + C bacc +D α, (6.10)

where A, B, C, and D are fitting parameters. Since α presented a low correlation coeffi-

cient, a second and simpler model that considers only the initial intervoid distance and the

strain increase rate, is proposed:

m = A+B d0 + C bacc. (6.11)

The resulting coefficients for both model are summarized in Table 6.2 along with the R2

values. Both models obtained a R2 equal to 0.97, which is very satisfactory. Since including

α in the model does not improve the explained variance, the simpler model is preferred.

This suggests that the distance slope can be accurately predicted by taking into account the

initial intervoid distance and the strain increase rate. This is illustrated in Figure 6.15 with
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a response surface based on linear interpolation. In this response surface, the distance slope

contours exhibit a linear relation with respect to d0 and bacc.

Table 6.2: Parameters and coefficient of determination for two models to predict the slope
of the evolution of the intervoid distance

A [µm] B [-] C [µm] D [µm] R2 [-]

Model 1 90.00 -7.20 -11.52 0.13 0.97
Model 2 98.00 -7.10 -11.27 - 0.97

Figure 6.15: Slope of the intervoid distance as a function of the initial intervoid distance
and of the coefficient of the exponential law.

It has been established that the model can accurately predict the slope of the training

data. The objective, however, is to describe the distance evolution. To verify how well the

intervoid distance is predicted, the original distance data obtained from the FE simulation

is compared with the distance calculated using the initial intervoid distance and the slope

calculated by the model. This comparison is depicted in Figure 6.16 where the FE data is

presented as continuous lines and the model predictions as dashed lines. The quality of the

prediction is quantified by means of the determination coefficient. The minimum and average

R2 obtained values are 0.66 and 0.88, respectively, which is satisfactory.
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Figure 6.16: Comparison between predicted intervoid distance and intervoid distance
according to the FE simulation for 12 void pairs.

Model validation

From the original 18 void pairs, the data of 6 void pairs have not been used. It will

be used in this section to validate the model. The distance and strain evolution of these 6

validation void pairs are displayed in Figures 6.17 and 6.18, respectively. The former is the

variable to be predicted by the model and the latter, along with the initial intervoid distance,

is the input for the model. As in Section 6.2.6, regression with an exponential function for

the strain evolution is carried out.

The distance slope of the 6 validation void pairs are calculated with the previously trained

model. The distance evolution is calculated with the predicted slope. The predicted and FE

distance evolutions are compared in Figure 6.19. The coefficient of determination R2 is used

to quantify the quality of the predictions. The minimum and average obtained R2 values are

0.68 and 0.80. These values are comparable to those obtained for the training data and the

model predictions are considered satisfactory.

The model was calibrated and validated with data from the FE simulations. This implies

that the model is affected by the physical and numerical models that need to be improved. As
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it was established in Section 6.2.1, the FE simulations provide accurate strain measurements,

but underestimate the strain increase rate at the simulation and, consequently, predict co-

alescence later than observed in the laminograhy images. After improving the constitutive

modeling in the FE simulations, the model should be recalibrated and adjusted to possible

changes in the kinetics.

Figure 6.17: Distance evolution for six additional void pairs for validation purposes.

Figure 6.18: Local strain evolution for six additional void pairs for validation purposes.
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Figure 6.19: Comparison between predicted intervoid distance (dashed lines) and intervoid
distance according to the FE simulation (solid lines) for 6 void pairs for model validation.

6.2.7 A simple probabilistic approach

This section presents a probabilistic approach based on the empirical coalescence proba-

bility. The empirical coalescence probability might be expressed in terms of global or local

observables.

In terms of macrocopic strain

In this section, a probabilistic model is proposed in order to bridge the observations at

the microscale with macroscopic models. This probabilistic model expresses, for a given value

of the macroscopic equivalent strain, the probability of observing void coalescence for that

same value or smaller values of the equivalent strain. The macroscopic equivalent strain is

chosen as independent variable as it can be obtained either from DVC or FE calculations and

represents a clear macroscopic reference.

The required input for the model is simply the number of coalesced void pairs and the

corresponding macroscopic equivalent strain at the moment of coalescence. This requires the

identification of each coalescence event in the laminographic images. Identification of coales-

cence by simple inspection would be very time consuming and extremely complicated given

the quantity of voids present in the domain. An alternative would be to use an automatic

void tracking algorithm directly on the laminograhy images such as the one implemented by

161



Lecarme et al. [220]. Similar capabilities were introduced in the CimLib library [156] during

this work. These developments allow tracking the evolution of each individual void and iden-

tifying when it undergoes coalescence. For simplicity, these capabilities of the CimLib library

are used and the information obtained during the FE simulations is followed by inspection

of the laminography images to confirm the coalescence events.

Once the input information is available, the empirical probability of coalescence can be

calculated straightforwardly. To obtain a model that provides the coalescence probability

as a function of the macroscopic equivalent strain, a cumulative Weibull distribution is then

fitted to the empirical probability. The expression for a cumulative Weibull distribution is

the following:

P (x) = 1 − exp

(

−ln(2)
(

x

k

)λ
)

, (6.12)

where P represents the probability of coalescence occurring for a value less than or equal

to x, the independent variable. k is the shape parameter of the distribution and represents

its median. λ is the scale parameter of the distribution and controls its spread.

The empirical probability and the fitted Weibull distribution as a function of the macro-

scopic equivalent strain, are presented in Figure 6.20. The fitted Weibull distribution presents

a value of 4.66 for λ, a value of 0.1 for k, and a determination coefficient R2 of 0.98. Although

it would be desirable to do this analysis with more data, the Weibull distribution describes

very well the available data.

On the integration of the probabilistic approach in the GTN model

Based on previous observations, Chu and Needleman [30] expressed the rate of change of

the void fraction due to nucleation ḟnucleation as a function of the equivalent plastic strain

ε̄P l. After acknowledging the fact that this relationship depends on the topology of the

microstructure, these authors proposed the idealization that the nucleation strain follows a

normal distribution around a mean equivalent nucleation strain ε̄N :

ḟnucleation =
ψ

S
√

2π
e

−1/2

(

ε̄P − ε̄N
S

)2

˙̄εP l, (6.13)

where S is the standard deviation and ψ is the coefficient used to link the nucleated void

volume and the void fraction. ψ has later been denoted as fN and represents the total void

volume fraction that can be nucleated.
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Figure 6.20: Empirical coalescence probability in terms of the macroscopic strain and
corresponding fit cumulative Weibull distribution.

Coalescence criteria have been expressed in terms of a critical stress, such as in the Thoma-

son model [221] or in terms of the void fraction, such as in the modifications proposed by

Tvergaard and Needleman [29] to the original Gurson model [27]. The satisfactory description

of the coalescence probability with a Weibull distribution depicted in Figure 6.20 suggests

that a coalescence criterion based on the macroscopic equivalent strain could be appropriate.

Void coalescence is preceded by a locally accelerated void growth and void growth is

driven by plastic deformation. In this sense, it is natural for the coalescence probability to be

expressed in terms of strain. In a similar way to the approach of Chu and Needleman [30] for

void nucleation, the coalescence probability could be related to a coalescence-induced rate of

increase of the void fraction as follows:

ḟcoalescence = ψcoalescence
∂P (ε)
∂ε

˙̄εP l, (6.14)

where ψcoalescence is a coefficient used to link the coalescence-induced void growth and the

void fraction, and
∂P

∂ε
can be expressed as:
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∂P
(

ε̄P l
)

∂ε
= ln (2)

λ

k

(

ε̄P l

k

)λ−1

exp



−ln(2)

(

ε̄P l

k

)λ


 . (6.15)

Since k and λ were already determined, the only parameter to be calibrated is ψcoalescence.

λ controls the spread of the distribution, which means that the size of the macroscopic strain

range between the first and last occurrence of coalescence is proportional to λ, and k rep-

resents the median coalescence strain of the distribution. k and λ were determined by least

squares minimization of the Weibull distribution with respect to the empiric macroscopic

coalescence values. Although ψcoalescence is linked to the total amount of void fraction due to

coalescence and could be calibrated based on micromechanical simulations, it is not straight-

forward to separate its contribution from the total void growth. An alternative would be its

calibration at the macroscale.

The total growth rate of the void volume fraction could then be expressed as:

ḟtotal = ḟnucleation + ḟgrowth + ḟcoalescence. (6.16)

An equivalent approach was proposed by Tvergaard in 1982 [222], but has remained largely

unused while the popularity of the coalescence treatment in the GTN model has increased

(see Section 2.1.1). The probabilistic approach is here preferred because it does not artificially

shrink the yield surface with a sudden change in the slope of the void fraction. A second

argument in favor of the probabilistic approach is that the results presented in this Section

constitute micromechanical evidence supporting it and are summarized by the satisfactory

goodness of fit. It is, however, to be tested in macroscopic applications.

Local probabilistic model

In this section, two alternatives of a local probabilistic model are presented. The first

one is based on the local precoalescence strain and the second one on the local Lou damage

indicator. In both cases, input from the FE micromechanical simulations was necessary.

Consequently, the application of these models is not the macroscopic scale. Instead, they

could be useful for local approaches that do not seek to model ductile damage in full detail.

The obtained empirical coalescence probabilities as well as the corresponding fitted Weibull

distribution are presented in Figure 6.21 for the local strain-based model and in Figure 6.22

for the model based on the local Lou damage indicator. Both models presented a coefficient

of determination of 0.99.

This approach is complementary to the approach presented in Section 6.2.7 and could be
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useful to include coalescence in micromechanical simulations with a simplified representation

of the microstructure, such as in the work of De Geus [223].

Figure 6.21: Empirical coalescence probability in terms of the local strains and
corresponding fit cumulative Weibull distribution.

Figure 6.22: Empirical coalescence probability in terms of the local Lou damage indicator
and corresponding fit cumulative Weibull distribution.
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6.3 Discussion

Different approaches for the prediction of void coalescence were tested in Section 6.2.

The most satisfactory approach was the use of the intervoid distance evolution as coalescence

criterion (Section 6.2.6). The assessed physical mechanism is void coalescence by internal

necking. Since the phenomenon responsible for this mechanism is void growth driven by

plastic deformation, a measure of the strain constitutes, along with the initial intervoid

distance, a natural necessary input for the prediction of the intervoid distance.

With the proposed intervoid distance model, given the initial geometry and a measure

of the increase rate of the strain in the intervoid ligament, the evolution of the intervoid

distance can be determined as a function of the macroscopic equivalent strain. The instance

of coalescence is achieved when the intervoid distance reaches zero.

For the calibration of the model, the initial topology and kinematic information at the

microscale are necessary. The former can be obtained via a three-dimensional imaging tech-

nique such as tomography. The latter requires either DVC with high spatial resolution or

micromechanical simulations. The DVC-SRCL-FE methodology is well suited for this task,

but the suitability of other more widely available techniques could be tested.

The need for kinematic information at the microscale is a difficulty in the calibration of

the model. If a correlation could be found between the local increase rate of the strain and

topological information, only the initial topological information would be necessary.

The validity of the model is naturally restricted to the material and conditions for which

it was proposed and for which it has been tested. Its applicability for other materials and

loading conditions is to be verified. The accuracy and shortcomings of the current framework

were discussed in Section 6.2.1. When the current shortcomings are addressed, with improved

constitutive modeling, for example, the formulation of the model should be revisited. Never-

theless, finding such a simple relationship in a heterogenous micromechanical simulation of

an immersed microstructure, is a promising result.

The evolution of the intervoid distances exhibits an important variability. To illustrate

this, the average of the slopes and the corresponding relative error for each of the slopes were

calculated. An average error of 25.77% and a maximum error of 26.22% were obtained. This

level of error is not negligible, but might be sufficient for obtaining approximate information

without the need of microscopic kinematic information.

The variability exhibited by the evolution of the local strain values and by the intervoid

distance illustrates the importance of considering realistic microstructures instead of idealized

ones. The topology of the microstructure is probably at the origin of an important part of

this variability. An implication of these results is that care must be taken when considering
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periodic arrangements of microstructural features for homogenization. Results based on

periodic configurations are attractive since they are simpler to obtain and analyze, but are

not able to capture the variability that stems from a realistic and complex topology.

The final objective of such a model is to be used at the macroscale. The transition to

the macroscale is still not straightforward. Possible applications in FE2 schemes would be

envisaged when topological information of the microstructure is available.

On the other hand, the probabilistic approach provides a straightforward link with the

macroscopic scale. To be calibrated, it requires detailed information at the microscale,

namely, the identification of the coalescence events in a given microstructure and the corre-

sponding macroscopic strain. The resulting fit for a cumulative distribution function can be

integrated in a GTN-like model with the additional calibration of one parameter.

6.4 Conclusions and perspectives

A micromechanical study of void coalescence by internal necking with an experimental-

numerical framework was carried out. In this framework, FE simulations with immersed

microstructures and realistic boundary conditions, were conducted.

The accuracy of the FE simulations in the context of void coalescence was discussed

based on previous work and a new comparison with laminography images. The FE strain

measurements were found satisfactorily accurate except at the end of the simulation when the

acceleration of the strain increase is not well captured. The predicted moment of coalescence

is earlier than observed experimentally. This is to be improved with better constitutive

modeling. The required calibration at the microscale of a more appropriate hardening law

or accounting for damage in the matrix is a perspective of this work. Nevertheless, the

current framework was considered appropriate and accurate enough to assess the feasibility

of establishing a coalescence criterion at the microscale.

12 void pairs were identified and confirmed to undergo coalescence during the FE simu-

lation. 6 other void pairs were chosen for validation of a possible coalescence criterion.

The evolution of the equivalent plastic strain in the shortest path between voids was

described for 12 different void pairs. Based on these results, the strain at the middle of point

of the shortest path between voids, was considered as a value representative of the strain

levels in the ligament. This value was used in the remainder of the work.

Five different approaches were tested in an attempt to establish a coalescence criterion.

The first three were unfruitful. These were using the precoalescence strain as coalescence

criterion, establishing a relationship between the precoalescence strain and the stress space,
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and using uncoupled damage criteria as coalescence indicators.

An internal necking coalescence criterion was proposed based on the evolution of the min-

imum intervoid distance between two voids. The initial intervoid distance and the increase

rate of the local strain are the input by this model. Once calibrated, the model can predict

the evolution of the intervoid distance as a function of the macroscopic equivalent strain. Co-

alescence is achieved once this distance reaches zero. This model was satisfactorily validated

with data from 6 void pairs.

A probabilistic approach based on the empirical coalescence probability was proposed.

Three different variations were presented for which the coalescence probability was expressed

in terms of the macroscopic equivalent strain, the local equivalent strain or the local Lou

damage parameter. The former provides a straightforward connection with the macroscale

and the way in which it can be integrated in a GTN-like behavior law was described. The

two latter provide an alternative for less detailed calculations at the microscale.

A perspective of this work for the intervoid distance model is to substitute the kinematic

data required as input for purely topological information. This would eliminate the need for

kinematic information after calibration of the model and the model could be applied based

on information from a laminography image of the initial state. This requires understanding

and quantifying how the local topology intervenes in the rate of increase of the strain in the

intervoid ligament.

Another perspective is to integrate the probabilistic approach in a porous plasticity con-

stitutive model such as the GTN model. Its integration is straightforward, but requires

validation. A single parameter would need to be calibrated to link the increase of the void

fraction due to coalescence.

Finally, the intervoid distance model and the probabilistic approach could be coupled

together. The output of the former, i.e., the moment at which coalescence occurs for each

void pair, is the input of the latter. This would mean that the coalescence law in a GTN-like

model could eventually be calibrated based on the information of a single tomographic image

with only one additional parameter to be calibrated at the macroscale. A perspective of this

work is to test the feasibility of this approach. If this is successful, it could also be extended

to other loading conditions and materials.

Résumé en français

Une étude micromécanique de la coalescence des pores par striction interne dans un

cadre expérimental et numérique a été réalisée. Dans ce cadre, des simulations FE avec des

microstructures immergées et des conditions limites réalistes ont été réalisées.
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La précision des simulations FE dans le contexte de la coalescence des pores a été discutée

sur la base de travaux antérieurs et d’une nouvelle comparaison avec des images de lamino-

graphie. Les mesures de déformation FE ont été jugées suffisamment précises, sauf à la fin de

la simulation, lorsque l’accélération de la déformation n’est pas bien reproduite. Le moment

de coalescence prédit par FE est précoce par rapport aux observations expérimentales. Cela

pourra être amélioré avec une meilleure modélisation du comportement de la matrice. La

calibration à l’échelle microscopique d’une loi d’écrouissage plus appropriée ou la prise en

compte de l’endommagement dans la matrice est une perspective de ce travail. Néanmoins,

le cadre actuel a été jugé approprié et suffisamment précis pour évaluer la possibilité d’établir

un critère de coalescence à l’échelle microscopique.

Douze paires de pores ont été identifiées et ont confirmé la coalescence au cours de la

simulation FE. Six autres paires de vides ont été choisies pour la validation d’un possible

critère de coalescence.

L’évolution de la déformation plastique équivalente dans le plus court chemin entre pores

a été décrite pour 12 paires de pores différentes. Sur la base de ces résultats, la déformation

au milieu du plus court chemin entre pores a été considérée comme une valeur représentative

des niveaux de la déformation dans le ligament. Cette valeur a été utilisée dans le reste du

travail.

Cinq approches différentes ont été testées pour tenter d’établir un critère de coalescence.

Les trois premières se sont révélées infructueuses. Celles-ci utilisaient la déformation de

pré-coalescence comme critère de coalescence, établissaient une relation entre la déformation

de pré-coalescence et l’espace de contrainte et utilisaient des critères de rupture non couplés

comme indicateurs de coalescence. Un critère de coalescence interne de striction a été proposé

sur la base de l’évolution de la distance minimale entre pores. La distance initiale entre les

pores et le taux d’augmentation de la déformation locale sont les entrées de ce modèle. Une

fois calibré, le modèle peut prédire l’évolution de la distance entre pores en fonction de la

déformation équivalente macroscopique. La coalescence est atteinte lorsque cette distance

atteint zéro. Ce modèle a été validé de manière satisfaisante avec les données de 6 paires de

pores non utilisées durant la phase de calibration.

Une approche probabiliste basée sur la probabilité empirique de coalescence a été pro-

posée. Trois variations différentes ont été présentées pour lesquelles la probabilité de coales-

cence a été exprimée en termes de déformation équivalente macroscopique, de déformation

équivalente locale ou du paramètre d’endommagement local de Lou. La première offre un

lien direct avec l’échelle macroscopique et la manière dont elle peut être intégrée dans une loi

de comportement de type GTN a été décrite. Les deux dernières offrent une alternative aux

calculs à l’échelle microscopique.

Une perspective de ce travail pour le modèle de distance entre pores consiste à sub-
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stituer les données cinématiques requises en tant qu’entrée par des informations purement

topologiques. Cela éliminerait le besoin d’informations cinématiques après la calibration du

modèle et le modèle pourrait être appliqué sur la base d’informations provenant d’une im-

age de laminographie de l’état initial de la microstructure. Cela nécessite de comprendre

et de quantifier comment la topologie locale intervient dans le taux d’augmentation de la

déformation dans le ligament inter-cavités.

Une autre perspective consiste à intégrer l’approche probabiliste dans un modèle consti-

tutif de plasticité poreuse tel que le modèle GTN. Son intégration est simple mais nécessite

une validation. Un seul paramètre devrait être calibré pour lier l’augmentation de la fraction

de vide due à la coalescence.

Enfin, le modèle de distance entre pores et l’approche probabiliste pourraient être couplés.

La sortie du première modèle, c’est-à-dire le moment auquel la coalescence se produit pour

chaque paire de pores, serait ainsi l’entrée du second modèle. Cela signifierait que la loi de

coalescence dans un modèle de type GTN pourrait éventuellement être calibrée sur la base

des informations d’une seule image tomographique avec un seul paramètre supplémentaire à

calibrer à l’échelle macroscopique. Une perspective de ce travail est de tester la faisabilité de

cette approche. Si cela fonctionne, cette approche pourrait également être étendu à d’autres

conditions de chargement et d’autres matériaux.
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Chapter 7

Conclusions and perspectives

7.1 Conclusions

In this work, the SRCL-DVC-FE methodology developed within the COMINSIDE project

was employed in a micromechanical study of ductile damage of nodular cast iron based on

FE simulations with immersed microstructures and realistic boundary conditions. Several

improvements were developed in this work in order to enhance the automatic analysis of void

nucleation, growth and coalescence.

Simulations with immersed microstructures require image segmentation, i.e., deciding to

which physical phase each voxel belongs to. The effect of image segmentation on the final

mechanical observables of the FE simulations was assessed in the SRCL-DVC-FE framework

through comparison of three different segmentation methods for two different specimens. The

three methods included a manual thresholding, an automatic thresholding algorithm and a

machine learning algorithm.

Global and local observables were considered in the comparison of the segmentation meth-

ods. The global observables were macroscopic equivalent strain and stress, and void volume

fraction. The local observables were local equivalent strain in two probe volumes for each

specimen located in different intervoid ligaments. The most sensitive observables were the

local strain values and the void volume fraction. The void volume fraction was more sensitive

for the 90° specimen than for the 45° specimen. The sensitivity of the local strain measures

increased when they were closer to the void-matrix interface.

An uncertainty associated to image immersion was calculated in the comparative study of

the image segmentation methods. This uncertainty was taken into account in a detailed com-

parison between DVC and FE strain measurements. It was revealed that the segmentation-

related uncertainties are negligible with respect to the differences between the DVC and FE
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measurements. This implies that the segmentation procedure was satisfactory and that the

analysis of this differences can be used to identify limitations of the physical and numerical

framework.

In the comparison between DVC and FE measures, a very good agreement was observed

for the macroscopic equivalent strain of both specimens. The local strain measures presented

very good agreement for the 90° specimen. For the 45° specimen, the local strain values

showed larger discrepancies, but their rate of increase was well predicted.

The rate of increase of the strain was observed to increase towards the end of the tests

in the DVC results. This acceleration was not well captured by the FE simulations. This

shortcoming is thought to be due mainly to the fact that the second population of voids that

has been confirmed in the matrix is not taken into account in the numerical simulations.

Improving the constitutive modeling by either explicitely taking damage into account or by

using a hardening law that saturates for large values of strain is a perspective of this study.

The FE strain predictions are, however, considered satisfactory.

In an effort to contribute to the understanding of the coalescence mechanisms in nodu-

lar cast iron and previously observed instances of the void-sheet mechanism, a numerical

study was carried out. The objective was to verify the hypothesis that three-dimensional

effects could play a role in the observed void-sheet instances. In order to reach this goal,

an ad-hoc methodology was proposed. In this methodology, three-dimensional clusters were

simulated with a clear reference to a far-field stress and without recurring to periodicity of

the microstructure.

A three-voids cluster was studied with the proposed methodology. It was found that the

three voids can coalesce in such a way that, if a given two-dimensional slice of the domain

is observed, an apparent void-sheet is present. This highlights the importance of three-

dimensional and non-periodic models for the study of ductile damage. Based on these results

and previous observations of fracture surface, it is considered that only coalescence by internal

necking, with or without intervention of secondary voids, occurs in the studied specimens.

Nodular cast iron is a material with a particularly high void volume fraction. This favors

the occurrence of this mode of coalescence. Other engineering materials with smaller void

volume fractions are less likely to exhibit this phenomenon.

Since the FE strain measurements were validated and the coalescence mechanisms clari-

fied, a more extensive study of coalescence with the SRCL-DVC-FE framework was carried

out. In this study, it was found out that the FE simulations tend to predict coalescence

earlier than observed in the laminography images. A finer temporal discretization could pro-

vide further elements to understand these differences as well. This would require additional

in-situ laminography results. Not taking into account damage in the matrix and modeling

the nodules as voids are two factors that could influence these differences. The simulations
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are however considered accurate enough to assess the possibility of establishing a coalescence

criterion at the microscale.

Different approaches were tested in order to establish a coalescence criterion in 12 different

intervoid ligaments. Two different approaches presented promising results. The first proposed

approach consists in predicting the moment of coalescence based on the evolution of the

intervoid distance as a function of the macroscopic equivalent strain. The input of this model

are the initial intervoid distance and the increase rate of the local strain. The model was

calibrated with data from the 12 studied intervoid ligaments and validated with data from 6

additional ligaments. The model predictions were considered satisfactory.

The second proposed approach is probabilistic. Two variants were proposed. In the

first variant, the empiric coalescence probability is expressed in terms of the macroscopic

equivalent strain and a Weibull distribution is fitted. A way to integrate this model into a

porous plasticity behavior law was detailed. This requires fitting only one parameter at the

macroscale and would avoid the use of the effective porosity that is commonly used. The

second variant is very similar in nature, but formulated in terms of the local precoalescence

strain. The local variant can be used in numerical calculations at the microscale that do not

seek to reproduce in detail the topological changes associated to ductile damage.

An important characteristic of the two proposed approaches for coalescence is that they

were formulated based on simulations of immersed microstructures under realistic boundary

conditions that were conducted up to very large strain values. No simplifying hypothesis with

respect to the topology of the microstructure were used. Finding these simple relationships

in complex microstructures under heterogenous boundary conditions is a major result of this

work.

7.2 Perspectives

Two shortcomings of the current physical framework were identified. The first one is that

the acceleration of the strain increase rate observed in DVC, is not captured by the FE simu-

lations. The second one is that the FE simulations predict coalescence earlier than observed

in the laminography images. This could be improved by considering the influence of the sec-

ondary population of voids with a porous plasticity behavior law. Parameter identification at

the microscale remains, however, a time-consuming task. A satisfying compromise could be

given by a hardening law with saturation since it presents a smaller number of parameters to

identify. The improvement of the constitutive modeling is a clear and important perspective

of this work.

Another major perspective is to use the data resulting from the FE simulations for cali-

bration of a porous plasticity behavior law such as the GTN. The SRCL-DVC-FE framework
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is a promising alternative for the calibration of macroscopic behavior laws. Classic calibration

of porous plasticity behavior laws at the macroscale is difficult due to the number of param-

eters that need to be identified. The output resulting from the SRCL-DVC-FE simulations

include the evolution of internal variables such as equivalent plastic strain and void fraction,

and could be used to calibrate porous plasticity models.

Another possibility of contributing to modeling at the macroscale is through new void

nucleation, growth and coalescence criteria. The capability of the proposed intervoid distance

coalescence model to be used at the macroscale is still unclear. It would be incorporated in

FE2 schemes. A more attractive alternative would be to find a way to substitute the required

kinematic input by purely topological information. If this is achieved, initial statistics of the

microstructure could be enough to calibrate the model. This requires more work. Finding

a way to correlate the global loss of load-bearing capacity with the topological changes at

the microscale would open new possibilities to propose macroscopic behavior laws inspired

on the micromechanisms of ductile damage.

A clear perspective is testing the probabilistic model for coalescence that was proposed.

Its integration in the GTN model was detailed and the modifications it would require are

not significant. This would allow its validation at the macroscale and to test its merits with

respect to the classic coalescence treatment in the GTN model.

The two proposed approaches to void coalescence could work in a complementary manner.

This requires additional work. The intervoid distance model can provide the necessary input

for the probabilistic approach. The two approaches could then be coupled. This implies that

the probabilistic approach could be indirectly calibrated based on tomographic information

of the initial configuration only.

Extending the study to other loading conditions is an important perspective. This is a

necessary condition so that more universal micro or macroscopic models can be proposed

with the SRCL-DVC-FE framework.

The methodology proposed in Chapter 5 for the study of three-dimensional and non-

periodic microstructures can be an useful tool to test different loading conditions a priori.

It could then help decide which are interesting enough to study via the SRCL-DVC-FE

framework since SRCL is time-consuming and costly.

The hypothesis of considering the graphite nodules as voids is to be abandoned if other

loading conditions such as compression or shear are considered. This would require a robust

contact detection methodology to be implemented in the numerical framework.

There is clear interest of applying this framework to other materials. Some early steps

have already been taken. An initial study of void nucleation mechanisms has been carried out

for steel-ceramic composites and for aluminum alloys. The former constitutes and example of
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a direct industrial application and the latter the opportunity of calibrating nucleation models

at the microscale. In the future, such numerical techniques could also be applied to study

the fracture mechanisms of multiphase metallic materials.

Figure 7.1: Two-dimensional simulation of a steel-ceramic composite under compression to
study its nucleation mechanisms. The matrix is shown in blue, the particles in red and the

nucleated voids in white.

Figure 7.2: Three-dimensional simulation of an aluminum alloy with the SRCL-DVC-FE
framework (left) and slice of the laminography image (right). The voids are shown in red
and the particles in gray and exhibit fracture. Good quantitative agreement is observed.
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Figure 7.3: Three-dimensional simulation of an aluminum alloy with the SRCL-DVC-FE
framework. The strain field is shown and the black rectangle indicates a zoomed area.
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Appendix A

Strain profiles
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(a) Pair 0 (b) Pair 1 (c) Pair 2

(d) Pair 3 (e) Pair 4 (f) Pair 5

(g) Pair 6 (h) Pair 7 (i) Pair 8

(j) Pair 9 (k) Pair 10 (l) Pair 11

Figure A.1: Strain profiles in the shortest path between two voids obtained from the FE
simulation for 12 void pairs.
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(a) Pair 0 - Initial (b) Pair 0 - Postcoalescence

(c) Pair 1 - Initial (d) Pair 1 - Postcoalescence

(e) Pair 2 - Initial (f) Pair 2 - Postcoalescence

Figure A.2: Three-dimensional views of the void pairs in their initial (left column) and
postcoalescence (right column) configurations for void pairs 0-2.
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(a) Pair 3 - Initial (b) Pair 3 - Postcoalescence

(c) Pair 4 - Initial (d) Pair 4 - Postcoalescence

(e) Pair 5 - Initial (f) Pair 5 - Postcoalescence

Figure A.3: Three-dimensional views of the void pairs in their initial (left column) and
postcoalescence (right column) configurations for void pairs 3-5.
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(a) Pair 9 - Initial (b) Pair 9 - Postcoalescence

(c) Pair 10 - Initial (d) Pair 10 - Postcoalescence

(e) Pair 11 - Initial (f) Pair 11 - Postcoalescence

Figure A.4: Three-dimensional views of the void pairs in their initial (left column) and
postcoalescence (right column) configurations for void pairs 9-11.
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Résumé

Ce travail vise à mieux compren-

dre et modéliser les mécanismes

de rupture ductile pour les mi-

crostructures hétérogènes. La prin-

cipale méthodologie du projet re-

pose sur la combinaison de trois

techniques : la laminographie in-

situ par rayonnement synchrotron,

la corrélation d’images volumiques

(DVC) et la simulation par élé-

ments finis (FE) avec des fonc-

tionnalités avancées de maillage et

de remaillage automatique. Ce

cadre expérimental-numérique est

utilisé pour réaliser des simula-

tions numériques à l’échelle micro-

scopique avec des microstructures

immergées et des conditions aux lim-

ites réalistes. L’effet de la seg-

mentation d’image sur les observ-

ables mécaniques finales est évalué

par comparaison de trois méthodolo-

gies différentes. Ce travail permet,

pour la première fois, d’accéder aux

valeurs de déformation locales au

début de la coalescence pour des

microstructures réelles et des con-

ditions aux limites exactes. Les ré-

sultats des simulations sont utilisés

pour définir et valider des critères

de rupture locaux fonctions des con-

traintes/déformations ou un critère

de coalescence basé sur l’évolution

de la distance entre les pores.

Mots Clés

Rupture ductile, endommagement,

microstructures hétérogènes, coa-

lescence

Abstract

This work constitutes a microme-

chanical study of ductile fracture.

The main methodology consists of a

combination of three techniques: In-

situ synchrotron radiation computed

laminography, digital volume corre-

lation and finite element simulations

with advanced meshing and remesh-

ing capabilities. This experimental-

numerical framework is employed to

carry out numerical simulations at

the microscale with immersed mi-

crostructures and realistic boundary

conditions. The studied material is

nodular cast iron, but this methodol-

ogy has been successfully applied to

other materials such as aluminum al-

loys. Since this is a recent method-

ology, attention is paid to image im-

mersion as a source of uncertainty.

More specifically, the effect of image

segmentation on the final mechani-

cal observables, is assessed through

comparison of three different seg-

mentation methodologies. The pre-

diction capacity of the numerical sim-

ulations is then satisfactorily evalu-

ated through a detailed comparison

with experimental measurements. Fi-

nally, after evaluating different ap-

proaches, the results of the simula-

tions are used to propose and val-

idate a coalescence criterion based

on the evolution of the intervoid dis-

tance.

Keywords

Ductile fracture, ductile damage, het-

erogeneous microstructure, void co-

alescence
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