
HAL Id: tel-02507788
https://pastel.hal.science/tel-02507788v1

Submitted on 13 Mar 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploration of multivariate EEG /MEG signals using
non-stationary models

Pierre Ablin

To cite this version:
Pierre Ablin. Exploration of multivariate EEG /MEG signals using non-stationary models. Machine
Learning [stat.ML]. Université Paris Saclay (COmUE), 2019. English. �NNT : 2019SACLT051�. �tel-
02507788�

https://pastel.hal.science/tel-02507788v1
https://hal.archives-ouvertes.fr

Th
ès

e
de

do
ct

or
at

N
N

T
:2

01
9S

A
C

LT
05

1

Exploration of multivariate M/EEG signals
using non-stationary models

Thèse de doctorat de l’Université Paris-Saclay
préparée à Inria et Télécom ParisTech

Ecole doctorale n◦580 Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Mathématiques et informatique

Thèse présentée et soutenue à Palaiseau, le 28/11/2019, par

PIERRE ABLIN

Composition du Jury :

Aapo Hyvärinen
Professor, University of Helsinki (Department of Computer Science) Président

Pierre-Antoine Absil
Professor, Université Catholique de Louvain (Department of
Mathematical Engineering) Rapporteur

Pierre Comon
Directeur de Recherche, CNRS, Université Grenoble Alpes
(GIPSA-Lab) Rapporteur

Émilie Chouzenoux
Chargée de Recherche, Inria, Université Paris-Saclay,
CentraleSupélec (Centre pour la Vision Numérique) Examinateur

Jean-François Cardoso
Directeur de Recherche, CNRS, Institut d’Astrophysique de Paris Directeur de thèse

Alexandre Gramfort
Directeur de Recherche, Université Paris-Saclay, Inria, CEA Co-directeur de thèse

Contents

1 Motivation and contribution 9
1.1 Statistical principles . 11
1.2 Optimization . 21
1.3 A bit of Riemannian geometry . 34
1.4 Independent Component Analysis . 39
1.5 Contributions . 56
1.6 Publications . 59

I - Faster Independent Component Analysis 61

2 Faster ICA by preconditioning with Hessian approximations 65
2.1 The Picard algorithm . 65
2.2 Extension to the orthogonal constraint 82

3 Stochastic algorithms for ICA with descent guarantees 89
3.1 Stochastic algorithms for ICA . 89

II - SMICA: Spectral Matching Independent Component Analysis
for M/EEG Brain Rhythms Separation 105

4 SMICA: spectral matching ICA for M/EEG processing 107
4.1 SMICA . 107

Conclusion and Perspectives 127

Bibliography 129

Acknowledgement

Je remercie tout d’abord mes deux directeurs de thèse, qui m’ont excellement encadré.
Jean-François, merci de m’avoir enseigné la beauté de l’ICA. Je garde en mémoire nos
stimulantes réunions, et j’espère qu’il y en aura encore de nombreuses. Alex, merci
d’avoir été le moteur de ma thèse et de toujours m’avoir poussé vers l’avant. Merci
aussi de m’avoir envoyé aux quatres coins du monde ! J’ai beaucoup appris à vos côtés.
Then, I would like to warmly thank the jury for agreeing to review my work. Your
comments have truly improved the quality of this thesis.

Je remercie ensuite mes premiers collègues, ceux de Télécom: Mathurin, pour m’avoir
accompagné jusqu’au bout du Rer B (et dans bien d’autres endroits), Pierre, pour
m’avoir accompagné jusqu’aux coins les plus reculés du Bangladesh (certes, dans un
écran, mais quand même). Merci aux autres occupants du bureau E306, Eugène
l’apprenti sorcier, Quentin le grand sportif et Kevin l’alpha. Merci à Mastane, tou-
jours dans le game depuis la Courtine, Hamid, les cheveux les plus soyeux de tout le
plateau, Alex, les chaussures les plus blanches de tout le plateau, et Simon, le conduc-
teur fou de Langebaan. Merci aux anciens, Ray Brault, Anna (Dr. Love) et Albert
pour avoir ouvert la voie, et aux plus jeunes, Anas et Guillaume.

Merci ensuite à toute l’équipe Parietal pour son accueil, et en particulier à son directeur,
Bertrand, pour son oreille attentive. Merci aux deux précurseurs, Elvis et Arthur,
merci à Thomas M. pour ton amitié et notre fructueuse collaboration. Merci aussi à
Antonia et Hamza pour votre companie dans notre bureau, et à Thomas B., Jache,
Hugo, Zacharie, Hugo, Patricio et Jérome pour tous ces verres pris ensemble. Merci
à Olivier pour ces discussions, j’espère te croiser encore longtemps aux concerts de la
capitale. David, merci pour tous ces bons moments, en particulier cette semaine intense
avant la deadline NeurIPS. Big up à la relève, Quentin, Hicham, Valentin, Maeliss et
Hubert. Merci à Loubna, Ana-Luisa et Kamalakar pour leur accueil tous les mardi.
Merci aussi à tous ceux que j’oublie.

Merci à mes co-auteurs, Francis Bach, Cédric Févotte, Herwig Wendt, Dylan, David,
Thomas, Mathurin, Denis et Gaël pour nos collaborations et ces captivants échanges
scientifiques.

Je voudrais pour finir remercier mes parents pour leur présence pendant ces 25 26 années.
Merci à eux d’avoir toujours su me mettre sur les bons rails, pour arriver aujourd’hui à
cette thèse. Vous m’avez donné toutes les chances de réussir.

Abstract

Independent Component Analysis (ICA) models a set of signals as linear combinations
of independent sources. This analysis method plays a key role in electroencephalography
(EEG) and magnetoencephalography (MEG) signal processing. Applied on such signals,
it allows to isolate interesting brain sources, locate them, and separate them from
artifacts. ICA belongs to the toolbox of many neuroscientists, and is a part of the
processing pipeline of many research articles. Yet, the most widely used algorithms
date back to the 90’s. They are often quite slow, and stick to the standard ICA model,
without more advanced features.

The goal of this thesis is to develop practical ICA algorithms to help neuroscientists. We
follow two axes. The first one is that of speed. We consider the optimization problems
solved by two of the most widely used ICA algorithms by practitioners: Infomax and
FastICA. We develop a novel technique based on preconditioning the L-BFGS algorithm
with Hessian approximation. The resulting algorithm, Picard, is tailored for real data
applications, where the independence assumption is never entirely true. On M/EEG
data, it converges faster than the ‘historical’ implementations.

Another possibility to accelerate ICA is to use incremental methods, which process a
few samples at a time instead of the whole dataset. Such methods have gained huge
interest in the last years due to their ability to scale well to very large datasets. We
propose an incremental algorithm for ICA, with important descent guarantees. As a
consequence, the proposed algorithm is simple to use and does not have a critical and
hard to tune parameter like a learning rate.

In a second axis, we propose to incorporate noise in the ICA model. Such a model is
notoriously hard to fit under the standard non-Gaussian hypothesis of ICA, and would
render estimation extremely long. Instead, we rely on a spectral diversity assumption,
which leads to a practical algorithm, SMICA. The noise model opens the door to new
possibilities, like finer estimation of the sources, and use of ICA as a statistically sound
dimension reduction technique. Thorough experiments on M/EEG datasets demon-
strate the usefulness of this approach.

All algorithms developed in this thesis are open-sourced and available online. The
Picard algorithm is included in the largest M/EEG processing Python library, MNE
and Matlab library, EEGlab.

Notation

General

Ip Identity matrix in Rp×p

M> Transpose of a real matrix M

|M | The determinant of a matrix M

M−1 The inverse of a matrix M

GLp The set of invertible matrices of size p× p

Op The set of orthogonal matrices of size p× p; such that MM> = Ip

KL(p, q) The Kullback-Leibler divergence between the two distributions p and
q, equal to

∫
x log(p(x)

q(x))p(x)dx

〈x, y〉 The inner product between two elements of an Euclidean space, x, y ∈
E. It is always the canonical inner product, unless specified otherwise.
If E = Rp, 〈x, y〉 =

∑p
i=1 xiyi ∈ R

〈x,M, y〉 The inner product with respect to M , where M is a symmetric linear
operator. 〈x,M, y〉 = 〈x,My〉

x⊗ y The outer product between two elements of an Euclidean space, x, y ∈
E. It is a linear map from E to E. If E = Rp, x ⊗ y is the p × p
matrix of entries (x⊗ y)ij = xiyj

‖x‖ The norm of x. If x lives in a Euclidean space, unless specified oth-
erwise, it is the `2 norm

∇f The gradient of f

∇2f The Hessian of f

exp(M) The exponential of M : exp(M) =
∑+∞

k=0
Mk

k!

1
Motivation and contribution

Contents

1.1 Statistical principles . 11
1.1.1 Likelihood, maximum-likelihood estimation 11
1.1.2 Fisher information and Cramer-Rao bound 13
1.1.3 The Expectation-Maximization algorithm 18

1.2 Optimization . 21
1.2.1 First order and stochastic methods 21
1.2.2 Incremental EM and majorization-minimization: stochastic al-

gorithms with descent guarantees 25
1.2.3 Quasi-Newton methods . 28

1.3 A bit of Riemannian geometry . 34
1.3.1 General concepts . 34
1.3.2 Optimization on manifolds . 35
1.3.3 Geometry of the general linear and orthogonal groups 37

1.4 Independent Component Analysis . 39
1.4.1 Indeterminacies and identifiability 40
1.4.2 Maximum-likelihood ICA and the role of density 41
1.4.3 Measures of independence . 44
1.4.4 Equivariance and multiplicative updates 45
1.4.5 Non-Gaussian ICA: maximum-likelihood algorithms 47
1.4.6 Orthogonal algorithms . 49
1.4.7 Different routes to ICA . 51
1.4.8 ICA models with noise . 53
1.4.9 Applications of ICA: M/EEG signal processing 54

1.5 Contributions . 56
1.6 Publications . 59

Background

This thesis gathers three years of work on the problem of Independent Component
Analysis (ICA), and its application to brain signal processing. In this section, we review
some useful mathematical principles which will guide us throughout this manuscript.
The ICA problem is the following. Let A ∈ GLp, the set of p × p invertible matrices,
and s ∈ Rp a random vector with independent entries, drawn from a density d(s) =∏p
i=1 di(si). Assume that we observe the random vector x ∈ Rp such that:

10 CHAPTER 1. MOTIVATION AND CONTRIBUTION

x = As (1.1)

The matrix A is called the mixing matrix, s the sources, and x the observations. The
independent component analysis of x consists in recovering A and s from samples of x.

Many methods have been proposed in the literature to perform ICA. In this thesis, we
follow the maximum likelihood principle: we view the ICA model (1.1) as a generative
model with parameters A and s. Maximum likelihood offers a principled framework for
recovering the parameters of the model, with important statistical guarantees. A brief
introduction to maximum-likelihood estimation is made in section 1.1.

Maximum likelihood allows to write the inference of A and s as an optimization problem.
The log-likelihood of ICA writes:

`(A, s,x) = − log |A|+
p∑
i=1

log(di(si)) ,

which can be rewritten only in terms of A since we have s = A−1x:

`(A,x) = − log |A|+
p∑
i=1

log(di([A
−1x]i)) .

First, we consider the case of non-Gaussian ICA, where samples X = [x1, · · · ,xn] ∈
Rp×n are assumed to be independent identically distributed. The log-likelihood then
writes as a sum over samples:

L(A,X) = −n log |A|+
n∑
j=1

p∑
i=1

log(di([A
−1X]ij)) .

Assuming that the source densities di are known, the estimation of A amounts to solving
the optimization problem:

A ∈ arg max
A∈GLp

−n log |A|+
n∑
j=1

p∑
i=1

log(di([A
−1X]ij)) . (1.2)

This is an optimization problem over the manifold GLp. In section 1.2, we review
the main optimization techniques that are going to be useful for our purpose, and in
section 1.3 we give a brief introduction to manifolds and to optimization on it. Finally,
section 1.4 is devoted to a more in-depth review of the principles of ICA.

The two first contributions of this thesis consist in developing fast algorithms for solving
the problem (1.2). The Preconditioned ICA for Real Data (Picard) algorithm leverages
the particular structure of the problem to find good and cheap to compute Hessian
approximations, and uses them as a preconditioning for the L-BFGS algorithm. In a
different approach, the Majorization-Minimization ICA (MMICA) uses the fact that the
cost function writes as a sum over samples to obtain fast and safe stochastic algorithms
for ICA, extremely fast when the number of observed samples n is large.

1.1. STATISTICAL PRINCIPLES 11

The last contribution of this thesis is the application of the Spectral Matching ICA
algorithm on M/EEG data. It employs a different route to ICA than the non-Gaussian
one: the samples are no longer supposed to be independently distributed. Instead, the
sources are colored and show spectral diversity. There is also a noise model, enabling
estimation of a different number of sources than observations. This algorithm is fit
using the expectation-maximization principle derived in section 1.1.

Readers familiar with these subjects can directly go to section 1.4 for an introduction
to ICA. Finally, section 1.5 summarizes and motivates the contributions of this thesis.

1.1 Statistical principles

According to the Cambridge Dictionary, statistics is the science of using information
discovered from collecting, organizing, and studying numbers. As such, it is a core
building of many modern sciences, including neuroscience, machine learning or signal
processing. Many methods presented in this dissertation are built on strong statistical
ground. We begin with a few statistical principles which will be useful later.

1.1.1 Likelihood, maximum-likelihood estimation

In the following, we consider a set X (e.g. a vector space), and a sample x ∈ X drawn
from an unknown distribution over X , ν∗. We are interested in recovering ν∗. In a
parametrized framework, we consider a parameter space Θ which parametrizes a family
of distributions ν(·; θ) for θ ∈ Θ. This can be seen as a model for x: a priori knowledge
on x allows to narrow the set of possible distribution to a parametrized family.

Example 1.1 (Gaussian). For instance, assume X = R, and so that x is a scalar. We
may impose a Gaussian model on x, parametrized by θ = (µ, σ) ∈ Θ = R × R+, by
taking:

ν(x;µ, σ) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (1.3)

In this context, we define a model as a parametrized distribution family. We now start
with a definition which is going to be extremely important for the rest of this thesis.
We say that the model holds if there exists θ∗ ∈ Θ such that ν(·; θ∗) = ν∗.

As an important note, when it comes to real data (and to real generative processes
ν∗), no model hold. It is the famous saying attributed to the statistician George Box:
"All models are wrong". In example 1.1, the model holds if the distribution ν∗ is also
Gaussian. We can now define the likelihood and log-likelihood: The likelihood of x ∈ X
is the function mapping θ to ν(x, θ). The log-likelihood is the natural logarithm of this
function:

`(θ, x) = log(ν(x; θ)) ∈ R . (1.4)

When the sample x is not ambiguous, we simply denote `(θ).

Example 1.2 (Gaussian). For a Gaussian model 1.3, we have `(µ, σ, x) = − (x−µ)2

2σ2 −
log(σ)− 1

2 log(π).

12 CHAPTER 1. MOTIVATION AND CONTRIBUTION

Everything said previously is in a setting where only one sample, x, is seen. In most
cases, a statistician will deal with a dataset of n > 1 samples, x1, · · · , xn ∈ X . Luckily,
we can treat this set of samples as a single sample X = {x1, · · · , xn}, coming from the
(potentially huge) product space X n = X × · · ·×X . The target density ν∗ is then from
a highly dimensional space. In order to reduce the dimension, it is customary to make
some assumptions on the relationship between the samples. Independence and identical
distribution are such assumptions. The samples are independent if the distribution
factorizes:

ν∗(x1, · · · , xn) =
n∏
i=1

ν∗i (xi) , (1.5)

where ν∗i is the i-th marginal of ν∗. and they are identically distributed if the marignals
are all equal: ν∗i = v∗ for all i and a certain distribution v∗ over X . The combina-
tion of these two assumptions is called the independently, identically distributed (i.i.d.)
assumption.

When using an i.i.d. model, the likelihood factorizes. Denoting v(·; θ) the i-th marginal
of ν(·; θ), the log-likelihood of the dataset X writes:

L(θ,X) =
n∑
i=1

`(θ, xi) ,

where `(θ, xi) = log(v(xi; θ)) is the log-likelihood of one sample.

Important note: In the following, under the identically distributed sample hypothesis,
v will always denote the distribution of a sample (so it is a distribution over X), while
ν denotes the distribution of the whole dataset X = (x1, · · · , xn) (so it is a distribution
over X n). In the following, we are mostly interested in recovering the sample distri-
bution v, from which the dataset distribution ν follows under the i.i.d. hypothesis:
ν(x1, · · · , xn) = v(x1)× · · · × v(xn).

We now discuss about a powerful technique for parameter estimation: the maximum-
likelihood principle. For X ∈ X n a dataset of n observations, and ν(·; θ) a model, the
maximum-likelihood estimators are:

θ∗ ∈ arg max(L(θ,X)) , (1.6)

provided that the set of maximum values of the log-likelihood exists.

Example 1.3 (Gaussian). The log-likelihood for a Gaussian is `(µ, σ, x) = − (x−µ)2

2σ2 −
log(σ)− 1

2 log(π). If the standard deviation σ is fixed and not a parameter of the model,
it is maximized by setting µ = x. If not, the maximum-likelihood problem is degenerate,
since letting µ = x and σ → 0 makes ` go to +∞.

On the contrary, provided a set of n > 1 i.i.d. samples X = (x1, · · · , xn), the log-
likelihood writes as a sum:

L(θ,X) = −
n∑
i=1

(xi − µ)2

2σ2
− n log(σ)− n

2
log π ,

which is maximized for µ = 1
n

∑n
i=1 xi, σ =

√
1
n

∑n
i=1(xi − µ)2. We are here confronted

to a sad truth: the maximum-likelihood estimates may be biased. Indeed, assuming that
the i.i.d. samples in X are draw from Gaussian of mean µ∗ and standard deviation σ∗,
we find E[σ2] = n−1

n (σ∗)2.

1.1. STATISTICAL PRINCIPLES 13

We now derive a few properties of the maximum likelihood estimation. First, if (x1, · · · , xn)
are i.i.d. samples drawn from a distribution v∗, and v is a model of log-likelihood `,
then:

lim
n→+∞

1

n

n∑
i=1

`(θ, xi) = Ex∼v∗ [`(x, θ)] almost everywhere , (1.7)

and Ex∼v∗ [`(x, θ)] ≤ Ex∼v∗ [log(v∗(x))], with equality if and only if v∗ = v(x, θ) almost
everywhere. The difference between these two terms is the Kullback-Leibler divergence
between v∗ and v(·, θ):

KL(v∗, v) = Ex∼v∗

log

(
v∗(x)

v(x)

) ≥ 0 . (1.8)

This proposition shows that (at least asymptotically) the average log-likelihood of the
data with respect to the model is bounded by the entropy Ex∼v∗ [log(v∗(x))]. This is
one justification for the maximum-likelihood approach: assuming that the model holds,
with true parameter θ∗ (we recall that it means v∗ = v(·; θ∗)), we have, as n goes to
infinity, L(θ) ≤ L(θ∗), with equality if and only if v(·; θ) = v(·; θ∗).
This is where we first encounter the important notion of identifiability. We say that a
model (v(·, θ))θ∈Θ is identifiable if:

For all θ, θ′ ∈ Θ, v(·, θ) = v(·, θ′) =⇒ θ = θ′ ,

where equality is understood as almost everywhere. Identifiability of a model means
that two different parameters of the model cannot lead to the same distribution: there
must be a way to tell them apart. This notion plays a key role in the rest of the thesis,
and we will get back to it in greater length hereafter. Going back to the justification
of the maximum likelihood approach, we find that for models that hold and that are
identifiable, asymptotically, L(θ) ≤ L(θ∗) with equality if and only if θ = θ∗. Therefore,
maximizing the empirical (finite sample) log-likelihood should give a reasonable estimate
of θ∗. The following results proves that it is indeed the case: the maximum-likelihood
estimator is asymptotically consistent: Assume that the model holds for a parameter
θ∗, and that it is identifiable. Let (x1, · · · , xn) i.i.d. samples drawn from v∗, and
θn ∈ arg max

∑n
i=1 `(θ, xi) a maximum likelihood estimator. Under mild hypothesis,

θn → θ∗ almost surely.

Finally, it is interesting to give a geometrical intuition behind maximum-likelihood
estimation. The model v(·; θ) can be seen as a parametrized "surface" - a manifold -
in the space of distributions over X . As seen above, finding θ∗ amounts to finding the
"projection" of ν∗ on that manifold, with respected to the Kullback-Liebler divergence:
θ∗ = arg minθ∈Θ KL(v∗, v(·; θ)). For a dataset (x1 · · · , xn), the maximum likelihood
estimator θ̂ is obtained by projecting the empirical distribution v̂ = 1

n

∑n
i=1 δxi on the

model manifold. Figure 1.1 illustrates this.

1.1.2 Fisher information and Cramer-Rao bound

In this section, we are focusing on the properties of the expected log-likelihood func-
tion (expectation taken under the true distribution): Ex∼v∗ [`(θ, x)]. This function is
interesting because it is the limit of the empirical log-likelihood.

14 CHAPTER 1. MOTIVATION AND CONTRIBUTION

Figure 1.1 – A geometric representation of the topics discussed in this section. A
model is a set of distributions v(·; θ) parametrized by parameters θ ∈ Θ. It can be
seen as a manifold in the distribution space. The true distribution v∗ is a point in
the distribution space, which lies on the manifold if the model holds. The model is
identifiable if the mapping from Θ to the manifold is injective. The distribution of the
maximum likelihood estimator is the projection of v∗ on the manifold. The projection
is made with respect to the Kullback-Leibler divergence. The lines are not straight
to illustrate that this is not an Euclidean setting. Given a finite number of samples
(x1, · · · , xn), we do not have access to v∗ but rather to v̂ = 1

n

∑n
i=1 δxi , its empirical

counterpart, and the empirical maximum likelihood estimator θ̂ is once more computed
by projection.

We start by introducing the important notion of Fisher score. The Fisher score is
ψ(θ, x) = −∇θ`(θ, x) = − 1

v(x;θ)∇Θv(x; θ). This is the negative gradient of the log-
likelihood with respect to the parameters: it measures the steepness of the log-likelihood
function at a point in the sample set. For instance, if the model holds for parameter θ∗,
the log-likelihood is flat at θ∗, on average:

Assume that the model holds at θ∗. Then:

Ex∼v∗ [ψ(θ∗, x)] = 0 (1.9)

Indeed, in this case, Ex∼v∗ [ψ(θ∗, x)] = −
∫
X

1
v(x;θ∗)∇Θv(x; θ∗)v(x; θ∗)dx = −∇θ

∫
X v(x; θ∗)dx =

−∇θ1 = 0. This is natural: if the model holds, θ∗ is a maximum of the expected log-
likelihood Ex∼v∗ [`(θ, x)]. Eq. 1.9 shows that the gradient cancels at this point.

More generally, even if the model does not hold, maximum-likelihood estimation in the
asymptotic regime finds a local maximum θ̂ of the expected log-likelihood, such that
Ex∼v∗ [ψ(θ̂, x)] = 0, and the best model in terms of Kullback-Leibler divergence.

We may look further, and study the curvature of this function: its Hessian.

The Hessian of the log-likelihood writes:

∇2
θ`(θ, x) =

1

v(x; θ)
∇2
θv(x; θ)− ψ(θ, x)⊗ ψ(θ, x) ,

where⊗ is the outer product on the (dual) of Θ. For instance, if Θ = Rp, ψ(θ, x)⊗ψ(θ, x)

is a p× p matrix of coefficients
(
ψ(θ, x)⊗ ψ(θ, x))

)
ij

= ψ(θ, x)iψ(θ, x)j .

1.1. STATISTICAL PRINCIPLES 15

Therefore, the Hessian of the expected log-likelihood has two terms:

∇2Ex∼v∗ [`(θ, x)] = −Ex∼v∗ [ψ(θ, x)⊗ ψ(θ, x)] + Ex∼v∗ [
1

v(x; θ)
∇2
θv(x; θ)]

The first term is the opposite of the Fisher Information matrix (FIM). The FIM is:

I(θ) = Ex∼v∗ [ψ(θ, x)⊗ ψ(θ, x)] (1.10)

In general, the FIM is a positive semi-definite matrix.

In the special case where the model holds, with parameter θ∗, we have Ex∼v∗ [1
v(x;θ∗)∇2

θv(x; θ∗)] =

∇2Ex∼v∗ [1] = 0, therefore:

∇2Ex∼v∗ [`(θ∗, x)] = −I(θ∗) . (1.11)

When the model holds, the FIM gives the opposite of the curvature of the log-likelihood
function at the maximum likelihood.

We are now ready to present one of the fundamental results of statistical inference: the
Cramer-Rao lower bound.

Proposition 1.4 (Cramer-Rao lower bound). Assume that ν(·, θ) is a model paramet-
rized by θ ∈ Rp. Let T : X → Rp a function (T is called an estimator). Denote
Ex∼ν(·;θ)[T (x)] = T̄ (θ) the exptectation of the estimator, and J(θ) its Jacobian (a p× p
matrix). Assume that the FIM is never singular. Then:

Covθ(T) ≥ J(θ)I(θ)−1J(θ)> , (1.12)

where ≥ is the symetric matrices inequality, and Covθ(T) = Ex∼ν(·,θ)
[
(T (x)− T̄ (θ))⊗

(T (x)− T̄ (θ))
]
.

The proof is the following:

Proof Consider a vector concatenating T (x) and the Fisher score ψ(θ, x): V (θ, x) =
(T (x), ψ(θ, x)) ∈ R2p.

The covariance of V writes:

Covθ(V (θ, ·)) =

 Covθ(T) Ex∼ν(·,θ)
[
(T (x)− T̄ (θ))⊗ ψ(θ, x)

]
Ex∼ν(·,θ)

[
ψ(θ, x)⊗ (T (x)− T̄ (θ))

]
I(θ)

 ∈ R2p×2p

16 CHAPTER 1. MOTIVATION AND CONTRIBUTION

Let us focus on the upper right corner of the matrix Ex∼ν(·,θ)
[
(T (x)− T̄ (θ))⊗ψ(θ, x)

]
.

First, it can be simplified to Ex∼ν(·,θ)[T (x)⊗ψ(θ, x)], since Ex∼ν(·,θ)[ψ(θ, x)] = 0. Then,
we have:

Ex∼ν(·,θ)[T (x)⊗ ψ(θ, x)] =

∫
X
T (x)⊗ ψ(θ, x)v(x, θ)dx (1.13)

=

∫
X
T (x)⊗∇θv(x, θ)dx (1.14)

= ∇θ
∫
X
T (x)v(x, θ)dx (1.15)

= ∇θT̄ (θ) (1.16)
= J(θ) , (1.17)

so:

Covθ(V (θ, ·)) =

(
Covθ(T) J(θ)
J(θ)> I(θ)

)
.

What is important here is since it is a covariance matrix, it is a positive definite matrix.

In order to show that Covθ(T) ≥ J(θ)I(θ)−1J(θ)>, we finally show that for all x ∈ Rp,
xCovθ(T)x ≥ xJ(θ)I(θ)−1J(θ)x. To do so, for a vector x ∈ Rp, consider the vector z =
(x,−I−1(θ)J(θ)>x) ∈ R2p.The positivity of Covθ(V (θ, ·)) ensures zCovθ(V (θ, ·))z ≥ 0,
which yields as expected after developing: xCovθ(T)x− xJ(θ)I(θ)−1J(θ)>x ≥ 0, con-
cluding the proof.

In particular, consider an unbiased estimator T , such that T̄ (θ) = θ for all θ ∈ Θ. Then,
J(θ) = Ip and we find the simpler unbiased formula:

Covθ(T) ≥ I(θ)−1 .

This bound is one of the most important results in statistical inference. It says that one
cannot get arbitrary good estimators, and quantifies the minimal achievable covariance.
Efficient estimators achieve this lower-bound. An estimator T : X → Θ is efficient (or
Fisher-efficient) if it reaches the Cramer-Rao bound: Covθ[T (x)] = J(θ)I(θ)−1J(θ)>.
Note that when the model holds for a value θ∗, an estimator may also be called efficient
if it reaches the Cramer-Rao bound at θ∗, and not necessarily elsewhere.

Example 1.5 (Gaussian case). Assume a Gaussian model on the mean: θ = µ ∈ R,
and v(·, θ) = N (µ, σ2). The Fisher information for this model - a scalar in this case-
is I(θ) = Ex∼v(,̇θ)[

(x−µ)2

σ4] = 1
σ2 . The Cramer-Rao lower bound is therefore σ2: any

unbiased estimator of the mean will have a variance greater than σ2. If its variance is
equal to σ2, then it is efficient.

For instance, the trivial estimator T (x) = x is unbiased and efficient.

Of course, the previous result extends to a dataset x1, · · · , xn under the i.i.d. hypothesis:
Assume that v(·, θ) is a model parametrized by θ ∈ Rp. Let T : X n → Rp an estimator,
taking as input a dataset (x1, · · · , xn). Assume that the FIM of v, I(θ), is never singular.
Then:

Covθ(T) ≥ 1

n
J(θ)I(θ)−1J(θ)> . (1.18)

1.1. STATISTICAL PRINCIPLES 17

100 101 102 103

number of samples

10 3

10 2

10 1

100

Es
tim

at
or

 c
ov

ar
ia

nc
e

Median
Mean
Cramer-Rao bound

Figure 1.2 – Illustration of the Cramer-Rao bound for the simple example 1.6. The
median (blue curve) and mean (orange curve) of datasets of n = 1, . . . , 104 points
following the Laplace law are computed over 1000 repetitions. The variance of these
estimators are estimated by averaging these experiments. They all go to 0 as n grows,
but only the median estimator reaches asymptotically the Cramer-Rao bound (green
curve.)

This inequality simply comes from the fact that I(θ) = nI(θ), where I is the FIM of
v and I is the FIM of the product density ν(x1, . . . , xn; θ) =

∏n
i=1 v(xi; θ): the FIM of

an i.i.d. dataset of n samples is n times the FIM of a sample.

The final result of this section is the following: the maximum-likelihood estimator is
Fisher efficient in the limit n → +∞: Let θ̄n the maximum likelihood estimate of
a dataset of n samples (x1, · · · , xn) (this is a random variable since the dataset is
random). Then, J(θ)→ Ip as n goes to infinity and:

lim
n→+∞

nCovθ(θ̄n) = I(θ)−1 , (1.19)

where convergence happens in probability.

Example 1.6 (An example of non-efficient maximum-likelihood estimator). Consider
a Laplace model: θ ∈ R with v(x; θ) = 1

2 exp(−|x − θ|). The maximum likelihood for
this model and a set of points (x1, . . . xn) is θ̂n ∈ arg min

∑n
i=1 |x − θ|, i.e. θ̂n is the

median of the dataset. This estimator is unbiased by symmetry: Ex1,··· ,xn∼v(x;θ)[θn] = θ.
The Fisher score is given by ψ(θ, x) = − sign(x− θ), and the FIM is I(θ) = E[ψ2] = 1:
the FIM is constant. Therefore, an efficient estimator must verify Cov[T (x)] = 1

n .
However, it is simple to show that Cov[θ̂1] = 2 > 1 and Cov[θ̂2] = 1 > 1

2 , which means
that this estimator is not efficient. To the best of my knowledge, no closed form formula
exist for a general variance expression, but simulations suggest that it is always strictly
greater than the Cramer-Rao bound.

Another unbiased estimator for this model is the mean: θ̄n = x1+···+xn
n . For this estim-

ator, simple computations show Cov(θ̄n) = 2
n . Therefore, unlike the maximum-likelihood

estimator, the estimator is not asymptotically efficient. Figure 1.2 shows simulation il-
lustrating the behavior of these estimators.

In the next section, we describe an important algorithm for maximum-likelihood estim-
ation: the expectation-maximization algorithm.

18 CHAPTER 1. MOTIVATION AND CONTRIBUTION

1.1.3 The Expectation-Maximization algorithm

The expectation-maximization (EM) algorithm [Dempster et al., 1977] is a widely used
tool for maximum-likelihood estimation of models with hidden variables. Assume a
model on a product space X × Y, ν(x, y; θ). We call X the observed space, and Y the
hidden space: we observe samples coming from X , but not from Y. The density of the
observed data is given by the marginal distribution of x, w(x; θ) =

∫
y∈Y ν(x, y; θ)dy,

and the log-likelihood is:

`(θ, x) = log(w(x; θ)) = log

(∫
y∈Y

ν(x, y; θ)dy

)
.

Maximizing this likelihood is often problematic, because the integral is usually not
tractable. Let us illustrate this with a simple Gaussian mixture model.

Example 1.7 (Simple Gaussian mixture model). Assume that y is drawn following a
Bernoulli variable of probability 1

2 . If y = 1, then a sample x ∼ N (µ, 1) is observed. If
y = 0, then a sample x ∼ N (η, 1) is observed.

The model on (x, y) is a Gaussian mixture, with density:

ν(x, y; θ) =
1√
2π

(
y × exp(−(x− µ)2

2
) + (1− y)× exp(−(x− η)2

2
)

)
. (1.20)

The complete log-likelihood therefore simply writes, up to additive and multiplicative
constants, `(x, y; θ) = −y × (x − µ)2 − (1 − y) × (x − η)2. Owing to the simplicity of
this formula, given a complete dataset ((x1, y1), · · · , (xn, yn)), the maximum likelihood
estimators are directly:

µ∗ =

∑n
i=1 yixi∑n
i=1 yi

, η∗ =

∑n
i=1(1− yi)xi∑n
i=1(1− yi)

. (1.21)

These complicated equations just state the obvious: the maximum likelihood estimator
of µ is the average of all the observed samples xi drawn following N (0, µ), and the same
goes for η.

This problem gets interesting when we no longer observe y, but only the incomplete
dataset X = (x1, · · · , xn). Marginalizing eq. 1.20 with respect to y yields the incomplete
likelihood:

w(x; θ) =
1

2
√

2π

(
exp(−(x− µ)2

2
) + exp(−(x− η)2

2
)

)
.

The log-likelihood of the dataset has a more complicated form than in the complete case.
Up to a constant,

L(θ,X) =
n∑
i=1

log

(
exp(−(xi − µ)2

2
) + exp(−(xi − η)2

2
)

)
.

Maximizing this function in closed-form is no longer possible, we therefore resort to an
iterative scheme: the EM algorithm.

Let θ a parameter. An EM step starting from θ0 consists in the two following steps:

1.1. STATISTICAL PRINCIPLES 19

• Expectation step: Compute the function Qθ0(θ, x) = E[log(ν(x, y; θ))|θ0, x].

• Maximization step: maximize Qθ0 with respect to θ : θ1 = arg maxQθ0(θ, x).

Note that theQ function is analytically given byQθ0(θ, x) =
∫
y∈Y log ν(x, y; θ)p(y|θ0, x)dy,

where p(y|θ0, x) is the marginal distribution of the unobserved data.

Example 1.8 (EM algorithm for the simple mixture model). We start for instance by
taking θ0 = (0, 1). We can then estimate the probabilities that the yi’s are 0 and 1.
Following Bayes’ rules, we have:

τ0
i = P (yi = 1|θ0, xi) =

exp(− (xi−µ0)2

2)

exp(− (xi−µ0)2

2) + exp(− (xi−η0)2

2)
.

This step is called the Expectation step.

Then, we replace the yi’s by these values in eq. 1.21, yielding a new vector θ1. This
step is called the Maximization step. The EM algorithm consists in iterating these two
steps.

Let θEM a fixed point of the EM procedure. The following derivations show that θEM

cancels the gradient of the log-likelihood L. µEM is such that:

µEM =

∑n
i=1 τ

EM
i xi∑n

i=1 τ
EM
i

,

where

τEMi =
exp(− (xi−µEM)2

2)

exp(− (xi−µEM)2

2) + exp(− (xi−ηEM)2

2)
.

The gradient of L(θ,X) with respect to µ can be written:

∂

∂µ
L =

n∑
i=1

(xi − µ)
exp(− (xi−µ)2

2)

exp(− (xi−µ)2

2) + exp(− (xi−η)2

2)
,

Therefore :
∂

∂µ
L = 0 for µ = µEM .

In addition, we can show that the EM step increases the log-likelihood. Indeed, we have:

L(θ,X) =

n∑
i=1

log

(
exp(−(xi − µ)2

2
) + exp(−(xi − η)2

2
)

)
(1.22)

=

n∑
i=1

log

τi exp(− (xi−µ)2

2)

τi
+ (1− τi)

exp(− (xi−η)2

2)

1− τi

 (1.23)

≥
n∑
i=1

τi log

exp(− (xi−µ)2

2)

τi

+ (1− τi) log

exp(− (xi−η)2

2)

1− τi

︸ ︷︷ ︸

Λ(θ;τi)

, (1.24)

20 CHAPTER 1. MOTIVATION AND CONTRIBUTION

where the last inequality stems from Jensen’s inequality. Note that this holds for any
τi ∈]0, 1[. Define Λ(θ; τi) as the last inequality term. It can be written:

Λ(θ; τi) = −1

2

n∑
i=1

τi(xi − µ)2 + (1− τi)(xi − η)2

︸ ︷︷ ︸
Qθ0 (θ,x)

−
n∑
i=1

τi log(τi) + (1− τi) log(1− τi)︸ ︷︷ ︸
H(θ0)

.

Since Λ and Q are equal up to a constant in θ, their maximization in θ yield the same
result, θ1. Further, the inequality 1.24 is an equality for θ = θ0, because of the definition
of τ0. Finally, we have:

L(θ1, X) ≥ Λ(θ1, τ0
i) ≥ Λ(θ0, τ0

1) = L(θ0, X) ,

We can use the same technique to show that the EM algorithm is non-decreasing in
general:

Proposition 1.9 (One EM iteration increases the likelihood). Let θ0 ∈ Θ, and θ1 the
output of one EM iteration. Then:

L(θ1, X) ≥ L(θ0, X) .

Proof For all θ, θ′ , Jensen’s inequality yields:

`(θ, x) = log

(∫
y∈Y

ν(x, y; θ)dy

)
(1.25)

= log

(∫
y∈Y

ν(x, y; θ)

p(y|θ′, x)
p(y|θ′, x)dy

)
(1.26)

≥
∫
y∈Y

log

(
ν(x, y; θ)

p(y|θ′, x)

)
p(y|θ′, x)dy (1.27)

≥ Qθ′(θ, x)−H(θ′) , (1.28)

and, noting H(θ′) =
∫
y∈Y log(p(y|θ′, x))p(y|θ′, x)dy, we get:

`(θ, x) ≥ Qθ′(θ, x)−H(θ′) . (1.29)

with equality for θ = θ′. Therefore, we have `(θ0, x) = Qθ0(θ0, x)−H(θ0) ≤ Qθ0(θ1, x)−
H(θ0) ≤ l(θ1, x). The first inequality comes from the definition of θ1, and the second
comes from eq. 1.29.

This shows that the EM algorithm is "safe": one iteration guarantees an increase of
the likelihood. Note that the proof and specifically eq. 1.29 allows to view the EM
algorithm as a minimization-majorization algorithm [Neal and Hinton, 1998]: the E-
step essentially consists in computing a function lower-bounding `, which is equal to ` at
the current iterate, and the M-step consists in maximizing this lower bound. Figure 1.3
illustrates this:

1.2. OPTIMIZATION 21

θ0 θ1 θ∗

θ

L
og

lik
el

ih
o

o
d

`(θ, x) Qθ0(θ, x)−H(θ0)

Figure 1.3 – An illustration of the EM algorithm as a minimization-majorization al-
gorithm. We want to maximize the log-likelihood ` (blue curve) to find the optimal
parameters θ∗. Instead, from a point θ0, we compute a lower bound of `, exact at θ0

(orange curve). This lower bound is often simpler to majorize. The EM algorithm takes
θ1 as the arg-maximum of the orange curve.

A little bit more work shows that, under mild conditions, it converges to a stationary
point of the log-likelihood: a point which cancels the gradient of the log-likelihood.
However, assuming that the model holds with value θ∗, it is not true even on simple
cases that the EM algorithm iterates tend to θ∗. Indeed, if the log-likelihood has another
local maximum θ†, the EM algorithm starting close enough from this point will converge
to θ† instead of θ∗.

1.2 Optimization

The previous section describes the importance of the maximum-likelihood principle: the
parameter is computed as

θ∗ ∈ arg min
θ∈Θ

−L(θ) .

This is an optimization problem: a function (the negative log-likelihood) should be
minimized. Optimization is a large field of research, extremely important for machine
learning. Deep neural networks, support vector machines, linear regression, K-means
. . . All these widely used machine learning algorithms are fit using optimization: their
parameters are found as the minimum of a cost function. Note that this is more general
than maximum-likelihood estimation: not all cost functions can be written as a negative
log-likelihood.

We start by the basics of optimization: gradient descent and stochastic gradient descent.

1.2.1 First order and stochastic methods

Consider a differentiable function f : Rp → R. We want to find x ∈ arg min f . The
gradient of f is the direction of steepest ascent: ∇f(x) = (∂f∂x1 , · · ·

∂f
∂xp

). In order to
solve the optimization problem, gradient descent starts from a point x0 ∈ Rp and iterates
moves in the opposite of the gradient direction:

22 CHAPTER 1. MOTIVATION AND CONTRIBUTION

xt+1 = xt − ρt∇f(xt) ,

where ρt > 0 is called learning rate or step size.

This method is fairly intuitive: it follows the direction of steepest descent.

We can already see that under the assumption that this method converges, it finds
local extrema (points canceling the gradient): Assume that the sequence of points xt

generated by gradient descent converges to a point x∗ ∈ Rp, and that ρt > ε for some
constant ε > 0. Assume that ∇f is continuous. Then:

∇f(x∗) = 0 .

This general result does not show that this method reaches a minimum. It is also hard
to find conditions for this algorithm to converge. It is therefore interesting to find a
framework in which we can give guarantees on the convergence of this method. Such
a setting is convex optimization: the function f is assumed convex. A non-convex
function may have a set of minima with a complicated structure (in particular many
isolated points). On the contrary, the set of minima of a convex function has a simple
structure: it is a convex set. We say that a function is L-smooth if its gradient is
L-Lipschitz:

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖
.

This provides the first convergence rate result:

Proposition 1.10 (Rate of convergence of gradient descent for smooth functions). Let
f a convex and L smooth function. Let x∗ ∈ arg min f and f∗ = min f . Let xt the
sequence produced by gradient descent with a fixed step size ρt = 1

L . Then:

f(xt)− f∗ ≤ ‖x
0 − x∗‖2
2tL

.

This result shows that gradient descent converges in value (i.e. f(xt) → f∗) and
gives the rate of convergence. This rate is generally thought to be poor: assuming
for simplicity L = 1

2 and ‖x0 − x∗‖ = 1, it says that reaching a precision of 10−6 (i.e.
f(xt)− f∗ < 10−6) takes 106 iterations.

Under stronger hypothesis, the convergence rate is linear. For instance, assuming that
f is µ strongly-convex, that is

‖∇f(x)−∇f(y)‖ ≥ µ‖x− y‖ ,

we have the following result:

Proposition 1.11. Let f a convex, L-smooth and µ-strongly convex function. Let
x∗ ∈ arg min f and f∗ = min f . Let xt the sequence produced by gradient descent with
a fixed step size ρt = 1

L . Then:

‖xt − x∗‖2 ≤ (1− µ

L
)t‖x0 − x∗‖2 .

1.2. OPTIMIZATION 23

This convergence rate is more satisfying, as it states that xt converges to x∗, and that
going from a precision of 10−3 to 10−6 only doubles the number of iterations.

We now turn to an important alternative to gradient descent when the cost function
has a simple sum structure.

Stochastic gradient descent In many machine learning/statistics applications, the
function f has a particular structure: it often decomposes as a sum:

f(x) =
n∑
i=1

fi(x) .

We have already seen this arise in maximum-likelihood estimation for i.i.d. samples,
where the negative log-likelihood is the sum of the individual log-likelihood functions:

−L(θ) = −
n∑
i=1

`(θ, xi) .

Starting from a point x0 ∈ Rp, stochastic gradient descent (SGD) iterates [Robbins and
Monro, 1951]:

• Pick an index i ∈ [1, n]

• xt+1 = xt − ρt∇fi(xt)

There are many ways to pick an index between 1 and n. The two most widely spread
are the cyclic order (i = t mod n+ 1), and the random order (i is taken uniformly at
random). Usually, computing the individual functions fi and their gradients is much
simpler than computing the whole function f . Therefore, the stochastic gradient ap-
proach is appealing: one iteration is usually much cheaper than one iteration of gradient
descent.

However, there is a stark difference between stochastic gradient descent and gradient
descent: assume that we start from a solution x0 = x∗ ∈ arg min f . In this case, gradient
descent does not move, since ∇f(x∗) = 0: x1 = x∗. On the contrary, if ∇fi(x∗) 6= 0
(which happens in many scenarii), then SGD will deviate from the solution.

Similarly, SGD is not a proper descent method: the direction −∇fi(xt) may very well
be an ascent direction (i.e. 〈−∇fi(xt),∇f(xt)〉 > 0) rather than a descent direction.
Therefore, we may end up with f(xt+1) > f(xt).

These simple problems hint that the convergence analysis of SGD is more difficult than
that of gradient descent. We have for instance the following convergence result for
randomized index picking:

Proposition 1.12 (Convergence of stochastic gradient descent). Assume that the gradi-
ents are bounded in expectation: Ei[∇f2

i] ≤ B, and that f is µ-strongly convex. Then,
the iterates of SGD with fixed step size ρt = ρ verify:

E[‖xt − x∗‖2] ≤ (1− ρµ)t‖x0 − x∗‖2 +
ρ

µ
B .

24 CHAPTER 1. MOTIVATION AND CONTRIBUTION

0 20 40 60 80

iterations/epochs

10−2

100

‖x
t
−
x
∗ ‖

SGD, large step SGD, small step Gradient descent

Figure 1.4 – Illustration of the behavior of SGD and gradient descent. An iteration
of gradient descent corresponds to an epoch of SGD, i.e. a pass on the whole dataset.
The function corresponds to ordinary least squares: f(x) =

∑n
i=1(〈x, ai〉 − bi)2, where

n = 100 and x ∈ R4. Gradient descent is run with the canonical step size 1/L. We
observe its linear rate of convergence. SGD is run with a large step (ρ = 0.03) and a
smaller step size (ρ = 0.01). We observe two phases for SGD: first, a steep convergence,
and then a plateau with a lot of variance, where no more progress is made. We see, as
justified by proposition 1.12, that a large step size leads to a steeper convergence in the
first phase, but a higher plateau.

Although finer analyses exist, this result gives a nice intuition about gradient descent.
The bound contains two terms. The first one is the deterministic (gradient descent)
bound (1− ρµ)t‖x0−x∗‖2. It says that this term is small when ρ ' 1

µ . The other term
is a gradient variance term, which is constant across iterations. It scales linearly with
ρ, meaning that we want to take ρ→ 0.

This is the usual behavior of fixed step-size SGD: convergence is faster in the first
iterations, but eventually reaches a plateau due to the gradient variance. A large step
size leads to fast convergence in the beginning, but to a high plateau. A small step size
gives slower convergence in the beginning, but a smaller plateau. Figure 1.4 illustrates
this on a linear regression toy problem.

Therefore, a natural idea to obtain the best of both worlds (fast convergence in the
beginning and low plateau) is to have a sequence of decreasing step-sizes. A classical
rule for convex functions is ρt = α√

t
for non-stongly convex functions, and ρt = α

t for
strongly convex functions. These step-sizes leads to convergence rates [Nemirovsky and
Yudin, 1983] of O(1√

t
) in the first case and O(1

t) in the second. Further, these rates are
minmax optimal, meaning that there exists a non-strongly convex function f such that
for any step size sequence ρt, SGD applied on f with that sequence leads to iterates
verifying f(xt)− f∗ ≥ β√

t
with β > 0.

Therefore, it turns out that SGD is in practice a difficult method to use to minimize
exactly a function. It is widely used for problems where an approximate minimization
is satisfying, like for the overparametrized deep-learning models.

Indeed, Bottou and Bousquet [2008] argue that there are three sources of error in a
machine learning model: Let us consider the maximum likelihood framework of the
previous section, in the i.i.d. case. Samples x1, . . . , xn ∈ Rp are observed, drawn
i.i.d. from a law v∗ that we wish to estimate using a parametrized model v(·; θ),
θ ∈ Θ. In the following, for a density v, we denote En[v] the negative empirical log-

1.2. OPTIMIZATION 25

likelihood: En[v] = −∑n
i=1 log(v(xi)), and E[v] the negative expected log-likelihood:

E[v] = −
∫
x∈Rp log(v(x))v∗(x)dx.

From the n points, we derive an estimator θn ∈ Θ by solving the maximum-likelihood
problem:

θn ∈ arg minEn(v(·; θ)) .

Consider the expected error that is made:

Err = E[v(·; θn)]− E[v∗] = KL(v(·; θn), v∗) .

Importantly, this error is intractable with a finite amount of samples since it involves
expectations.

Denote θ∗ the expected maximum-likelihood estimator: θ∗ ∈ arg minE[v(·; θ)]. The
error decomposes as:

Err =
(
E[v(·; θn)]− E[v(·; θ∗)]

)
+
(
E[v(·; θ∗)]− E[v∗]

)
= Eest + Eapp ,

where Eest is the estimation error, i.e. the error made by minimizing the empirical
negative log-likelihood rather than by minimizing its expected counterpart, and Eapp is
the approximation error, i.e. a measure of the distance between the model v(·; θ) and
the truth v∗.

In a large scale setting, solving the empirical maximum-likelihood problem exactly is
sometimes too costly, and instead an optimization error is made. A suitable threshold
ε > 0 is specified, and we find an approximate minimizer θ̂n ∈ Θ such that En[v(·; θ̂n)] <
En[v(·; θn)] + ε.

Now, the error Err = E[v(·; θ̂n)]− E[v∗] decomposes in three parts:

Err = Eest + Eapp + Eopt ,

where Eopt = E[v(·; θ̂n)] − E[v(·; θn)]. Therefore, it only makes sense to optimize well
(bring Eopt to 0) if the two other quantities are small. In particular, there is an important
trade-off between optimization and estimation error: with a finite time budget, should
it be allocated to obtaining a finer minimizer (reducing Eopt) or to processing more
samples (reducing Eest)? In a large scale settings, SGD is a much better algorithm than
gradient descent to minimize the error Err.

1.2.2 Incremental EM and majorization-minimization: stochastic
algorithms with descent guarantees

As mentioned previously, a drawback of SGD is that one iteration might very well
increase the loss function instead of decreasing it. Therefore, it is of interest to de-
velop stochastic algorithms (algorithms that process one sample at a time) with descent
guarantees.

The expectation-maximization framework offers a nice framework to do so [Neal and
Hinton, 1998]. We start by showing it on the simple Gaussian mixture model described
in Example 1.7.

26 CHAPTER 1. MOTIVATION AND CONTRIBUTION

Example 1.13 (Incremental EM for Gaussian Mixture). Given a dataset (x1, · · · , xn) ∈
Rn, we want to fit a simple mixture of two Gaussians with adjustable means to it. The
negative log-likelihood is a function of θ = (µ, η) ∈ R2, and writes, up to a constant:

L(θ) = −
n∑
i=1

log

(
exp(−(xi − µ)2

2
) + exp(−(xi − η)2

2
)

)
.

The EM algorithm maps θ0 ∈ R2 to θ1 ∈ R2 in the following way:

• E-step: Compute for all i = 1 · · ·n

τ0
i =

exp(− (xi−µ0)2

2)

exp(− (xi−µ0)2

2) + exp(− (xi−η0)2

2)
.

• M-step: Set θ1 = (µ1, η1) where µ1 =
∑n
i=1 τ

0
i xi∑n

i=1 τ
0
i

and η1 =
∑n
i=1(1−τ0i)xi∑n
i=1(1−τ0i)

.

We have previously seen that it guarantees a decrease of the cost function L. Importantly,
the M-step is performed with a simple relationship µ1 = f(τ0

1 , · · · , τ0
n).

How can we turn this in a stochastic algorithm? Imagine that we are processing only the
j-th sample xj. We can compute τnew

j efficiently (i.e. only knowing the current variable
θ and the iterate). Now, can we update µ ? We want to compute f(τ0

1 , · · · , τnew
j , · · · , τ0

n)
without using all the samples all over again. To do so, we can only store the previous
value of τj, τold

j , and their sum S =
∑n

i=1 τi. A simple computation shows that:

f(τ0
1 , · · · , τnew

j , · · · , τ0
n) =

S · f(τ0
1 , · · · , τold

j , · · · , τ0
n) + (τnew

j − τold
j)xj

S + τnew
j − τold

j

. (1.30)

Hence, θ can be updated by only storing n+ 1 variables, in constant time: each sample
can be processed individually. Overall, the algorithm iterates:

• Pick an index j ∈ [1, n] (at random or cyclic).

• E-step: Compute τj =
exp(− (xj−µ)

2

2
)

exp(− (xj−µ)2

2
)+exp(− (xj−η)2

2
)
.

• M-step: update µ using formula 1.30, and η using a similar formula.

Now, can we actually prove something about this stochastic algorithm ? Recall that the
EM inequality writes:

L(θ) ≤
n∑
i=1

τi
(xi − µ)2

2
+ (1− τi)

(xi − η)2

2
+ τi log(τi) + (1− τi) log(1− τi) .

Denote L̄(θ, τ1, · · · , τn) the right hand term. The E-step of the stochastic algorithm con-
sists exactly in minimizing L̄ with repect to τj. Then, the M-step consists in minimizing
L̄ with respect to θ. Therefore, we have the usual decrease guarantee for the incremental
EM algorithm: each iteration decreases L̄. Such a guarantee cannot be obtained with

1.2. OPTIMIZATION 27

0 10 20 30

iterations t

10−13

10−11

10−9

10−7

10−5

10−3

L
(θ

)
−
L

(θ
∗)

full batch

stochastic

Figure 1.5 – Illustration of the convergence speed of the stochastic EM compared to
the usual EM method for the simple Gaussian mixture problem of example 1.13. The
stochastic EM is faster: it makes progress whenever a sample is processed, while the
usual EM algorithm only updates the parameters once every sample is seen. Further,
the stochastic EM method is safe: each iteration guarantees the decrease of a surrogate
function.

regular SGD. Note that we however do not have the guarantee that the log-likelihood
increases.

Figure 1.5 illustrates the convergence behavior of this method on a toy example, compared
to the usual full-batch EM.

The Gaussian mixture example generalizes to EM algorithms for i.i.d. data. Indeed, the
E-step can be viewed as the estimation of the density of the latent variables y. In [Neal
and Hinton, 1998], the author rephrase the EM algorithm as:

• E-step: Estimate the marginal density pθ0(y) = p(x, y|θ0, x).

• M-step: Set θ1 to maximize Qθ0(θ) = Ey∼p[log(ν(x, y; θ))].

For an i.i.d. set of points (x1, · · · , xn) with latent unobserved variables (y1, · · · , yn), it
rewrites:

• E-step: Estimate the marginal densities for i = 1 · · ·n: piθ0(yi) = p(xi, yi|θ0, xi).

• M-step: Set θ1 to maximize Qθ0(θ) =
∑n

i=1 Eyi∼pi [log(v(xi, yi; θ))].

Therefore, the incremental (or stochastic) EM algorithm stores all the marginal densities
p1, · · · pn, and iterates:

• Pick an index j ∈ [1, n].

• E-step: Estimate the marginal density corresponding to j: pj
θ0

(yi) = p(xi, yi|θ0, xi),
and update it in the stored memory.

• M-step: Set θ1 to maximize Qθ0(θ) =
∑n

i=1 Eyi∼pi [log(v(xi, yi; θ))].

28 CHAPTER 1. MOTIVATION AND CONTRIBUTION

As such, the M-step looks inefficient since it seems that one has to look at all the
samples to update the parameters. However, in many cases (such as the one presented
in example above), there is an efficient formula to update θ using only a few stored
quantities.

Another related way of obtaining safe stochastic algorithms is to use a majorization-
minimization approach [Mairal, 2013]. Assume that the task is to minimize the cost
function

f(x) =
n∑
i=1

f i(x) .

Assume that for all x ∈ Rp, we can derive a surrogate function gix such that:

• Majorization: f i(x′) ≤ gix(x′) whenever x′ minimizes gix.

• Matching: the error hx = gix − f i is L-smooth, hx(x) = 0 and ∇hx(x) = 0.

The MISO (Minimization by Incremental Surrogate Optimization) algorithm starts from
x0 ∈ Rp, and compute a surrogate gix0 for each individual function f i. Then at iteration
t > 0 it does the following:

• Pick an index it ∈ [1, n].

• Majorization: Compute a surrogate gxitt of f it at xt, and set gxit = gx
i

t−1 for i 6= it.

• Minimization: Set xt ∈ arg min
∑n

i=1 g
i
xt(x).

Once again, the efficiency of the algorithm relies on the fact that one can perform
efficiently the minimization step, without having to do a pass on the whole dataset. The
spirit of this algorithm and of the incremental EM are similar, but these two algorithms
differ in some aspects. MISO can be applied to arbitrary sums of functions which do
not have to come from a latent variable model. However, some surrogates derived in the
EM algorithm do not necessarily verify the smoothness condition required by MISO.

In this thesis, we employ these techniques to perform stochastic ICA with descent
guarantees.

1.2.3 Quasi-Newton methods

We now turn to another pillar of optimization: quasi-Newton methods. Most of this
introduction can be found in the corresponding chapter of [Nocedal and Wright, 1999].

In this part, we consider the minimization of a function f defined over Rp which is as-
sumed twice differentiable. Importantly, we do not consider a convex setting: otherwise
specified, all results in this part apply in a general non-convex setting. We recall that
the Hessian of f at point x ∈ Rp is a p × p matrix of entries (∇2f(x))ij = ∂2

∂xi∂xj
f(x).

In the following, for short, we denote H(x) = ∇2f(x), and H−1(x) =
(
∇2f(x)

)−1
its

inverse.

First, let us consider the mother of all quasi-Newton methods, Newton’s method.

The Taylor expansion of f around a point x ∈ Rp writes, at the second order:

1.2. OPTIMIZATION 29

f(x+ ε) = f(x) + 〈∇f(x), ε〉+
1

2
〈ε,H(x), ε〉+ o(‖ε‖2) . (1.31)

Assuming that H(x) is positive definite, minimization of the right-hand side of the
equation is obtained for ε = −H−1(x)∇f(x). This yields Newton’s direction:

Definition 1.14 (Newton’s direction). Newton’s direction at a point x ∈ Rp is defined
as d(x) = −H−1(x)∇f(x) ∈ Rp.

Newton’s method simply follows Newton’s direction:

Definition 1.15 (Newton’s method). Newton’s method is an iterative algorithm starting
from x0 ∈ Rp and writes xt+1 = xt −H−1(xt)∇f(xt) for t ≥ 0.

So far, there are two important result that we can state about this method. First, it
converges in one step for a strongly convex quadratic function, which is expected since
such a function matches its Taylor expansion at the second order.

Proposition 1.16. Assume A ∈ Rp×p is positive definite, b ∈ Rp and c ∈ R and that
f(x) = 1

2〈x,A, x〉+ 〈b, x〉+ c. Then, for any x0 ∈ Rp, x1 ∈ Rp found after one iteration
of Newton’s method is such that x1 = arg min f .

Proof Indeed, we have ∇f(x0) = Ax0 +b and H(x0) = A. therefore, Newton’s method
finds in one step x1 = x0 −A−1(Ax0 + b) = −A−1b, i.e the global minimizer of f .

Second, this method is invariant with respect to linear transforms of the input space.

Proposition 1.17 (Linear invariance of Newton’s method). Consider f : Rp → R,
A ∈ Rp×p an invertible matrix, and g : Rp → R such that g(z) = f(Az) for any z ∈ Rp.
Consider x ∈ Rp and (xt) the sequence of iterates produces by Newton’s method on f
startig from x0 = x. Consider z = A−1x, and (zt) the sequence of iterates produced by
Newton’s method on g. Then, zt = A−1xt for all t ≤ 0.

Proof The proof is made by induction. The result holds for t = 0 by hypothesis.
Assume zt = A−1xt. We have the relationships: ∇g(z) = A>∇f(Az) and ∇2g(z) =
A>∇2f(Az)A. Therefore:

zt+1 = zt − (∇2g(zt))−1∇g(zt) = A−1xt −A−1(∇2f(xt))−1∇f(xt) = A−1xt+1 .

This concludes the recursion.

This is an important property of Newton’s method, stating that it is blind to the linear
parametrization of the problem. For instance, gradient descent does not possess such
property.

Finally, arguably the most important result about Newton’s method is its local conver-
gence, at a quadratic rate:

Proposition 1.18 (Convergence of Newton’s method). Theorem 3.7. of [Nocedal and
Wright, 1999]: Let x∗ ∈ Rp a local minimum of f . We assume:

30 CHAPTER 1. MOTIVATION AND CONTRIBUTION

• H(x∗) is positive definite.

• H is L-smooth in a neighborhood B of x∗: for x, y ∈ B, ‖H(x)−H(y)‖ ≤ L‖x−y‖.

Then, there is a neighborhood of x∗, D, such that we have:

• Convergence: Newton’s method starting from x ∈ D produces iterates xt that tend
towards x∗.

• Quadratic convergence: There is a constant K > 0 such that, ‖xt+1 − x∗‖ ≤
K‖xt − x∗‖2.

• Quadratic convergence of the gradient: There is a constant K ′ > 0 such that
‖∇f(xt+1)‖ ≤ K ′‖∇f(xt)‖2.

This is the main result about Newton’s method, and explains its importance: a quad-
ratic rate of convergence is very desirable. Indeed, assuming for instance K = 1, if at
iteration t the error is ‖xt − x∗‖ = 10−3, it will be of the order ‖xt+1 − x∗‖ ∼ 10−6 at
next iteration.

Still, the previous result is only local and tells us nothing about the behavior of Newton’s
method far from the local minima.

In fact, in its current form, the method is terrible for most functions.

First, in a non-strictly-convex setting, the Hessian might not be positive definite,
meaning that the inverse H−1(xt) might not even be defined, or that we might have
〈∇f(xt), d(xt)〉 > 0 and therefore Newton’s direction might not even be a descent dir-
ection.

Second, the method may overshoot: even if the direction is good, maybe the algorithm
goes too far. Indeed, consider in R the function f(x) = |x|4/3. Simple derivations show
that Newton’s method starting from x0 verify xt = −2tx0: Newton’s method diverges
exponentially fast. Note that this function is not twice differentiable in 0, but it can be
smoothed without changing its value outside of [−x0, x0] which would lead to the same
iterates.

Luckily, both of these pitfalls can be overcome: the first with regularization, the second
with line-search techniques.

Regularization In a non-strictly-convex setting, the Newton’s direction d(x) = −H−1(x)∇f(x)
does not make sense if H(x) is not invertible. It may also be an ascent direction if H(x)
is not positive definite (i.e. if x is a saddle point). Regularization is a process to make
sure that these unfortunate events do not happen. Most regularizations methods work
on the matrix H(x) and transform it in order to find a positive definite matrix, which
ensures that the corresponding direction is indeed a descent direction.

The simplest form of regularization consists in adding λIp to H(x). Indeed, the matrix
H(x) + λIp is positive definite as long as λ > −λmin(H(x)). However, in order to
perform such an operation, it is important to have an idea of λmin(H(x)), which might
be extremely costly since H(x) is of size p× p.
Methods involving more structure of H are also possible. If we have access to its eigen-
value decomposition H(x) = UDU> where D = diag(λ1, · · · , λp), one could consider
the regularization UD̂U> where D̂ = diag(max(λ1, δ), · · · ,max(λp, δ)) with δ > 0 a

1.2. OPTIMIZATION 31

small number. This corresponds to clipping the eigenvalues of D. A drawback of this
method is that δ should be chosen small in order to keep the regularized matrix close
to H, but choosing δ too small leads to very large coefficients in the inverse of the
regularized Hessian, and to a direction which might be of extremely large amplitude.
An alternative is to simply flip the signs of the negative eigenvalues, but this is a rather
heuristic method. Overall, there is no clear consensus about which method is best in
practice.

Depending on the structure of the Hessian, other forms of regularization are possible.
For instance if the Hessian is block diagonal, each block can be regularized individually.
This observation will be used in the following chapters.

Line-search Assume that we are at a point in which Newton’s direction is actually a
descent direction: 〈∇f(xt), d(xt)〉 < 0. There is no guarantee that the step xt + d(xt)
is actually decreasing the function. Line search methods look for a step size αt > 0 so
that xt+1 = xt + αtd(xt) is a suitable point. A first difficulty arises when we want to
characterize what suitable means. Of course, we want to impose f(xt+1) < f(xt), but
some stronger conditions are necessary to enforce convergence. Indeed, such a condition
is always verified even with an infinitesimal step.

For instance, we might even want to exactly minimize the function in the direction:
finding αt ∈ arg minα>0 f(xt + αd(xt)).

The following property characterizes these points:

Proposition 1.19. Let αt ∈ arg minα>0 f(xt+αd(xt)), and xt+1 = xt+αtd(xt). Then,
〈∇f(xt+1), d(xt)〉 = 0.

Proof Indeed, the derivative of α→ f(xt+αd(xt)) is given by 〈∇f(xt+αd(xt)), d(xt)〉,
therefore at a minimum we indeed have 〈∇f(xt + αd(xt)), d(xt)〉 = 0

The most popular definition of "suitable" are the Wolfe conditions, which enforce both
sufficient decrease of f and of 〈∇f(xt+1), d(xt)〉. For two constants 0 < c1 < c2 < 1,
they write:

• f(xt + αd(xt)) ≤ f(xt) + c1α〈∇f(xt), d(xt)〉.

• |〈∇f(xt + αd(xt)), d(xt)〉| ≤ −c2〈∇f(xt), d(xt)〉.

The first condition is a sufficient decrease condition, while the other imposes that α is
close enough from a minimizer of f in the search direction. Lemma 3.1. of [Nocedal and
Wright, 1999] states that there always exists an interval of value of α verifying these
conditions when f is bounded below.

These conditions are important to verify in practice for safety of the algorithm, and in
theory because they allow for convergence results. Theorem 3.2. of Nocedal and Wright
[1999] writes:

Proposition 1.20 (Zoutendijk’s theorem). Assume f is bounded below, differentiable
and L-smooth. Let xt ∈ Rp a sequence defined by recursion:

xt+1 = xt + αtdt ,

32 CHAPTER 1. MOTIVATION AND CONTRIBUTION

where dt ∈ Rp is a descent direction at xt (i.e. 〈∇f(xt), dt〉 < 0) and αt verifies Wolfe
conditions. Denote cos(θt) = −〈∇f(xt),dt〉

‖∇f(xt)‖‖dt‖ . Then:

+∞∑
t=1

cos2(θt)‖∇f(xt)‖2 < +∞ .

Although more useful in its above form, the last inequality implies that cos(θt)‖∇f(xt)‖
goes to 0.

In particular, assume that the search direction dt never gets too close to orthogonality
with ∇f(xt): cos(θt) > γ for all t. Then, Zoutendijk’s theorem shows ∇f(xt) → 0.
This result is usually the strongest one can show in a general non-convex setting.

In practice, deriving an algorithm that finds points verifying Wolfe conditions is tedious.
One can refer to section 3.4 of Nocedal and Wright [1999] for practical details. The main
tool is interpolation: if a candidate step α is not suitable, a low order polynomial is
fit using the function value and its derivative at α, and the next candidate step is the
minimum of that polynomial.

Have we fixed Newton’s method? Newton’s method with line-search and regular-
ization is now a well behaved algorithm, with good convergence guarantees provided by
Zoutendijk’s theorem, and the impressive quadratic convergence speed. However, this
method is almost never used in practice, because it is in most cases too time consuming.
Indeed, the Hessian is p × p matrix, for which each entry should be computed at each
iteration. Then, in order to find Newton’s direction and evaluate H−1(xt)∇f(xt), a
p× p linear system should be solved, which is cumbersome.

In contrast, first order methods like gradient descent only need to compute the gradi-
ent, an O(p) operation. Quasi-Newton method aim at imitating Newton’s direction,
while maintaining a linear cost of operations, and therefore only working with gradient
evaluations. More specifically, they build an approximation of the Hessian matrix or its
inverse, using information about geometry gathered at the previous iterations.

In the following, we focus on Newton’s method using at each iteration an approximation
of the Hessian, denoted Ht. It writes:

• Set the current direction to dt = −H−1
t ∇f(xt).

• Find a suitable step size αt and set xt+1 = xt + αtdt.

In the following, the Hessian inverse matrix is denoted Bt = H−1
t . Bt or Ht are updated

at each iteration using information gained on the geometry of the cost function. Quasi-
Newton’s methods are build on the principle that the change in∇f provides information
about ∇2f , which is reflected by the first order Taylor expansion of ∇f :

∇f(xt+1) = ∇f(xt) +∇2f(xt+1)(xt+1 − xt) + o(‖xt+1 − xt‖)

In the following, denote yt = ∇f(xt+1)−∇f(xt) and st = xt+1 − xt.

Definition 1.21 (Secant condition). The secant condition writes: Ht+1s
t = yt.

1.2. OPTIMIZATION 33

It is desirable that a quasi-Newton algorithms fulfills this natural geometric condition.
Further, we want to impose positive definiteness on Ht, in order to guarantee that dt is
a descent direction. In order to keep computations light, most practical quasi-Newton
methods start from an initial guess for the Hessian, H0 (most of the time, H0 = λIp is
a good choice), and then refine it a each step by doing Ht+1 = Ht + ∆t, where ∆t is a
low rank matrix.

For instance, the simplest quasi-Newton method, called SR-1, does rank-1 updates one
Ht, under the constraint of verifying the secant condition.

Definition 1.22. The SR-1 method uses the recursion formula:

Ht+1 = Ht +
(yt −Hts

t)⊗ (yt −Hts
t)

〈st, yt −Htst〉
.

This is the only rank one update on Ht that satisfies the secant condition.

The Sherman-Morisson formula gives a way to formulate this update in terms of inverse
Hessian:

Bt+1 = Bt +
(st −Btyt)⊗ (st −Btyt)

〈yt, st −Btyt〉
.

Sadly, this method is not practical for two reasons: there are no positivity guarantees
on Ht, and the denominator in the update may vanish.

The BFGS method [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970] is
one of the most widely used. It uses rank 2 updates rather than rank one updates, and
this solves the problems SR-1 encounters.

Definition 1.23 (BFGS iteration). The BFGS method iterates:

Ht+1 = Ht +
yt ⊗ yt
〈yt, st〉 −

(Hts
t)⊗ (Hts

t)

〈st, Ht, st〉
.

It corresponds to finding the rank-2 update solution of arg minB ‖B−Bt‖ s.t. Btst = yt

(for a specific matrix norm).

In practice, it is more useful to have updates in terms of Bt. They write:

Bt+1 = (Ip − ρtst ⊗ yt)Bt(Ip − ρtyt ⊗ st) + ρts
t ⊗ st, with ρt =

1

〈yt, st〉 . (1.32)

First, a key property of BFGS is that Ht is always positive definite: therefore no
regularization is needed. Second, assuming that f is quadratic strongly convex with
Hessian A, we have that BFGS applied on f with a perfect line search and any positive
definite initial guess for H0 verifies Hp = A: this method recovers in finite time the true
curvature of the function. In a general setting, under mild hypothesis, it also provides
the desired quadratic convergence.

This method still suffers from a drawback: although less costly than Newton’s method,
it still requires storing a p× p matrix, which might be too much in a high dimensional
setting. The L-BFGS (limited memory BFGS) [Liu and Nocedal, 1989] solves this

34 CHAPTER 1. MOTIVATION AND CONTRIBUTION

problem. L-BFGS only uses the past m iterations to build the Hessian approximation.
It only stores the m previous values of yt and st, which are the only quantities needed to
build the Hessian approximation; therefore the memory load is linear in p. The BFGS
equation (1.32) is only iterated m times. Denoting Vt = Ip−ρtyt⊗st, the BFGS update
equation writes Bt+1 = V >t BtVt + ρts

t ⊗ st. Unrolling this equation for m steps yields:

Bt =(V >t−1 · · ·V >t−m)B0
t (Vt−m · · ·Vt−1)

+ ρt−m(V >t−1 · · ·V >t−m+1)st−m ⊗ st−m(Vt−m+1 · · ·Vt−1)

+ ρt−m+1(V >t−1 · · ·V >t−m+2)st−m+1 ⊗ st−m+1(Vt−m+2 · · ·Vt−1)

. . .

+ ρt−1st−1 ⊗ st−1 ,

where B0
t is an initial guess for the Hessian.

This is a mathematical formula never computed in practice: there is an efficient two loop
formula to compute the search direction dt = −Bt∇f(xt), working only with vectors of
size p and never computing p×p matrices. The fact that L-BFGS has a limited memory
is usually an advantage, since it means that the outdated previous information about
the landscape is forgotten. On the other hand, the Hessian approximation in BFGS
contains information about the first iterate. In most cases, L-BFGS converges faster
than BFGS. It also allows to change the initial guess for the Hessian at each iteration:
in some problems there are much better choices than a multiple of identity. This idea
is actually at the core of the Picard solver for ICA, developed in the next chapter. All
these facts explain why L-BFGS is usually the go-to quasi-Newton method.

1.3 A bit of Riemannian geometry

In this section, we give a brief and informal introduction to Riemannian manifolds.
Most of the content of this section is found in [Absil et al., 2009].

1.3.1 General concepts

We consider as "ambient space" the usual Euclidean space E = Rp or Rp×p, equipped
with the canonical scalar product denoted 〈·, ·〉. A m dimensional (sub-)manifoldM is
a subset of E, which locally resembles an Euclidean space of dimension m: for every
x ∈ M, there exists an homeomorphism between an open neighborhood of x and an
open set in an m-dimensional Euclidean space. This Euclidean space is called the
tangent space, and noted Tx, and its scalar product is denoted 〈·, ·〉x. The associated
norm is ‖ · ‖x. Therefore, each point x ∈ M is associated to a tangent space and a
scalar product.

A Riemannian manifold is a manifold for which the mapping x→ 〈·, ·〉x is continuous.
This allows to define the length of curves on the manifold: For x ∈ M, consider
γ : [0, 1]→M a differentiable curve onM. Then for any t ∈ [0, 1], the tangent vector
γ′(t) belongs to Tγ(t). The length of γ is given by: L(γ) =

∫ 1
0 ‖γ′(t)‖γ(t)dt. This endows

the manifold with a natural notion of distance. The distance between two points in the
minimal length of curves linking them:

d(x, y) = inf{L(γ) | γ(0) = x, γ(1) = y}

1.3. A BIT OF RIEMANNIAN GEOMETRY 35

Figure 1.6 – Some useful manifold concepts: a manifold M is a "curvy" surface. At
each point x ∈ M, the tangent space Tx is an Euclidean space with foot x, where
vectors ξ ∈ Tx live. A geodesic γ is a minimum-length curve on the manifold. It
defines a distance on the manifold: the distance between two points is the length of the
geodesic linking them. The exponential act like a projection from the tangent space to
the manifold, such that d(x,Expx(ξ)) = ‖ξ‖x + o(‖ξ‖x).

Geodesics are curves realizing the distance: these are minimal length curves.

Note that these geodesics are often hard to compute or impossible to obtain in closed
form. The same goes for the geodesic distance: it is the natural notion of distance on
M, yet it is sometimes intractable.

The exponential map at x, Expx, is a function from Tx toM (possibly only defined for
ξ ∈ Tx close enough from 0). Expx(ξ) is defined as γ(1), where γ is the only geodesic
satisfying γ(0) = x and γ′(0) = ξ.

The exponential is smooth, and verifies the important relationship:

d(x,Expx(ξ)) = ‖ξ‖x ,

for ξ of small enough norm. Therefore, it is a mapping from the tangent space to the
manifold that preserves distance to the origin of Tx. Just like the geodesic distance, the
exponential map is often hard to compute. We often resort to retractions, which are
"first order" approximations of the exponential map. Let x ∈ M, ξ ∈ Tx: a retraction
at x is a function Rx such that d(Rx(ξ),Expx(ξ)) = O(‖ξ‖2x). Importantly, replacing
the exponential by a retraction in an optimization algorithm does not really change its
convergence results. For instance, Newton’s method on manifolds using retraction still
converges at a quadratic rate.

Figure 1.6 summarizes the notions seen thus far.

1.3.2 Optimization on manifolds

The previous notions allow to define the gradient of a function: let f :M→ R. We say
that f is differentiable at x, if there exists a tangent vector gradf(x) ∈ Tx such that:

f(Expx(ξ)) = f(x) + 〈gradf(x), ξ〉x + o(‖ξ‖x) .

36 CHAPTER 1. MOTIVATION AND CONTRIBUTION

Note that the exponential map can be replaced by any retraction without changing the
gradient value: if the previous relationship holds, for a retraction R at x, we also have
f(Rx(ξ)) = f(x)+〈gradf(x), ξ〉x+o(‖ξ‖x). This allows to define first order optimization
algorithms on manifolds. For instance, the gradient descent with step sizes ρt > 0 starts
from x0 ∈M and iterates:

xt+1 = Rxt(−ρtgradf(xt)) .

Note that if M is the standard Euclidean space Rp, we can take Rx(ξ) = x + ξ, and
have grad(f) = ∇f ; the previous equation for gradient descent is thus a generalization
of the standard Euclidean gradient descent.

If we want to develop higher order methods, we must define a notion of Hessian: a linear
operator from Tx to Tx capturing the curvature of f at x. A simple way of defining it
is to consider the function φx = f ◦ Expx : Tx → R, and define Hessf(x) = ∇2φx(0).
∇2 is defined as the usual Hessian operator in the Euclidean space Tx endowed with its
scalar product. Note that in a similar fashion, we have gradf(x) = ∇φx(0). With this
definition, we have the usual Taylor expansion:

f(Expx(ξ)) = f(x) + 〈gradf(x), ξ〉x +
1

2
〈Hessf(x)[ξ], ξ〉x + o(‖ξ2‖)

Note that here, the choice of retraction matters: using a retraction R in place of Exp
would lead to a different Hessian operator.

Quasi-Newton methods are also developed on manifolds, and show the same success as
in the Euclidean case. Recall that these methods aim at learning the curvature of the
function using the previous evaluations of the gradient. An iteration writes:

• Compute a Hessian approximation Ht, an invertible linear mapping from Txt to
Txt .

• Find a suitable step-size α, set a direction in the tangent space ξt = −αH−1
t gradf(xt),

and update xt+1 = Rxt(ξ
t).

However, a difficulty arises when we want to transpose these algorithms (BFGS for
instance) to the manifold framework, since the Euclidean version of these algorithms
involves subtractions of quantities that live in different spaces in the manifold setting.
For instance, the secant condition in an Euclidean setting writes ∇f(xt+1)−∇f(xt) =
Ht+1(xt+1 − xt). In a manifold setting, computing the difference between two points
xt+1 and xt does not make sense. Similarly, the difference between the two gradients
should be fixed, since they do not live in the same space. The first problem is solved
easily. Indeed, a Riemannian quasi-Newton iteration writes xt+1 = Rxt(ξ

t), therefore
the Riemannian equivalent of xt+1 − xt is ξt.
However, Ht+1 acts on Txt+1 , not on Txt where ξt lives. Therefore, we would like to find
a way to transport points in Txt to Txt+1 . This will also be useful to properly subtract
two gradients. Given a retraction R, we consider the transport Tξx(ηx) ∈ TRx(ξx), where
ξx and ηx are in Tx. It transports ηx from Tx to TRx(ξx). Examples of transport are
given in the next subsection. The secant condition then rewrites :

gradf(xt+1)− Tξtgradf(xt) = Ht+1Tξtξt ,

where everything happens in the tangent space Txt+1 .

1.3. A BIT OF RIEMANNIAN GEOMETRY 37

Using this framework, the quasi-Newton algorithms described in the previous section
naturally extend to the manifold setting, and show the same converge properties. Many
more details are presented in [Absil et al., 2009].

1.3.3 Geometry of the general linear and orthogonal groups

In this manuscript, we are especially interested by two manifolds: the general linear
group GLp of p× p invertible matrices, and the orthogonal group Op of p× p matrices
M such that MM> = Ip.

The general linear group Since GLp is an open set of Rp×p, it is a sub-manifold of
dimension p2, and we have TM = Rp×p for each M ∈ GLp. The tangent spaces can be
endowed with the usual Frobenius scalar product 〈M,M ′〉 =

∑p
i,j=1MijM

′
ij .

However, a more practical scalar product consists in taking the right-invariant scalar
product:

〈M,M ′〉W = 〈MW−1,M ′W−1〉 . (1.33)

It verifies the important right-invariance property:

∀U ∈ GLp, 〈M,M ′〉W = 〈MU,M ′U〉WU .

We can already see that it acts as a "barrier" to avoid singular matrices. Consider a
differentiable curve γ : [0, 1]→ Rp×p such that γ(t) ∈ GLp for t ∈ [0, 1[and γ(1) /∈ GLp.
Then, L(γ) = +∞. In other words, singular matrices are at an infinite distance from
any non-singular matrices using this scalar product.

Possible retractions are given by the trivialRW (M) = W+M , orRW (M) = exp(MW−1)W .
Assume that a differentiable function f is defined over Rp×p with Euclidean gradient
∇f . Then, we have:

f(RW (M)) = f(W +M)

= f(W) + 〈∇f(W),M〉+ o(‖M‖)
= f(W) + 〈∇f(W)W>W,M〉W + o(‖M‖) ,

therefore the Riemannian gradient of f , viewed as a function overM, is:

gradf(W) = ∇f(W)W>W .

Therefore, gradient descent for this scalar product starts from W 0 ∈ GLp, and iterates:

W t+1 = W t − ρt∇f(W t)(W t)>W t (1.34)

=
(
Ip − ρt∇f(W t)(W t)>

)
W t . (1.35)

which is a multiplicative update. Interestingly, multiplicative updates are a natural
setting to recover this scalar product. Assume that we wish to update W as (Ip+E)W ,
where E is a small p× p perturbation. We find:

f((Ip + E)W) = f(W) + 〈∇f(W), EW 〉+ o(‖W‖) (1.36)

= f(W) + 〈∇f(W)W>, E〉+ o(‖W‖) (1.37)

38 CHAPTER 1. MOTIVATION AND CONTRIBUTION

The term ∇f(W)W>, often called the relative gradient, is therefore the steepest ascent
direction with respect to a multiplicative update. The resulting gradient descent update
on W is W ← (Ip − ρ∇f(W)W>)W , which coincides with the Riemannian gradient
descent.

We will see in the next section that this scalar product plays a key role in Independent
Component Analysis.

The orthogonal group The orthogonal group Op = {W ∈ Rp×p| WW> = Ip} is
also going to prove useful in the following chapters. It is a well studied manifold, and
a special instance of the Stiefel manifold.

Its dimension is p(p−1)
2 . The tangent space at a point W is given by TW = {M ∈

Rp×p| WM> + MW> = 0}, which can be rewritten as TW = {M ∈ Rp×p s.t. M =
ZW with Z ∈ Ap} = ApW , where Ap is the set of skew-symmetric matrices of size
p× p (matrices such that Z> = −Z>). Interestingly, the right-invariant scalar product
is constant and equal to the Frobenius scalar product on this manifold:

For W ∈ Op,M,M ′ ∈ TW , 〈M,M ′〉W = 〈M,M ′〉 .

The exponential map is given by ExpW (M) = exp(MW>)W , forM ∈ TM . Computing
the matrix exponential is often expensive: when it is a problem, one can instead use
the Cayley retraction: RW (M) = (Ip + 1

2MW>)(Ip − 1
2MW>)−1W

In order to properly implement second order methods, we should employ a vector trans-
port, to transport vectors ξ ∈ TW t to TW t+1 . Denote M t ∈ TW t the move made at
iteration t, that is such that W t+1 = ExpW t(M t). The canonical transport is obtained
by projection ([Absil et al., 2009], example 8.1.8):

TMt(ξ) = W t+1skew((W t+1)>ξ) ∈ TW t+1 ,

where the skew of a matrix M is 1
2(M −M>).

1.4. BACKGROUND 39

1.4 Independent Component Analysis

In this section, we give an introduction to the topic of Independent Component ana-
lysis, with help from the three fields discussed in the previous section (information
geometry, optimization and manifolds). It is inspired by the two reference books on the
topic: [Hyvärinen and Oja, 2000, Comon and Jutten, 2010].

Assume that we receive samples x ∈ Rp. A general problem in machine learning and
statistics is to extract structure from x, by finding a latent representation. ICA does
exactly that, by assuming that x is a linear combination of sources s ∈ Rp:

x = As ,

where A ∈ GLp is the mixing matrix, and s ∈ Rp are the independent sources. The goal
of ICA is to recover A and s from observations of x. ICA is a special case of matrix
factorization problem: given a dataset X = {x1, . . . , xn} ∈ Rp×n of n samples, ICA
consists in factorizing the matrix X as :

X = AS ,

where S ∈ Rp×n is the source matrix. One of its key feature is that there is no approx-
imation made: we do not have X ' AS, we have X = AS.

The perfect data-fit in ICA has an important consequence: given enough samples, it is
enough to only estimate either the sources or the mixing matrix to determine both.

Proposition 1.24. Assume X ∈ Rp×n where n ≥ p. Assume rank(X) = p, and that
X = AS with A ∈ GLp and S ∈ Rp×n. Then:

S = A−1X and A = XS† ,

where S† is the Moore-Penrose pseudo inverse of S.

The proof follows from the model equation X = AS. Therefore, the ICA model is
completely identified if we estimate either A or S. Since A contains p2 parameters,
usually much less than S, ICA algorithms focus on estimating A. Estimation is done
by finding a matrix W ∈ GLp such that the vector y = Wx contains signals that are as
independent as possible, hereby estimating the inverse of A.

We want to emphasize that this perfect data fit is rather uncommon in matrix factor-
ization techniques. Indeed, matrix factorization allow the factorization and the data to
differ, and usually trade data fit for another property. For instance, a rank k repres-
entation of X can be obtained by finding U ∈ Rp×k and V ∈ Rk×n such that X ' UV ;
usually by minimizing ‖X −UV ‖2. Additional terms and constraints can be employed.
Non-negative matrix factorization [Paatero and Tapper, 1994, Lee and Seung, 1999]
forces the entries of U and V to be positive, which might be a good prior in some con-
texts. Sparse dictionary learning [Olshausen and Field, 1996, Aharon et al., 2006] looks
for a sparse representation, enforced by a `1 constraint: U, V are found by minimizing
‖X − UV ‖2 + λ

∑k
i=1 ‖Ui‖1.

This introduction to ICA is organized as follows. In section 1.4.1, we discuss the problem
of identifiability of ICA: can we really infer A from realizations of x? Then, we derive the
ICA non-Gaussian likelihood and discuss the key role of the density prior on the sources
in Section 1.4.2. We give some insights on ways of measuring independence and link it

40 CHAPTER 1. MOTIVATION AND CONTRIBUTION

with maximum likelihood estimation in Section 1.4.3. In section 1.4.4, we discuss the
important notion of equivariance, and show that the geometry of the problem enables
estimators with performance independent from the mixing matrix A. In Section 1.4.5,
we describe one of the most widely used ICA algorithm: Infomax. In Section 1.4.6, we
investigate ICA algorithms working under the constraint of decorrelation, and derive
the FastICA algorithm. In Section 1.4.7, we show that one can exploit other statistical
properties of the sources than non-Gaussianity to perform ICA, like non-stationarity or
time correlation. Section 1.4.8 is devoted to the extension of the standard ICA model
to ICA models with noise. Finally, Section 1.4.9 illustrates the use of ICA in M/EEG
data processing.

There are several aspects of ICA that we do not review here, because they are less
useful for the purpose of this thesis. For instance, we do not discuss the separation
of complex signals, cumulant based ICA [Cardoso and Souloumiac, 1993], the original
approach of Jutten and Herault [1991] or kernel ICA [Bach and Jordan, 2002].

The first question we should ask is whether ICA is identifiable: is there any hope to
recover A from realizations of x?

1.4.1 Indeterminacies and identifiability

Before wanting to estimate the parameters of the ICA model, we should wonder whether
if it is an identifiable model, or more generally, what are the indeterminacies of the
model: Assuming that x = As = A′s′, where A,A′ ∈ GLp and s, s′ are vectors of
independent entries, we want to find links between A and A′. Using the invertibility of
A, denoting C = A′−1A, the indeterminacy question becomes:

Let s a vector of independent components of size p and C ∈ GLp. Un-
der which condition does the vector s′ = Cs has independent entries?

First, we can see that there is a scale indeterminacy: indeed, C can be a diagonal
matrix, since if s1, . . . , sp are independent variables, so are s′ = (α1s1, . . . , αpsp) for
α1, . . . , αp ∈ R. Likewise, there is a permutation ambiguity: if σ is a permutation of
{1, . . . , p}, sσ(1), . . . , sσ(p) is also a vector of independent entries. Therefore, C can be
any scale-permutation matrix :

Definition 1.25 (Scale-permutation matrix). A scale permutation matrix of size p is
a matrix C ∈ GLp, for which there exists a permutation σ of {1, . . . , p} and non-zero
scalars α1, . . . , αp such that:

Mij = αiδi,σ(i) .

The scale-permutation ambiguity is intrinsic to any ICA problem, regardless of the
marginal densities of s. Are there other indeterminacies?

Independence is a sufficient condition for decorrelation: if s has independent entries,
then E[sisj] = 0 for i 6= j. This gives a necessary condition on C:

Proposition 1.26. Assume that s has independent entries and that s′ = Cs also has
independent entries. Then, Cov(s′) = CC> is a diagonal matrix, i.e. C = ΛU with Λ
a diagonal matrix and U ∈ Op.

In the special case where s is assumed to be Gaussian, this condition is also sufficient:

1.4. BACKGROUND 41

Proposition 1.27 (Indeterminacies for Gaussian white noise). Assume s contains in-
dependent Gaussian entries. Then Cs also has independent entries if and only if CC>

is diagonal.

Indeed, for Gaussian sources, independence is exactly equivalent to the second order
condition of decorrelation. Gaussian sources are actually the only sources with such
property. In [Comon, 1994], the indeterminacy of ICA is proved to be only scale and
permutation if there is at most one Gaussian in the mix.

Theorem 1.28 (Identifiability of ICA, thm. 11 of [Comon, 1994], based on [Darmois,
1953]). Assume that s contains independent entries, of which at most one is Gaussian.
Let C ∈ GLp, such that s′ = Cs also has independent entries. Then, C is a scale-
permutation matrix.

Therefore, we say that we have solved the ICA problem if we have found a matrix A′

which is equal to CA where C is a scale-permutation matrix, and we say that the ICA
problem is not identifiable if there are more than one Gaussian in the mix. Importantly,
this theorem implicitly makes an i.i.d. assumption on the data, because source samples
s are identified to their density. ICA under the i.i.d. hypothesis is often called non-
Gaussian ICA because identifiability requires that sources are non-Gaussian, except
maybe one. Other frameworks than the i.i.d. setting exist, and we will cover them as
well as their identifiability in due time in section 1.4.7.

1.4.2 Maximum-likelihood ICA and the role of density

In this section, we derive the non-Gaussian likelihood for ICA. Half of this thesis is
devoted to the minimization of the negative log-likelihood.

Consider sources s ∈ Rp drawn from a density d∗, and denote d∗i the marginal density
of d∗. The independence assumption on the sources writes: d∗(s) =

∏p
i=1 d

∗
i (si). In

practical cases, d∗ is unknown, and it can be thought of as a parameter of the model: we
denote d the model density on the source, which also factorizes as d(s) =

∏p
i=1 di(si).

The likelihood of x writes, by change of variable:

dx(x) =
1

|A|d(A−1x)

Therefore, the negative log-likelihood of ICA with model d for a sample x ∈ Rp writes:

`(W,d, x) = − log |W | −
p∑
i=1

log(di([Wx]i)) ,

where W = A−1 is the unmixing matrix. For a dataset X ∈ Rp×n, the average negative
log-likelihood writes:

L(W,d,X) = − log |W | − 1

n

p∑
i=1

n∑
j=1

log(di([WX]ij)) (1.38)

= − log |W | −
p∑
i=1

Ê[log(di([WX]i))] , (1.39)

42 CHAPTER 1. MOTIVATION AND CONTRIBUTION

where Ê is the averaging operation. For simplicity, we will omit the ‘X’ (resp. ‘d’) in
the argument of L when the dataset (resp. density model) is not ambiguous.

It is important to understand how the likelihood depends on model density d and the
true density d∗. First, let us conduct a toy experiment. We take p = 2 and n = 100,
and generate sources coming from the following density: d∗i (si) ∝ exp(−|si|3). This
density is sub-Gaussian: its tail decays faster than an exponential, and most of its mass
in concentrated around 0. We mix these signals with a random 2 × 2 matrix, A. We
compare three models for d:

• Model 1: a different sub-Gaussian density, with fast decaying tails. di ∝ exp(−|x|4).

• Model 2: a Gaussian model. di ∝ exp(−|x|2).

• Model 3: a super-Gaussian model, with heavy tails. di ∝ exp(−|x|).

• Model ∗: the true model d = d∗.

Then, we evaluate L(WθA
−1, d), whereWθ is a rotation matrix: Wθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Choosing θ = 0 leads to perfect separation and recovers exactly the original sources.
Fig. 1.7 displays the results, as well as the profile of the four densities. Some comments
are in order. First, the Gaussian model cannot discriminate. This is expected because
in this case, L(W,d) is rotation invariant. Second, model 1 and model ∗ perform about
as well. They do not recover exactly Wθ = Ip as minimum because there is a finite
number of samples, but they still manage to correctly separate the mixture: in this
case, model mismatch does not impair source recovery. Finally, model 3 completely
fails: it recovers an unmixing matrix with θ = π/4, corresponding to maximally mixing
the sources (it takes ŝ1 =

√
2

2 (s1 +s2) and ŝ2 =
√

2
2 (s1−s2)). Another interesting fact is

that all models have a stationary point around θ = 0: d
dθ

∣∣∣
θ=0
L(WθA

−1, d) = 0. Some of
these results are general, and formalized in the next parts. The discussion about super
and sub-Gaussian density is hand-wavy, and no precise definition has been given. We
will see in Section 1.4.5 a precise criterion based on d and d∗ for A−1 to be an optimum
of L. Unfortunately, formalizing the notion of super- and sub-Gaussian density that fits
well the ICA problem is hard. It would look like this:

Definition 1.29 (Sub and Super Gaussian splitting). Let D the space of all distributions
over R. A splitting of D is a set of super-Gaussian densities, S+ ⊂ D, and a set of
sub-Gaussian densities S− ⊂ D, such that:

• D = S+ ∪S− ∪G, where G ⊂ D is the set of Gaussian densities and the union is
disjoint.

• For sources s ∈ Rp with marginals d∗i ∈ S+, Ip is a local minimum of L(W, s, d)
if and only if for all i, di ∈ S+.

• For sources s ∈ Rp with marginals d∗i ∈ S−, Ip is a local minimum of L(W, s, d)
if and only if for all i, di ∈ S−.

Unfortunately, such a splitting is hard to derive; and we conjecture that it does not
exist.

1.4. BACKGROUND 43

0 π
2 π

θ

0.0

0.2

0.4

0.6

0.8

1.0

L(
W
θ
)
−
L∗

Model 1

Model 2

Model 3

Model ∗

(a) Comparison of the negative log-likelihoods for different source
models d. The negative log-likelihoods are normalized to fit in the
interval [0, 1].

s

(b) Model 1

s

(c) Model 2

s

(d) Model 3

s

(e) Model ∗

Figure 1.7 – A toy example to investigate the effect of the density model on ICA
estimation. Model 1 and model ∗ find minima for θ ' 0, π/2, π, corresponding to
correct separation. Model 2 is not discriminating. Choosing model 3 leads to θ ' π/4,
which corresponds to maximally mixing the components.

Another important note is that the choice of density fixes the scale indeterminacy.
Indeed, it is simple to give an analysis of the scale of the mixture. Consider a rescaling
move consisting in multiplying the i-th row ofW by a factor λ, which we denote Ti,λ(W).
Define f(λ) = L(Ti,λ(W), d). Up to a constant, it holds:

f(λ) = − log(λ)− Ê[log(di(λy))] ,

where y = [WX]i is the i-th estimated source. In order to differentiate this expression,
we introduce the score functions of d.

Definition 1.30 (Score functions). For a density model d, the i-th score function is
ψi(y) = − d

dy log(di(y)).

44 CHAPTER 1. MOTIVATION AND CONTRIBUTION

In general, we assume ψi to be increasing and odd. We find that the minimum of f is
reached at a point for which Ê[λyψi(λy))] = 1. The derivative of the left hand term is
Ê[ψi(λy))y+λψ′i(λy))y2] which is positive if ψi is an increasing odd function: f only has
one minimum, which is λ fixing the scale of the sources. Therefore, only a permutation
ambiguity remains.

Some ICA algorithms attempt to estimate the unmixing matrix and the source density
at the same time. Most of the time, a parametric model for d is used. The most
rudimentary choice is a binary choice : a switch between a super and a sub-Gaussian
density. For instance, [Jung et al., 1997] uses:

ψ(s) = s± tanh(s).

The simplicity of this model makes it simple to perform density estimation. It is also
possible to employ a wide range of density estimation technique, like fitting a Gaussian
mixture model using the EM algorithm, but this leads to an important overhead to the
ICA estimation.

We now describe how the maximum likelihood estimation relates to measures of inde-
pendence.

1.4.3 Measures of independence

Given a dataset X ∈ Rp×n, the goal of ICA is to determine a matrixW ∈ GLp such that
the rows of the matrix Y = WX are as independent as possible. Therefore, assuming
that an independence criterion I is available, ICA boils down to solving:

W ∈ arg min
W∈GLp

{I(Y) | Y = WX} .

Maximum-likelihood offers a tractable way to quantify independence. Importantly, the
negative log-likelihood fits in our framework of minimizing a criterion of independence
of Y = WX, because it can be expressed only in terms of Y . Indeed, up to a constant:

L(W,d) = −1

2
log |Y Y

>

n
| −

p∑
i=1

Ê[log(di(Yi))] .

Next, we try to explain why it does measure independence of the rows of Y , and relate
it to other measures of independence. As usual in maximum likelihood estimation, it is
also understood (up to a constant) as the Kullback-Leibler divergence between the true
distribution and the model. In the limit n→ +∞:

L(W,d) = KL(dx, dAs) + cst ,

Where dx is the true density of the samples, and dAs is the density of the vector As
where s ∼ d. Using invariance of the KL divergence, denoting y = Wx and dy the
distribution of y, we find [Cardoso, 1998b]:

L(W, q) = KL(dy, d) + cst .

Therefore, solving the maximum-likelihood for ICA amounts to minimizing the discrep-
ancy between the estimated sources y and the target independent sources of density d.
We can go further in the decomposition. Denote d′y the density of a vector of independ-
ent entries with the same marginals as y : d′y(y) =

∏p
i=1 dyi(yi). Simple computations

1.4. BACKGROUND 45

show:
KL(dy, d) = KL(dy, d

′
y) + KL(d′y, d)

The first term is called the mutual information of y.

Definition 1.31 (Mutual information). Let dy a density over Rp, and d′y the density of
independent components with same marginals as dy. The mutual information of d is:

MI(dy) = KL(dy, d
′
y) .

By definition, we have MI(dy) ≥ 0 and MI(dy) = 0 if and only if dy corresponds to the
density of independent components. Further, since d′y and d fatorize, we have up to a
constant:

L(W,d) = MI(dy) +

p∑
i=1

KL(dyi , di) . (1.40)

In summary, the total mismatch of the model KL(dy, d) is the sum of the deviation from
independence MI(dy) and the mismatch between the marginal densities of the y and
the assumed distribution d. Therefore, minimizing the negative log-likelihood L with
respect toW corresponds to finding a balance between independence and model match-
ing. Going back to the example in fig. 1.7, at θ = 0,

∑p
i=1 KL(dyi , di) is approximately

minimized for models 1 and ∗, while it is maximal for model 4.

1.4.4 Equivariance and multiplicative updates

In this section, we investigate the important notion of equivariance, which leads to
estimators with uniform performance: their statistical performance does not depend on
the mixing matrix, only on the sources.

First, we introduce equivariant estimators:

Definition 1.32 (ICA estimator). An ICA estimator is an estimator A mapping a
dataset X ∈ Rp×n to an estimated mixing matrix Â ∈ GLp:

A(X) = Â .

The sources found by the estimator A from the dataset X are obtained by Ŝ =(
A(X)

)−1
X. An ICA estimator is called equivariant when it is equivariant with re-

spect to the left multiplication by invertible matrices [Cardoso and Laheld, 1996]. We
should also take the ICA indeterminacies discussed in the previous subsection 1.4.1 into
account:

Definition 1.33 (Equivariant estimator for ICA). An ICA estimator A is equivariant
if for all X ∈ Rp×n, M ∈ GLp, there exists a scale-permutation matrix C such that:

A(MX) = MA(X)C .

Equivariant estimators have the extremely important property of uniform performance:

Proposition 1.34 (Uniform performance). Assume that A is an equivariant estimator,
and X = AS, with A ∈ GLp. Then, there is a scale permutation matrix C such that:

A(X) = AA(S)C .

46 CHAPTER 1. MOTIVATION AND CONTRIBUTION

In particular, the estimated sources from X are:

Ŝ =
(
A(X)

)−1
X = C−1

(
A(S)

)−1
S ,

which only depends on A through a scale and permutation: with respect to the ICA
invariances, it does not depend on A.

The estimated sources of an equivariant estimator do not depend on the mixing matrix:
the statistical performance of an equivariant estimator does not depend on the mix-
ing matrix. Importantly, the maximum-likelihood estimator is equivariant when the
maximum of the likelihood is reached (up to indeterminacies) for a single matrix.

Proposition 1.35 (Equivariance of the maximum likelihood estimator). The maximum-
likelihood estimator with the source density model d is given by:

A(X) ∈ arg min
A∈GLp

L(A−1, d,X) .

Assume that for any A,A′ ∈ arg minA L(A−1, d,X), there is a scale-permutation matrix
C such that A = A′C (i.e. all the global minima of the log-likelihood are equal up to a
scale and permutation). Then, for anyM ∈ GLp, the global minimum of L(A−1, d,MX)
is also reached for a single matrix up to scale and permutation, and A(MX) = MA(X)C
for C a scale-permutation matrix.

Proof Consider M ∈ GLp. We have the simple relationship:

L(A−1, d,MX) = log |A| −
p∑
i=1

Ê[log(di([A
−1MX]i))] (1.41)

= L(A−1M,d,X) + log |M | (1.42)
(1.43)

Therefore, the minima of L(A−1, d,MX) are characterized by those of L(A−1, d,X):

A ∈ arg minL(A−1, d,X) ⇐⇒ MA ∈ arg minL(A−1, d,MX) .

The advertised result follows.

Note that the maximum-likelihood invariance is specific to datasets verifying this prop-
erty of unique minimum up to scale and permutation.

We now relate equivariant estimators to multiplicative algorithms.

Definition 1.36 (Multiplicative algorithm). A multiplicative algorithm to unmix the
signal matrix X starts from an initial unmixing guess W0 ∈ GLp and iterates for t =
0 · · ·T − 1:

• Compute the current estimated signals Yt = WtX, and a relative update U(Yt) ∈
Rp×p.

• Update the estimated unmixing matrix with learning rate ρt: Wt+1 = (Ip−ρtU(Yt))Wt.

The algorithm returns Â = W−1
T .

1.4. BACKGROUND 47

Now, assume that X = AS, and consider Ut = WtA. We have Yt = UtS, and the
update equation writes:

Ut+1 = (Ip − ρtU(UtS))Ut .

Therefore the evolution and the performance of the system is only determined by the
initial matrix U0 = W0A, and a study of the behavior of Ut completely characterizes
the behavior of the algorithm: this is an equivariant algorithm. A striking property of
these algorithms is that they are blind to the conditioning of the matrix A itself, only
on the conditioning of U0.

1.4.5 Non-Gaussian ICA: maximum-likelihood algorithms

Consider a dataset X and target density d for the sources. The relative gradient and
Hessian of the negative log-likelihood (Eq. (1.38)) are given by writing the expansion
of L((Ip + E)W) for E ∈ Rp×p a matrix of small norm (see also Section 1.3.3):

L((Ip + E)W) = L(W) + 〈G(W), E〉+
1

2
〈E ,H(W)E〉+ o(‖E‖2) ,

where G(W) is the relative gradient at W (a p × p matrix) and H(W) is the relative
Hessian atW (a linear operator from Rp×p to Rp×p, represented as a fourth-order tensor
of shape p × p × p × p). In the following, we denote ψi the score function associated
with the density d (see Def. 1.30). Denoting Y = WX, we have:

G(W)ab = Ê[ψa(Ya)Yb]− δab ,
where δab is the Kronecker symbol. This can be written in a dense form:

G(W) =
1

n
ψ(Y)Y > − Ip .

The maximum-likelihood is reached for signals Y such that Ê[ψa(Ya)Yb] = δab. This
equation resembles to a decorrelation condition of the form Ê[YaYb] = δab, with the addi-
tion of the non-linearity ψa, which renders the equations (a, b) and (b, a) non-symmetric.
The Infomax algorithm [Bell and Sejnowski, 1995] is a popular ICA algorithm.

Definition 1.37 (Infomax). The Infomax algorithm starts from an initial guess W0 ∈
Rp and iterates:

Wt+1 = Wt − ρt
(

1

n
ψ(Yt)X

> −W−>t

)
,

where the gradient is either computed on the whole dataset, or using only a mini-batch
of samples.

This is an Euclidean gradient descent algorithm on L, and therefore it is a not a multi-
plicative algorithm. Importantly, this algorithm was not derived in the original paper to
perform maximum-likelihood ICA, but Cardoso [1997] linked this method to maximum-
likelihood ICA. The idea of using the relative gradient for Infomax is found in [Amari
et al., 1996], and writes:

Wt+1 = (Ip − ρtG(Wt))Wt .

Because the gradient is only a function of Y , this formulation is a multiplicative al-
gorithm as defined in 1.36. The relative version proposed by Amari et al. [1996] is used
by most practitioners becaude of its better behavior than the original algorithm. How-
ever, this algorithm is still referred to as Infomax in most ICA libraries, even though it
is not the formulation of Bell and Sejnowski.

48 CHAPTER 1. MOTIVATION AND CONTRIBUTION

We finish by giving an important property of maximum-likelihood ICA:

Proposition 1.38 (Independent sources are a stationary point of the log-likelihood).
Assume that we observe i.i.d. signals X = AS, where the rows of S are independent.
Then, for i 6= j, G(A−1)ij → 0 as n → +∞, regardless of the model for the density of
the sources. Further, if the sources have a scale such that E[ψi(si)si] = 1, G(A−1)→ 0.

Proof The results follows naturally from the equation G(A−1)ij = Ê[ψ(si)sj]− δij .
This result makes no assumption on the source model d: even when the density of the
sources is far from the model, the gradient of the log-likelihood asymptotically cancels.
This was observed in Fig. 1.7: θ = 0 was a stationary point for each model. If we want
to study the stability of such a point, we should go beyond first order and compute the
Hessian. It is obtained as:

H(W)abcd = δadδbc + δacÊ[ψ′a(Ya)YbYd] .

First, we note that it is sparse: it only has O(p3) coefficients even though it is a
p× p× p× p operator. Second, letting n→ +∞ and assuming that the rows of Y are
independent (meaning that we have solved the ICA problem), the Hessian simplifies:

H̃(W) = δadδbc + δacδbdE[ψ′a(ya)]E[y2
b] . (1.44)

This Hessian approximation is a block diagonal operator with blocks of size 2 × 2: for
a matrix M ∈ Rp×p, denoting M ′ = H̃(W)M , we find:[

M ′ab
M ′ba

]
=

[
E[ψ′a(ya)]E[y2

b] 1
1 E[ψ′b(yb)]E[y2

a]

][
Mab

Mba

]
.

In particular, we identify an important stability condition: H̃ is positive if and only if
all the 2× 2 blocks are positive.

Proposition 1.39 (Stability condition of the ICA solution [Amari et al., 1997]). A−1

is a local minimum of L if and only if G(A−1) = 0 and :

For all i, j, E[ψ′i(si)]E[s2
i]E[ψ′j(sj)]E[s2

j] > 1 ,

where the expectations are taken with respect to the true densities d∗i , d
∗
j and ψ′i is the

score of the model di.

Under this condition, an algorithm solving maximum likelihood ICA starting close
enough from A−1 will recover A. If this condition is not met, A−1 is a saddle point and
will never be reached by a practical algorithm. To the best of our knowledge, there is
sadly no global result on maximum-likelihood estimation in ICA, like conditions upon
which all local minima of the log-likelihood are separating matrices.

The Picard algorithm, which we discuss in the next chapter, uses this Hessian approxim-
ation and a multiplicative framework to obtain a fast algorithm for maximum-likelihood
ICA.

1.4. BACKGROUND 49

1.4.6 Orthogonal algorithms

Decorrelation is a necessary condition for independence. Therefore, many ICA al-
gorithms enforce an orthogonal constraint. Given a dataset X ∈ Rp×n, the covariance
of X is CX = 1

nXX
>, and we say that X is decorrelated when CX = Ip. A first step

for ICA is often to decorrelate X by a linear transform, that is finding a matrix W such
that WX is decorrelated. We have:

Proposition 1.40 (Decorrelating transforms). Let X ∈ Rp×n. For a matrix W ∈ GLp,
we have:

CWX = Ip if and only if W = UC−1/2
x where U ∈ Op .

Proof Indeed, CWX = Ip if and only if WCXW
> = Ip, which is rewritten as:(

WC
1/2
X

)(
WC

1/2
X

)>
= Ip, i.e.U = WC

1/2
X ∈ Op.

Therefore, the set of decorrelating transforms is, up to a matrix multiplication, equal
to the orthogonal group. Orthogonal algorithms look for an unmixing matrix of the
form W = UC

−1/2
x with U ∈ Op. However, due to the finite number of samples, this

inherently limits the efficiency of such algorithms. Indeed, the covariance matrix of
the sources is not really Ip: CS 6= Ip. Therefore, A is not of the form UC

−1/2
x . This

discrepancy can be quantified [Cardoso, 1994].

Still, the drop in efficiency is usually slim compared to model mismatch, and the or-
thogonal constraint can be leveraged to obtain fast algorithms. In the following, we
assume that the data matrix has been decorrelated with a decorrelating transform:
CX = Ip. Therefore, orthogonal algorithms look for orthogonal unmixing matrices.
FastICA [Hyvärinen, 1999] works under decorrelation constraint, and is a fast fixed
point algorithm for ICA. The derivation of FastICA starts for one unit, where a vector
w ∈ Rp such that ‖w‖ = 1 is of power one. For a non-quadratic function Γ, FastICA
finds the extremal points of:

Ê[Γ(wX)] s.t. ‖w‖ = 1 .

The Lagrangian of this problem writes Ê[Γ(wX)] − 1
2β‖w‖2, where β ∈ R. Canceling

its gradient with respect to w yields:

Ê[g(wX)X]− βw = 0 ,

where g = Γ′.

FastICA solves this equation with Newton’s method. The Jacobian of the previous term
is:

1

n

n∑
j=1

g′([wX]j)Xj ⊗Xj − βIp ,

which is approximated as (Ê[g′(wX)] − β)Ip, using Xj ⊗ Xj ' Ip. Therefore, the
approximate Newton’s method with step-size 1 writes:

w ← w − 1

Ê[g′(wX)]− β
(Ê[g(wX)X]− βw) . (1.45)

50 CHAPTER 1. MOTIVATION AND CONTRIBUTION

A normalizing step is performed afterwards:

w ← w

‖w‖ .

Since a normalizing step is applied, multiplying the right-hand side of eq. 1.45 by a scalar
leaves the iterations unchanged (or flips the signs of w). Doing so with β − Ê[g′(wX)]
yields the practical form of FastICA:

w ← Ê[g(wX)X]− Ê[g′(wX)]w , (1.46)

w ← w

‖w‖ . (1.47)

An extension to the estimation of the whole mixture and of a demixing matrix W ∈ Op
is proposed by performing the updates in parallel:

W ← Ê[g(WX)X]− diag(Ê[g′(WX)])W, (1.48)

W ← (WW>)−
1
2W , (1.49)

where the last operation corresponds to a projection on Op.
So far, the algorithm is not a multiplicative algorithm, but it can simply be turned into
one by doing:

W ←

 n∑
j=1

ψ(Yj)Yj − diag(

n∑
j=1

ψ′(Yj))

W, (1.50)

W ← (WW>)−
1
2W , (1.51)

where implicitly, Y = WX. In [Hyvärinen, 1999], this approach is linked to maximum-
likelihood ICA, through the choice of density. Assume that we have a binary density
model:

− log(d(y)) = y2 + εΓ(y) + cst ,

where Γ is such that Γ(y) = o(y2) as y → ±∞, and ε is +1 or −1. The "log-likelihood"
for this model, under unit norm constraint, writes:

L(w, d) = Ê[(wX)2]︸ ︷︷ ︸
constant

+εÊ[Γ(wX)] .

The local minima of L when ε = ±1 are exactly the extremal points of Ê[Γ(wX)].
This analysis is more difficult to conduct in the general case where the whole matrix
W is estimated. In section 2.2.4 of this thesis, we show under mild conditions that the
fixed points of FastICA indeed correspond to local minima of the log-likelihood with a
binary density model, and that the iterations of FastICA match those of a quasi-Newton
algorithm on the orthogonal manifold, and that a version of the Picard algorithm on
the orthogonal manifold is faster than FastICA on real datasets.

1.4. BACKGROUND 51

1.4.7 Different routes to ICA

So far, we have studied the ICA likelihood under the non-Gaussian i.i.d. hypothesis. As
we have seen previously, a mixture of Gaussian white noise (i.e. Gaussian i.i.d. samples)
is not identifiable. Non-Gaussianity is a way to depart from Gaussian white noise, but
two other simple deviations are also worth considering :

• Non-stationary samples [Pham and Cardoso, 2001]: samples are no longer sup-
posed to be identically distributed.

• Time-correlated samples [Pham and Garat, 1997]: samples are no longer supposed
to be independent from one another.

Just like non-Gaussian ICA, these two models lead to simple maximum-likelihood in-
ference.

Non-stationary ICA A simple non-stationary model assumes that the density model
is Gaussian, with a variance varying over time: the density of the i-th source and sample
j is dij = N (0, σ2

ij). The negative log-likelihood of this model writes as the sum of
negative log-likelihoods over samples. Up to a constant:

L(W,σ) = − log |W |+ 1

2n

p∑
i=1

n∑
j=1

 [WX]2ij
σ2
ij

+ log(σ2
ij)

 . (1.52)

So far, this model is highly unidentifiable: there are as many variance parameters σ2 as
there are data points. A customary hypothesis is that the variance profiles are piecewise
constant over L intervals: there are L + 1 integers 1 = n1 < · · · < nL+1 = n + 1 such
that σ2

ij = λil when j ∈ [nl, nl+1[. Denote Cl = 1
γl

∑nl+1−1
j=nl

Xj ⊗Xj the covariance of
X in the l-th interval, where γl = nl+1 − nl is the interval length. We find:

areL(W,λ) = − log |W |+ 1

2n

p∑
i=1

L∑
l=1

γl

[
[WClW

>]ii
λil

+ log(λil)

]
.

Minimization with respect to λil is straightforward and yields λil = [WClW
>]ii. Up to

a constant, the cost function therefore rewrites:

L(W) = − log |W |+ 1

2n

p∑
i=1

L∑
l=1

γl log([WClW
>]ii) .

Using the identity log |WClW
>| = 2 log |W |are + log |Cl|, the cost function is finally

obtained up to a constant as:

L(W) =
1

2n

L∑
l=1

γl log

(
|diag(WClW

>)|
|WClW>|

)
. (1.53)

Interestingly, this is a joint-diagonalization criterion, which verifies [Pham, 2001b]:

• L(W) ≥ 0.

52 CHAPTER 1. MOTIVATION AND CONTRIBUTION

• L(W) = 0 if and only if WClW
> is a diagonal matrix for all l.

Therefore, solving ICA for this model amounts to finding an unmixing matrix W such
that the matrices WClW

> are as diagonal as possible, where the measure of non-
diagonality is given by Eq. (1.53). There is a simple explanation. In the limit where
the interval lengths go to infinity: γl → +∞, we have:

Cl = E[Xj ⊗Xj] = AE[Sj ⊗ Sj]︸ ︷︷ ︸
diagonal

A> ,

therefore the matrices Cl are jointly-diagonalized by A−1.

This model is identifiable when no pair of sources have proportional variance pro-
files [Matsuoka et al., 1995]: this model leverages power diversity.

Time-correlated ICA This model should be understood as the Fourier dual of the
non-stationary model. Denote s̃a(l) = 1√

n

∑n
j=1 saj exp(−2πilj

n) the l-th Fourier coef-
ficient of the a-th source sa. These coefficients are decorrelated as n → +∞, with
variance Pal given by the power spectrum. The log-likelihood is then given by:

L(W) = − log |W |+ 1

2n

p∑
a=1

n∑
l=1

[
|Ỹal|2
Pal

+ log(Pal)

]
,

where Ỹ is the Fourier transform with respect to the rows of Y = WX. The resemblance
with Eq. (1.52) is striking: the instantaneous power Y 2

ij is replaced by the spectral
instantaneous power |Ỹal|2, and the Gaussian variance σ2

ij is replaced by the power
spectrum Pal. The piecewise constant hypothesis leads to piecewise constant spectra,
and the estimation of the mixing is made by joint-diagonalizing the spectral covariance
matrices C̃l corresponding to the covariance of the signals filtered in each frequency
band of interest.

This model is identifiable when no pair of sources have proportional spectra Pham and
Garat [1997]: it is a model leveraging spectral diversity.

In this thesis, we use an extension of this model to extract meaningful brain sources in
Chapter 4.

Tensor-based approaches Another line of research consists in using a tensorial
framework to extract sources [Sidiropoulos et al., 2000]. This approach is best ex-
plained by considering a continuous problem in "n": the sources are continuous func-
tions sj(t) : R→ R. Consider a kernel function φ(τ, t, f) : R3 → R, where for instance t
represents time and f frequency. Assume that the sources factorize with respect to the
kernel transform: ∫

R
sj(τ)φ(τ, t, f)dτ = Bj(t)× Cj(f) , (1.54)

whereBj(t) and Cj(f) are the time and frequency components of the source sj . Consider
an ICA model xi =

∑p
j=1Aijsj . Let Ti(t, f) =

∫
R xi(τ)φ(τ, t, f)dτ . Eq. (1.54) gives:

Ti(t, f) =

p∑
j=1

Aij ×Bj(t)× Cj(f) .

1.4. BACKGROUND 53

Considering discretized time intervals t1, · · · tq and frequency intervals f1, · · · , fr, the
third order tensor T ∈ Rp×q×r of entries Tikl = Ti(tk, fl) factorizes in a low rank
decomposition:

Tikl =

p∑
j=1

Aij ×Bkj × Clj ,

where B ∈ Rq×p and C ∈ Rr×p. This decomposition is a polyadic decomposition
of T of order p. Importantly, this decomposition is unique (up to trivial scale and
ordering ambiguities) as long as a condition on the k-rank of the factors A,B,C is
verified [Kruskal, 1977], or on the coherence of those matrices [Lim and Comon, 2013].
Therefore, the mixing matrix A is recovered by computing the polyadic decomposition of
T : ICA is performed by tensor decomposition. At first glance, it may not be clear where
the independence assumption between the sources is used. It is hidden in the conditions
for the unicity of the polyadic decomposition, through properties of the matrices B and
C.

This framework relies crucially on the source factorization hypothesis of Eq. (1.54);
and the kernel φ should be chosen accordingly. For instance, short-time Fourier or
wavelet kernel constitutes a prototypical choice for φ, leading to the so-called space-
time-frequency component analysis used in a variety of literature and giving interesting
decomposition on brain signals [Miwakeichi et al., 2004, De Vos et al., 2007, Mørup
et al., 2006, Weis et al., 2009].

Other approaches for tensor-based ICA, exploiting different transforms of the sources
have also been developed, like spatial-time-wave-vector [Becker et al., 2012, 2016] or
polarization [Raimondi and Comon, 2015].

1.4.8 ICA models with noise

We now turn to an extensions of the classical ICA model X = AS, by adding a noise
term:

X = AS +N ,

where the noise N is assumed to be independent of S. First of all, this allows to
estimate a different number of sources than sensors (i.e. having a non-square mixing
matrix), without degenerate model. Therefore, in this section, we denote q the number
of sources, so that A ∈ Rp×q, and S ∈ Rq×n. A first difficulty with such model is
that estimation of A does not give access to the sources, and vice versa. This leads to
some identifiability issues [Davies, 2004]: under usual assumptions, A is identifiable up
to scale and permutation, but not the sources (and in particular their density). The
tractability of this model differ greatly depending on which of the three routes to ICA
one takes.

Non-Gaussian ICA For non-Gaussian ICA, a natural assumption is to assume that
N contains i.i.d. Gaussian variables of variance σ2. Let d denote the model on the
density of the sources. The likelihood of A for a sample x writes, by marginalization

54 CHAPTER 1. MOTIVATION AND CONTRIBUTION

over the sources [Lewicki and Sejnowski, 2000]:

`(A, x) =

∫
s∈Rq

p(x|A, s)d(s)ds (1.55)

=

∫
s∈Rq

1√
2πσ2

p exp

(
− 1

2σ2
‖x−As‖2

)
q∏
i=1

di(si)ds . (1.56)

This integral is not tractable because of the entanglement between x and s. Therefore,
one can use the EM algorithm to estimate the parameters of the model, using the sources
as a latent variable. The M-step writes simply:

A = RxsR
−1
ss ,

where Rxs = Ê
[
x⊗ E[s|A, x]

]
and Rss = Ê

[
E[s⊗ s|A, x]

]
are the sufficient statistics.

The estimation of these correlation matrices is tedious, and greatly depends on the
density model d: a solution modeling d as a mixture of Gaussian is discussed in [Moulines
et al., 1997], it is computationally intensive.

An alternative is to use objective functions similar to dictionary learning [Olshausen
and Field, 1996]:

A,S ∈ arg min
1

2
‖X −AS‖2 + λ

q∑
i=1

n∑
j=1

G(Sij) s.t. C(A) = A (1.57)

where G is a non-quadratic function and C(A) is a function imposing constraints on A,
like C(A) = A>A−Iq to impose orthogonality or C(A) =

∑q
i=1 |‖Ai‖−1| to impose unit-

norm constraints. In the square p = q case, this model relates to maximum likelihood
ICA in the limit of no regularization.

Indeed, when λ→ 0, problem (1.57) becomes the constrained problem:

A,S ∈ arg min

q∑
i=1

n∑
j=1

G(Sij) s.t. C(A) = 0 and X = AS , (1.58)

which is non-Gaussian maximum-likelihood ICA with model on the sources di = exp(−G),
under the condition that log |A| is constant under the constraint C(A) = 0.

Non-stationary and time correlated ICA Thanks to their underlying Gaussian
assumptions, these models incorporate the additional noise term with more ease. How-
ever, this approach has seldom been used in practice. We show a practical algorithm
for this method in Chapter 4.

1.4.9 Applications of ICA: M/EEG signal processing

ICA is widely used in observational sciences, as it is a powerful unsupervised data explor-
ation technique. It is used by several communities: astronomy [Nuzillard and Bijaoui,
2000, Maino et al., 2002, Cadavid et al., 2008], chemistry [Vrabie et al., 2007, Rutledge
and Bouveresse, 2013], biology [Lee and Batzoglou, 2003, Scholz et al., 2004], or mech-
anical engineering [Poncelet et al., 2007]. The goal of this thesis is to develop better ICA
algorithms for real life applications, with brain signal processing (and neuroscience) as
the first application in mind.

1.4. BACKGROUND 55

Temporal envelope Power spectrumTopo

0 1 2 3 4
time (sec.)

0 25 50
f (Hz)

Figure 1.8 – Some
ICA topographies

ICA is widely used to process the three principal non-invasive
brain data acquisition techniques: electroencephalography
(EEG) [Niedermeyer and Lopes da Silva, 2005], magnetoen-
cephalography (MEG) [Hämäläinen et al., 1993], and functional
magnetic resonance imaging (fMRI) [Huettel et al., 2004]. We
especially focus on M/EEG data. Magnetoencephalography and
electroencephalography respectively acquire magnetic and elec-
tric field at the level of the scalp. A typical research EEG device
has p ∼ 50 sensors, and a MEG device has ∼ 100 sensors. A
major problem in neuroscience is that of source estimation: the
goal is to infer the sources that lead to the measurements. This
is the M/EEG inverse problem. The forward problem mod-
els how sources lead to the measurement. Sources are usually
modeled as dipoles located at a specific location in the brain.
Thanks to linearity of Maxwell’s equations, the electric / mag-
netic field received at the level of a sensor is a linear combination
of the emission of those source dipoles. Denoting X ∈ Rp×n the
observed signals, it holds:

X = DZ,

where D ∈ Rp×q is the forward operator and Z ∈ Rq×n is the
source activity. Some noise coming from other sources than the
brain can also be taken into account. Usually, the brain is di-
vided into a grid of thousands of small cubes, at the center of
which dipoles are placed. This model assumes 1000’s of poten-

tial sources, while in practice only a few are active: therefore, it is customary to employ
regularized models to solve the inverse problem.

ICA offers an alternative. The linearity of the forward model means that ICA is a
candidate of choice to extract brain sources [Makeig et al., 1997]. It amounts to assuming
that the measurement X comes from only a few different sources: at most as many as
there are sensors. Applying ICA on EEG/MEG data reveals many different types of
signals. Figure 1.9 displays a few seconds of 10 sensors of an EEG recording, and 10
sources found by ICA on those data.

As it appears, ICA is a powerful tool to capture artifacts: eye blinks, heartbeat, line
noise, environmental noise... It is widely used by practitioners to clean the brain signal
from those contaminations. It is extremely simple to do: given an ICA decomposition
X = AS, if the source i is to be suppressed, one can simply set si = 0 yielding clean
sources Sclean and reconstruct the cleaned signal Xclean = ASclean. Further, an ICA
source is obtained as a linear combination of sensors. This allows to interpolate on the
sensor topography, and display the estimated electric/magnetic field. Such maps are
displayed in figure 1.8. It can also be used to fit a dipole, and see how good the fit is: a
source with good fit is called a dipolar source.Delorme et al. [2012] argues that an ICA
decomposition should lead to such dipolar sources, and that it can in fact be used as a
measure for the quality of a decomposition.

56 CHAPTER 1. MOTIVATION AND CONTRIBUTION

Temporal envelope Power spectrumTopo

0 1 2 3 4
time (sec.)

0 25 50
f (Hz)

(a) Raw EEG

Temporal envelope Power spectrumTopo

0 1 2 3 4
time (sec.)

0 25 50
f (Hz)

(b) ICA sources

Figure 1.9 – Applying ICA to EEG data allows to separate the signal in independent
components. The first independent component corresponds to the eye blinks, which
contaminates a lot the original signals. Components 2-5 show prototypical brain os-
cillations like α or β rhythms. The high frequency components (7-8-10) correspond to
muscular artifacts.

1.5 Contributions

This thesis contains three main contributions. Now that we have introduced all the
useful notions, we would like to motivate them with practical examples.

Chapter 2: Faster ICA by preconditioning with Hessian approximation This
work is devoted to the problem of rapidly estimating the maximum-likelihood estimator
for ICA, by minimizing L(W) in Eq. (1.38). A good starting point is the Hessian
approximation in H̃(W) in Eq. (1.44): it is very sparse, easy to invert and regularize,
and quite cheap to compute.

It is therefore natural to propose a quasi-Newton method using H̃ instead ofH. Starting
from W0 ∈ GLp, this algorithm iterates:

Wt+1 =

(
Ip − ρt

(
H̃(Wt)

)−1
G(Wt)

)
Wt .

This exact algorithm is actually proposed by Zibulevsky [2003]. It works extremely
well on synthetic data generated by the ICA generative model X = AS. However, it is
much slower than one would expect applied on real datasets. The same observation can
be made for the popular algorithm FastICA [Hyvärinen, 1999]. Figure 1.10 shows the
behavior of these algorithms on synthetic and real data: on real data, the convergence is
overall slow. What is happening? Recall that the Hessian approximation H̃ is obtained
when the signals estimated by the algorithm are independent. For real data, the ICA
model does not hold perfectly, and for most dataset X, there is no matrix W that make
the rows of WX independent. The Hessian approximation is therefore limited.

1.5. CONTRIBUTIONS 57

0 5 10 15 20
Iterations

10 7

10 5

10 3

10 1

Gr
ad

ie
nt

 n
or

m FR-Newton

(a) Simulated data

0 5 10 15 20
Iterations

10 7

10 5

10 3

10 1

Gr
ad

ie
nt

 n
or

m FastICA

(b) Simulated data

0 50 100 150 200
Iterations

10 7

10 5

10 3

10 1

Gr
ad

ie
nt

 n
or

m FR-Newton

(c) EEG data

0 250 500 750 1000
Iterations

10 7

10 5

10 3

10 1

Gr
ad

ie
nt

 n
or

m FastICA

(d) EEG data

Figure 1.10 – Behavior of Zibulevsky’s algorithm (FR-Newton) and FastICA on syn-
thetic and real data. To generate synthetic data, a source matrix of size 59 × 10000
where each entry follows a Laplace law (Sij ∼ 1

2 exp(−|x|)) is generated. We mix it
using a mixing matrix A ∈ R59×59 with random Gaussian entries. The real data comes
from an EEG dataset of the same size, 59 × 10000. The y-axis displays the gradient
norm of the cost function ‖G(W)‖. Shaded areas correspond to several runs of the
algorithm.

In our first contribution, we propose to use H̃ as a first Hessian approximation in the
L-BFGS algorithm, which is then going to refined to find a better approximation, closer
to the true curvature of the loss function. This is the Preconditioned ICA for Real Data
(Picard) algorithm. It is also extended to the orthogonal constraint (Section 2.2) in
order to solve the same problem as FastICA. Experiments show that it is faster than
other ICA algorithms on real data.

The code for Picard is available online at https://github.com/pierreablin/picard.

Chapter 3: Stochastic algorithms for ICA with descent guarantees Ima-
gine that the data matrix at hand X contains an extremely large number of samples.
This setting makes stochastic algorithms appealing: after seeing the whole dataset, a
stochastic algorithm will have performed n steps, while a full-batch algorithm like Pi-
card or FastICA will only perform one step. For ICA, the only stochastic technique
employed is stochastic gradient descent, like the Infomax algorithm 1.37. As explained
in the introduction, stochastic gradient descent is sometimes hard to properly set up,
because of its learning rate. Figure 1.11 shows the convergence of Infomax on a toy

https://github.com/pierreablin/picard

58 CHAPTER 1. MOTIVATION AND CONTRIBUTION

problem, with three learning rates.

0 200 400 600

Samples seen

1.5

2.0

2.5

L(
W

)
Too big Good Too small

Figure 1.11 – Behavior of Infomax (relative stochastic gradient descent) on a toy 3×100
problem. Different curves correspond to different learning rates. This is an extremely
important parameter which is hard to choose. This figure is sketchy, but similar prob-
lems occur when applying Infomax to M/EEG processing [Montoya-Martínez et al.,
2017].

In our second contribution, we develop a majorization-minimization framework for min-
imizing L, using the so called η-trick in order to majorize − log(p) by a quadratic. It
leads to incremental algorithms with descent guarantees for ICA, that scale gracefully
with the number of samples, are are much safer to use than SGD.

The code is available online at https://github.com/pierreablin/mmica.

Chapter 4: Spectral matching ICA for brain rhythms separation In our
last contribution, we revisit SMICA, an ICA algorithm proposed in an astronomical
setting [Delabrouille et al., 2003] (see Figure 1.12). It uses a noisy ICA model:

X = AS +N ,

where the sources are supposed to be time-correlated. This algorithm leverages spectral
diversity of the sources. How does it perform on M/EEG data? Our experiments show
that it leads to interesting decompositions, and that the noise model leads to many
interesting features that noiseless ICA algorithms do no possess.

The code is available online at https://github.com/pierreablin/smica.

https://github.com/pierreablin/mmica
https://github.com/pierreablin/smica

1.6. PUBLICATIONS 59

Figure 1.12 – The European mission Planck had for purpose to produce a clean map
of the cosmological microwave background (CMB), which was emitted about 14 billion
years ago. To do so, the Planck satellite took pictures of the universe in 9 frequency
bands (top). Each picture is a linear combination of the background (the signal of in-
terest), with foreground contaminations which are mutually independent. The problem
of recovering the CMB is therefore an ICA problem. SMICA, an ICA algorithm based
on spectral diversity and encompassing a noise model, was used to obtain the linear
combination of the 9 top images to get the final snapshot of the CMB (bottom).

1.6 Publications

The different works presented in this document resulted in various publications and
communications. Publications presented in this thesis are:

• Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Faster independ-
ent component analysis by preconditioning with Hessian approximations. IEEE
Transactions on Signal Processing, 66(15):4040–4049, 2018a

• Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Faster ICA un-
der orthogonal constraint. In Proc. IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 2018c

60 CHAPTER 1. MOTIVATION AND CONTRIBUTION

• Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Accelerating like-
lihood optimization for ICA on real signals. In International Conference on Latent
Variable Analysis and Signal Separation, pages 151–160. Springer, 2018b

• Pierre Ablin, Alexandre Gramfort, Jean-François Cardoso, and Francis Bach.
Stochastic algorithms with descent guarantees for ICA. In The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics, pages 1564–1573, 2019c

Two other articles borrowing ideas from [Ablin et al., 2018a] to accelerate optimization
of different problems than ICA are not presented here:

• Pierre Ablin, Dylan Fagot, Herwig Wendt, Alexandre Gramfort, and Cédric Fé-
votte. A quasi-Newton algorithm on the orthogonal manifold for NMF with trans-
form learning. In ICASSP 2019-2019 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages 700–704. IEEE, 2019b

• Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Beyond Pham’s
algorithm for joint diagonalization. In ESANN, 2019a

Two other articles have been accepted at the NeurIPS 2019 conference:

• Pierre Ablin, Thomas Moreau, Mathurin Massias, and Alexandre Gramfort. Learn-
ing step sizes for unfolded sparse coding. arXiv preprint arXiv:1905.11071, 2019d

• David Sabbagh, Pierre Ablin, Gaël Varoquaux, Alexandre Gramfort, and Denis A
Engeman. Manifold-regression to predict from meg/eeg brain signals without
source modeling. arXiv preprint arXiv:1906.02687, 2019

Part I

Faster Independent Component
Analysis

61

2
Faster ICA by preconditioning with

Hessian approximations
Contents

2.1 The Picard algorithm . 65
2.1.1 Introduction . 65
2.1.2 Likelihood and derivatives . 66
2.1.3 Hessian Approximations . 68
2.1.4 Regularization of Hessian Approximations 69
2.1.5 Preconditioned ICA for Real Data 69
2.1.6 Related work . 71
2.1.7 Experiments . 74
2.1.8 Conclusion . 80

2.2 Extension to the orthogonal constraint 82
2.2.1 Introduction . 82
2.2.2 Likelihood under whiteness constraint 82
2.2.3 The Picard-O algorithm . 84
2.2.4 Link with FastICA . 84
2.2.5 Experiments . 86
2.2.6 Discussion . 87

2.1 The Picard algorithm

This section presents the work published in:

Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Faster independent com-
ponent analysis by preconditioning with Hessian approximations. IEEE Transactions
on Signal Processing, 66(15):4040–4049, 2018a

Only minor changes have been made: shorter introduction and notation harmonization.

2.1.1 Introduction

One of the most popular ICA algorithm is Infomax [Bell and Sejnowski, 1995], or rather
its relative gradient implementation Amari et al. [1996]. It is widely used in neuros-
cience and is distributed in most neural processing toolboxes (e.g. EEGlab [Delorme
and Makeig, 2004] or MNE [Gramfort et al., 2014]). The Infomax criterion can be
shown to correspond to a likelihood function [Cardoso, 1997] based on a super-Gaussian
component model. Consequently, a limitation of Infomax is that it can only separate
super-Gaussian signals. Numerous significant neuroscience studies use Infomax in their
data processing pipelines such as [Jung et al., 2000, McKeown et al., 1997, Allen et al.,

66
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

2011, Assaf et al., 2010, Allen et al., 2014, Wessel and Aron, 2015] to reference only
a few. The purpose of this part is to provide a faster way of optimizing this popular
criterion.

Infomax maximizes the likelihood using a stochastic gradient algorithm which may re-
quire some hand-tuning and often fails to converge, or only converges slowly [Montoya-
Martínez et al., 2017]. Since speed is important in data exploration, various meth-
ods have been proposed for a faster maximization of the Infomax likelihood by using
curvature information, that is by exploiting not only the gradient of the likelihood as in
Infomax but also its second derivatives. We briefly review some of the methods found
in the literature.

The most natural way of using curvature is to use the complete set of second derivatives
(the Hessian) to set up the Newton method but it faces several difficulties: the Hessian
is a large object, costly to evaluate and to invert for large data sets. It also has to be
regularized since the ICA likelihood is not convex. The cost issue is addressed in [Tillet
et al., 2017] by using a truncated Newton algorithm: an approximate Newton direction
is found by an early stopping (truncation) of its computation via a conjugate gradient
method. Further, each step in this computation is quickly computed by a ‘Hessian-
free’ formula. Another approach to exploit curvature is to use approximations of the
Hessian, obtained by assuming that the current signals are independent (see e.g. [Pham
and Garat, 1997, Amari et al., 1997] or Section 2.1.2). For instance, a simple quasi-
Newton method is proposed in [Zibulevsky, 2003] and in AMICA [Palmer et al., 2008],
and a trust-region algorithm in [Choi and Choi, 2007].

We have re-implemented and compared these methods (see Section 2.1.7) and found
that the Hessian approximations do yield a low cost per iteration but that they are not
accurate enough on real data (which cannot be expected to follow the ICA model at
high accuracy, e.g. in presence of some correlated sources). The approach investigated
in this part overcomes this problem by using an optimization algorithm which ‘learns’
curvature from the past iterations of the solver (L-BFGS [Byrd et al., 1995]), and
accelerates it by preconditioning with Hessian approximations.

This part is organized as follows. In Section 2.1.2, we recall the expression of the gradi-
ent and Hessian of the log-likelihood. We show how simple Hessian approximations can
be obtained and regularized. That allows the L-BFGS method to be preconditioned at
low cost yielding the Preconditioned ICA for Real Data (Picard) algorithm described
in Section 2.1.5. In Section 2.1.6, we detail related algorithms mentioned in the intro-
duction. Finally, Section 2.1.7 illustrates the superior behavior of the Picard algorithm
by extensive numerical experiments on synthetic signals, on multiple electroencephal-
ography (EEG) datasets, on functional Magnetic Resonance Imaging (fMRI) data and
on natural images.

2.1.2 Likelihood and derivatives

Non Gaussian likelihood for ICA

The negative log-likelihood of ICA is given by:

L(W) = − log |W | − Ê

 p∑
i=1

log(di(yi(t))

 , (2.1)

2.1. THE PICARD ALGORITHM 67

where Ê denotes the empirical mean (sample average) and where, implicitly, Y = WX.
Our aim is to minimize L(W) with respect to W which amounts to solving the ICA
problem in the maximum likelihood sense.

We note from the start that this optimization problem is not convex for a simple reason:
if W ∗ minimizes the objective function, any permutation of the columns of W ∗ gives
another equivalent minimizer.

In this part, we consider the fast and accurate minimization of L(W) for a given source
model, that is, working with fixed predetermined densities di, equal for all channels. It
corresponds to the standard Infomax model commonly used in practice. In particular,
our experiments use − log(di(·)) = 2 log(cosh(·/2)) + cst ∀i, which is the density model
in standard Infomax, but any density that captures super-Gaussian signals could be
used instead.

In the following, the ICA mixture model is said to hold if the signals actually are a
mixture of independent components. We stress that on real data, the ICA mixture
model is not expected to hold exactly. This may happen for several reasons depending
on the origin of the data, among which convolutions, partially correlated sources, a
different number of sources than sensors, non-stationarity or non-i.i.d sources. Yet, the
linear ICA model is widely used in observational sciences.

Relative variations of the objective function

The variation of L(W) with respect to a relative variation of W is described, up to
second order, by the Taylor expansion of L((I+E)W) in terms of a ‘small’ p×p matrix
E :

L((I + E)W) = L(W) + 〈G, E〉+
1

2
〈E , HE〉+O(||E||3). (2.2)

The first order term is controlled by the p×p matrix G, called the relative gradient [Car-
doso and Laheld, 1996] and the second-order term depends on the p× p× p× p tensor
H, called the relative Hessian [Zibulevsky, 2003]. Both these quantities can be obtained
from the second order expansions of log | · | and log di(·):

log |Ip + E| = Tr(E)− 1

2
Tr(E2) +O(||E||3),

log(di(y + e)) = log(di(y))− ψi(y)e− 1

2
ψ′i(y)e2 +O(e3),

for E a small matrix and e a small real number, where ψi = −d′i
di

is called the score
function (equal to tanh(·/2) for the standard Infomax density). Collecting and re-
arranging terms yields at first-order the classic expression

Gij = Ê[ψi(yi)yj]− δij or G(Y) =
1

n
ψ(Y)Y > − Id (2.3)

and, at second order, the relative Hessian:

Hijkl = δilδjk + δik Ê[ψ′i(yi)yjyl] . (2.4)

Note that the relative Hessian is sparse. Indeed, it has only of the order of p3 non-zero
coefficients: δilδjk 6= 0 for i = l and j = k which corresponds to p2 coefficients, and
δik 6= 0 for i = k which happens p3 times. This means that for a practical application
with 100 sources the Hessian easily fits in memory. However, its computation requires

68
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

the evaluation of the terms Ê[ψ′i(yi)yjyl], resulting in a Θ(p3×n) complexity. This fact
and the necessity of regularizing the Hessian (which is not necessarily positive definite)
in Newton methods motivate the consideration of Hessian approximations which are
faster to compute and easier to regularize.

2.1.3 Hessian Approximations

The Hessian approximations are discussed on the basis of the following moments:

ĥijl = Ê[ψ′i(yi)yjyl] , for 1 ≤ i, j, l ≤ p
ĥij = Ê[ψ′i(yi)y

2
j] , for 1 ≤ i, j ≤ p

ĥi = Ê[ψ′i(yi)] , for 1 ≤ i ≤ p
σ̂2
i = Ê[y2

i] , for 1 ≤ i ≤ p

. (2.5)

Hence, the true relative Hessian is Hijkl = δilδjk + δikĥijl. A first approximation of H
consists in replacing ĥijl by δjlĥij . We denote that approximation by H̃2:

H̃2
ijkl = δilδjk + δikδjlĥij . (2.6)

A second approximation, denoted H̃1, goes one step further and replaces ĥij by ĥiσ̂2
j

for i 6= j: H̃1
ijkl = δilδjk + δikδjlĥiσ̂

2
j , for i 6= j

H̃1
iiii = 1 + ĥii

. (2.7)

Those two approximations are illustrated on Fig 2.1. A key feature is that both ap-
proximations are block diagonal with blocks of size 2× 2 and 1’s on the off diagonal of
those blocks: denoting H̃ for either H̃1 or H̃2, for i 6= j, the only non-zero coefficients
in H̃ijkl are for (k, l) = (i, j) or (k, l) = (j, i), and H̃ijji = 1.

Figure 2.1 – The Hessian (left), its H̃2 approximation (middle) and its H̃1 approximation
(right) for a mixture of p = 4 sources. The fourth order tensors are reshaped into
matrices of size p2 × p2 for visualization purpose. The first p rows correspond to the
terms εii, the following are arranged by pairs: ε1,2, ε2,1, ε1,3, ε3,1 · · · εp−1,p, εp,p−1. This
arrangement shows the block-diagonal structure of the approximations, the dark purple
color corresponding to zero coefficients. H̃2 is H stripped from any off-block coefficient,
and H̃1 slightly differs from H̃2 on its diagonal.

When the signals are independent, ĥijl = δjlĥij = δjlĥiσ̂
2
j asymptotically in n for i 6= j.

This, together with ĥiii = ĥii, means that the two approximations asymptotically match
the true Hessian if the signals Y are independent. In particular, if an iterative algorithm

2.1. THE PICARD ALGORITHM 69

Algorithm 2.1 Regularization procedure
Input : Eigenvalue threshold λmin > 0, approximate Hessian H̃ (H̃1 or H̃2

1 for Each pair (i, j) do
2 Compute λij using (2.9) if λij < λmin then
3 Add (λmin − λij)I2 to the block (i, j) of H̃
Output: Regularized H̃

converges to a solution on a problem where the ICA mixture model holds, the Hessian
approximations get very close to the true Hessian of the objective function.

Away from convergence or if the ICA mixture model does not hold, one cannot expect
those approximations to be very accurate. This is why we use them only as a pre-
conditioners for our algorithm. They enjoy two properties which are critical in that
respect, being fast to compute and easy to invert. Indeed, computing H̃1 or H̃2 is less
costly than computing H. Evaluating H̃2 requires the computation of ĥij for all (i, j),
which is of order Θ(p2 × n). Obtaining H̃1 is even faster, because it only requires the
computation of the ĥi and σ̂i, that is, Θ(p× n).

Furthermore, the H̃ approximations are not only sparse: their block diagonal structure
also allows H̃−1G to be computed quickly in closed-form. Indeed, defining aij = H̃ijij ,
elementary linear algebra shows that

[H̃−1G]ij =
ajiGij −Gji
aijaji − 1

for i 6= j. (2.8)

Hence, computing H̃−1G has complexity Θ(p2).

2.1.4 Regularization of Hessian Approximations

Like the true Hessian, the Hessian approximations have no reason to be positive definite.
This means that we have to set up a regularization procedure.

That can be done at little cost since the two Hessian approximations can be diagonalized
in closed-form by diagonalizing each of the 2×2 blocks. The smallest eigenvalue for the
block (i, j) is readily found to be:

λij =
1

2
(aij + aji −

√
(aij − aji)2 + 4) , (2.9)

with, again, aij = H̃ijij , for either H̃ = H̃1 or H̃ = H̃2.

Based on this, we propose the simple regularization procedure detailed in Algorithm 2.1:
the blocks with positive and large enough eigenvalues are left untouched, while the
other blocks have their spectrum shifted so that their smallest eigenvalue is equal to a
prescribed minimum value λmin.

2.1.5 Preconditioned ICA for Real Data

Quasi-Newton methods attempt to estimate the local curvature of the objective function
without explicitly computing its Hessian [Nocedal and Wright, 1999]. Indeed, popular
methods such as DFP [Davidon, 1991, Fletcher, 1970, Fletcher and Powell, 1963] or
BFGS [Broyden, 1970, Fletcher, 1970, Goldfarb, 1970, Shanno, 1970] build an approx-
imation of the Hessian using solely function and gradient evaluations performed during
optimization.

70
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

Algorithm 2.2 Preconditioned L-BFGS. Purple lines correspond to the distinctive
steps of the algorithm.
Input : Mixed signals X, initial unmixing matrix W0, memory size m, number of

iterations K
4 for k=0,1,. . . ,K do
5 Set Y = WkX Compute the relative gradient Gk using (2.3) Compute the Hessian

approximation H̃k using (2.6) or (2.7) Regularize H̃k using algorithm 2.1 Compute
the search direction pk = −(H̃m

k)−1Gk using L-BFGS formula in algorithm 2.3
Compute the step length αk using a line search Set Wk+1 = (I + αkpk)Wk

Output: Y , Wk

Algorithm 2.3 Two loops recursion for L-BFGS using a preconditioner
Input : Current gradient Gk, Hessian approximation H̃k, previous si, yi, ρi ∀i ∈

{k −m, . . . , k − 1}.
6 Set q = −Gk for i=k-1,. . . ,k-m do
7 Compute ai = ρi〈si, q〉 Set q = q − aiyi
8 Set r = H̃−1

k q for i=k-m,. . . ,k-1 do
9 Compute β = ρi〈yi, r〉 Set r = r + si(ai − β)
Output: r = pk

The popular L-BFGS [Byrd et al., 1995] algorithm is used in many practical applications
and obtains good results on a wide variety of problems. Rather than storing all the
updates of the Hessian approximation leading to a dense matrix potentially too big
to fit in memory like BFGS does, L-BFGS only stores the last m updates and then
relies on a recursive inversion algorithm. The integer m is referred to as the memory
parameter. The algorithm starts from an initial guess for the Hessian which is easily
invertible, and builds on it by adding low rank updates from them previous iterates and
gradient evaluations. For lack of a better choice, standard L-BFGS uses a multiple of the
identity matrix for the initial Hessian guess. However, if some Hessian approximation is
available, it could be used instead. This is tantamount to preconditioning the problem
with the said Hessian approximation [Jiang et al., 2004].

The Hessian approximations H̃ provide us with a very effective preconditioning, as
shown below in Sec. 2.1.7, resulting in the ‘Preconditioned ICA for Real Data’ (Picard)
algorithm. Picard exploits the Hessian approximations to initialize the recursive formula
of L-BFGS. It is summarized in algorithms 2.2 and 2.3. We use the same notations as
in [Nocedal and Wright, 1999]: yi = Gi −Gi−1, si = aipi (this is the “relative” update
of the unmixing matrix between two iterations) and ρi = 1/〈si, yi〉. As in standard
L-BFGS algorithm, the search direction pk is computed using recursive algorithm with
two for loops, however the initial guess for the Hessian is here set to H̃k.

Line search

The algorithm relies on a line search procedure which aims at finding a good step
size α at each iteration. In theory, the line search procedure has to enforce Wolfe
conditions [Wolfe, 1969, Nocedal and Wright, 1999] in order to guarantee convergence.
The line search procedure proposed by Moré and Thuente [Moré and Thuente, 1994] is
generally considered to be an efficient way to enforce such conditions. It is based upon
cubic interpolation of the objective function in the direction of interest. Yet, for each

2.1. THE PICARD ALGORITHM 71

candidate step size, one must compute the values of the objective function and of the
gradient, which can be costly.

A simpler line search strategy is backtracking. If, for α = 1, the objective function is
decreased, then that value is retained, otherwise the step size is divided by a factor of 2
and the process is repeated. This method only requires one evaluation of the likelihood
at each step size, but it does not enforce Wolfe conditions.

In practice, backtracking is stopped when α becomes too small, which is an indication
that the objective function has a pathological behavior in the search direction, since we
rather expect values of the order of the “Newton value” α = 1. In the case of too many
backtracking steps, resulting in too small a step size, the algorithm would not move
much, and might get stuck for a long time in that problematic zone. Therefore, after
a fixed number of failed backtracking step, the L-BFGS descent direction is deemed
inefficient and we fall back to descending along the relative gradient direction, and reset
the memory (we found that this happens quite infrequently in the experiments). A
similar restarting technique is presented in [Li and Fukushima, 2001].

If the line-search enforced Wolfe conditions, Picard would provably converge, as it is a
quasi-Newton method with an Hessian approximation of spectrum bounded below by
λmin (c.f. Zoutendijk’s conditions: [Nocedal and Wright, 1999], theorem 3.2.). However,
we found that the backtracking line-search is faster in practice, and we never witnessed
any case of non-convergence in the experiments performed in Section 2.1.7.

2.1.6 Related work

We compare our approach to the algorithms mentioned in Section 2.1.1. Some classical
ICA algorithms such as FastICA [Hyvärinen, 1999], JADE [Cardoso and Souloumiac,
1993] or Kernel ICA [Bach and Jordan, 2002] are not included in the comparison because
they do not optimize the same criterion.

Gradient descent

The gradient is readily available and directly gives an update rule for a gradient descent
algorithm:

W ←
(
I − αG

)
W , (2.10)

where α > 0 is a step size found by line search or an annealing policy. In the experiments,
we used an oracle line-search: at each step, we find a very good step size using a costly
line-search, but do not take into account the time taken, as if the sequence of best step
sizes were readily available. This algorithm is referred to as "Oracle gradient descent".

Infomax

We now give a brief explanation on how the Infomax [Bell and Sejnowski, 1995] al-
gorithm actually runs. It is a stochastic version of rule (2.10): at each iteration of the
algorithm, a relative gradient G′ is computed from a ‘mini-batch’ of n′ � n randomly
selected samples and a relative update W ← (I − αG′)W is performed. The choice of
relative gradient was proposed in [Amari et al., 1996].

The stochasticity of Infomax has benefits and drawbacks (see [Bottou et al., 2016] for
a thorough review on the subject). On the good side, stochasticity accelerates the first
few passes on the full data because the objective starts decreasing after only one mini

72
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

batch has been used, while for a full batch algorithm like the one presented above, it
takes a full pass on the whole data to start making progress. Furthermore, if the number
of samples is very large, computing the gradient using the whole dataset might be too
costly, and then resorting to stochastic techniques is one way of coping with the issue.

Stochasticity, however, also comes with some disadvantages. The first one is that a
plain stochastic gradient method with fixed batch size needs a very careful annealing
policy for the learning rate to converge to a local minimum of the objective function.
In practice, across iterations, the true gradient computed with the full set will not go
to 0, but instead will reach a plateau.

This is directly linked to the choice of the step size. If it is too small the algorithm
will not make much progress, and if it is too large, the algorithm will become unstable.
In fact, the level of the plateau reached by the gradient is proportional to the step
size [Bottou et al., 2016]. Line search techniques are also unpractical, because one has
only access to noisy realizations of the gradient and of the objective if one works only
on a mini-batch of samples. In practice, the standard Infomax implementation (e.g. in
EEGlab [Delorme and Makeig, 2004]) relies on heuristics. It starts from a given step size
α0, and decreases it by a factor ρ if the angle between two successive search directions
is greater than some constant θ. That makes 3 parameters that have to be set correctly,
which may be problematic [Montoya-Martínez et al., 2017].

Truncated Newton’s method

As explained above, direct Newton’s method is quite costly. The so-called truncated
Newton method [Nocedal and Wright, 1999] manages to obtain directions similar to
Newton’s method at a fraction of the cost. The idea is to compute H−1G using the
conjugate gradient method [Nocedal and Wright, 1999] which does not require the con-
struction of H but only a mean of computing a Hessian-vector product HM . In the
ICA problem, there is an efficient way to do so, a Hessian free product. Indeed, using
expression (2.4) of the true Hessian, one finds:

(HM)ij =
∑
k,l

HijklMkl = Mji + Ê[ψ′i(yi)yj
∑
l

Milyl]

or in a matrix form:
HM = M> +

1

n
[ψ′(Y) · (MY)]Y >

where · is the element-wise matrix product. This computation comes at roughly the
same cost as a gradient evaluation, its complexity being Θ(p2 × n).

The idea of truncated Newton’s method is that instead of perfectly computing H−1G
using conjugate gradient, one can stop the iterations before termination, at a given error
level, and still obtain a useful approximation of Newton’s direction.

This method is applied to ICA in [Tillet et al., 2017] where the authors also use a
stochastic framework with variable batch size, speeding up the algorithm during the
first steps. We did not implement such a strategy in order to have a fairer comparison.

One way of incorporating Hessian approximations in this method (not implemented
in [Tillet et al., 2017]) is to use them once again as preconditioners for the linear
conjugate gradient. We found that this idea roughly halves the number of conjugate
gradient iterations for a given error in solving H−1G.

2.1. THE PICARD ALGORITHM 73

A difficulty arising with this method is the Hessian regularization. Because it avoids the
computation of the Hessian, finding its smallest eigenvalue is not straightforward, and
heuristics have to be used, like in [Tillet et al., 2017]. However, we do not want these
hand tuned parameters to bias the algorithm comparison. Hence, in our implementation
of the algorithm, we compute H and its smallest eigenvalue λm but we do not include
the associated cost in the timing of the algorithm. Then, we regularize H by adding
−2λmId to it if λm < 0.

These steps are summarized in Algorithm 2.4 in which the step marked with a (∗) is
not counted in the final timing.

Algorithm 2.4 Truncated Newton’s method. Purple lines correspond to the distinctive
steps of the algorithm.
Input : Mixed signals X, initial unmixing matrix W0, number of iterations K.

10 Set Y = W0X for k=0,1,. . . ,K do
11 Compute the relative gradient Gk using (2.3) Compute the Hessian approximation

H̃k using (2.6) or (2.7) (∗) Compute a regularization level λ for Hk Compute
the search direction pk = −(Hk + λI)−1Gk by preconditioned conjugate gradient
with regularized H̃k Set Wk+1 = (I + αkpk)Wk (αk set by line search) Set Y ←
(I + αkpk)Y

Output: Y , Wk

Simple Quasi-Newton method

The simplest way to take advantage of the Hessian approximations is to use them
as replacement of H in Newton algorithm. The descent direction is then given by
−H̃−1G. We will refer to this as the simple quasi-Newton method, which is detailed
in Algorithm 2.5. Note that any Hessian approximation can be used as long as it is
guaranteed to be positive definite. This optimization algorithm is used in [Zibulevsky,
2003] with H̃2 (however, the regularization technique differs from our implementation),
and in [Palmer et al., 2012] with H̃1.

In the experiments, we refer to this algorithm as “Simple quasi-Newton H2” and “Simple
quasi-Newton H1” where we respectively use H̃2 and H̃1 as approximations.

Algorithm 2.5 Simple quasi-Newton. Purple lines correspond to the distinctive steps
of the algorithm.
Input : Mixed signals X, initial unmixing matrix W0, number of iterations K.

12 Set Y = W0X for k=0,1,. . . ,K do
13 Compute the relative gradient Gk using (2.3) Compute the Hessian approximation

H̃k using (2.6) or (2.7) Regularize H̃k using algorithm 2.1 Compute the search
direction pk = −(H̃k)

−1Gk Set Wk+1 = (I + αkpk)Wk (αk set by line search) Set
Y ← (I + αkpk)Y

Output: Y , Wk

Trust-region method

Another way to proceed is to use a trust-region algorithm [Nocedal and Wright, 1999],
rather than a line-search strategy. It is the idea proposed in [Choi and Choi, 2007],
where H̃2 is used to build a local quadratic approximation of the objective, and then
minimization is done with a trust region update. In the experiments, we denote this

74
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

algorithm by “Trust region ICA”. For the experiments, we used a direct translation of
the author’s code in Python, which produces the same iterations as the original code.

2.1.7 Experiments

We went to great lengths to ensure a fair comparison of the above algorithms. We
reimplemented each algorithm using the Python programming language. Since the most
costly operations are by far those scaling with the number of samples (i.e. evaluations
of the likelihood, score and its derivative, gradient, Hessian approximations and Hessian
free products), we made sure that all implementations call the same functions, thereby
ensuring that differences in convergence speed are caused by algorithmic differences
rather than by details of implementation.

Our implementations of Picard, the simple quasi-Newton method, the truncated New-
ton method and the trust region method are available online1. A Matlab/Octave and
Python package of Picard is also released at https://github.com/pierreablin/picard.

Experimental setup

All the following experiments have been performed on the same computer using only
one core of an Intel Core i7-6600U @ 2.6 GHz. Computations are performed in double
precision. For optimized numerical code we relied on Numpy [Van der Walt et al., 2011]
using Intel MKL as the linear algebra backend library, and the numexpr package2 to
optimize CPU cache. It was particularly efficient in computing log cosh(yi(t)/2) and
tanh(yi(t)/2) ∀i, t.
For each ICA experiment, we keep track of the gradient infinite norm (defined as
maxij |Gij |) across time and across iterations. The algorithms are stopped if a cer-
tain predefined number of iterations is exceeded or if the gradient norm reaches a small
threshold (typically 10−8).

Each experiment is repeated a certain number of times to increase the robustness of the
conclusions. The algorithms all start from the same initial point, and we end up with
several gradient norm curves. On the convergence plots, we only display the median of
these curves to maintain readability: half experiments finished faster and the other half
finished slower than the plotted curve.

Besides the algorithms mentioned above, we have run the standard L-BFGS algorithm,
and Picard using H̃1 and H̃2.

The parameters of each algorithm has been set by hand to provide the fastest conver-
gence. Regarding Infomax, for each dataset, we tried several values for the parameters in
a logarithmic grid for α0 : α0 = 10−6 · · · 10−3, and a linear grid for ρ: ρ ∈ {0.1, 0.5, 0.9}.
We took for θ the default value given in EEGlab: θ = 60◦. For the algorithms using the
Hessian approximations, the regularization level is set to the same value λmin = 0.01.
Finally, the defaults parameters of the trust region algorithm and of L-BFGS have been
used. A thorough review of Picard’s parameters is provided in Section 2.1.7.

1https://github.com/pierreablin/faster-ica
2 https://github.com/pydata/numexpr

2.1. THE PICARD ALGORITHM 75

Preprocessing

A standard preprocessing for ICA is applied in all our experiments, as follows. Any
given input matrix X is first mean-corrected by subtracting to each row its mean value.
Next, the data are whitened by multiplication by a matrix inverse square root of the
empirical covariance matrix C = 1

nXX
>. After whitening, the covariance matrix of the

transformed signals is the identity matrix. In other words, the signals are decorrelated
and scaled to unit variance.

Simulation study

In this first study, we present results obtained on synthetic data. The general setup is the
following: we choose the number of sources p, the number of samples n and a probability
density for each source. For each of the p densities, we draw n independent samples.
Then, a random mixing matrix whose entries are normally distributed with zero mean
and unit variance is created. The synthetic signals are obtained by multiplying the
source signals by the mixing matrix and preprocessed as described in Section (2.1.7).

We repeat the experiments 100 times, changing for each run the seed generating the
random signals.

We consider 3 different setups:

• Experiment A: n = 10000 independent samples of p = 50 independent sources.
All sources are drawn with the same density d(x) = 1

2 exp(−|x|).

• Experiment B : n = 10000 independent samples of p = 15 independent sources.
The 5 first sources have density d(x) = exp(−|x|), the 5 next sources are Gaussian,
and the 5 last sources have density d(x) ∝ exp(−|x3|).

• Experiment C : n = 5000 independent samples of p = 40 independent sources.
The ith source has density di = αiN (0, 1) + (1− αi)N (0, σ2) where σ = 0.1 and
αi is a sequence of linearly spaced values between α1 = 0.5 and αn = 1.

In experiment A, the ICA assumption holds perfectly, and each source has a super
Gaussian density, for which the choice ψ = tanh(·/2) is appropriate. In experiment B,
the first 5 sources can be recovered by the algorithms for the same reason. However,
the next 5 sources cannot because they are Gaussian, and the last 5 sources cannot
be recovered either because they are sub-Gaussian. Finally, in experiment C, the mix-
ture is identifiable but, because of the limited number of samples, the most Gaussian
sources cannot be distinguished from an actual Gaussian signal. The results of the three
experiments are shown in Figure 2.2.

Experiments on EEG data

Our algorithms were also run on 13 publicly available3 EEG datasets [Delorme et al.,
2012]. Each recording contains p = 71 signals, and has been down-sampled by 4 for
a final length of n ' 75000 samples. EEG measures the changes of electric potential
induced by brain activity. For such data, the ICA assumption does not perfectly hold.
In addition, brain signals are contaminated by a lot of noise and artifacts. Still, it
has been shown that ICA succeeds at extracting meaningful and biologically plausible

3https://sccn.ucsd.edu/wiki/BSSComparison

76
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

0.0 1.0 2.0 3.0

10-8

10-6

10-4

10-2

100

0 40 80 120

0.0 1.0 2.0

10-8

10-6

10-4

10-2

100

0 100 200 300 400

0.0 0.4 0.8 1.2

Time (seconds)

10-8

10-6

10-4

10-2

100

0 100 200

Iterations

Oracle gradient descent

Truncated Newton method

Simple quasi-Newton H2

Simple quasi-Newton H1

Trust region ICA

Infomax

L-BFGS

Picard H1

Picard H2

G
ra

d
ie

n
t

n
o
rm

 (
lo

g
 s

ca
le

)

A

B

C

Figure 2.2 – Comparison of the optimization algorithms on three synthetic experiments.
Top: experiment A, middle: experiment B, bottom: experiment C. Left: infinity norm
of the relative gradient as a function of CPU time, right: same as a function of iterations
(pass on the full set for Infomax). Solid lines correspond to algorithms informed of the
approximate Hessians, dashed lines are their standard counterparts.

2.1. THE PICARD ALGORITHM 77

sources from these mixtures [Jung et al., 1997, Makeig et al., 1997, Delorme et al., 2012].
Results are displayed on the top row of Figure 2.3.

Experiments on fMRI data

For those experiments, we used preprocessed fMRI data from the ADHD-200 consor-
tium [Consortium et al., 2012]. We perform group ICA using the CanICA frame-
work [Varoquaux et al., 2010] in Nilearn [Abraham et al., 2014]. From the fMRI data
of several patients, CanICA builds a signal matrix to which classical ICA is applied.
We use that matrix to benchmark the algorithms. The problem is of size p = 40 and
n ' 60000. See middle row of Figure 2.3.

Experiments on natural images

Given a grayscale image, we extract n square patches (contiguous squares of pixels) of
size (s, s). Each patch is vectorized, yielding an s2× n data matrix. One may compute
an ICA of this data set and see the columns of the mixing matrix W−1 as features, or
dictionary atoms, learned from random patches.

The ICA algorithms are run on a set of 100 natural images of open country4 [Oliva and
Torralba, 2001], using p = 30000 patches of side 8× 8 pixels, resulting in a 64× 30000
data matrix. The patches are all centered and scaled so that their mean and variance
equal 0 and 1 respectively before whitening as in Section 2.1.7. Results are shown at
the bottom of Figure 2.3.

Comparison of the output objective function values

Finally, we compare the values of the final objective function L(W ∗) where W ∗ is the
output of different algorithms. On EEG data, the simple quasi-Newton with H̃1, the
trust region ICA, Picard and Infomax are run from 50 different random initializations.
Figure 2.4 displays the histogram of the final objective function values for the different
algorithms. Picard, simple quasi-Newton and trust-region ICA give similar histograms,
which means that they end up on average in the same local minima. Finally, we can
see that the final objective values returned by Infomax are higher than for the other
algorithms, illustrating once again that it fails to perfectly converge. The same experi-
ment is repeated on the 13 EEG dataset and leads to similar conclusions.

Discussion

On the first synthetic experiment, where the ICA mixture model holds, second order
algorithms are all seen to perform well, converging in a handful of iterations. For this
problem, the fastest algorithms are the simple quasi-Newton methods, which means
that Picard does not improve significantly over the Hessian approximations H̃1 or H̃2.
This is expected since the Hessian approximations are accurate when the ICA mixture
model holds.

On the two other simulations, the ICA model is not identifiable because of the Gaussian
signals. First order methods perform poorly. We can observe that for algorithms relying
only on the Hessian approximations (simple quasi-Newton and trust-region ICA), the
convergence speed is reduced. On the contrary, Picard and truncated Newton manage

4http://cvcl.mit.edu/database.htm

78
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

0 100 200

10-8

10-6

10-4

10-2

100

Oracle gradient descent

Truncated Newton method

Simple quasi-Newton H2

Simple quasi-Newton H1

Trust region ICA

Infomax

L-BFGS

Picard H1

Picard H2

0 400 800

Oracle gradient descent

Truncated Newton method

Simple quasi-Newton H2

Simple quasi-Newton H1

Trust region ICA

Infomax

L-BFGS

Picard H1

Picard H2

0 10 20

10-8

10-6

10-4

10-2

100

0 200 400

0 10 20 30 40

Time (seconds)

10-8

10-6

10-4

10-2

100

0 1000 2000

Iterations

G
ra

d
ie

n
t

n
o
rm

 (
lo

g
 s

ca
le

)

EEG

fMRI

Im

Figure 2.3 – Comparison of the optimization algorithms on real data. Top: EEG dataset.
Middle: fMRI dataset. Bottom: Image patches dataset. Left: infinity norm of the
relative gradient w.r.t. CPU time, right: same w.r.t. iterations (pass on the full data
for Infomax). Solid lines correspond to algorithms informed of the approximate Hessian,
dashed lines are their standard counterparts.

2.1. THE PICARD ALGORITHM 79

66.1 66.0 65.9 65.8 65.7 65.6 65.5
Final objective

0

50

100

Fr
eq

ue
nc

y Simple quasi-Newton
Trust-region ICA
Picard
Infomax

Figure 2.4 – Histogram of the final negative log-likelihood obtained after running dif-
ferent algorithms on an EEG dataset. Algorithms start from 50 random white initial-
izations. Simple quasi-Newton, Trust region ICA and Picard yield similar histograms,
while Infomax does not minimize the objective as accurately.

to keep a very quick convergence. On those synthetic problems, it is not clear whether
or not the greater accuracy of H̃2 over H̃1 justifies the added computation cost.

On EEG and fMRI data, Picard still converges quickly, in a fraction of the time taken
by the other algorithms. For this problem, using H̃2 for preconditioning leads to faster
convergence than H̃1. The results are even more striking on images, where Picard,
standard L-BFGS and truncated Newton converge in a few seconds while the other
algorithms show a very slow linear convergence pattern.

On all experiments, truncated Newton’s method converges in fewer iterations than
Picard. This happens because it follows a direction very close to Newton’s true direction,
which is the direction second order algorithms try to mimic when the current iterate is
close to the optimum. However, if we compare algorithms in terms of time, the picture
is different: the reduced number of iterations does not make up for the added cost
compared to Picard.

Complexity comparison of truncated Newton and preconditioned L-BFGS

Truncated Newton’s method uses the full information about the curvature. In our ex-
periments, we observe that while this method converges in fewer iterations than Picard,
it is slower in terms of CPU time. The speed of truncated Newton depends on many
parameters (stopping policy for the conjugate gradient, regularization of H and of H̃),
so we propose a complexity comparison of this algorithm and Picard, to understand if
the former might sometimes be faster than the latter.

Operations carried by the algorithms fall into two categories. First, there are operations
that do not scale with the number of samples n, but only with the number of sources
p. Regularizing the Hessian, computing H̃−1G and the L-BFGS inner loop are such
operations. The remaining operations scale linearly with n. Computing the score, its
derivative, or evaluating the likelihood are all Θ(p × n) operations. The most costly
operations are in Θ(p2×n). They are: computing the gradient, computing H̃2, and for
the truncated Newton method, computing a Hessian-free product.

For the following study, let us reason in the context where n is large in front of p2, as it
is the case for most real data applications. In that context, we do not count operations
not scaling with n. This is a reasonable assumption on real datasets: on the EEG
problem, these operations make for less than 1% of the total timing for Picard.

80
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

To keep the analysis simple, let us also assume that the operations in Θ(p × n) are
negligible in front of those in Θ(p2 × n). When computing a gradient, the coefficients
of H̃2 or a Hessian free product, the costly operation in Θ(p2 × n) is numerically the
same: it is the computation of a matrix product of the form Y1Y

>
2 where Y1 and Y2

have the same shape as Y . With that in mind, we assume that each of these operations
take the same time, tG.

In order to produce a descent direction, Picard only needs the current gradient and
Hessian approximations; the remaining operations do not scale with n. This means
that each descent direction takes about 2× tG to be found. This complexity is exactly
the same as the simple quasi-Newton method. On the other hand, truncated Newton
requires the two same operations, as well as one Hessian-free product for each inner
iteration of the conjugate gradient. If we denote by Ncg the number of inner loops for
the conjugate gradient, we find that truncated Newton’s method takes (2 + Ncg) × tG
to find the descent direction.

Now, in our experiments, we can see that truncated Newton converges in about half
as many iterations as Picard. Hence, for truncated Newton to be competitive, each of
its iterations should take no longer than twice a Picard iteration. That would require
Ncg ≤ 2 but in practice, we observed that many more conjugate gradient iterations are
needed (usually more than 10) to provide a satisfying Newton direction. On the other
hand, if the conjugate gradient algorithm is allowed to perform only Ncg = 2 inner
loops at each iteration, it results in a direction which is far from Newton’s direction,
drastically increasing the number of iterations required for convergence.

This analysis leads us to think that the truncated Newton’s method as described in
Section 2.1.6 cannot be faster than Picard.

Study of the control parameters of Picard

Picard has four control parameters: a binary choice between two Hessian approxima-
tions, the memory size m for L-BFGS, the number of tries allowed for the backtracking
line-search nls and a regularization constant λmin.

Our experiments indicate that H̃2 is overall a better preconditioner for the algorithm,
although the difference with H̃1 can be small.

Through experiments, we found that the memory size had barely no effect in the range
3 ≤ m ≤ 15. For a smaller value of m, the algorithm does not have enough information
to build a good Hessian approximation. If m is too large, the Hessian built by the
algorithm is biased by the landscape explored too far in the past.

The number of tries for the line-search has a tangible effect on convergence speed.
Similarly, the optimal regularization constant depends on the difficulty of the problem.
However, on the variety of different signals processed in our experiments (synthetic,
EEG, fMRI and image), we used the same parametersm = 7, nls = 10 and λmin = 10−2.
As reported, those values yielded uniformly good performance and we never witness any
case of non-convergence.

2.1.8 Conclusion

While ICA is massively used across scientific domains, computation time for inference
can be a bottleneck in many applications. The purpose of this work to design a fast
and accurate algorithm for maximum-likelihood ICA.

2.1. THE PICARD ALGORITHM 81

For this optimization problem, there are computationally cheap approximations of the
Hessian. This leads to simple quasi-Newton algorithms that have a cost per iteration
only twice as high as a gradient descent, while offering far better descent directions.
Yet, such approximations can be far from the true Hessian on real datasets. As a
consequence, practical convergence is not as fast as one can expect from a second or-
der method. Another approach is to use a truncated Newton algorithm, which yields
directions closer to Newton’s algorithm, but at a much higher cost per iteration.

In this work, we introduce the Preconditioned ICA for Real Data (Picard) algorithm,
which combines both ideas. We use the Hessian approximations as preconditioners
for the L-BFGS method. The algorithm refines the Hessian approximations to better
take into account the true curvature. The cost per iteration of Picard is similar to
the simple quasi-Newton methods, while providing far better descent directions. This
was demonstrated, through careful implementation of various literature methods and
extensive experiments over synthetic, EEG, fMRI and image data, where we showed
clear gains in running time compared to the state-of-the-art.

82
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

2.2 Extension to the orthogonal constraint

This section presents the work published in:

Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Faster ICA under or-
thogonal constraint. In Proc. IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2018c

Only minor changes have been made: shorter introduction and notation harmonization.

2.2.1 Introduction

Given an p × n data matrix X made of p signals of length n, an ICA algorithm finds
an p × p ‘unmixing matrix’ W such that the rows of Y = WX are ‘as independent as
possible’. An important class of ICA methods further constrains the rows of Y to be
uncorrelated. Assuming zero-mean and unit variance signals, that is:

1
nY Y

> = Ip . (2.11)

The ‘whiteness constraint’ (2.11) is satisfied if, for instance,

W = OW0 W0 = (1
nXX

>)−1/2 (2.12)

and the matrix O is constrained to be orthogonal: OO> = Ip. For this reason, ICA
algorithms which enforce signal decorrelation by proceeding as suggested by (2.12) —
whitening followed by rotation— can be called ‘orthogonal methods’.

The orthogonal approach is followed by many ICA algorithms. Among them, FastICA [Hyvärinen,
1999] stands out by its simplicity, good scaling and a built-in ability to deal with both
sub-Gaussian and super-Gaussian components. It also enjoys an impressive convergence
speed when applied to data which are actual mixture of independent components [Oja
and Yuan, 2006, Shen et al., 2008]. However, real data can rarely be accurately modeled
as mixtures of independent components. In that case, the convergence of FastICA may
be impaired or even not happen at all. Such problems have already been noted in the
literature [Zarzoso et al., 2006, Zarzoso and Comon, 2009]. In this section, we extend
Picard to an orthogonal version, dubbed Picard-O, which solves the same problem as
FastICA, but faster on real data.

In section 2.2.2, the non-Gaussian likelihood for ICA is studied in the orthogonal case
yielding the Picard Orthogonal (Picard-O) algorithm in section 2.2.3. Section 2.2.4 con-
nects our approach to FastICA: Picard-O converges toward the fixed points of FastICA,
yet faster thanks to a better approximation of the Hessian matrix. This is illustrated
through extensive experiments on four types of data in section 2.2.5.

2.2.2 Likelihood under whiteness constraint

Once again, the negative log-likelihood writes:

L(W) = − log |W | − Ê
[∑p

i=1 log(di(yi(t))
]
, (2.13)

where Ê denotes the empirical mean (sample average) and where, implicitly, [y1, · · · , yp]> =
Y = WX.

2.2. EXTENSION TO THE ORTHOGONAL CONSTRAINT 83

We consider maximum likelihood estimation under the whiteness constraint (2.11). By
(2.12) and (2.13), this is equivalent to minimizing L(OW0) with respect to the or-
thogonal matrix O. To do so, we propose an iterative algorithm. A given iterate
Wk = OkW0 is updated by replacing Ok by a more likely orthonormal matrix Ok+1

in its neighborhood. Following classical results of differential geometry over the ortho-
gonal group [Bertram, 2008], we parameterize that neighborhood by expressing Ok+1

as Ok+1 = eEOk where E is a (small) p× p skew-symmetric matrix: E> = −E .
The second-order Taylor expansion of L(eEW) reads:

L(eEW) = L(W) + 〈G, E〉+
1

2
〈E , HE〉+O(||E||3). (2.14)

We obtain:

Gij = Ê[ψi(yi)yj]− δij , (2.15)

Hijkl = δilδjkÊ[ψi(yi)yi] + δik Ê[ψ′i(yi)yjyl] . (2.16)

where ψi = −d′i
di

is called the score function. Note that the Gradient is the same
as before, but that there is an additional term in the Hessian due to the different
parametrization.

This Hessian (2.16) is quite costly to compute, but a simple approximation is obtained
using the form that it would take for large n and independent signals. In that limit,
one has:

Ê[ψ′i(yi)yjyl] ≈ δjl Ê[ψ′i(yi)]Ê[y2
j] for i 6= j, (2.17)

hence the approximate Hessian (recall Ê[y2
j] = 1):

H̃ijkl = δilδjkÊ[ψi(yi)yi] + δikδjl Ê[ψ′i(yi)] if i 6= j. (2.18)

Plugging this expression in the 2nd-order expansion (2.14) and expressing the result as
a function of the p(p− 1)/2 free parameters {Eij , 1 ≤ i < j ≤ p} of a skew-symmetric
matrix E yields after simple calculations:

〈G, E〉+
1

2
〈E , H̃E〉 =

∑
i<j

(Gij −Gji) Eij +
κ̂i + κ̂j

2
E2
ij (2.19)

where we have defined the non-linear moments:

κ̂i = Ê[ψi(yi)yi]− Ê[ψ′i(yi)] . (2.20)

If κ̂i + κ̂j > 0 (this assumption will be enforced in the next section), the form (2.19) is
minimized for Eij = −(Gij −Gji)/(κ̂i + κ̂j): the resulting quasi-Newton step would be

Wk+1 = eDWk for Dij = − 2

κ̂i + κ̂j

Gij −Gji
2

. (2.21)

That observation forms the keystone of the new orthogonal algorithm described in the
next section.

84
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

2.2.3 The Picard-O algorithm

As we shall see in Sec. 2.2.4, update (2.21) is essentially the behavior of FastICA near
convergence. Hence, one can improve on FastICA by using a more accurate Hessian
approximation. Using the exact form (2.16) would be quite costly for large data sets.
Instead, following the same strategy as in Sec. 2.1, we base our algorithm on the L-BFGS
method (which learns the actual curvature of the problem from the data themselves)
using approximation (2.19) only as a pre-conditioner.

L-BFGS and its pre-conditioning: The L-BFGS method keeps track of the m previous
values of the (skew-symmetric) relative moves Ek and gradient differences ∆k = (Gk −
G>k)/2 − (Gk−1 − G>k−1)/2 and of auxiliary quantities ρk = 〈Ek,∆k〉. It returns a
descent direction by running through one backward loop and one forward loop. It can
be pre-conditioned by inserting a Hessian approximation in between the two loops as
summarized in algorithm 2.6.

Stability: If the ICA mixture model holds, the sources should constitute a local minimum
of L. According to (2.19), that happens if κ̂i + κ̂j > 0 for all i < j (see also [Cardoso,
1998a]). We enforce that property by taking, at each iteration:

ψi(·) = sign(ki)ψ(·) (2.22)

where ki = Ê[ψ(yi)yi] − Ê[ψ′(yi)] and ψ is a fixed non-linearity (a typical choice is
ψ(u) = tanh(u)). This is very similar to the technique in extended Infomax [Lee et al.,
1999]. It enforces κ̂i = |ki| > 0, and the positivity of H̃. In practice, if for any signal i
the sign of ki changes from one iteration to the next, L-BFGS’s memory is flushed.

Regularization: The switching technique guarantees that the Hessian approximation
is positive, but one may be wary of very small values of κ̂i + κ̂j . Hence, the pre-
conditioner uses a floor: max((κ̂i + κ̂j)/2, κmin) for some small positive value of κmin
(typically κmin ' 10−2).

Line search: A backtracking line search helps convergence. Using the search direction
Dk returned by L-BFGS, and starting from a step size α = 1, if L(exp(αDk)Wk) <
L(Wk), then set Ek+1 = αDk and Wk+1 = exp(Ek+1)Wk, otherwise divide α by 2 and
repeat.

Stopping: The stopping criterion is ||G−G>|| < ε where ε is a small tolerance constant.

Combining these ideas, we obtain the Preconditioned Independent Component Analysis
for Real Data-Orthogonal (Picard-O) algorithm, summarized in table 2.7.

The Python code for Picard-O is available online at https://github.com/pierreablin/
picard.

2.2.4 Link with FastICA

This section briefly examines the connections between Picard-O and symmetric FastICA [Hyvärinen,
1999]. In particular, we show that both methods essentially share the same solutions
and that the behavior of FastICA is similar to a quasi-Newton method.

Recall that FastICA is based on an p× p matrix C(Y) matrix defined entry-wise by:

Cij(Y) = Ê[ψi(yi)yj]− δijÊ[ψ′i(yi)] . (2.23)

https://github.com/pierreablin/picard
https://github.com/pierreablin/picard

2.2. EXTENSION TO THE ORTHOGONAL CONSTRAINT 85

Algorithm 2.6 Two-loop recursion L-BFGS formula
Input : Current gradient Gk, moments κ̂i, previous El, ∆l, ρl ∀l ∈ {k−m, . . . , k− 1}.

14 Set Q = −(Gk −G>k)/2 for l=k-1,. . . ,k-m do
15 Compute al = ρl〈El, Q〉 Set Q = Q− al∆i

16 Compute D as Dij = Qij/max

(
κ̂i+κ̂j

2 , κmin

)
for l=k-m,. . . ,k-1 do

17 Compute β = ρl〈∆l, D〉 Set D = D + El(al − β)
Output: Descent direction D

Algorithm 2.7 The Picard-O algorithm
Input : Initial signals X, number of iterations K

18 Sphering: compute W0 by (2.11) and set Y = W0X for k = 0 · · ·K do
19 Compute the signs sign(ki) Flush the memory if the sign of any source has changed

Compute the gradient Gk Compute search direction Dk using algorithm 2.6
Compute the step size αk by line search Set Wk+1 = exp(αkDk)Wk and Y =
Wk+1X Update the memory;

Output: Unmixed signals Y , unmixing matrix Wk

The symmetric FastICA algorithm, starting from white signals Y , can be seen as iterat-
ing Y ← Cw(Y)Y until convergence, where Cw(Y) is the orthogonal matrix computed
as

Cw(Y) = (CC>)−
1
2C . (2.24)

In the case of a fixed score function, a sign-flipping phenomenon appears leading to the
following definition of a fixed point: Y is a fixed point of FastICA if Cw(Y) is a diagonal
matrix of ±1 [Wei, 2015]. This behavior can be fixed by changing the score functions
as in (2.22). It is not hard to see that, if ψ is an odd function, such a modified version
has the same trajectories as the fixed score version (up to to irrelevant sign flips), and
that the fixed points of the original algorithm now all verify Cw(Y) = Ip.

Stationary points : We first relate the fixed points of FastICA (or rather the sign-
adjusted version described above) to the stationary points of Picard-O.

Denote C+ (resp. C−) the symmetric (resp. skew-symmetric) part of C(Y) and similarly
for G. It follows from (2.15) and (2.23) that

C = C+ + C− = C+ +G−

since C− = G− = (G−G>)/2.

One can show that Y is a fixed point of FastICA if and only if G(Y) is symmetric and
C+(Y) is positive definite. Indeed, at a fixed point, Cw(Y) = Ip, so that by Eq. (2.24),
one has C(Y) = (CC>)1/2 which is a positive matrix (almost surely). Conversely, if
G(Y) is symmetric, then so is C(Y). If C(Y) is also positive, then its polar factor
Cw(Y) is the identity matrix, so that Y is a fixed point of FastICA.

The modification of FastICA ensures that the diagonal of C(Y) is positive, but does not
guarantee positive definiteness. However, we empirically observed that on each dataset
used in the experiments, the matrix C+(Y) is positive definite when G−(Y) is small.
Under that condition, we see that the stationary points of Picard-O, characterized by
G−(Y) = 0 are exactly the fixed points of FastICA.

86
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

Asymptotic behavior of FastICA : Let us now expose the behavior of FastICA close to
a fixed point i.e. when Cw(Y) = exp(E) for some small skew-symmetric matrix E .
At first order in E , the polar factor Cw = exp(E) of C is obtained as solution of (proof
omitted):

G− =
C+E + EC+

2
. (2.25)

Denote by Ĥ the linear mapping Ĥ : E → −C+E+EC+

2 . When FastICA perform a small
move, it is (at first order) of the form W ← eDW with D = −Ĥ−1(G−). It corresponds
to a quasi-Newton step with Ĥ as approximate Hessian.

Furthermore, under the mixture model assumption, close from separation and with a
large number of samples, C+ becomes the diagonal matrix of coefficients δij κ̂i and Ĥ
simplifies, giving the same direction D given in (2.21).

In summary, we have shown that a slightly modified version of FastICA (with essentially
the same iterates as the original algorithm) has the same fixed points as Picard-O. Close
to such a fixed point, each of FastICA’s iteration is similar to a quasi-Newton step with
an approximate Hessian. This approximation matches the true Hessian if the mixture
model holds, but this cannot be expected in practice on real data.

2.2.5 Experiments

This section illustrates the relative speeds of FastICA and Picard-O. Both algorithms are
coded in the Python programming language. Their computation time being dominated
by score evaluations, dot products and sample averages, a fair comparison is obtained by
ensuring that both algorithms call the exact same procedures so that speeds differences
mostly stems from algorithmics rather than implementation.

Figure 2.5 summarizes our results. It shows the evolution of the projected gradient
norm ||G−G>|| versus iterations (left column) and versus time (right column). The 4
rows correspond to 4 data types: synthetic mixtures, fMRI signals, EEG signals, and
image patches. FastICA and Picard-O speeds are compared using ψ(·) = tanh(·). The
signals are centered and whitened before running ICA.

Experiments are repeated several times for each setup. The solid line shows the median
of the gradient curves and the shaded area shows the 10 %− 90 % percentile (meaning
that half the runs completed faster than the solid line and that 80% have convergence
curves in the shaded area).

Synthetic data We generate p = 50 i.i.d. sources of length n = 10000. The 25
first sources follow a uniform law between −1 and 1, the 25 last follow a Laplace
law (d ∝ exp(−|x|)). The p × n source matrix S is multiplied by a random square
mixing matrix A. This experiment is repeated 100 times, changing each time the seed
generating the signals and the mixing matrix.

fMRI This is functional MRI data processed by group ICA [Varoquaux et al., 2010].
The datasets come from ADHD-200 consortium [Consortium et al., 2012]. The problem
is of size p = 60, n = 60000, and the experiments are repeated over 20 datasets.

2.2. EXTENSION TO THE ORTHOGONAL CONSTRAINT 87

EEG ICA is applied on 13 publicly available5 electroencephalography datasets [De-
lorme et al., 2012]. Each recording contains p = 71 signals, of length n ' 75000.

Image patches We use a database of 80 different images of open country [Oliva and
Torralba, 2001]. From each image, n = 10000 patches of size 8 × 8 are extracted and
vectorized to obtain p = 64 signals, before applying ICA.

Results. FastICA is slightly faster than Picard-O on the simulated problem, for which
the ICA mixture model holds perfectly. However, on real data, the rate of convergence of
FastICA is severely impaired because the underlying Hessian approximation is far from
the truth, while our algorithm still converges quickly. Picard-O is also more consistent
in its convergence pattern, showing less spread than FastICA.

2.2.6 Discussion

We have shown that, close from its fixed points, FastICA’s iterations are similar to
quasi-Newton steps for maximizing a likelihood. Furthermore, the underlying Hessian
approximation matches the true Hessian of the problem if the signals are independ-
ent. However, on real datasets, the independence assumption never perfectly holds.
Consequently, FastICA may converge very slowly on applied problems [Chevalier et al.,
2004] or can get stuck in saddle points [Tichavsky et al., 2006].

To overcome this issue, we propose the Picard-O algorithm. It uses a preconditioned
L-BFGS technique to solve the same minimization problem as FastICA. Extensive ex-
periments on three types of real data demonstrate that Picard-O can be orders of
magnitude faster than FastICA.

5https://sccn.ucsd.edu/wiki/BSSComparison

88
CHAPTER 2. FASTER ICA BY PRECONDITIONING WITH HESSIAN

APPROXIMATIONS

0 5 10 15 2010-8

10-5

10-2

0.0 0.2 0.4 0.6

0 200 400 60010-8

10-5

10-2

0 5 10 15 20 25

0 500 1000 150010-8

10-5

10-2

0 30 60 90 120

0 2000 4000
Iterations

10-8

10-5

10-2

0 20 40 60 80
Time (sec.)

FastICA Picard-O

P
ro

je
ct

ed
 g

ra
di

en
t n

or
m

fMRI

Synth

Img

EEG

Figure 2.5 – Comparison between FastICA and Picard-O. Gradient norm vs iterations
(left column) and vs time (right column). From top to bottom: simulated data, fMRI
data, EEG data and image data. Solid line corresponds to the median of the runs, the
shaded area covers the 10%− 90% percentiles.

3
Stochastic algorithms for ICA with

descent guarantees
Contents

3.1 Stochastic algorithms for ICA . 89
3.1.1 Introduction . 89
3.1.2 Representations of super-Gaussian densities 91
3.1.3 Stochastic minimization of the loss function 93
3.1.4 Experiments . 95
3.1.5 Conclusion . 101
3.1.6 Proof of equivalence of EM . 101
3.1.7 The EM algorithm for noisy mixtures is stuck in the noise-free limit102
3.1.8 Proof of guaranteed descent . 102
3.1.9 Fast minimization step using conjugate gradient 103

3.1 Stochastic algorithms for ICA

This section presents the work published in:

Pierre Ablin, Alexandre Gramfort, Jean-François Cardoso, and Francis Bach. Stochastic
algorithms with descent guarantees for ICA. In The 22nd International Conference on
Artificial Intelligence and Statistics, pages 1564–1573, 2019c

Only minor changes have been made: shorter introduction and notation harmonization.

3.1.1 Introduction

In this section, we make a clear distinction between the expected negative log-likelihood,
and the empirical log-likelihood. The expected risk is:

L(W) := Ex[`(x,W)] (3.1)

= − log|W | −
p∑
i=1

E[log(d([Wx]i))] .

Given a set of n i.i.d. samples of x, X = [x1, · · · ,xn] ∈ Rp×n, the empirical risk reads:

Ln(W) :=
1

n

n∑
j=1

`(xj ,W) (3.2)

= − log|W | − 1

n

p∑
i=1

n∑
j=1

log(d([WX]ij))] .

90
CHAPTER 3. STOCHASTIC ALGORITHMS FOR ICA WITH DESCENT

GUARANTEES

We focus on the inference of W in two cases. The first case is the finite-sum setting:
using only n samples, W is found by minimizing Ln. The second case is the online
setting, where a stream of samples arriving one by one is considered. In this case, n goes
to infinity, and then Ln tends towards L. It is important to note that it is theoretically
established [Amari et al., 1997] and empirically observed that these criteria allow to
unmix super-Gaussian sources even if their densities are different from d.

Although not formulated like this in the original article, [Cardoso, 1997] shown that
Infomax solves the empirical risk minimization problem 3.2. It does so by using a
stochastic gradient method. However, Ln not being convex, it is hard to find a good
step-size policy which fits any kind of data [Bottou et al., 2016]. As a consequence,
Infomax can take an extremely long time before it reaches convergence, or even fail to
converge at all [Montoya-Martínez et al., 2017]. Still, the stochasticity of Infomax makes
it efficient when the number of samples n is large, because the cost of one iteration does
not depend on n.

On the other hand, several full-batch second-order algorithms have been derived for
the exact minimization of Ln. For instance, in [Zibulevsky, 2003], an approximation
of the Hessian of Ln is used to obtain a simple quasi-Newton method. In [Choi and
Choi, 2007], a trust region method is proposed using the same Hessian approximation.
Full-batch methods are robust and sometimes show quadratic convergence speed, but
an iteration can take a very long time when the number of samples n is large. They
also crucially rely on a costly line-search strategy because of the non-convexity of the
problem.

In this work, we make the following contributions:

• We introduce a set of surrogate functions for `, allowing for a majorization-
minimization (MM) approach. We show that this view is equivalent to an EM
algorithm for ICA. Consequently, techniques like incremental EM [Neal and Hin-
ton, 1998] and online EM [Cappé and Moulines, 2009] can be efficiently applied
to this problem.

• Critically, the surrogate functions can be minimized in closed-form with respect
to any single row of W . Thus, the incremental algorithm guarantees the decrease
of the surrogate loss at each iteration, without having to resort to expensive line-
search techniques. To the best of our knowledge, this feature is a novelty in the
field of ICA algorithms.

• Owing to a cheap partial update, the cost of one iteration of the proposed al-
gorithm is similar to the cost of a stochastic gradient descent step. Through
experiments, the proposed methods are shown to perform better than the state-
of-the-art, while enjoying the robust property of guaranteed decrease.

Notation. In the following, scalar values are noted in lower case (e.g. y), vectors in
bold font (e.g. x), and matrices in upper case (e.g. W). For a matrix M , Mi: denotes
its i-th row, and M:j denotes its j-th column.

3.1. STOCHASTIC ALGORITHMS FOR ICA 91

3.1.2 Representations of super-Gaussian densities

Super-Gaussian densities can be represented in at least two forms: either variation-
ally through a surrogate function, or probabilistically through a Gaussian scale mix-
ture [Palmer et al., 2006]. These two representations lead to the same optimization
algorithms but with a slightly different view point.

Surrogate functions

The density d is assumed symmetric and super-Gaussian in the sense that − log(d(
√
x))

is an increasing concave function over (0,+∞). Following [Palmer et al., 2006], there
exists a function f such that:

G(y) := − log(d(y)) = min
u≥0

uy2

2
+ f(u), (3.3)

and the minimum is reached for a unique value denoted as u∗(y). Simple computations
show that u∗(y) = G′(y)

y . For u ∈ Rp×1
+ , we introduce a new objective function ˜̀(x,W,u)

that reads:
˜̀(x,W,u) := − log|W |+

p∑
i=1

[
1

2
ui [Wx]2i + f(ui)], (3.4)

and the associated empirical risk, for U = [u1, · · · ,un] ∈ Rp×n+ :

L̃n(W,U) :=
1

n

n∑
j=1

˜̀(xj ,W,uj) (3.5)

= − log|W |+ 1

n

p∑
i=1

n∑
j=1

[
1

2
Uij [WX]2ij + f(Uij)]. (3.6)

Following Eq. (3.3), we have:

Lemma 3.1 (Majorization). Let W ∈ Rp×p. For any U ∈ Rp×n+ , Ln(W) ≤ L̃n(W,U),
with equality if and only if U = u∗(WX).

Lemma 3.2 (Same minimizers). Let W ∈ Rp×p, and U = u∗(WX). Then, W minim-
izes Ln if and only if (W,U) minimizes L̃n.

Proof: Using the function G introduced in Eq. (3.3), the loss Ln writes:

Ln(W) = − log|W |+ 1

n

p∑
i=1

n∑
j=1

G([WX]ij)

For a given matrix U ∈ Rp×n, using Eq. (3.3) we have for all i, j: G([WX]ij) ≤
1
2Uij [WX]2ij + f([WX]ij), with equality if and only if Uij = u∗([WX]ij). Summing
these equations yields as expected:

− log|W |+ 1

n

p∑
i=1

n∑
j=1

G([WX]ij) ≤

− log|W |+ 1

n

p∑
i=1

n∑
j=1

[
1

2
Uij [WX]2ij + f([WX]ij)]

92
CHAPTER 3. STOCHASTIC ALGORITHMS FOR ICA WITH DESCENT

GUARANTEES

with equality if and only if for all i, j, Uij = u∗([WX]ij). �

In line with the majorization-minimization (MM) framework [Mairal, 2015], these two
lemmas naturally suggest to minimize Ln(W) by alternating the minimization of the
auxiliary function L̃n(W,U) with respect to W and U . This will also be shown to be
equivalent to the EM algorithm for the Gaussian scale mixture interpretation in the
next Section.

The rest of the paper focuses on the minimization of L̃n rather than Ln, which yields
the same unmixing matrix by Lemma 3.2.

EM algorithm with Gaussian scale mixtures

Super-Gaussian densities can also be represented as scale mixtures of Gaussian densit-
ies [Palmer et al., 2006], that is, d(y) =

∫ +∞
0 g(y, η)q(η)dη, where g(y, η) = 1√

2πη
exp(− y2

2η)

is a centered Gaussian density of variance η, and q(η) a distribution on the variance of
the Gaussian distribution. It turns out that the EM algorithm using the above form for
our ICA model is exactly equivalent to the alternating optimization of L̃n (see a proof
in the appendix). The variable U corresponds to the scale parameter in [Palmer et al.,
2006] and the EM algorithm alternates between setting U to the posterior mean u∗(Y)
(E-step) and a descent move in W (M-step).

Relationship to the noisy case. Many articles (e.g. [Palmer et al., 2006, Giro-
lami, 2001, Bermond and Cardoso, 1999]) have proposed EM-based techniques for the
estimation of the latent parameters of the more general linear model:

x = As + n , (3.7)

where A is the mixing matrix, and n ∼ N (0,Σ) is a Gaussian variable accounting for
noise. In [Palmer et al., 2006], the matrix A is assumed to be known, as well as the
noise covariance Σ. On the contrary, the present work deals with the case where A is
unknown, and where there is no noise. The noisy case (with unknown A) is studied
in e.g. [Bermond and Cardoso, 1999, Girolami, 2001]. An EM algorithm is derived for
the estimation of s, A and Σ. In the appendix, it is shown that this EM algorithm
makes no progress in the limit of noise-free observations since the EM update rule for
A becomes A ← A when Σ = 0. Hence, the EM algorithms found in the literature for
the noisy case suffer considerable slowdown in high signal-to-noise regime. In contrast,
the approach derived in the following section is not affected by this problem.

Examples

Many choices for G can be found in the ICA literature. In the following, we omit
irrelevant normalizing constants. The original Infomax paper [Bell and Sejnowski, 1995]
implicitly uses G(y) = log(cosh(y)) since it corresponds to G′(y) = tanh(y) and u∗(y) =
tanh(y)

y . This density model is one of the most widely used. However, since an ICA
algorithm has to evaluate those functions many times, using simpler functions offers
significant speedups. One possibility is to use a Student distribution: G(y) = 1

2 log(1 +
y2), for which u∗(y) = 1

1+y2
. In the following, we choose the Huber function: G(y) = 1

2y
2

if |y| < 1 and G(y) = |y|− 1
2 if not. This gives u∗(y) = 1 if |y| < 1, u∗(y) = 1

|y| otherwise.

3.1. STOCHASTIC ALGORITHMS FOR ICA 93

3.1.3 Stochastic minimization of the loss function

Using a MM strategy, L̃n(W,U) is minimized by alternating descent moves in U and
in W . We propose an incremental technique which minimizes L̃n with a finite number
of samples, and an online technique where each sample is only used once. The pseudo
code for these algorithms is given in Algorithms 25 and 31. The difference between
incremental and online technique only reflects through the variable U which is estimated
at the majorization step. Hence, we first discuss the minimization step.

Minimization step: Descent in W

Expanding [WX]2ij , the middle term in the new loss function (3.4) is quadratic in the
rows of W :

L̃n = − log|W |+ 1

2

p∑
i=1

Wi:A
iW>i: +

1

n

p∑
i=1

n∑
j=1

f(Uij), (3.8)

where Wi: denotes the i-th row of W , and the Ai’s are p× p matrices given by:

Aikl :=
1

n

n∑
j=1

UijXkjXlj . (3.9)

Therefore, when U is fixed, with respect to W , L̃n is the sum of the log det function
and a quadratic term. The minimization of such a function is difficult, mostly because
the log det part introduces non-convexity. However, similarly to a coordinate descent
move, it can be exactly partially minimized in closed-form:

Lemma 3.3 (Exact partial minimization). Let i ∈ [1, p], and m ∈ R1×p (m is a row
vector). Consider the mapping Θi(m) : R1×p → Rp×p such that the matrix Θi(m) is
equal to Ip, except for its i-th row which is equal to m.

Let W ∈ Rp×p and U ∈ Rp×n. Define K := WAiW> ∈ Rp×p. Then,

arg min
m∈R1×p

L̃n(Θi(m)W,U) =
1√

(K−1)ii
(K−1)i: . (3.10)

Proof: With respect to m, L̃n(Θi(m)W,U) is of the form φ(m) = − log(|mi|) +
mKm>. Restraining to the regionmi > 0, this function is strongly convex and smooth,
and thus possesses a single minimum found by cancelling the gradient. Simple algebra
shows :

∇φ(m) = − 1

mi
ei + mK ,

where ei is the i-th canonical basis vector. Cancelling the gradient yieldsm = 1
mi

(K−1)i:,

and inspection of the i-th coordinate of this relationship gives mi = (K−1)ii
mi

, providing
the expected result. �

In other words, we can exactly minimize the loss with a multiplicative update of one of
its rows. Performing multiplicative updates on the iterate W enforces the equivariance
of the proposed methods [Cardoso and Laheld, 1996].

94
CHAPTER 3. STOCHASTIC ALGORITHMS FOR ICA WITH DESCENT

GUARANTEES

Majorization step : Descent in U

For a fixed unmixing matrixW , Lemma 3.1 gives: arg minU L̃n(W,U) = u∗(WX). Such
an operation works on the full batch of samples X. When only one sample X:j = xj ∈
Rp×1 is available, the operation U:j ← u∗(Wxj) minimizes L̃n(W,U) with respect to
the j-th column of U . As seen previously (Section 3.1.3), we only need to compute the
Ai’s to perform a descent in W , hence one needs a way to accumulate those matrices.

Incremental algorithm. To do so in an incremental way [Neal and Hinton, 1998],
a memory Umem ∈ Rp×n stores the values of U . When a sample xj is seen by the
algorithm, we compute Unew

:j = u∗(Wxj), and update the Ai’s as:

Ai ← Ai +
1

T
(Unew

ij − Umem
ij)xjx

>
j . (3.11)

The memory is then updated by Umem
:j ← Unew

:j enforcing Ai = 1
n

∑n
j=1 U

mem
ij xjx

>
j at

each iteration.

Online algorithm. When each sample is only seen once, there is no memory, and a
natural update rule following [Cappé and Moulines, 2009] is:

Ai ← (1− ρ(n))Ai + ρ(n)Uijxjx
>
j , (3.12)

where n is the number of samples seen, and ρ(n) ∈ [0, 1] is a well chosen factor. Setting
ρ(n) = 1

n yields the unbiased formula Ai(n) = 1
n

∑n
j=1 Uijxjx

>
j . A more aggressive

policy ρ(n) = 1
nα for α ∈ [1

2 , 1) empirically leads to faster estimation of the latent
parameters. Note that since we are averaging sufficient statistics, there is no need to
multiply ρ(n) by a constant.

Complexity analysis

Memory: The proposed algorithm stores p matrices Ai, which requires a memory
of size p2(p+1)

2 (since they are symmetric). In the incremental case, it stores the real
numbers Uij , requiring a memory of size p × n. In most practical cases of ICA, the
number of sources p is very small compared to n (n� p), meaning that the dominating
memory cost is p × n. In the online case, the algorithm only loads one mini-batch of
data at a time, leading to a reduced memory size of p× nb, where nb is the mini-batch
size.

Time: The majorization step requires to update each coefficient of the matrices Ai’s,
meaning that it has a time complexity of p3×nb. The minimization step requires to solve
p linear systems to obtain the matrices K−1

i: . Each one takes O(p3). An improvement
based on preconditioned conjugate gradient method [Shewchuk et al., 1994] is proposed
in the appendix to reduce the computational cost. The total cost of the minimization
step is thus O(p4). In practice, p� nb, so the overall cost of one iteration is dominated
by the majorization step, and is p2(p+1)

2 × nb. A stochastic gradient descent algorithm
with the same mini-batch size nb, as described later in Section 3.1.4, has a lower time
complexity of p2 × nb. We now propose a way to reach the same time complexity with
the MM approach.

Gap-based greedy update

In order to reduce the complexity by one order of magnitude in the majorization step,
only a subset of fixed size q < p of the matrices Ai is updated for each sample. Following
Eq. (3.3), it is given by what we call gap : a positive quantity measuring the decrease

3.1. STOCHASTIC ALGORITHMS FOR ICA 95

Algorithm 3.1 Incremental MM algorithm for ICA
Input : Samples X ∈ Rp×n

Param: Number of iterations tmax, mini-batch size nb, number of coordinates to update
per sample q

Init : Initialize W = Ip, Umem = 0 ∈ Rn×p and Ai = 0 ∈ Rp×p, ∀i ∈ [1, p]
20 for t = 1, . . . , tmax do
21 Select a mini-batch b of size nb at random

for each index j ∈ b do // Majorization

22 Select x = X:j

Compute unew = u∗(Wx)
Compute the gaps (3.13)
Find the q sources i1, . . . , iq corresponding to the largest gaps
Update Ai for i = i1, . . . , iq using Eq. (3.11)
Update the memory: Umem

:j = unew

23 for i = 1, . . . , p do // Minimization

24 Update the i-th row of W using Eq. (3.10)
25 return W

in L̃n provided by updating Uij . In the following, define Ũi′j′ := Umem
i′j′ if (i′, j′) 6= (i, j),

and Ũij := Unew
ij = u∗([WX]ij). The gap is given by:

gap(W,Umem
ij) := L̃n(W,Umem)− L̃n(W, Ũ) (3.13)

=
1

2
Umem
ij [WX]2ij + f(Umem

ij)−G([WX]ij) . (3.14)

Since all the above quantities are computed during one iteration anyway, computing
the gap for each signal i ∈ [1, p] only adds a negligible computational overhead, which
scales linearly with p. Then, in a greedy fashion, only the coefficients Uij corresponding
to the q largest gaps are updated, yielding the largest decrease in L̃n possible with q
updates. In the experiments (Figure 3.4), we observe that it is much faster than a
random selection, and that it does not impair convergence too much compared to the
full-selection (q = p). In the online setting, there is no memory, so we simply choose q
indices among p at random.

Related work: The matrices Ai are sufficient statistics of the surrogate ICA model
for a given value of U . The idea to perform a coordinate descent move (3.10) after
each update of the sufficient statistics is inspired by online dictionary learning [Mairal
et al., 2009], Gaussian graphical models [Honorio et al., 2012] and non-negative matrix
factorization [Lefevre et al., 2011].

3.1.4 Experiments

In this section, we compare the proposed approach to other classical methods to min-
imize L. The code for the proposed methods is available online at https://github.
com/pierreablin/mmica.

https://github.com/pierreablin/mmica
https://github.com/pierreablin/mmica

96
CHAPTER 3. STOCHASTIC ALGORITHMS FOR ICA WITH DESCENT

GUARANTEES

Algorithm 3.2 Online MM algorithm for ICA
Input : A stream of samples X in dimension Rp

Param: Number of iterations tmax, mini-batch size nb, number of coordinates to update
per sample q

Init : Initialize W = Ip and Ai = 0 ∈ Rp×p, ∀i ∈ [1, p]
26 for t = 1, . . . , tmax do
27 Fetch nb samples from the stream

for each fetched sample x do // Majorization

28 Compute u = u∗(Wx)
Compute q indices i1, . . . , iq at random
Update Ai for i = i1, . . . , iq using Eq. (3.12)

29 for i = 1 . . . , p do // Minimization

30 Update the i-th row of W using Eq. (3.10)
31 return W

Compared algorithms

Stochastic gradient descent (SGD). Given a mini-batch b containing nb samples,
the relative gradient ∇(Ln)ik = 1

nb

∑
j∈bG

′([WX]ij)[WX]kj is computed. Then, a
descent moveW ← (In−ρ∇(Ln))W is performed. The choice of the step size ρ is critical
and difficult. The original article uses a constant step size, but more sophisticated
heuristics can be derived. This method can be used both for the finite sum and the
online problem. It is important to note that once WX and G′(WX) are computed,
it needs twice as many elementary operations to compute the gradient as it takes to
update one matrix Ai (Eq. (3.11) and Eq.(3.12)) when nb � p. The first computation
requires nb×p2 operations, while the second takes nb× p(p+1)

2 (since the matrices Ai are
symmetric). When nb is large enough, as it is the case in practice in the experiments,
these computations are the bottlenecks of their respective methods. Hence, we take
q = 2 in the experiments for the MM algorithms, so that the theoretical cost of one
iteration of the proposed method matches that of SGD.

Variance reduced methods. One of the drawbacks of the stochastic gradient method
is its sub-linear rate of convergence, which happens because the stochastic gradient
is a very noisy estimate of the true gradient. Variance reduced methods such as
SAG [Schmidt et al., 2017], SAGA [Defazio et al., 2014] or SVRG [Johnson and Zhang,
2013] reduce the variance of the estimated gradient, leading to better rates of conver-
gence. However, these methods do not solve the other problem of SGD for ICA, which
is the difficulty of finding a good step-size policy. We compare our approach to SAG,
which keeps the past stochastic gradients in memory and performs a descent step in the
averaged direction. This approach is however only relevant in the finite-sum setting.

Full batch second order algorithms. We compare our approach to the “Fast-
Relative Newton” method (FR-Newton) [Zibulevsky, 2003] and the “Preconditioned
ICA for Real Data” algorithm (Picard, Sec. 2.1) . The former performs quasi-Newton
steps using a simple approximation of the Hessian of Ln, which is as costly to compute
as a gradient. The later refines the approximation by using it as a preconditioner for
the L-BFGS algorithm. For both algorithms, one iteration requires to compute the
gradient and the Hessian on the full dataset, resulting in a cost of 2 × p2 × n, and to
evaluate the gradient and loss function for each point tested during the line search, so
the overall cost is (2 +nls)× p2×n where nls ≥ 1 is the number of points tested during

3.1. STOCHASTIC ALGORITHMS FOR ICA 97

the line-search. Thus, one epoch requires more than 3 times more computations than
one of SGD or of the proposed algorithms. These algorithms cannot be used online.

Full batch MM. For the finite-sum problem, we also compare our approach to the
full-batch MM, where the whole U is updated at the majorization step.

FastICA. FastICA [Hyvärinen, 1999] is a full batch fixed point algorithm for ICA. It
does not solve the same optimization problem as the one presented in this paper (it does
not minimize Ln, see [Hyvärinen, 1999]). Hence, we do not include metrics involving
Ln to benchmark it. However, it is one of the most widely used algorithms for ICA in
practical applications, and is popular for its fast estimation speed. Furthermore, it is
shown to have similar convergence properties as FR-Newton (see chapter 2)

Performance measures

The following quality measures are used to assess the performance of the different al-
gorithms:

Loss on left-out data: It is the value of the loss on some data coming from the
same dataset but that have not been used to train the algorithms. This measure, which
boils down to the likelihood of left-out data, is similar to the testing error in machine
learning, and can be computed in both the streaming and finite-sum settings.

Amari distance [Moreau and Macchi, 1998]: When the true mixing matrix A is
available, for a matrix W , the product R = WA is computed, and the Amari distance
is given by:

p∑
i=1

 p∑
j=1

R2
ij

maxlR
2
il

− 1

+

p∑
i=1

 p∑
j=1

R2
ji

maxlR
2
lj

− 1

 .

This distance measures the proximity of W and A−1 up to scale and permutation
indetermination. It cancels if and only if R is a scale and permutation matrix, i.e., if
the separation is perfect. This measure is relevant both for the online and finite-sum
problems. It is the only metric for which it makes sense to compare FastICA to the
other algorithms since it does not involve the loss function.

Relative gradient norm: The norm of the full-batch relative gradient of Ln is another
measure of convergence. Since the problem is non-convex, the algorithms may converge
to different local minima, which is why we favor this metric over the train error. It is
however only relevant in the finite-sum setting. In this setting, a converging algorithm
should drive the norm of the full-batch relative gradient to zero.

Parameters and initialization

The stochastic algorithms (SGD, SAG, and the proposed MM techniques) are used
with a batch size of nb = 1000. The proposed MM algorithms are run with a parameter
q = 2, which ensures that each of their iterations is equivalent to one iteration of the
SGD algorithm. In the online setting, we use a power α = 0.5 to speed up the estimation.
The step-sizes of SGD and SAG are chosen by trial and error on each dataset, by finding
a compromise between convergence speed and accuracy of the final mixing matrix. In
the online case, the learning rate is chosen as λ×n−0.5 for SGD. FR-Newton and Picard
are run with its default parameters.

98
CHAPTER 3. STOCHASTIC ALGORITHMS FOR ICA WITH DESCENT

GUARANTEES

Regarding initialization, it is common to initialize an ICA algorithm with an approx-
imate whitening matrix. A whitening matrix W is such that the signals Wx are decor-
related. It is interesting to start from such a point in ICA because decorrelation is a
necessary condition for independence.

Denoting Cx the correlation matrix of the signals, the whitening condition writes
WCxW

> = Ip. Hence, the whitening matrices are the W = RC
− 1

2
x where R is a

rotation (R>R = Ip). In practice, we take R = Ip. The covariance matrix needs to be
estimated. In the case of a fixed dataset X ∈ Rp×n, we can use the empirical covariance
C̃X = 1

nXX
> as an approximation. However, the cost of such a computation, O(p2×n),

gets prohibitively large as n grows. Since the whitening is only an initialization, it needs
not be perfectly accurate. Hence, in practice, we compute the empirical covariance on
a sub-sampled version of X of size n = 104. The same goes for the online algorithm:
we fetch the first 104 samples to compute the initial approximate whitening matrix.

Datasets

Synthetic datasets: For this experiment, we generate a matrix S ∈ Rp×n with p = 10
and n = 106 of independent sources following a super-Gaussian Laplace distribution:
d(x) = 1

2 exp(−|x|). Note that this distribution does not match the Huber function
used in the algorithms, but estimation is still possible since the sources are super-
Gaussian. Then, we generate a random mixing matrix A ∈ Rp×p of normally distributed
coefficients. The algorithms discussed above are then run on X = AS, and the sequence
of iterates produced is recorded. Finally, the different quality measures are computed
on those iterates. We repeat this process 100 times with different random realizations,
in order to increase the robustness of the conclusions. The averaged quality measures
are displayed in Fig. 3.1. In order to compare different random initializations, the loss
evaluated on left-out data is always shifted so that its plateau is at 0.

To observe the effect of the greedy gap selection, we generate another dataset in the
same way with p = 30, n = 105. Results are displayed in Fig. 3.4.

Real datasets: The algorithms are applied on classical ICA datasets, covering a wide
range of dimensions p. The first experiment is in the spirit of [Hoyer and Hyvärinen,
2000].

We extract a big 32GB dataset of n = 4 × 107 square patches of size 10 × 10 from
natural images. Each patch is vectorized into an array of dimension p = 100. Only the
online algorithms are used to process this dataset since it does not fit into RAM. The
results on this dataset are displayed in Fig. 3.2.

We also generate smaller datasets in the same fashion, of size n = 106, and 10 × 10
patches. The dimension is reduced to p = 10 using PCA.

Finally, an openly available EEG dataset [Delorme et al., 2012] of dimension p = 71,
n = 106 is used without dimension reduction. Each signal matrix is multiplied by a
p × p random matrix. The different algorithms are applied on these datasets with 10
different random initializations, and for 50 epochs in the finite sum setting. Results are
displayed in Fig. 3.3.

3.1. STOCHASTIC ALGORITHMS FOR ICA 99

Figure 3.1 – Results on synthetic data. Top: finite-sum problem. 100 datasets of size
n = 106 and p = 10 are generated, each algorithm performs 20 epochs (passes on
the dataset). Bottom: online problem. 100 datasets of size n = 107 and p = 10 are
generated, each algorithm performs one pass on each dataset. Metrics are displayed
with respect to epochs/number of passes.

Figure 3.2 – Online algorithms applied on a 32 GB real dataset with p = 100 and
n = 4 × 107. Time is in logarithmic scale. Values of the loss on left out data greater
than its initial value are truncated.

100
CHAPTER 3. STOCHASTIC ALGORITHMS FOR ICA WITH DESCENT

GUARANTEES

Figure 3.3 – Behavior of different algorithms on real data. Top: 15 image patch datasets
of size 10 × 106 are generated, and the averaged results are displayed. Bottom: same
with 15 EEG datasets of size 71 × 106. Left and middle: finite sum problem. Right:
online problem. Metrics are displayed with respect to time.

Discussion

Experiments run on both synthetic and real data of various dimensions demonstrate
that the proposed methods consistently perform best when quantifying the loss on
left-out data (test error), for large scale datasets with many samples. This metric is
arguably the most important from a statistical machine learning standpoint. This is
also validated by the Amari distance in the simulated case: the proposed method shows
similar convergence as FR-Newton and FastICA, and outperforms other algorithms.
Regarding the gradient norm metric (similar to training error), in the simulated and
image patch experiment, the proposed algorithm is in the end slower than FR-Newton.
This behavior is expected: the incremental algorithm has a linear convergence, while
second order methods are quadratic algorithm.

However, FR-Newton catches up with the proposed algorithm well after the testing error
plateaus, so when the error of the model is dominated by the estimation error [Bottou
and Bousquet, 2008] rather than the optimization error.

Effect of the greedy update rule: On the 30 × 105 dataset (Fig. 3.4), we run the
incremental algorithm with the greedy coordinate update rule discussed in Sec. 3.1.3
with q = 1 and q = 3. We compare it to a random approach (where q random sources are
updated at each iteration) for the same values of q, and to the more costly full-selection
algorithm, where each source is updated for each sample. The greedy approach only
adds a negligible computational overhead linear in p compared to the random approach,
while leading to much faster estimation. In terms of generalization error, it is only
slightly outperformed by the full selection approach (q = p).

3.1. STOCHASTIC ALGORITHMS FOR ICA 101

Figure 3.4 – Effect of the greedy update rule, on a synthetic problem of size p = 30,
n = 105. For a similar complexity, the greedy approach gives much faster convergence
than the random approach.

3.1.5 Conclusion

In this part, we have introduced a new majorization-minimization framework for ICA,
and have shown that it is equivalent to an EM approach for Gaussian scale mixtures.
Our method has the valuable advantage of guaranteeing a decrease of the surrogate
loss function, which enables stochastic methods with descent guarantees. This is, to
the best of our knowledge, a unique feature for a stochastic ICA algorithm. We have
proposed both an incremental and an online algorithm for the finite-sum and online
problems, with the same complexity as SGD thanks to an efficient greedy coordinate
descent update. Experiments show progress on current state-of-the-art, without the
need for tedious manual setting of any parameter.

Appendix

3.1.6 Proof of equivalence of EM

Given the Gaussian scale mixture formulation of d, as d(y) =
∫ +∞

0 g(y, η)q(η)dη, an
EM algorithm would do the following:

Ln(W) = − log|W | − 1

n

p∑
i=1

n∑
j=1

[log(d([WX]ij))

= − log|W | − 1

n

p∑
i=1

n∑
j=1

log(

∫ ∞
0

g([WX]ij , η)q(η)dη)

6 − log|W | − 1

n

p∑
i=1

n∑
j=1

∫ ∞
0

rij(η) log
g([WX]ij , η)q(η)

rij(η)
dη

where the rij are any density functions. The equality if and only if rij(η) ∝ g([WX]ij , η)q(η).
The upper bound in the last equation can be written as:

− log|W |+ 1

2n

p∑
i=1

n∑
j=1

Ũij [WX]2ij + c ,

where Ũij =
∫∞

0 rij(η)η−1dη and where c is a remaining term which does not depend
on W . Thus, the upper bound has the same dependence on W as the loss L̃n(W). The
E-step thus computes Ũij =

∫∞
0 rij(η)η−1dη using a density rij ∝ g([WX]ij , η)q(η).

102
CHAPTER 3. STOCHASTIC ALGORITHMS FOR ICA WITH DESCENT

GUARANTEES

This exactly corresponds to the majorization step described in our algorithm. The
proof, from [Palmer et al., 2006], is as follows. Dropping the indices for readability, and
denoting y = [WX]ij , normalizing r gives:

r(η) =
g(y, η)q(η)

d(y)

so that
Ũ(y) =

1

d(y)

∫ ∞
0

g(y, η)η−1q(η)dη.

Hence, using ∂
∂yg(y, η) = −g(y, η)y/η, we get

Ũ(y) = − 1

yd(y)

∫ ∞
0

∂

∂y
g(y, η)q(η)dη = − d

′(y)

yd(y)
= u∗(y) .

This demonstrates that, although not formulated in this fashion, the proposed method
is indeed equivalent to an EM algorithm.

3.1.7 The EM algorithm for noisy mixtures is stuck in the noise-free
limit

We follow the update rules given in [Bermond and Cardoso, 1999, Girolami, 2001]. The
model is x = As + n where n ∼ N (0,Σ). Key quantities for the update rule are the
following expectations:

E[s|x] = (A>Σ−1A+ Λ−1)−1A>Σ−1x (3.15)

E[ss>|x] = (A>Σ−1A+ Λ−1)−1 + E[s|x]E[s|x]> , (3.16)

where Λ is a diagonal matrix. In the case considered here, A is square and invertible
and Σ = 0. Basic algebra shows that in that case, the above formula simplifies to:

E[s|x] = A−1x and E[ss>|x] = A−1xx>A−> . (3.17)

The EM update for A based on n samples x1, · · ·xn: then is

Anew = (
n∑
i=1

xiE[s|xi])(
n∑
i=1

E[ss>|xi])−1 , (3.18)

which yields Anew = A by using Eq. (3.17). The EM algorithm is thus frozen in the
case of no noise.

3.1.8 Proof of guaranteed descent

Let us demonstrate that one iteration of the incremental algorithm 25 decreases L̃n. At
the iteration t, let W be the current unmixing matrix, Umem the state of the memory,
and the Ai’s the current sufficient statistics. As said in Section 3.1.2, E-step, we have
Aikl = 1

n

∑n
j=1 U

mem
ij XkjXkl. Therefore, the algorithm is in the state (W,Umem), and

the corresponding loss is L̃n(W,Umem). After the majorization step, the memory on
the mini-batch is updated to minimize L̃n. Hence, the majorization step diminishes
L̃n. Then, each descent move in the minimization step guarantees a decrease of L̃n.
Both steps decrease L̃n, the incremental algorithm overall decreases the surrogate loss
function.

3.1. STOCHASTIC ALGORITHMS FOR ICA 103

3.1.9 Fast minimization step using conjugate gradient

The minimization step (3.10) involves computing the i-th row of the inverse of a given
p× p matrix K. This amounts to finding z such that Kz = ei. Exact solution can be
found by Gauss-Jordan elimination with a complexity O(p3). However, expanding the
expression of K yields Kkl = 1

n

∑
j UijYkjYlj , where Y = WX.

It follows that:

Lemma 3.4. Assume that W is such that the rows of Y = WX are independent. Then,
Kkl = O(1√

n
) for k 6= l.

Proof In that case, E[uiykyl] = 0 since yk and yl are independent. Hence, the central
limit theorem yields the advertised result.

Therefore, the matrix K is well approximated by its diagonal provided that n is large
enough, and that the current signals Y are close enough from independence. As such,
we use the diagonal of K as a preconditioner to the conjugate gradient technique for
solving Kz = ei.

This gives an excellent approximation of the solution in a fraction of the time taken to
obtain the exact solution.

Part II

SMICA: Spectral Matching
Independent Component Analysis

for M/EEG Brain Rhythms
Separation

105

4
SMICA: spectral matching ICA for

M/EEG processing
Contents

4.1 SMICA . 107
4.1.1 Introduction . 107
4.1.2 Background on Independent Component Analysis 109
4.1.3 Spectral Matching Independent Component Analysis 113
4.1.4 Experiments . 116
4.1.5 Discussion . 122

4.1 SMICA

This section contains unpublished work.

4.1.1 Introduction

Magnetoencephalography and Electroencephalography (M/EEG) are popular non-invasive
techniques to record brain activity [Hämäläinen et al., 1993, Niedermeyer and Lopes da
Silva, 2005]. They capture respectively the magnetic and electric signals produced by
active neurons from the scalp surface or close to it. Due to the distance between the
brain and the M/EEG sensors, these signals are a mixture of sources. The physics of the
mixing is well understood: it is a linear process and can be considered instantaneous. It
means that each sensor sees the sum of the contributions of all sources, and that there
is no propagation delay.

What characterizes most neural sources at the origin of M/EEG signals is their spec-
tral signature. Typically, brain sources are rhythmic signals, containing what is often
referred to as oscillations [Buzsáki and Llinás, 2017]. Brain rhythms are an important
concept in neuroscience: they are modulated during cognitive tasks, during sleep and
can be used to design novel biomarkers (e.g. age, cognitive disorders) [Buzsáki, 2006].

Independent Component Analysis (ICA) [Hyvärinen et al., 2004] is extensively used in
neuroscience for processing M/EEG signals [Makeig et al., 1997]. It is used to separ-
ate meaningful brain signals from artifacts (eye blinks, heartbeats, line noise, muscle,
. . .) [Jung et al., 2000, Makeig et al., 1997]. ICA is in fact the most widely used method
for EEG artifact rejection in the literature [Urigüen and Garcia-Zapirain, 2015]. What
makes ICA quite remarkable it that it can identify those contamination sources ‘blindly’,
that is, without prior knowledge of the underlying physics of the system (except linear-
ity). Besides EEG, it is also widely used for the same purpose in MEG studies [Mantini
et al., 2008, Vigário et al., 2000, Ikeda and Toyama, 2000, Dammers et al., 2008].

108
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

Beyond artifact removal, ICA is also used to reveal and study brain activity. In [Makeig
et al., 2004], ICA is successfully applied to recover evoked and induced event-related
dynamics in EEG signals. In [Gómez-Herrero et al., 2008], ICA is used to extract
brain sources, on which causal relations are exhibited, uncovering directional coupling.
In [Subasi and Gursoy, 2010], independent EEG sources are used in a machine learning
pipeline, predicting epileptic seizures. ICA is used on MEG signals to identify links
between function and structure in the brain in [Stephen et al., 2013]. It can also be used
on MEG data, coupled with Hilbert filtering, to uncover resting state networks [Brookes
et al., 2011].

Finally, linear ICA solutions can be used for source localization. Indeed, the linear
coefficients needed to form a source can be represented as a topography on the scalp.
An equivalent current dipole (ECD) can then be fitted to the topography [Scherg and
Von Cramon, 1985], yielding at the same time an estimate of the source location, and
its dipolarity (how close it can be explained by a focal activity in the brain modeled
with a single dipole).

In order to unmix the M/EEG signals, ICA algorithms rely on an independence as-
sumption between the sources. However, independence is a statistical principle which is
difficult to quantify on real data. In practice, an ICA algorithm finds a linear transform
of the sensor signals by optimizing some statistical criterion which can be shown to
be maximized when the recovered sources are independent. Such criteria are designed
to express some particular aspect of the statistical independence. These criteria are
usually ‘consistent’ in the sense that their optimization solve the ICA problem when
the data actually follow the model and a large number of samples is available. However,
on real data of finite size, various criteria, capturing different aspects of independence,
lead to different estimated sources.

In neuroscience, the most widely used algorithms are Infomax [Bell and Sejnowski,
1995] and FastICA [Hyvärinen, 1999]. These algorithms quantify independence on the
marginal (instantaneous) distribution of the data: they ignore any time correlation and
focus entirely on the non-Gaussianity of the data. Another route to ICA is to leverage
the time correlation of the source signals. Blind separation is then possible if the sources
show spectral diversity. Among these algorithms, Second Order Blind Identification
(SOBI) [Belouchrani et al., 1997] is one of the most widely used. It jointly-diagonalizes of
a set of time correlation matrices. Another approach closely related to our work consists
in the joint diagonalization of spectral covariances [Pham and Garat, 1997]. Finally, In
order to leverage both non-Gaussianity and spectral diversity, several methods based
on short-time Fourier transform (STFT) have been proposed. For instance, Fourier-
ICA [Hyvärinen et al., 2010] leverages both non-Gaussianity and spectral diversity with
a hybrid method, consisting of the non-Gaussian ICA of concatenated short-time Fourier
transforms. Other approaches consist in joint diagonalization of cospectral matrices
(covariance matrices of STFT frames) [Congedo et al., 2008] or work in the wavelet
domain [Pham and Cardoso, 2003].

While all these algorithms rely on various independence measures, they make the strong
assumption that there are as many sources as sensors. The number of sensors is dictated
by hardware, while the number of brain sources is a biological parameter; there is no
reason to assume that they are equal. This is why, when fewer sources than sources are
expected to represent the data, a dimension reduction technique like Principal Com-
ponent Analysis (PCA) is often applied before preforming an ICA. However, this two
stage approach, consisting of first PCA and then ICA, is heuristic. It is argued in [Ar-

4.1. SMICA 109

toni et al., 2018] that applying PCA before ICA degrades the quality of the recovered
sources. It is also sometimes suggested that, in order to estimate less sources than
sensors, the data dimension should be reduced by discarding some channels rather than
resorting to PCA. A natural but difficult question is the selection of the channels to
preserve.

In this article, we study Spectral Matching ICA (SMICA) for M/EEG processing. This
ICA model has been first investigated in astronomy for separation of the cosmic mi-
crowave background [Cardoso et al., 2002, Delabrouille et al., 2003]. SMICA measures
independence in the frequency domain: It finds sources that are spectrally colored. This
assumption makes it potentially well suited for brain rhythms and artifacts extraction
as they are known to have prototypical spectra. Brain sources tend to exhibit so-called
“1/f” power spectral densities, while the spectra of artifacts are often localized in cer-
tain frequency bands (e.g. muscle artifacts or line noise). Another potential benefit
of SMICA is that it can naturally estimate fewer sources than sensors. Therefore, no
preprocessing for dimension reduction is required. Finally, as SMICA only requires
computing second-order statistics (spectral covariance matrices), it can handle grace-
fully very long recordings. This suggests that SMICA is well suited to uncover different
generators of brain rhythms.

The article is organized as follows. Section 4.1.2 contains a brief review of usual ICA
methods for M/EEG processing. In subsection 4.1.3, the SMICA statistical model is
introduced and the estimation strategy based on an Expectation-Maximisation (EM)
algorithm is described. In subsection 4.1.4, the usefulness of SMICA is demonstrated
on various MEG and EEG datasets.

Notation The trace of a matrix M ∈ Rp×p is Tr(M), and its determinant is |M |. A
matrix is invertible when |M | 6= 0, and we write M ∈ GLp. Given a vector u ∈ Rp,
the matrix diag(u) ∈ Rp×p is the matrix containing the elements of u on its diagonal,
and 0 elsewhere. If M is a p× p matrix, then diag(M) is the diagonal matrix with the
same diagonal as M . The Moore-Penrose pseudo inverse of a tall matrix A ∈ Rp×q is
A† = (A>A)−1A>. Finally, we define the Kullback-Leibler (KL) divergence between
two positive definite matrices of size p× p, C1 and C2, as

KL(C1, C2) = Tr(C1C
−1
2)− log |C1C

−1
2 | − p. (4.1)

4.1.2 Background on Independent Component Analysis

The three routes to Independent Component Analysis

Let X ∈ Rp×T a signal matrix, where each row of X corresponds to a signal. Here, p
is the number of M/EEG sensors and T is the number of time samples. Independent
Component Analysis, in its classical form, models the signals X as:

X = AS , A ∈ Rp×p, S ∈ Rp×T , (4.2)

where A is called the mixing matrix and S the source matrix. The key assumption of
ICA is that the rows of the source matrix S, the sources, are independent. The goal
of ICA is to recover both A and S from the signals X, using only the independence
assumption.

This model shows some natural indeterminacies: multiplying a source by a factor and
dividing the corresponding column in A leads to the same signal matrix X. This
is a scaling indeterminacy. Similarly, swapping two sources and the corresponding

110
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

columns in A leads to the same signal: this is a permutation indeterminacy. Scale
and permutation ambiguities are intrinsic to ICA. Therefore, an ICA model is called
identifiable if these are the only ambiguities to consider. Importantly, assuming the
simplest model for the sources, i.e. that they are Gaussian i.i.d., leads to many more
ambiguities. The model is then non-identifiable. Indeed, with independent Gaussian
i.i.d. signals any rotation applied to the data still gives independent Gaussian i.i.d.
signals: there is then a rotation indeterminacy.

There are three elementary assumptions that one can add on the sources in order to
ensure identifiability [Cardoso, 2001]:

• Non-Gaussianity : the sources are still assumed i.i.d, but their probability density
function can deviate from Gaussianity. In [Comon, 1994], it is shown that non-
Gaussianity provides identifiability, under the assumption that at most one source
is Gaussian. It is the most standard setting for ICA: FastICA [Hyvärinen, 1999]
and Infomax [Bell and Sejnowski, 1995] both fall in this category. Most ICA
algorithms for M/EEG signal processing use this source model, because most
brain sources are far from Gaussian.

• Non-Stationarity : the sources are Gaussian, but no longer stationary. The vari-
ance of the sources varies with time. The problem is identifiable if no two variance
profiles are proportional [Pham and Cardoso, 2001].

• Time correlation: the sources are Gaussian stationary, but temporally correlated.
It implies that sources typically do not have non-flat spectra. The problem is
identifiable if no two spectra are proportional [Pham, 2001a], i.e. if the sources
are ‘spectraly’ diverse.

Figure 4.1 illustrates the three routes to ICA. This article focuses on the last model.
In practice, these assumptions can seem too strong for real signals: indeed, no M/EEG
brain source perfectly matches either of the above assumptions. They usually look
quite different from the prototypical sources of figure 4.1. Still, if they verify the type
of diversity required by any of the three routes, they can still be blindly recovered. For
instance, following the third route, ICA algorithms which aim to recover mixture of time
correlated Gaussian stationary sources will recover sources which are not stationary nor
Gaussian, provided that they have non-proportional spectra. Of course, this comes
with a drop in statistical efficiency with respect to a model capturing the full statistical
structure, but identifiability is still guaranteed.

Standard algorithms for recovering time-correlated sources

We now review two of the most usual ICA algorithms based on time correlation.

Second Order Blind Indentification (SOBI)

Second Order Blind Identification (SOBI) [Belouchrani et al., 1997] aims at separating
time-correlated sources using correlation matrices:

R(τ) =
1

T − τ
T−τ∑
i=0

X(t)X>(t+ τ) (4.3)

4.1. SMICA 111

Time

S
ou

rc
es

Non-Gaussianity

Time

Non-stationarity

Time

Spectral diversity

Amplitude

H
is

to
gr

am

Amplitude Amplitude

Time

V
ar

ia
nc

e

Time Time

Frequency

P
S

D

Frequency Frequency

Figure 4.1 – This figure illustrates the different routes to achieve blind deconvolution
under independence assumptions. The first row shows different "prototypical" source
profiles. The second row shows the corresponding histograms. The third row shows
the instantaneous variance of the sources across time. The last row shows the power
spectral density (PSD) of the source. These signals are synthetic, therefore the scales are
arbitrary and irrelevant. The first route (left column) is the non-Gaussian ICA model
where each source (except maybe one) distribution is assumed to be non-Gaussian
(either sub- or super-Gaussian). These sources can be independent and identically
distributed, leading to constant variance and power spectra. The second route (middle)
relies on non-stationary assumptions: each source is assumed to have a time-varying
variance that evolves independently for each source. Finally, the third route (right) to
ICA explored in this work assumes that each source have different spectral contents.
Sources following the second route -non-stationarity- are usually also non-Gaussian as
illustrated by the histogram, hence non-Gaussian algorithms can recover them. These
algorithms fail on the last type of sources, which can be Gaussian. The only source
signals that cannot be separated by any ICA methods are Gaussian white noise, which
have a Gaussian density, a constant variance profile and a flat power spectrum density.

112
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

computed for a set of time lags T = {τ1, . . . , τB}. Under the ICA model X = AS, these
matrices have the structure:

R(τ) = AΛ(τ)A>, (4.4)

where Λ(τ) = 1
T−τ

∑T−τ
i=0 S(t)S>(t+ τ) is (close to) a diagonal matrix for independent

sources. Hence, the mixing matrix A appears as an joint-diagonalizer of the set of
matrices R(τ) for τ ∈ T . In other words, the mixing matrix A is such that the matrices
A−1R(τ)A−> for τ ∈ T are all diagonal.

In practice, SOBI proceeds in two steps: a whitening step (which enforces the decor-
relation of the recovered sources) followed by a rotation. Hence, a separation matrix
B = A−1 is found in the form B = UW where W is a whitening matrix, i.e., any mat-
rix such that WR(0)W> = I, and where the rotation U is determined by minimizing a
joint diagonalization criterion of the whitened matrices WR(τi)W

>

U = arg min
U>U=I

LSOBI(U) ,
B∑
i=1

Off(UWR(τi)W
>U>) , (4.5)

where the Off of a matrix is defined by: Off(M) =
∑

a6=bM
2
ab. This method is appealing

for the simplicity of its implementation, because there exists a variety of approximate
joint-diagonalization algorithms that aim at solving exactly problem (4.5) [Ziehe et al.,
2004, Cardoso and Souloumiac, 1996]. However, it is not derived from a clear statistical
framework based on a probabilistic model. For instance, the whiteness constraint can
have adverse effects on the quality of the decomposition [Cardoso, 1994]. Also, the
simple whitening process by an inverse sqare root of R(0) would be biased for a signi-
ficant noise level. Probably more importantly, the off-diagonal errors involved in the
joint-diagonalization criterion 4.5 are simply co-added even though those terms are far
from being statistically independent. In section 4.1.2, we examine a frequency-domain
approach which greatly mitigates the later problem and we show in section 4.1.3 how
it is easily adapted to properly take into account noise contamination.

Joint-diagonalization (JDIAG)

In [Pham, 2001a], it is proposed to separate time-correlated sources by exploiting spectral
diversity. It assumes a noiseless ICA model X = AS with A of size p× p. The sources
are assumed independent and stationary. Let f1 < · · · < fB+1 some frequencies, and
denote Xi (resp. Si) the signals X (resp the sources S) filtered in the frequency band
[fi, fi+1]. Since filtering is a linear operations, the ICA equation (4.2) yields Xi = ASi.
JDIAG assumes a Gaussian i.i.d. model for the filtered sources:

Si ∼ N (0, Pi) , (4.6)

where Pi is a diagonal matrix. The negative log-likelihood of the model then writes:

LJDIAG =
B∑
i=1

ni KL(Ĉi, Ci) , (4.7)

where ni is the number of DFT frequencies in the band [fi, fi+1], Ĉi = 1
TXiX

>
i is the

empirical covariance in the i-th band, Ci = APiA
> is the predicted covariance from the

model, and the KL divergence, defined in eq. (4.1), measures the distance between two
Gaussians N (0, Ĉi) and N (0, Ci).

4.1. SMICA 113

This model forms the basis of the SMICA approach detailed in the next section; it will
be more detailed there.

ForA fixed, it is a simple matter to show that LJDIAG is minimized for Pi = diag(A−1ĈiA
−>);

therefore, minimization of LJDIAG is obtained, after a little of calculus, by finding:

A ∈ arg min
A∈GLp

B∑
i=1

ni log

(
|diag(Di)|
|Di|

)
, with Di = A−1ĈiA

−> . (4.8)

This is a classical joint-diagonalization criterion [Pham, 2001b], for which fast algorithms
exist [Ablin et al., 2019a]. Although this method is backed by stronger statistical
arguments than SOBI, and aims at recovering the same type of sources, it is seldom
used in neuroscience.

Dimension reduction

The ICA model X = AS does not include a noise term, and assumes that the mixing
matrix A is square, i.e. that the number of sources equals the number of sensors.
Arguably, the number of sources should be a biophysical parameter, while the number
of sensors is dictated by the recording device. For this reason, it is customary to perform
a pre-processing step to reduce the number of signals in the data matrix to the desired
number of sources. The most widely used method for this task is Principal Component
Analysis (PCA). It finds a matrix WPCA ∈ Rq×p, with q < p, such that the rows of
XPCA ,WPCAX are decorrelated. Then, ICA is applied on XPCA.

Although very popular, this two-stage approach is often criticized [Artoni et al., 2018]:
it does not come from a principled statistical framework, and PCA returns signals of
largest variance, hence it might destroy some low power but interesting sources that
are present in the original dataset. Therefore, it is often advised to run ICA on the
whole dataset, leading to long computations (see Sec. 2.1) and to some spurious sources
looking like Gaussian noise.

ICA models with noise?

One must resort to PCA for finding fewer sources than sensors because the mixing
matrix in ICA is assumed square. An ICA model with fewer sources than sensor (A ∈
Rp×q with q < p) must assume that there is some additive noise on the sensors:

X = AS +N ,A ∈ Rp×q, S ∈ Rq×T , N ∈ Rp×T , (4.9)

where N is a noise matrix. Typically, one assumes that the noise is Gaussian i.i.d. Un-
fortunately, model (4.9) is notoriously hard to fit in the non-Gaussian setting, because
the likelihood does not have a closed-form equation [Girolami, 2001, Bermond and Car-
doso, 1999, Moulines et al., 1997]. Therefore, to the best of our knowledge, such model
has never been applied in a neuroscience setting.

4.1.3 Spectral Matching Independent Component Analysis

We present the spectral matching ICA, which leverages spectral diversity in sources and
includes a noise model. Contrary to the non-Gaussian setting, all random variables are
modelled as Gaussian, yielding a tractable likelihood.

114
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

The SMICA model

In the following, let X ∈ Rp×T be the M/EEG recording of interest, where p is the
number of sensors and T is the number of samples. We assume a linear ICA model with
noise, and with q sources:

X = AS +N , (4.10)

where A ∈ Rp×q, S ∈ Rq×T and N ∈ Rp×T . We assume that the time samples in S and
N follow a Gaussian density, and that the sources (rows of S) and the noise channels
(rows of N) are independent.

Define Ŝ the discrete Fourier transform of S:

Ŝjl =
1√
T

T∑
t=1

Sjt exp(−2πilt

T
) for j = 1 . . . q, l = 1 . . . T . (4.11)

Under mild assumptions, these coefficients are Gaussian and independent as T goes to
infinity, and their variance is given by the power spectrum pj(l) =

∑
τ E[Sj(t)Sj(t +

τ)] exp(−2πilt
T): the Ŝjl are random independent variables following N (0, pj(l)). Al-

though this result is asymptotic (valid only as T goes to infinity), we make the assump-
tion that it holds for finite T : this is the Whittle approximation. We make the same
assumption on the noise, denoting σ2

j (l) its power spectrum for the Fourier index l.

Following eq. (4.10), the spectral covariance of the signals X is given by:

C(l) = AP (l)A> + Σ(l) , (4.12)

where P (l) = diag(p1(l), . . . pq(l)) and Σ(l) = diag(σ2
1(l), . . . , σ2

p(l)) are diagonal matrices.
These powers are unknown and should be estimated: along with the mixing matrix A,
they are the parameters of the model. However, in order to reduce the size of the
model and to regularize it, we approximate the spectra as being piecewise constant over
narrow spectral intervals. Let B + 1 frequencies f1 < · · · < fB+1, and consider the
frequency intervals Fi = [fi, fi+1]. Let fs the sampling frequency. We assume that P
and Σ are constant in each of these bands, i.e. that P (l) = Pi = diag(pi,1, . . . , pi,q) and
Σ(l) = Σi = diag(σ2

i,1, . . . , σ
2
i,p) when l ∈ [fs

fi+1
, fsfi]. The model of the spectral covariance

matrices then reads in each band:

Ci = APiA
> + Σi . (4.13)

In practice, the empirical covariance matrices Ĉi are computed and the theoretical
formula (4.13) is adjusted to fit them. Figure 4.2 illustrates this spectral matching
principle.

Statistical properties of the model

We now discuss a few statistical properties of the SMICA model.

Likelihood The negative log-likelihood of this model is given by:∑
l

KL(Ĉ(l), C(l)) , (4.14)

4.1. SMICA 115

'

Ĉ1

Ĉ2

ĈB

A
A>

+

Σ1

Σ2

ΣB

P1

P2

PB

Sensors
Sources

Figure 4.2 – The spectral matching principle: empirical spectral covariances Ĉ1, . . . , ĈB
are computed from the M/EEG data. SMICA matches those covariances with the model
Ĉi ' APiA

> + Σi, where the Pi and Σi are diagonal positive matrices. Matching is
performed in a statistically sound way, by maximizing the likelihood of the model.

where Ĉ(l) is the empirical power spectrum computed from the data, and KL is the
Kullback-Leibler divergence. Following the piecewise-constant spectra assumption, it is
written as a sum over the B frequency bands:

L =

B∑
i=1

ni KL(Ĉi, Ci) , (4.15)

where ni is the number of Fourier frequency bins in the i-th band. As such, it is a
measure of mismatch between the spectral covariance matrices obtained from the data
Ĉi and predicted by the model Ci. Since it decomposes as a sum over frequency bands,
it can be used for model fit inspection, for instance to determine if some spectral domain
exhibit a poor mismatch.

Source estimation: Wiener filtering Noiseless ICA models, X = AS, have a
simple way of computing the estimated sources: Ŝ = Â−1X.

SMICA can employ the same technique for recovering the source, albeit replacing A−1

by A† (the pseudo-inverse of A). Still, the model of SMICA allows for a finer source
recovery, throughWiener filtering ([Brown et al., 1992], Chapter 4). It is more appealing
to compute the expected value of the sources given the parameters: Ŝ = E[S|X,Θ],
which is given by Wiener filtering:

Ŝi = (A>Σ−1
i A+ P−1

i)−1A>Σ−1
i Xi . (4.16)

This operation is linear in X, and is adaptive to the level of noise: if in frequency band i
the estimated noise Σi for a sensor is large, then its contribution in the source estimate
shrinks towards 0. Note that the standard ICA source estimation formula is recovered
when the noise is equal on all channels and tends to 0 (i.e. Σi = λiIp with λi → 0),
yielding at the limit Ŝ = A†X.

Signal denoising using SMICA Like any ICA algorithm, SMICA estimate sources
which can be marked as spurious / non-biological by specialists. The remaining sources
can then be projected back in the signal space, giving cleaned M/EEG signals. Thanks
to its noise modeling, SMICA makes these two operations statistically sound. Further-
more, SMICA offers another data-cleaning opportunity, which boils down to removing
sources identified as noise like for any ICA procedure.

116
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

Given sources Ŝ obtained by Wiener filtering, some sources can be manually or auto-
matically marked as artifactual. By marking source i as an artifact, we mean that we
set Ŝi = 0. Finally, the cleaned signals are computed as Xcleaned = AŜ.

Combining SMICA with non-Gaussian ICA As explained in section 4.1.2, SMICA
cannot separate sources which have proportional spectra. In practice, it may hap-
pen that several brain sources have very similar spectra. Therefore, one can use non-
Gaussian ICA on the sources that have similar spectra to further separate them.

SMICA can also be used as a source subspace identifier, by applying non-Gaussian
ICA on the whole estimated source matrix. The hope is that the resulting dimension
reduction is more meaningful than PCA, and that Wiener filtering helps cleaning the
signals. The practical benefits of such approach are demonstrated in the experiments
presented in section 4.1.4.

Fitting the model: EM algorithm

The model is fitted using the Expectation-Maximization (EM) algorithm [Dempster
et al., 1977]. This algorithm is appealing because it does not require hyperparameters
like learning rates, and is guaranteed to decrease the loss function at each iteration. Still,
this approach is generally slow (it might require many iterations to reach a satisfactory
set of parameters), and other optimization techniques could be investigated for the fast
minimization of L.
The EM algorithm for SMICA is described in [Cardoso et al., 2002] with a slightly more
constrained noise model. For completeness, we derive it in the appendix (section 4.1.5).

Complexity of SMICA SMICA only needs the spectral covariances C1, . . . , CB to
infer the parameters of the model. Therefore, the complexity of the EM algorithm does
not depend on the number of samples T ; only the computation of the covariances does.
This differs from non-Gaussian ICA algorithms, for which the fitting time depends a lot
on the length of the recordings.

In practice, we found that fitting SMICA on a 102 sensors MEG dataset with 40 fre-
quency bins and 102 sources takes about 15 minutes using one CPU of a recent laptop.
The cost is much higher than that of JDIAG, for which this operation usually takes less
than a minute.

4.1.4 Experiments

In this section, we apply SMICA on different datasets, in order to illustrate its ap-
plication for analysis of M/EEG data. We use Infomax as a reference non-Gaussian
ICA method but we use the Picard algorithm(Sec. 2.1) for fast and robust optimiza-
tion of the Infomax objective. This algorithm is run with the tanh non-linearity. The
joint-diagonalization algorithm for SOBI is a combination of [Ziehe et al., 2004] with a
backtracking line-search. The joint-diagonalization algorithm for JDIAG uses the fast
implementation described in [Ablin et al., 2019a]. The M/EEG analysis is carried out
using the MNE package [Gramfort et al., 2014].

In all experiments we set the frequency bins Fi of SMICA and JDIAG as uniform in
the range 1− 70Hz, with 40 bins.

4.1. SMICA 117

Power spectrum Topo

0 20 40 60
f (Hz)

(a) SMICA

Power spectrum Topo

0 20 40 60
f (Hz)

(b) JDIAG

Power spectrum Topo

0 20 40 60
f (Hz)

(c) SOBI

Power spectrum Topo

0 20 40 60
f (Hz)

(d) Infomax

Figure 4.3 – Different ICA decompositions on MEG data. Most sources found by SOBI
and Infomax are contaminated by environmental noise, which is especially visible in the
20-40 Hz band. There is also a strong peak around 60 Hz for most sources, including in
the heartbeat source (first row). Sources found by SMICA and JDIAG are very similar,
and both well separate ECG and environmental noise from the other brain sources.

Decomposition example on a MEG dataset

We start by showing the decomposition found by SMICA, JDIAG, SOBI and Infomax
on a MEG dataset, where the subject was presented checkerboard patterns into the
left and right visual field, as well as monaural auditory tones to the left or right ear.
Stimuli occurred every 750 ms (See [Gramfort et al., 2014] for a description of the
dataset). MEG is acquired with 102 magnetometers and 204 gradiometers.

For this experiment, we only consider the 102 magnetometer channels. Each ICA al-
gorithm returns 10 sources (after PCA for Infomax, SOBI or JDIAG). The power spec-
trum and topography of these sources are displayed in figure 4.3.

For this dataset, the decompositions of SMICA and JDIAG are quite similar. They suc-
cessfully isolate environmental noise (last two components of SMICA). It also appears
that the components of SOBI and Infomax are of lesser quality, since they seem artifac-
ted by noise in the band 20-40Hz. All algorithms successfully isolate heartbeats, but
these components are slightly contaminated by 60Hz line noise for SOBI and Infomax.

118
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

1

Power spectrum Topo

2

3

4

5

6

7

8

9

0 20 40 60
f (Hz)

10

11

Power spectrum Topo

12

13

14

15

16

17

18

19

0 20 40 60
f (Hz)

20

(a) SMICA

1

Power spectrum Topo

2

3

4

5

6

7

8

9

0 20 40 60
f (Hz)

10

11

Power spectrum Topo

12

13

14

15

16

17

18

19

0 20 40 60
f (Hz)

20

(b) JDIAG

Figure 4.4 – Comparison of SMICA and JDIAG on an EEG dataset. Both algorithms
are asked to recover 20 sources. Both algorithms recover the eye blinks (source 1).
SMICA manages to isolate what seems to be line signal (source 4, peak at 60 Hz). The
other peak at 50 Hz may be due to aliasing after resampling of the raw data. JDIAG
does not recover a source with such a high 60 Hz peak. As a consequence, more sources
found by JDIAG present a small peak at 60 Hz. JDIAG also isolates some noisy source
(sources 8 - 13, right), which have topographies centered around one sensor. SMICA
does not find such sources, and instead recovers more biologically plausible brain sources
(sources 8-20, left).

Example on an EEG dataset

We run SMICA and JDIAG on a 69-channel EEG data coming from the dataset de-
scribed in [Delorme et al., 2012]. Both algorithms return 20 sources, which are displayed
in figure 4.4. Differences between SMICA and JDIAG are now more striking which might
be caused by the greater noise level compared to the MEG recording.

Although decompositions differ in many aspects, we want to focus on source 4 recovered
by SMICA, which is not found by JDIAG. There is a sharp peak at 60 Hz, indicating
that it likely corresponds to line noise. The second peak at 50 Hz may seem spurious
but is most probably due to spectral aliasing. Indeed the the fifth harmonic of a line
at 60 Hz when sampled at 250 Hz appears at frequency 5*60-250 = 50 Hz. To test
whether it is a plausible line source, we resort to a separate experiment: we determine
the weight vector w ∈ R59 such that the time series wX is of power 1 with a maximal
power at 60 Hz. We use a method in the spirit of [Nikulin et al., 2011]. To do so,
we filter X in a narrow band around 60 Hz, yielding signals Xf . Then, we find w by
maximizing the power of wXf under the constraint that the power wX is 1. This is
done by maximizing the Rayleigh quotient between the covariance of Xf and of X.

4.1. SMICA 119

0 10 20 30 40 50 60 70
Frequency (Hz)

−88

−68

Po
we

r (
dB

)

Rayleigh
SMICA

Figure 4.5 – Comparison between the spectra of source number 4 found by SMICA
on an EEG dataset (figure 4.4) and a Rayleigh quotient method [Nikulin et al., 2011]
aiming at recovering the source with maximal power at 60 Hz. Both sources exhibit
another strong peak at 50 Hz, suggesting that this is not an artifact created by SMICA

The power spectrum of the corresponding source wX is displayed in figure 4.5, along
with the power spectrum of the source number 4 found by SMICA in figure 4.4. The 50
Hz aliased harmonic is also recovered by Rayleigh quotient, suggesting that the source
recovered by SMICA isolates correctly the line signal.

A data driven external interference suppression

Figure 4.3 suggests that the spectral methods (SMICA and JDIAG) remarkably isol-
ate environmental noise from the rest of the signal, while other methods fail to do so.
Therefore, spectral ICA can be used for environmental noise cancellation in MEG sig-
nals. We now compare it to two widely used methods for this task, Source Subspace
Projection (SSP) [Uusitalo and Ilmoniemi, 1997] and Signal Space Separation (SSS),
a.k.a. Maxwell filtering, [Taulu, 2006]. The idea behind this is that SMICA captures the
sources that these methods are trying to suppress, thereby providing a clear statistical
framework for noise suppression.

Figure 4.6 shows the global field power of raw and filtered signals with the compared
methods, for four different experimental conditions. For SMICA and Infomax, the
cardiac source and two sources corresponding to environmental noise are labeled by
hand, and then suppressed using method described in section 4.1.3.

SMICA finds highly dipolar source subspaces

In this section, we illustrate the ability of SMICA to capture meaningful brain sources.
We use the same dataset as in [Delorme et al., 2012]. It contains the EEG recording of 15
subjects, with 69 EEG channels. For a target number of independent sources, different
ICA procedures described in the article are compared. If the number of sources is lower
than the number of sensors (69), classical ICA methods must undergo a preprocessing
step, typically PCA, yielding a matrix WPCA of size nsources × nsensors. Then, both
Infomax and JDIAG are applied on the signals XPCA = WPCAX, yielding square un-
mixing matricesWInfomax andWJDIAG of size nsources×nsources. Finally, the estimated
mixing matrix for these methods, linking the signals to the sources, are:

AInfomax = (WInfomaxWPCA)†, AJDIAG = (WJDIAGWPCA)† .

120
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

Au
di

to
ry

/R
ig

ht

Total evoked response

−0.2 −0.1 0.0

Zoom on t<0

0.075 0.100 0.125

Zoom on the peak

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

Au
di

to
ry

/L
ef

t

−0.2 −0.1 0.00.05 0.10

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5

Vi
su

al
/R

ig
ht

−0.2 −0.1 0.0 0.10 0.15

−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5
Time (s.)

Vi
su

al
/L

ef
t

−0.2 −0.1 0.0
Time (s.)

0.15 0.20
Time (s.)

Raw SSP Maxwell Infomax SMICA

Figure 4.6 – Comparison of denoising methods. We display the global field powers
(averaged evoked potential power) for four experimental conditions (from top to bot-
tom): auditory right, left, and visual right, left stimulation. The raw averaged signal
is displayed in black. We compare this with Signal Subspace Projection (SSP), Signal
Space Separation (SSS), Infomax and SMICA. Left: averaged signals displayed during
pre- and post-stimulation periods. Middle: zoom on the pre-stimulus time segment.
Full lines display the average of the global field powers on these segments, while dashed
lighter lines show the true signals. Right: zoom on the peak. For Infomax and SMICA,
three sources have been marked as "bad": two sources coming from the noise room with
spurious spectra (for SMICA, the two last sources of figure 4.3), and the ECG (first
source of figure 4.3). SMICA offers slightly superior noise reduction in the t < 0 seg-
ment than SSS, SSP and Infomax, and preserves accurately the peak at around 100ms,
offering a higher signal-to-noise ratio.

4.1. SMICA 121

0 50 100
0

25

50

75

100
D

ip
ol

e
fi

t
(%

)

20 sources

0 50 100

30 sources

0 50 100

40 sources

0 50 100
0

25

50

75

100

D
ip

ol
e

fi
t

(%
)

50 sources

0 50 100

Component percentage

60 sources

0 50 100

All sources

Infomax Jdiag SMICA Pseudo Inverse Wiener

Figure 4.7 – Dipolarity of ICA sources found by different methods with 20, 30, 40, 50,
60, and 69 sources, on 15 EEG datasets of containing 69 sensors. Dipole fit corresponds
to the goodness of fit obtained after fitting a dipole to the source location. For Infomax
and JDIAG, a PCA is first applied on the data matrix to obtain the desired number
of channels. SMICA works directly on the whole dataset. Pseudo-inverse and Wiener
correspond to further applying Infomax on the sources recovered by SMICA, either
by the pseudo-Inverse or Wiener filtering method. In this example, spectral diversity
methods such as SMICA and JDIAG exhibit lower dipolarity. However, it appears that
SMICA finds a better signal subspace than PCA, since performing non-Gaussian ICA
in this subspace always yields higher dipolarity than out-of-the-box Infomax. Wiener
filtering also helps finding better sources, and provides the overall best results.

SMICA is applied on the raw signals X, and directly estimates a mixing matrix ASMICA

of size nsensors × nsources. Then, the sources of SMICA are estimated with the pseudo-
inverse and Wiener methods, yielding two sets of source signals Sinv and SWiener with
nsources signals. Infomax is finally applied on these sources, yielding two square unmix-
ing matricesWinv andWWiener. The mixing matrices corresponding to the combination
of SMICA and Infomax are obtained as:

Ainv = ASMICAW
†
inv, AWiener = ASMICAW

†
Wiener .

The dipolarity corresponding to these 5 ICA mixing matrices (AInfomax, AJDIAG,
ASMICA, Apinv and AWiener) are finally computed, yielding nsources scalars per sub-
ject. The dipole misfits are then aggregated across all subjects, and sorted. Results are
displayed in figure 4.7.

We observe that when a small number of sources is required (e.g. 20), SMICA finds
more dipolar sources than methods using PCA (JDIAG and Infomax). For a high
number of sources, SMICA falls behind these methods. Applying Infomax on sources
recovered by SMICA either by pseudo inversion or Wiener filtering always increases the

122
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

dipolarity of the decomposition. Overall, SMICA with Wiener yields greater dipolarity
for all number of components, which makes it an algorithm of choice following [Delorme
et al., 2012].

4.1.5 Discussion

Non-Gaussian ICA is routinely applied by many practitioners on EEG, MEG and even
fMRI [Beckmann et al., 2005, Varoquaux et al., 2010]. In this article, we argued that
using instead spectral diversity can offer an interesting alternative. Specifically, we pro-
posed to use the SMICA algorithm, which leverages spectral diversity in a statistically
sound manner. SMICA benefits from a noise model enabling accurate source estima-
tion (through Wiener filtering), and the estimation of a smaller number of sources than
sensors, without resorting to ad-hoc dimension reduction methods such as principal
component analysis.

Results in figure 4.3 have shown that SMICA can better isolate stationary environmental
noise than non-Gaussian ICA methods. This can be explained by the fact that noise
and brain sources usually have very different spectra. Noise tends to have peaks or
bumps in the spectra in higher frequencies while neural sources have spectra with power
laws or exponential decays, so called 1/f spectral densities [Buzsáki and Draguhn, 2004,
Dehghani et al., 2010, Rocca et al., 2018]. As a consequence, this method is well suited as
noise suppressor, as demonstrated in figure 4.6. It also very clearly reveals physiological
sources with 1/f power spectrum making decisions about what are artifacts and what
are not easier.

Thanks to the noise model, we have a principled way to perform dimension reduction
and to recover the sources time course. In [Artoni et al., 2018], it is argued that PCA
is suboptimal for EEG data, and that even channel subsampling is to be preferred.
Figure 4.7 shows that SMICA identifies a source subspace that contains more dipolar
components than PCA. As such, SMICA can be a useful tool for dimension reduction.

As an important remark, as illustrated in figure 4.3, SMICA is very similar to JDIAG
for clean data, since the noise subspace in this case is simple to find. Therefore, SMICA
is more likely to be useful for noisy datasets such as clinical recordings.

This work is not the first using and highlighting the benefits of spectral ICA for M/EEG
recordings. Some works have focused on convolutional mixtures (for which using the
Fourier domain turns convolutions into products). In [Dyrholm et al., 2007], authors use
convolutive ICA in time-domain, while in [Anemuller et al., 2003] they use a complex
Infomax to find travelling waves. In the end, it boils down to estimating one mixing
matrix for each frequency bin. However, independent models in each band might fail
to recover brain rhythms with several frequency peaks. For instance, mu-rhythm is
characterized by concurrent activity near 10 Hz and 20 Hz [Hari and Salmelin, 1997,
Niedermeyer and Lopes da Silva, 2005].

Some improvements to the current SMICA algorithm can be investigated. First, since
it comes from a principled statistical framework, it would be interesting to implement
a data-driven way of computing the most likely number of sources in the data: an
algorithm to automatically select the correct number of sources. However, preliminary
experiments show that usual statistical criteria like Akaike Information Criterion or
Bayesian Information Criterion are not satisfactory in this setting, likely because the
model is not complex enough to fit fully such complex signals. The EM algorithm
for fitting SMICA is also quite slow, some improvements could be possible by further

4.1. SMICA 123

studying the geometry of the cost function and proposing quasi-Newton algorithms, as
done recently for Infomax(Sec. 2.1).

124
CHAPTER 4. SMICA: SPECTRAL MATCHING ICA FOR M/EEG

PROCESSING

Appendix

The EM algorithm for SMICA

The parameters are Θ = {A,Σ1, . . . ,ΣB, P1, . . . , PB}, and the latent variables are the
sources in each frequency bands S1, . . . , SB.

E-step At the E-step, the sufficient statistics of the model are computed. Since the
model is Gaussian, they are simply the second-order statistics: E[SiS

>
i |Θ],E[SiX

>
i |Θ]

and E[XiX
>
i |Θ]. In the following, let Γi = (A>Σ−1

i A+P−1
i)−1 and Wi = ΓiA

>Σ−1
i the

Wiener filter. We have:
RXXi , E[XiX

>
i |Θ] = Ĉi (4.17)

RSXi , E[SiX
>
i |Θ] = WiĈi (4.18)

RSSi , E[SiS
>
i |Θ] = WiĈiW

>
i + Γi (4.19)

M-step At the M-step, the parameters of the model Θ should be modified in order
to decrease the loss function, using the sufficient statistics obtained in the E-step. The
EM functional writes:

Q =
B∑
i=1

ni[Tr((RXXi − 2ARSXi +ARSSi A>)Σ−1
i) + Tr(RSSi P−1

i) + log |Σi|+ log |Pi|] ,

(4.20)
which should be minimized with respect to the parameters Θ.

• Optimizing Pi: the source powers are decoupled from the other parameters in (4.20).
Minimization of Φ w.r.t. Pi is easily obtained by canceling the gradient, yielding:

Pi = diag(RSSi) .

• Optimizing Σi: the mixing matrix A and the noise covariance are entangled in
eq. (4.20), rendering the analytic minimization of Φ impossible. Therefore, we
first minimize Φ w.r.t Σi, keeping A constant. This yields:

Σi = diag(RXXi − 2ARSXi +ARSSi A>) .

• Optimizing A: keeping the noise levels fixed, minimizing Φ w.r.t. A yields, by
canceling the gradient:

∑B
i=1 niΣ

−1
i (RXSi − ARSSi) = 0. This can be seen as a

system of equations for the rows of A which, thanks to the diagonality of Σi, is
easily seen to decouple across the rows. For each row, simple algebra yields the
close form solution:

for r = 1 . . . p, Ar: = Qr:M
−1
r with Q =

B∑
i=1

niΣ
−1
i RXSi Mr =

B∑
i=1

niσ
−2
i,r R

SS
i .

Therefore, the EM update of A only requires solving p linear systems of size q×q.

4.1. SMICA 125

Implementation details The EM algorithm iterates the E and M step until a certain
convergence criterion is reached. In practice, iterations are stopped when the difference
between two consecutive values of the log-likelihood is below a threshold: Lt+1 > Lt−ε.
In order to have a good initialization for the algorithm, we first fit the model with a fixed
noise level for each bin: we estimate Σ subject to Σi = Σ for all i. In this setting, the
M-step is much simpler and computationally quicker. Then, the core SMICA algorithm
with free noise starts with Σi all equal to the estimated noise level, and A and Pi start
from the same initial value.

Conclusion and Perspectives

In this thesis, we have proposed novel ICA algorithms, with brain signal processing in
mind. First, we acknowledged that fast state-of-the-art quasi-Newton algorithms for
ICA all rely heavily on the independence assumption. On real data, this assumption is
only true to some extent. To remedy this problem, we proposed the Picard algorithm,
which shows fast convergence even on real data. Picard is shipped with two of the most
popular M/EEG processing toolboxes.

In the case of very long signals, stochastic methods that do not need the whole dataset
to perform one iteration are appealing. So far, only stochastic gradient descent was
proposed for ICA. The major drawback of this method is that the learning rate is a
critical and hard to tune parameter. To overcome this difficulty, we propose stochastic
algorithms with descent guarantee for ICA, resorting on a majorization-minimization
scheme. These algorithms do not have such critical hyper-parameter, and the descent
guarantee makes them safer than SGD.

Finally, we use an ICA algorithm developed in the context of astronomy, SMICA, and
apply it to M/EEG signals. Contrary to most ICA algorithms used for brain signal pro-
cessing, this algorithm has a noise model, which enables fine source estimation through
Wiener filtering and statistically sound dimensionality reduction via ICA. Results on
brain signals show that it extracts interesting brain sources.

The ICA theory shows that finer source modeling leads to better separation. Although
this assertion is debatable in an applied setting where the ICA model is wrong anyway,
it would still be handy to go beyond Picard’s binary density model, and proposed an
adaptive density estimation. A simple way to do so is to alternate density estimation
and unmixing matrix W estimation steps. However, it would likely render the memory
of L-BFGS useless, since with respect toW , the cost function would change at each step.
Another possibility is to perform density and unmixing matrix estimation at the same
time. Fortunately, the Hessian for this extended set of parameters also simplifies at
source separation: using an L-BFGS method should also lead to good results. However,
it is hard to derive a family of densities that has enough diversity and leads to tractable
computations.

The ideas behind Picard have been successfully applied to joint diagonalization, and
can be transfered to any statistical model where the Hessian simplifies greatly when
the model holds. An interesting problem is to identify a broader class of problems with
such property. Of course, there always exists a parametrization of the parameter space
that leads to simple Hessians, but a specificity of ICA is that these simplifications occur
with the simple multiplicative updates.

The majorization-minimization employed to derive stochastic algorithms with descent
guarantees only works when we have a super-Gaussian prior on the sources. Employing
a similar method with sub-Gaussian densities would lead to a min-max problem, and
strategies employed in this thesis become ineffective. It would be of interest to develop
a more general framework for stochastic ICA that does not restrict the choice of density.

128 Conclusion and Perspectives

It would also be interesting to develop fast algorithms for SMICA. So far, we use an EM
algorithm which tends to be slow. Second order methods could accelerate estimation,
even though the optimization problem is more complicated than regular ICA due to its
intricate parameters. Another important unresolved problem in ICA for neuroscience is
to estimate the number of sources in the mixture. The most widely employed approach
is to reduce dimension by PCA and keep a number of sources that account for 85%
of variance. This is an ad-hoc procedure, while SMICA may offer a principled way of
choosing the number of sources. Since we have a likelihood, statistical criterion like
Akaike Information Criterion come to mind, but our experiments show that this does
not yield a realistic number of sources.

Bibliography

Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Faster independent com-
ponent analysis by preconditioning with Hessian approximations. IEEE Transactions
on Signal Processing, 66(15):4040–4049, 2018a.

Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Accelerating likelihood
optimization for ICA on real signals. In International Conference on Latent Variable
Analysis and Signal Separation, pages 151–160. Springer, 2018b.

Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Faster ICA under or-
thogonal constraint. In Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2018c.

Pierre Ablin, Jean-François Cardoso, and Alexandre Gramfort. Beyond Pham’s al-
gorithm for joint diagonalization. In ESANN, 2019a.

Pierre Ablin, Dylan Fagot, Herwig Wendt, Alexandre Gramfort, and Cédric Févotte. A
quasi-Newton algorithm on the orthogonal manifold for NMF with transform learn-
ing. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 700–704. IEEE, 2019b.

Pierre Ablin, Alexandre Gramfort, Jean-François Cardoso, and Francis Bach. Stochastic
algorithms with descent guarantees for ICA. In The 22nd International Conference
on Artificial Intelligence and Statistics, pages 1564–1573, 2019c.

Pierre Ablin, Thomas Moreau, Mathurin Massias, and Alexandre Gramfort. Learning
step sizes for unfolded sparse coding. arXiv preprint arXiv:1905.11071, 2019d.

Alexandre Abraham, Fabian Pedregosa, Michael Eickenberg, Philippe Gervais, Andreas
Mueller, Jean Kossaifi, Alexandre Gramfort, Bertrand Thirion, and Gaël Varoquaux.
Machine learning for neuroimaging with scikit-learn. Frontiers in neuroinformatics,
8, 2014.

Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization al-
gorithms on matrix manifolds. Princeton University Press, 2009.

Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing
overcomplete dictionaries for sparse representation. IEEE Transactions on signal
processing, 54(11):4311–4322, 2006.

Elena A Allen, Erik B Erhardt, Eswar Damaraju, William Gruner, Judith M Segall,
Rogers F Silva, Martin Havlicek, Srinivas Rachakonda, Jill Fries, Ravi Kalyanam,
et al. A baseline for the multivariate comparison of resting-state networks. Frontiers
in systems neuroscience, 5, 2011.

Elena A Allen, Eswar Damaraju, Sergey M Plis, Erik B Erhardt, Tom Eichele, and
Vince D Calhoun. Tracking whole-brain connectivity dynamics in the resting state.
Cerebral cortex, 24(3):663–676, 2014.

130 Bibliography

Shun-ichi Amari, Andrzej Cichocki, and Howard Hua Yang. A new learning algorithm
for blind signal separation. In Advances in neural information processing systems,
pages 757–763, 1996.

Shun-Ichi Amari, Tian-Ping Chen, and Andrzej Cichocki. Stability analysis of learning
algorithms for blind source separation. Neural Networks, 10(8):1345–1351, 1997.

Jorn Anemuller, Terrence J. Sejnowski, and Scott Makeig. Complex independent
component analysis of frequency-domain electroencephalographic data. Neural Net-
works, 16(9):1311 – 1323, 2003. ISSN 0893-6080. doi: https://doi.org/10.1016/j.
neunet.2003.08.003. URL http://www.sciencedirect.com/science/article/pii/
S0893608003002442. Neuroinformatics.

Fiorenzo Artoni, Arnaud Delorme, and Scott Makeig. Applying dimension reduction
to EEG data by principal component analysis reduces the quality of its subsequent
independent component decomposition. NeuroImage, 175:176–187, 2018.

Michal Assaf, Kanchana Jagannathan, Vince D Calhoun, Laura Miller, Michael C
Stevens, Robert Sahl, Jacqueline G O’boyle, Robert T Schultz, and Godfrey D
Pearlson. Abnormal functional connectivity of default mode sub-networks in aut-
ism spectrum disorder patients. Neuroimage, 53(1):247–256, 2010.

Francis Bach and Michael Jordan. Kernel independent component analysis. Journal of
machine learning research, 3(Jul):1–48, 2002.

Hanna Becker, Pierre Comon, Laurent Albera, Martin Haardt, and Isabelle Merlet.
Multi-way space–time–wave-vector analysis for eeg source separation. Signal Pro-
cessing, 92(4):1021–1031, 2012.

Hanna Becker, Laurent Albera, Pierre Comon, Rémi Gribonval, Fabrice Wendling, and
Isabelle Merlet. Localization of distributed eeg sources in the context of epilepsy: a
simulation study. IRBM, 37(5-6):242–253, 2016.

Christian F Beckmann, Marilena DeLuca, Joseph T Devlin, and Stephen M
Smith. Investigations into resting-state connectivity using independent compon-
ent analysis. Philosophical Transactions of the Royal Society B: Biological Sci-
ences, 360(1457):1001–1013, 2005. doi: 10.1098/rstb.2005.1634. URL https:
//royalsocietypublishing.org/doi/abs/10.1098/rstb.2005.1634.

Anthony J Bell and Terrence J Sejnowski. An information-maximization approach to
blind separation and blind deconvolution. Neural computation, 7(6):1129–1159, 1995.

Adel Belouchrani, Karim Abed-Meraim, Jean-François Cardoso, and E. Moulines. A
blind source separation technique using second-order statistics. IEEE Transactions
on Signal Processing, 45(2):434–444, 1997.

Olivier Bermond and Jean-François Cardoso. Approximate likelihood for noisy mixtures.
In Proc. ICA, volume 99, pages 325–330, 1999.

Wolfgang Bertram. Differential Geometry, Lie Groups and Symmetric Spaces over
General Base Fields and Rings. Memoirs of the American Mathematical Society,
2008.

http://www.sciencedirect.com/science/article/pii/S0893608003002442
http://www.sciencedirect.com/science/article/pii/S0893608003002442
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2005.1634
https://royalsocietypublishing.org/doi/abs/10.1098/rstb.2005.1634

Bibliography 131

Leon Bottou and Olivier Bousquet. The tradeoffs of large scale learning. In Advances
in neural information processing systems, pages 161–168, 2008.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale
machine learning. arXiv preprint arXiv:1606.04838, 2016.

Matthew J Brookes, Mark Woolrich, Henry Luckhoo, Darren Price, Joanne R Hale,
Mary C Stephenson, Gareth R Barnes, Stephen M Smith, and Peter G Morris. Invest-
igating the electrophysiological basis of resting state networks using magnetoenceph-
alography. Proceedings of the National Academy of Sciences, 108(40):16783–16788,
2011.

Robert Grover Brown, Patrick YC Hwang, et al. Introduction to random signals and
applied Kalman filtering, volume 3. Wiley New York, 1992.

Charles George Broyden. The convergence of a class of double-rank minimization al-
gorithms 1. general considerations. IMA Journal of Applied Mathematics, 6(1):76–90,
1970.

György Buzsáki. Rhythms of the Brain. Oxford University Press, 2006.

György Buzsáki and Andreas Draguhn. Neuronal oscillations in cortical networks. Sci-
ence, 304(5679):1926–1929, 2004. ISSN 0036-8075. doi: 10.1126/science.1099745.
URL https://science.sciencemag.org/content/304/5679/1926.

György Buzsáki and Rodolfo Llinás. Space and time in the brain. Science, 358
(6362):482–485, 2017. ISSN 0036-8075. doi: 10.1126/science.aan8869. URL https:
//science.sciencemag.org/content/358/6362/482.

Richard H Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory al-
gorithm for bound constrained optimization. SIAM Journal on Scientific Computing,
16(5):1190–1208, 1995.

AC Cadavid, JK Lawrence, and A Ruzmaikin. Principal components and independent
component analysis of solar and space data. Solar Physics, 248(2):247–261, 2008.

Olivier Cappé and Eric Moulines. On-line expectation–maximization algorithm for
latent data models. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 71(3):593–613, 2009.

Jean-François Cardoso. On the stability of some source separation algorithms. In Proc.
of the 1998 IEEE SP workshop on neural networks for signal processing (NNSP ’98),
pages 13–22, 1998a.

Jean-François Cardoso. On the performance of orthogonal source separation algorithms.
In Proceedings of EUSIPCO, volume 94, pages 776–779, 1994.

Jean-François Cardoso. Infomax and maximum likelihood for blind source separation.
IEEE Signal processing letters, 4(4):112–114, 1997.

Jean-François Cardoso. Blind signal separation: statistical principles. Proceedings of
the IEEE, 86(10):2009–2025, 1998b.

Jean-François Cardoso. The three easy routes to independent component analysis;
contrasts and geometry. In Proc. ICA, volume 2001, pages 1–6, 2001.

https://science.sciencemag.org/content/304/5679/1926
https://science.sciencemag.org/content/358/6362/482
https://science.sciencemag.org/content/358/6362/482

132 Bibliography

Jean-François Cardoso and Beate H Laheld. Equivariant adaptive source separation.
IEEE Transactions on Signal Processing, 44(12):3017–3030, 1996.

Jean-François Cardoso and Antoine Souloumiac. Blind beamforming for non-gaussian
signals. IEE Proceedings F - Radar and Signal Processing, 140(6):362–370, Dec 1993.
ISSN 0956-375X. doi: 10.1049/ip-f-2.1993.0054.

Jean-François Cardoso and Antoine Souloumiac. Jacobi angles for simultaneous diag-
onalization. SIAM journal on matrix analysis and applications, 17(1):161–164, 1996.

Jean-François Cardoso, Hichem Snoussi, and Jacques Delabrouille. Blind separation
of noisy Gaussian stationary sources. application to cosmic microwave background
imaging. In 2002 11th European Signal Processing Conference, pages 1–4. IEEE,
2002.

Pascal Chevalier, Laurent Albera, Pierre Comon, and Anne Ferréol. Comparative
performance analysis of eight blind source separation methods on radiocommunic-
ations signals. In Proc. of IEEE International Joint Conference on Neural Networks,
volume 1, pages 273–278, 2004.

Heeyoul Choi and Seungjin Choi. A relative trust-region algorithm for independent
component analysis. Neurocomputing, 70(7):1502–1510, 2007.

Pierre Comon. Independent component analysis, a new concept? Signal processing, 36
(3):287–314, 1994.

Pierre Comon and Christian Jutten. Handbook of Blind Source Separation: Independent
component analysis and applications. Academic press, 2010.

Marco Congedo, Cédric Gouy-Pailler, and Christian Jutten. On the blind source separ-
ation of human electroencephalogram by approximate joint diagonalization of second
order statistics. Clinical Neurophysiology, 119(12):2677–2686, 2008.

ADHD-200 Consortium et al. The ADHD-200 consortium: a model to advance the
translational potential of neuroimaging in clinical neuroscience. Frontiers in systems
neuroscience, 6, 2012.

Jurgen. Dammers, Michael Schiek, Frank Boers, Carmen Silex, Mikhail Zvyagintsev,
Uwe Pietrzyk, and Klaus Mathiak. Integration of amplitude and phase statistics for
complete artifact removal in independent components of neuromagnetic recordings.
IEEE Transactions on Biomedical Engineering, 55(10):2353–2362, Oct 2008. ISSN
0018-9294. doi: 10.1109/TBME.2008.926677.

George Darmois. Analyse générale des liaisons stochastiques: etude particulière de
l’analyse factorielle linéaire. Revue de l’Institut international de statistique, pages
2–8, 1953.

William C Davidon. Variable metric method for minimization. SIAM Journal on Op-
timization, 1(1):1–17, 1991.

Mike Davies. Identifiability issues in noisy ica. IEEE Signal processing letters, 11(5):
470–473, 2004.

Bibliography 133

Maarten De Vos, Anneleen Vergult, Lieven De Lathauwer, Wim De Clercq, Sabine
Van Huffel, Patrick Dupont, Andre Palmini, and Wim Van Paesschen. Canonical
decomposition of ictal scalp eeg reliably detects the seizure onset zone. NeuroImage,
37(3):844–854, 2007.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental
gradient method with support for non-strongly convex composite objectives. In Proc.
NIPS, pages 1646–1654, 2014.

Nima Dehghani, Claude Bédard, Sydney S. Cash, Eric Halgren, and Alain Destexhe.
Comparative power spectral analysis of simultaneous elecroencephalographic and
magnetoencephalographic recordings in humans suggests non-resistive extracellular
media. Journal of Computational Neuroscience, 29(3):405–421, Dec 2010. ISSN
1573-6873. doi: 10.1007/s10827-010-0263-2. URL https://doi.org/10.1007/
s10827-010-0263-2.

Jacques Delabrouille, Jean-François Cardoso, and Guillaume Patanchon. Multidetector
multicomponent spectral matching and applications for cosmic microwave background
data analysis. Monthly Notices of the Royal Astronomical Society, 346(4):1089–1102,
2003.

Arnaud Delorme and Scott Makeig. EEGLAB: an open source toolbox for analysis
of single-trial EEG dynamics including independent component analysis. Journal of
neuroscience methods, 134(1):9–21, 2004.

Arnaud Delorme, Jason Palmer, Julie Onton, Robert Oostenveld, and Scott Makeig.
Independent EEG sources are dipolar. PloS one, 7(2):e30135, 2012.

Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. Journal of the Royal Statistical Society. Series
B (methodological), pages 1–38, 1977.

Mads Dyrholm, Scott Makeig, and Lars Kai Hansen. Model selection for convolutive
ICA with an application to spatiotemporal analysis of EEG. Neural Computation, 19
(4):934–955, 2007. doi: 10.1162/neco.2007.19.4.934.

Roger Fletcher. A new approach to variable metric algorithms. The computer journal,
13(3):317–322, 1970.

Roger Fletcher and Michael JD Powell. A rapidly convergent descent method for min-
imization. The computer journal, 6(2):163–168, 1963.

Mark Girolami. A variational method for learning sparse and overcomplete representa-
tions. Neural Computation, 13(11):2517–2532, 2001.

Donald Goldfarb. A family of variable-metric methods derived by variational means.
Mathematics of computation, 24(109):23–26, 1970.

Germán Gómez-Herrero, Mercedes Atienza, Karen Egiazarian, and Jose L Cantero.
Measuring directional coupling between EEG sources. Neuroimage, 43(3):497–508,
2008.

https://doi.org/10.1007/s10827-010-0263-2
https://doi.org/10.1007/s10827-010-0263-2

134 Bibliography

Alexandre Gramfort, Martin Luessi, Eric Larson, Denis A. Engemann, Daniel
Strohmeier, Christian Brodbeck, Lauri Parkkonen, and Matti S. Hämäläinen. MNE
software for processing MEG and EEG data. NeuroImage, 86:446 – 460, 2014. ISSN
1053-8119.

Matti Hämäläinen, Riitta Hari, Risto J Ilmoniemi, Jukka Knuutila, and Olli V Loun-
asmaa. Magnetoencephalography-theory, instrumentation, and applications to non-
invasive studies of the working human brain. Reviews of modern Physics, 65(2):413,
1993.

Riitta Hari and Riitta Salmelin. Human cortical oscillations: a neuromagnetic view
through the skull. Trends in Neurosciences, 20(1):44 – 49, 1997. ISSN 0166-2236. doi:
https://doi.org/10.1016/S0166-2236(96)10065-5. URL http://www.sciencedirect.
com/science/article/pii/S0166223696100655.

Jean Honorio, Dimitris Samaras, Irina Rish, and Guillermo Cecchi. Variable selection
for gaussian graphical models. In Artificial Intelligence and Statistics, pages 538–546,
2012.

Patrick O. Hoyer and Aapo Hyvärinen. Independent component analysis applied to
feature extraction from colour and stereo images. Network: Computation in Neural
Systems, 11(3):191–210, 2000.

Scott A Huettel, Allen W Song, Gregory McCarthy, et al. Functional magnetic reson-
ance imaging, volume 1. Sinauer Associates Sunderland, MA, 2004.

Aapo Hyvärinen. Fast and robust fixed-point algorithms for independent component
analysis. IEEE Transactions on Neural Networks, 10(3):626–634, 1999.

Aapo Hyvärinen. The fixed-point algorithm and maximum likelihood estimation for
independent component analysis. Neural Processing Letters, 10(1):1–5, 1999.

Aapo Hyvärinen and Erkki Oja. Independent component analysis: algorithms and
applications. Neural networks, 13(4):411–430, 2000.

Aapo Hyvärinen, Juha Karhunen, and Erkki Oja. Independent component analysis,
volume 46. John Wiley & Sons, 2004.

Aapo Hyvärinen, Pavan Ramkumar, Lauri Parkkonen, and Riitta Hari. Independent
component analysis of short-time Fourier transforms for spontaneous EEG/MEG
analysis. NeuroImage, 49(1):257–271, 2010.

Shiro Ikeda and Keisuke Toyama. Independent component analysis for noisy data-MEG
data analysis. Neural Networks, 13(10):1063–1074, 2000.

Lianjun Jiang, Richard H Byrd, Elizabeth Eskow, and Robert B Schnabel. A pre-
conditioned L-BFGS algorithm with application to molecular energy minimization.
Technical report, Colorado Univ. at Boulder Dept. of Computer Science, 2004.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive
variance reduction. In Proc. NIPS, pages 315–323, 2013.

http://www.sciencedirect.com/science/article/pii/S0166223696100655
http://www.sciencedirect.com/science/article/pii/S0166223696100655

Bibliography 135

Tzyy-Ping Jung, Colin Humphries, Te-Won Lee, Scott Makeig, Martin J. McKeown,
Vicente Iragui, and Terrence J. Sejnowski. Extended ICA removes artifacts from
electroencephalographic recordings. In Proceedings of the 10th International Confer-
ence on Neural Information Processing Systems, NIPS’97, pages 894–900, Cambridge,
MA, USA, 1997. MIT Press.

Tzyy-Ping Jung, Scott Makeig, Colin Humphries, Te-Won Lee, Martin J Mckeown,
Vicente Iragui, and Terrence J Sejnowski. Removing electroencephalographic artifacts
by blind source separation. Psychophysiology, 37(2):163–178, 2000.

Christian Jutten and Jeanny Herault. Blind separation of sources, part i: An adaptive
algorithm based on neuromimetic architecture. Signal processing, 24(1):1–10, 1991.

Joseph B Kruskal. Three-way arrays: rank and uniqueness of trilinear decompositions,
with application to arithmetic complexity and statistics. Linear algebra and its ap-
plications, 18(2):95–138, 1977.

Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

Su-In Lee and Serafim Batzoglou. Application of independent component analysis to
microarrays. Genome biology, 4(11):R76, 2003.

Te-Won Lee, Mark Girolami, and Terrence J Sejnowski. Independent component ana-
lysis using an extended infomax algorithm for mixed subgaussian and supergaussian
sources. Neural computation, 11(2):417–441, 1999.

Augustin Lefevre, Francis Bach, and Cédric Févotte. Online algorithms for nonnegative
matrix factorization with the Itakura-Saito divergence. In Applications of Signal
Processing to Audio and Acoustics (WASPAA), 2011 IEEE Workshop on, pages 313–
316. IEEE, 2011.

Michael S Lewicki and Terrence J Sejnowski. Learning overcomplete representations.
Neural computation, 12(2):337–365, 2000.

Dong-Hui Li and Masao Fukushima. A modified bfgs method and its global convergence
in nonconvex minimization. Journal of Computational and Applied Mathematics, 129
(1-2):15–35, 2001.

Lek-Heng Lim and Pierre Comon. Blind multilinear identification. IEEE Transactions
on Information Theory, 60(2):1260–1280, 2013.

Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale
optimization. Mathematical programming, 45(1-3):503–528, 1989.

Davide Maino, A Farusi, Carlo Baccigalupi, Francesca Perrotta, AJ Banday, L Bedini,
Carlo Burigana, Gianfranco De Zotti, KM Górski, and E Salerno. All-sky astrophys-
ical component separation with fast independent component analysis (FASTICA).
Monthly Notices of the Royal Astronomical Society, 334(1):53–68, 2002.

Julien Mairal. Optimization with first-order surrogate functions. In Proceedings of the
30th International Conference on Machine Learning (ICML-13), pages 783–791, 2013.

Julien Mairal. Incremental majorization-minimization optimization with application to
large-scale machine learning. SIAM Journal on Optimization, 25(2):829–855, 2015.

136 Bibliography

Julien Mairal, Francis Bach, Jean Ponce, and Guillermo Sapiro. Online dictionary
learning for sparse coding. In Proc. ICML, pages 689–696. ACM, 2009.

Scott Makeig, Tzyy-Ping Jung, Anthony J. Bell, Dara Ghahremani, and Terrence J.
Sejnowski. Blind separation of auditory event-related brain responses into independ-
ent components. Proceedings of the National Academy of Sciences (PNAS), 94(20):
10979–10984, 1997. doi: 10.1073/pnas.94.20.10979.

Scott Makeig, Stefan Debener, Julie Onton, and Arnaud Delorme. Mining event-related
brain dynamics. Trends in cognitive sciences, 8(5):204–210, 2004.

Dante Mantini, Raffaella Franciotti, Gian Luca Romani, and Vittorio Pizzella. Improv-
ing MEG source localizations: an automated method for complete artifact removal
based on independent component analysis. NeuroImage, 40(1):160–173, 2008.

Kiyotoshi Matsuoka, Masahiro Ohoya, and Mitsuru Kawamoto. A neural net for blind
separation of nonstationary signals. Neural networks, 8(3):411–419, 1995.

Martin J McKeown, Scott Makeig, Greg G Brown, Tzyy-Ping Jung, Sandra S Kinder-
mann, Anthony J Bell, and Terrence J Sejnowski. Analysis of fmri data by blind
separation into independent spatial components. Technical report, aval Health Re-
search Center San Diego, 1997.

Fumikazu Miwakeichi, Eduardo Martınez-Montes, Pedro A Valdés-Sosa, Nobuaki
Nishiyama, Hiroaki Mizuhara, and Yoko Yamaguchi. Decomposing eeg data into
space–time–frequency components using parallel factor analysis. NeuroImage, 22(3):
1035–1045, 2004.

Jair Montoya-Martínez, Jean-François Cardoso, and Alexandre Gramfort. Caveats
with stochastic gradient and maximum likelihood based ICA for EEG. In Interna-
tional Conference on Latent Variable Analysis and Signal Separation, pages 279–289.
Springer, 2017.

Jorge J Moré and David J Thuente. Line search algorithms with guaranteed sufficient de-
crease. ACM Transactions on Mathematical Software (TOMS), 20(3):286–307, 1994.

Eric Moreau and Odile Macchi. Self-adaptive source separation. ii. comparison of the
direct, feedback, and mixed linear network. IEEE Trans. on Signal Processing, 46(1):
39–50, 1998.

Morten Mørup, Lars Kai Hansen, Christoph S Herrmann, Josef Parnas, and Sidse M
Arnfred. Parallel factor analysis as an exploratory tool for wavelet transformed event-
related eeg. NeuroImage, 29(3):938–947, 2006.

Eric Moulines, Jean-François Cardoso, and Elisabeth Gassiat. Maximum likelihood
for blind separation and deconvolution of noisy signals using mixture models. In
1997 IEEE International Conference on Acoustics, Speech, and Signal Processing,
volume 5, pages 3617–3620. IEEE, 1997.

Radford M. Neal and Geoffrey E. Hinton. A view of the EM algorithm that justifies
incremental, sparse, and other variants. In Learning in graphical models, pages 355–
368. Springer, 1998.

Bibliography 137

Arkadii Semenovich Nemirovsky and David Borisovich Yudin. Problem complexity and
method efficiency in optimization. J. Wiley & Sons, 1983.

Ernst Niedermeyer and F. H. Lopes da Silva. Electroencephalography : basic principles,
clinical applications, and related fields. Philadelphia ; London : Lippincott Williams
& Wilkins, 5th ed edition, 2005. ISBN 0781751268.

Vadim V Nikulin, Guido Nolte, and Gabriel Curio. A novel method for reliable and fast
extraction of neuronal eeg/meg oscillations on the basis of spatio-spectral decompos-
ition. NeuroImage, 55(4):1528–1535, 2011.

Jorge Nocedal and Stephen J Wright. Numerical Optimization. Springer, 1999.

Danielle Nuzillard and Albert Bijaoui. Blind source separation and analysis of multis-
pectral astronomical images. Astronomy and Astrophysics Supplement Series, 147(1):
129–138, 2000.

Erkki Oja and Zhijian Yuan. The fastica algorithm revisited: Convergence analysis.
IEEE Transactions on Neural Networks, 17(6):1370–1381, 2006.

Aude Oliva and Antonio Torralba. Modeling the shape of the scene: A holistic rep-
resentation of the spatial envelope. International journal of computer vision, 42(3):
145–175, 2001.

Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field prop-
erties by learning a sparse code for natural images. Nature, 381(6583):607, 1996.

Pentti Paatero and Unto Tapper. Positive matrix factorization: A non-negative factor
model with optimal utilization of error estimates of data values. Environmetrics, 5
(2):111–126, 1994.

Jason Palmer, Ken Kreutz-Delgado, Bhaskar D. Rao, and David P. Wipf. Variational
EM algorithms for non-gaussian latent variable models. In Proc. NIPS, pages 1059–
1066, 2006.

Jason A. Palmer, Scott Makeig, Ken Kreutz-Delgado, and Bhaskar D. Rao. Newton
method for the ICA mixture model. In IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1805–1808, March 2008. doi: 10.1109/
ICASSP.2008.4517982.

Jason A Palmer, Ken Kreutz-Delgado, and Scott Makeig. AMICA: An adaptive mix-
ture of independent component analyzers with shared components. Technical report,
Swartz Center for Computatonal Neursoscience, University of California San Diego,
Tech. Rep, 2012.

Dinh-Tuan Pham. Blind separation of instantaneous mixture of sources via the Gaussian
mutual information criterion. Signal Processing, 81(4):855–870, 2001a.

Dinh-Tuan Pham. Joint approximate diagonalization of positive definite hermitian
matrices. SIAM Journal on Matrix Analysis and Applications, 22(4):1136–1152,
2001b.

Dinh-Tuan Pham and Jean-François Cardoso. Blind separation of instantaneous mix-
tures of nonstationary sources. IEEE Transactions on Signal Processing, 49(9):1837–
1848, 2001.

138 Bibliography

Dinh-Tuan Pham and Jean-Francois Cardoso. Source adaptive blind source separa-
tion: Gaussian models and sparsity. In Wavelets: Applications in Signal and Image
Processing, X, Proc. of SPIE, volume 5207, San Diego, January 2003.

Dinh-Tuan Pham and Philippe Garat. Blind separation of mixture of independent
sources through a quasi-maximum likelihood approach. IEEE Transactions on Signal
Processing, 45(7):1712–1725, 1997.

Fabien Poncelet, Gaëtan Kerschen, J-C Golinval, and Damien Verhelst. Output-only
modal analysis using blind source separation techniques. Mechanical systems and
signal processing, 21(6):2335–2358, 2007.

Francesca Raimondi and Pierre Comon. Tensor decomposition of polarized seismic
waves. In GRETSI’2015, 2015.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals
of mathematical statistics, pages 400–407, 1951.

Daria La Rocca, Nicolas Zilber, Patrice Abry, Virginie van Wassenhove, and Philippe
Ciuciu. Self-similarity and multifractality in human brain activity: A wavelet-based
analysis of scale-free brain dynamics. Journal of Neuroscience Methods, 309:175 – 187,
2018. ISSN 0165-0270. doi: https://doi.org/10.1016/j.jneumeth.2018.09.010. URL
http://www.sciencedirect.com/science/article/pii/S0165027018302784.

Douglas N Rutledge and D Jouan-Rimbaud Bouveresse. Independent components ana-
lysis with the JADE algorithm. TrAC Trends in Analytical Chemistry, 50:22–32,
2013.

David Sabbagh, Pierre Ablin, Gaël Varoquaux, Alexandre Gramfort, and Denis A En-
geman. Manifold-regression to predict from meg/eeg brain signals without source
modeling. arXiv preprint arXiv:1906.02687, 2019.

Michael Scherg and Detlev Von Cramon. Two bilateral sources of the late AEP as
identified by a spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol.,
62(1):32–44, Jan. 1985.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the
stochastic average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

Matthias Scholz, S Gatzek, A Sterling, Oliver Fiehn, and Joachim Selbig. Metabol-
ite fingerprinting: detecting biological features by independent component analysis.
Bioinformatics, 20(15):2447–2454, 2004.

David F Shanno. Conditioning of quasi-Newton methods for function minimization.
Mathematics of computation, 24(111):647–656, 1970.

Hao Shen, Martin Kleinsteuber, and Knut Huper. Local convergence analysis of FastICA
and related algorithms. IEEE Transactions on Neural Networks, 19(6):1022–1032,
2008.

Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method
without the agonizing pain, 1994.

http://www.sciencedirect.com/science/article/pii/S0165027018302784

Bibliography 139

Nicholas D Sidiropoulos, Rasmus Bro, and Georgios B Giannakis. Parallel factor ana-
lysis in sensor array processing. IEEE transactions on Signal Processing, 48(8):2377–
2388, 2000.

Julia M Stephen, Brian A Coffman, Rex E Jung, Juan R Bustillo, CJ Aine, and Vin-
cent D Calhoun. Using joint ICA to link function and structure using MEG and DTI
in schizophrenia. Neuroimage, 83:418–430, 2013.

Abdulhamit Subasi and M Ismail Gursoy. EEG signal classification using PCA, ICA,
LDA and support vector machines. Expert systems with applications, 37(12):8659–
8666, 2010.

Samu Taulu. Spatiotemporal Signal Space Separation method for rejecting nearby in-
terference in MEG measurements. Physics in Medicine and Biology, 51(7):1759–1769,
2006.

Petr Tichavsky, Zbynek Koldovsky, and Erkki Oja. Performance analysis of the FastICA
algorithm and cramer-rao bounds for linear independent component analysis. IEEE
transactions on Signal Processing, 54(4):1189–1203, 2006.

Philippe Tillet, HT Kung, and David Cox. Infomax-ICA using Hessian-free optimiza-
tion. In Acoustics, Speech and Signal Processing (ICASSP), 2017 IEEE International
Conference on, pages 2537–2541. IEEE, 2017.

Jose Antonio Urigüen and Begoña Garcia-Zapirain. EEG artifact removal - state-of-
the-art and guidelines. Journal of neural engineering, 12(3):031001, 2015.

Mikko.A. Uusitalo and Risto.J. Ilmoniemi. Signal-space projection method for sep-
arating MEG or EEG into components. Medical and Biological Engineering and
Computing, 35(2):135–140, 1997.

Stefan Van der Walt, S. Chri Colbert, and Gaël Varoquaux. The NumPy array: a
structure for efficient numerical computation. Comp. in Sci. & Eng., 13(2):22–30,
2011.

Gaël Varoquaux, Sepideh Sadaghiani, Philippe Pinel, Andreas Kleinschmidt, Jean-
Baptiste Poline, and Bertrand Thirion. A group model for stable multi-subject ICA
on fMRI datasets. Neuroimage, 51(1):288–299, 2010.

Ricardo Vigário, Jaakko Sarela, V Jousmiki, Matti Hamalainen, and Erkki Oja. Inde-
pendent component approach to the analysis of EEG and MEG recordings. IEEE
Transactions on Biomedical Engineering, 47(5):589–593, 2000.

Valeriu Vrabie, Cyril Gobinet, Olivier Piot, Ali Tfayli, Philippe Bernard, Régis Huez,
and Michel Manfait. Independent component analysis of raman spectra: Application
on paraffin-embedded skin biopsies. Biomedical Signal Processing and Control, 2(1):
40 – 50, 2007. ISSN 1746-8094. doi: https://doi.org/10.1016/j.bspc.2007.03.001.

Tianwen Wei. A convergence and asymptotic analysis of the generalized symmetric
FastICA algorithm. IEEE transactions on signal processing, 63(24):6445–6458, 2015.

Martin Weis, Florian Romer, Martin Haardt, Dunja Jannek, and Peter Husar. Multi-
dimensional space-time-frequency component analysis of event related eeg data using
closed-form parafac. In 2009 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 349–352. IEEE, 2009.

140 Bibliography

Jan R Wessel and Adam R Aron. It’s not too late: The onset of the frontocentral p3
indexes successful response inhibition in the stop-signal paradigm. Psychophysiology,
52(4):472–480, 2015.

Philip Wolfe. Convergence conditions for ascent methods. SIAM review, 11(2):226–235,
1969.

Vicente Zarzoso and Pierre Comon. Robust independent component analysis by iter-
ative maximization of the kurtosis contrast with algebraic optimal step size. IEEE
Transactions on Neural Networks, 21(2):248–261, 2009.

Vicente Zarzoso, Pierre Comon, and Mariem Kallel. How fast is fastica? In 2006 14th
European Signal Processing Conference, pages 1–5. IEEE, 2006.

Michael Zibulevsky. Blind source separation with relative Newton method. In Proc.
ICA, volume 2003, pages 897–902, 2003.

Andreas Ziehe, Pavel Laskov, Guido Nolte, and Klaus-Robert Muller. A fast algorithm
for joint diagonalization with non-orthogonal transformations and its application to
blind source separation. Journal of Machine Learning Research, 5(Jul):777–800, 2004.

Titre : Exploration de signaux M/EEG multivariés à l’aide de modèles non-stationnaires

Mots Clefs : Analyse en composantes indépendantes, optimisation non-convexe, données cérébrales

Résumé : L’Analyse en Composantes Indépen-
dantes (ACI) modèle un ensemble de signaux comme
une combinaison linéaire de sources indépendantes.
Cette méthode joue un rôle clé dans le traitement des
signaux de magnétoencéphalographie (MEG) et élec-
troencéphalographie (EEG). L’ACI de tels signaux per-
met d’isoler des sources de cerveau intéressantes, de les
localiser, et de les séparer d’artefacts. L’ACI fait par-
tie de la boite à outils de nombreux neuroscientifiques,
et est utilisée dans de nombreux articles de recherche
en neurosciences. Cependant, les algorithmes d’ACI les
plus utilisés ont été développés dans les années 90. Ils
sont souvent lents lorsqu’ils sont appliqués sur des don-
nées réelles, et sont limités au modèle d’ACI classique.
L’objectif de cette thèse est de développer des al-
gorithmes d’ACI utiles en pratique aux neuroscienti-
fiques. Nous suivons deux axes. Le premier est celui de
la vitesse : nous considérons le problème d’optimisation
résolu par deux des algorithmes les plus utilisés par les
praticiens : Infomax et FastICA. Nous développons une
nouvelle technique se basant sur un préconditionne-
ment par des approximations de la Hessienne de l’algo-
rithm L-BFGS. L’algorithme qui en résulte, Picard, est
conçu pour être appliqué sur données réelles, où l’hy-
pothèse d’indépendance n’est jamais entièrement vraie.
Sur des données de M/EEG, il converge plus vite que
les implémentations ‘historiques’.
Les méthodes incrémentales, qui traitent quelques
échantillons à la fois au lieu du jeu de données com-
plet, constituent une autre possibilité d’accélération de

l’ACI. Ces méthodes connaissent une popularité gran-
dissante grace à leur faculté à bien passer à l’échelle
sur de grands jeux de données. Nous proposons un algo-
rithme incrémental pour l’ACI, qui possède une impor-
tante propriété de descente garantie. En conséquence,
cet algorithme est simple d’utilisation, et n’a pas de
paramètre critique et difficile à régler comme un taux
d’apprentissage.
En suivant un second axe, nous proposons de prendre
en compte du bruit dans le modèle d’ACI. Le mo-
dèle resultant est notoirement difficile et long à estimer
sous l’hypothèse standard de non-Gaussianité de l’ACI.
Nous nous reposons donc sur une hypothèse de diver-
sité spectrale, qui mène à un algorithme facile d’uti-
lisation et utilisable en pratique, SMICA. La modé-
lisation du bruit permet de nouvelles possibilités in-
envisageables avec un modèle d’ACI classique, comme
une estimation fine des source et l’utilisation de l’ACI
comme une technique de réduction de dimension statis-
tiquement bien posée. De nombreuses expériences sur
données M/EEG démontrent l’utilité de cette nouvelle
approche.
Tous les algorithmes développés dans cette thèse sont
disponibles en accès libre sur internet. L’algorithme Pi-
card est inclus dans les librairies de traitement de don-
nées M/EEG les plus populaires en Python (MNE) et
en Matlab (EEGlab).

Title : Exploration of multivariate M/EEG signals using non-stationary models

Keys words : Independent component analysis, non-convex optimization, brain data processing

Abstract : Independent Component Analysis
(ICA) models a set of signals as linear combinations
of independent sources. This analysis method plays a
key role in electroencephalography (EEG) and magne-
toencephalography (MEG) signal processing. Applied
on such signals, it allows to isolate interesting brain
sources, locate them, and separate them from artifacts.
ICA belongs to the toolbox of many neuroscientists,
and is a part of the processing pipeline of many re-
search articles. Yet, the most widely used algorithms
date back to the 90’s. They are often quite slow, and
stick to the standard ICA model, without more ad-
vanced features.
The goal of this thesis is to develop practical ICA
algorithms to help neuroscientists. We follow two
axes. The first one is that of speed. We consider
the optimization problems solved by two of the most
widely used ICA algorithms by practitioners: Infomax
and FastICA. We develop a novel technique based on
preconditioning the L-BFGS algorithm with Hessian
approximation. The resulting algorithm, Picard, is
tailored for real data applications, where the independ-
ence assumption is never entirely true. On M/EEG
data, it converges faster than the ‘historical’ imple-
mentations.

Another possibility to accelerate ICA is to use incre-
mental methods, which process a few samples at a
time instead of the whole dataset. Such methods have
gained huge interest in the last years due to their abil-
ity to scale well to very large datasets. We propose an
incremental algorithm for ICA, with important descent
guarantees. As a consequence, the proposed algorithm
is simple to use and does not have a critical and hard
to tune parameter like a learning rate.
In a second axis, we propose to incorporate noise in the
ICA model. Such a model is notoriously hard to fit un-
der the standard non-Gaussian hypothesis of ICA, and
would render estimation extremely long. Instead, we
rely on a spectral diversity assumption, which leads to
a practical algorithm, SMICA. The noise model opens
the door to new possibilities, like finer estimation of
the sources, and use of ICA as a statistically sound di-
mension reduction technique. Thorough experiments
on M/EEG datasets demonstrate the usefulness of this
approach.
All algorithms developed in this thesis are open-
sourced and available online. The Picard algorithm
is included in the largest M/EEG processing Python
library, MNE and Matlab library, EEGlab.

	Motivation and contribution
	Statistical principles
	Likelihood, maximum-likelihood estimation
	Fisher information and Cramer-Rao bound
	The Expectation-Maximization algorithm

	Optimization
	First order and stochastic methods
	Incremental EM and majorization-minimization: stochastic algorithms with descent guarantees
	Quasi-Newton methods

	A bit of Riemannian geometry
	General concepts
	Optimization on manifolds
	Geometry of the general linear and orthogonal groups

	Independent Component Analysis
	Indeterminacies and identifiability
	Maximum-likelihood ICA and the role of density
	Measures of independence
	Equivariance and multiplicative updates
	Non-Gaussian ICA: maximum-likelihood algorithms
	Orthogonal algorithms
	Different routes to ICA
	ICA models with noise
	Applications of ICA: M/EEG signal processing

	Contributions
	Publications

	Faster Independent Component Analysis
	Faster ICA by preconditioning with Hessian approximations
	The Picard algorithm
	Introduction
	Likelihood and derivatives
	Hessian Approximations
	Regularization of Hessian Approximations
	Preconditioned ICA for Real Data
	Related work
	Experiments
	Conclusion

	Extension to the orthogonal constraint
	Introduction
	Likelihood under whiteness constraint
	The Picard-O algorithm
	Link with FastICA
	Experiments
	Discussion

	Stochastic algorithms for ICA with descent guarantees
	Stochastic algorithms for ICA
	Introduction
	Representations of super-Gaussian densities
	Stochastic minimization of the loss function
	Experiments
	Conclusion
	Proof of equivalence of EM
	The EM algorithm for noisy mixtures is stuck in the noise-free limit
	Proof of guaranteed descent
	Fast minimization step using conjugate gradient

	SMICA: Spectral Matching Independent Component Analysis for M/EEG Brain Rhythms Separation
	SMICA: spectral matching ICA for M/EEG processing
	SMICA
	Introduction
	Background on Independent Component Analysis
	Spectral Matching Independent Component Analysis
	Experiments
	Discussion

	Conclusion and Perspectives
	Bibliography

