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École doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique
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Chloé Clavel
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Abstract

Opinion mining has emerged as a hot topic in the machine learning community due
to the recent availability of large amounts of opinionated data expressing customer’s
attitude towards merchandisable goods. Yet, predicting opinions is not easy due to
the lack of computational models able to capture the complexity of the underlying
objects at hand. Current approaches consist in predicting simple representations
of the affective expressions, for example by restricting themselves to the valence
attribute. Such simplifications enable the application of traditional machine learning
models by casting the opinion prediction problem as a binary classification, mul-
ticlass classification or regression problem, at the cost of a loss of information on
the object predicted. Following this direction, some works have proposed to split
the different components of opinion models in order to build separate predictors
for each of them. Such approaches typically consist in separating the problem of
discovering the target of the opinion, its polarity, the person expressing it or any
other components characterizing these affective expressions.

This thesis focuses on the question of building structured output models able to
jointly predict the different components of opinions in order to take advantage of the
dependency between their parts. In this context, the choice of an opinion model has
some consequences on the complexity of the learning problem and the statistical
properties of the resulting predictors. We specifically analyzed the case of preference
based learning and joint entity and valence detection under a 2 layer binary tree
representation in order to derive excess risk bounds and an analysis of the learning
procedure algorithmic complexity. In these two settings, the output objects can be
decomposed over a set of interacting parts with radical differences. However, we
treat both problems under the same angle of squared surrogate based structured
output learning and discuss the specificities of the two problem specifications.

A second aspect of this thesis is to handle a newly released multimodal dataset
containing entity and valence annotations at different granularity levels providing a
complex representation of the underlying expressed opinions. In this context of large
scale multimodal data with multiple granularity annotations, designing a dedicated
model is quite challenging. Hence, we propose a deep learning based approach able
to take advantage of the different labeled parts of the output objects by learning
to jointly predict them. We propose a novel hierarchical architecture composed of
different state-of-the-art multimodal neural layers and study the effect of different
learning strategies in this joint prediction context. The resulting model is shown
to improve over the performance of separate opinion component predictors and
raises new questions concerning the optimal treatment of hierarchical labels in a
structured prediction context.

1



2



Résumé

La recrudescence de contenus dans lesquels les clients expriment leurs opinions
relativement à des produits de consommation a fait de l’analyse d’opinion un sujet
d’intérêt pour la recherche en apprentissage automatique. Cependant, prédire une
opinion est un tâche difficile et parmi les modèles à disposition, peu sont capables
de capturer la complexité de tels objets. Les approches actuelles reposent sur la
prédiction de représentations simplifiées d’expressions affectives. Par exemple, il
est possible de se restreindre à la reconnaissance de l’attribut de valence. Aussi,
en modélisant les problèmes d’opinion comme des problèmes de classification bi-
naires ou multiclasses, ou de régression , les modèles classiques d’apprentissage
automatique peuvent être appliqués en sacrifiant une partie de l’information de
l’objet à prédire. Cette logique a été poursuivie dans différents travaux de recherche
où les opinions, vues comme des objets multi-facette, furent décomposées selon
leur composantes fonctionnelles afin d’en prédire indépendemment les différentes
parties. Ce type d’approche recouvre les méthodes consistant à séparer la prédiction
de la cible d’une opinion, sa valence, la personne exprimant celle-ci ainsi que tout
autre aspect caractérisant les expressions affectives. Ces méthodes se fondant sur
des prédicteurs indépendant entrainés sur chacune de ces facettes présentent une
faiblesse : ceux-ci ne peuvent tirer parti des interdépendances entre les différentes
facettes des structures à prédire et présentent donc des performances sous opti-
males par rapport à des modèles capables de modéliser jointement ces structures
complexes.

La présente thèse part de ce constat et étudie les questions méthodologiques
liées à la construction de prédicteurs d’opinion capables de prendre en compte les
dépendances entre les différentes parties des représentations mathématiques de ces
objets complexes. Dans un tel contexte, le choix d’un modèle formel d’opinion a
des conséquences sur les propriétés statistiques et algorithmiques des fonctions de
prédiction associées. La prédiction d’opinion nécessite donc d’établir un compromis,
que nous explicitons, entre le choix d’une représentation complète et précise des
opinions exprimées et la difficulté du problème d’apprentissage des fonctions de
prédiciton associées. Dès lors, nous faisons le choix d’étudier le problème selon 2
angles.

Dans un premier temps, nous étudions des modèles simples d’opinions pour
lesquels il est possible de construire une analyse mathématique. Nous proposons un
cadre dans lequel le choix des représentations d’opinion permet de quantifier la dif-
ficulté du problème d’apprentissage. Nous construisons ces fonctions de prédictions
dans le cadre des modèles à noyau de sortie de manière à tirer parti des résultats
théoriques existants tout en étendant leur portée dans deux nouveaux cas. Celui de
l’apprentissage de fonctions de préférence fournit un cadre d’application des fonc-
tions à noyau de sortie pour lequel nous montrons que le choix de la représentation
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des objets à prédire a un impact direct sur la difficulté à les prédire. Nous fournissons
trois exemples concrets de représentation correspondant au plongement de Kemeny,
celui de Hamming et celui de Lehmer pour lesquels nous comparons mettons en
regard la difficulté du problème d’apprentissage et les garanties théoriques apportées
par ces représentations de sortie. Le second cas concerne la prédiction jointe des
cibles des opinions et des valences correspondantes sous l’hypothèse d’un modèle
d’arbre binaire représentant les liens entre les composantes d’une opinion. Dans
ce cadre de prédiction hiérarchique, nous introduisons un mécanisme d’abstention
structurée permettant de ne pas prédire le label des noeuds jugés trop difficiles. Ce
mécanisme prend en compte à la fois la difficulté du noeud en question mais aussi
celui de ses descendants pour proposer des prédictions robustes à l’échelle de la
structure entière. Nous proposons une famille de pertes admissibles pour ce type
de structure pour lesquelles nous prouvons la consistence des estimateurs dédiés et
analysons la difficulté du problème d’apprentissage associé.

La seconde approche étudiée dans cette thèse repose sur un modèle d’opinion
plus complexe ne permettant plus une analyse mathématique fine mais décrivant
de manière plus précise les opinions exprimées. Un tel modèle repose sur des
annotations fines en opinion. Cependant les corpus existants ne remplissaient pas
toutes nos exigences. Nous introduisons de nouvelles annotations sur un dataset
existant et composé de vidéos de critique de film. Ces annotations consistent à
identifier les opinions exprimées à différents niveau de granularité temporelle : au
niveau du mot, de la phrase et de la critique entière. Cette annotation reposant sur
des données issues du langage oral spontané ne permet pas l’établissement de règles
d’annotation précises et ancrées sur des bases grammaticales. Nous détaillons les
différentes stratégies mises en oeuvre pour pallier ces difficultés et augmenter le
taux d’accord inter-annotateur sur cette tâche difficile. Ce dataset comportant ainsi
des labels définis à différentes granularités, nous introduisons un nouveau modèle
multi-modal hiérarchique adapté à ce type de données. Nous étudions les choix
architecturaux fournissant les meilleurs résultats et étudions les meilleures stratégies
d’entrainement pour ces modèle. Enfin, notre étude passe par une validation de
l’apport de la prédiction jointe des composantes des opinions en comparant les
résultats correspondants avec ceux obtenus dans le cas de fonctions de prédiction
indépendantes pour chaque composante.
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Chapter 1

Introduction

The success of social networks, streaming platforms and online shopping websites
has given rise to large amounts of opinionated data. People do not hesitate to share
publicly their position concerning various goods, entities, persons, with the goal of
influencing web-users in a positive or negative way. Automatically understanding
the opinions of customers appears indeed as a requirement for companies that need
to take into account this feedback in the development of their products and in their
communication strategy.

From a scientific perspective, understanding people’s opinion is a tough problem
originally studied using the psychological and cognitive science tools and more re-
cently through the lens of linguistic and machine learning-based natural language
processing. A common feature of all these approaches is the description of opinions
as complex objects composed of multiple parts interacting together. As a conse-
quence, building models able to predict these structures is not trivial and requires a
specific analysis for the chosen opinion representation. Indeed, when building an
opinion predictor, the users face the following problems:

The first is the choice of an opinion model. Whereas such a choice is largely
guided by the difficulty of the resulting annotation task (the more complex the model,
the more complex the data collection process), this phase should not be neglected
since it has some consequences on the mathematical properties of the corresponding
predictors. Once a model is chosen then the user has to tackle the second problem
of building a dedicated predictor. Since there exists some interdependency across
the different parts of an opinion structure, the corresponding model is studied in
the framework of structured output learning. One of the objectives of this thesis
work is the study of the properties of such models when applied in the context of
opinion prediction. The proposed techniques are in fact presented in a more general
mathematical setting and then applied in a second time on opinion prediction
problems. The 2 aspects described above have generally been treated separately
in the past. We argue in this thesis that the choice of an opinion model has some
implications on the type of learning problems implied. As a consequence the choice
of an opinion model should depend not only on the practical aspects of a chosen
annotation scheme, but also on the computational and statistical efficiency of the
corresponding prediction models. We studied this problem under different angles
that we precise below.
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CHAPTER 1. INTRODUCTION

1.1 Research questions

As previously mentioned, when building an opinion predictor, the practitioner has
to find a tradeoff between the accuracy of the opinion representation and the com-
plexity of the associated machine learning techniques. Such a tradeoff can in fact be
illustrated with a quantitative analysis. We focus in this thesis on answering different
research questions that are faced in practice when building opinion predictors. The
first questions are turned towards the methodological side:

• Can we build a general computational representation of opinions? Are the
corresponding mathematical representations suitable for machine learning
purpose and if not, how can these representations be modified for practical
use?

• In the case of restricted representations of opinions, can we build machine
learning techniques that take into account the structural properties of these
objects?

• Since the problem of opinion recognition is in fact intrinsically subjective, can
we take into account this uncertainty in machine learning methods to build
reliable predictors?

• How can we leverage and adapt state of the art machine learning models to
improve opinion prediction performance?

These methodological questions can in fact be extended to other problems than
opinion prediction. We present in Chapter 3 the mathematical tools to introduce
structured output prediction and provide some solutions to the problem above in
the second part of the thesis in Chapter 4 and Chapter 5.

Despite their modelling power, this initial set of solution turns out to not be
applicable to predict mathematical objects of variable size. In a second phase, we
study a more general class of opinion prediction problems involving complex review
and opinion representations. For the reviews, we leverage multimodal data that carry
more information than the commonly used textual representation. For the opinion
model, we rely on general graphical structures. This new setting raises the following
questions:

• How can we manage to gather opinion annotation on spontaneous spoken
data? Does the presence of disfluencies in the language make it difficult to
build precise annotation guidelines and to apply theoretical models of opinions
on the available data?

• Despite the inherent noise of such labels, can we take advantage of the links
between different views of opinion structures to build competitive models?

These questions cannot be answered with theoretical arguments and require instead
an experimental study of the behavior of existing methods when facing these difficul-
ties. In the third part of this thesis we present a complete analysis of these difficulties
from the data gathering process presented in Chapter 6 to the design of models
that build meaningful representation by taking into account the structure of these
annotations in Chapter 7.
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CHAPTER 1. INTRODUCTION

1.2 Contributions and detailed thesis organisation

The thesis presentation focuses on different trade-offs arising from the choice of
either complex mathematical models or complex opinion models. After present-
ing previous works concerning opinion prediction and structured output learning
methods, we focus in Part 2 on sophisticated structured predictors for which a deep
statistical analysis can be conducted. Despite their theoretical justification, these
models are not adapted to all types of opinion representations and we then move to
simpler mathematical models for which more complex opinion representations can
be used in Part 3.

Part 1 . In this first part, we introduce the problem of opinion prediction as well
as the mathematical tools that are reused when building our models.

[Chapter 2]: Opinions are mathematically intrinsically ill defined since this term
covers a wide range of human behaviors that are caused by both internal and ex-
ternal mechanisms. In this chapter, we recall different models of opinions rooted
in psychology studies and show the link with computational models of opinions
for which a mathematical analysis is possible. We introduce a new opinion model
closer to the true opinion structures which is shown to be infinitely complex. Thus
each application requires its own approximation derived from this first general repre-
sentation. Three different simplified models of opinion are studied in this thesis in
Chapter 4,Chapter 5 and Chapter 7

[Chapter 3]: The machine learning frameworks in which structured predictors
can be built are then presented. An emphasis is put on the algorithmic and statistical
properties of these models and on the difficulties regarding their adaptation to new
structures.

Part 2. The second part presents 2 methodological contributions based on the
previously presented structured predictors. These methods are then instantiated on
2 simple opinion models.

[Chapter 4]: The first model studied targets the case of preference function
learning. This setting provides a way to model the preference expressed over a finite
set of comparable objects and can be theoretically formulated as the problem of
predicting a permutation ranking the elements of this set. Even though this label
ranking problem has been widely studied in the past, we propose a general empirical
risk minimization approach and study the implications of the choice of the distance
over the permutations on different properties of the learned functions.

[Chapter 5]: The second model relies on a hierarchical binary tree encoding
simultaneously the entities targeted by an opinion and the corresponding valences.
We show how to build predictors able to jointly predict the different labels and go
further by introducing a structured abstention mechanism able to provide reliable
predictions when the decisions are uncertain. Our analysis remains true for a large
class of losses and we show that such an abstention mechanism can be used to
improve the results of a pipelined opinion predictor on TripAdvisor reviews.

Part 3. In the last part, we detail the annotation campaign which we setup for this
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work and the specific methods dedicated to a complex and realistic problem of joint
multiple level opinion prediction with video-based reviews. The goal of this part is
to go beyond the simplified yet well specified problems of Part 2 and study how to
adapt state of the art machine learning approaches to a difficult real-life problem.

[Chapter 6]: Due to the lack of large scale finely annotated dataset, we ran an
annotation campaign in order to collect opinion labels for a video based dataset
of amateur movie reviews. These labels are adapted to this specific corpus and
correspond to a coarse to fine categorization of different video segments aligned
on the textual transcription. To our knowledge, this is the first set of annotation
of this kind leveraging spontaneous spoken language and identifying the opinions
components at different granularities: From the token to the complete review with
an intermediate span based annotation.

[Chapter 7]: Finally, in the last chapter, we study the influence of the learning
strategy and the impact of the different granularities of the previously collected data
on the performance of state of the art opinion predictors. We first show how to build
a hierarchical multimodal opinion model by pipelining state of the art sequential
multimodal neural networks, then study how the supervision provided at the different
levels influences the performance of the predictions at each granularity. The joint
supervision is shown to improve over independent models in this context and we
show that, surprisingly, hierarchical models based upon simpler neural layers tend
to outperform more complex structures.

The following references summarize the published contributions of this thesis.
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Definitions and framework
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Chapter 2

Models of opinion-related phenomena

Chapter abstract

This thesis focuses on the problem of predicting opinions, which are objects
that are not always clearly defined in the existing literature. In this chapter, we
present the formal models and theories providing some characterization on
what an opinion is, how opinions are expressed and what challenges are raised
when empirically trying to link the available data to the components of these
models. At the origin of the concept of opinion, there is the one of emotion
which is hard to define even from the standpoint of psychological studies. We
will first present the appraisal theory which provides the keys to understand
these concepts. Then we move towards computational models of opinions
whose goal is to provide a framework in which the different parts of an opinion
are modelled in existing corpora.
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CHAPTER 2. MODELS OF OPINION-RELATED PHENOMENA

2.1 Appraisal theory

The main motivation for developing Appraisal theories [ROSEMAN and SMITH, 2001;
SCHERER and collab., 2001] for emotions is due to the following observation: when
two individuals encounter the same event or situation, they do not have the same
reaction based on their perception. Indeed different emotions can emerge which
are specific to each person. The common goal of the different appraisal theories is
to categorize these emotions in some groups with common characteristics called
appraisals. Whereas the psychological roots of these models are not the focus of
this thesis, it is necessary to situate the concept of opinion-related phenomena in
this context. First, we recall the psychological models of emotion and propose an
initial way to characterize opinion expressions in this framework. Then we move
to appraisal models that permit to link this behavior to observable patterns both in
the language and oral discourse. Finally we review the Natural Language Processing
approaches developped to characterize and predict opinions based on datasets.

2.1.1 Cognitive models of emotions

Emotions are the things on account of which the ones altered differ with respect to
their judgements, and are accompanied by pleasure and pain (Aristotle, Rhetoric
II) Questions regarding the definition of emotions date back to antiquity and were
essentially focused on the phenomenological aspects of the sentiments felt in the
presence of specific situations.

The modern categorization of emotions dates back to 1984 [ROSEMAN, 1984] and
resulted from years of experimental validations with the successive adjustments of
the proposed models [ROSEMAN, 1979]. In this setting, emotions were cognitively
defined as alternative general-purpose coping responses to perceptions of the fate of
motives [LAZARUS, 1968]. To be more concrete, emotions describe the spectrum of
inner reactions that an individual can have when she is presented to a situation. Note
that the cognitive models are deeply linked to the process of categorization since
they permit the decomposition of the stimuli as a function of the motives (going thus
beyond the Aristotle’s definition) and the perception. The Table 2.1 provides a general
categorization of emotions which resulted from these works. The indexing of the
emotions is based on 5 variables:

• The person / event responsible for the situation leading to an emotion. It can
be either a circumstance i.e. a situation present or future, the individual herself
due to the results of her behavior or another person or object. In the case of
opinion-related phenomena, we will see that only this last case is concerned.

• The degree of certainty concerning the outcome of a situation is responsible for
the nature of the sentiment felt in the case of circumstance-based emotions.

• Depending on the intensity of the emotion, its nature can be changed: the exis-
tence of the two different reactions Disliking and Anger is due to the difference
in the physiological activations corresponding to these emotions.

• The valence; defined as the consistency with the inner motives of the emotion
holder is a crucial element to categorize emotions. One can see that neutral
evaluations of a situation do not give rise to an emotion in the sense that
they do not lead to an uncontrolled cognitive response. This is a limit of the
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CHAPTER 2. MODELS OF OPINION-RELATED PHENOMENA

simple sentiment categorization when trying to build comprehensive models
of opinions.

• Finally the appetive / aversive characteristic is also related to circumstance-
caused emotion since it results from a difference between an expected behavior
and an empirical one (in a positive or negative sense).

Positive
Motive-Consistent

Negative
Motive-Inconsistent

Appetive Aversive Appetive Aversive

Circumstance-
Caused

Unknown Surprise
Uncertain Hope Fear

Weak
Certain Joy Relief Sorrow Disgust

Uncertain Hope
Frustration Strong

Certain Joy Relief

Other-Caused

Uncertain

Liking
Disliking Weak

Certain
Uncertain

Anger Strong
Certain

Self-Caused

Uncertain

Pride
Shame, guilt Weak

Certain
Uncertain

Regret Strong
Certain

Table 2.1 – Categorization of emotions depending on some characteristics of the situation
encountered by an individual (extracted from ROSEMAN [1984])

We make the choice in this thesis of considering only other-caused emotions thus
restricting our choices to a subset of the general categorization displayed in the Table
2.1. For these emotions, the existence of an external triggering event can be seen as a
target on which the valence (positive/negative) is expressed. These two components
provide a first characterization of opinions as a special case of emotion expression
combined with the existence of a target. The binary representation of the valence has
been widely used to build simple computational models: the corresponding works
are mostly known to belong to the field of Sentiment Analysis. In this context, the
Sentiment corresponds to the valence of an underlying emotion. As an example, we
can cite the works concerning the Imdb corpus [MAAS and collab., 2011] where the
proposed task is to predict the valence of a movie review based on the analysis of
the words contained in it. The popularity of this problem has been motivated by the
availability of large amount of data at no cost since the labels are not obtained by
manual annotation but instead computed from the available star ratings.

The psychological characterization of emotions is a first step towards the con-
struction of computational models of opinions, but it does not provide a way to
link it to observable patterns. Since emotions lead to a physiological response it is
possible to practically measure them and detect their expression [SCHERER, 2005].
The direction taken in this thesis consists in relying on natural language expression
both in the written and oral cases to characterize such objects. The next section
focuses on a modern categorization of the attitudes resulting from an evaluation
(appraisal) and how these attitudes are in practice transcribed in the language.
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2.1.2 Linguistic and multimodal models of appraisal in english

The cognitive models of emotion do not necessarily provide tools for formalizing
opinion expressions in language. The work of MARTIN and WHITE [2003] provides
the linguistic tools to characterize the expression of appraisals based on an extensive
analysis of the linguistic phenomena at hand. Their structural description of ap-
praisal as defined in systemic functional linguistic, can be empirically decomposed
over observable linguistic patterns and relies on a three level decomposition: on top
the Attitude defines broadly the valence of the evaluation, the Gradation corresponds
to the intensity of the underlying Attitude and the Engagement describes the level
of involvement of the speaker in the evaluation expressed. The notion of Attitude is
deeply linked to the Liking / Disliking emotion pair defined in the work of ROSEMAN

[1984] since they both describe the valence of an emotional response provoked by
the evaluation of an object. MARTIN and WHITE [2003] add a level of description and
define 3 types of attitudes.

• Affects cover polarized expressions oriented towards the speaker herself. They
can potentially focus on external objects but their functionality is the descrip-
tion of an inner state without any judgement.

• Judgements correspond to ethics and rule based evaluations. They results from
the application of a moral principle (corresponding itself to a socio-cultural
legacy) and do not reflect a personal reaction but rather a social norm dictated
behavior.

• Appreciations cover the rest of the evaluations and attach themselves to the
target of the evaluation contrarily to affects that describes the inner state of a
human subject.

The model also introduces two directions of amplification corresponding to the
gradation and engagement. Since the purpose of this thesis is the analysis of opinions,
we focus on all these types of attitudes under the hypothesis that they are focused on
an external object. Indeed, in recent works, the case of self focused appraisal is often
referred to under the name of sentiment [TOPRAK and collab., 2010] (note that the
term of sentiment here used in the linguistic appraisal context has a different meaning
from the sentiment of psycho-coginitive studies defined if the previous section and
corresponding to the valence of an opinion) and opposed to opinion which are
targetted on objects out of the subject himself. Note that this term of sentiment has
a different meanings depending on the scientific community and the problem of
Sentiment Analysis is sometimes identified to the one of Opinion Mining. For more
details concerning the link between opinion and sentiment from an appraisal point
of view, the reader can refer himself to MUNEZERO and collab. [2014]. To go beyond
the characterization of appraisal based on textual markers of MARTIN and WHITE

[2003], let us precise that this analysis can at least partially be extended to the case
of multi-modal communication where the linguistic features are complemented by
non-verbal markers. Some works were proposed in this direction and were based
on psychology grounded visual markers such as the one proposed in the Facial
Action Coding System (FACS) [EKMAN and FRIESEN, 1976]. In this setting, the face
contractions are decomposed over a set of 46 action units (AU) enabling the visual
prediction of emotions. Each of these action units has a muscular basis: for example
action unit 12 named "Lip corner puller" is linked to a contraction of the zygomaticus
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major and is known to be in correlation with the Happiness emotion ( It is in fact the
visual description of a smile). The contribution of non-verbal communication in the
understanding of expressed emotions has been proven in the psychology litterature
[SCHERER and ELLGRING, 2007] and has been also verified experimentally in many
works of the machine learning community [FENG and collab., 2017; WON and collab.,
2014]. In the third part of this thesis, we will focus on a real case of opinion prediction
with multi-modal data where such descriptors are effectively used.

In the next section, we move from the appraisal characterization of emotions to
the presentation of the popular computational models of opinions.

2.2 A natural language processing formal model of opin-
ions

Whereas the linguistic structures previously described resulted from years of study
from psychology and linguistics, the recent availability of big amounts of opinionated
data from the web created the need for computationally efficient models. Compu-
tational models relying on the appraisal theory such as NEVIAROUSKAYA and collab.
[2010] are indeed based upon handcrafted rules provided by the theory and can-
not be easily applied to large vocabulary sizes or spontaneous language containing
disfluencies. The domain of sentiment analysis and opinion mining emerged from
the work of practitioners whose aim was to build accurate sentiment analyzer able
to work with crawled data. Of course such data is noisy and does not provide the
deep level of control of psychological studies where the participants were carefully
selected. The need for simpler and more practical sentiment models gave rise to a
Natural Language Processing literature with new opinion definitions that raised new
machine learning based models. The most famous framework detailed by LIU [2012]
is a founding stone to understand modern works in sentiment analysis. We recall the
most important definitions and key problems below.

The first step is to provide a set of definitions that define an opinion mathemati-
cally, and how it can be linked with empirical data.

Definition 1. An opinion is a quadruple, (g , s,h, t), where g is the opinion (or senti-
ment) target, s is the sentiment about the target, h is the opinion holder and t is the
time when the opinion was expressed.

Even if this definition seems to be formally precise, it still requires choosing a
model for each of its components. To better understand the difficulties arising in
practice, we focus on the following sentence extracted from a hotel review.

"The bed was very comfortable and the view incredible".

This example raises the following remarks:

• Any sentence can contain a varying number of opinions depending on the
model choice. For example, in the present case, there is one opinion if we
consider that the target is the hotel or the room, but there are two distinct
opinions if the targets are the bed and the view.

• The definition of the object g is in general the hardest part since it is part of a
set of possible targets that can be very large. A decomposition of such targets
can be formulated by supposing an underlying hierarchical relationship tying
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the different targets: Here, the target hotel contains the target room containing
itself the targets bed and view. Choosing a set of targets to build g can also be
seen as choosing a granularity of the level of description.

• The sentiment s is an indicator of the valence of an opinion. As such, it can be
either a coarse indicator (positive / negative) but also a precise one by choosing
a continuous or ordinal indicator enabling the modeling of preference between
objects. This choice is often based on available data for which gathering con-
tinuous labels manually is difficult and the existing datasets only come with a
predefined restricted set of possible sentiments intensities.

• The holder h is not systematically the speaker herself. This part of the opinion
structure is almost always untreated in practice due to the underlying assump-
tion that a reviewer expresses directly herself and does not speak for someone
else.

• Finally the time indication is a completely separate problem since it is available
through the metadata in the case of crawled data. This aspect is also untreated
in most works.

As we have seen the key modeling problem is the choice of a target structure to define
the object g . The linguistic and psychological models are of no help at this step
since they focus on the holder of the opinion but not on the characterization of its
target. In order to characterize the hierarchical relation mentionned above, [LIU,
2012] propose a structuration of the target objects

Definition 2. An entity e is a product, service, topic, issue, person, organization, or
event. It is described with a pair, e: (T,W), where T is a hierarchy of parts, sub-parts,
and so on, and W is a set of attributes of e.

In other words, any part of a target is an entity. In the hierarchical relation
described previously in the hotel example, the room is an entity of the hotel and
the bed and view are two entities of the room. It appears that a target object can be
described as a hierarchical structure where each node corresponds to a part. When
an entity is the target of an opinion, all its ascendants are also targetted.

We first recall the different tasks of structured opinion prediction that derive from
the previous definition and then introduce our general computational model for
opinion prediction that unifies these separate problems.

2.3 Practical aspects of structured opinion prediction

We recall the key problems of sentiment analysis or opinion mining as described by
LIU [2010, 2012].

Definition 3 (Objective of sentiment analysis). Given an opinion document d, discover
all opinion quadruples (g , s,h, t ) in d.

Note that in the original definition, the target g is decomposed over a set of
entities with possibly multiple aspects corresponding to a tree of depth 3 in the
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Figure 2.1 where the nodes at depth 1 identify each possible entity. The ones at depth
2 are the corresponding possible aspects representing a facet of each entity. Finally
the leaves define the sentiment (or valence) expressed over each aspect. This final
joint objective is in fact traditionally decomposed over a set of separate subtasks
consisting in finding each component with a different predictor.

Definition 4 (entity category and entity expression). An entity category represents a
unique entity taken in a predefined set of possible entities. The term entity expression
refers instead to a word, phrase or more generally to the tokens related to an entity
category and that can effectively be observed in the available document.

The problem of finding the entity category of an opinion is referred to as entity
categorisation. From a machine learning perspective, it is a multilabel classification
problem where the output objects are binary valued vectors of length E where E is
the number of possible entities and the value in each row i codes for the presence of
an opinion expressed over the i th entity category. As an example, consider the case
of TripAdvisor reviews with the set of entities {FOOD,VIEW,PRICE,COMFORT} and
considder once again the sentence:

"The bed was very comfortable and the view incredible".

The corresponding entity category label would be the binary vector (0,1,0,1)
indicating the presence of an opinion on the targets VIEW and COMFORT.

Similarly, we can extend these definitions to the aspects of an entity. In the
case of TripAdvisor Reviews, the possible entities would be the RESTAURANTS and
HOSTELS and in the case of HOSTELS the possible aspects could be FOOD, VIEW,
PRICE, COMFORT, . . .

Definition 5 (aspect category and aspect expression). An aspect category of an entity
represents a unique aspect of this entity taken in a predefined set of possible aspects.
The term aspect expression refers instead to a word, phrase or more generally the tokens
related to an aspect category and that can be effectively observed in the available
document.

Once again the problem of grouping aspect expressions into aspect categories is
called aspect categorization. Obviously, the tasks of aspect extraction and categoriza-
tion depend on the entities previously identified.

Definition 6 (aspect sentiment classification). An aspect sentiment (or opinion va-
lence or opinion polarity) is a scalar value attributed to the target of an opinion and
which indicates whether the speaker likes or dislikes this target. Depending on the
setting, it can be only a binary value (positive / negative), a discrete value ( indicating
a valence scale with different level such as negative/ neutral/ positive) or a continu-
ous value representing all the possible valence levels. Consequently, the problem of
aspect sentiment classification [PONTIKI and collab., 2016; WANG and collab., 2016]
corresponds to the case where the opinion valence takes discrete values whereas the
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continuous case is also referred to as rating regression [LI and collab., 2017; WANG

and collab., 2010]

Note that we did not mention the time and holder detection tasks. Theoretically,
these components should be detected before performing the aspect sentiment clas-
sification since they are necessary to fully determine the opinion studied. In practice,
in the case of spontaneous online reviews, which is studied in this thesis, the holder
is assumed to be the review author and the time of the opinion is also assumed to be
given by the server timestamp indicating when the review has been written. We are
thus left with three categorisation tasks that can be linked in a single model presented
below.

2.4 Towards a general computational model of opinions

Following the previous definitions, we propose to represent the opinion expressed
by an opinion holder as a hierarchical tree where each non-leaf node represents a
part of its parent and the leaf nodes represents the valence of the underlying opinion.
The Figure 2.1 displays an example of such a structure. The entity-aspect-subaspect
decomposition of LIU [2012] is represented by the green nodes that represent more
fine objects as the color gets darker. For each aspect mentioned in an opinion, the
corresponding valence expressed is represented by a blue node. From a mathematical

Figure 2.1 – General graphical representation of the opinion structure

point of view, the aspect structure can be represented by a binary hierarchical tree
i.e. a set of binary labeled nodes such that a node can be labeled as 1 if its (unique)
parent is also labeled one. This relation ensures the part-of relation implying that an
opinion on a part of an object also acts on the object itself. Under this representation,
a non 0 valence value indicates the valence of an opinion expressed on its ascendants
and in particular its direct parent. The choice of the structure comes from modeling
choices: We can choose it arbitrarily deep and thus try to cover all the subparts
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of an entity but this complexity will make the data collection process difficult. In
practice the structure presented above remains general and this thesis explores the
problem of predicting this type of labeled graph under some additional hypothesis.
We studied different specifications of this structure:

1. In Chapter 3, we present the problem of learning preference functions. Such
objects can be used to treat the problem of continuous valued valences with a
fixed set of aspects. This model is justified by the difficulty of gathering reliable
continuous valence labels. Indeed asking reviewers for continuous ratings
does not allow for retrieving the notion of preference over a set of objects
based on the obtained labels. Previous studies have shown that asking directly
for preferences leads to better agreements [YANNAKAKIS and HALLAM, 2011;
YANNAKAKIS and MARTINEZ, 2015; YANNAKAKIS and MARTÍNEZ, 2015].

2. In Chapter 4 we explore the case of categorical valued valences and model the
structure above as a fully binary hierarchical graph. In this setting, we present
the statistical and computational properties of the resulting predictors and
study the question of building an abstention mechanism i.e. a way to abstain
from predicting the difficult parts of the graphs.

3. In Chapter 6, the label structure is designed with the goal of modeling different
granularity levels: Instead of only predicting a structure at a fixed granularity
level, we predict multiple structures at different granularities while taking
advantage of the relations that link them. The intuition is that if an opinion is
found in a sentence, the representation predicted at the review level should be
dependent of this prediction.

The main novelty of this thesis is to treat all the labels jointly instead of designing
one model per layer in the hierarchy. Doing so requires in fact designing machine
learning models that are adapted to the structure at hand. There exists a tradeoff be-
tween the choice of a complex opinion structure that will correctly characterize them
but will make them hard to predict and simpler model for which the representation
will be less accurate but the predictor will perform better. We go into the detail of the
machine learning techniques devoted to learn such structured predictors in the next
chapter.

Chapter conclusion

We recalled the different linguistic settings in which the opinions are defined
and the corresponding natural language processing frameworks for predicting
them. It appears that the complexity of these structures requires the use of
models that are able to handle the links between their different components.
In the next section we go into the theoretical aspects of structured output
prediction models that we use in the next parts on the problem of opinion
prediction.

27



CHAPTER 2. MODELS OF OPINION-RELATED PHENOMENA

2.5 References

EKMAN, P. and W. V. FRIESEN. 1976, «Measuring facial movement», Environmental
psychology and nonverbal behavior, vol. 1, no 1, p. 56–75. 22

FENG, W., A. KANNAN, G. GKIOXARI and C. L. ZITNICK. 2017, «Learn2smile: Learn-
ing non-verbal interaction through observation», in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), IEEE, p. 4131–4138. 23

LAZARUS, R. S. 1968, «Emotions and adaptation: Conceptual and empirical rela-
tions.», in Nebraska symposium on motivation, University of Nebraska Press. 20

LI, P., Z. WANG, Z. REN, L. BING and W. LAM. 2017, «Neural rating regression with
abstractive tips generation for recommendation», in Proceedings of the 40th In-
ternational ACM SIGIR conference on Research and Development in Information
Retrieval, ACM, p. 345–354. 26

LIU, B. 2010, «Sentiment analysis: A multi-faceted problem», IEEE Intelligent Systems,
vol. 25, no 3, p. 76–80. 24

LIU, B. 2012, «Sentiment analysis and opinion mining», Synthesis lectures on human
language technologies, vol. 5, no 1, p. 1–167. 23, 24, 26

MAAS, A. L., R. E. DALY, P. T. PHAM, D. HUANG, A. Y. NG and C. POTTS. 2011, «Learn-
ing word vectors for sentiment analysis», in Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies-
volume 1, Association for Computational Linguistics, p. 142–150. 21

MARTIN, J. R. and P. R. WHITE. 2003, The language of evaluation, vol. 2, Springer. 22

MUNEZERO, M. D., C. S. MONTERO, E. SUTINEN and J. PAJUNEN. 2014, «Are they
different? affect, feeling, emotion, sentiment, and opinion detection in text», IEEE
transactions on affective computing, vol. 5, no 2, p. 101–111. 22

NEVIAROUSKAYA, A., H. PRENDINGER and M. ISHIZUKA. 2010, «Recognition of affect,
judgment, and appreciation in text», in Proceedings of the 23rd international con-
ference on computational linguistics, Association for Computational Linguistics, p.
806–814. 23

PONTIKI, M., D. GALANIS, H. PAPAGEORGIOU, I. ANDROUTSOPOULOS, S. MANAND-
HAR, A.-S. MOHAMMAD, M. AL-AYYOUB, Y. ZHAO, B. QIN, O. DE CLERCQ and col-
lab.. 2016, «Semeval-2016 task 5: Aspect based sentiment analysis», in Proceedings
of the 10th international workshop on semantic evaluation (SemEval-2016), p.
19–30. 25

ROSEMAN, I. J. 1979, «Cognitive aspects of emotion and emotional behavior», in 87th
Annual Convention of the American Psychological Association, New York, vol. 58.
20

ROSEMAN, I. J. 1984, «Cognitive determinants of emotion: A structural theory.»,
Review of personality & social psychology. 11, 20, 21, 22

ROSEMAN, I. J. and C. A. SMITH. 2001, «Appraisal theory», Appraisal processes in
emotion: Theory, methods, research, p. 3–19. 20

28



CHAPTER 2. MODELS OF OPINION-RELATED PHENOMENA

SCHERER, K. R. 2005, «What are emotions? and how can they be measured?», Social
science information, vol. 44, no 4, p. 695–729. 21

SCHERER, K. R. and H. ELLGRING. 2007, «Multimodal expression of emotion: Affect
programs or componential appraisal patterns?», Emotion, vol. 7, no 1, p. 158. 23

SCHERER, K. R., A. SCHORR and T. JOHNSTONE. 2001, Appraisal processes in emotion:
Theory, methods, research, Oxford University Press. 20

TOPRAK, C., N. JAKOB and I. GUREVYCH. 2010, «Sentence and expression level anno-
tation of opinions in user-generated discourse», in Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, Association for Compu-
tational Linguistics, p. 575–584. 22

WANG, H., Y. LU and C. ZHAI. 2010, «Latent aspect rating analysis on review text
data: a rating regression approach», in Proceedings of the 16th ACM SIGKDD
international conference on Knowledge discovery and data mining, ACm, p. 783–
792. 26

WANG, Y., M. HUANG, L. ZHAO and collab.. 2016, «Attention-based lstm for aspect-
level sentiment classification», in Proceedings of the 2016 conference on empirical
methods in natural language processing, p. 606–615. 25

WON, A. S., J. N. BAILENSON and J. H. JANSSEN. 2014, «Automatic detection of
nonverbal behavior predicts learning in dyadic interactions», IEEE Transactions
on Affective Computing, vol. 5, no 2, p. 112–125. 23

YANNAKAKIS, G. N. and J. HALLAM. 2011, «Ranking vs. preference: a comparative
study of self-reporting», in International Conference on Affective Computing and
Intelligent Interaction, Springer, p. 437–446. 27

YANNAKAKIS, G. N. and H. P. MARTINEZ. 2015, «Grounding truth via ordinal anno-
tation», in 2015 international conference on affective computing and intelligent
interaction (ACII), IEEE, p. 574–580. 27

YANNAKAKIS, G. N. and H. P. MARTÍNEZ. 2015, «Ratings are overrated!», Frontiers in
ICT, vol. 2, p. 13. 27

29



CHAPTER 2. MODELS OF OPINION-RELATED PHENOMENA

30



Chapter 3

Structured output prediction

Chapter abstract

The previous chapter introduced the opinions viewed as complex multiple part
objects with some implicit or explicit relations linking them. In this chapter,
we review the existing machine learning methods allowing one to take into
account such dependencies and focus especially on the properties of these
models, both statistical and algorithmic. The machine learning approach
consists in first defining a target risk to be minimized and which is given by the
practitioner confronted with the task. This risk cannot be efficiently minimized
in the general case and it is replaced by a surrogate risk that is optimized by our
predictors. We specifically analyze the properties of the structured predictors
in two cases: when the predictors are based on Markov random fields and
when they are based on a square surrogate of the target risk.
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3.1 Supervised Machine learning setting

In the supervised machine learning setting, the goal is to build a prediction function
s going from an input space of feature descriptors X to an output space Y by
optimizing a well chosen criterion using training labeled data. Depending on the
nature of the output space Y , the prediction problem can belong to some widely
studied tasks such as binary classification (8y 2Y , y 2 {0,1}), univariate regression
(8y 2Y , y 2R) or multilabel classification in dimension d (8y 2Y , y 2 {0,1}d ). We
first suppose that the observed data comes from a fixed unknown distribution P
over X £Y and that a non-negative loss function ¢ : Y £Y !R+ is available. We
define the risk of a predictor s as follows:

E¢(s) = Ex,yªP¢(s(x), y). (3.1)

We denote by s? the minimizer of this risk. In practice, this risk function cannot
be computed since it requires the knowledge of the true underlying distribution
generating the data. This objective is thus replaced by an empirical risk function, Ê¢
computed on the available training sample {(xi , yi )i=1,...,N} ªP :

Ê¢(s) =¢ 1
N

NX

i=1
¢(s(xi ), yi ). (3.2)

Throughout this thesis, the predictors will be built in the framework of empirical
risk minimization which makes it possible to analyze the statistical properties of the
learned models. In this setting, the prediction function is computed by minimizing a
regularized empirical risk computed from the training sample:

ŝN = argmin
s

Ê¢(s)+∏≠(s), (3.3)

where ∏ is a positive scalar,≠(·) is a penalty enforcing the choice of smooth prediction
functions. Due to the law of large numbers, the predictor minimizing the empirical
risk ŝ converges towards the true risk Equation 3.1 s? as the number of training
samples increases and ∏ goes to 0. The excess risk ± of a predictor ŝ is defined as the
risk suffered from predicting a solution different from the optimal predictor s?:

±(ŝ) = E¢(ŝ)°E¢(s?). (3.4)

The first property that we expect from a good predictor is the universal consis-
tency:

Definition 7. Consistency. A prediction rule ŝN : X !Y is said to be consistent for a
certain distribution P defined over pairs of inputs outputs DN = {(xi , yi )i=1,...,N} ªP
if

EDNE¢(ŝn) ! E?
¢ as N !1, (3.5)

where E?
¢ is the minimum of the risk minimization problem:

E?
¢ = min

s
Ex,yªP E¢(s(x), y). (3.6)

In order to avoid making some hypothesis on the distribution P generating the
examples, we expect our rules to be consistent for a large family of distributions. This
leads to the stronger notion of consistency defined below.
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Definition 8. Universal Consistency. A sequence of prediction rules (sn) is called
universally consistent if it is consistent for any distribution over X £Y .

This property guarantees that the excess risk will decrease as we add more training
samples. Yet, for many widely used losses, the minimization problem based on the
regularized empirical risk Equation 3.3 is hard to solve. Indeed, when this problem
is non-convex or non-differentiable, finding a solution is often computationally
intractable. We define instead a surrogate risk EL based on a surrogate loss L which
is easier to minimize than 3.3 and that is somehow related to the original risk.

EL (s) = Ex,yªP L (s(x), y), (3.7)

and the corresponding empirical regularized surrogate risk:

ÊL (s) = 1
N

NX

i=1
L (s(xi ), yi )+∏≠(s), (3.8)

Whereas the true loss function ¢ is not necessarily convex or differentiable , the
surrogate loss is chosen to make the learning process computationally efficient for
example by making gradient based learning possible. Let us illustrate the surrogate
construction on a binary classification problem.The Figure 3.1 displays the 0-1 loss
function in black, which corresponds to the function sign(¢(y, ŝ(x)) = 1y ŝ(x)<0) for
real valued predictions ŝ(x) and y 2 {°1,1}. We denoted by t the value of y ŝ(x).
The colored surrogates √(t ) are different convex and differentiables popular upper
bounds on the 0-1 loss that make possible computing rt√(t ) =rs√(y ŝ(x)) and thus
learn the predictor s by gradient descent.

Figure 3.1 – Examples of surrogate functions on the 0-1 loss function sign(y ŝ(x)). Different
surrogates lead to different statistical and algorithmic properties of the learning problem.

If the surrogate has been correctly designed, we expect that a predictor learned
on the empirical regularized surrogate risk will perform well on the true risk also.
This property is called the Fisher consistency [PEDREGOSA and collab., 2017].

33



CHAPTER 3. STRUCTURED OUTPUT PREDICTION

Definition 9. Fisher consistency. Given a surrogate loss function L : Y £Y !R, we
say that the surrogate loss function function L is consistent with respect to the loss
¢ : Y £Y !R if for every probability distribution over X £Y , it is verified that every
minimizer s of the surrogate risk reaches Bayes optimal risk, that is,

EL (s) = E?
L ) E¢(s) = E?

¢ (3.9)

Contrarily to the consistency of the empirical risk defined 8 that implied the
convergence of the estimated predictor to the optimal one in the infinite data regime,
the Fisher consistency implies the convergence of the true risk to the minimal one
when the surrogate risk reaches its minimum.

This property has been proved for a lot of existing predictors such as kernel ridge
regression [GREBLICKI and collab., 1984], k nearest neighbors [DEVROYE and collab.,
1994], boosting [BARTLETT and TRASKIN, 2007] or bagging and random forests [BIAU

and collab., 2008]. However the results in those cases are restricted to the simple case
of binary or real valued output. Adapting such results to structured predictors is not
direct since it implies taking into account some new specificities of the prediction
rules. In the section 3, we present a technique that enables extending these results to
structured predictors in a straightforward way.

For many methods, instead of simply proving the Fisher consistency of a predictor,
one can go beyond and compute the convergence rate i.e. the speed at which the
estimator learned from a finite sample converges to the optimal predictor. The rate
takes the form of an upper bound on the deviation of the finite sample empirical risk
around its asymptotic value. The bound on the excess risk are of the form:

∞(EL (s)°E?
L ) ∑ E¢(s)°E?

¢ , (3.10)

where ∞(·) is a real valued function such that ∞(0) = 0.
An example of general technique to derive such bounds consists in using stability

arguments [BOUSQUET and ELISSEEFF, 2002]. Their technique is illustrated in the
paper by providing upper bounds for the excess risk of predictors learned with a
RKHS regularization as an example. Tighter upper bound can be computed but this
is done on a case by case basis and it implies a fine analysis of the learning algorithm.
We provide convergence rates for the structured prediction approaches developed in
the Chapter 4 and 5 to guarantee theoretically their efficiency.

In the rest of the chapter, we specifically focus on presenting methods devoted to
structured output prediction: the main hypothesis is that the Y space is composed
of complex objects, possibly decomposable over a set of parts interacting together.
In the next sections, we recall previous work dealing specifically with the problem of
predicting graph decomposable structure predictors and then develop the case of
general structured prediction. In both cases, we focus on the questions related to the
theoretical guarantees of the corresponding predictors.

3.2 Structured Output Prediction

The field of structured output prediction emerged to give an example to the following
question: How can we build predictors that can handle output objects that are
composed of multiple interdependent parts and that can take advantage of this
structure to improve their prediction. The existing methods to answer this question
can be grouped under two families:
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• Energy based methods rely on the design of a compatibility function C (x, y)
which is minimal when the output object y is a good prediction candidate for
the input x. This energy function can be built either explicitly in the case of
graphical model based predictors [LAFFERTY and collab., 2001; TASKAR and col-
lab., 2004; TSOCHANTARIDIS and collab., 2005] or more recently implicitly by
parameterizing it using a deep neural network [BELANGER and MCCALLUM,
2016; BELANGER and collab., 2017; TU and GIMPEL, 2018]. Learning the func-
tion C is notoriously hard to do in the general case since it requires solving the
inference problem argminy2Y E(x, y) at the learning step which is computa-
tionally expensive.

• With the second family of methods based on output kernel regression, one
avoids paying this cost at the learning stage. Such approaches rely on the
existence of a symetric positive definite kernel k(·, ·) defined on the output
space that provides a similarity between the output objects and guarantees the
existence of a representation of the outputs y 2Y in a Hilbert space √(y) 2H .
In this case, the learning step can be treated either explicitly by solving a vector
valued regression problem [CORTES and collab., 2005; WESTON and collab.,
2003] or implicitly solving a regression problem relying only on the access to
the similarity between pairs of outputs k(y, y 0) [BROUARD and collab., 2011;
GEURTS and collab., 2006, 2007]. However when the vector valued predictor g is
learned, the prediction step still requires solving a combinatorial search prob-
lem: argminy2Y kg (x)°√(y)k2

H for which the existence of efficient algorithm
strongly depends on the properties of k and √.

In the next sections we introduce both approaches and stress on their specificity.
These tools are then used and compared in the second part of the thesis. Finally
we build upon the presented theoretical results to extend them on the problem of
opinion prediction.

3.3 Graphical Model based Structured output prediction

Graphical Models [WAINWRIGHT and collab., 2008], provide a powerful framework
to describe multiple part objects. An object is described by a graph G = (V =
{∫1, . . . ,∫d },E : V £V ! {0,1}) where V is the set of vertices and E is the edge rela-
tionship between vertices. To each vertex s is associated a random variable Vs taking
its values in some state space Vs . This state space can be built by identifying the
variables to the components of objects of our input space X or output space Y .
In what follows, we use lower-case letters (e.g., vs 2 Vs) to denote elements of Vs so
that {Vs = vs} corresponds to the event of the random variable Vs taking the value vs .
For any subset A of the vertex set G , we define the subvector XA = (Xs , s 2 A) as the
random vector corresponding to the vertices in A.

In the next sections we distinguish the predictors built upon directed and undi-
rected probabilistic graphical models.

3.3.1 Directed graphical models

In this section, we suppose that E is the set of directed edges of the graph G and
restrict ourselves to output structures that can be represented by a directed acyclic
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graph (DAG). Under the acyclicity hypothesis, one can define the ancestor relation be-
tween two nodes: a node npar is the ancestor of a node ndes if there is a directed path
in G : (npar,n1,n2, . . . ,nk ,ndes) linking them. Following the notations of WAINWRIGHT

and collab. [2008], we denote by º(k) the set of parents of a node k and introduce
pk (vk |vº(k)) a non negative and normalized (

R
pk (vk |vº(k))d vk = 1) function over

the variables (vk , vº(k)). A directed graphical model is a collection of probability
distributions factorizing under the form:

p(v1, . . . , vm) =
Y

k2G

pk (vk |vº(k)). (3.11)

Such a factorization enables building structured predictors when there exists
an underlying hierarchy among the components of a graph-structured object y =
{y1, . . . , yp }. When we want to predict such an output based on an input object
x = {x1, . . . , xm°p }, we can identify the vertices {v1, . . . , vm} of the graphical models to
the input and output objects and solve the inference problem:

ŷ = argmax
y2Y

p(y, x),

= argmax
y2Y

p(y |x)p(x),

= argmax
y2Y

p(y |x).

Under the hypothesis of factorization over local conditional distributions pk , the
inference problem is the one of determining:

ŷ = argmax
y2Y

Y

k2G

p(yk |yº(k), x). (3.12)

In practical applications, the probability distribution p is parameterized using a
vector µ learned on the training data using the maximum likelihood principle:

µ̂= argmax
µ

nX

i=1
pµ(y, x) (3.13)

Then the estimated µ̂ is used to solve the inference problem on new input data x.
The DAG approach has some known drawbacks:

• The structure of the graphical model has to be chosen in advance. Even if
some methods exist to automatically build the dependency graph (see [DRTON

and MAATHUIS, 2017] for a survey), the structures found are not guaranteed to
be optimal and the structure design is in fact generally obtained using prior
knowledge on the output structures.

• The parameterization of the local distributions pk has also to be chosen by the
user. There exists a tradeoff between the expressivity of these distributions and
the computational complexity of the learning and inference problems since
highly expressive distributions will require learning bigger parameter vectors.
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• The design of a generative model p(y, x) is not a requirement when building
a classifier. Following Equation 3.13, it is sufficient to model the conditional
distribution p(y |x) to be able to produce new predictions in the supervised
learning setting. In fact due to the argmax operator, we only need an unnor-
malized version of the conditional output distribution to produce the same
outputs. We develop this observation and the strategy used to take advantage
of it in the next section dealing with undirected graphical models.

3.3.2 Undirected graphical models

Whereas directed (acyclic) graphical models represent a joint distribution over all
the variables, undirected models provide a mean to parameterize unnormalized
conditional distributions. A clique C is defined as a fully connected subset of the
node set G and we introduce the compatibility function √C : ≠s2CXs !R+ defined
over the vertices of a clique. ≠s2CXs is the Cartesian product of the state spaces of the
random vector XC. With these notations, an undirected graphical model (or Markov
random field) is a collection of distribution factorizing as:

p(v1, v2, . . . , vn) = 1
Z

Y

C2C

√C(vc ) (3.14)

In the case of directed graphs, the ancestor relations provide a way to easily sample
from the graph (by sampling sequentially the nodes from the root to the leaves) and
thus provide a computationally efficient way to perform learning and inference in the
graph. In the case of undirected graphs, the existence of cycles leads to computational
difficulties.

The purpose of this thesis is not to study the question of inference in general
structures. However, the case of tree structured and linear chain structured output
representations appears in many practical cases and is discussed in Chapter 5. In
these cases, exact inference can be performed efficiently using message-passing
algorithms. Indeed in the case of tree structured graphs, the probability distribution
defined above can be factorized over edges:

p(v1, v2, . . . , vn) = 1
Z

Y

s2{1,...,n}
√s(vs)

Y

(t ,u)2E
√(t ,u)(vt , vu) (3.15)

This factorization emphasizes on the conditional independence properties of a tree
since marginalizing over a node on a leaf can be done easily:

p(v1, v2, . . . , vn°1|vn) = p(v1, v2, . . . , vn°1, vn)
p(vn)

,

/
Y

s2{1,...,n°1}
√s(vs)

Y

(t ,u)2E\{(·,n)}
√(t ,u)(vt , vu),

Where {(·,n)} denotes the set of edges linked to the vertex n. In the case where the
probability distribution above is chosen in the exponential family, Equation 3.15
corresponds to the probability distribution of a Conditional Random Fields (CRF)
model [LAFFERTY and collab., 2001] for which the conditional distribution of the
output objects y given the observed input x is expressed:

p(y|x) = 1
Z(x)

Y

s2{1,...,n°1}
exp{

KX

k=1
µk fk (ys ,x)}

Y

(t ,u)2E
exp{

K0X

k=1
µ0k f 0

k (yt , yu ,x)} (3.16)
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In the expression above, f : Y £X !RK and f 0 : Y £Y £X !RK0
are two feature

functions describing the compatibility of the label ys and input x and the compatibil-
ity of the input x with the labeled edge (yt , yu) respectively. µ 2 RK and µ0 2 RK0

are
two learned parameter optimized to maximize the maximum likelihood criterion.
Finally Z(x) is the normalization constant ensuring that the marginalization over y
sums to 1. The construction of the feature function can be done in a flexible way,
however a standard parameterization is proposed in the literature and in the popular
libraries that relies on a one hot encoding of the different output configurations:

fk (ys ,x) = 1ys=i g (x) 8i 2 ÇKÉ (3.17)

f 0
k (yt , yu ,x) = 1yt=i 1yu= j 8i , j 2 ÇKÉ (3.18)

In the first type of feature function f , the input feature function g can be designed to
highlight different views of the input. In the case of discrete input spaces X , it can
again be expressed as an indicator based function only :

fk (ys ,x) = 1[ys=i ]1[x=v](x) 8i 2 ÇKÉ8v 2X (3.19)

The second feature function f 0 is called label-label feature function and does not
take into account the input features but only encodes the compatibility of the labels
of 2 nodes linked by an edge. This family of structured output prediction models has
been show to provide state of the art results on tasks involving output sequences in
the domain of audio signal processing [FUENTES and collab., 2019; JODER and collab.,
2011] and natural language processing [MARCHEGGIANI and collab., 2014]. Some
works have shown that they can be used as the output layer of a neural architecture to
take into account the inter label dependency of output labels while learning flexibly
the input representation by gradient descent [LAMPLE and collab., 2016].

Concerning the statistical guarantees of CRF-based methods, recent works NOWAK-
VILA and collab. [2019] provide some insights on the consistency of this type of ap-
proach. It has been shown that inference with the traditional MAP criterion does not
systematically provide consistent predictors for general losses. NOWAK-VILA and col-
lab. [2019] provide an adaptation to a large class of discrete output losses relying on
the decomposition of the target loss as an inner product between a representation of
the prediction and a candidate output object. The resulting predictor consistently
minimize any loss that decomposes with the cliques of the graph. One drawback
of the resulting approach is the lack of straightforward computationally efficient
inference technique. In the different experiments involving undirected graphical
models studied in this thesis, we used the original MAP inference technique for
which the computational aspects have been widely studied. In the next section, we
introduce another family of predictors in the context of output kernel methods.

3.4 Output kernel regression

Whereas the previously described models relied on the design of an energy function
E(x, y) scoring the compatibility between an input and output structure, we describe
here a second strategy based on a redescription of the output data. We first suppose
that we have access to a symmetric positive definite kernel k(·, ·) defined on pairs of
output objects and acting as a similarity function between them. Note that in some
cases, this kernel can be defined directly from the target loss function ¢:

¢(y, y 0) = k¢(y, y)+k¢(y 0, y 0)°2k¢(y, y 0) (3.20)
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The following theorem gives a connection between positive definite kernels and their
representation as an implicit mapping in a Hilbert space:

Theorem 1. (Aronszajn). k is a positive definite kernel on the set X if and only if there
exists a Hilbert space FY and a mapping √ : Y !FY , such that for any y, y 0 2Y :

k(y, y 0) = h√(y),√(y 0)iFY . (3.21)

This theorem ensures the existence of a description function √ such that the
euclidean inner product in the representation space is equal to the similarity provided
by the kernel. By applying this to Equation 3.20, we have:

¢(y, y 0) = h√¢(y),√¢(y)iFY + h√¢(y 0),√¢(y 0)iFY °2h√¢(y),√¢(y 0)iFY (3.22)

= k√¢(y)°√¢(y 0)k2
FY

(3.23)

This construction motivates the framework of output kernel regression. Instead
of trying to directly build a predictor from the input space X to the output space
Y let us introduce an intermediate Hilbert space FY in which the output objects
are represented thanks to an output feature function √ : Y ! FY . Note that we
intentionally use the√ notation to highlight on the role of this representation similar
to the one of the compatibility function previously introduced in the context of
Markov Random Fields. The output kernel regression approach consists in building
a 2-step predictor by:

1. Predicting the representation of the inputs in the intermediate space FY . Since
this is a Hilbert space, this is done by multivariate regression using an empirical
solution of the optimization problem:

min
g :X!FY

Ex,ykg (x)°√(y)k2
FY

(3.24)

When a training sample (xi , yi )i2{1,...,n} is available, the risk above is replaced
by its regularized empirical counterpart. For a function g taken in a function
space H and a positive regularization parameter ∏, it becomes:

min
g2H

nX

i=1
kg (xi )°√(yi )k2

FY
+∏kgk2

H (3.25)

This step can be referred to as a training phase where the regressor g is learned
based on training data.

2. Then the prediction is done by searching for the output candidate √(y) for
which the distance to the g (x) prediction is minimal. Coming back to the
y object by solving this problem is referred to as the pre-image or decoding
problem:

ŷ = d(g (x)) = argmin
y2Y

kg (x)°√(y)k2
FY

(3.26)

The function d is called the decoding function. In the worst case, the argmin
problem can be solved by searching over all the possible output structures.
Algorithmically efficient methods can be devised for each specific case by
taking into account the inner structured of the decoding problem.
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Figure 3.2 – Output kernel regression based prediction, g is learned in the step 1 by solving
a least square vector regression task and then √°1(g (x)) is found by solving the pre-image
problem.

The two steps above are illustrated on Figure 4.2. The procedure described previously
can in fact been applied in the general case of infinite dimensional FY space by
relying only on the access to the similarity between pairs of outputs k(y, y 0) 8y, y 0 2Y
[GEURTS and collab., 2006, 2007].

Let us now recall some definitions and properties concerning operator valued
kernels which are later used in Chapter 4 and Chapter 5 to performing the training
phase. Let us denote by L (FY ) the set of bounded linear operators on FY .

Definition 10. (Non-negative L (FY )-valued kernel) A non-negative L (FY )-valued
kernel K is an operator-valued function on X £X !L (FY ) such that:

1. 8xi , xy 2X , K(xi , x j ) = K(x j , xi )? (? denotes the adjoint),

2. 8m 2N?+, 8x1, . . . , xm 2X , 8√i ,√ j 2FY
Pm

i , j=1hK(xi ; x j )√ j ,√i iFY ∏ 0.

Based on this definition, the gram matrix of the operator valued kernel is K =
[K(xi , x j ) 2L (FY )]n

i , j=1. Given a kernel K on X £X , there exists a unique Reproduc-
ing Kernel Hilbert Space (RKHS) of FY -valued functions whose reproducing kernel
is K.

Definition 11. (FY -valued RKHS) A RKHS FX£Y of FY -valued functions g : X !
FY is a Hilbert space such that there is a non-negative L (FY )-valued kernel K with
the following properties:

1. 8x 2X , 8√ 2FY K(x, ·)√ 2FX Y ,

2. 8g 2FX Y , 8x 2X , 8√ 2FY hg ,K(x, ·)√iFX Y = hg (x),√iFY .

Based on these definitions, one can prove the unicity of the solution of Equa-
tion 3.25 given that g is a function belonging to a FX£Y RKHS. The corresponding
solution expression is given by the representer theorem proved by MICCHELLI and
PONTIL [2005].

Theorem 2. Representer theorem (vector valued case). Any solution to the problem:
find h 2FX£Y to minimize Equation 3.25 has a representation of the form:

g (·) =
nX

i=1
K(·, xi )ci , (3.27)
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where ci 2FY are the unique solution of the linear equations:

nX

i=1
(K(x j , xi )+∏± j i )ci =√(y j ), j 2 {1, . . . ,n}. (3.28)

± j i is the Kronecker symbol ± j i = 1 if i = j and 0 else.

Theorem 2 applies to the case where the regressor g is chosen as an element of an
RKHS. Previous works have relied on such operator valued kernels based models to
take into account functional responses [KADRI and collab., 2010] due to their ability
to handle infinite dimensional output representations. It has been shown that the
choice of the operator valued kernel is directly responsible for the quality of the
predictor and can be used to take advantage of the input output dependencies. Such
results have been illustrated in the work of KADRI and collab. [2012] where K is a well
chosen convex combination of available kernels learned with a technique similar
to multiple kernel learning and in the work of KADRI and collab. [2013], K is the
conditional covariance operator. BROUARD and collab. [2016] propose to encode
both input-input and output-output dependencies by using a pair of kernels and
show how to build the predictors in the supervised and the semi-supervised case.
Finally, some works have focused on the scalability aspects of operator valued kernel
based predictors and proposed to adapt the Random Fourier features to adapt such
techniques to large datasets [BRAULT and collab., 2016].

In practice, the least square regression problem Equation 3.25 can also be solved
in other function spaces using predictors such as Random Forests, Gradient Boosting
trees, etc. Note that the statistical guarantees of the chosen predictor, in particular
its consistency, will have an impact detailed in the next section.

At this point we have a method enabling the prediction of structured objects given
that (1) we have chosen an output similarity k¢ or an output representation √ and
(2) we know how to solve the decoding. Whereas the learning phase is only affected
by the dimensionality of the space in which the √ representation maps the output
objects, the decoding problem is instead deeply linked to the geometry of the √(yi ).
Indeed without any additional hypothesis the argmin problem of Equation 3.26
involves computing the cost to minimize for all the possible objects of Y . In the next
section we dive into the problem of the √ function choice and the consequences it
has on the statistical and computation properties of the built predictors.

3.5 The problem of building consistent predictors

The two methods presented previously rely on a description of the output objects
through a set of joint feature functions√ for the graphical models based methods and
through the Hilbert valued embedding √ for the square surrogate based methods. In
both cases, the choice of the output description function has some consequences on
the complexity of the decoding problem. In this section we detail the link between the
design of the output description and the choice of a loss function ¢. Since our goal
is to minimize an empirical risk Ê , it is necessary to choose an empirical surrogate
risk R̂ such that the predictors built by minimizing this risk effectively minimize the
underlying target risk E . We reuse the setting presented by CILIBERTO and collab.
[2016] who introduced the so-called SELF hypothesis.
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Assumption 1. There exists a separable Hilbert space FY with inner product h., .iFY ,
a continuous embedding √ : Y !FY and a bounded linear operator V : FY !FY ,
such that:

¢(y, y 0) = h√(y),V√(y 0)iFY +b 8y, y 0 2Y (3.29)

Note that contrarily to the original definition we use the same definition as
NOWAK-VILA and collab. [2019] that introduces a scalar b. The assumption above is
always true for discrete output spaces of finite cardinality since it is always possible
to map each unique output object yi to a one hot vector ei and choose V such
that Vi j = ¢(yi , y j ). In the context of this thesis, the output space is made of the
representation of opinions that will always satisfy this constraint. We recall the
following result from [CILIBERTO and collab., 2016] that holds in the presence of the
b term:

Theorem 3. Let ¢ : Y £Y !R satisfy 1 with Y a compact set. Then, for every mea-
surable g : X !HY and a decoding function d : HY !Y satisfying Equation 3.26,
the following holds:

E (d ± g?) = E (s?) (3.30)

E (d ± g )°E (s?) ∑ 2c¢
p

R(g )°R(g?) (3.31)

The result above connects the surrogate risk R to the true risk E . As we’ve seen
in Section 3.1, the structured predictors based upon assumption 1 verify the Fisher
Consistency condition and the direct consequence is that the use of consistent
regressors to solve the regression problem imply automatically the consistency of
the resulting structured predictor for the risk E . This result is fundamental and is
extended in the works presented in the following chapters in two directions. First we
discuss the question of directly building the surrogate problem from the embeddings
and not from the loss.

Let us emphasize on the fact that output embeddings used in practice do not
necessarily respect assumption 1. Other properties than Fisher consistency can
be expected from the loss function used. An example is showcased in DJERRAB

and collab. [2018] where the Fisher embeddings are used to encode weak labels and
thus introduce an inductive bias in the learning task. The proposed technique relies
on the idea that the distribution of output representation is regular in some cases.
For example when the outputs are made of semantic embeddings such as Glove
vectors, they are concentrate around a restricted number of cluster and the Fisher
kernel defined over Gaussian mixture models can take into account this geometrical
specificity. Such technique introduces a bias in the predictor learning task since it
does not focus on the target loss. However it takes advantage of the geometry of
outputs distribution to improve the reliability of the predictor when the number of
training samples is low.

In Chapter 4, we want to take advantage of the structure of some well chosen em-
beddings that lead to fast decoding problems. However in that case, the assumption
1 is not necessarily verified and we prove weaker results on the resulting predictors.

In Chapter 5, we allow our predictors to generate new outputs that have been
unseen at the training time. This corresponds to a generalization of the abstention
mechanism (already widely studied in the binary case [CORTES and collab., 2016;
GYORFI and collab., 1979]) to the structured prediction context. We show that this
type of bound can still be derived under some conditions on the outputs.
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Chapter conclusion

This chapter presented the main mathematical tools belonging to the field
of structured prediction necessary to understand the contributions of the
thesis. We recalled the statistical properties that we expect from a good model
and presented to widely used family of output models: graphical models and
Hilbert based representations. In each case we recalled the main results we
will build upon and the direction that were untreated in previous work and
that we explore in Chapter 4 and 5.
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Part II

Statistical and algorithmic aspects of
structured output prediction applied

to opinion structures
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Chapter 4

A unifying regression based framework
for preference function prediction

Chapter abstract

In this section, we study the problem of learning preference functions. This
problem, referred to in the literature as label ranking, belongs to the general
family of Structured Output Prediction tasks, for which the output variable is a
ranking on objects. We address label ranking using output embedding regres-
sion and least square surrogate loss approaches as introduced in Chapter 1.
This problem has been studied in the literature under different angles leading
to a wide variety of off the shelves estimators to build preference function
predictors. Our contribution presented in KORBA and collab. [2018] consists in
building a unifying framework in which the algorithmic and statistical prop-
erties of the predictors minimizing popular ranking losses are studied. The
resulting approach provides a guide for the practitioner who wants to put
an emphasis on some properties of the data and who needs to control the
computational cost of his models.
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4.1 From continuous valence opinion models to prefer-
ence functions

The general opinion model first presented in Chapter 2 and reported in Figure 4.1
represents the opinionated evaluation of a set of target.

Figure 4.1 – General graphical representation of the opinion structure

The valences attributed to these targets can be represented by a continuous
number indicating the strength of the valence of the underlying opinion. These
valences attributed to distinct targets are in fact not independent since they introduce
a notion of preference among objects. This notion of preference is in fact restricted
to comparable objects i.e. objects that are not too far in the aspect tree and are
located at the same depth. To illustrate this fact, let us introduce a concrete example.
Suppose that one of the green nodes represent the object "camera" and its direct
descendants are also some green nodes designating some features of this camera
such as resolution or design. For each of these views of the object camera, there exists
a corresponding valence node indicating how a user likes this aspect of the object. It
is then possible to define a preference among these aspect by sorting the aspects from
the lowest to the highest valence score. However, it is harder to define a preference
between the aspect represented by nodes at different depth. An example of such
ill-defined case is the expression of the preference of a camera model (including all
its aspects) over the image resolution of another model. We suppose in the rest of
the chapter that we work on comparable objects so that the preferences can be well
defined.

We say that object A is preferred over object B if the valence score of A is higher
than B. When the different objects Oi all have different valence scores, there ex-
ists a total order over the set of objects. In this context, a preference function is a
permutation mapping each object to its position in the ordered set of preferences.

In practice, we cannot map the entire opinion hierarchy to a preference function.
Whereas all the objects are rated through their valence scores, all the objects can-
not be compared and the notion of preference is undefined in the general case as
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highlighted above. However when dealing with restricted categories, these prefer-
ences are well defined. Previous works have shown that gathering the preference
functions of agents by running annotation campaigns is easier than asking them a
continuous valence score on many objects. The latter choice gives in fact very low
agreements on the annotation task due to the inherent subjectivity of the rating pro-
cess [YANNAKAKIS and MARTINEZ, 2015; YANNAKAKIS and MARTÍNEZ, 2015]. These
works recommended instead to annotate the preference between objects and then if
necessary come back to a continuous score in order to obtain better inter-annotator
agreements. An example of such ranking based annotation procedure has been
presented by LANGLET and collab. [2017]. The two different paradigms are illustrated
in Figure 4.2.

Figure 4.2 – Valence query and preference query annotation campaigns

Motivated by this observation, we study the problem of learning a preference
function from a machine learning perspective. Such a problem referred to as label
ranking enjoys a wide literature but suffers from a lack of a unifying theory linking
the properties of the expected predictors and the choice of a ranking loss function.

In what follows, we first recall the general background and definitions concern-
ing label ranking problems and build a formal framework allowing us to predict
preference functions. In a nutshell, the contributions are the following:

We propose to solve a label ranking problem as a structured output regression
task. In this view, we adopt the framework of output kernel regression approach
that solves a supervised learning problem in two steps: a regression step in a well-
chosen feature space and a pre-image (or decoding) step. We use specific feature
maps/embeddings for ranking data, which convert any ranking/permutation into
a vector representation. These embeddings are all well-tailored for our approach,
either by resulting in consistent estimators, or by solving trivially the pre-image
problem which is often the bottleneck in structured prediction. Their extension
to the case of incomplete or partial rankings is also discussed. Finally, we provide
empirical results on synthetic and real-world datasets showing the relevance of our
method. In particular the case of the sushi dataset for which the goal is to predict the
preference of a user over a set of objects (sushis) is an instanciation of the opinion
prediction framework previously described. The figure below summarizes the setting:
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We are given a set of objects over which different users express their preference by
ranking them. Then for a new user we aim at finding what is the rank of each object.

Figure 4.3 – Preference function prediction setting with a fixed set of objects. The prediction
task consists in finding the last row i.e. what is the preference function of a new unseen
individual for which we have access to sociocultural descriptors

4.2 General background on label ranking

Label ranking is a prediction task which aims at mapping input instances to a (total)
order over a given set of labels indexed by {1, . . . ,K}. This problem is motivated
by applications where the output reflects some preferences, or order of relevance,
among a set of objects. Hence there is an increasing number of practical applications
of this problem in the machine learning literature. In pattern recognition for instance
[GENG and LUO, 2014], label ranking can be used to predict the different objects
which are the more likely to appear in an image among a predefined set. Similarly, in
sentiment analysis, [WANG and collab., 2011] where the prediction of the emotions
expressed in a document is cast into a label ranking problem over a set of possible
affective expressions. In ad targeting, the prediction of preferences of a web user over
ad categories [DJURIC and collab., 2014] can be also formalized as a label ranking
problem, and the prediction as a ranking guarantees that each user is qualified into
several categories, eliminating overexposure. Another application is metalearning,
where the goal is to rank a set of algorithms according to their suitability based on the
characteristics of a target dataset and learning problem (see AIGUZHINOV and collab.
[2010]; BRAZDIL and collab. [2003]). Interestingly, the label ranking problem can also
be seen as an extension of several supervised tasks, such as multiclass classification
or multi-label ranking (see DEKEL and collab. [2004]; FÜRNKRANZ and HÜLLERMEIER

[2003]). Indeed for these tasks, a prediction can be obtained by postprocessing the
output of a label ranking model in a suitable way. However, label ranking differs from
other ranking problems, such as in information retrieval or recommender systems,
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where the goal is (generally) to predict a target variable under the form of a rating or
a relevance score [CAO and collab., 2007].

More formally, the goal of label ranking is to map a vector x lying in some feature
space X to a ranking y lying in the space of rankings Y . A ranking is an ordered
list of items of the set {1, . . . ,K}. These relations linking the components of the y
objects induce a structure on the output space Y . The label ranking task thus natu-
rally enters the framework of structured output prediction for which an abundant
litterature is available [NOWOZIN and LAMPERT, 2011]. In this chapter, we adopt the
output embedding regression approach introduced in the context of output kernels
[BROUARD and collab., 2016; CORTES and collab., 2005; KADRI and collab., 2013] and
recently theoretically studied by CILIBERTO and collab. [2016] and OSOKIN and collab.
[2017] using Calibration theory [STEINWART and CHRISTMANN, 2008]. This approach
divides the learning task in two steps: the first one is a vector regression step in a
Hilbert space where the output objects are represented through an embedding, and
the second one solves a pre-image problem to retrieve an output object in the Y
space. In this framework, the algorithmic complexity of the learning and prediction
tasks as well as the generalization properties of the resulting predictor crucially rely
on some properties of the embedding. In this work we study and discuss some
embeddings dedicated to ranking data.

Our contribution is three folds: (1) we cast the label ranking problem into the
structured prediction framework and propose embeddings dedicated to ranking
representations, (2) for each embedding we propose a solution to the pre-image
problem and study its algorithmic complexity and (3) we provide theoretical and
empirical evidence for the relevance of our method.

The chapter is organized as follows. In Section 4.3, definitions and notations of
objects considered through the chapter are introduced, and Section 4.4 is devoted
to the statistical setting of the learning problem. Section 4.5 describes at length
the embeddings we propose and Section 4.6 details the theoretical and computa-
tional advantages of our approach. Finally Section 4.7 contains empirical results on
benchmark datasets.

4.3 Preliminaries

4.3.1 Mathematical background and notations

The notations and definitions introduced here are relevant in the context of label
ranking. Consider a set of items indexed by {1, . . . ,K}, that we will denote ÇKÉ. Rank-
ings, i.e. ordered lists of items of ÇKÉ, can be complete (i.e, involving all the items)
or incomplete and for both cases, they can be without-ties (total order) or with-ties
(weak order). A full ranking is a complete, and without-ties ranking of the items in
ÇKÉ. It can be seen as a permutation, i.e a bijection æ : ÇKÉ! ÇKÉ, mapping each item
i to its rank æ(i ). The rank of item i is thus æ(i ) and the item ranked at position j is
æ°1( j ). We say that i is preferred over j (denoted by i ¬ j ) according to æ if and only
if i is ranked lower than j : æ(i ) <æ( j ). The set of all permutations over K items is the
symmetric group which we denote by SK. A partial ranking is a complete ranking
including ties, and is also referred to as a weak order or bucket order in the litterature
(see KENKRE and collab. [2011]). This includes in particular the top-k rankings, that
is to say partial rankings dividing items in two groups, the first one being the k ∑ K
most relevant items and the second one including all the rest. These top-k rankings
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are given a lot of attention because of their relevance for modern applications, espe-
cially search engines or recommendation systems (see AILON [2010]). An incomplete
ranking is a strict order involving only a small subset of items, and includes as a
particular case pairwise comparisons, another kind of ranking which is very relevant
in large-scale settings when the number of items to be ranked is very large. We now
introduce the main notations used through the chapter. For any function f , Im( f )
denotes the image of f , and f °1 its inverse. The indicator function of any event
E is denoted by I{E }. We will denote by si g n the function such that for any x 2 R,
si g n(x) = I{x > 0}° I{x < 0}. The notations k.k and |.| denote respectively the usual l2

and l1 norm in an Euclidean space. Finally, for any integers a ∑ b, Ça,bÉ denotes the
set {a, a +1, . . . ,b}, and for any finite set C, #C denotes its cardinality.

4.3.2 Related work

An overview of label ranking algorithms can be found in VEMBU and GÄRTNER [2010],
ZHOU and collab. [2014]), but we recall here the main contributions. One of the first
proposed approaches, called pairwise classification (see FÜRNKRANZ and HÜLLER-
MEIER [2003]) transforms the label ranking problem into K(K °1)/2 binary classi-
fication problems. For each possible pair of labels 1 ∑ i < j ∑ K, the authors learn
a model mi j that decides for any given example whether i ¬ j or j ¬ i holds. The
model is trained with all examples for which either i ¬ j or j ¬ i is known (all exam-
ples for which nothing is known about this pair are ignored). At prediction time, an
example is submitted to all K(K°1)/2 classifiers, and each prediction is interpreted
as a vote for a label: if the classifier mi j predicts i ¬ j , this counts as a vote for label i .
The labels are then ranked according to the number of votes. Another approach (see
DEKEL and collab. [2004]) consists in learning for each label a linear utility function
from which the ranking is deduced. Then, a large part of the dedicated literature was
devoted to adapting classical partitioning methods such as k-nearest neighbors (see
ZHANG and ZHOU [2007], CHIANG and collab. [2012]) or tree-based methods, in a
parametric (CHENG and collab. [2010], CHENG and collab. [2009], ALEDO and collab.
[2017]) or a non-parametric way (see CHENG and HÜLLERMEIER [2013], YU and col-
lab. [2010], ZHOU and QIU [2016], CLÉMENÇON and collab. [2017], SÁ and collab.
[2017]). Finally, some approaches are rule-based (see GURRIERI and collab. [2012],
DE SÁ and collab. [2018]). We will compare our numerical results with the best per-
formances attained by these methods on a set of benchmark datasets of the label
ranking problem in Section 4.7.

4.4 Structured prediction for label ranking

4.4.1 Learning problem

Our goal is to learn a function s : X !Y between a feature space X and a structured
output space Y , that we set to be SK the space of full rankings over the set of items
ÇKÉ. The quality of a prediction s(x) is measured using a loss function¢ :SK£SK !R,
where ¢(s(x),æ) is the cost suffered by predicting s(x) for the true output æ. We
suppose that the input/output pairs (x,æ) come from some fixed distribution P on
X £SK.

Within the supervised setting, the goal of label ranking is to exploit a finite sample
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of labeled data (xi ,æi ) ª P to solve

minimizes:X!SKE (s), with E (s) =
Z

X£SK

¢(s(x),æ)dP(x,æ). (4.1)

In this chapter, we propose to study how to solve this problem and its empirical
counterpart for a family of loss functions based on some ranking embedding ¡ :
SK !F that maps the permutations æ 2SK into a Hilbert space F :

¢(æ,æ0) = k√(æ)°√(æ0)k2
F . (4.2)

Contrarily to the setup presented in Chapter 3, the loss is built from the embedding
and not the opposite. As a consequence, the assumption that the loss can be written
as a dot product with a loss matrix V is not necessarily true and the Theorem 3 is
not provable for any loss of this type as we show hereafter. This loss presents two
main advantages: first, there exists popular losses for ranking data that can take this
form within a finite dimensional Hilbert Space F , second, this choice benefits from
the theoretical results on Surrogate Least Square problems for structured prediction
using Calibration Theory of CILIBERTO and collab. [2016] and of works of BROUARD

and collab. [2016] on Structured Output Prediction within vector-valued Reproducing
Kernel Hilbert Spaces. These works approach Structured Output Prediction along a
common angle by introducing a surrogate problem involving a function g : X !F
(with values in F ) and a surrogate loss L(g (x),æ) to be minimized instead of Equa-
tion 4.1. The surrogate loss is said to be calibrated if a minimizer for the surrogate
loss is always optimal for the true loss [CALAUZENES and collab., 2012]. In the context
of true risk minimization, the surrogate problem for our case writes as:

minimize g :X!FR(g ), with R(g ) =
Z

X£SK

L(g (x),√(æ))dP(x,æ). (4.3)

with the following surrogate loss:

L(g (x),√(æ)) = kg (x)°√(æ)k2
F . (4.4)

Problem of Equation 4.3 is in general easier to optimize since g has values in F
instead of the set of structured objects Y , here SK. The solution of Equation 4.3, de-
noted as g§, can be written for any x 2X : g§(x) = E[√(æ)|x]. Eventually, a candidate
s(x) pre-image for g§(x) can then be obtained by solving:

s(x) = argmin
æ2SK

L(g§(x),√(æ)). (4.5)

In the context of Empirical Risk Minimization, a training sample S = {(xi ,æi ), i =
1, . . . ,N}, with N i.i.d. copies of the random variable (x,æ) is available. The output
embedding regression approach for Label Ranking Prediction decomposes into two
steps:

• Step 1: minimize a regularized empirical risk to provide an estimator of the
minimizer of the regression problem in Equation 4.3:

minimize g2H RS (g ), with RS (g ) = 1
N

NX

i=1
L(g (xi ),√(æi ))+≠(g ). (4.6)

with an appropriate choice of hypothesis space H and complexity term ≠(g ).
We denote by bg a solution of Equation 4.6.
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• Step 2: solve, for any x in X , the pre-image problem that provides a prediction
in the original space SK:

bs(x) = argmin
æ2SK

k√(æ)° bg (x)k2
F . (4.7)

The pre-image operation can be written as bs(x) = d ± bg (x) with d the decoding
function:

d(h) = argmin
æ2SK

k√(æ)°hk2
F for all h 2F , (4.8)

applied on bg for any x 2X .

Note that these embeddings √ naturally build a metric on the output object through
the induced kernel k√(y, y 0) = h√(y),√(y 0)i. As shown in Chapter 3, it is possible to
perform step 1 and 2 without explicitly using the embedding √ and by only relying
on the access of the similarity between pairs of outputs. This make possible using
similarity functions inducing infinite dimensional valued embeddings such as the
Mallows kernel [JIAO and VERT, 2017]. This chapter studies how to leverage the
choice of the embedding √ to obtain a good compromise between computational
complexity and theoretical guarantees. Typically, the pre-image problem on the
discrete set SK (of cardinality K!) can be eased for appropriate choices of √ as we
show in section 4, leading to efficient solutions. At the same time, one would like
to benefit from theoretical guarantees and control the excess risk of the proposed
predictor bs.

In the following subsection we exhibit popular losses for ranking data that we will
use for the label ranking problem.

4.4.2 Losses for ranking

We now present losses ¢ on SK that we will consider for the label ranking task. A
natural loss for full rankings, i.e. permutations in SK, is a distance between permu-
tations. Several distances on SK are widely used in the literature [DEZA and DEZA,
2009], one of the most popular being the Kendall’s ø distance, which counts the
number of pairwise disagreements between two permutations æ,æ0 2SK:

¢ø(æ,æ0) =
X

i< j
I[(æ(i )°æ( j ))(æ0(i )°æ0( j )) < 0]. (4.9)

The maximal Kendall’s ødistance is thus K(K°1)/2, the total number of pairs. Another
well-spread distance between permutations is the Hamming distance, which counts
the number of entries on which two permutations æ,æ0 2SK disagree:

¢H(æ,æ0) =
KX

i=1
I[æ(i ) 6=æ0(i )]. (4.10)

The maximal Hamming distance is thus K, the number of labels or items.
The Kendall’s ø distance is a natural discrepancy measure when permutations are

interpreted as rankings and is thus the most widely used in the preference learning
literature. In contrast, the Hamming distance is particularly used when permutations
represent the matching of bipartite graphs and is thus also very popular (see FATHONY

and collab. [2018]). In the next section we show how these distances can be written
as Equation 4.2 for a well chosen embedding √.
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4.5 Output embeddings for rankings

In what follows, we study three embeddings tailored to represent full rankings/permutations
in SK and discuss their properties in terms of link with the ranking distances ¢ø and
¢H, and in terms of algorithmic complexity for the pre-image problem (Equation 4.5)
induced.

4.5.1 The Kemeny embedding

Motivated by the minimization of the Kendall’s ø distance ¢ø, we study the Kemeny
embedding, previously introduced for the ranking aggregation problem (see JIAO

and collab. [2016]):

√ø : SK !RK(K°1)/2

æ 7!
°
sign(æ( j )°æ(i ))

¢
1∑i< j∑K .

which maps any permutation æ 2 SK into Im(√ø) ( {°1,1}K(K°1)/2 (that we have
embedded into the Hilbert space (RK(K°1)/2,h., .i)). We display an example of encoding
of a permutation in its Kemeny embedding in Figure 4.4. Following the definition
above, it consists in building an upper triangular matrix indicating in each entry
whether the item of row i is preferred over the one of column j . Then once the
matrix is built, the entries are concatenated to provide a single {°1,1}K(K°1)/2 vector.
One can show that the square of the euclidean distance between the mappings

Figure 4.4 – Encoding a permutation using the Kemeny embedding. A value of 1 in the entry
(i , j ) indicates that the item of column j is preferred over the one of row i .

of two permutations æ,æ0 2SK recovers their Kendall’s ø distance (proving at the
same time that √ø is injective) up to a constant: k√ø(æ)°√ø(æ0)k2 = 4¢ø(æ,æ0).
The Kemeny embedding then naturally appears to be a good candidate to build a
surrogate loss related to ¢ø. By noticing that √ø has a constant norm (8æ 2 SK,
k√ø(æ)k=

p
K(K°1)/2), we can rewrite the pre-image problem (Equation 4.7) under

the form:
bs(x) = argmin

æ2SK

°h√ø(æ), bg (x)i. (4.11)
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To compute Equation 4.11, one can first solve an Integer Linear Program (ILP) to find
c√æ = argmin√æ2Im(√ø)°h√æ, bg (x)i, and then find the output objectæ=√°1

ø ( c√æ). The
latter step, i.e. inverting √ø, can be performed in O (K2) by means of the Copeland
method (see MERLIN and SAARI [1997]), which ranks the items by their number of
pairwise victories1. In contrast, the ILP problem is harder to solve since it involves
a minimization over Im(√ø), a set of structured vectors since their coordinates are
strongly correlated by the transitivity property of rankings. Indeed, consider a vector
v 2 Im(√ø), then 9æ 2SK such that v =√ø(æ). Then, for any 1 ∑ i < j < k ∑ K, if its
coordinates corresponding to the pairs (i , j ) and ( j ,k) are equal to one (meaning
that æ(i ) <æ( j ) and æ( j ) <æ(k)), then the coordinate corresponding to the pair (i ,k)
cannot contradict the others and must be set to one as well. Since √æ = (√æ)i , j 2
Im(√ø) is only defined for 1 ∑ i < j ∑ K, one cannot directly encode the transitivity
constraints that take into account the components (√æ)i , j with j > i . Thus to encode
the transitivity constraint we introduce √0

æ = (√0
æ)i , j 2 RK(K°1) defined by (√0

æ)i , j =
(√æ)i , j if 1 ∑ i < j ∑ K and (√0

æ)i , j = °(√æ)i , j else, and write the ILP problem as
follows:

c√æ = argmin
√0
æ

X

1∑i , j∑K
bg (x)i , j (√0

æ)i , j ,

s.t .

8
>><

>>:

(√0
æ)i , j 2 {°1,1} 8 i , j

(√0
æ)i , j + (√0

æ) j ,i = 0 8 i , j

°1 ∑ (√0
æ)i , j + (√0

æ) j ,k + (√0
æ)k,i ∑ 1 8 i , j ,k s.t. i 6= j 6= k.

(4.12)

Such a problem is NP-Hard. In previous works (see CALAUZENES and collab. [2012];
RAMASWAMY and collab. [2013]), the complexity of designing calibrated surrogate
losses for the Kendall’s ø distance had already been investigated. In particular,
CALAUZENES and collab. [2012] proved that there exists no convex K-dimensional
calibrated surrogate loss for Kendall’s ø distance. As a consequence, optimizing this
type of loss has an inherent computational cost. However, in practice, branch and
bound based ILP solvers find the solution of Equation 4.12 in a reasonable time for a
reduced number of labels K. We discuss the computational implications of choosing
the Kemeny embedding Subsection 4.6.2. We now turn to the study of an embedding
devoted to build a surrogate loss for the Hamming distance.

4.5.2 The Hamming embedding

Another well-spread embedding for permutations, that we will call the Hamming
embedding, consists in mapping æ to its permutation matrix √H(æ):

√H : SK !RK£K

æ 7!
°
I{æ(i ) = j }

¢
1∑i , j∑K ,

where we have embedded the set of permutation matrices Im(√H)( {0,1}K£K into
the Hilbert space (RK£K,h., .i) with h., .i the Froebenius inner product. We illustrate
this encoding using the example in Figure 4.5. This embedding simply consists
in turning æ in a one hot encoding where the value in æ(i ) provides the column
j for which the entry (i , j ) is 1. This embedding shares similar properties with

1Copeland method firstly affects a score si for item i as: si =
P

j 6=i I{æ(i ) <æ( j )} and then ranks the
items by decreasing score.

58



CHAPTER 4. A UNIFYING REGRESSION BASED FRAMEWORK FOR PREFERENCE
FUNCTION PREDICTION

Figure 4.5 – Encoding a permutation using the Kemeny embedding. A value of 1 in the entry
(i , j ) indicates that the item of column j is preferred over the one of row i .

the Kemeny embedding: first, it is also of constant (Froebenius) norm, since 8æ 2
SK, k√H(æ)k=

p
K. Then, the squared euclidean distance between the mappings of

two permutations æ,æ0 2SK recovers their Hamming distance (proving that √H is
also injective): k√H(æ)°√H(æ0)k2 =¢H(æ,æ0). Once again, the pre-image problem
consists in solving the linear program:

bs(x) = argmin
æ2SK

°h√H(æ), bg (x)i, (4.13)

which is, as for the Kemeny embedding previously, divided in a minimization step,
i.e. find c√æ = argmin√æ2Im(√H)°h√æ, g (x)i, and an inversion step, i.e. compute
æ =√°1

H ( c√æ). The inversion step is of complexity O (K2) since it involves scrolling
through all the rows (items i ) of the matrix c√æ and all the columns (to find their
positions æ(i )). The minimization step itself writes as the following problem:

c√æ = argmax
√æ

X

1∑i , j∑K
bg (x)i , j (√æ)i , j ,

s.t .

(
(√æ)i , j 2 {0,1} 8 i , j
P

i (√æ)i , j =
P

j (√æ)i , j = 1 8 i , j ,

(4.14)

which can be solved with the Hungarian algorithm (see KUHN [1955]) in O (K3) time.
Now we turn to the study of an embedding which presents efficient algorithmic
properties.

4.5.3 Lehmer code

A permutation æ= (æ(1), . . . ,æ(K)) 2SK may be uniquely represented via its Lehmer
code (also called the inversion vector), i.e. a word of the form cæ 2CK =¢ {0}£Ç0,1É£
Ç0,2É£ · · ·£Ç0,K°1É, where for j = 1, . . . ,K:

cæ( j ) = #{i 2 ÇKÉ : i < j ,æ(i ) >æ( j )}. (4.15)
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The coordinate cæ( j ) is thus the number of elements i with index smaller than j that
are ranked higher than j in the permutation æ. By default, cæ(1) = 0 and is typically
omitted. For instance, we have:

e 1 2 3 4 5 6 7 8 9
æ 2 1 4 5 7 3 6 9 8
cæ 0 1 0 0 0 3 1 0 1

It is well known that the Lehmer code is bijective, and that the encoding and decoding
algorithms have linear complexity O (K) (see MAREŠ and STRAKA [2007], MYRVOLD

and RUSKEY [2001]). This embedding has been recently used for ranking aggregation
of full or partial rankings (see LI and collab. [2017]). Our idea is thus to consider the
following Lehmer mapping for label ranking;

√L : SK !RK

æ 7! (cæ(i )))i=1,...,K ,

which maps any permutation æ 2SK into the space CK (that we have embedded into
the Hilbert space (RK,h., .i)). The loss function in the case of the Lehmer embedding
is thus the following:

¢L(æ,æ0) = k√L(æ)°√L(æ0)k2, (4.16)

which does not correspond to a known distance over permutations [DEZA and DEZA,
2009]. Notice that |√L(æ)| = dø(æ,e) where e is the identity permutation, a quantity
which is also called the number of inversions of æ. Therefore, in contrast to the
previous mappings, the norm k√L(æ)k is not constant for any æ 2SK. Hence it is not
possible to write the loss ¢L(æ,æ0) as °h√L(æ),√L(æ0)i2. Moreover, this mapping is
not distance preserving and it can be proven that 1

K°1¢ø(æ,æ0) ∑ |√L(æ)°√L(æ0)|∑
¢ø(æ,æ0) (see WANG and collab. [2015]). However, the Lehmer embedding still enjoys
great advantages. Firstly, its coordinates are decoupled, which will enable a trivial
solving of the inverse image step (Equation 4.7). Indeed we can write explicitly its
solution as:

bs(x) =√°1
L ±dL| {z }

d

±bg (x) with
dL : RK !CK

(hi )i=1,...,K 7! (argmin
j2Ç0,i°1É

(hi ° j ))i=1,...,K, (4.17)

where d is the decoding function defined in Equation 4.8. Then, there may be
repetitions in the coordinates of the Lehmer embedding, allowing for a compact
representation of the vectors.

4.5.4 Extension to partial and incomplete rankings

In many real-world applications, one does not observe full rankings but only partial
or incomplete rankings (see the definitions Subsection 4.3.1). We now discuss to what
extent the embeddings we propose for permutations can be adapted to this kind of
rankings as input data. Firstly, the Kemeny embedding can be naturally extended
to partial and incomplete rankings since it encodes relative information about the
positions of the items. Indeed, we propose to map any partial ranking eæ to the vector:

√(eæ) = (si g n(eæ(i )° eæ( j ))1∑i< j∑K, (4.18)

2The scalar product of two embeddings of two permutations√L(æ),√L(æ0) is not maximized for
æ=æ0.
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where each coordinate can now take its value in {°1,0,1} (instead of {°1,1} for full
rankings). For any incomplete ranking ǣ, we also propose to fill the missing entries
(missing comparisons) in the embedding with zeros. This can be interpreted as set-
ting the probability that i ¬ j to 1/2 for a missing comparison between (i , j ). In con-
trast, the Hamming embedding, since it encodes the absolute positions of the items,
is tricky to extend to map partial or incomplete rankings where this information is
missing. Finally, the Lehmer embedding falls between the two latter embeddings. It
also relies on an encoding of relative rankings and thus may be adapted to take into
account the partial ranking information. Indeed, in LI and collab. [2017], the authors
propose a generalization of the Lehmer code for partial rankings. We recall that a tie
in a ranking happens when #{i 6= j ,æ(i ) =æ( j )} > 0. The generalized representation
c 0 takes into account ties, so that for any partial ranking eæ:

c 0eæ( j ) = #{i 2 ÇKÉ : i < j , eæ(i ) ∏ eæ( j )}. (4.19)

Clearly, c 0eæ( j ) ∏ ceæ( j ) for all j 2 ÇKÉ. Given a partial ranking eæ, it is possible to break
its ties to convert it in a permutation æ as follows: for i , j 2 ÇKÉ2, if eæ(i ) = eæ( j )
then æ(i ) = æ( j ) iff i < j . The entries j = 1, . . . ,K of the Lehmer codes of eæ (see
Equation 4.20) and æ (see Equation 4.15) then verify:

c 0eæ( j ) = cæ( j )+ IN j °1 , ceæ( j ) = cæ( j ), (4.20)

where IN j = #{i ∑ j , eæ(i ) = eæ( j )}. An example illustrating the extension of the Lehmer
code to partial rankings is given in the appendix. However, computing each coor-
dinate of the Lehmer code cæ( j ) for any j 2 ÇKÉ requires to sum over the ÇKÉ items.
As an incomplete ranking does not involve the whole set of items, it is also tricky to
extend the Lehmer code to map incomplete rankings.

Other works have focused on extending kernel based ranking predictors in the
case of the Mallows kernel to handle partial rankings [JIAO and VERT, 2017; LOMELI

and collab.]. Contrarily to our case, these methods use the permutations for input
data and they do not provide a way to efficiently decode the rankings from their
embedded representations.

Taking as input partial or incomplete rankings only modifies Step 1 of our method
since it corresponds to the mapping step of the training data, and in Step 2 we still
predict a full ranking. Extending our method to the task of predicting as output
a partial or incomplete ranking raises several mathematical questions that we did
not develop at length here because of space limitations. For instance, to predict
partial rankings, a naive approach would consist in predicting a full ranking and then
converting it to a partial ranking according to some threshold (i.e, keep the top-k
items of the full ranking). A more formal extension of our method to make it able
to predict directly partial rankings as outputs would require to optimize a metric
tailored for this data and which could be written as in Equation 4.2. A possibility
for future work could be to consider the extension of the Kendall’s ø distance with
penalty parameter p for partial rankings proposed in FAGIN and collab. [2004].
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4.6 Statistical analysis of the regression label ranking
based predictors

4.6.1 Theoretical guarantees

In this section, we give some statistical guarantees for the estimators obtained by
following the steps described in Section 4.4. To this end, we build upon recent results
in the framework of Surrogate Least Square by CILIBERTO and collab. [2016]. Consider
one of the embeddings √ on permutations presented in the previous section, which
defines a loss ¢ as in Eq. Equation 4.2. Let c√ = maxæ2SK k√(æ)k. We will denote
by s§ a minimizer of the true risk Equation 4.1, g§ a minimizer of the surrogate risk
Equation 4.3, and d a decoding function as Equation 4.83. Given an estimator bg of
g§ from Step 1, i.e. a minimizer of the empirical surrogate risk Equation 4.6 we can
then consider in Step 2 an estimator bs = d ± bg . The following theorem reveals how
the performance of the estimator bs we propose can be related to a solution s§ of
Equation 4.1 for the considered embeddings.

Theorem 4. The excess risks of the proposed predictors are linked to the excess surro-
gate risks as:

(i) For the loss Equation 4.2 defined by the Kemeny and Hamming embedding √ø

and √H respectively:

E (d ± bg )°E (s§) ∑ c√
q

R(bg )°R(g§)

with c√ø =
q

K(K°1)
2 and c√H =

p
K.

(ii) For the loss Equation 4.2 defined by the Lehmer embedding √L:

E (d ± bg )°E (s§) ∑

s
K(K°1)

2

q
R(bg )°R(g§)+E (d ± g§)°E (s§)+O (K

p
K)

The full proof is given in Subsection 4.6.1. Assertion (i) is a direct application
of Theorem 3 presented in Chapter 3. In particular, it comes from a preliminary
consistency result which shows that E (d ± g§) = E (s§) for both embeddings. Con-
cerning the Lehmer embedding, it is not possible to apply these consistency results
immediately; however a large part of the arguments of the proof is used to bound the
estimation error for the surrogate risk, and we remain with an approximation error
E (d ±g§)°E (s§)+O (K

p
K) resulting in Assertion (ii). In Remark 2 in Subsection 4.6.1,

we give several insights about this approximation error. Firstly we show that it can be
upper bounded by 2

p
2
p

K(K°1)E (s§)+O (K
p

K). Then, we explain how this term
results from using √L in the learning procedure. The Lehmer embedding thus have
weaker statistical guarantees, but has the advantage of being more computationnally
efficient, as we explain in the next subsection.

Notice that for Step 1, one can choose a consistent regressor with vector values
bg , i.e such that R(bg ) !R(g§) when the number of training points tends to infinity.
Examples of such methods that we use in our experiments to learn bg , are the k-
nearest neighbors (kNN) or kernel ridge regression [MICCHELLI and PONTIL, 2005]

3Note that d =√°1
L ±dL for √L and is obtained as the composition of two steps for √ø and √H:

solving an optimization problem and compute the inverse of the embedding.
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Embedding Step 1 (a) Step 2 (b)
√ø O (K2N) NP-hard
√H O (KN) O (K3N)
√L O (KN) O (KN)

Regressor Step 1 (b) Step 2 (a)
kNN O (1) O (Nm)
Ridge O (N3) O (Nm)

Table 4.1 – Embeddings and regressors complexities.

methods whose consistency have been proved (see Chapter 3 in DEVROYE and collab.
[2013] and CAPONNETTO and DE VITO [2007]). In this case the control of the excess
of the surrogate risk R(bg )°R(g§) implies the control of E (bs)°E (s§) where bs = d ± bg
by Theorem 4.

Remark 1. We clarify that the consistency results of Theorem 4 are established for
the task of predicting full rankings which is addressed in this chapter. In the case of
predicting partial or incomplete rankings, these results are not guaranteed to hold.
Providing theoretical guarantees for this task is left for future work.

4.6.2 Algorithmic complexity

We now discuss the algorithmic complexity of our approach. We recall that K is the
number of items/labels whereas N is the number of samples in the dataset. For a
given embedding √, the total complexity of our approach for learning decomposes
as follows. Step 1 in Section 4.4 can be decomposed in two steps: a preprocessing
step (Step 1 (a)) consisting in mapping the training sample {(xi ,æi ), i = 1, . . . ,N} to
{(xi ,√(æi )), i = 1, . . . ,N}, and a second step (Step 1 (b)) that consists in computing the
estimator bg of the Least squares surrogate empirical minimization Equation 4.6. In
the case of (Step 1 (b)), we solve the standard ridge regression minimization problem:

ĝ (x) = argmin
g2H

1
N

NX

i=1
kg (xi )°√(æi )k2

F +∏kgk2
H (4.21)

denoted as Ridge in Table 4.1 and the kNN predictor:

ĝ (x) =
NX

i=1
!i (x)√(æi ), where !i (x) =

(
1
k if xi is one of the k nearest neighbors of x

0 otherwise
.

(4.22)
Solving the ridge regression is done by gram matrix when providing the complex-
ity results of Table 4.1. Note that some work have provided techniques to reduce
the computational complexity of ridge regression [BRAULT and collab., 2016; RUDI

and collab., 2017] but since the algorithmic complexity remains higher than the one
of kNN, the discussion hereafter remains unchanged.

Then, at prediction time, Step 2 Section 4.4 can also be decomposed in two steps:
a first one consisting in mapping new inputs to a Hilbert space using bg (Step 2 (a)),
and then solving the preimage problem Equation 4.7 (Step 2 (b)). The complexity of
a predictor corresponds to the worst complexity across all steps. The complexities
resulting from the choice of an embedding and a regressor are summarized Table 4.1,
where we denoted by m the dimension of the ranking embedded representations.
The Lehmer embedding with kNN regressor thus provides the fastest theoretical
complexity of O (KN) at the cost of weaker theoretical guarantees. The fastest meth-
ods previously proposed in the litterature typically involved a sorting procedure at
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prediction CHENG and collab. [2010] leading to a O (NKl og (K)) complexity. In the
experimental section we compare our approach with the former (denoted as Cheng
PL), but also with the label wise decomposition approach in CHENG and HÜLLER-
MEIER [2013] (Cheng LWD) involving a kNN regression followed by a projection on
SK computed in O (K3N), and the more recent Random Forest Label Ranking (Zhou
RF) ZHOU and QIU [2016]. In their analysis, if dX is the size of input features and
Dmax the maximum depth of a tree, then RF have a complexity in O (DmaxdX K2N2).

4.7 Numerical Experiments

Finally we evaluate the performance of our approach on standard benchmarks. We
present the results obtained with two regressors : Kernel Ridge regression (Ridge) and
k-Nearest Neighbors (kNN). Both regressors were trained with the three embeddings
presented in Section 4.5. We adopt the same setting as CHENG and collab. [2010] and
report the results of our predictors in terms of mean Kendall’s ø:

kø =
C°D

K(K°1)/2

(
C : number of concordant pairs between 2 rankings

D : number of discordant pairs between 2 rankings
, (4.23)

from five repetitions of a ten-fold cross-validation (c.v.). Note that kø is an affine
transformation of the Kendall’s tau distance ¢ø mapping on the [°1,1] interval. We
also report the standard deviation of the resulting scores as in CHENG and HÜLLER-
MEIER [2013]. The parameters of our regressors were tuned in a five-fold inner c.v. for
each training set. In all our experiments, we used a decomposable gaussian kernel
K(x, y) = exp(°∞kx°yk2)Im . The bandwith∞ and the regularization parameter∏were
chosen in the set {10°i ,5 ·10°i } for i 2 0, . . . ,5 during the gridsearch cross-validation
steps. For the k-Nearest Neighbors experiments, we used the euclidean distance and
the neighborhood size was chosen in the set {1,2,3,4,5,8,10,15,20,30,50}.

Table 4.2 – Mean Kendall’s ø coefficient on benchmark datasets

authorship glass iris vehicle vowel wine

kNN Hamming 0.01±0.02 0.08±0.04 -0.15±0.13 -0.21±0.04 0.24±0.04 -0.36±0.04
kNN Kemeny 0.94±0.02 0.85±0.06 0.95±0.05 0.85±0.03 0.85±0.02 0.94±0.05
kNN Lehmer 0.93±0.02 0.85±0.05 0.95±0.04 0.84±0.03 0.78±0.03 0.94±0.06
ridge Hamming -0.00±0.02 0.08±0.05 -0.10±0.13 -0.21±0.03 0.26±0.04 -0.36±0.03
ridge Lehmer 0.92±0.02 0.83±0.05 0.97±0.03 0.85±0.02 0.86±0.01 0.84±0.08
ridge Kemeny 0.94±0.02 0.86±0.06 0.97±0.05 0.89±0.03 0.92±0.01 0.94±0.05

Cheng PL 0.94±0.02 0.84±0.07 0.96±0.04 0.86±0.03 0.85±0.02 0.95±0.05
Cheng LWD 0.93±0.02 0.84±0.08 0.96±0.04 0.85±0.03 0.88±0.02 0.94±0.05
Zhou RF 0.91 0.89 0.97 0.86 0.87 0.95

In Table 4.3, we show that Lehmer and Hamming based embeddings stay com-
petitive on other standard benchmark datasets. The Ridge results have not been
reported here due to scalability issues as the number of input elements and the
output space size grow.

The Kemeny and Lehmer embedding-based approaches are competitive with
the state of the art methods on these benchmarks datasets. The Hamming based
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Table 4.3 – Kendall’s ø coefficient on large size datasets

bodyfat calhousing cpu-small pendigits segment wisconsin fried sushi

kNN Lehmer 0.23±0.01 0.22±0.01 0.40±0.01 0.94±0.00 0.95±0.01 0.49±0.00 0.85±0.02 0.17±0.01
kNN Kemeny 0.23±0.06 0.33±0.01 0.51±0.00 0.94±0.00 0.95±0.01 0.49±0.04 0.89±0.00 0.31±0.01

Cheng PL 0.23 0.33 0.50 0.94 0.95 0.48 0.89 0.32
Zhou RF 0.185 0.37 0.51 0.94 0.96 0.48 0.93 –

methods give poor results in terms of kø but become the best choice when measuring
the mean Hamming distance between predictions and ground truth (see Table 4.4).
In contrast, the fact that the Lehmer embedding performs well for the optimization
of the Kendall’s ø distance highlights its practical relevance for label ranking. On the
sushi dataset [KAMISHIMA and collab., 2010], we additionally tested our approach
Ridge Kemeny which obtained the same results as Cheng PL (0.32 Kendall’s ø). Note
that this last dataset is by construction an opinion corpus since each output instance
is a preference function over a set of sushis provided by a user for which we have as
inputs a set of descriptors. The goal is thus here to predict the preference function
for a new user given his gender, age and address descriptors.

We report additional results in terms of rescaled Hamming distance (dHK (æ,æ0) =
dH(æ,æ0)

K2 ) on the datasets previously presented. The results presented in Table 4.4
correspond to the mean normalized Hamming distance between the prediction and
the ground truth (lower is better). Whereas Hamming based embeddings led to very
low results on the task measured using the Kendall’s ø coefficient, they outperform
other embeddings for the Hamming distance minimization problem as expected.

Table 4.4 – rescaled Hamming distance

authorship glass iris vehicle vowel wine

kNN Kemeny 0.05±0.01 0.07±0.02 0.04±0.03 0.08±0.01 0.07±0.01 0.04±0.03
kNN Lehmer 0.05±0.01 0.08±0.02 0.03±0.03 0.10±0.01 0.10±0.01 0.04±0.03
kNN Hamming 0.05±0.01 0.08±0.02 0.03±0.03 0.08±0.02 0.07±0.01 0.04±0.03
ridge Kemeny 0.06±0.01 0.08±0.03 0.04±0.03 0.08±0.01 0.08±0.01 0.04±0.03
ridge Lehmer 0.05±0.01 0.09±0.03 0.02±0.02 0.10±0.01 0.08±0.01 0.09±0.04
ridge Hamming 0.04±0.01 0.06±0.02 0.02±0.02 0.07±0.01 0.05±0.01 0.04±0.02

The code to reproduce our results is available: https://github.com/akorba/
Structured_Approach_Label_Ranking/
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Chapter conclusion

This chapter introduced a novel framework for label ranking, which is based on
the theory of output embedding regression. The presented method provides a
unifying framework in which the complexity of the learning problem is directly
linked to the choice of a distance over two permutations. Moreover, we explicit
the link between the properties of a ranking embedding and the consistency of
the regression based approach according to the underlying loss function. The
experiments show that our approach is on par with the state of the art results
while providing stronger theoretical guarantees. A drawback of the preference
based representation of opinions is its lack of generality and consequently the
scarcity of the corresponding annotated data. In the next section, we move
towards a model that is adapted to a broader class of opinion models.
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Chapter 5

Structured Output Learning with
Abstention: Application to Accurate
Opinion Prediction

Chapter abstract

In the previous chapter, we explored the question of accurately predicting the
valences expressed over a set of possible targets by representing the opinion
structure with a preference function. In this section, we study the opinion
problem under the angle of a joint target and valence prediction problem. In
our contribution presented in [GARCIA and collab., 2018], we suppose that the
opinions can be represented by a depth 2 binary tree. Whereas we previously
focused on the preferences corresponding to the labels of the leaves, we aim
now at studying the problem of joint prediction of the entities and valences. To
do so, we design a family of loss functions able to take into account structured
abstention i.e. a mechanism that makes it possible to avoid predicting one
node for which the predictor hesitates and propagate this information to the
other predictions. We study the algorithmic and statistical properties of our
models and illustrate the results on 3 experiments on TripAdvisor reviews.
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We come back once again to the opinion structure depicted in Figure 5.3. In
this setting, the output objects take the form of graphs of variable shape depending
on the targets and aspects discussed in each opinionated content. Here we first
posit a fixed hierarchical structure taking the form of a depth 2 tree where the first
layer contains the possibly discussed aspects and the second layer represents the
possible valences associated to each cited target. Under this binary tree model,
a hierarchical relation exists between each target (labeled as one if an opinion is
expressed over it) and the corresponding valence nodes that can only be labeled as
one if the corresponding target is labeled one. Such structure can be efficiently taken
into account in our learning algorithms. Moreover, since predicting targets is often
harder than predicting valence levels due to the variety of target vocabularies, we
propose a mechanism to handle this uncertainty and increase the reliability of our
prediction. To summarize the contribution of this chapter are the following:

We propose a novel framework devoted to Structured Output Learning with Ab-
stention (SOLA). The structure prediction model is able to abstain from predicting
some labels in the structured output at a cost chosen by the user in a flexible way.
For that purpose, we decompose the problem into the learning of a pair of predictors,
one devoted to structured abstention and the other, to structured output prediction.
To compare fully labeled training data with predictions potentially containing ab-
stentions, we define a wide class of asymmetric abstention-aware losses. Learning is
achieved by surrogate regression in an appropriate feature space while prediction
with abstention is performed by solving a new pre-image problem. Thus, SOLA
extends recent ideas about Structured Output Prediction via surrogate problems
and calibration theory and enjoys statistical guarantees on the resulting excess risk.
Instantiated on a hierarchical abstention-aware loss, SOLA is shown to be relevant
for fine-grained opinion mining and gives state-of-the-art results on this task. More-
over, the abstention-aware representations can be used to competitively predict
user-review ratings based on a sentence-level opinion predictor.

5.1 Motivation

The goal of this chapter is to move from the prediction of a restricted set of valence
values to the more general problem of aspect based opinion mining. While this
problem has attracted a growing attention from the structured output prediction
community, it has also raised an unprecedented challenge: the human interpretation
of opinions expressed in the reviews is subjective and the opinion aspects and their
related valences are sometimes expressed in an ambiguous way and difficult to
annotate [CLAVEL and CALLEJAS, 2016; MARCHEGGIANI and collab., 2014]. In this
context, the prediction error should be flexible and should integrate this subjectivity
so that, for example, mistakes on one aspect do not interfere with the prediction of
valence. This requirement of robustness appears in practical applications where the
user will prefer in general to be aware of the noisy aspect of a prediction but also in
the case of pipelined predictor where downstream tasks may suffer from errors made
previously in the pipe.

In order to address this issue, we propose a novel framework called Structured
Output Learning with Abstention (SOLA) which allows for abstaining from predicting
parts of the structure, so as to avoid providing erroneous insights about the object
to be predicted, therefore increasing reliability. The new approach extends the
principles of learning with abstention recently introduced for binary classification
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[CORTES and collab., 2016] and generalizes surrogate least-square loss approaches
to Structured Output Prediction recently studied by BROUARD and collab. [2016];
CILIBERTO and collab. [2016]; OSOKIN and collab. [2017]. The main novelty comes
from the introduction of an asymmetric loss, based on embeddings of desired outputs
and outputs predicted with abstention in the same space. The chapter is organized
as follows. Section 2 introduces the problem to solve and the novel framework, SOLA.
Section 3 provides statistical guarantees about the excess risk in the framework of
Least Squares Surrogate Loss while section 4 is devoted to the pre-image developed
for hierarchical output structures. Section 5 presents the numerical experiments and
Section 6 draws a conclusion.

5.2 Structured Output Labeling with Abstention

Let X be the input sample space. We assume a target graph structure of interest,
G = (V = {∫1, . . . ,∫d },E : V £V ! {0,1}) where V is the set of vertices and E is the edge
relationship between vertices. A legal labeling or assignment of G is a d-dimensional
binary vector, y 2 {0,1}d , that also satisfies some properties induced by the graph
structure, i.e. by E. We call Y the subset of {0,1}d that contains all possible legal
labelings of G . Given G , the goal of Structured Output Labeling is to learn a function
f : X ! Y that predicts a legal labeling ŷ given some input x. Let us emphasize
that x does not necessarily share the same structure G with the outputs objects. For
instance, in Supervised Opinion Analysis, the inputs are reviews in natural language
described by a sequence of feature vectors, each of them representing a sentence.
Extending Supervised Classification with Abstention [CORTES and collab., 2016],
Structured Output Learning with Abstention aims at learning a pair of functions
s = (h,r ) from X to Y H,R Ω {0,1}d £ {0,1}d composed of a predictor h that predicts
the label of each component of the structure and an abstention function r that
determines on which components of the structure G to abstain from predicting a
label. If we note Y ? Ω {0,1, a}d , the set of legal labelings with abstention where a
denotes the abstention label, then the abstention-aware predictive model f h,r : X !
Y ? is defined from h and r as follows:

f h,r (x)T = [ f h,r
1 (x), . . . , f h,r

d (x)],

f h,r
i (x) = 1h(x)i=11r (x)i=1 +a1r (x)i=0. (5.1)

Now, assuming we have a random variable (X,Y) taking its values in X £Y and
distributed according to a probability distribution D. Learning the predictive model
raises the issue of designing an appropriate abstention-aware loss function to define
a learning problem as a risk minimization task. Given the relationship in Equation 5.1,
a risk on f h,r can be converted into a risk on the pair (h,r ) using an abstention-aware
loss ¢a : Y H,R £Y !R+:

R(h,r ) = Ex,yªD ¢a(h(x),r (x), y). (5.2)

In this chapter, we propose a family of abstention-aware losses that both generalizes
the abstention-aware loss in the binary classification case (see CORTES and collab.
[2016]) and extends the scope of hierarchical losses previously proposed by CESA-
BIANCHI and collab. [2006] for Hierarchical Output Labeling tasks. An abstention-
aware loss is required to deal asymmetrically with observed labels which are sup-
posed to be complete and predicted labels which may be incomplete due to partial
abstention. We thus propose the following general form for the ¢a function:
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¢a(h(x),r (x), y) = h√w a(y),C√a(h(x),r (x))i, (5.3)

relying on a bounded linear operator (a rectangular matrix) C :Rp !Rq and two
bounded feature maps: √a : Y H,R ! Rp devoted to outputs with abstention and
√w a : Y !Rq , devoted to outputs without abstention. Note that the representation
Equation 5.3 extends naturally the inner product loss formulation presented in
Chapter 3. The three components of the loss ¢a must enable the loss to be non
negative. This is the case for the following examples.

In Binary classification with abstention, we have Y = {0,1} and the abstention-
aware loss ¢bi n

a is defined by :

¢bi n
a (h(x),r (x), y) =

8
>><

>>:

1 if y 6= h(x) and r (x) = 1

0 if y = h(x) and r (x) = 1

c if r (x) = 0

,

where c 2 [0,0.5] is the rejection cost; with r (x) = 0, in case of abstention and 1,
otherwise. This can be written with the corresponding functions√w a and√a defined
as:

√w a(y) =
µ

y
1° y

∂
, C =

µ
0 1 c
1 0 c

∂
,

√a(h(x),r (x)) =

0

@
h(x)r (x)

(1°h(x))r (x)
1° r (x)

1

A .

H-loss (hierarchical loss): now we assume that the target structure G is a hierarchical
binary tree. Then, E is now the set of directed edges, reflecting a parent relationship
among nodes (each node except the root has one parent). Regarding the labeling, we
impose the following property : if an oriented pair (∫i ,∫ j ) 2 E, then yi ∏ y j , meaning
that a child node cannot be greater than his parent node. The H-loss [CESA-BIANCHI

and collab., 2006] which measures the length of the common path from the root to
the leaves between these assignments is defined as follows:

¢H(h(x), y) =
dX

i=1
ci 1h(x)i 6=yi 1h(x)p(i )=yp(i ) ,

where p(i ) is the index of the parent of i according to the set of edges E, and ci is a
set of positive constants non-increasing on paths from the root to the leaves.

Such a loss can be rewritten under the form: ¢H(h(x), y) = h√w a(y),C√w a(h(x))i
with

√w a(z) =
µ

z
Gz

∂
, C =

µ
°2di ag (c) di ag (c)

di ag (c) 0

∂
,

where G is the adjacency matrix of the underlying binary tree structure and c
the vector of weights defined above. Note that when all the binary labels are equally
important, the case of the Hamming loss can be recovered by choosing:
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√w a(y) =
µ

y
1° y

∂
, √a(h(x),r (x)) =

µ
1°h(x)

h(x)

∂
,

C = I2d ,

where I2d is the 2d identity matrix.
Abstention-aware H-loss (Ha-loss): By mixing the H-loss and the abstention-

aware binary classification loss, we get the novel Ha-loss which we define as follows:

¢Ha(h(x),r (x), y) =
dX

i=1
cAi 1{ f h,r

i =a, f h,r
p(i )=yp(i )}

| {z }
abstention cost

(5.4)

+ cAc i 1{ f h,r
i 6=yi , f h,r

p(i )=a}
| {z }

abstention regret

+ci 1{ f h,r
i 6=yi , f h,r

p(i )=yp(i ),a 6= f h,r
i }

| {z }
misclassification cost

,

where cAi and cAc i can be chosen as constants or be function of the predictions.
Thus, we have designed this loss so it is adapted to hierarchies where some nodes
are known to be hard to predict whereas their children are easy to predict. In this
case, the abstention choice can be used at a particular node to pay the cost cA for
predicting its child. If this prediction is still a mistake, the price cAc i is additionally
paid and acts as a regret cost penalizing the unnecessary abstention chosen at the
parent. Acting on cA and cAc provides a way to control the number of abstentions not
only through the risk taken by predicting a given node but also its children. For the
sake of readability and space, the dot product representation with √w a and √a of
this loss is detailed in the appendix A.2.4.

5.2.1 Empirical risk minimization for SOLA

The goal of SOLA is to learn a pair (h,r ) from a i.i.d. (training) sample drawn from a
probability distribution D that minimizes the true risk:

R(h,r ) = Ex,yªD ¢a(h(x),r (x), y),

= Ex,yªD h√w a(y),C√a(h(x),r (x))i.

We notice that this risk can be rewritten as an expected valued over the input
variables only:

R(h,r ) = Ex hEy |x√w a(y),C√a(h(x),r (x))i.

We thus adapt the 2 steps of Chapter 3 as follows:

• Step 1: we define g§(x) = Ey |x√w a(y) = ming2(X!Rq )Ex,yk√w a(y)° g (x)k2

| {z }
surrogate risk

. g§

is then the minimizer of a square surrogate risk.

• Step 2: we solve the following pre-image or decoding problem:

(ĥ(x), r̂ (x)) = argmin
(yh ,yr )2Y H,R

hg§(x),C√a(yh , yr )i.

Solving directly the problem above raises some difficulties:
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• In practice, as usual, we do not know the expected value of√w a(y) conditioned
on x: Ey |x√w a(y) needs to be estimated from the training sample {(xi , yi ), i =
1, . . . ,n}. This simple regression problem is referred to as the learning step and
will be solved in the next subsection.

• The complexity of the argmin problem will depend on some properties of
√a . We will refer to this problem as the pre-image and show how to solve it
practically at a later stage.

These pitfalls, common to all structured output learning problems, can be over-
come by substituting a surrogate loss to the target loss and proceeding in two steps:

1. Solve the surrogate penalized empirical problem (learning phase):

min
g

1
n

nX

i=1
k√w a(yi )° g (xi )k2 +∏≠(g ), (5.5)

where≠ is a penalty function and ∏ a positive parameter. Thus, get a minimizer
ĝ which is an estimate of Ey |x√w a(y).

2. Solve the pre-image or decoding problem:

(ĥ(x), r̂ (x)) =
argmin

(h(x),r (x))2Y H,R
hĝ (x),C√a(h(x),r (x))i. (5.6)

5.3 Geometric interpretation of prediction with absten-
tion

To have an intuition of the complete process, we illustrate the prediction without
abstention in Figure 5.1. For each output object yi displayed on the right part of
the figure, the function √w a creates a representation √i in Rq displayed as circle
dots. Step 1 (learning phase) consists in learning a regressor mapping the input
sample to the space of intermediate representations √i . The image of the input
sample is represented using star dots. Then Step 2 (pre-image or prediction step)
consists in mapping each point in the intermediate space to the closest√i candidate.
Geometrically, there exists a set of piecewise linears classifiers depicted in Figure 5.1
which partitions the intermediate space and corresponds to the final prediction
function.

When introducing the abstention mechanism, we allow the predictor to choose
new labeled structures to avoid making difficult choices. This is done by adding new
available output objects yabs i . In Figure 5.2, the image of these objects would be
placed out of the displayed plane with a positive value on the z axis. The resulting
abstention objects thus modify the partition of the intermediate space and create
new zones around the previously separating hyperplanes indicated in dotted red.
In these hard to predict zones, the abstention objects are chosen in place of one of
the original labels. Now we take a general point of view and describe the learning
process and the statistical and algorithmic properties of the predictors.
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Figure 5.1 – Steps of prediction without abstention

Figure 5.2 – Steps of prediction with abstention

5.4 Estimation of the conditional densityEy |x√w a(y) from
training data

We choose to solve this problem in H Ω F (X ,Rq ), a vector-valued Reproducing
Kernel Hilbert Space associated to an operator-valued kernel K : X £X ! L (Rq ).
For the sake of simplicity, K is chosen as a decomposable operator-valued kernel
with identity: K(x, x 0) = Ik(x, x 0) where k is a positive definite kernel on X and I is
the q £q identity matrix. The penalty is chosen as ≠(g ) = kgk2

H . This choice leads to
the ridge regression problem:

argmin
g2H

nX

i=1
kg (xi )°√w a(yi )k2 +∏kgk2

H , (5.7)

that admits a unique and well known closed-form solution [BROUARD and collab.,
2016; MICCHELLI and PONTIL, 2005].

This problem corresponds to the one presented in Chapter 3. As ĝ (x) is only
needed at the prediction stage, within the pre-image to solve, it is important to
emphasize the dependency of ĝ (x) on the feature vectors √w a(yi ):

ĝ (x) =
nX

i=1
Æi (x)√w a(yi ), (5.8)

where Æ(x) is the following vector:

Æ(x) = Kx(K+∏Iqn)°1, (5.9)
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where Kx = [K(x, x1), . . . ,K(x, xn)]; K is the qn £ qn block matrix such that Ki , j =
K(xi , x j ), Iqn is the identity matrix of the same size and Æi (x) is the block i of Æ(x).

5.5 Learning guarantee for structured losses with ab-
stention

In this section, we give some statistical guarantees when learning predictors in
the framework previously described. To this end, we build on recent results in the
framework of Least Squares Loss Surrogate [CILIBERTO and collab., 2016] presented
in Chapter 3 that are extended to abstention-aware prediction.

Theorem 5. Given the definition of ¢a in Equation 5.3, let us denote (h,r ), the pair
of predictor and reject functions associated to the estimate ĝ obtained by solving the
learning problem stated in Equation 5.7:

(h(x),r (x)) = argmin
(yh ,yr )2Y H,R

hC√a(yh , yr ), ĝ (x)i.

Its true risk with respect to ¢a writes as:

R(h,r ) = ExhC√a(h(x),r (x)),Ey |x√w a(y)i.

The optimal predictor (h§,r §) is defined as:

(h§(x),r §(x)) = argmin
(yh ,yr )2Y H,R

hC√a(yh , yr ),Ey |x√w a(y)i.

The excess risk of an abstention aware predictor (h,r ): R(h,r )°R(h?,r?) is linked to
the estimation error of the conditional density Ey |x√w a(y) by the following inequality:

R(h,r )°R(h?,r?) ∑ 2cl

q
L (ĝ )°L (Ey |x√w a(y)), (5.10)

where L (g ) = Ex,yk√w a(y)° g (x)k2, and cl = kCkmaxyh ,yr 2Y H,R k√a(yh , yr )kRp .

The full proof is given in the Appendix A.1.1. Close to the one by CILIBERTO

and collab. [2016], it is extended by taking the sup of the norm of √a over Y H,R.
Moreover when the problem (Equation 5.7) is solved by Kernel Ridge Regression,
CILIBERTO and collab. [2016] have shown the universal consistency and have ob-
tained a generalization bound that still holds in our case since it relies on the result
of Theorem 5 only. As a consequence the excess risk of predictors built in the SOLA
framework is controlled by the risk suffered at the learning step for which we use
off the shelf vector valued regressors with their own convergence guarantees. In the
following, we specifically study the pre-image problem in the SOLA framework for a
class of output structures that we detail hereafter.

5.6 Pre-image for hierarchical structures with Absten-
tion

In what follows we focus on a class of structured outputs that can be viewed as
hierarchical objects for which we show how to solve the pre-image problems involved
for a large class of losses.
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5.6.1 Hierarchical output structures

Definition 12. A HEX graph G = (V,Eh ,Ee ) is a graph consisting of a set of nodes V =
{v1, . . . , vn}, directed edges Eh Ω V £V, and undirected edges Ee Ω V £V , such that the
subgraph Gh = (V,Eh) is a directed acyclic graph (DAG) and the subgraph Ge = (V,Ee )
has no self loop.

Definition 13. An assignment (state) y 2 {0,1}d of labels V in a HEX graph G =
(V,Eh ,Ee ) is legal if for any pair of nodes labeled (y(i ), y( j )) = (1,1), (vi , v j ) › Ee and for
any pair (y(i ), y( j )) = (0,1), (vi , v j ) › Eh.

Definition 14. The state space SG µ {0,1}d of graph G is the set of all legal assignments
of G.

Thus a HEX graph can be described by a pair of (1) a directed graph over a set
of binary nodes indicating that any child can be labeled 1 only if its parent is also
labeled 1 and (2) an undirected graph of exclusions such that two nodes linked by an
edge cannot be simultaneously labeled 1. Note that HEX graphs can represent any
type of binary labeled graph since Eh and Ee can be empty sets. In previous works,
they have been used to model some coarse to fine ontology through the hierarchy Gh

while incorporating some prior known labels exclusions encoded by Ge [BENTAIEB

and HAMARNEH, 2016; DENG and collab., 2014]
While the output data we consider consists of HEX graph assignments , our

predictions with abstention (h(x),r (x)) belong to another space Y H,R µ {0,1}d £
{0,1}d for which we do not restrict h(x) to belong to Y but rather allow for other
choices detailed in the next section.

5.6.2 Efficient solution for the preimage problem

The complexity of the pre-image problem is due to two aspects: i) the space in which
we search for the solution (Y H,R) can be hard to explore; and ii) the √a function can
lead to high dimensional representations for which the minimization problem is
harder.

The pre-image problem involves a minimization over a constrained set of binary
variables. For a large class of abstention-aware predictors we propose a branch-and-
bound formulation for which a nearly optimal initialization point can be obtained
in a polynomial time. Following the line given by the form of our abstention aware
predictor f h,r defined in Section 5.2, we consider losses involving binary interaction
between the predict function h(x) and the reject function r (x), and suppose that

there exists a rectangular matrix M such that √a(h(x),r (x)) = M

0

@
h(x)
r (x)

h(x)≠ r (x)

1

A where

≠ is the Kronecker product between vectors. Such a class takes as special cases the
examples presented in Section 5.2. We state the following linearization theorem
under binary interaction hypothesis:

Theorem 6. Let lha be an abstention-aware loss defined by its output mappings √w a,
√a and the corresponding cost matrix C.

If the √a mapping is a linear function of the binary interactions of h(x) and
r (x) i.e. there exists a matrix M such that 8(h(x),r (x)) 2 Y H,R √a(h(x),r (x)) =

79



CHAPTER 5. STRUCTURED OUTPUT LEARNING WITH ABSTENTION:
APPLICATION TO ACCURATE OPINION PREDICTION

M

0

@
h(x)
r (x)

h(x)≠ r (x)

1

A, then there exists a bounded linear operator A and a vector b such

that 8√x 2Rp the pre-image problem:

(ĥ(x), r̂ (x)) = argmin
(yh ,yr )2Y H,R

h√a(yh , yr ),√xi,

has the same solutions as the linear program:

ĥ(x), r̂ (x) = argmin
(yh ,yr )2Y H,R

[yT
h yT

r cT]MT√x

s.t. A

0

@
yh

yr

c

1

A∑ b.

Where c is a d 2 dimensional vector constrained to be equal to yh ≠ yr .

The proof is detailed in the appendix A.2.1.
The problem above still involves a minimization over the structured binary set

Y H,R. Such a set of solutions encodes some predefined constraints:

• Since the objects we intend to predict are HEX graph assignments, the vectors
of the output space y 2 Y should satisfy the hierarchical constraint : yi ∑
yp(i ) with p(i ) the index of the parent of i according to the hierarchy. When
predicting with abstention we relax this condition since we suppose that a
descendant node can take the value yi = 1 if its parent was active yp(i ) = 1 or if
we abstained from predicting it rp(i ) = 0. Such a condition is equivalent to the
constraint

yi rp(i ) ∑ yp(i )rp(i ). (5.11)

• A second condition we used in practice is the restriction of the use of abstention
for two consecutive nodes: structured abstention at a layer must be used in
order to reveal a subsequent prediction which is known to be easy. Such a
condition can be encoded through the inequality:

ri + rp(i ) ∑ 1. (5.12)

In our experiments, the structured space Y H,R has been chosen as the set of bi-
nary vectors (h(x),r (x)) 2Y H,R that respect the two above conditions. These choices
are motivated by our application but note that any subset of {0,1}d £ {0,1}d can be

built in a similar way by adding some inequality constraints: AY H,R

0

@
h(x)
r (x)

h(x)≠ r (x)

1

A∑

bY H,R . Consequently, the Y H,R constraints can be added to the previous minimiza-
tion problem to build the canonical form:

(ĥ(x), r̂ (x)) =argmin
(yh ,yr )

[yT
h yT

r cT]MT√x

s.t. Acanonical

0

@
yh

yr

c

1

A∑ bcanonical,

(yh , yr ) 2 {0,1}d £ {0,1}d ,
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where Acanonical =
µ

A
AY H,R

∂
and bcanonical =

µ
b

bY H,R

∂
.

The complexity of the problem above is linked to some properties of the Acanonical

operator. GOH and JAILLET [2016] have shown that in the case of the minimization
of the H-loss with hierarchical constraints, the linear operator Acanonical satisfies the
property of total unimodularity [SCHRIJVER, 1998] which is a sufficient condition for
the problem above to have the same solutions as its continuous relaxation leading to
a polynomial time algorithm. In the more general case of the Ha-loss, solving such
an integer program is NP-hard and the optimal solution can be obtained using a
branch-and-bound algorithm. When implementing this type of approach, the choice
of the initialization point can strongly influence the convergence time. As in practical
applications, we expect the number of abstentions to remain low, such a point can be
chosen as the solution of the original prediction problem without abstention [GOH

and JAILLET, 2016]. Moreover since the abstention mechanism should modify only a
small subset of the predictions, we expect this solution to be close to the abstention
aware one.

5.7 Numerical Experiments

We study three subtasks of opinion mining, namely sentence-based aspect prediction,
sentence-based joint prediction of aspects and valences (possibly with abstention)
and full review-based star rating. We show that these tasks can be linked using a
hierarchical graph similar to the probabilistic model of MARCHEGGIANI and collab.
[2014] and exploit the abstention mechanism to build a robust pipeline: based on
the opinion labels available at the sentence-level, we build a two-stage predictor
that first predicts the aspects and valences at the sentence level, before deducing the
corresponding review-level values.

5.7.1 Parameterization of the Ha-loss

In all our experiments, we rely on the expression of the Ha-loss presented in Equa-
tion 5.4. The linear programming formulation of the pre-image problem used in
the branch-and-bound solver is derived in the supplementary material and involves
a decomposition similar to the one described in Section 5.2 for the H-loss. Imple-
menting the Ha-loss requires choosing the weights ci ,cAi and cAc i . We first fix the ci

weights in the following way :

c0 = 1

ci =
cp(i )

|siblings(i)|
8i 2 {1, . . . ,d}.

Here, 0 is assumed to be the index of the root node. This weighting scheme has been
commonly used in previous studies [BI and KWOK, 2012; ROUSU and collab., 2006]
and is related to the minimization of the Hamming Loss on a vectorized represen-
tation of the graph assignment. As far as the abstention weights cAi and cAc i are
concerned, making an exhaustive analysis of all the possible choices is impossible
due to the number of parameters involved. Therefore, our experiments focus on
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weighting schemes built in the following way:

cAi = KAci

cAc i = KAc ci

The effect of the choices of KA and KAc will be illustrated below on the opinion predic-
tion task. We also ran a set of experiments on a hierarchical classification task of MRI
images from the IMAGECLEF2007 dataset reusing the setting of DIMITROVSKI and col-
lab. [2008] where we show the results obtained for different ci weighting schemes.
The settings and the results have been placed in the supplementary material.

5.7.2 Learning with Abstention for aspect-based opinion mining

We test our model on the problem of aspect-based opinion mining on a subset of
the TripAdvisor dataset released in MARCHEGGIANI and collab. [2014]. It consists of
369 hotel reviews for a total of 4856 sentences with predefined train and test sets. In
addition to the review-level star ratings, the authors gathered the opinion annotations
at the sentence-level for a set of 11 predefined aspects and their corresponding
valence. Similarly to them, we discard the “NOT RELATED” aspect and consider the
remaining 10 aspects with the 3 different valences (positive, negative or neutral) for
each. We propose a graphical representation of the opinion structure at the sentence
level (see Figure 5.3). Objects in the output space y 2Y consist of trees of depth 3
where the first node is the root, the second layer is made of aspect labels and the third
one is the valences corresponding to each aspect. The corresponding assignments
are encoded by a binary matrix y 2 Y where y is the concatenation of the vectors
indicating the presence of each aspect (depth 2) and the ones indicating the valence.

An example of y encoding is displayed in Figure 5.3. Based on the recent results
of CONNEAU and collab. [2017], we focus on the InferSent representation to encode
our inputs. This dense sentence embedding corresponds to the inner representation
of a deep neural network trained on a natural language inference task and has been
shown to give competitive results in other natural language processing tasks.

We test our model on 3 different subtasks. In Exp1, we first apply our model
(H Regression InferSent) to the task of opinion aspect prediction and compare it
against two baselines and the original results of MARCHEGGIANI and collab. [2014].
In Exp2, we test our method and baselines on the problem of joint aspect and
valence prediction in order to assess the ability of the hierarchical predictor to take
advantage of the output structure. On this task we additionally illustrate the behavior
of abstention when varying the constants KA and KAc . In Exp3, we illustrate the use
of abstention as a mean to build a robust pipeline on the task of star rating regression
based on a sentence-level opinion predictor.

Exp1. Aspect prediction. In this first task, we aim at predicting the different
aspects discussed in each sentence. This problem can be cast as a multilabel clas-
sification problem where the target is the first column of the output objects y for
which we devise two baselines. The first relies on a logistic regression model (Logistic
Regression InferSent) trained separately for each aspect. The second baseline (Linear
chain Conditional Random Fields (CRF) [SUTTON and collab., 2012] InferSent) is in-
spired by the work of MARCHEGGIANI and collab. [2014] who built a hierarchical CRF
model based on a handcrafted sparse feature set including one-hot word encoding,
POS tags and sentiment vocabulary. Since the optimization via Gibbs sampling of
their model relies on the sparsity of the feature set, we could not directly use it with
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Figure 5.3 – Graphical representation of the opinion structure

our dense representation. Linear chain CRF InferSent takes advantage of our input
features while remaining computationally tractable. One linear chain is trained for
each node of the output structures and the chain encodes the dependency between
successive sentences.

Table 5.1 below shows the results in terms of micro-averaged F1 (µ-F1) score
obtained on the task of aspect prediction. The three methods using InferSent give

method µ-F1
H Regression InferSent 0.59
Logistic Regression InferSent 0.60
Linear chain CRF InferSent 0.59
Linear chain CRF sparse features
[MARCHEGGIANI and collab., 2014]

0.49

Hierarchical CRF sparse features
[MARCHEGGIANI and collab., 2014]

0.49

Table 5.1 – Experimental results on the TripAdvisor dataset for the aspect prediction task.

significantly better results than MARCHEGGIANI and collab. [2014]. Consequently,
the next experiments will not consider them. Even though H Regression was trained
in order to predict the whole structure, it obtains results similar to logistic regression
and linear chain CRF.

Exp2. Joint valence and aspect prediction with abstention. We take as output
objects the assignments of the graph described (Figure 5.3) and build an adapted
abstention mechanism. Our intuition is that in some cases, the valence might be
easier to predict than the aspect to which it is linked. This can typically happen
when some vocabulary linked to the current aspect has been unseen during the
training or is implicit whereas the valence vocabulary is correctly recognized. An
example is the sentence " We had great views over the East River" where the aspect
"Location" is implicit and where the "views" could mislead the predictor and result
in a prediction of the aspect "Other". In such a case, MARCHEGGIANI and collab.
[2014] underline that the inter-annotator agreement is low. For this reason, we would
like our classifier to allow multiple candidates for aspect prediction while providing
the valence corresponding to them. We illustrate this behavior by running two sets

83



CHAPTER 5. STRUCTURED OUTPUT LEARNING WITH ABSTENTION:
APPLICATION TO ACCURATE OPINION PREDICTION

of experiments in which we do not allow the predictor to abstain on the valence.
In the first experiment, we want to analyze the influence of the parameteri-

zation of the Ha-loss. Following the parameterization of cAi and cAc i previously
proposed, we generated some predictions with varying values of KA 2 [0,0.5] and
KAc 2 {0.25,0.5,0.75}. We displayed the Hamming loss between the true labels and
the predictions as a function of the mean number of aspects on which the predictor
abstained (Figure 5.4) and handle two cases : modified : in the left figure, all nodes ex-
cept the one on which we abstained were used to compute the Hamming loss. In the
right one, all nodes except the aspect on which we abstained and their corresponding
valence were used to compute the Hamming loss. The HStrict results correspond to a
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Figure 5.4 – Hamming loss as a function of the number of aspect labels where the predictor
abstained itself.

predictor for which the original hierarchical constraint is forced: y(i ) ∑ yp(i ) and the
three other curves have been obtained with the generalized constraint hypothesis
y(i )rp(i ) ∑ yp(i )rp(i ).

We additionally ran our model H Regression without abstention and our two
baselines (logistic regression and linear chain CRF) for which we measured a similar
Hamming loss of 0.03 (corresponding to 0 abstention on the left Figure 5.4). Con-
cerning the micro-averaged F1 score, the H Regression retrieved a score of 0.54 being
slightly above the logistic regression which scored 0.53 and the linear chain CRF with
0.52.

Two conclusions can be raised. Firstly, the value of KAc and the choice of the
hypothesis HStrict have little to no influence on the scores computed in the two cases
previously described. Secondly, increasing the number of abstentions on aspects
helps reducing the number of errors counted on the aspect nodes when the predictor
abstains on less than 3 labels. After this point, the quality of the overall prediction
decreases since the error rate on the remaining aspects selected for abstention is less
than the one on the valence labels

Subsequently, we examine the Hamming loss on the valence predictions situated
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after an aspect node to understand the influence of the cAc coefficients and the
relaxation of the HStrict hypothesis in Figure 5.5. The orange curve gives the best
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Figure 5.5 – Hamming loss computed on valence nodes located after an aspect for which the
predictor abstained

score when the mean number of abstentions is between 2 and 4 per sentence. The
only difference with the Hstrict hypothesis is the ability to predict the valence of an
aspect candidate for abstention even if the predictor function does not select it. This
behavior is made possible by the fact that our prediction does not respect the Y
constraints but instead belong to the more flexible space Y H,R. Finally we show how
abstention can be used to build a robust pipeline for star-rating regression.

Exp3. Star rating regression at the review level based on sentence-level predic-
tions. In the last round of experiments, we show that abstention can be used as
a way to build a robust intermediate representation for the task of opinion rating
regression [WANG and collab., 2011] which consists in predicting the overall average
star rating given by each reviewer on a subset of six predefined aspects. The figure
below illustrates the different elements involved in our problem. The procedure

Figure 5.6 – Star rating regression pipeline

is split in two steps. Firstly, we learn a sentence-level opinion predictor that takes
advantage of the available annotations. This step corresponds to the one studied in
the previous experiment. Then a vector-valued regressor (star regressor in Figure 5.6)
is built. It takes as input the component-wise average of the sentence level opinion
representations, and intends to predict the star ratings at the review level. For each of
the five overall aspects a separate Ridge Regressor is trained based on the true labels

85



CHAPTER 5. STRUCTURED OUTPUT LEARNING WITH ABSTENTION:
APPLICATION TO ACCURATE OPINION PREDICTION

available. Once learned, the regressors take as input the prediction of the first step in
a pipelined way

Similarly to MARCHEGGIANI and collab. [2014], we rescale the star ratings on a
(-1,0,1) scale and report the macro-averaged mean average error on the test-set in
Table 5.2 under the column MAE text level. We additionally include the MAE error
measured on valence predictions at the sentence level counted when the underlying
aspect predicted is a true positive. The first row is our oracle: the sentence-level

method
MAE

sentence level
MAE

text level
Oracle: regression with

true sentence labels
0 0.38

Hierarchical CRF 0.50 0.50
H Regression 0.30 0.45

H Regression
with Abstention

C 0.43

Table 5.2 – Experimental result on the TripAdvisor dataset for the valence prediction task

opinion representations are assumed to be known on the test set and fed to the
text-level opinion regressors to find back the star ratings. The Hierarchical CRF line
corresponds to the best results reported by MARCHEGGIANI and collab. [2014] on
the two tasks. H Regression is our model without abstention used as a predictor
of the sentence-level representation in the pipeline shown in Figure 5.6. Finally
for the H Regression with abstention, we used as a sentence-level representation :
ya = h(x)°(1°r (x)). Since the only non-zero components of (1°r (x)) correspond to
aspects on which we abstained, subtracting them from the original prediction results
in a reduction of the confidence of the regressor for these aspects and biasing the
corresponding valence predictions towards 0. H Regression strongly outperforms
Hierarchical CRF on both tasks. We do not report the score for H Regression with
abstention since it is dependent on the number of abstentions but show that it
improves the results of the H Regression model on the text-level prediction task. The
significance of the scores has been assessed with a Wilcoxon rank sum test (p-value
10°6).
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Chapter conclusion

The novel framework, Structured Learning with Abstention, extends two fami-
lies of approaches: learning with abstention and least-squares surrogate struc-
tured prediction. It is important to notice that beyond ridge regression, any
vector-valued regression model that writes as (5.8) is eligible. This is typically
the case of Output Kernel tree-based methods [GEURTS and collab., 2006]. Also,
SOLA has here been applied to opinion analysis but it could prove suitable for
more complex structure-labeling problems. Concerning Opinion Analysis, we
have shown that abstention can be used to build a robust representation for
star rating in a pipeline framework. One extension of our work would consist
in learning how to abstain by jointly predicting the aspects and valence at the
sentence and text level.
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Part II Conclusion

This part proposed to explore the computational and statistical properties
of predictors devoted to some restricted models of opinion. We focused on
2 models: the preference model that characterizes comparable objects and
the binary hierarchical model that relies on a hierarchical representation of
the target objects, their parts and the valence of the expression associated to
them. In both cases, the predictors where built in the framework of output
kernel regression and the consistency of the method has been assessed. On
the computational side, we highlighted the link between the choice of a loss
and the difficulty of the pre-image problem. Despite the good mathematical
understanding of these techniques, such models correspond to fixed size out-
put objects and cannot easily be adapted to a more general class of structured
object involving general graph structures. In the next section we move to a
more general setting and build upon hierarchical sequential neural networks
to handle a larger class of opinion descriptions.
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Part III Introduction

The theoretical problems studied in the second part of this thesis have relied
on opinion models of limited complexity for which we can design theoretically
grounded machine learning approaches. However in real applications we
would like to use more complex objects that better characterize the human
expressions. Not only can the design of predictors dedicated to such objects
be difficult, but it is also hard to collect complex annotations of spontaneous
spoken language. This third part is split in two chapters that cover two aspects
of the difficulties arising when trying to build complex opinions predictors:

• In Chapter 6, we study the problem of collecting fine grained opinion
annotations on spontaneous spoken language. We discuss the specifici-
ties of existing resources and motivate the need to build a new dataset
for which we detail the difficulties of the annotation campaign and the
solutions we have chosen.

• In Chapter 7, we design a predictor adapted to the specificities of our
data. It relies on a deep neural architecture able to build a representation
of the review at different granularities so as to take advantage of various
types of labels. We run some experiments to understand what the best
architectures are and what learning strategies to use in this context. We
show that the joint prediction approach leads to improvements over the
accuracy obtained with independent predictors of the opinion labels.
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Chapter 6

A multimodal movie review corpus for
fine-grained opinion mining

Chapter abstract

Since this part is dedicated to the study of a more complex case of opinion
prediction, we first motivate the need to build a new dataset that we exploit
in a second time. In this chapter, we introduce a set of opinion annotations
for the POM movie review dataset, composed of 1000 videos. The annotation
campaign is motivated by the development of a hierarchical opinion prediction
framework allowing one to predict the different components of the opinions
(e.g. polarity and aspect) and to identify the corresponding textual spans. The
resulting annotations have been gathered at two granularity levels: a coarse
one (opinionated span) and a finer one (span of opinion components). We
introduce specific categories in order to make the annotation of opinions
easier for movie reviews. For example, some categories allow the discovery of
specific subjective expressions such as user recommendation and preference
in movie reviews. We provide a quantitative analysis of the annotations and
report the inter-annotator agreement under the different levels of granularity.
We thus provide the first set of ground-truth annotations which can be used for
the task of fine-grained multimodal opinion prediction. We offer an analysis
of the data gathered, through an inter-annotator study, and show that a linear
structured predictor learns meaningful features even for the prediction of
scarce labels. The content of this chapter has been publicly released and can
be found on an open preprint server [GARCIA and collab., 2019].
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6.1 Introduction

We first focus on the motivation for building our dataset. Whereas a large body
of work on opinion mining has relied on data from many different sources such
as reviews from purchasable goods (Amazon, PriceMinister reviews) or touristic
services (Hotels and restaurants from TripAdvisor) and activities (Rotten Tomatoes,
Imdb), they often only come with one or more ratings summarizing the reviewer’s
satisfaction-level with respect to some aspects of the object being criticized. This
corresponds typically to the setting presented in the second part of the thesis.

Even if these ratings provide a mean to measure the global satisfaction of cus-
tomers, this information cannot be directly used to understand the specific aspects
of the product which require improvement. Following this path, different studies
have built coding schema for describing and annotating aspects of opinions in order
to describe them accurately. A common feature of these models is the definition
of the functional components of an opinion and their properties (e.g. implicit or
explicit) [WIEBE and collab., 2005]. Unfortunately, the human interpretation of opin-
ions expressed in the reviews is highly subjective and the opinion aspects and their
related polarities are sometimes expressed in an ambiguous way and are difficult to
annotate [CLAVEL and CALLEJAS, 2016; MARCHEGGIANI and collab., 2014]. In the case
of spoken language, this difficulty is even higher due to the lack of syntax of some
sentences and the presence of disfluencies that break the continuity of the discourse.

In this chapter, we propose flexible guidelines for the fine grained annotation of
opinion structures in the context of video based movie reviews. The corresponding
scheme introduces some links between coarse opinion recognition (at the review
level) and the detection of token-level opinion functional components. This nested
model ensures that the annotations are consistent at different levels of details and
can be used in joint prediction models (see Chapter 5) to take into account the
labeled information at each level. Since the content handled by each annotator is
a set of transcripts of spontaneous spoken reviews, the main difficulty is to provide
guidelines that are flexible enough to match with the structure of oral language while
ensuring a correct agreement between multiple workers.

In Section 6.2, we present the previous studies concerning opinion annotation
and especially the studies carried out on existing multimodal datasets. Then, we
present the dataset we used in Section 6.3 and the protocol and the setting of our
annotation campaign (Section 6.4). Finally, we present some results validating the
dataset in Section 6.6.

6.2 Related work

The annotation of opinion in natural language is quite difficult due to the inherent
subjectivity of the task and the need for a framework that ensures that different
annotators work in a consistent way. An example of such a framework is the annota-
tion scheme of the MPQA opinion corpus (news articles) [WIEBE and collab., 2005]
which relies on the annotation of private state frames, i.e. textual spans that describe
a mental state of the author. In the case of an opinion, it can describe either the
target (what the private state is about), the source or holder (who is expressing the
opinion) and other characteristics such as polarity, intensity or attitude. In [TOPRAK

and collab., 2010], the authors improve the annotation scheme for consumer reviews
by splitting it in two successive steps where the polarity and the relevance to the
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topic of the sentences is first examined and then the different opinion components
are identified. They also go beyond the annotation of private state frames and ex-
plicitly introduce some new labels: is reference and modifiers that link the different
opinion components together. In this chapter, we take a step in the same direction
by proposing a fine-grained annotation of opinion components and we propose a
new setting more flexible for the annotation of multimodal movie reviews.

Regarding multimodal review corpora, even though no fine-grained annotation
of these datasets currently exist, different related annotation tasks have been pro-
posed. Among these efforts, the ICT-MMMO corpus [WÖLLMER and collab., 2013]
consists of 370 movie review videos for which an annotator has given an overall label:
positive, negative or neutral, to describe the viewpoint of the reviewer. The recent
CMU Multimodal SDK [ZADEH and collab., 2018] provides a setting ready-to-use
for building multimodal predictors based on opinionated or emotionally colored
content. In the CMU-MISO dataset [ZADEH and collab., 2016], 93 videos have been
gathered and annotated at the segment level in terms of intensity of the opinion
expressed. In their case, opinion is defined as a subjective segment for which a cate-
gorical label between 1 and 5 is given. This representation is in fact restrictive since
it does not provide information about the target of the expressed opinion. Besides,
it does not provide information on the cues that have been used in order to choose
a particular intensity. For the present first annotation campaign of fine-grained
opinion in multimodal movie reviews, we use the Persuasive Opinion Multimedia
(POM) dataset [PARK and collab., 2014] which consists of 1000 video-based movie
reviews that were originally annotated in terms of persuasiveness of each speaker. In
the next section, we present the different features of the POM database that led us to
select it.

6.3 The video opinion movie corpus

Our annotation campaign focuses on the identification of the opinions expressed in
the POM dataset. In each video, a single speaker in frontal view gives his/her opinion
on a movie that he/she has seen. The corpus contains 372 unique speakers and 600
unique movie titles. It has originally been built in order to analyze the persuasiveness
of the speakers and no attention has been so far given to the content of the reviews
themselves. We expect however that the use of multi-modal data can be of interest
when predicting polarized content. Figure 6.1 shows examples where it is clear that
the visual content may be crucial to disambiguate the polarity of some reviews (for
example in the hard case of irony).

This dataset has been chosen for running an annotation campaign for the follow-
ing reasons:

1) The restricted setting helps the target identification: the documents contain
opinionated content and are focused on a single type of target (here movie aspects)
which makes it easier to build a typology of the possible targets for the target annota-
tion task;

2) It provides an illustration of spontaneous spoken expressions of opinions in a
multimodal context: the reviews are based on spoken language for which the video
is also available contrarily to previous studies of sentiment analysis based on phone
call studies [CLAVEL and collab., 2013]. As a consequence, the annotation of the
transcript is harder than for classical written language especially at a fine-grained
level;
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(a) Negative opinion (b) Other example of neg-
ative opinion

(c) Positive opinion (d) Neutral opinion

Figure 6.1 – Examples of frames taken from different videos of the dataset illustrating the
visual expression of opinions.

3) We can build a hierarchical representation of opinions: other auxiliary labels
are available such as star ratings given by the reviewer, sentence-based summary
and persuasiveness. The fine-grained annotations can be used as intermediate
representations to help predicting these values (see Chapter 5).

The POM dataset also provides a manual transcription for each review that we
used in our annotation campaign. It contains 1000 reviews for which the average
number of sentences per review is 15.1 and the average number of tokens per sen-
tence is 22.5. In its current version, this dataset only contains annotations performed
at the review level. Indicators of the persuasiveness of the speaker are available (pro-
fessionalism, quality of argumentation . . . ). Among the available data, the authors of
[PARK and collab., 2014] asked the annotators to evaluate the polarity of the reviews
by guessing its corresponding five-level star rating. The results in Table 6.1 show
that the reviews are strongly polarized which indicates the presence of clear opinion
expressions.

Table 6.1 – Distribution of the star ratings at the review level

Star rating 1 2 3 4 5
Number of
occurrences

253 200 61 133 353

In the next section, we detail our setup for the fine grained opinion annotation of
the POM dataset.

6.4 Annotation

6.4.1 Opinion definition

Following the path of previous opinion annotation studies [LANGLET and collab.,
2017] and based on appraisal theory [MARTIN and WHITE], we recall that opinions
are defined as the expression of a judgement of quality or value of an object (for
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more background concerning formal definitions of opinion, see Chapter 2). This
definition makes it possible to represent an opinion (here called attitude) as an eval-
uation (positive or negative) by a holder (for example the person who expresses her
opinion) of a target (for example a service or a product). In the case of movie reviews,
the opinion holder is the reviewer herself most of the time but some exceptions ex-
ist. For example, in the sentence "my children like the characters of this
cartoon", the holder is ’children’. The target component is defined here as a part
of a hierarchically defined set of aspects [WEI and GULLA, 2010] which covers the
subparts of the object examined (here movie reviews). Finally, the polarity compo-
nent indicates whether the evaluation is positive or negative. In what follows, we
define an opinion as an expression for which these 3 components exist and are not
ambiguous. The present definition does not include: i) emotions without any target
[MUNEZERO and collab., 2014] such as in the sentence "I was so scared", and ii) polar
facts [JAKOB and GUREVYCH, 2010] which denotes for facts that can be objectively
verified but indirectly carry an evaluation such as in "What a surprise he plays the
bad guy once again". In Section 6.5, we provide guidelines to handle these cases in
the annotation process.

6.4.2 Fine-grained annotation strategy

We want to build a set of annotations that identifies the grounds on which the
opinions of the reviewer are perceived by an annotator, both at the expression and at
the token levels. We expect that better localizing the words which are responsible
for the expression of an opinion may help finding the visual/audio features that
carry the polarity information. Annotating this data is challenging due to the specific
language structures of oral speech and the presence of disfluencies. We propose a
two-level annotation method in order to (1) obtain a consistent identification of the
opinion expressed in a sentence and the words responsible for this identification
and (2) provide accessible guidelines to the annotators when the lack of grammatical
structure of the sentences makes it difficult to find the delimitation of the phrases. For
this second reason we define the expression level as ’the smallest span of words that
contains all the words necessary for the recognition of an opinion’. These boundaries
are in practice very flexible and might be very different from one annotator to the
other.

Once an opinion is identified at the expression level, the annotator is asked in
a second phase to highlight its different components based on the tokens located
inside the previously chosen boundaries. In what follows, we refer to this step as
the token-level annotation. It consists in selecting the group of tokens indicating
the target, polarity and holder of the opinion. In this case multiple spans can be
responsible for the identification of each component. The instruction in such cases
is to pick all the relevant spans for polarity tokens and only the most explicit one
for target tokens. As an example in the sentence : "It’s the best movie I’ve
seen", the selected polarity token is best, the holder token is I and the target token
is movie since it is more explicit than It, which requires anaphora resolution to be
understood.

In the end, we provide a dataset with the following features :
• Span-level annotation :

• Opinion targets and polarities are annotated at the expression level.
• For each segment, the targets are categorized in a predefined set adapted to
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the context of movie reviews.

• The corresponding polarities are then categorized on a five-level intensity
scale.
• Token-level annotation :

• The words which led to the choice of the target category and polarity intensity
are specifically annotated.

In the next section we study the difficulties specific to the corpus used.

6.5 Annotation challenges and guidelines

We have previously highlighted the specificities of the dataset, namely the oral nature
of the discourse and especially the presence of disfluencies and non grammatical
phrases. For these reasons, defining precisely the textual span corresponding to
an opinion is difficult. We tackled this issue by providing a rule of thumb to the
annotators. Some difficulties remain, owing to the non professional nature of the
movie reviews: not only do the reviewers give their opinion about the movie itself,
but also they take into account the background of the viewer and tend to give some
advice. For this reason, the reviewers regularly give a recommendation for the viewers
that are likely to enjoy the movie being examined. In this case the opinion of the
reviewer him/her-self toward the movie is unclear, as it can be seen in the sentence:
"This movie is perfect for kids". Consequently, we have asked the annota-
tors to indicate whenever this type of sentence appears, in order to avoid adding the
complexity of a dedicated treatment. This annotation takes the form of a boolean
variable attached to an expression as it is shown in Figure 6.2.

A second case is the comparison between the movie reviewed and the other
ones such as the different elements of a saga or even related movies (such as movies
with some actors in common or the same director). When this happens, a com-
parison occurs and the choice of the target of the opinion becomes ambiguous in
sentences such as :"Obviously Harry Potter 1 is better than this one.".
Once again the comparison label dedicated to handling these cases is defined in
Figure 6.2.

Finally, some sentences may contain some polarized content conveying the
attitude of the reviewer without holding an explicit target. Other may have no target at
all when they consist of a sentiment expression. Such sentences have been referred to
in previous work as Speaker’s emotional state [MOHAMMAD, 2016] or polar fact [JAKOB

and GUREVYCH, 2010]. Since these sentences are hard to annotate (both in terms of
target choice and boundary selection) we ask the annotators to specifically identify
them using the sentiment tag. This enables us to separately treat the sentences in
which the target is known but does not appear, as for example in "I must say that
what I heard sounded good." where the target is obviously the music even if its
not stated, and the sentences in which the target is really ambiguous or inexistent.

These three labels are incorporated in the annotation tool under the form of
boolean variables tied to the span level annotation that can be selected. When at
least one of the 3 labels { recommandation, comparison, sentiment } is active, we do
not ask the annotators to perform the second step of token-level annotation since
we do not consider these spans as real opinions.
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6.5.1 Annotation scheme

The annotation campaign has been run on a remotely hosted platform running the
Webanno tool [DE CASTILHO and collab., 2016]. This choice was motivated by the
simplicity of the configuration of multiple tag layers and the possibility of performing
this configuration online. When logged into the platform, an annotator can select
a transcript of a movie review assigned to him/her and each annotation added is
automatically saved.

The annotation task is split in two consecutive subtasks described in Figure 6.2.

Figure 6.2 – Annotation scheme

We additionally asked the annotators to identify the name of the movie reviewed
when available.

The scheme is a coarse-to-fine annotation where the worker has to successively
identify the textual spans containing an opinion; identify the corresponding target,
then the polarity; and finally select the words that guided his/her choice. The possible
labels for the categorization tasks are defined in advance.

The taxonomy of targets is derived from the one of [ZHUANG and collab., 2006]
and corresponds to the hierarchy reported in Table 6.2. Once the target is identified,
the corresponding polarity is also chosen on a five-level scale, from very negative to
very positive.

The targets are grouped in 3 type of entities: Movie elements contains different
aspects the movie itself, Movie people is related to the people involved in the making
of the movie and Support concerns the media on which the movie is stored such as
DVD or streaming platform.

The Movie elements contain different aspects of the movie that appear frequently
in the database such as Screenplay or Atmosphere and Mood (that concern opinions
focusing on humor or ambiance) but due to the difficulty of handling all the different
case we added a general class called Overall. This label is used whenever the movie in
general is the target (such as in the sentence This movie is great) but also when
the opinion focuses on an aspect of the movie that is not covered by the other labels.
Concerning Movie people and Support, we proposed a typology that covers all the
targets appearing in the dataset and that we refined with the help of the annotators
when some classes were missing.

We detail the experimental protocol in the next section.
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Table 6.2 – Predefined targets for movie review opinion annotation

Movie
Elements

Movie
People

Support

Overall Producer Price

Screenplay
Actor
actress

Other

Character
design

Composer
singer
soundmaker

Vision and
special effects

Director

Music and
sound effects

Other people
involved in
movie making

Atmosphere
and mood

6.5.2 Protocol

We provided examples of annotated reviews in the annotation guide and trained three
recruited workers on 150 reviews before beginning the annotation campaign. Then
each of the 850 remaining reviews was annotated once by one of the workers. Each
annotator was given an access on a remotely hosted Webanno server where he/she
could log him/her-self and annotate the transcripts of the review via a parameterized
interface. Note that due to the explicitness of the reviews, we only provided the
transcripts of the videos to each annotator which did not have to watch the videos
(but were aware of the oral nature of the original content). An example of annotated
review provided as an example in the annotation guide is given below in Figure 6.3:
Since the tasks have been shared among different workers, an issue is the variability

Figure 6.3 – Extract from the annotation of the review of the movie : Cheaper by the Dozen

of the annotations. The full annotation guide has been reported in the Appendix
Section A.4. For further details concerning the annotator guidelines. In the next
section we focus on issues raised by the multi-annotator setting.

6.6 Validation of the annotation

We examine the quality of the annotation by two means: using a measure of the inter-
annotator agreement on a data subset; and performing a study of the most influential
linguistic features used by a structured linear model on the whole annotated corpus.
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6.6.1 Inter-annotator agreement

We measure the inter-annotator agreement by computing the Cohen’s kappa coeffi-
cient on two groups of 25 reviews that were annotated by two different annotators.
We only gathered double annotations on a small subset of the dataset for annotation
cost reasons. Since we are in a multilabel setting (spans of different opinions can
overlap), we compute an agreement for each label: The compared objects are binary
sequences labeled as 1 if the label is active and 0 otherwise. We denote by the letter A
(resp. B), the reviews annotated by reviewer 1 and 3 (resp. 2 and 3) and report the
results at the span and sentence level in Table 6.3 and Table 6.4. We additionally

Table 6.3 – Cohen’s kappa at the span and sentence level for the target annotations and total
number of segments annotated by the two workers

Aspan Bspan Asent Bsent

Atmosphere
and mood

0.00
(69)

0.00
(149)

0.00
(12)

-0.01
(19)

Character
design

0.00
(12)

0.00
(33)

0.00
(1)

0.00
(4)

Music and
Sound effects

0.48
(78)

- (0)
0.57
(7)

- (0)

Overall
0.32
(1818)

0.46
(2268)

0.41
(188)

0.55
(201)

Screenplay
0.23
(194)

0.14
(187)

0.23
(16)

0.32
(18)

Vision and
Special effect

0.08
(120)

0.32
(43)

0.25
(8)

0.50
(4)

Table 6.4 – Cohen’s kappa at the span and sentence level for the polarity annotations and
total number of segments annotated by the two workers

Aspan Bspan Asent Bsent

Negative
0.30
(928)

0.41
(1210)

0.51
(106)

0.64
(141)

Positive
0.22
(675)

0.34
(792)

0.59
(145)

0.55
(83)

Mixed -
Neutral

0.00
(47)

0.40
(205)

0.00
(5)

0.53
(22)

Opinion
presence

0.37
(1650)

0.52
(2207)

0.44
(256)

0.58
(246)

defined a global kappa which indicates the confidence with which an opinion can
be recognized. We refer to this table as Opinion presence. The corresponding ob-
tained kappas refer to moderate agreement [LANDIS and KOCH, 1977], which is very
encouraging for subjective phenomena such as opinions.

Regarding the target, the distribution of labels is imbalanced : the Overall label
is strongly dominant whereas Character design or Music and Sound effects are very
rare. Drawing some conclusions on the rare labels is impossible but we still observe
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that some moderate agreement can be measured for the overall class at the sentence
level.

Concerning the polarity annotations, the labels are slightly better balanced lead-
ing to higher confidence in the results. Relaxing the annotation at the sentence
level raises the agreement from low to moderate which indicates that the low results
at the span level are implied by the absence of hard annotation guidelines for the
identification of the span boundaries.

6.6.2 Descriptive statistics on the labels

We conducted some analysis on the 850 reviews that were gathered after the an-
notator training phase. Subsection 6.6.2 display the number of distinct segments
annotated with each label:

Label number of annotated segments

Overall 3575
Screenplay 346
Atmosphere and mood 328
Vision and Special effect 174
Character design 67
Music and Sound effects 60
Actor 427
Director 33
Other people involved in movie making 6
Composer - Singer - Soundmaker 4
Price 58
Other 33

We notice that the label distribution is strongly imbalanced. The consequence is
that it will be impossible to build decent predictors for them as we show in the next
section.

6.6.3 Study of linguistic features using a CRF-based model

Since the results provided by the previous measures of inter-annotator agreement
are not relevant for rare labels due to the size of the used sample, we additionally
train a linear structured prediction model for the task of opinion classification both
at the token and the sentence level. By taking as input features the tokens themselves,
we show that the learned model focuses on relevant vocabulary even for rare labels.

We first consider the task of aspect and polarity prediction based on the span
level annotations: we take as input features the sum of the one-hot encodings of each
word and the ones situated in a 5-token window. Each output object is a sequence
of labels (one per token) corresponding to the span-level annotation previously
described. Next, we treat the same task at the sentence level. The input features
consist of the sum of the one-hot encodings of each token in the sentence and the
output representation is built in the following way : we omit the polarity intensity
information and introduce a Mixed class indicating whether a sentence contains
both positive and negative opinions. We also include sentences containing only
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neutral opinions in this class. Otherwise if the sentence contains at least one positive
(respectively negative) opinion it is labeled as positive (respectively negative).

A linear Conditional Random Field (CRF) [LAFFERTY and collab., 2001] model was
trained for each label using the python-crfsuite library (https://python-crfsuite.
readthedocs.io/en/latest/). We discarded the 150 texts used for the training of
the annotators and split the remaining 850 texts in 5 folds. We tuned the parameters
to optimize the macro-F1 score by cross-validation. We report the F1 score for each
label averaged over the 5 folds in Table 6.5. The reported scores are obtained both

Table 6.5 – F1 score for token and sentence level polarity prediction and corresponding
number of occurrences in the dataset

Sentence level Span level
Positive 0.67 (2218) 0.39 (26071)
Negative 0.56 (1795) 0.26 (2298)
Mixed 0.11 (299)
No polarity 0.87 (8737) 0.92 (243850)

at the token level and at the sentence level. A crucial aspect is the dependency on
the number of examples of each label. The results obtained for rare labels such as
Mixed is high precision / low recall. This behavior is due to the presence of specific
vocabularies for which the predictor is guaranteed to accurately predict the polarity.
We can display the vocabulary on which the model makes its prediction by analyzing
the weights learned by our model. Let x = {x1, . . . , xT},y = {y1, . . . , yT} two sequences of
vectors of length T, 8t 2 {1, . . . ,T} xt 2Rp yt 2Rq . We recall the definition of the linear
chain Conditional Random Field which parameterizes the conditional distribution
p(y|x) under the form :

p(y|x) = 1
Z(x)

TY

t=1
exp{

KX

k=1
µk fk (yt , yt°1, xt )},

where µ is the vector of learned weights, Z(x) is an input dependent normalization
term and fk ,k 2 {1, . . . ,K} is a set of feature functions. In the setting described here,
these feature functions can be grouped in two categories : (i) output-output feature
functions fk (yt , yt°1, xt ) = fk°(oo)(yt , yt°1) that do not depend on input data and (ii)
input-output feature functions fk (yt , yt°1, xt ) = fk°(i o)(yt , xt ) of the form :

fk°(i o)(yt , xt ) =
(

1 if yt = yk , xt = xk

0 else

We only consider input-output feature functions and report the pairs (xk , yk ) with
highest weights µk in Table 6.6. We consider these weights as scores since pairs with
higher µk values tend to increase the likelihood of the sequence p(y|x). The top
scored vocabulary raises two remarks:

1) The polarized sentences - spans are mainly recognized through evaluative
adjectives which are obviously linked to the corresponding label.

2) The absence of polarity is treated in a different way at the sentence and span
level.

At the sentence level, the absence of polarity is systematic in sentences that
introduce or conclude the review. The displayed vocabulary is characteristic of
concluding sentences. At the span level, the punctuation and conjunctions which
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Table 6.6 – Highest score input features for polarity label prediction at the sentence and the
token level

Label Sentence level Span level
Mixed ’okay’, ’average’

Positive
’hilarious’
’amazing’

’great’,’cool’,
’good’

Negative
’disappointing’,
’disappointed’,
’boring’

’terrible’,’not’,
’bad’

No
polarity

’Thanks’,
’Thank’,’review’

punctuation,
but’,’and’

separate different opinions play an important role. These tokens receive a high score
since they appear specifically at the boundary of an opinion.

Finally we train a model for sentence-level target prediction and report the results
in Table 6.7:

Table 6.7 – Highest score input features for aspect prediction at the sentence level

Corresponding
label (F1 score)

Highest score tokens

Overall (0.65)
’worthwile’,’boring’,’disappointing’,’great’,
’awesome’, ’terrible’,’wonderful’,miserably’

Screenplay
(0.41)

’storyline’,’plot’,’slow’,’story’,
’predictable’, ’screenplay’,’dialogue’,’script’

Vision and
Special
effect (0.36)

’feast’,’beautifully’,’costumes,’animation’,
’effects’,’eyes’, ’cinematography’,
’visually’,’graphics’,’effects’,’picture’

Music and
Sound
effects (0.24)

’soundtrack’,’song’,’musical’,’sound’,
’music’,’quality’, ’score’,’great’

Character
design (0.12)

’charismatic’,’characters’,’character’,
’awful’,’portrayal’,’running’, ’spinning’

Atmosphere
and mood (0.44)

’funny’, ’fun’, ’hilarious’,
’funniest’, ’cheesy’, ’laughing’,

Actors (0.48)
’Oskar’, ’acting’, ’Willem’,
’acted’, ’Affleck’, ’performances’,

Director (0.00)
Other people involved in movie making (0.00)
Composer - Singer - Soundmaker (0.00)

Price (0.22)
’money’, ’price’, ’deal’,
’cheap’, ’bucks’, ’purchase’,

Other (support) (0.00)

Once again the low results are characterized by a low recall: a few words charac-
terizing the presence of the target appear in the top score vocabulary but as the score
decreases, some non characteristic words are quickly raised (’good’, ’great’ for Music
and Sound effects, ’oh’, ’awful’, ’He’ for Character design). These labels are specifically
hard to predict due to the diversity of the vocabulary implied and the low number of
examples available.
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The Overall category is characterized by polarity words only. This is coherent
with our annotation instructions : An opinion is labeled as Overall if it targets the
overall movie or if no category in the proposed hierarchy fits the opinion expressed.
As a consequence the Overall opinion is characterized by polarity words indicating
an opinion but do not indicate a specific aspect.

Note that despite the modest F1 scores displayed in Table 6.7, we expect that some
labels can be accurately predicted by building better feature extractors. The goal of
this experiment is to show that some meaningful patterns can be extracted even with
the low inter-annotator agreements computed in Table 6.3. The next chapter will be
devoted to the design of a model that is built upon state of the art techniques and
that can handle the specificities of our annotations.

Chapter conclusion

In this chapter, we have presented the protocol and results of a fine-grained
opinion annotation campaign for spoken language, based on a multimodal
movie review dataset. The resulting annotations show low inter-annotator
agreements at the token level but achieve better values by relaxing the annota-
tion granularity, placing it at the sentence level. Besides, the linear structured
predictor learns meaningful features even for the prediction of scarce labels.
This multiple level scheme leads to a hierarchical representation of opinions
that we leverage in the next chapter.
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Chapter 7

From the Token to the Review: A
Hierarchical Multimodal approach to
Opinion Mining

Chapter abstract

The annotations presented in the previous chapter cannot be properly handled
with traditional machine learning methods due to their complex inherent
structure. Additionally, the input consists of spontaneous spoken language for
which building a meaningful representation is difficult. In this work we aim at
bridging the gap separating fine grained opinion models already developed
for written language and coarse grained models developed for spontaneous
multimodal opinion mining. We take advantage of the implicit hierarchical
structure of opinions defined at different granularities to build a joint fine
and coarse grained opinion model that exploits different views of the opinion
expression. The resulting model shares some properties with attention-based
models and is shown to be competitive on our dataset. We also discuss the
problem of finding a good learning strategy for dealing with the complex
nature of the labels. Finally we show the advantage of joint learning of all the
labels defined at different granularity over separate learning of independent
predictors. This work has been presented in GARCIA and collab. [2019].
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7.1 Introduction

The choice of working with spontaneous spoken data is motivated by the fact that
such examples are often neglected in previous scientific studies while they represent
most of the human interactions. A second aspect motivating their use is given by the
complementarity of the information that is communicated in the different modalities.
Such multimodal data has been shown to provide a mean to disambiguate some hard
to understand opinion expressions such as irony and sarcasm [ATTARDO and collab.,
2003] and contains crucial information indicating the level of engagement and the
persuasiveness of the speaker [BEN YOUSSEF and collab., 2019; CLAVEL and CALLEJAS,
2016; NOJAVANASGHARI and collab., 2016]. The present work is motivated by the
following observations:

• The methods presented in part II are adapted to fixed size output objects and
cannot be adapted to the variable size structures described in the previous
chapter. We need to move from output kernel regression based predictors to
another class of model.

• Despite the lack of reliability of fine grained labels collected for multimodal
data, the redundancy of the opinion information contained at different granu-
larities can be leveraged to reduce the inherent noise of the labelling process
and to build improved opinion predictors. We build a model that takes advan-
tage of this property and that jointly models the different components of an
opinion.

• Hierarchical multi-task language models have been recently shown to im-
prove upon the single task models [SANH and collab., 2018]. A careful choice
of the tasks and the order in which they are sequentially presented to the
model has been proved to be the key to build competitive predictors. It is
not clear whether such type of hierarchical model could be adapted to handle
multimodal data with the state of the art deep network architectures [ZADEH

and collab., 2018a,b]. We discuss in the experimental section the strategies and
models that are adapted to the opinion mining context.

• In the case where no fine grained supervision is available, the attention mecha-
nism [VASWANI and collab., 2017] provides a compelling alternative to build
models generating interpretable decisions with token-level explanations [HEMAMOU

and collab., 2018]. In practice such models are notoriously hard to train and
require the availability of very large datasets. On the other hand, the injection
of fine-grained polarity information has been shown to be a key ingredient
to build competitive sentiment predictors by SOCHER and collab. [2013]. Our
hierarchical approach can be interpreted under the lens of attention-based
learning where some supervision is provided at training to counterbalance
the difficulty of learning meaningful patterns with spoken language data. We
specifically experimentally show that providing this supervision is here neces-
sary to build competitive predictors due to the limited quantity of data and the
difficulty to extract meaningful patterns from it.
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Figure 7.1 – Structure of an annotated opinion

7.2 Data description and model

This work relies on the annotations presented in Chapter 6. The opinion of each
speaker has been annotated at 3 levels of granularity that we display in Figure 7.1.

At the finest (Token)-level, the annotators indicated for each token whether it
is responsible for the understanding of the polarity of the sentence and whether it
describes the target of an opinion. On top of this, a span-level annotation contains a
categorization of both the target and the polarity of the underlying opinion in a set
of predefined possible target entities and polarity valences. At the review level (or text
level since the annotations are aligned with the tokens of the transcript), an overall
score describes the attitude of the reviewer about the movie.

As we have shown in Chapter 6 that the boundaries of span-level annotations are
unreliable, we relax the corresponding boundaries at the sentence level. This sentence
granularity is in our data the intermediate level of annotation between the token and
the text. In practice, these intermediate level labels can be modeled by tuples such
as the one provided in the text-level ABSA SEMEVAL task which are given for each
sentence in the dataset. In what follows, we will refer to the problem of predicting
such information as the sentence level-prediction problem. Details concerning the
determination of the sentence boundaries and the associated pre-processing of the
data are given in the supplementary material.

The representation described above can be naturally converted into a math-
ematical representation: A review x(i ), i 2 {1, . . . ,N} is made of Si sentences each
containing WSi words. Thus the canonical feature representation of a review is the
following x(i ) = {{x(i )

1,1, . . . , x(i )
1,WS1

}, . . . , {x(i )
Si ,1, . . . , x(i )

Si ,WSi
}}, where each x is the feature

representation of a spoken word corresponding to the concatenation of a textual,
audio and video feature representation. Based on this input description, the learning
task consists in finding a parameterized function gµ : X !Y that predicts various
components of an opinion y 2Y based on an input review x 2X . The parameters of
such a function are obtained by minimizing an empirical risk:

µ̂= min
µ

NX

i=1
L(gµ(x(i )),y(i )), (7.1)

where L is a non-negative loss function penalizing wrong predictions. In general the
loss L is chosen as a surrogate of the evaluation metric whose purpose is to measure
the similarity between the predictions and the true labels. In the case of complex
objects such as opinions, there is no natural metric for measuring such proximity
and we rely instead on distances defined on substructures of the opinion model.
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To introduce these distances, we first decompose the label-structures following the
model previously described:

• Token-level labels are represented by a sequence of 2-dimensional binary label

vectors y (i ),Tok
j ,k =

√
y (i ),Pol

j ,k

y (i ),Tar
j ,k

!

where y (i ),Pol
j ,k and y (i ),Tar

j ,k are some binary variables

indicating respectively whether the kth word of the sentence j in review i is a
word indicating the polarity of an opinion , and the target of an opinion.

• Sentence-level labels carry 2 pieces of information: (1) the categorization of
the target entities mentioned in an opinion expressed is represented by an E
dimensional binary vector y (i ),Ent

j where each component encodes the presence
of an entity among E possible values; and (2) the polarity of the opinions
contained in the sentence are represented by a 4-dimensional one-hot vector
y (i ),Val

j encoding the possible valences: Positive, Negative, Neutral/Mixed and

None. Thus the sentence level label y (i ),Sent
j is the concatenation of the two

representations presented above: y (i ),Sent
j =

√
y (i ),Ent

j

y (i ),Val
j

!

• Text-level labels are composed of a single continuous score obtained for each
review y (i ),Tex summarizing the overall rating given by the reviewer to the movie
described.

Based on these representations, we define a set of losses, L(Tok),L(Sent),L(Tex) dedi-
cated to measuring the similarity of each substructure prediction, ŷ(Tok), ŷ(Sent), ŷ(Tex)

with the ground-truth. In the case of binary variables and in the absence of prior
preference between targets and polarities, we use the negative log-likelihood for each
variable. Each task loss is then defined as the average of the negative log-likelihood
computed on the variables that compose it. For continuous variables, we use the
mean squared error as the task loss. Consequently the losses to minimize can be
expressed as:

L(Tok)(yTok, ŷTok) =°1
2

X

i
(
°
yPol

i log(ŷPol
i )+

yTar
i log(ŷi

Tar )
¢
,

L(Sent )(ySent , ŷSent ) =°1
2

X

i

°
yEnt

i log(ŷEnt
i )+

yVal
i log(ŷVal

i )
¢
,

L(Tex)(yTex, ŷTex) = (yTex ° ŷTex)2,

Following previous works on multi-task learning [ARGYRIOU and collab., 2007;
RUDER, 2017], we argue that optimizing simultaneously the risks derived from these
losses should improve the results, compared to the case where they are treated
separately, due to the knowledge transferred across tasks. In the multi-task setting,
the loss L derived from a set of task losses L(t ), is a convex combination of these
different task losses. Here the tasks corresponds to each granularity level: t 2 Tasks =
{Tok,Sent,Tex} :

L(y, ŷ) =
P

t2Tasks∏t L(t )(yt , ŷt )
P

t2Tasks∏t
, 8∏t ∏ 0. (7.2)
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Optimizing this type of objectives in the case of hierarchical deep net predictors
requires building some strategy in order to train the different parts of the model:
the low level parts as well as the abstract ones. We discuss such an issue in the next
section.

7.3 Learning strategies for multitask objectives

The main concern when optimizing objectives of the form of Equation 7.2 comes
from the variable difficulty in optimizing the different objectives l (t ). Previous works
[SANH and collab., 2018] have shown that a careful choice of the order in which they
are introduced is a key ingredient to correctly train deep hierarchical models. In
the case of hierarchical labels, a natural hierarchy in the prediction complexity is
given by the problem. In the task at hand, coarse grained labels are predicted by
taking advantage of the information coming from predicting fine grained ones. The
model processes the text by recursively merging and selecting the information in
order to build an abstract representation of the review. In Experiment 1 we show
that incorporating these fine grained labels into the learning process is necessary to
obtain competitive results from the resulting predictors. In order to gradually guide
the model from easy tasks to harder ones, we parameterize each ∏t as a function of

the number of epochs of the form ∏
(nepoch)
t = ∏max

exp((nepoch°Nst )/æ)
1+exp((nepoch°Nst )/æ) where Nst is a

parameter devoted to task t controlling the number of epochs after which the weight
switches to ∏max and æ is a parameter controlling the slope of the transition. We
construct 4 strategies relying on smooth transitions from a low state ∏i = 0 to a high
state ∏i = ∏max

i of each task weight varying with the number of epochs:

• Strategy 1 (S1) consists in optimizing the different objectives one at a time from
the easiest to the hardest. It consists in first moving vector (∏Token,∏Sentence,∏Text)T

values from (1,0,0)T to (0,1,0)T and then finally to (0,0,1)T. The underlying
idea is that the low level labels are only useful as an initialization point for
higher level ones. The expression of ∏ follows the equations:

∏
nepoch
Token = 1°

exp((nepoch °NsToken)/æ)

1+exp((nepoch °NsToken)/æ)

∏
nepoch
Sentence =

exp((nepoch °NsToken)/æ)

1+exp((nepoch °NsToken)/æ)
°

exp((nepoch °NsSentence)/æ)

1+exp((nepoch °NsSentence)/æ)

∏
nepoch
Text =

exp((nepoch °NsSentence)/æ)

1+exp((nepoch °NsSentence)/æ)

We report the graphs of the corresponding strategies as a function of the num-
ber of epochs in Figure 7.2.

• Strategy 2 (S2) consists in adding sequentially the different objectives to each
other from the easiest to the hardest. It goes from a word only loss (∏Token,∏Sentence,∏Text)T =
(∏(N)

Token,0,0)T and then adds the intermediate objectives by setting ∏Sentence to

∏(N)
Sentence and then ∏Text to ∏(N)

Text. This strategy relies on the idea that keeping a
supervision on low level labels has a regularizing effect on high level ones. Note
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(a) Multitask strategy 1, æ= 1 (b) Multitask strategy 1, æ= 5

(c) Multitask strategy 1, æ= 10

Figure 7.2 – Multitask strategies for the strategy 1 with different values of æ.

that this strategy and the two following require a choice of the stationary weight
values ∏(N)

Token,∏(N)
Sentence,∏(N)

Text. In our experiments presented in Section 7.5, the
expression of ∏ follows the equations:

∏
nepoch
Token = 0.05

∏
nepoch
Sentence = 0.5

exp((nepoch °NsToken)/æ)

1+exp((nepoch °NsToken)/æ)

∏
nepoch
Text =

exp((nepoch °NsSentence)/æ)

1+exp((nepoch °NsSentence)/æ)

We report the graphs of the corresponding strategies as a function of the num-
ber of epochs in Figure 7.3.

• Strategy 3 (S3) is similar to (S2) except that the Sentence and Text weights are
simultaneously increased. This strategy and the following one are introduced to
test whether the order in which the tasks are introduced has some importance
on the final scores. In our experiments presented in Section 7.5, the expression
of ∏ follows the equations:

∏
nepoch
Token = 0.05

∏
nepoch
Sentence = 0.5

exp((nepoch °NsToken)/æ)

1+exp((nepoch °NsToken)/æ)

∏
nepoch
Text =

exp((nepoch °NsToken)/æ)

1+exp((nepoch °NsToken)/æ)
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(a) Multitask strategy 2, æ= 1 (b) Multitask strategy 2, æ= 5

(c) Multitask strategy 2, æ= 10

Figure 7.3 – Multitask strategies for the strategy 1 with different values of æ.

We report the graphs of the corresponding strategies as a function of the num-
ber of epochs in Figure 7.4.

• Strategy 4 (S4) is also similar to (S2) except that Text level supervision is in-
troduced before the Sentence level one. This strategy uses the intermediate
level labels as a way to regularize the video level model that would have been
learned directly after the Token level supervision

These strategies can be implemented in any stochastic gradient training procedure
of objectives (Equation 7.2) since it only requires modifying the values of the weight
at the end of each epoch. In the next section, we design a neural architecture that
jointly predicts opinions at the three different levels, i.e. the Token, Sentence and Text
levels, and discuss how to optimize multitask objectives built on top of opinion-based
output representations.
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(a) Multitask strategy 3, æ= 1 (b) Multitask strategy 3, æ= 5

(c) Multitask strategy 3, æ= 10

Figure 7.4 – Multitask strategies for the strategy 1 with different values of æ.

7.4 Architecture

Before digging into the model description, we introduce the set of hidden variables
h(i ),Tex,h(i ),Sent

j ,h(i ),Tok
j ,k corresponding to the unconstrained scores used to predict

the outputs: ŷ (i ),Tex = æTex(WTexh(i ),Tex +bTex), ŷ (i ),Sent
j = æSent(WSenth(i )Sent

j +bSent),

ŷ (i ),Tok
j ,k =æTok(WTokh(i ),Tok

j ,k +bTok), where the W and b are some parameters learned
from data and the æ are some fixed almost everywhere differentiable functions
ensuring that the outputs “match” the inputs of the loss function. In the case of
binary variables for example, it is chosen as the sigmoid function æ(x) = exp(x)/(1+
exp(x)). From a general perspective, a hierarchical opinion predictor is composed of
3 functions g Tex, g Sent, g Tok encoding the dependency across the levels:

h(i ),Tok
j ,k = g Tok

µTok (x(i ),Tok
j ,: ),

h(i )Sent

j = g Sent
µSent (h(i )Tok

j ,: ),

h(i )Tex = g Tex
µTex (h(i )Sent

: ).

In this setting, low level hidden representations are shared with higher level ones.
A large body of work has focused on the design of the g functions in the case of
multimodal inputs. In this work we exploit state of the art sequence encoders to
build our hidden representations that we detail below.
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7.4.1 BidirectionalGated Recurrent Units

Bidirectional Gated Recurrent Units (BiGRU) [CHO and collab., 2014] especially when
coupled with a self attention mechanism have been shown to provide state of the art
results on tasks implying the encoding or decoding of a sentence in or from a fixed
size representation. Such a problem is encountered in automatic machine translation
[LUONG and collab., 2015], automatic summarization [NALLAPATI and collab., 2017]
or image captioning and visual question answering [ANDERSON and collab., 2018].

For sake of simplicity we present here the evolution equations of the unidirec-
tional Gated recurrent Unit. The bidirectional variant is obtained by stacking the
hidden vector h of two unidirectional GRU, one is run from the left to the right and
the other in the opposite direction.

The j th component of the hidden state of a Gated recurrent unit at time t : h j
t is

computed based on the previous state h j
t°1 and a new candidate state h̃ j

t°1 that takes
into account the current input:

h j
t = (1° zt

j )h j
t°1 + z j

t h̃ j
t°1

Where z j
t is an update vector controlling how much the state is updated :

zt
j =æ(Wz xt +Uz ht°1) j

The candidate state is computed by a simple recurrent unit with an additional reset
gate rt :

h̃ j
t = (tanh(Wxt +U(rt )Øht°1)) j

Ø is the element wise product and rt is defined by:

r j
t =æ(Wr xt +Ur ht°1) j

. We experiment two types of BiGRUs:

• In the case of the BiGRU model of Table 7.1, the input objects xt are the con-
catenation of the 3 feature representations: xt = xtextual

t ©xaudio
t ©xvisual

t

• In the case of the Ind BiGRU Model, 3 •BiGRU recurrent models are trained
independently on each input modality and the hidden representation shared
with the next parts of the network is the concatenation of the 3 hidden states:
ht = htextual

t ©haudio
t ©hvisual

t

The 3 models described previously build a hidden representation of the data
contained in each sequence. The transfer from one level of the hierarchy to the
next coarser one requires building a fixed length representation summarizing the
sequence. Note that in the case of the MARN and the MFN presented in Subsec-
tion 7.4.2 and Subsection 7.4.3, the model directly creates such a representation and
does not need a pooling operation. We present the strategies that we deployed to
pool these representations in the case of the BiGRU sequential layer.

• Last state representation: Sequential models build their inner state based on
observations from the past. One can thus naturally use the hidden state com-
puted at the last observation of a sequence to represent the entire sequence.
In our experiments, this is the representation chosen for the BiGRU and Ind
BiGRU models.
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• Attention based sequence summarization: Another technique consists in com-
puting a weighted sum of the hidden states of the sequence. The attention
weights can be learned from data in order to focus on the important parts of
the sequence only and to avoid building too complex inner representations.
The mechanism first computes a score per token u j

t indicating its relative
contribution:

u j
t = tanh(Ww h j

t +bw )

These scores are then rescaled as a probability distribution over the entire
sequence:

Æt =
hT

t ut
P

t j hT
t j

ut j

These weights are then used to pool the hidden state representations of the
sequence in a fixed length vector:

hPool =
X

t
Æt ht

This last representation is then used to feed the next coarser level recurrent
model. Note that the attention model does not erase the information about the
modality nature of each component of hPool so that it can be used with a model
taking into account this nature. An example of such a technique successfully
applied to the task of text classification based on 3 levels of representation can
be found in YANG and collab. [2016]. In our experiments, we implemented
the attention model for predicting only the Sentence level labels (model Ind
BiGRU + att Sent) and the Sentence and Text level labels by sharing a common
representation (Ind BiGRU + att model).

All the resulting architectures extend the existing hierarchical models by enabling the
fusion of multimodal information at different granularity levels while maintaining
the ability to introduce some supervision at any level.

7.4.2 Multi-attention Recurrent Network (MARN)

The Multi-attention Recurrent Network (MARN) proposed in [ZADEH and collab.,
2018a] extends the traditional Long Short Term Memory (LSTM) [HOCHREITER and
SCHMIDHUBER, 1997] sequential model by both storing a view specific state hm

t
for each view m (similar to the LSTM one) and by taking into account cross-view
state zt computed from the signal of the other modalities. In the original paper, this
cross-view dynamic is computed using a multi-attention bloc containing a set of
weights for each modality used to mix them in a joint hidden representation. Such a
network can model complex dynamics but does not embed a mechanism dedicated
to encoding very long-range dependencies.

The MARN model is made of two functional blocks.

1. The first functional block is the Long Short Term Hybrid Memory (LSTHM)
described in Equation 7.3. It builds a hidden state per modality by taking into
account both the input observation and a cross-view dynamic code merging
the information of all the modalities. The weights Wm

· and Um
· and bm

· are anal-
ogous to the weights of a LSTM layer. The difference stands in the introduction
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of the weights Vm
· that take into account the code zt . This code is computed in

a second functional block described hereafter.

i m
t √æ(Wm

i xm
t +Um

i hm
t°1 +Vm

i zt°1 +bm
i ) (7.3)

f m
t √æ(Wm

f xm
t +Um

f hm
t°1 +Vm

f zt°1 +bm
f )

om
t √æ(Wm

o xm
t +Um

o hm
t°1 +Vm

o zt°1 +bm
o )

c̄m
t √ Wm

c̄ xm
t +Um

c̄ hm
t°1 +Vm

c̄ zt°1 +bm
c̄

cm
y √ f m

t Ø cm
t°1 + i m

t Ø tanh(c̄m
t )

hm
t √ om

t Ø tanh(cm
t )

ht √©m2Mhm
t

The LSTHM layer is displayed in Figure 7.5.

Figure 7.5 – LSTHM layer structure (extracted from ZADEH and collab. [2018a])

2. The second functional block is the Multi-attention Block (MAB) whose updates
are described in Equation 7.4. A feedforward neural network A : Rd ! RK£d

where d is the size of the hidden state ht and K the number of output atten-
tion blocks (K is a tuned parameter). The output is made of K normalized d
dimensional attention weight which are applied on the hiddden state ht to
build a d £K hidden representation h̃t . The *K symbol denotes broadcasting
by parameter K. Then for each modality m the K attended representation are
concatenated and fed to a neural network C dedicated to dimensionality reduc-
tion and thus building a dense low dimensional hidden state st . Finally these
representation are concatenated and passed to a last feedforward network G
to generate the cross-view dynamics code zt .

at √A (ht ;µA ) (7.4)

h̃t √ at Øh*K ht i
8m 2 M sm

t √Cm(h̃m
t ;µCm )

st √©m2Msm
t

zt √G (st ;µG )

The MAB block is displayed in Figure 7.6.

The full model works by alternating the call to the LSTHM layer to compute ht

from zt°1 and xt and to the MAB block to compute zt from ht .

121



CHAPTER 7. FROM THE TOKEN TO THE REVIEW: A HIERARCHICAL
MULTIMODAL APPROACH TO OPINION MINING

Figure 7.6 – MAB block structure (extracted from ZADEH and collab. [2018a])

Note that contrarily to the BiGRU model, the MARN model and the MFN model
described in the next section are tailored to build a summarized representation of
the entire sequence at the last state. Consequently, we do not train them with an
additional attention mechanism and use them as presented in the original articles.

7.4.3 Memory Fusion Networks (MFN)

Memory Fusion Networks (MFN) are a second family of multi-view sequential models
built upon a set of LSTM per modality feeding a joint delta memory. This architecture
has been designed to carry some information in the memory even with very long
sequences due to the choice of a complex retain / forget mechanism.

Similarly to the MARN model, the MFN relies on 3 LSTM layers (one per modality)
that build a hidden representation per modality m at each timestep t : hm

t . We
also denote by cm = {cm

t : t ∑ T,cm
t 2 Rdc } the memory of the LSTM for the mth

view (as defined originally by HOCHREITER and SCHMIDHUBER [1997]). The Delta-
memory Attention Network builds a delta memory representation ĉt by applying an
attention mechanism on consecutive memory representations. Let us denote by Da

the attention network whose output layer is a softmax, the Delta-attention weight
a[t°1,t ] 2R2dc are computed from the concatenation of the memory at 2 consecutive
timesteps:

a[t°1,t ] =Da(c[t°1,t ]) (7.5)

The Delta-memory ĉ corresponds then to the vector c[t°1,t ] reweighted by the Delta-
attention weights:

ĉ[t°1,t ] = c[t°1,t ] Øa[t°1,t ] (7.6)

At this point, the Delta-memory can still be decomposed over the different di-
mensions corresponding to each modality since only a linear reweighting scheme
has been applied. The second step consists in blending this hidden state by applying
the multi-view gated memory layer. It consists in first building a cross-view memory
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ût thanks to a feedforward network Du :

ût =Du(ĉ[t°1,t ]) (7.7)

Then the dynamic of the cross view is controlled by adding an additional gating
mechanism. We introduce the two networks D∞1 and D∞2 that are used to compute
the update weights of the gate:

∞1, t =D∞1 (ĉ[t°1,t ]), ∞2, t =D∞2 (ĉ[t°1,t ]) (7.8)

These weights are then used to build the final cross-view memory:

ut = ∞1,t Øut°1 +∞2,t Ø tanh(ût ) (7.9)

Finally the MFN output is the concatenation of both the hidden state of the LSTM
layers ht =©m2Mhm

t and the cross view dynamic ut . The entire architecture is sum-
marized in Figure 7.7.

Figure 7.7 – Architecture of the MFN model (extracted from ZADEH and collab. [2018b])

7.5 Experiments

In this section we propose 3 sets of experiments that show the superiority of our
model over existing approaches with respect to the difficulties highlighted in the
introduction, and explore the question of the best way to train hierarchical models
on multimodal opinion data.

All the results presented below have been obtained on the dataset presented
in Chapter 6. The input features are computed using the CMU-Multimodal SDK:
We represented each word by the concatenation of the 3 feature modalities. The
textual features are chosen as the 300-dimensional pre-trained Glove embeddings
[PENNINGTON and collab., 2014]. The acoustic and visual features have been obtained
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by averaging the descriptors computed following PARK and collab. [2014] during the
time of pronunciation of each spoken word. These features include MFCC and pitch
descriptors for the audio signals. For the video descriptors, posture, head and gaze
movement are taken into account and the textual features are the pre-trained 300
dimensional Glove vectors [PENNINGTON and collab., 2014]. As far as the output
representations are concerned, we merely re-scaled the video-level polarity labels in
the [0,1] range.

The results are reported in terms of mean average error (MAE) for the continuous
labels and micro F1 score µF1 for binary labels. We used the provided train, val
and test set and describe for each experiment the training procedure and displayed
values below.

7.5.1 Preprocessing details

•Matching features and annotations: In all our experiments we reused the descriptors
first presented in PARK and collab. [2014] and made available in the CMU-Multimodal
SDK. The annotation campaign had been run on the original transcripts of the spo-
ken reviews. In order to match the setting described in previous work, we transposed
the fine grained annotations from the original dataset to the processed one in the
following way: We first computed the Levenstein distance (minimum number of
insertion/deletion/replacement needed to transform a sequence of items into an-
other) between the sequence of Tokens of the processed and unprocessed transcripts.
Then we applied the sequence of transformations minimizing this distance on the
sequence of annotation tags to build the equivalent sequence of annotation on the
processed dataset.

• Long sentences treatment: We first removed the punctuation (denoted by the
’sp’ token in the provided featurized dataset) in order to limit the maximal sentence
length in the dataset. For the remaining sentences exceding 50 tokens we also applied
the following treatment: We ran the sentence splitter from the spaCy library. The
resulting subsentences are then kept each time they are composed of more than 4
tokens (overwise the groups of 4 tokens were merged with the next subsentence).

• Input features cliping: The provided feature alignment code retrieved some
infinite values and impossible assignments. We clipped the values to the range
[-30,30] and replaced impossible assignments by 0.

• Training, validation and test folds: We used the original standard folds available
at: https://github.com/A2Zadeh/CMU-MultimodalSDK/blob/master/mmsdk/mmdatasdk/
dataset/standard_datasets/POM/pom_std_folds.py

7.5.2 Hyperparameters

All the hyper-parameters have been optimized on the validation set using MAE score
at text level. Architecture optimization has been done using a random search with 15
trials. We used Adam optimizer KINGMA and BA [2014] with a learning rate of 0.01,
which is updated using a scheduler with a patience of 20 epochs and a decrease rate
of 0.5 (one scheduler per classifier and per encoder). The gradient norm is clipped to
5.0, weight decay is set to 1e-5, and dropout SRIVASTAVA and collab. [2014] is set to 0.2.
Models have been implemented in PyTorch and they have been trained on a single
IBM Power AC922. The best performing MFN has a 4 attentions, the cellule size for
the video is set to 48, for the audio to 32, for the text to 64. Memory dimension is set
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to 32, windows dimension to 2, hidden size of first attention is set to 32, hidden size
of second attention is set to 16, ∞1 is set to 64, ∞2 is set to 32 1.

7.5.3 Experiment 1: Which architecture provides the best results
on the task of fine grained opinion polarity prediction?

In this first section, we describe our protocol to select an architecture devoted to per-
forming fine grained multimodal opinion prediction. In order to focus our analysis
on a restricted set of possible models, we only treat the polarity prediction problem in
this section and selected the architectures that provided the best review-level scores
(i.e. with lowest mean average prediction error). Taking into account the aspect
variables would only bring an additional level of complexity that is not necessary in
this first model selection phase. Building upon previous works [ZADEH and collab.,
2018b], we use the MFN model as our sentence-level sequential model since it has
been shown to provide state of the art results on video-level prediction problems on
the POM dataset. Different state of the art models are tested for the token-level model.
Our baseline is computed similarly to ZADEH and collab. [2018a]: we represent each
sentence by taking the average of the feature representation of the Tokens composing
it. We also present results obtained using the MFN, MARN and independent BiGRU
models run at the Token level. We retrieve the best results obtained after a random
search on the parameters and report the results in Table 7.1. In the top row, we

∏Tok = ∏Sent = 0: no fine grained supervision

Metric BiGRU Ind BiGRU
Ind BiGRU
+ att Sent

Ind BiGRU
+ att

MARN MFN Av Emb

MAE Text 0.35 0.40 0.40 0.38 0.29 0.32 0.17
Supervision at the token, sentence and review levels

Metric BiGRU Ind BiGRU
Ind BiGRU
+ att Sent

Ind BiGRU
+ att

MARN MFN Av Emb

µF1 Tokens 0.90 0.93 0.93 0.93 0.90 0.89 X
µF1 Sentence 0.68 0.72 0.75 0.75 0.52 0.47 X

MAE Text 0.16 0.15 0.15 0.14 0.35 0.37 X

Table 7.1 – Scores on sentiment label

report results obtained when only using the video-level labels to train the entire
network. The baseline (Av Emb) consisting in representing each sentence by the
average of its tokens representation strongly outperforms all the other results. This is
due to the moderate size of the training set (600 videos) which is not enough to learn
meaningful fine grained representations. In the second part, we introduce some
supervision at all levels and found that a choice of ∏Tok = 0.05, ∏Sent = 0.5, ∏Tex = 1
being respectively the Token, Sentence and Text weights provides the best video-level
results. This combination reflects the fact that the main objective (Text level) should
receive the highest weight but low level ones also add some useful side supervision.
Despite the ability of MARN and MFN to learn complex representations, the simpler
BiGRU-based Token encoder retrieves the best results at all the levels and provides
more than 12% of relative improvement over the Average Embedding based model at

1For exact meaning of each parameter please refer to the official implementation which can be
found here: https://github.com/pliang279/MFN and in the work of ZADEH and collab. [2018b]
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the video level. This behavior reveals that the high complexity of MARN and MFN
makes them hard to train in the context of hierarchical models leading to suboptimal
performance against simpler ones such as BiGRU. We fix the best architecture ob-
tained in this experiment and displayed in Figure 7.8 and reuse it in the subsequent
experiments.

Figure 7.8 – Best architecture selected during the Experiment 1

7.5.4 Experiment 2: What is the best strategy to take into account
multiple levels of opinion information?

Figure 7.9 – Path of the weight vector in the simplex triangle for the different tested strategies
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Motivated by the issues concerning the training of multitask losses raised in Sec-
tion 7.3, we implemented the 4 strategies described and chose the stationary values
as the best one obtained in Experiment 1: (∏(N)

Token,∏(N)
Sentence,∏(N)

Text) = (0.05,0.5,1) Note
that each strategy corresponds to a path of the vector (∏Tok,∏Sent,∏Tex)T/

P
t ∏t in the 3

dimensional simplex. We represent the 3 strategies tested in Figure 7.9 corresponding
to the projection of the weight vector onto the hyperplane containing the simplex.

The best paths for optimizing the Text level objectives are the one that smoothly
move from a combination of Sentence and Token level objectives to a Text oriented
one. The path in the simplex seems to be more important than the nature of the
strategy since S1 and S2 reach the same Text level MAE score while working differ-
ently. It also appears than an objective with low æ2 values corresponding to harder
transitions tends to obtain lower scores than smooth transition based strategies. All
the strategies are displayed as a function of the number of epochs in Section 7.3. In
this last section we deal with the issue of the joint prediction of aspect and polarities.

7.5.5 Experiment 3: Is it better to jointly predict opinions and as-
pects ?

In this section, we introduce the problem of predicting the aspects of the movie
on which the predictions are expressed, as well as the tokens that mention them.
This task is harder than the previously studied polarity prediction task due to (1)
the problem of label imbalance appearing in the label distribution reported in the
Table 7.3 and (2) the diversity of the vocabulary incurred when dealing with many
aspects. However since the presence of a polarity implies the presence of at least one
aspect, we expect that a joint prediction will perform better than an aspect-based
predictor only. Table 7.2 contains the results obtained with the architecture described
in Figure 7.8 on the task of joint polarity and aspect prediction as well as the results
obtained when dealing with these tasks independently.

Using either the joint or the independent models provides the same results on
the polarity prediction problems at the Token and Sentence level. The reason is that
the polarity prediction problem is easier and relying on the aspects prediction would
only introduce some noise in the prediction. We detail the case of aspect Entities

Polarity
labels

Aspect
labels

Polarity +
aspects

F1 polarity
tokens

0.93 X 0.93

F1 polarity
valence

0.75 X 0.75

F1 aspects
tokens

X 0.97 0.97

F1 aspects
Entities

X Table 7.3 Table 7.3

MAE score
review level

0.14 0.38 0.14

Table 7.2 – Joint and independent prediction of aspects and polarities

2described in Section 7.3
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in Table 7.3 and present the results obtained for the most common aspects (among
11). As expected, the aspect prediction tasks benefits from the polarity information
on most of the Entities except for the Vision and special effects. A 5% of relative
improvement can be noted on the two most present Entities: Overall and Screenplay.

Aspect
Aspect +
Polarity

Value
Count

Overall 0.71 0.73 1985
Actors 0.65 0.65 493

Screenplay 0.60 0.63 246
Atmosphere
and mood

0.62 0.64 151

Vision and
special effects

0.62 0.58 154

Table 7.3 – F1 score per label for the top aspects annotated at the sentence level (mean score
averaged over 7 runs), value counts are provided on the test set.

Chapter conclusion

The proposed framework enables the joint prediction of the different com-
ponents of an opinion based on a hierarchical neural network. The resulting
models can be fully or partially supervised and take advantage of the infor-
mation provided by different views of the opinions. We have experimentally
shown that a good learning strategy should first rely on the easy tasks (i.e. for
which the labels do not require a complex transformation of the inputs) and
then move to more abstract tasks by benefiting from the low level knowledge.
Extensions of this work should explore the use of structured output learning
methods dedicated to the opinion structure.
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Chapter 8

Conclusion and future work

8.1 Contributions

Throughout this thesis, we have presented different models of opinion and studied
the computational properties of their dedicated predictors. We have treated the
case of predicting preferences over a set of objects in Chapter 4, joint target and
polarity prediction at a fixed granularity level in Chapter 5 and joint coarse and fine
prediction of opinion structures in Chapter 7. In each case, we took advantage of
the opinion structure and illustrated the theoretical guarantees obtained and their
link with the hypothesis limiting the complexity of the outputs. We have shown that
for some structures, the choice of a distance between the output objects has some
implications on the complexity of the learning task on the example of permutation
predictions. For other representations, based on binary trees, we have proposed a
mechanism taking into account the uncertainty of the model to build robust predic-
tors. These contributions showcased in the framework of output kernel regression
provide some insight on the statistical guarantees and computational complexity
of such approaches on very practical applications. Though initially motivated by
and instantiated on the opinion prediction problem the proposed models are more
general and useful for multilabel binary prediction and label ranking prediction
problems.

In the third part of this thesis, we focused on the practical problem that the
practitioner faces when building an opinion prediction pipeline from the choice
of an annotation scheme to the problem of building the corresponding machine
learning based opinion predictor. Following the necessary restrictions over the
precision of the opinion representation presented in Chapter 2, we detailed an
annotation campaign tailored for movie reviews in spontaneous spoken language.
We introduced flexible guidelines that could be followed on disfluent language and
designed a set of targets adapted to the data treated. The resulting opinion labels
defined at the token, sentence and review label were used to jointly train a deep
learning model in Chapter 7, taking advantage of the redundancy of the information
across the representation. We provided some insight about the best strategies to
train such type of models and justified the simultaneous use of the different views of
opinions to improve the prediction of its different parts.
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8.2 Perpectives

The main bottom-line of this thesis was the exploration of the link between opinion
models (and more generally structured output data model), and their corresponding
predictor properties. Below we put our contributions into perspective and suggest
directions for future work.

8.2.1 Methodological perspectives

In the second part, we have investigated the use of output kernel regression-based
methods to solve our problems. These methods rely on 2 steps where the practitioner
has to make some modeling choices that will have an influence on different prop-
erties of the learned predictor. We did not focus on the learning step or regression
step since it is not specific to the structured prediction setting and improving the effi-
ciency of vector valued regressor is out of the scope of this thesis. Yet the pre-image
step is more amenable to improvement in several directions:

• We have seen that the pre-image problem is a combinatorial search problem
which is NP-Hard in the general case. In Chapter 4 and Chapter 5, we took
advantage of the structure of output objects to design polynomial time solu-
tions for this problem. It is currently unclear what properties a structured loss
should have to lead to polynomial time pre-image problems. Whether the
general answer to this question is out of reach, it might be possible to restrict
the study to some commonly used classes of structured output such as binary
valued vectors, fixed norm representations or more generally manifold valued
embeddings for which a first analysis has been proposed by RUDI and collab.
[2018].

• A second extension is suggested in the mathematical construction of the out-
puts with abstention in Chapter 5. The set of predicted objects can be different
from the set of objects seen at training time due to the ability of the regression
based approach to naturally interpolate in the output feature space, acting
here as a latent space. This intuition led to the construction of output ker-
nels enabling the encoding of weak labels providing an inductive bias to the
regressor at training time and providing competitive results on tasks where
the number of available labeled samples is low [DJERRAB and collab., 2018].
Some parallel works are currently studying the geometric properties of such
approaches [NOWAK-VILA and collab., 2019].

• Finally, recent works have shown that learning an output representation can
be benefitial over using a fixed one. Deep learning based methods such as Con-
ditional Variable Autoencoders (CVAE) [SOHN and collab., 2015] or Structured
Prediction Energy Networks (SPEN) [BELANGER and MCCALLUM, 2016] build a
representation of the output data that is easier to predict than any handmade
representation especially in the large data regime. It is unclear whether Output
Kernel Regression methods could be adapted to learn the output representa-
tion while maintaining statistical guarantees, thus bridging the gap between
the small and large data regimes.
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8.2.2 Practical application perspectives

Concerning the results presented in the third part of the thesis, we left some direc-
tions unexplored:

• The annotation process presented in Chapter 6 sticks to the main functional
components of opinions and decomposes the targets over a predefined set. The
strong imbalance in the label distributions of the targets is an indicator of the
unsufficient size of this set: the opinion target label ’Overall’ is a default choice
for the annotators and it represents 70% of the label distribution. Improving
our annotation scheme could be done by refining this type of coarse class. This
improvement would have a positive impact on the accuracy of the resulting
opinion predictor while increasing the quality of the opinion description.

• Concerning the dedicated machine learning models for multimodal opinion
data, our works is only a first step in this direction. The best architectures found
in our experiments only involved simple cascaded models. This may indicates
that the number of available labeled samples is not enough to learn complex
representations of the input objects. Since the fine labeling process of videos
will remain a long and expensive task, improving the input representation could
be done by incorporating a generative model of the multimodal sequences.
This type of approach has been successfully applied to a large number of tasks
where the unlabeled data are widely available and can be either used as a
pretrained representation [DEVLIN and collab., 2018] or as a second objective
regularizing the supervised prediction task [TSAI and collab., 2019].

• Finally the model showcased in Chapter 7 did not take into account the struc-
ture linking the output labels. This is difficult due to the variable size of the
output structure and the lack of availability of a simple dependency structure
linking the labels. A first direction would consist in adding a graphical model
structure linking the labels. Some recent approaches presented learning strate-
gies to perform learning with an arbitrary output graphical structure [ROSS

and collab., 2011; TOMPSON and collab., 2014].
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Appendix A

Annexes

A.1 Proofs and additional experimental results and de-
tails for chapter 3

A.1.1 Proof of Theorem 4

We borrow the notations of CILIBERTO and collab. [2016] and recall their main result
Theorem 7. They firstly exhibit the following assumption for a given loss ¢, see
Assumption 1 therein:
Assumption 1. There exists a separable Hilbert space F with inner product h., .iF , a
continuous embedding √ : Y !F and a bounded linear operator V : F !F , such
that:

¢(y, y 0) = h√(y),V√(y 0)iF 8y, y 0 2Y (A.1)

Theorem 7. Let ¢ : Y !Y satisfying Assumption 1 with Y a compact set. Then, for
every measurable g : X !F and d : F !Y such that8h 2F , d(h) = argminy2Y h¡(y),hiF ,
the following holds:

(i) Fisher Consistency: E (d ± g§) = E (s§)

(ii) Comparison Inequality: E (d ± g )°E (s§) ∑ 2c¢
p

R(g )°R(g§)

with c¢ = kVkmaxy2Y k¡(y)k.

Notice that any discrete set Y is compact and ¡ : Y !F is continuous. We now
prove the two assertions of Theorem 4.

Proof of Assertion(i) in Theorem 4. Firstly, Y =SK is finite. Then, for the Kemeny and
Hamming embeddings, ¢ satisfies Assumption 1 with V =°i d (where i d denotes
the identity operator) , and √=¡K and √=¡H respectively. Theorem 7 thus applies
directly.
Proof of Assertion(ii) in Theorem 4. In the following proof, Y denotes SK, ¡ denotes
¡L and d =¡°1

L ±dL with dL as defined in (4.17). Our goal is to control the excess risk
E (s)°E (s§).

E (s)°E (s§) = E (d ± bg )°E (s§)

= E (d ± bg )°E (d ± g§)| {z }
(A)

+E (d ± g§)°E (s§)| {z }
(B)
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Consider the first term (A).

E (d ± bg )°E (d ± g§) =
Z

X£Y
¢(d ± bg (x),æ)°¢(d ± g§(x),æ)dP(x,æ)

=
Z

X£Y
k¡(d ± bg (x))°¡(æ)k2

F °k¡(d ± g§(x))°¡(æ)k2
F dP(x,æ)

=
Z

X
k¡(d ± bg (x))k2

F °k¡(d ± g§(x))k2
F dP(x)

| {z }
(A1)

+

2
Z

X
h¡(d ± g§(x))°¡(d ± bg (x)),

Z

Y
¡(æ)dP(æ, x)idP(x)

| {z }
(A2)

The first term (A1) can be upper bounded as follows:
Z

X
k¡(d ± bg (x))k2

F °k¡(d ± g§(x))k2
F dP(x) ∑

Z

X
h¡(d ± bg (x))°¡(d ± g§(x)),¡(d ± bg (x))+¡(d ± g§(x))iF dP(x)

∑ 2c¢

Z

X
k¡(d ± bg (x))°¡(d ± g§(x))kF dP(x)

∑ 2c¢

sZ

X
kdL(bg (x))°dL(g§(x))k2

F dP(x)

∑ 2c¢

sZ

X
kg§(x)° bg (x)k2

F dP(x)+O (K
p

K)

with c¢ = maxæ2Y k¡(æ)kF =
q

(K°1)(K°2)
2 and since kdL(u)°dL(v)k ∑ ku ° vk+

p
K.

Since
R
X kg§(x)° bg (x)k2

F dP(x) = R(bg )°R(g§) (see CILIBERTO and collab. [2016])
we get the first term of Assertion (i). For the second term (A2), we can actually follow
the proof of Theorem 12 in CILIBERTO and collab. [2016] and we get:

Z

X
h¡(d ± g§(x))°¡(d ± bg (x)),

Z

Y
¡(æ)dP(æ, x)idP(x) ∑ 2c¢

q
R(bg )°R(g§)

Consider the second term (2). By Lemma 8 in [CILIBERTO and collab., 2016], we have
that:

g§(x) =
Z

Y
¡(æ)dP(æ|x) (A.2)

and then:

E (d ± g§)°E (s§) =
Z

X£Y
k¡(d ± g§(x))°¡(æ)k2

F °k¡(s§(x))°¡(æ)k2
F dP(x,æ)

∑
Z

X£Y
h¡(d ± bg (x))°¡(s§(x)),¡(d ± bg (x))+¡(s§(x))°2¡(æ)iF dP(x,æ)

∑ 4c¢

Z

X
k¡(d ± g§(x))°¡(s§(x))kF dP(x)

∑ 4c¢

Z

X
kdL ± g§(x))°dL ±¡(s§(x))kF dP(x)

∑ 4c¢

Z

X
kg§(x))°¡(s§(x))kF dP(x)+O (K

p
K)
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where we used that ¡(s§(x)) 2CK so dL ±¡(s§(x)) =¡(s§(x)). Then we can plug (A.2)
in the right term:

E (d ± g§)°E (s§) ∑ 4c¢

Z

X
k
Z

Y
¡(æ)dP(æ|x)°¡(s§(x))kF dP(x)+O (K

p
K)

∑ 4c¢

Z

X£Y
k¡(æ)°¡(s§(x))kF dP(x)+O (K

p
K)

∑ 4c¢E (s§)+O (K
p

K)

Remark 2. As proved in Theorem 19 in [CILIBERTO and collab., 2016], since the space
of rankings Y is finite, ¢L necessarily satisfies Assumption 1 with some continuous
embedding √. If the approach we developped was relying on this √, we would have
consistency for the minimizer g§ of the Lehmer loss (4.16). However, the choice of ¡L is
relevant because it yields a pre-image problem with low computational complexity.

A.1.2 Lehmer embedding for partial rankings

An example, borrowed from [LI and collab., 2017] illustrating the extension of the
Lehmer code for partial rankings is the following:

e 1 2 3 4 5 6 7 8 9
eæ 1 1 2 2 3 1 2 3 3
æ 1 2 4 5 7 3 6 8 9
cæ 0 0 0 0 0 3 1 0 0
IN 1 2 1 2 1 3 3 2 3
ceæ 0 0 0 0 0 3 1 0 0
c 0eæ 0 1 0 1 0 5 3 1 2

where each row represents a step to encode a partial ranking.

A.2 Proofs and technical derivations for chapter 4

A.2.1 Proof of theorem 5

We aim at minimizing the risk of predictor (h,r ) based on an estimate ĝ of the
conditional density Ey |x√w a(y):

(h(x),r (x)) = argmin
(yh ,yr )2Y H,R

hC√a(yh , yr ), ĝ (x)i,

and the corresponding risk is given by :

R(h,r ) = ExhC√a(h(x),r (x)),Ey |x√w a(y)i.
The optimal predictor (h?,r?) is the one which is based on the estimate ĝ =

Ey |x√w a(y) which minimized the surrogate risk L :

h?(x),r?(x) = argmin
(yh ,yr )2Y H,R

hC√a(yh , yr ),Ey |x√w a(y)i,

and the corresponding risk of the optimal predictor is :

R(h§,r §) = ExhC√a(h§(x),r §(x)),Ey |x√w a(y)i.
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Suppose that we have first solved the learning step and we have computed an
estimate ĝ (x), we have :

R(h,r )°R(h?,r?) = ExhC[√a(h(x),r (x))°√a(h?(x),r?(x))],Ey |x√w a(y)i
= ExhC√a(h(x),r (x))(Ey |x[√w a(y)]° ĝ (x))i
+ExhC√a(h(x),r (x)), ĝ (x)i
°ExhC√a(h?(x),r?(x)),Ey |x√w a(y)i.

The first term can be bounded by taking the supremum over Y H,R of the possible
predictions :

ExhC√a(h(x),r (x)), (Ey |x[√w a(y)]° ĝ (x))i

∑ Ex

≥
sup

(yh ,yr )2Y H,R
|hC√a(yh , yr ), (ĝ (x)°Ey |x[√w a(y)]i|

¥
.

The second and third term can be rewritten using the definition of the predictors
:

hC√a(h(x),r (x)), ĝ (x)i= inf
(yh ,yr )2Y H,R

hC√a(yh , yr ), ĝ (x)i

hC√a(h?(x),r?(x)),Ey |x√w a(y)i= inf
(yh ,yr )2Y H,R

hC√a(yh , yr ),Ey |x√w a(y)i.

The two terms can then be combined :

inf
(yh ,yr )2Y H,R

hC√a(yh , yr ), ĝ (x)i° inf
(yh ,yr )2Y H,R

hC√a(yh , yr ),Ey |x√w a(y)i

∑ sup
(yh ,yr )2Y H,R

|hC√a(yh , yr ), (ĝ (x)°Ey |x√w a(y))i|.

Which gives the same term as above. By combining the results :

R(h,r )°R(h?,r?) ∑ 2Ex

≥
sup

(yh ,yr )2Y H,R
|hC√a(yh , yr ), (ĝ (x)°Ey |x√w a(y))i|

¥

∑ 2Ex

≥
sup

(yh ,yr )2Y H,R
kC√a(yh , yr )kRqk(ĝ (x)°Ey |x√w a(y))kRq

¥

∑ 2 sup
(yh ,yr )2Y H,R

k√a(yh , yr )kRp ·kCk ·Ex

≥
k(ĝ (x)°Ey |x√w a(y))kRq

¥

∑ 2 sup
(yh ,yr )2Y H,R

k√a(yh , yr )kRp ·kCk ·
r
Ex

≥
k(ĝ (x)°Ey |x√w a(y))k2

Rq

¥
.

Where kCk = supx2Rp |kxk∑1 kCxkRq is the operator norm and the last line is ob-
tained using Jensen inequality.

Finally we expand the form under the square root :

138



APPENDIX A. ANNEXES

Ex[k(ĝ (x)°Ey |x√w a(y))k2
Rq ] = Exkĝ (x)k2

Rq +kEy |x√w a(y))k2
Rq °2hĝ (x),Ey |x√w a(y)i

= Exkĝ (x)k2
Rq °kEy |x√w a(y)k2

Rq +2hEy |x√w a(y),Ey |x√w a(y)i
°2hĝ (x),Ey |x√w a(y)i+Ex,yk√w a(y)k2

Rq °Ex,yk√w a(y)k2
Rq

= Exkĝ (x)k2
Rq +Ex,yk√w a(y)k2

Rq °2Ex,yhĝ (x),√w a(y)i
°

°
kEy |x√w a(y)k2

Rq +k√w a(y)k2
Rq °2Ex,yhkEy |x√w a(y),√w a(y)i

¢

= Ex,ykĝ (x)°√w a(y)k2
Rq °Ex,ykEy |x√w a(y)°√w a(y)k2

Rq .

Which is equal to L (ĝ )°L (Ey |x√w a).

A.2.2 Canonical form for some examples of the abstention aware
loss

Canonical form for the¢bi n loss

Let us consider the binary classification with a reject option loss :

¢bi n
a (h(x),r (x), y) =

8
>><

>>:

1 if y 6= h(x) and r (x) = 1

0 if y = h(x) and r (x) = 1

c if r (x) = 0

,

It can also be rewritten as a function of the binary variables :

¢bi n
a (h(x),r (x), y) = r (x)[1° (h(x)° y)2]+ (1° r (x))c

= r (x)[1°h(x)° y +2h(x)y]+ (1° r (x))c

= y(h(x)r (x))+ (1° y)(1°h(x))r (x)+ (y + (1° y))c(1° r (x)).

Which corresponds to the parameterization proposed in the article.

Canonical form for the¢H loss

Let us consider the hierarchical loss :

¢H(h(x),r (x), y) =
dX

i=1
ci 1h(x)i 6=yi 1h(x)p(i )=yp(i ) .

It is defined on objects that respect the hierarchical condition :

8i 2 {1, . . . ,d},8y 2 {0,1}d yi ∑ yp(i ),

under the hypothesis of a binary vector, the loss can be rewritten :

¢H(h(x),r (x), y) =
dX

i=1
ci (h(x)i ° yi )2(1° (h(x)p(i ) ° yp(i ))

2

=
dX

i=1
ci (h(x)i + yi °2h(x)i yi )(1°h(x)p(i ) ° yp(i ) +2h(x)p(i ) yp(i )).
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Where the second line has been obtained using the fact that for binary vari-
ables, e = e2. Due to the hierarchical constraint, we also have yi yp(i ) = yi and
h(x)i h(x)p(i ) = h(x)i :

¢H(h(x),r (x), y) =
dX

i=1
ci (h(x)i (yp(i ) °2yi )+h(x)p(i ) yi ).

Which corresponds to the parameterization proposed in the article.

Canonical form for the¢Ha loss

See section A.2.4 of the annexes.

A.2.3 Proof of theorem 2

Let us recall the problem to solve :

argmin
(yh ,yr )2Y H,R

h√a(yh , yr ,√xi,

Using the additional hypothesis over √a we obtain the problem :

ĥ(x), r̂ (x) = argmin
(yh ,yr )2Y H,R

(yT
h , yT

r , (yh ≠ yr )T)MT√x .

Where ≠ is the Kronecker product between 2 vectors. This problem can be
transformed into the constrained optimization problem :

ĥ(x), r̂ (x) = argmin
(yh ,yr )2Y H,R

(yT
h , yT

r ,cT)MT√x .

s.t.
°
c = yh ≠ yr

¢

Let us show that the constraint c = yh ≠ yr can be replaced by a set of linear
constraints when h(x) and r (x) are two binary vectors:

Constraints on the c vector

The linearisation of the constraint relies on the following result :

Proposition 1. Let x and y be 2 binary variables and e the binary variables defined
by the formula e = x · y where · denotes the logical AND : e = 1 if x = 1 and y = 1 and 0
else. Then the following holds :

e = x · y ()

8
>>>><

>>>>:

e ∑ x

e ∑ y

e ∏ x + y °1

e ∏ 0

. (A.3)
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This representation can be used to rewrite the constraints on the c vector. By def-

inition of the Kronecker product : yh ≠ yr =

0

BBB@

yh,1 yr

yh,2 yr

·
yh,d yr

1

CCCA where yh,i is the ith component

of yh .

We write each inequality of (A.3) as a linear matrix inequality :

c ∑ Ah,1 yh

c ∑ Ar,1 yr

c ∏ Ah,2 yh +Ar,2 yr +b1

c ∏ 0.

All these inequality can be merged in a single one :

Aconstraints c

0

@
yh

yr

c

1

A∑ bconstraints c,

where Aconstraints c =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

°Id 0d Id 0d 0d · · · 0d

°Id 0d 0d Id 0d · · · 0d
...

...
. . . . . . . . . . . .

...
°Id 0d · · · 0d · · · · · · Id

0d °V1 Id 0d 0d · · · 0d

0d °V2 0d Id 0d · · · 0d
...

...
. . . . . . . . . . . .

...
0d °Vd · · · 0d · · · · · · Id

Id V1 °Id 0d 0d · · · 0d

Id V2 0d °Id 0d · · · 0d
...

...
. . . . . . . . . . . .

...
Id Vd · · · 0d · · · · · · °Id

0d 0d Id 0d · · · · · · · · ·
0d 0d 0d Id 0d · · · · · ·
...

. . . . . . . . . . . . . . .
...

0d
. . . . . . . . . . . . 0d Id

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

and bconstraints c =

0

BBB@

0d 2,1
0d 2,1
1d 2,1
0d 2,1

1

CCCA. Id is the d £d identity matrix, 0d the d £d matrix full

of 0, 0d 2,1 the d 2 dimensional vector full of 0 and 1d 2,1 the d 2 dimensional vector full
of 1.

Vi is the d £d matrix such that all its entries are 0 except the i th which is 1. The 4
distinct blocks correspond to the 4 different constraints given in A.3.
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A.2.4 Construction of the linear program for the Hierarchical loss
with abstention

Let us suppose that our prediction are the assignments of a d nodes binary tree with
an abstention label a.

We recall the parameterization of our loss :

¢Ha(h(x),r (x), y) =
dX

i=1
cAi 1{ f h,r

i =a, f h,r
p(i )=yp(i )}

+ cAc i 1{ f h,r
i 6=yi , f h,r

p(i )=a}

+ ci 1{ f h,r
i 6=yi , f h,r

p(i )=yp(i ), f h,r
i 6=a}.

With f h,r a prediction function built from the pair (h,r ) : X !Y H,R :

f h,r (x)T = [ f h,r
1 (x), . . . , f h,r

d (x)],

f h,r
i (x) = 1h(x)i=11r (x)i=1 +a1r (x)i=0,

In what follows, we denote by p(i ) the index of the parent of the i according to
the underlying tree and suppose that our trees are rooted at the node of index 0 for
which the label is 1 and there is no abstention.

We recall the set of constraints we used to define Y H,R for the Ha loss :

• Abstention at 2 consecutive nodes is forbidden : 8i 2 {1, . . . ,d} r (x)i +r (x)p(i ) ∑
1.

• A node can be set to one only if its parent is set to 1 or if the predictor abstained
itself from predicting it : h(x)i r (x)p(i ) ∑ h(x)p(i )r (x)p(i ).

Since h(x) and r (x) are both binary vectors, one can rewrite the loss as a function
of these predictions :

¢Ha(h(x),r (x), y) =
nX

i=1
ci (h(x)i ° yi )2[1° (h(x)p(i ) ° yp(i ))

2]r (x)i r (x)p(i )

+ cAi (1° r (x)i )[1° (h(x)p(i ) ° yp(i ))
2]

+ cAc i (h(x)i ° yi )2(1° r (x)p(i )).

We develop and simplify according to the fact that for any binary variable b, we
have b2 = b :

¢Ha(h(x),r (x), y) =
nX

i=1
ci (h(x)i + yi °2h(x)i yi )

[1° (h(x)p(i ) + yp(i ) °2h(x)p(i ) yp(i ))]r (x)i r (x)p(i )

+ cAi (1° r (x)i )[1° (h(x)p(i ) + yp(i ) °2h(x)p(i ) yp(i ))]

+ cAc i (h(x)i + yi °2h(x)i yi )(1° r (x)p(i )).

We take into account the known constraints :
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• The hierarchical constraint can be written : (1°h(x)p(i ))r (x)p(i ) = 1 =) h(x)i =
0 which leads to the equality : (1°h(x)p(i ))r (x)p(i )h(x)i = 0 () h(x)p(i )h(x)i r (x)p(i ) =
h(x)i r (x)p(i ).

• The non consecutive abstention constraint implies r (x)i r (x)p(i ) = r (x)i+r (x)p(i )°
1.

We treat the 3 terms of the lHA loss separately as follows :

¢Ha(h(x),r (x), y) =
nX

i=1
ci Ai (x)+ cAi Bi (x)+ cAc i Ci (x).

And rewrite each of this term as a linear combination of the unknown variables

(corresponding to some elements of the vector

0

@
h(x)
r (x)

h(x)≠ r (x)

1

A ):

First term :

Ai (x) = (h(x)i + yi °2h(x)i yi )(1°h(x)p(i ) ° yp(i ) +2h(x)p(i ) yp(i ))r (x)i r (x)p(i )

= (h(x)i (1°2yi )+ yi )(h(x)p(i )(2yp(i ) °1)+1° yp(i ))r (x)i r (x)p(i )

=
≥
h(x)i h(x)p(i )(1°2yi )(2yp(i ) °1)+

h(x)i (1° yp(i ))(1°2yi )+h(x)p(i ) yi (2yp(i ) °1)+ yi (1° yp(i ))
¥
r (x)i r (x)p(i )

= h(x)i h(x)p(i )r (x)p(i )r (x)i (1°2yi )(2yp(i ) °1)+
h(x)i r (x)i r (x)p(i )(1° yp(i ))(1°2yi )+
h(x)p(i )r (x)i r (x)p(i ) yi (2yp(i ) °1)+
r (x)i r (x)p(i ) yi (1° yp(i )).

Using the first constraint, we have : h(x)i h(x)p(i )r (x)p(i )r (x)i = h(x)i r (x)p(i )r (x)i .
Using this reduction and the second constraint we obtain the equation :

Ai (x) = h(x)i r (x)i

≥
(1°2yi )(2yp(i ) °1)+ (1° yp(i ))(1°2yi )

¥
+

h(x)i r (x)p(i )

≥
(1°2yi )(2yp(i ) °1)+ (1° yp(i ))(1°2yi )

¥
+

h(x)p(i )r (x)i

≥
yi (2yp(i ) °1)

¥
+

h(x)p(i )r (x)p(i )

≥
yi (2yp(i ) °1)

¥
+

h(x)i

≥
° (1°2yi )(2yp(i ) °1)° (1° yp(i ))(1°2yi )

¥
+

h(x)p(i )

≥
yi (1°2yp(i ))

¥
+

r (x)i

≥
yi (1° yp(i ))

¥
+

r (x)p(i )

≥
yi (1° yp(i ))

¥
+

≥
yi (yp(i ) °1)

¥
.
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Second term :

Bi (x) = (1° r (x)i )(1°h(x)p(i ) ° yp(i ) +2h(x)p(i ) yp(i ))

= h(x)p(i )r (x)i

≥
1°2yp(i )

¥
+

h(x)p(i )

≥
2yp(i ) °1

¥
+

r (x)i

≥
yp(i ) °1

¥
+

≥
1° yp(i )

¥
.

Third term :

Ci (x) = h(x)i + yi °2h(x)i yi )(1° r (x)p(i ))

= h(x)i r (x)p(i )

≥
2yi °1

¥
+

h(x)i

≥
1°2yi

¥
+

r (x)p(i )

≥
° yi

¥
+

≥
yi

¥
.

Sum of the three terms
Based on the previous results we express the loss as a linear combination of the

different variables previously expressed :

¢Ha(h(x),r (x), y) =
≥ nX

i=1
a(1)

(i ) h(x)i +a(2)
(i ) h(x)i r (x)p(i ) +a(3)

(i ) h(x)p(i )r (x)i +a(4)
(i ) h(x)i r (x)i +a(5)

(i ) r (x)i+

a(6)
(i ) h(x)p(i ) +a(7)

(i ) r (x)p(i ) +a(8)
(i ) h(x)p(i )r (x)p(i ) +a(9)

(i )

¥
.

With the following table of correspondency 8k 2 {1, . . . ,d}:

a(1)
(i ) =°ci ((1°2yi )(2yp(i ) °1)+ (1° yp(i ))(1°2yi ))+ cAc i (1°2yi )

a(2)
(i ) = ci ((1°2yi )(2yp(i ) °1)+ (1° yp(i ))(1°2yi ))+ cAc i (2yi °1)

a(3)
(i ) = ci (yi (2yp(i ) °1))+ cAi (1°2yp(i ))

a(4)
(i ) = ci ((1°2yi )(2yp(i ) °1)+ (1° yp(i ))(1°2yi ))

a(5)
(i ) = ci yi (1° yp(i ))+ cAi (yp(i ) °1)

a(6)
(i ) = ci yi (1°2yp(i ))+ cAi (2yp(i ) °1)

a(7)
(i ) = ci yi (1° yp(i ))° cAc i yi

a(8)
(i ) = ci yi (2yp(i ) °1)

a(9)
(i ) = ci yi (yp(i ) °1)+ cAi (1° yp(i ))+ cAc i yi .

We introduce a new vector of variables g =

0

BBB@

g (1)

g (2)

...
g (8)

1

CCCA where each of the n dimen-

sional vectors g (k) is defined as follows : 8i 2 {1, . . . ,n}
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g (1)
i =hi

g (2)
i =hi rpi

g (3)
i =hpi ri

g (4)
i =hi ri

g (5)
i =ri

g (6)
i =hpi

g (7)
i =rpi

g (8)
i =hpi rpi .

The last variables are redundant since gpi and gi are the same except at the root
and leaves. Let us denote by Ah the adjacency matrix of the underlying hierarchy and

8p 2 {1, . . . ,8} y (p) =

0

B@
y (p)

1
·

y (p)
d

1

CA and ¯a(p) =

0

@
¯a(p)1

·
¯a(p)d

1

A. Then we have

y (6) = Ah y (1)

y (7) = Ah y (5)

y (8) = Ah y (4).

Let us denote by a(p) =

0

BBBB@

a(p)
1

a(p)
2
...

a(p)
n

1

CCCCA
, on can rewrite the loss l (y (A), y) using the reduced

set of variables :

¢Ha(h(x),r (x), y) =
5X

p=1

≥
(a(p))Tg (p)

¥
+ (a(6))TAh g (1) + (a(7))TAh y (5) + (a(8))TAh y (4).

This is a linear program by choosing the cost vector c and the variable g 0 :

c =

0

BBBBB@

a(1) +AT
h a(6)

a(2)

a(3)

a(4) +AT
h a(8)

a(5) +AT
h a(7)

1

CCCCCA
g 0 =

0

BBBBB@

g (1)

g (2)

g (3)

g (4)

g (5).

1

CCCCCA

Leading to the reduced form :

l (y (A), y) = cTg 0.

In our applications, the abstention aware predictor we built relied on solving
problems of the form :

argmin
y (A)

NX

k=1
Æk (x)¢Ha(h(x),r (x), yk ).
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Where (xk , yk ) k 2 {1, . . . ,N} are labelled example of a N sample training set and
(x, f h,r ) correspond to the new input x for which we look for the best prediction f h,r .

According to the previous results, we denote by ck the cost vector computed
from the term l (y (A), yk ) and c̄(x) =Pn

k=1Æk (x)ck the full cost vector of the previous
minimization problem. The minimization problem can be rewritten explicit in terms
of the vector of variables g 0 by making the constraints between its different parts
explicit :

argmin
y (A)

NX

k=1
Æk (x)¢Ha(h(x),r (x), yk ) = argmin

g 02{0,1}8n
cTg 0

subject to g (2) = g (1) ØAh g (5),

g (3) = Ah g (1) Ø g (5),

g (4) = g (1) Ø g (5),

g (2) ∑ Ah g (4),

g (5) 2Yr .

Where Yr is the space of d dimensional binary vectors such that 8y 2 Yr 8i 2
{1, . . . ,d} yi + yp(i ) ∑ 1. The 3 first constraints are given by construction of the g 0

vector from 2 underlying vectors r (x) and h(x). The fourth line is the generalized
hierarchical constraint : 8i 2 1, . . . ,n h(x)i r (x)p(i ) ∑ h(x)p(i )r (x)p(i ). The fifth line
corresponds to the hypothesis of no 2 consecutive abstentions.

We turn this program into a canonical linear program with binary value con-
straints :

argmin
g

L (g ) = argmin
g 02{0,1}8n

cTg 0

subject to g (2) ∑ g (1),

g (2) ∑ Ah g (5),

g (2) ∏ g (1) +Ah g (5) °1,

g (3) ∑ Ah g (1),

g (3) ∑ g (5),

g (3) ∏ Ah g (1) + g (5) °1,

g (4) ∑ g (1),

g (4) ∑ g (5),

g (4) ∏ g (1) + g (5) °1,

g (2) ∑ Ah g (4),

Id +Ah g (5) ∑ 1.

In our experiments, this integer linear program is solved using the python cylp
binder to the Cbc library and directly implemented using sparse representations.
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A.3 Additional experiments: Hierarchical classification
of MRI images

This section provides additional results showing that our method is sound beyond
the problem of opinion mining. The Medical Retrieval Task of the ImageCLEF 2007
challenge provided a set of medical images aligned with a code corresponding to a
class in a predefined hierarchy. A class is described by 4 values encoded as follows :

• T (Technical) : image modality

• D (Directional) : body orientation

• A (Anatomical) : body region examined

• B (Biological) : biological system examined

In our experiments we focus on the D and A tasks and reuse the representation
proposed in DIMITROVSKI and collab. [2008] and freely available at the page : http://
ijs.si/DragiKocev/PhD/resources/doku.php?id=hmc_classification. Each
dataset contains an existing train test split with 10000 labeled objects for training
and 1006 for testing. The A task consist in predicting the assignment of a 96 nodes
binary tree of maximal depth 3 ( an example of label at depth 3 is : upper extremity
/ arm ! hand ! finger). The D task consist in predicting the assignment of a 46
nodes binary tree of maximal depth 3 ( an example of label at depth 3 is : sagittal !
lateral, right-left ! inspiration). The complete hierarchy is described in LEHMANN

and collab. [2003]
The table below contains the results in terms of Hamming Loss for the problem

of hierarchical classification.

Method Hamming loss

H Regression 0.0189
Depth weighted Regression 0.0193
Uniform Regression 0.0218
Binary SVC 0.0197

Table A.1 – Results on the ImageCLEF2007d task

Method Hamming loss

H Regression 0.0065
Depth weighted Regression 0.0068
Uniform Regression 0.0102
Binary SVC 0.0071

Table A.2 – Results on the ImageCLEF2007a task

We compare our method (H regression) using the sibbling weighted scheme
described in the article against our same method (Uniform regression) with a uniform
weighted scheme (ci = 1 8i 2 {1, . . . ,d}), a depth weighted scheme (ci =

cp(i )

Nd
8i 2

{1, . . . ,d} where Nd is the number of nodes at depth d i.e. separated from the root
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by d +1 nodes) and against the binary relevance Support Vector Classifier approach
(binary SVC) which consist in training one SVM classifier for each node and applying
the Hierarchical condition in a second time by switching to 0 all the nodes which
for which the parent node has the label 0. We used the gaussian kernel for the input
data in all 3 methods and tuned the hyperparameters by 5 folds cross validation and
report the results on the available test set.

These results illustrate the choice of the sibbling weighted scheme for the H loss
since it retrieve the best results. Moreover, taking the structured representation into
account is shown to improve the results over the Binary SVC approach on both tasks.

A.4 Annotation guide for the POM Dataset
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Annotation guide
Movie review corpus

March 21, 2017

Current settings for the demo
url - http://207.154.220.108:18080/webanno
ids - Francois, Ismail, Louis
pass - francois, ismail, louis

1 Annotation guide
This whitepaper intends to provide all the information required to perform the
fine grained opinion annotation of the Opinion-Movie corpus. The different
sections cover the use of the webanno tool, the annotation scheme itself and a
few examples of extracts and their corresponding annotations.

1.1 Description of the task
The Opinion-Movie corpus is composed of 1000 videos in which a single person
reviews a movie he has seen. The transcripts of the critics have been manually
reported by human anotators (POM dataset, Morency) and will be used as
the support of the annotation in this campaign. Based on the transcript of a
movie review, you are asked to find and tag the sentences and words that carry
an opinionated content following the scheme proposed in Section 2 using the
interface described in Section 3. The task will be decomposed in batches of 25
extracts to annotate .

2 Annotation scheme
We provide a scheme that we ask you to follow in order to guarantee a consistent
annotation along the different extracts. It has been designed in a coarse to fine
way such that the different steps are naturally consistent and lead to a faster
work. We strongly advise you to follow the steps summarized below.

The annotation of an extract is decomposed in two steps :

• First an identification of the phrases that contain an opinion and the
corresponding Target and Polarity.

• Second, a precise identification of the words appearing in the previ-
ously selected sequences that are related to different parts of the opinion
expressed.
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2.1 Phrase level opinion annotation
An opinion is defined by a Target (the object which is discussed), a Polarity
(whether the opinion toward the target is positive or negative) and a Holder (the
person who is expressing the opinion). The first task is to read all the sentences
and for each of them, select the phrases that corresponds to a single opinion
and give its corresponding polarity and target category. We add some precisions
concerning issues arising in practice :

• You are asked to select the phrases containing the opinion. It doesn’t
have to be the complete sentence as we only want you to pick the words
related to the opinion.

• The words of an opinion must be as contiguous as possible : if some
words indicating an opinion are placed at the beginning of a sentence and
the others at the end, consider all the words inbetween as being part of
this opinion except in the case described below :

• There can be more than one opinion expressed in each sentence. We
ask you to report them all and mark them with a different tag (We detail
the practical aspects in the interface section).

• Once the boundaries of the opinion have been chosen, you have to indicate
the polarity and target of this opinion.

The figure next page displays an example of a text annotated at the sentence
level.

Remarks on the annotation proposed for text 101513.txt :

• We see that the 13th sentence contains 2 distinct opinions that are seman-
tically AND grammatically separated by the "and" token such that we
could correctly select both opinions.

• The 12th sentence is ambiguous about the target but seems to indicate
a positive sentiment, we tagged it as being positive without selecting the
target category.

• We add a recommandation tag that can be used for sentences such as
’this movie is perfect for kids’ where the speaker is not directly expressing
his own opinion but rather predicting the one of others. We illustrate in
section 4 some examples when this tag should be used.

• Finally it is possible that the author is expressing his feeling without
specifically giving a target. An example would be : ’I am happy I have
bought this DVD’. Even if this is more a coarse sentiment than an opinion
toward a specific feature of the DVD/movie, the presence of such a sentence
in the text shows that the author is globally trying to express a positive
emotion to which the reader is sensitive. For these cases you have to give
the polarity of the sentence and use the tick No_Target_Sentiment.
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2.2 Opinion words identification
As stated before, an opinion has been defined by the triple (Target, Polarity,
Holder). For each sequence of words previously selected, you are asked to select
the words that refer to each of these 3 slots.

• Note that sometimes the target is implicit or outside of the sequence
selected. In the implicit case, you’ll simply have to annotate the polarity
and holder only).

• In this step, the different words are not necessarily tied together and the
indicators of vocal disfluencies or non-verbal behaviors can be taken into
account. In the example below, we see that in the 4th sentence, "Morgan
Freeman is still God {laugh}" has been tagged as a positive opinion toward
an actor and the word "still" has been tagged as a polarity term together
with the {laugh} marker indicating a non-verbal behavior in the original
video. In this case, the {laugh} marker was indicating that the opinion is
positive and that the word "still" contributes to the opinion.

• In addition to the Target and Polarity elements, you are also asked to find
the Holders of the opinion when they explicitly appear.

• We don’t ask you to perform these detailed annotations in sentences
previously annotated as a recommandation.

Figure 2: An exemple of review annotated after the second step. Note that 2
different colors are used to indicate the annotations since we reuse the previous
one and add a more fine grained done at the word level.

2.3 Target annotation disambiguation
In the last step, you are asked to disambiguate the targets of the previously done
annotations. It consists it giving a label to each of the different references of the
movie reviewed accross the opinion phrases. The method is the following :

• Find the title of the movie (if it appears in the review - it is likely to be at
the beginnning and capitalized) and tag it as a Target (even if it is not in
an opinion phrase).

• In the id_target box appearing on the left, mark the title as ’Movie_reviewed’.

• Mark as 1 all the targets previously annotated that refer to the movie.

Once the three steps are done, the annotation is completed for the current
text.
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Figure 3: Same text as before after the target disambiguation step.

3 Connection to the database and annotation in-
terface

The data are hosted on a distant server that can be accessed at the adress
http://207.154.220.108:18080/webanno. Each annotator is provided a username
and a password to reach the texts he has to annotate.

Figure 4: Identification page

Once you’re identified, click on the Annotation button to have access to the
list of texts available.
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Figure 5: Selection of the text to annotate

The list corresponds to the texts available in the current batch. A text
id displayed in black has not been opened yet. It becomes blue when opened
and red when validated (all the annotations are completed). Depending on
your browser, the ’open’ button may not appear but you can still access the
annotation platform by selecting a text id and pressing enter.

Once a text is chosen, it is displayed in the following window.

Figure 6: First view of the annotation interface

Each time you begin a new batch of annotations, check in the
Settings parameter if the number of sentence displayed is high enough
and if the annotations layers are all checked :

Figure 7: The settings should be such that all the layers are used and the number
of sentences has been set to 500 to display them all.
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3.1 Step 1 : Sentence level annotation with Webanno

In the first step you’re asked to to identify the sentences and subpart of sentences
corresponding to an opinion. Select the Polarity_sentence layer in the Action
menu on the right part of the panel (The layer is selected for all the subsequent
annotations).

Then select the first sentence as it contains an opinion.

Figure 8: First sentence is selected with the layer Polarity_sentence

Three boxes appeared in the actions panel that allow one to select the
corresponding target and polarity. You are asked to select a polarity among
Very-Negative, Negative, Neutral, Positive, Very-Positive. You can accelerate
the selection by typing the first letter of your choice (V,P,N) and using the arrow
keys to validate your choice. Then you can choose the corresponding target of
the opinion among the following choices :

Table 1: Entities and their corresponding aspects in the case of movie reviews
(following Zhang 2006), note that the Special Effects and Vision effects have
been tied together in our taxonomy
Movie Elements Movie People Support
Overall Producer Price
Screenplay Actor/Actress Availability
Character design Composer / Singer / Soundmaker Other
Vision and Special effects Director
Music and sound effects Other people involved in movie making
Atmosphere and mood

We do this step again for all the sentences and obtain at the end the following
result :
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Figure 9: First text annotated at the sentence level

Note that we didn’t tag the seven’th sentence as being an opinion since it is
objective even if it brings a positive message (polar fact).

3.2 Special cases

Three additional boxes can be ticked in the interface allowing you to deal with
some particular cases that may be harder to annotate :

• The Recommandation box can be used to indicate that the speaker is
not really giving his own opinion but is rather recommanding the movie to
other people that might be interested in watching it. This case appears
in sentences such as : "This movie is perfect for kids". When this box is
ticked, you just have to provide the polarity of the recommandation but
you are not asked to perform the second step (word level annotation).

• The no_target box can be used to indicate cases where the opinion
expressed doesn’t have a particular target. This case encompasses in
particular sentiment expressions like in sentences such as : "I’ve seen
this movie at the theater and I’ve been so disapointed". Note that when
you tick this box, you still have to indicate the polarity of the sentiment
expressed but not the target.

• The Comparison is proposed to handle the case where different movies
are compared (the most current case being the different episodes of a saga).
You are asked to tag the phrase as being a comparison and indicate the
relative polarity : Positive / Very Positive if the movie currently discussed
receives a better opinion than the one compared and Negative / Very
Negative in the opposite cases. You can also choose the neutral polarity if
the two movies are receiving a similar opinion.
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3.3 Step 2 : Word level annotation with Webanno
In the second step, you are asked to annotate the text at a finer grain and identify
the tokens and group of tokens of each of the previously selected sentence that
indicate :

• The target if the opinion (it can be a word or a simple pronoun such as
’this’, ’it’, . . .).

• The polarity of the opinion. It may be an adjective such as good / bad
but also a more complex expression.

• The holder of the opinion.

For more details concerning what these slots mean refer yourself to the section
2.2

It happens in practice that the different slots will not always appear and you
won’t have to annotate anything in case of implicit slot. In the case where the
tokens bringing the opinion are ambiguous, you can skip the fine annotation
task (be careful of not using this option too often). This option has been taken
in the second sentence of the example below (corresponding to the second step
annotation of the previously seen text).

Figure 10: First text annotated at the sentence level

3.4 Step 3 : Word annotation disambiguation and title
identification

In this last step, you are asked to link the different occurences of the movie
target (often referred to as the ’Overall’ target). First find the title of the movie
when it is explicitly cited (it is most of the time the case) and mark it with the
label Target and the sublabel Movie_Reviewed. This step should be easy as the
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Figure 11: Example of title identified

annotators that wrote the transcript were asked to write the titles with capital
first letters.

Once the title is identified, you are asked to reidentify it in all the targets
previously with the tag Ref_Movie_Reviewed.

Figure 12: Example of reference to the movie identified

4 Examples

4.1 Cheaper by the dozen
• The humor has been put in the Overall category (since it is not clear if

the author was talking about the humor of the story (screenplay) or of the
actors.

• In the sentence ’Not all that funny and not all that original and I didn’t
think the acting was great either’, we identified 3 separate opinions but
another annnotator could have said that the 2 first can be tied together.
We split them as the polarity term is expressing a slightly different opinion
toward the same target.

4.2 Gladiator
• The review contains examples of different targets (visual, screenplay). Note

that I selected the Atmosphere / mood tag for opinions related to the
length of the movie (mood = boring) and for the "entertaining" opinion
(effect of the filmmaking on the audience).

• The sentence number 9 can be seen as an opinion or simply a fact. Both
can be accepted but the choice of the words "pretty cheap" carries the
idea that the price is lower than usual and seems to be an argument for
this movie. It has thus been annotated as an opinion.

4.3 It
We have annotated the opinion toward the slowness of the movie each time it
appears. Even if this seems not usefull at the moment, this type of behavior is
an indicator of the global opinion of the author : even if many opinions seem
to be only negative in this review, the global sentiment (last sentence) is very
negative and this is partially due to the repetition of the same negative opinions.
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Figure 13: The case of Cheaper by the Dozen (100178.txt)
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Figure 14: The case of Gladiator based on the segmentation of Ismail (100232.txt)

Figure 15: The case of It
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Résumé : La recrudescence de contenus dans les-
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ment à des produits de consommation a fait de l’ana-

lyse d’opinion un sujet d’intérêt pour la recherche en

apprentissage automatique. Cependant, prédire une

opinion est une tâche difficile et parmi les modèles

à disposition, peu sont capables de capturer la com-

plexité de tels objets. Les approches actuelles re-

posent sur la prédiction de représentations simplifiées

d’expressions affectives. Par exemple, il est possible

de se restreindre à la reconnaissance de l’attribut de

valence.
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plexité du problème d’apprentissage et sur les pro-
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Un second aspect de cette thèse repose sur l’adap-

tation de méthodes d’apprentissage profond à un

jeu de données comportant des données d’opi-

nion à la structure complexe. Nous proposons une

approche basée sur l’apprentissage profond pour

prendre en contre jointement les différentes étiquettes

du modèle d’opinions. Une nouvelle architecture hie-
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goods. Yet, predicting opinions is not easy due to the

lack of computational models able to capture the com-

plexity of the underlying objects at hand. Current ap-

proaches consist in predicting simple representations

of the affective expressions, for example by restricting

themselves to the valence attribute.

This thesis focuses on the question of building struc-

tured output models able to jointly predict the different

components of opinions in order to take advantage of

the dependency between their parts. In this context,

the choice of an opinion model has some conse-

quences on the complexity of the learning problem

and the statistical properties of the resulting predic-

tors. We study 2 classical problems of opinion mi-

ning in which we instantiate squared surrogate ba-

sed structured output learning techniques to illustrate

the accuracy-complexity tradeoff arising when buil-

ding opinion predictors.

A second aspect of this thesis is to handle a newly

released multimodal dataset containing entity and va-

lence annotations at different granularity levels provi-

ding a complex representation of the underlying ex-
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