
HAL Id: tel-02497506
https://pastel.hal.science/tel-02497506v1

Submitted on 3 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a scalable and programmable incremental
deployment of ICN in the real world

Mauro Sardara

To cite this version:
Mauro Sardara. Towards a scalable and programmable incremental deployment of ICN in the real
world. Networking and Internet Architecture [cs.NI]. Université Paris Saclay (COmUE), 2019. En-
glish. �NNT : 2019SACLT042�. �tel-02497506�

https://pastel.hal.science/tel-02497506v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LT
04

2

Towards a scalable and
programmable incremental

deployment of ICN in the real
world

Thèse de doctorat de l’Université Paris-Saclay
préparée à Télécom ParisTech

Ecole doctorale n○580
Sciences et technologies de l’information et de la communication (STIC)

Spécialité de doctorat: Réseaux, Information et Communications

Thèse présentée et soutenue à Paris, le 17 Decembre 2019, par

MAURO SARDARA

Composition du Jury :

K. K. Ramakrishnan
Professeur, University of California, Riverside Rapporteur

Lixia Zhang
Professeur, University of California, Los Angeles Rapporteur

Stefano Secci
Professeur, Cnam Paris Président

Jean-Louis Rougier
Professeur, Telecom Paris Examinateur

Thomas Bonald
Professeur, Telecom Paris Directeur de thèse

Luca Muscariello
Principal Engineer, Cisco Systems Co-encadrant

Abstract

Information-Centric Networking (ICN) embraces a family of network architectures re-

thinking Internet communication principles around named-data. After several years of

research and the emergence of a few popular proposals, the idea to replace TCP/IP with

data-centric networking remains a subject of debate. ICN advantages have been advoc-

ated in the context of 5G networks for the support of highly mobile, multi-access/source

and latency minimal patterns of communications. However, large-scale testing and inser-

tion in operational networks are yet to happen, likely due to the lack of a clear incremental

deployment strategy. The aim of this thesis is to propose and evaluate effective solutions

for deploying ICN.

Firstly, we propose Hybrid-ICN (hICN), an ICN integration inside IP (rather that over/

under/ in place of) that has the ambition to trade-off no ICN architectural principles.

By reusing existing packet formats, hICN brings innovation inside the IP stack, requiring

minimal software upgrades and guaranteeing transparent interconnection with existing IP

networks.

Secondly, the thesis focuses on the problem of deploying ICN at the network endpoints,

namely at the end host, by designing a transport framework and a socket API that can be

used in several ICN architectures such as NDN, CCN and hICN. The framework fosters

cutting-edge technologies aiming at providing performance and efficiency to applications.

An extensive benchmarking at the end of the chapter will present the performance of the

transport framework.

Subsequently, the benefits that hICN network and transport services can bring to applic-

ations will be assessed, by considering two main use cases: HTTP and WebRTC. The

former represents the de-facto protocol of the Web, while the latter is a new emerging

technology increasingly adopted for real time services.

At last, the thesis proposes a solution for programmatically deploying, configuring and

managing ICN networks and applications: Virtualized ICN (vICN), a programmable

unified framework for network configuration and management that uses recent progresses

in resource isolation and virtualization techniques. It offers a single, flexible and scalable

platform to serve different purposes, in particular the real deployments of ICN in existing

IP networks.

i

ii

Contents

Abstract i

1 Introduction 1

1.1 Information Centric Networking . 1

1.2 Thesis statement . 2

1.3 List of Publications . 5

2 Background on ICN 8

2.1 Named Data . 8

2.2 Dynamic Forwarding . 9

2.3 Data-Centric Security . 9

2.4 Receiver-Driven Connection-less Transport 10

2.4.1 Other features of the ICN architecture 10

3 Hybrid Information Centric Networking 12

3.1 Introduction . 13

3.2 hICN Design . 14

3.2.1 Named Data . 15

3.2.2 Name management . 17

3.2.3 Dynamic Forwarding . 18

iii

iv CONTENTS

3.2.4 Data-Centric Security . 22

3.2.5 Receiver-Driven Connectionless Transport 24

3.2.6 Other features of the hICN architecture 25

3.3 Feasibility assessment . 25

3.3.1 Controlled End-to-End Deployments 26

3.3.2 Large Scale Measurements . 27

3.4 Linear video distribution . 29

3.4.1 Workload and Implementation . 30

3.4.2 In-network Control . 31

3.4.3 Seamless Mobility . 33

3.4.4 Bandwidth Aggregation over HetNet 34

3.5 Related work . 35

3.6 Discussion and Conclusion . 38

4 Transport layer and socket API for ICN 40

4.1 Introduction . 40

4.2 Namespaces in ICN . 41

4.3 Architecture . 44

4.4 Transport Services . 45

4.4.1 End-points description . 45

4.4.2 Network namespaces . 46

4.4.3 Socket API . 47

4.5 Implementation . 49

4.5.1 VPP: vector packet processor . 50

4.5.2 Forwarder Connector . 52

CONTENTS v

4.5.3 Consumer Socket . 53

4.5.4 Producer Socket . 54

4.6 Performance Analysis . 57

4.6.1 Experimental settings . 57

4.6.2 Results . 59

4.7 Related Work . 62

4.8 Discussion and Conclusion . 63

5 HTTP over hICN 65

5.1 Introduction . 65

5.2 Reverse pull transport service . 66

5.2.1 Initialization . 67

5.2.2 Naming . 68

5.2.3 Publish Notification . 68

5.2.4 Additional considerations . 70

5.3 Optimized Reverse pull for HTTP . 70

5.4 Multipoint-To-Multipoint communication . 72

5.5 Evaluation of HTTP over hICN: Multicast and Server Load 73

5.6 Related Work . 77

6 RTC over hICN 79

6.1 Introduction . 79

6.2 hICN-RTC Architecture . 80

6.2.1 hICN-RTC Communication Model . 81

6.2.2 hICN-RTC Advantages . 83

vi CONTENTS

6.3 Synchronization Protocol . 84

6.3.1 Protocol Discussion . 87

6.4 hICN-RTC Evaluation . 88

6.4.1 Scalability . 90

6.5 Related work . 94

6.6 Conclusion . 95

7 Virtualized ICN 96

7.1 Introduction . 96

7.2 Related work . 98

7.3 The vICN framework . 100

7.3.1 Functional architecture . 100

7.3.2 Resource model . 101

7.3.3 Resource processor . 104

7.3.4 Orchestrator and Scheduler . 105

7.4 Implementation . 106

7.4.1 vICN codebase . 106

7.4.2 Slicing . 106

7.4.3 IP and hICN topologies . 107

7.4.4 Link emulation . 108

7.4.5 Monitoring capabilities . 108

7.5 Examples . 109

7.5.1 Use case description . 109

7.5.2 Scalability . 110

7.5.3 Programmability . 111

7.5.4 Monitoring and Reliability . 112

7.6 Conclusion . 113

8 Conclusions and Future Work 114

8.1 Summary . 114

8.2 List of contributions . 117

Bibliography 118

Appendices 138

A Résumé en Français 138

vii

viii

List of Tables

3.1 Summary of end-to-end hICN measurements. 26

3.2 AS-level support of hICN as revealed by our large scale measurements . . . 28

4.1 Average goodput of (a) hICN - Asynchronous publication (b) hICN - Syn-

chronous publication (c) hICN - Asynchronous publication w/o crypto op-

erations (d) TCP - Iperf3. 59

4.2 Cryto operations cost in case of vector of packets and single packet com-

putation. 61

4.3 Average end-to-end latency growth in case of signature computation and

verification. 62

5.1 ATS performance metrics with N clients. C is the average number of

channels being watched. 75

ix

x

List of Figures

3.1 hICN interest/data packet inside IPv6 header 16

3.2 hICN transport header inside TCP header. 16

3.3 Interest pipeline in hICN router . 20

3.4 Interest forwarding path pseudo code. 20

3.5 Data packet pipeline in hICN router . 21

3.6 Data forwarding path pseudo code. 22

3.7 Illustration of one radar-like measurement to validate hICN packet support

by intermediate AS. 27

3.8 Video distribution over HetNet. Black routers are hICN enabled. 31

3.9 TCP vs hICN over WiFi. Average video quality retrieved by the client

(Q) and number of quality switches up (#SWu) and down (#SWd) with

different cross-traffic load on the WiFi channel. The bottom plot shows

the throughput gain of the hICN flow with respect to TCP. 32

3.10 Hetnet Access. Comparison between hICN and ICN in case of mobile client

and bandwidth aggregation. 34

4.1 Manifest encoding: compact encoding. 47

4.2 System calls for socket initialization and binding to a socket address, as

well as for data reception and transmission. 48

4.3 hICN plugin for VPP . 52

xi

xii LIST OF FIGURES

4.4 Consumer socket processing pipeline . 53

4.5 Producer socket processing pipeline . 55

5.1 Example of reverse pull from one client to two servers. 67

5.2 Reverse pull: Initialization phase. 68

5.3 Reverse pull: Notification phase. 69

5.4 Reverse pull: Notification phase for HTTP. 71

5.5 Reverse pull: Retrieval of already published response. 71

5.6 Video distribution network . 74

5.7 hICN and TCP memory used by a single channel increasing the number of

watchers. 76

5.8 Percentage of the traffic served by each component in the network. 77

6.1 Contribution content exchange . 82

6.2 Distribution content exchange . 83

6.3 Producer Side . 84

6.4 Consumer Side . 86

6.5 Packet delivery delay . 89

6.6 Topology . 90

6.7 Contribution traffic. 92

6.8 Distribution traffic. 93

6.9 CPU usage. 93

7.1 vICN functional architecture . 100

7.2 Flow of information in vICN . 102

7.3 vICN Finite State Machine . 103

7.4 vICN partial Resource Hierarchy . 104

7.5 Toy scenario - vICN scheduler . 105

7.6 Mobile World Congress topology . 110

7.7 vICN bootstrap time vs number of worker threads 111

7.8 Alternative vICN topology deployments on single server and a cluster. . . . 112

xiii

xiv

Chapter 1

Introduction

1.1 Information Centric Networking

ICN identifies a network architecture built upon named data, rather than host location,

for a simplified and more efficient user-to-content communication. The idea of named-data

networking is not new. It has inspired many proposals, such as TRIAD [71], CBN [48],

DONA [87], before getting significant attention in the research community with CCN [82]

/ NDN [168] and with Pub-Sub based projects (e.g. PSIRP/PURSUIT [1]).

Despite important architectural differences in the mentioned architectures, a common

shared idea characterizes ICN: scalable location-independent communications with data-

centric security. This results in a native support for mobility, storage and security as

network features, that are integrated in the architecture by design, rather than as an

afterthought. Several years of research and in-lab experimentation have advanced the

architectural design and contributed to show ICN potential. However, the ICN idea still

divides the community because of the “gain/pain” trade-off [56] related to ICN introduc-

tion in existing IP networks.

Recently, a regain of industrial and academic interest in ICN has been generated by

the need for network designs capable to face future 5G network challenges. The next

generation of radio-mobile networks has the ambition to serve a large number of use cases

across several vertical markets and ICN has been identified as one promising candidate

1

2 Chapter 1. Introduction

to bring the required benefits at the network edge in terms of performance, scalability

and cost [25, 116, 8]. 5G architectural discussions have also revived the debate about

deployment path and cost for ICN introduction in operational networks.

Even if virtualization and application-centric network slicing in 5G may accommodate

the use of new data planes like ICN [128, 125], skepticism remains about short term clean

slate ICN insertion.

1.2 Thesis statement

The aim of this thesis is to propose an effective solution for incrementally enabling ICN

into the current Internet, considering three main crucial aspects:

• Deployment of ICN in the current Internet

• Providing ICN transport services to the endpoints

• Enhancing and Automating Configuration, Management and Control of

an ICN network

Firstly, this thesis proposes an effective solution for incrementally deploying ICN into

the current Internet. ICN is usually deployed exploiting an overlay approach, due to

the difficult to change the network layer (Internet Ossification) and the effort required

for standardize a new layer three protocol. In addition, all the hardware built over the

last three decades is optimized for IP forwarding, and deploying new devices optimized

for ICN is expensive for operators. Chapter 3 proposes Hybrid ICN, an elegant solution

to the problem of ICN deployment. Hybrid ICN (hICN) is a novel ICN architecture built

on top of the idea of using IP addresses as ICN names and mapping the ICN semantics

inside the IP and TCP headers. This allows ICN packets to transparently traverse the

internet, as they appear exactly like normal IP packets. At the same time, these packets

can be processed by few hICN routers in the network, which can be strategically placed at

the edge as extension of standard IP routers, for example in the form of Virtual Network

1.2. Thesis statement 3

Function. With an extensive experiment campaign, the chapter demonstrates that hICN

packets can traverse the current internet and at the same time the hICN architecture does

not trade-off any of the ICN principles, that will be presented in chapter 2.

Secondly, the thesis focuses on the problem of deploying ICN at the network end-

points, namely at the end host. This is usually done through software libraries providing

API to applications. However, most of the time these libraries only allow to develop

applications on top of the network layer: although this approach gives a packet-level

control of the communication, most of the time it results in a too complex challenge for

application developers, forced to deal with typical layer 4 problems such as congestion

control and segmentation/reassembly operations. What an application developer would

like to achieve is to be able to exchange Application Data Unit (ADU) in a simple way,

without dealing with network problems such as retransmissions, jitter, MTU discovery

etc. What it is required is a transport layer offering a clean and simple API which allows

developers to access transport services as they currently do with the Socket API on all

the modern operating systems. One of the reasons of the success of TCP/IP is the fact

that applications can use it through simple APIs allowing developers to communicate

through the network as they were simply writing to a file. Chapter 4 will present the ICN

transport framework and a set of Socket API allowing application developers to easily

access the ICN transport services. In particular this chapter will describe the architecture

of the transport framework and its implementation, fostering cutting-edge technologies

such as VPP [152] and aiming at providing performance and efficiency to applications.

An extensive benchmarking at the end of the chapter will present the performance of the

transport framework, focusing on how ICN transport services may affect applications.

Subsequently, chapter 5 and chapter 6 assess the benefits that hICN network and trans-

port services can bring to applications. In particular it will consider two main use cases:

HTTP and WebRTC. Although the semantic of HTTP is Request/Reply, single HTTP

messages are pushed from client to server and viceversa, since HTTP assumes the un-

derlying transport to be push based: messages are sent from the sender to the receiver.

For this reason HTTP cannot be directly deployed on top of ICN, being the ICN trans-

4 Chapter 1. Introduction

port based on the request-reply communication pattern. For doing that an additional

transport service is required, placed as a middleware between the application itself and

the transport layer: this allows to map HTTP semantics to ICN names, adding the ICN

benefits to the unicast client-server communication pattern of HTTP. The chapter will

then evaluate the scalability properties of HTTP over ICN, in particular with regard to

the server endpoint, which must be able to serve a large number of clients. Then, it will

compare the different behavior of the ICN transport with respect to standard TCP/IP

one. Results show that HTTP over ICN scales better than the current HTTP over TCP

solutions, in particular in the case of linear video broadcasting.

However, the solution presented for HTTP is not valid in case of applications with ex-

tremely low latency budget, such as gaming or videoconferencing. WebRTC protocol and

architecture are increasingly adopted by media companies for real time services. WebRTC

requirements in terms of latency and scalability cannot be met using the same solution

adopted for HTTP. For addressing such requirements, chapter 6 proposes a new synchron-

ization protocol tailored for real time applications, as well as a new architecture design

able to scale with the content (e.g. the number of active media streams in a video con-

ference) rather than the number of participants to the real time session. Chapter 6 will

present the design of hICN-RTC, an integrated WebRTC over hICN system, as well as

the hICN-RTC synchronization protocol, allowing to use the hICN pull based transport

without introducing any additional latency to the content distribution. Results at the end

of the section will confirm this and will assess the scalability properties of the designed

solution.

At last, chapter 7 proposes a solution for programmatically deploying, configuring

and managing ICN networks and applications: Virtualized ICN (vICN). In ICN,

the binding between application and network layer puts a limits on many network auto-

mation/deployment tools, that need to be rethought accordingly. Most of the time such

tools do not provide this kind of cross-layer collaboration (e.g. IP address provisioning for

hICN names). In addition, they provide limited control on the granularity of the deployed

components and they do not offer a clear way of mapping the abstract view of the desired

1.3. List of Publications 5

network model to the necessary steps to attain it. vICN is a preliminary work which tries

to fill this gap, in particular in the case of hICN, where a tight collaboration between the

application and the network layer is required, being ICN semantics mapped directly into

the IP layer.

1.3 List of Publications

Journal Papers

[137] Samain, J., Carofiglio, G., Muscariello, L., Papalini, M., Sardara,

M., Tortelli, M., and Rossi, D. Dynamic Adaptive Video Streaming: Towards a

Systematic Comparison of ICN and TCP/IP. IEEE Transactions on Multimedia 19,

10 (Oct 2017), 2166–2181.

Conference Papers

[138] Sardara, M., Muscariello, L., Augé, J., Enguehard, M., Compagno,

A., and Carofiglio, G. Virtualized ICN (vICN): Towards a Unified Network Vir-

tualization Framework for ICN Experimentation. In Proc. of the 4th ACM SIGCOMM

ICN (New York, NY, USA, 2017), ICN ’17, ACM, pp. 109–115.

[139] Sardara, M., Muscariello, L., and Compagno, A. A Transport

Layer and Socket API for (h)ICN: Design, Implementation and Performance Analysis.

In Proc. of ACM SIGCOMM ICN ’18 (2018).

[46] Carofiglio, G., Muscariello, L., Augé, J., Papalini, M., Sardara, M.,

and Compagno, A. Enabling ICN in the Internet Protocol: Analysis and Evaluation

of the Hybrid-ICN Architecture. In Proc. of ACM SIGCOMM ICN ’19 (2019).

6 BIBLIOGRAPHY

Poster and Demonstrations

[136] Samain, J., Augé, J., Carofiglio, G., Muscariello, L., Papalini, M.,

and Sardara, M. Enhancing Mobile Video Delivery over an Heterogeneous Network

Access with Information-Centric Networking. In Proceedings of the SIGCOMM Posters

and Demos (New York, NY, USA, 2017), SIGCOMM Posters and Demos ’17, ACM,

pp. 22–24.

[29] Augé, J., Carofiglio, G., Enguehard, M., Muscariello, L., and

Sardara, M. Simple and Efficient ICN Network Virtualization with vICN. In

Proceedings of the 4th ACM Conference on Information-Centric Networking (New

York, NY, USA, 2017), ICN ’17, ACM, pp. 216–217.

[140] Sardara, M., Muscariello, L., and Compagno, A. Efficient Trans-

port Layer and Socket API for ICN. In Proceedings of the 5th ACM Conference

on Information-Centric Networking (New York, NY, USA, 2018), ICN ’18, ACM,

pp. 206–207.

[141] Sardara, M., Samain, J., Augé, J., and Carofiglio, G. Application-

specific policy-driven 5G Transport with Hybrid ICN. 2019 IEEE International

Symposium on Local and Metropolitan Area Networks (LANMAN) (2019).

Talks and Presentations

• Tutorial: Community Information Centric Networking (FDio/cicn). 4th ACM Con-

ference on Information-Centric Networking. Berlin (Germany). 2017

• (h)ICN Socket Library for HTTP - Leveraging (h)ICN socket library for carrying

HTTP messages. ICNRG Interim Meeting. London (UK). 2018

BIBLIOGRAPHY 7

Open Source

• FDio CICN. Community Information Centric Networking. https://github.com/

FDio/cicn

• FDio HICN. Hybrid Information Centric Networking. https://github.com/FDio/

hicn

Patent Applications

• Luca Muscariello, Giovanna Carofiglio, Michele Papalini, Mauro Sardara.

In-Network Content Caching Exploiting Variation in Mobility-Prediction Accuracy.

USPTO Application Number 16/044722

• Luca Muscariello, Giovanna Carofiglio, Mauro Sardara.

Scaling microservices communication over Information Centric Networks.

USPTO Application Number 16/384110

• Jordan Augé, Jacques Samain, Mauro Sardara, Alberto Compagno, Giovanna Carofiglio.

Network policy enforcement through hybrid Information Centric Networking.

USPTO Application Number 62/868107

https://github.com/FDio/cicn
https://github.com/FDio/cicn
https://github.com/FDio/hicn
https://github.com/FDio/hicn

Chapter 2

Background on ICN

This chapter briefly reviews the set of key ICN compelling features as highlighted in

previous research. The reference ICN design is CCN/NDN. The most updated reference

for CCN is the set of RFCs [107], [108], while for NDN the reference is the online project

specifications 1.

2.1 Named Data

In ICN, information is addressed by location independent identifiers and network opera-

tions are bound to named-data, not location. The basic idea is to enrich network-layer

functions with content awareness so that routing, forwarding, caching and data transfer

operations are performed on topology-independent content names, rather than on IP ad-

dresses. Data are divided into a sequence of packets uniquely identified by a name (called

data packets) and fetched by the user in a pull-based connectionless fashion via named

packet requests (called interests). Naming data packets allows ICN network to directly

interpret and treat content according to its semantics, with no need for DPI (Deep Packet

Inspection) or delegation to the application layer.

Even if ICN naming is still an open area of research, a few lessons can be drawn from

past research and experimentation [34, 27, 65, 106, 66]:
1https://named-data.net/project/specifications/

8

https://named-data.net/project/specifications/

2.2. Dynamic Forwarding 9

(i) ICN does not need to specify a naming convention which can be instead application-

specific;

(ii) a hierarchical structure is recommended for routing scalability to guarantee entries

aggregation in name-based routing tables;

(iii) names are not necessarily human-readable but may be hash-based;

(iv) scalability of name-based routing in inter-domain use cases and in presence of pro-

ducer mobility is still an open research area.

2.2 Dynamic Forwarding

Name-based data plane makes use of soft state [162]: user requests are routed by name

and a trail of pending requests is temporarily left in the router to guarantee reverse path

forwarding of corresponding data. Additionally, the presence of such pending requests

in routers enables request aggregation (and native multicast), dynamic re-routing and

application/network aware forwarding strategies (e.g. based on popularity, on network

status, for multi-path load-balancing, etc.) [163, 132]. The question about feasibility of

ICN forwarding pipeline has triggered various studies with promising results in the last

years [119, 145, 165, 44].

2.3 Data-Centric Security

Instead of securing connections, ICN model is based on securing data at network layer.

Each data packet is digitally signed by the producer, allowing consumers to verify integrity

and data-origin authenticity. A producer is thus required to have and distribute at least

one public key. Existing trust models (e.g. a PKI or Web-of-Trust) can be used to

validate producer identity and key ownership. Data confidentiality can be guaranteed by

encrypting data payload and preventing information leakage from the name as proposed

in [64].

Beyond the still open research challenges surveyed in [103, 26, 110], one commonly recog-

10 Chapter 2. Background on ICN

nized benefit of ICN data-centric security approach is that it places trust in producers

rather than in hosts that store and serve data. This enables in-network efficient data

delivery operations, such as filtering, caching and multicasting, without affecting the data

security properties enforced by the data producer.

2.4 Receiver-Driven Connection-less Transport

In contrast with the current sender-based TCP/IP model, ICN transport is receiver-

controlled, it does not require connection instantiation and it accommodates retrieval

from possibly multiple dynamically discovered sources (chapter 4).

ICN transport builds upon the flow balance principle, guaranteeing corresponding request-

data flows on a hop-by-hop basis [7]. A large body of work has looked into ICN transport

(surveyed in [129]), not only to propose rate and congestion control mechanisms [133, 166]

– especially in the multi-path case [43] – but also to highlight the interaction with in-

network caching [42], the coupling with request routing [79, 43], and the new opportun-

ities provided by in-network hop-by-hop rate/loss/congestion control [159, 47] for a more

reactive low latency response of involved network nodes.

2.4.1 Other features of the ICN architecture

A result of the above mentioned ICN properties is support for in-network caching.

The ability to perform a name lookup in router buffers can be exploited for re-use (asyn-

chronous multicast of data via cached replica) and repair (in-network loss control), which

is an important differentiator w.r.t. existing end-to-end solutions. Many studies have

proven its advantages [167, 171, 131, 49], but also the differences w.r.t. application-level

CDN-like caching [45, 161].

Another important implication of ICN naming, security, forwarding and transport model

is native mobility support. Previous work has highlighted the benefits of ICN seamless

mobility, especially in 5G context [127, 85, 172, 57, 155, 30], as mostly deriving from

2.4. Receiver-Driven Connection-less Transport 11

its “anchor-less” management approach in the data plane. As a result, ICN can handle

mobility with no need for a stable point of passage of traffic, rendezvous point or name-

location mapping system.

Cependant, la solution présentée pour HTTP n’est pas valable en cas d’applications avec

un budget de latence extrêmement faible, comme les jeux ou la vidéoconférence. WebRTC

protocole et architecture sont de plus en plus adoptés par les entreprises de médias pour

de vrai services de temps. Les exigences WebRTC en termes de latence et d’évolutivité

ne peuvent pas être rencontré en utilisant la même solution adoptée pour HTTP. Pour

répondre à ces exigences, cref chap: rtc-hicn propose un nouveau protocole de synchron-

isation adapté au temps réel applications, ainsi qu’une nouvelle conception d’architecture

capable d’évoluer avec le contenu (par exemple, le nombre de flux multimédias actifs dans

une vidéoconférence) plutôt que le nombre de participants à la session en temps réel. Cref

chap: rtc-hicn présentera la conception de hicnrtc , un webrtc intégré sur hicn système,

ainsi que le protocole de synchronisation hicnrtc , permettant d’utiliser le hicn trans-

port basé sur l’extraction sans introduire de latence supplémentaire dans le distribution

de contenu. Les résultats à la fin de la section le confirmeront et évaluera les propriétés

d’évolutivité de la solution conçue.

Enfin, cref chap: vicn propose une solution pour textbf déployer par programmation,

configuration et gestion des réseaux et applications ICN: ICN virtualisé (emph vICN).

Dans ICN, la liaison entre l’application et la couche réseau limite les de nombreux outils

d’automatisation / déploiement de réseaux, qui doivent être repensés en conséquence. La

plupart du temps, ces outils ne fournissent pas ce type de couche croisée collaboration (par

exemple, fourniture d’adresses IP pour les noms hicn). Dans En outre, ils fournissent

un contrôle limité sur la granularité des composants et ils n’offrent pas un moyen clair

de cartographier la vue abstraite de la modèle de réseau souhaité aux étapes nécessaires

pour y parvenir. vICN est un préliminaire travail qui tente de combler cette lacune, en

particulier dans le cas de hicn , où un une collaboration étroite entre l’application et la

couche réseau est requise, étant la sémantique ICN mappée directement dans la couche

IP.

Chapter 3

Hybrid Information Centric Networking

This chapter focuses on the ICN deployability problem. With respect to the state of the

art, the solution presented here leverages the integration of ICN semantics inside the IP

protocol, by mapping ICN semantics into the IP/TCP headers. This is different with

respect to the common ICN deployments, which build the ICN network as an overlay on

top of the IP infrastructure.

We do not claim that an overlay approach is inferior, very far from that we believe that

an overlay approach is instrumental to design and experiment in a green field. This is the

case for NDN/CCNx architectures which are used as reference point for hICN. The mo-

tivation for an Hybrid ICN design is to reuse as much as possible existing infrastructure,

software, protocols and also development processes already in place in the industry. hICN

leverages the state of the art of the research in NDN/CCNx and brings it into a simpler

and smoother evolutionary deployment path. It is worth mentioning that inserting ICN

as an architecture in the current Internet infrastructure and in industrial development

processes requires significant efforts in terms of software integration, protocol interoper-

ability, network management and control. A fundamental requirements in the industry

is the ability to insert a new component that can be developed, deployed, monitored and

troubleshot using the same processes and tools already in place.

This is the core set of constraints put ahead of us while designing the Hybrid ICN archi-

tecture that allowed rapid development and integration in existing systems.

12

3.1. Introduction 13

Nevertheless we believe that a green field context is extremely useful to design systems

without the additional constraint required by evolutionary deployments. NDN/CCNx as

a whole would not have been possible without such as methodology. hICN is designed to

continue to benefit from research results in the ICN field as a whole.

We can predict that if hICN deployment is successful and the industry get used to operate

an ICN network incrementally, this will pave the way for green field approaches as NDN.

This is also true for application developers that may find ICN network services in place

to exploit while deploying their novel application.

3.1 Introduction

A partial integration of ICN semantics into IP has been looked in the past to provide an

easier introduction in the existing protocol stack at the cost of modified ICN behavior and

tradeoff of its benefits. This work shares the opinion that the definition of an incremental

solution for ICN insertion into existing IP networks is a sine qua non condition for ICN

success, even in the long term perspective of a wholesale replacement of IP.

To this aim, one the main contribution of this chapter is to propose a solution for ICN

deployment directly inside the Internet Protocol: hICN (Hybrid-ICN).

This solution:

(i) preserves all features and benefits of ICN communication by mapping content names

into IP addresses,

(ii) guarantees transparent interconnection of hICN routers with standard IP routers and

reuse of existing control and management plane tools,

(iii) minimizes software modifications required to enable hICN in network and client

devices.

It is worth remarking that, unlike previous proposals, hICN deployment solution relies on a

full ICN integration inside IP packet format/protocols that does not use any encapsulation

or tunneling mechanism, rather enriches IP network and transport layers with the ICN

14 Chapter 3. Hybrid Information Centric Networking

semantics.

hICN design is presented in section 3.2, showing how the architecture preserves all the

core features of ICN (described in chapter 2). The deployment strategy for hICN should

target few nodes at the network edge, leveraging the transparent interconnection between

hICN and standard IP routers. A proof of the feasibility of such deployment is presented

in section 3.3, which shows that hICN traffic can traverse a large fraction of ASes in the

Internet. Section 3.4 further illustrates some of hICN potential benefits for live video

streaming over mobile and heterogeneous networks, as inherited by ICN, and quantified

over traditional IP network and transport layer approaches. Rather than on the novelty

of demonstrated ICN advantages, the focus of the assessment is on the capability to fully

realize ICN gains at minimum integration cost in the existing IP infrastructure, both from

the network and the application point of view. Finally, section 3.6 provides a review of

related work and a short discussion of next steps.

3.2 hICN Design

The main goal of the hICN architecture is to bring ICN capabilities into existing IP net-

works, while guaranteeing incremental deployment in networks where only few strategic

nodes are hICN enabled. More specifically, hICN integrates ICN in IP and, unlike other

proposals which are described in section 3.5, it does not use any encapsulation nor tun-

neling techniques, and does not run as an overlay network. hICN by design assumes to

share the same infrastructures with regular IP traffic.

Three major principles can be identified in the design:

(i) do not sacrifice any of the ICN features;

(ii) transparently interconnect hICN routers with standard IP routers, that will forward

hICN packets as normal ones, as well as hICN routers will forward standard IP

packets;

(iii) reuse most of the existing software and hardware technology, in order to minimize

the effort to adopt hICN in the near future.

3.2. hICN Design 15

The rest of this section will describe the hICN design and validate if and how ICN key

features, as presented in chapter 2, are preserved.

3.2.1 Named Data

As in ICN, hICN addresses each piece of data by name. In hICN, content names are

network level names used by hICN routers to forward packets. We stress that content

names are different from application level names (e.g. the URI for the identification of a

web object) which are application dependent and hICN routers are oblivious to them.

An hICN name is made of two parts: the name prefix and the name suffix. The name

prefix is used by routers for the forwarding operations while the suffix contains the seg-

mentation information and it is mostly used for transport purpose. The concatenation of

those two components generates unambiguous names, which are used to uniquely identify

each data. hICN name prefixes are standard IP addresses that are assigned by the network

administrator for this specific purpose. In particular, it could be envisaged the creation

of a new address family AF_HICN to carry such names. As described later in this section,

this can help during the forwarding operations to distinguish between standard IP and

hICN packets. Notice however that this is not mandatory: to identify an hICN packet is

sufficient to know the list of prefixes used to route content and they are available in the

hICN routers FIB which could be entirely managed by the control plane.

hICN inherits the ICN request/reply protocol semantics [82]: an interest packet is used

to request a data packet carrying the actual payload. The definition of the two protocol

data units encompasses both network and transport headers as illustrated in figures 3.1

and 3.2. They are standard IPv6 and TCP headers with modified semantic of few fields

(underlined in the pictures). The most important fields are the Name Prefix and the

Name Suffix. The former is carried in the IP destination address field for interest pack-

ets, whereas it is placed in the IP source address field for data packets. The latter is

written in the TCP sequence number field and carries the segmentation information used

by the hICN transport layer. Additional fields are Path Label, Loss Detection and

16 Chapter 3. Hybrid Information Centric Networking

Recovery, Lifetime and Time Scale. Path Label is used by the transport to handle

multiple paths [43]. Loss Detection and Recovery is used by the WLDR protocol [47]

to recover losses on wireless channels (see Section 3.4). Lifetime and Time Scale are

used to specify the caching time of the packets in the hICN forwarders. Notice also that

we modify two of the TCP flags: the MAN flag, in replacement of the URG flag, is used to

specify that the packet payload is a Manifest and the SIG flag, that replaces PSH, specifies

that the payload starts with an authentication header that contains the packet signature.

Manifest and authentication header are described in section 3.2.4.

1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

|Version| Traffic Class | Flow Label |

+-+

| Payload Length | Next Header | Hop Limit |

+-+

| Source Address (Interest) or Prefix Name (Data) |

+-+

| Destination Address (Data) or Prefix Name (Interest) |

+-+

Figure 3.1: hICN interest/data packet inside IPv6 header

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Source Port | Destination Port |
+-+
| Name Suffix |
+-+
| Path Label |
+-+
Data	Time	M	A	S	R	S	F	Loss Detection
Offset	Scale	A	C	I	S	Y	I	and Recovery
		N	K	G	T	N	N	
+-+								
Checksum	Lifetime							
+-+

Figure 3.2: hICN transport header inside TCP header.

The modifications presented above allow to carry the information required by the hICN

forwarding and transport layer, while preserving protocol layer separation and compat-

ibility with standard IP routers. This will be further analyzed in Section 3.3 by experi-

mentation in the public Internet. IPv6 is presented as the reference technology for hICN,

although the design should be able to run hICN using IPv4 packets too. Of course, the

3.2. hICN Design 17

greater addressing space of IPv6 allows for more flexibility in name encoding. The use of

the TCP header for hICN is mostly due the need to exploit segmentation and reassembly

hardware offloading functions already present in network equipment, while keeping the

stack stateless and simple [115, 53]: indeed only the TCP envelope is actually used without

implementing the TCP protocol.

3.2.2 Name management

End hosts must provision additional IPv6 prefixes (at least one /128) to produce named

data. Provisioning several IPv6 prefixes is a standard operation that does not need any

new special mechanism. The hICN host stack is responsible for provisioning prefixes that

will be used as names by applications running in the host. For clarity, we can assume

that a host requests name prefixes by sending a provisioning request to a network service

similar to standard DHCPv6, or an extension of it. Such a network service is the actual

owner of the prefixes that are temporarily leased to the host. Similar to what happens

today for interface identifiers, the lease can be static or dynamic and may require the

host to authenticate (e.g. 802.1X). The actual owner of the prefix is the entity that

guarantees that prefixes are routable in a given domain, private or public. This does not

constitute any difference with what happens today in IPv6 address space management.

In hICN a host does not announce prefixes to the network, it is the local autonomous

system to announce routable name prefixes to neighbors. The latter may look like a

tautology as current network management works exactly in this same way. This means

that hICN name prefix management inherits all protocols and mechanisms currently used

for interface identifiers (IPv6 addresses). The consequence of that is that routing over

name prefixes can reuse all routing protocols currently used in the Internet. The ability

of today routing protocols to provide several routes to reach a given prefix is significant,

even though poorly used mostly to avoid traffic instabilities and out-of-order delivery that

IP and TCP cannot manage well. These two problems are addressed well in hICN thanks

to local flow balance which provides a simple way to make traffic engineering dynamic,

yet stable. The consumer end point is also responsible for taking care of out of order

18 Chapter 3. Hybrid Information Centric Networking

delivery.

As clarified above, in hICN it is not the application that owns name prefixes, but it is the

host that leases them from a network administrator. In this respect, hICN may resemble

to protocols such as ILNP [28], LISP [55] where the host provision an hostname or a host

identifier (ILNP or LISP) from a network service.

3.2.3 Dynamic Forwarding

The data structures implemented inside an hICN forwarder are similar to those required

in an ICN one. A major difference between hICN and ICN forwarders is that the former

can reuse some of the existing IP data structures. An example is the Forwarding In-

formation Base (FIB), which in hICN is in fact a regular IP FIB, where hICN name

prefixes coexist with normal IP addresses. The FIB can be populated with hICN names

using standard IP routing protocols to distribute them in the network (such as ISIS,

OSPF and BGP). However, multi-path and multi-source are two important properties

that routing algorithms should provide in order to support to hICN forwarding strategies.

Unfortunately, multi-path and multi-source are poorly supported by current IP routing.

Approaches leveraging BGP for anycast routing can be instrumental to obtain multiple

routes to program forwarding strategies, with no guarantees of optimality though. Recent

work in the field has shown this to be feasible in an efficient way [62]. An ICN forwarder

also contains the Content Store (CS) and the Pending Interest Table (PIT): the former

stores the data packets received by the router to reuse them for future requests; the latter

keeps track of the forwarded interests to route the corresponding data packets on their

reverse path. These two data structures are required in hICN forwarders. In order to

minimize the modification required to a standard IP router the CS and the PIT can be

merged in a single data structure, called packet cache, that can be used to store both

kind of packets, with different insertion/eviction policies. The packet cache is indexed by

full name and is implemented exploiting the memory buffers already available in the IP

routers.

3.2. hICN Design 19

Forwarding in hICN extends the ICN forwarding operation by adding two more steps:

(i) classification and punting of the packets when they arrives at the forwarder, (ii)

source/destination address translation when the packet leaves. In the following we de-

scribe the hICN forwarding process in details, starting with these two operations which

are characteristic of the hICN architecture. For the sake of completeness, we also report

the interest and data packet forwarding, which is similar to forwarding in ICN.

Packet arrival: classification and punting

At packet arrival, an hICN router has to recognize the packet type (standard IP, interest

or data) in order to process it in the proper way. The packet classification is done using

the Access Control List (ACL) functionality already available in routers. The packets are

classified using their source (src) and destination (dst) address: (i) if only src belongs to

AF_HICN the packet is a data, (ii) if only dst belongs to AF_HICN the packet is an interest,

(iii) if neither src nor dst are AF_HICN addresses, the packet is a regular IP packet and

it will be forwarded as usual, finally, (iv) if both src and dst are AF_HICN addresses the

packet is invalid and should be dropped.

Packet departure: address translation

When a packet leaves the router the output face modifies the packet header. For interests,

the source address is replaced by the local router’s address on the egress interface (source

address translation); for data packets, the destination address is replaced by the IP address

of the previous hICN node (destination address translation), which is the source address

of the matching interest packet. Using this simple address translation scheme, at each

hop a data packet is forwarded to the previous hICN node traversed by the corresponding

interest, back to the requesting consumer. This guarantees local flow balance between

hICN nodes; however, data packets will not necessarily follow the reverse path of the

interest in eventual intermediate regions of regular IP routers.

20 Chapter 3. Hybrid Information Centric Networking

Interest packet forwarding

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

ingress Packet cache

RX(Interest)

name:=PARSE(Interest Packet)

lookup(name,
exact match)

Data
?

yes

no

TX(Data,
data.v6.dst:=
interest.v6.src)

drop

egress

Inte
rest

yes

same
src?cache

duplicate

no

IPv6 FIB forwarding
strategy

yes

lookup(name prefix,
longest match)

TX(Interest,
interest.v6.src:=
interface.v6.addr)

valid
interfaces

no match

valid
interfaces

Figure 3.3: Interest pipeline in hICN router

Data hit
CachedDataPacket.dst ← InterestPacket.src /* dst addr translation */
TX (CachedDataPacket → InterestPacket.InputFace)
Drop (InterestPacket)

Interest hit
if InterestPacket.src = CachedInterestPacket.src then

ManageDuplicate (InterestPacket)
else

Cache (InterestPacket, InputFace)
ManageAggregation (InterestPacket)

No hit
AvailableFaces ← LPM (FIB, InterestPacket.dst)
OutFaces ← ForwardingStrategy (AvailableFaces)
for (Face ∈ OutFaces)

InterestPacket.src ← Face.address /* src addr translation */
TX (InterestPacket → Face)

Cache (InterestPacket)

Figure 3.4: Interest forwarding path pseudo code.

The forwarding pseudo code for interest packets is presented in Figure 3.4 and it is depicted

in Figure 3.3. When an interest packet arrives, an exact match lookup on the full name

is performed on the packet cache. In case of data hit (the packet cache returns a data

packet), the destination address of the data packet is substituted with the source address

of the interest packet, which corresponds to the IP address of the previous hICN router.

The interest packet is dropped and the data packet is sent from the interest input face.

3.2. hICN Design 21

In the case of interest hit (the packet cache returns an interest), the router compares

the source address of the received interest with the source address of the matching one.

If the two addresses are the same, the incoming interest is a duplicate, otherwise the

request comes from a new source. Several ways to handle these two cases already exist

in ICN. In hICN, we adopt the one described in [106]: in the first case the interest is

considered a re-transmission and it is forwarded, while in the second case it is aggregated

in the packet cache and dropped. In this way the hICN node avoids to send upstream

multiple requests for the same content. Finally, in case of no hit in the packet cache, the

interest packet is matched with the FIB of the router. If no match is found the interest

is dropped, otherwise it is forwarded to the next hop. hICN is prone to exploit multiple

dynamic forwarding strategies to select the next hop among a list of possible candidates.

Standard IP has to provide very stable network paths to the transport layer: current

IP load-balancers are designed to support strong affinity to previous forwarding choices.

This is no more a constraint in hICN, that can expose a more programmable strategy

framework.

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

egress Packet cache

RX(Data)

lookup(name,
exact match)

no

ingress

Inte
rest

yes

TX(Data,
data.v6.dst:=
interest[1].v6.src)

Get all
interests
and evict

TX(Data,
data.v6.dst:=
interest[2].v6.src)

TX(Data,
data.v6.dst:=
interest[3].v6.src)

drop

cache

name:=PARSE(Data)

Figure 3.5: Data packet pipeline in hICN router

22 Chapter 3. Hybrid Information Centric Networking

Interest hit
for (InterestPacket ∈ CachedInterestPackets)

DataPacket.dst ← InterestPacket.src /* dst addr translation */
TX (DataPacket → InterestPacket.InputFace)
Evict (InterestPacket)

Cache (DataPacket)

Figure 3.6: Data forwarding path pseudo code.

Data packet forwarding

The pseudo code for the data packet forwarding is presented in Figure 3.6 ad depicted in

Figure 3.5. When a data packet is received, an exact match lookup is performed in the

packet cache to locate all matching interests. If no interest packet is returned, the data

packet is dropped. Otherwise (interest hit) the data packet is cloned to match all found

interests, which are then removed from the packet cache. The data packet is forwarded

using the input face of each matching interest, after replacing the destination address of

the data packet with the source address of the interest. The data packet is also stored in

the packet cache.

3.2.4 Data-Centric Security

hICN inherits ICN data-centric security model: integrity, data-origin authenticity and

confidentiality are tied to the content rather than to the channel. In particular it is

possible to provide integrity and data-origin authenticity in two different ways: (i) using

an authentication header or (ii) a transport manifest.

The authentication header carries the signature of the data packet and some information

about the original producer. The signature is computed over the immutable fields of

the data packet, while the others, including the signature are set to zero. This header

is added at the beginning of the data packet payload, and is meaningful only to hICN-

enabled routers. In this situation, a bit in the IP/TCP header is set to one.

The transport manifest, designed for ICN in [36], is a L4 entity generated by the producer

which contains the list of names in a group of data packets. Each name is associated

to a cryptographic hash computed over the corresponding data packet. A client has to

3.2. hICN Design 23

request a manifest to the producer to know the available data packets and to verify them.

Data packets carrying a manifest have the MAN flag set to one. Using this method, the

producer needs to sign only the manifest packets, minimizing the overhead due to packet

signature. This approach in fact guarantees a level of security equivalent to individual

packet signatures. Not every application can take advantage of the manifest, such as voice

over IP.

The ICN data-centric security model mandates that the linkage between name and data

be authenticated in order to guarantee secure location-independent content retrieval [144].

NDN or CCNx, create a secure bind between the name of the data, the data itself and the

producer identity. Therefore, a consumer can verify if the data is signed with a trusted

key and can validate the signature to check authenticity of the data with respect to the

name carried in the packet. In hICN this mechanism is left unchanged as the signature

covers both network name and content payload.

The mapping between application and network names must honor this security feature.

Signature verification validates the linkage between the hICN (network) name and the

data, but it does not give any guarantee about the linkage between the application name

and the data. If the mapping between application and network names is not verifiable by

a consumer, this might expose the hICN architecture to an attack in which the consumer

requires data with an application name A, but it is actually translated into a network

name that correspond to an application name B. For the attack to work, data B must be

signed with the same trusted key expected for content A such that the linkage between

the network name, the data and the producer is respected. In order to prevent this

attack, the mapping between the application names to the network names must be an

injective function defined by the producer and validated by the consumer. One way

to achieve such secure mapping is to exploit a global name resolution service, such as

GNRS [93]. However, deploying a new global system is not an easy task and it might

prevent a simple deployment of hICN. A second approach is to exploit the record Address

Prefix List (APL) [86] of the DNSSec system in order to map an application prefix to a

hICN name prefix. Once a prefix is mapped, each application can define its own mapping

24 Chapter 3. Hybrid Information Centric Networking

function to further map an application name to the obtained hICN name prefix. A third

approach consists in letting applications exploit their own mapping system as in the case

of applications that use the Session Initiation Protocol.

Trust management is also similar and hICN can benefit from the most recent work in ICN

research [164] on the topic. Additionally, the network service described in Section 3.2.2

serves to bootstrap trust between applications acting as a Certification Authority. When

requesting a network prefix, the producer will send its public key to the network service

as well as his identity. The network service will create and sign with his private key

an hICN data including the producer’s identity, the producer’s public key, the prefix

assigned to the producer, and the time of lease. The hICN name of such data is assigned

by the network service and used as key locator for the producer’s public key. Trust on

the network service can be achieved with any existing trust model (e.g., PKI or Web of

Trust), or exploit existing trust systems already deployed (e.g., the BGPSec trust model

where the private and public key are those corresponding to the RIR in the RPKI).

For what concerns confidentiality, this is delegated to an upper layer secure transport

that we do not further discuss in this thesis. ICN and hICN do not differ on this respect.

More research is needed in this area and left for future work.

3.2.5 Receiver-Driven Connectionless Transport

Transport in hICN is similar to ICN: it is receiver-driven, connection-less and supports

multiple point. All these features allow for in-network caching, in-network loss and conges-

tion control as well as bandwidth aggregation over heterogeneous networks. The current

hICN software uses RAAQM, the receiver-driven congestion control proposed for ICN [43].

The protocol discovers and exploits available content sources in the network, maximizing

the bandwidth available at the consumer. The implementation also includes wireless op-

timizations such as in-network loss control mechanisms introduced in [47]. Both protocols

are used in the evaluation, in Section 3.4.

In addition to congestion and flow control, the ICN transport layer, and so the hICN one,

3.3. Feasibility assessment 25

needs to provide data authentication and data integrity verification, as discussed in the

previous section. More details about hICN transport design and implementation can be

found in chapter 4.

3.2.6 Other features of the hICN architecture

Similarly to for ICN, the design of hICN allows for in-network caching and native mobility

support. We already discuss about caching in Section 3.2.3: each hICN forwarder is

equipped with a packet cache that stores data packets which can be reused to satisfy future

requests. Consumer mobility is fully supported by hICN thanks to name-based addressing.

Producer mobility instead requires specific management protocols as in ICN [172]. In

particular, the current software implementation provides the anchor-less Map-Me micro-

mobility service as described in [30]. Additional work in progress on this topic is done in

the IETF DMM WG [32, 31], which is not analyzed in this thesis.

3.3 Feasibility assessment

This section reports the results of an experimental campaign of Internet measurements,

performed in order to verify the support for hICN traffic on existing IP networks. End-

to-end reachability, middlebox traversal and compatibility with regular IP routers are

the target of this evaluation to prove feasibility of hICN insertion in an increasingly

“ossified” Internet architecture [76, 77]. These experiments collect empirical evidence that

semantic changes in IP/TCP header fields, as well as the lack of underlying TCP state

machine, does not result in intermediate nodes dropping, corrupting or interfering with

hICN traffic. The observations reported in this section are related to IPv6 measurements.

however results apply to the IPv4 context, despite the large number of encountered NATs

and connection trackers. A more detailed report is left for future work.

26 Chapter 3. Hybrid Information Centric Networking

3.3.1 Controlled End-to-End Deployments

For the experiments, hICN has been enabled in a set of representative nodes in academic,

residential, enterprise and cloud environments. The tests consist in a content transfer

from an hICN-enabled producer to an hICN-enabled consumer over an IP only path,

using the producer’s IP address as unique content name. The aim of these tests is to

validate our open source implementation [6] and tune hICN in order to traverse the most

common types of middleboxes.

Context Issues Counter-measures

Academic None None

DC/Cloud None None

Residential Stateful firewall SYN for Interest, RST/ACK for Data

Enterprise Security appliance First-hop tunnel

Table 3.1: Summary of end-to-end hICN measurements.

All the tests conducted were successful, meaning that the consumer nodes were able to

retrieve the required content. However, some devices were interfering with hICN traffic.

Table 3.1 summarizes the types of devices found during the tests, and the counter-

measures to be put in place. Stateful firewalls can be traversed by setting well-known

destination ports, as well as setting the SYN flag on interests, and consequently RST/ACK

flags on data packets. The RST flag is the preferred choice, in order not to overwhelm

connection trackers. Enterprise contexts are the most problematic, as security appliances

can for instance mangle TCP sequence numbers, altering the name of the hICN packets.

In these scenarios the only solution is to use tunnels, which have been implemented as

new face types in the forwarder, so that they can be selectively applied in a hop-by-hop

fashion, thanks to the connection-less nature of hICN. In addition, the test reported that

devices performing deep or stateful inspection of traffic are most likely situated close to

endpoints. This means that the overhead introduced by these faces can be limited to the

first hICN-hop only.

3.3. Feasibility assessment 27

3.3.2 Large Scale Measurements

The tests in the previous section have the intrinsic limitations of the end-to-end ap-

proaches [33] and they have been conducted on a small number of controlled nodes. A

traceroute-like test is a better option to scale up, where TTL-limited probes are sent

towards every announced IP prefixes. Upon expiration, those packets eventually elicit an

ICMP response from the routers on path. The ICMP response contains a copy of the

original headers and it both acts as a proof that the packet made it up to that point, and

also reveals alterations, if any. The test has been performed using hICN packet head-

ers populated with values characteristic of interest and data packets and using different

variations on TCP flags.

To run the test, the IP prefixes have been extracted from Routeviews datasets [10]. The

dataset contains 48619 prefixes announced by 14398 ASes. According to the CIDR IPv6

report [2] there are 14455 ASes in the routing system at the time of writing so this dataset

covers almost the entire Internet. To map each IP address discovered during the tests

to its AS, Team-Cymru IP-to-ASN service [24] has been used. In addition, PeeringDB

information [9] allowed to further annotate and categorize the ASes.

A B C D E

✗
✓

✓ ✓ ✓ ✓ ✗

Topology

 AS Path

2. hICN probes

3. AS support

1. Traceroute ...
TTL 1

TTL N-1
TTL N

TTL 2

Figure 3.7: Illustration of one radar-like measurement to validate hICN packet support
by intermediate AS.

The procedure adopted in our the is illustrated in Figure 3.7. In the first phase, traceroute-

like traffic with increasing TTL has been sent towards a representative IP address of each

prefix in the data set (the first address in the subnet). The TTL has been increased until

28 Chapter 3. Hybrid Information Centric Networking

either the probes enter the destination prefix or they cannot go further. This allows to

map the set of responsive hops at a given distance (load balancers are taken into account

by using paris traceroute [5]), and to verify the absence of rate limiting by sending small

packet bursts. In the second phase TTL-limited hICN probes are sent to the responsive

hops by proceeding backwards from the stopping point of the previous phase. whether

hICN traffic is accepted, dropped, or altered by intermediate nodes. A reply to the hICN

probe is successful if it is an ICMPv6 packet of type 3 (time exceeded) with code 0 (hop

limit exceeded in transit). In addition, the header in the payload of the reply must be

the same as the header of the hICN probe, except for its hop limit counter. A successful

response terminates the measurements and mark all previous hops as hICN compliant.

Finally, IP-to-AS mapping uncovers the underlying topology and help us to infer AS-level

metrics, taking into account border effects resulting from uncertainties at the AS border.

Total Coverage hICN support
#AS #AS ratio % #AS ratio %

Cable/DSL/ISP 2291 1169 51.03 1032 88.28

Content 914 480 52.52 423 88.13

Academic 290 181 62.41 160 88.40

Enterprise 257 90 35.02 81 90.00

Non-Profit 211 103 48.8 85 82.52

Not Disclosed 850 355 41.76 309 87.04

Service Provider 1483 991 66.82 912 92.03

Route Server 18 10 55.5 10 100.00

Unknown 8104 2530 31.21 2155 85.17
TOTAL 14418 5909 40.98 5166 87.4

Table 3.2: AS-level support of hICN as revealed by our large scale measurements

Table 3.2 reports the results of the tests, aggregated at AS-level. Despite its simplicity,

this approach manages to sample a representative subset of the overall IPv6-enabled

ASes, both in number and diversity. Analysis of these data in light of AS-level topologies

provided in [15] revealed that most missing AS are stubs without customers, confirming

that we are indeed well-covering Internet core. We noticed that this approach reports

missing measurements when approaching the targeted destination: in 95% of the cases

3.4. Linear video distribution 29

this happens when reaching a small AS and suggests that the traceroute traffic is filtered.

Finally, in several cases the IP addresses used belonged to a non-routed prefix. This is

mostly due to prevalent prefix aggregation close to destinations. In the future, the usage

of a hit-list will allow us to increase the AS coverage, especially of stub and small ASes.

The results obtained also confirm the findings in the end-to-end experiments: most of the

middleboxes that may interfere with hICN traffic are deployed at the edge. In fact, even

after testing all the counter-measures identified in the previous section, results reveal only

negligible differences with respect to plain hICN packets. This is due to the fact that the

experiment mostly covered the core of the Internet, where there is a small chance to hit

a middlebox.

As a last analysis, only ASes carrying more than 1Tb/s of traffic are taken into account

(they are 138 according to PeeringDB). The results show that hICN is able to traverse

all of them. It is important to remark that these results only provide a lower bound of

success, since the hICN support of an AS supports cannot be neither validated nor denied

in absence of response to our probes.

Overall, these results are promising and confirm the suggestion to deal with problematic

equipment close to the edge through specific faces, leveraging the hop-by-hop capabilities

of hICN. Core routers and servers can then only be limited to the plain version of the

protocol for minimal state and maximum processing performance.

3.4 Linear video distribution

Linear Adaptive Bit Rate (ABR) video distribution is a challenging use case in general

as it requires provable QoE in terms of video quality, application responsiveness and it is

also supposed to scale to a very large number of watchers. Serving millions of concurrent

video streams with the usual broadcast TV quality is a challenge faced by all big players

in content distribution, often via proprietary in-house CDN-like solutions [12]. These

technologies are at an early stage, providing limited support for rate adaptation and

mobility. ABR video streaming for linear video is a use case which has already triggered

30 Chapter 3. Hybrid Information Centric Networking

attention in the ICN community and different works have shown several advantages in

using this technology [160, 137, 97, 120, 124, 37, 70, 90, 91, 122].

This section considers the ABR linear video distribution use case to show the benefits of

hICN and verify that the current design and implementation meet all the initial design

principles:

(i) hICN does not trade-off any of the ICN features

(ii) it allows for interoperability between hICN and plain IP nodes

(iii) it can be incrementally deployed, enabling hICN only on few selected nodes.

The open source hICN software distribution provides ABR application support, that we

use in this set of experiments.

3.4.1 Workload and Implementation

In these experiments the content source consists in a live video feed sent by the Open

Broadcaster Software (OBS) [21] sending a RTMP stream to a nginx [14] server providing

multi-quality HLS streams through the nginx-rtmp [20] module. During the tests 48

channels are streamed, each one encoded in 4 qualities (using bit rates suggested in [17])

with 2 seconds segments, ranging from 360p at 1Mbit/s to 1080p at 6Mbit/s.

The full hICN stack is based on our open source project Fast Data project 1 [6]. The server

side makes use of a forwarder based on the high-performance Vector Packet Processing

framework (VPP) [152]. This implementation consists of a plugin that adds hICN-specific

processing nodes to VPP section 4.5.1. Initial benchmarks with a point-to-point workload

and realistic mixed packet sizes show that this prototype can easily saturate a 10Gb/s

link using a single worker thread. At the client side, the forwarder is implemented as

an user-space library (hicn-light). The ABR video HTTP cache is based on the Apache

Traffic Server which uses hICN through a plugin which is also available in the Fast Data

project. This forwarder achieves about 400Mb/s throughput with a single thread and

runs on all major operating systems. These experiments make use of Ubuntu Linux
1https://fd.io

https://fd.io

3.4. Linear video distribution 31

clients running the VIPER video player, also available in the Fast Data project. This

player provides different adaptation logic strategies for ABR video and these experiments

use the ADAPTECH strategy [137]. The player is able to retrieve content using the

default IP/TCP stack, as well as the ICN and hICN ones. In ICN/hICN mode, the end-

points use RAAQM [43], a receiver-driven multi-path congestion control that allows to use

multiple paths. For better parameter control, all radios are based on realistic emulation

capturing effects of distance, path loss and fading. Details of the emulator can be found

in section 7.4.4. These experiments have been setup using vICN, which we describe in

chapter 7

3.4.2 In-network Control

A compelling feature of ICN is that it enables efficient in-network rate/loss/congestion

control operations [159, 41, 47], resulting from the combination of pull-based request,

symmetric hop-by-hop forwarding and in-network caching.

WiFi LTE

Figure 3.8: Video distribution over HetNet. Black routers are hICN enabled.

In this section, we consider the network in Figure 3.8 where a client is connected to WiFi

only. hICN is enabled both at the user and server size, and also in the Access Point (AP),

leaving a regular IP router between the AP and the server.

Enabling hICN in the AP allows to benefit of the Wireless Loss Detection and Recovery

(WLDR) algorithm introduced in [47] which is available in the open source implement-

32 Chapter 3. Hybrid Information Centric Networking

ation. The experiments show that enabling hICN only on few nodes lead to the same

advantages that we could have gained using a full ICN network with respect to a stand-

ard TCP/IP transport.

360p
480p
720p

1080p

0
15
30
45
6020m 40m 60m

Lo
ad

 1

Q
ua

lit
y

#S
w

itc
h

360p
480p
720p

1080p

hICN TCP hICN TCP hICN TCP
0
15
30
45
60

Lo
ad

 2

Q
ua

lit
y

#S
w

itc
h

Q
#SWu#SWd

gain0
25
50

Ld1 Ld2 Ld1 Ld2 Ld1 Ld2

ga
in

 [%
]

Th
ro

ug
hp

ut

Figure 3.9: TCP vs hICN over WiFi. Average video quality retrieved by the client (Q)
and number of quality switches up (#SWu) and down (#SWd) with different cross-traffic
load on the WiFi channel. The bottom plot shows the throughput gain of the hICN flow
with respect to TCP.

Figure 3.9 compares the performance of one CUBIC TCP and one hICN flow over WiFi

with the user at 20, 40, 60 meters from the AP, as indicated in the top part of the plot.

During these experiment a certain percentage of UDP cross-traffic on the wireless channel

is generated using MGEN [19]. This traffic accounts for average loads of 25% and 75%

of the available bandwidth (resp. Load 1 and Load 2 in the plots). The experiments are

repeated 5 times, during which the client watches 5 minutes of a single live channel.

The charts report the average values over all runs. The top part of the figure reports

the average video quality Q downloaded by the client and the number of video quality

switches, to a higher (switch up) and lower (switch down) quality, respectively #SWu

and #SWd.

The tests demonstrate that hICN gets a better average video quality with respect to

TCP and, most of the time, less quality switches, which means an improved QoE for the

3.4. Linear video distribution 33

client. This is thanks to WLDR that recovers losses locally, instead than end-to-end as in

TCP. The higher number of switches with hICN at 40m, 75% load can be ascribed to a

limitation of the adaptation logic we use. This can be confirmed by measuring the average

throughput measured by the application, which we plot as the relative gain of hICN over

TCP at the bottom of Figure 3.9. In this smaller plot Load 1 and Load 2 are indicated

with Ld1 and Ld2 respectively. hICN gets consistent superior performance with respect

to TCP, ranging from 23% (60m, 75% load) to 50% (20m, 75% load) gain, demonstrating

that we can achieve the same benefits of ICN deploying hICN only on few nodes.

3.4.3 Seamless Mobility

This section considers the HetNet access scenario in Figure 3.8. In this scenario the user

has access to WiFi and LTE radio access technologies. The two radios are connected,

through different networks, to two distinct live feeds, providing the same video channels.

Both radios in the experiments use realistic emulation. As for the previous, this test

os repeated 5 times, during which the user watches 5 minutes of a single channel. The

aim of the experiments is to compare hICN with ICN, to highlight that the two network

architectures are actually equivalent and they bring the same benefits. In the ICN scenario

ICN is enabled on all the nodes (using the CICN implementation [149]), while, for hICN,

only the user, the AP and the two servers are hICN enabled. WLDR is active on the

WiFi channel both for ICN and hICN.

The results, reported on Figure 3.10, compare the two architectures: hICN is displayed at

the top, and the standard ICN at the bottom. The experiment starts with the two baseline

behaviors over WiFi or LTE only, without any mobility event. The results are displayed

on the left and labeled single radio. As for the previous, this test shows the average quality

and the number of quality switches. The results for the two architectures are comparable.

For the WiFi channel WLDR works in the same way both in ICN and hICN. Using only

LTE the client gets a higher average quality at the cost of more switches, and again

this instability can be attributed to the application adaptation strategy. The middle

plots, labeled mobility, show the same metrics when the consumer performs handovers

34 Chapter 3. Hybrid Information Centric Networking

360p
480p
720p

1080p

0
10
20
30
40
50

single radio mobility multi radio

hI
C

N

Q
ua

lit
y

#S
w

itc
h

Q #SW u #SW d

wifi lte 5s 2s 1s seg. pkt.

IC
N

Q
ua

lit
y

#S
w

itc
h

single radio mobility multi radio
Q #SW u #SW d

wifi lte 5s 2s 1s seg. pkt.

360p
480p
720p

1080p

0
10
20
30
40
50

Figure 3.10: Hetnet Access. Comparison between hICN and ICN in case of mobile client
and bandwidth aggregation.

between WiFi and LTE every 5, 2 and 1 seconds respectively. Again, the results are

almost the same for the two architectures. In particular, thanks to the native consumer

mobility support of ICN/hICN, the video quality is not highly affected, despite the fast

mobility of the client. Being in control of the request process, the consumer can adapt its

interest sending rate according to measured available bandwidth on each path, eventually

accounting for newly available interfaces. The performance shown in the chart might be

further improved by supporting the client-side mobility recovery mechanisms described

in [47], though not available in the current implementation.

3.4.4 Bandwidth Aggregation over HetNet

The receiver-driven transport property of ICN/hICN permits a simple but efficient realiz-

ation of channel bonding over heterogeneous radios, through the use of congestion aware

load-balancing, implemented as a forwarding strategy [43]. It acts at packet level with the

objective of minimizing the residual latency on every available path. This scheme can fur-

thermore be applied network-wide and brings full multi-homing/multi-path/multi-source

support. This experiment uses the same setting as in the previous section, showing that

3.5. Related work 35

the performance of ICN and hICN are consistent. The test involves two different for-

warding strategies implementing two different load-balancers: a per-dash-segment load-

balancer, which tries to mimic the granularity available for applications today, and the

per-packet load-balancer just described. Results are in the right-hand side of Figure 3.10,

labeled multi radio. The load balancing at segment level (labeled seg.) leads most of the

time to performance degradation, which is consistent with different observations made in

previous work on MPTCP [83], suggesting that those technologies are more appropriate

for fast recovery than for channel aggregation in the case of DASH video streaming ap-

plications. Per-packet load balancing (labeled pkt.) instead achieves an optimal traffic

split over the two channels, fully exploiting available bandwidth without any incidence

on the application, despite the intrinsic differences between radios. By bonding WiFi and

LTE, the video client obtains the highest quality with a minimum number switches. Also

in this case, both the hICN and ICN implementation are comparable.

It is also worth highlighting that the client downloads from two different sources as the

same time, using disjoint paths and no proxy at junction points. No transport protocol

nowadays is able to do the same. This is another nice property of ICN inherited by hICN.

3.5 Related work

Among ICN deployment strategies we can classify them in two broad classes: full integ-

ration and partial integration proposals.

Full integration. In the following, we discuss pros and cons of the main classes of

full ICN deployment options [123]:

∎ ICN as an overlay – Envisaging the same transition model as IPv4-to-IPv6, the

common deployment proposed for ICN is as an overlay (also “tunneling approach” in

[123]): the new ICN protocol stack is transported on top of IP between pre-identified

adjacent ICN routers, hereby creating islands of ICN deployments connected to each other

via ICN/IP tunnels over existing IP-based infrastructure. The overlay approach considers

ICN directly over IP or over UDP and requires the definition of a convergence layer to

36 Chapter 3. Hybrid Information Centric Networking

map ICN semantics onto application semantics (e.g. HTTP). To improve connectivity

and control within and across ICN domains in terms of reliability and of scalability,

different SDN-based approaches, and more specifically OpenFlow extensions, have been

proposed for ICN deployment as an overlay on top of IP [157, 174, 156, 54]. While it

prospects a rapid and easy deployment of ICN in fixed and in mobile networks [148], such

deployment configuration requires the standardization of ICN packet format and protocols

and, depending on the scale of the ICN deployment, the interoperability between IP and

ICN routing protocols.

∎ ICN as an underlay – To overcome the limitations of overlay approaches via a native

but scoped integration of ICN, proposals have emerged for an ICN deployment as an

underlay in given islands of existing IP-based networks (e.g., inside a CDN or edge IoT

network) [154]. The connection to the rest of the Internet is guaranteed by gateways or

proxies translating semantics from ICN to IP routing domains. Unfortunately, that also

implies dual stack challenges and a long timescale for expected adoption of the new stack

in network equipments.

∎ ICN in a slice – Recently advocated in 5G context, this approach leverages the advances

of network virtualization to realize slicing of network (compute, storage, bandwidth) and

spectrum resources among applications and introduces ICN for the support of specific

services (e.g. low latency, mobile, caching-aided). In [125, 128] the authors suggest

creation of service slices using both IP and ICN and discuss the requirements for ICN

introduction using programmable data planes.

Partial integration. Other proposals share the spirit of hICN and have suggested

to reuse existing protocols to integrate ICN features in IP/TCP/HTTP. However, they

only consider a subset of ICN aspects, trading-off some of its benefits, and consequently

inherit inefficiencies of the layers underneath.

∎ ICN semantics in IP – The following prior art considers ways to embed resource names

into IP packets for name-based forwarding. [147] suggests embedding content names in

the IPv6 destination address via a proxy mapping HTTP URLs to IPv6 addresses: the

3.5. Related work 37

FQDN is resolved (through DNS) and mapped to the first 64 bits of the IP address, while

the path section is hashed to form the second half of the IP address. Their idea is to

inherit some IPv6 functionalities such as mobility and security, while preserving routing

scalability thanks to the two-level hierarchy of names.

CLIP [75] proposes to reserve an IPv6 subnet for content, and to split a content name

into publisher label and content label. The publisher label is mapped into source and

destination addresses for standard IP forwarding, while the content label is inserted into an

ICN header extension and recognized only by ICN-compliant routers. CLIP also suggests

a data-centric security model based on IPSec (AH for signing and ESP for encryption),

decoupling privacy, authenticity and integrity.

CONET project [54], which considers an SDN-based overlay deployment of ICN with

OpenFlow extension in the long term, suggests as short term alternative to use new IP

options to carry content-level information. This would require standardization and might

suffer from packet drop by non-compliant transit routers.

Unlike [147, 75] that only inherit ICN naming and caching properties, neglecting ICN

stateful forwarding and pull-based connectionless transport, [54] aims at preserving ICN

transport model and thus requires data packets to flow back to the consumer in the reverse

direction. Temporary PIT state is encoded in the packet, in a specific CONET header

extension or within payload. This solution has major drawbacks, since it prevents routers

from aggregating requests, estimating of the congestion status of a path or performing

in-network loss and congestion control.

∎ ICN semantics in TCP/HTTP – All previously presented approaches require the

introduction and standardization of IP header extensions, which might cause packets to

be dropped by routers, or the introduction of new layer 4 or 7 protocols, to be deployed

as an overlay on top of IP. A different class of proposals has suggested integration of ICN

semantics into transport or application layer protocols.

[146] proposes to use a transparent opportunistic interception of traffic at layer 4 or 7, in

order to implement content-level functionalities in TCP. Unfortunately, those operations

38 Chapter 3. Hybrid Information Centric Networking

are costly and deemed not to scale beyond the network edge.

[121, 56] start from the observation that at application-level, HTTP shares some key as-

pects with ICN: data addressing by name, pull-based communication model and coupling

of request routing with caching. The content-centric nature of HTTP has generated a

long debate in the research community about the benefits of a network/transport-layer

approach such as ICN versus application-layer HTTP-based approaches for content deliv-

ery. In [121], authors develop the thesis that HTTP is already a content-centric protocol,

providing middlebox support in the form of reverse and forward proxies, and leveraging

DNS to decouple names from addresses. In the same CDN context, [56] demonstrates that

little additional benefits come from pervasive caching and nearest-replica routing features

of ICN, while still paying the cost for its integration in existing IP infrastructure. All these

proposals have the merit of raising the question of the incremental deployability of ICN.

However, they mostly target in-network caching and request-to-cache routing features of

ICN, trading off other - in our view - key aspects of ICN network/transport layer such

as in-network multicast/broadcast, network-assisted loss recovery and congestion control

and native mobility support. Our attempt with hICN is to make the full ICN approach

incrementally deployable in existing IP networks, without compromising any of the ICN

architectural principles and related potential benefits.

3.6 Discussion and Conclusion

Motivated by the importance for short to mid term deployability of ICN as is, this chapter

analyzed Hybrid-ICN which has the ambition to bring ICN inside the Internet protocol.

Unlike other proposals, hICN focuses on preserving ICN communication model at network

and transport layer, to inherit all intrinsic good properties of ICN that past research has

highlighted, such as native security, mobility support, dynamic hop-by-hop forwarding

and agile multi-path/multi-source transport, coupled with in-network caching.

hICN aims at deploying ICN at the end-points and in a few points at the network edge

where beneficial, guaranteeing transparent interconnection with existing IP elements and

3.6. Discussion and Conclusion 39

reuse of IP routing and management tools. A major contribution of this work is the open

source implementation of hICN in the Fast Data project [6], which hash been used to

show the feasibility and scalability of the hICN core elements. The use-case of linear video

streaming highlights the higher user experience, resulting from in-network loss control,

seamless mobility and multi-source/multi-path support over hetnet access, with better

usage of network and system resources.

Chapter 4

Transport layer and socket API for ICN

4.1 Introduction

While the previous chapter focused on the design of an architecture for incrementally

deploying ICN by re-using the current network infrastructure, this chapter will focus on

the problem of deploying ICN on the end hosts, and in particular on the design and

implementation of a ICN transport framework and the definition of clean and precise

socket APIs.

There has been a considerable amount of work on developing novel applications on top of

ICN. However, there has been little effort into developing an intermediate stack, namely

the session and transport layers as well as an API that is feature reach and simple at the

same time.

The network stack as implemented in current operating systems, exposes Internet sockets

(INET) using the BSD socket API for all *NIX OS or Windows Socket API for Windows

OS. They are all very similar and application developers are used to deal with this kind

of API to develop networked applications.

There has been a remarkable amount of work to develop new transport services in the

Internet in order to meet different applications’ requirements, such as LEDBAT, QUIC

([89]), MPTCP. In the future, it is likely that novel transport services will be developed

40

4.2. Namespaces in ICN 41

to respond to upcoming needs and to adapt to different environments, namely mobile net-

works, delay tolerant networks, multi-homed access use cases, just to cite some examples.

The advent of new transport services are also expected to proliferate to serve the devel-

opment of new applications for the next decades. In this case, developing and defining an

API that can be inserted in applications in a simple manner, with extend-able features,

is a mandatory requirement for the success of new transport services. The current IETF

WG TAPS [118] is the most notable effort in this direction and also the work done in the

NEAT project [23].

ICN is not an exception, and its proliferation also depends on the definition and imple-

mentation of a simple and easy to use session and transport layer. Currently, ICN lacks of

this definition as well as the implementation of a socket API that can facilitate its insertion

in existing applications as well as the development of new ones. This chapter describes

one such layer that is based on the consumer/producer communication abstraction model

and shows how it gracefully fits into a comprehensive middle-ware between applications

and the ICN network layer. Moreover, the chapter discusses several transport services of

which an implementation is provided. Such implementation is then compared with the

corresponding services available in TCP and UDP and results show that performance are

comparable in terms of goodput.

The chapter is organized as follows. Section 4.2 gives an overview of the ICN namespaces

and their relation with the transport and network layers. Section 4.3 describes the overall

architecture with assumptions and constraints; Section 4.4 presents the transport layer as

well as the socket API. Section 4.5 describes the details of an high speed implementation of

the proposed transport stack that is benchmarked and analyzed in Section 4.6. Section 4.8

concludes the chapter.

4.2 Namespaces in ICN

In ICN it is often assumed that application names are the same names used by the routing

plane in the form of routable prefixes. In this section, as already introduced in section 3.2,

42 Chapter 4. Transport layer and socket API for ICN

we argue that application names and network names should not coincide in order to

provide a greater flexibility to organize data at application layer, while maintaining routing

scalability, network domains separation and better supporting mobility.

This comes at a cost: the mapping requires a security linkage which is native in architec-

tures such as NDN/CCNx and also the mapping requires to be designed and maintained.

This is part of the tradeoff and advantages in the Hybrid ICN architectures.

Today applications manage data using different kind of namespaces that are used for

the purpose and functioning of the specific application itself. For instance a web server

typically makes data available using a URL which embeds the hostname of the server and

defines a locator to determine where the data can be retrieved. The data itself inside the

server then may be organized using a namespace that is inherited by the local file systems.

Domain names are managed by an authority that maintains a registry of allocated names

to registrants.

Other collections of data are organized using URN for objects (RFC 3061 [100]), ISSN

(RFC 3043 [101]), DOI (ISO 26324 [58]) and many mores. It is convenient to organize data

using a standardized namespace as it allows simple migration of the data, interoperability

and integration of different applications among themselves. However, this is not always

the case, and most of the time each application develops namespaces autonomously.

The same level of flexibility and customization can be hardly achieved with network

names, whose definition usually follows some strict rules and their allocation is handled

by the network administrator (who is usually unaware of the applications running at the

end-host devices). Additionally, using the same names at network and application layers

also issues severe concerns to the routing system. In this case names (prefixes usually)

used by applications would be distributed in the routing systems in order to set the

forwarding plane. The variety of namespaces used by different applications would make

complicated to exploit aggregation to maintain FIB small in the routers, thus affecting

routing scalability. Lastly, the data producer would have to attest the ownership of the

prefix to the routing system and the different network domains exchanges prefixes to

assure reachability.

4.2. Namespaces in ICN 43

In order to avoid the issues raised above, an efficient solution is multiplex/demultiplex

application names into network names. In the case of hICN, routable name prefixes are

IPv6 prefixes and follow the usual rules on IPv6 routing including prefix attestation. The

way name prefixes are assigned to a data producer is described in section 3.2.2.

The mapping between network and application namespaces has a direct influence on

the ICN data aggregation, routing scalability and data transmission. Application data

moves from one location to another by means of data segmentation that has to fit into

the minimum maximum transfer unit across the link traversed from the source to the

destination(s). If the data does not fit into the MTU of a link it is either discarded or

reassembled before retransmission. Instead, the network namespace is data agnostic.

In ICN data packets are directly indexed using a hierarchical name. The hierarchy allows

to organize application level data inside name prefixes, but also to better scale routing

by name (aggregation) and to define lower level indexes as segment identifiers. One of

the compelling usage of ICN architecture is to reduce redundant transmissions because

multiple requests for the same data can be satisfied by a single transmission. Immutability

of the data that is associated to a given name is a strong requirement at least for the

lifetime of a transport session, otherwise reassembly of the data at consumers would not

complete successfully.

The segmentation information is included in the L4 header: name suffix, lifetime etc.

Fragmentation poses issues, as in IP, as immutability is not preserved and data sharing is

suboptimal (some solutions are proposed in [109], [63]). The risk is that, as in IP today,

fragmentation makes multi-path transport difficult to optimize, as the characteristics of a

network path can influence the way data is segmented in the namespace. For ICN this can

be a significant limitation. Hop-by-hop reassembly of fragments seems the best solution

at a non negligible cost. Moreover, end-points can charge the network with additional

cost for segmentation/reassembly operations.

MTU path discovery protocols can eliminate this cost if used by the end-points when

possible. The design of this kind of protocols needs additional work for ICN as a key

requirement is to preserve location independence and multi-path communication efficient.

44 Chapter 4. Transport layer and socket API for ICN

In summary, data namespaces in ICN have an impact on the full stack: from the applic-

ation, through transport and down to the single data packet in case of segmentation or

fragmentation. Each layer has different objectives and constraints. Each layer manages

resources of different capacities implying trade offs while multiplexing/demultiplexing

name data from one layer to another. Some of these trade offs have been discussed in this

section, others will be described in detail concerning specific transport layer functions.

In this chapter we consider the transport layer that has adjacencies with application and

network layers and has a key role in the overall architecture.

4.3 Architecture

This section presents the network layer requirements to design the socket API and trans-

port Services. The transport layer sits on top of a network layer that provides the se-

mantics of the ICN architecture. The services provided by the network layer protocols

to the upper layers are characterized by request/reply semantics, meaning that data is

transmitted only upon reception of the corresponding request. Each data is transmitted in

a Data Packet that is unambiguously identified by a hierarchical name. Such hierarchical

name is used at the network and transport layer to realize location independent name-

based forwarding, as well as multiplexing and demultiplexing of communication flows,

data segmentation and reassembly. We assume that the network layer does not perform

fragmentation, i.e. the L3 PDU fits into link-layer maximum transfer unit (MTU). For

this reason, we assume as well that the transport layer relies on a path MTU discovery

protocol (PMTUd). The more general problem of designing a PMTUd mechanism that

can be effective for multi-path and multi-homed end-points is an important problem but

it is out of scope for this thesis, where simple naive approaches are adopted.

Moreover, we assume that application level data is associated to a namespace that ap-

plications use to organize, uniquely identify and securely exchange each data. We be-

lieve, and encourage, that application level namespaces and names differs from the ICN

network layer prefixes and names. This allows ICN to deal with the several orders of

4.4. Transport Services 45

magnitude bigger application level data that can be permanently addressed in an end-

host, in particular in case of hICN. Additionally, decoupling application-layer names from

their network-layer counterparts provides several benefits in term of packet processing

and security [65]. Translation between the application level names to the corresponding

network layer names is done in the transport layer. How the translation between network

and application name is done is left for future work, but in principle the transport will

use the names provided by the network service described in section 3.2.2. This is not

different to the current application layer in today’s Internet which relies on session and

transport layers to conceal details of the networking semantics.

For a given name prefix, used to exchange an application data unit, the name hierarchy is

also used in the transport layer for segmentation and reassembly operations, using name

suffixes as part of the network namespace to unambiguously identify Data Packets in the

network and in a communication flows.

4.4 Transport Services

In this section we present in details how communication sessions are created, mapped

into network namespaces and prefixes, and for how long. We describe also how resources

are allocated at the end-points in order to serve the communications needs of the applic-

ations. We highlight that our socket API and transport services can run on every ICN

architecture, e.g., NDN/CCN as well as hICN.

4.4.1 End-points description

We identify two kinds of communication sockets each with a specific API: the producer

and consumer sockets. These socket types are designed to exchange data in a multi-point

to multi-point manner. The producer-consumer model is a well-known design concept for

multi-process synchronization where a shared memory is used to let multiple consumers to

retrieve the data that is made available by producer processes into the same memory. In

46 Chapter 4. Transport layer and socket API for ICN

ICN we have the same concept that is applied to a network where memories are distributed

across the communication path. The first memory in the path is the production buffer of

the producer end-point that forges Data Packets and copies them into a shared memory

isolated into a namespace. Consumer sockets can retrieve data from such memory by

using the ICN network layer. The model just described is an inter-process communication

example (IPC) that requires data to cross a communication network by using a transport

protocol.

The way consumers and producers synchronize depends on application requirements and

the transport layer exposes a variety of services: reliable / unreliable / realtime, with

or without latency budgets etc.

Independently of the specific requirements of the applications, producer sockets always

perform data segmentation from the upper layer into Data Packets, as well as compute

digital signatures on the packet security envelop. This envelop can also be computed

across a group of packets, by including a cryptographic hash of each packet into the

transport manifest (fig. 4.1), and eventually signing only such manifest. This is a socket

option that can bring significant performance improvement.

The consumer socket, on the other end, always performs reassembly of Data Packets,

hash integrity verification and signature verification. The usual assumption is that the

producer socket uses an authentic-able identity while using namespaces that it has been

assigned. The end-point must be able to manage the mapping of its identity and the

allocated namespace by issuing digital certificates about the mapping. The consumer

end-point must retrieve the associated certificate to perform the basic operations. It is

out of scope for this thesis how to design and implement a scalable system to perform

such certificate operations.

4.4.2 Network namespaces

The session layer takes care of sharing local resources among all communication sessions

such as consumer and producer sockets. Any time an application wants to open a socket,

4.4. Transport Services 47

the session layer allocates space from a memory pool and securely isolate it within the

valid namespace. Both producer/consumer sockets are successfully instantiated to match

against a valid prefix that must be available in the local FIB. Communication flows are

multiplexed into the network layer using the namespace itself and do not require the

usage of L4 ports as in TCP/IP. The new session is multiplexed to the network stack

by registering the new session as a unidirectional application face. FIB entries have to

be configured accordingly in case the new application face interconnects a producer or a

consumer socket. This kind of faces can be seen as shared memories bound to a name

prefix with read/write permissions.

The session is instantiated by passing socket types, options, parameters and is released

to the resource pool at closure, including the used namespace. By consequence it implies

that the certificate used by a producer end-point is no longer valid and revocation of the

certificate must be enforced.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+
|Version| MType |HashAlg|NextStr| Flags |NumberOfEntries|
+-+
| |
+ +
| |
+ Prefix +
| |
+ +
| |
+-+
| Name-suffix[0] |
+-+
| Hash Value[0] |
| |
+-+

. . .
+-+
| Name-suffix[NumberOfEntries - 1] |
+-+
| Hash Value[NumberOfEntries - 1] |
| |
+-+

Figure 4.1: Manifest encoding: compact encoding.

4.4.3 Socket API

The system calls of the socket API are based on the socket interface extensions for IPv6

[68] and are shown in Figure 4.2.

48 Chapter 4. Transport layer and socket API for ICN

Common API
int socket (int domain, int socket_type, int protocol);

int bind(int sockfd, struct sockaddr *addr,
socklen_t addrlen);

ssize_t sendmsg(int sockfd, const struct msghdr *msg,
int flags);

ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);

Consumer specific API
ssize_t recvfrom(int sockfd, void *buf, size_t len,

int flags, struct sockaddr *src_addr,
socklen_t *addrlen);

Producer specific API
ssize_t sendto(int sockfd, const void *buf, size_t len,

int flags, const struct sockaddr *dest_addr,
socklen_t addrlen);

Figure 4.2: System calls for socket initialization and binding to a socket address, as well
as for data reception and transmission.

Applications are supposed to call the socket() system call to create descriptors repres-

enting a communication end-point, i.e., a consumer or a producer. The domain AF_ICN

defines the address family and the socket type defines the communication semantics:

SOCK_CONS will create a consumer socket, SOCK_PROD will create a producer socket. The

consumer socket takes care of data reception, while the producer socket of data transmis-

sion. The protocol parameter specifies the protocol used for the data retrieval and the data

production: CONS_REL/CONS_UNREL/CONS_RTC for reliable / unreliable / real-time content

retrieval and PROD_REL/PROD_UNREL/PROD_RTC for reliable / unreliable / real-time data

production. Section 4.5 clarifies the meaning of such parameter.

Both sockets bind to a socket address, who is initialized by specifying the address family

AF_ICN and the name prefix (struct sockaddr_icn). The name prefix enforces the

namespace in which a producer socket is allowed to publish data and a consumer socket

is allowed to request data.

The bind() system call takes care of setting up a local face to the forwarder, and in the

case of the producer it also sets a FIB entry (name_prefix, socket_id). The recvmsg()

4.5. Implementation 49

and the recvfrom() system calls are used by a consumer for retrieving a content, while

sendmsg() and sendto() are used by a producer for publishing data and making it

available for the consumers. Notice that the consumer socket can just use the recvmsg()

and recvfrom() as they are the two system calls capable of specifying the name of the

content to be retrieved, and the producer socket can use only the sendmsg() and the

sendto() for publishing data under a certain name. For both cases, the name used

for pulling/publishing data has to be in the range previously specified in the bind()

system call. The setsockopt() allows application to tune the available socket options:

its semantic with respect to the current sockets API does not change. Some of the available

options will be described in Section 4.5.

The consumer socket can use the sendmsg() for sending arbitrary interests in a datagram

fashion, while the producer socket can call recvmsg() for receiving and processing requests

from the consumers.

It is worth to highlight that this socket API design is general and it does not restrain

developers to develop a variety of different applications patterns that differs from the

content distribution applications (in which a set of clients that retrieve content from one

or multiple replicated servers). A relevant example of collaboration applications, in which

a number of users share data in a real-time fashion with each other will be presented in

chapter 6. The design of a specific transport protocol, and its selection through the socket

API, will guarantee the communication-delay constraints required by the real-time nature

of the communication.

4.5 Implementation

The ICN transport service has been implemented in most of the components in a C++

userspace library. It can be used to connect to the ICN forwarder (hicn-light) or the VPP

[152] based forwarder. The source code of the library and the forwarders is available in

the two fast data projects CICN [149] and HICN [6]. This chapter reports experiments

50 Chapter 4. Transport layer and socket API for ICN

made by using the VPP-based hICN plugin 1 as it provides best performance compared

to the others.

To connect an application with the underlying forwarder, we developed a Forwarder Con-

nector which exposes a uniform interface for sending and receiving packets to/from the

network stack. The pipeline is reported in Fig. 4.4 and 4.5. A more detailed description is

presented in Section 4.5.2. Below we report a short introduction to VPP which constitutes

the packet processor that allows to obtain scalable performance in software.

4.5.1 VPP: vector packet processor

VPP is a high-speed software based packet processor that provides advanced data plane

function in commercial off-the-shelf (COTS) hardware. VPP design has two major pillars:

(1) completely bypassing the kernel in order to avoid the overhead associated with kernel-

level system calls, (2) maximize the number of instructions per clock cycle (IPC). Kernel-

bypass is achieved through low-level building blocks, such as Netmap [94] and DPDK [153].

These mechanisms provide Direct Memory Access (DMA) to the memory region used

by the NICs, therefore avoiding the need of the kernel to interact with the underlying

hardware. Maximization of IPC is achieved carefully designing the VPP implementation

and exploiting data pre-fetching, multi-loop, function flattening and direct cache access.

In the following we briefly present the VPP architecture and the design of our hICN plugin

for VPP.

VPP Architecture

The VPP code is organized in a set of nodes, each implementing specific functions (e.g.,

ip4 forwarding or fib lookup). There are three types of nodes in VPP: namely internal,

process and input. Internal and process nodes form a forwarding graph which determines

the processing paths each packet follows during it processing. Input nodes interact directly

with the NICs, reading packets from the rx ring buffer and injecting them in the forwarding

1https://github.com/FDio/hicn/tree/master/hicn-plugin

https://github.com/FDio/hicn/tree/master/hicn-plugin

4.5. Implementation 51

graph. Internal nodes implement packet processing functions (e.g., packet forwarding,

address rewrite, fib lookup) as well as they move packets to the tx ring buffer in order

to let the hardware to forward a packet. VPP processes packets in a vectorized fashion:

input nodes create a vector of packets, which is moved from internal node to internal

node by the graph node dispatcher. Thus, every node executes its processing function on

the entire vector. This design allows to minimize cache misses, to reduce the overhead

of selecting the next node in the graph, as well as to simplify pre-fetching [92]. Beside

supporting DPDK and Netmap compatible NICs, VPP provides other several additional

types of interfaces. Among all, memory-based interfaces (in short memif) are designed to

allow applications to send packets to a local VPP forwarder. Memif interfaces are designed

to be efficient in order to forward several gigabits per second. Connectivity between an

application and a VPP forwarder is provided by a pair of memif interfaces: one managed

by VPP and the other by the application. Such pair of interfaces are virtually connected

through a bidirectional link, thus letting packets to flow from one interface to the other.

The virtual link is implemented using two circular buffers (one per each direction of the

link) stored in a portion of virtual memory shared between the VPP forwarder and the

application.

hICN plugin

The ICN forwarder is implemented as a VPP plugin which adds six new nodes in the

forwarding graph, enabling two new forwarding sub-graphs: the interest and the data

forwarding pipeline and shown in Fig. 4.3.

We exploit the VPP memif interface to implement the application faces, i.e., ICN faces

that forward traffic to/from local application. In particular, we designed two different

APIs that the transport layer can use to connect to a consumer face and a producer face.

Both APIs instantiate a new memif interface, exposing the memif shared memory to the

transport layer. Additionally, the producer face API also creates a new entry in the FIB

in order to forward Interest Packets to the producer socket.

52 Chapter 4. Transport layer and socket API for ICN

PITCS-lookup

Hit-PIT Hit-CS

Ip-lookup

Strategy

Interface-tx

(a) Interest sub-graph

PITCS-lookup

Data-fwd

Interface-tx

Hit-PIT Hit-CS

Interface-tx

(b) Data sub-graph

Figure 4.3: hICN plugin for VPP

4.5.2 Forwarder Connector

The forwarder connector is the software module in our transport services that inter-

acts with the underlying forwarders. We designed two specific connectors, one for our

hICN-VPP forwarder, and one for the client forwarder. Both connectors expose the

same northbound interface to the consumer socket and the producer socket. In partic-

ular, the interface is composed of four APIs that the transport layer can use to cre-

ate a consumer/producer connector and to send/receive packets: connectConsumer(),

connectProducer(), sendPacket (), recvPacket(). The purpose of the first two API

is to create a (or connect to an existing) consumer or producer application face in the

hICN forwarder. The connectProducer () also takes care of setting a new FIB entry in

order to allow the forwarder to send Interest Packets to the producer socket itself. The

sendPacket() and recvPacket() are intended to send/receive packets to/from the hICN

forwarder once it is connected.

4.5. Implementation 53

Application

Consumer
Socket

Forwarder Connector Interface

recv
from()

Data Input Buffer

(h)ICN Forwarder Connector VPP Forwarder Connector

send
Packet()

Data Packet

recv
Packet()

Read ADU

Pull Content

Data Packet

Signature + Integrity

ADU

ReassemblyDatagram/Stream
Data Retrieval

send
msg()

Send One Interest

Security Policies

Interest

Interest

Data Packet

Data Packet

Drop

Interest

In
te
re
st

D
at

a
Pa

ck
et

Figure 4.4: Consumer socket processing pipeline

4.5.3 Consumer Socket

Applications can instantiate a consumer socket for (1) retrieving a specific content with a

certain name (e.g. DASH client) or (2) directly sending an interest to retrieve one specific

Data Packet (e.g. ping).

Figure 4.4 shows the internal processing pipeline of the socket and points out the path

followed by Interest and Data Packets during the content retrieval. The content download

is triggered by the call to the recvfrom function: the application specifies the name

of the content to pull and some download options, such as the actions to perform in

case of signature verification failure. After the initial setup phase, the control is taken

by the Data Retrieval protocol, specified at the socket creation with the socket system

call in the protocol parameter (CONS_REL, CONS_UNREL, CONS_RTC). The protocol then

starts generating Interest packets for retrieving the content requested by the application.

Before being forwarded to the forwarder connector, the Security Policies block applies the

policies specified by the application as socket options: this includes for instance signing the

Interest or verifying that the Interest matches all the application and socket constraints

54 Chapter 4. Transport layer and socket API for ICN

(e.g. the interest name belongs to the prefix specified in the bind system call). If all the

requirements are satisfied, the Interest is passed to the forwarder connector that takes

care of delivering it to the next hICN node.

In the same manner, the forwarder connector takes care of delivering the Data Packets

coming from the hICN forwarder to the application. As soon as the Data Packet is

received, it is stored it in the Input Buffer and then passed to the Verification Routine

that performs the data-origin authentication check. As mentioned in Section 4.4, this

operation can be performed either by using a transport manifest or verifying the signature

of each Data Packet, depending on how the producer decided to sign the content. If this

check fails, it means either the Data Packet has been corrupted or has been produced by

a malicious producer: in this case the security policies set by the application will define

the action to perform:

• dropping the Data Packet and sending a new Interest;

• using it anyway;

• aborting the download;

If the data-origin authentication check succeeds, the Data Packet is used for reassembling

the application content. When all the Data Packets are successfully reassembled and

verified, the consumer socket returns the content to the application.

Since the operation of verifying the data origin authentication is expensive, as we show in

Section 4.6, the flow control operations performed by the Data Retrieval Protocol must

be decoupled from the operations performed by the Verification Routine, otherwise the

crypto operations would limit the rate of the flow control protocol.

4.5.4 Producer Socket

The producer socket is responsible for producing Data Packets and making them available

for the consumers. Data Packets can be published in two different fashions:

4.5. Implementation 55

Application

Producer
Socket

Forwarder Connector Interface

recv
msg()

ADU

send
msg()

Interest

Interest Input Buffer
Data Packet

Interest

Data Packet Output Buffer

(h)ICN Forwarder Connector VPP Forwarder Connector

send
Packet()

Interest

recv
Packet()

Data Packet

Pending Interests

Application Content

Application Logic

cacheMiss
Signal

Data
Packet

Segmentation +
Naming

Data Packet

Data Packet
Integrity +

Authentication

Figure 4.5: Producer socket processing pipeline

(i) asynchronous production, if the application publishes unsolicited data without

receiving any Interest (e.g. real time applications)

(ii) synchronous production, if the application publishes data upon the reception of

one Interest (e.g. file repository)

We describe first the case of asynchronous content publication and then we will see how

applications can use the producer socket for dealing with dynamic requests.

Application can publish data by calling the sendto API with:

(i) Application Data Unit

(ii) Application Name

(iii) Crypto suite for signing the Data Packets

(iv) Some other optional publication options (e.g. Transport Manifest)

The first operation performed by the producer socket is the data segmentation and nam-

ing : the application content is segmented into MTU-size Data Packets which are named

by combining the prefix received by the application and a suffix, for unambiguously identi-

fying the packets in the network. Each Data Packet is then processed by the Signature

56 Chapter 4. Transport layer and socket API for ICN

Routine: depending on the publication options provided by the application, the routine

decides if signing every packet or groups of packets by using a transport manifest ([36]).

Generally speaking, applications producing a large amount of data such as HTTP servers

generally should opt to transport manifest, since it avoids to compute the signature of

every Data Packet. Other applications, such as RTP clients, could opt for a per-packet-

signature approach, but this are choices made by the application developer. We will

analyze the cost of signing packets in section 4.6.

As soon as the Data Packet is authenticated, it is stored in the Data Packet Output Buffer,

which function is to store the Data Packets for matching incoming Interests. Since the

size of this buffer can significantly increase, it likely cannot fit in the main memory: for

this reason we designed it as a two layer cache, where the L1 cache has a limited size and

it is stored in the main memory, while the L2 cache can be really large and is saved on

permanent storage. The replacement policy of the L1 cache is a socket option defined by

the application itself, and can be FIFO, LRU or LFU. If the application creates the socket

selecting the PROD_UNREL protocol, the L2 cache is disabled and whenever a Data Packet

is removed from the L1 cache is lost. This case is typical for live streaming applications,

where the Data Packet Output Buffer needs to always store new Packets and discard the

old ones. In the case of PROD_RTC, both the L1 and L2 caches are disabled and packets

are directly pushed to the local ICN forwarder, for minimizing the latency by serving the

packet directly from the content store of the local forwarder. At last, applications like a

File Repository may need their data to be always available: in this case the L1 and L2

caches are required and the PROD_REL protocol has to be used.

When an Interest Packet is received through the forwarder connector’s recvPacket API,

the Producer Socket puts it in an input buffer and then tries to perform a lookup for it

in the Data Packet Output Buffer : if a corresponding Data Packet is found, the socket

replies directly by forwarding it to the connector through the sendPacket call. In this

way the application does not perform any computation for the incoming request, as they

are satisfied directly by the transport layer. If the output buffer does not contain any

matching Data for the interest, the latter is registered in a Pending Interests table and

4.6. Performance Analysis 57

the socket signals to the application that the cache miss happened: the signalization is

done through the recvMsg system call, by passing to the application the name of the

Interest and other information (such as a possible interest Payload).

The application can then react to the cache miss by publishing the content required by

the interest, with the production procedure described above. At the moment of storing

the Data Packet into the Data Packet Output Buffer, one further lookup is done on the

Pending Interests table for checking if it contains a pending request for the data that

is going to be published: if the lookup succeed, the data packet is forwarded directly

to the underlying forwarder connector. This whole procedure allows the socket and the

application to jointly perform the dynamic production of content.

4.6 Performance Analysis

In the following sections, we report the performance evaluation of our transport layer.

We show the performance we achieve using the per-packet signature and the manifest

approach, reporting the average goodput as well as the communication latency. Moreover,

we compare the performance of our implementation with the TCP implementation in the

Linux kernel and the TCP stack implemented in VPP. Our goal is to show the state of the

art performance of our transport layer using as a reference the today’s transport layer.

4.6.1 Experimental settings

The experiments presented in this section are performed using the vICN framework,

described in chapter 7. The setup is the following: two Linux Containers [18] deployed on

a Cisco UCS Type-C server with an Intel(R) Xeon(R) CPU E5-2695 xv4 and 256 GB of

RAM. The two containers manage an Intel 82599ES 10-Gbps NIC each and are connected

together through a 10Gbps Cisco-Nexus 5k. The two NICS are installed in the PCI of

two different NUMA nodes, in order to distribute the workload on 2 different CPUs and

improve the memory usage. Processes running inside LXC, such as VPP and applications,

58 Chapter 4. Transport layer and socket API for ICN

are run with CPU affinity to cores that are installed into the NUMA node belonging to

the NIC VPP is using. This allows to achieve optimal performance in terms of memory

access latency.

The hICN traffic is forwarded using the VPP forwarder augmented with the hICN plugin

described in Section 4.5, and running inside both containers. The goal of this experiment

is to measure the performance of our hICN transport, by forwarding traffic between the

two containers. To this end, we wrote a simple application that sits on top of our transport

library and provides statistics regarding the transport itself, just like iperf [16] does for

TCP/UDP. To compare hICN transport layer performance with respect to TCP, we use

default TCP in the Linux kernel2 (TCP Cubic) and in VPP (TCP New Reno). We use

the iperf3 tool [16] to test the performance of TCP[16]. The reliable transport service

used in this set of experiments is based on [43], which implements delay based flow and

congestion control.

In the following, we report a summary of an extensive experimentation campaign to

benchmark the performance of our transport services. In particular, we first study the

computational cost of the crypto operations required to compute and verify signatures,

then we evaluate their impact on transport services. To this end, we consider different

scenarios:

(i) distribution of static content that the producer publishes asynchronously, namely

Asynchronous publication

(ii) communications in which the content is requests as soon as it is available in the

application, namely Synchronous publication

In (i) the producer segments, names and signs every requested content a priori, i.e., upon

receipt of each interest, the corresponding Data Packet is already available in the Data

Packet Output Buffer. In (ii) the producer segments, names and signs the application

content upon the receiving of the first interest for it. In all our experiments, the producer

publishes (and the consumer retrieves) a content with size 200MB. Moreover, we use RSA

2Kernel version 4.4.0104

4.6. Performance Analysis 59

and ECDSA as signing algorithm, choosing a key size of 1024 and 192bits respectively 3.

Finally, we used SHA256 as cryptographic hash algorithm. The crypto library used for the

crypto operations is openssl 1.0.2o [22]. All statistics reported below are obtained from

30 independent experiments and mean values are reported with a t-student confidence

interval with 99% significance.

4.6.2 Results

Type of test Average 99% CI
hICN Asynchronous Publication

Manifest RSA-1024 928Mbps [919 936]
Packet-wise RSA-1024 290Mbps [283 297]
Manifest ECDSA-192 531Mbps [523 538]
Packet-wise ECDSA-192 28Mbps [27 28]

hICN Synchronous Publication
Manifest RSA-1024 525Mbps [518 532]
Packet-wise RSA-1024 26Mbps [26 27]
Manifest ECDSA-192 530Mbps [522 537]
Packet-wise ECDSA-192 28Mbps [28 29]

hICN Crypto Operations disabled
No signature 6.52Gbps [2.43 2.46]

TCP - Iperf
Linux TCP (w/ TSO) 9.19Gbps [9.09 9.30]
Linux TCP (w/o TSO) 5.00Gbps [4.88 5.12]
VPP TCP stack 9.24Gbps [9.22 9.26]

Table 4.1: Average goodput of (a) hICN - Asynchronous publication (b) hICN - Synchron-
ous publication (c) hICN - Asynchronous publication w/o crypto operations (d) TCP -
Iperf3.

Table 4.1 shows the goodput of our transport. In both the Synchronous and Asynchronous

publication scenarios, the crypto operations have a considerable impact on the goodput

performance. Obviously, the Asynchronous publication offers better performance than

the Synchronous publication as the signature is computed offline and it has no impact

on the goodput. If we compare the per-packet verification with the manifest approach,

the latter is able to provide a higher throughput. This is because, signing only manifests

reduces the number of signature verification that a consumer has to perform (about 93%
3RSA 1024 and ECDSA 192 are considered to offer the same level of security.

60 Chapter 4. Transport layer and socket API for ICN

reduction). In this case, the throughput is limited by the per-packet hash computation

(about 140000 hash calculation - 1.3s), and the cost for the signature verification (about

4000): using RSA-1024 the latter is around 0.208s, whereas using ECDSA-192 is about

1.6s (cfr. Table 4.2). We want to stress that we are not exploiting any dedicated hardware

acceleration to speedup the crypto operations or the segmentation operations. Following

this approach will significantly improve the performance.

In any case, the crypto operations put a boundary on the goodput of the application:

with our software implementation, in case of verification with manifest, RSA-1024 takes

around 1.508s for verifying 140000 Packets of 1500 bytes, while ECDSA-192 takes 2.9s.

This turns in a maximum goodput of approximately 1.1 Gbps for RSA-1024 and 580 Mbps

for ECDSA-192.

The approach without manifests requires producers and consumers to sign/verify every

data packet: in the case of asynchronous publication, verifying with RSA-1024 allows to

reach an acceptable goodput of 290 Mbps; on the other hand, verifying with packet-wise

ECDSA-192 drops the throughput to 28 Mbps. Synchronous publication with per-packet

signature drops the performance both with RSA-1024 and ECDSA-192 to 28 and 26 Mbps

respectively. These goodputs are still acceptable for real time applications, where the rate

is low and using manifest could increase the latency.

At last, we compare our performance with the one obtained by TCP in the same condition.

We highlight that the hICN transport services should not be directly compared with TCP,

as the latter does not provide neither integrity nor data-origin authentication. Therefore,

to have an idea of the gap between our prototype and TCP, we disable integrity and data-

origin authentication and we report the goodput our hICN transport achieves. In this

case, the kernel implementation of TCP, with hardware accelerations disabled, achieves

a goodput equal to 5Gbps while our transport is able to reach 6.52Gbps. We stress that,

at the time of writing, none of the existing hardware acceleration for TCP (e.g., TSO,

GSO, GRO) is compatible with our hICN transport layer. Therefore, we believe it would

be unfair to exploit hardware acceleration for TCP. Still, we report the performance of

TCP exploiting the hardware acceleration for the sake of completeness.

4.6. Performance Analysis 61

Table 4.2 shows the time required to compute the crypto operations. We report the

measurements considering two different cases:

(i) crypto-operations performed inside loop on a vector of packets

(ii) crypto-operations performed per packet with a frequency of 1s

In the first case, the cost of the crypto operation is lower than in the second case. The

explanation for this behavior is the following: performing crypto-operations on a vector

of packets requires the CPU to spend more time to complete this operations and therefore

it is less likely that the kernel runs a different process on the same CPU. Therefore, L1

and L2 cache locality is improved and the number of cache miss is drastically reduced

improving the performance on computing the crypto operations. On the other hand,

processing one packet per second does not allow to exploit the CPU optimization described

before, and this turns in a performance worsening. We also show how using jumbo frame

helps in reducing the cost of computing crypto operation. The adoption of jumbo frames

reduces the number of packets generated during the segmentation operation, thus lower

the computational cost per byte of the hash calculation (from 0.006us with MTU=1.5kB,

to 0.003us with MTU=9KB).

Vector of packets Single packet
Consumer: Signature verification

RSA-1024 52.2us [51.5 52.9] 140us [132 149]
ECDSA-192 412us [406 417] 757us [697 817]

Producer: Signature computation
RSA-1024 440us [437 443] 775us [733 818]
ECDSA-192 380us [377 383] 701us [661 740]

SHA-256 hash computation on MTU packet
1.5kB 9.44us [9.38 9.50] 28.62us [31.03 32.08]
9kB 31.55us [31.03 32.08] 68.26us [63.63 72.89]

Table 4.2: Cryto operations cost in case of vector of packets and single packet computa-
tion.

Table 4.3 reports the impact of the signature computation and verification on the end to

end latency. Upon the interest reception, the producer creates a new 1500 Bytes Data

Packet, signs it and sends it back to the consumer that verifies the signature. This is

a typical communication pattern of real time application where the rate is low and the

62 Chapter 4. Transport layer and socket API for ICN

application data can fit in one MTU packet (e.g. RTP). In this scenario, using a manifest

is not the best choice, since the packets need to be forwarded as soon as the corresponding

interests are received.

The delay introduced by the real time signature/verification of each packet is significant:

with respect to the RTT measured without any crypto operation (145 us), the delay is

one order of magnitude bigger (1173us for RSA and 1667us for ECDSA).

Type of test Average 99% CI
No signature 145us [136 155]
RSA-1024 1173us [1142 1205]
ECDSA-192 1667us [1621 1712]

Table 4.3: Average end-to-end latency growth in case of signature computation and veri-
fication.

4.7 Related Work

Most of the work on transport layer for ICN has focused on congestion control which

is receiver-driven as opposed to the current sender-based TCP/IP model. Also ICN

transport does not require connection instantiation and accommodates retrieval from

possibly multiple dynamically discovered sources.

It builds upon the flow balance principle guaranteeing corresponding request-data flows

on a hop-by-hop basis [7]. A large body of work has looked into ICN transport (surveyed

in [129]), not only to propose rate and congestion control mechanisms [133, 166] – espe-

cially in the multipath case [43], [96], [142] – but also to highlight the interaction with

in-network caching [42], the coupling with request routing [79, 43], and the new oppor-

tunities provided by in-network hop-by-hop rate/loss/congestion control [41, 159, 47] for

a more reactive low latency response.

Other work on the description of a transport layer and a socket API has appeared in [61]

and [105].

The current work builds upon [105] as it makes use of the consumer/producer API as a

general framework for all transport services built on top of ICN. In addition to that we

4.8. Discussion and Conclusion 63

create a fully fledged transport layer with optimizations and an API that can be easily

inserted in today applications with or without name space optimizations. In addition, we

evaluated the performance of such transport stack and the design trade offs that need to

be considered for different applications.

Moreover, unlike [105], our socket API does not require to the application developer to

implement signature calculation and verification, but offers them as a transport service.

In the area of transport services and related API recent work at the IETF is considering

the problem of providing and novel transport service API to replace the BSD like socket

API. Relevant work is [118] and more generally the effort in the TAPS WG and the NEAT

project [23]. [67] considers Hadoop on top of NDN by means of a Socket API that is very

specific to this application, i.e. the ambition is not to provide a general transport service

to any kind of application like in this thesis.

4.8 Discussion and Conclusion

This chapter has presented the design, implementation and benchmarking of a transport

layer for ICN with a socket API for applications. The implementation is based on a fast

transport stack in userspace with kernel bypass based on VPP and DPDK. The present

contribution applies for hICN and potentially CCN/NDN, and is currently open sourced

in the Linux Foundation project FD.io [6].

We believe that such a transport layer allows to easily insert ICN in today’s applications

such as web services and to develop new ones in a simpler way. The choice to build a

transport stack in userspace allows to integrate new extension rapidly with little effort

with no performance trade-off.

We have evaluated the transport layer in terms of performance and compared the imple-

mentation with the Linux TCP and the VPP TCP stack to have a baseline reference in

terms of performance target for benchmark workloads. Experimental results in Section

4.6 show that the crypto operations have a significant impact on the overall transport

performance, both in terms of application goodput and latency. This overhead can be

64 Chapter 4. Transport layer and socket API for ICN

easily reduced by offloading them to dedicated hardware such as Intel OAT acceleration

available in the core itself or in external chips. Performing them in software is expensive

and impairs the long term scalability of the transport stack.

Even using a recent CPU technology, the delay introduced by crypto operations signific-

antly restricts the maximum achievable throughput, and also the signature/verification

performance becomes really system dependent.

The availability of hardware offloading techniques for the transport layer tends to be

appear when needed. As an example, TSO/LRO is available already in any end device

with Gbps interfaces, including laptops. The large usage of TLS in the Internet is also

going to make several cryptographic accelerations available in silicon through most used

crypto library, both for client end devices, including mobiles, and server ends. In this paper

we have shown that a pure software implementation can still provide decent performance

with several limitations. This reality check allows to claim that many applications, such

as video delivery and real time communications, are feasible with an ICN software stack

that is portable into a large set of end devices. The current design and implementation has

been already used to enable ICN transport in HTTP and WebRTC, as will be presented

in the next two chapters.

While the transport layer presented in this chapter constitutes a fundamental component

for integration of ICN into today’s and future application, we recognize that named data

provides a larger degree of freedom in the way application namespaces are mapped into

network namespaces. Future work is needed to make further progress to define an addi-

tional session layer, where application namespaces are multiplexed into multiple network

namespaces.

Chapter 5

HTTP over hICN

5.1 Introduction

As continuation of the previous chapter, which elaborated on the architecture of a modular

and scalable transport layer, this chapter and the next one will focus on how the trans-

port services can be exploited for the development of ICN applications. Request/Reply

pattern of the ICN transport do not always fit into the applications needs, in particu-

lar in case of existing protocols which are already designed to work with a host-centric

paradigm. These two chapters will show how it is possible to overcome such limitation,

by providing two solutions allowing existing applications protocols to work on top of ICN.

The implementation of the components used in the experiment here is based on hICN,

although the design is general enough to work also with any other ICN implementation,

such as CCN/NDN. This chapter will focus on HTTP over hICN.

Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, col-

laborative, hypermedia information systems. It is a generic, stateless, protocol which can

be used for many tasks beyond its use for hypertext, such as name servers, distributed

object management systems and video distribution (MPEG/DASH).

The support of HTTP is crucial for hICN deployment and diffusion, due to the huge

amount of application working on top it. Although semantic of the HTTP protocol itself

is Request/Reply, single HTTP messages are pushed from client to server, since HTTP

65

66 Chapter 5. HTTP over hICN

assumes the underlying transport to be push based: messages are sent from the sender

to the receiver. For this reason HTTP cannot be directly deployed on top of ICN. The

contributions of this chapter can be mainly summarized in two points:

• We developed a new transport service able to provide push semantics on top of hICN,

which can be exploited by applications, still keeping the well known properties of

ICN/hICN.

• We evaluated at scale HTTP on top of this new transport service, developed within

the framework described in the previous chapter.

In the fist part we describe the architecture of the transport service providing push se-

mantics to hICN, and we see how to map HTTP messages on top of it. Then we will

evaluate the benefits of our design and implementation with respect to a classic web

service deployed on top of TCP/IP.

5.2 Reverse pull transport service

The design of the reverse pull transport service is inspired to [104], which shows how

HTTP semantics can be achieved on top of ICN. In particular the reverse pull transport

service makes use of a routable prefix both for the HTTP client and server. Its purpose is

to allow protocols built on top of a transport providing push-based semantics (e.g. TCP)

to work with the pull-based hICN transport.

The main idea is that a client (e.g. HTTP client) signals to a specific server (or to a set

of servers) the fact that it is publishing data with a certain name. In this way the remote

server can retrieve the content just published by initiating a reverse pull triggered by this

signalization (fig. 5.1).

This requires server and client to be consumer and producer at the same time: more

specifically, it means that the reverse pull transport service must instantiate two sock-

ets: one consumer socket and one producer socket. The steps required for performing

5.2. Reverse pull transport service 67

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential
1

1 Content
publication

2 Notification

4 Reverse pull

3 Notification

5 Reverse pull

Figure 5.1: Example of reverse pull from one client to two servers.

a generic reverse pull operations are described in the following section. Section 5.3 will

then elaborate on how optimize it for HTTP. The transport framework opensourced at

[6] and [149] provides an implementation of the optimized protocol for HTTP, as well as

the generic one.

5.2.1 Initialization

Servers are listening on a certain prefix used for receiving reverse pull notification from the

clients. A client can use this prefix for initiating a connection with the server, eventually

randomizing the hICN suffix for avoiding interest aggregation in the intermediate routers.

The connection initialization consists in two messages: the Initialization Message and

its Acknowledge (fig. 5.2).

The initialization message consists in a signed interest containing in its payload the fol-

lowing parameters:

68 Chapter 5. HTTP over hICN

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

Params: Proposal for F + Security params

Params: F, hICN Prefix

C S

Figure 5.2: Reverse pull: Initialization phase.

• The locator of the key used for signing the interest

• A proposal for a function to be used for generating an identifier of the content the

client will produce.

The server, upon the reception on this message, performs the following operations:

• It checks whether the interest is originated by a trusted client.

• It checks if the function proposed by the client can be used or not, and if not checks

for an alternative function to propose.

If the interest was issued by a trusted client, the server responds with an ack, containing

the hash function and the hICN prefix to use for generating the names of the next Interests.

As an example, the prefix can be b001::/64 and the function may be the concatenation

of the prefix and the cryptographic hash of the data to be pushed to the server. The

analysis of what function is the best to use is not part of this thesis and it is left for future

work.

5.2.2 Naming

Before a client sends a Publish Notification to the server, it needs to choose a name for

the content to produce. This name can be any name provisioned by the network service

described in section 3.2.2.

5.2.3 Publish Notification

After the content publication, the next step of the reverse pull is called Publish Notific-

ation. Its purpose is to signal to one (or potentially many) servers the fact that a new

5.2. Reverse pull transport service 69

content to be sent to them is available. In particular, as shown in fig. 5.3, a given client

sends to a server one Notification Interest, which is a normal interest carrying in its pay-

load the hICN manifest indexing the content the client would like to push to the server.

The control Interest is signed with the same key the client used for publishing the data

to be pulled by the server, and its name is generated by using the function F that Client

and Server agreed on during the initialization, applied over the prefix sent by the server

and the data to be pushed itself. Notice that this function can be re-negotiated at any

time during the Client-Server communication.

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

C: Interest notification(data_manifest)
Name: F(hICN Prefix, ClientData)

.

.

.

C S

S: Ack

ClientData

Figure 5.3: Reverse pull: Notification phase.

Once the server receives the control interest, it replies with a single hICN Data Packet,

which acknowledges the interest reception.

The client continue to push data to the server by publishing them in the local producer

socket cache (cf. section 4.5.4) and then notifying the server about the availability of

new Application Data Unit (ADU), which will be then retrieved by reverse pull. The new

ADU availability notification is performed as before, using a Notification Interest carrying

the manifest indexing the frame just published.

70 Chapter 5. HTTP over hICN

5.2.4 Additional considerations

The paper [104] discourages the use of this approach because of its impact on the con-

sumer mobility and because it may make hICN services vulnerable to reflection attacks.

However, [30] proposes a really effective solution for the producer mobility and at the

same time, reflection attacks can be avoided with the client signature on the Initializa-

tion/Notification Interests.

5.3 Optimized Reverse pull for HTTP

The general concept of reverse pull addressed in the previous chapter can be further

enhanced in presence of request-reply protocols such as HTTP, where often different clients

issue requests for the same web object. This can be done by conveying the semantic of

the HTTP request into the hICN name used by Clients during the Notification phase.

This would allow, when possible, to directly map HTTP Requests to HTTP Responses

through the hICN name itself, and may prevent the server from pulling the request for

the same object all the times from every client, as it currently happens with TCP/IP.

For achieving that, the server enforces a specific function F to the clients, which takes

into consideration only specific parts of the http request. As a simple example we can

consider the hash of the URL (without the query string) to be common across all the

clients requesting the same resource. Unlike, we can consider the User-Agent header as

something which is client specific. By tuning the part of the request the function F must

consider, the Server can force many clients requesting the same resource to use the same

hICN name, by mapping (for instance) the URL to the hICN name itself.

The first time the Server receives a Notification Interest with a given name from a client,

it pulls the request through the reverse pull and uses the same name of the Notification

Interest for publishing the manifest of the corresponding response. This name has been

forced by the server itself through the function F sent during the Initialization phase,

fig. 5.2. As an example, function F may concatenate the server prefix with the hash of

5.3. Optimized Reverse pull for HTTP 71

the URL contained in the HTTP request.

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

C: Interest notification(req_manifest)
Name: F(hICN Prefix, HttpRequest)

C1 S

S: Response Manifest

HttpRequest

Reverse pull

HttpResponse

Figure 5.4: Reverse pull: Notification phase for HTTP.

Subsequently, a second client performs another Initialization to the server, which forces

the same function and the same prefix to it. As soon as the second client tries to get

the same web object, it will use the same function enforced by the server, in combination

with the same prefix and the same URL. The name of the Notification Interest will be

then the same used by the first client.

© 2017 Cisco and/or its affiliates. All rights reserved. Cisco Confidential

C2 S

HttpRequest

.

.

.

C: Interest notification(req_manifest)
Name: F(hICN Prefix, HttpRequest)

HttpResponse

S: Response Manifest

Figure 5.5: Reverse pull: Retrieval of already published response.

When the Notification Interest sent by the second client will reach the server, it will hit

the HTTP Response previously produced for the first client, which has been cached in the

Producer Socket output buffer (section 4.5). The hICN transport will then reply directly

72 Chapter 5. HTTP over hICN

to the interest using the previous response, without any additional computation required

by the HTTP Server for producing a new Response.

This improvement works really well in the case of content distribution, where a single

HTTP server is serving a given population of clients which are requesting the same web

objects. An important example is DASH linear video broadcasting, that will be also used

in section 5.5 for assessing the scalability gain of this approach.

5.4 Multipoint-To-Multipoint communication

The technique presented before can be further extended in order to achieve a multipoint-

to-multipoint communication pattern. In the previous section we showed the fact that a

single server can serve many clients in a multicast manner, by publishing an ADU once

and using it for serving all the next additional requests.

In the same way, a single HTTP client can push one single HTTP request to several

servers, by publishing it once. In fact the client can send a Notification Interest to several

servers, which will reverse pull the client’s request in a multicast fashion. The application

itself will copy the content just once from the application to the producer socket. Instead,

a normal TCP/IP server would require to copy the same HTTP request to each socket

connected to a different server.

This technique can be exploited in several applications, such as multi-write distributed

databases, in which a number of entities write simultaneously to many replica. More in

general, the reverse pull mechanism plays a fundamental role in each application patterns

that do not directly fit with the request-reply ICN communication and require a push

mechanism, e.g., REST-based and pub-sub applications.

5.5. Evaluation of HTTP over hICN: Multicast and Server Load 73

5.5 Evaluation of HTTP over hICN: Multicast and Server

Load

This section will evaluate the design of HTTP over hICN in the case of Linear Video

Distribution, which is a challenging test case as it requires provable QoE in terms of

video quality and application responsiveness, and is also supposed to scale to a very large

number of watchers.

Nowadays, one of the main limitations of the linear video distribution system are the

server endpoints: the fact that a server needs to maintain a stateful TCP session per user

does not scale when the number of users increases exponentially (think about popular

sport events followed by millions of user). To cope with this, content providers use to

load balance the clients requests among several instances of the same server for dealing

with the problem of keeping a large number of TCP sessions open.

As described in the previous section, the hICN sockets in combination with the reverse

pull transport service allows to serve/retrieve data to/from multiple destinations/sources.

This allows to significantly reduce the server load, which can produce data once, instead of

sending it to each client in unicast. Client’s requests can be directly served by the hICN

transport at the server once the data is made available after production. This section

shows two key benefits of hICN for linear video distribution at scale:

• using hICN, the server load scales with the number of channels, rather than

with the number of connected users as in TCP/IP;

• hICN deployment at the endponts and at the network edge yields to traffic offload

not only at the server, but also in IP network core.

We consider the topology in Figure 5.6, where a cluster of video clients is connected to a

video server distributing live video through MPEG/DASH. We use Linux Containers [18]

with Ubuntu 16.04 for running client and server applications. The client application is

the VIPER video player used for the experiment in section 3.4, which is available in the

74 Chapter 5. HTTP over hICN

IP Core

Servers

Edge

Clients

Figure 5.6: Video distribution network

Fast Data project [149]. Every client is connected through a 50Mb/s link to the edge

routers, while the other links in the topology are 10Gb/s links. The video server is an

Apache Traffic Server (ATS) [13], configured as an HTTP reverse proxy with a 2GB cache

(1GB of RAM cache and 1GB of raw device cache). The content source consists in a live

video feed sent by the Open Broadcaster Software (OBS) [21] sending a RTMP stream

to a nginx [14] server providing HLS streams through the nginx-rtmp [20] module. ATS

proxifies requests of the clients towards the nginx server, and stores in the HTTP cache

the corresponding responses.

We implemented a plug-in that uses hICN sockets to interface ATS with the hICN VPP

forwarder (cfr. section 4.5.1). Every hICN VPP forwarder in the topology has 750MB

packet cache size. We run 2 hours experiments with TCP/IP and with hICN under

different client population (specifically 100, 200 or 300 clients). Each client requests one

of 48 available channels (encoded in a single video quality) and switches to a different

channel every 10 minutes. Channel selection follows a Zipf distribution with α = 1.4. The
experiment has been deployed using vICN, described in chapter 7.

5.5. Evaluation of HTTP over hICN: Multicast and Server Load 75

In the experiments, we considered three different scenarios:

(i) called TCP, in which every router and endpoint uses TCP/IP;

(ii) called hICN endpoints, in which hICN is deployed only at the server and clients;

(iii) called hICN endpoints + edge, in which hICN is deployed both at the endpoints and

in the edge routers;

Table 5.1 compares the load at ATS in scenarii (i)-(ii) under the three client populations.

metric N=100 [C=22] N=200 [C=30] N=300 [C=35]
IP/TCP hICN IP/TCP hICN IP/TCP hICN

r 743.4 215.7 1447.5 312.8 1963.0 358.7
hit 294.8 0 614.4 0 768.6 0
miss 448.5 215.7 832.2 312.8 1192.1 358.7
mem 1313.7 47.8 1484.6 47.1 1522.6 58.2
cpu 9.6 6.1 16.7 6.1 21.4 6.4

r: #requests (.103), hit: cache hits (.103), miss: cache misses
(.103), mem: total memory (MB) and cpu: avg cpu usage (%)

Table 5.1: ATS performance metrics with N clients. C is the average number of channels
being watched.

Results show that using TCP/IP, the total number of requests handled by ATS grows

linearly with the amount of clients, while using hICN it grows linearly with the number

of channels being watched. The reason for such different behavior lies in the content

awareness brought by ICN at network layer and in the content-based rather than host-

based communication model: requests for the same channel are directly satisfied by the

hICN forwarder or the transport layer, reducing the load on the application. This is also

confirmed by the absence of hits in the ATS cache using hICN, since duplicated requests

do not reach the application. Considering that in a real deployment the difference between

the number of actively watched channels and the number of total watchers can differ of

many orders of magnitude, hICN scalability benefit may be significant. Moreover, hICN

considerably reduces memory and CPU consumption in the system. Quantitative results

are reported in Table 5.1.

Figure 5.7 compares the memory consumed by TCP and by hICN sockets for handling a

single video channel with different number of watchers. The considered scenarios are (i)-

76 Chapter 5. HTTP over hICN

 0

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300

M
e

m
o

ry
 U

s
a

g
e

 [
M

B
]

Watchers per Channel

TCP (measured)
TCP (fitting)

hICN

Figure 5.7: hICN and TCP memory used by a single channel increasing the number of
watchers.

(ii), as for Table 5.1. Each dot reports the memory consumed by the kernel to handle TCP

sockets opened by each client. We measure the memory used by the sockets exploiting

Linux proc filesystem (/proc/net/sockstats). The red dashed line shows the expected

memory consumption of TCP when increasing the number of watchers. Such line is

obtained fitting the TCP memory consumption we measured in our tests. The blue

dashed line reports the memory cost of hICN socket to handle one video channel. This

value corresponds to the amount of memory reserved in the hICN producer socket output

buffer (section 4.5.4), for each channel. As expected, results show that the memory

required by TCP increases with the number of clients, while the memory required by

the hICN socket remains constant. In fact, hICN socket does not maintain per-consumer

connections, while TCP requires one socket for each connected client, so increasing the

memory requirement.

Figure 5.8 shows the additional improvement in terms of IP core traffic offload provided

by hICN enablement at edge routers. The test considers 300 clients. The figure reports

5.6. Related Work 77

 0

 20

 40

 60

 80

 100

TCP hICN
end-points

hICN end-points
+ edge

T
ra

ff
ic

 S
e

rv
e

d
 [

%
]

ATS
IP core

Figure 5.8: Percentage of the traffic served by each component in the network.

the percentage of total traffic received by clients that is served by ATS (in red) or by

IP core network (in blue), respectively. The plot confirms what observed in Table 5.1:

the request aggregation feature of hICN allows to reduce the amount of traffic served by

ATS in scenario (ii) (hICN end-points case) w.r.t. the traffic served by ATS in scenario (i)

(TCP/IP case). Deploying hICN also at the edge routers (scenario (iii) - hICN end-points

+ edge) reduces network traffic in the IP core network. It is worth noticing that IP core

traffic is higher than the traffic received at ATS because of the considered network topo-

logy. The three hICN routers aggregate client requests and receive traffic independently

from the server, possibly introducing multiple copies of the same interest/data packets.

5.6 Related Work

In the past, there has been some efforts for deploying HTTP on top of ICN.

[158] proposes a first attempt on adapting the HTTP semantics on top of ICN semantics.

The solution described here requires the deployment of HTTP-ICN proxies to translate

78 Chapter 5. HTTP over hICN

HTTP messages to ICN interest-data and it is not compatible with hICN since it maps

almost directly the HTTP URL to an URL-based ICN name. The work at [98] addresses

the problem in a similar way, through IP-NDN proxies. We believe that a solution based

on proxies is the best choice as intermediate step, but it does not represent a final solution,

in particular in case of encrypted traffic. In case of HTTPS, with end-to-end encryption,

the proxy has no way to decrypt the content.

[104] examines multiple diverse approaches to run modern Web-like applications over ICN,

discussing advantages and drawbacks of each of the proposed approaches. As already

discussed at the beginning, this work served as starting point for developing the solution

presented in this chapter. However, this paper does not present an experimental evaluation

of the proposed solutions.

Chapter 6

RTC over hICN

6.1 Introduction

The solution presented in the previous section works well in case of live linear video distri-

bution, which is not limited by stringent low-latency requirements. In case of real time ap-

plications, with extremely low latency budget, the reverse pull exploited for MPEG/DASH

video distribution is not a valid solution anymore. For addressing such requirements, we

need a new transport protocol tailored for real time applications, as well as a new archi-

tecture design able to exploit ICN for scaling. More specifically, for evaluating RTC over

ICN we will use hICN.

Traditionally used in collaboration systems, WebRTC is increasingly adopted by media

companies for real-time services such as live eventing, gaming, betting or auctioning.

One of the reasons for its recent success is the capability to support low-latency targets

better than HTTP live streaming technologies such as HLS or MPEG/DASH, which are

bounded by the chunk granularity at which they operate and thus struggling with low-

latency objectives. However, unlike modern CDNs, WebRTC distribution model is not

designed for large scale. To improve scalability, the architecture of traditional multiparty

conferencing tools has moved from P2P, to centralized Multi-point Control Unit (MCU)-

based architecture and, more recently, toward a lighter and possibly decentralized Selective

Forwarding Unit (SFU)-based architecture. Using an SFU, most of the complexity of the

79

80 Chapter 6. RTC over hICN

central node is offloaded to the conference participants or distributed to multiple control

nodes. To avoid costly encoding/decoding operations at the SFU, the use of Simulcast [73]

is becoming increasingly popular.

This chapter explores the potential benefits resulting from the use of WebRTC over hICN

for real time content distribution, in terms of scalability and efficiency benefits. ICN

appears suitable to support RTC application, as partially confirmed by initial work within

the ICN community [50, 84, 170].

The contributions can be enumerated in two points:

(i) We design and implement hICN-RTC, an integrated WebRTC over hICN system.

(ii) We propose the hICN-RTC synchronization protocol as a new transport service,

allowing the use of the hICN pull-based transport without introducing additional

latency to the content distribution.

Preliminary results shows that hICN-RTC scales with the number of active speakers

rather than the total number of users in the conference, allowing calls with 10 times more

participants with respect to WebRTC, using 118 times less resources.

The rest of this chapter is structured as follow: Section 6.2 describes hICN-RTC and the

benefits of the proposed architecture. Section 6.3 presents the hICN-RTC synchronization

protocol. In Section 6.4 we show the results of our experiments. Finally, Section 6.5

describes the related work and we conclude in Section 6.6.

6.2 hICN-RTC Architecture

hICN-RTC builds upon the standard WebRTC SFU-based architecture and adapts it to

hICN by integrating hICN both at clients and at SFU. In hICN-RTC, clients and SFU,

referred to as Hybrid Forwarding Unit or HFU, are composed by:

(i) the WebRTC application logic (e.g., encoding/decoding audio and video flows at the

clients and forwarding streams without any transcoding operation at the HFU)

(ii) the hICN transport layer to carry flows between clients and SFU in hICN packets

6.2. hICN-RTC Architecture 81

(iii) the hICN forwarder operating on hICN packets.

6.2.1 hICN-RTC Communication Model

In a SFU/HFU-based architecture, each client can communicate only with the central

node and not directly with the other participants. In this scenario, we define the terms

contribution and distribution. Contribution is the connection between the clients and the

HFU, where the HFU collects the streams from the participants, while distribution is

the connection from the HFU to the clients, where the HFU distributes all the streams

of the call to the participants. In hICN-RTC we use two different naming schemes for

the contribution and the distribution. In this way we reflect this separation also at the

network level, where the requests coming from the participants will be routed to the HFU,

while the requests from the HFU will reach the right participant.

On the contribution, the HFU asks the streams from the users using a participant specific

prefix, e.g. /participant-1/video or /participant-1/audio. We refer to these participant

specific prefixes as contribution prefixes. Instead, each participant uses the distribution

prefixes to retrieve the content from the HFU. The distribution prefixes are in the form

/call-m/active-speaker-1/video, . . . , /call-m/active-speaker-n/video, and they indicate the

streams coming from the N most active speakers in the call. We identify the “speech

activity” of a participant using the audio level information in the RTP packet [80] and

we rank them using the last-N algorithm [72]. The prefixes are exchanged when a new

participant joins the call: the new comer sends the contribution prefixes to the HFU while

the HFU sends the distribution prefixes.

A prefix in hICN-RTC identifies a flow (video or audio) composed by a sequence of RTP

packets generated by the application. A single RTP packet is carried as a payload of a

hICN Data packet and it is identified by a full name, such as /participant-1/video/seg=50.

Figures 6.1 and 6.2 show how the nodes in hICN-RTC exchange the flows using the

described naming scheme. Because audio and video works in a similar way, we describe

only the video streams. Figure 6.1 shows the contribution in a call with three participants

82 Chapter 6. RTC over hICN

Figure 6.1: Contribution content exchange

and one active speaker (Participant 2). The active speaker is the only one that will be

displayed in this example call. The HFU needs to retrieve the video from Participant 2

in order to distribute it to all the other users. To request the video the HFU uses the

contribution prefix that identify the Participant 2. In the figure we see that the HFU

requires the content sending Interests with name /participant-2/video/seg=x.

When the HFU receives the packets from Participant 2, it renames the packets using

a distribution prefixes, e.g /call-m/active-speaker/video/seg=y, as shown in Figure 6.1.

The HFU publishes the packet with the new name on the distribution link. The re-

named packets are downloaded by all the participants using the distribution prefixes (see

Figure 6.2).

The renaming of the Data packets at the HFU is a core component of hICN-RTC. Un-

fortunately this action invalidates the signature in the Data packet, breaking the Data

integrity properties guaranteed by hICN. A simple solution would imply the HFU to re-

sign each Data, but this would be too costly. To solve this problem, we introduced the

concept of mapping manifest. A mapping manifest is a Data packet that describes the

changes done by the HFU on the packets, in particular it maps the new name to the old

one. When a participant receives a packet that it is not able to verify, it asks the map-

ping manifest to the HFU: using the mapping manifest the consumer is able to replace

the name in the packet with the original one and it can verify the signature.

6.2. hICN-RTC Architecture 83

Figure 6.2: Distribution content exchange

6.2.2 hICN-RTC Advantages

In hICN-RTC the HFU pulls only the streams from the active speakers, which are those

to be distribute in the call. This is visible in Figure 6.1 where the HFU pulls the video

only from Participant 2. In contrast, a standard SFU usually retrieves the streams from

all participants and drops those belonging to the non-active speakers. By pulling only

useful streams, hICN-RTC reduces the bandwidth used in the contribution.

On the distribution, all the participants use the same distribution prefixes to download

the content from the HFU. When the list of active nodes changes the HFU does not

need to inform the participants, that will keep using the same names to get the content

of the call. Using this approach the participant does not need to re-synchronize with

the HFU and can always display a video without interruptions. We discuss about the

synchronization problem between consumer and producer in the next Section. In addition,

the requests from the participants can be aggregated and satisfied directly by the hICN

forwarder in the HFU, as shown in Figure 6.2 where only one of the three requests reach

the application: thanks to request aggregation, adding participants to the call the load

on the application remains constant. Requests aggregation is the real advantage given by

hICN that allows hICN-RTC to scale with the number of active-speakers instead that the

number of participants.

84 Chapter 6. RTC over hICN

6.3 Synchronization Protocol

hICN adopts a pull-based transport model which may potentially lead to additional

latency suffered by consumers due to the fact that a full round-trip time (RTT) elapses

between the emission of an Interest and the reception of the corresponding Data packet.

To overcome such issue, the consumer keeps a window of pending Interest (Interests sent

and not already satisfied) for Data yet to be generated by the producer. Using this

strategy, as soon as a new Data is available it can be delivered to the consumer with no

additional delay. In addition, a consumer needs to know which Data to request, namely

the segment number of the newly Data packet generated by the producer. In this section

we describe the hICN-RTC Synchronization Protocol that decides which Data packet to

ask and how many pending Interests are needed for a client in order to get always fresh

Data in a timely fashion.

Real Time Producer Socket: The producer side of the protocol has two main functions:

(i) to encapsulate RTP packets received by the application inside hICN Data packets and

to send them to the forwarder; (ii) to provide the consumer with the information needed

to generate Interests for upcoming Data. Algorithm 6.3 details the actions executed by

the producer.

Function OnInterest(interest)
segment = getSegment(interest);
lifetime = getLifetime(interest);
maxSeg = currentSeg + lifetime * prodRate ;
if segment < currentSeg or segment > maxSeg then

sendNack(currentSeg, prodRate);
end if
// else: do nothing, drop packet

end
Function OnRTPData(rtpPacket)

data = createData(rtpPacket, prefix, currentSeg);
sendData(data);
currentSeg ++;

end

Figure 6.3: Producer Side

Upon reception of an Interest packet, the producer executes the OnInterest function.

The producer extracts the segment from the Interest name, as well as the Interest lifetime

6.3. Synchronization Protocol 85

and computes the maxSeg, which is the largest segment number that will be produced

before the expiration of the received Interest. If the Interest segment number is smaller

than currentSeg (namely the segment number to use in the name of the next Data packet)

or larger than maxSeg, then the Interest refers respectively to a Data packet produced in

the past or to be produced too far ahead in the future. If so, the producer replies with a

negative acknowledgment (nack). A nack is a Data packet that contains the currentSeg

and the current production rate of the producer (prodRate).

When the application generates a new RTP packet, the producer runs the OnRTPData function:

the producer generates an hICN Data packet with the received RTP packet as payload,

using as a name the prefix specified by the application and, as a segment number, cur-

rentSeg. This packet is passed to the hICN forwarder to satisfy corresponding pending

Interests.

Real Time Consumer Socket: The consumer side of the hICN-RTC Synchronization

Protocol has two objectives: (i) to learn the current segment number used by the producer,

and (ii) to adjust the window of pending Interests in order to avoid additional latency in

media retrieval.

A consumer can be in two states: CATCH_UP or IN_SYNC. In the CATCH_UP state,

the consumer tries to quickly estimate the number of pending Interests to send to the

producer to match its production rate. Once consumer/producer are synchronized, the

consumer switches to the IN_SYNC state, where tries to adapts the Interest sending

rate according to the network variation, remaining in sync with the producer. At the

beginning the consumer is in CATCH_UP state and starts requesting segment number 0;

currentWin, that indicates maximum number of pending Interest allowed, and pendingInt,

namely the actual number of pending Interests, are set to 1. The consumer is described

in Algorithm 6.4.

OnNack function is executed upon reception of a nack. First of all, the consumer decre-

ments pendingInt to free one space in the window that can be used to send another

Interest. Then it extracts from the nack name its segment number, and the inProduc-

tion segment, that is stored in the nack payload. The reception of a nack indicates that

86 Chapter 6. RTC over hICN

Function OnNack(nack)
pendingInt –;
segment = getSegment(nack);
inProduction = getSegmentInProduction(nack);
estimatedProdRate = getProductionRate(nack);
nextSegment = inProduction ;
if inProduction > segment then

state = CATCH_UP; currentWin ++;
else

currentWin *2/3;
end if
scheduleInterest();

end
Function OnData(data)

pendingInt –;
sendContentToApp(getRTP(data));
if state == CATCH_UP then

currentWin ++;
end if
scheduleInterest();

end
Function scheduleInterest()

while pendingInt < currentWin do
sendInterest(prefix, nextSegment);
pendingInt ++; nextSegment ++;

end while
end
Function OnNewRound()

if no Nacks in the last 3 rounds then
state = IN_SYNC ;

end if
if state == IN_SYNC then

currentWin = estimatedProdRate * estimatedMinRtt ;
end if

end

Figure 6.4: Consumer Side

6.3. Synchronization Protocol 87

the consumer is out of sync with the producer. To quickly re-synchronize, the consumer

sets nextSegment (the segment number used for the next Interest) equal to inProduction.

If inProduction is larger than segment, the consumer is asking for old Data. If so, the

consumer switches to the CATCH_UP phase and increases the window. In this phase the

consumer increases currentWin exponentially (+1 at each packet reception), in order to

quickly catch-up with the producer. Otherwise, the consumer is asking for Data that will

be generated too far in the future. This means that the pending Interest window is too

large and the consumer decreases it (by a factor of 2/3).

When a Data packet is received, the consumer socket executes the OnData function. As

in the case of nack reception, the consumer reduces the value of pendingInt. Then, the

consumer removes the hICN header from the Data packet, and sends the RTP packet to the

application. If in CATCH_UP state, the consumer also increases the window size. An RTP

packet is sent to the application even when the consumer is in CATCH_UP state. In fact,

valid Data packets can be received and displayed even during this phase. For every packet

received (Data or nack) the consumer also executes the scheduleInterest function that

sends all the possible Interests allowed by the current window size.

The OnNewRound function is called periodically by the consumer, once at every round

(200ms in our implementation). This function determines the state switch: if the con-

sumer did not receive nacks in the last 3 rounds, it is considered to be synchronized with

the producer. When the consumer is IN_SYNC, it also adjust currentWin, setting it equal

to the estimated production rate of the producer (estimatedProdRate) times the estim-

ated minimum RTT (estimatedMinRtt). This allows the consumer to adjust the window

according to the network changes.

6.3.1 Protocol Discussion

The algorithm proposed in this section lacks of a congestion control mechanism: the

consumer is forced to download at the same rate at which the producer is sending packets.

This is not always possible and depends on the network conditions. To tackle this problem

88 Chapter 6. RTC over hICN

we are currently studying a congestion control that combines Simulcast [73] and receiver-

based adaptive bitrate selection [137]. Using these mechanisms the consumer will be

able to switch between different bitrates and select the best one for the current network

conditions.

In hICN the consumer is also responsible for recover packet losses. The hICN transport

can perform fast-recovery without the need to rely on the RTCP Generic NACK [114]

generated by the decoder. In additions hICN allows for specific in-network loss recovery

mechanisms [47] that may reduce the need for more complex protocols such as FEC.

The synchronization protocol uses nack packets. This expose the producer to vulnerabil-

ities, since each nack is a Data packet and must be signed: an attacker can send Interests

that always generate nacks, forcing the producer to spend most of the time signing them.

This problem was studied in [51] and we adopt a similar solution to mitigate this attack.

6.4 hICN-RTC Evaluation

To implement hICN-RTC we modified the code provided by the open source project

Jitsi [3] and we implemented hICN-RTC clients as web applications, customizing WebRTC

library inside Chromium [69]. The main modification inside WebRTC library is the in-

troduction of the hICN sockets (cfr. section 4.5) in replacement of standard ones. hICN

sockets, as well as the synchronization protocol are developed starting from open source

code published in FD.io hICN project [6]. The HFU runs a slightly modified version of

the Jitsi video-bridge: most of the application logic is reused, notably the speaker ranking

mechanism [72] that has a central role in our architecture. In addition, we implemented

the Data packet renaming described in Section 6.2 and we used the hICN sockets. As

underling hICN forwarder, the HFU uses VPP [152]. In all the tests, the participants

produce a single video stream (Simulcast is disabled) with an average bit rate of 500Kbps

at 25 frames per seconds.

6.4. hICN-RTC Evaluation 89

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

18 20 22 24 26

P
ro

ba
bi

lit
y

Delivery time [ms]

40ms RTT

0.1

0.2

0.3

0.4

60 65 70 75 80 85

Delivery time [ms]

120ms RTT

Figure 6.5: Packet delivery delay

Synchronization Protocol Benchmark

In this section we evaluate the hICN-RTC synchronization protocol proposed in Sec-

tion 6.3. In our test we use a simple topology where four users are connected to the

conference and we measure the time that elapses between the creation of a Data packet

at producer and its reception at consumer side. We vary the propagation delay of each

link in the topology using the netem qdisc [60]. The total RTT between two clients,

passing through the HFU, is set to 40ms and 120ms. We collect data from a conference

of 2 minutes. Figure 6.5 depicts the results. As expected, the majority of the packets

are received within 1/2RTT. In the case of 120ms RTT some packets are received with

a small addition delay. These are the packets taken from the HFU cache. A participant

may retrieve content from the cache if it goes temporarily out of sync with the producer:

the cache helps to mask this border effect and, even in this case, the application at the

client is able to display the video with no interruption.

We also measure how much time it takes for a new participant to start receiving valid

video packets from the conference: we measure the time elapsed between the sending of

90 Chapter 6. RTC over hICN

Figure 6.6: Topology

the first Interest and the reception of the first valid RTP packet. We notice that even

increasing the total RTT to 200ms, the first packet is received in about 2RTTs, showing

that the synchronization protocol is robust to the network delay and that it is able to

quickly synchronize producer and consumer.

6.4.1 Scalability

We consider the topology in Figure 6.6. The upper cloud is composed by users (up to

250) that are connected directly to the HFU (no addition hICN router in the middle).

The lower cloud (750 users) instead is connected to the HFU through additional hICN

nodes. In all experiments, we progressively add participants to the conference, setting the

number of active speakers equal to 3.

The workload for WebRTC experiments is generated using Selenium Grid [11]. We run

multiple LXC [18] containers, each one containing an instance of Chrome and a Silenium

node. Selenium nodes are controlled by a centralized orchestrator that runs Jitsi Tor-

ture [4]. The generation of the workload in this setting is quite heavy and we were not

able to scale it to more then 100 users due to the amount of resources required. We used 5

6.4. hICN-RTC Evaluation 91

servers with 36 Xeon E5-2695 v4 CPUs each, for a total of 360 cores using hyper-threading

(about 3 cores for each Chrome instance) and a 6th server dedicated to the Jisti video-

bridge. For the hICN-RTC workload we used a simple test application running over hICN,

one for each participant. This application does not perform encode/decode operations,

allowing us to run up to 1000 clients with 2 servers.

We generates two different workloads for WebRTC. In the first one, indicated as WebRTC

in the plots, each participant sends its video to the SFU, the SFU discards the streams

that are not needed and forwards the other. This is the standard way an SFU-based

WebRTC architecture works today. In the second one, denoted as ideal-WebRTC, only

the active speakers send their video to the SFU that replicates and forwards them and

to all the other participants. To obtain this behavior in the ideal-WebRTC only 3 clients

have the camera on. We use this second workload to show that the benefits of hICN-RTC

are coming from the hICN requests aggregation, and not by the fact that we pull only

the streams from the active participants.

The results of the experiments are shown in Figure 6.7, 6.8 and 6.9. Notice that all the

plots have the y-axis in log scale. All the plots show statistics both at the application and

at the network level. The values for the application are reported with solid bars, while

the values related to the network are indicated with different patterns. Finally, the gray

area on the right side of the plots highlights the results for the 750 participants connected

to the HFU through an hICN network.

Figures 6.7 and 6.8 show the traffic generated in the conference. For hICN-RTC we

distinguish between network and application traffic. The network traffic is the traffic

received and sent by the hICN forwarder on the HFU. This is measured on the link

represented with a blue dashed line in Figure 6.6. The application traffic is the portion of

network traffic effectively received and sent by the application at the HFU, measured in

the link highlighted with a dotted red line in Figure 6.6. This portion of traffic is indicated

with a solid bar. For WebRTC this distinction is meaningless, since the application needs

to process all the received traffic.

Distribution traffic, meaning the traffic from the clients to the HFU, is reported in Fig-

92 Chapter 6. RTC over hICN

 1

 10

 100

20 40 60 80 100

150
200
250
400
700
1000

U
pl

in
k

T
ra

ffi
c

[M
bp

s]

Participants

WebRTC
ideal-WebRTC

hICN-RTC

Figure 6.7: Contribution traffic.

ure 6.7. The figure shows that traffic generated by WebRTC is much higher than traffic

in the other two cases, due to the fact that each participant sends its contribution to

the SFU. For ideal-WebRTC and hICN-RTC the amount of data sent increases with the

number of participants. This is due to control traffic (RTCP) in case of ideal-WebRTC

and to the increasing number of Interests in case of hICN-RTC. It is worth noting that

traffic generated by ideal-WebRTC is smaller than hICN-RTC in a conference call with

few participants, whereas it becomes higher when we add more participants. This means

that the overhead introduced by RTCP is higher than the overhead due to the Interests

when the call is big enough. For hICN-RTC traffic reaching the application is always

constant, regardless of the number of participants. The plot also shows that adding hICN

capabilities to the network helps improving scalability even further: increasing the num-

ber of participants, not only application traffic, but also incoming network traffic remains

constant, in virtue of requests aggregation performed by the intermediate hICN nodes.

Figure 6.8 shows the distribution traffic. From the figure we can see that, even if the three

settings should generate more or less the same traffic, both WebRTC and ideal-WebRTC

generate more traffic due to RTCP messages, which are not present in hICN-RTC. Notice

also that the traffic sent by the application in hICN-RTC is always constant.

Figure 6.9 reports the CPU used in the central node by the three workloads. To estimate

6.4. hICN-RTC Evaluation 93

 1

 10

 100

 1000

20 40 60 80 100

150
200
250
400
700
1000

D
ow

nl
in

k
T

ra
ffi

c
[M

bp
s]

Participants

WebRTC
ideal-WebRTC

hICN-RTC

Figure 6.8: Distribution traffic.

 0.1

 1

 10

 100

 1000

 10000

20 40 60 80 100

150
200
250
400
700
1000

C
P

U
 U

sa
ge

 [%
]

Participants

WebRTC
ideal-WebRTC

hICN-RTC

Figure 6.9: CPU usage.

the CPU required by the networking operations in case of (ideal-)WebRTC we estimated

the CPU used by the Linux Kernel by monitoring the SYS percentage in the TOP com-

mand. The results in the plots are the average values measured during the 2 minutes

experiments, from where we discounted the value measured at rest (no traffic). In case

of hICN-RTC instead we estimated the CPU used by VPP. VPP always uses one full

CPU core in order to prevent context switching. Values reported in the plot are taken

measuring the number of CPU cycles required to process one packet: VPP requires on

94 Chapter 6. RTC over hICN

average about 1300 CPU cycles to process a packet (Interest or Data) . We multiply this

value by the number of packets processed per seconds to get the total cost. The percent-

age reported in the chart is the percentage of cycles used by VPP to process the traffic

with respect to the number of CPU cycles available in a second. hICN-RTC outperforms

the other architecture: it uses in total 12% of a CPU for 100 participants, 43 times less

than ideal-WebRTC and 118 times less than standard WebRTC. This is due to the fact

that the application in case of hICN-RTC always receives the streams only from the act-

ive speakers and send only one copy of them to the network, minimizing the number of

send/receive packets. The network forwarder, VPP in our implementation, is in charge

to replicate packets for all participants. In ideal-WebRTC instead the application needs

to replicate streams, increasing the number of system calls having an impact both on the

application load and on the kernel. In the standard WebRTC this problem is exacerbate

by the fact that the application receives the streams from all the participants. Notice

in addition that the CPU load remains almost constant in hICN-RTC. This shows that

hICN-RTC is insensitive to the number of participants, whereas it scales with the number

of active-speakers.

6.5 Related work

There have been some efforts in the ICN community to address real-time communication

over ICN. VoCCN [81] and ACT [173] show the feasibility of real-time communications

using ICN considering respectively two-party and multi-party audio conferencing. While

they are both limited to audio conferencing, NDN-RTC [74] addresses directly WebRTC

by making the underlying networking stack NDN-based. NDN-RTC also provides a first

method to minimize latency using a pull-based communication framework. RDR [99]

improves this mechanism introducing metadata packets, that inform the consumer about

the current production state, in a similar way to the nacks in hICN-RTC. All the archi-

tectures described so far are based on the basic P2P model of WebRTC and so suffer for

the same limitations.

6.6. Conclusion 95

Other work replaced the WebRTC-based approach with a fully ICN architecture trying

to leverage monitoring at client-level [50, 84] and at network-level [170] to decide upon

rate adaptation. In [50], authors design a Serverless Scalable Audio-Video Conferencing,

leveraging a push primitive rather than the pull-only transport model of CCN/NDN to

minimize latency without sacrificing multicast, flow balance, caching and multipath rout-

ing features. However, the proposed approach still remains host-only driven. In [84], the

proposed architecture, SRMCA (Scalable Real-time Multiparty Communication Archi-

tecture) attempts to reduce the end-user complexity by offloading some of the conference

framework functionality to the network. Critical operations like namespace synchroniza-

tion are provided by the network as a service, resulting in a more deterministic response

to join/leave events and network disruptions.

6.6 Conclusion

We investigate scalability benefits of hICN-RTC, an integration of ICN in standard

WebRTC. hICN-RTC builds upon a media-switching control architecture that exploits

the underlying ICN stack for an effective media distribution at scale. A first evaluation of

hICN-RTC confirms hICN suitability for support of real-time communications and shows

significant improvements on scalability: hICN-RTC is insensitive to the number of users

connected to the conference and scales with number of data sources. Requests aggregation

and caching provided by additional hICN-enabled nodes in the network brings scalability

even further. We leave for future work the design of a tailored receiver-based congestion

control protocol, where users download media streams selecting among different bitrates

according to the network condition. This will maintain the current scalability of hICN-

RTC, while improving the QoE of the end users.

Chapter 7

Virtualized ICN

7.1 Introduction

The last part of this thesis aims to complement the work done in terms of deployability

of ICN, by proposing a solution for programmatically deploying, configuring and man-

aging ICN networks. In fact, the proliferation of ICN depends also on the capabilities of

automating its deployment, from the network to the application layer.

Automating the ICN deployability has also the advantage of fostering testing and experi-

mentation at scale and in real-world environment, helping ICN to evolve from a promising

network architecture to a feasible deployment-ready solution. The ICN community has

largely stated the importance of a pragmatic experimental and application-driven research

approach since its inception (see e.g. [169], [130]).

Multiple tools and testbeds have been developed for simulation and emulation (CCNx,

NDN software and testbed, CCNlite, MiniCCNx [40], MiniNDN). Most of them have

been designed to assist research, specifically on design and evaluation of aspects of ICN

architecture (e.g., caching, forwarding or routing). They operate in dedicated fully-ICN

network environments, trading-off abstraction of network characteristics for scale and

offering limited flexibility to modify core ICN features, network topology and settings, or

application APIs.

96

7.1. Introduction 97

In this chapter, we aim to complement existing tools with vICN (virtualized ICN), a

flexible unified framework for ICN network configuration, management and control that

is able to satisfy a number of important deployment and experimentation use cases:

(i) automate the deployment, configuration and management of large ICN networks;

(ii) conduct large-scale and fine-controlled experiments over generic testbeds;

(iii) instantiate reliable ICN network with real applications in proofs of concept.

Clearly, requirements are different: research experimentation needs fine-grained control

and monitoring of the network as well as reproducibility of the experiments. Prototypes for

demonstration require a high level of programmability and flexibility to combine emulated

and real network components or traffic sources. More than in previous cases, reliability

and resource isolation is a critical property for deployments in ISP networks.

The operations required for the deployment of an ICN network include to install, configure,

monitor a new network stack in forwarding nodes or the socket API used by applications at

the end-points. If loading a network stack from an application store into general purpose

hardware is easy to realize, a network stack has different requirements compared to a

cloud based micro-service: ultra-reliability, high-speed and predictability, to cite a few.

vICN shares the same high-level goals as SDN/NFV architectures, but with additional

ICN-specific capabilities not typically required by IP services. Overall, we identify three

main challenges that vICN addresses and that differentiate it w.r.t. state of the art:

(i) Programmability, i.e., the need to expose a simple and unified API, intuitive enough

to facilitate bootstrap, expressive enough to accommodate both resource configuration

and monitoring and flexible enough to allow the user to decide about level of control

granularity. Existing software like OpenStack, which is built as a collection of independent

components, each one following different design patterns, does not offer a satisfactory level

of programmability.

(ii) Scalability : vICN aims at combining high-speed packet processing, network slicing and

virtualization, and highly parallel and latency minimal task scheduling. Current systems

are based on a layered architecture that prevent fine-grained optimization, thus limiting

scalability on the long term.

98 Chapter 7. Virtualized ICN

(iii) Reliability : a fundamental property of vICN lies in its ability to maintain the state of

deployment, recover from failures and perform automatic troubleshooting. This requires

the overall software to be able to accommodate programmable function monitoring and

debugging. In existing designs, each component has independent implementations to

achieve that.

The remainder of the chapter is organized as it follows. Section 7.2 summarizes the state

of the art, before introducing vICN architecture in section 7.3 and its implementation

in section 7.4. Section 7.5 provide concrete examples of vICN in action. Section 7.6

concludes the chapter.

7.2 Related work

Salsano et al. [135] proposed to introduce network virtualization for ICN networks through

the use of Openflow. In [126], the authors address a similar issue and propose an architec-

ture to perform network slicing. However, [135] does not consider any network slicing tech-

nology, and [126] misses the aspects of network management and control. Mininet [102]

makes a step in that direction and sits closer to our objectives as it enables the creation

of virtual networks based on containers and virtual switches. Application performance

can be tested in emulated network conditions by setting parameters such as link delays

and capacity, node CPU share, etc. However, it does not propose any slicing mechanism,

and lacks support for wireless or any control on applications or workload.

Interesting tools have also emerged from the testbed community. Emulab is a network

experimentation framework joining emulation facilities with physical testbeds, but it lacks

support for wireless topologies and offers no control over the network resources. NEPI [88]

is maybe one of the most polyvalent tools. It hides all the complexity under a uniform

programming interface. NEPI however lacks some control granularity and specializes in

the management of resources provided by testbeds, assuming tasks such as slicing are

already performed.

The Cloud computing community has made important efforts to facilitate the use of data-

7.2. Related work 99

center resources. Cloud Operating Systems have been proposed, such as OpenStack [59],

designed to manage and monitor large-scale deployments, providing access to network,

compute and storage resources through a set of homogeneous APIs and sub-projects.

Available tools are generally oriented towards applications being deployed in a global pool

of resources. Container-specific tools such as Kubernetes [113] present some interesting

aspects in that they expose a unique consistent API for simplicity, with however limited

control granularity our purpose. Automation is ensured by third party tools layered on

top of these standard APIs, like Chef [151], which are intrinsically limited by their pro-

cedural language design, where the user must make every step of the deployment explicit,

manually adapt to the current state and handle errors. Other tools (e.g., Puppet [112])

use a descriptive language, where the user only needs to describe his/her needs and leave

the rest to the tool. Despite the integration effort in Cloud computing, the silos around

functionalities and the proliferation of APIs appear limiting for our purpose. The system

does not enable simple setup and control for users, nor to build applications on top.

The now joint SDN and NFV communities are maybe the closest to our needs, at least

from an architectural point of view. In [78] for instance, the authors describe a set of

design principles for the Management and Orchestration (MANO) of virtualized network

functions (VNF). Their approach is based on a modular architecture, clearly identifying

the fundamental function such as user and VNF description, orchestration, etc. They also

point the need to ensure reliable management by considering the lifecycle of the resource

they manage. OpenDayLight is a promising candidate framework for building NFV cap-

abilities, as it relies on a model-driven abstraction layer that fits with our requirements.

However, this aspect is mainly used from a software engineering point of view, and not to

offer programmability of the resource (called "micro-service"). Moreover, orchestration is

layered on top of other modules that behave as silos.

100 Chapter 7. Virtualized ICN

Figure 7.1: vICN functional architecture

7.3 The vICN framework

The high-level architecture of vICN, presented in fig. 7.1 reminds of NFV proposals such as

MANO. Our contribution is in applying the underlying resource end-to-end and globally,

and the properties this guarantees.

7.3.1 Functional architecture

The Resource is the basic unit of information in vICN. It consists of an abstract model

that a set of mappers use to translate actions on the Resource into a series of task to

be executed. Resources are stored in the Resource factory, and can be very diverse,

(e.g., a specific Virtual Machine, an application or an IP route). They can be combined

or extended to form other Resources. The vICN architecture differentiates the role of

users, developers, and infrastructure providers. Developers integrate tools by creating

new Resources or extending the old ones. Both users and infrastructure providers use this

base set of Resources to describe what they respectively require (users) or make available

(infrastructure providers).

Resources are specified according to different degrees of detail: e.g., the infrastructure is

7.3. The vICN framework 101

described precisely to form a Resource database that serves as a base for deployment.

On the other hand, user specifications might be general or abstract, and only mention

Resources of interest for the user. The role of the Resource processor is to turn an

abstract and incomplete description into a set of Resources mapped on the infrastructure

leading to a consistent deployment. Once Resources are selected, the orchestrator trans-

lates them into a set of actions to be performed, based on the current state of deployment

and on constraints due to task synchronization or sequentiality. The resulting actions are

processed by a scheduler. It outputs an execution plan and dispatches parallel tasks to

a worker pool with the objective of minimizing the deployment time.

To summarize, vICN is based on two main abstractions: Resources, which are external

units of information exposed to users, developers and infrastructure providers, and tasks,

which are internal units of information, defined by developers, to translate Resource

requests into changes of network deployment state.

7.3.2 Resource model

In vICN, the internal Resource model is exposed directly to users and developers through

a query language, in the spirit of SQL or SPARQL, which builds on and extend an object

relational model [52]. The model defines a base object as a set of typed attributes and

methods, where types refer to standard integers, strings, etc., or to newly defined object

themselves. The query language built on top of it is used to create, destroy and manipulate

those objects, either for Resource setup or to retrieve monitoring information. This model

benefits from the power and expressiveness of the relational algebra [117] and of some key

concepts of Object-Oriented Programming, namely composition and inheritance. It serves

as an integrated interface based on both human- and machine-readable semantics (as in

YANG [38]).

102 Chapter 7. Virtualized ICN

Figure 7.2: Flow of information in vICN

Resources

Resources in vICN are logical representations of physical and/or remote elements whose

state has to be kept synchronized. The state of a Resource can be affected by user

queries, by events involving Resources, or through monitoring queries issued to the remote

Resource. For instance a routing component might recompute routes when notified about

a change in the set of nodes, interfaces or links. The information flow is shown in fig. 7.2.

Resource state

The state of a Resource is tracked, for reliability and consistency, by a Finite State

Machine (FSM) presented in the left part of fig. 7.3. The FSM models the possible states

of a Resource (rectangles, raising events) and the pending operations, or tasks, being

executed (round shapes). The transitions are dictated by user actions or internal events

and follow the typical lifecycle of an object: INITIALIZE is called when the shadow

Resource and its object are being created for internal setup; CREATE and DELETE are

the respective constructor and destructor: they can create or destroy the remote Resource

and eventually set some attributes; GET retrieves the current state of a Resource, as well

as the state of some of its attributes; UPDATE proceeds to attribute update, and in fact

runs parallel instances of attribute-FSM, as shown on the right-hand side of the figure.

Resource mapper

For each transition between states, a developer can associate commands to be executed

thanks to Resource mappers. These commands are handled by vICN through the task

7.3. The vICN framework 103

Figure 7.3: vICN Finite State Machine

abstraction, which also inherits from the base object. They are specialized to cope with

multiple southbound interfaces such as NETCONF/YANG, SSH/Bash or LXD REST

calls (similarly to Object-Relational Mappers such as SQLAlchemy [39]).

New tasks can be created through inheritance or composition, using algebraic operators

to inform about their parallel or sequential execution. Resource objects are equipped with

similar operators, so that inheritance and composition produce a similar composition of

tasks. Both resources and tasks define an algebra, and the scheduler will be able to use this

property to perform calculations and optimize the execution plan. A subset of Resources

defined in vICN is represented in fig. 7.4, showing in particular the four base abstractions

of Node, Interface, Channel and Application from which most Resources inherit, similarly

to the model defined in [111].

104 Chapter 7. Virtualized ICN

Figure 7.4: vICN partial Resource Hierarchy

7.3.3 Resource processor

The resource processor plays the central role of adapting the user requests to the platform

policies and the available Resources. For instance, an abstract Resource Node can be

implemented either as a LXCContainer or a VM. This choice (specialization step) can be

either explicitly dictated by user preferences or inferred by the tool itself depending on

the context. As another example, when deploying an ICN forwarder on a node that runs

hicn-ping, vICN might prefer a hICN forwarder instance, and do the same for all nodes

of the same experiment.

The Resource processor is also in charge of mapping the Resources to deploy onto avail-

able Physical servers, by verifying all the constraints/policies required by the user, the

developer or by the infrastructure provider. Such assignment can be assimilated to an

(NP-Hard) Constraint-Satisfaction Problem (CSP) [95] as the system has to accommod-

ate several Resources in a finite capacity system in terms of networking, compute and

memory. Both user-specified attributes and optional infrastructure provider policies are

taken into account in the CSP as additional constraints. The output is a mapping from

specification to implementation, which is also used to expose back monitoring to the user

in a consistent way.

7.3. The vICN framework 105

7.3.4 Orchestrator and Scheduler

The role of the orchestrator is to maintain one FSM per Resource, and ensure they reach

the state requested by the user. Its outcome is a task dependency graph, which is shared

with the scheduler. Task dependencies are derived from Resources dependencies, structure

of the FSM, as well as from inheritance and composition constraints related to both the

Resources and the mappers.

The scheduler ensures the scalability of the deployment by scheduling the parallel execu-

tion of tasks over a pool of worker threads. Given the dependency graph presented before,

this corresponds to a classical DAG scheduling problem, which has been studied in the

community [143]. Figure 7.5 presents a toy-scenario underlining the need for not naive

scheduling algorithm. In that small example, a greedy selection of the task with higher

distance to destination is a sufficient heuristic to get an optimal solution and save one

execution round. We remark that user interactions can cause the graph of tasks to evolve

in time and require a recomputation. Heuristics [134] might then be preferred to optimal

solutions because of their faster execution time, while providing satisfactory performance.

Figure 7.5: Toy scenario - vICN scheduler

Because of its centralized architecture, vICN performance is also impacted by the network

transmission time1. We alleviate this issue by enabling task batching, when two consec-

utive tasks target the same node interface. The algebraic structure of tasks also makes it

possible to reorganize the graph structure to better optimize execution, or to increase the

ability to batch tasks.

1network round-trip-time and, for instance with TLS, session establishment time

106 Chapter 7. Virtualized ICN

7.4 Implementation

The flexibility of vICN lies in its modular architecture organized around its Resource

model. Various Resources can be developed to cover a wide range of underlying infra-

structure, and bring missing functionalities such as slicing or topology management. We

here describe the current release and its set of base Resources covering the whole ICN

stack. They build on and reuse available technologies, selected with scalability and reli-

ability in mind.

7.4.1 vICN codebase

A first version of vICN has been open-sourced within the Community ICN (CICN) pro-

ject [149], as part of the Linux Foundation’s Fast Data I/O effort. The code, written in

Python, is released under the Apache v2.0 license. This release implements all the build-

ing blocks described in fig. 7.1 and is mature enough to launch complex ICN deployments.

Alongside, we distribute a prepackaged LXD image containing the full CICN/hICN suites

(including forwarders, the ICN stack, and useful applications), so that a full ICN network

can be bootstrapped in tens of seconds or minutes.

7.4.2 Slicing

In addition to bare-metal deployments, vICN is able to slice nodes and links offered by

the infrastructure through a set of technologies that we describe here. This is crucial for

proper experiment isolation, and to realize separate control and management planes.

Virtual nodes can be implemented either as containers or as virtual machines. We chose

containers as the core technology (via the use of LXD) because they are more lightweight

and efficient (thanks to zero-copy mechanisms, ZFS filesystem and simplified access to

the physical resources). Increased security concerns and limitations such as sharing the

same kernel are not limiting since most ICN functions are implemented in userland.

7.4. Implementation 107

Network is shared at layer 2 via OpenVSwitch [150], which provides advanced functionalit-

ies, such as VLAN and OpenFlow rules, required by our wireless emulators and to bridge

external real devices to the virtual environment. vICN fully isolates the deployment’s

network from the outside world by creating a single and isolated bridge per deployment,

using iptables as a NAT to provide external connectivity. On top of that, we reduce the

load of the bridge and isolate control traffic from the data plane. Indeed, we directly link

connected containers, through pairs of Virtual Ethernet interfaces (veth), thus bypassing

the bridge. Connected containers that are spawned across different servers in a cluster

are transparently connected through a GRE tunnel.

Finally, vICN has to arbitrate for shared resources on the physical host, be it container

or interface names (with constraints such as the 16-character limit on Linux), VLAN IDs,

and even MAC or IP address depending on the level of required network isolation. It

is important to do such “naming” properly not only for correctness, but also to simplify

debugging and troubleshooting. vICN further enforces consistent names that uniquely

identify a Resource, which allow for faster detection and recovery when the tool restarts

or has to redeploy the same experiment.

7.4.3 IP and hICN topologies

Using the mechanisms described previously, it is possible to build a layer-2 graph on top of

which vICN can set up IP and hICN connectivity. A centralized IP Allocation Resource is

in charge of allocating IP prefixes and addresses to the different network segments of the

graph, as well as hICN names to content producers. Global Connectivity is then ensured

by computing the routes to be installed on the nodes. vICN provides a generic routing

module implementing various algorithms (such as Dijkstra or Maximum-Flow) taking as

an input a graph (layer-2) and a set of prefix origins (allocated IP addresses). It outputs

a set of routes, encoded as vICN Resources. Route setup is then driven by a Routing

Table Resource, from which the Linux and VPP routing tables inherit.

108 Chapter 7. Virtualized ICN

7.4.4 Link emulation

A feature that is missing from most tools is the ability to measure the performance of

applications running on top of virtual networks with specific bandwidth or propagation

delays. vICN offers Resource attributes for the Linux Traffic Control layer (tc) in order

to shape link bandwidth and emulate constrained networks.

A complementary aspect is the ability to use emulated radio Resources as an alternat-

ive to real hardware in a transparent fashion. Two types of radio channel are currently

supported, WiFi and LTE, both based on real-time simulation features of the NS-3 sim-

ulator. The vICN radio channel Resource is implemented as a drop-in replacement of

a regular radio link Resource. It connects stations and access point (or UEs and Base

Station) through a configurable radio channel, and hides the internal wiring from the

user. The emulation then takes care of all relevant wireless features such as beaconing,

radio frequency interference, channel contention, rate adaptation and mobility. Real-time

emulation scales by using multiple instances orchestrated by an overarching mobility man-

agement Resource in vICN, communicating in real time with the different emulators. This

process can collect relevant information from the simulation, and expose it to the internal

model and thus monitoring.

7.4.5 Monitoring capabilities

Monitoring is natively implemented as part of vICN as a transversal functionality, building

on the object model introduced in section 7.3. The query language offered by vICN allows

to query any object attribute, including annotations made by the Resource processor and

orchestrator about the host or the deployment state of the Resource. This is the same

interface that is used by the orchestrator to query the current state of a remote Resource,

to communicate with the emulators, or for the user to interact with vICN in order to

change an attribute or create a new Resource at runtime. Its syntax closely matches SQL

syntax. More precisely a query object contains the following elements: the object name, a

query type (create, get..), a set of filters and attributes, eventually completed by attribute

7.5. Examples 109

values to be set.

For periodic measurements such as link utilization, vICN provides a daemon that can be

installed on the nodes and exposes information via a similar interface. Communication

between the components is ensured using the IP underlay setup by vICN.

7.5 Examples

We now illustrate some characteristics of vICN using a particular use case: mobile video

delivery. This section is not meant to be exhaustive, but to illustrate how the design

of vICN helped us solve practical challenges, and to emphasize general properties of the

design that are relevant to other use-cases.

7.5.1 Use case description

The recent years have seen drastic changes in the video consumption patterns that put

much pressure on delivery networks: the shifts in video quality (up to 4K), from broad-

cast to on-demand and from fixed to wireless and mobile networks. Our objective was to

show that ICN addresses these challenges, using mechanisms like caching or multihoming

over heterogeneous networks. Figure 7.6 represents an example of such a video delivery

network. It consists of four parts: an heterogeneous WiFi/LTE access network with mul-

tihomed video clients; a backhaul network aggregating the resulting traffic with workload

from emulated clients; a core network composed of two nodes; and producers serving 4K

video. All nodes have a fully-featured ICN-stack. The core nodes use a VPP-based high-

speed forwarder, the others a socket-based one. Overall, the deployment consists of 22

LXC containers, 3 real devices connected to the virtual network, 22 emulated links (in-

cluding WiFi and LTE channels), and one physical link between DPDK-enabled network

cards (the core). We use a pre-packaged container image containing all the necessary

software to reduce the bootstrap time.

110 Chapter 7. Virtualized ICN

Figure 7.6: Mobile World Congress topology

7.5.2 Scalability

The simplification offered by vICN is illustrated the following numbers: during the deploy-

ment, vICN created about 800 Resources compared to the 104 declared in the topology

file, a reduction in complexity of 85-90%. More than 1500 bash commands were executed,

either directly on physical machines, or on LXC containers. This even underestimates the

number of Bash commands an operator would type to deploy an equivalent topology, as

some are batched for efficiency reasons (e.g., we insert all IP routes for a given node in a

single command).

Figure 7.7 then shows the time taken by vICN to deploy the topology as a function of the

number of dedicated threads. We deployed this topology on a Cisco UCS-C with 72 cores

clocked at 2.1 Ghz. We first note that multi-threading provides a sevenfold reduction

in bootstrap time, and that the topology can be deployed in about two minutes. The

observed gains are due to the I/O-intensive nature of tasks, which spend most of their

lifetime waiting for return values. This reduction is specific to our implementation and our

simplistic scheduling heuristic. The shape of the curve remains nonetheless interesting,

with a performance bound appearing. This is due to the underlying task graph, whose

7.5. Examples 111

Figure 7.7: vICN bootstrap time vs number of worker threads

breadth intrinsically limits the number of tasks that can be run in parallel.

7.5.3 Programmability

One advantage of our Resource model (see section 7.3.2) is the use of inheritance. It

allows the user to choose his level of granularity depending on his or her needs and

expertise. In particular, the user can remain oblivious to the underlying technology used to

deploy Resources. We used that feature to scale the demonstration on a cluster of servers

connected through a switch instead of a single powerful server. In that configuration,

linking containers on different hosts requires to connect them to virtual bridges on their

respective hosts, and to link these bridges through a L2-tunnel. The two deployments,

shown in fig. 7.8, require different Resources and tasks. However, they can be realized

with the same vICN specifications, thanks to the Link abstract Resource. Here, vICN

completely abstracts the implementation complexity and enables painless switching from

one deployment to the other.

The deployment of containers running VPP is another example of vICN’s ability to shield a

user from implementation and configuration details thanks to its Resource model. Indeed,

VPP uses DMA access to contiguous memory areas named hugepages. Both the host and

112 Chapter 7. Virtualized ICN

Figure 7.8: Alternative vICN topology deployments on single server and a cluster.

the containers have to be configured to allocate and share enough of these hugepages.

On top of starting and setting up the application on the container, VPP thus requires

to execute commands on the physical node and to change the container’s configuration

before its creation. In vICN, simply linking VPP to a container is enough to perform the

bootstrap. The tool is then able to change the other Resources (e.g., use a VPP-enabled

container instead of the standard one) and to run all the necessary commands.

The flexibility of the framework also allowed us to switch Resources in many occasions.

During our tests, we replaced real tablets by emulated nodes to generate test workloads.

During the demonstrations, we could also seamlessly use a real LTE mobile core instead

of an emulated one. It only required to change one Resource in the specification and did

not affect the rest of the scenario.

7.5.4 Monitoring and Reliability

We conclude by highlighting how the Resource model enables monitoring and debugging.

As described in section 7.4.5, vICN exposes a query language based on its underlying

model for monitoring. This language can be used to collect information about the net-

work status at different time scales: link utilization, radio status, cache status etc. vICN

thus integrates all information about the deployment in a consistent and query-able rep-

resentation, building on the model introduced in section 7.3. In the same way vICN

7.6. Conclusion 113

provides an API to navigate through structured logs that may assist the whole process of

software development.

7.6 Conclusion

In this last part of the thesis, we introduce vICN (virtualized ICN), a flexible unified

framework for ICN network configuration, management, and control to complement ex-

isting tools, especially for large scale and operational networks deployment. vICN is an

object-oriented programming framework rooted in recent advances in SDN/NFV research

that provides higher flexibility than existing virtualization solutions. It is specifically

tailored to ICN, but its modular design allows for extensions to other technologies. While

most of current software is developed in silos, with significant limitations in terms of op-

timization, vICN offers the capability to optimize each component of the virtual network

to provide carrier-grade service guarantees in terms of programmability, scalability and

reliability.

The vICN design, which we illustrate briefly through a concrete example, comes with a

free software implementation available in the Linux Foundation for the community with

multiple objectives: demonstrations, research and field trials. We leave for future work

the detailed presentation of vICN characteristics by means of benchmarking in different

use cases.

Chapter 8

Conclusions and Future Work

8.1 Summary

This thesis proposed solutions for incrementally deploying ICN into the current internet,

considering novel designs and architectures allowing clean ICN insertion at the network,

transport and application level. In addition, due to the shift to cloud computing and

virtualization, and the need of being able to automate and program the deployment

of networks and applications, the thesis proposed a flexible and unified framework for

automated ICN network deployment, configuration, management and control.

Clean slate insertion of ICN at the network layer has been treated in chapter 3. The pro-

posed solution, hICN, envisions the insertion of ICN inside the current Internet Protocol,

by mapping application level names into IP addresses and reusing the TCP/IP headers

for conveying ICN semantics inside IP. The architecture of hICN is a promising solution

in the mid-term for operational networks in a variety of segments: residential, enterprise

and data center. Results are promising, and they show that:

(i) hICN does not trade off any of the ICN principles presented in chapter 2.

(ii) hICN packets are already able to natively traverse the current IPv6 internet, with

some exceptions related to company security appliances. This restriction is anyway

limited to the first hop between the company network and the first hICN router, and

can be easily solved with a tunneling protocol.

114

8.1. Summary 115

Another fundamental contribution of this work is the open source implementation of

hICN [6], whose codebase can be already used for deploying hICN as part of the current

internet.

Future work in this direction envisions an analysis on whether hICN can exploit IP control

plane for intermediate nodes: although the IP control plane can potentially already be

reused for the routing, it still requires a novel control-plane service to securely provision

name prefixes at the producer, similarly to what DHCP provides to provision locators to

network interfaces.

As second main topic, the thesis focused on the design, implementation and benchmarking

of a transport layer for ICN, with a socket API for exposing ICN transport services. The

architecture of the transport is based on a set of modular transport services designed to

provide the ICN feature to applications without complexifying them. Applications access

ICN transport services through a set of API based on the standard BSD Socket API.

The implementation of the transport framework is available at [6] and it is based on high

speed technologies such as VPP and DPDK. An extensive evaluation of this transport at

the end of chapter 4:

(i) confirms that such implementation is able to perform well for the segmentation

and reassembly transport services, exploiting zero copy operations thanks to shared-

memory between transport layer and ICN forwarder.

(ii) it underlines the importance of using a transport manifest, due to the cost of crypto

operations such as signing, verifying and hashing.

(iii) it points out the impact of crypto operations on the overall performance and suggests

the need of implementing such operations in hardware for keeping a high speed

implementation able to guarantee the basic security features of ICN: authentication

and integrity.

As a future work, the ICN transport design would still require additional integration

to security features in the end-points such as TLS, DTLS and also the novel MLS [35]

protocols to support as many applications as possible. Furthermore, the design of a

116 Chapter 8. Conclusions and Future Work

session layer mapping and multiplexing application namespaces into multiple network

namespaces is a required work that complements the discussion initiated in this thesis.

Chapter 5 and chapter 6 presented two relevant examples of application protocols built

on top of the ICN transport. The former presented a new transport service able to

provide push semantics on top of the pull-based ICN transport. Although many kind of

applications can take advantage of push semantics, this chapter gave a special focus on

HTTP, being HTTP one of the most diffused protocols today, in particular for delivering

media content over the internet. Its support appears fundamental for ICN deployment

and adoption. Not supporting HTTP would force any application to be rewritten on

purpose on top of the request-reply ICN transport. Chapter 5 proposes a method for

mapping HTTP requests to ICN names, allowing applications built on top of HTTP

to take advantage of the ICN features. Experiments at the end of chapter showed the

benefits of placing HTTP on top of the ICN transport, in particular in case of linear video

distribution realized through live Dynamic Adaptive Streaming over HTTP (DASH): the

content distribution scales with the number of the channel streamed rather than with the

number of active user, allowing servers to scale much more since the number of active

users can be orders of magnitude bigger than the number of actual channel broadcasted.

Chapter 6 presented the design and the architecture of hICN-RTC, a new distribution

protocol tailored for real time applications. The chapter in particular contributed in the

following:

(i) It presented the hICN-RTC synchronization protocol, a new data retrieval transport

service able to overcome the limitation of the pull-based transport of ICN in case of

real time content distribution.

(ii) It presented a new distribution architecture exploiting the ICN request aggregation

and multicast, where the media bridge connecting all the participant to a given

real time session retrieves the real time media only from the active producers and

redistribute it to the other participants.

The benefits of this novel architecture are shown at the end of chapter 6. Results showed

that the new synchronization protocol tailored for RTC allows to get a per-packet delivery

8.2. List of contributions 117

delay within 1/2 RTT for the majority of the packets. Furthermore, hICN-RTC allowed

the whole system to scale up to 1000 conference participant, thanks to the fact that the

media bridge does not retrieve the media from all the clients but it rather receive just the

media of the active ones. The rest of the traffic is served directly by the underlying ICN

network.

At last, chapter 7 presented vICN, a novel flexible and unified framework for ICN network

configuration, management and control, providing programmability for developers and

scalability / reliability for users. vICN simplifies the deployment of ICN networks, by

mapping declarative user specifications to corresponding resources and deploying them

on top of the available infrastructure. It allows to strictly control all the level of the

corresponding deployment, to combine network and applications needs, and to satisfy ICN

requirement such as name provisioning or multipath routing. The examples at the end of

chapter 7 showed how vICN can significantly automate the deployment of ICN topologies,

by translating simple user requirements to complex network deployment-configuration

operations (104 resources deployed through more than 1500 Bash commands). In addition,

it provides managing and monitoring of the deployed network, by querying the state of

the resources and reporting it to the user.

vICN has been extensively used for deploying and configuring all the ICN networks used

during the demonstrations. It always provided a sufficient level of reliability and scalabil-

ity, by allowing at the same time to easily integrate new resources thanks to the program-

mable and modular framework, thought for continuously integrating new components.

8.2 List of contributions

The work presented in this thesis would not have been possible without the help of advisors

and fellow research workers. This section states the part played in every chapter by the

author with respect to the contributions of the other members of the team.

With respect to the Hybrid ICN solution presented in chapter 3, the design of the hICN

protocol was a joint work among all the authors, while the main contribution was mainly

118 Chapter 8. Conclusions and Future Work

in the generation/analysis of data through extensive experimentation. Experiments also

led to reconsider some design choices we took initially, by redefining the semantic of the

header fields or their disposition, in particular for what regards manifest, signature and

fields in the L4 header.

The work presented in chapter 4 and chapter 5, which includes the design, implementation

and evaluation of the transport framework, the socket API and its application with respect

to HTTP, has been a complete contribution of the author of the thesis.

Chapter 6 is a partial contribution of the author. While no particular contribution has

been done with respect the design of the synchronization protocol itself, a big contribution

consisted mainly in the design of the system architecture, in setting up the experiments

for the evaluation and in analysing the data.

Finally, chapter 7 has been a work started by the author of the thesis which then has

been integrated with additional contributions of the other authors, in particular with

improvements to the design of vICN.

Bibliography

[1] EU FP7, Pursuit project. http://www.fp7-pursuit.eu/PursuitWeb/.

[2] IPv6 CIDR REPOR. http://www.cidr-report.org/v6/as2.0/.

[3] Jitsi. https://jitsi.org/.

[4] Jitsi meet torture. https://github.com/jitsi/jitsi-meet-torture/.

[5] libparistraceroute. https://github.com/libparistraceroute/.

[6] Linux Foundation FD.io Hybrid ICN project. https://wiki.fd.io/view/HICN.

[7] NDN project, Named-Data Networking Principles. https://named-data.net/

project/ndn-design-principles/.

[8] NSF/Intel, Partnership on Information-Centric Networking in Wireless Edge Net-

works (ICN-WEN). https://www.nsf.gov/pubs/2016/nsf16586/nsf16586.htm.

[9] PeeringDB. https://www.peeringdb.com/.

[10] Route Views Project. http://www.routeviews.org/.

[11] SeleniumHQ. https://docs.seleniumhq.org.

[12] Under the hood: Broadcasting live video to millions. http://goo.gl/gsFyqo.

[13] Apache Traffic Server, 2018.

[14] nginx. https://nginx.org/en/, 2018.

[15] Internet AS-level Topology Archive. http://irl.cs.ucla.edu/topology, 2018.

119

http://www.fp7-pursuit.eu/PursuitWeb/
http://www.cidr-report.org/v6/as2.0/
https://jitsi.org/
https://github.com/jitsi/jitsi-meet-torture/
https://github.com/libparistraceroute/
https://wiki.fd.io/view/HICN
https://named-data.net/project/ndn-design-principles/
https://named-data.net/project/ndn-design-principles/
https://www.nsf.gov/pubs/2016/nsf16586/nsf16586.htm
https://www.peeringdb.com/
http://www.routeviews.org/
https://docs.seleniumhq.org
http://goo.gl/gsFyqo
https://nginx.org/en/
http://irl.cs.ucla.edu/topology

120 BIBLIOGRAPHY

[16] Iperf. https://iperf.fr, 2018.

[17] Live encoder settings, bitrates, and resolutions. http://goo.gl/tDtc1i, 2018.

[18] lxc. https://linuxcontainers.org/, 2018.

[19] MGEN. https://www.nrl.navy.mil/itd/ncs/products/mgen, 2018.

[20] nginx RTMP module. https://nginx.org/en/, 2018.

[21] Open Broadcaster Software (OBS). https://obsproject.com/, 2018.

[22] openSSL. https://www.openssl.org/, 2018.

[23] The NEAT project, 2018.

[24] Team Cymru, IP to ASN mapping. http://www.team-cymru.org/Services/

ip-to-asn.html, Accessed Dec. 2017.

[25] 13, I.-T. S. G. Data aware networking (information centric networking) – Require-

ments and capabilities . https://www.itu.int/rec/T-REC-Y.3071-201703-P,

Dec 2016.

[26] AbdAllah, E. G., Hassanein, H. S., and Zulkernine, M. A Survey of Se-

curity Attacks in Information-Centric Networking. IEEE Communications Surveys

Tutorials 17, 3 (thirdquarter 2015), 1441–1454.

[27] Adhatarao, S. S., Chen, J., Arumaithurai, M., Fu, X., and Ramakrish-

nan, K. K. Comparison of naming schema in ICN. In ’16 (June 2016).

[28] Atkinson, R., and Bhatti, S. Identifier-Locator Network Protocol (ILNP) Ar-

chitectural Description. RFC 6740, Nov 2012.

[29] Augé, J., Carofiglio, G., Enguehard, M., Muscariello, L., and

Sardara, M. Simple and Efficient ICN Network Virtualization with vICN. In

Proceedings of the 4th ACM Conference on Information-Centric Networking (New

York, NY, USA, 2017), ICN ’17, ACM, pp. 216–217.

https://iperf.fr
http://goo.gl/tDtc1i
https://linuxcontainers.org/
https://www.nrl.navy.mil/itd/ncs/products/mgen
https://nginx.org/en/
https://obsproject.com/
https://www.openssl.org/
http://www.team-cymru.org/Services/ip-to-asn.html
http://www.team-cymru.org/Services/ip-to-asn.html
https://www.itu.int/rec/T-REC-Y.3071-201703-P

BIBLIOGRAPHY 121

[30] Augé, J., Carofiglio, G., Grassi, G., Muscariello, L., Pau, G., and

Zeng, X. MAP-Me: Managing Anchor-less Producer Mobility in Information-

Centric Networks.

[31] Auge, J., Carofiglio, G., Muscariello, L., and Papalini, M. Anchorless

mobility management through hICN (hICN-AMM): Deployment options. Internet-

Draft draft-auge-dmm-hicn-mobility-deployment-options-01, Internet Engineering

Task Force, Dec 2018. Work in Progress.

[32] Auge, J., Carofiglio, G., Muscariello, L., and Papalini, M. Anchorless

mobility through hICN. Internet-Draft draft-auge-dmm-hicn-mobility-01, Internet

Engineering Task Force, Dec 2018. Work in Progress.

[33] Barford, P., Bestavros, A., Byers, J., and Crovella, M. On the marginal

utility of network topology measurements. In ’01 (2001).

[34] Bari, M. F., Chowdhury, S. R., Ahmed, R., Boutaba, R., and Math-

ieu, B. A survey of naming and routing in information-centric networks. IEEE

Communications Magazine 50, 12 (December 2012), 44–53.

[35] Barnes, R., Millican, J., Omara, E., Cohn-Gordon, K., and Robert,

R. The Messaging Layer Security (MLS) Protocol. Internet-Draft draft-ietf-mls-

protocol-04, Internet Engineering Task Force, Mar 2019. Work in Progress.

[36] Baugher, M., Davie, B., Narayanan, A., and Oran, D. Self-verifying names

for read-only named data. In Proc. of IEEE INFOCOM 2012 Workshops (Orlando,

FL, USA, March 2012), pp. 274–279.

[37] Bhat, D., Wang, C., Rizk, A., and Zink, M. A load balancing approach

for adaptive bitrate streaming in Information Centric networks. In 2015 IEEE

International Conference on Multimedia Expo Workshops (ICMEW) (June 2015),

pp. 1–6.

[38] Bjorklund, M. YANG - A Data Modeling Language for the Network Configura-

tion Protocol (NETCONF). RFC 6020, Oct 2010.

122 BIBLIOGRAPHY

[39] Brown, A. The architecture of open source applications (SQLAlchemy), vol. 2.

Kristian Hermansen, 2012.

[40] Cabral, C., Rothenberg, C. E., and Magalhães, M. F. Mini-CCNx: Fast

prototyping for named data networking. In Proceedings of the 3rd ACM SIGCOMM

workshop on Information-centric networking (2013), ACM, pp. 33–34.

[41] Carofiglio, G., Gallo, M., and Muscariello, L. Joint Hop-by-hop and

Receiver-driven Interest Control Protocol for Content-centric Networks. In ’12 (New

York, NY, USA, 2012), pp. 37–42.

[42] Carofiglio, G., Gallo, M., and Muscariello, L. On the Performance of

Bandwidth and Storage Sharing in Information-centric Networks. Computer Net-

works 57, 17 (Dec 2013), 3743–3758.

[43] Carofiglio, G., Gallo, M., and Muscariello, L. Optimal multipath con-

gestion control and request forwarding in information-centric networks: Protocol

design and experimentation. Computer Networks 110 (2016), 104–117.

[44] Carofiglio, G., Gallo, M., Muscariello, L., and Perino, D. Pending

Interest Table Sizing in Named Data Networking. In Proceedings of the 2Nd ACM

Conference on Information-Centric Networking (2015), ACM-ICN ’15, pp. 49–58.

[45] Carofiglio, G., Morabito, G., Muscariello, L., Solis, I., and Varvello,

M. From Content Delivery Today to Information Centric Networking. Comput.

Netw. 57, 16 (Nov 2013), 3116–3127.

[46] Carofiglio, G., Muscariello, L., Augé, J., Papalini, M., Sardara, M.,

and Compagno, A. Enabling ICN in the Internet Protocol: Analysis and Eval-

uation of the Hybrid-ICN Architecture. In Proc. of ACM SIGCOMM ICN ’19

(2019).

[47] Carofiglio, G., Muscariello, L., Papalini, M., Rozhnova, N., and Zeng,

X. Leveraging ICN In-network Control for Loss Detection and Recovery in Wireless

Mobile Networks. In ’16 (New York, NY, USA, 2016), pp. 50–59.

BIBLIOGRAPHY 123

[48] Carzaniga, A., and Wolf, A. Forwarding in a Content-based Network. In Pro-

ceedings of the 2003 Conference on Applications, Technologies, Architectures, and

Protocols for Computer Communications (New York, NY, USA, 2003), SIGCOMM

’03, ACM, pp. 163–174.

[49] Chai, W., He, D., Psaras, I., and Pavlou, G. Cache "Less for More" in

Information-centric Networks. In ’12 (Berlin, Heidelberg, 2012), pp. 27–40.

[50] Chakraborti, A., Amin, S., Zhao, B., Azgin, A., Ravindran, R., and

Wang, G. ICN Based Scalable Audio-Video Conferencing on Virtualized Ser-

vice Edge Router (VSER) Platform. In Proceedings of the ACM Conference on

Information-Centric Networking (2015), ICN ’15, ACM.

[51] Compagno, A., Conti, M., Ghali, C., and Tsudik, G. To NACK or not

to NACK? negative acknowledgments in information-centric networking. In 2015

24th International Conference on Computer Communication and Networks (IC-

CCN) (2015), IEEE, pp. 1–10.

[52] Date, C. J., and Darwen, H. Foundation for object/relational databases: the

third manifesto. Addison-Wesley Professional, 1998.

[53] Davie, B., and Gross, J. A Stateless Transport Tunneling Protocol for Network

Virtualization (STT). Internet-Draft draft-davie-stt-08, Internet Engineering Task

Force, Apr 2016.

[54] Detti, A., Salsano, S., and Blefari-Melazzi, N. IP protocol suite extensions

to support CONET Information Centric Networking. Internet-Draft draft-detti-

conet-ip-option-05, Internet Engineering Task Force, Jun 2013. Work in Progress.

[55] Farinacci, D., Fuller, V., Meyer, D., and Lewis, D. The Locator/ID

Separation Protocol (LISP). RFC 6830, Jan 2013.

[56] Fayazbakhsh, S., Lin, Y., Tootoonchian, A., Ghodsi, A., Koponen, T.,

Maggs, B., Ng, K., Sekar, V., and Shenker, S. Less Pain, Most of the Gain:

124 BIBLIOGRAPHY

Incrementally Deployable ICN. In Proc. of the ACM SIGCOMM 2013 (New York,

NY, USA, 2013), SIGCOMM ’13, pp. 147–158.

[57] Feng, B., Zhou, H., and Xu, Q. Mobility support in Named Data Networking:

a survey.

[58] for Standardization (ISO), I. O. ISO 26324:2012 Information and document-

ation – Digital object identifier system, 2012.

[59] Foundation, T. O. https://www.openstack.org/, 2017.

[60] Fundation, T. L. Linux Fundation Wiki - Netem. https://wiki.

linuxfoundation.org/networking/netem.

[61] Gallo, M., Gu, L., Perino, D., and Varvello, M. NaNET: Socket API and

Protocol Stack for Process-to-content Network Communication. In Proc. of the 1st

ACM SIGCOMM ICN Conference (New York, NY, USA, 2014), ’14, pp. 185–186.

[62] Garcia-Luna-Aceves, J. J., Martinez-Castillo, J. E., and Menchaca-

Mendez, R. Routing to Multi-Instantiated Destinations: Principles, Practice and

Applications. 1–1.

[63] Ghali, C., Narayanan, A., Oran, D., Tsudik, G., and Wood, C. A. Secure

Fragmentation for Content-Centric Networks. In 2015 IEEE 14th International

Symposium on Network Computing and Applications (Sept 2015), pp. 47–56.

[64] Ghali, C., Tsudik, G., and Wood, C. (The Futility of) Data Privacy in

Content-Centric Networking. In Proceedings of the 2016 ACM on Workshop on

Privacy in the Electronic Society (2016), pp. 143–152.

[65] Ghali, C., Tsudik, G., and Wood, C. A. Network Names in Content-Centric

Networking. In Proc. of the 3rd ACM SIGCOMM ICN (New York, NY, USA, 2016),

’16, pp. 132–141.

https://www.openstack.org/
https://wiki.linuxfoundation.org/networking/netem
https://wiki.linuxfoundation.org/networking/netem

BIBLIOGRAPHY 125

[66] Ghodsi, A., Koponen, T., Rajahalme, J., Sarolahti, P., and Shenker,

S. Naming in Content-oriented Architectures. In ’11 (New York, NY, USA, 2011),

pp. 1–6.

[67] Gibbens, M., Gniady, C., Ye, L., and Zhang, B. Hadoop on Named Data

Networking: Experience and Results. Proc. ACM Meas. Anal. Comput. Syst. 1, 1

(Jun 2017), 2:1–2:21.

[68] Gilligan, R., McCann, J., Bound, J., and Thomson, S. Basic Socket Inter-

face Extensions for IPv6. Tech. Rep. 3493, Mar 2003.

[69] Git, G. WebRTC library. https://webrtc.googlesource.com/.

[70] Grandl, R., Su, K., and Westphal, C. On the interaction of adaptive video

streaming with content-centric networking. In Proc. of IEEE Int. Packet Video

Workshop (Dec. 2013).

[71] Gritter, M., and Cheriton, D. R. An Architecture for Content Routing Sup-

port in the Internet. In Proc. of the 3rd USENIX Symposium on Internet Techno-

logies and Systems (Berkeley, CA, USA, 2001), USITS’01, pp. 4–4.

[72] Grozev, B., Marinov, L.and Singh, V., and Ivov, E. Last N: Relevance-

based Selectivity for Forwarding Video in Multimedia Conferences. In Proceedings

of the 25th ACM Workshop on Network and Operating Systems Support for Digital

Audio and Video (2015), NOSSDAV ’15, ACM.

[73] Grozev, B., Politis, G., Ivov, E., Noel, T., and Singh, V. Experimental

Evaluation of Simulcast for WebRTC. IEEE Communications Standards Magazine

(2017).

[74] Gusev, P., and Burke, J. NDN-RTC: Real-Time Videoconferencing over Named

Data Networking. In Proceedings of the ACM Conference on Information-Centric

Networking (2015), ICN ’15, ACM.

https://webrtc.googlesource.com/

126 BIBLIOGRAPHY

[75] Heath, L., Owen, H., Beyah, R., and State, R. CLIP: Content labeling in

IPv6, a layer 3 protocol for information centric networking. In Proc. of ICC 2013

(June 2013), pp. 3732–3737.

[76] Hesmans, B., Duchene, F., Paasch, C., Detal, G., and Bonaventure,

O. Are TCP Extensions Middlebox-proof? In Proc. of the 2013 HotMiddlebox

Workshop (New York, NY, USA, 2013), HotMiddlebox ’13, pp. 37–42.

[77] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A., Handley, M., and

Tokuda, H. Is It Still Possible to Extend TCP? In Proc. of ACM SIGCOMM

IMC 2011 (New York, NY, USA, 2011), IMC ’11, pp. 181–194.

[78] Institute, E. T. S. Network Functions Virtualisation (NFV); Management

and Orchestration. Tech. Rep. GS NFV-MAN 001, European Telecommunications

Standards Institute (ETSI), 2014.

[79] Ioannidis, S., and Yeh, E. Jointly optimal routing and caching for arbitrary

network topologies. In Proc. of the 4th ACM SIGCOMM ICN 2017 (2017), pp. 77–

87.

[80] Ivov, E., Marocco, E., and Lennox, J. A Real-time Transport Protocol (RTP)

Header Extension for Mixer-to-Client Audio Level Indication. RFC 6465.

[81] Jacobson, V., Smetters, D. K., Briggs, N. H., Plass, M. F., Stewart, P.,

Thornton, J. D., and Braynard, R. L. VoCCN: Voice-over Content-centric

Networks. In Proc. of the 2009 Workshop on Re-architecting the Internet (2009),

ReArch ’09, ACM.

[82] Jacobson, V., Smetters, D. K., Thornton, J. D., Plass, M. F., Briggs,

N. H., and Braynard, R. L. Networking Named Content. In Proc. of the 5th

ACM CoNEXT (New York, NY, USA, 2009), CoNEXT ’09, pp. 1–12.

[83] James, C., Halepovic, E., Wang, M., Jana, R., and Shankaranarayanan,

N. K. Is Multipath TCP (MPTCP) Beneficial for Video Streaming over DASH? In

BIBLIOGRAPHY 127

2016 IEEE 24th International Symposium on Modeling, Analysis and Simulation of

Computer and Telecommunication Systems (MASCOTS) (Sept 2016), pp. 331–336.

[84] Jangam, A., Ravindran, R., Chakraborti, A., Wan, X., and Wang, G.

Realtime multi-party video conferencing service over information centric network. In

2015 IEEE International Conference on Multimedia and Expo Workshops (ICMEW)

(June 2015).

[85] Jiang, X., Bi, J., and Wang, Y. What benefits does NDN have in supporting

mobility. In Proc. of IEEE Symposium on Computers and Communications (ISCC)

(June 2014), pp. 1–6.

[86] Koch, P. A DNS RR Type for Lists of Address Prefixes (APL RR). RFC 3123,

Jun 2001.

[87] Koponen, T., Chawla, M., Chun, B., Ermolinskiy, A., Kim, K., Shenker,

S., and Stoica, I. A Data-oriented (and Beyond) Network Architecture. ACM

SIGCOMM Comput. Commun. Rev. 37, 4 (Aug 2007), 181–192.

[88] Lacage, M., Ferrari, M., Hansen, M., Turletti, T., and Dabbous, W.

NEPI: using independent simulators, emulators, and testbeds for easy experiment-

ation. SIGOPS Operating Syst. Rev. 43, 4 (2010), 60–65.

[89] Langley, A., et al. The QUIC Transport Protocol: Design and Internet-Scale

Deployment. In Proceedings of the Conference of the ACM Special Interest Group on

Data Communication (New York, NY, USA, 2017), SIGCOMM ’17, ACM, pp. 183–

196.

[90] Lederer, S., et al. Adaptive streaming over content centric networks in mobile

networks using multiple links. In Proc. of IEEE ICC (2013).

[91] Lederer, S., Mueller, C., Rainer, B., Timmerer, C., and Hellwagner,

H. An experimental analysis of Dynamic Adaptive Streaming over HTTP in Content

Centric Networks. In 2013 IEEE International Conference on Multimedia and Expo

(ICME) (July 2013), pp. 1–6.

128 BIBLIOGRAPHY

[92] Linguaglossa, Leonardo and Rossi, Dario and Pontarelli, Salvatore

and Barach, Dave and Marjon, Damjan and Pfister, Pierre. High-

speed Software Data Plane via Vectorized Packet Processing. https://perso.

telecom-paristech.fr/drossi/paper/vpp-bench-techrep.pdf, 2018.

[93] Liu, X., Trappe, W., and Zhang, Y. Secure Name Resolution for Identifier-to-

Locator Mappings in the Global Internet. In 2013 22nd International Conference

on Computer Communication and Networks (ICCCN) (July 2013), pp. 1–7.

[94] Luigi Rizzo, U. o. P. Netmap - the fast packet I/O framework. http://info.

iet.unipi.it/~luigi/netmap/, 2018.

[95] Mackworth, A. K. Constraint satisfaction problems. Encyclopedia of AI 285

(1992), 293.

[96] Mahdian, M., Arianfar, S., Gibson, J., and Oran, D. MIRCC: Multipath-

aware ICN Rate-based Congestion Control. In Proceedings of the 3rd ACM Confer-

ence on Information-Centric Networking (New York, NY, USA, 2016), ACM-ICN

’16, ACM, pp. 1–10.

[97] Majeed, M., Ahmed, S., Muhammad, S., Song, H., and Rawat, D. Multime-

dia streaming in information-centric networking: A survey and future perspectives.

Computer Networks 125 (2017), 103 – 121.

[98] Marchal, X., Aoun, M. E., Mathieu, B., Cholez, T., Doyen, G., Mal-

louli, W., and Festor, O. Leveraging NFV for the deployment of NDN: Ap-

plication to HTTP traffic transport. In NOMS 2018 - 2018 IEEE/IFIP Network

Operations and Management Symposium (April 2018), pp. 1–5.

[99] Mastorakis, S., Gusev, P., Afanasyev, A., and Zhang, L. Real-Time Data

Retrieval in Named Data Networking. In 1st IEEE International Conference on Hot

Information-Centric Networking (HotICN 2018) (2018).

[100] Mealling, M. H. A URN Namespace of Object Identifiers. RFC 3061, Feb 2001.

https://perso.telecom-paristech.fr/drossi/paper/vpp-bench-techrep.pdf
https://perso.telecom-paristech.fr/drossi/paper/vpp-bench-techrep.pdf
http://info.iet.unipi.it/~luigi/netmap/
http://info.iet.unipi.it/~luigi/netmap/

BIBLIOGRAPHY 129

[101] Mealling, M. H. The Network Solutions Personal Internet Name (PIN): A URN

Namespace for People and Organizations. RFC 3043, Jan 2001.

[102] Mininet. http://mininet.org/, 2017.

[103] Misra, S., Tourani, R., and Majd, N. Secure Content Delivery in Information-

centric Networks: Design, Implementation, and Analyses. In ’13 (New York, NY,

USA, 2013), pp. 73–78.

[104] Moiseenko, I., Stapp, M., and Oran, D. Communication Patterns for Web

Interaction in Named Data Networking. In Proceedings of the 1st ACM Conference

on Information-Centric Networking (New York, NY, USA, 2014), ACM-ICN ’14,

ACM, pp. 87–96.

[105] Moiseenko, I., Wang, L., and Zhang, L. Consumer / Producer Communication

with Application Level Framing in Named Data Networking. In Proc. of the 2nd

ACM SIGCOMM ICN Conference (New York, NY, USA, 2015), ’15, pp. 99–108.

[106] Mosko, M., Solis, I., and Wood, C. CCNx Semantics. Internet-Draft draft-

irtf-icnrg-ccnxsemantics-06, Oct 2017.

[107] Mosko, M., Solis, I., and Wood, C. A. CCNx Messages in TLV Format.

Internet-Draft draft-irtf-icnrg-ccnxmessages-09, Internet Engineering Task Force,

Jan 2019. Work in Progress.

[108] Mosko, M., Solis, I., and Wood, C. A. CCNx Semantics. Internet-Draft

draft-irtf-icnrg-ccnxsemantics-10, Internet Engineering Task Force, Jan 2019. Work

in Progress.

[109] Mosko, M., and Wood, C. A. Secure Fragmentation for Content Centric Net-

working. In 2015 IEEE 12th International Conference on Mobile Ad Hoc and Sensor

Systems (Oct 2015), pp. 506–512.

http://mininet.org/

130 BIBLIOGRAPHY

[110] Ngai, E., Ohlman, B., Tsudik, G., Uzun, E., Wahlisch, M., and Wood,

C. A. Can We Make a Cake and Eat It Too? A Discussion of ICN Security and

Privacy. SIGCOMM Comput. Commun. Rev. 47, 1 (Jan 2017), 49–54.

[111] NS3. The Network Simulator 3. https://www.nsnam.org/, 2017.

[112] OpenStack, P. https://wiki.openstack.org/wiki/Puppet, 2017.

[113] Orchestration, P.-G. C. https://kubernetes.io/, 2017.

[114] Ott, J., Wenger, S., Sato, N., Burmeister, C., and Rey, J. Exten-

ded RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback

(RTP/AVPF). RFC 4585, 2006.

[115] Pandit, R. Reliable Datagram Sockets (RDS). In OpenIB Developers Workshop,

Feb (2006).

[116] Paper, G. A. W. Understanding Information-Centric Networking and Mo-

bile Edge Computing. http://www.5gamericas.org/files/1214/8175/

3330/Understanding_Information_Centric_Networking_and_Mobile_Edge_

Computing.pdf, Dec 2016.

[117] Paredaens, J. On the expressive power of the relational algebra. Information

Processing Letters 7, 2 (1978), 107 – 111.

[118] Pauly, T., Trammell, B., Brunstrom, A., Fairhurst, G., Perkins, C.,

Tiesel, P. S., and Wood, C. A. An Architecture for Transport Services. Internet-

Draft draft-pauly-taps-arch-00, Internet Engineering Task Force, Feb 2018. Work

in Progress.

[119] Perino, D., Varvello, M., Linguaglossa, L., Laufer, R., and Boislaigue,

R. Caesar: A content router for high-speed forwarding on content names. In 2014

ACM/IEEE ANCS Symposium (Oct 2014), pp. 137–147.

https://www.nsnam.org/
https://wiki.openstack.org/wiki/Puppet
https://kubernetes.io/
http://www.5gamericas.org/files/1214/8175/3330/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
http://www.5gamericas.org/files/1214/8175/3330/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf
http://www.5gamericas.org/files/1214/8175/3330/Understanding_Information_Centric_Networking_and_Mobile_Edge_Computing.pdf

BIBLIOGRAPHY 131

[120] Petrangeli, S., Bouten, N., Claeys, M., and Turck, F. D. Towards SVC-

based Adaptive Streaming in information centric networks. In 2015 IEEE Interna-

tional Conference on Multimedia Expo Workshops (ICMEW) (June 2015), pp. 1–6.

[121] Popa, L., Ghodsi, A., and Stoica, I. HTTP As the Narrow Waist of the Future

Internet. In Proc. of the 9th ACM SIGCOMM Hotnets Workshop (New York, NY,

USA, 2010), Hotnets-IX, pp. 6:1–6:6.

[122] Posch, D., Kreuzberger, C., Rainer, B., and Hellwagner, H. Using

In-Network Adaptation to Tackle Inefficiencies Caused by DASH in Information-

Centric Networks. In Proceedings of the 2014 Workshop on Design, Quality and

Deployment of Adaptive Video Streaming (New York, NY, USA, 2014), VideoNext

’14, ACM, pp. 25–30.

[123] Rahman, A., Trossen, D., Kutscher, D., and Ravindran, R. Deployment

Considerations for Information-Centric Networking (ICN). Internet-Draft draft-

rahman-icnrg-deployment-guidelines-05, Internet Engineering Task Force, Jan 2018.

Work in Progress.

[124] Rainer, B., Posch, D., and Hellwagner, H. Investigating the Performance of

Pull-Based Dynamic Adaptive Streaming in NDN. IEEE Journal on Selected Areas

in Communications 34, 8 (Aug 2016), 2130–2140.

[125] Ravindran, R., Chakraborti, A., Amin, S., Azgin, A., and Wang, G.

5G-ICN: Delivering ICN Services over 5G Using Network Slicing. IEEE Commu-

nications Magazine 55, 5 (May 2017), 101–107.

[126] Ravindran, R., Chakraborti, A., Amin, S. O., Azgin, A., and Wang, G.

5G-ICN : Delivering ICN Services over 5G using Network Slicing, 2016.

[127] Ravindran, R., Lo, S., Zhang, X., and Wang, G. Supporting seamless mobil-

ity in named data networking. In Proc. of IEEE ICC 2012 (June 2012), pp. 5854–

5869.

132 BIBLIOGRAPHY

[128] Ravindran, R., Suthar, P., and Wang, G. Enabling ICN in 3GPP’s 5G Nex-

tGen Core Architecture. Internet-Draft draft-ravi-icnrg-5gc-icn-00, Internet Engin-

eering Task Force, Oct 2017.

[129] Ren, Y., Li, J., Shi, S., Li, L., Wang, G., and Zhang, B. Congestion Control

in Named Data Networking - A Survey. Comput. Commun. 86, C (Jul 2016), 1–11.

[130] Research, F. I., and Experimentation. https://www.ict-fire.eu, 2017.

[131] Rossini, G., and Rossi, D. A dive into the caching performance of Content

Centric Networking. In IEEE 17th Workshop on Computer Aided Modeling and

Design of Communication Links and Networks (CAMAD) (Sept 2012), pp. 105–

109.

[132] Rossini, G., and Rossi, D. Evaluating CCN Multi-path Interest Forwarding

Strategies. Comput. Commun. 36, 7 (Apr 2013), 771–778.

[133] Saino, L., Cocora, C., and Pavlou, G. CCTCP: A scalable receiver-driven

congestion control protocol for content centric networking. In Proc. of IEEE ICC

2013 (June 2013), pp. 3775–3780.

[134] Sakellariou, R., and Zhao, H. A hybrid heuristic for DAG scheduling on

heterogeneous systems. In Parallel and Distributed Processing Symposium, 2004.

Proceedings. 18th International (2004), IEEE, IEEE, p. 111.

[135] Salsano, S., Blefari-Melazzi, N., Detti, A., Morabito, G., and Veltri,

L. Information Centric Networking over SDN and OpenFlow: Architectural Aspects

and Experiments on the OFELIA Testbed. Comput. Netw. 57, 16 (Nov 2013), 3207–

3221.

[136] Samain, J., Augé, J., Carofiglio, G., Muscariello, L., Papalini, M., and

Sardara, M. Enhancing Mobile Video Delivery over an Heterogeneous Network

Access with Information-Centric Networking. In Proceedings of the SIGCOMM

Posters and Demos (New York, NY, USA, 2017), SIGCOMM Posters and Demos

’17, ACM, pp. 22–24.

https://www.ict-fire.eu

BIBLIOGRAPHY 133

[137] Samain, J., Carofiglio, G., Muscariello, L., Papalini, M., Sardara, M.,

Tortelli, M., and Rossi, D. Dynamic Adaptive Video Streaming: Towards a

Systematic Comparison of ICN and TCP/IP. IEEE Transactions on Multimedia

19, 10 (Oct 2017), 2166–2181.

[138] Sardara, M., Muscariello, L., Augé, J., Enguehard, M., Compagno, A.,

and Carofiglio, G. Virtualized ICN (vICN): Towards a Unified Network Virtu-

alization Framework for ICN Experimentation. In Proc. of the 4th ACM SIGCOMM

ICN (New York, NY, USA, 2017), ICN ’17, ACM, pp. 109–115.

[139] Sardara, M., Muscariello, L., and Compagno, A. A Transport Layer and

Socket API for (h)ICN: Design, Implementation and Performance Analysis. In Proc.

of ACM SIGCOMM ICN ’18 (2018).

[140] Sardara, M., Muscariello, L., and Compagno, A. Efficient Transport Layer

and Socket API for ICN. In Proceedings of the 5th ACM Conference on Information-

Centric Networking (New York, NY, USA, 2018), ICN ’18, ACM, pp. 206–207.

[141] Sardara, M., Samain, J., Augé, J., and Carofiglio, G. Application-specific

policy-driven 5G Transport with Hybrid ICN. 2019 IEEE International Symposium

on Local and Metropolitan Area Networks (LANMAN) (2019).

[142] Schneider, K., Yi, C., Zhang, B., and Zhang, L. A Practical Congestion

Control Scheme for Named Data Networking. In Proceedings of the 3rd ACM Con-

ference on Information-Centric Networking (New York, NY, USA, 2016), ACM-ICN

’16, ACM, pp. 21–30.

[143] Sinnen, O. Task scheduling for parallel systems, vol. 60. John Wiley & Sons, 2007.

[144] Smetters, D., and Jacobson, V. Securing network content. Tech. rep., 2009.

[145] So, W., Narayanan, A., and Oran, D. Named data networking on a router:

Fast and DoS-resistant forwarding with hash tables. In 2013 ACM/IEEE ANCS

Symposium (Oct 2013), pp. 215–225.

134 BIBLIOGRAPHY

[146] Srinivasan, S., Rimac, I., Hilt, V., Steiner, M., and Schulzrinne, H.

Unveiling the Content-Centric Features of TCP. In Proc. of IEEE ICC 2011 (June

2011), pp. 1–5.

[147] Srinivasan, S., and Schulzrinne, H. IPv6 Addresses as Content Names in

Information-Centric Networking. In USENIX ATC 2011 - Poster session (June

2011).

[148] Suthar, P., Stolic, M., Jangam, A., and Trossen, D. Native Deployment of

ICN in LTE, 4G Mobile Networks. Internet-Draft draft-suthar-icnrg-icn-lte-4g-04,

Internet Engineering Task Force, Nov 2017. Work in Progress.

[149] The Linux Foundation. Fast Data project (fd.io) Community ICN (CICN).

https://wiki.fd.io/view/Cicn, 2017.

[150] The Linux Foundation. Open vSwitch. http://openvswitch.org/, 2017.

[151] The Linux Foundation. OpenStack Chef. https://wiki.openstack.org/

wiki/Chef, 2017.

[152] The Linux Foundation. Vector Packet Processing - Fast Data I/O. https:

//wiki.fd.io/view/VPP/, 2017.

[153] The Linux Foundation Projects. Data Plane Development Kit. https://

dpdk.org, 2018.

[154] Trossen, D., Reed, M. J., Riihijärvi, J., Georgiades, M., Fotiou, N., and

Xylomenos, G. IP over ICN - The better IP? In 2015 European Conference on

Networks and Communications (EuCNC) (Jun 2015), pp. 413–417.

[155] Tyson, G., Sastry, N., Rimac, I., Cuevas, R., and Mauthe, A. A Survey

of Mobility in Information-centric Networks: Challenges and Research Directions.

In Proc. of the 1st ACM NoM Workshop 2012 (New York, NY, USA, 2012), NoM

’12, pp. 1–6.

https://wiki.fd.io/view/Cicn
http://openvswitch.org/
https://wiki.openstack.org/wiki/Chef
https://wiki.openstack.org/wiki/Chef
https://wiki.fd.io/view/VPP/
https://wiki.fd.io/view/VPP/
https://dpdk.org
https://dpdk.org

BIBLIOGRAPHY 135

[156] Vahlenkamp, M., Schneider, F., Kutscher, D., and Seedorf, J. Enabling

ICN in IP networks using SDN. In ICNP (2013), pp. 1–2.

[157] van Adrichem, N. L. M., and Kuipers, F. NDNFlow: Software-defined Named

Data Networking. In NetSoft (2015), pp. 1–5.

[158] Wang, S., Bi, J., Wu, J., Yang, X., and Fan, L. On Adapting HTTP Protocol

to Content Centric Networking. In Proc. of the 7th International Conference on

Future Internet Technologies (New York, NY, USA, 2012), CFI ’12, pp. 1–6.

[159] Wang, Y., Rozhnova, N., Narayanan, A., Oran, D., and Rhee, I. An

Improved Hop-by-hop Interest Shaper for Congestion Control in Named Data Net-

working. In ’13 (New York, NY, USA, 2013), pp. 55–60.

[160] Westphal, C., et al. Adaptive Video Streaming over Information-Centric Net-

working (ICN). RFC 7933, Aug 2016.

[161] White, G., and Rutz, G. Content delivery in Content-Centric

Networks. http://www.cablelabs.com/wp-content/uploads/2016/02/

Content-Delivery-with-Content-Centric-Networking-Feb-2016.pdf, 2016.

[162] Yi, C., Afanasyev, A., Moiseenko, I., Wang, L., Zhang, B., and Zhang,

L. A Case for Stateful Forwarding Plane. Comput. Commun. 36, 7 (Apr 2013),

779–791.

[163] Yi, C., Afanasyev, A., Wang, L., Zhang, B., and Zhang, L. Adaptive

Forwarding in Named Data Networking. SIGCOMM Comput. Commun. Rev. 42, 3

(Jun 2012), 62–67.

[164] Yu, Y., Afanasyev, A., Clark, D., claffy, k., Jacobson, V., and Zhang,

L. Schematizing Trust in Named Data Networking. In Proc. of the 2Nd ACM

SIGCOMM ICN (New York, NY, USA, 2015), ’15, pp. 177–186.

[165] Yuan, H., Crowley, P., and Song, T. Enhancing Scalable Name-Based For-

warding. In ANCS (2017), pp. 60–69.

http://www.cablelabs.com/wp-content/uploads/2016/02/Content-Delivery-with-Content-Centric-Networking-Feb-2016.pdf
http://www.cablelabs.com/wp-content/uploads/2016/02/Content-Delivery-with-Content-Centric-Networking-Feb-2016.pdf

136 BIBLIOGRAPHY

[166] Zhang, F., Zhang, Y., Reznik, A., Liu, H., Qian, C., and Xu, C. A transport

protocol for content-centric networking with explicit congestion control. In Proc. of

23rd ICCCN 2014 (Aug 2014), pp. 1–8.

[167] Zhang, G., Li, Y., and Lin, T. Caching in information centric networking: A

survey. Computer Networks 57, 16 (2013), 3128 – 3141.

[168] Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley,

P., Papadopoulos, C., Wang, L., and Zhang, B. Named Data Networking.

ACM SIGCOMM Comput. Commun. Rev. 44, 3 (Jul 2014), 66–73.

[169] Zhang, L., Afanasyev, A., Burke, J., Jacobson, V., claffy, k., Crowley,

P., Papadopoulos, C., Wang, L., and Zhang, B. Named Data Networking.

SIGCOMM Comput. Commun. Rev. 44, 3 (Jul 2014), 66–73.

[170] Zhang, L., Amin, S., and Westphal, C. Demo: VR Video Conferencing over

Named Data Networks. In Proceedings of the 4th ACM Conference on Information-

Centric Networking (2017), ICN ’17, ACM.

[171] Zhang, M., Luo, H., and Zhang, H. A Survey of Caching Mechanisms in

Information-Centric Networking. IEEE Communications Surveys Tutorials 17, 3

(2015), 1473–1499.

[172] Zhang, Y., Afanasyev, A., Burke, J., and Zhang, L. A survey of mobility

support in Named Data Networking. In IEEE INFOCOM WKSHPS 2016 (April

2016), pp. 83–88.

[173] Zhu, Z., Wang, S., Yang, X., Jacobson, V., and Zhang, L. ACT: Audio Con-

ference Tool over Named Data Networking. In Proceedings of the ACM SIGCOMM

Workshop on Information-centric Networking (2011), ICN ’11, ACM.

[174] Zuraniewski, P., van Adrichem, N., Ravesteijn, D., IJntema, W.,

Papadopoulos, C., and Fan, C. Facilitating ICN Deployment with an Ex-

tended Openflow Protocol. In Proc. of the 4th ACM SIGCOMM ICN (New York,

NY, USA, 2017), ICN ’17, pp. 123–133.

BIBLIOGRAPHY 137

pdfpages

Appendix A

Résumé en Français

Information Centric Networking

Information Centric Networking (ICN) désigne une architecture de réseau basée sur le

nommage de données, plutôt que sur l’emplacement de leur hôte, pour une communication

utilisateur-contenu. L’idée de la mise en réseau de données nommées n’est pas nouvelle.

Elle a inspiré de nombreuses propositions, telles que TRIAD [71], CBN [48], DONA [87],

avant de recevoir une attention significative au sein de la communauté de chercheurs avec

les architectures CCN [82] et NDN [168] et avec des projets basés sur Pub-Sub (par ex.

PSIRP/PURSUIT [1]).

Malgré d’importantes différences architecturales, une idée commune caractérise ICN: des

schémas de communication évolutifs et indépendants de l’emplacement de leurs hôtes,

avec une sécurité ancrée sur les données elles-mêmes. Il en résulte un support natif pour

mobilité, le stockage et la sécurité en tant que fonctionnalités de réseau, qui sont intégrées

dans l’architecture par conception, plutôt que comme une réflexion après coup. Plusieurs

années de recherches et d’expérimentation en laboratoire ont fait progresser la conception

architecturale et contribué à montrer le potentiel d’ICN. Cependant, l’idée divise encore

la communauté en raison du compromis «coût/bénéfice» [56] lié à son introduction dans

les réseaux IP existants.

Récemment, un regain d’intérêt industriel et universitaire pour ICN a été généré par la

138

139

nécessité de conceptions de réseaux capables de faire face aux futurs défis du réseau 5G.

La prochaine génération de réseaux radiomobiles a en effet l’ambition de desservir un large

nombre de cas d’utilisation sur plusieurs marchés verticaux et ICN a été identifié comme

un candidat prometteur pour satisfaire leurs besoins réseaux, en matière de performances,

d’évolutivité et de coût [25, 116, 8]. Les discussions architecturales de la 5G ont également

relancé le débat sur les étapes de déploiement et le coût de l’introduction d’ICN dans les

réseaux opérationnels.

Même si la virtualisation et la segmentation du réseau centré sur les applications en 5G

permettent l’utilisation de nouveaux plans de données comme ICN [128, 125], le scepti-

cisme persiste quant à son insertion à court terme.

Résumé de la thèse

Le but de cette thèse est de proposer une solution efficace pour insérer ICN dans l’Internet

actuel, en considérant trois aspects cruciaux:

• Le déploiement d’ICN dans l’Internet actuel

• La fourniture de services de transport ICN aux noeuds finaux

• L’amélioration et l’automatisation de la configuration, de la gestion et

du contrôle d’un réseau ICN

Premièrement, cette thèse propose une solution efficace pour déployer incrémentale-

ment ICN dans l’Internet actuel. ICN est généralement déployé en exploitant une

approche de superposition sur IP, en raison de la difficulté de changer la couche réseau

(Internet Ossification) et l’effort requis pour normaliser une nouvelle couche protocolaire

de niveau 3. De plus, tout le matériel construit au cours des trois dernières décennies a

été optimisé pour le transfert IP et la conception et le déploiement de nouveaux appar-

eils optimisés pour ICN est coûteux pour les opérateurs. Le chapitre 3 propose Hybrid

ICN (hICN), une solution élégant au problème du déploiement de l’ICN. hICN est une

140 Chapter A. Résumé en Français

nouvelle architecture ICN construite sur l’utilisation des adresses IP comme noms ICN

et la mise en correspondance la sémantique ICN à celle des en-têtes IP et TCP. Cela

permet aux paquets ICN de traverser l’Internet de manière transparente, car ils appar-

aissent exactement comme un paquet IP normal. En même temps, ces paquets peuvent

être traités par quelques routeurs hICN dans le réseau, qui peuvent être stratégiquement

placés à la périphérie comme extension de routeurs IP standard, par exemple sous forme

de fonction réseau virtuelle. Avec une vaste campagne expérimentale, le chapitre montre

que les paquets hICN peuvent traverser l’Internet actuel, sans que l’architecture hICN ne

fasse de compromis sur les principes de l’ICN, qui sont présentés dans chapitre 2.

Deuxièmement, la thèse se concentre sur le problème de déployer ICN dans les points

de terminaison réseau, autrement dit sur l’hôte final. Cela se fait généralement par

bibliothèques logicielles fournissant une API aux applications. Cependant, la plupart

du temps ces bibliothèques permettent uniquement de développer des applications au-

dessus de la couche réseau ICN: bien que cette approche donne un contrôle au niveau

des paquets de la communication, la plupart du temps, il en résulte un défi trop com-

plexe pour les développeurs d’applications, forcé de faire face à des problèmes typiques de

couche 4 tels que le contrôle de la congestion et opérations de segmentation/remontage.

Ce qu’un développeur d’applications aimerait est d’échanger de façon simple les données

d’application (ADU), sans traiter les problèmes de réseau tels que les retransmissions,

la gigue, le MTU découverte, etc. Ce qu’il faut, c’est une couche de transport offrant

un environnement propre et une API simple qui permet aux développeurs d’accéder aux

services de transport, comme ils les accèdent avec l’API Socket sur tous les systèmes

d’exploitation modernes. Un motif du succès de TCP/IP s’explique par le fait que les

applications peuvent l’utiliser via API simples permettant aux développeurs de commu-

niquer via le réseau comme s’ils écrivaient simplement dans un fichier. Le chapitre 4

présente les fonctionnalités de la couche de transport et un ensemble d’interfaces (API)

permettant aux développeurs d’applications de facilement accéder aux services de trans-

port ICN. Plus particulièrement, ce chapitre décrit son architecture et sa mise en oeuvre,

en mettant l’accent sur des technologies récentes telles que VPP [152], permettant de

141

fournir performance et efficacité aux applications. Une analyse comparative approfondie

à la fin du chapitre présente une étude de performances, et dans quelle mesure les services

de transport spécifiques d’ICN peuvent affecter les applications.

Par la suite, les chapitres 5 et 6 évaluent les avantages que les services de réseau et

de transport hICN peuvent apporter aux applications. Ils considèrent notamment deux

cas d’utilisation représentatif de la diversité des applications réseaux: HTTP et WebRTC.

Bien que la sémantique de HTTP est Demande/Réponse comme ICN, les messages HTTP

simples sont envoyés depuis le client vers serveur et vice-versa, car HTTP suppose que le

transport sous-jacent se comporte comme TCP: les messages sont envoyés de l’expéditeur

au destinataire. Pour cette raison HTTP ne peut pas être déployé directement sur ICN.

Un service de transport supplémentaire est ainsi requis, placé comme middleware entre

l’application elle-même et la couche de transport: cela permet un equivalent entre la

sémantique HTTP et celle des noms ICN, ajoutant les avantages de ce dernier au modèle de

communication client-serveur unicast de HTTP. Le chapitre 5 évalue ensuite les propriétés

d’évolutivité de HTTP sur ICN, en particulier en ce qui concerne le côté serveur, qui

doit notamment servir un grand nombre de clients. Il compare ensuite les différents

comportements du transport ICN par rapport au modèle TCP / IP standard. Les résultats

montrent que HTTP sur ICN évolue mieux que les solutions HTTP sur TCP actuelles,

notamment dans le cas de la diffusion de vidéo linéaire.

La solution présentée pour HTTP n’est pas valable pour le cas d’une application avec un

budget de latence extrêmement faible, comme les jeux vidéo ou la vidéoconférence. Le

protocole WebRTC et son architecture sont de plus en plus adoptés par les entreprises

de médias pour les services temps réel. Les exigences de WebRTC en matière de latence

et d’évolutivité ne sont pas possible en utilisant la solution adoptée pour HTTP. Pour

répondre à ces exigences, le chapitre 6 propose un nouveau protocole de synchronisation

adaptée aux applications en temps réel, ainsi qu’une nouvelle conception d’architecture

capable de suivre la croissance du volume de contenus (par exemple, le nombre de flux

multimédias actifs dans une vidéoconférence) plutôt que le nombre de participants à la

session en temps réel. Le chapitre 6 présentera la conception de hICN-RTC, une version

142 Chapter A. Résumé en Français

de WebRTC intégrée sur hICN, ainsi que son protocole de synchronisation, permettant

d’utiliser le transport hICN sans introduire de latence supplémentaire dans la distribution

de contenu. Les résultats d’expérimentation au sein de ce chapitre confirment les choix

de conception effectués et valident les propriétés d’évolutivité de la solution conçue.

Enfin, le chapitre 7 propose une solution pour déployer, configurer et gérer des

réseaux et applications ICN par programmation: virtual ICN (vICN). Dans ICN,

la liaison entre l’application et la couche réseau limite le choix d’outils d’automatisation

de déploiement de réseaux, qui doivent donc être repensés en conséquence. La plupart du

temps, ces outils ne fournissent pas ce type de communication "intercouche" (par exemple,

la fourniture d’adresses IP pour les noms hICN). vICN est un travail préliminaire qui tente

de combler cette lacune, en particulier dans le cas de hICN, où une collaboration étroite

entre l’application et la couche réseau est requise, étant donné que la sémantique ICN est

directement intégrée dans la couche IP.

Titre : Vers un déploiement incrémental programmable et évolutif d’ICN dans le monde réel

Mots clés : ICN, Déploiement Incrémentiel, Transport, Socket API, HTTP, WebRTC, Gestion Réseau, Confi-
guration Réseau, Contrôle Réseau

Résumé : Réseau centré sur l’information (ICN) en-
globe une ensemble d’architectures réseaux repen-
sant les principes de communication Internet autour
des données nommées. Après plusieurs années de
recherche et l’émergence de quelques propositions
populaires, l’idée de remplacer TCP / IP par un réseau
centré sur les données reste objet de débat. Les avan-
tages du ICN ont été préconisés dans le contexte des
réseaux 5G pour la prise en charge de modèles de
communication multi-accès / source, à latence mini-
male et avec plusieurs utilisateurs mobile. Toutefois,
des tests à grande échelle et une insertion dans des
réseaux opérationnels doivent encore être réalisés,
probablement en raison de l’absence d’une stratégie
de déploiement incrémental claire. L’objectif de cette
thèse est de proposer et d’évaluer des solutions effi-
caces pour le déploiement de l’ICN.
Tout d’abord, nous proposons Hybrid-ICN (hICN), une
intégration ICN dans IP (plutôt que sur / sous / à la
place de) qui a pour ambition de ne pas échanger les
principes architecturaux de ICN. En réutilisant les for-
mats de paquets existants, hICN introduit de l’innova-
tion au sein de la pile IP, nécessitant un minimum de
mises à niveau de logicielles et garantissant une inter-
connexion transparente avec les réseaux IP existants.
Deuxièmement, la thèse est centrée sur le problème

du déploiement de l’ICN aux extrémités du réseau,
notamment l’hôte final, en concevant une infrastruc-
ture de transport et une API de socket pouvant être
utilisées dans plusieurs architectures ICN telles que
NDN, CCN et hICN. Le cadre favorise les technolo-
gies de pointe visant à fournir des performances et
une efficacité aux applications. Une analyse compa-
rative détaillée à la fin du chapitre présentera les per-
formances du cadre de transport.
Ensuite, les avantages que les services de transport
et de réseau hICN peuvent apporter aux applications
seront évalués en considérant deux principaux cas
d’utilisation: HTTP et WebRTC. Le premier représente
le protocole de facto du Web, tandis que le second est
une nouvelle technologie émergente de plus en plus
adoptée pour les services en temps réel.
Enfin, la thèse propose une solution pour déployer
par programmation, configurer et gérer des réseaux
et des applications ICN: Virtualized ICN (vICN), un
cadre unifié et programmable pour la configuration
et la gestion de réseaux, qui utilise les progrès
récents en matière d’isolement des ressources et de
techniques de virtualisation. Il offre une plate-forme
unique, flexible et évolutive pour répondre à différents
objectifs, en particulier les déploiements réels de
l’ICN dans les réseaux IP existants.

Title : Towards a scalable and programmable incremental deployment of ICN in the real world

Keywords : ICN, Incremental Deployement, Transport, Socket API, HTTP, WebRTC, Network Management,
Network Configuration, Network Control

Abstract : Information-Centric Networking (ICN) em-
braces a family of network architectures re-thinking In-
ternet communication principles around named-data.
After several years of research and the emergence of
a few popular proposals, the idea to replace TCP/IP
with data-centric networking remains a subject of de-
bate. ICN advantages have been advocated in the
context of 5G networks for the support of highly mo-
bile, multi-access/source and latency minimal pat-
terns of communications. However, large-scale testing
and insertion in operational networks are yet to hap-
pen, likely due to the lack of a clear incremental de-
ployment strategy. The aim of this thesis is to propose
and evaluate effective solutions for deploying ICN.
Firstly, we propose Hybrid-ICN (hICN), an ICN inte-
gration inside IP (rather that over/under/ in place of)
that has the ambition to trade-off no ICN architectural
principles. By reusing existing packet formats, hICN
brings innovation inside the IP stack, requiring mini-
mal software upgrades and guaranteeing transparent
interconnection with existing IP networks.
Secondly, the thesis focuses on the problem of de-
ploying ICN at the network endpoints, namely at the

end host, by designing a transport framework and a
socket API that can be used in several ICN archi-
tectures such as NDN, CCN and hICN. The frame-
work fosters cutting-edge technologies aiming at pro-
viding performance and efficiency to applications. An
extensive benchmarking at the end of the chapter will
present the performance of the transport framework.
Subsequently, the benefits that hICN network and
transport services can bring to applications will be as-
sessed, by considering two main use cases: HTTP
and WebRTC. The former represents the de-facto pro-
tocol of the Web, while the latter is a new emer-
ging technology increasingly adopted for real time ser-
vices.
At last, the thesis proposes a solution for programma-
tically deploying, configuring and managing ICN net-
works and applications: Virtualized ICN (vICN), a pro-
grammable unified framework for network configura-
tion and management that uses recent progresses in
resource isolation and virtualization techniques. It of-
fers a single, flexible and scalable platform to serve
different purposes, in particular the real deployments
of ICN in existing IP networks.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

	Abstract
	Introduction
	Information Centric Networking
	Thesis statement
	List of Publications

	Background on ICN
	Named Data
	Dynamic Forwarding
	Data-Centric Security
	Receiver-Driven Connection-less Transport
	Other features of the ICN architecture

	Hybrid Information Centric Networking
	Introduction
	hICN Design
	Named Data
	Name management
	Dynamic Forwarding
	Data-Centric Security
	Receiver-Driven Connectionless Transport
	Other features of the hICN architecture

	Feasibility assessment
	Controlled End-to-End Deployments
	Large Scale Measurements

	Linear video distribution
	Workload and Implementation
	In-network Control
	Seamless Mobility
	Bandwidth Aggregation over HetNet

	Related work
	Discussion and Conclusion

	Transport layer and socket API for ICN
	Introduction
	Namespaces in ICN
	Architecture
	Transport Services
	End-points description
	Network namespaces
	Socket API

	Implementation
	VPP: vector packet processor
	Forwarder Connector
	Consumer Socket
	Producer Socket

	Performance Analysis
	Experimental settings
	Results

	Related Work
	Discussion and Conclusion

	HTTP over hICN
	Introduction
	Reverse pull transport service
	Initialization
	Naming
	Publish Notification
	Additional considerations

	Optimized Reverse pull for HTTP
	Multipoint-To-Multipoint communication
	Evaluation of HTTP over hICN: Multicast and Server Load
	Related Work

	RTC over hICN
	Introduction
	hICN-RTC Architecture
	hICN-RTC Communication Model
	hICN-RTC Advantages

	Synchronization Protocol
	Protocol Discussion

	hICN-RTC Evaluation
	Scalability

	Related work
	Conclusion

	Virtualized ICN
	Introduction
	Related work
	The vICN framework
	Functional architecture
	Resource model
	Resource processor
	Orchestrator and Scheduler

	Implementation
	vICN codebase
	Slicing
	IP and hICN topologies
	Link emulation
	Monitoring capabilities

	Examples
	Use case description
	Scalability
	Programmability
	Monitoring and Reliability

	Conclusion

	Conclusions and Future Work
	Summary
	List of contributions

	Bibliography
	Appendices
	Résumé en Français

