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Résumé
Arbitrage mémoire dynamique non-oisif basé sur TDM pour des systèmes multi-criticité

temps réel

par Farouk HEBBACHE

Les systèmes temps-réel doivent réagir de manière fiable, ce qui implique à la fois d’être cer-
tain du résultat produit par leurs programmes mais aussi de connaı̂tre le temps qu’ils prennent
pour s’exécuter. Les pire temps d’exécution sont ainsi des données fondamentales pour la val-
idation et la sûreté de tels systèmes temps-réel, et encore plus dans le contexte des systèmes
temps-réel autonomes (robotique, voiture autonome) pour lesquels la sûreté de fonctionnement
est primordiale.

Cependant calculer un pire temps d’exécution (dit WCET pour Worst-Case Execution Time),
à la fois garanti (majorant strict) et pas trop pessimiste afin de réduire les coûts et la complexité
de tels systèmes temps-réel, est un problème difficile à résoudre sur des architecture matérielles
multi-cœurs. Une difficulté est la concurrence d’exécution entre différents programmes souhai-
tant accéder à une ressource partagée, typiquement une mémoire. Pour chaque requête d’accès
à une telle ressource partagée émise par un programme, il faut en effet systématiquement con-
sidérer la situation la plus défavorable induite par la politique d’arbitrage utilisée. Ceci induit
un pessimisme important dans la valeur du WCET obtenue et donc un faible taux d’utilisation
de cette ressource partagée lors de l’exécution des programmes. Ce problème de sous-utilisation
de la ressource partagée est amplifié par la multiplication de programmes non-soumis à des
contraintes temporelles (dits programmes non-critiques) qui s’exécutent en parallèle des pro-
grammes temps-réel (dits programmes critiques). Les requêtes d’accès générées par ces pro-
grammes non-critiques impactent la situation la plus défavorable qui doit être considérée pour
les requêtes d’accès émises par les programmes critiques et accentuent donc le pessimisme des
WCET calculés.

Il est possible d’éliminer par construction toute concurrence entre les requêtes d’accès émises
par les différents programmes en ayant recours à une politique d’arbitrage à multiplexage tem-
porel (en anglais Time-Division Multiplexing, TDM). Selon cette politique, le temps est divisé en
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créneaux temporels chacun alloué à un programme prédéfini pour un accès exclusif à la ressource
partagée. Le temps d’accès à la ressource partagée par un programme peut alors être facilement
borné. La bande passante offerte à un programme est indépendante des autres programmes et
les WCET des programmes peuvent ainsi être déterminés.

Toutefois, le temps d’accès à la ressource partagée dépend de l’ordonnancement des créneaux
temporels qui lui sont affectés. Or cet ordonnancement est généralement statique car réalisé
lors de la conception du système, avant l’exécution des programmes. Il comprend généralement
l’affectation d’une séquence de créneaux temporels à différents programmes, cette séquence se
répétant périodiquement (on parle de période TDM). Mais les créneaux temporels d’une période
TDM ne sont utilisés par les programmes que s’ils ont une requête d’accès à la ressource partagée
à émettre. Lorsque cela n’est pas le cas, ces créneaux temporels sont donc inutilisés. Une politique
d’arbitrage TDM basique est donc dite oisive car ces créneaux temporels ne sont pas récupérés
par les autres programmes afin de diminuer leur temps d’accès à la ressource partagée.

Par ailleurs, il est admis que pour les programmes temps-réel, il peut exister une large différence
entre le temps d’exécution d’une instance du programme et son WCET. L’oisiveté de la politique
d’arbitrage TDM associée à cette caractéristique des programmes temps réel génère un faible
taux d’utilisation de la ressource partagée. Ce problème est amplifié lorsque le nombre de pro-
grammes augmente car dans ce cas la longueur d’une période TDM est également augmentée.
Un autre facteur d’amplification de ce phénomène est la présence au sein des systèmes considérés
d’un nombre croissant de programmes non-critiques pour lesquels l’affectation de créneaux aug-
mente la latence des requêtes des programmes critiques ainsi que la latence des requêtes de ces
programmes non-critiques, en contradiction avec leur objectif d’avoir les meilleurs performances
d’exécution en moyenne.

Les travaux menés dans le cadre de cette thèse présentent une reconstruction de la politique
d’arbitrage TDM qui permet d’en réduire l’oisivité. Plutôt que de requérir à un arbitrage au
niveau des créneaux TDM, notre approche dynamique fonctionne à la granularité des cycles
d’horloge en exploitant du temps gagné par les requêtes précédentes. Cela permet au mécanisme
d’arbitrage de réorganiser le traitement des requêtes mémoire, exploiter les latences d’accès
réelles des requêtes, et ainsi d’améliorer l’utilisation de la mémoire. Nous démontrons que nos
politiques d’arbitrage sont analysables car elles préservent les garanties temporelles qu’offre
TDM dans le pire cas, alors que nos expérimentations montrent une meilleure utilisation de
la mémoire en moyenne. De plus, une variante de notre stratégie d’arbitrage est présentée et
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évaluée dans le cadre d’une implémentation matérielle à faible complexité. Les évaluations mon-
trent que l’implémentation est efficace, tant en matière de complexité matérielle que de perfor-
mance d’arbitrage concernant l’utilisation de la mémoire.

Pour finir, nous explorons l’applicabilité de nos approches dans le contexte d’un système
préemptif, où nos approches peuvent induire du fait d’une préemption des délais de blocage
mémoire supplémentaire en fonction de l’historique d’exécution. Ces délais de blocage peuvent
induire une gigue importante et par conséquent augmenter les temps de réponse des tâches.
Ainsi nous étudions des moyens de gérer et, enfin, de limiter ces délais de blocage. Trois différentes
stratégies sont explorées et comparées du point de vue de leur analysabilité, de l’impact sur
l’analyse des temps de réponse, et de la complexité de l’implémentation matérielle ainsi que du
point de vue du comportement à l’exécution. Les expérimentations montrent que les différentes
approches se comportent sensiblement de manière identique au cours de l’exécution. Cela nous
permet de retenir l’approche combinant analysabilité et une faible complexité d’implémentation
matérielle.

Mots-clés : Time-Division Multiplexing, Arbitrage Dynamique, Calcul Prédictible, Systèmes Multi-
Critiques, Systèmes Temps Réel, Mémoire, Préemption
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Abstract
Work-conserving dynamic TDM-based memory arbitration for multi-criticality real-time

systems

by Farouk HEBBACHE

Real-time systems have to reliably react, which implies both being confident regarding the re-
sult produced by the programs and also knowing how long they take to execute. The Worst-Case
Execution Times (WCETs) are thus fundamental information for the validation and reliability of
such real-time systems, especially in the context of autonomous real-time systems (robotics, au-
tonomous car, GPS) for which reliability is essential. However, computing a WCET, both guaran-
teed (strict upper-bound) and also not too pessimistic in order to reduce the costs and complexity
of such real-time systems, is a challenging problem to solve on multi-core hardware architectures.

Multi-core architectures pose many challenges in real-time systems, which arise from con-
tention between concurrent accesses to shared memory. Various memory arbitration schemes
have been devised that address these issues, by providing trade-offs between predictability,
average-case performance, and analyzability. Among the available memory arbitration policies,
Time-Division Multiplexing (TDM) ensures a predictable behavior by bounding access latencies
and guaranteeing bandwidth to tasks independently from the other tasks. To do so, TDM guar-
antees exclusive access to the shared memory in a fixed time window. TDM, however, provides
a low resource utilization as it is non-work-conserving. Besides, it is very inefficient for resources
having highly variable latencies, such as sharing the access to a DRAM memory. The constant
length of a TDM slot is, hence, highly pessimistic and causes an underutilization of the memory.

To address the aforementioned limitations of TDM, we present, in this thesis, dynamic arbi-
tration schemes that are based on TDM. However, instead of arbitrating at the level of TDM
slots, our approach operates at the granularity of clock cycles by exploiting slack time accumu-
lated from preceding requests. This allows the arbiter to reorder memory requests, exploit the
actual access latencies of requests, and thus improve memory utilization. We demonstrate that
our policies are analyzable as they preserve the guarantees of TDM in the worst case, while
our experiments show an improved memory utilization. We furthermore present and evaluate
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an efficient hardware implementation for a variant of our arbitration strategy. Our evaluations
showed that the implementation is efficient, both in terms of hardware complexity and arbitra-
tion performance regarding the memory utilization.

Finaly, we explore the applicability of our approaches in a preemptive system model, where
preemption-related memory blocking times can occur, depending on execution history. These
blocking delays may induce significant jitter and consequently increase the tasks’ response times.
We thus explore means to manage and, finally, bound these blocking delays. Three different
schemes are explored and compared with regard to their analyzability, impact on response-time
analysis, implementation complexity, and runtime behavior. Experiments show that the various
approaches behave virtually identically at runtime. This allows to retain the approach combining
low implementation complexity with analyzability.

Keywords: Time-Division Multiplexing, Dynamic Arbitration, Predictable Computing, Multi-
Criticality Systems, Real-Time Systems, Memory, Preemption
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1.1 Context

A current trend in real-time embedded systems is integrating multiple tasks into a single plat-
form. However, the tasks in domains like avionics and automotive are usually characterized with
different importance, safety, or certification requirements – leading to several criticality levels.
Running such tasks on a single platform creates a Multi-Criticality (MC) system. Hence, integrat-
ing such diverse tasks on a single platform requires complete timing and spatial isolation. This
isolation prevents a critical task from being unintentionally affected by another non-critical task.
To achieve spatial isolation, i.e., protecting task’s state (memory and stored registers), designers
usually rely on partitioning mechanisms at the platform level. On the other hand, temporal iso-
lation guarantees a task’s desired timing behavior. Achieving temporal isolation is not trivial,
especially when considering a multi-core platform with shared resources, such as caches or main
memory. This results in challenging issues when trying to tightly bound the tasks’ worst-case ex-
ecution times (WCETs) and avoid over-provisioning hardware resources. For the verification and
certification of critical tasks, the most important element is the respect of their timing constraints.
For non-critical tasks, however, effectively using the hardware resources is more important than
isolation and predictability guarantees as long as critical tasks are not affected.

As mentioned above, multi-core architectures pose many challenges. One main challenge
arises from contention between concurrent accesses to shared resources. If several cores access
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shared memory, for instance, in an uncontrolled manner, interference among tasks of different
criticalities cannot be avoided. Then, a non-critical task accessing the memory bus can block the
access of any other concurrently executed task. Hence, each access of non-critical tasks can poten-
tially affect the response time of critical tasks on other cores. A way of bounding the interference
independently from the concurrent execution of other tasks, is to use temporal isolation [16]. It is
possible to achieve temporal isolation on any hardware, but this often leads to over-provisioning
of the hardware resources. This means providing more hardware resources then actually needed,
which may guarantee a risk-free execution but with an underused platform. Techniques like
Time-Division Multiplexing (TDM) achieve such a temporal partitioning, concurrent accesses here
no longer depend on whether concurrent requests exist or not.

TDM provides predictable behavior and improves composability by bounding access latencies
and guaranteeing bandwidth independently from other cores. Systematically considering the
worst-case behavior of an arbitration policy with regard to memory accesses in the presence of
concurrent requests is too pessimistic, as it leads to low resource utilization at run-time. TDM is
rarely used as a bus-arbitration policy in multi-core architectures, since it is not work-conserving
and therefore causes hardware over-provisioning. The problem arises when the owner of a TDM
slot does not (yet) have a memory request ready to be served. Under a strict TDM scheme, this
slot cannot be reclaimed by another task (as under Round-Robin arbitration). This problem is
further amplified as the number of cores increases, leading to longer TDM schedules. Another
source of TDM pessimism stems from the length of TDM slots, expressed in clock cycles, which
have to be longer than the worst-case latency of handling memory requests. Memory requests
targeting a DRAM memory, however, have highly variable latencies [77], as the temporal behav-
ior of the DRAM depends, for instance, on memory refresh operations or whether the accessed
memory page changed. Besides, the access latencies of memory load requests are higher than
memory writes, since data must be sent back to the requesting core.

1.2 Contribution Overview

To overcome these aforementioned limitations, we explore the definition of dynamic arbitra-
tion schemes based on TDM. We claim that the level of criticality should not only be used by task
schedulers, but also by memory arbiters. We thus explore TDM-based arbitration schemes that
allow the arbiter, under certain conditions, to favor requests of non-critical tasks over requests
from critical tasks. This is achieved by associating deadlines to the memory accesses of critical
tasks, which correspond to the end of their corresponding slots under a traditional TDM scheme.
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These deadlines allow the arbiter to compute the slack time (the relative gain compared to an exe-
cution under regular TDM) of each pending request from critical tasks in the system. If slack times
permit, the arbiter can change the order in which requests are handled by re-allocating slots un-
used by critical tasks to non-critical tasks. This arbitration policy is called TDMds, for dynamic
TDM with slack counters, and addresses the source of traditional TDM pessimism. Afterwards, we
extend TDMds by proposing two dynamic TDM arbitration schemes (TDMes and TDMer) in order
to address the sources of pessimism related to TDM slots. This is achieved by decoupling the ar-
bitration from the TDM slots, i.e., arbitration decisions are at the granularity of clock cycles. Our
experiments show that this allows improving delays suffered by traditional TDM by a factor of at
least 50, and up to a factor of 300. Another contribution is a formal correctness proof of dynamic
TDM-based approaches. Most notably, we prove that TDM’s temporal behavior is preserved for
critical tasks. Consequently, analysis results valid under TDM, such as offset analyses [41], are
equally valid under our schemes.

We also propose a hardware implementation of a variant of our scheme that takes implemen-
tation trade-offs and costs into consideration. We show that these trade-offs do not impact the
overall performance of our approach while enabling a simple and efficient implementation. A
formal proof of the worst-case behaviour for the new approach is also addressed.

The proposed dynamic TDM-based arbitration techniques encounter issues under a preemp-
tive execution model, more precisely, the overhead induced by the arbitration scheme on a pre-
emption. Under our dynamic TDM-based arbitration schemes, tasks may suffer from arbitration-
induced preemption delays. Therefore, we define two memory delays induced by preemptions,
the memory blocking delay and the misalignment delay, which may lead to significant jitter and in-
crease task response times. Even worse, due to non-critical tasks, the memory blocking delay
may be unbounded in some circumstances. We explore three different approaches to analyze the
impact of these arbitration-induced preemption delays considering preemptive [56] (SHDp) and
non-preemptive [6] (SHDw) memory requests. Finally, we propose a new technique (SHDi) to
resolve these issues by adapting (priority or rather) criticality inheritance known from scheduling
theory. This allows us to manage and easily bound these preemption delays. Our evaluation
shows that our new approach successfully limits the worst-case preemption delays experienced
at runtime under our dynamic TDM-based arbitration schemes. At the same time, we see virtu-
ally no impact on average-case performance and success rate. Note, besides, that the proposed
technique is not limited to the dynamic TDM-based arbitration schemes and is also applicable to
other arbitration techniques, e.g., arbitration based on fixed priorities [6].
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1.3 Thesis Outline

This thesis is summarized below in terms of its organization and the content of the chapters.

• Chapter 2 presents the basics concepts, definitions, and general properties of real-time sys-
tems. This also includes an overview of the Worst-Case Execution Time (WCET) analysis
problem, which is an important part of real-time system design. Afterwards a discussion on
the different scheduling techniques, used in real-time systems to allocate tasks to the hard-
ware resources, is provided. Finally, this chapter also describes mixed-criticality systems
which consist of scheduling tasks with different levels of criticality on the same hardware
platform, before concluding with the task model assumed in this thesis.

• Chapter 3 focuses on the hardware mechanisms that have an impact on the tasks’ worst-
case execution time analysis, more precisely on the memory hierarchy. Each of the different
levels of the memory hierarchy can have an impact on the WCET of a real-time task. In this
thesis, we focus solely on the impact of the arbitration policy that manages shared memory
accesses. An overview of the various existing arbitration techniques is provided in this
chapter before concluding with a description of the hardware architecture assumed in the
context of this thesis.

• Chapter 4 defines the various problems that will be addressed in this thesis, specifically all
the aspects that make TDM non-work-conserving.

• Chapter 5 presents our first contributions towards a work-conserving TDM-based arbitra-
tions (TDMds, TDMes, and TDMer already introduced in the previous Section 1.2). This
chapter introduces different dynamic criticality-aware TDM-based arbitration schemes, where
the arbitration schemes are aware of the tasks’ criticalities and take decisions accordingly.

• Chapter 6 presents a simple and efficient hardware implementation of a variant of our pro-
posed arbitration schemes, aiming at reducing the hardware complexity.

• Chapter 7 briefly reviews the dynamic TDM-based arbitration schemes in the context of a
preemptive system model. Therefore, we identify the different arbitration-induced pre-
emption delays inherited from TDM and/or specific to our arbitration strategies. In this
chapter, we propose various preemption models to handle the arbitration-induces preemp-
tion delays and evaluate our contributions using schedulability success ratios and memory
utilization.
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• Chapter 8 concludes this thesis with a summary of the various contributions and obtained
results before finally discussing possible future research perspectives.
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Chapter 2

Real-Time Systems
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In this chapter, we are interested in defining real-time systems and the different properties
underlying these types of systems. a real-time system is composed of an execution platform
(computer system) and tasks running on the execution platform with temporal constraints im-
posed by the physical environment. Section 2.1 introduces basic concepts, definitions and general
properties of real-time systems. This section also includes an overview of the Worst-Case Exe-
cution Time (WCET) analysis, which aims to provide upper-bounds for the tasks running on the
computer system. The WCET analysis is an important part of real-time system design. After
establishing the WCET of the real-time tasks, a scheduling policy is used to allocate the different
tasks to the hardware platform on which they will run. Various real-time scheduling techniques
are also covered in Section 2.1. In a real-time system, tasks may have different levels of critical-
ity depending on the impact that a failure would have on the system and its environment. An
overview of mixed-criticality scheduling is provided in Section 2.2, which consist of scheduling
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tasks with different criticality levels on the same platform. Finally, as a conclusion, we describe
the task model and scheduling policy considered in the context of this thesis in Section 2.3.

2.1 Real-time Systems

Real-time systems have applications in many fields of activity, such as transportation, telecom-
munication, robotics, space missions, multimedia systems, and industry. A real-time system is
a reactive system in nature. It is often seen as a control environment that is associated with a
computer control system. More precisely, a real-time system is in permanent interaction with its
external environment, usually represented by a physical process, in order to control its behavior
evolving over time. The interactions of a real-time system with its environment are designed in
order to respond to events in the controller environment. More precisely, the system response
time must be within a limited time, i.e., the system must be able to respond to changes in the
state of its environment within this time limit. Not respecting the timing constraints of a real-
time system could cause the system to behave incorrectly, causing instability, which could lead
to a major system failure.

2.1.1 Definitions and Properties

Definition 2.1.1. Real-Time System [62, 64]. A real-time system is defined as a control-command
system in which the application’s correctness depends not only on the result but also on the time at which
this result is produced. If the application timing constraints are not respected, we talk about system failure.

In a real-time system, time is the most important resource to manage. Tasks must be assigned
and executed in such a way that they respect their timing constraints. Interactions between tasks
are also time-constrained, messages are transmitted in a well-defined time interval between two
real-time tasks. The environment in which a computer operates is an essential component of any
real-time system. Therefore, the respect of the timing constraints of a real-time system affects
its reliability. A failure of a real-time system can have catastrophic consequences, whether it is
economic or human.

Definition 2.1.2. Predictability [62, 3]. A system is considered predictable if a useful bound is known on
temporal behavior that covers all possible initial states and state transitions.
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Predictability [62] in a real-time system depends on several factors, covering both software and
hardware. In a predictable system, it must be possible to determine in advance whether all com-
putation activities can be performed within a given time limit. To this end, the system should be
deterministic, i.e., based on a sequence of input events, the system produces a sequence of output
events, always the same output with the same input and in an order determined by the order
of the input events [3]. Several factors affect the deterministic behavior of a system, including
its hardware architecture, operating system and the programming language used to write the
application.

Definition 2.1.3. Composability [3, 4]. A system is considered composable if tasks cannot affect the
behavior of any other task, neither its computation result nor its temporal behavior.

In a composable system, a component of the system should not affect the temporal behaviour
of another component unintentionally [9]. Composability is a major factor in improving the pre-
dictability of the system. However, modern hardware architectures include several advanced
functions (e.g. caches), which increase the average performance of the system at the cost of highly
variable timing behaviour. Since these hardware resources are most often shared and are based
on historical execution information to improve performance, the execution time of an application
is likely to depend on the execution history and interference of other competing applications.

Real-Time Tasks

Definition 2.1.4. Real-Time Task [62, 64, 8]. A real-time task denoted τi, sometimes also called a process
or a thread, is an executable entity of work which, at a minimum, is characterized by a worst-case execution
time and a time constraint.

Definition 2.1.5. Job [64, 8]. A job is a running instance of a task on the hardware platform.

Tasks in a real-time system are invoked/activated at regular intervals and must be executed in
a limited time window. Each invocation of a task corresponds to a job that monitors the state of
the system by taking input data, performs some computations and, if necessary, sends commands
to modify and/or display the state of the system. A real-time task is often characterized by its
criticality level, which is defined according to the severity that a task failure will have on its
environment. A real-time task is also characterized by its temporal properties, distinguishing
several types of task: periodic, aperiodic and sporadic. Each type normally gives rise to multiple
jobs.
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Definition 2.1.6. Periodic Tasks [64, 49, 73]. Periodic tasks are real-time tasks which are activated (re-
leased) regularly at fixed rates (period). The period of a task τi is commonly designated by Ti. The time
constraint for an instance of a periodic task is a deadline di that can be less than, equal to, or greater than
the period. It is often assumed that the deadline equals the period (implicit deadline).

Generally, a periodic task is used for the acquisition or the production of data at regular times.
The task activities must be performed in a cyclically manner at specific rates, which can be de-
rived from the requirements of the application. For instance, this type of task is used for moni-
toring purposes, where the task acquires data from sensors at regular intervals. The utilization
denoted ui, of a periodic task τi is the ratio of its execution time Ci over its period τi, i.e., ui =

Ci
Ti

.

Definition 2.1.7. Aperiodic Tasks [64, 73]. Aperiodic tasks are real-time tasks which are activated irreg-
ularly at some unknown and possibly unbounded rate. Aperiodic tasks have soft deadlines or no deadlines.

Aperiodic tasks are event-driven, which means that these tasks behave in an unpredictable
way and are governed by events from the system environment.

Definition 2.1.8. Sporadic Tasks [64, 73]. Sporadic tasks are real-time tasks which are activated irregu-
larly with some known bounded rate. The bounded rate is characterized by a minimum inter-arrival period,
that is, a minimum interval of time between two successive activations. This is necessary (and achieved by
some form of flow control) to bound the workload generated by such tasks. The time constraint is usually
a deadline di.

Just like aperiodic tasks, sporadic tasks are event-driven. There is no prior knowledge of the
arrival times of sporadic tasks. However, they do have requirements on the task’s minimum
inter-arrival time. Unlike aperiodic tasks that may not have hard deadlines, sporadic tasks do
have hard deadlines, i.e. when the triggering event of the task occurs, a response is required in a
limited time window.

Task Specification

In real-time systems, a task τi is characterized, as depicted in Figure 2.1, by its priority ∏i., its
release time ri, its deadline di, its execution time Ci, and its period Ti.

Definition 2.1.9. Release Time [64, 73]. A release time ri, is a point in time at which a real-time job
becomes ready to (or is activated to) execute.
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FIGURE 2.1: Overview of a task specification.

A job can be scheduled for execution at any time at or after the release time. It may or may
not be executed immediately, because, for example, a higher or equal-priority task is using the
processor.

Definition 2.1.10. Deadline [64, 8]. A deadline, di is a point in time by which the task (job) must
complete.

Usually, a deadline di is an absolute time. Sometimes, di is also used to refer to a relative deadline.
To avoid confusion we denote the relative deadline as Di. A relative deadline of a task is the
deadline measured in reference to its release time.

Definition 2.1.11. Priority [64]. The priority i of a task indicates its order of importance for scheduling.

A task has a priority ∏i, which can be fixed or dynamically assigned. The higher the value of
a task, the higher this task’s priority level. Most of the time, the highest priority task instance
(job) that is ready, i.e., whose activation/release date has passed and that has not yet completed,
is elected to be executed by the processor. Note that in this thesis, we assume fixed priority
assignment, hence the index of task i is equal to its priority ∏i. Therefore, the task index i also
represents its priority.

Definition 2.1.12. Execution Time. A task’s execution time is the required time for a processor to execute
an instance, i.e., job, of a task τi.

The execution time Ci of a task is not always constant (see Section 2.1.2). For example, a task
can have different execution paths and different number of loop iterations each time the task
executes. The execution paths and the number of loop iterations vary because of the changes
in the input data. The upper-bound and lower-bound of a task’s execution time are defined as
follows:
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Definition 2.1.13. Worst-Case Execution Time (WCET) [76]. The WCET represents the longest execu-
tion time of any job of a task under any circumstances.

Definition 2.1.14. Best-Case Execution Time (BCET) [76]. The BCET represents the shortest execution
time of any job of a task under any circumstances.

When designing a system following the multi-tasking approach (several tasks sharing the same
hardware execution platform), in addition to execution times, one has to consider the response-
time Ri of a task.

Definition 2.1.15. Response Time. The response time of a task corresponds to the interval from the task’s
release time to the task’s completion.

In a multi-tasking scheduling context, a task is not executed immediately when it is released
because the required shared resources or the processor may be used by higher priority tasks and
might thus not be available. Besides, in a preemptive scheduling context, a lower priority task
can be suspended so that the processor can execute a higher priority task which is ready. As a
result, a task’s response time could be larger than its execution time.

2.1.2 Worst-Case Execution Time Analysis

A real-time system must be valid not only with regard to the computed results but also with
regard to its time constraints. This assessment is based on bounding the temporal behavior of
every task in the system. Specifically, a task’s worst-case execution time (WCET) is used to ensure
that its deadline is met in all cases, even in the worst case.

The task’s execution time is not constant and varies according to many factors [22] that can be
divided into two parts, (1) hardware, the architectural mechanisms implemented at the processor
level, and (2) software, the operating system and concurrent tasks, including program inputs that
can affect the path followed in the task. Many research studies have focused on obtaining an
upper-bound of the worst-case execution time in the context of complex single-core architectures.
This interest in obtaining a reliable and accurate upper-bound is driven by the criticality of real-
time systems where a system failure can lead to severe consequences, and the cost of pessimism
and imprecision during system validation, leading to low hardware resource utilization.
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FIGURE 2.2: Task execution time distribution, figure taken from [76].

As mentioned before, WCET analysis relies on the hardware platform on which the task’s jobs
are running. The increase in the complexity of hardware architectures meets the performance
needs of general-purpose systems, which also applies to real-time systems, albeit to a lesser ex-
tent. Hardware solutions have the benefit of being transparent to the users of the systems in-
volved. However, more complex architectures are usually difficult to analyse, due to the large
state space. Either we explore this large state space (good precisions, bad analysis time) or we
use abstractions to simplify the analysis (better analysis time with less precision).

Figure 2.2 illustrates the difference between best-case, worst-case, and average execution time
of a given task. The set of all execution times is shown as the upper curve, along with the best-
and worst-case execution times (BCET and WCET). In most cases, the state space is too large to
exhaustively explore all possible executions and thereby determine the exact worst- and best-case
execution times.

There are three main families of methods for bounding the worst-case execution time of a
task [76]:

Dynamic or measurement-based methods: The common method to establish execution-time
bounds is to measure the end-to-end execution time of the task for a subset of the possible execu-
tions. For this method, the task, or parts of it, execute on the given hardware or a simulator for
some set of inputs. From measured times the maximal and minimal observed execution times
are derived. In general, these methods overestimate the BCET and underestimate the WCET and
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so are not safe for hard real-time systems. A safety margin is thus often added to the observed
maximal execution time, e.g., by multiplying by a given factor – the resulting WCET estimate
may still be unsafe.

Static methods: To compute the execution time bounds of a task, static methods are not based
on any execution but on the observation and analysis of its source code or binary code. This
method analyze the set of all possible execution paths through the (binary) code of a task, com-
bines this information with an abstract model of the hardware architecture, and obtains an upper
bound for this combination [75]. Since all analysis steps aim to compute over-approximations,
the obtained bounds are safe. However, it is challenging to proof that the formal analysis models
actually match the underlying hardware implementations (which might not be publicly avail-
able, contain bugs, be poorly documented, or not be documented at all).

Probabilistic methods: Probabilistic analyses build upon the fact that an exhaustive measure-
ment of the WCET cannot be made for all possible states of the system, and that hardware ar-
chitectures are so complex that static analysis is often very difficult to perform. Burns et al. [17]
proposed a statistical method, where execution time is represented by a probabilistic function.
The WCET upper-bound is associated with a confidence level by which the upper-bound can
be held. Therefore, the probabilistic WCET (pWCET) is defined as follows [23]: The probabilistic
worst-case execution time (pWCET) of a task describes the probability that the worst-case execution time of
that task does not exceed a given value. Probabilistic methods often require special properties on the
software and hardware (e.g., independence of execution times) and are still subject to research.

2.1.3 Real-Time Scheduling

In a system with multiple resources that can be accessed simultaneously by multiple users, it
is necessary to assign the available resources to the task to be executed, according to a scheduling
policy. The scheduler is responsible for allocating tasks to processors and managing contention
within each processor. In the case of real-time systems, the scheduler has to guarantee the respect
of a task’s timing constraints. In other words, all tasks must meet their deadlines.

There are two categories of real-time scheduling strategies: static and dynamic [21].

Static scheduling is based on an off-line definition of a static table, containing a sequence of all
scheduling decisions regarding the task’s executions. The definition of the static table requires
prior knowledge of a task’s behavior. This scheduling type can be applied to time-driven tasks
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(e.g. periodic tasks) which offers a predictable temporal behavior. Another interesting point of
static scheduling is its low runtime overhead. However, this scheduling strategy remains very
inflexible, with regard to changes in the environment during execution, since it assumes that all
parameters, including the release dates, have been fixed in advance.

Dynamic scheduling is an online approach of a task to processor allocation. The decisions are
based on the current state of the system and the properties of the ready tasks, i.e., according to
the task’s timing constraints at runtime. This approach offers a more flexible scheduling strategy
that can handle even-triggered tasks, therefore offering a higher processor utilization. However,
such an approach can have high runtime cost and can be very complex to implement.

Different dynamic scheduling policies exist which mainly reside in two classes of algorithms [14]:

Fixed-priority scheduling algorithms: This approach considers that each task is assigned a
priority a priori. The scheduling is done so that the task with the highest priority is assigned
to the processor. The task priority can be set according to various criteria, for example, the Rate
Monotonic Scheduling (RMS) [74, 49] policy gives the highest priority to the task with the shortest
period. Another example, under Deadline Monotonic Scheduling (DMS) [74] where this time the
task priority is assigned according to a task’s deadline.

Dynamic-priority scheduling algorithms: As with fixed-priority scheduling, the scheduling
decision relies on task priorities. The difference here is that the priorities dynamically change
during runtime, according to various criteria. The best-known approach, Earliest Deadline First
(EDF) [74] policy, is based on the relative deadline of the tasks. The EDF policy consists in as-
signing the highest priority to task with the lowest relative deadline, i.e., the smallest difference
between the task absolute deadline and the current date. Least Laxity First (LLF) [36] is another
dynamic priority approach where the priority varies according to the difference between the re-
maining execution time of the task instance and its relative deadline: the lower the difference is,
the higher is the task priority.

Real-time scheduling may be preemptive or non-preemptive. Using a preemptive scheduling
strategy, the execution of a task can be interrupted at any time by the scheduler in favor of a
higher priority task. The preempted task resumes its execution after the completion of the higher
priority task. On the other hand, non-preemptive scheduling does not allow task interruption.
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2.1.4 Scheduling Analysis

The validation of a real-time system is based on its temporal aspect, which consists of verifying
that all the jobs will always respect their deadlines. To do so, a given task set denoted Γ is
analyzed and tested for feasibility and schedulability depending on the scheduling policy:

Definition 2.1.16. Feasibility [8, 68]. Feasibility is the assessment of the ability to satisfy all timing
constraints of a task set.

Definition 2.1.17. Feasible [8, 68]. A task set is feasible if there exists a scheduling policy guaranteeing
that all timing constraints are met.

A real-time task generates a sequence of jobs, each job has a deadline. If all instances (jobs) of the
task set can be scheduled with all their deadlines met, then the task set is said to be feasible.

Definition 2.1.18. Schedulability [8, 68]. Schedulability is the assessment of the feasibility of a task set
under a given scheduling policy.

Definition 2.1.19. Schedulable [8, 68]. A task set is schedulable under a scheduling policy if none of its
tasks, during execution, will ever miss their deadlines.

Schedulability tests are based on the temporal characteristics of the task set. These tests verify
several conditions in order to assess the schedulability of a task set. These conditions may be
necessary, sufficient or exact [68] and depend on the characteristics of the systems under which
they are applied.

There are three main classes of schedulability tests:

Processor utilization: The processor utilization factor relies on the ratio between the n tasks’
execution times and their periods, which is computed as follow:

U =
n

∑
i=1

Ci

Ti

For example, this test can be applied to the RM preemptive scheduling policy, the test is con-
sidered sufficient but not necessary [49], as long as the processor utilization does not exceed
n · ( n
√

2− 1). Different bounds can be found for different scheduling approaches (DM, EDF, LLF),
these bounds and their conditions also depend on the environment and the type of the consid-
ered system. For example, in a distributed system of dependent tasks, the conditions determined
by the processor utilization factor remain necessary and not sufficient.
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Processor demand: This test is based on the computation of cumulative demand of task ex-
ecutions. It involves testing for any time interval [t1, t2], that the maximum cumulated tasks’
execution times, released and ended execution in this interval, does not exceed the length of the
interval [49].

Response-time: This test is based on the tasks’ Worst-Case Response Times (WCRTs) compu-
tation. It can be applied to any variant of Fixed-Priority scheduling techniques. This approach
is therefore based on worst-case scenario analysis rather than on an exhaustive exploration of
all possible states. In addition, this approach can be applied to more complex systems such as
systems with random deadlines or dependent tasks, or distributed systems.

The test is sufficient and necessary for task sets that consist of synchronous periodic tasks. For
a given task set, the computation of the WCRT, Ri of a task τi, is performed using the following
recurrence equation [39, 7]:

Rn+1
i = Ci + Bi + ∑

∀j∈hp(i)

⌈
Rn

i
Tj

⌉
Cj (2.1)

The recurrence equations are initialized to R0
i = 0 and then iteratively reevaluated until a fixed

point is reached. Ri then indicates the response time of task i, having a WCET bound Ci. In
addition, the impact of preemptions by tasks with higher priority than i (j ∈ hp(i)) is considered
via their WCET bounds Cj and periods Tj. Bi indicates an upper bound on the time task i may
be blocked (e.g., by semaphores). If all tasks meet their deadlines (i.e. ∀i : Ri ≤ Di) than the
corresponding task set is schedulable.

2.2 Mixed-Criticality Systems

Several factors make the computation of an upper-bound for the worst-case execution time
complex and most often result in a very pessimistic upper-bound. The schedulability tests are
based on these pessimistic WCETs and result in low processor utilization, hence an inefficient use
of the underlying hardware resources. Some approaches have been developed to take advantage
of this pessimism. Vestal [71] has introduced the so-called mixed-criticality systems, where dif-
ferent criticality tasks are scheduled on the same platform with properties that take advantage of
the WCET pessimism.
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In a mixed-criticality system, a task τi is characterized [18] by a criticality level Li, a set of
worst-case execution times (Ci(1), Ci(2), ..., Ci(Li)) depending on the criticality level, a deadline
(Di) and a period (Ti). The scheduling of a task set Γ under a mixed-criticality system relies on
the execution mode X. This mode is related to the criticality level in which the system is operating,
such that it only allows tasks with a higher criticality level to be executed, i.e. Li ≥ X. A mode
change is triggered every time a TFE (Timing-Failure Event) occurs. The TFE refers to the case
where a running job reaches its Ci(X) and therefore it will be granted a higher worst-case execu-
tion time Ci(X + 1) so that it can finish executing at the cost of stopping lower criticality jobs. In
a two-level criticality model (∀τi ∈ Γ, Li ∈ [1, 2]), the two execution modes work as follows:

• Low mode (X = 1): supports the execution of all tasks with criticality levels Li ∈ [1, 2].

• High mode (X = 2): only enables tasks with a criticality level Li = 2 to be executed.

Each time a TFE is triggered, tasks with a criticality lower than the execution mode are simply
stopped. This approach allows the critical tasks to be executed without fear of missing their
deadlines. There are alternative approaches [65, 66] that instead of stopping the lower critical
tasks modify their execution conditions. These approaches are based on the elastic task model [19],
which allows having Li periods per task (Ti(1), Ti(2), ..., Ti(Li)). Therefore, the used task period
depends on the execution mode X. When a TFE is triggered, instead of stopping tasks with a
lower criticality level than the execution mode, these tasks change periods (larger periods) and
downgrade their execution for the benefit of more critical tasks.

2.3 Conclusion and Considered System Model

In this section, we introduce the real-time system model and assumptions on which we base
our work. We present our task model in Subsection 2.3.1 before detailing our choices regarding
the scheduling policy in Subsection 2.3.2.

2.3.1 Task Model

In this work, we assume a finite task set Γ consisting of independent and periodic tasks. Each
task τi ∈ Γ is assigned a fixed priority i – a larger task index indicates higher priority. A task
is characterized by the tuple τi = (Ci, Ti, Di, Mi), representing the task’s WCET, its period, its
implicit deadline, and finally its worst-case number of memory requests respectively. Each task
generates an infinite sequence of jobs at runtime, which, in turn, generate a sequence of memory
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requests τi,j where j ≤ Mi. Requests are separated by a dynamic number of processor clock cy-
cles. This distance given by distj represents the amount of computation performed between the
completion of request τi,j and the issuing of the consecutive request τi,j+1 or the job’s termina-
tion. This allows us to model any dynamic job execution (even input-dependent) considering a
deterministic hardware platform. In order to ensure that the distances between requests are in-
dependent from the execution of other tasks, we assume composable compute cores [30] and the
absence of any external events that may interfere with the execution of a core.

This work focuses on two classes of tasks: critical tasks τc
i and non-critical tasks τnc

i . How-
ever, our model is somewhat simplified with regard to mixed-criticality systems, as we do not
introduce different operation modes, e.g., the modes LO/HI from Vestal [71]. We currently only
consider a single Ci value per task in our task model, i.e, we assume a multi-criticality system.
We here assume that the WCETs (Ci) and deadlines (Di) of critical tasks are firm and have to be
respected under all circumstances. An execution thus fails if a critical task misses its deadline.
Non-critical tasks, on the other hand, are executed in a best-effort manner by the underlying
computer platform. During execution, they may exceed their WCET budget, potentially causing
deadline misses – for themselves or other (critical) tasks. However, for the formal analysis based
on response-time analysis (RTA) [7], we require firm WCETs and deadlines for non-critical tasks,
due to the absence of mechanisms to handle timing failure events in the task model – note that
the task model is not the main focus of this work. This is required in order to bound the response
times of critical tasks.

2.3.2 Scheduling Policy

Our work focus on multi-core platforms, task scheduling on this type of architecture can be
performed globally among all/a subset of the available m cores [47] or in a partitioned man-
ner [11, 13]. Partitioned scheduling statically assigns each task onto a fixed core, while global
scheduling allows tasks to migrate among cores dynamically. In principle, both of these schedul-
ing policies could be combined with the approaches proposed here. In Chapter 5, we first assume
a restricted scheduling model, where each core executes a single independent and periodic task.
This aims to first evaluate our work regardless of the scheduling policy before relaxing this as-
sumption in Chapter 7. For brevity, in Chapter 7, we limit our discussion on partitioned scheduling
using fixed-priorities on each core. Critical and non-critical tasks may reside on the same core –
without any restrictions on the priority assignment. Notably, non-critical tasks may have a higher
priority than critical tasks. This latter chapter, hence, evaluates the preemption delays induced
by our approaches.
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The fixed-priority partitioned scheduling enables the scheduler on each core to determine at
any moment in time and in advance, which task will need to be activated next on its core. In-
stead of triggering preemptions periodically, we assume that the scheduler programs a hardware
component that signals the need to preempt the currently running task to the core. This ensures
that preemption handling does not interfere with the execution on a given core – up until to
the moment when a preemption is triggered. We assume that each core is equipped with such
a component, separately tracking the next upcoming preemption stemming from a non-critical
or critical task. This also ensures that the preemption mechanism does not interfere with the
computation (distance) between memory accesses.
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In this thesis, we are interested in multi-core systems, i.e. systems with several computing
cores. In fact technological advances now make it difficult to increase the frequency of each pro-
cessor. The computing capability of each system is instead improved by increasing the number
of processors. Multi-core systems are therefore increasingly present, even in real-time embedded
systems. Single-processor systems will thus be replaced by multi-core systems. The industry will
have to turn to multi-core systems. This justifies the study of multi-core systems.
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Multi-core architectures pose many challenges in real-time system, which arise from the many-
fold interactions between concurrent tasks during their execution. The different cores are not
completely independent of each other. Several resources are shared between the computing
cores, such as the main memory, the bus interconnecting the cores and the main memory, or
any second- or third-level caches, in order to limit the cost of developing and manufacturing
multi-core chips. As a result, access conflicts and additional latencies arise compared to a single-
core architecture. These latencies must be bounded in order to be included in the worst-case
execution time of the tasks. Therefore, dedicated mechanisms for partitioning and arbitrating
shared resources must be used to ensure the respect of strict real-time constraints.

In a multi-core architecture, each core has its pipeline which can contain Arithmetic and Logical
Units (ALUs), Floating-Point Units (FPUs), and Load/Store Units. The processing time for instruc-
tions using only these private resources is therefore identical to that observed on a single-core
processor. However, as previously mentioned, other resources are shared by the entire platform,
including some levels of the memory hierarchy. They provide a major source of temporal unpre-
dictability for tasks that rely on them, in addition to being a bottleneck for processor performance.
Precisely bounding the temporal behavior of a memory access is one of the main challenges when
analyzing a task scheduled on a multi-core architecture.

This chapter focuses on the hardware mechanism that has an impact on the worst-case exe-
cution time analysis of a task more precisely on the memory hierarchy. Therefore, Section 3.1
focuses on the impact of the memory hierarchy on real-time tasks and vice-versa. Afterwards,
Section 3.2 provides an overview of the arbitration mechanisms used in real-time systems. Fi-
nally, as a conclusion, a small description of the assumed hardware platform for this work, is
given in Section 3.3.

3.1 Memory Hierarchy

The memory hierarchy is the main factor of the worst-case execution time analysis complexity.
The memory hierarchy is composed of a series of caches that provide the link between the pro-
cessor and the main memory while going through arbitration mechanisms for accessing shared
memory. Each of these caches contains a partial image of the memory which is faster to access
than the latter. In fact the presence or absence in the cache of data required by a sequence of
instructions can result in an execution time difference of several hundred processor cycles.
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FIGURE 3.1: Overview of a computer memory hierarchy, figure taken from [26].

An overview of the memory hierarchy [26] is given in Figure 3.1. It shows that the access
time of the different memory levels varies, as does the storage capacity of these levels, while the
throughput and cost per bit vary as the inverse of the storage capacity. The memory hierarchy
is based on the locality of reference [24], also known as the principle of locality, which refers to
the tendency of a processor to access the same set of memory locations repeatedly over a short
period of time. There are two basic types of reference locality, temporal and spatial locality. Tem-
poral locality refers to the reuse of specific data, and/or resources, within a relatively small time
duration. Spatial locality, on the other hand, refers to the use of data elements within relatively
close storage locations.

3.1.1 Registers

A processor contains a number of registers [50], a register may hold an instruction, a memory
address, or any kind of data. The registers work as the highest level in the memory hierarchy,
and provide the fastest way to access data.

3.1.2 Scratchpad

A scratchpad memory is a local memory close to the processor core, just after the processor
registers (same level as the caches). The memory has specific instructions allowing for data to
be transferred directly to and from the main memory [10]. Scratchpads are often used as a local
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memory alternative to the cache memory. Besides, a scratchpad allows to the task running on a
core to directly manipulate its data, which can be useful for critical real-time tasks [67], unlike
cache memories, which are problematic in terms of predictability. Given its properties, the pro-
grammer can ensure an execution without main memory contentions in a multi-core architecture,
by directly controlling the content of the scratchpad memory through the dedicated instructions.

3.1.3 Caches

The primary purpose of a cache [63] is to bridge the latency gap between the slow main mem-
ory and faster processors. A cache contains a subset of the main memory with faster access
latency and is the first one checked by the processor when it requests data from the memory. If
the data requested is cached, it can be served immediately at a reduced latency compared to the
main memory access, this is known as a cache hit. On the other hand, if the data is not in the
cache, the processor request is redirected to the main memory, this is known as a cache miss. At
any given time, the content of a cache memory depends on its technical characteristics (number
and size of blocks), the memory access history performed and also the cache replacement policy
used.

Replacement policy: To make room for the new memory blocks on a cache miss, the cache
may have to evict one of the cached memory blocks. The heuristic used to choose which entry
to evict is called the replacement policy [63]. The challenge for any replacement policy is that it
must anticipate which of the cached memory blocks is least likely to be used in the future. One
popular approach, Least-Recently Used (LRU), replaces the least recently accessed entry.

Write policy: When the processor writes a data to the cache, at some point it must also be
written to main memory. The moment when this write is done distinguishes the different write
policies [40]. There are two basic writing policies, write-through and write-back. In a write-through
policy, the write is done synchronously both to the cache and to the main memory. Alternatively,
in a write-back policy writes are not immediately forwarded to the main memory, the cache in-
stead tracks which blocks have been modified marking them as dirty. The data in these locations
is written back to the main memory only when that data is evicted from the cache.

Cache types: The caches can be divided into an instruction cache, containing the program code
to be executed, and a data cache, or combined into a single unified cache. The benefit of having
separated caches is to allow instructions and data to be loaded simultaneously.
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Cache memory is important because it provides data to a processor much faster than main
memory. It helps to reduce the memory latency and thus decreasing system response time. How-
ever, in real-time systems, because cache memory is shared between tasks and memory accesses
are not always predictable, the worst-case execution time analysis gets more complex. A naive
solution to this problem is to compute at any point in the program all possible cache states at
runtime [53]. If this method ensures accuracy and safety, the number of states to maintain and
consider tends to explode [69], its complexity in the general case is extremely high.

Several studies focus on the problem of analyzing the content of cache memories. Cache anal-
ysis is initially performed for each task in isolation using abstract interpretation. The use of an
abstract representation of the possible cache states at runtime is one of the first methods [27, 51]
for estimating cache content. An input state is computed for each point of the program from the
output state of its predecessors until a fixed point is obtained. The behavior of each instruction
with respect to the cache can then be estimated according to the content of its input state.

In a computer system that uses cache memory, when a task is preempted, memory blocks be-
longing to this task could be evicted from the cache. Once this task resumes, previously removed
memory blocks have to be reloaded. Therefore, the Cache Related Preemption Delay (CRPD) de-
notes the delay added to the execution of the preempted task because it has to reload cache blocks
evicted by the preemption [53]. In a real-time system, these CRPDs has to be taken into account
when analyzing tasks’ response time. Several studies [68, 5, 20] focuses on computing the cost
of reloading evicted cache blocks after a preemption with regard to the worst-case response time
analysis.

3.1.4 Main Memory (DRAM)

Dynamic random-access memory (DRAM) is widely used as a main memory in embedded
systems, where low-cost and high-capacity memory is required. In contrast, the static random-
access memory (SRAM), which is faster and more expensive than DRAM, is typically used where
speed is of greater concern than cost and size, such as the higher levels in the memory hierarchy
(cache memories).

DRAM organization: Figure 3.2 shows the internal organization of modern DRAMs [42, 59,
3]. The DRAMs are organized as a set of ranks, each of which consists of multiple DRAM chips.
Each DRAM chip has a three-dimensional memory organization with the dimensions of bank,
row, and column. The banks operate independently of the other banks and memory requests to
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FIGURE 3.2: Overview of a DRAM organization, figure taken from [42].

different banks can be serviced in parallel. DRAM banks have a two-dimensional array of rows
and columns of memory locations. To access a column in the array, the entire row containing the
column is activated and transferred to the bank’s row-buffer. The row buffer serves as a cache to
reduce the latency of subsequent accesses to that row. While a row is active in the row buffer, any
number of reads or writes (column accesses) may be performed. Each bank has a row buffer that
can hold one open row at a time, and read and write operations are only allowed to the open row.
Before opening a new row in a bank, the contents of the currently open row are copied back into
the memory array. The elements in the memory arrays are implemented with a single capacitor
and a resistor, a charger capacitor is defined as a one and zero when its empty. The capacitor loses
its charge over time due to leakage and must be refreshed regularly to retain the stored data.

The internal DRAM architecture described above makes it challenging to use in systems with
real-time requirements [3]. The DRAM memory access latency and bandwidth depend on vari-
ous characteristics, which creates large variations in the time required to serve a read or a write
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memory request. (1) The first source of variability is related to the row targeted by the request
and the rows that are currently open in the banks. If the row targeted by the memory request
is open, the request can be served immediately. On the other hand, if the request is targeting a
closed row, this request must wait until the currently open row has been closed and the required
row has been opened, resulting in additional latency. (2) The data bus is bi-directional and re-
quires several clock cycles to change direction from read to write or write to read, this leads to
additional latency. (3) The third source of variability is related to the capacitor refresh, which
can take several clock cycles during which no data can be transferred on the data bus. Therefore,
the temporal alignment of a memory request with regard to the DRAM refresh also impacts the
memory access latency.

The first two sources of variability are particularly problematic since they involve a depen-
dency on the previously issued memory requests that may have been issued by other requestors
sharing the resource. This generates resource interference between requestors, where the time
that the resource requires to serve a memory request depends on other requestors. This interfer-
ence makes it very hard to bound the bandwidth offered by the memory and the latency of mem-
ory requests at design time, which is necessary to support firm and hard real-time requirements.
When trying to provide predictable memory behavior, DRAM memories suffer from highly vari-
able access latencies and overly pessimistic latency bounds. An alternative off-chip memory
solution may be considered [32], based on Reduced Latency DRAMs (RLDRAMs). Access laten-
cies for RLDRAMs are generally lower and, in addition, exhibit less variability. However, this
type of memory is not widely used and to our best knowledge, Hassan [32] is the first to consider
using this type of memory for real-time systems.

3.2 Memory Arbitration Schemes

In a multi-core architecture, the main memory is shared between several cores. Tasks running
simultaneously on the different cores are subject to interference from concurrent accesses to this
shared resource. This interference, therefore, impacts task execution times and an upper-bound
is needed w.r.t. the maximum time required to access the main memory in order to establish
the tasks’ WCETs. The memory arbitration policy used to manage interference thus plays an
important role in bounding tasks’ WCETs and in improving the average task performance. Fur-
thermore, proper interference management is essential to effectively use multi-core platforms.
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Whenever a task requires data or instructions from the main memory, the core’s bus controller,
on which the task is executed, sends an access request to the arbiter. The arbiter processes the
various requests according to an arbitration policy. The request to be granted first can be selected
according to its arrival date, the static priority of the core/task that issued it, or according to an
approach independent from the component issuing the request. A core can only access the main
memory when the arbiter grants access to it. Several arbitration policies are discussed below.

3.2.1 Fixed-Priority

In this approach a priority level is first assigned to each element requesting access to the shared
memory, this element can be a core or a task. The arbiter uses this parameter to manage the
scheduling of memory requests. If several cores/tasks are requesting access to the shared mem-
ory at the same time, the request coming from the core/task with the highest priority is the first
one satisfied. Such arbitration is easy to implement and is therefore widely used. However, the
predictability of such an approach is complex and often very pessimistic. The time that a memory
request has to wait to be processed depends on the requests sent by the other cores. Therefore,
A request can be delayed indefinitely by higher priority elements [15]. Only the latencies of the
element with the highest priority can be predicted regardless of the other concurrent elements.
This is problematic in a real-time system, where many critical tasks are competing for the shared
resource. As a result, a fixed-priority arbitration can only be safely used on a multi-core platform
when only one of its cores is executing a task with strict real-time constraints. The worst-case
memory access latency is then predictable and limited. On the other hand, it cannot be precisely
established for the other cores/tasks [46]. Besides, this approach does not take into account the
behavior of the tasks executed by the other cores, which can affect the overall performance of the
platform. Altmeyer et al. [6] proposed a framework allowing to upper-bound the memory access
latency with regard to contention with other competing elements. This is achieved by bounding
the total number of memory accesses due to all competing elements with higher priority during
a limited time interval. Their results showed that a Fixed-Priority arbitration can achieve good
guaranteed performance even if the arbitration policy does not provide tightly bounded single
memory access latency unlike with TDM and Round-Robin approaches (see Subsections 3.2.3
and 3.2.4).

3.2.2 First-Come First-Served

Instead of assigning a static priority to the elements seeking access to the shared memory,
alternative approaches are based on a dynamic priority allocation. This priority may depend on
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various characteristics, such as the First-Come First-Served (FCFS) policy, which assigns a priority
based on the arrival date of the memory request. Under the FCFS policy, memory requests are
stored in a queue, the older a request is, the sooner it will have access to the shared resource. If
several requests arrive at the same time, the selection of the one that will be placed first in the
queue can be random or follow a predefined policy. This approach makes it possible to treat the
different cores equally. As a result, this optimizes the shared bus occupancy and improves the
use of shared memory [59]. However, this type of approach does not include a memorization
mechanism that would allow prioritization of requests arriving at the same time according to the
history of the core that issued them. The time required to satisfy any request depends only on the
number of requests received previously and not on the number of requests not yet served. For
each request, a joint analysis of all tasks running on the same platform is required to determine
its waiting time.

There are variants of FCFS that improve the memory access latency by taking advantage of the
spatial locality of access (First-Ready First-Come First-Served (FR-FCSFS) [70, 37]). This mechanism
is designed to ensure that when a task generates an access stream to the same memory line,
requests from the other tasks can be put on hold. As in FCFS, the oldest requests are always given
priority regardless of requests history to the disadvantage of tasks that issue fewer requests. In
order to address this issue, several approaches were proposed [54, 52] to improve the fairness
of processing memory requests by taking into account the history of memory requests issued by
concurrent tasks.

3.2.3 Round-Robin

All the previously presented schemes, whether they are static or dynamic priority approaches,
aim to maximize the use of the memory bus and therefore the use of main memory. However,
shared memory access latencies always change dynamically depending on the behavior of other
tasks running on the same platform. As a result, the computation of a fixed bound for memory
access latencies is complex. Some arbitration schemes manage memory request of each core in a
way that the memory access latency is independent from the interference of the other cores. The
Round-Robin (RR) policy is the most straightforward approach, each core can access the memory
in turn for the same quantum of time. Therefore, the maximum delay of a request issued by a
core is a function of the number of cores that share the memory, and the latency of a memory
access. This delay is the same for all cores, predictable and independent of the tasks running on
other cores [56]. In the worst case, a memory request is processed last, the maximum processing
time of a memory request is expressed by the formula (m− 1) ∗ L + L, where m corresponds to
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the number of competing cores, and L is the access latency to the shared memory. This formula
includes the accesses of all the other cores (m− 1) ∗ L and the addition the access latency of the
considered core. Using the RR policy, all memory accesses are subject to the same latency, which
can potentially degrade the performance of shared memory usage in the case where competing
tasks do not have the same bandwidth needs.

3.2.4 Time-Division Multiplexing

Similar to Round-Robin, Time-Division Multiplexing (TDM), in addition to being easy to imple-
ment [72] in hardware, ensures a predictable behavior by bounding access latencies and guaran-
teeing bandwidth to tasks independently from other tasks. To do so, TDM guarantees exclusive
access to the shared resource, here the shared memory, in a fixed time window also called TDM

slots. The constant length Sl of a TDM slot is either equal to the worst-case memory access latency
or greater, in latter case it might be possible to process multiple requests in a single TDM slot.
In the context of this thesis, we assume that the TDM slot length Sl corresponds to the worst-
case memory access latency. Therefore, only one memory request at a time can be processed.
Each core has a dedicated TDM slot that alternates over time which allows deriving a TDM period
P = m · Sl, where m refers to the number of cores.

Figure 3.3 illustrates an execution under such a TDM arbitration strategy, considering 3 tasks
(τ0, τ1, τ2) that execute on separate cores (C0, C1, C2) respectively and perform concurrent mem-
ory requests to the shared memory. Each core is assigned a dedicated TDM slot (vertical columns,
labeled C0 through C2 representing the cores executing the tasks) that alternate over time. The

1 2 3 4 5 6 7 8 9 10 11 12 13

C0 C0 C0 C0 C0C1 C1 C1 C1C2 C2 C2 C2

τ0,0 τ0,1 τ0,2

τ1,0 τ1,1 τ1,2

τ2,0 τ2,1

Cycles
0 8 16 24 32 40 48 56 64 72 80 88 96 104

Slots

FIGURE 3.3: Regular TDM arbitration of three tasks τ0, τ1, and τ2.
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slot length Sl in this example is 8 processor clock cycles, which results in a global TDM period (P)
of 24 clock cycles (i.e., P = 3 · Sl). The tasks in our system model (see Subsection 2.3.1) are rep-
resented by sequences of memory requests as follows: (τ0 : 2, 24, 12), (τ1 : 14, 4, 2) and (τ2 : 26, 6).
Task τ0, for instance, performs its first memory access τ0,0 after 2 clock cycles, the second access
τ0,1 24 clock cycles after completing the first one, and the third access τ0,3 another 12 cycles later.

Each memory access of a task blocks the task’s execution, depending on the memory’s speed,
i.e., the TDM slot length or DRAM latency [77], and the arbitration policy (TDM). This blocking
time is visualized in the figure by considering the following dates for each request: (a) the issue
date ( ) indicates the moment when a task issues a request to the memory arbiter (e.g., through a
bus or on-chip network), (b) the start date ( ) indicates the moment when the memory starts pro-
cessing a request, and (c) the completion date. The time span between these dates corresponds
to the Request Inter-Task Delay (b− a) and the Request Execution Time (c− b) of Paolieri, Quiñones,
and Cazorla [55]. Request τ1,1, for instance, is issued 4 cycles after the completion of request τ1,0

in slot 6. The request is granted access to the memory in slot 8, which starts processing immedi-
ately, and completes at the end of the TDM slot indicated by a green hatched bar ( ). Its request
inter-task delay is thus 12 cycles, while its request execution time is equal to Sl. A regular TDM
arbitration scheme assumes that the requests are granted access to the memory only at the be-
ginning of a TDM slot, as this minimizes TDM periods. The memory is not always busy, unused
slots are thus indicated by a red hatched bar ( ). The schedule length of our example is 13 TDM
slots, where τ0,2 is the last request to complete at the end of the 13th slot. The blocking time (the
processor is stalled until the request is processed) of requests τ0,0, τ0,1, and τ1,2 are respectively
3.75, 3, and 1.5 slots respectively. The total blocking induced by TDM on the requests from task τ0

is thus 66 cycles. The last memory access of task τ0, therefore, completes after 104 cycles, since
the amount of processing of task τ0 is 38 cycles (2 + 24 + 12).

The example shown in Figure 3.3 illustrates the temporal isolation among cores offered by TDM
arbitration. This appears to be an attractive solution for critical real-time systems, where TDM

is widely popular due to its predictability. The strict separation of critical tasks would allow to
easily establish worst-case execution time bounds through slot offset analysis [41, 58]. However,
the main issue with TDM is its non-work-conserving behavior, i.e., if a TDM slot is not used by its
owning core than the slot cannot be used by another core. This non-work-conserving nature of
TDM limits the performance of the underlying hardware platform, more precisely, the memory
utilization.
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A common approach to improve the memory utilization of TDM is by increasing the number of
TDM slots according to task weights [79]. However, the TDM strategy itself is not modified, which
remains heavily non-work-conserving.

Recently two software-based approaches have been proposed to improve TDM-based arbitra-
tion depending on contention [67, 45]. The first work [67] defines a task model in which tasks
are split into sub-tasks consisting either memory accesses or computation only. The goal is then
to find a feasible schedule that ensures that the sub-tasks accessing memory never execute con-
currently. The approach thus completely avoids contention by construction by applying TDM at
a rather high-level of abstraction. However, this approach requires to regroup memory accesses
within a single sub-task, e.g., by using a scratchpad memory, which entails a considerable change
in the underlying programming/execution model.

Kostrzewa et al. [44] propose a technique to dynamically adapt to a varying number of active
tasks, which execute under regular TDM. The approach thus does not address the non-work-
conserving nature of TDM. Yonghui et al. [48] truly skip unused entries in a TDM schedule in order
to allow for variable-sized TDM slots. This improves upon the non-work-conserving behavior of
TDM. However, it does not preserve the TDM slot offsets analysis [41]. The behavior of a task thus
relies on the memory latency/interference of other tasks.

3.2.5 Budget-Based Arbitration

Budget-Based (BB) arbitration policies allow satisfying different bandwidth requirements de-
pending on the task needs [2]. Instead of establishing a static arbitration as in TDM, budget-based
approaches simply allocate a given amount of bandwidth (budget) to each core. Depending on
its priority level, and as long as it has not consumed its allocated budget, a core can be granted
access immediately to the memory. MemGuard [80] ensures isolation between cores by imple-
menting such an approach by tracking memory requests in software. Tasks executed by a core are
suspended when the budget of memory requests, periodically assigned to the core, is depleted. A
reclaim manager can donate predicated non-used budget of memory requests to other cores, mak-
ing the approach suitable for soft real-time systems only. Agrawal et al. [1] extend MemGuard
with a memory bandwidth throttling approach [80] to upper bound the WCET using slot-based
time-triggered systems. It constructs schedule tables, assigning partitions and dynamic mem-
ory bandwidth to each slot on each core. At runtime, two servers jointly control the contention
between the cores, and the amount of memory accessed per slot.
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3.2.6 TDM Arbitration and Multi-Criticality Scheduling

In Section 2.2, the benefits of sharing resources between tasks with different levels of critical-
ity were discussed. This type of approaches raises a problem: to allow resource sharing within a
mixed-criticality or multi-criticality system, it is necessary to be able to provide sufficient guaran-
tees of partitioning and separation to ensure that this type of system can share resources without
compromising the temporal behavior of tasks with a higher level of criticality.

Various approaches are focusing on the problem of main memory arbitration in the context of
multi-criticality task scheduling. A straightforward approach is to apply a predictable arbitra-
tion scheme like TDM for critical tasks [28] while allowing other schemes for non-critical tasks.
However, this approach still suffers from the non-work-conserving behavior of TDM, hence, hav-
ing a low memory utilization. Alternative approaches, like Yonghui et al. [48] which skip unused
slots in a TDM period and supporting variable-sized TDM slots, aims to improve the memory uti-
lization. Hassan et al. [34, 33] similarly propose a work-conserving variant of TDM along with
a technique to generate harmonic TDM schedules accommodating critical and non-critical tasks.
However, these approaches do not preserve the relative alignment of the program execution with
the TDM schedule, slot offset analyses [41, 58] thus cannot be applied.

Paolieri et al. [56] propose a multi-core platform for mixed-criticality systems that is equipped
with a hierarchical Round-Robin arbiter, which always prioritizes critical tasks. However, their
arbiter is not able to exploit task criticalities to improve memory utilization or to reduce the
average execution time of non-critical tasks.

Other approaches track slack-time gain by critical tasks compared to their WCET so that non-
critical tasks can benefit from it. Kritikakou et al. [45] track the slack-time of critical tasks in soft-
ware. Non-critical tasks can access memory as long as all critical tasks still have slack left, other-
wise, all non-critical tasks are interrupted and then resumed after the completion of critical tasks.
Kostrzewa et al. [43] propose a mechanism which provides latency guarantees for hard real-time
transmissions in a network-on-chip with a minimum impact on performance-sensitive best-effort
transmissions. They use a slack-based global and dynamic prioritization of data streams. How-
ever, slack for each critical task is computed off-line and preset to a fixed value at the beginning
of jobs.
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TABLE 3.1: Table comparing the various arbitration policies.

Policy Predictability Starvation Dynamic Work-conserving Precise WCET analysis
FCFS X X

√ √
X

FP X
√

X
√

X
RR

√
X

√ √
X

BB
√

X
√

X X
TDM

√
X X X

√

3.3 Conclusion and Assumed Hardware Architecture

In this thesis, we assume a hardware platform consisting of m cores that are connected via a
central arbiter to shared main memory. The memory requests dynamically generated by the jobs
at runtime thus compete for this shared resource. We assume that each core is equipped with
internal caches. Memory requests thus represent transfers of cache blocks resulting from cache
misses. In order to ensure that the distances (see Subsection 2.3.1) between requests are inde-
pendent from the execution of other tasks, we assume composable compute cores [30] and the
absence of any external events that may interfere with the execution of a core. The interference
between the independent tasks consequently stems from accesses to the shared memory only
and, in particular, depends on the employed memory arbiter. For simplicity, we assume that all
cores, the memory bus/arbiter, and the memory itself operate at the same clock speed. We thus
generally refer to time in clock cycles.

With regard to the arbitration schemes presented in Section 3.2, Table 3.1 illustrates a compar-
ison between the different traditional memory arbitration approaches based on different crite-
ria. Our goal is to have a work-conserving arbitration policy targeting multi-criticality real-time
systems, the TDM policy seems to be a good starting point. Even if TDM is not dynamic and
non-work-conserving, we choose TDM because it is easy to implement, and more importantly
predictable with safe and easy to compute worst-case memory access bounds [41, 58]. Therefore
in this work, we focus exclusively on extending the TDM arbitration scheme.
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4.1 Thesis Problem Statement

In Section 2.2, we illustrated the benefits of scheduling tasks with different levels of criticality
on the same platform. This approach aims to increase resource utilization. However, most multi-
criticality systems take decisions only at the task scheduling level. Our aim in this work is,
hence, to develop a criticality-aware memory arbitration in order to improve memory utilization,
while keeping temporal guarantees for critical tasks. To achieve this goal, the arbitration scheme
needs to be aware of task criticalities and dynamically take arbitration decisions accordingly. To
address this challenge, the criticality-aware arbitration scheme must be able to offer a predictable
behavior with regard to the desired temporal guarantees of critical tasks. On the other hand, the
arbiter should also provide enough flexibility regarding the arbitration of memory requests from
tasks with different criticality, to exploit the main memory efficiently. In this work, we are not
considering mixed-criticality systems but rather multi-criticality systems, where we have critical
and non-critical tasks on the same platform. Therefore, we are not interested in tasks with several
levels of criticality and a WCET per level as illustrated in Section 2.3.1.
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4.1.1 Criticality-Aware Arbitration Schemes

Section 3.2 illustrated different techniques to manage memory interference. One important as-
pect of the various arbitration policies is that each of them comes with different properties. TDM
is suitable for providing temporal isolation among cores, while Round-Robin guarantees a fair
treatment among all requestors. Fixed-priority and budget-based approaches are suitable when
differentiated treatment needs to be applied to the cores. This means that an arbitration policy
needs to be selected according to the requirements of the tasks running on the different cores.
Considering a multi-criticality system, in addition to tasks priorities, different requirements are
needed depending on the tasks’ criticalities. For instance, critical tasks require temporal guar-
antees w.r.t. their timing constraints. Non-critical tasks, on the other hand, should be executed
when possible and achieve the best possible performance. Therefore, the memory arbitration
scheme should take into account these different requirements. One may suggest that the fixed-
priority and budget-based approaches are appropriate for such a system. However, we noted in
Subsection 3.2.1 that the priority-based approaches require information on all tasks competing
to access the shared memory, hence lacking timing composability. The budget-based approach
(see Subsection 3.2.5), on the other hand, lacks flexibility, tasks executed by a core are suspended
when the budget of memory requests, periodically assigned to the core, is depleted even if the
memory is currently unused. Another approach is to improve the memory utilization of TDM
(see Subsection 3.2.4 and Subsection 3.2.6) by increasing the number of TDM slots according to
task weights [79]. Others apply strict TDM arbitration to critical tasks [28] while allowing other
schemes for non-critical tasks. In both cases, the TDM strategy itself is not modified, which re-
mains heavily non-work-conserving.

All these aforementioned techniques aim to improve the main memory utilization while keep-
ing temporal guarantees on the tasks’ executions. However, these approaches are either not
efficient in exploiting the main memory, or the arbitration between critical and non-critical tasks
often results in prioritization of critical tasks over non-critical ones [56, 45]. The latter focuses on
the preservation of critical tasks’ temporal guarantees, but on the other hand, this has a negative
impact on the average performance of non-critical tasks.

The memory access delay of schemes built on a more dynamic arbitration (Priority-Based,
FCFS), can only be bounded if all interference among possible concurrent accesses is known.
Therefore, the delay of an access and thus the WCET of a task is no longer computable for a
given, single task on a given platform in isolation, but only if the full set of tasks running on the
platform is known. This means that the timing composability is lost, and assuming a worst-case
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FIGURE 4.1: Non-work-conserving of TDM.

hypothesis for these strategies leads to overly pessimistic results. With regard to the analysis of
arbitration schemes, Pitter and Schoeberl [57] compared the predominant arbitration methods.
They consider TDM arbitration to be the most composable and predictable method. The basic
property in favor of TDM is, that TDM allows to statically determine the delay of a request, once
we know the point in time when the request is issued [41, 58].

Our goal is to have a real-time work-conserving arbitration policy for multi-criticality systems.
To this end, the TDM policy seems to be a good starting point because it is easy to implement,
composable, and predictable, with good worst-case memory access bounds. Therefore, in this
work, we focus exclusively on TDM-based arbitration schemes.

4.1.2 Challenges with Time-Division Multiplexing

(1) TDM Schedule: The access latency of memory request when using TDM depends on the
scheduling of TDM slots, even if they are unused. Such unused slots appear when an owner
of a TDM slot does no (yet) have a memory request ready to be served. These unused slots can-
not be reclaimed by another task (as for instance under Round Robin). This non-work-conserving
behavior of TDM often leads to low resource utilization. This problem is further amplified as
the number of cores increases, leading to longer TDM schedules. Figure 4.1 illustrates such non-
work-conserving behavior. Here the memory is shared by 4 cores, the arbitration policy being
TDM, each core has a dedicated TDM slot to exclusively access the shared memory (C0 to C3). On
this example, core 0 is issuing a memory request and has to wait for its dedicated TDM slot C0
to be granted access to the memory. However, the slots C2 and C3 are unused since no memory
request is issued from the owners of those TDM slots. Therefore, the TDM arbitration policy con-
strains the requests to be processed during their dedicated TDM slots even if the memory is idle
as illustrated in Figure 4.1.
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FIGURE 4.2: TDM slots induced delays.

(2) Fixed Slot Arbitration: Another issue of TDM stems from the use of fixed TDM slots as mem-
ory accesses are granted only at the beginning of TDM slots (see Subsection 3.2.4). Hence, when a
request is issued within an unused slot, the access has to wait for the beginning of the upcoming
TDM slot. Figure 4.2 shows an example where the request from core 0 has to wait for the start
of its following TDM slot to be granted access to the memory. In this example, when the request
from core 0 is issued, the current unused slot C3 cannot be exploited by its owner, because the
memory access latency requires the full TDM slot. Therefore, even if a request is issued from the
owner of slot C3 at that instant, the request has to wait for its following dedicated TDM slot (one
TDM period later). However, since the owner of C3 cannot exploit the remaining time of its slot,
the owner of the following slot C0 could use the remaining time of C3 to eagerly process C0’s
memory request. Here, the request from core 0 could start directly at its issue date. In this case,
it is always safe to immediately start processing the request, an overflow into the next TDM slot
is not an issue. However, due to the static scheduling of the TDM slots, the strict TDM arbiter does
not allow such an eager processing. We can quantify the overhead caused by TDM’s inefficiency
by counting the number of (bus) clock cycles that processor cores have to wait:

Definition 4.1.1. During the execution of a task under TDM, the issue delay denotes the number of clock
cycles during which at least one request was pending at the memory arbiter within an unused TDM slot.
As illustrated, in Figure 4.1, by the pending memory request within the unused slot C3.

(3) TDM Slot Length: The length of TDM slots, expressed in clock cycles, represent another source
of inefficiency. The TDM slot length has to be longer than the worst-case latency of handling
memory requests, due to the fact that all memory requests have to complete within the dura-
tion of a TDM slot. Memory requests targeting a DRAM memory, however, have highly variable
latencies [77]. The temporal behavior of the DRAM depends, for instance, on memory refresh
operations or whether the accessed memory page changed, see SubSection 3.1.4 for more details.
Besides, the access latencies of memory load requests are higher than those of memory writes,
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since data must be sent back to the requesting core. Figure 4.2 illustrates the aforementioned is-
sue, where the difference between the TDM slot length and the actual access latency, illustrated by
the memory processing bar, indicates the delay induced by the fixed length of TDM slots. There-
fore, a strict TDM arbitration, targeting a memory with variable latencies, introduces considerable
pessimism when considering that all memory accesses take the worst-case latency. Again, we
can quantify the induced overhead by counting the number (bus) clock cycles that the processor
cores have to wait:

Definition 4.1.2. During the execution of a task under TDM, the release delay denotes the number of
clock cycles during which at least one request is issued to the memory arbiter after the completion of the
memory request of a unused TDM slot. In Figure 4.1, if a memory request is pending during the time
between the end of the memory’s processing and the end of the TDM slot (C0), hence, this time difference is
considered as a release delay.

(4) Hardware Complexity: One of the main advantages of the TDM arbitration scheme is that
it is easy to implement in hardware (see Section 3.2.4). To overcome the aforementioned lim-
itations, we need to explore more sophisticated arbitration schemes. However, the hardware
implementation costs represent one of the major drawbacks of sophisticated arbitration schemes,
such as priority-based or budget-based arbitration. The challenge is to address the limitations of
TDM without breaking the bank in terms of hardware implementation costs.

(5) TDM and Criticality Awareness: The TDM limitations presented above are all related to the
non-work-conserving nature of the arbitration and the inefficient use of the main memory. A pos-
sible solution to TDM’s non-work-conserving is to explore the ideas of multi-criticality scheduling.
The level of a task’s criticality should not only be used by task schedulers, but also by the memory
arbiters. The challenge with this approach can be divided into two levels:

• (5.a) Request Level: Memory request arbitration considering task criticalities. By keeping
the same temporal behavior offered by traditional TDM, i.e., guaranteeing a bounded mem-
ory access latency, for critical tasks. On the other hand, it is important to be able to have the
best possible use of the hardware resource (memory utilization). The latter is not among
TDM’s strengths, given that it is not a work-conserving approach.

• (5.b) Task Level: Developing a sophisticated arbitration scheme may have an impact on
tasks’ executions with regard to a multi-task preemptive scheduling. Therefore, the over-
all system analysis (e.g. response time analysis) needs to take into account all possible
arbitration-induced delays.
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4.1.3 Preemption Costs for Regular TDM Arbitration

In multi-task scheduling, one must consider the preemption-related delays that need to be
bounded and taken into consideration by the schedulability test. For this work, we focus on
preemption costs caused by the arbitration policy and ignore other costs due to the scheduler
invocation, context switching, pipeline flushes, or Cache-Related Preemption Delays (CRPD).

Subfigure 4.3a depicts three preemption scenarios of a task τi+1 that preempts a lower-priority
task τi at different release dates (red vertical lines). Both tasks are executing on core C0, hence,
own slot C0. The first case (1) refers to a preemption occurring while the CPU performs com-
putations (gray area). The task than can be preempted right away (ignoring potential pipeline
stalls). The second case (2) refers to a situation where the preemption occurs while the CPU stalls,
waiting to access the shared memory. While it would be possible to abort the pending memory
request and immediately preempt τi [56], this requires modifications to the processor pipeline.
In the last case (3), the preemption occurs while the memory processes a memory request. It
would theoretically be possible to also abort the request at this stage – requiring modifications
to the processor pipeline and throughout the entire memory hierarchy. A simpler alternative for
cases (2) and (3), both in terms of hardware and timing analysis, would be to avoid aborting the
request and simply wait for its completion [6].

Clearly, all three cases may induce preemption-related delays that need to be bounded and
taken into consideration by the schedulability test (in addition to classical CRPDs). The worst-
case delay experienced for case (1) is trivial and only depends on the characteristics of the pro-
cessor pipeline. Case (3) similarly is analyzable and can be bounded by the worst-case memory
latency, e.g., a TDM slot length [6]. The analysis of case (2) is more complex since the behavior

(A) Three different scenarios of τi+1 preempting τi
at release dates (1), (2), and (3).

(B) Alignment of task τi w.r.t. to its TDM slot C1
without (top) and with preemption (bottom).

FIGURE 4.3: Preemption effects w.r.t. TDM memory arbitration.
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potentially depends on the other tasks in the system and the memory arbitration policy. We
first analyze the timing behavior for regular TDM and later extend this analysis to our work in
Chapter 7.

Definition 4.1.3. Under a system with fixed-priority preemptive scheduling, the memory blocking de-
lay (MB) denotes the number of clock cycles that a higher-priority task τi+1 is blocked from executing on
its core after its release, due to a pending memory request by a lower-priority task τi. This memory blocking
delay is illustrated by case (2) in Subfigure 4.3a.

However, the blocking time does not cover all preemption-related delays of regular TDM. Re-
cent work [41, 58] proposed sophisticated WCET analyses, which exploit the relative alignment
of the program execution with regard to the TDM schedule, without preemption. A preemption
may impact the program’s relative alignment – unless task scheduling itself is aligned with the
TDM period.

Definition 4.1.4. The misalignment delay (MA) denotes the number of additional clock cycles that the
first memory access of a task takes, w.r.t. the worst case considered by the WCET analysis, when resuming
after a preemption. As illustrated in Subfigure 4.3b.

Subfigure 4.3b depicts such a misalignment delay under regular TDM for a request of a critical
task τc

i running on core C1, hence, owning TDM slot C1. Case 1 (top) illustrates an execution
without preemption, where a request is issued right at the beginning of the task’s TDM slot at
time instant tnp. The program’s alignment w.r.t. the TDM schedule is ideal and the request is
processed immediately. Case 2 (bottom) shows the same execution of τc

i after a preemption by
τi+1. In the absence of other side-effects, such as CRPDs, the same computations are performed
by τc

i up to its first memory request (as indicated by the red dotted lines), which now is issued at
time instant tp. However, the task’s alignment w.r.t. the TDM schedule was slightly shifted due to
the preemption. The request thus has to wait longer than expected by the WCET analysis, which
assumed an execution without preemption.

Given the fact that we aim to work with TDM-based arbitration schemes, we have to study
the impact of our approaches on these delays (memory blocking delay and misalignment delay). A
detailed overview of such impacts are presented in Chapter 7.
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4.2 Contribution Outline

We have presented a summary of the various challenges regarding the memory arbitration
schemes, as a reminder, we are exclusively interested in the TDM arbitration policy. TDM offers
very good temporal properties, but due to its non-work-conserving nature, it results in low re-
source utilization. In this work, our aim is to improve memory utilization without loosing the
good temporal properties offered by TDM. To do this, we propose a work-conserving dynamic
and criticality aware TDM-based arbitration scheme.

Our approach is intended to resolve the different challenges presented above, therefore the
contributions are organized as follow. We first present dynamic TDM-based arbitration schemes
in Chapter 5 dealing with the challenge of criticality awareness at the memory request level and
the scheduling of TDM slots, addressing challenges (1) and (5.a) from Section 4.1.2. We also extend
the approach to overcome the limitations regarding the fixed slot arbitration and the pessimism
of TDM slot length, i.e., resolving challenges (2) and (3). The approach no-longer performs ar-
bitration at the granularity of slots, but at the level of clock cycles. The chapter also covers a
demonstration of the equivalence between the proposed approach and the regular TDM arbitra-
tion w.r.t. the worst-case behavior. The chapter ends with a description of the experimental setup
and an evaluation of the proposed approaches in terms of memory utilization and efficiency.

After addressing the limitations of TDM, Chapter 6 presents a simple and efficient hardware
implementation of a variant of our proposed arbitration schemes aiming to reduce the hardware
complexity related to challenge (4).

The remaining challenge is the task level impact of such a sophisticated dynamic arbitra-
tion scheme, c.f., challenge (5.b). Chapter 7 briefly reviews the dynamic TDM-based arbitration
schemes proposed in this thesis, and identifies the different arbitration-induced preemption de-
lays inherited from TDM and/or specific to our arbitration strategies w.r.t. the identified preemp-
tion delays introduced in Section 4.1.3. We propose in this chapter various preemption models
to handle these delays and evaluate our contributions using schedulability success ratios and
memory utilization.
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In a multi-core architecture, the contention between concurrent accesses to shared memory rep-
resents a major challenge in real-time systems. We observed in Subsection 3.2.4, Time Division
Multiplexing (TDM) ensures a predictable behavior by bounding access latencies and guarantee-
ing bandwidth to tasks independently from the other tasks. To do so, TDM guarantees exclusive
access to the shared memory in a fixed time window. TDM, however, provides a low resource
utilization as it is non-work-conserving. The problem is further amplified as the number of cores
increases, leading to longer TDM schedules.
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In this chapter, we address two of the limitations presented in Subsection 4.1.2 namely TDM
schedule and multi-criticality at request level, points (1) and (5.a) respectively, by exploring dynamic
TDM-based arbitration schemes. Under certain conditions, the arbiter allows to favor requests of
non-critical tasks over requests from critical tasks. This is achieved by associating deadlines to the
memory accesses of critical tasks, which correspond to the end of their corresponding slot under
a regular TDM scheme. The arbitration is, therefore, based on an Earliest-Deadline First (EDF)
strategy. The main motivation of applying EDF is to prioritize non-critical requests over critical
requests whenever possible in order to improve the memory utilization. Besides, a deadline
driven arbitration scheme leads to requests completing earlier compared to their deadlines. As a
result, a slack time can be derived and used to provide more dynamic memory arbitration scheme,
while maintaining the temporal guarantees ensured by TDM.

The rest of the chapter is organized as follows. Section 5.1 introduces our technique to in-
tegrate task criticality into memory request arbitration. Section 5.2 presents the TDM-based ap-
proach driven by deadlines and slack accumulation which provides a dynamic dimension to the
TDM scheduling. Thereafter, an approach is presented to solve issues related to the very nature
of TDM namely fixed slots arbitration and TDM slot length pessimism in Section 5.3.1. Instead of
arbitrating at the level of TDM slots, our approach operates at the granularity of clock cycles by
exploiting slack time accumulated from preceding memory requests. The equivalence of the pro-
posed approach and the regular TDM arbitration w.r.t. the worst-case behavior is demonstrated
in Section 5.4. Section 5.5 discusses performance evaluation of the approach, before concluding
the chapter in Section 5.6.

5.1 Criticality Aware TDM-based Arbitration (TDMfs)

In this chapter, we explore criticality aware memory request arbitration on a multi-core ar-
chitecture consisting of m cores. As already discussed in the Section 2.3, For now we assume a
restricted scheduling model, where each core executes a single independent and periodic task τi,
1 ≤ i ≤ m (a more realistic system model is considered in chapter 7). To recall, we consider in our
model, as stated in Section 2.3.1, two classes of tasks: critical and non-critical tasks. We assume
that critical tasks are associated with a strict deadline that has to be met under all circumstances.
The underlying computer platform and memory arbitration scheme thus have to provide means
to bound the worst-case execution times of these tasks. Non-critical tasks, on the other hand,
may miss their deadlines. We do not demand strict worst-case execution time bounds for them
in this chapter. The underlying hardware can thus execute these tasks in a best-effort manner.
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Non-critical tasks continue execution even if they miss their deadline, therefore, requests of non-
critical tasks are never canceled and remain pending until processed by the main memory.

The non-work-conserving of TDM stems from various limitations (see Section 4.1.2 for more de-
tails). One of them called TDM schedule occurs when the owner of a TDM slot does not (yet) have a
memory request ready to be served. Under a regular TDM scheme, this slot cannot be reclaimed
by another task (as for instance under Round Robin). We will first address this issue through
the integration of the criticality-awareness into TDM. This first approach called TDMfs (free slots)
aims to exploit the TDM unused slot in favor of non-critical memory request.

The following example assumes an architecture with 3 cores (C0, C1, C2) executing respectively
two critical tasks τc

0 and τc
1 and one non-critical task τnc

2 and performs concurrent memory re-
quests to the shared memory. The task set is similar to the one illustrated in Section 3.2.4, the
main difference relies on the criticality awareness of the memory arbitration scheme. The TDMfs
arbitration scheme is aware of task criticality and applies a different arbitration compared to reg-
ular TDM. The main difference here relies on the TDM slot allocation, thus only critical tasks have
dedicated TDM slots and non-critical tasks can only reclaim unused slots left by critical tasks.
Here, each critical task has dedicated TDM slots (vertical columns, labeled C0 and C1 representing
the cores executing the critical tasks), which alternate every 8 cycles (corresponding to the TDM
slot length Sl) resulting in a TDM period P = 16 cycles.

1 2 3 4 5 6 7 8 9 10 11

C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1

τc0,0 τc0,1 τc0,2

τc1,0 τc1,1 τc1,1

τnc
2,0 τnc

2,1

Cycles
0 8 16 24 32 40 48 56 64 72 80 88

Slots

FIGURE 5.1: Criticality aware TDMfs arbitration of three tasks τc
0 , τc

1 and τnc
2 .
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Figure 5.1 shows a TDMfs arbitration. Requests from critical tasks, here, are granted access
during their dedicated TDM slots as for regular TDM arbitration scheme. The requests from non-
critical tasks (τnc

2,0 and τnc
2,1) can only reclaim unused slots. The first request τnc

2,0 is granted access
at slot 5 which is normally dedicated to requests from tasks scheduled on core C0 (τc

0 ). The
arbiter checks if their is any pending requests from the current owner of the TDM slot if not, than
it grants access to a pending non-critical request. The arbitration among pending non-critical
requests can be chosen arbitrarily, the main idea here is to always grant access critical requests
at their dedicated TDM slots as if they were arbitrated using a regular TDM approach. Non-critical
tasks memory request, on the other hand, are scheduled in a best effort manner, taking advantage
of the unused slots.

5.2 Dynamic TDM-based Arbitration Schemes

In this section, we present a dynamic TDM-based arbitration schemes. The goal is to have a
work-conserving arbitration policy with the same guarantees offered by TDM for critical tasks.

5.2.1 TDMdz: Deadline Driven Arbitration

One way of interpreting TDM is to associate deadlines with requests. For regular TDM this
deadline corresponds to the end of the next TDM slot of a critical task. For simplicity, we assign
the end of the upcoming next TDM slot as the deadline for requests from non-critical tasks. The
deadlines ensure that requests of critical tasks are in the worst-case completed at the same instant
as an execution under a regular TDM scheme. If a critical and a non-critical task have the same
request deadline, the critical task wins. If a non-critical request misses its deadline, we simply
push the deadline a slot length into the future. Deadlines are unique among critical tasks, the
TDM arbiter thus can ensure that requests complete exactly at their deadlines.

Definition 5.2.1. Critical Request Deadline. Considering TDM arbitration, a deadline dj of the jth memory
request issued by a critical tasks corresponds to the end date its dedicated TDM slot.

Definition 5.2.2. Non-Critical Request Deadline. The deadline of non-critical requests under dynamic
TDM-based arbitration corresponds to the end of the immediate next TDM slot after the issue date of the
request, independent from the actual owner of that slot, i.e.:

dj =

⌈
aj

Sl
+ 1
⌉
· Sl
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Algorithm 1 Deadline computation for critical tasks.
1: function DEADLINE(Arrival, CurrentPeriod, SlotOffset)
2: Deadline = CurrentPeriod+ SlotOffset+ SlotLength− 1
3: if Arrival− CurrentPeriod > SlotOffset then
4: Deadline = Deadline+ TDMPeriod

5: return Deadline

Now, every request carries a deadline and a more dynamic TDM-based arbiter could very well
chose to execute requests before their actual deadlines. For this it suffices to order the requests
in a priority queue by their deadlines. On a tie the priority queue prioritizes the critical over
non-critical tasks.

The arbiter represents requests as pairs (aj, dj), consisting of the arrival date and deadline.
Requests are immediately issued to the arbiter’s priority queue upon arrival and ordered by
their deadline (prioritizing critical tasks over non-critical). At the beginning of each TDM slot
the arbiter selects a request τi,j with the highest priority (i.e., lowest deadline) and assigns a
completion date C(τi,j) to it. The deadline of all non-critical requests that missed their deadline
is incremented by the slot length Sl. If the queue is empty the TDM slot is unused and no request
is completed. An execution is valid if for every request τc

i,j = (aj, dj) of a critical task C(τc
i,j) ≤ dj

holds.

Algorithm 1 shows how to compute the deadline dj of a critical request under the TDMdz

scheme. The algorithm takes three arguments, the arrival date (Arrival), the start of the current
TDM period (CurrentPeriod), and the offset of the task’s own TDM slot with regard to the be-
ginning of a TDM period (SlotOffset). In addition, the constant length of the TDM slot and TDM

period is needed (SlotLength and TDMPeriod respectively). For non-critical tasks the dead-
line is the end date of the current TDM slot plus the TDM slot length. The deadline of request τc

0,0,
in Figure 5.2, is computed w.r.t. its arrival date 2 cycles after the start of the task. Hence, the ar-
rival date a0 = 2 (Arrival = 2) cycles. The current period start is at cycle 0 (CurrentPeriod
= 0) w.r.t. to request arrival date. The slot offset of τc

0 ’s TDM slot w.r.t. the beginning of a TDM
period is 0 (SlotOffset = 0). Therefore, following the Algorithm 1, the deadline computation
of request τc

0,0 takes into account its slot offset, the beginning of the current TDM period, and the
TDM slot length which are respectively 0, 0, and 8, therefore its deadline is d0 = 0 + 0 + 8− 1 = 7
(Line 2). Since the request’s arrival offset (2− 0 = 2) is too large (Line 4), the request misses τc

0 ’s
slot at offset 0 and is delayed by a TDM period (+16). Therefore, the deadline of request τc

0,0 is
d0 = 7 + 16 = 23.
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1 2 3 4 5 6 7 8 9 10 11

C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1

τc0,0 τc0,1 τc0,2

τc1,0 τc1,1 τc1,2

τnc
2,0 τnc

2,1

Cycles
0 8 16 24 32 40 48 56 64 72 80 88

Slots

FIGURE 5.2: Deadline driven TDMdz arbitration of three tasks τc
0 , τc

1 and τnc
2 .

Figure 5.2 shows all 3 tasks executing under such an arbitration scheme, which we call TDMdz
(deadline-driven and zero slack). Critical requests may now complete before their deadlines,
which is indicated by a doted line ( ). In this example requests τc

0,0, τc
0,1 and τc

1,1 each complete
1 TDM slot earlier than their deadlines. Similar to TDMfs, non-critical tasks reclaims unused TDM

slots (τnc
2,1 in slot 9), but may also delay critical requests (τnc

2,0 wins over τc
1,1 in slot 5).

5.2.2 TDMds: Dynamic TDM Arbitration with Slack Counters

A closer comparison between Figure 5.1 and Figure 5.2 reveals that requests τc
0,0, τc

1,0 and τc
0,2

each completes ahead of the original execution under TDMfs arbitration. In all cases, the WCET
analysis will always take into account the worst case scenario, i.e., memory requests issued from
critical tasks are always scheduled at their dedicated TDM slot. An effective way to capitalize on
this critical task lead compared to its worst-case, is to be able to leverage it for non-critical tasks
memory requests. This observation gives rise to an extension of TDMdz that tracks and accumu-
lates slack time with regard to an execution under regular TDM. This can be done by subtracting
the completion date of a request from its deadline. Furthermore, the slack (∆) accumulation en-
sures a more accurate deadline computation. By storing the advance made by previous requests,
we can compute requests deadlines that will always match the completion dates under regular
TDM arbitration.

Definition 5.2.3. Slack Time. The slack time corresponds to the difference between the memory request
completion under dynamic TDM-based arbitration and its deadline. The later referring to the completion
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date under regular TDM, the slack time is therefore the time gained by the dynamic arbitration compared to
regular TDM.

Definition 5.2.4. Slack Counter. Under dynamic TDM-based arbitration, the slack counter of a critical
task τc

i after the completion of its jth memory request is given by: ∆j = dj − cj.

The key idea of the dynamic TDM with slack counters (TDMds) arbitration scheme is to interpret
TDM scheduling as driven by deadlines. Under regular TDM each request completes precisely at
the end of the request owner’s next TDM slot, which can be seen as deadline. The deadlines of
TDMds similarly correspond to the end of TDM slots. However, instead of systematically delaying
requests until their respective deadlines, requests are processed dynamically in any order – as
long as deadlines are met. This allows to compute the slack time of critical tasks, i.e., by how
much the task’s last request completed earlier w.r.t. the request’s deadline. The slack is stored
in dedicated counter and allows to prioritize non-critical requests, i.e., spend the slack of critical
tasks in favor of non-critical tasks. Note, however, that slack accumulated within a job of a task
is naturally not preserved for subsequent jobs. Slack counters are consequently reset at job start.
Also note that deadlines are ensured for critical requests only, while non-critical requests are
processed in a best-effort manner. The dynamic processing allows non-critical tasks, for instance,
to reclaim otherwise unused TDM slots (TDMfs).

1 2 3 4 5 6 7 8 9 10 11

C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1

τc0,0
0∆ τc0,1

8∆ τc0,2
0∆

τc1,0
0∆ τc1,1

8∆ τc1,2
0∆

τnc
2,0

0∆ τnc
2,1

0∆

Cycles
0 8 16 24 32 40 48 56 64 72 80 88

Slots

FIGURE 5.3: Deadline driven and slack time accumulation TDMds arbitration of three
tasks τc

0 , τc
1 and τnc

2 .
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Figure 5.3 illustrates the resulting arbitration scheme, TDMds. Tasks may now accumulate slack
(illustrated by request superscript x∆) which gives more freedom to the arbiter to choose which
request to handle next. A critical request may arrive earlier than expected under a regular TDM
scheme if the request’s owner accumulated some slack before. The request’s deadline would
then also appear earlier than under regular TDM if one would simply consider the request’s issue
date to compute the deadline, i.e., the end of the next TDM slot after the issue date. Under TDMds
the deadline of a new critical request is instead computed from a delayed issue date, which
is derived by adding the previously accumulated slack to the request’s original issue date. A
memory request delayed issue date is computed to determine its arrival date if the arbitration
used was regular TDM. Given enough slack this may push the request’s deadline into the future,
i.e., past the next TDM slot, and provide additional freedom to the arbiter. This also ensures that
the deadlines under TDMds exactly correspond to the deadlines/completion dates that would
be observed under regular TDM. This holds for any dynamic execution of any program. For
each critical request, this can be visualized on Figures 5.2, 5.3, 5.4, and 5.5 compared to requests
completion dates on Figure 5.1.

The TDMds arbiter keeps critical requests in a priority queue (ordered by increasing deadlines)
and non-critical requests in a simple FIFO. At the beginning of each TDM slot the arbiter sched-
ules the top-most request from one of these two queues in order to be processed by the shared
memory. The arbiter prioritizes non-critical requests over critical requests, as long as the dead-
line of the top-most critical request is not at the end of the current TDM slot. This ensures that
non-critical requests can quickly access memory as long as critical requests have enough slack,
while also guaranteeing that deadlines of critical requests are met.

As illustrated by the example above, the use of deadlines and slack counters allows the TDMds
arbiter, compared to TDMfs, to improve the utilization of the memory. This is visible on the re-
duced number of unused slots considering the same task set. However, issues stemming from
the very nature of TDM remain, related to the use of fixed TDM slots as the request arbitration
only occurs at the beginning of slots and the TDM slot length pessimism as described in Subsec-
tion 4.1.2.

Like standard TDM, TDMds remains non-work-conserving, i.e., issued requests may not be able
to access memory, even when it is idle. Figure 5.3 shows three such requests, namely τc

0,0, τc
1,1,

and τnc
2,0. The arbitration of TDMds is limited to TDM slots and thus cannot immediately grant
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request τnc
2,0 access to the memory in slot 4. Instead, it has to wait until the beginning of the next

TDM slot 5, where it is indeed scheduled.

5.3 Decoupling Dynamic TDM Arbitration from Slots

The use of deadlines and slack times allows the arbiter to improve the memory utilization.
However, issues stemming from the very nature of TDM remain, both are related to the use of
fixed TDM slots namely issue and release delays (see definitions 4.1.1 and 4.1.2). Therefore, to
overcome these limitations, we describe how the arbitration can be decoupled from TDM slots
in order to reduce issue delays by considering slack counter. Afterward, a slight variation is
presented to address release delays.

5.3.1 TDMes: Decoupled from TDM slots

Under TDMds, arbitration decisions are taken at the beginning of TDM slots and are based solely
on the set of actually issued requests. It is then possible to delay an issued request of a critical
task, depending on the request’s actual deadline. The task’s slack counter itself is not considered
during this arbitration decision, it merely has an indirect effect during the calculation of the
request’s deadline. This can be seen as a forecast, based on the actual requests visible to the
arbiter.

However, the slack counter values are also valid when a critical job did not (yet) issue a request
to the arbiter. This, in fact, allows an arbiter to take a peek into the near future and take arbitration
decisions based on this information. In particular, it is possible to determine a lower bound of
the deadline associated with any request coming from the owner of the immediate next TDM slot
(even when the job did not yet issue a request). The memory can then start the processing of
any of the issued requests at any moment, if that deadline bound lies past the end of the next
TDM slot. This ensures that the memory can process the request partially in the current TDM slot,
while completing it in the next slot, without violating the worst-case behavior of TDM. We call the
resulting approach TDMes for early start.

Two cases have to be considered by the arbiter before applying the early-start optimization to
a request, as shown by Algorithm 2. Helper functions are used to retrieve the owner of the next
TDM slot or request (OWNER), the start cycle of the TDM slot (START), and the slack counter of a
task (SLACK).
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The first condition (Line 4) checks whether the task issuing the request owns the upcoming slot
(only for critical tasks). In this case it is always safe to immediately start processing the request,
as the memory will always respect the request’s deadline – an overflow into the next TDM slot is
not an issue.

The second condition (Line 6), verifies that any potential overflow into the next TDM slot is
safe, using the slack counter of the task owning the upcoming slot. Recall that the deadline
under TDMds is computed from a delayed issue date, i.e., the issue date plus the value of the
slack counter. We can do the same to obtain a lower bound of the deadline, by simply assuming
that the owner of the TDM slot may issue a request in the next clock cycle. If the deadline bound
corresponds to the end of the immediate next TDM slot, it is not safe to overflow and the memory
cannot start processing any request (yet). If the deadline bound lies farther in the future, an
overflow is safe and the memory can proceed.

Instead of actually computing the deadline bound, it suffices to compare the distance to the
beginning of the next TDM slot (NextDist) with the slack counter of the slot’s owner (SLACK). If
the distance is smaller than the slack counter value, the delayed issue date lies after the beginning
of the TDM slot and the deadline correspond to the TDM slot thereafter – the early-start optimiza-
tion can be applied. If the distance is larger or equal to the slack counter an overflow might be
problematic – the optimization cannot be applied.

Figure 5.4 illustrates the resulting arbitration under TDMes for the task set from before (τc
0 , τc

1 , τnc
2 ).

Requests can now start early, if the conditions described before are met. This is the case for re-
quest τnc

2,0, a non-critical request that is issued during TDM slot 4 at cycle 26. The owner of the next
TDM slot starting at cycle 32, is core C0 executing task τc

0 , whose slack counter is 8 (stemming
from access τc

0,0). At the moment when τnc
2,0 is issued, the arbiter thus needs to verify the second

condition of Algorithm 2. Task τc
0 could potentially issue a request in the next cycle (27), which

Algorithm 2 Condition to apply early-start optimization.
1: function EARLY-START(Now, NextSlot, Request)
2: NextOwner = OWNER(NextSlot)
3: NextDist = START(NextSlot)− Now

4: if NextOwner = OWNER(Request) then
5: return true
6: else if NextDist < SLACK(NextOwner) then
7: return true
8: return false
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would yield a delayed issue date of 35 (27 + 8) and consequently a deadline at the end of TDM
slot 7. It is evidently safe to immediately grant τnc

2,0 access to the memory, as shown in the figure.
The same result can be obtained by comparing the distance (32− 26 = 6 cycles) to the next TDM
slot with τc

0 ’s slack counter (8 cycles), since 6 < 8. The same situation arises for request τnc
2,1. The

arbiter handles request τnc
2,1 in the next clock cycle after 4 requests where served, i.e. at cycle 59

(26 + 4 ∗ 8 + 1), leading to a distance to the next slot smaller than τc
0 ’s slack counter. The remain-

ing requests in the example, except for τc
0,0, fall into the first condition of Algorithm 2, i.e., the

owner of the request is also the owner of the subsequent TDM slot. For instance, request τc
1,0 is

processed within slot 3, as core C1 executing τc
1 owns slot 4. The early-start optimization cannot

be applied to τc
0,0, since task τc

1 , the owner of the next TDM slot (2), has a slack counter value of 0.
The request thus suffers from an issue delay of 6 cycles, which indicates that our approach may
still exhibit non-work-conserving behavior.

Compared to TDMds (Figure 5.3), the TDMes policy is again more efficient. The memory is
almost always busy and the last request completes at cycle 73 (as opposed to 80 under TDMds and
88 under TDMfs). The approach also has an impact on the non-critical task execution time that
ends earlier at cycle 68 compared to cycle 72 for TDMds. As non-critical tasks memory requests are
processed earlier, this allows more requests to be processed while pushing critical tasks memory
requests to their deadlines.

1 2 3 4 5 6 7 8 9 10 11

C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1

τc0,0
0∆ τc0,1

8∆ τc0,2
6∆

τc1,0
0∆

τc1,1
8∆

τc1,2
6∆
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0∆ τnc
2,1
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FIGURE 5.4: Reduced issue delays due to the TDMes arbiter, which operates indepen-
dently from the actual TDM slot length.
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5.3.2 TDMer: Memory Variability Awareness

Up to now, the actual behavior of the memory to handle requests (load or store) was irrelevant
to the memory arbiter. Which simply rely on the fact that all memory requests are guaranteed to
complete within the duration of a TDM slot. This, in essence, means that all memory accesses take
the worst-case latency. This may introduce considerable pessimism in the form of release delays,
as the actual memory latency typically varies from access to access depending on the internal
state of the underlying memory technology, as described in Subsection 3.1.4.

The memory processing under the previously presented approach is no longer required to be
aligned with the TDM schedule and can perform memory accesses at any moment. It is thus
only natural to drop the (artificial) constraint of waiting the entire duration of a TDM slot before
releasing the memory and allowing the next request to be processed. We refer to this arbitration
scheme as TDMer (for early release), which entirely eliminates any release delays present under
TDMds or TDMes.

Figure 5.5 again shows an execution trace for the task set (τc
0 , τc

1 , τnc
2 ) under the TDMer scheme

from Subsection 3.2.4. The main difference concerns the duration of the memory processing
time, which is now illustrated by green hatched bars of variable length ( ). Request τc

0,0, for
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C0 C0 C0 C0 C0 C0C1 C1 C1 C1 C1
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FIGURE 5.5: Elimination of release delays under TDMer arbitration, which considers
the actual latency of memory access. Some of the eliminated release delays may simply

be transformed into issue delays.
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instance, now completes 2 cycles earlier than before. This entails several changes. Firstly, the
slack counter of task τc

0 increases by an additional 2 cycles, which now amounts to 10 cycles
(cf. τc

0,0
10∆). Secondly, request τc

1,0 can be processed right after being issued, which eliminates
the release delay that would otherwise be observed. In this example, the reduced release delay
itself is not beneficial, due to the absence of issued requests before cycle 24. Finally, due to the
earlier processing of requests from the two other tasks and a reduced memory latency, request
τc

0,1 completes in TDM slot 6 instead of TDM slot 7. This allows the arbiter to change the order of
requests τnc

2,1 and τc
1,2, since τc

1,2’s deadline is far enough in the future and task τc
0 has sufficient

slack (11). However, it is not guaranteed that any of the issued requests is granted access to
the memory, e.g., due to the lack of slack (see Subsection 5.3.1). In this case, the early-release
optimization does not actually improve the memory utilization and release delays are simply
transformed into issue delays.

In comparison to TDMes (Figure 5.4), again an improvement is achieved, despite a slight in-
crease in the memory’s total idle time (cf. the red hatched bars ( ). The last request (τc

0,2) com-
pletes at cycle 64, as opposed to cycle 73 for TDMes. In particular the non-critical task τnc

2 gained
from the altered schedule and completes its last memory request 13 cycles earlier. Only task
τc

1 does not profit and terminates at the same instant. Note, however, that critical tasks never
terminate later than under a regular execution under TDM. This can be seen by the fact that the
deadline for critical requests in Figures 5.3 through 5.5 match.

The improvements are even greater when comparing with the original TDM-based execution
(Figure 3.3), which completed after 104 cycles. TDMer yields an improvement of a 62.5% – while,
in the worst case, preserving a strict separation between critical and non-critical tasks. Note, that
the requests completion dates in Figure 3.3 are not comparable to the completion dates/deadlines
shown in the other figures, due to the presence of a third TDM slot for C2.

Both approaches, TDMes and TDMer, improve the memory utilization, while converging to
regular TDM in the worst case (see Section 5.4). This allows to preserve properties that make TDM
popular – including results obtained from advanced TDM based program analysis [41, 58].

5.4 Worst-Case Behavior

In the previous sections we claimed that for critical tasks our approach converges towards TDM
in the worst case. We will now provide a more precise definition of this worst-case behavior and
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provide formal proofs of correctness. Since non-critical tasks are served on a best-effort basis, we
do not consider them here.

By converging towards TDM we simply mean that TDMer (as well as TDMes) provides the fol-
lowing guarantee:

Theorem 5.4.1. (Worst-Case Behavior) Considering a given execution (i.e., execution path, runtime con-
ditions, input values, . . . ) a memory access of a critical task under any possible execution considering
TDMer completes no later than the same execution under regular TDM.

This is a very strong guarantee, which preserves many of the properties that make TDM popular
in critical systems. This includes results of worst-case execution time analyses, even sophisticated
analyses that exploit information on the relative alignment of program execution with regard to
the TDM schedule [41, 58].

In order to show the correctness of Theorem 5.4.1 we first refine some essential definitions and
show that deadlines of critical tasks under TDM are always aligned with TDM slots and unique
between critical tasks. Based on this, we finally show that TDMer preserves the same deadlines
using slack counters.

TDM arbitration guarantees a fixed time window to a task to exclusively access memory. As
described in Subsection 3.2.4, Each of the n critical tasks has its own slot with a length of Sl,
resulting in a repetitive TDM schedule with a period P = n · Sl. For each memory request issued
by a critical task τc

i the arbiter is assumed to store or compute the following information: the
request’s arrival date (aka. issue date) aj, completion date cj, and deadline dj as well as the start
date of the current TDM period Sp, and the offset of the task’s TDM slot O(τc

i ) (with regard to Sp).

The deadline of a memory request under TDM is then defined as follows:

Definition 5.4.1. TDM Request Deadline. Considering TDM arbitration, the deadline dj of the jth request
issued by a critical task τc

i is given by:

dj =

{
Sp + O(τc

i ) + Sl if aj ≤ Sp + O(τc
i )

Sp + O(τc
i ) + P + Sl else.

Lemma 5.4.1. Given Definition 5.4.1, the deadline of a critical request corresponds to the end date of its
dedicated TDM slot. The deadline dj is consequently always equal to the completion date cj under regular
TDM arbitration.
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Proof. The deadline dj always corresponds to the end of τc
i ’s TDM slot, as each of the arguments

used in the computation is, by definition, a multiple of the TDM slot length Sl (Sp, O(τc
i ), and P).

The formula simply distinguishes two cases (1) when the request is issued at or before the start
of τc

i ’s TDM slot, the deadline then corresponds to the end of the TDM slot in the current period, or
(2) when the request is issued after the start of its TDM slot, the deadline then corresponds to the
end of the TDM slot in the next period.

Lemma 5.4.2. The deadlines of critical requests issued by different critical tasks can never be identical.

Proof. This follows trivially, since, by definition, the offsets of two critical tasks O(τc
i ) and O(τc

k )

have to be different when i 6= k.

The two properties from above show that TDM arbitration can simply be interpreted as being
driven by deadlines. Any dynamic arbiter respecting these deadlines (i.e., cj ≤ dj) can be used to
implement a TDM-based arbitration scheme that preserves Theorem 5.4.1, e.g., an implementation
based on the earliest-deadline-first strategy like TDMer (see Theorem 5.4.2). However, since our
approach is decoupled from the notion of TDM slots once sufficient slack has been accumulated,
we also have to show that the deadlines under our approach match those of TDM.

Earlier completion of tasks gives rise to the accumulation of slack w.r.t an execution under
regular TDM, which is stored in a dedicated slack counter (cf. Definition 5.2.4) for each critical
task. These slack counters are updated after every completion of a critical memory request. The
slack is then used to compute a delayed issue date for the next request of τc

i . Depending on the
amount of slack accumulated at this moment, this delayed issue date may push the deadline
farther into the future and thus provide more flexibility to a dynamic arbiter.

Lemma 5.4.3. The deadlines for critical requests under TDMer correspond to the same deadlines as under
regular TDM.

Proof. Considering Definition 5.2.4, we can show by induction that a request’s issue date aTDMj

under regular TDM always corresponds to the delayed issue date under TDMer. This last date can
be computed from the original issue date aTDMerj and the slack counter value ∆j−1, i.e., aTDMj =

aTDMerj + ∆j−1.
Induction base j = 0: ∆0 = 0 the issue date under TDM and TDMer are naturally the same, i.e.
aTDM0 = aTDMer0 .
Induction step: Assuming a composable architecture that ensures that the delay distj between
the j-th and (j− 1)th memory request is constant (cf. Section 3.3), we obtain:

distj = aTDMj − cTDMj−1 = aTDMerj − cTDMerj−1
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Based on the hypothesis that the deadline of the previous request is equal under TDM and TDMer,
i.e., dTDMj−1 = dTDMerj−1 , and the fact that deadline and completion date are identical under TDM, we
obtain by substitution that:

∆j−1 = dTDMerj−1 − cTDMerj−1 = dTDMj−1 − cTDMerj−1 = cTDMj−1 − cTDMerj−1 =

= cTDMj−1 + distj − cTDMerj−1 − distj =

= cTDMj−1 + (aTDMj − cTDMj−1 )− cTDMerj−1 − (aTDMerj − cTDMerj−1 ) =

= aTDMj − aTDMerj

=⇒ aTDMj = aTDMerj + ∆j−1

Since the issue date aTDMj and the delayed issue date aTDMerj + ∆j−1 are identical, and we use the
same method to compute the deadlines, it follows that the deadlines are identical, i.e., dTDMerj =

dTDMj .

The result from above shows that the deadlines of memory requests under TDMer correspond
to those under TDM. It remains to show that the arbiter is actually able to respect those deadlines.
For this we also need to consider non-critical tasks and their respective memory requests. The
deadlines of non-critical (cf. Definition 5.2.2) requests may obviously collide with deadlines of
critical tasks. The arbitration policy thus has to take these collisions into account.

Definition 5.4.2. Request Arbitration. Under TDMer request arbitration is based on a priority queue
depending on the requests’ deadlines. In case of a tie between a critical task and (possibly many) non-
critical tasks, the critical request is assigned higher priority. Deadlines of non-critical tasks are reevaluated
after each TDM slot.

Definition 5.4.3. Request Admission. The request with the highest priority is granted access to the
memory at the granularity of individual clock cycles according the EARLY-START test from Algorithm 2.

Theorem 5.4.2. TDMer ensures that any critical request completes before its deadline, i.e., cj ≤ dj , in
addition to Theorem 5.4.1.

Proof. Assume that request j of a critical task τc
i is the first critical request in the system that

missed its deadline, i.e., its cj > dj. This means that the memory was busy processing another
request at the beginning of τc

i ’s TDM slot.
First assume the case that the request l of another task τc

k being processed by the memory was
granted access to the memory at instant t after the issue date of request j, i.e., aj ≤ t. This implies
that the deadline dl is either smaller or equal to dj, otherwise j would have higher priority and l
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would not have been admitted first. The deadlines cannot be equal, as this would imply that l is
a non-critical task (Lemma 5.4.2), which again would exclude its admission to its weaker priority.
It follows that dl < dj and, due to Lemma 5.4.1, dl ≤ dj − Sl. This, however, would imply that
the request l missed its deadline as it was still being processed at the beginning of τc

i ’s slot. This
contradicts the assumption that j was the first to miss its deadline.
Now assume the case that request l was granted access to the memory before the issue date
of j, i.e., t < aj. This implies that the early-start optimization was applied. More precisely
the second condition (Line 6), as l cannot originate from τc

i . However, this is impossible since
t < aj + ∆j−1 < dj − Sl has to hold while the early-start admission test at the same time requires
aj + ∆j−1 > dj − Sl.

It is thus impossible that any critical request misses its deadline, which, in addition, is equal to
that of an execution under TDM (Lemma 5.4.3). Non-critical requests are, as expected, potentially
subject to deadline misses.

5.5 Experiments for Dynamic TDM-Based Arbitration Schemes

In this section, we evaluate the previously presented dynamic TDM arbitration mechanisms
by simulating the concurrent execution of synthetic tasks. We first present the experimental
setup and then compare the various approaches using the issue and release delays as well as the
memory utilization.

5.5.1 Experimental Setup

Our simulation framework is based on the task model presented in Section 2.3.1. However,
for now we assume a restricted scheduling model, where each core executes a single task. This
framework allows us to collect execution traces and statistics from the concurrent execution of
n periodic tasks, each executing on a separate core, and competing for a central shared memory.
The framework does not model the actual computation performed by the tasks. However, it sim-
ulates the memory accesses and their arbitration considering four different arbitration schemes:
(1) TDMfs, a variant of regular TDM where non-critical tasks may reclaim unused slots (see Sec-
tion 5.1), (2) TDMdz and TDMds, a dynamic TDM-based arbitration policy respecting TDM slots (see
Section 5.2.2), (3) TDMes, a dynamic approach decoupled from TDM slots (see Section 5.3.1), and
(4) TDMer, a refinement of TDMes addressing release delays (see Section 5.3.2).
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All experiments are based on randomly generated synthetic task sets obtained via UUniFast [25]
and a memory traffic generator. The goal is to obtain a large number of simulations that reflect a
realistic behavior of real task sets considering different parameters, such as task periods, worst-
case execution times, memory load, and total system utilization.

Task Set Generation

The UUniFast algorithm allows to randomly generate tasks for a task set Γ based on two input
parameters n and U, where n specifies the total number of tasks and U the total system utilization
desired. The algorithm then generates n different utilization values {u1, u2, . . . , un}, one for each
task τi, while the sum of these tasks utilizations equals the system utilization U. From the task
utilization parameters, the task periods Ti are generated. Note that our system is constrained
to harmonic periods, which ensure that hyper-periods and therefore simulation times remain
reasonable. The period of the first task T1 is assumed to be 20ms. Note that it does not matter
whether the first task period T1 is chosen randomly or is fixed, as in our case. All other periods
are random multiples of T1, i.e., Ti = k ∗ T1, 1 < i ≤ n, where k is obtained from a uniform
random distribution in the range [1, 5]. The individual task periods are hence in the range from
20ms to 100ms. From the task periods and the utilization numbers as well as the task set’s hyper-
period, hp = LCM1≤i≤n(Ti) – here hp can be at most 1200 ms. We then derive the worst-case
execution time of each task Ci = Ti · ui and the number of jobs for each task, i.e., Ji = hp/Ti. The
tasks τi ∈ Γ of the final task set are thus represented by a triple τi = (Ci, Ti, Ji). We assume implicit
deadlines, i.e., task deadlines are equal to the task periods Ti.

Traffic Generator

The simulation framework then requires a specification of each task in terms of memory ac-
cesses (cf. distj in Section 2.3.1). The memory access sequences are thus obtained from a traffic
generator for each job in the task set generated by UUniFast.

The aim is to obtain synthetic tasks whose memory patterns are similar to real applications.
We thus exploit the applications from the MiBench benchmark suite [29] in order to calibrate
the traffic generator. The MiBench benchmarks were first executed individually on the Patmos
architecture [60] using a cycle-accurate simulator. The simulator was extended to collect traces
from actual program executions matching our system model. The traces were collected for a
Patmos hardware configuration based on a 5-stage in-order single-issue pipeline, a 32 KB method
cache using the LRU replacement policy on 32 entries with a cache block size of 32 bytes, a 256
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byte stack cache with block size 4, a 32 KB write-through data cache with LRU replacement on 4
sets and 32 byte blocks. Memory latencies are ignored during this trace collection.

The memory access patterns captured by the collected traces are then analyzed with regard to
their statistical properties. Most notably, we were interested in the distribution of the distance (in
clock cycles) between consecutive memory accesses. Our experiments show that the Generalized
Extreme Value Distribution (GEV) [31] fits well to the data from the collected trace. Based on the
empirical trace data and the parameters of distribution functions fitted to this data, we defined a
parameters space in order to generate the memory access sequences for the jobs obtained through
UUniFast. Note that the distribution incidentally describes whether a benchmark is memory
intensive or rather compute bound.

In order to obtain a memory access sequence for a job, the traffic generator first randomly
chooses the GEV distribution parameters and then generates memory accesses and the respective
distance (cf. distj in Section 2.3.1) between them. Note, however, that the generated memory
accesses have to be consistent with the task’s worst-case execution time Ci. The generator thus
tracks the evolution of a worst-case execution time bound as it proceeds. For each memory
access, we add to this bound the worst-case latency for a newly generated request, which is
bounded by P + Sl − 1 cycles. The generator simply stops once the bound reaches the task’s
Ci. The execution times of the synthetic tasks thus rather closely approach the tasks’ worst-case
execution times. This is a rather pessimistic view, inducing a higher memory load than can be
expected from average-case executions, as the actual execution times of critical tasks are known
to be significantly lower than their worst-case execution times. Note that we capture this effect
in our experiments by varying the system load.

Generated Memory Profiles

The GEV distribution unifies three standard extreme value distributions, namely the Fréchet,
Weibull and Gumbel distributions. GEV is characterized by three parameters the location (µ),
scale (σ), and shape (ξ). We used the function GumbelFit, from the fExtreme [78] package of the
R statistical computing environment, in order to fit the parameters µ, σ, and ξ to the trace data
in Subsection 5.5.1. The shape parameter determines which of the three standard distributions
is chosen. The traces of most MiBench benchmarks are best described by a Fréchet distribution
(ξ > 0). Figure 5.6 shows the inverted empirical distribution functions of the request distances
(in cycles) from two application traces (rawdaudio and cjpeg-small) and compares them to
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FIGURE 5.6: Empirical distributions of the request distances (in cycles) of two
MiBench applications compared with the GEV distributions after fitting.

the cumulative distribution function of the fitted GEV distribution. As can be seen the fitted dis-
tributions nicely describe the behavior of benchmarks, while providing a convenient abstraction
for the use in our traffic generator.

The traffic generator adds memory requests to the jobs of a task τi until the worst-case execu-
tion time Ci, provided by UUniFast is reached. Assuming that the number of memory request for
a job k is given by NbrAcck

i , this allows us to characterize the job’s behavior. To do so, we com-
pare the processor demand PDk

i and memory demand MDk
i , which together must not exceed

the task’s WCET, i.e., PDi + MDi ≤ Ci. These parameters emerge from the generated memory
sequence of a job as follows:

PDk
i =

NbrAcck
i

∑
k=0

distj

MDk
i = (P + Sl − 1) · NbrAcck

i .

Here, distj refers to the distance between the j-th and (j − 1)-th memory access of a job of
task τi. Figure 5.7 illustrates stacked plots of memory and processor demand normalized to the
WCET (Ci) for a particular configuration of our simulation runs considering 24 tasks. As can be
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FIGURE 5.7: Comparison of the memory (MD) and processor (PD) demand for the
approx. 1500 jobs of the simulation runs with 24 tasks.

seen the combined memory and processor demand almost always reaches the specified WCET
(Ci), which represents a system with relatively high load compared to its worst-case behavior.

Simulation Parameters

Based on the generated task sets and the corresponding memory access sequences, we per-
formed a considerable number of simulations, by varying the number of tasks/cores (4, 8, 12, 16,
20, 24) and the global system utilization (between 10% and 100% in steps of 10). Note that the
system utilization is normalized to the number of cores in the system. Following previous work
in the context of mixed-criticality systems [12, 38], we chose two scenarios concerning the repar-
titioning between critical and non-critical tasks: (1) 25% critical and 75% non-critical tasks and
(2) an equal repartitioning of 50%/50% between critical and non-critical tasks. For each config-
uration 10 simulation runs were performed, resulting in 1080 runs overall and several thousand
simulated job instances. In order to have comparable results between different task sets and ar-
bitration approaches, the duration of each simulation is limited to the task sets hyper-period (up
to 1200ms) – potentially terminating the simulation before all non-critical tasks have completed
(e.g., in cases when these tasks missed their deadlines).

The duration of a TDM slot length Sl, corresponds to an upper bound of the memory access
latency previously determined on a Terasic DE-10 Nano evaluation board that is equipped with
an Intel Cyclone V SoC-FPGA and 1 GB of DDR3 memory. A single Patmos processor running
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at 100 Mhz was implemented in the FPGA and performed memory accesses in isolation via the
multi-port memory controller provided by the SoC (the remaining components of the SoC were
deactivated). At any moment a single memory access was in-flight during these measurements.
Depending on the internal state of the memory controller and DDR memory (refresh, open page,
etc.), we measured a memory latency between 21 and 40 cycles. In all simulation runs we thus
consider a TDM slot length of 40 cycles. For TDMer, which supports an early release of the mem-
ory when completing a memory request faster than the TDM slot length, we simulate a varying
memory latency obtained from a uniform random distribution in the range [21, 40] clock cycles.
The slack counters for TDMds, TDMes, and TDMer are reset at the beginning of each job.

5.5.2 Results for Dynamic TDM-Based Arbitration Schemes

The first set of figures represents an overall comparison of the various TDM-based approaches
over all simulation runs. Figure 5.8 shows a breakdown of the average memory idle time from
all runs due to (1) the total release delays, (2) the total issue delays, and (3) the total number
of cycles without any memory requests issued to the arbiter (“No request”). The plotted lines
are stacked, i.e., the red line represents the sum of all three forms of memory idling, while the
green line represents the sum of the issue and release delays. The idle times are normalized to
the total trace length of the simulation. We choose to trim Figure 5.8 in order to achieve a better
visualization of the impact of our arbitration policies on the issue and release delays.

Looking at the green lines (issue + release delays) reveals that the dynamic arbitration schemes
are quite successful in eliminating issue delays. In comparison to TDMfs (i.e., regular non-
dynamic TDM), the distance between the green and blue lines are relatively small. The distance,
and thus the issue delays, diminish as system and memory load increases. Release delays thus
represent a considerable source of inefficiency for the TDMds and TDMes approaches. This does
not apply to TDMer, which completely eliminates release delays. However, as can be seen a
non-negligible portion of these release delays are merely transformed into issue delays. This
was expected, as seen in the example shown in Figure 5.5. Overall, however, TDMer achieves
considerable improvements in terms of delays due to the non-work-conserving nature of TDM.

Comparing the combined impact of release and issue delays (green line), one can see that these
typically represent more than 25% of the simulated total execution time for regular TDMfs, while
it hardly exceeds 15% for TDMer. Note that the remaining issue delays stem from situation where
requests cannot be scheduled immediately, due to insufficient slack of the critical task owning the
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(A) TDMfs. (B) TDMds.

(C) TDMes. (D) TDMer.

FIGURE 5.8: Evolution of memory idle time, issue, and release delays over all simu-
lations under varying utilization (lower is better).

immediate next TDM slot. It appears that this can be explained due to the absence of slack at the
beginning of jobs (see Section 5.5.3).

Figure 5.9 shows the relative improvement with regard to the combined issue and release de-
lays of the dynamic arbitration schemes compared to TDMfs. We can observe considerable im-
provements of up to a factor of 3.3 for TDMds and TDMes, which both follow a very similar
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FIGURE 5.9: Normalized sum of issue and release delays for dynamic arbitration
schemes compared to TDMfs (higher is better).

trend. However, under a very high system utilization (≥ 90%) these approaches do not perform
better than regular TDMfs. This can be explained by the high memory utilization from critical
tasks, which can lead to starvation for non-critical tasks. Recall, though, that the traffic genera-
tor results in traces that represent comparatively high load for all tasks. We do not expect that
realistic real-time systems actually exhibit such a high load. TDMer even outperforms the other
approaches and exhibits improvements of up to a factor of 4.2 and remains above 1.5 even at very
high utilization.

A general trend common to all approaches is that the total idle time decreases as the system
utilization increases. This can be explained by the increasing number of memory requests that
are issued by the tasks in the system. The average memory idle time over all simulation configu-
rations hardly drops below 30%. The various approaches have little impact on the total amount
of idling, except for TDMer which for higher load (> 60%) shows improvements of a few percent.
This is not surprising, as more efficient memory arbitration tends to reduce the execution time of
jobs and thus tends to increase the gaps of inactivity between task activations.

A closer look at Subfigure 5.8d shows that memory is idle due to the absence of requests (cf.
the distance between the red and green lines). For TDMer this amounts to more than 10% for
a system utilization of 100%. The configuration with 24 tasks in total (6 critical, 18 non-critical)
showed the highest level of memory contention in our experiments. The high load is caused by
the high number of tasks, which is exacerbated by the low number of TDM slots. Recall that the
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(A) TDMer. (B) TDMfs.

FIGURE 5.10: Memory idle time considering 24 tasks with 6 critical and 18 non-critical
tasks (lower is better).

number of TDM slots has an impact on the period P, which incidentally increases the number of
memory accesses that fit into the worst-case execution time of a task – here most notably of the
non-critical tasks.

Figure 5.10 shows detailed results for this configuration in isolation for both TDMer and TDMfs.
As can be seen memory idling drops rapidly as system load increases and levels off at about 20%
and 25% of the simulated trace lengths respectively. For a system load above 40% the memory
idling of TDMfs is exclusively due to release delays. This suggests that all TDM slots are used
and memory utilization is limited by the arbiter. For TDMer these release delays are mostly
transformed into issue delays – which implies that at least one memory request is constantly
pending at the arbiter. This indicates that the slack counter values are too low, which prohibits
the early-start optimization.

5.5.3 Results for Dynamic TDM with Initial Slack

We have seen in the experimental results that the TDMer approach completely eliminates re-
lease delays. However, as can be seen in Figure 5.8, a non-negligible portion of these release
delays are merely transformed into issue delays (see Subsection 5.3.2). This is particularly visi-
ble for the configuration with 24 tasks (Figure 5.10). For runs of this configuration using TDMer,
memory idling is exclusively caused by issue delays for utilization levels above 40%. This implies
that at least one memory request is constantly pending at the arbiter and that the slack counters
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values of critical tasks are often too low to apply the early-start optimization (cf. Algorithm 2).
Note that this behavior has to appear systematically throughout the entire simulation run or oth-
erwise a noticeable difference between memory idling and issue delays would appear. It appears
that memory load is too high for critical tasks to accumulate slack under these circumstances.
Our hypothesis is that the remaining issue delays can be eliminated by supplying an initial slack
when critical jobs start.

We thus slightly modified the experimental setup from Subsection 5.5.1. Instead of resetting the
slack counter to zero at the start of critical jobs, we reset it to the TDM slot length Sl, i.e., 40 cycles.
This initial slack promises to resolve the aforementioned issues, since it represents the minimum
amount of slack required to enable the early-start optimization right from the beginning of the
simulation. This is, however, associated with a potential increase of the task’s execution time
by at most one TDM period which needs to be accounted for in the task’s WCET (Ci), i.e., this
is equivalent to the overhead of a single additional memory accesses under regular TDM. This
additional virtual memory accesses can then be taken into consideration for the correctness proof
from Section 5.4, e.g., by adapting the base case accordingly.

Figure 5.11 shows a breakdown of the average memory idle time from all runs using the TDMer
arbiter. The results appear to confirm our hypothesis, the remaining issue delays are almost
eliminated and typically represent less than 0.5% of the simulation trace length. Providing a

FIGURE 5.11: Evolution of memory idle time, issue, and release delays over all sim-
ulations with varying utilization under TDMer with slack counters initialized to Sl at

job start (lower is better).
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FIGURE 5.12: Memory idle
time considering 24 tasks
with 6 critical and 18 non-
critical tasks, under TDMer
with initial slack set to Sl

(lower is better).

FIGURE 5.13: Normalized
sum of issue and release de-
lays for dynamic arbitration
schemes compared to TDMfs,
with initial slack set to Sl

(higher is better).

small amount of initial slack thus effectively rendered our approach work-conserving – while
still retaining all the advantages mentioned previously.

This also applies to the configurations with 24 tasks, which are shown separately in Figure 5.12.
In particular, we observe that the arbitration policy no longer limits memory utilization. For high
system utilization (≥ 60%) memory now truly becomes saturated. This is an interesting obser-
vation, as it indicates that the critical tasks do not loose slack over time. The slack of individual
critical tasks may drop, even become zero, for short periods of time, but is at least preserved on
the long run. This has to be true or otherwise a noticeable level of issue delays would eventually
manifest.

Figure 5.13 shows the relative improvement with regard to the combined issue and release
delays of TDMer when an initial slack counter value of a single TDM slot length is provided at
the start of jobs of critical tasks. The measurements are normalized against TDMfs. We observe
considerable improvements for TDMer of up to a factor of 350 and even at high levels of memory
utilization the improvements remain above a factor of 50.

From this evaluation, we conclude that TDMer with initial slack is successful in eliminating re-
lease delays and significantly reducing issue delays, even when the memory bandwidth is close
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to saturation, as shown in Figure 5.9. The dynamic arbitration policy combined with slack coun-
ters hence allows to decouple the arbiter from constraints imposed by the slots of regular TDM,
while offering a very fine granularity of memory arbitration and preserving TDM’s guarantees for
critical tasks.

5.5.4 Results for Varying Memory Access Latencies

In the previous experiments we assumed a fixed TDM slot length of 40 cycles, corresponding
to the memory access latency of a DDR3 memory. In Subsection 3.1.4, we showed that DDR
DRAMs, when trying to provide predictable memory behavior, suffer from highly variable ac-
cess latencies and overly pessimistic latency bounds. Alternative solutions targeting real-time
systems are also described Subsection 3.1.4, based on Reduced Latency DRAMs (RLDRAMs).
Access latencies for RLDRAMs are generally lower and, in addition, exhibit less variability. In
the following experiments we are thus interested in evaluating the impact that varying the mem-
ory access latency might have on our arbitration schemes.

We slightly modified our experimental setup by varying the TDM slot length Sl using two addi-
tional configurations with slot lengths of 25 and 100 cycles respectively, and fixing the minimum
memory access latency at 21 cycles. Therefore, a longer slot length means more variability in
memory accesses. Varying the TDM slot length impacts the generated memory profiles, as de-
scribed in Subsection 5.5.1, as the number of memory accesses that fit into the task’s WCETs (Ci)
derived by UUniFast depends on the slot length. Recall that our traffic generator takes the worst-
case memory access latency for each newly generated request into account, which is bounded by
P − 1 + Sl cycles. Note that both, the TDM period P and the TDM slot length Sl, are impacted
in our modified setup. Varying the TDM slot length thus impacts the memory traffic generator
and consequently the generated task sets. The results presented in this section are therefore not
directly comparable. This applies, in particular, for the total memory idling.

We performed the same number of simulations as in the previous experiments for the two new
configurations – considering independently generated task sets according to a varying number
of tasks/cores and a varying global system utilization (see Section 5.5.1). The simulated memory
latencies are again randomly chosen in the range [21, 25] and [21, 100] respectively. Critical tasks
are provisioned with an initial slack value of a single slot length at each job start.

Figures 5.14 and 5.15 summarize the obtained results from these simulation runs. Subfig-
ures 5.14a and 5.15a show a breakdown of the average memory idle time from all runs for TDMds.
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Looking at the green lines (issue and release delays) reveals that for a TDM slot length of Sl = 25,
representing a memory with small access latency variability, TDMds still suffers from consider-
able inefficiency, which is mostly caused by release delays. Even for moderate levels of system
utilization (from 40% on) these delays steadily represent almost 10% of the memory idling. This is
much better than before, considering a slot length of 40 cycles, but still represents a non-negligible

(A) TDMds memory idling. (B) TDMer memory idling with an
initial slack of Sl.

(C) Normalized average non-
critical tasks execution times.

FIGURE 5.14: Results considering a TDM slot length of Sl = 25 cycles (lower is better).
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overhead. The TDMer approach, with initial slack, also in this configuration successfully elim-
inates these delays, as depicted in Subfigure 5.14b – albeit with a lower gain compared to the
previous results. The results are, as expected, different with a TDM slot length of Sl = 100, which
represents a memory with high access latency variability. The delays induced here are very high
for TDMds, going from 10% up to 40% at high load (Subfigure 5.15a). Subfigure 5.15b, shows

(A) TDMds memory idling. (B) TDMer memory idling with an
initial slack of Sl.

(C) Normalized average non-
critical tasks execution times.

FIGURE 5.15: Results considering a TDM slot length of Sl = 100 cycles (lower is bet-
ter).
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that TDMer is still very effective in eliminating the issue and release delays. This improves the
total memory utilization considerably, in particular at high load where the total memory idling
drops from 40% for TDMds to less than 20% for TDMer. The results are considerably worse for
TDMfs than those for TDMds– the combined issue and release delays under TDMfs reach a peak
at about 47% and 20% of the memory idle time for medium levels of system utilization for the
two memory latency configurations Sl = 100 and Sl = 25 respectively.

Subfigure 5.14c shows a breakdown of the normalized non-critical tasks execution times w.r.t.
the total trace length for TDMds, considering Sl = 25 cycles. We can see that TDMer reduces
execution times, especially at high loads. However, due to the smaller memory overhead, the
gain for non-critical tasks is moderate. The configuration with Sl = 100 cycles (Subfigure 5.15c),
on the other hand, shows considerable improvements in the execution times of non-critical tasks
– despite the large TDM slots. Starting at utilization levels of 30% the normalized execution time
is improved by a factor of at least 2 reaching a maximum of a factor of roughly 3.8. This is due to
the fact that non-critical tasks can potentially exploit the considerable memory idle time (up to
40%) caused by the release delays of the other approaches that have to respect TDM slots.

As a conclusion, our dynamic TDM-based arbitration policy TDMer is performing well with
low latency memories. But the gain is even more significant when using memories with high
variability latencies. So, regardless of the memory type, using our approach allows to achieve the
maximum memory utilization with the guarantee of respecting the timing constraints of critical
tasks for real-time systems.

5.6 Conclusion

This chapter presents dynamic TDM-based arbitration schemes of a multi-criticality system,
where each core execute a single task which can be critical or non-critical. We first presented a
criticality aware arbitration TDMfs taking memory requests arbitration decisions with regard to
tasks criticality, sharing the memory resource between critical and non-critical tasks. Thereafter a
deadline driven arbitration with slack accumulation TDMds was introduced. This approach aims
to address the challenge of the TDM schedule (point (1) of Subsection 4.1.2), one of the sources of
TDM non-work-conserving. TDMds allow a more flexible and dynamic memory arbitration by re-
allocating over a time interval (linked to the request deadlines) the empty slots. However, issues
stemming from the very nature of TDM remain, related to the use of fixed TDM slots as the request
arbitration only occurs at the beginning of slots and the TDM slot length pessimism as described in
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point (2) of Subsection 4.1.2. The early-start optimization TDMes resolves the limitation regarding
the fixed slot arbitration on regular TDM namely issue delay, instead of taking decision at the gran-
ularity of slots our approach now operates at the granularity of clock cycles by exploiting slack
time accumulated from preceding requests. The other limitation, regarding the TDM slot length
pessimism and the high variability of memory access latencies (cf. point (3) of Subsection 4.1.2),
was addressed using the TDMer arbitration scheme. TDMer combines all the previously pre-
sented arbitration properties in addition to eliminating the release delay by shedding the artificial
constraint of waiting the entire duration of a TDM slot before releasing the memory and allowing
the next request to be processed. In addition to the successful elimination of the release delays
by TDMer, a relatively small initial slack counter value at the start of each critical job enables to
also eliminate the residual issue delays. Our evaluation reveals considerable gains, in particular,
when approaching high system utilization. Our dynamic approach, in addition to eliminating
the main limitations of TDM and therefore improving the memory utilization, converges towards
regular TDM in the worst-case for critical tasks (see Section 5.4). Consequently, TDMer supports
the same worst-case execution time analysis techniques as of regular TDM. After validating our
approach that addresses the different limitations of TDM, the next step is to implement the hard-
ware version and determine the hardware cost that such dynamic approach has.
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In this chapter, we discuss means to implement a variant of the dynamic TDM-based arbitration
scheme, described in Chapter 5, in hardware. Such an implementation faces four main chal-
lenges. Firstly, the use of a priority queue to implement the EDF policy for critical requests is
expected to be costly and slow in hardware. Secondly, the use of modulo operations in the dead-
line and slack computations should be avoided – likewise due to performance and complexity
reasons. Thirdly, the values of deadlines and slack counters need to be bounded in order to limit
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the number of data bits required in registers and the associated logic circuits. Finally, the imple-
mentation of TDMer needs to make arbitration decisions at the full speed of the memory bus, as
opposed to the TDMds or TDMfs schemes that only take decisions at the beginning of each TDM

slot.

A nice feature of our proposed schemes is that the deadline and slack computation of one task
is independent from other tasks in the system. This allows us to decompose the hardware design
as follows: (1) components to forward requests, compute Deadlines, and manage Slack Counters
(thus called DSC) for each core executing a critical task, (2) components to forward requests
from Non-Critical cores (NC), (3) global ARbitration routing logic (AR), and (3) a component to
perform the Data Multiplexing (DM) between cores and the main memory.

We first provide an overview of the interactions among these components in Section 6.1. Sub-
sequently, in Section 6.2 and Section 6.3, we discuss relevant components in more detail – along
with simple and efficient solutions addressing the aforementioned challenges. A formal analysis
with regard to the worst-case behavior is demonstrated in Section 6.5. Section 5.5 discuss the
evaluation of the hardware design regarding hardware costs results, along with a comparison
of TDMer and the hardware variant using various metrics. Finally, we conclude the chapter in
Section 5.6.

6.1 Architecture Overview

Figure 6.1 provides an overview of the proposed hardware architecture of our dynamic TDM-
based arbitration policy. Each of the m processing cores is connected to a DSC or NC component.
We assume for simplicity that the first mc cores are critical (highlighted in red), while the re-
maining cores are non-critical (highlighted in green). These DSC and NC components receive
memory requests from the cores, forward them to the arbiter, and notify the cores of the comple-
tion of their requests ( ). The NC components do not have any internal state or logic them-
selves. The DSC components, on the other hand, have internal state that contains, among others,
the deadline and slack counter of the respective core as well as logic to perform the necessary
bookkeeping operations on its internal state.

The NC and DSC components, in turn, forward the requests to the main arbiter AR ( ).
In addition, the arbiter receives two control signals ( ) from each DSC component, which



6.2. Arbitration Logic 81

𝐴𝑅 𝐷𝑀

𝑀𝑒𝑚𝑜𝑟𝑦

2222

2 ∙ 𝑚

2 2

2 ∙ 𝑚𝑐

𝐷𝑆𝐶1 𝐷𝑆𝐶𝑚𝑐

Core 
1

Core 
𝑚𝑐

Core 
𝑚𝑐 + 1

Core 
𝑚

𝑁𝐶1 𝑁𝐶𝑚−𝑚𝑐

FIGURE 6.1: Overview of the hardware design of our dynamic TDM-based arbiter.

communicate deadline (PMi) and slack (ESi) information of the respective critical core. This in-
formation allows AR to take the arbitration decisions, while ensuring that the TDM guarantees are
respected at all times. The arbiter selects one of the pending requests (at a cycle-level granularity)
and then indicates the selected core identifier (core id, ) to the data multiplexing component.
The DM then routes the data signals ( ) to/from the various cores from/to the main mem-
ory. The arbiter at the same time forwards the request to the main memory and subsequently
waits for the request to complete ( ). The completion signal is then propagated back to the
respective NC or DSC component, which itself notifies the respective core and performs the nec-
essary bookkeeping operations as needed. These handshake signals, for pending requests and
request completion, are thus connected to almost all components, i.e., Core i, DSCi, NCi, AR, and
Memory, as indicated by the dashed black lines.

6.2 Arbitration Logic

TDMer relies on a EDF strategy among critical requests and thus requires a hardware imple-
mentation of a priority queue or a similar structure. Preliminary tests on our FPGA board re-
vealed that, with a rising number of cores, the clock frequency would quickly become an issue
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with such an approach. However, applying EDF is not strictly necessary as hinted to by the
correctness proof in Section 5.4, which only refers to EDF in Definition 5.4.3 and Theorem 5.4.2.

The main motivation of applying EDF was, on the one hand, to prioritized non-critical requests
over critical requests whenever possible. A closer look at the proof reveals that, in terms of
correctness, EDF can be replaced by any other scheme as long as it ensures that any critical
request can access memory at the beginning of the TDM slot that is associated with its deadline.

Consequently, it suffices to prevent other requests from accessing memory during that slot.
For this we need to consider two cases: (1) prevent the early-start optimization in the TDM slot
before the critical request’s deadline and (2) prevent any request from accessing memory during
the TDM slot of the critical request. The former case is independent from the EDF policy used
by the arbiter (see Line 4 of Algorithm 2), while the later case can be detected by checking the
critical-request’s deadline as described below.

The arbitration logic AR receives two 1-bit control signals from each DSC component rep-
resenting a critical task. The early-start signal (ESi) indicates whether the respective task has
accumulated sufficient slack to allow the early-start optimization (see Subsection 5.3.1), whereas
the prioritize me signal (PMi) indicates whether a critical core needs to be prioritized now in order
to meet its deadline, i.e., it claims the immediate next TDM slot.

The arbiter AR thus performs the following check at each clock cycle whenever none of the
currently pending requests is processed by the memory. Instead of determining the request with
the smallest deadline (as under TDMer), the hardware implementation first checks the ESi signal
of the owner of the next upcoming TDM slot. If the signal is asserted, no deadline miss is imminent
and any arbitration policy can be applied in order to select the next request to be processed. In
our implementation we simply apply Round-Robin arbitration among all pending requests, we
thus call the resulting arbitration policy TDMrr.

If the ESi signal is not asserted, the owner of the upcoming TDM slot does not have enough
slack and the early-start optimization cannot be applied safely. The arbiter thus cannot select any
of the pending requests and has to wait until the beginning of the next TDM slot – or until the ESi

signal is asserted.
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Finally, the arbiter also checks if any of the PMi signals is asserted (this may only be the case at
the beginning of a TDM slot). If one of these signals is asserted, the corresponding request of the
slot owner needs to be processed right now in order to prevent a deadline miss.

If the above checks allow to select a new request to be processed, the arbiter signals the respec-
tive core identifier of that request to the data multiplexing component (DM), which subsequently
takes care of transferring the data between the core and the memory.

Before concluding the discussion of the AR component, we would like to highlight the conse-
quences of replacing EDF by round-robin. The EDF policy, as described in Section 5.2, systemat-
ically prioritized non-critical requests over critical requests – as long as sufficient slack is avail-
able. Consequently, critical requests tend to be delayed until no non-critical request is pending
or a deadline miss become imminent. One would expect this to be favorable in terms of execu-
tion times for non-critical tasks, and less favorable for critical tasks. This is indeed noticeable, as
confirmed by our experimental evaluation in Section 6.6. However, the impact is marginal.

Replacing EDF by round-robin, on the other hand, does not have an impact on correctness. A
proof w.r.t. the worst-case behavior under the TDMrr scheme is provided in Section 6.5. In the
next section, we thus explain how these control signals are derived by the DSC components.

6.2.1 Deadline and Slack Computation

Due to the periodic repetition of the TDM schedule during each TDM period (P), a naive im-
plementation of the deadline and slack values within the DSC components would require sev-
eral modulo operations, which are expensive in terms of hardware resources. In addition, the
bit-width required to perform the related computations may become an issue. For instance, it
appears preferable to avoid representing deadlines as absolute dates, which may lead to large
values in long running systems and consequently require a large number of bits. Fortunately
both issues can be solved elegantly, leading to an efficient and simple solution.

As explained in Section 5.4, the deadline computation is related to the start date of the current
TDM period Sp and the offset of the task’s TDM slot O(τc

i ) (w.r.t Sp). Based on this observation,
we use a dedicated counter register Dli to model the current deadline of a request from a critical
task τc

i . The value of this counter represents the number of clock cycles left before reaching
the deadline of the request. This counter is thus decremented on each cycle, for instance while
waiting for the completion of a pending request or the issuing of a new request from its critical
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Init
Slot length Sl
TDM period P
Slot offset O(τ ci )

∆i = 0
Dli = O(τ ci ) + Sl − 1

Dli = Dli − 1

Dli = Dli + P − 1

∆i = Dli
Dli = Dli + P − 1reset

decrement

unused
TDM slot

request
completed

FIGURE 6.2: Summary of the update rules of the Deadline and Slack Computation
(DSC) components.

task. A deadline miss would theoretically occur when this counter reaches 0 – although this will
not occur in practice. We also track the deadlines when no request is pending, i.e., our approach
keeps the value of the Dli counter current at all times. In this case, Dli indicates the deadline that
would be computed if a request were issued in the current cycle.

We then define 3 update rules that reset the Dli counter when specific events occur, as depicted
by Figure 6.2. The first rule is applied on a system reset (left). The second rule updates Dli when
a task’s slot is unused under regular TDM (bottom right). Finally, the third rule deals with the case
of memory request completion (top right). These 3 cases are detailed in the remainder of this
section. Note that, as before, the slack counter (∆i) indicates the number of clock cycles that the
last request completed earlier than its deadline.

6.2.2 Update Rules

System Reset: During a system reset, each DSCi module initializes its deadline counter for its
respective critical task τc

i depending on its offset O(τc
i ) within the TDM schedule, as illustrated in

Figure 6.2 (left). At this moment, obviously no request from τc
i can be pending at the arbiter. The

deadline thus rather indicates the number of cycles until the end of the first TDM slot owned by τc
i

is reached. The value of Dli can also be seen as the deadline that would be computed if a request
were issued right at system reset. The slack counter (∆i) is reset to 0, as usual.

Unused TDM Slot: Note that the current Dli value always corresponds to a TDM slot under regu-
lar TDM. When the beginning of this TDM slot under regular TDM has passed and no request from
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τc
i is pending, the slot would have been unused. In such a situation, the Dli counter must be in-

cremented to the next possible deadline for any potential request issued by τc
i in the future. Such

a deadline is one TDM period ahead, i.e., equals to Dli + P− 1, as illustrated by Figure 6.2 (bottom
right). The slack counter does not change during this update.

Under regular TDM an unused slot can be detected by comparing the beginning of the τc
i ’s

next slot with the delayed issue date, i.e., the current instant plus the slack counter ∆i (see Subsec-
tion 5.2.2). In our hardware implementation these absolute dates are represented as relative dates
w.r.t. the current instant. The beginning of τc

i ’s next slot is thus given by Dli − Sl + 1, whereas
the delayed issue date simply corresponds to the current value of the slack counter ∆i. Task τc

i
thus did not use its TDM slot, when it has no request pending and these relative dates match, i.e.,
Dli − Sl + 1 = ∆i. This triggers the necessary update of the deadline counter.

Request Completion: When the core executing task τc
i issues a request to its DSCi component,

the pending request is immediately forwarded to the arbiter using a dedicated control signal.
The Dli counter continues to be decremented, while the DSCi component waits for the request to
complete. Note that the rule for unused slots cannot trigger meanwhile.

Once the request completes, which is signaled by the memory and forwarded by AR to the
respective DSCi component, the slack counter needs to be updated. Recall that the value of Dli
represents the number of clock cycles to the next deadline. It thus suffices to copy the value of Dli
into the slack counter ∆i. The Dli counter also needs to be updated, since, under regular TDM, the
slot associated with the current deadline would have been used. The next possible deadline for
any future request issued by τc

i falls into the next TDM period and is simply given by Dli + P− 1.
Both updates are illustrated by Figure 6.2 (top right).

6.3 Control Signal Generation

The DSC components are connected to the arbiter AR using several control signals. The signals
that indicate pending requests and their completion are merely forwarded from/to the core and
arbiter respectively, but are not generated by the DSC components themselves. This is different
for the ESi and PMi signals, which are derived from the current values of the deadline and slack
counters.
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The early-start signal (ESi) indicates to the arbiter that the corresponding task τc
i has sufficient

slack, i.e., other requests may overflow into its TDM slot without the risk for a deadline miss.
The early-start optimization is not safe when the value of the Dli counter is smaller than 2 · Sl.
This indicates that the deadline of τc

i ’s pending request, or the potential deadline of a request
to be issued in the future, is at the end of the next upcoming TDM slot. A deadline miss cannot
be excluded. Hence, ESi = 1 iff Dli ≥ 2 · Sl, ESi = 0 otherwise. Note that, if τc

i left its TDM
slot unused, its deadline may advance due to the second update rule from above. This might
then enable the early-start optimization in one of the subsequent cycles – this is equivalent to the
early-start test shown by Algorithm 2.

A similar argument can be made for the PMi signal at the beginning of a TDM slot owned by
a task τc

i . The beginning of the slot corresponds to the relative date Dli − Sl + 1 as explained
above. The PMi consequently needs to be asserted when τc

i , the owner of the current TDM slot,
reached this date and has to claim its slot in order to prevent a deadline miss. Hence, PMi = 1 iff
Dli = Sl − 1, PMi = 0 otherwise.

6.4 Bit-Width Considerations

As can be seen the solution proposed above only requires two internal counter registers, a
simple state machine, and two adders. It does not require any expensive modulo operations and
can thus be implemented efficiently. In addition, deadlines are not encoded as absolute values –
which allows to minimize the number of bits required for the deadline and slack computations.

However, a naive implementation that simply cuts the Dli values off using saturation arith-
metic might break correctness. The problem is that the Dli values need to be aligned with the
TDM schedule, i.e., the deadline represented by Dli always has to correspond to the end of one
of τc

i ’s future TDM slots. Let us illustrate this by an example considering a system that uses sat-
uration arithmetic over 10 bits and a TDM period of P = 64 cycles. Dli counters here may take
any value in the range [0, 1023]. Now assume that the request of a critical task in that system
completed 1000 cycles before its deadline, i.e., Dli = 1000 at that instant. Following the update
rules from above, this value is copied into the slack counter (∆i = 1000). In addition, Dli needs to
be incremented by P− 1 (63). Due to the saturation arithmetic the deadline becomes Dli = 1023,
whereas the actual deadline should have been 1063. The DSCi component now generates its con-
trol signals based on a deadline that is 40 cycles early! Consequently, the PMi and ESi signals are
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no longer correct, which, in the worst-case, may cause a clash with another slot of another critical
task.

The problem of clashes can be resolved by subtracting P from the new Dli value, i.e., using
Dli = 1063 − 64 = 999 in the above example. This suffices to guarantee that the deadlines
remain aligned with the original TDM schedule. It turns out that this solution is, in addition,
virtually free in terms of hardware resources. Note that the update rules for Dli only indicate
two possible options: either Dli is decremented by 1 or incremented by P − 1. The latter case
may cause an overflow, which can be detected with little overhead from the carry out bit of the
corresponding adder. Furthermore, one can see that subtracting P again from the new Dli value
is equivalent to a decrement by 1 cycle (Dli + P− 1− P = Dli− 1). This value is already available
and does not cause any additional hardware overhead.

Note that this allows a safe operation of the arbiter with a reduced bit-width for deadline and
slack counters and their associated logic circuits. Due to the artificial limit in the range of the
slack counters, the deadlines might be earlier compared to the deadlines under strict TDM. This
is not problematic, assuming a timing-composable architecture. However, one might expect that
this could impact the arbiters overall efficiency in terms of memory utilization. This is evaluated,
among others, in detail in the following experiments.

6.5 Worst-case Behavior w.r.t. the Hardware Design

TDMrr brings some modifications to our dynamic schemes presented in Chapter 5, namely the
use of Round-Robin arbitration and modifications to the way deadlines and slack counters are
computed. The formal proof for TDMer from Section 5.4 thus does not apply to TDMrr and needs
to be adapted accordingly. The goal is to show that the relative deadlines of TDMrr match the
absolute deadlines of strict TDM.

Since slack counters and deadlines under TDMrr are relative, we first introduce a way, and a
notation, to obtain the absolute deadline corresponding to a given value of the Dli register at
a given instant t by introducing a cycle counter cc. Note that there is no actual need to imple-
ment this counter in hardware. Also note that, for now, we assume unbounded bit-width for the
computation of the various registers involved:

Definition 6.5.1. Under TDMrr the absolute deadline d@t
i of a critical task τi at time instant t, is

given by the sum of the relative deadline (Dl@t
i ) and a (virtual) cycle counter cc@t, which is reset to 0
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on system reset and incremented on every clock cycle. We thus have d@t
i = Dl@t

i + cc@t, or, for brevity,
d@t

i = Dl@t
i + t.

We then start with some auxiliary lemmas that we will use later in the final correctness proof.
The first lemma indicates that the relative deadlines under TDMrr are unique – similar to the
absolute deadlines under TDMer.

Lemma 6.5.1. Under TDMrr the relative deadlines Dli of a critical task τi always correspond to the end
of τi’s TDM slot and are thus unique.

Proof. The proof is based on induction over successive time instants t:
Induction base t = 0: This time instant corresponds to the system initialization, where the Dli
register is set by the reset update rule from Subsection 6.2.2. The relative deadline of τi is then
determined according to the task’s slot offset O(τi):

Dl@0
i = O(τi) + Sl − 1

The lemma thus trivially holds, since critical tasks have dedicated TDM slots, with a common
length Sl, and unique slot offsets, which results in a unique absolute deadline d0

i at the end of the
task’s TDM slot.

Induction step t = n: Assuming that d@t−1
i represented a unique absolute deadline at the end of

a TDM slot, we need to ensure that the absolute deadline at t remains unique.
The Dli register is modified according to the remaining update rules decrement, unused TDM slot,
and request completion, which gives us two cases to consider:

Case (1): The Dli register decrements (decrement):

Dl@t
i = Dl@t−1

i − 1

Dl@t
i + t = Dl@t−1

i + t− 1

d@t
i = d@t−1

i

The absolute deadline d@t
i in this case does not change and the lemma trivially holds.

Case (2): The Dli register increments (unused TDM slot and request completion):

Dl@t
i = Dl@t−1

i + (P− 1)

Dl@t
i + t = Dl@t−1

i + t− 1 + P

d@t
i = d@t−1

i + P
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The absolute deadline d@t
i is simply incremented by a TDM period P. Since all tasks share the same

period the absolute deadlines thus remain unique and still represent the end of a TDM slot.

Corollary 6.5.1. At any time instant t only one of the PM@t
i signals of all critical tasks τi ∈ Γ can be

asserted, i.e., PM@t
i = 1∧ PM@t

j = 1 =⇒ i = j.

Proof. This follows immediately from Lemma 6.5.1 and the fact that the PMi is only asserted
when Dl@t

i = Sl − 1.

The next step is to show that TDMrr always respects the absolute deadline of a pending request.
For now, this does not take into consideration whether the deadline is correct with regard to
regular TDM. However, as shown before the deadline is known to represent the end of a TDM slot
and is unique.

Corollary 6.5.2. The absolute deadline under TDMrr dTDMrrk does not change while a memory request rk

is pending, i.e., ∀t ∈ [ak, ck[, d@t
i = d@ak

i .

Proof. The value d@t
i does not change while a request is pending, since the cycle counter (i.e.,

t) is steadily incremented by 1, while Dli is decremented by 1 (cf. the decrement update rule in
Section 6.2.2). Other update rules are not possible up to the completion of the request.

Lemma 6.5.2. Given an absolute deadline dTDMrrk of a critical request rk with an arrival date aTDMrrk ,
TDMrr guarantees that the request completes at or before this deadline: aTDMrrk < cTDMrrk ≤ dTDMrrk .

Proof. Proof by contradiction, assuming that cTDMrrk > dTDMrrk holds.

The absolute deadline dTDMrrk of the request has to be equal to the absolute deadline of task τi at
the moment of the request’s arrival, which follows from Corollary 6.5.2:

dTDMrrk = d@ak
i = O(τi) + Sl − 1 + xk · P, where xk ∈N0

Therefore, cTDMrrk > O(τi) + Sl − 1 + xk · P, which means that, at the beginning of τi’s TDM slot at
instant t = O(τi) + xk · P, request rk was pending. However, at that instant, the relative deadline
Dl@t

i under TDMrr had to be (cf. Definition 6.5.1):

Dl@t
i = d@t

i − t = O(τi) + Sl − 1 + xk · P−O(τi)− xk · P = Sl − 1

Consequently PMi had to be asserted at this instant (cf. Subsection 6.3). As the request missed
its deadline the arbiter did not granted rk access to the memory. This can only happen if another
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request rl from another task τj blocks the memory:

∃rl of τj such that: aTDMrrl ≤ O(τi) + xk · P < cTDMrrl < O(τi) + xk · P + Sl − 1

The arbiter had to grant rl access to the memory no earlier than cTDMrrl − (Sl − 1), due to the
worst-case memory access latency/slot length Sl, this gives us:

(O(τi) + xk · P)− (Sl − 1) < cTDMrrl − (Sl − 1) < (O(τi) + xk · P) + Sl − 1− (Sl − 1)

t− (Sl − 1) < cTDMrrl − (Sl − 1) < t + Sl − 1− (Sl − 1)

t− (Sl − 1) < cTDMrrl − (Sl − 1) < t

This means that memory started processing request rl before instant t. The request rl can only be
processed iff ESi is asserted by the owner of the immediate next TDM slot with regard to t. In this
case τi has to be the owner (cf. the in-equations above). However, since rk was pending at instant
t, it is impossible that ESi was asserted. The relative deadline of task Dl@t

i = Sl − 1 (cf. above),
which is contradictory to the necessary condition Dl@t

i ≥ 2 · Sl needed to assert ESi. This is also
true for all instants up to t in the range [t− (Sl− 1), t], which can only yield relative deadlines in
[Sl − 1, 2 · Sl − 2].
Note that the range [t− (Sl − 1), t] is safe even when ak ≥ t− (Sl − 1). As the absolute deadline
d@t′

i for t− (Sl − 1) ≤ t′ ≤ ak cannot be larger then d@t
i . Either ck−1 is processed or d@t′

i = d@t
i .

The former would contradict the assumption that rl of task τj was processed, the latter would
prevent the ESi signal from being asserted.
The pending request rk would prevent other requests from starting right before τi’s TDM slot. In
addition, Lemma 6.5.1 and Corollary 6.5.1 ensure that rk is the only request that can claim τi’s
slot. We can thus conclude that the completion date of request rk will always be smaller than its
absolute deadline under TDMrr, i.e., cTDMrrk ≤ dTDMrrk .

Based on the previous intermediate results, we are finally able to proof that the deadlines under
TDMrr in fact match those under regular TDM.

Lemma 6.5.3. Assuming an unbounded bit-width, the absolute deadline dTDMk of the k-th request of a
critical task under regular TDM always matches the absolute deadline dTDMrrk of the k-th request under
TDMrr: dTDMk = dTDMrrk .

Proof. The proof is based on induction over the set of requests rk of a critical task τi:

Induction base k = 0: Depending on the arrival date a0 of the first request r0, we can distin-
guishes two cases:
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Case (1): The request arrives before the first TDM slot (a0 ≤ O(τi)):
We then know that the deadline under regular TDM is dTDM0 = O(τi) + Sl − 1. Under TDMrr the
situation is more complex, due to the constant updates of the Dli register. However, the absolute
deadline (cf. Definition 6.5.1) has to be valid, for all time instants t while the request is pending
at the arbiter (see Lemma 6.5.2):

∀t ∈N0, aTDM0 ≤ t < cTDMrr0 ≤ dTDMrr0 : dTDMrr0 = d@t
i

We then need to show that d@t
i = O(τi) + Sl − 1. This is trivially true at t = a0, due to the

initialization of Dli at system reset (cf. the reset update rule in Section 6.2.2). The value d@t
i does

not change while a request is pending (see Corollary 6.5.2), we thus have to show that the request
completes in time, i.e., cTDMrr0 ≤ dTDMrr0 , which follows from Lemma 6.5.2.

Case (2): The request misses the first TDM slot (a0 > O(τi)):
The deadline under regular TDM is dTDM0 = O(τi) + x0 · P + (Sl− 1), where x0 ∈N+. The variable
x0 refers to the number of TDM slots missed before the request arrival. Therefore, knowing that
aTDM0 > dTDM0 − P + Sl − 1, we can derive the number of missed TDM slots as follows:

x0 =

⌊
dTDM0

P

⌋
=

⌊
dTDM0 − P

P

⌋
+ 1 =

⌊
a0 + Sl − 2

P

⌋
+ 1

Under regular TDM and TDMrr, the first request arrival date is the same for both, i.e., aTDM0 =

aTDMrr0 . Hence, the number of missed TDM slots x0 is the same for both arbitration schemes.
Under TDMrr, the relative deadline Dli steadily decrements until the update rule unused TDM Slot
(cf. Section 6.2.2) triggers – potentially repeatedly (x0 times). This update rule relies on the Dli
register, every time it becomes Sl − 1, it is incremented by a TDM period P, actually P− 1 for the
subsequent cycle. The unused TDM Slot rule triggers for the first time at time instant O(τi) and
repeatedly triggers up to the TDM slot starting at dTDM0 − P− (Sl − 1).
Therefore, at t = dTDM0 − P− (Sl − 2) the value of the relative deadline has to be:

Dl@t
i = O(τi) + x0 · P + Sl − 1− t

We thus can derive the following absolute deadline under TDMrr:

dTDMrr0 = d@t
i = Dl@t

i + t = O(τi) + x0 · P + (Sl − 1)

Note that the absolute deadline under TDMrr does not change up until the request’s arrival, i.e, in
the time range [t, aTDMrr0 ], since aTDMrr0 − t < P. The deadline also remains unchanged thereafter
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until the request’s completion (see Corollary 6.5.2).
We have shown, through Cases (1) and (2), that the deadlines matches for the first request r0

under regular TDM and TDMrr. In addition, the update rule request completion updates the slack
counter value using the remaining cycles until the absolute deadline, which is obtained from
Dl@cTDMrr0

i , i.e., ∆i = Dl@cTDMrr0
i .

Induction step k = n: Assuming that the deadlines dTDMn−1 and dTDMrrn−1 for (n − 1)-th request
matches, we need to ensure that this deadlines also matches for the n-th request, i.e., dTDMn =

dTDMrrn . For this we again distinguish two cases:

Case (1): Under TDM, request rk arrives before the next TDM slot (aTDMk < P− (Sl − 1)):
This means that rk’s deadline simply falls into the next period and that the distance between the
k-th and (k− 1)-th request is shorter than P, i.e., dTDMk = dTDMk−1 + P and distk = aTDMk − dTDMk−1 < P.
Under TDMrr we know that the absolute deadline was correct right before the completion of

rk−1 at instant cTDMrrk−1 − 1, i.e., dTDMrrk = d
@cTDMrrk−1 −1
i . Due to the request completion rule the absolute

deadline of τi in the next cycle becomes d
@cTDMrrk−1 −1
i + P− 1 = d

@cTDMrrk−1
i + P = dTDMrrk + P, matching

the expected deadline of the k-th request. This also indicates that Dl
@cTDMrrk−1
i ≥ P.

It remains to show that this deadline does not change up to the request’s arrival at aTDMrrk . Since
no request is pending, we have to show that the unused TDM Slot rule does not trigger. This

follows trivially from the fact that distk < P and the fact that Dl
@cTDMrrk−1
i ≥ P.

Case (2): Under TDM, request rk arrives after the next TDM slot (aTDMk ≥ P− (Sl − 1)):
We then know that the rk’s deadline has to be a number xk periods later than the deadline of the
previous request, resulting in:

dTDMk = dTDMk−1 + xk · P, where xk =

⌊
distk + Sl − 2

P

⌋
+ 1

Based on the arguments put forward for Case (1) of the induction step (distk) above as well as
Case (2) of the induction base (using Dli − ∆i), we can show that the unused TDM slot rule triggers
xk times up to the arrival data of rk.

Theorem 6.5.1. (Worst-Case Behavior) Considering a given execution (i.e., execution path, runtime con-
ditions, input values, . . . ) a memory access of a critical task under any possible execution under TDMrr
completes no later than the same execution under strict TDM.

Proof. The correctness of Theorem 6.5.1 is ensured by by Lemma 6.5.2 by guaranteeing that re-
quest completes at or before its deadline, i.e., cTDMrrk ≤ dTDMrrk . Lemma 6.5.3 shows that the
deadlines under TDMrr will always corresponds to the deadline under regular TDM.
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The proofs above assumed an unbounded bit-width, which is not the case in our hardware im-
plementation. Limiting the bit-width only has an impact on Lemma 6.5.3, all preceding lemmas
remain valid. The lemma could be adapted in order to show that the absolute deadlines under
TDMrr are always smaller than those under strict TDM, due to the fact that the value of the Dli
register is smaller.

6.6 Experiments

In this section we evaluate the hardware design of the arbitration logic described in Section 6.1.
We first present the evaluation platform and the hardware cost results. Afterwards, we compare
the TDMer and the TDMrr approaches using various metrics, such as, memory utilization, aver-
age number of deadline misses for non-critical tasks, and the maximum slack accumulated by
critical tasks. Finally, we evaluate the impact of limiting the bit-width of the slack counters on
the arbiter’s performance.

6.6.1 Evaluation Platform

The hardware design described in Section 6.1 has been realized on a Terasic DE-10 Nano eval-
uation board. The board is, among others, equipped with an Intel Cyclone V SE SoC-FPGA,
which we use to evaluate the hardware implementation cost. Logic circuits on various families
of FPGA device families from Intel are built from Adaptive Logic Modules (ALMs) that contain
registers, programmable logic, but also predefined logic blocks (e.g., adders). The Cyclone V SE
(5CSEBA6U23I7) on our evaluation board contains 41 910 ALMs, 83 820 primary logic registers,
and 5 530 kbit of distributed memory, which, for instance, is enough to instantiate several Pat-
mos cores [60]. Hardware is synthesized from the arbiter’s Verilog implementation using Intel’s
Quartus Prime Lite tool (version 18.1) using default parameters for the considered FPGA.

To evaluate the hardware cost of implementing the TDMrr approach, we determined the
number of ALMs and primary logic registers occupied by the design. The synthesis tool did not
make use of any memory resources (neither block- nor distributed RAM). We also determined
the attainable clock speed of the design, provided by the synthesis tool in the form of a maximum
operating frequency (considering regular operating conditions).

The correctness of the Verilog implementation was thoroughly validated using the Icarus Ver-
ilog hardware simulation tool (version 10.1). The hardware simulation accepts the same memory
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patterns, described in Section 5.5, as input, which allows an automatic verification against the
cycle-accurate software simulator that was already used in the other experiments.

6.6.2 Results for Hardware Synthesis

After careful validation, we instantiated and synthesized several different versions of our hard-
ware design in order to find out the hardware cost of our approach TDMrr. The design can be
parameterized by the number of cores (m), the number of critical cores (mc), and the bit-width
of the deadlines/slack counters. Table 6.1 summarizes the results in terms of ALMs and pri-
mary logic registers occupied by the various design instances considering 24-bit deadline and
slack counters (see Subsection 6.6.4 for a justification). The table also indicates the maximum
operating frequency. Note that the reported numbers only concern the DSC, NC, and AR com-
ponents. The numbers do not cover the data multiplexing (DM) and processing cores, as these
components are independent from the actual arbiter design. The design is relatively small as
can be seen by the low relative usage numbers (%). This becomes even more apparent when
comparing against the hardware cost of instantiating a Patmos core on the same FPGA device.
Considering the processing core and its caches in isolation, i.e., ignoring I/O and memory in-
terfaces, the design occupies approximately 10 500 ALMs. The unoptimized processor design,
including I/O interfaces and an Avalon-based bus interface to a silicon DDR memory controller,
achieves a maximum operating frequency of 65 MHz.

Overall we can observe that in terms of hardware costs, the resource utilization is highly de-
pendent on the number of critical cores (mc) rather then the total number of cores (m). When
the number of critical cores increases, the number of occupied ALMs and primary logic registers
proportionally increase. The main difference between critical and non-critical cores stems from

TABLE 6.1: Implementation details of our hardware design on an Intel Cyclone V SE
SoC-FPGA considering 24-bit deadline and slack counters.

Cores ALMs Registers Frequency (MHz)
m mc Number (%) Per mc Number (%) Per mc
2 2 179 (0.43%) 90 116 (0.14%) 58 147.86
4 2 221 (0.53%) 111 122 (0.15%) 61 157.88
4 4 407 (0.97%) 102 218 (0.26%) 55 142.37
8 4 389 (0.93%) 97 225 (0.27%) 56 129.62
8 8 723 (1.73%) 90 418 (0.50%) 52 117.19

16 8 773 (1.84%) 97 429 (0.51%) 54 97.61
16 16 1 424 (3.40%) 89 814 (0.97%) 51 98.18
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the deadline and slack computation (DSC) components. This module, along with the number of
critical cores, therefore plays a major role in the overall hardware cost. When the total number
of cores increases, while keeping the number of critical cores constant, the difference is rather
small. For instance, increasing the number of cores from 4 to 8, while keeping 4 critical cores,
even results in a decrease in terms of the occupied ALMs (407 vs. 389 ALMs). This is due to
heuristic optimizations applied by the synthesis tool. This can also be seen by when normalizing
number of ALMs to the number of critical cores (column ALMS per mc). The resource usage per
critical core peaks at 110 ALMs and then appears to converge towards 89 ALMs with an increas-
ing number of critical cores. A similar trend can also be observed for the usage of primary logic
registers in the DSC components, which peaks at 61 registers per critical core and then levels off.
Note that non-critical cores still consume resources in the AR component, albeit very little.

The maximum operating frequency follows the same trend as resource consumption, with a
peak performance of 157.88 MHz that levels off to 97.61 Mhz. However, this time, the total num-
ber of cores is the main factor, which leads to a reduction of the clock frequency. This decrease
can be attributed to the AR component, more precisely, the critical path is related to the logic
circuit that selects the next request to be processed by the memory (round-robin) in combination
with the masking induced by the PM signals. The depth of this logic circuit, and thus the critical
path, in our currently unoptimized implementation depends on the total number of cores. It is
very likely that an improved implementation (using partitioning and balanced tree structures)
and traditional optimization techniques (such as pipelining or retiming) would allow to improve
the clock frequency. However, on the considered FPGA this does not appear to be beneficial,
since the memory controller operates at only 100 Mhz. Only the configurations with 16 cores are
not able to match the controller’s speed. However, due to resource constraints (ALMs, registers,
and memory) configurations with 16 Patmos cores are not feasible anyways.

Table 6.2 shows the consequences of reducing the bit-width for deadline and slack counters in
terms of ALMs and primary logic registers along with the operating frequency, considering bit-
widths of 10 bits and 20 bits. Overall we can see that the bit-width of deadline and slack counters
highly impacts the overall results, while following the same trends observed in Table 6.1 in terms
of core numbers. The resource consumption in relation to the 10 bit version increases by a factor
of roughly 1.6 and 2 for widths of 20 bits and 24 bits respectively. The operating frequency
when using a low number of cores appears to be impacted more by the bit-width, but appears to
converge to roughly 100 MHz for configurations with 16 cores. This decrease can be attributed
to the AR component, in combination with the masking induced by the PMi signals. For a low
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TABLE 6.2: Implementation details of our hardware design on an Intel Cyclone V SE
SoC-FPGA considering various bit-widths for deadline and slack counters.

Cores 10 bits 20 bits
m mc ALMs Registers Frequency (MHz) ALMs Registers Frequency (MHz)
2 2 95 60 205.72 157 100 164.02
4 2 111 66 200.72 175 106 157.95
4 4 187 106 165.04 315 186 151.15
8 4 214 113 149.57 344 193 130.55
8 8 378 194 127.67 627 354 124.36

16 8 431 205 112.27 679 365 102.19
16 16 755 366 100.45 1 228 686 96.08

number of cores the critical path is more impacted by the computation of the PMi and ESi signals
at within the DSCi components, which highly depends on the deadline and slack counter width.

From these results, we can conclude that the proposed design is feasible for a realistic hardware
implementation, both in terms of hardware complexity (ALMs/area) and clock frequency. It
remains to verify that the attainable memory utilization of this design matches the original TDMer
arbiter.

6.6.3 Results for Dynamic TDM with Round-Robin Arbitration

The designed variant of the dynamic TDM-based arbitration policy TDMrr, applies a different
deadline and slack computation strategy. More importantly, instead of using an EDF arbitration
policy with priority queues, TDMrr uses a Round-Robin arbitration policy over all pending mem-
ory requests, while prioritizing requests of critical tasks only when they are about to miss their
deadline. The following experiments aim at evaluating whether this choice has an impact on the
performance of the dynamic TDM-based arbitration scheme at the system level. We, therefore,
undertake another series of simulation runs based on the same experimental setup previously
used to evaluate TDMer in Section 5.5.

Figure 6.3a shows a breakdown of the average memory idle time for TDMrr over all simulation
runs. Recall that, as for Figure 5.11 from Section 5.5.3, the plot shows stack lines representing the
release delays, issue delays, and the total memory idling. Overall, the evolution of the memory
idling for TDMrr shows the same trends as under TDMer: memory idling dominates under low
system utilization and drops considerably under high load. As before release and issue delays
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are virtually eliminated. The choice to replace EDF by round-robin apparently did not impact
the overall performance of the arbiter negatively.

On the contrary, the performance of TDMrr appears to be slightly better than that of TDMer
starting with a system utilization of about 50%, when comparing Figure 6.3a and Figure 5.11.
TDMer systematically prioritizes non-critical requests, as long as the critical requests have suffi-
cient slack left. Non-critical tasks systematically drain the slack of critical tasks. TDMrr, on the
other hand, applies Round-Robin among critical and non-critical pending requests alike. Mem-
ory bandwidth is, as a result, shared more evenly among critical and non-critical requests, which,
most importantly, allows critical tasks to preserve more slack on average. This is, apparently, ben-
eficial in some situations where the entire slack of critical tasks was drained under TDMer.

This, however, comes at a price. Figure 6.3b depicts the average number of deadline misses
of non-critical tasks. Due to the aforementioned difference between TDMer and TDMrr, we can
notice a difference in terms of deadline miss between TDMer and TDMrr. This trend appears to
coincide with the trend regarding the memory idling from Figure 6.3a. Starting from 60% sys-
tem utilization a difference is visible that increases along with the load. Note, however, that two
other factors have a dominating impact on the number of deadline misses: the core number and

(A) Memory idling. (B) Deadline misses for non-
critical tasks.

FIGURE 6.3: Evolution of the average memory idling and average number of deadline
misses for non-critical tasks over all simulation runs under TDMrr with initial slack

(lower is better).
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the ratio between critical and non-critical tasks (50%/50% vs. 25%/75%, see Subsection 5.5.1).
Configurations with at most 4 cores do not cause sufficient memory load, while configurations
with more than 16 cores quickly cause overload. The arbitration policy in these situations makes
little difference. The situation changes for configurations with 8, 12 or 16 cores. Here, TDMer
shows improvements over TDMrr in terms of deadline misses when the repartitioning between
critical and non-critical tasks is even (50%/50%). This can be explained by the right level of mem-
ory load of these configurations that allows a moderate number of non-critical tasks to exploit a
reasonable margin of the memory bandwidth.

From these experimental results we conclude that the implementation of dynamic TDM-based
arbitration policy (TDMrr) is efficient, both in terms of hardware complexity and arbitration per-
formance. Notably the good results concerning the memory ideling are preserved over all simu-
lation results, while other metrics are only marginally impacted.

6.6.4 Results for Bit-Width Constrained Slack Counters

Section 6.4 discusses the consequences of reducing the bit-width of the deadline and slack
counters, focusing on implementation and correctness issues. In this section, we turn our at-
tention to the impact on the system-level memory utilization that might result from artificially
limiting the bit-width, and thus range, of these counters.

For simplicity, we consider a hardware implementation of a dynamic TDM-based arbiter run-
ning at 100 MHz in the following example. We can then compute the amount of time that can
be represented by the slack counters with a given bit-width. Hence, 32 bits corresponds to more
than 43 seconds of slack time that could theoretically be accumulated by a critical task during
execution. This, by far, exceeds the periods (Ti) considered in our simulations, where tasks may
exhibit periods in the range [20, 100] ms. For our setup a slack counter widths above 24 bits
thus cannot impact the arbiter’s performance negatively. Reducing the width to 20 bits limits the
slack time to roughly 10.5 ms, about 10% of the longest task periods considered in our simula-
tions. One would expect an impact on the arbitration performance. The same applies to a width
of 10 bits, which further constrains the slack accumulation to roughly 10 µs, but also reduces
hardware costs. For the subsequent experiments, we have chosen to limit the deadline and slack
counters to 20 and 10 bits respectively. The experimental setup remains unchanged otherwise
(see Section 5.5.1).
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(A) 10 bit. (B) 20 bit.

FIGURE 6.4: Evolution of memory idle time considering reduced bit-widths for the
slack and deadline counters under TDMrr with initial slack (lower is better).

Figure 6.4 shows the breakdown of the average memory idle times over all simulation runs
for TDMrr. In terms of memory idling, the results are virtually identical regardless of the used
bit-width. However, the average slack counter values are impacted considerably – in particu-
lar for configurations with low to medium system utilization. This loss appears to have little
impact on the other metrics (deadline misses, execution times, etc.). This is contrary to our ob-
servations for the comparison with TDMer in the previous subsection, where non-critical tasks
drained the slack of critical tasks. The situation is different now considering TDMrr, despite the
fact that slack is lost, slack counters generally stay above the critical threshold that enables the
early-start optimization. As long as critical task have enough slack (more than Sl, for instance)
the arbiter’s performance is not degraded. This also applies for all other dynamic TDM-based
arbitration schemes that are decoupled from slots, i.e., varying the deadline and slack counter
width has little to no effect.

6.7 Conclusion

In this chapter, our aim was to adopt a simple and low-cost approach in terms of hardware
resources. To do so, we had to make some modifications to the TDMer version, the first being the
replacement of the EDF priority queue by a less complex and yet efficient policy between pend-
ing requests using a Round-Robin approach. Our evaluations showed that the implementation
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of dynamic TDM-based arbitration policy (TDMrr) is efficient, both in terms of hardware complex-
ity and arbitration performance regarding the memory utilization. The second modification was
related to the computation of deadlines and slack, rather than using absolute dates in our hard-
ware approach we use relative dates. This allowed to reduce the number of bits needed to store
these values in dedicated registers. As these registers were limited by their number of bits, it was
necessary to guarantee that in the worst-case this would not have a negative impact on the cor-
rect arbitration of critical requests, a proof of the worst-case behavior is described in Section 6.5.
Finally, using additional simulations we showed that the proposed solution combines the advan-
tages of dynamic TDM-based scheduling with an efficient and simple hardware realization. The
remaining challenge of this work is related to the task level impact of our dynamic TDM-based
arbitration scheme. More precisely, we need to study the arbitration-induced preemption delays
that are linked to our approach.
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To overcome TDM limitations presented in Subsection 4.1.2, we described in Chapter 5 novel
dynamic TDM-based arbitration schemes. We envisioned that the task’s criticality level should
not only be used by the task scheduler, but also by the memory arbiter. The arbiter associates a
deadline with each memory request of a critical task, which corresponds to the end of its corre-
sponding slot under a strict TDM scheme. The deadline then allows to compute the slack time of
a critical task, i.e., the amount of time that the task’s last request completed before the request’s
deadline. This slack time then can be exploited by the arbiter, under certain conditions, to favor
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requests of non-critical tasks over requests from critical tasks, to freely reorder memory requests,
and to schedule memory requests at the granularity of clock cycles – instead of being confined to
TDM slots. The resulting TDMer arbiter significantly reduces the memory idle time, compared to
a regular TDM arbiter.

However, the proposed dynamic TDM-based arbitration techniques TDMds and TDMer face is-
sues under a preemptive execution model. In this chapter, we address the impact of such so-
phisticated arbitration scheme on task level regarding the multi-task scheduling and preemption
costs in particular. Therefore, we define two memory delays induced by preemptions, the mem-
ory blocking delay and the misalignment delay, which may lead to significant jitter and increase task
response times. Even worse, due to non-critical tasks, the memory blocking delay may be un-
bounded in some circumstances. We explore three different approaches to analyze the impact
of these arbitration-induced preemption delays considering preemptive [56] (SHDp) and non-
preemptive [6] (SHDw) memory requests. Finally, we propose a new technique (SHDi) to resolve
these issues by adapting (priority or rather) criticality inheritance known from scheduling theory.
This allows us to manage and easily bound these preemption delays. Our evaluation shows that
our new approach successfully limits the worst-case preemption delays experienced at runtime
under our dynamic TDM-based arbitration schemes.

The remainder of this chapter is organized as follows. Section 7.1 describes the considered
multi-task scheduling policy w.r.t. the criticality aware arbitration schemes. In Section 7.2 we
identify the different delays caused by preemptions in dynamic TDM-based arbitration strategies,
while Section 7.3 proposes three preemption models to handle these delays. In Section 7.4, we
evaluate our contributions and demonstrate the improvements in terms of blocking delay re-
ductions and success rates on randomly generated task sets. Finally, Section 7.5 concludes the
chapter.

7.1 Multi-task Preemptive Scheduling Policy

We assume a multi-core platform with m cores and partitioned fixed-priority scheduling on
each core. Critical and non-critical tasks may reside on the same core – without any restrictions
on priority assignment. Notably, non-critical tasks may have a higher priority than critical tasks.

This raises the question on how TDM slots are assigned among cores/tasks. We propose a prag-
matic solution for this work, but other alternatives are obviously possible. Since each core that
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executes at least one critical task may require a TDM slot at some moment, we assign one TDM slot
to each such core. However, the slot is only reserved exclusively for that core when it actually ex-
ecutes a critical task, i.e., the core is considered critical. Cores that do not execute a critical task at
a specific moment are themselves non-critical. The TDM slots that are not reserved, because their
owning cores are currently executing non-critical tasks, are marked as NCi and shared among
all running tasks on all cores in the system. This strategy is illustrated by Figure 7.1, showing a
system with 4 cores. The TDM schedule consists of three slots (C0, C1, and C2), since only three of
the cores may execute critical tasks (red). In Subfigure 7.1a, these three cores execute critical tasks
and are thus themselves critical. In Subfigure 7.1b, on the other hand, only a single critical task
executes. Consequently two of the TDM slots are marked NCi and shared by all running tasks.

Note, that non-critical tasks on core 3 may suffer from starvation on the depicted platform. For
the formal analysis we require that at least one TDM slot is marked NCi whenever a non-critical
task executes in order to rule starvation out. We thus define a larger TDM period for non-critical
tasks using an application-specific constant k (e.g., k represents the number of non-critical cores

(A) All TDM slots are reserved by
critical cores.

(B) One reserved TDM slot, two are
shared (NCi).

FIGURE 7.1: Hardware architecture.



104 Chapter 7. Multi-tasks and Preemption Support

divided by the number of NCi slots when applying FIFO arbitration among non-critical requests):
Pnc = k · P.

Also, recall that we assume that preemptions are pre-programmed through a timer-like hard-
ware component (see section 2.3.2). Using these components, we can control under which condi-
tions preemptions are actually triggered, e.g., to block the current preemption until an ongoing
memory request has completed or to preempt a pending request.

7.2 Preemption Costs for Dynamic TDM-based Arbitration

We now investigate the issues raised by our dynamic TDM-based arbitration described in Chap-
ter 5. We chose to not consider the TDMrr approach in this chapter as it is the result of a technical
choice made to reduce the hardware costs of the design. Besides, someone else may choose to
apply another implementation choices according to other criteria (e.g. use another policy than
Round-Robin). The results obtained in Chapter 6 shows that the behavior with regard to the
memory utilization is virtually the same for TDMer and TDMrr. These are the reasons that led us
to consider only the approaches described in Chapter 5, i.e. TDMfs, TDMds and TDMer.
As a reminder, in this work, we only focus on preemption costs caused by the arbitration policy
and ignore other costs due to the scheduler invocation, context switching, pipeline flushes, or
Cache-Related Preemption Delays (CRPD). From here on, we use the term preemption cost to refer
to the costs related to the arbitration policy only.

The dynamic TDM-based arbitration schemes described in Chapter 5 inherit the memory block-
ing and misalignment delays from regular TDM. Figure 7.2 shows 3 tasks executing on 2 cores that
share slots C0 and C1 within a TDM period under the TDMds arbitration scheme. The mapping
between tasks and cores is indicated by matching colors (yellow and orange ). Critical tasks
τc

0 and τc
1 are executed on the same core, which results in a preemption of task τc

0 by τc
1 ( ).

Non-critical task τnc
2 executes alone on the other core. A core has a dedicated TDM slot when it

executes a critical task (τc
1 , τc

0 ), while the slots of cores executing non-critical tasks (here only τnc
2 )

are shared by the running non-critical tasks (see the next section).

Lets assume that tasks cannot be preempted while performing a memory access [6]. Task τc
0

then blocks the higher-priority task τc
1 after its release in TDM slot 4. The preemption’s blocking

time, highlighted by the blue cross-hatched bar ( ), appears to be larger than the worst-case
memory access latency under regular TDM. The latency of request τc

0,2 amounts to two entire TDM
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FIGURE 7.2: Impact of slack accumulation on the memory blocking time for TDMds.

periods and τc
1 starts executing only after its completion. The reason for this long delay is the

high slack counter value (∆16) for request τc
0,2, combined with the interference of the non-critical

task τnc
2 running on the other core. The non-critical task consumes all the slack of the critical

request τc
0,2, delaying its completion, and thus also delaying the preemption. The situation is

potentially even worse when a non-critical task is preempted during a memory request. Recall
that non-critical requests are executed in a best-effort manner. The blocking time caused by such
a request may even be unbounded.

The example illustrates that preemption-induced delays need to be taken into consideration
during system analysis. Note that the same reasoning (see Section 4.1.3) used for regular TDM to
establish the misalignment delay bound applies for all dynamic TDM-based approaches consid-
ered here. Next, we investigate three different approaches to integrate the memory blocking de-
lay due to preemptions for our dynamic TDM-based arbitration schemes by extending response-
time analysis. In addition, we compare the approaches w.r.t. their implementation complexity
and actual runtime behavior.

7.3 Arbitration-Aware Preemption Techniques

Let us assume that memory requests are never aborted – cf. cases (2) and (3) from Subfig-
ure 4.3a. In this case, preemptions have to be delayed until a potentially ongoing request com-
pletes. Under regular TDM arbitration, this corresponds to the usual worst-case memory access
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latency w.r.t. the TDM period P and TDM slot length Sl, which can be bounded by [6]:

MBTDM = P + Sl − 1 (7.1)

As demonstrated in Section 7.2, this bound is not valid for TDMds and TDMer, due to additional
delays caused by the slack counters. While it certainly appears feasible to determine bounds
on the slack counter values of tasks, it can be expected that these bounds would be rather pes-
simistic. In this section, we first explore this option to simply wait [6] due to its uncomplicated
hardware implementation and later refer to it as SHDw (for ScHeDuling wait). Next, we explore
an alternative option (SHDp, for ScHeDuling preempt), which assumes that ongoing requests can
be preempted as long as they are not yet processed by the main memory [56] – cf. case (2) from
Subfigure 4.3a. Finally, we propose a new solution (SHDi, for ScHeDuling inheritance) that tries
to limit the impact of the slack counters by imposing a (new) deadline on an ongoing request
when the core’s timer signals a preemption by a critical task, i.e., the request of the preempted
task inherits the criticality of the preempting task. Thereafter, we show how these models can be
integrated into a response time analysis.

7.3.1 Scheduling with Request Waiting (SHDw)

This strategy simply waits that an on-going memory request finishes [6]. Compared to regular
TDM, the memory blocking time can however be considerably larger due to the slack counters.
Consequently, a timing analysis technique is required to allow bounding the maximum slack
counter value of a critical task τc

i . A trivial bound ∆max
i can be computed by multiplying a task’s

worst-case number of memory requests (Mi) with the maximum slack possibly accumulated per
request: Mi · (P− Sl) (TDMds) or Mi · (P + Sl − 1− l) (TDMer), where l indicates the minimum
memory latency. The resulting bound appears highly pessimistic, but more precise bounds are
out of the scope of this work.

To bound the memory blocking time of a critical task τc
i two cases need to be considered.

Firstly, the blocking delay of preempting some lower-priority non-critical tasks (lpnc(i)) has to
be considered via MBnc,SHDw

i – which is similar to Equation 7.1 for regular TDM. Secondly, the
blocking delay of preempting another lower-priority critical task (lpc(i)) has to be considered via
MBc,SHDw

i . Here, the maximum slack counter values (∆max
l ) over all lower-priority critical tasks
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τc
l , has to be considered in addition to the cost of a single memory access as follows:

MBc,SHDw
i =

 0 if lpc(i) = ∅,
P + Sl − 1 + max

l∈lpc(i)
∆max

l else

MBnc,SHDw
i =

{
0 if lpnc(i) = ∅,
Pnc + Sl − 1 else

MBSHDwi = max(MBc,SHDw
i , MBnc,SHDw

i ) (7.2)

The main advantage of this approach is its simplicity in terms of hardware complexity. The
timer-like component triggering the preemption on behalf of the task scheduler simply has to
detect whether a memory request is pending and, if so, delay the preemption until the request
completes. The downside is that it requires precise information on slack counters, so a complex
analysis that appears to go against a simple analysis, main advantage of TDM.

7.3.2 Scheduling with Request Preemption (SHDp)

An alternative approach is to preempt ongoing memory requests. We consider that requests
can only be preempted while pending at the arbiter, but not while being processed by the mem-
ory [56]. Consequently, preemptions are still delayed when a request is currently processed by
the memory (cf. case 3 of Subfigure 4.3a). The memory blocking delay for critical and non-critical
tasks then can trivially be bounded by the worst-case memory latency, which in turn is bounded
by Sl:

MBSHDpi = Sl − 1 (7.3)

However, the preempted task later has to reissue the memory request that was preempted,
which causes additional delays that need to be accounted for in its response time. A trivial bound
for this reissuing delay is the TDM period P, i.e., the maximum latency of a pending request
after the preemption. Note that there is no need to consider the slack counter value, since it
is already covered by the WCET. Furthermore, the misalignment delay always applies to the
preempted/reissued request. The misalignment delay thus already covers this overhead (see
Subsection 7.3.4).

Figure 7.3 shows an execution of the same task set introduced in Subsection 7.2 using TDMds

and the SHDp preemption scheme. This time request τc
0,2, waiting to access the memory, is im-

mediately preempted by task τc
1 and is reissued once τc

0 resumes execution. The request τc
0,2 thus
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FIGURE 7.3: Memory blocking delays considering request preemption (SHDp).

appears twice in the figure, once before the preemption (aborted) at cycle 27 and once thereafter
(reissued). Note that the slack counter, due to the request’s preemption, diminished from 16∆ to
13∆.

This solution appears to be ideal in terms of preemption costs. However, preempting ongo-
ing memory requests can be complex to implement. The processor pipeline has to be extended
such that the memory access instruction and all instructions that started execution after it can
be aborted. All these instructions have to be reexecuted and thus are not allowed to cause side-
effects on the processor state. Such side-effects are, unfortunately, very common. Examples in-
clude branch prediction and instruction cache accesses, which occur early in processor pipelines
and whose side-effects cannot (easily) be reverted. These effects consequently need to be taken
into consideration through dedicated timing analyses. Similarly extensions are required on the
memory hierarchy, including caches (aborting cache updates), the memory bus (cache coher-
ence), and the memory arbiter itself. It thus appears preferable to explore an alternative approach
that strikes a compromise in terms of implementation and analysis complexity.

7.3.3 Scheduling with Criticality Inheritance (SHDi)

The aim of this approach is to provide means to control the impact of the slack counters and
the interference from non-critical tasks on the memory blocking delay of preempting tasks. The
dynamic TDM-based arbiters considered here are all based on the notion of deadlines. The idea of
criticality inheritance (inspired from priority inheritance scheduling technique [61]) is to impose
a new deadline on a pending request at the moment when a critical task is released, regardless of
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the criticality of the preempted task. The preemption is still delayed – as before under the SHDw
scheme. However, the blocking time is bounded by the newly imposed deadline.

This new deadline is computed in the same way as ordinary request deadlines. The only
difference is that the issue date is replaced by the release date of the preempting task and that
the current value of the slack counter, belonging to the preempted task, is always considered to
be 0 (TDMds) or Sl (TDMer). This yields a deadline that certainly falls within the current or the
next TDM period, and thus effectively bounds the memory blocking delay. An important aspect is
that the slack counter for TDMer needs to be Sl for this computation, and not 0. This is required
for the simple reason that, without slack, the deadline could fall on the immediate next TDM
slot. Under TDMer this could cause a clash with an ongoing request from another core that was
granted access by the arbiter based on the – then valid – slack counter value of the preempted
task. Setting the slack counter to Sl thus ensures that any ongoing request can finish before the
request from the preempted task is handled.

At runtime two scenarios can be distinguished, depending on the criticality of the preempted
task. Firstly, if a critical task is preempted it is clear that its pending critical request already
carries a deadline. Replacing this deadline is easy, it suffices to signal to the memory arbiter
that the recomputation of the deadline is needed using the current cycle, i.e., the release of the
preempting task. Secondly, non-critical requests do not carry a deadline and may be held in a
structure separated from critical requests (e.g., a FIFO for TDMer). The request thus needs to
be taken out of this structure and reissued as a critical request with the appropriate deadline.
Afterwards, the core has to reclaim its TDM slot, which up to now has been marked non-critical,
i.e. NCi. These operations only concern the arbiter and do not impact the processor pipeline or
other parts of the memory hierarchy.

Assuming that both cases require a constant amount of clock cycles tid to associate the ongo-
ing request with the newly imposed deadline, we obtain the following bound for the memory
blocking delay under SHDi for TDMds and TDMer respectively:

MBSHDidsi = P + Sl − 1 + tid (7.4)

MBSHDieri = P + 2 · Sl − 1 + tid (7.5)
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FIGURE 7.4: Memory blocking delays considering criticality inheritance (SHDi).

Note that the second Sl in Equation 7.5 stems from the non-zero slack counter, which ensures
that all requests can access memory without clashes. We currently do not apply criticality inher-
itance when the preempting task is non-critical (deadlines could easily be imposed for preemp-
tions by non-critical tasks). Non-critical tasks currently implicitly follow the SHDw strategy.

Figure 7.4 again shows an execution of the same task set as in the previous examples, this time
under TDMds combined with SHDi. Critical task τc

1 is released while critical request τc
0,2 is pend-

ing. The pending request has its original deadline at the end of TDM slot 7 ( ). Request τc
0,2 is

subject to a limited interference from only request τnc
2,0 which completes before τc

0,2 can be pro-
cessed. The preemption imposes a new deadline at the end of the immediate next TDM slot (slot
5). The arbiter thus has to prevent the interference from the other core and has to assign the next
slot to the preempted task – effectively bounding the memory blocking delay.

This approach combines a reasonable memory blocking delay bound with moderate imple-
mentation complexity and simple analysis. The hardware modifications only concern the mem-
ory arbiter that reacts to the core’s timer, providing the release date and the criticality of the
preempting task.

7.3.4 Misalignment Delays

Regular TDM as well as the dynamic TDM-based schemes all suffer from misalignment delays,
highlighted in Section 4.1.3 and Section 7.2, for the same reasons. The delay appears when the
task’s misalignment at the first memory access after a preemption is larger w.r.t. the task’s own
TDM slot as determined by the WCET analysis [41, 58]. In the worst case the associated memory
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request misses the task’s TDM slot by a single cycle, i.e., the issue date (TDM) or delayed issue date
(dynamic TDM) miss the slot by a cycle. The request consequently completes in the worst case in
the next TDM period, resulting in the following bound for all the TDM-based approaches:

MATDM = MATDMds = MATDMer = P (7.6)

The delay can be larger for non-critical tasks (Pnc = k · P). Also note that the bound is smaller
than the worst-case memory access latency of regular TDM (P + Sl − 1), since the memory wait
time of the first TDM slot is accounted for in the WCET (highlighted in beige in Subfigure 4.3b).

7.3.5 Response-Time Analysis

The memory blocking (MB) and misalignment delay (MA) bounds, as described above for the
preemption mechanisms SHDw, SHDp, and SHDi as well as the arbitration policies TDMds and
TDMer, can now be integrated into the recurrence equations of the response-time analysis.

With regard to a task τi, the misalignment delay may appear every time any task τj (i < j)
resumes after a preemption. This is independent of whether τj directly preempts τi or some
other task. The misalignment delay bound MA of the respective arbitration scheme thus needs
to be added for every potential preemption that might occur.

Every preempting critical or non-critical task τi (i > 0) may experience the memory blocking
delay before starting to execute. The bound thus can be seen as part of the task’s WCET, i.e., the
ongoing memory request of the preempted task is essentially considered to be executed by the
preempting task. We thus add MB to those parts of the equation that represent a WCET (Ci, Cj):

Rn+1
i = (Ci + MBi) + ∑

∀j∈hp(i)

⌈
Rn

i
Tj

⌉
((Cj + MBj) + MA) (7.7)

For the SHDw and SHDp schemes, independently of the TDM policy, but also for SHDi when
combined with TDMds, the term MBj can be safely removed from this equation. The latency of
the ongoing memory request, owned by the preempted task, is indeed counted twice: once for
the preempting task (MBj) and the preempted task (Ci). This is illustrated by Figure 7.4, were
the blue area ( ), representing the MBj term for task τc

1 , ends at the deadline of request τc
0,2 and

thus the Ci of τc
0 . For TDMer under SHDi, the imposed deadline may be greater than the original

deadline of the ongoing request, since the imposed deadline is recomputed with a slack counter
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of Sl. The term MBj is thus pessimistic and a possible refinement is to subtract the minimal
memory latency l from this term.

7.4 Experiments

We use simulation to evaluate the runtime behavior of the various preemption mechanisms. In
order to determine the impact of the preemption mechanism on the memory blocking delay and,
therefore, on the memory utilization w.r.t. the used arbitration scheme. Besides, we also evaluate
the tasks’ schedulability according to the used arbitration scheme. Before discussing the results,
we provide details on the experimental setup.

7.4.1 Experimental Setup

We developed a simulation engine that is able to simulate a dynamic execution trace of an
entire multi-core platform. Traces are specified according to the system/hardware model from
Section 2.3.1 and Section 7.3. The engine includes a fixed-priority preemptive task scheduler, and
various memory arbitration schemes (TDMfs, TDMds, TDMer), which can be combined with the
aforementioned preemption mechanisms (SHDw, SHDp, SHDi).

The engine can be configured in terms of the number of (non-)critical cores, TDM slots in a pe-
riod (at least 1 per critical core), and (non-)critical tasks. The task scheduler respects user-defined
core affinities that can be assigned freely to tasks. However, for our experiments each task is as-
signed to a single fixed core only (partitioned scheduling). Tasks are represented by a sequence of
jobs, which, in turn, represent dynamic execution traces consisting of memory accesses that are
separated by a fixed amount of computation time (cf. Subsection 2.3.1). This allows to simulate
the same execution trace of a task set using different platform configurations and compare the
results. Recall that the framework does not model the actual computations, only the time needed
for computations. The same method is used for the task sets generation as in Section 5.5.1. The
tasks are therefore bases on the UUniFast algorithm [25] allowing to randomly generate a task
set. In addition to a traffic generator providing synthetic memory access patterns representing
cache misses of some random dynamic program execution. Regarding the TDM schedule, the sim-
ulation runs consider a similar TDM slot length of 40 cycles as in Section 5.5.1. For TDMer, which
is able to exploit memory requests completing faster than the TDM slot length, we simulate a
varying latencies using a uniform random distribution in the range [21, 40] clock cycles.
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Simulation Setup

Using the task set and memory traffic generators, we perform simulations with varying num-
bers of cores (2, 4, 8, 16), critical cores (power of 2 in the range from 1 to the number of cores), and
the normalized system utilization (steps of 10 from 10% to 100%, normalized to the number of
cores). The number of tasks is randomly chosen between the number of cores and 32 tasks, while
the number of critical tasks is randomly chosen between 1 and the number of tasks assigned to a
critical core.

The TDM schedule assigns a single slot to each critical core, where each slot takes Sl = 40 cycles.
The period P hence ranges from 40 to 640 cycles. The slack counters are reset at every job start
to 0 or 40 cycles for TDMds and TDMer respectively. For each of these system configurations, 10
simulation runs were performed using 10 different task sets, which results in 12 600 runs.

7.4.2 Results for Preemption Schemes

We start by analyzing the memory blocking delays on the simulated task sets with the three
preemption mechanisms considered. Subfigure 7.5a shows the cumulative average memory
blocking delay over an entire simulation run for the SHDw preemption mechanism considering
the TDMfs, TDMds, and TDMer arbitration policies. Each point represents an average value over
all schedulable task sets at the corresponding normalized utilization. As expected, the cumu-
lative overhead can become very large going up to 1.6 · 106 cycles for both TDMfs and TDMds
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FIGURE 7.5: Memory blocking delays across normalized system utilization for SHDw.
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(showing virtually identical results), while only reaching 3 · 103 cycles for TDMer– despite the
fact that preemptions are rare events. On average, there are 7 preemptions per run, with a max-
imum number of 288 preemptions in rare cases. We observed a task set executing on 16 cores
experiencing 502ms (an average of 31ms per core) of blocking delays within 590ms of total exe-
cution time (assuming a clock speed of 100 Mhz). The other approaches, SHDp and SHDi, have
significantly lower overhead compared to SHDw.

Since non-critical tasks execute in a best-effort manner, their memory blocking delays are ex-
pected to potentially become quite large, in particular, when preempting another non-critical
task. Subfigure 7.5b thus highlights the average maximum memory blocking delay experienced
by non-critical tasks across utilization levels for SHDw in combination with either TDMfs, TDMds,
or TDMer. As can be seen, individual preemptions consistently take thousands of cycles, which
corresponds to about 18ms (maximum observed memory blocking delay). As these events are
still rare, some volatility in the simulations is visible through the large drop at 90% utilization.
Note that typically non-critical tasks represent the majority of the computation and memory load
of the generated task sets. Consequently, non-critical tasks experience most of the preemptions
as well as the associated memory blocking delays.

Finally, Subfigure 7.6a shows the maximum memory blocking delays experienced by critical
tasks considering all three preemption mechanisms in combination with TDMds and TDMer. The
delays are normalized w.r.t. the TDM period in order to avoid penalizing simulation configu-
rations with shorter periods. These delays are representative of the upper bounds defined in
Subsection 7.3. Note that the results for TDMfs are virtually identical to those for TDMds and are
thus not shown.

As expected, the SHDp scheme presents very low memory blocking delays, as can be seen in
more detail in Subfigure 7.6b. Under TDMds this preemption mechanism leads to no noticeable
memory blocking. This is explained due to the non-work-conserving nature of this arbitration
technique, which leads to long memory wait times and consequently increases the probability of
preempting a pending request. The situation is different for TDMer. Due to its high efficiency, the
probability of preempting a pending request is much lower. It is instead more likely to preempt
a request that is currently processed by the memory, resulting in moderate memory blocking
delays for SHDp. Note that these delays may never exceed a single TDM period, notably for
configurations with a single critical core. The highest memory blocking delays are observed for
SHDw under TDMds. The memory delay amounts to up to 16 TDM periods for a configuration with
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FIGURE 7.6: Maximum memory blocking delay for critical tasks across normalized
system utilization.

2 cores, where both cores are critical (i.e., P = 80 cycles). The TDMer arbiter fares slightly better,
with a maximum of about 12 TDM periods. This demonstrates the high overhead experienced
even by critical tasks when using SHDw.

The SHDi scheme, as expected, falls in-between the two other schemes. In combination
with TDMds the memory blocking delay is at most one TDM period. However, starting from
50% utilization, we can notice that TDMer exhibits slightly worse results compared to TDMds.
Nevertheless, the preemption cost for TDMer always stays below 2 TDM periods (highlighted by
Subfigure 7.6b) – notably for configurations with a single critical core (cf. Equation 7.5).

These results confirm the intuitive expectation that the overhead induced by the three preemp-
tion schemes is strictly increasing from SHDp over SHDi to SHDw. However, this is not always
the case due to the extra costs induced by the slack counters under TDMer (a counter-example
was encountered for a larger slot length of Sl = 100, while evaluating the impact of varying the
memory access latency see Subsection 7.4.4). Recall that the newly imposed deadline during a
preemption is computed considering a minimum slack of a single TDM slot length (Sl) in order
to avoid clashes on the immediate next TDM slot (see Subsection 7.3.3). Accounting for this ad-
ditional runtime overhead ε ≤ Sl, we can derive a relationship between the various preemption
schemes: MBSHDpi ≤ MBSHDii ≤ MBSHDwi + ε.
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To conclude, the arbitration-induced preemption costs for critical tasks can be very high at
runtime when the SHDw scheme is used, while it is similar for the SHDi and the SHDp schemes.
This means that other criteria, such as predictability and implementation complexity, can be used
to choose among the schemes. SHDi appears to strike a reasonable balance between these two
criteria. Besides, the MB delays are lower using TDMer than when using TDMfs or TDMds.

7.4.3 Results for (Preemptive) Arbitration Schemes

We now evaluate the success rate of our preemptive arbitration policies. The success ratio
refers to the number of task sets that were schedulable for each level of utilization, i.e., simulation
ended its execution without any deadline miss for critical tasks. Subfigures 7.7a, 7.7b, and 7.7c
depict this success rate for our 3 arbitration policies under SHDw, SHDp, and SHDi respectively
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FIGURE 7.7: Average schedulability success ratio through normalized system utilization.
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(each point represents an average value over 124 runs). Results are shown considering the same
task set for all combinations. Comparing the impact of the preemption schemes across all uti-
lization levels, little difference among them is visible. This can be explained by the number of
preemptions, which is small compared to the total execution time of each simulation. As seen in
Section 7.4.2, individual preemptions may however cause considerable overhead.

Overall, there was no significant difference in the success ratio of TDMfs and TDMds, except
for a normalized utilization above 70%. In that case, we can notice better results for TDMds,
regardless of the preemption technique. This is different from the results obtained in Subsec-
tion 5.5.2, which shows an improved memory utilization for TDMds compared to TDMfs. In
Subsection 5.5.2, the observed improvement reached up to a factor of 3.3 in terms of memory
utilization at low total system utilization, which then leveled off considerably at higher load. It
appears that, TDMds improves the memory utilization mostly for situations where system load
is not jeopardizing schedulability, explaining the small impact on success rates. However, regard-
less of the preemption techniques, TDMer shows better results at almost all utilization levels.
This can be explained by the decoupling from TDM slots and the fine-grained dynamic memory
arbitration. This effectively renders the TDMer scheme work-conserving. These results confirm
those previously (see Chapter 5) obtained considering a restricted task model (one task per core),
where the observed memory utilization improvements for TDMer were considerable, even at
high utilization levels. TDMer thus has a relevant impact on the success rates.
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As the most reasonable choice for a preemption scheme is SHDi, Subfigures 7.8a and 7.8b
depict the average execution time of critical and non-critical tasks respectively using this scheme.
The relative gain by TDMer is particularly visible for the average execution time of non-critical
tasks at high utilization levels. For instance, at 100% system utilization TDMer achieves an
improvement of 36%. we can clearly conclude that TDMer improves the execution times of critical
and non-critical tasks, and thus can reduce the probability of missing the deadline of critical tasks.
Additionally, as preemptions are rare events, the runtime impact of the different preemption
schemes is small compared to the impact of the arbitration policy.

Figure 7.9 shows a breakdown of the average number of non-critical tasks deadline misses,
while varying normalized system utilization. Note that we only consider schedulable synthetic
task sets (no critical tasks deadline miss during the execution). As expected, one can notice
that the number of deadline misses increase with the normalized utilization. TDMer presents
better results by reducing the number of deadline misses compared to the other arbitration
schemes. By reducing the average execution times of non-critical tasks as depicted in Figure 7.8b,
the chances for non-critical tasks to respect their deadlines increases, which is confirmed by the
similar trends between the two aforementioned figures.
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7.4.4 Results for Varying Memory Access Latencies

In the previous experiments, we assumed a fixed TDM slot length of 40 cycles, corresponding
to the memory access latency of DDR3 memory. In the following experiments, we are interested
in evaluating the impact that varying the memory access latency might have on our arbitration
schemes. Therefore, we slightly modified our experimental setup by varying the TDM slot length
Sl. Similar to the experiments done in Subsection 5.5.4, we used two additional configurations
with slot lengths of 25 and 100 cycles respectively, while keeping a minimum access latency of
21 cycles. A value of 25 cycles represents a memory with small access latency variability, while
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FIGURE 7.10: Average results through normalized system utilization, with TDM slot
lengths of 25 cycles.
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a value of 100 cycles represents a high latency variability. Changing the value of Sl impacts the
generated memory profiles (described in Subsection 5.5.1), as the number of memory accesses
that fit into the task’s WCETs (Ci) derived by UUniFast depends on Sl. Recall that our traffic
generator takes the worst-case memory access latency for each newly generated request into
account, which is bounded by P + Sl − 1 cycles. Varying the TDM slot length thus also impacts the
generated task sets. Note that both the TDM period P and the TDM slot length Sl are impacted in our
modified setup. The results presented in this section are therefore not directly comparable.
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We performed the same number of simulation runs as in the previous experiments. Figure 7.10
and 7.11 summarize the obtained results for Sl = 25 cycles and Sl = 100 cycles respectively.
Subfigures 7.10a and 7.11a shows a breakdown of the average schedulability success ratios from
all runs using the SHDi preemption mechanism. When Sl = 25 cycles, we can see that the
improvement of TDMer compared to TDMfs is lower than the improvement obtained when Sl =
40 cycles. When increasing the access latency variability, i.e. Sl = 100 cycles, the improvement
of TDMer over TDMfs is even greater than when Sl = 40 cycles. The improvement under TDMer,
compared to TDMfs, appears to be proportional to the memory access latency variability. This is
particularly visible at high loads. It is explained by the fact that non-critical tasks can potentially
exploit the considerable memory idle time caused by the high variability of the memory access
latencies, unlike the other arbitration schemes that have to respect the TDM slots.

The same trends are visible in Subfigures 7.10b and 7.11b w.r.t. the cumulative memory block-
ing time under SHDw preemption scheme. The drop at 20% utilization of TDMer in Subfig-
ure 7.11b also confirms the volatility in the simulations due to the rare preemption events. Sub-
figures 7.10c and 7.11c show the normalized maximum values of the memory blocking delays
w.r.t. the TDM period for critical tasks. These results are similar to those obtained with the orig-
inal slot length (Sl = 40 cycles). The memory blocking delays, considering SHDi, still remains
below 2 TDM periods.

The results confirm the previously defined upper-bounds for the various preemption mech-
anisms and that our dynamic TDM-based arbitration scheme TDMer is performing well even
with low latency memories, confirming the results obtained in Section 5.5.4. But the gain is even
more significant when using memories with highly varying latencies. So, regardless of the mem-
ory type, using our arbitration policy in combination with the SHDi preemption scheme allows
to improve the use of the shared memory and to increase the overall performance of the system.
In addition, our approach guarantees to respect the timing constraints required by critical tasks
for real-time systems.

7.5 Conclusion

The work presented in this chapter extends the approaches on dynamic TDM-based memory ar-
bitration schemes described in Chapter 5 by adding support for a preemptive execution model.
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We propose means to manage, and finally bound the delays the two sources of arbitration-
induced preemption delays the memory blocking delay and the misalignment delay identified in Sub-
section 4.1.3. While bounding the misalignment delay is straightforward, limiting the memory
blocking delay is more involved. We thus propose formal bounds for two obvious preemption
schemes based on waiting and preemptable memory requests (SHDw and SHDp). Additionally, we
propose an alternative scheme (SHDi), which imposes new deadlines for critical requests when
preempted and leverages criticality inheritance when a critical task is blocked by a non-critical re-
quest. The experimental results showed that the preemption mechanisms exhibit little difference
at runtime, which allows us to select the best approach according to other criteria, such as low
implementation complexity and analyzability. The new SHDi approach appears to offer the best
trade-off in terms of these criteria. The evaluation also confirms the good performance offered by
our work-conserving dynamic TDM-based arbitration technique (TDMer), which has a noticeable
impact on the success ratio.
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Chapter 8

Conclusion and Future Work
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This chapter concludes this thesis by providing a contribution summary before proceeding to
a discussion on possible future work.

8.1 Conclusion

The work carried out within this thesis aimed at developing a criticality-aware and work-
conserving arbitration policy. To this end, we first explore the various existing arbitration tech-
niques used in real-time systems. It turned out that the TDM arbitration policy was a good
starting point, even if TDM is not criticality-aware. However, TDM provides strict guarantees
for critical tasks running on the platform. However, this policy is not work-conserving and leads
to low memory utilization. In Section 4.1.2, we analyzed the various issues (namely issue and
release delays) that make TDM a non-work-conserving arbitration policy and, in addition, identi-
fied challenges that have to be overcome when developing a dynamic TDM-based arbitration for
multi-critical systems.

Chapter 5 introduces various approaches to overcome the problems that render TDM non-work-
conserving. From this chapter the TDMer approach arises, which is the most efficient in terms
of memory utilization while keeping the strict temporal guarantees offered by TDM. TDMer is
a dynamic TDM-based arbitration policy. Instead of arbitrating at the level of TDM slots, TDMer
operates at the granularity of clock cycles by exploiting slack time accumulated from preceding
requests. In addition to the successful elimination of the release delays by TDMer, a relatively
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small initial slack counter value at the start of each critical job enables to also eliminate the resid-
ual issue delays. Our evaluation reveals considerable gains, in particular when approaching
high system utilization. TDMer allows reducing delays suffered by traditional TDM by a factor of
at least 50, and up to a factor of 300. Another contribution is a formal correctness proof of the dy-
namic TDM-based approaches. Most notably, we prove that TDM’s temporal behavior is preserved
for critical tasks. Consequently, analysis results valid under TDM, such as offset analyses [41], are
equally valid under our schemes.

In Chapter 6, we proposed a hardware implementation of a slightly simplified variant of the
TDMer approach denoted TDMrr. Using additional simulations we showed that the proposed
solution is efficient, both in terms of hardware complexity and arbitration performance regarding
the memory utilization.

The remaining challenge of this work is related to the task level impact of our dynamic TDM-
based arbitration policy specifically the arbitration induced preemption delays. The main issue
here stems from the fact that requests issued to the arbiter may take a considerable amount of
time to complete, which would delay interrupts and, consequently, preemptions. In Chapter 7,
we extended our system model to allow several tasks to execute on a single core and even al-
low to mix critical and non-critical tasks on a given core. This, in turn, necessitates means to
preempt ongoing transfers or to limit the blocking delay that preempting tasks may suffer via
hardware support. Both options are explored and techniques are proposed that allow to consider
the resulting delays during schedulability analysis. We propose formal bounds for two obvious
preemption schemes based on waiting and preemptable memory requests (SHDw and SHDp). Ad-
ditionally, we propose an alternative scheme (SHDi), which imposes new deadlines for critical
requests when preempted and leverages criticality inheritance when a critical task is blocked by a
non-critical request. The SHDi approach appears to offer the best trade-off in terms of implemen-
tation complexity and analyzability concerning the upper-bound of preemption-related memory
blocking delay. Also note that, slack counters, in case of a preemption, are part of the execution
context of a task and need to be saved/restored accordingly.

8.2 Future Work

The dynamic TDM-based arbitration policies proposed in this thesis comes with a set of restric-
tions. First, we limited the discussions to uniform TDM schedules, where all TDM slots have the
same length and each critical task is assigned to a single slot per period. However, the proposed
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approach can be adapted to other kinds of TDM schedules proposed in the literature, such as
weighted and harmonic TDM [35, 79]. The only requirement is that the deadline of a request is
(easily) computable. In some cases, it might also be useful to vary the slot size depending on the
bandwidth or throughput requirements of a (critical) task, e.g., to accommodate burst transfers.
Scheduling a burst transfer independently from TDM slots may then cause overruns touching sev-
eral immediately following TDM slots. The simple admission test (Algorithm 2) then needs to be
extended to consider a bound of the burst’s transfer time, as well as the slack counter values of
all potentially concerned slot owners.

Another restriction is that the dynamic TDM-based arbitration policies currently assume inde-
pendent periodic tasks. Interactions between dependent tasks may, however, impact the timing
behavior. For instance, a task may wait for another task (e.g., the release of a lock) or to wait for
a precise instant (e.g., 11:30 AM). In particular, in the latter case, it is easy to see that the accumu-
lated slack before the wait operation is meaningless afterwards. It then suffices to reset the slack
counter of the waiting task. Other forms of interactions might allow preserving the slack counter
as long as the blocking can be bounded by a duration (as opposed to blocking up to an instant).
Otherwise, it suffices to reset the task’s slack counter.

In Chapter 7, the SHDi approach was evaluated w.r.t. to the dynamic TDM-based arbitration
schemes presented in Chapter 5. However, it could be applied to other schemes like fixed prior-
ity. The upper-bound proposed by Altmeyer et al. [6] covering the number of memory accesses is
incomplete w.r.t. our definition of memory blocking delays. When a higher-priority task τi pre-
empts a lower-priority task τk, Altmeyer et al. only consider the blocking delay due to a pending
memory request of τk on τi on the same core. However, in a multi-core setting, requests from
other cores may also block τi. Notably, tasks on other cores with a priority j, k ≤ j ≤ i. This
situation is not taken into account in [6]. However, our SHDi preemption mechanism could limit
the overhead by inheriting the priority of task τi to the pending request of τk.

The presented dynamic TDM-based arbitration schemes assume unbounded slack accumula-
tion. However, a hardware implementation requires internal counter registers for slack accu-
mulation. Hence, the amount of slack that can be accumulated at runtime is constrained by the
bit-width of those internal registers as shown in Section 6.4. Consequently, the memory blocking
delay upper-bound for SHDw (equation 7.2) can be simplified w.r.t. the hardware constrained
upper-bound of the slack counters. A small upper-bound on slack results in low hardware com-
plexity and a small overhead of the memory blocking delay w.r.t. the tasks’ WCET. However, this
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also limits the flexibility of our arbitration schemes on slack consumption. Recall that the present
approach considers multi-criticality scheduling and ultimately our approach aims to fully sup-
port mixed-criticality (MC) scheduling. Therefore, as a research perspective, the slack accumu-
lated at the arbitration level should also be used to add more flexibility to the MC scheduling.
Hence, to do so we need to define a reasonable slack bound that offers the maximum flexibility
with minimum hardware costs.
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Titre : Arbitrage mémoire dynamique non-oisif basé sur TDM pour des systèmes multi-criticité temps réel
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Résumé : Les architectures multi-cœurs posent de
nombreux défis dans les systèmes temps réel, qui
découlent des conflits entre les accès simultanés
à la mémoire partagée. Parmi les politiques d’arbi-
trage mémoire disponibles, le multiplexage temporel,
en anglais Time-Division Multiplexing (TDM), assure
un comportement prédictible en limitant les latences
d’accès et en garantissant une bande passante aux
tâches indépendamment des autres tâches. Pour ce
faire, TDM garantit un accès exclusif à la mémoire
partagée dans une fenêtre temporelle fixe. L’approche
TDM, cependant, fournit une faible utilisation des res-
sources car elle oisive. De plus, elle est très ineffi-
cace pour les ressources ayant des latences d’accès
très variables, comme le partage de l’accès à une
mémoire DRAM. La longueur constante d’une fenêtre

TDM est donc très pessimiste et entraı̂ne une sous-
utilisation de la mémoire. Pour pallier ces limitations,
nous présentons des mécanismes d’arbitrage dyna-
mique basés sur TDM. Cependant, plutôt que d’ar-
bitrer au niveau des fenêtres TDM, notre approche
fonctionne à la granularité des cycles d’horloge en ex-
ploitant les temps morts accumulés par les requêtes
précédentes. Cela permet à l’arbitre de réorganiser
les requêtes mémoire, d’exploiter les latences d’accès
réelles des requêtes, et donc d’améliorer l’utilisation
de la mémoire. Nous démontrons que nos politiques
sont analysables car elles préservent les garanties de
TDM dans le pire des cas, alors que nos expériences
montrent une amélioration significative de l’utilisation
de la mémoire.

Title : Work-conserving dynamic TDM-based memory arbitration for multi-criticality real-time systems

Keywords : Time-Division Multiplexing, Dynamic Arbitration, Predictable Computing, Multi-Criticality Systems,
Real-Time Systems, Memory

Abstract : Multi-core architectures pose many chal-
lenges in real-time systems, which arise from conten-
tion between concurrent accesses to shared me-
mory. Among the available memory arbitration poli-
cies, Time-Division Multiplexing (TDM) ensures a pre-
dictable behavior by bounding access latencies and
guaranteeing bandwidth to tasks independently from
the other tasks. To do so, TDM guarantees exclusive
access to the shared memory in a fixed time window.
TDM, however, provides a low resource utilization as
it is non-work-conserving. Besides, it is very ineffi-
cient for resources having highly variable latencies,
such as sharing the access to a DRAM memory. The
constant length of a TDM slot is, hence, highly pessi-

mistic and causes an underutilization of the memory.
To address these limitations, we present dynamic ar-
bitration schemes that are based on TDM. However,
instead of arbitrating at the level of TDM slots, our
approach operates at the granularity of clock cycles
by exploiting slack time accumulated from preceding
requests. This allows the arbiter to reorder memory
requests, exploit the actual access latencies of re-
quests, and thus improve memory utilization. We de-
monstrate that our policies are analyzable as they pre-
serve the guarantees of TDM in the worst case, while
our experiments show an improved memory utiliza-
tion.
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