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Résumé

La présente thèse vise à développer une méthodologie générale basée sur des méthodes

d’apprentissage pour effectuer la segmentation d’une base de données constituée d’images

similaires, à partir d’un nombre limité d’exemples d’entrâınement. Cette méthodologie est

destinée à être appliquée à des images recueillies dans le cadre d’observations de la terre ou

lors d’expériences menées en science des matériaux, pour lesquelles il n’y a pas suffisam-

ment d’exemples d’entrâınement pour appliquer des méthodes basées sur des techniques

d’apprentissage profond.

La méthodologie proposée commence par construire une partition de l’image en su-

perpixels, avant de fusionner progressivement les différents superpixels obtenus jusqu’à

l’obtention d’une segmentation valide. Les deux principales contributions de cette thèse

sont le développement d’un nouvel algorithme de superpixel basé sur l’équation eikonale,

et le développement d’un algorithme de fusion de superpixels basé sur une adaptation

de l’équation eikonale au contexte des graphes. L’algorithme de fusion des superpixels

s’appuie sur un graphe d’adjacence construit à partir de la partition en superpixels. Les

arêtes de ce graphe sont valuées par une mesure de dissimilarité prédite par un algorithme

d’apprentissage à partir de caractéristiques de bas niveau calculées sur les superpixels.

A titre d’application, l’approche de segmentation est évaluée sur la base de données

SWIMSEG, qui contient des images de nuages. Pour cette base de données, avec un nombre

limité d’images d’entrâınement, nous obtenons des résultats de segmentation similaires à

ceux de l’état de l’art.
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Abstract

In this PhD thesis, our aim is to establish a general methodology for performing the

segmentation of a dataset constituted of similar images with only a few annotated images

as training examples. This methodology is directly intended to be applied to images gathe-

red in Earth observation or materials science applications, for which there is not enough

annotated examples to train state-of-the-art deep learning based segmentation algorithms.

The proposed methodology starts from a superpixel partition of the image and gra-

dually merges the initial regions until an actual segmentation is obtained. The two main

contributions described in this PhD thesis are the development of a new superpixel al-

gorithm which makes use of the Eikonal equation, and the development of a superpixel

merging algorithm stemming from the adaption of the Eikonal equation to the setting of

graphs. The superpixels merging approach makes use of a region adjacency graph com-

puted from the superpixel partition. The edges are weighted by a dissimilarity measure

predicted by a machine learning algorithm from low-level cues computed on the super-

pixels.

In terms of application, our approach to image segmentation is finally evaluated on the

SWIMSEG dataset, a dataset which contains sky cloud images. On this dataset, using only

a limited amount of images for training our algorithm, we are able to obtain segmentation

results similar to the ones obtained with state-of-the-art algorithms.
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Chapter 1

Introduction

Background

Image segmentation, sometimes referred to as perceptual grouping, constitutes an im-

portant area of research in image processing. It refers to the process of partitioning an

image into several regions that are perceptually similar, because they share common colors

or textures, or because they correspond to objects of interest in the image. This research

topic has been widely studied over the years and remains currently very active.

Segmentation results are useful in many computer vision applications. In stereo and

motion estimation problems, segments often provide regions of support for computing cor-

respondence. In higher level problems such as recognition or image indexing, segmentation

techniques are classically used to solve figure-ground separation or recognition by parts

problem.

It is important to note that image segmentation is a distinct task from image clas-

sification. For the latter, the seeked objective is to assign to each pixel the label of the

class to which it belongs. The vision of image segmentation is more global and seeks to

identify regions formed by pixels that share similar characteristics and to divide the whole

image into regions corresponding to different parts in the scene. The distinction becomes

blurry when considering end-to-end semantic segmentation tasks, where the segmentation

is achieved through the classification of pixels.

Segmentation is also different from contour detection, which aims at finding the con-

tours in the image. Contours indicate the existence of different objects, but not all the

contours are useful depending on the scale of interest or on the vision task under consid-

eration. Contour detection is often used as a first step for segmentation. Nevertheless, an

actual segmentation is only obtained when relevant contours have been selected and when

some algorithm has grouped them into closed contours.

Image segmentation is a challenging task and there is currently no comprehensive

1



CHAPTER 1. INTRODUCTION

Figure 1.1 – Image 118035 in BSDS500 database [Mar01] and its five ground truth images segmented

by different human subjects.

theory in this field, not least because a given segmentation is often aimed at a specific

application. The methods based on gradient can be disturbed by noise or textured patterns

in the image, thus producing a contour where is actually not. In addition, it is difficult

to find a contour if two regions share similar colors or gray levels, or when a contour

corresponds to small gradient. Moreover, the result of a segmentation depends on the

applications and on the scale of the objects of interest. Even human based segmentations

are characterized by a significant variability in terms of result. A hierarchical segmentation,

which provides a set of segmentations adapted to distinct scales, is therefore desirable for

some image processing tasks.

2



CHAPTER 1. INTRODUCTION

Literature review

A large amount of research has been conducted on image segmentation, based upon a

variety of techniques including active contours, clustering, region splitting or merging, etc.

These methods can be roughly classified into contour based methods and region based

methods, or local methods and global methods. For contour based methods, contour

detection algorithms are first used to obtain candidate contours. Then one has to find a

way to close the contours as in [RFM05; Arb09]. For region based methods, the image is

oversegmented into small regions, which are merged hierarchically to get a segmentation.

In this section, we briefly review the vast literature on image segmentation. We distin-

guish, somewhat arbitrarily, between active contours, morphological algorithms, clustering

algorithms, graph-based algorithms, and machine learning based algorithms. New trends

in image segmentation, including CNN based segmentation and semantic segmentation are

also briefly discussed. Rather than describing in depth each approach to image segmenta-

tion, this section was written to illustrate the huge variety of mathematical tools that are

classically used to perform image segmentation.

Active contours approaches

Active contour algorithms work by simulating the evolution of a closed curve on the

image. These algorithms need user provided curve for initialization, and rely on energy

minimization or on forces related to the local properties in the image to recover the contours

of interest.

In 1988, Kass et al. [KWT88] proposed an algorithm based on the minimization of

the energy of splines for contour detection, referred to as snakes. The energy functional

comprises three terms: one term corresponding to some internal energy, one term leading

to image forces and one term leading to external constraint forces, respectively. The

internal energy term imposes a piecewise smoothing on the curve. Image forces push the

curve towards relevant image features, such as lines, edges and subjective contours. An

initial curve is placed near the desired contour, adding an external constraint to the snake.

Nearby edges are then localized by the algorithm through the minimization of the energy

term.

Malladi et al. presented in 1995 [MSV95] a level set approach for shape modeling.

In their approach, an initial contour is provided by the user, which lies inside a shape,

or encloses all the constituent shapes. Then the front propagates as the zero level set of

a higher dimensional function, inward or outward in its normal direction, with a speed

related to the local image gradient to find the contours of interest. Compared to snakes,

3



CHAPTER 1. INTRODUCTION

this approach is able to recover shape with protusions, and the front can be easily splitted

to recover more than one object.

Morphological segmentation

Morphological segmentation approaches provide well localized and closed contours,

usually at the price of significant oversegmentation. A large amount of research has been

conducted over the years to reduce the oversegmentation.

The archetypal morphological technique for image segmentation is the watershed al-

gorithm, which was introduced in 1979 by Beucher and Lantuéjoul [BL79] for contours

detection in gray level images. It is non-parametric and provides closed contours. The

algorithm is inspired by the geographic notions of catchment basins and watersheds, and

provides mathematical definitions of these notions based on the geodesic distance. The

contours are defined as the watersheds of the variation function (gradient modulus) of the

gray levels. Applications including fractures detection in steel and bubble detection in

radiography are detailed in the original article.

In 1990, Meyer and Beucher [MB90] wrote a review on image segmentation methods

based on the watershed transform and the homotopy modification. The oversegmentation

problem is solved by introducing markers within the objects of interest. Lower-complete

and upper complete-functions are defined to solve the undersegmentation problem due

to broken contours and overlapping particles, that take into account shape information.

Methods for markers design under various situations are illustrated by examples of elec-

trophoresis gel, traffic lane segmentations and images in other domains. The watershed

algorithm is also extensively used in medical imaging applications [Pas07].

Later, Beucher [Beu94] proposed a hierarchical segmentation algorithm based on the

mosaic image and the waterfall algorithm to reduce the oversegmentation produced by

watershed algorithm. A valued graph is constructed from the mosaic image. Each edge in

the valued graph is weighted by the minimal value of the gradient on the corresponding

image boundary. A hierarchical image is obtained by assigning to each catchment basin

the minimum gradient of its surrounding arcs. The segmentation is computed by applying

a watershed transform on the hierarchical image. The waterfall algorithm selects signif-

icant minima through reconstruction of the gray level function by the watershed. These

significant minima are used as markers for the watershed. The conclusion is that the wa-

terfall algorithm is more general than the hierarchical algorithm, and easier to use than

the dynamics.

In 2007, Angulo and Jeulin [AJ07] introduced a stochastic segmentation method based

on the watershed algorithm. In their method, M realizations of N random germs are

4



CHAPTER 1. INTRODUCTION

generated independently according to Poisson distribution, resulting in M marker images.

Next, a watershed segmentation is computed with the M marker images and a probability

density function of contours is calculated using a Parzen window method. The probability

density function is then segmented using a volumic watershed transform to obtain the

R most significant regions. The random generation of markers helps to select contours

that are robust to the variations of the segmentation conditions. Two other random

germs frameworks are discussed in [AJ07], namely regionalised random germs, and uniform

random germs leveling. The last framework yields the best results and outperforms the

standard watershed algorithm when the aim is to segment complex images into a few

regions. One of the main difficulties associated with the stochastic watershed algorithm

is the computation of the probability density function for the contours. In 2014, [MH14]

presented a quasi-linear algorithm enabling to compute exactly the probability density

function.

Two improvements of the stochastic watershed were proposed in 2013 by Berander et

al. [Ber13]: adding uniform noise to the input image at every iteration, and distributing

the markers using a randomly placed uniform grid (with random offset and rotation). With

these modifications, images with larger variabilities in region size are better segmented,

the result is less sensitive to the number of markers, and the depth threshold becomes

easier to set. The F-measure obtained on a database of fluorescent microscope images of

nuclei was largely improved with this method.

In 2015, Meyer [Mey15] presented a hierarchical segmentation strategy based on stochas-

tic watershed, and provided various strategies to construct hierarchies. In his study, a

minimum spanning forest is used to construct a hierarchy based on prioritized markers.

The strength of a contour is estimated by the level of hierarchy for which its two associated

regions merge. Various features including size, contrast, orientation, color, and texture

features can be considered with different hierarchies. One has nevertheless to tailor the

hierarchy according to the problem at hand.

During the same year, Franchi and Angulo [FA15] proposed a fully unsupervised multi-

scale approach to address the drawback of stochastic watershed of enhancing insignificant

contours in complex images, referred to as bagging stochastic watershed (BSW). The

gPb gradient in [Arb11] is employed when calculating the probability density functions.

Probability density functions at different scales are combined to compute the BSW. This

algorithm is evaluated on the BSDS dataset and compared with other stochastic watershed

algorithms. The ISW approach [Ber13] achieves the best F-measure of all stochastic

watershed based approaches.

5



CHAPTER 1. INTRODUCTION

Clustering algorithms

Another family of segmentation methods is based upon the notion of clustering or

grouping. It is intuitive to regard segmentation as a clustering problem, since pixels with

similar color and texture are more likely to belong to the same object. Mean-shift and

other mode finding techniques, such as K-means and mixtures of Gaussians try to find

clusters in the distribution of points in the feature space to compute the segmentation

[Sze11].

In 2002, Comaniciu and Meer [CM02] proposed a general nonparametric technique for

multimodal feature space analysis, which is able to delineate arbitrarily shaped clusters

based on mean shift. Mean shift is defined as the difference between the weighted mean

of points and the center of the density kernel. Comaniciu and Meer proved that recursive

mean shift can be used to detect the modes of the density. The application of mean shift

based mode detection in image segmentation with joint spatial-range domain representa-

tion overcomes the issue of gray or color clustering algorithms of oversegmenting small

gradient regions. The only parameter to set is the resolution of analysis, which depends

on the vision task.

Paris and Durand described in 2007 [PD07] a new fast algorithm for mean-shift im-

age segmentation computation based on Morse theory, and introduced a way to build a

segmentation hierarchy. Gaussian kernels are employed for density estimation, and the

density function is computed on a regular grid. The mode extraction is done explicitly

by assigning to each pixel the label of the corresponding maxima, in decreasing order of

density. A persistence of boundary based on the topological persistence is defined, and

clusters with boundary persistence less than a threshold are merged for simplification. A

segmentation hierarchy is therefore obtained by gradually increasing the threshold. The

boundary persistence can be modified to account for color information, depending on the

application. PCA can be used to reduce the dimension of the feature space therefore

accelerating the computation.

Clustering algorithms can also be employed for superpixels generation, as Simple Linear

Iterative Clustering (SLIC) superpixels [Ach12] proposed by Achanta et al. based on K-

means clustering algorithm. SLIC is one of the state-of-the-art superpixel algorithms.

More details on this algorithm can be found in section 2.2.

Graph-based approaches

Graph based segmentation methods transform image segmentation problems into graph

partitioning problems by representing an image by a graph constructed by linking adjacent

6



CHAPTER 1. INTRODUCTION

pixels or regions. The aim is to segment an image into regions with low variability within

each region and high variability between regions.

In 2000, Shi and Malik [SM00] proposed a novel graph-theoretic criterion to measure

the effectiveness of an image partition, the normalized cut, and an efficient technique for the

minimization of this criterion based on a generalized eigenvalue problem. This algorithm

extracts global impression and obtains good results on static images and motion sequences.

In 2004, Felzenszwalb and Huttenlocher [FH04] introduced a graph-based image seg-

mentation method based on pairwise region comparison. In their approach, pixels are

merged according to their intensity differences across boundaries and between neighboring

pixels within each region. The segmentation criteria are adaptively adjusted to take into

account the variability in neighboring regions. Two different kinds of local neighborhoods,

namely grid graphs and nearest neighbour graphs, are tested for graph construction. The

advantage of this approach is that it preserves details in low-variability regions while ig-

noring details in high-variability regions.

The literature on graph based approaches, including minimum spanning tree based

algorithms and graph cut algorithms, is reviewed in greater details in section 5.1.

Machine learning based methods

Learning based methods have increasingly gained popularity for performing image

segmentation over the past 20 years. In these methods, machine learning algorithms, such

as linear regression, support vector machines (SVM) or random forests are used to combine

various cues, providing a merge probability for region merging, or a measure of similarity

for graph based approaches for image segmentation. Machine learning based methods can

be generalized to other kinds of images by changing the training images. The choice of

features is essential for machine learning based algorithms.

In 2003, Ren and Malik [RM03] proposed a two class classification method for group-

ing. In this work, natural images segmented by humans are taken as positive examples.

Varieties of image features from the classical Gestalt cues, including contour, texture,

brightness and good continuation features are calculated for both inter-region and intra-

region cases. The effectiveness of each feature is evaluated through information entropy,

and the conclusion is that boundary contour is the most informative grouping cue. A

logistic regression classifier is used for learning the algorithm parameters. A globally op-

timized segmentation is found by using a random search based on simulated annealing.

The method is tested on the Corel Image base [WLW01].

In 2004, Martin et al. [MFM04] proposed a natural image boundaries detection method
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where local brightness, color, and texture features, including oriented energy, brightness

gradient, color gradient, and texture gradient are employed. A methodology for bench-

marking boundary detection algorithms is also defined in their study. Human-marked

boundaries from the Berkeley Segmentation Dataset [Mar01] are used as ground truth. A

logistic regression classifier is trained to predict the posterior probability of a pixel being

on a boundary based on the combination of cues. Their results reveal the importance of

texture treatment in natural images boundaries detection.

In 2006, Dollár et al. [DTB06] presented a novel supervised learning algorithm for

edges and boundaries detection. In the proposed algorithm, an extension of probabilistic

boosting trees is trained based on tens of thousands of simple features at multiple scales and

orientations from large image patches centered at different locations, taking into account

low, mid, and high level information. The probability for each location to belong to a

boundary is calculated independently. The performance of this method on the BSDS300

dataset is comparable to that of Pb [MFM04]. Good results are also achieved in object

boundary detection and rode detection applications.

A machinery for contour detection and hierarchical segmentation was proposed in 2011

by Arbeláez et al. [Arb11], where multiple local cues (brightness, color and texture gradi-

ents) at multiple scales and orientations are combined into a globalization framework to

predict a probability of boundary. An Oriented Watershed Transform (OWT) and Ultra-

metric Contour Map (UCM) are then employed to close the contours and to produce a

hierarchical segmentation. This algorithm significantly outperforms competing algorithms

on each dataset (BSDS, MSRC, PASCAL 2008) and for each considered benchmark crite-

rion.

In 2012, Alpert et al. [Alp12] presented an image segmentation approach by proba-

bilistic bottom-up aggregation. The proposed algorithm starts from a graph where each

pixel in the image is represented as a node. Pixels are then gradually aggregated to pro-

duce larger regions, according to a probabilistic model that considers the distribution of

intensity difference and of texture difference to output a probability of merging adjacent

regions. A graph coarsening scheme is integrated for merging. A novel evaluation scheme

is proposed and this algorithm achieves a high average F-measure with the least number

of fragments both in one-object and two-objects data set.

In the same year, Arbeláez et al. [Arb12] proposed a new design for region-based

object detectors, which can integrate top-down information from a scanning-windows part

model, and global appearance features (shape, color and texture). This design focuses

especially on the recognition of challenging articulated categories. This algorithm achieves

competitive performance on PASCAL segmentation challenge and the highest accuracy on

articulated objects VOC2010 dataset.
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In 2014, Arbeláez et al. [Arb14] proposed a unified bottom-up hierarchical image seg-

mentation and object candidate generation algorithm named Multiscale Combinatorial

Grouping (MCG). In their approach, they firstly construct a multiresolution image pyra-

mid by subsampling and supersampling the original image. A hierarchical segmentation

is then computed at each scale of the pyramid, and the hierarchies are finally aligned

and combined into a single segmentation hierarchy. A classifier is trained to combine the

contour strength from different scales. Compared to [Arb11], more cues including sparse

coding on patches and structured forest contours are added for single scale segmentation,

and an efficient normalized cut algorithm is designed to accelerate the globalization step.

This approach provides state-of-the-art segmentations and object candidates on BSDS500

and PASCAL 2012 datasets.

In 2015, Dollár and Zitnick [DZ15] proposed a generalized structured learning approach

for edge detection, taking advantage of inherent structures in image patches by using

structured forests. This approach is different from the aforementioned methods, in the

sense that it detects edges by predicting a segmentation mask for each image patch. A

feature vector comprising color, gradient magnitude at various scales and orientations and

differences of downsampled pixel pairs is extracted for each patch. A mapping function is

designed to map the structured labels of a patch to an intermediate space where similarity

can be approximated by the Euclidean distance. A structured forest classifier is trained

for edge map prediction. The edge maps can be sharpened using local color cues. This

approach achieves state-of-the-art edge detection results on the BSDS500 dataset and

NYU depth dataset, and has realtime performance.

CNN based image segmentation

For machine learning based image segmentation, it is essential to involve global in-

formation, or information from multiple scales. The performance of the segmentation

depends indeed strongly on the set of selected features. To improve the performance of

segmentation, complicated handcrafted features are involved in state-of-the-art algorithms

[Arb11; Arb14]. The application of convolutional neural networks on segmentation can

potentially relieve us from designing and selecting features. By convolving an image with

learned filters, nonlinear mapping and pooling, a feature map can be produced comprising

both low, mid and high level features.

Their performance and ease of use make CNN based segmentation algorithms popular

nowadays. In this chapter, we do not intend to give a thorough description of the literature

on deep learning based segmentation methods, and we briefly mention a few classical

articles in this section. A thorough review can be found in [Gho19].

One of the first articles on CNN based segmentation was published in 2013 by Farabet
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et al. [Far13], who presented a scene parsing approach based on a multiscale convolutional

network. In their work, a three-staged ConvNet is applied to each scale of a Laplacian

image pyramid for extracting features vectors. Network weights are shared across scales

to enforce the scale-invariance of the learned features. Then, features maps from multiple

networks are upsampled and concatenated into a map of features vectors, characterizing

regions of multiple sizes centered on each pixel. The second step of the algorithm consists

of a postprocessing step to ensure the spatial consistency of the scene labeling. Three

strategies are tried: averaging class distribution within superpixels, minimizing the energy

of a Conditional Random Field constructed from the labeling and applying a multilevel

cut with a class purity criterion. This approach yielded record accuracies on the SIFT

Flow dataset and on the Barcelona dataset.

R-CNN (regions with CNN features) [Gir14] was proposed in 2014 for object detection

and semantic segmentation based on region proposals. Part of the architecture of R-CNN

involves an AlexNet architecture pre-trained on the ILSVRC dataset for object detection.

Region proposals are generated by selective search, and wrapped to the input size of the

CNN. A fixed-length feature vector is then extracted for each region. A linear SVM is

finally trained for each class for classification. The extension of R-CNN to segmentation

also achieves state-of-the-art performance on VOC 2011. This article adapts the CNN

for image classification to object detection task, and shows the effectiveness of supervised

pre-training and domain specific fine-tuning, offering a practical solution for tasks with

small amount of labeled data for instance object detection.

In [LSD15], fully convolutional networks were proposed for semantic segmentation,

which adapt the learned representations of classification networks to achieve an end-to-

end segmentation, accepting arbitrary-sized inputs. In this approach, the fully connected

layers of classification networks are notably converted into convolution layers. The feature

map is upsampled to the size of inputs by deconvolution. To improve the resolution of

the prediction, a skip architecture is designed to combine the semantic information from

a deep layer with appearance information from a shallow layer. This algorithm improves

the state of the art on PASCAL VOC 2011, NYUDv2 and SIFT Flow dataset, and is quick

for inference compared to patch based segmentation.

Objective of the thesis

As pointed out in the previous section, state-of-the-art segmentation algorithms make

extensive use of machine learning techniques. CNN-based algorithms require to be trained

on a large number of segmentation examples, for instance on image datasets including

Common Objects in COntext (COCO) [Lin14] or PASCAL VOC [Eve10], which comprise

tens of thousands of annotated images. Algorithms based on more traditional machine
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learning methods where features are mostly handcrafted, like the gPb algorithm, can be

trained on smaller datasets. gPb is for instance trained on the Berkeley Segmentation

Dataset, which contains 200 images for training.

In a number of practical applications, notably including images obtained in remote

sensing or materials science applications, the lack of annotated images constitutes a signif-

icant issue if one wants to apply machine learning based image segmentation algorithms.

A common solution for applying deep learning algorithms when few training data is avail-

able is to fine-tune an architecture of neural network pre-trained on a large database of

images, a technique referred to as transfer learning in the literature. The idea behind

transfer learning is that the pre-trained neural network will have identified useful features

on the large dataset of images on which it is pre-trained, and that these features remain

relevant for processing the new set of images. Nevertheless, due to the specificity of the

images gathered in materials engineering applications or on remote sensing observations,

transfer learning techniques largely remain inoperative.

In this PhD thesis, our objective is to work on the development of algorithms that can

be trained to perform the segmentation of a dataset constituted of similar images with

only a few annotated images as training examples. Such datasets are commonly obtained

when experiments are conducted in materials science.

Our proposed methodology is based on a region segmentation approach. More pre-

cisely, starting from a superpixel partition of the image, we propose a merging algorithm

which gradually merges the initial regions until an actual segmentation is obtained. The

work presented in this PhD manuscript focuses on the two key aspects of the proposed

methodology, namely the superpixel generation and the superpixel merging.

Thesis outline

In the first part of the manuscript, corresponding to chapters 2 and 3, we introduce

two novel algorithms that can be used to compute a superpixel partition and a hierar-

chical superpixel partition of the image, respectively. The superpixel algorithm presented

in chapter 2 makes use of the Eikonal equation to generate the superpixel partition, in a

way relatively similar to the algorithm introduced by Buyssens et al. [Buy14b]. The algo-

rithm compares favorably to other state-of-the-art superpixel algorithms on the Berkerley

Segmentation Dataset. In chapter 3, which is somehow independent from the rest of the

manuscript, we describe a segmentation algorithm based on the wavelet transform and on

the watershed transform that yields a hierarchical superpixel segmentation of the image.

The developed algorithms have been published at ISMM 2017 [FCF17] and ISMM 2019

[CF19] conferences.
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In the second part of the manuscript, corresponding to chapters 4 and 5, we present

an algorithm performing superpixels merging based upon learned similarities between ad-

jacent regions. The superpixels merging approach is conducted in the framework of graph

theory. More precisely, a region adjacency graph is computed from the superpixel parti-

tion. Each superpixel in the partition corresponds to a node in the graph, while each pair

of adjacent superpixels are linked by an edge. The edges are weighted by a dissimilarity

measure, which is taken to be the probability that both superpixels belong to distinct seg-

ments of the final segmentation. A machine learning algorithm is used for estimating the

dissimilarity, which takes as input features various characteristics of the regions including

their respective colors and textures, or the strength of the gradient at the boundary. The

learning process, as well as the characteristics used to compute the similarity, are discussed

in chapter 4.

In chapter 5, we propose a method using the Eikonal equation to perform the clustering

of the region adjacency graph, in a similar way to the superpixel approach proposed in

chapter 2. The Eikonal equation is notably adapted to the specific setting of graphs.

The proposed approach is finally compared to classical approaches for performing region

mergings including the normalized cut algorithm [SM00] and the segmentation by weighted

aggregation [Alp12]. The comparison is conducted on the Berkeley Segmentation Dataset.

To conclude the manuscript, we present in chapter 6 the application of our methodology

to a dataset of cloud images, where our approach yields state-of-the-art results with a

limited number of training instances. Conclusions are finally drawn in the last chapter.
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Chapter 2

Fast marching based superpixels

Superpixel algorithms refer to a class of techniques designed to partition an image

into small regions that group perceptually similar pixels. Superpixel segmentations are

often used as a preprocessing step for computer vision tasks, such as image segmentation

[FVS09], object detection [Yan15], tracking [Wan11; YLY14], depth estimation [ZK07]

or object classification, to simplify the computation for further processing or to provide

computational support for features.

This chapter introduces an algorithm based on the fast marching method to compute

the superpixel partition of an image. The fast marching algorithm finds several applica-

tions in mathematical morphology and stochastic geometry [DD03; Fig16; Bor18; Fig19].

In section 2.1, we discuss general properties of superpixels and we provide a review of

the main state-of-the-art superpixel algorithms; in section 2.2, we elaborate on the fast

marching algorithm and we describe in greater detail the proposed fast marching based

superpixel (FMS) algorithm. The results of the FMS are presented in section 2.3 and

compared with other superpixel algorithms. We draw conclusion and present perspectives

in the last section.

Introduction

The idea of over-segmenting an image into regions for further processing existed long

before the term “superpixel” was coined, for example in [MM97]. It was in [RM03] that

this term was first introduced in the context of image segmentation.

Superpixel segmentations are over-segmentations which obey certain properties, in-

cluding:

1. Boundary adherence: superpixels should preserve the boundaries in the image

[Ach12; SHL17]. This property is for instance of paramount importance for segmen-

tation applications. Several metrics have been defined in the literature to quantify

boundary adherence, including boundary recall, which characterizes the amount of
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boundary pixels that are recovered by the segmentation algorithm within a tolerance

of 1 or 2 pixels, and undersegmentation error, which quantifies the “leakage” of the

superpixels crossing an actual boundary of the image.

2. Regularity, smoothness: The shape of the superpixels should be regular and their

boundaries should be smooth where there is not an object boundary. Obviously,

algorithms returning superpixels with highly tortuous contours are more likely to

exhibit high adherence to boundaries, but the resulting partition can hardly be

considered to be satisfactory. Criteria including average compactness or superpixels

contours density are classically used to characterize the shape of the superpixels

[MDW14; Mac15; SHL17].

3. Efficiency: Superpixels should be fast to compute and memory efficient. Since

superpixel segmentation is often used as a preprocessing step to simply further pro-

cessing, its application should not consume much time, especially for real time tasks.

Literature review

A lot of research has been conducted on superpixel algorithms. In [SHL17], a thorough

literature review of this field is provided, as well as a benchmark for comparison. [Wan17]

provides a simple classification of these algorithms between graph-based methods and

clustering based methods.

Graph based superpixels

Graph based methods build upon a graph representation of the image. In this repre-

sentation, each pixel constitutes a node of the graph and all couples of adjacent pixels are

linked by an edge. The weight of an edge is usually interpreted as the similarity or dissim-

ilarity between neighboring pixels, defined by their intensity, color or spatial differences.

In this way, the segmentation problem is transformed into a graph partitioning problem.

Classical graph-based algorithms for superpixels generation include the normalized cut al-

gorithm (NC) [SM00; Mal01] and the efficient graph-based segmentation algorithm (GS)

[FH04].

To give a general view of graph based superpixel algorithms, we elaborate on the GS

algorithm. In this approach, a graph is constructed either by connecting pixels in a 8-

connected neighborhood, or by connecting nearest neighbor pixels in a feature space. In

the first case, the weight of an edge is taken to be the absolute value of the intensity

difference; in the second case, the weight can be chosen to be the Euclidean distance or

other form of distance defined on the features space. Then, the edges of the graph are

sorted in a non decreasing order according to their weights and visited in this order. At
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each iteration, if two nodes vi and vj are not in the same component, and if the weight wij

is smaller than the minimum internal difference plus a threshold of each component Ci,

Cj , meaning that the inter-region difference is smaller than the within-region difference,

the two components are merged. The internal difference of a component is defined as

the maximum weight of its minimum spanning tree. The threshold term can be designed

according to the size or shape of preferred regions. This procedure is iterated until all edges

are processed. The complexity of the algorithm is O(m logm), where m is the number of

edges.

Some graph based algorithms produce superpixels through the optimization of an ob-

jective function. Entropy rate superpixels (ERS) [Liu11] is one of these algorithms that

achieves state-of-the-art performance. An objective function based on entropy rate is de-

fined, where entropy rate is the asymptotic conditional entropy of a random process, which

measures the remaining uncertainty after observing its past trajectory. A balancing term

is introduced in the objective function to favor superpixels with similar sizes. The overseg-

mentation is obtained by selecting edges that form a partition withK connected subgraphs.

It is proved that the optimization of this objective function can be done efficiently by a

lazy greedy algorithm with a complexity of approximately O(|V | log |V |), where V is the

set of the graph vertices (pixels). This algorithm achieves better performance both in

undersegmentation error and in recall than GS on the Berkeley segmentation benchmark

[Mar01].

Clustering based superpixel algorithms

Clustering based methods for superpixel segmentation proceed by iteratively refin-

ing clusters of pixels until some convergence criterion is met. Clustering based methods

notably include mean shift [CM02], watershed [VS91; BL79], turbopixel [Lev09], simple

linear iterative clustering (SLIC) [Ach12; AS17] and waterpixel [MDW14; Mac15; CJ19]

algorithms, respectively.

The simple linear iterative clustering (SLIC) algorithm [Ach12; AS17] is an archetypal

example of clustering based algorithm. Due to its ease of use and its good performance,

SLIC is ranked among the most used algorithms for computing a superpixel segmentation.

In addition, the SLIC algorithm has a linear complexity, its implementation is available

[Ach12] and it offers the possibility to weight the trade-off between boundary adherence

and shape or size similarity.

SLIC constructs a superpixel partition by applying a k-means clustering algorithm on

local patches of the image. During initialization, K cluster centers locations are selected

on the image using a grid with uniform spacing S. Each pixel is then associated to the

closest cluster center in the image according to a distance involving the color proximity
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and the physical distance between the pixel and the seed, respectively. The search for

similar pixels is restricted to a neighborhood of size 2S by 2S around each cluster center.

After the assignment step, the K cluster centers are updated. The color and the location

associated to the cluster centers are set equal to the average color and location of the

pixels of the cluster. The L2 distance between the previous and the new locations is

used to compute a residual error E. The aforementioned procedure is iterated until the

error E converges. The clusters of pixels obtained after this procedure are usually not

connected. A post-processing step is therefore applied to reassign the disjoint pixels to

nearby superpixels.

Eikonal based region growing Clustering (ERGC) [Buy14b; BGR14; Buy14a] is a clus-

tering based superpixel algorithm that produces superpixels by solving the Eikonal equa-

tion which describes the label propagation from initial seeds, with a velocity based on

color distance between the pixel and the seed. It achieves state-of-the-art performance

and is efficient to calculate, with a complexity of O(n logn), n being the number of pixels

in the image. Another advantage of ERGC compared to SLIC is that no post-processing

is required to obtain connected superpixels.

Other trends

Other superpixel algorithms are based on energy maximization. Superpixels Entracted

via Energy-Driven Sampling (SEEDS) [Ber12] is one such algorithm that can be calculated

in real time. Van den Bergh et al. proposed an objective function composed of two terms,

one based on the color density distribution of each superpixel, the other, optional, used as

a smoothing term based on the histogram of superpixel labels in a patch. This objective

function is optimized by hill-climbing optimization, namely to make small local changes of

superpixel labels at each iteration. The optimization is done in a hierarchical manner, by

moving large blocks of pixels in early iterations, latter small block of pixels, at last single

pixels to neighboring superpixels. It can achieve better boundary adherence than SLIC

and ERS, and is faster to calculate. The main disadvantage of SEEDS is that it yields

highly irregular boundaries.

Most superpixel algorithms make use of color and spatial information. Recently, several

studies have demonstrated that using texture information could improve the superpixel

performance. Xiaolin Xiao et al. [XGZ17] proposed to introduce both texture and gradient

distance terms in SLIC’s distance formula. In their work, the weight of each term is

adapted to the discriminability of the features in the image. Their algorithm achieves

better performances than state-of-the-art algorithms including SLIC and LSC [LC15].

Giraud et al. [Gir19] proposed to measure the texture distance between a pixel and a

superpixel seed by considering the average distance between a square patch around that

pixel and similar patches inside the superpixel found by a nearest neighbor method.
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The ERGC algorithm gives promising results, but there are still some aspects worth

of researching. Firstly, we can note that the position of the initial seeds do not change

during the process, while more seeds might be needed for complicated regions. Secondly,

it might be interesting to take the texture information into consideration to compute the

image partition.

In the next subsection, we introduce a novel clustering-based algorithm for generating

a superpixel partition of a given image termed fast-marching based superpixels (FMS).

Following an idea originally introduced for the Eikonal-based region growing for efficient

clustering algorithm (ERGC) [Buy14b; Buy14a; BGR14], we rely upon the Eikonal equa-

tion and the fast marching algorithm to assign the pixels of the images to the relevant

clusters.

Eikonal equation and fast marching algorithm

A clustering based superpixel algorithm generally comprises 2 steps:

1. Initialization. A group of initial seeds should be provided as a basis for clustering.

2. Clustering. The pixels are clustered to their corresponding seeds based on the dis-

tance. The seeds can be updated after a pass of assignment. Thus the superpixel

segmentation transforms to the following problem: knowing the position and proper-

ties of initial seeds, how can we assign a label to each pixel, in order for the resulting

partition to have “good” properties (e.g. boundary recall, compactness, etc.).

The idea behind the Fast Marching Superpixel (FMS) algorithm is to draw an analogy

between waves propagating in a heterogeneous medium and regions growing on an image

at a rate depending on the local color and texture. Instead of using clustering algorithms,

such as k-means clustering or DBSCAN clustering [She16], we propagate the labels of the

seeds with a process that can be described by the Eikonal equation. Fast computational

algorithms are available to approximate the solution of the Eikonal equation, including the

fast marching algorithm [Set96; Set99a; DD03]. We elaborate on the Eikonal equation

and the fast marching algorithm in this section.

Eikonal equation

The Eikonal equation is a non-linear partial differential equation which describes the

propagation of waves in a medium. It finds notable applications in fields including geo-

metrical optics or geophysics. In this section, we will first present classical results relative

to the Eikonal equation on continuous domains, before studying its generalization to dis-

cretized domain.
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Figure 2.1 – Propagation front and level sets.

Eikonal equation on a continuous domain

Let Ω denote some open domain in R2. In what follows, we consider a front Γt propa-

gating on Ω in the normal direction at a velocity u := u(x) at every point x ∈ Ω. Obviously,

the equation describing the propagation of the front is

dΓt
dt

(x, t) = u(x)nΓ(x), (2.1)

where nΓ is a unitary vector directed toward the direction normal to the propagation

front.

A popular approach to solve equation (2.1) is to rely on level sets.

Definition 2.3.1. A level set L on Ω ⊂ R2 is a subset of Ω where some real valued

function v : Ω→ R takes a constant value c ∈ R

L := {x | v(x) = c}. (2.2)

For t ≥ 0, the propagation front Γt can be represented as the level set of a function

v : Ω× R→ R such that

∀t ≥ 0,Γt := {x|v(x, t) = 0}. (2.3)

Proposition 2.3.1. Let us consider a close propagation front Γt and a function v such

that

v(x, t)


< 0 if x is inside the area delimited by Γt
= 0 if x ∈ Γt
> 0 if x is outside the area delimited by Γt

(2.4)

Then, the outward normal direction with respect to the propagation front is given by

nΓt := ∇v(x, t)
‖∇v(x, t)‖ , (2.5)

where ∇ is the spatial gradient operator.
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At this point, let us consider a trajectory t→ y(t) ∈ Γt. Necessarily, for t ≥ 0, we have

v(y(t), t) = 0. (2.6)

Hence, by differentiating with respect to t, we can easily show that the function v is the

solution of the partial differential equation

∂v

∂t
(y(t), t) +∇v(y(t), t) · ẏ(t) = 0. (2.7)

According to proposition 2.3.1, we have

ẏ(t) = u(y(t))nΓt = u(y(t)) ∇v(x, t)
‖∇v(x, t)‖ . (2.8)

This leads to the so-called Eikonal equation defined for all x ∈ Ω by

∂v

∂t
(x, t) + u(x)‖∇v(x, t)‖ = 0. (2.9)

In this work, we will present a method for solving the Eikonal equation through a

stationary approach. To that end, let us denote by x → T (x) the function associating to

each point x ∈ Ω the arrival time of the propagation front Γt. In mathematical terms, T

is defined by the implicit equation

T (y(t)) = t, (2.10)

for all trajectory t→ y(t) ∈ Γt. When we differentiate this equation with respect to t, we

obtain the equation

u(y(t))||∇T (y(t))|| = 1. (2.11)

This equation can be solved for the entire domain Ω, becoming

||∇T (x)|| = 1
u(x) ,∀x ∈ Ω. (2.12)

Boundary conditions are usually specified on the boundary ∂Ω of the domain. One usually

considers a function g defined on the boundary ∂Ω so that t(x) = g(x) for all x ∈ ∂Ω.

Usually, the function g is taken to be identically 0. Hence, the stationnary Eikonal equation

becomes  ||∇t(x)|| = 1
u(x) ,∀x ∈ Ω

t(x) = 0,∀x ∈ ∂Ω.
(2.13)

For all x in Ω, the solution t(x) of equation (2.13) can be interpreted as the minimal

time required to travel from x to the domain boundary ∂Ω. For all x in Ω, we denote by

d the geodesic distance function defined by

d(x, ∂Ω) = inf
y∈∂Ω

||x− y||, (2.14)

where ||x − y|| is the geodesic distance between x and y. Proposition 2.3.2 below relates

the distance function d to the solution of the Eikonal equation on the domain Ω.
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Proposition 2.3.2. [Set96] Let Ω be a subset of the Euclidean space R2. Then, the

distance function d(·, ∂Ω) is differentiable almost everywhere, and its gradient satisfies the

Eikonal equation

||∇d(x, ∂Ω)|| = 1

with initial conditions d(x) = 0, ∀x ∈ ∂Ω.

In other words, the Eikonal equation allows us to compute the shortest distance be-

tween any point x of the domain Ω and the boundary ∂Ω.

Eikonal equation on a discretized domain

Let us consider the discretization of the Eikonal equation on a domain Ω ⊂ R2. We

assume that Ω can be discretized on a regular grid.

Figure 2.2 – An illustration of 4 connected neighborhood.

We rely on the finite difference approximation formula as in [Set96] to approximate

the gradient term at grid point (i, j):

||∇t(i, j)|| ≈
√

max(D−xij , −D
+x
ij , 0)2 + max(D−yij , −D

+y
ij , 0)2 = 1

uij
, (2.15)

where uij is the velocity of the wave at (i, j). D−xij , D+x
ij , D−yij , and D+y

ij are partial

derivatives, and we use the standard finite difference notation in 2D:

D−xij = tij − ti−1,j
∆t , D+x

ij = ti+1,j − tij
∆t (2.16)

For simplicity’s sake, we assume that ∆t = 1. Thus

||∇t(i, j)||2 = max(ti,j − ti−1,j , ti,j − ti+1,j , 0)2

+ max(ti,j − ti,j−1, ti,j − ti,j+1, 0)2
(2.17)

Using the gradient discretization (2.17), the Eikonal equation becomes

max(ti,j − ti−1,j , ti,j − ti+1,j , 0)2+

max(ti,j − ti,j−1, ti,j − ti,j+1, 0)2 = 1
u2
i,j

.
(2.18)
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In this equation, the only unknown is the arrival time ti,j at point p := (i, j). We have

max(ti,j − ti,j−1, ti,j − ti,j+1, 0)2 =

max(ti,j −min(ti,j−1 ti,j+1), 0)2.
(2.19)

Hence, ti,j is solution of the quadratic equation

max(ti,j −min(ti−1,j , ti+1,j), 0)2+

max(ti,j −min(ti,j−1, ti,j+1), 0)2 = 1
u2
i,j

.
(2.20)

Eikonal equation on image domain

In this section, we present a clustering algorithm that works by solving the Eikonal

equation on the image domain for clustering pixels in order to generate a superpixel par-

tition. The image domain is interpreted here as a special case of discretized domain.

In what follows, we adopt the following notations. A pixel in image I is denoted by p

and its coordinates by (x, y). We select N seeds or cluster centers locations {s1, s2, ..., sN}
at initialization. The labels of the seeds are then gradually propagated from the labeled

pixels to the unlabeled pixels according to the local velocity {u(p)}. On the domain defined

by the image, the Eikonal equation therefore reads
||∇t(p)|| = 1

u(p) ∀p ∈ I

t(p) = 0 ∀p ∈ ∂I.
(2.21)

In this expression, u(p) is the local velocity at pixel p, ∂I corresponds to the subset of the

image I constituted by the seeds {s1, s2, ..., sN}, and t(p) is the the minimal time required

to travel from ∂I to pixel p. The velocity u(p) depends on the color and the texture of

both the seed and the pixel location p := (x, y).

For all p in I,

t(p) = t(p, ∂I) = inf
si∈∂I

t(p, si), (2.22)

where t(p, si) is the minimal traveling time from si to p.

Fast marching algorithm

Fast methods for Eikonal equation include fast marching based methods, fast sweep-

ing based methods and other methods. The fast marching method (FMM) is the most

commonly used. It was originally introduced to solve the Eikonal equation on a contin-

uous domain [MSV95; Set96]. The fast sweeping method (FSM) [FLZ09] is an iterative

algorithm that performs Gauss-Seidel iterations with alternating sweeping ordering.
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In [Gó19], nine fast methods including FMM, Fibonacci-Heap FMM(FMMFib), Sim-

plified FMM (SFMM), Untidy FMM (UFMM), Group Marching Method (GMM), Fast

Iterative Method (FIM), Fast Sweeping Method (FSM), Locking Sweeping Method (LSM)

and Double Dynamic Queue Method (DDQM) are compared. The comparison is con-

ducted under different circumstances, from simple case of empty maps to more complicated

problem such as vessel segmentation.

The choice of the method depends on the application. For complex scenarios such as

image segmentation, to solve the Eikonal equation with variable speed, their conclusion is

that there is not an optimal method. UFMM can work well if properly tuned. SFMM is

a safe choice and it is faster than FMM and FMMFib in each case.

In this research, we make use of the traditional FMM for its simplicity of implementa-

tion. Other fast methods, especially SFMM, would be worth considering to improve the

speed of our algorithm.

Fast marching on a discretized domain

A possible approach to solve the Eikonal equation is to iteratively solve the non-

linear equation (2.20) at each location of the grid until some convergence criterion is met.

However, this approach involves a significant amount of calculations to be conducted and

can be very costly.

An alternative approach is to compute the arrival times outwards from the initial con-

ditions by following the front propagation and computing the arrival times in increasing

order. This approach leads to the fast marching algorithm and allows to solve equa-

tion (2.20) at each location of the grid in a single iteration.

The fast marching algorithm works by partitioning the points of the discretization

domain Ω in three subsets during the front propagation:

— The points that have already been reached by the front are grouped into a set referred

to as the frozen set.

— The points of the discretization grid that are adjacent to frozen points but have not

been reached by the front yet are grouped in a subset referred to as the narrow band,

— The remaining points of the discretization grid are grouped in a subset referred to

as the far away set.

Initialization The fast marching algorithm is initialized as follows:

1. An arrival time map is initialized: each point (i, j) in the discretization grid is

associated with the arrival time t = +∞, except if it belongs to the domain boundary
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∂Ω. In this case, the point (i, j) is associated with the arrival time tij = 0.

2. All points of the discretization grid located at the domain boundary ∂Ω are added

to the narrow band. Other points are labeled as far away. Initially, the frozen set is

empty.

Iteration At each iteration, the point (i, j) of the narrow band with the smallest arrival

time is extracted and labeled as frozen. Arrival times are computed for its neighbors in a

4-neighborhood by solving equation (2.18). Frozen points are used to compute the arrival

times in other points, but their arrival time is never recomputed. We can rewrite (2.18)

under the general form

max(tij − tA, 0)2 + max(tij − tB, 0)2 = 1
u2
ij

, (2.23)

where tA = min(ti−1,j , ti+1,j) and tB = min(ti,j−1, ti,j+1). By construction, (i, j) is adja-

cent to at least one frozen pixel. Without loss of generality, we can assume that A belongs

to the frozen set and that tA ≤ tB. B can be frozen, in the narrow band, or far away (in

the latter case, tB = +∞). Then, we have the following result:

Proposition 2.3.3. Equation (2.23) has a single solution tij satisfying tij > tA.

Proof. The proof is given in the appendix A.1.

Once the arrival time t of a neighbor point (i, j) has been computed, two situations

can be encountered:

— When (i, j) is in the narrow band, it has already been associated an arrival time

t0ij . If the new arrival time tij is smaller than t0ij , then the arrival time is updated.

Otherwise, it remains unchanged.

— When the neighbor point is far away, we add it to the narrow band with the arrival

time tij .

Stopping condition The fast marching algorithm stops when the narrow band is empty.

At each iteration of the algorithm, it is necessary to extract the element of the narrow

band with the smallest arrival time. The search for the smallest element in the narrow

band can significantly enhance the algorithmic complexity of the fast marching approach.

To reduce the complexity of the algorithm, a common solution is to store the elements of

the narrow band in a binary heap. When using a binary heap structure, the complexity

of the fast marching algorithm is in O(N logN), N being the number of points in the

discretization grid. We refer the reader interested in more details on the fast marching

algorithm implementation to the original articles [MSV95; Set96; Set99a; Set99b].
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Fast Marching Superpixel (FMS)

The idea behind the FMS algorithm is to draw an analogy between waves propagating

in a heterogeneous medium and regions growing on an image at a rate depending on

the local color and texture. A similar idea was proposed in [Buy14b; Buy14a; BGR14].

However, both approaches differ in several aspects, including the expression for the local

velocity as a function of the image content, the use of texture features or the region update

during propagation.

Here we adopt the same initialization step as in SLIC, and focus on the clustering step.

Instead of using clustering algorithms, such as k-means clustering or DBSCAN clustering

[She16], we propagate the labels of the seeds in a process that can be described by the

Eikonal equation. In this section, we describe in greater details the implementation of the

FMS algorithm.

Region growing

Let us denote by K the desired number of superpixels. We initialize the algorithm by

selecting N (N < K) seeds on a regular grid. To avoid placing a seed on a boundary, we

place the seed at the local minimum of the gradient in a 3× 3 neighborhood of the nodes

on the grid. A similar strategy is used for selecting the initial seeds in the SLIC algorithm

[Ach12]. We denote by C(p) the color at pixel p in the CIELAB color space. Similarly,

we denote by T(p) a vector of features characterizing the local texture at pixel p.

Initialization The propagation algorithm is initialized as follows:

1. The arrival time map t is initialized:

t(p) =

0 if p ∈ ∂I,

+∞ otherwise.
(2.24)

2. The label map L is initialized:

L(p) =

i if p = si,

0 otherwise.
(2.25)

3. The pixels {s1, .., sN} are grouped in a set referred to as the narrow band. All other

pixels are labeled as far away.

Iteration At each iteration,
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(a) Two seeds (b) Compute arrival times of the

neighbors of one seed and add them

to the narrow band

(c) Choose the pixel with the smallest

arrival time (another seed), and freeze

its label and arrival time

(d) Calculate and update the arrival

times of the neighbors of seed 2

(e) Choose the pixel with the smallest

arrival time “B”, and freeze the label

and the arrival time of B

(f) Calculate and update the arrival

times of the neighbors of B

Figure 2.3 – Illustration of the fast marching algorithm on the superpixel segmentation. Black,

gray and white circles represent frozen pixels, pixels in the narrow band, and far away pixels

respectively. 25
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1. We extract the pixel p := (x, y) in the narrow band with the smallest arrival time

and label it as frozen.

2. We compute the arrival time for all neighbor pixels of p that are not frozen. To that

end, we use the velocity corresponding to the label l := L(p) associated to pixel p.

Note that frozen pixels are used to compute the arrival times in other pixels, but

their arrival times are never recomputed. Hence, the arrival time tx,y at a neighbor

p̃ := (x, y) of p is solution of

max(tx,y −min(tx−1,y, tx+1,y), 0)2+

max(tx,y −min(tx,y−1, tx,y+1), 0)2 = 1
ul(x, y)2 .

(2.26)

Note that in this expression, we only consider the neighbors with label l. If a neighbor

of p has a label distinct than l, then we consider its associated arrival time to be

equal to +∞. We introduce this slight modification of the original fast marching

algorithm to efficiently keep track of the labels propagation.

Equation (2.26) has two distinct solutions. The proof is provided in the appendix

A.1. To respect the consistency of the scheme, the arrival time must be higher than

the arrival time t(p) associated to the point selected in the narrow band. Hence, the

arrival time tx,y is necessarily the greater solution of equation (2.26).

3. At this point, we can encounter two distinct situations:

— When the neighbor point (x, y) is already in the narrow band, it has necessarily

been associated an arrival time toldx,y. If tx,y < toldx,y, then we assign to it the arrival

time tx,y to (x, y), as well as the label l := L(p) of point p. On the contrary, if

tx,y > toldx,y, then the label and the arrival time at (x, y) remain unchanged.

— When the neighbor point (x, y) is not in the narrow band, we assign to it the

arrival time tx,y, the label l := L(p) and we add it to the narrow band.

Stopping condition The iteration stops when the narrow band is empty.

Figure 2.3 is a simple illustration of the fast marching based region growing with two

initial seeds. At each iteration of the algorithm, it is necessary to extract the element of

the narrow band with the smallest arrival time. To reduce the complexity of the algorithm,

the elements of the narrow band are stored in a binary heap. After the iteration stops,

each pixel of the image has necessarily been labeled, yielding a superpixel partition of the

image.

Local velocity model

The algorithm described in the previous section can be used with any non-negative

velocity models u(p). We describe in this section the velocity model used in our research,
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which relies upon both color and texture information. Natural images usually contain

textured regions composed of repeated texels with strong color changes. A pixel in a

textured region can therefore exhibit a strong color difference with the cluster center. To

account for the texturedness, we consider a velocity model incorporating both local color

and texture information. Hence, we consider the distance between a pixel p and a seed si

to be

D(p, si) = w0‖Cp −Ci‖2 + w1‖T p − T i‖2, (2.27)

where T p is a vector of features characterizing the local texture at pixel p, T i is the corre-

sponding vector of features for pixel si, and w0 and w1 are positive coefficients weighting

color and texture contributions, respectively.

Texture

A definition of texture is given in [Skl78]: “A region in an image has a constant texture if

a set of local statistics or other local properties of the picture are constant, slowly varying,

or approximately periodic.” Texture reveals the spatial arrangement of gray levels of

neighboring pixels. Textured regions are ubiquitous in natural images. For example, in

figure 2.4, the feathers of the owl is composed of repeated pattern of brown, white and

light orange feathers.

Texture information is of great importance in image segmentation algorithms ([Mal01],

[RM03], [Arb11]). It is also important for superpixel segmentation. Firstly, the color

variance is always high within a textured region. For SLIC algorithm, since we take the

average color of pixels within a region as the color of a seed, if this average is similar to

the color of an adjacent region, the pixels might be wrongly clustered to the same seeds,

so that the boundary between the two regions might be missed. An example of this case

is given in figure 2.4. Another reason is that some applications prefer smooth boundaries

within an object, but due to color changes, the superpixel contours can be highly tortuous

within a textured region.

We design the texture vector in (2.27) through texture analysis. A conventional way

of performing texture analysis is to use a multi-channel filtering approach. The image is

convolved with a bank of spatial filters with different ranges of frequency and multiple

orientations [JF91]. One advantage of the multi-channel filtering is that it exploits dif-

ferences in dominant sizes and orientations of different textures. A texture vector should

integrate the information from all these channels. We expect that the texture vectors are

similar within regions with the same texture, and have a large difference in regions with

different textures.

We should choose a type of filter for channel characterisation of multi-channel filter-

ing. Various filters can be used for this purpose, such as difference-of-Gaussian, Gaussian
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(a) Image 8143 from BSDS500 dataset (b) A groundtruth segmentation

(c) SLIC superpixel, nsegments=100 (d) ERGC superpixel, nsegments=100

(e) Circled region from (c) (f) Circled region from(d)

Figure 2.4 – SLIC and ERGC superpixels for a texture image

derivatives, Laplacian of Gaussian, Laws filters and so on. [XM08] provides a thorough

summary on texture analysis methods. When doing texture analysis, we prefer having

good frequency properties for distinguishing between different textures; sufficient spatial

resolution is also desirable to guarantee good localization of the texture boundaries. How-

ever, the bandwidth of a filter in the spatial domain and that in the frequency domain

are inversely related. In this research, we use Gabor filtering for the construction of the

features vector, since it achieves the optimal joint resolution in both spatial and frequency

domains.

Gabor filtering

Gabor filters are widely used for texture analysis. Anil K.Jain et al. [JF91] designed

a multi-channel filtering approach which uses a bank of even symmetric Gabor filters for
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channel characterisation, presented a method to choose radial frequencies and described a

filter selection scheme based on image reconstruction.

We compute the local response of the image with a bank of Gabor filters to obtain the

texture features. The kernel of the Gabor filters is given by the expression

g(x, y; f0, θ, φ, σx′ , σy′) = exp
{
−1

2

[
x′2

σ2
x′

+ y′2

σ2
y′

]}
cos(2πf0x

′) (2.28)

where

x′ = x cos θ + y sin θ, y′ = −x sin θ + y cos θ

f0 is the frequency of the sinusoidal wave along x′ axis, θ is the angle between the x′ and x

axes, and σx, σy are the standard deviation of the Gaussian filter in the space domain along

x′ and y′ axes. The relation between the frequency resolution and the space resolution is

σu = 1/(2πσx′), σv = 1/(2πσy′).

(a) (b)

Figure 2.5 – A 2d Gabor filter in (a) spatial domain and (b) frequency domain. σx = σy = 7.0,

f0 = 0.2, θ = 0.

To run the FMS algorithm, we selected four directions (0◦, 45◦, 90◦ and 135◦) for the

Gabor kernels of the filter banks. The frequency was set equal to f0 = 0.1. Two kernels

with standard deviation σ equal to 2 and 4 were used to perform the filtering. Overall,

this resulted in a bank of filters containing 8 kernels. We tried more directions and other

values of σ, and there was no apparent improvement of the performance of FMS on the

BSDS 500 dataset.

The vector T p stacks the 8 responses of the Gabor filtering at pixel p. The local

velocity Fi(p) associated with the propagation of region i is finally obtained by relying on

the exponential kernel

u(p, i) = exp(−w0‖Cp −Ci‖2 − w1‖T p − T i‖2). (2.29)

The velocity is maximal and equal to 1 when the pixel and the seed share the same color

and texture characteristics.
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In addition to directly stacking the filter responses, we tried other methods to construct

the feature vector Tp. Firstly, we clustered the response vectors of Gabor filters into

textons, a small set of prototype vectors, by using k-means clustering. Then we assigned

to each pixel the label of the nearest texton. When calculating the distance, we used

the texture vector of the corresponding texton of p as Tp, the same for Ti. Secondly,

we tried to use more directions and more scales, for example, 6 directions and 3 scales

for the Gabor filtering conducted in the beginning, and then to reduce the dimension of

the response vectors to 8 using a Principle Component Analysis (PCA). The response

vector after dimension reduction was then stacked as Tp. However, none of the above two

attempts achieved apparent improvement in performance.

Refinement

Images usually contain regions of interest over a very large range of scales. Hence,

selecting the seeds according to a grid with uniform spacing might not be the optimal

strategy to obtain a superpixel segmentation with good boundary adherence. In this

section, we present a strategy built on the map of arrival time to refine the superpixel

segmentation.

We recall that the number of desired superpixels is denoted by K. The algorithm

presented in the previous sections yields a partition of the image intoN connected segments

corresponding to the initial seeds {s1, s2, ..., sN}, as well as a map t(p) storing the arrival

time at each pixel p. The map t(p) contains a significant amount of information that can

be used to refine the superpixel partition. When the arrival time is high at some pixel p

in a region Ri associated to seed si, it means that the region boundary propagating from

si has traveled through pixels that are highly dissimilar to si. The arrival time found

in each region Ri therefore constitutes an interesting criterion to assess whether or not

this region should be subsequently splitted. A similar refinement strategy is used in the

article [Buy14a], where the distance map is used at the end of the oversegmentation to

generate new superpixels for refinement.

The refinement is conducted as follows. Let us denote by B the set of pixels belonging

to the superpixel boundaries, and by δ(B) the dilated set of B by a disk of radius 2 pixels.

Then, the maximal arrival time in region Ri is defined to be

ti = max
p∈Ri∩δ(B)c

t(p), (2.30)

where δ(B)c is the complementary set of δ(B). To further refine the superpixel segmen-

tation, we select the k regions with highest ti and we add seeds at the corresponding

locations before re-propagating. We exclude the pixels that belong to the region δ(B) to

avoid implanting a seed directly on a boundary. This procedure is repeated iteratively
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(a) N = 35 seeds (b) Iteration 1: 40 seeds

(c) Iteration 2: 45 seeds (d) Iteration 3: 50 seeds

Figure 2.6 – Illustration of the refinement on an image of the BSDS500. Each figure displays the

arrival time at each pixel. At each step, new seeds are added at superpixels where the arrival time

is maximal.

until the desired number K of superpixels is obtained and enables to significantly improve

the boundary adherence of the resulting superpixel partition.
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Experiments and discussion

In this section, we evaluate the performance of the FMS algorithm and compare it with

two state-of-the-art superpixel algorithms, SLIC [Ach12] and ERGC [Buy14b; Buy14a;

BGR14]. To that end, we use the Berkeley Segmentation Dataset 500 (BSDS500) [Arb11].

The BSDS500 provides an empirical basis for research on image segmentation and bound-

ary detection. It contains 6000 hand-labeled segmentations of 500 color images from 30

human subjects and is one of the reference datasets for evaluating the performance of

segmentation algorithms.

Evaluation metrics

To evaluate the performance of the algorithms, we adopt four metrics: boundary recall,

undersegmentation error, compactness and contour density.

— Boundary recall is the ratio of the number of true positive contour pixels with regard

to the number of contour pixels in the ground truth segmentation. To tolerate small

localization errors, contour pixels that lie within 2 pixels from a real contour pixel

are considered as true positives. High boundary recall means good adherence to

boundaries.

— Undersegmentation error measures the leakage of a superpixel overlapping with a

gound truth segment. We adopt the formulation proposed by Neubert and Protzel

in [NP12].

UENP (G,S) = 1
N

∑
Gi

∑
Sj∩Gi 6=∅

min {|Sj ∩Gi|, |Sj \ (Sj ∩Gi)|} (2.31)

where Sj is a superpixel and Gi is a gound truth segment. We take the minimum of

the number of overlapping pixels, and the number of non overlapping pixels within

Sj as the leakage.

— Compactness is defined as the ratio of the region area with respect to a circle with

the same perimeter as the superpixel, weighted by the ratio of pixel numbers inside

the region [SFS12].

COMP (Si) =
∑
Si

|Si|
N

4πA(Si)
P (Si)2 (2.32)

High compactness indicates a high regularity of the superpixel shapes, which is

desirable for some applications.

— Contour density was first proposed in [Mac15]. It is defined as

CD = |C|
N

(2.33)
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(a) SLIC (b) ERGC

(c) FMS (w0 = 7, w1 = 0) (d) FMS (w0 = 4, w1 = 4)

(e) SLIC (f) ERGC

(g) FMS (w0 = 7, w1 = 0) (h) FMS (w0 = 4, w1 = 4)

Figure 2.7 – Illustration of the superpixel segmentation on an image of the BSDS500.

where |C| is the total number of pixels on superpixel contours and N is the number

of pixels in the image. A low contour density tends to indicate that the tortuosity
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(a) Boundary recall (b) Undersegmentation error

(c) Compactness (d) Density

Figure 2.8 – Comparison between SLIC, ERGC and FMS algorithms on the BSDS500. FMS(4, 4) 0
represents the result without refinement.

of the superpixels contours remains small. This is a desirable effect, since tortuous

contours tend to artificially increase boundary recall.

Results and discussion

Figure 2.8 displays the recall, undersegmentation error, compactness and density of

FMS, SLIC and ERGC averaged over the 500 images of BSDS500. For a fair comparison,

the parameters of SLIC and ERGC are optimized by the code of David Stutz in [SHL17].

The number of initial seeds N is set to 0.6K through the experiment. The superpixels

constructed with these algorithms are illustrated in figure 2.7.

The parameters w0 and w1 for weighting the color and texture distances must be

selected with caution. Overall, increasing w0 and w1 lead to an increase of the boundary

recall. This is due to the fact that the propagation velocity becomes more sensitive to

strong color and texture variations. However, for high values of the weights e.g. w0, w1 > 8,
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the local velocity can fall to very low values. This has the unwanted effect to deteriorate

the compactness of the obtained superpixels and leads to the obtention of many small

isolated superpixels corresponding to small contrasted part of the image. Hence, the

choice of parameters results from a trade-off between boundary adherence performance

and topological considerations. In our experiments, we selected the parameters w0 = 4
and w1 = 4 by relying on a grid search to obtain an optimal boundary adherence. We also

computed the superpixel partition using the parameters w0 = 7 and w1 = 0 to evaluate

the influence of texture.

In terms of recall, we can note that the FMS algorithm yields slightly better results

than SLIC and ERGC algorithms. The refinement strategy also significantly improves the

results. We can note that the results are better with the set of parameters w0 = 7 and

w1 = 0 than with w0 = 4 and w1 = 4. The undersegmentation error is comparable to

the one obtained with SLIC and ERGC. ERGC is the best performer when the number of

superpixels N remains below 400, but FMS exhibits a slightly lower undersegmentation

error when N > 400. The main advantage of the FMS algorithm is that it provides

good topological metrics: the compactness of FMS is higher than the one of SLIC and

ERGC, and the density of contours is significantly lower. In particular, the version of FMS

with parameters w0 = 4 and w1 = 4 yields a boundary recall and an undersegmentation

error similar to ERGC and SLIC, but with higher compactness. In addition, due to the

refinement procedure, the size of the superpixels constructed with the FMS algorithm is

locally adapted depending on the content of the image. One should nevertheless keep in

mind that the refinement is performed at the expense of the superpixels uniformity: the

refinement yields superpixels that are heterogeneous in scale and size.

In terms of complexity, if n is the number of pixels in the image, then the complexity is

O(n logn) at each propagation step. Hence, if there are L refinement steps, the complexity

of the algorithm is in O(Ln logn).

Finally, it is interesting to point out the main differences between the FMS and the

ERGC algorithms [Buy14b; Buy14a; BGR14]. ERGC is a clustering-based algorithm

that computes superpixel partitions by relying upon the Eikonal equation. A significant

difference between both algorithms is that their local velocity models differ. For ERGC,

the local velocity field is simply given by:

u(p, i) = 1
||Cp −Ci‖2

. (2.34)

In particular, the velocity is very high when the pixel and the seed have similar color

characteristics. Another important difference is that ERGC only considers local color

information to compute the local velocity, while FMS also relies on texture information.

Finally, an additional difference between both approaches is that the cluster centers are

iteratively updated according to the new pixels entering the clusters. By contrast, in the

FMS algorithm, the cluster centers remain fixed.
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The choice of parameters for Gabor filters is highly related to the scale of textures in

the image dataset. If FMS is to be applied to a new dataset, we should first observe the

textures, and modify the central frequencies, number of directions and σ accordingly.

For the choice of w0 and w1, the ideal solution could be to find a measure to quantify

the textureness of a region, and to adjust the weights of the color and texture distances

terms accordingly, to give a higher weight for the texture term in the textured regions.

In an attempt to follow this approach, we clustered the responses vectors of each pixel to

Gabor filters into textons and then measured the textureness by the chi-square distance

of histograms of textons within a patch around a pixel. We did not see any improvement

in the performances.

Conclusion and perspectives

In this chapter, we presented a fast-marching based algorithm for generating superpixel

partitions of images. The FMS algorithm is evaluated on the Berkeley Segmentation

Database 500, and yields results in terms of boundary recall and undersegmentation error

that are comparable to the ones obtained with state-of-the-art algorithms including SLIC

or ERGC, while improving on these algorithms in terms of compactness and density.

A possible extension of this work could be to incorporate gradient information in the

local velocity model to better account for the presence of contours and discontinuity in the

image. It would also be of interest to try to automatically estimate optimal parameters

w0 and w1 depending on the processed image.
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Chapter 3

Hierarchical segmentation based on

wavelet decomposition

As discussed at length in the introductory chapter of this manuscript, image segmenta-

tion is a classical problem in image processing, which aims at defining an image partition

where each identified region corresponds to some object present in the scene. The water-

shed algorithm is a powerful tool from mathematical morphology to perform this specific

task. However when applied directly to the gradient of the image to be segmented, it

usually yields an over-segmented image. To address this issue, one often uses markers that

roughly correspond to the locations of the objects to be segmented. The main challenge

associated with marker-controlled segmentation becomes thus the determination of the

markers locations.

This chapter, somewhat independent from the rest of the manuscript, introduces a

novel method to select markers for the watershed algorithm based upon multi-resolution

approximations. The main principle of the method is to rely on the discrete decimated

wavelet transform to obtain successive approximations of the image to be segmented.

The minima of the gradient image of each coarse approximation are then propagated

back to the original image space and selected as markers for the watershed transform,

thus defining a hierarchical structure for the detected contours. The performance of the

proposed approach is evaluated by comparing its results to manually segmented images

from the Berkeley segmentation database.

Introduction

The watershed transform [BL79; MB90; VS91] is a popular algorithm based upon

mathematical morphology which efficiently performs segmentation tasks. It can easily

be understood by making an analogy between an image and a topography relief. In this

analogy, the gray value at a given pixel is interpreted as an elevation at some location. The

37



CHAPTER 3. HIERARCHICAL SEGMENTATION BASED ON WAVELET
DECOMPOSITION

topography relief is then flooded by water coming from the minima of the relief. When

water coming from different minima meet at some location, the location is labelled as

an edge of the image. The watershed algorithm is usually applied to the gradient of the

image to be segmented. Each minimum of the gradient therefore gives birth to one region

in the resulting segmentation. Due to several factors including noise, quantization error or

inherent textures present in the images, gradient operators usually yield a large number

of minima. A well-known issue of the watershed algorithm is thus that it usually yields a

severely over-segmented image as a result.

To overcome the issue of over-segmentation, a first approach is to apply the gradient

operator to images that have previously been filtered. Meyer designed morphological fil-

ters, referred to as levelling filters, for this particular task [Mey98; Mey04]. Wavelet based

filters have also been used to perform the filtering step. In 2005, Jung and Scharcanski

proposed to rely on a redundant wavelet transform to perform image filtering before ap-

plying the watershed [JS05]. The advantage of using the wavelet transform is that its

application tends to enhance edges at multiple resolutions, therefore yielding an enhanced

version of the gradient. Jung subsequently exploited the multi-scale aspects of the wavelet

transform to guide the watershed algorithm toward the detection of edges corresponding

to objects of specified sizes [Jun07].

An alternative to overcome the over-segmentation issue is to rely on markers to perform

the watershed segmentation. This strategy builds upon the assumption that it is possible to

roughly determine the location of the objects of interest to be segmented. The idea is then

to perform the flooding from these markers rather than from the minima of the gradient.

Another approach that was considered is to select the minima of the gradient according to

their importance, by considering for instance h-minima [Soi13; CR09]. Other approaches

including the stochastic watershed rely on stochastic markers that are used to evaluate

the frequency at which a contour appear in the segmentation [AJ07]. Finally, following a

classical trend in image segmentation [FH04; Alp12], morphological algorithms have been

proposed to perform a bottom-up region merging according to some morphological criteria

[Beu94; MB05].

In this chapter, our aim is to present a novel method to select markers for the watershed

algorithm based upon multi-resolution approximations. The main principle of the method

is to rely on the orthogonal wavelet transform to obtain successive approximations of the

image to be segmented. The minima of the gradient image of each coarse approximation

are then propagated back to the original image space and selected as markers for the

watershed transform, thus defining a hierarchical structure for the detected contours.

The outline of this chapter is as follows. We describe the proposed algorithm and

state the main properties of the obtained contours hierarchy in section 3.2. In section 3.3,

we evaluate the performances of the algorithm on the Berkeley segmentation database.
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Conclusions are finally drawn in the last section.

Multiscale watershed segmentation

Multi-resolution approximation

A function f from R2 to R is said to be square-integrable if and only if the integral∫
R2
|f(x1, x2)|2dx1dx2 (3.1)

is finite. We denote by L2(R2) the set of square-integrable functions. When equipped with

the scalar product

< f, g >=
∫
R2
f(x1, x2)g(x1, x2)dx1dx2, (3.2)

it is well-known that L2(R2) is a Hilbert space of infinite dimension.

Let us first introduce the mathematical notion of multi-resolution approximation [Mal99]

which plays a central role in the proposed approach. A multi-resolution of L2(R) is a se-

quence {Vj}j∈Z of closed subspaces of L2(R) satisfying the following properties

1. ∀(j, k) ∈ Z2, f(·) ∈ Vj ⇔ f(· − 2jk) ∈ Vj ,

2. ∀j ∈ Z, Vj+1 ⊂ Vj ,

3. ∀j ∈ Z, f(·) ∈ Vj ⇔ f(·/2) ∈ Vj+1,

4. limj→−∞ Vj = ∩j=+∞
j=−∞Vj = {∅},

5. limj→+∞ Vj = Closure(∪j=+∞
j=−∞Vj) = L2(R).

In addition, for a sequence {Vj}j∈Z to be a multi-resolution of L2(R), there must exist a

function θ in L2(R) such that the family {θ(t− n)}n∈Z is a basis of V0.

Multi-resolution approximations have been extensively used in computer vision since

their introduction in the article [BA83] of Burt and Adelson. From this perspective, a

signal of dyadic size 2J is the orthogonal projection of a function f in L2(R) on some

space VJ ⊂ L2(R). The approximation of the signal at a resolution 2−j , with j > J ,

is defined as its orthogonal projection on a subspace Vj . In higher dimensions D, e.g.

for images, multi-resolution approximations of L2(RD) can be obtained by considering

tensorial products between subspaces: V D
j = Vj ⊗ Vj ⊗ ...⊗ Vj .

In our algorithm, we consider a multi-resolution approximation based upon a discrete

image wavelet decomposition. It is possible to define a scaling function φ from the Riesz

basis {θ(t − n)}n∈Z of V0. An approximation of the image at scale j is computed by

projecting the approximation image at scale j − 1 on the family {φj(x−n)}n∈Z of scaling
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Figure 3.1 – Wavelet transform associated to Lena image for two decomposition levels. The size

of the image is 512 by 512 pixels. The decomposition was performed using Daubechies wavelet

with 12 vanishing moments. The approximation image corresponds to the subimage on the top

left quarter. The other three subimages correspond to the projection of each approximation on a

family of wavelets.

functions, where

φj(x) = 1√
2j
φ( x2j ). (3.3)

It can be shown that the projection can be computed by relying on iterative convolutions

with a low-pass filter, followed by a factor 2 sub-sampling. The discrete decimated wavelet

transform of the original image is obtained by iteratively filtering the approximation image

by tensorial products of a low-pass and a high-pass filters, yielding one approximation

image and three details images at each iteration [Mal99].

Hierarchical contour detection

A multi-resolution approximation of an image is presented in figure 3.1, for two lev-

els of decomposition. The multi-resolution approximation is computed using Daubechies

wavelets with 12 vanishing moments. Interestingly, we can note that the main objects and

contours of the original image are relatively well preserved in its approximations. How-

ever, these images contain considerably less details than the original image, making them

of potential interest for segmentation. Several methods have been proposed to handle

segmentation using multi-resolution approaches. In 2000, Rezaee et al. [Rez00] notably

proposed an algorithm combining the pyramid transform and fuzzy clustering, obtaining
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good segmentation results on magnetic resonance images. In 2003, Kim and Kim [KK03]

proposed a segmentation procedure relying on pyramidal representation and region merg-

ing.

It is straightforward to directly apply a watershed algorithm on the approximation

images. However, the resolution of these images is significantly lower than the one of

the original image. It is therefore difficult to establish a direct correspondence between

the contours of the approximation image and the contours of the original image [KK03].

In this study, we propose to tackle this issue in a simple manner by defining multi-scale

markers for performing the segmentation.

Let us consider an image I of dyadic size 2J by 2J pixels. We denote by L the number

of decomposition levels. For l between 0 and L, we denote I(l) the approximation of I

after l decomposition steps. The size of the image I(l) is therefore 2J−l by 2J−l pixels.

By convention, I(0) is the original image I. I(l+1) is obtained by successively applying the

low-pass filter associated with the wavelet transform to the rows and the columns of I(l)

and down-sampling the result by a factor 2.

To initialize the contour detection algorithm, we first extract the minima of the gradient

of the approximation image I(L). We obtain a sequence {m(L)
1 , ...,m

(L)
KL
} of KL markers.

The locations of these markers are specified on an image M (L) of size 2J−L by 2J−L. To

propagate the markers back to the original image I, we oversample the image M (L) by

replacing each pixel M (L)(p, q) by an array of pixels of size 2L by 2L whose value is set equal

to M (L)(p, q). Then, we apply the watershed algorithm on the image I from the image

markers M (L), therefore obtaining a contour image C(L) associated to the approximation

image I(L). We then repeat these operations at decomposition level L − 1 to obtain a

contour image E(L−1). We consider then the supremum image S(L−1) defined by

S(L−1) = sup(C(L), E(L−1)), (3.4)

where the supremum is defined as follows for each pixel S(L−1)[p, q]:

S(L−1)[p, q] = max(C(L)[p, q], E(L−1)[p, q]). (3.5)

Finally, we apply a watershed transform to the supremum image S(L−1) to obtain the

contour image C(L−1) corresponding to decomposition level L − 1. This last step is nec-

essary to remove the thick contours that can potentially be created by the supremum

between images C(L) and E(L−1). We obtain a multi-scale contour by iteratively applying

the procedure described previously for all decomposition levels.

To illustrate the algorithm, the segmentation algorithm is applied to the images dis-

played in figure 3.2 and 3.4. The results are displayed in figure 3.3 and 3.5. We used

Daubechies wavelets with 12 vanishing moments to calculate the successive multi-resolution

approximations. By construction, the algorithm returns a nested sequence of contours, in
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Figure 3.2 – An image from the BSDS500 used to illustrate the algorithm, along with an example

of human segmentation

Figure 3.3 – Contour images corresponding to four decomposition levels (levels 4, 3, 2, 1 respec-

tively) of the image presented in figure 3.2. The markers at each scale are displayed on the right

images.
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Figure 3.4 – An image from the BSDS500 used to illustrate the algorithm, along with an example

of human segmentation

Figure 3.5 – Contour images corresponding to four decomposition levels (levels 4, 3, 2, 1 respec-

tively) of the image presented in figure 3.4. The markers at each scale are displayed on the right

images.
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the sense that if a pixel of the contour image C(l) is labelled as a contour, then the same

pixel in the contour image C(l−1) is also labelled as a contour. The proposed approach

therefore results in a hierarchical segmentation. We can see that as expected, the contours

of the largest objects tend to be extracted for the approximations with the lowest resolu-

tion. By contrast, all contours corresponding to the details of the image to be segmented

appear for the approximation images of higher resolution.

Experimental results and discussion

In section 3.2, we introduced a hierarchical contour detection algorithm based upon

successive multi-resolution approximations of the image to be segmented. It is of interest

to assess the validity of the approach by comparing the results of the algorithm to hu-

man segmentations. To that end, we rely on the Berkeley Segmentation Database (BSD)

[Mar01]. The BSD is a large dataset of natural images that have been manually segmented.

At each scale of the contours hierarchy, we compare the results of the detection algorithm

to the human annotations.

In our comparison, we consider two criteria. We first estimate the proportion of con-

tours detected by the algorithm and that have also been annotated (precision). To that

end, we apply a dilation of size two to the contour image corresponding to the human

segmentation, and we consider the intersection between the dilated image and the contour

image returned by the algorithm at each decomposition level. The dilation is applied to

account for potential inaccuracy of the human contour detection. The number of pixels

belonging to the intersection normalized by the number of pixels corresponding to the de-

tected contours provides us with an estimate of the proportion of detected contours that

have also been manually segmented. The second criteria that we consider is the proportion

of contours that have been detected by humans and that are also detected by the algorithm

(recall). At each decomposition level, we apply a dilation of size two to the contour image

returned by the algorithm and we consider the intersection between the dilated image and

the contour image corresponding to the human segmentation. By counting the number

of pixels of the intersection normalized by the number of pixels belonging to the human

detected contours, we can determine the proportion of actual contours that are returned

by the detection algorithm at each scale. Note that these same criteria were employed in

Chap. 2 for evaluating the Eikonal based superpixel algorithm.

We estimated both criteria on 200 images from the BSD. The results are presented

in table 3.1. We can note that on average, the precision increases with the decompo-

sition level in the contours hierarchy. This tends to assess the validity of the proposed

multi-scale approach, in the sense that the contours detected with markers obtained after

several decomposition levels have a significantly higher probability to correspond to hu-
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Wavelet filtering

Dec. Level Precision Recall

0 0.10 ± 0.05 0.94 ± 0.03

1 0.13 ± 0.07 0.82 ± 0.07

2 0.17 ± 0.09 0.69 ± 0.11

3 0.22 ± 0.12 0.53 ± 0.14

h-minima Alternate Sequ. Filters

Precision Recall Precision Recall

0.12 ± 0.06 0.85 ± 0.16 0.10 ± 0.04 0.91 ± 0.06

0.17 ± 0.08 0.71 ± 0.18 0.12 ± 0.05 0.69 ± 0.09

0.24 ± 0.13 0.51 ± 0.14 0.12 ± 0.05 0.46 ± 0.08

0.30 ± 0.20 0.21 ± 0.08 0.12 ± 0.05 0.22 ± 0.07

Table 3.1 – Results of the wavelet based algorithm on the BSD for each decomposition level.

Precision corresponds to the average proportion of contours detected by the algorithm that have

also been annotated, along with the corresponding standard deviation. Recall corresponds to the

average proportion of contours that have been detected by humans and that are also detected by

the algorithm, along with the corresponding standard deviation. The proportions are obtained on

a database of 200 images. The results of h-minima based segmentation and alternate sequential

filtering based segmentation are also presented.

man detected contours than contours directly obtained with the watershed transform. We

also note that the recall of the algorithm decreases monotonously on average. This trend

was to be expected, since the multi-scale approach inherently removes the contours of the

smallest patterns. However, up to three decomposition levels, the recall remains higher

than 0.5.

It is finally of interest to compare the results of the wavelet based markers selection

to other commonly encountered methods, namely markers selection through h-minima

of the image gradient and contour detection after filtering by alternate sequential filters.

The difficulty here is to obtain a comparable number of segments between the distinct

approaches. To that end, for each image, we select the value of h-minima and the size of

structuring element for the alternate sequential filter, respectively, that yield the number

of markers the closest from the one used in the wavelet based segmentation. We repeat

the process for each decomposition scale. Next, we rely on the aforementioned procedure

to estimate the precision and the recall of these methods. The results are summarized in

table 3.1.

We note that, on average, the segmentation based upon the discrete wavelet transform

performs significantly better in terms of both precision and recall than the segmentation

following an alternate sequential filtering. Our interpretation of this result is that the
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wavelet transform better preserves the contours of the original image at the highest scales

of the transform. By contrast, for structuring elements of large size yielding a number of

markers similar to the one obtained with the wavelet decomposition, alternate sequential

filters significantly degrade the contours of the image, which explains the poor results

that are registered in terms of precision and recall. Marker selection through h-minima

values is shown to yield a higher precision than the wavelet based algorithm. However,

in terms of recall, the wavelet based algorithm performs significantly better on average.

Both approaches remain however significantly distinct and are difficult to compare, since

a segmentation based upon markers selection by h-minima is highly sensitive to the local

minima of the image gradient.

Conclusion and perspectives

In this chapter, we presented a new method to select markers for the watershed algo-

rithm based upon multi-resolution approximations. By relying on the discrete decimated

wavelet transform to obtain successive approximations of the image to be segmented, we

were able to define a hierarchical structure for the detected contours. We evaluated the

performance of the proposed approach by comparing its results to manually segmented

images from the Berkeley segmentation database. The comparison provided an empirical

evidence that the contours detected for the approximation of lowest resolutions have a

higher probability to correspond to human detected contours than contours detected by

the classical watershed transform. A potential application of this work could be to use

the saliency of the contours, defined here as the level of the pyramid at which the contour

disappear, as a feature in a subsequent region merging algorithm.
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Chapter 4

Learning similarities between regions

The first part of this PhD thesis was devoted to the study of superpixel algorithms. In

a number of approaches to image segmentation, computing a superpixel partition of the

image constitutes the first step of the segmentation process. Superpixels allow to consid-

erably simplify the image representation. Subsequent steps of the segmentation process

usually aim at grouping superpixels together to obtain an actual image segmentation.

To perform the clustering of the superpixel, two key ingredients are required. First, one

needs to define precisely a notion of similarity (or dissimilarity) between adjacent super-

pixels. Second, one needs to define a proper clustering algorithm to perform the superpixel

merging using the aforementioned distance.

In this chapter, we investigate the first issue, namely the definition of a similarity

measure between adjacent superpixels. While univariate criteria including for instance the

difference of mean gray level or the boundary strength directly qualify to be such measures

of similarity, these criteria often remain too simplistic to capture the complexity of the

problem. It is therefore of interest to investigate the use of machine learning algorithms

to combine low level criteria into a single similarity measure.

The outline of this chapter is as follows. First, we describe the general approach that

we adopt to learn how to merge superpixels. In section 4.2, we present various kinds

of features extensively used in the literature and in our work. In section 4.3, we briefly

describe two machine learning algorithms, random forest and XGBoost classifiers, that we

use to combine the selected features into a similarity measure for each pair of adjacent

regions. The classification results are presented in section 4.4.

Introduction

The objective of image segmentation is to partition an image I into a family of regions

or segments {S0, S1, ..., SN}, where N is the desired number of segments, and Si is a set

of pixels within the same segment: Si = {p : l(p) = i}, each segment being indexed with
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a label i.

Machine learning algorithms are generally used for classification or regression problems,

and can be roughly grouped into three categories: supervised algorithms, non-supervised

algorithms and semi-supervised algorithms. In this study, our work takes place within the

supervised learning framework, where we have a set of training images, a test set, and

sometimes a validation set at our disposal. In this framework, our objective is to find the

parameters for a model that minimize the loss on training images and generalize well on

test images.

The image segmentation problem can classically be formulated as a classification prob-

lem. The classification can be done per pixel, as in [Arb11], where a feature vector is

calculated for every pixel. According to the ground truth, each pixel in the training im-

ages is labeled 1 if it is on the boundary or 0 if it is not, or with the probability of being a

boundary pixel if multiple ground truth images are provided. Feature vectors and labels

of pixels from training images are then used to train a classifier. At test stage, the feature

vectors for each pixel in the test images are calculated, and predictions of the probabilities

of being on the boundary are made by the classifier. The probability is interpreted as

a contour strength for the pixels in the test images. Using this approach, depending on

the size of the image, there can be a large number of feature vectors to be calculated

and a large number of entities to be classified. In addition, the resulting contours may

not be closed, which led Arbeláez et al. [Arb11] to propose an extension of the watershed

transform, the oriented watershed transform, to partition the image into regions. Other

contour based methods for computing an image segmentation include supervised learning

of edges and objects boundaries [DTB06], the structured forests for fast edge detection

[DZ15] and so on.

Another possible approach is to first oversegment the image into small homogeneous

regions {R1, R2, ..., RK}, and then to gradually merge these regions to obtain the segmen-

tation. This is the approach adopted in this chapter. In the oversegmentation step, it is of

paramount importance to preserve the boundaries. Hence, the proposed approach is only

effective when applied to a superpixel with good boundary adherence properties.

Learning procedure

Instead of predicting the probability of being a boundary pixel as in [Arb11], we pre-

dict the merging probability of adjacent regions. Let us consider an image previously

oversegmented into a set of superpixels {R0, R1, ..., RK}. The training and test procedure

is the same as in pixel based segmentation approaches, except that the superpixels provide

a support for features calculation. The training procedure comprises three steps:

1. Feature extraction: we compute a feature vector vm for each adjacent superpixel
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Figure 4.1 – Superpixel based machine learning for image segmentation: a schematic view

region pair (Ri, Rj).

2. Labeling : given a ground truth image for the segmentation task, we label each pair

of adjacent regions (Ri, Rj) by 1 if they belong to the same ground truth segment

g, to indicate that Ri, Rj should merge; by 0 if they belong to different ground

truth segments. An alternative is to rely on a merging probability when multiple

ground truth segmentations are available. Due to errors introduced by the superpixel

segmentation, a superpixel can intersect several ground truth segments. In this case,

we consider that the superpixel belongs to the segment with the highest overlap.

3. Training : the pairs {vm, lm}Mm=1 are used to learn parameters Θ of the model, where

vm is the feature vector of the region pair, lm is the corresponding label, and M is

the number of adjacent region pairs.

After the training stage, we possess a model with parameters optimized under a score,

for example the F measure. In test stage, the same set of features is extracted for each

pair of adjacent regions, and fed to the model to predict the merging probability of region

pairs. A schematic view of the learning procedure is provided in figure 4.1.

The adjacent region pairs are arranged in a Region Adjacency graph (RAG) G = (V,E),
where V is the ensemble of vertices, and E is the ensemble of edges. Each region is

represented by a node v, and there is an edge between vi and vj when their corresponding

regions Ri and Rj are adjacent. The predicted merging probability pij will be used as the

edge weight wij for further processing, the most intuitive being thresholding, which we

will talk about later in this chapter.

It is possible to generalize the model learned from the training set for the prediction

of merging probability of region pairs in the test images, even if these images have highly

dissimilar appearances, since contours bear things in common, including color changes,

texture changes or strong gradient. Our first task is to determine features that are rele-
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vant to the classification of merging. In the next section, we describe the set of features

classically used in the segmentation literature and in this research for this purpose.

Features

Features that characterize region properties are crucial for machine learning based

algorithms. One can distinguish between low level features, such as the coherence of

brightness, color, texture, or motion; mid-level features, like Gestalt cues (proximity, good

continuation, etc); or high-level knowledge [SM00]. In state-of-the-art algorithms [Arb11],

brightness, color and texture cues are combined to form a contour detector. In this sec-

tion, we present color features, geometric features, contour features and texture features

employed in this research.

Color features

Color features are features based on the color difference between regions. There are two

means to define such features. The first one is to consider differences between statistical

moments, for instance the difference of the average color values, or the color variance of the

combined region. The second one is to consider histograms to characterize the difference

between color distributions. Besides the conventional RGB color space, Lab and HSV

color spaces are also employed in the literature for color features calculation, for example

in [LST16].

Lab color space: Lab (La*b*) is the abbreviation for the three-dimensional CIELAB

color space. L is the lightness, ranging from 0 (darkest black) to 100 (brightest white). a*

and b* are two color channels. The a* axis represents the green/red component, ranging

from green (-128) to red (127). The b* axis represents the blue/yellow color component,

ranging from blue (-128) to yellow (127). The Lab color space is perceptually uniform and

independent of devices. [Lab]

HSV color space: The abbreviation HSV stands for hue, saturation and value, and

corresponds to a cylindrical coordinate model. The hue is in the angular dimension and

represents pure colors, starting from red (0°), passing green (120°), blue (240°), and re-

turning to red (360°). Saturation is the radial distance to the axis of the cylinder, ranging

from 0 (on the axis) for white to 1 (on the surface of the cylinder) for pure color, with

tint color in between. Value is the height dimension, from black (bottom) to white (top).

[Hsv]

Different color spaces provide different ways for color decomposition, the employment
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of which might be helpful for the classification of region merging. Hence, in this research,

color features are computed simultaneously in RGB, Lab and HSV color spaces. The list

of the 34 color features used in this research can be found in table 4.1.

name dimension notation

difference of mean gray value 1 ∆mg

difference of mean of RGB, Lab and HSV

channels

9 ∆mck

Euclidean distance of mean of RGB, Lab and

HSV channels

3 ∆rgb, ∆lab, ∆hsv

variance of combined region in RGB, Lab and

HSV channels

9 σ2
ck

χ2 distance of RGB, Lab and HSV histograms 15 ∆hck
χ2 distance of flat histograms of RGB, Lab and

HSV channels

3 ∆hrgb, ∆hlab, ∆hhsv

Table 4.1 – A summary of color features

Difference of statistics

Let us consider a pair of adjacent regions (Ri, Rj), where Ri = {p : (x, y) | p ∈ Ri},
and Rj = {p : (x, y) | p ∈ Rj}. The mean gray level within Ri is

mg(Ri) = 1
|Ri|

∑
x

∑
y

Igxy, (4.1)

where Ig is the gray level image of I. The difference of gray level mean is

∆mg(Ri, Rj) = |mg(Ri)−mg(Rj)|. (4.2)

We calculate differences of means for the gray level image, as well as for each color

channel of RGB, Lab and HSV color spaces. We can also use the Euclidean distance of

the mean color:

∆rgb(Ri, Rj) =
√

(mr(Ri)−mr(Rj))2 + (mg(Ri) +mg(Rj))2 + (mb(Ri) +mb(Rj))2.

(4.3)

Variance of the combined region Ri ∪Rj is employed in [Che16] as a color feature. It

is calculated for each color channel:

σ2
ck

(Ri∪j) = 1
n

∑
p∈Ri∪j

(ck(p)−mck(Ri∪j))2, (4.4)

where {ck | k ∈ [1, 9], k ∈ Z} corresponds to color channels in RGB, Lab, and HSV color

spaces respectively in this order, and n is the number of pixels in the combined region

Ri ∪Rj .
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Difference of histogram

A commonly used tool for the description of the color distribution is the histogram,

which represents the number of pixels of each color interval. There are several methods

for histogram difference measurement. It is shown in [MFM04] that the χ2 difference of

histogram is marginally superior to the L1 norm, and significantly better than the Mallows

distance, for local boundary detection in natural images. The χ2 difference is expressed

as:

χ2 = 1
2
∑ (gi − hi)2

gi + hi
, (4.5)

where g = [g1, g2, ..., gk], h = [h1, h2, ..., hk] are two histograms with the same number of

bins.

In this study, we compute the χ2 distance for the histogram of each color channel in

the RGB, Lab and HSV color spaces. Especially for Lab color space, the histograms are

calculated on Gaussian filtered images with σ = 2.5, 5, 10 for l channel, and σ = 5, 10, 20
for color channels as in [Arb11], taking into account information from multiple scales. The

number of bins of each color channel is set to 16. The χ2 distance of the flat histogram

of a color space is also calculated. A flat histogram is the joint histogram of three color

channels within a color space. For example, for the RGB color space, it is a 48 value vector

joining hr, hg and hb.

Geometric features

Geometric features focus on the shape and on the geometric properties of the regions.

A summary of geometric features employed in this work is given in table 4.2.

name dimension notation

area 2 amin, amax

perimeter 2 pmin, pmax

solidity 3 smin, smax, scomb

extent 3 bmin, bmax, bcomb

eccentricity 3 emin, emax, ecomb

orientation 3 omin, omax, ocomb

Table 4.2 – A summary of geometric features

For a pair of regions Ri and Rj , we first compute the minimal and maximal areas, as

well as the minimal and maximal perimeters.

Solidity is the ratio of the number of pixels in the region with that of the convex hull of
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the region:

solid(Ri) = |Ri|
|convex(Ri)|

.

The convex hull is the smallest convex set that contains all pixels in a region. We take the

minimal and the maximal solidity of two regions and that of the combined region Ri ∪Rj
as features.

Extent is the ratio of the number of pixels in the region with that in its minimum bounding

box:

extent(Ri) = |Ri|
|bbox(Ri)|

.

The minimum bounding box is the smallest rectangle that contains all pixels in a region.

It is obtained by the leftmost, rightmost, topmost and bottommost coordinates of the

region. Similarly to solidity feature, this feature reveals the convexity of a region. We take

the minimal and maximal extent of two regions, and the extent of the combined region

Ri ∪Rj as features.

Eccentricity is the eccentricity of the ellipse with the same second central moment (co-

variance matrix) as the region. For X = [x,y], x, y being two n× 1 vectors representing

the x and y coordinates of the pixels in Ri respectively, the covariance matrix is

M = (X− µ)>(X− µ),

where µ = [mx,my], mx = mx × 1n, my = my × 1n, and mx, my are the means of x, y

respectively.

To compute the eccentricity, we need to calculate the eigenvalues and eigenvectors

of the aforementioned matrix M. The eigenvectors are the directions of the axes of the

ellipse, and the corresponding eigenvalues are the length of the major axis a and that of

the minor axis b. The eccentricity is defined as the ratio between the focal distance and

the length of the major axis

ρ(Ri) = c

a
=

√√√√1−
(
b

a

)2
,

where c2 = a2 − b2, and c is the focal distance. We take the minimal and maximal

eccentricity of Ri and Rj and the eccentricity of Ri ∪Rj as features.

Orientation features are proposed in [NI13]. The orientation of a region is the angle

between the major axis of the aforementioned ellipse and the x axis. We calculate the

angle between the orientation of a region and the line l connecting the centers ci, cj for

adjacent regions Ri and Rj . We take the minimum and maximum of these two angles,

and the difference between orientations of regions as orientation features.

In our work, we use the implementation in scikit-image library [Wal14] for computing

the geometric features.
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Contour features

A contour separates two adjacent regions. At the boundary of two objects, there is

usually a color change, thus inducing high gradient on the contour. Conversely, a contour

with large gradient is generally more probable to be an actual contour. Therefore, we

take the minimum and average of gradient of pixels on a contour as contour features.

This feature was also considered in the waterfall algorithm [Beu94], which removes the

watershed lines of lower gradient values to suppress the over-segmentation.

name dimension notation

contour length 1 l

mean gradient 1 gmean

minimum gradient 1 gmin

Table 4.3 – A summary of contour features

Many recent image segmentation algorithms [RS13; NI13; LST16] take boundary fea-

tures based on gPb [Arb11]. In a recent article [Che16] Cheng et al. proposed to use

average contour strength based on holistically-nested edge detection (HED), a contour

detector based on convolutional neural network as a feature.

Contour features are usually of paramount importance for image segmentation prob-

lems. Still, it is important to note that it is difficult to separate two regions with similar

colors by color features and contour features.

Texture features

Texture features are of great importance for the segmentation of natural images. In

textured regions, the statistics of colors is helpless to distinguish two objects with different

textures. Histogram might help, but it considers only the frequency of color appearance,

while lacking the spatial arrangement of colors, which is important for distinguishing

between textures. In this section we discuss texture features based on Gabor filtering and

SIFT and SURF keypoint descriptors. A summary of texture features is given in table

4.4.

name dimension notation

χ2 distance of texton histogram at 3 scales 3 ∆t1 ∆t2 ∆t3
χ2 distance of SURF histogram on gray and a b channels 3 ∆sg ∆sa ∆sb
textureness 1 t

Table 4.4 – A summary of texture features
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Texton

A typical way of analyzing textures is through filtering. Martin et al. proposed in

[MFM04] to cluster the responses of an image to filters with different directions and scales

into a small set of prototype response vectors, which they refer to as textons.

Here we follow this approach and adopt Gabor filters (introduced in section 2.4.2) for

performing the texture analysis. Gabor filters with 6 directions and 3 scales are employed.

These filters are shown in figure 4.2. In [Arb11] Arbeláez et al. indicate that the clustering

of response vectors can be done per image or on the whole database. In practice, we find

that the k-means clustering on large dimensional data takes much time and memory. So

in this research the clustering is done per image.

Figure 4.2 – Gabor filter kernels at 6 directions and 3 scales

The extraction of texture features works as follows:

1. We convolve the image with a set of Gabor filters, to get 18 response images. Thus,

for each pixel p we obtain a 18 dimensional texture vector vp.

2. We cluster N texture vectors by using k-means clustering to get K textons, the most

representative vectors. N is the number of pixels in image I.

3. We affect to each pixel the index of its nearest texton (the vector with the minimum

Euclidean distance).

4. We calculate the histogram of texton id inside each region, and we retain the χ2

distance between Ri and Rj as texture feature.

According to [Arb11], in order to take into account the information from multiple

scales, the image should be smoothed with Gaussian filters with σ = 5, 10, 20 separately

for the texture channel. We adopt the same processing, therefore having 3 texton images

in total, and 3 texture features. An example of the texton images at 3 scales is given in

figure 4.3, figure 4.4, and figure 4.5. We set the number of prototype vectors K to 64, and

the number of bins for the textons histograms to 16.
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We define a measure of textureness for a region by considering the χ2 distance between

its texton histogram at scale σ = 5 and the uniform histogram with the same bins. We

take the difference of textureness between regions as a texture feature.

SIFT

We also explored the employment of SIFT (Scale-Invariant Feature Transform) de-

scriptors for texture features. SIFT [Low04] is generally used for keypoint detection and

description. In [RS13; LST16], SIFT descriptors are employed for characterizing texture.

The SIFT descriptors are calculated densely on a pixel grid. Thus at a pixel on the grid

we have a 128-dimensional SIFT descriptor. The rest is the same as for Gabor features, we

cluster the texture vectors by k-means clustering to obtain Ks visual words. We calculate

the histogram of visual words for each region, and take the χ2 distance of two histograms

of adjacent regions as the texture feature.

We tried to apply SIFT based texture features in our research. Since a SIFT de-

scriptor is 128-dimensional, which is way larger than the dimension of a texture vector

obtained by Gabor filtering, it takes much more time at the clustering step than the lat-

ter. Therefore we tried another commonly used keypoint descriptor SURF (Speeded-Up

Robust Features). As its name suggests, the SURF descriptors are more computationally

efficient than SIFT. Since a SURF descriptor has 64 dimensions, the clustering time is

also reduced to a large extent compared to SIFT. We take the χ2 distance of SURF visual

words histograms at gray level image and a and b color channels of Lab color space as

texture features.
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(a) FMS superpixel, N = 100, w0 = 7, w1 = 0

(b) Texton image, K = 64, σ = 5

(c) Texton histogram for region

1

(d) Texton histogram for region

2

(e) Texton histogram for region

3

Figure 4.3 – An example of texton image at scale σ = 5
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(a) FMS superpixel, N = 100, w0 = 7, w1 = 0

(b) Texton image, K = 64, σ = 10

(c) Texton histogram for region

1

(d) Texton histogram for region

2

(e) Texton histogram for region

3

Figure 4.4 – An example of texton image at scale σ = 10
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(a) FMS superpixel, N = 100, w0 = 7, w1 = 0

(b) Texton image, K = 64, σ = 20

(c) Texton histogram for region

1

(d) Texton histogram for region

2

(e) Texton histogram for region

3

Figure 4.5 – An example of texton image at scale σ = 20
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Classifiers

A classifier is a model that can make classifications having the features as input. There

are many kinds of classifiers, including logistic regression, SVM and so on. Our research

focuses on two decision tree-based classifiers: random forest and XGBoost. In this section

we introduce these two algorithms.

A classifier learns information from the training set. For tree based classifiers, the

information is contained in the structure of the trees. A learning algorithm fits the pa-

rameters Θ using training examples {xi, li}Ni=1, where the labels are known. The classifier

seeks to model the posterior probability distribution over world state, given the observed

feature vector, and to be able to infer the posterior probability p(c|v) of a class knowing

the feature vector.

Data preparation A feature vector vf is extracted for each pair of adjacent regions

(Ri, Rj) in the image. A ground truth segmentation G = {g1, g2, ..., gng} is provided,

where ng is the number of segments. We label a vector 1 (l = 1) if Ri, Rj should be

merged (∃gk ∈ G,where Ri ⊂ gk, and Rj ⊂ gk), or 0 (l = 0) if they belong to different

ground truth segments.

We refer to the classical references [HTF09] for the description of decision trees, and

[Bre01] for random forest.

Decision tree

A decision tree partitions the feature space into a set of disjoint regions {Ri}Ti=1, by

making recursively binary partitions. These regions are represented by leaves (terminal

nodes) of the tree. T represents the number of leaves of the tree. Each leaf (region)

corresponds to a unique class ci. The predictive rule is

x ∈ Ri ⇒ f(x) = ci.

A classification tree can be viewed as:

T (x,Θ) =
T∑
j=1

cjI(x ∈ Rj), (4.6)

where Θ = {Rj , cj}Tj=1 and I(x ∈ Rj) is the indicator function of region Rj .

A tree is constructed by a greedy algorithm. Starting with all data points, we seek to

determine at each step a splitting variable j and a splitting point s, by minimizing the
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sum of the losses of the left and right nodes after the split:

min
j,s

min
cL

∑
xi∈RL(j,s)

l(yi, ŷi) + min
cR

∑
xi∈RR(j,s)

l(yi, ŷi)

, (4.7)

where l is the loss function, RL = {xi | xij ≤ s} and RR = {xi | xij > s}, xij represents

the jth feature of the features vector xi, cL and cR are the class adopted in RL and RR

respectively.

For a node m, the observations in Rm are classified to the class k(m) = arg maxk p̂mk,
where the most observations belong. p̂mk is the proportion of observations in class k:

p̂mk = 1
Nm

∑
xi∈Rm

I(yi = k),

where Nm is the number of observations in region Rm. For binary classification, the classes

k are simply the elements of the set {0, 1}.

The impurity measure is employed as the loss function l in (4.7). Two commonly used

measures are:

— Gini index:
∑
k 6=k′ p̂mkp̂mk′ =

∑K
k=1 p̂mk(1− p̂mk) = 2p(1− p)

— Cross-entropy: −
∑K
k=1 p̂mk log p̂mk = −p log p− (1− p) log (1− p)

where p is the proportion of one class in node m in case of binary classification.

To split a node m, we iterate through all the features:

1. For each feature we iterate through all the examples to find the splitting point, and

take the feature and splitting point that minimize (4.7).

2. We split the observations in node m to the left and right node according to the

adopted splitting rule.

3. We assign to RL and RR its corresponding class cL and cR.

The partition is repeated on all regions (leaves in the tree).

The tree is constructed in the training stage. At test stage, a feature vector extracted

from a test image go through the tree, and is assigned to a leaf according to the splitting

rules. The corresponding class of that leaf is taken as the predicted class.

One advantage of decision tree classifiers is their good interpretability. One disadvan-

tage is that they are prone to overfitting. Various pruning methods can be used to avoid

overfitting. Other approaches including random forests work by growing several trees in

parallel.
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Random forests

Definition 4.3.1. A random forest is a classifier consisting of a collection of tree-structured

classifiers {h(x,Θk), k = 1, 2, ...}, where the Θk are independent identically distributed

random vectors and each tree casts a unit vote for the most popular class at input x.

[Bre01]

Random forests are an ensemble of trees. The examples from the training set are

sampled uniformly with replacement at the construction of each tree, a procedure called

bagging. Bagging, also known as bootstrap aggregating, is a commonly used algorithm

to reduce variance. We bag repeatedly on the training data to build K trees. For the kth

tree, we sample nk training examples with replacement {Xk, yk}, and train a decision

tree T (x; Θk) using these examples. Each tree is grown independently and is identically

distributed.

The randomness of random forests also lies in the random selection of features. At

each split, m (m ≤M) features are randomly selected for candidates, where M is the total

number of features. It is recommended in [HTF09] to use m =
√
M for classification. The

aim of this random selection is to reduce the correlation between trees, thus reducing the

generalization error.

For a regression random forest, the prediction is

f̂Krf (x) = 1
K

K∑
k=1

T (x; Θk), (4.8)

which is the average of the prediction of each tree.

For a classification random forest, at the test stage, each tree votes, and the class of

the majority vote is taken as the predicted class.

The improvement of random forests compared to decision trees is merely the variance

reduction, while the bias is the same as for individual trees. Random forests are robust to

noise, and they are less likely to overfit. This algorithm runs faster than boosting trees,

since the trees in a forest can be developed in parallel.

Hyperparameters tuning

In this work, we use the implementation of random forest in scikit-learn [Ped11]. The

main hyperparameters are:

— class weight : weights associated with classes. We choose “balanced”, since the input

data is highly imbalanced, with much more 1s than 0s. A weight inversely propor-
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tional to the class frequencies is associated to each class to balance the importance

of both classes.

— n estimators: number of trees in the forest. A sufficient number of trees are needed to

reduce the variance, after which the performance does not improve with the increase

of tree numbers.

— max features: number of features to consider at each split. We adopt “sqrt”, which

means the square root of the total number of features.

— max depth: maximum depth of the tree. A higher depth needs more computation.

— min samples split : minimum number of samples required to split a node.

— min samples leaf : minimum number of samples required to be a leaf node.

We tune max depth, min samples split and min samples leaf to control the complexity

of the constructed trees. A grid search can be done to find the optimal hyperparameters. In

practice, we start from initial values, then search on each hyperparameter separately. This

iteration can be done several times until there is no obvious improvement. We evaluate

the performance of a classifier by its AUC-ROC score.

AUC-ROC score: AUC-ROC is the area under the ROC curve. ROC (Receiver Operating

Characteristic) is a curve that plots true positive rate against false positive rate:

TPR = TP

TP + FN

FPR = FP

FP + TN
,

where TPR, FPR stand for true positive rate and true negative rate, TP , TN , FP , and

FN stand for true positive, true negative, false positive and false negative respectively.

The ROC characterizes the ability of a classifier to separate negative and positive

instances. A classifier with high AUC is desirable, meaning that it can achieve a high true

positive rate while the false positive rate is low.

In this segmentation problem, the ROC is more appropriate than the precision recall

curve to evaluate a classifier, since it is more important to lower the false positive rate.

We remind that class 0 signifies “not merge”, which means that there is a contour between

two regions. It is desirable to have a high recall of real contours, thus low false positive

rate. We can make compromise on the TPR, since false contours can be merged in later

processing. The precision recall curve only focuses on the correct classification of positive

instances. Another possible solution is to inverse the labels of the training examples, and

use the precision recall curve.
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XGBoost

XGBoost (Extreme Gradient Boosting) is proposed in [CG16], and is a state-of-the-

art tree boosting system. In this subsection, we refer to [HTF09] for the description of

boosting trees and [CG16] for XGBoost.

Boosting trees

Boosting fits an additive expansion in a set of basis functions. For boosting trees, the

basis functions are individual trees. Boosting trees can be expressed as a sum of trees:

fM (x) =
M∑
m=1

T (x; Θm), (4.9)

where Θm includes split variables, split points, and the predictions at the leaves of the

trees. The parameters {Θm}Mm=1 are obtained by minimizing a loss function over the

training data

L(f) =
N∑
i=1

l(yi, f(xi)), (4.10)

where f(x) is a series of trees, l is the loss function and N is the number of training

examples. The training can be formulated as the optimization problem

f̂ = arg min
f
L(f), (4.11)

where f ∈ {0, 1}N are the predictions f(xi) made at training data points:

f = {f(xi), f(x2), ..., f(xN )}.

The direct optimization of the loss function (4.10) is infeasible. Stagewise additive

modeling is commonly used for the construction of boosting trees, where the trees are

built sequentially. Each tree seeks to reduce the residual error of the previous trees.

Stagewise additive modeling Boosting trees can be constructed by forward stagewise

additive modeling, adding new basis functions without modifying the trees built before.

When constructing the m-th tree, the parameters Θm can be obtained by

Θ̂m = arg min
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm)) (4.12)

knowing the previous m−1 trees, where Θ̂m = {Rj , cj}Jmj=1, Rj is a leaf of the m-th tree, cj

is the class predicted by leaf j, Jm is the number of leaves in the m-th tree, and fm−1(x)
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is the current model with m− 1 trees:

fm−1(x) =
m−1∑
t=1

T (x; Θt). (4.13)

The procedure of the forward stagewise modeling to construct boosting trees is described

in Algorithm 1.

Algorithm 1 Forward Stagewise Additive Modeling

1. Initialize f0(x) = 0.

2. For m = 1 to M:

(a) Compute

Θ̂m = arg min
Θm

N∑
i=1

L(yi, fm−1(xi) + T (xi; Θm))

(b) Set

fm(x) = fm−1(x) + T (x,Θm)

The construction of an individual tree can be divided into two steps: finding the

splitting variables and splitting points of a region, and calculating the prediction values in

each region.

— Finding cj given Rj : to assign a class to a given leaf, for classification problem we

can take the class to which the most observations falling in the leaf belong.

— Finding Rj : to find the split variables and split points for a region under a certain

loss.

Compared with random forests, an advantage of boosting trees is that they can reduce

bias. They are however much slower to train since boosting trees are built sequentially.

XGBoost

Having a training data set with N examples and K features D = {xi, yi}Ni=1 (xi ∈ RK ,

yi ∈ R), the prediction of regression boosting trees is given by

ŷi = φ(xi) =
M∑
m=1

fm(xi), fm ∈ F , (4.14)

where F = {f(x) = wq(x)} (q : RK → T , w ∈ RT ), q is the structure of a tree that

maps a feature vector to the index of a leaf, and T is the number of leaves in the tree.

fm is composed of the tree structure q and of the weight associated to each leaf w =
{w1, w2, ..., wT }, where wi is the score on the i-th leaf.
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The set of functions F can be learnt by minimizing the regularized objective

L(φ) =
N∑
i=1

l(yi, ŷi) +
M∑
m=1

Ω(fm)

where Ω(f) = γT + 1
2λ ‖w‖

2 ,

(4.15)

where l is the loss function, and Ω(f) is a regularization term used for reducing the trees

complexity as well as smoothing the weights in order to avoid over-fitting.

The model is trained using stagewise additive modeling (Algorithm 1). Having the

prediction given by the previous m − 1 trees ŷi
(m−1), we need to minimize the following

equation to select the parameters of the m-th tree:

L(m) =
N∑
i=1

l(yi, ŷi(m−1) + fm(xi)) + Ω(fm),

of which the second order approximation is

L(m) '
N∑
i=1

[l(yi, ŷi) + gifm(xi) + 1
2hif

2
m(xi)] + Ω(fm),

where gi = ∂ŷ(m−1) l(yi, ŷi), hi = ∂2
ŷ(m−1) l(yi, ŷi) are the first and second order gradient

respectively. We remove the constant term to simplify the objective

L(m) =
N∑
i=1

[gifm(xi) + 1
2hif

2
m(xi)] + Ω(fm). (4.16)

Replacing Ω by its expression in equation (4.15) yields

L(m) =
N∑
i=1

[gifm(xi) + 1
2hif

2
m(xi)] + γT + 1

2λ
T∑
j=1

w2
j

=
T∑
j=1

[(
∑
i∈Ij

gi)wj + 1
2(
∑
i∈Ij

hi + λ)w2
j ] + γT,

(4.17)

where Ij = {i | q(xi) = j} is the set of index of examples that fall in leaf j.

If the structure of the tree is fixed, the optimal weight w∗j of leaf j is obtained by

setting ∂wjL
(m) = 0

w∗j = −
∑
i∈Ij gi∑

i∈Ij hi + λ
. (4.18)

The corresponding loss is

L(m) = −1
2

T∑
j=1

(
∑
i∈Ij gi)

2∑
i∈Ij hi + λ

+ γT. (4.19)
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To construct a tree, we start from the root and iteratively split the node greedily. This

loss can be used to select from the possible split points. The loss reduction by splitting a

node is

Lsplit = 1
2

[ (
∑
i∈IL gi)

2∑
i∈IL hi + λ

+
(
∑
i∈IR gi)

2∑
i∈IR hi + λ

− (
∑
i∈I gi)2∑

i∈I hi + λ

]
− γ, (4.20)

where IL, IR are sets of indices of examples that are attributed to the left and right node

respectively after the split; I = IL ∪ IR contains all examples before the split.

Shrinkage and feature sampling are used to prevent overfitting. Other insights such as

weighted quantile sketches are used to enable the algorithm to solve large scale machine

learning problems with far fewer resources. For details of this algorithm please refer to

[CG16].

Hyperparameter tuning

We use the implementation of XGBoost package 1 on Github. The main hyperparam-

eters are:

— scale pos weight : this hyperparameter is used to balance the weights of positive and

negative examples. The typical value is the number of negative instances over the

number of positive instances.

— n estimators: number of trees. A large number of trees can reduce the loss, but

greatly increases the training time.

— max depth: maximum depth of each tree.

— gamma: minimum loss reduction required to split a node.

— subsample: subsample ratio of training instances.

— colsample bytree: subsample ratio of columns (features) for each tree.

— learning rate: step size shrinkage.

According to the documentation, max depth and gamma are able to reduce overfit-

ting by controlling the model complexity, while subsample and colsample bytree reduce

overfitting by adding randomness in a similar way to the random forest algorithm.

We search for one hyperparameter at a time, and iterate through different hyperpa-

rameters. Iterations are repeated until the AUC-ROC score does not apparently increase.

There are other hyperparameters interesting to adjust. Here, we restrict ourselves to the

most commonly used ones.

1. https://github.com/dmlc/xgboost
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Experiment results and discussion

To evaluate quantitatively the classification step, we tested the performance of afore-

mentioned classifiers on the BSDS500 dataset. FMS superpixels were used to provide

calculation support for features. For each adjacent region pair (Ri, Rj), a feature vector

of 66 features was extracted, including color features, geometry features, contours features

and texture features discussed in section 4.2. The label of a region pair was computed

according to the ground truth segmentations. As there are multiple ground truth segmen-

tations for one image, we took the merging probability p (corresponding to the number of

times that Ri and Rj belong to the same ground truth segment divided by the number

of ground truth segmentations), and assigned to (Ri, Rj) l = 1 if p > 0.5, and otherwise

l = 0. Before concatenating features of different images, we standardized each feature by

subtracting its mean value and dividing it by its standard deviation.

The 100 validation images were used for hyperparameter tuning. At test stage, feature

vectors were extracted for each pair of adjacent regions of the test images. The classifier

took the feature vectors as input, and predicted the merging probability of the correspond-

ing pair of adjacent regions. From that point, a straightforward (yet too basic) method to

obtain an actual segmentation is to gradually merge the regions according to their merging

probabilities.

Results

We trained both a random forest classifier and a XGBoost classifier when the number

of superpixels is 500 and 800. The corresponding ROC curves are plotted in figure 4.6 to

compare them quantitatively.

We can see from figure 4.6 that with the same number of superpixels, XGBoost achieves

a higher AUC than a random forest classifier. For each kind of classifier, the one trained

with 800 superpixels achieves a higher AUC than the one trained with 500 superpixels.

One possible reason is that more training instances are available with more superpixels.

When it comes to training time, the hyperparameter tuning of XGBoost takes much more

time than random forest, since the trees in the forest can be constructed in parallel, while

boosting trees are constructed sequentially since the construction of a tree depends on all

its preceding trees.
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Figure 4.6 – ROC curves of random forest classifiers and XGBoost classifiers trained with 500 and

800 FMS superpixels.The last number at each line of the legend shows the AUC of the corresponding

ROC curve.

RAG thresholding

We evaluate the effectiveness of the classifier on image segmentation through thresh-

olding on the Region Adjacency graph (RAG). The RAG G = (V,E) of an image where V

is the ensemble of vertices, and E is the ensemble of edges, is constructed by taking each

region as a vertex v, and linking the vertices whose corresponding regions are adjacent in

the image. Let us denote by pij the predicted merging probability of an adjacent region

pair (Ri, Rj), then the probability of existence of the contour separating them is 1 − pij ,
which is used as the weight wij of the edge eij . We set a threshold t, and merge the region

pairs whose contour existence probability is lower than t, by cutting the corresponding

edges in the RAG. An intuitive segmentation is produced in this way.

In figure 4.7, we draw a probability map for three test images, where the existence

probability of contours obtained by a XGBoost classifier are plotted, as well as the seg-

mentations obtained by RAG thresholding.

We observe that from figure 4.7 the thresholding segmentation works well with a high

quality probability map as in the first image. But it fails in the third image since the

probability of contours of the elephant is smaller than that of the small regions on the

ground. The contours of the small regions in the second and third image have high
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(a) Probability map of image 69007 (b) Segmentation with t = 0.5

(c) Probability map of image 346016 (d) Segmentation with t = 0.5

(e) Probability map of image 107045 (f) Segmentation with t = 0.5

Figure 4.7 – Examples of probability maps and segmentations obtained by RAG thresholding.

Images on the left are probability maps showing the existence probability of contours. Images on

the right are segmentations obtained by merging regions with contour probability lower than a

threshold t = 0.5.

existence probabilities that we can not get rid of without losing the contours of objects of

interest by using simple RAG thresholding.

In figure 4.8, we draw the precision recall curves of RAG thresholding segmentation

under different thresholds on the training set and test set. We sort the edge weights in

increasing order for each image, and set the threshold to be a certain percentage of the

edge weights. The optimal threshold is the one that gives the highest F-score on training
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Figure 4.8 – Precision recall curves on training set and test set of RAG thresholding segmentation

for XGBoost classifier with 800 superpixels. The point with highest F-score is marked by ’x’ on

the curves.

set. The highest F-score on the training set 0.507 is achieved when the percentage is 0.6,

and the corresponding threshold is the weight separating 60% edges with weights lower

than the threshold against the other 40%. The F-measure at this threshold for test set is

0.462. The region metrics, namely covering, Rand index and variation of information are

0.532, 0.677, 1.442 respectively. The definitions of these region metrics can be found in

section 5.4.3.

The precision and recall of the RAG thresholding are not satisfactory. We would like

to improve the precision while not decreasing too much the recall. Hence, in the next

chapter we will elaborate on a graph partition approach that serves this goal.

Feature importance

The relative importance of each feature is plotted for the random forest classifier and

the XGBoost classifier in figure 4.9 and figure 4.10 respectively. For a tree, at each split,

the improvement of the split criterion is attributed to the feature chosen as the splitting

feature. For each feature, these improvements are accumulated over a tree and averaged

over all the trees as a measure of importance. For more details about the feature impor-

71



CHAPTER 4. LEARNING SIMILARITIES BETWEEN REGIONS

tance please refer to [HTF09].

We see that with the random forest classifier, the importance of features decreases

drastically, while for the XGBoost classifier, the decrease in importance is more steady.

For the random forest classifier, the color features under different color spaces are of the

greatest importance. The contour features (mean gradient, minimum gradient), and the

geometric features (convex ratio, bbox ratio, area and perimeter) come next. The color

variance feature are less important compared to other color features. The SURF texture

features of a,b channels and the texture feature of textons at the first scale are of little

importance.

For XGBoost classifier, the mean gradient is the most important feature. The distance

of SURF histograms comes the third. Color features are still important features, while

other features, including texture features, contour features and geometric features have a

greater importance when compared to the random forest classifier.

For both classifiers the eccentricity features and orientation features are of the least

importance. That is possibly because in the original article they are involved for the

segmentation of neural tissue in microscopy images, where geometric difference between

different objects is more significant, which is not necessarily the case for natural images.

For real time applications these features can be eliminated to accelerate feature computa-

tion.
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Figure 4.9 – Feature importances of RF classifier, N = 800
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Figure 4.10 – Feature importances of XGBoost classifier, N = 80074
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Conclusion and perspectives

In this chapter, we introduced two machine learning algorithms, namely random forest

and XGBoost, that were used to assess whether or not two adjacent superpixels should be

merged. The classification task present several inherent difficulties:

— In the merging classification, the dataset is highly imbalanced. It is therefore difficult

to correctly classify the negative class since the number of negative examples is lower.

In addition, it is important to have a low false positive rate, since the negative

instances correspond to the contours, and are therefore directly related to the recall

metric. In [HG09], a summary of approaches to deal with imbalanced dataset is

provided. In our study, we weighted the loss of each instance by a parameter inversely

proportional to their class frequencies. Another possibility is to over sample the

minority class, or under sample the majority class for training.

— Only local features are used in merging classification. Therefore, the lack of global

information could explain the difficulty to retain the contours of objects with color

similar to the background (for example the elephant in figure 4.8). In [Arb11] spectral

clustering is applied to globalize the contour strength. High level features, such as

the geometric context [HEH05], also help the segmentation [RS13; LST16]. Instead

of using handcrafted features, a possible improvement of the proposed method could

therefore be to use features extracted from convolutional neural networks, which

achieves the state-of-the-art performance in many vision problems.

When designing the contour features, for example the mean of gradient, we could

also directly use contour strength by other algorithms where global information is

involved, for example the gPb gradient [Arb11], as has been done in [RS13; LST16].

The output of a deep learning based contour detection algorithm, for example the

holistically nested edge detection [XT15], providing highly reliable contour proba-

bilities, can also be used for contour feature calculation, as proposed in [Che16].

To deal with the globalization problem, we could make use of the information of

neighboring regions, for example by considering a Markov random field on the region

adjacency graph.

— Finally, it is worth noticing that during the learning process, the classification of

each instance is made independently. The measure of performance of a classifier

is not directly related to the quality of segmentation. In [Jai11] it is proposed to

use reinforcement learning for image segmentation, with a reward function directly

related to a segmentation metric, such as the Rand index.
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Chapter 5

Region merging

Region adjacency graph representation is a key ingredient of several segmentation algo-

rithms including the normalized cut algorithm [SM00] or the waterfall algorithm [Beu94].

In this chapter, we present a novel clustering method for partionning the adjacency graph

based upon the fast marching algorithm and the dissimilarity measure introduced in chap-

ter 4.

The outline of this chapter is as follows. First, we review the literature related to graph

partition for image segmentation. Next, we recall the main properties of the fast marching

algorithm and we describe how this algorithm can be adapted to work on graph structures.

Then, we describe the use of the fast marching algorithm to partition the region adjacency

graph associated to an image. The graph partitioning yields a coarsened oversegmenta-

tion of the image from its superpixels by efficiently clustering adjacent superpixels. The

fast marching based algorithm is finally compared with similar algorithms including the

normalized cut and SWA.

Literature review

We can represent an image by a graph by taking its pixels or a group of pixels, for

example superpixels or regions generated by an oversegmentation algorithm, as nodes,

linking adjacent pixels or regions by an edge, and choosing a measure of similarity or

dissimilarity as edge weight. An advantage of graph based segmentation is that it takes

into account spatial information since adjacent regions or pixels are connected.

Graph based approaches for image segmentation

A significant amount of research has been conducted on graph partition for image

segmentation. A survey of the literature can be found in [PZZ13].
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Minimum spanning tree based algorithms

The idea of relying on graph representations for segmenting images dates back to

the early years of image processing. A first family of methods rely upon the minimum

spanning tree (MST) of the region adjacency graph. The minimum spanning tree of a

graph, sometimes called shortest spanning tree (SST), is a tree that spans the nodes of the

graph with the smallest weights. The MST of a connected, undirected graph is a subset of

its edges connecting all the vertices together, without any cycles and with the minimum

possible total edge weight. Efficient algorithms are available to compute the MST of a

graph, including Kruskal’s algorithm [Kru56].

In 1971, Zahn presented a graph clustering method based on the minimum spanning

tree [Zah71]. The minimum spanning tree of a graph is computed by Kruskal’s, Prim’s

or Dijkstra’s algorithm. The clustering is formed by iteratively breaking the inconsistent

edges in MST. An inconsistent edge is an edge whose weight is significantly larger than

the average weight of nearby edges. The significance can for example be measured by the

ratio between the edge weight and the average weight. Urquhardt [Urq82] proposed to

normalize the weight of each edge by the smallest weight among the set of all edges incident

on the vertices touching that edge. Despite bringing some improvement, the normalization

still fails to deal with intra-region variability issues.

Later, Morris et al. proposed a hierarchical image segmentation algorithm based on

graph representations of images and on the shortest spanning tree [MLC86]. In their work,

an image is mapped to a graph by representing each pixel by a node, and by linking the

nodes to their 4-connected or 8-connected nearest neighboring pixels by edges. The weight

of each edge is set to be the absolute value of the difference in intensity between the pair of

pixels that it links. Then the SST of the graph is constructed. A hierarchical segmentation

is obtained by iteratively cutting the SST edge with the highest weight, which corresponds

to the maximum contrast observed in the image.

This approach presents strong limitations: in high variability regions, textured regions

for instance, differences in intensities between adjacent pixels belonging to the same region

can significantly exceed those observed between adjacent pixels belonging to distinct seg-

ments. Hence, a major issue with MST method is that they tend to split the region with

the most variability into multiple segments and to conversely merge regions that should

correspond to distinct segments. Another problem is that two very different regions may

remain connected if they have similar neighboring pixels. According to Morris, these prob-

lems result from the lack of global information. Three possible variants are provided to

deal with these problems. One solution is to update after each split the pixels intensity to

the average intensity of pixels within the same region, an approach called recursive SST

in this article.
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In the efficient graph based image segmentation algorithm [FH04], the maximum weight

of the MST of a region is employed to measure the internal difference of a region. Two

regions are merged if the minimum of inter-region differences is larger than the weight of

the edges linking them plus a threshold. More details on this algorithm can be found in

section 3.2.

Graph cut algorithms

Several graph based algorithms have been proposed based upon the notion of graph

cut. The cut between two subgraphs A and B is defined as

cut(A,B) =
∑

u∈A,v∈B
w(u, v) (5.1)

where u, v are nodes belonging to A and B respectively, and w is a measure of similar-

ity between nodes. Graph cut based segmentation algorithms produce segmentation by

optimizing a cost function based on the notion of cut, which maximizes the dissimilar-

ity between different clusters of nodes, or maximizes the similarity of nodes within the

same cluster, or both. From this perspective, image segmentation is recast as a spectral

clustering problem and can be handled with efficient clustering algorithms [Lux07].

In 1993, Wu and Leahy [WL93] proposed a data clustering approach based on graph

theory, and demonstrated its application to image segmentation. In this approach, the

segmentation is performed by minimizing the cost function equation (5.1), and is therefore

called minimal cut. Overall, Wu and Leahy’s method yields interesting segmentation

results for some images. However, the minimum cut criterion tends to favor cutting small

subsets of isolated nodes in the graph. It is indeed straightforward to see from equation

(5.1) that the cut increases with the number of edges linking the subsets of the partition.

A very popular approach for defining a cut criterion is the normalized cut formulation

proposed by Shi and Malik [SM97; SM00]. It is a criterion that comprises both the asso-

ciation within a cluster and the disassociation between clusters. The exact optimization

of this criterion is NP-complete. However, it is possible to obtain an approximate solution

by relaxing some assumptions of the problem. The segmentation is obtained by solving

a generalized eigenvalue problem to minimize the normalized cut. The eigenvector with

the second smallest eigenvalue bipartitions the graph into two parts. The partition can be

done recursively to further partition the graph. The normalized cut algorithm overcomes

the disadvantage of minimal cut of favoring small regions. However, it tends to split large

homogeneous regions.

In the original article introducing the method, an exponential kernel involving the

negative brightness distance is employed for the similarity function. In a subsequent

article, Malik et al. proposed a similarity measure accounting for texture in the normalized
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cut framework [Mal01]. In their approach, the texture of each image is described using

textons. The textons are obtained by clustering the outputs of filter responses using the

k-means algorithm. For images without texture, the dissimilarity is computed using the

intervening contour method introduced in Leung and Malik [LM98].

The normalized cut algorithm is also used to introduce global information in contour

based segmentation. The Gaussian directional derivatives of eigenvectors for normalized

cut minimization are employed as the spectral component for the boundary detector in

the gPb algorithm developed by Arbelaez et al. [Arb11], which constitutes one of the

state-of-the-art algorithms for performing image segmentation. We notice that the graph

is constructed differently by connecting pixels within a circle with radius r.

Inspired by algebraic multigrid (AMG) solvers of minimization problems of heat or

electric networks, Sharon et al. [SBB00] introduced in 2000 a fast multiscale segmentation

algorithm called segmentation by weighted aggregation (SWA), providing an approximate

solution for normalized cut minimization with a time complexity linear in the number of

pixels. The graph of adjacent pixels is coarsened recursively by a weighted aggregation

procedure, where a smaller set of representative pixels or blocks are selected at each scale.

The couplings between blocks can be directly derived from finer levels, or can be related to

the internal statistics of the block. At last, a top down process provides the segmentation.

This algorithm is completed in [SBB01; Gal03]. Details of this algorithm can be found in

section 5.4.2.

Alpert et al. [Alp12] presented in 2012 a probabilistic bottom-up aggregation approach

for image segmentation, employing the coarsening strategy of SWA for region mering, of

which the performance is comparable to the state of the art. The probability of adjacent

regions belonging to the same segment is obtained by a “mixture of experts”-like model

integrating intensity and texture cues weighted by a term based on the sparseness of the

gradient histogram. The conditioning probability of merging knowing a certain cue is

obtained by Bayes formula. Pixels are merged gradually to larger regions according to

the merging probability. A notable difference from the original SWA algorithm is that the

edge weight is recalculated at each coarser level according to the probabilistic model in

this approach.

Finally, graph-based approaches have also been demonstrated to work well in the con-

text of fuzzy segmentation [MLN09].

Multi-stages algorithms

In a bottom-up merging segmentation algorithm, the region size grows larger as the

merge goes on. For a similarity measure based on a classifier, the segmentation per-
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formance is therefore expected to decrease since the classifier is only trained with small

regions of the original oversegmentaiton, and is therefore not appropriate for classifying

larger regions. A large region may for instance be less convex. Similarly, the texture

features may be not important for small regions, while more important for large regions.

Therefore, there is a need to take into consideration the influence of region size on the

probability prediction. Multi-stages algorithms come up where the classifier is retained in

multiple stages to serve this purpose.

Image segmentation by cascaded region agglomeration (ISCRA) algorithm [RS13] is

an algorithm based on region merging by cascaded classifiers that achieves state-of-the-art

performances. A classifier is firstly trained on the superpixels, then the regions are merged

according to the probability predicted by this classifier. Then, the merge stops and a new

classifier is trained for larger regions. The number of remaining regions can be used as the

stopping criterion. In this case, the training and merging steps repeat until the desired

number of segments is reached. 60 stages are considered in the original version of ISCRA

algorithm.

A machine learning based agglomerative segmentation method is presented in [NI13]

where training examples are collected at multiple stages. A flat learning stage is first

conducted to obtain a classifier to predict the merging probability of adjacent region

pairs. This probability can be used as a merge priority function (MPF) that indicates

the merging order at the next stage. At the next stage, region pairs are processed in

descending order of the MPF. Region pairs are labeled compared with the ground truth,

and merged if they belong to the same ground truth segment. The weights of the edges

incident on the new region are recalculated after each merge to ensure that the influence of

the change in region size is taken into account. Training examples from all previous stages

are concatenated for training in the current stage, and the newly obtained classifier is

employed to decide the merging order of the next stage. The performance of the classifiers

converges after several stages. This method surpasses the gPb by Arbeláez et al. [Arb11]

on BSDS500 in terms of region metrics.

Eikonal equation on a graph

A graph is a mathematical structure used to describe a set of objects that are pair-

wise related. The objects are represented by vertices (also called nodes or points) and

relationships between pair of vertices are represented by edges (also called links).
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Shortest path in a graph

Definition 5.2.1. Let k be some integer in N. A path p of length k in a graph G is a

sequence of vertices {v0, v1, ..., vk} such that, for all i = 0, ..., k − 1, there exists an edge

e := (vi, vi+1) linking vi and vi+1. The weight w(p) of the path p := {v0, v1, ..., vk} is the

sum of the weights of all edges along the path:

w(p) :=
k−1∑
i=0

w(vi, vi+1). (5.2)

Let u and v be two arbitrary vertices in G. We denote by P(u, v) the set of all paths

in G between u and v. Then, the shortest path weight ŵ(u, v) between u and v is

ŵ(u, v) =


minp∈P(u,v)w(p) if P(u, v) 6= ∅

+∞ otherwise.

(5.3)

Accordingly, the shortest path p̂ between u and v is the path with minimal weight between

u and v:

p̂(u, v) =


arg minp∈P(u,v)w(p) if P(u, v) 6= ∅

∅ otherwise.

(5.4)

Note that obviously, since G is undirected, if p := {v1, v2, .., vk} is the shortest path between

v1 and vk, then q := {vk, .., v2, v1} is the shortest path between vk and v1.

Eikonal equation

The fast marching algorithm was originally introduced to solve the Eikonal equation

on a continuous domain [MSV95; Set96]. The Eikonal equation is a non-linear partial

differential equation which describes the propagation of waves in a medium. It finds

notable applications in fields including geometrical optics or geophysics. Classical results

relative to the Eikonal equation on continuous domains are presented in section 2.3.1.

In this section, we study the generalization of the Eikonal equation to undirected graph

structures.

Eikonal equation on an undirected graph

In this section, our aim is to propose a way to extend the continuous Eikonal equation to

the setting of graphs. To that end, let us consider an undirected graph G := (V,E). Unless

otherwise stated, the graphs considered in this section will always be path-connected. We

assume that each edge (i, j) in E is associated a weight wij , and that t : V → R is a

function defined on the set V of all vertices of the graph.
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Definition 5.2.2. If v is a vertex in V , we denote by Nv the set of all neighbor vertices.

For all vertices u in Nv, we define the derivative of t at the vertex v with respect to u to

be:

Dt(u, v) := wuv(tu − tv). (5.5)

Using this definition, it becomes possible to define an equivalent formulation of the

Eikonal equation adapted to graph structures. In the continuous setting, the Eikonal

equation relates the L2 norm of the local gradient to the local velocity u in the open

domain Ω
u(x)||∇t(x)|| = 1,∀x ∈ Ω. (5.6)

The equivalent formulation for a graph structure should therefore read

u(v)||∇t(v)|| = 1,∀v ∈ V, (5.7)

where u(v) denotes a local velocity associated to node v. From now on, we will assume

the velocity term to be constant:

∀v ∈ V, u(v) = 1. (5.8)

The difficulty is therefore to replace the gradient used in the continuous setting by a

gradient adapted to the graph setting. To that end, we propose the following construction.

Let v be some node in the graph and Nv the set of its neighbor vertices. We consider a

front that propagates from seed vertices over the entire graph. Let us assume that the

propagation front reaches at least one element in Nv before reaching v. This is necessarily

the case when v is not a germ from which the front propagates. Then, we specify the

following requirements for the arrival time at vertex v:

1. The arrival time t(v) must satisfy the following set of inequalities:

t(v) ≤ t(u) + 1
wuv

, (5.9)

for all vertices u in Nv already reached by the propagation front.

2. There must exist one particular vertex û ∈ Nv such that

t(v) = t(û) + 1
wûv

. (5.10)

Putting these requirements together, we obtain the single equation

‖∇t(v)‖ := max
u∈Nv

wuv(t(v)− t(u))+, (5.11)

where (t(v)− t(u))+ := max(t(v)− t(u), 0).

Two remarks can be formulated regarding equation (5.11). First, we can notice the

key role played by the weights {wuv, u ∈ Nv}. In the continuous setting, due to the regular

discretization grid, the spatial step used for approximating the gradient is constant. In
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the graph setting, the weights of the edges can be interpreted as similarity measures.

Hence, the quantities {w−1
ij , (i, j) ∈ E} can naturally be interpreted as distances between

the node. When two adjacent vertices are highly similar, the weight of the corresponding

edge is large, which yields in turn a small distance between these nodes. Second, it is

interesting to notice that the heuristic approach used to obtain expression (5.11) leads to

a formulation of the Eikonal equation on the graph using the L∞ norm. In the continuous

setting, the Eikonal equation was defined on R2, which naturally carries an Euclidean

distance. For the similarity graph setting, more intuitive distances can be obtained using

the heuristic approach presented above.

Finally, boundary conditions are also required to properly define the Eikonal equation

on the graph. To define these boundary conditions, we select a subset {v1, ..., vk} of k

vertices in V and we require that ∀i = 1, ..., k, t(vi) = 0.

In the previous section, we defined the shortest path distance between two vertices u

and v in G to be:

ŵ(u, v) =


minp∈P(u,v)w(p) if P(u, v) 6= ∅

+∞ otherwise.

(5.12)

Building upon this definition, we can define the shortest path between any vertex v of the

graph and the subset ∂G := {v1, ..., vk} to be

d(v, ∂G) = min
i=1,...,k

ŵ(v, vi). (5.13)

Proposition 5.2.1 is the analog of Prop. 2.3.2 for undirected graphs.

Proposition 5.2.1. Let G be an undirected, weighted graph. Then, the shortest path

d(·, ∂G) is the solution of Eikonal equation

||∇d(v, ∂G)|| = 1

with boundary conditions d(vi) = 0, ∀i = 1, ..., k.

According to proposition 5.2.1, it is possible to partition a graph G into K ≥ 1 sub-

graphs by relying on the Eikonal equation. To that end, we start by selecting K vertices

{v1, ..., vk} of G. Then, solving the Eikonal equation on G with boundary conditions set

to be t(vi) = 0, ∀i = 1, ..., k allows to compute the distance w(v, ∂G) of the shortest path

linking each vertex v ∈ V to the closest vertex in the subset ∂G := {v1, ..., vk}. Since the

graph G is path-connected, for i = 1, ..., k, the subsets

Ci = {v ∈ V,w(v, vi) = w(v, ∂G)} (5.14)

constitute a partition of G into K connected subgraphs. We will subsequently use this

approach to compute a partition of the region adjacency graph associated to a superpixel

segmentation and to coarsen the segmentation.
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Fast marching algorithm

Efficient algorithms have been proposed in the literature to solve Eikonal equation,

including the fast sweeping method [Zha04] or the fast marching algorithm [Set96]. The

discussion of the fast marching algorithm in the continuous setting can be found in section

2.3.2. In this section, we discuss the generalization of the fast marching algorithm to

undirected graph structures.

Fast marching algorithm on a graph

In this section, we describe the generalization of the fast marching algorithm to undi-

rected graph structures. Let us consider an undirected, path-connected graph G := (V,E).
We assume that each edge (i, j) in E is associated a weight wij and that t : V → R is a

function defined on the set V of all vertices of the graph.

For an undirected graph G, an equivalent formulation of equation (2.23) can be obtained

by setting

max
u∈Nv

wuv(t(v)− t(u))+ = 1. (5.15)

Boundary conditions are imposed by selecting a subset ∂G := {v1, ..., vk} of k vertices in

V and setting t(vi) = 0,∀i = 1, ..., k.

As for continuous domains, instead of iteratively solving for each vertex of G until

convergence, we follow the front propagation in the graph to compute the arrival times.

To that end, we partition the vertices of G into three distinct subsets:

— Vertices that have already been reached by the front are grouped into a set referred

to as the frozen set.

— Vertices that are adjacent to frozen points but have not been reached by the front

yet are grouped in a subset referred to as the narrow band.

— The remaining vertices are grouped in a subset referred to as the far away set.

Initialization The fast marching algorithm is initialized as follows:

1. An arrival time map is initialized: each vertex v in the graph G is associated the

arrival time t = +∞, except if it belongs to the graph boundary ∂G. The vertices

{vi, i = 1, ..., k} are associated the arrival times t(vi) = 0.

2. All vertices belonging to ∂G are added to the narrow band. Other vertices are labeled

as far away. Initially, the frozen set is empty.

3. To keep track of the shortest paths between each vertex in G and the boundary ∂G,

we finally assign the label i to each vertex in {vi, i = 1, ..., k}. All other vertices are

labeled 0.
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Iteration At each iteration, the vertex v of the narrow band with the smallest arrival

time is extracted and labeled as frozen. Here, we introduce a slight modification to the

classical fast marching approach to keep track of the shortest path during the front prop-

agation. Let us assume that the shortest path between v and ∂G is the path p := (vi, v)
for some i ∈ {1, ..., k}. Then, v necessarily belongs to the region

Ci = {u ∈ V,w(u, vi) = w(u, ∂G)}. (5.16)

At this point, we compute the arrival times for each neighbor of v, by considering that the

arrival time at a neighbor node u is

t̃(u) :=
{
t(u) if u ∈ Ci
∞ otherwise.

(5.17)

Arrival times are then computed by solving equation (5.15). Again, frozen vertices

are used to compute the arrival times in adjacent vertices, but their arrival time is never

recomputed. Once the arrival time t of a neighbor point u has been computed, two

situations can be encountered:

— When (i, j) is in the narrow band, it has already been associated an arrival time t0ij
and it is assigned to one of the regions Cj , j = 1, ..., k. If the new arrival time tij

is less than t0ij , then the arrival time is updated and the vertex u is assigned to the

region Ci. Otherwise, the vertex remains unchanged.

— When the neighbor vertex u is far away, we add it to the narrow band with the

arrival time tij and we assign u to the region Ci.

Stopping condition The fast marching algorithm stops when the narrow band is empty.

The stability of the fast marching algorithm is proven in the appendix A.3.

Application to superpixels merging

Let I be a color image. We denote by I(p, q) the color of the pixel located at position

(p, q) in the image. For 8-bit RGB images, I(p, q) is a 3-dimensional vector taking its

values in the set {0, 1, ..., 255}. We assume that I is represented as the union of disjoint

superpixels {Si, i = 1, ..., N}:
I = ∪1≤i≤NSi, (5.18)

with Si ∩ Sj = ∅ if i 6= j.

It is convenient to associate to the superpixel partition of I a graph referred to as its

region adjacency graph G. The region adjacency graph is a representation of the image
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I as an undirected graph, whose vertices vi, i = 1, ..., N are associated to the superpixels

Si, i = 1, ..., N . Two vertices vi and vj are linked by an edge of the graph if and only if

the corresponding superpixels Si and Sj share a common boundary in the image. In the

following, we will adopt the classical notation G := (V,E) when referring to the region

adjacency graph, where V is the set of all vertices in G and E the set of all edges.

We can specify a weight for each edge in E by defining a function w : E → [0, 1]
which associates to the edge eij joining vertices vi and vj a quantity wij ∈ [0, 1]. In what

follows, we will assume that the weight wij can be interpreted as a dissimilarity measure

between vertices vi and vj . Since each vertex in G corresponds to regions in the original

image I, the dissimilarity measure characterizes in fact the dissimilarity between adjacent

superpixels in the image. Classical choices of dissimilarity measures include the difference

between the average colors of adjacent superpixels, or the average or minimal amplitude

of the gradient on the boundary between the adjacent superpixels. In this section, we will

assume that, for each pair (Si,Sj) of adjacent superpixels, we evaluated the probability

pij that Si and Sj belong to the same segment of the image. Obviously, the higher the

merging probability, the higher is the similarity betweens superpixels Si and Sj . Hence,

by considering the quantity

wij = exp(−pij), (5.19)

we define a dissimilarity measure between vertices vi and vj of G. When not stated

otherwise, we will assume that the weights of the region adjacency graph are obtained

according to equation (5.19).

Algorithm

The merging algorithm proposed in this section works by iteratively solving the Eikonal

equation on the region adjacency graph of the superpixel segmentation S of I and adapting

the boundary conditions. Let us assume that we start from an initial segmentation S0

containing N superpixels. Typical values for N are in the order of 500 or 800 superpixels.

Our aim is to significantly reduce the number of segments in the image to a value around

50− 100. The superpixel merging is conducted as follows:

1. To initialize the algorithm, K vertices {v1, v2, ..., vK} are chosen randomly in the

region adjacency graph.

2. The Eikonal equation is solved for the region adjacency graph with boundary condi-

tions t(vi) = 0,∀i = 1, ...,K. After this step, the graph is clustered into K separated

subgraphs {Gi, i = 1, ...,K}. For i = 1, ...,K, we denote by Vi and Ei the set of the

vertices and of the edges of Gi, respectively.

3. For each subgraph Gi, i ∈ {1, ...,K}, we search for the edge ei in Ei with maximal

weight wi. We denote by n0,i and n1,i the vertices in Vi linked by ei. Then, we select

the subgraph Gj whose maximal internal weight is the highest and we add the nodes
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n0,j and n1,j to the boundary conditions.

4. We solve the Eikonal equation for the region adjacency graph with the updated

boundary conditions t(vi) = 0,∀i = 1, ...,K + 2, where vk+1 = n0,j and vk+2 = n1,j .

5. We iterate between steps 3 and 4 until some stopping criterion is met.

Stopping criterion Two distinct stopping criteria can be used in the algorithm. A first

stopping criterion consists of stopping the algorithm iterations when a specified number

of segments are obtained. The advantage of this approach is that it enables to control the

number of segments obtained in the final segmentation. However, this approach can yield

a segmentation with segments still containing highly dissimilar superpixels.

A second stopping criterion consists of specifying a probability threshold t and of iter-

ating between steps 3 and 4 until no subgraph contains weights higher than this threshold.

The threshold can be fixed in an adaptative manner based upon the set of weights as ob-

served on the adjacency graph. Here, we propose the following procedure to select the

threshold value:

1. Sort the edges increasingly according to their weight.

2. Arbitrarily select a proportion of edges considered to be actual contours, and set the

corresponding weight as threshold.

This method for selecting the threshold has also the advantage that it partly allows to

control the number of segments in the final segmentation.

It is interesting here to discuss the refinement procedure proposed in step 4. The

refinement is conducted by progressively adding new seeds and re-propagating from the

new set of seeds on the whole graph. Hence, the Eikonal equation is solved a significant

number of times. One possibility to improve the efficiency of the algorithm is to add

more seeds at each iteration to reduce the number of iterations. The main issue with this

approach is that when multiple nodes are selected at each step of the algorithm, these nodes

often tend to belong to adjacent regions in the image. Hence, after re-propagation, the

corresponding regions can be over-segmented. To prevent this, it is therefore preferable to

add the new germs one by one. Since the complexity of the fast marching is inO(N log(N)),
N being the number of vertices in the graph, the computation time is not critical in our

problem. Hence, we considered that the best strategy was to progressively update the set

of seeds.

Finally, it is interesting to note that despite the refinement step, the segmentation

results remain dependent on the initial choice of germs. Since the germs are initially

randomly selected, it can lead to regions of the image that are artificially over-segmented.

To reduce over-segmentation and to diminish the influence of the initial seeds selection, a

simple post-processing step is conducted at the end of the algorithm.
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The post-processing is conducted by first extracting, for each pair of adjacent regions,

the maximal merging probability observed at the boundaries separating these regions.

This yields a dissimilarity measure between adjacent regions. The pairs of regions are

then processed by increasing order of dissimilarity. When the dissimilarity between a pair

of adjacent regions is below the threshold specified for the refinement step, these regions

are merged. During the procedure, a region can only be merged once, to avoid creating

regions of the adjacency graph containing edges with a weight greater than the threshold.

The post-processing allows to significantly reduce the number of clustered regions while

only slightly decreasing the boundary recall.

Comparison with normalized cut and SWA

In this section, we conduct a quantitative comparison of the Eikonal based merging

algorithm with two similar existing algorithms in the literature, namely the normalized

cut and the segmentation by weighted aggregation (SWA) algorithm. First, we recall the

normalized cut and SWA algorithms.

Normalized cut

In this section, we assume that the image to be segmented is represented using a region

adjacency graph G.

Definition

It is straightforward to note that a graph G = (V,E) can be partioned into two distinct

subsets A and B such that A∪B = G and A∩B = ∅ by removing all edges connecting the

two subsets. Let us assume that each edge linking adjacent regions is weighted according

to the dissimilarity between these regions. In this case, it is easy to define a global measure

of dissimilarity between the subsets A and B by considering the so-called cut cost

cut(A,B) =
∑

i∈A,j∈B
wij , (5.20)

where wij denotes the weight of the edge linking region i ∈ A and j ∈ B. Within this

framework, one can define the optimal bipartioning of a graph to be the one that minimizes

the cut cost. A considerable amount of work has been conducted to propose a number of

cut formulations.
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Optimization

First, let us introduce a few notations. For a given subset A of the graph, let us define

the total connection from the nodes in A to all nodes in the graph to be

assoc(A, V ) =
∑

i∈A,j∈V
wij . (5.21)

More generally, the total connection from the nodes in a subset A of the graph to the

nodes of a subset B is defined to be

assoc(A,B) =
∑

i∈A,j∈B
wij . (5.22)

The idea of Shi and Malik is to use as disassociation measure the normalized cut (Ncut),

defined by

Ncut(A,B) = cut(A,B)
assoc(A, V ) + cut(A,B)

assoc(B, V ) . (5.23)

Let us consider a weighted undirected graph G = (V,E). Given some partition of the

vertices into two subsets A and B, we can introduce the |V |-dimensional vector x such

that

xi =
{

1 if i ∈ A,
−1 if i ∈ B.

(5.24)

We define the total connection from node i to the other nodes by

d(i) =
∑
j

wij . (5.25)

Finally, we introduce the N ×N symmetrical matrix W defined by W (i, j) = wij , and the

N ×N diagonal matrix D defined by

D(i, j) =
{
di if i = j,

0 otherwise.
(5.26)

and we consider the quantities

k =
∑
xi>0 di∑
i di

(5.27)

and b = k
1−k . Then, in this case, it can be shown (see [SM00]) that minimizing the

normalized cut is equivalent to solving the optimization problem

min
y

yT (D−W)y
yTDy subject to yi ∈ {1,−b} and yTD1 = 0. (5.28)

In equation (5.28), if we relax y to take real values instead of the two discrete values

{1,−b}, the optimization problem equation (5.28) is equivalent to solving the generalized

eigenvalue system

(D−W)y = λDy. (5.29)
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More precisely, the second smallest eigenvector of the generalized eigensystem equation

(5.29) is the real valued solution to the normalized cut problem.

Due to the relaxation, the eigenvectors computed using this approach can take con-

tinuous values. Hence, we need to define a way to partition them in two parts. Several

methods have been proposed to partition the eigenvectors. In the original article of Shi

and Malik, the authors suggest to select l evenly spaced splitting points in the range of

values spanned by the eigenvector coefficients, to compute the l corresponding values of

the Ncut and to select the one yielding the minimal Ncut. An alternative to this method

is to rely on the k-means algorithm to partition the eigenvector coefficients.

Algorithm

In summary, when applied to image segmentation, the normalized cut algorithm pro-

ceeds as follows:

1. Given an image, compute a weighted graph G = (V,E) where the nodes V correspond

to the pixels and the edges E link all pairs of adjacent pixels. Set the weight of each

edge to be some measure of similarity between the nodes.

2. Compute the matrices D and W as defined above, and solve the generalized eigen-

system (5.29) for eigenvectors with the smallest eigenvalues.

3. Use the eigenvector with the second smallest eigenvalue to bipartition the graph.

4. Iterate until the number of segments is as required.

The normalized cut framework provides a lot of freedom for setting a dissimilarity

measure between adjacent regions. In the original article [SM00], Shi and Malik define the

similarity matrix W by relying upon brightness and spatial proximity, to get

Wij = e
−
||Fi−Fj ||

2

σ2
I e

−
||Xi−Xj ||

2

σ2
X 1[0,r](||Xi −Xj ||). (5.30)

Only neighboring pairs of pixels lying at a distance smaller than some threshold r are

considered. Usually, we find r = 5 pixels in the literature.

Finally, it is worth noting that the normalized cut algorithm can be employed to

perform the merging of regions. Exemple code is for instance available in the scikit-image

library. In this context, the normalized cut algorithm is employed on the region adjacency

graph constructed from the image partition. Dissimilarity measures between adjacent

regions can be obtained in a multiplicity of ways, for instance by considering the average

value of the gradient on the common boundary, the difference between their mean color

intensity, etc. When a training database is available for learning the segmentation, as it

is the case with the Berkeley Segmentation Dataset, an additional possibility is to try to

learn a probability of merging for two adjacent regions, which can be used to compute a

similarity measure.
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Segmentation by weighted aggregation

The segmentation by weighted aggregation (SWA) algorithm [SBB00] was initially

proposed in an attempt to reduce the computational cost of the normalized cut approach.

The algorithm is essentially based upon the normalized cut approach of Shi and Malik

and propose to reduce the complexity of the approach by considering a multiscale version

of the region adjacency graph. The runtime of this algorithm is linear in the number of

pixels.

We have a graph G = (V,E), where V is the ensemble of nodes (pixels), E is the

ensemble of edges between pixels. For a segment S(m) = (vm1 , vm2 , ..., vmnm ) ⊆ V , we

associate to it a state vector u(m) = (u1, u2, ..., uN ),

ui =

1, if vi ∈ S(m)

0, if vi /∈ S(m).
(5.31)

where ui ∈ R, N is the number of pixels. Let us denote by W the weight matrix,

W(i, j) = wij , where wij is the coupling between nodes i and j; and L is the Laplacian

matrix L = D −W, where D is the diagonal matrix defined in (5.26). Similarly to the

normalized cut algorithm, the aim of SWA is to minimize the energy

Γ(u) =
∑
i>j wij(ui − uj)2∑

i>j wijuiuj
= uTLu

1
2uTWu

(5.32)

which is the sum of weight along the boundary of a segment, normalized by the sum of its

internal weight.

The time complexity of the normalized cut algorithm is O(N
3
2 ). SWA provides an

approximated solution to this optimization by recursive coarsening, of which the runtime

is linear in the size of the image. It is inspired by Algebraic Multigrid (AMG) solvers,

initially used in physical systems of heat or electric networks. The graph is coarsened

scale after scale by selecting a set of representative nodes at each scale. The optimization

problem is solved at the coarsest scale, and the interpolation matrix at each scale are used

to relate this graph partition to its corresponding segment at the finest scale.

The central problems are how to choose the representative nodes at each scale, how

to obtain the weight matrix of a coarse scale knowing that at the finest scale, and how to

relate the state vector obtained at a coarse scale back to the finest scale.

Region adjacency graph coarsening

Let us denote by G[0] the original region adjacency graph of the image. At the pixel

level, G[0] := (V [0], E[0]), where V [0] is the set of all pixels in the image and E[0] contains
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the edges linking any pixel to its 4 closest neighbors. We assume that the edges eij are

weighted by the similarity wij , for example the probability pij that regions i and j belong

to the same segment.

The SWA algorithm proceeds by iteratively constructing a sequence of smaller graphs

G[1],G[2], ... and by computing interpolation matrices enabling to recover G[i−1] from the

coarser graph G[i]. The graph is recursively coarsen using a weighted aggregation procedure

by selecting seeds.

At each step s of the algorithm, the graph G[s] is constructed by selecting nodes from

the coarser graph G[s−1]. Following the notations used in [Alp12], let us denote by C the

set of the selected nodes in V [s−1] and by Cc its complementary. The selection is performed

by sequentially extracting the nodes in V [s−1], and by adding it to C when the following

criterion is met: ∑
j∈C wij∑

j∈V [s−1] wij
< ψ, (5.33)

where ψ is some threshold usually taken equal to 0.2. When the criterion is met, it indicates

that the current node selected in V [s−1] is strongly dissimilar to the nodes already in C, and

has therefore to be added to the subsequent scale description. Obviously, this approach is

strongly dependent on the order over which the nodes are processed. Alpert et al. suggest

to extract the nodes in V [s−1] by decreasing size. Once a subset C of nodes is selected

in V [s−1], we can set V [s] := C. We are however still left with the computation of the

similarity matrix between the selected nodes. The similarity matrix computation is based

upon the interlevel interpolation method described below.

Interlevel interpolation

For each node i ∈ Cc, let us denote by Ni = {j ∈ C, wij > 0} its coarse neighborhood.

Now, let us define the interpolation matrix T := T[s−1][s]:

Tij =


wij/

∑
k∈Ni wik if i ∈ Cc, j ∈ Ni
1 if i ∈ C, j = i

0 otherwise

(5.34)

The matrix T[s−1][s] can interpolate between the graphs at scales s and s−1, respectively.

Tij can be interpreted as the likelihood of the node i belonging to the aggregate j. The

process of relating the coarse to fine nodes is called weighted aggregation, since a node at

scale s is an aggregate of a set of strongly coupled nodes at scale s− 1.

Knowing the state vector u[s], u[s−1] can be obtained by using the interpolation matrix:

u[s−1] ≈ Tu[s] (5.35)
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Substitute u[s−1] by its approximation in (5.35), we have

u[s−1]TLu[s−1]

1
2u[s−1]TWu[s−1] ≈

u[s]TTTLTu[s]

1
2u[s]TTTWTu[s] (5.36)

Hence, the affinity matrix W[s] at scale s can be computed from the affinity matrix W[s−1]

at scale s− 1:

W[s] = TTW[s−1]T. (5.37)

We obtain a similar expression for the Laplacian matrix L[s].

The couplings at a coarser level can be computed by the relation equation (5.37),

knowing the initial weight matrix W. The simplest way to construct W is to consider

the intensity difference and set wij = e−α|Ii−Ij |, Ii, Ij being the average intensity of the

corresponding region of the node vi, vj . In [Alp12], Sharon et al. proposed a Bayesian

approach that integrates both color intensity and texture cues using a mixture of experts-

mike model to compute the merging propabilities pij between adjacent pixels, and use it

as the similarity wij . The SWA algorithm can be easily adapted to work with any method

for computing the merging probability.

Besides being directly derived from the previous level, the weight w
[s]
ij at level s can also

be modified to incorporate the statistics of each block, for example the average intensity

level [SBB01]. The couplings can also be recalculated at each scale based on the region

properties, without inheriting from the previous level. More details can be found in [Alp12].

During the coarsening process, the pixels are aggregated into a small number of most

representative clusters step by step. After aggregating to the coarsest level, the state

vector u is propogated back to the finest scale by using the relation equation (5.35), thus

returning the segmentation.

Results and discussion

In this section, we present the results of the fast marching algorithm used for superpix-

els merging in this study. To evaluate the results, we rely on the Berkeley Segmentation

Dataset (BSDS500) as in previous chapters. Here, our objective is to start from a su-

perpixel partition of a specified image, containing roughly 500 superpixels, and to merge

the superpixels to reduce their number around 60 − 80. The resulting oversegmentation

contains a “reasonable” number of segments and can constitute a good support to apply a

classification algorithm relying on higher level features to complete the segmentation. The

complete segmentation approach will be illustrated on a database of cloud images later in

the manuscript.
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Experiments

The approach that we propose starts from an initial superpixel segmentation of the

considered image. Here, we employ the fast marching based superpixel algorithm described

in chapter 2 in the manuscript. However, any superpixel algorithm, for instance SLIC,

could be employed instead. In our evaluation, we start from a superpixel segmentation

containing exactly K = 500 superpixels. The next step in our approach is to compute a

region adjacency graph (RAG) for our image. Each region of the image is associated to a

node of the RAG, and each pair of adjacent regions is represented by an edge, weighted

by the probability that both regions should belong to the same segment.

To evaluate the performance of our algorithm with respect to other existing methods

in the literature, we adapted two classical algorithms, namely the normalized cut (Ncut)

and the segmentation by weighted aggregation (SWA) algorithms to our weighted RAG

setting. It is straightforward to apply the original Ncut algorithm to our image description.

The Ncut algorithm is indeed defined for undirected graphs whose edges carry a measure

of similarity between adjacent nodes. Here, the edges of the RAG used to represent the

image are weighted by their probability of belonging to the same segment, which obviously

constitutes some similarity measure. Hence, the Ncut algorithm as originally formulated

in the framework of graphs can directly be applied to our problem. To compute the Ncut

segmentation, we directly rely on the implementation available in the library scikit-learn.

It is also relatively straightforward to adapt the original SWA approach of Galun et al

[Gal03] to the RAG description adopted here. In the original SWA algorithm, probabilities

of merging are iteratively computed in a hierarchical manner from contour and color cues.

At each scale, the SWA combines the information of the previous scales to come up with

new contour and color cues, that are subsequently transformed into a similarity matrix

between adjacent regions in the image.

Here, as described previously in the manuscript, we directly rely on a classifier (either

a random forest classifier or a gradient boosting algorithm) taking different cues as input

features to evaluate the probability of merging each pair of adjacent regions. To compare

our approach to the SWA algorithm, we therefore replace the original probability model

by our XGBoost classifier. Starting from the resulting region adjacency graph, the SWA

algorithm proceeds by coarsening the graph. To that end, the graph vertices are grouped

into two subsets C and Cc. Initially, the subset C is empty. Then, the vertices of the graph

are processed one by one and added to C if they are “strongly dissimilar” to their neighbors

already in C. More precisely, if i is the node currently being processed, we compute the

quantity S(i) defined by:

S(i) =
∑
j∈Ni∩C pij∑
j∈Ni pij

,

where Ni denotes the subset of all vertices of the RAG adjacent to node i and pij the
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probability of merging regions i and j. If S(i) is below some specified threshold ψ, then

the region i is added to C. Once all nodes have been processed, the vertices in C constitute

a coarsened version of the original RAG.

To obtain an actual image segmentation, it remains to associate each vertex in Cc to

one node in C. To that end, we associate each vertex i in Cc to the vertex j in Ni ∩C with

highest merging probability pij . Obviously, the order over which the vertices of the graph

are processed to construct the coarsened graph influences the result. Here, we iterate over

vertices sorted in a decreasing order according to the area of their corresponding region in

the image. Other approaches could have been considered, as randomly selecting a vertex

at each time.

In our study, we considered two approaches. In the one-stage approach, we train

a classifier on the region adjacency graph obtained from the initial superpixel partition,

before reducing the number of segments in a single stage from 500 to a number in the range

50− 100, which depends on the threshold specified in the Eikonal merging algorithm. In

the multi-stage approach, we perform the merging more gradually, by iteratively merging

regions to reduce the size of the RAG and re-training to compute new dissimilarities

between regions at intermediate steps.

Region metrics

To compare the segmentation results quantitatively, we use the region metrics men-

tioned in [Arb11]. Different from boundary metrics such as boundary recall, these metrics

are less sensitive to localization errors, are therefore more appropriate for the evaluation

of region based segmentation algorithms.

— Segmentation covering measures the average matching between a segmentation and

a ground truth.

SC(S, Sg) =
∑
si∈S

|si|
|P|

max
sj∈Sg

|si ∩ sj |
|si ∪ sj |

, (5.38)

where S is a segmentation, Sg is a ground truth segmentation, and P is the set of

pixels. The segmentation covering is the largest overlapping ratio (intersection over

union) with the ground truth segment sj , weighted by the ratio of number of pixels

within the segment si, summed over the segments. The maximum possible value 1

can be achieved when S is identical with Sg.

— Rand index [Ran71] originally measures the similarity between two clusterings. Here

it is used to measure the similarity between the segmentation S with the ground truth
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segmentation Sg.

RI(S, Sg) = 1(|P |
2
) ∑
i<j

[I(S(i) = S(j)∧Sg(i) = Sg(j) + I(S(i) 6= S(j)∧Sg(i) 6= Sg(j))]

(5.39)

where i and j are pixels, I is the indicator function, S(i), Sg(i) are the segment

labels of pixel i in the segmentation S and the ground truth Sg respectively. The

number of pixel pairs having the same relation in the two segmentations, namely

inside the same segment or in different segments, both in the segmentation S and in

the ground truth segmentation Sg, is counted, and divided by the total number of

pixel pairs. We take the average of the Rand index over multiple ground truths.

— Variation of information [Mei03] measures the distance of two clusterings through

the average conditional entropy

V I(S, Sg) = H(S) +H(Sg)− 2I(S, Sg) (5.40)

where entropy H(S), H(Sg) measure the uncertainty about S and Sg respectively,

and I(S, Sg) is the mutual information, showing the reduction of uncertainty. The

entropy of a segmentation S is defined as

H(S) = −
K∑
i=0

P (i) logP (i) (5.41)

where K is the number of segments in S, P (i) is the probability of a pixel being in

segment si, P (i) = |si|
N . H(Sg) can be similarly obtained. The mutual information

between two segmentations is defined as

I(S, Sg) =
K∑
i=0

G∑
j=0

P (i, j) log P (i, j)
P (i)P (j) (5.42)

P (i, j) = |si ∩ sj |
N

where si ∈ S, sj ∈ Sg, P (i, j) is the probability of a pixel being in segment si in S,

and in ground truth segment sj in Sg.

I(S, Sg) = H(S) +H(Sg)−H(S, Sg) (5.43)

Thus we have two other representations of the variation of information:

V I(S, Sg) = 2H(S, Sg)−H(S)−H(Sg) (5.44)

V I(S, Sg) = H(S|Sg) +H(Sg|S), (5.45)

where H(S|Sg) and H(Sg|S) are conditional image entropies:

H(S|Sg) =
K∑
i=0

G∑
j=0

P (i, j)log P (j)
P (i, j) (5.46)

similarly for H(Sg|S).
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One-stage algorithm

In the one-stage approach, starting from images with K = 500 superpixels, we decrease

in a single step the number of segments to an average number of 50−100 segments. Hence,

the superpixels are merged according to one single round of training, conducted on the

initial RAG with the training images of the Berkeley Segmentation Dataset (BSD). For

this approach, we only compare the results of the Eikonal approach to the ones obtained

with the normalized cut algorithm. It is indeed difficult to obtain the requested number

of segments with the SWA algorithm in a single coarsening stage.

For running the Eikonal algorithm, as described in the previous section, we need to

specify a threshold value t so that any region cannot have an internal edge higher than t.

Here, we select t equal to the weight separating the 25% highest weights to the others 75%,

before computing the segmentation. The segmentation yields a partition of the original

image into K ′ segments. To conduct the comparison with the normalized cut algorithm, we

compute a normalized cut segmentation with a specification of K ′ segments. We present

the segmentation results in terms of boundary recall, boundary precision, covering, rand

index and variation of information. The results obtained on the test set of the BSDS500

are shown in table 5.1 below.

Eikonal Norm. cut

boundary recall 0.79± 0.08 0.70± 0.08
Min.-Max. bound. recall 0.57-0.95 0.52-0.90

boundary precision 0.32± 0.11 0.28± 0.09
Min.-Max. bound. prec. 0.08-0.65 0.08-0.60

covering 0.23± 0.09 0.12± 0.06
Min.-Max. covering 0.06-0.52 0.03-0.41

rand index 0.75± 0.13 0.72± 0.13
Min.-Max. rand index 0.24-0.95 0.23-0.95

VoI 2.31± 0.44 2.90± 0.46
Min.-Max. VoI 1.24-3.55 1.60-4.14

number of segments 76± 13 75± 13
Min.-Max. segments 45-122 45-120

Table 5.1 – Results of the Eikonal and the normalized cut algorithm on the test images of the

BSDS500.

Overall, we can note that the Eikonal approach performs significantly better than the

normalized cut. A possible explanation is that the Eikonal approach is more robust to the

estimation errors of the classifier used to compute the weights of the RAG. In addition,

the refinement procedure introduced in the Eikonal algorithm significantly improves the

results.
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(a) FMS, K = 500 (b) Eikonal merging, K ′ = 79 (c) Ncut, K ′ = 79

(d) Image 70090 (e) Average color image of

eikonal graph segmentation

(f) Average color image of

Ncut segmentation

Figure 5.1 – One-stage segmentation of a test image of the BSD using Eikonal algorithm. The

boundary recall is 0.81 (Eikonal) and 0.72 (Ncut), the boundary precision is 0.17 (Eikonal) and

0.16 (Ncut).

We also display the results obtained on images of the BSD in figure 5.1 and figure 5.2.

We observe from the images that, compared to the normalized cut algorithm, the Eikonal

graph merging algorithm yields fewer segments for homogeneous regions, as can be seen

for the sky and the water in figure 5.2, and more small and contrasted regions such as the

windows on the buildings or on the boat. Firstly, the details are kept at the superpixels

level due to the refinement step of the FMS. Then in the refinement step of Eikonal graph

merging, seeds are added at pairs of vertices with the highest dissimilarity.

99



CHAPTER 5. REGION MERGING

(a) FMS, N = 500 (b) Image 78098

(c) Eikonal graph merging, K ′ = 80 (d) Average color image of eikonal graph seg-

mentation

(e) Ncut segmentation, K ′ = 80 (f) Average color image of Ncut

Figure 5.2 – One-stage segmentation of a test image of the BSD using Eikonal algorithm. For

this image, the boundary recall is 0.69 (Eikonal) and 0.63 (Ncut), the boundary precision is 0.30
(Eikonal) and 0.26 (Ncut).

Multi-stages algorithm

We see that with a single stage, the boundary recall decreases while the precision

increases when the number of segments is reduced. The aim of the multi-stages algorithm

is to achieve a larger improvement of precision with the same amount of reduction of

recall. In the multi-stages approach, starting from images with K = 500 superpixels, we

decrease in several steps the number of segments to an average value of 50−100 segments.

The superpixels are therefore merged according to several rounds of training. Once a
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segmentation is obtained, the corresponding region adjacency graph is computed and a

new classifier is trained to estimate the probability of merging each couple of adjacent

regions. To train the classifier, we use the training images of the BSDS500. The validation

images are used for hyperparameter tuning.

Here, we present a two-stage version of the algorithm. For running the Eikonal algo-

rithm, we select at each stage a threshold t equal to the weight separating the 55% highest

weights in the RAG to the other 45%. We compute a normalized cut segmentation with

the same number of segments as the Eikonal algorithm. Finally, to conduct a comparison

with the SWA algorithm, we apply two stages of coarsening to the original RAG represent-

ing the image. After the first stage of coarsening, a classifier is trained on the intermediate

RAG of Eikonal graph merging. The threshold of SWA is adjusted to make sure that the

number of segments is comparable to eikonal graph merging and the Ncut. The results

obtained on the test set of the BSD are shown in tables 5.2 and 5.3 below.

Eikonal Norm. cut SWA

boundary recall 0.84± 0.07 0.80± 0.07 0.82± 0.07
Min.-Max. bound. recall 0.67-0.96 0.61-0.94 0.63-0.95

boundary precision 0.27± 0.09 0.24± 0.08 0.24± 0.08
Min.-Max. bound. prec. 0.08-0.57 0.07-0.48 0.07-0.50

covering 0.16± 0.08 0.08± 0.04 0.08± 0.04
Min.-Max. covering 0.04-0.47 0.02-0.28 0.02-0.27

rand index 0.73± 0.13 0.72± 0.13 0.72± 0.13
Min.-Max. rand index 0.23-0.95 0.22-0.94 0.22-0.94

VoI 2.76± 0.46 3.38± 0.43 3.37± 0.41
Min.-Max. VoI 1.53-3.93 2.07-4.40 2.08-4.35

number of segments 150± 10 143± 9 151± 10
Min.-Max. segments 121-172 119-163 125-175

Table 5.2 – Results of the Eikonal, the normalized cut and SWA algorithm on the test images of

the BSDS500.

We see that the Eikonal graph merging slightly outperforms the normalized cut and

SWA under both boundary metrics and region metrics. The average VoI of our algorithm

is noticeable smaller than that of the other two algorithms. Compared with the single

stage (F=0.46), a better F-score (0.49) and better region metrics are achieved, with a

smaller number of segments.

For a multi-stages algorithm, the choice of step of segments reduction is essential. We

see that the recall is reduced after one merging stage, and the wrongly merged regions

can never be recovered during the subsequent stages. We observe in [RS13] that the step

becomes smaller and smaller as the number of segments is reduced.
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Eikonal Norm. cut SWA

boundary recall 0.76± 0.09 0.74± 0.08 0.76± 0.09
Min.-Max. bound. recall 0.52-0.94 0.53-0.93 0.54-0.94

boundary precision 0.36± 0.12 0.31± 0.11 0.31± 0.10
Min.-Max. bound. prec. 0.09-0.73 0.09-0.67 0.10-0.65

covering 0.32± 0.12 0.23± 0.09 0.21± 0.09
Min.-Max. covering 0.09-0.71 0.07-0.52 0.06-0.50

rand index 0.77± 0.13 0.75± 0.13 0.74± 0.13
Min.-Max. rand index 0.26-0.96 0.24-0.95 0.24-0.95

VoI 1.95± 0.43 2.33± 0.44 2.36± 0.41
Min.-Max. VoI 0.80-3.11 1.25-3.49 1.36-3.49

number of segments 66± 10 63± 9 65± 7
Min.-Max. segments 42-95 42-94 51-87

Table 5.3 – Results of the Eikonal, the normalized cut and SWA algorithm on the test images of

the BSDS500.

In figure 5.6, SWA achieves a better recall than Eikonal graph (EG) merging. For EG,

when selecting new seeds, the region pair with the highest dissimilarity is firstly considered.

Highly contrasted small regions such as the windows in the building are dissimilar with

their surrounding, so they are kept during the merging. When the number of segments is

limited, there remains fewer seeds to represent more important regions. Considering this,

a criteria of region size can be applied when selecting new seeds.
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(a) Eikonal graph merging (b) Ncut (c) SWA

(d) Average color of EG (e) Average color of NC (f) Average color of SWA

Figure 5.3 – Result of the first stage of the segmentation of a test image of the BSD using the

Eikonal graph, normalized cut and SWA algorithm. Images in the second row show the average

color of each segment. “EG”represents Eikonal graph merging, “NC”for Ncut. The boundary recall

are 0.84, 0.80, 0.80; the boundary precision are 0.15, 0.13, 0.13, and the final partition comprises

153, 150, and 154 segments respectively.
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(a) Eikonal graph (b) Ncut (c) SWA

(d) Average color of EG (e) Average color of NC (f) Average color of SWA

Figure 5.4 – Result of the second stage of the segmentation of a test image of the BSD using the

Eikonal graph, normalized cut and SWA algorithm. For this image, the boundary recall are 0.76,

0.73, 0.74; the boundary precision are 0.19, 0.18, 0.17, and the final partition comprises 61, 60,

and 59 segments respectively.
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(a) Eikonal graph merging (b) Average color of EG

(c) Ncut (d) Average color of NC

(e) SWA (f) Average color of SWA

Figure 5.5 – Result of the first stage of the segmentation of a test image of the BSD using the

Eikonal graph, normalized cut and SWA algorithm. The boundary recall are 0.75, 0.73, 0.71; the

boundary precision are 0.26, 0.24, 0.23. The final partition comprises 152, 151, and 152 segments

respectively.
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(a) Eikonal graph merging (b) Average color

(c) Ncut (d) Average color

(e) SWA (f) Average color

Figure 5.6 – Result of the first stage of the segmentation of a test image of the BSD using the

Eikonal graph, normalized cut and SWA algorithm. The boundary recall are 0.64, 0.63, 0.69; the

boundary precision are 0.33, 0.29, 0.30. The final partition comprises 70, 67, and 69 segments

respectively.
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Perspectives

As we have discussed in the previous subsection, a criteria of region size can be applied

when selecting new seeds, to place seeds only in regions with area larger than a threshold.

In this chapter, two merging stages were applied. We also tried more stages of merging,

but the improvement of precision is trivial. It might be because the number of training

instances is reduced as more stages of merging are applied, while it is crucial for the

accuracy of the classifier. The idea in [NI13] might be helpful for increasing the number

of training instances. The main principle is to use a classifier to decide the merging order

of training instances, then to train a new classifier with these training instances, and get

new training instances by merging regions in the order specified by the new classifier, and

so on. In the end, all training instances from each step are concatenated to train a single,

final classifier. Using such an approach would allow us to update the weights of the RAG

during the Eikonal propagation and could potentially improve the results of the merging

algorithm.
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Chapter 6

Application

In this short chapter, we present an application of our approach to perform the seg-

mentation of a dataset of cloud images. The cloud segmentation of ground-based whole

sky images is of great importance in applications such as weather prediction or to help

positioning large scale solar field arrays. Here, we rely on the segmentation framework

developed in the previous chapters for the segmentation of images from the Singapore

Whole Sky Imaging segmentation (SWIMSEG) database [DLW17].

Introduction

Ground-based whole sky imagers equipped with fisheye lens have a field of view of

about 180°, and provide high temporal and spatial resolution for sky observations. Cloud

segmentation on ground-based cloud images constitutes a prerequisite for computing in-

formation such as cloud cover, that can subsequently be exploited for weather forecast or

renewable energy generation applications. Human observations are subjective and some-

what inconsistent, therefore an automatic segmentation of cloud images through image

analysis is desirable.

Figure 6.1 – A whole sky image.

An example of a whole sky image is given in figure 6.1. Pre-processings including

color, illumination and geometry calibration have to be conducted prior to segmentation,
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to compensate for the vignetting and distortion induced by the camera. Figure 6.2 are

examples of images in SWIMSEG database after aforementioned processings, together

with ground truth segmentations from experts.

A significant difficulty of cloud sky segmentation is the color change due to illumination,

due to factors including the change of sunlight during different times in a day or different

weather conditions. Another difficulty is that the appearance of clouds varies, so that it is

sometimes difficult to delineate a clear boundary between sky and cloud as in figure 6.2c.

(a) (b) (c)

(d) (e) (f)

Figure 6.2 – Examples of images and ground truth from the SWIMSEG database. The first row

displays the images to be segmented, while the second row corresponds to binary ground truth

images with black representing sky and white representing cloud.

Early cloud segmentation algorithms often rely on a fixed thresholding operation of

the ratio of blue intensity (B) over red intensity (R), or R−B [Lon06; HMS10]. However,

the fixed thresholding does not work well under different sky conditions. Li et al. [LLY11]

proposed in 2011 a Hybrid Thresholding Algorithm (HYTA) for cloud detection on ground-

based images, combining fixed and adaptive thresholding methods. The RGB image is

firstly transformed into a single channel image with the normalized blue/red channel ratio

at each pixel. The ratio images are then identified to be unimodal or bimodal images

according to a standard deviation criterion. A fixed thresholding is then applied on the

unimodal images, and a minimum cross entropy thresholding on the bimodal images. This

110



CHAPTER 6. APPLICATION

algorithm is one of the state-of-the-art approaches.

A cloud segmentation algorithm based on superpixel segmentation is presented in

[Liu15]. A ground-based cloud image is firstly oversegmented using the normalized cut

algorithm. A global threshold on R − B feature image is then computed through Otsu

algorithm, and a local threshold for each superpixel is obtained by comparing the local

maximal and minimal intensity with the global threshold. A threshold matrix with the

same size as the feature image is constructed through bilinear interpolation, and the seg-

mentation is obtained by pixelwise comparison between the feature image and the thresh-

old matrix. This algorithm achieves better results than fixed threshold, global threshold

and local threshold interpolation based algorithms. Superpixels are used in this algorithm

as a support for local threshold calculation, but the classification is done pixelwise.

In [DLW17], Dev et al. conducted a systematic analysis of color spaces and components

for cloud sky segmentation, and proposed a supervised segmentation approach for ground-

based sky cloud images based on partial least-squares regression. An advantage of the

learning based approach is that no threshold or manually defined parameters are required.

Instead of returning a binary classification, a probabilistic classification of cloud pixels is

provided, allowing for a soft thresholding.

In classical cloud image segmentation algorithms, a single feature is usually used, for

instance the red blue ratio for classification, as in [DLW17; LLY11]. In addition, the

segmentation is performed through a classification task. Here, we adopt a completely

distinct approach where we apply a general segmentation algorithm to the images, with

predefined features. Hence, there is no prior information given to the algorithm to perform

the segmentation, and the algorithm can only rely on a limited number of training examples

to fulfill its task. This allows us to reduce the oversegmentation to a total of roughly 50
regions, before applying a specific, simple classification to the images. Our objective is to

see if the non specific machine learning segmentation framework developed in the previous

chapters can match the performances of the specific segmentation algorithms developed

to handle this classical problem.

Segmentation procedure

We test our segmentation framework on the SWIMSEG database, an image dataset

with 1013 annotated whole sky images with 600 × 600 pixels. The images are taken by

ground-based cameras, and then processed to eliminate the vignetting and the geometric

distortion caused by the fish-eye lens. A binary ground truth segmented by experts is

provided for each image. Figure 6.2 shows examples of cloud images from the SWIMSEG

database as well as their ground truth segmentations.
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The segmentation process works as follows:

1. Superpixel oversegmentation. The image is oversegmented into 800 regions through

FMS with parameters w0 = 5, w1 = 8.

2. Labelling. An adjacent region pair is labelled to ’1’ if both regions belong to the

same ground truth segment, or labelled to ’0’ if not.

3. Features calculation. A feature vector with 184 elements is extracted for each pair

of adjacent regions, including geometric features (maximum and minimum of region

area, the ratio between them, the maximum and minimum of region perimeter, the

ratio between them, and the length of the contour separating two regions), color fea-

tures (the absolute value of the difference of the average of each color channel in the

RGB, LAB and HSV color space, and the earth mover’s distance of histograms from

RGB channels respectively), texture features (the absolute value of the difference of

average responses of Gaussian filters and Gaussian Laplacian filters with different

sigma, χ2 distance of histograms of textons from aforementioned filters, and χ2 dis-

tance of textons from RGB color channels) and gradient features (minimal, maximal,

mean values and the median of the gradient on the contour).

4. Similarity learning. We train a random forest classifier with feature vectors and labels

of adjacent region pairs from training images to predict the merging probability of

an adjacent region pair.

Since the images in SWIMSEG are much more homogeneous than natural images in

BSDS, we expect that a model learned with a small number of representative images

would generalize well to the rest of the images in the dataset. Therefore we use 20,

50 and 500 randomly selected training images respectively, and the rest images as

test images.

5. Eikonal graph clustering. We construct a region adjacency graph by taking super-

pixel regions as nodes and linking adjacent regions by an edge. For test images, the

merging probability of the adjacent regions pair is used as the edge weight in the

RAG. For Eikonal based clustering, 8 initial seeds are randomly selected and 2 seeds

are added at each refinement step. For each image, the weights are sorted and the

threshold is set to the weight separating the 10% highest weights to the other 90%.

After the merging step, we have an oversegmentation of about 50 regions.

6. Segmentation using color information. We classify in this step the segments af-

ter merging into cloud and sky regions through k-means clustering. According to

[DLW17], R/B, B−R
B+R (normalized BR ratio) and saturation channels are most rel-

evant to cloud segmentation (R and B being red and blue channel respectively).

Therefore we rely on the normalized BR ratio for the classification.

We calculate the normalized BR ratio with the average color in each region, and

then use k-means clustering to find two clusters. These clusters are then classified

to be cloud cluster or sky cluster according to their respective ratio. The cluster

with larger ratio is classified as cloud cluster, and the regions associated with it are
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classified as cloud, since the cloud always has a larger red component than sky.

Results and discussion

Three examples of the segmentation obtained with 20 training images are provided

in figure 6.3. We see that our segmentation resembles the ground truth except for a few

regions. Quantitative evaluations, including pixelwise precision, recall and F-score are

shown in table 6.1.

Num of training images precision recall F-score

0 0.902 0.919 0.892

20 0.905 0.919 0.896

50 0.903 0.922 0.897

500 0.907 0.918 0.899

500 Dev 0.92 0.90 0.90

Table 6.1 – Results of cloud sky segmentation with 800 superpixels. The first row are the results

of direct application of k-means on the superpixels without learning and merging. The last row

are results of the algorithm proposed in [DLW17].

Num of training images precision recall F-score

0 0.890 0.918 0.882

20 0.896 0.907 0.883

500 0.902 0.908 0.890

Table 6.2 – Results of cloud sky segmentation with 200 superpixels. The first row are the results

of direct application of k-means on the superpixels without learning and merging.

We can see from table 6.1 that our approach achieves state-of-the-art segmentation

performance on the SWIMSEG database with only 20 training images. The performance

does not improve apparently with additional training images. We also notice that the

direct segmentation on superpixels achieves good results, and the involvement of learning

and merging process does not apparently improve the F-score. A possible reason is that the

largest difference between cloud and sky pixels lies in the red and blue channels. Therefore,

in the next step, it is interesting to run random forest with only color related features for

instance R−B, R/B, (B−R)/(B+R), and saturation. A feature selection could be done

to find the most effective features to reduce the calculation time in real applications.

We also tested the algorithm with 200 FMS superpixels, the results of which are shown

in table 6.2. We can see that the number of initial superpixels has an influence on the

segmentation performance. With 200 superpixels we can still achieve a F-score of 0.890.
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The reduction of superpixel numbers reduce both the time of superpixel generation and

the time of feature calculation. The number of superpixels can be chosen relying on the

trade off between segmentation accuracy and the calculation time.

More complicated features such as the texture features could potentially be useful for

the classification of different clouds (cumuliform, stratiform, etc.), which is generally the

next step of the cloud segmentation.
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Figure 6.3 – Examples of cloud sky segmentation. The second row shows superpixels images,

the third row shows the average color images after superpixel merging, the fourth row shows

segmentation results, the last row shows ground truth images.
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Conclusion

In this manuscript, we presented a general methodology for performing the segmen-

tation of a dataset constituted of similar images with only a few annotated images as

training examples. This methodology is intended to be applied to images gathered in

earth observation or materials science applications, where there is not enough annotated

segmentation examples to use state-of-the-art deep learning algorithms.

The proposed methodology starts from a superpixel partition of the image and uses a

merging algorithm which gradually merges the initial regions until an actual segmentation

is obtained. The main contributions described in this PhD manuscript are the develop-

ment of a new superpixel algorithm which makes use of the Eikonal equation and of the

fast marching resolution method, and the development of a superpixel merging algorithm

steming from the adaptation of the Eikonal equation to the setting of weighted graphs.

In the first part of the manuscript, corresponding to chapters 2 and 3, we introduced

two novel algorithms that can be used to compute a superpixel partition and a hierarchical

partition of the image, respectively. The superpixel algorithm presented in chapter 2

makes use of the Eikonal equation to generate the superpixel partition, in a way relatively

similar to the algorithm introduced by Buyseens et al. [Buy14b]. This algorithm compares

favorably to other state-of-the-art superpixel algorithms on the Berkerley Segmentation

Dataset.

In the second part of the manuscript, corresponding to chapters 4 and 5, we presented

an algorithm performing superpixels merging based upon learned similarities between ad-

jacent regions. The superpixels merging approach makes use of a region adjacency graph

computed from the superpixel partition. The edges are weighted by a dissimilarity measure

corresponding to the probability that superpixels belong to distinct segments of the final

segmentation. A machine learning algorithm based upon random forests and XGboost

classifiers was specifically designed for evaluating inter-region dissimilarity depending on

low-level cues computed on the superpixels. A procedure using an adapted version of the

Eikonal equation to the setting of graphs was finally used to perform the clustering of the

region adjacency graph. When compared to classical approaches for performing region
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mergings, including the normalized cut algorithm and the segmentation by weighted ag-

gregation, the proposed approach yielded overall better results on most classical metrics

used to evaluate segmentations.

The global approach to image segmentation was finally evaluated on a dataset of sky

cloud images. On this dataset, using only a limited amount of images for training our

algorithm, we were able to obtain segmentation results similar to the ones obtained with

state-of-the-art algorithms.

Perspectives

Several directions of research can be thought of after the present work.

— For the Eikonal based superpixel algorithm, the weights of color and texture distance

terms are chosen at dataset level, which is not optimal for each image. In the next

step, we could try to determine the weights locally, adaptive to the image content.

— Although we aim to develop a general methodology of segmentation, we should notice

that for the segmentation of images in a specific domain, features should be selected

to adapt to the characteristics of the images for the sake of computational efficiency.

For example, for cloud images, features in Lab color space is less important than

those in RGB color space, and could therefore be eliminated.

— Another potential direction of research is directly related with the merging algorithm

using to combine the superpixels into actual segments. In its current state, a similar-

ity measure between adjacent regions is computed before merging, and the weights

are kept constant during the merging procedure. Following the idea in [NI13], it

might be interesting to try to update the weights of the region adjacency graph

dynamically during the merging process.
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Appendices

Proof of proposition 2.3.3

We recall equation (2.23):

max(tij − tA, 0)2 + max(tij − tB, 0)2 = 1
u2
ij

where tA = min(ti−1,j , ti+1,j) and tB = min(ti,j−1, ti,j+1). By construction, (i, j) is adja-

cent to at least one frozen pixel. Without loss of generality, we can assume that A belongs

to the frozen set and that tA ≤ tB. B can be frozen, in the narrow band, or far away (in

the latter case, tB = +∞).

Proof. When the condition tA ≤ tij ≤ tB is fullfilled, equation (2.23) becomes

max(t− tA, 0)2 = 1
u2
ij

. (A.1)

Since t ≥ tA, the only possible solution is

t = tA + 1
uij

(A.2)

This solution is only valid if

tA + 1
uij
≤ tB, (A.3)

which is satisfied automatically, since we follow the front propogation, tA ≤ tij ≤ tB means

the front reaches (i, j) before it reaches (i, j − 1) or (i, j + 1).

When this condition is not satisfied, namely tA ≤ tB ≤ tij , equation (2.23) reads

(t− tA)2 + (t− tB)2 = 1
u2
ij

, (A.4)

and has two distinct, real solutions. The discriminant of (A.4) is indeed

∆ = 2
u2
ij

− (tA − tB)2 (A.5)
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and is strictly positive since
1
uij
≥ tB − tA. (A.6)

Hence, the two solutions of (A.4) are

t± = tA + tB
2 ± 1

2
√

∆. (A.7)

Among these two solutions, only one satisfies the condition t ≥ tA.

Numerical scheme for the Eikonal equation

We discuss in this section the numerical scheme used to solve the Eikonal equation.

The presentation of this topic is inspired by the classical article published by Sethian in

1999. Here, our aim is to show that the numerical scheme proposed to solve the Eikonal

equation with the fast marching method on a discretized domain Ω ⊂ R2 is stable.

Convergence of the fast marching algorithm

In the following, let us consider a 1D domain Ω, discretized on a grid {x0, x1, x2, .., xN}
with uniform spacing ∆x. On the domain, the Eikonal equation takes the form

u(x)‖∇T (x)‖ = 1.

We set u(x0) = 0 as boundary condition, and we assume that there exists some constant

C > 0 such that u(x) > C,∀x ∈ Ω. To compute the arrival at some point xj , j ∈ {1, ..., N}
of the grid, we rely on the discretization formula

max
(
Tj+1 − Tj

∆x ,
Tj+1 − Tj

∆x , 0
)2

= 1
u(xj)2 .

In this expression, Tj denotes the arrival time T (xj) at point xj . The discretization formula

can be recasted as:
u(xj)
∆x

(
Tj −min(Tj+1, Tj−1, Tj)

)
− 1 = 0.

When the discretization step ∆x tends to 0, we obtain

u(xj) max(T ′(xj),−T ′(xj), 0)− 1 = 0,

so that

u(xj)|T ′(xj)| − 1 = 0,

since max(T ′(xj),−T ′(xj), 0) = |T ′(xj)|. When the discretization step decreases to zero,

we recover the original 1D Eikonal equation: this proves that the numerical scheme is

consistent. Proposition A.2.1 below proves the stability of the fast marching algorithm.
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Proposition A.2.1. For any j > 0, we have

Tj =
j∑

k=1

∆x
uk

.

Proof. Due to the topology of the considered domain, the propagation front visits the

points xk, k ∈ {0, ..., N} by increasing indices. Therefore, for j ∈ {0, N − 1}, we have

Tj+1 − Tj
∆x = 1

uj+1
.

according to the discretization formula. Summing between O and j therefore yields

Tj =
j∑

k=1

∆x
uk

.

A direct consequence of proposition A.2.1 and of the assumption u(x) > C,∀x ∈ Ω is

stated in the following corollary:

Corollary A.2.1.1. For all j ∈ {0, ..., N}, we have

0 ≤ Tj ≤
j∆x
C

<
L

C
,

where L := N∆x is an upper bound on the size of the domain.

Corollary A.2.1.1 states that, in the 1D case, the arrival times are uniformly bounded.

In addition, the bound is independant from the discretization step ∆x when the discretiza-

tion domain is finite. This proves that the fast marching algorithm is stable in the 1D

case. Being both stable and consistent, the fast marching algorithm converges toward a

solution of the Eikonal equation on a 1D domain.

Stability of the fast marching algorithm

In this subsection, our aim is to prove that the fast marching algorithm as defined in

the framework of graphs is stable. To that end, we consider a weighted undirected graph

G : (V,E). We assume that the weights of the graph are lower bounded by some constant

w∗ > 0.

Let us consider an arbitrary step of the fast marching algorithm. We assume that a

vertex v with associated time tv has been extracted from the narrow band and frozen. We
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denote by t−1
v the time that has been accepted in the narrow band at the previous step

of the algorithm. Note that the corresponding vertex of the graph might not be adjacent

to v. Since v is in the narrow band, one of its neighbors has already been associated a

finite time and has been frozen. Since the fast marching algorithm freezes the points by

increasing order of arrival time, for u in the narrow band, we necessarily have

min
u∈U\v

tu ≥ t−1
v ,

where U is the ensemble of vertices in the narrow band. Therefore, we have the inequality

0 ≤ tv − t−1
v ≤

1
w∗
.

We can iteratively apply this inequality until we reach a time t−Kv = 0 corresponding to a

point located on the initial front, to obtain:

0 ≤ tv ≤
K

w∗
.

Finally, K is necessarily bounded by the number |E| of edges in the graph, so that

0 ≤ tv ≤
|E|
w∗

.

This result proves the arrival times are uniformly bounded, and consequently that the

proposed algorithm is stable.
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Resumé

Dans cette thèse de doctorat, notre objectif est d’établir une méthodologie générale per-

mettant d’effectuer automatiquement la segmentation de bases d’images de contenu simi-

laire à partir d’un faible volume d’images annotées. Cette méthode vise à être appliquée

à des images issues d’observations satellitaires, ou de campagnes expérimentales menées

en science des matériaux. Pour ce type d’application, il est en effet difficile d’obtenir un

volume suffisant d’annotations pour entrâıner les algorithmes d’apprentissage profond qui

constituent à l’heure actuelle l’état de l’art en matière de segmentation d’images.

Les algorithmes récents de segmentation d’image s’appuient généralement sur des outils

d’apprentissage supervisé. Les réseaux de neurones convolutionnels nécessitent en partic-

ulier d’être entrainés à partir d’un nombre conséquent d’exemples de segmentations. Dans

de nombreuses applications, qui incluent notamment l’imagerie satellitaire ou les images de

microstructures de matériaux, le manque d’images préalablement annotées pour la segmen-

tation constitue ainsi un frein significatif à l’utilisation de ces méthodes. Des algorithmes

supervisés plus traditionnels, basées sur des caractéristiques extraites manuellement des

images, peuvent cependant être entrâınés sur des bases d’image de taille plus restreinte.

L’algorithme gPb de Arbelaez et al. [Arb11] est ainsi entrâıné sur une base de 200 images.

La méthodologie présentée dans cette thèse est basée sur une approche par régions.

La méthode s’appuie sur une partition préliminaire de l’image en superpixels, et vise à fu-

sionner les superpixels jusqu’à l’obtention d’une segmentation de l’image. Les principales

contributions de ce travail de thèse sont le développement d’un algorithme de génération

de superpixels basé sur l’équation eikonale, et le développement d’un algorithme de fusion

de superpixels basé sur une adaptation de l’équation eikonale au contexte des graphes.

Dans cette approche, l’image est representée sous forme d’un graphe d’adjacence entre

superpixels, dont les arêtes sont pondérées par une mesure de dissimilarité entre super-

pixels voisins. Cette mesure de dissimilarité est apprise par un algorithme d’apprentissage

artificiel à partir de caractéristiques statistiques extraites de chaque superpixel.

L’approche développée est illustrée sur une base d’image contenant des images satel-

litaires du ciel décrivant la présence de nuages, la base Singapore Whole Sky Imaging

segmentation (SWIMSEG) [DLW17]. Sur cette base d’image, en utilisant uniquement un

nombre limité d’images d’entrâınement, nous obtenons avec notre approche des résultats

similaires à l’état de l’art.

V



Resumé

Le travail présenté dans ce manuscrit de thèse se focalise sur deux aspects de la

méthodologie proposée: la génération de superpixels à partir de l’équation eikonale et

la fusion de superpixels. Dans le chapitre 1, nous détaillons la vaste littérature scientifique

qui existe autour de la question de la segmentation d’image et nous présentons plus en

détail les objectifs de la présente étude. Dans la première partie du manuscrit, qui cor-

respond aux chapitres 2 et 3, nous introduisons deux nouveaux algorithmes, qui peuvent

respectivement être utilisés pour calculer la partition en superpixels d’une image et une

version multi-échelle de cette même partition.

L’algorithme de superpixels présenté dans le chapitre 2 s’appuie sur l’équation eikonale

et l’algorithme de fast marching [Set96] pour générer une partition en superpixels de

l’image étudiée, s’inspirant d’une approche initialement proposée par Buyssens et al.

[Buy14a] en 2014. Partant d’un ensemble de germes initiaux, la partition est calculée

en simulant la propagation d’ondes issues de ces germes sur un champ de vitesse dépen-

dant des propriétés locales des pixels, comme leur couleur ou leur texture. Le calcul du

champ de vitesse utilisé par l’équation eikonale est un aspect essentiel de l’algorithme.

Dans leurs travaux de 2014 [Buy14a], Buyssens et al. considèrent un champ de vitesse

qui dépend de la différence entre la couleur du pixel où le champ est calculé et la couleur

moyenne des pixels traversés par l’onde incidente. Dans notre approche, nous prenons

également en compte la texture locale en ajoutant un terme de texture dans le calcul

de la vitesse locale. Un raffinement itératif de la partition en superpixels est également

implémenté, qui consiste à implanter itérativement de nouveaux germes pour regénérer

la partition là où les temps d’arrivée des ondes sont les plus importants. L’algorithme

développé se compare favorablement aux algorithmes SLIC [Ach12] et ERGC [Buy14a]

sur la Berkerley Segmentation Dataset [Mar01]. Les travaux présentés dans ce chapitre

ont été présentés et publiés dans la conférence ISMM 2019 [CF19].

Dans le chapitre 3, relativement indépendant du reste du manuscrit, nous décrivons un

algorithme de segmentation multi-échelle basé sur la transformée en ondelettes et la ligne

de partage des eaux morphologiques, qui permet de construire une partition en superpixel

multi-échelle d’une image. Le principe de la méthode est de s’appuyer sur la transformée

en ondelettes orthogonale pour obtenir des approximations multi-résolution de l’image à

segmenter. Les minima du gradient de chaque approximation de l’image sont ensuite re-

propagés sur l’image originale, et sélectionnés comme marqueurs pour la ligne de partage

des eaux, ce qui conduit à l’obtention de contours hiérarchiques. L’approche proposée est

évaluée de manière quantitative sur des images de la Berkeley Segmentation Dataset, et a

été publiée dans les proceedings de la conférence ISMM 2017 [FCF17].

Dans la seconde partie du manuscrit, qui correspond aux chapitres 4 et 5, nous présen-

tons un algorithme de fusion des superpixels basé sur un algorithme d’apprentissage qui

estime une mesure de similarité entre superpixels voisins. La fusion des superpixels est

déterminée dans le contexte des graphes. Plus précisément, un graphe d’adjacence est
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calculé à partir de la partition en superpixels. Chaque superpixel de la partition initiale

correspond à un noeud du graphe d’adjacence, et les frontières entre superpixels adjacents

sont représentées par les arêtes du graphe. Les arêtes sont pondérées par une mesure

de dissimilarité entre superpixels, qui s’interprète comme étant la probabilité que les su-

perpixels appartiennent au même segment dans la segmentation finale. Un algorithme

d’apprentissage artificiel est utilisé pour estimer cette probabilité, qui se base sur des car-

actéristiques statistiques calculées sur les superpixels, comme leur couleur, leur texture,

ou encore l’intensité du gradient sur la frontière qui sépare les superpixels.

Dans le chapitre 4, nous décrivons en détail la méthode utilisée pour apprendre la

mesure de similarité entre superpixels voisins, ainsi que les critères statistiques utilisés

en entrée du modèle d’estimation. La méthode permet de combiner différents critères de

similarité entre eux pour en extraire une unique mesure. En effet, des critères de similar-

ité univariés, comme par exemple la différence en termes de niveau de gris moyen entre

superpixels, ou l’intensité moyenne du gradient sur la frontière qui sépare les superpixels

restent trop simples pour capturer la complexité du problème. Dans ce chapitre, nous

définissons un certain nombre de critères statistiques permettant de caractériser la simi-

larité entre superpixels, et nous utilisons deux familles d’algorithmes d’apprentissage, les

forêts aléatoires et le gradient boosting (XGBoost), pour combiner ces différents critères

entre eux en une mesure univariée de similarité.

Dans le chapitre 5, nous présentons une nouvelle méthode de clustering permettant

de partitionner le graphe d’adjacence associé à la partition en superpixels de l’image.

Cette méthode est basée sur un algorithme de Fast marching sur le graphe d’adjacence

et sur la mesure de dissimilarité introduite dans le chapitre 4. De manière similaire à

l’approche proposée dans le chapitre 2 pour calculer une partition en superpixels, nous

utilisons l’équation eikonale pour calculer une partition du graphe d’adjacence. L’équation

eikonale est en particulier généralisée au contexte spécifique des graphes. La partition

résultante permet l’obtention d’une segmentation de l’image à partir de ses superpixels

en regroupant efficacement les superpixels adjacents. L’approche proposée est comparée

aux approches classiques pour effectuer des fusions de régions, y compris l’algorithme

de coupe normalisée [SM00] (NCUT) et la segmentation par agrégation pondérée (SWA)

[Alp12]. La comparaison est effectuée à partir de la Berkeley Segmentation Dataset. Nous

présentons également des résultats obtenus en appliquant de manière itérative l’algorithme

de fusion et en recalculant à chaque étape la mesure de similarité employée. L’algorithme

proposé permet d’obtenir de meilleurs résultats que l’algorithme de coupe normalisée et

la segmentation par agrégation pondérée.

Pour conclure le manuscrit, nous présentons dans le chapitre 6 l’application de notre

méthodologie à la segmentation d’images satellitaires de nuages. La segmentation de

ces images est d’une grande importance dans des applications telles que la prévision

météorologique ou pour aider à positionner des réseaux de panneaux solaires à large
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échelle. Ici, nous nous appuyons sur le cadre de segmentation développé dans les chapitres

précédents pour la segmentation des images de la base de données SWIMSEG. Notre ap-

proche donne des résultats similaires à l’état de l’art en n’utilisant qu’un nombre restreint

d’exemples d’apprentissage.
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MOTS CLÉS

Segmentation d’image, superpixel, apprentissage automatique, équation eikonale, fast marching, graphe.

RÉSUMÉ

La présente thèse vise à développer une méthodologie générale basée sur des méthodes d’apprentissage pour ef-
fectuer la segmentation d’une base de données constituée d’images similaires, à partir d’un nombre limité d’exemples
d’entraînement. Cette méthodologie est destinée à être appliquée à des images recueillies dans le cadre d’observations
de la terre ou lors d’expériences menées en science des matériaux, pour lesquelles il n’y a pas suffisamment d’exemples
d’entraînement pour appliquer des méthodes basées sur des techniques d’apprentissage profond.
La méthodologie proposée commence par construire une partition de l’image en superpixels, avant de fusionner pro-
gressivement les différents superpixels obtenus jusqu’à l’obtention d’une segmentation valide. Les deux principales
contributions de cette thèse sont le développement d’un nouvel algorithme de superpixel basé sur l’équation eikonale, et
le développement d’un algorithme de fusion de superpixels basé sur une adaptation de l’équation eikonale au contexte
des graphes. L’algorithme de fusion des superpixels s’appuie sur un graphe d’adjacence construit à partir de la parti-
tion en superpixels. Les arêtes de ce graphe sont valuées par une mesure de dissimilarité prédite par un algorithme
d’apprentissage à partir des caractéristiques de bas niveau calculées sur les superpixels.

A titre d’application, l’approche de segmentation est évaluée sur la base de données SWIMSEG, qui contient des images

de nuages. Pour cette base de données, avec un nombre limité d’images d’entraînement, nous obtenons des résultats

de segmentation similaires à ceux de l’état de l’art.

ABSTRACT

In this PhD thesis, our aim is to establish a general methodology for performing the segmentation of a dataset constituted
of similar images with only a few annotated images as training examples. This methodology is directly intended to be
applied to images gathered in Earth observation or materials science applications, for which there is not enough annotated
examples to train state-of-the-art deep learning based segmentation algorithms.
The proposed methodology starts from a superpixel partition of the image and gradually merges the initial regions until an
actual segmentation is obtained. The two main contributions described in this PhD thesis are the development of a new
superpixel algorithm which makes use of the Eikonal equation, and the development of a superpixel merging algorithm
steaming from the adaption of the Eikonal equation to the setting of graphs. The superpixels merging approach makes
use of a region adjacency graph computed from the superpixel partition. The edges are weighted by a dissimilarity
measure learned by a machine learning algorithm from low-level cues computed on the superpixels.

In terms of application, our approach to image segmentation is finally evaluated on the SWIMSEG dataset, a dataset

which contains sky cloud images. On this dataset, using only a limited amount of images for training our algorithm, we

were able to obtain segmentation results similar to the ones obtained with state-of-the-art algorithms.

KEYWORDS

Image segmentation, superpixel, machine learning, Eikonal equation, fast marching, graph.
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