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Introduction Industrial context

In the automotive industry, the ecological and numerical concern leads to making car bodies from thin metallic (steel or aluminum) sheets. This helps reducing car weight and increases fuel efficiency. However, these very thin structures can be subjected to tearing, especially in crash conditions, for instance: at the bottom of the B-pillar (see fig. 0.1a) or at the rear floor/front floor (see fig. 0.1b) in a side impact, in the front beam in a frontal impact... For safety and structural integrity reasons, tearing must be prevented. To do so simulations using the Finite Element Method (FEM) are during the car design process. However, failure of ductile materials is not currently reliably predicted in an industrial context, which sometimes leads to a late rethinking of the design of "failed" parts and to significant additional costs due to post-production modifications of stamping tools.

The poor numerical prediction of failure in car crash simulations can be explained by the use of too simple solutions such as element deletion criterion based on a critical value of plastic strain (fracture criteria). Although fracture criteria are easy to implement, and often have only a few few parameters, they do not always take into account the effect of stress triaxiality or Lode angle, which are known to control crack initiation. The loading history may also neglected by using this solution. Moreover, fracture criteria are not coupled with the material behavior which means that stress softening is not represented which causes a poor description of strain localization and thus crack path, as elements do not lose load-carrying capacity.

In the literature, numerical solutions proposed to model the failure of ductile materials are not also adapted to the industrial constraints. In particular, computation times are incompatible with the development time of new vehicles. This issue is then addressed in this Ph.D thesis with the PSA Group realized in collaboration with the French Aerospace Lab. ONERA and the Centre des Matériaux of Mines ParisTech school.

INTRODUCTION

Objectives

The aim of this thesis work is to develop and implement a robust and efficient numerical method enabling the numerical prediction, by the FEM, of ductile failure of parts made of thin metal sheets in crash simulations (i.e. using dynamic explicit solvers). This leads to a challenging compromise: to predict initiation and propagation of cracks, local phenomena occurring on a scale of less than a millimeter, and to ensure a computation time compatible with an explicit dynamic simulation on automotive structures, i.e. at a scale much larger than a millimeter. The finite element code parallel computing must then be preserved.

Scientific approach

To address the presented industrial issue, a numerical method is then proposed in this Ph.D thesis. It uses a representative ductile material often used in the automotive industry as a support: the DP450 "dual-phase" steel sheets. The numerical method is then composed of a two-step strategy.

-Characterization and constitutive modelling

The first step corresponds to the characterization and the constitutive modelling of the DP450 steel. This entire procedure is detailed in the chapter 1 of this thesis work. Characterization tests (approximately 120) are carried out over a wide range of loading rates, stress triaxialities, Lode parameter, and at different temperatures. Based on the exploitation of the results, a numerical constitutive model is established taking into account the different observed phenomena that have an influence on crack initiation and propagation: the plasticity, the strain-rate effects (viscosity and self-heating) and damage.

To get a prediction of crack initiation and crack path which is as accurate as possible, it is proposed to consider the use of damage models instead of fracture criteria. These models consist in computing a damage variable, coupled to material behavior, so as to induce stress softening. In the case of ductile fracture, damage variables often depend on plastic strain. Many damage models are designed to take into account the effect of stress triaxiality and/or Lode angle so as to be able to distinguish shear cracks at low triaxiality and necking cracks due to void growth at high triaxiality. The damage variable being updated at every time steps considering the current stress state, damage models then takes into account the loading history. Increasing damage gradually decreases local element resistance which offers a better precision on the strain-localization and so on the crack path.

To simulate the experimental results, the constitutive model is firstly implemented in the Z-set implicit finite element software that is provided for this Ph.D thesis work. The Z-set software [START_REF] Foerch | Polymorphic constitutive equations in finite element codes[END_REF][START_REF] Besson | Large scale object-oriented finite element code design[END_REF] is co-developed by the Mines ParisTech school and the French Aerospace Laboratory Onera. Due to its implicit numerical schemes, it uses large time steps which is more convenient to simulate both slow (i.e. quasi-static) and dynamic experimental results obtained on tensile specimens. The Z-set software will be associated to its specific identification tool Z-opt [START_REF] Le Riche | An object-oriented simulation-optimization interface[END_REF] for the constitutive model parameters identification. Once the constitutive model is identified, it must then be implemented in a dynamic explicit code. Indeed, implicit solvers use a costly iterative procedure to solve a large system of equations for the global equilibrium problem by matrix inversion. This can make the parallel computing difficult to implement which compromise its use on very large problems (e.g. car crash). Moreover, strong non-linearities in the material behavior or in the geometry (e.g. contact during impact) can compromise the convergence.

To simulate crash problems, the use of dynamic explicit codes is thus preferred. These codes do not have any iterative procedure or any matrix to invert. The parallel computing is very easy to obtain so that simulations on large structures can be considered. However, dynamic explicit codes use very small time steps due to a stability condition which restrains their application to very fast problems (i.e. small simulation time). For this thesis work, the Europlexus code [START_REF] Team | Europlexus: a computer program for the finite element simulation of fluid-structure systems under transient dynamic loading[END_REF] was then provided. It is co-developed by the French Atomic Energy Commission (CEA) and the Joint Research Center (JRC -Ispra). This software is used to develop the numerical approach proposed in this thesis work and acts as a demonstrator. The constitutive model is then also implemented in this code.

One major drawback of using coupled damage models is that several non-linear phenomena are involved: respect of the constitutive equations may require the costly resolution of a complex system for each integration point. In the Z-set software, the iterative Newton-Raphson method is indeed used to implicitly solve the equations associated with the proposed constitutive model following the backward Euler scheme. When convergence can be achieved, accurate and reliable results are obtained. On the contrary, for an industrial application in an explicit solver, the implementation of the constitutive law must be simple and the computation time must be limited. That is why, the constitutive model is implemented in the Europlexus code following a recently proposed explicit algorithm [START_REF] Halilovič | NICE h : a higher-order explicit numerical scheme for integration of constitutive models in plasticity[END_REF] that avoids iterations but implies a less accurate solution. Both numerical implementation, in the Z-set and the Europlexus solvers, are detailed in chapter 2.

-Implementation of a regularization method

Another main drawback makes the use of coupled damage models in an industrial context difficult. Indeed, due to stress softening, damage tends to be localized on a row of elements or integration points, resulting in a strong mesh dependency (size, orientation). This last point is critical for an industrial application since results have to be as reliable as possible.

Mesh dependent results is a notorious issue when using damage constitutive models. Solutions for damage regularization can nevertheless be found in the literature to obtain mesh independence. Some regularization methods are based on a constant fracture energy [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF][START_REF] Zdeněk | Crack band theory for fracture of concrete[END_REF] more suitable for brittle failure. Other approaches proposes to add a rate dependency [START_REF] Ladeveze | On a damage mechanics approach. Mechanics and mechanisms of damage in composites and multi-materials[END_REF][START_REF] Allix | Delayed-Damage Modelling for Fracture Prediction of Laminated Composites under Dynamic Loading[END_REF] in the constitutive model that avoids a too fast evolution of damage evolution or deformation, and so limit the localization phenomenon. In this work, so called "non-local" models (i.e. models explicitly integrating a material length) will be used.

Non-local methods [START_REF] Pijaudier | Nonlocal damage theory[END_REF][START_REF] Pijaudier-Cabot | Comparison of various models for strain-softening[END_REF] are used to avoid damage localization on a row of elements by "spreading" the damage variable over a new localization band, independent of the mesh size as its width results from the model parameters. They achieve regularization by computing a non-local damage variable at a given material point from its values computed in its neighborhood. The difficulty is then to create the dialogue between the elements, especially in dynamic explicit codes, while preserving an efficient parallel computing.

Several non-local methods propose to compute the non-local variable as a new field of degrees of freedom, considering its gradient to ensure the regularization. The evaluation of this gradient is realized using the standard finite element technique. The non-local data exchange between elements is achieved through nodal data like any other degree of freedom (e.g. displacements, rotations) so that it preserves the parallel computing. The implicit second gradient method [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF] and the micromorphic method [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] are two regularization approaches based on this additional degrees of freedom procedure and are considered for this thesis work. They are both implemented for 3D under-integrated continuum elements as described in chapter 3 and compared. Following this comparison, one method is retained for the rest of the study and identified. The experimental results are then simulated with the non-local constitutive model and the results are both mesh-independent and physically consistent.

Finally, it is worth noting that 2D shell elements are mostly used in car crash simulations. This enables to reduce the size of the problem and to save computation time by enlarging the critical time step since there is no element in the thickness. Moreover, the thickness becomes a numerical value associated to each element and a "thickness fields" can be taken from stamping simulations as an initial condition for crash simulations. To ensure the proposed numerical method for crack prediction is suitable for large structure computations, the regularization method established for continuum elements must be adapted to Reissner-Mindlin shell elements. This last development is described in chapter 4.

INTRODUCTION

Résumé

Dans cette thèse, la problématique de la prédiction numérique de la fissuration est abordée dans un contexte de crash automobile. En effet, les méthodes numériques actuellement employées dans le processus de conception pour la modélisation de fissure, qui sont basées essentiellement sur des critères simples de rupture, ne sont pas toujours suffisament fiables. Par la suite, si la rupture est détectée lors de l'essai réel, une re-conception des pièces impactées doit être réalisée, ce qui entraîne des coûts et des délais supplémentaires. L'objectif de la thèse est donc de proposer une méthode numérique fiable de prédiction de fissure, utilisable dans l'industrie automobile. La méthode doit être capable de détecter la fissure sur des structures de grande taille, tout en garantissant un temps de calcul compatible avec les délais de conception. La méthode développée doit donc garantir la possibilité de paralléliser le code de calcul.

Afin de mettre au point la méthode numérique de prédiction de fissure, les codes de calcul élément-finis implicite Z-set et dynamique explicite Europlexus sont mis à disposition. Comme support et cas d'application de cette thèse, une tôle d'acier couramment utilisé dans l'industrie est choisi: l'acier dual-phase DP450. L'approche proposée dans cette thèse se divise alors en deux étapes. Tout d'abord, une étude expérimentale est réalisée sur le matériau support afin d'établir un modèle de comportement capable de représenter la plasticité mais aussi la rupture du matériau. Ces travaux sont détaillés dans le premier chapitre de cette thèse. L'approche numérique de la rupture est faite par un modèle d'endommagement couplé de type Gurson, et non par un critère de rupture comme utilisé actuellement dans l'industrie. Afin d'utiliser ce modèle dans des simulations élément-finis et pour identifier ses paramètres, celui-ci est implémenté dans les codes Z-set et Europlexus. Ces implémentations, relativement différentes, sont détaillées dans le second chapitre. Ces travaux constituent alors la première partie de l'approche proposée. Cependant, les modèles adoucissants présentent l'inconvénient d'une forte dépendance au maillage (taille, orientation). Ceci n'est pas admissible pour une application industrielle. C'est pourquoi, la seconde partie du travail consiste en la régularisation du modèle de comportement par une méthode de type non-locale. Cette méthode est d'abord implémentée par enrichissement d'éléments de type solide comme décrit dans le troisième chapitre, puis étendue aux éléments de type coque Reissner-Mindlin comme détaillé dans le quatrième chapitre.

C H A P T E R

Material study and constitutive model

In this chapter, a constitutive model is built to represent both plastic and fracture behavior of the DP450 steel sheet. The section 1.1 proposes a literature review of the constitutive equations used to represent the commonly observed non-linear phenomena affecting the metallic materials' behavior: i.e. plasticity, strain-rate effects and damage. Then, section 1.2 deals with the very comprehensive experimental campaign that has been carried out on a set of relevant tensile specimen geometries (to vary stress state) at several loading rates. From the results and the observed phenomena, constitutive equations are chosen from the literature and assembled to obtain a constitutive model for the DP450 steel. In the same section, the identification procedure of this model is described. Finally, tests are simulated and compared to experimental results as a validation of the proposed constitutive model.

Constitutive models for metallic materials

In this section, a literature review of the constitutive equations used to represent the most commonly observed phenomena associated with metallic materials behavior is realized. Plasticity equations are based on the definition of a yield criterion and a work-hardening law. At high loading rates, the plastic model is completed by a strain-rate effects model, used to represent the rate and temperature dependence observed at high loading rates. Finally, failure is taken into account with two possible solutions: the fracture criteria and the damage models.

Plasticity

Yield criterion

A first step of the plasticity modelling is based on the choice of the yield criterion. This defines the transition between the elastic and the plastic behavior. Several criteria particularly adapted to the plasticity of rolled sheets can be found in the literature. The yield criterion can describe an isotropic elastic limit (i.e. for isotropic material) or can take into account the influence of the rolling process (i.e. for anisotropic material). A review is proposed by Banabic [START_REF] Banabic | Plastic Behaviour of Sheet Metal[END_REF]. In this PhD work, due to the industrial context (explained in section 1.2), only isotropic criteria will be regarded. Also, as thin sheets of steel are studied, the assumption of plane stress will be preferred for the description and illustration of these criteria.

Yield criteria describe a surface in stress space called the yield surface. When the stress state reaches this surface, the behavior is no longer elastic and becomes plastic. This surface may vary according to stress 6 CHAPTER 1. MATERIAL STUDY AND CONSTITUTIVE MODEL triaxiality (referred to as η) and Lode angle (θ). It is defined by a scalar function also called yield function:

f = σ -R e (1.1)
where f is the yield function, σ the equivalent stress defined by the criterion, and R e the initial elastic limit in tension. A plasticity criterion is thus defined by its equivalent stress. The boundary between elasticity and plasticity is thus marked as follows:

• If f < 0, the behavior remains elastic and linear,

• If f = 0, the behavior becomes non-linear.

A non-exhaustive review of the most commonly used isotropic criteria in the literature is then proposed. The Tresca criterion [START_REF] Tresca | Mémoire sur l'écoulement des corps solides soumis à de fortes pressions[END_REF] is one of the oldest isotropic criteria. It supposes that plasticity occurs when the maximum maximum shear τ max reaches a critical flow value, causing the grains to slip on the shear planes in accordance with the physical phenomena associated to plasticity. By referring to the Mohr circles, it is possible to see that this criterion is respected when the greatest half difference of the principal stresses (equal to τ max ) reaches the critical value R e /2. The criterion is then written as follows:

f = max {|σ 1 -σ 2 |, |σ 2 -σ 3 |, |σ 3 -σ 1 |} 2τmax -R e (1.2)
where σ i are the principal stresses. The von Mises criterion [START_REF] Mises | Mechanik der festen Körper im plastisch-deformablen Zustand[END_REF] is also one of the oldest and mostly encountered plasticity criteria in the industry for isotropic materials. It is based on two assumptions:

1. Plastic flow is incompressible: hydrostatic stress σ m = Tr( σ)/3 does not influence plasticity (same for Tresca),

2.

The limit between elasticity and plasticity corresponds to an energy criterion. When the energy of elastic strain in pure deviatoric state (i.e. without volume change) reaches a critical value, plasticity starts.

This leads to the following quadratic criterion:

f = 1 2 [(σ 1 -σ 2 ) 2 + (σ 2 -σ 3 ) 2 + (σ 3 -σ 1 ) 2 ] -R e (1.3)
This criterion can also be expressed with the second deviatioric invariant J 2 as follows: [START_REF] Team | Europlexus: a computer program for the finite element simulation of fluid-structure systems under transient dynamic loading[END_REF] with:

f = 3J 2 -R e (1.
J 2 = 1 2 s : s (1.5)
where s is the deviatoric stress tensor. Hershey [START_REF] Hershey | The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals[END_REF] and Hosford [START_REF] Hosford | A Generalized Isotropic Yield Criterion[END_REF] have generalized the von Mises criterion by considering a potentially non-quadratic yield criterion:

f = a 1 2 [|σ 1 -σ 2 | a + |σ 2 -σ 3 | a + |σ 3 -σ 1 | a ] -R e (1.6)
where a is a model parameter. Depending on its value (see fig. 1.1a), this criterion is able to represent the Tresca yield surface (a = 1 or a → ∞), von Mises yield surface (a = 2 or a = 4), or a yield surface located between these two. Similarly, Drucker [START_REF] Drucker | Experiments to Mathematical Theories of Plasticity[END_REF] has also proposed a more general yield criterion based on the second and third deviatoric invariants:

f = 6 1 27 -c 4 729 -1 (J 3 2 -cJ 2 3 ) -R e (1.7)
where c is a parameter and the third deviatoric invariant is defined by:

J 3 = det( s) (1.8)
If c = 0, the classical von Mises criterion is recovered (see fig. 1.1b). To ensure the convexity of the criterion, the two boundary values of the c parameter are 2.25 for which the Drucker criterion describes a smoothed Tresca yield surface, and -27/8 for which it represents the superior limit defined by Mendelson [START_REF] Mendelson | Plasticity; theory and application[END_REF]. Note that the Drucker yield criterion is expressed as a function of both J 2 and J 3 which implies that it depends on the Lode angle θ as:

cos(3θ) = 3 √ 3J 3 2J 2 √ J 2
(1.9)

Work-hardening

A hardening behavior is commonly observed for metallic materials. This means that the elastic limit introduced in the yield criterion R e is not constant and increases with the plastic strain. The new elastic limit is then referred to as R(p) and is commonly called flow stress. The yield function thus becomes:

f = σ -R(p) with p = t 0 ṗdt (1.10)
where p is the cumulated plastic strain. For the rest of the study, the flow stress is referred to as σ F . Note that at this stage σ F = R(p). Several expressions of work-hardening functions can be found in the literature.

In the industry, the commonly called power-law proposed by Ludwik [START_REF] Ludwik | Elemente der technologischen Mechanik[END_REF] and Ramberg-Osgood [START_REF] Ramberg | Description of stress-strain curves by three parameters[END_REF] is often used:

R(p) = R e + K p n (1.11)
where K and n are two parameters to be identified. For very ductile material, the saturation Voce [START_REF] Voce | The Relationship between Stress and Strain for Homogeneous Deformation[END_REF] law can also be considered:

R(p) = R e + Q(1 -exp(-bp)) (1.12)
where Q and b are parameters to identify. The saturation law might however be not predictive enough to model work-hardening at very high strain, up to failure. This is why, Le Maoût [START_REF] Le Maoût | Aluminum alloy damage evolution for different strain paths -application to hemming process[END_REF] has proposed to add a linear hardening to Voce original expression:

R(p) = R e + Hp + Q(1 -exp(-bp)) (1.13)
where H is the additional linear hardening modulus to identify.

Strain-rate effects

Strain-rate effects correspond to a set of phenomena occurring at high loading rates and modifying the behavior of the material. Indeed, under fast loading, it is possible to observe an increase of the material strength. The material might then exhibit a viscous behavior. It is also possible to observe a local temperature increase with the loading rate, in the plastic strain localization area with necking. This temperature increase can cause a loss of strength generating a thermal softening effect. These effects are both illustrated on an engineering stress-strain curve in fig. 1.2a. In order to take into account the influence of such phenomena, several models are proposed in the literature. 

Rate and temperature dependence

The rate and temperature dependence are commonly treated by a correction of the hardening function R(p) using different factors depending on the plastic strain-rate and the temperature. The corrected stress corresponds to the "new" flow stress σ F in the yield function:

f = σ -σ F (p, ṗ, T ) (1.14)
One can first cite the Johnson-Cook model [START_REF] Gordon | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF] that proposes the strain-rate effect model below:

σ F = R(p) 1 + C ln ṗ ε0 + (1 -T m ) (1.15)

CONSTITUTIVE MODELS FOR METALLIC MATERIALS

where C > 0 is a parameter, ε0 is the plastic strain-rate below which rate dependency effects are negligible (inviscid response) and + designates the Macauley brackets. The temperature variable is defined by:

T =        0 if T < T r oom T -T r oom T melt -T r oom if T r oom ≤ T ≤ T melt 1 if T > T melt (1.16)
where T r oom is the room temperature and T melt the melting temperature. This approach thus considers a non-linear softening behavior occuring between room temperature and melting temperature. It worth noting that the expression of the Johnson-Cook rate-dependence factor indicates that parameter C corresponds to the slope of the σ p -ln ṗ/ε 0 + curves for a given plastic strain level. This model thus only has a few parameters but supposes that the experimental points of the σ p -ln ṗ/ε 0 + curves are linearly aligned.

Otherwise, other models must be considered such as the Zhao model [START_REF] Zhao | A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets[END_REF]:

σ F = R(p) + (C -Dp m ) log ṗ ε0 + + E ṗk (1 -µ(T -T r ef )) (1.17)
where C , D, m, E , k and µ are parameters to identify and T r ef a reference temperature usually chosen as the room temperature. One can notice that this model is however much more difficult to identify due to the number of parameters. In this case, the thermal softening model considers a linear thermal softening which is, according to the author, sufficient for an automotive application since the temperature increase rarely exceeds a few hundred degrees. Another solution is the Zerilli and Armstrong model [START_REF] Zerilli | Dislocation mechanics based constitutive relations for material dynamics calculations[END_REF] which is based on physical observations. In this case, the corresponding equation depends on the material microstructure:

1. For a body-centered cubic crystal structure:

σ F = A + c 5 p n + c 1 exp(-c 3 T + c 4 T ln( ṗ)) (1.18)
2. For a face centered cubic crystal lattice structure:

σ F = A + c 2 p 1/2 exp(-c 3 T + c 4 T ln( ṗ)) (1.19)
where c i and n are parameters to identify. The identification procedure remains however very difficult to perform.

Self-heating

All strain-rate effects models consider an increase of the temperature which is responsible for a softening behavior. This effect have been highlighted by Roth and Mohr [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF] on a dual-phase steel DP590. The introduction of the temperature in the computation raises the problem to solve a costly thermomechanical problem. Roth and Mohr have then proposed, based on the Taylor-Quinney [START_REF] Ingram | The latent energy remaining in a metal after cold working[END_REF] quasi-adiabatic conversion of the plastic work into heat, a method that considers the temperature as an internal variable of the constitutive model. With this method, the evolution of the temperature variable is then given by:

Ṫ = ω( ṗ) η k ρC p σ : εp (1.20)
where ω is a weight function , η k is the Taylor-Quinney coefficient, ρ the material density, C p the heat capacity. The weight function ω is used to obtain a continuous transition between isothermal conditions CHAPTER 1. MATERIAL STUDY AND CONSTITUTIVE MODEL at low strain rates with no heat generation and quasi-adiabatic conditions at high strain rates with purely adiabatic heat generation. Its expression is:

ω( ṗ) =        0 if ṗ < εis ( ṗ -εis ) 2 (3ε ad -2 ṗ -εis ) (ε ad -εis ) 3 if εis ≤ ṗ ≤ εad 1 if ṗ > εad (1.21)
where εis is the isothermal limit strain rate and εad is the adiabatic limit strain rate. These limits must both be identified. The shape of this weight function is illustrated in fig. 1.2b.

Damage

Ductile damage is a phenomenon that is generally associated with plasticity for metals and responsible for the material failure. It is commonly associated to a series of phenomena [START_REF] Son | Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review[END_REF] that lead to the drop of the strength and crack initiation: nucleation, growth and coalescence of cavities. These phenomena are known to be dependent on the stress triaxiality (η) and the Lode angle (θ). To model these phenomena and their effects, several numerical solution can be found in the literature:

1. The fracture criteria, based on a critical state for plastic strain or stress, which consider the volume element as broken when this state is reached,

2.

The damage models that consider the evolution of damage variables that affect the material behavior and lead to stress softening.

These approaches can be based on the modelling of the growth of cavities (micromechanical) or on the use of mathematical functions representing macroscopic effects (phenomenological).

Fracture criteria

Fracture criteria are simple numerical solutions to model crack initiation. They consist in removing the elementary volume when a critical plastic strain, referred to as ε f , is reached. They are thus easily implemented since no coupling is needed with the constitutive model. Many different fracture criteria can be found in the literature. Critical comparisons are proposed in [START_REF] Wierzbicki | Calibration and evaluation of seven fracture models[END_REF][START_REF] Bai | A comparative study of three groups of ductile fracture loci in the 3d space[END_REF]. The first fracture criteria are mostly micromechanically based: e.g. the McClintock [START_REF] Frank | A criterion for ductile fracture by the growth of holes[END_REF] and Rice and Tracey [START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF] criteria are both based on the modelling of the growth of cavities. Both conclude that the material ductility (and so plastic strain at failure) tends to exponentially decrease with increasing stress triaxiality. The commonly encountered expression of Rice and Tracey criterion is:

ε f = c 1 exp(-c 2 η) (1.22)
where ε f is the plastic strain at failure, c 1 > 0 and c 2 > 0 are parameters to identify. The expression of this criterion was then generalized by Johnson and Cook [START_REF] Johnson | Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[END_REF], who also introduced the effect of plastic strain-rate and temperature on the material ductility based on their strain-rate effects model presented above [START_REF] Gordon | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF]:

ε f = (c 0 + c 1 exp(-c 2 η)) 1 + c 3 ln ṗ ε0 + (1 + c 4 T ) (1.23)
where c i are parameters to identify. The temperature variable T is the same as presented in eq. (1.16).

It is worth noting that the presented criteria only consider the effect of stress triaxiality on the material ductility i.e. both consider a decrease of the plastic strain at failure with increasing level of stress triaxiality. This assumption, mostly verified at high stress triaxiality (η > 1/3), is not always correct for a wide range of stress triaxialities. Indeed, a potential drop of fracture strain can be also observed at low stress triaxiality (η < 1/3), under shear conditions for instance.

In order to remedy this shortcoming, more comprehensive fracture criteria were then proposed such as the Bai and Wierzbicki [START_REF] Bai | Application of extended Mohr-Coulomb criterion to ductile fracture[END_REF] criterion based on the Mohr-Coulomb criterion [START_REF] Coulomb | Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l'architecture[END_REF][START_REF] Mohr | Abhandlungen aus dem Gebiete der technischen Mechanik[END_REF] commonly used to describe brittle materials' failure:

max(τ + c 1 σ m ) f = c 2 (1.24)
where τ is the shear stress describe in the Tresca yield criterion (see eq. (1.2)), σ m the hydrostatic stress, and c i are parameters to identify. To extend this criterion for ductile materials, Bai and Wierzbicki has proposed to re-write it, by considering a hardening material following the Ludwik/Ramber-Osgood law given in eq. (1.11). Further modifications have introduced parameters to control the stress triaxiality and Lode angle dependency. The obtained criterion is known as the Modified Mohr-Coulomb (MMC) criterion:

ε f =       K c 2 (1 -c η (η -η 0 )) c s θ + √ 3 2 - √ 3 (c AX θ -c s θ ) cos -1 θπ 6 -1 1 + c 2 1 3 cos θπ 6 + c 1 η + 1 3 sin θπ 6       -1 n (1.25)
where K and n are the hardening parameters, c i are parameters to identify. The coefficient c AX θ is defined by:

c AX θ = c t θ = 1 if θ ≥ 0 c c θ if θ < 0 (1.26)
Where θ is the Lode parameter such as:

θ = 1 - 6 π θ (1.27)
where θ is the Lode angle defined by eq. (1.9). A more recent solution has been proposed by Mohr et al. [START_REF] Mohr | Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities[END_REF], who have replaced the Tresca equivalent stress by the Hosford/Hershey one in the Mohr-Coulomb criterion which offers, according to the author, a better prediction under plane-stress conditions. The following criterion is then:

ε f = K b 1 2 ((f 1 -f 2 ) a + (f 2 -f 3 ) a + (f 3 -f 1 ) a ) 1 a + c(2η + f 1 + f 3 ) -1 n (1.28) with: f 1 = 2 3 cos π 6 (1 -θ) f 2 = 2 3 cos π 6 (3 + θ) f 3 = - 2 3 cos π 6 (1 + θ) (1.29)
Where a is the Hosford parameter defined in eq. (1.6), b and c are parameters to identify. The so called Hosford-Coulomb failure criterion was further improved to take into account other phenomena such as rate dependency [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF] or more recently necking [START_REF] Pack | Combined necking & fracture model to predict ductile failure with shell finite elements[END_REF][START_REF] Pack | Hosford-coulomb ductile failure model for shell elements: Experimental identification and validation for dp980 steel and aluminum 6016-t4[END_REF] for shell element applications. The Modified Mohr-Coulomb and Hosford-Coulomb criteria are more comprehensive but also have much more parameters than the previously presented Rice and Tracey and Johnson and Cook criteria. This implies that many tests at different stress states (i.e. stress triaxiality -Lode angle combinations) are needed to identify these criteria. Moreover the stress state must be constant during these tests until the failure of the specimen since fracture criteria do not take into account the loading history. Ensuring a constant stress state is experimentally difficult. This is a main drawback of using this kind of numerical solution. A possible fix was proposed by Bao and Wierzbicki [START_REF] Bao | On fracture locus in the equivalent strain and stress triaxiality space[END_REF] by considering the loading history through averaged stress triaxiality and Lode angle:

η = 1 p p 0 ηdp and θ = 1 p p 0 θdp (1.30)
Another solution is to compute a damage indicator D, that will lead to the element deletion when D = 1:

D = p 0 1 ε f (η, θ) dp (1.31)
Also, it worth noting that fracture criteria are not coupled with the element behavior: the damage indicator has no effect on the element resistance. This means that stress softening is not represented, which can cause a poor description of strain localization and crack path as the material does not lose its load-carrying capacity. From the numerical point of view, another difficulty may arise when performing simulations for dynamic problems (e.g. crash): when a critical value is reached for a given number of integration points in an element, the "sound" (i.e. undamaged) element is brutally removed from the computation, which may create spurious elastic waves.

Continuum damage models

Instead of using fracture criteria, damage models can be considered. They are based on the computation of a damage variable that has an effect of the stress computation, generating a stress softening. A first type of damage models are continuum damage models. These models consider a damage variable, usually called D, described by the Kachanov [START_REF] Kachanov | Time of the rupture process under creep conditions[END_REF] framework. The stress in the undamaged volume is then:

σ = F S (1.32)
When this same elementary volume is damaged, the remaining effective surface S decreases and the damaged surface S dam occupied by cavities increases. The damage variable is then defined as the ratio between the damaged and the initially sound surface:

D = S dam S (1.33)
This variable evolves between 0 (no damage) and 1 for a complete RVE failure. In this case, the cavities are occupying the entire initial section of the elementary volume. The stress in the damaged volume can be expressed by:

σ = F S = F S(1 -D) = σ 1 -D > σ (1.34)
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Lemaitre and Chaboche [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF] then introduced the strain equivalence relation ε = ε and so:

σ E = σ Ẽ (1.35)
where Ẽ is the damaged stiffness Ẽ = E (1 -D). The loss of load-carrying capacity will then be numerically treated as a loss of material stiffness using the damage variable D.

The continuum damage models are mostly defined in the framework of thermodynamic of irreversible processes. This framework introduces variables to define the thermodynamic state on the elementary volume of material:

• The external state variables that are "measurable" (total strain ε, temperature T ),

• The internal state variable that are not directly "measurable" (plastic strain p, damage D,...).

To each state variable is associated a thermodynamic force: σ for the elastic strain ε, the hardening-law R for the cumulated plastic strain p, and the elastic release rate Y for the damage D. To describe the material behavior and link the thermodynamic forces to their corresponding variable, two state functions are defined:

1. The state potential ψ which corresponds to the free energy density. It is expressed as a function of the state variables and is divided, in the case of an elastoplastic material with damage, into an elastic part and a plastic part:

ψ = ψ e ( εe , D) + ψ p (p) (1.36) 
By differentiating the state potential, the following state laws are obtained:

σ = ρ ∂ψ e ∂ ε , R = ρ ∂ψ p ∂p , Y = ρ ∂ψ e ∂D (1.37) 
where ρ is the material density.

2.

The dissipation potential φ, that considers the contribution of irreversible processes (plasticity, damage). In the case of an elastoplastic material and for a generalized standard material, φ = f ( σ, R) and is associated to the yield function. The effects of damage are introduced with an additional damage dissipative potential F D :

φ = f ( σ, R) + F D (Y , D) (1.38)
The evolution of internal variables is obtained by differentiation:

εp = λ ∂f ∂ σ , ṗ = - λ ∂f ∂R , Ḋ = - λ ∂F D ∂Y (1.39)
where λ is the plastic multiplier.

A continuum damage model is then defined by the dissipative potential associated to the damage variable F D which determines the kinetics of the damage variable. The Lemaitre [START_REF] Lemaitre | A Continuous Damage Mechanics Model for Ductile Fracture[END_REF] damage model then proposes the following potential:

F D (Y , D) = S (b + 1)(1 -D) -Y S b+1 (1.40)
The damage variable evolution is then given by:

Ḋ = λ (1 -D) -Y S b (1.41)
where b and S are parameters to identify. Another damage potential was proposed by Bonora [START_REF] Bonora | On the effect of triaxial state of stress on ductility using nonlinear CDM model[END_REF]:

F D = 1 2 - Y S 2 S 1 -D (D c -D) α-1 α p (2+n) n (1.42)
In this case, damage evolution is governed by the following equation:

Ḋ = - λ 1 -D Y S (D c -D) α-1 α p (2+n) n (1.43)
where S, α, D c are scalar parameters and n is the hardening power.

Micromechanical damage models

Another type of damage models are the micromechanical damage models which are based on the direct representation of the ductile damage phenomena at microscopic scale: the nucleation, growth and coalescence of cavities. Based on the McClintock [START_REF] Frank | A criterion for ductile fracture by the growth of holes[END_REF] and Rice and Tracey [START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF] works, the Gurson damage model [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF] and its numerous extensions are widely used micromechanical models. This model considers the growth of spherical cavities surrounded by a material matrix in a representative elementary volume (see fig. 1.4). The total elementary volume is then referred to as V , the material volume V mat and the void volume V v oid .

V v oid V mat This model was further extended by Tvergaard and Needleman [START_REF] Tvergaard | Influence of voids on shear band instabilities under plane strain conditions[END_REF][START_REF] Tvergaard | Analysis of the Cup-cone Fracture in a Round Tensile Bar[END_REF] to defined the so-called GTN (Gurson-Tvergaard-Needleman) model. In these model the damage variable f t corresponds to the void volume fraction V v oid /V . This void volume fraction can be initiated by the nucleation of cavities, represented by the damage variable f n . Assuming a strain controlled nucleation, the nucleation rate is expressed as:

ḟn = A n (...) ṗ (1.44)
Different nucleation functions A n can be found. A commonly used solution is the normal distribution proposed by Chu and Needleman [START_REF] Chu | Void Nucleation Effects in Biaxially Stretched Sheets[END_REF]:

ḟn = f n s n √ 2π exp - 1 2 p -ε n p s n 2 ṗ (1.45)
where f n the nucleated void volume fraction, ε n p the plastic strain for which the rate ḟn is maximum, and s n the standard deviation of this distribution.

Another nucleation rate is proposed Dalloz et al. [START_REF] Dalloz | Effect of shear cutting on ductility of a dual phase steel[END_REF] with a limited number of parameters:

ḟn = H(p -ε d )A ṗ (1.46)
where H(:) is the Heaviside function and ε d represents the plastic strain for which nucleation starts. The nucleation rate is then considered as constant (parameter A).

Growth of nucleated voids is represented by the variable f g . Its evolution is related to the plastic volume variation, assuming mass conservation:

ḟg = d V -V mat V = ∂f g ∂V V + ∂f g ∂V mat Vmat 0 = V mat V V V Tr( εp) = (1 -f t )Tr( εp ) (1.47)
The total void volume fraction is then defined as follows:

f t = f n + f g (1.48)
Void coalescence is described following the original GTN model using an effective porosity f * ≥ f t expressed as:

f * =    f t if f t < f c f c + f u -f c f r -f c (f t -f c ) if f t ≥ f c (1.49)
where f c is a critical value corresponding to the onset of coalescence. Parameter f r is the value of f t at fracture and f u is the value of f * at fracture. The GTN model uses a yield criterion accounting for the effect of damage and pressure which is expressed as:

φ = σ σ F 2 -1 Plasticity + 2q 1 f * cosh q 2 2 Tr( σ) σ F -(q 1 f * ) 2 Effect of cavities (1.50)
where σ is the equivalent stress defined by the yield criterion, σ F the flow stress, q 1 and q 2 are model parameters to be identified. One can note that this criterion has two parts: a first part that is associated to a classical elasto-plastic criterion and the second one that is associated to the effect of cavities. Several values of q 1 and q 2 can be found in the literature [START_REF] Tvergaard | On localization in ductile materials containing spherical voids[END_REF][START_REF] Faleskog | Cell model for nonlinear fracture analysis -i. micromechanics calibration[END_REF][START_REF] Besson | Modeling of crack growth in round bars and plane strain specimens[END_REF] giving:

q 1 1.5, q 2 1.0 (1.51)
Also, by setting σ = 0, the above criterion gives the failure value of f * , f u = 1/q 1 . The GTN model can be a good candidate to represent the material failure at high stress triaxiality. However, it can be noticed that the evolution of f g strongly depends on level of stress triaxiality. This means that the higher the triaxiality, the less ductile the material. However, under shear loading, the trace of the plastic strain tensor is null. In that case, f g has no effect and fracture might not be well predicted. This is a well known issue encountered with the use of the classical GTN model. To overcome this difficulty, Nahshon and Hutchinson [START_REF] Nahshon | Modification of the Gurson Model for shear failure[END_REF] have proposed a modification that considers a third void volume fraction linked to "shear" damage:

ḟsh = k w f t w (θ) s : εp σ = k w f t 1 -(cos(3θ)) 2 w s : εp σ (1.52)
where k w is the only parameter to identify. The weight function w (θ) is such that shear damage is maximum for θ = π/6 (i.e. under shear or plane strain conditions) and equal to zero when θ is close to 0 and π/3 (any axisymmetric loading conditions). This implies that shear damage can also be activated at high stress triaxialities under plane strain conditions. To avoid such a behavior, Nielsen and Tveergard [START_REF] Lau | Ductile shear failure or plug failure of spot welds modelled by modified Gurson model[END_REF] have
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proposed to modify the expression of w so that it is equal to zero for a given value of the triaxiality by introducing an additional weight function Ω so that:

ḟsh = Ω(η)k w f t w (θ) s : εp σ (1.53)
with:

Ω(η) =      1 si η < η 1 η -η 2 η 1 -η 2 si η 1 ≤ η ≤ η 2 0 si η > η 2 (1.54)
where η 1 and eta 2 are two stress triaxiality values to identify.

Another well known micromechanical model is the one proposed by Rousselier [START_REF] Rousselier | Ductile fracture models and their potential in local approach of fracture[END_REF], which is based on the thermodynamic of irreversible process defined in the previous section. It considers the following dissipative potential:

φ = σ ρ + D R σ R f t exp σ m ρσ R -R(p) (1.55)
where D R and σ R are parameters to identify. The Rousselier model then introduces the effect of material density variation in the elementary volume with:

ρ = ρ ρ 0 = m mat V m mat V 0 = V mat 1 -f 0 t V mat 1 -f t = 1 -f t 1 -f 0 t (1.56)
According to the author, the stress σ R represents the matrix resistance to void growth and can be linked to the hardening law as follows:

σ R = 2 3 R(p) (1.57)
The D R parameter is fitted by experimental results and is generally between 1.5 and 2.

Summary

A state of the art of commonly used constitutive equations for metallic materials has been realized in this section. Plasticity, strain-rate effects and damage models were detailed. In the next section, characterization tests will be carried out on the DP450 steel. The experimental results will enable highlighting the non-linear phenomena that have an influence on the crack initiation an propagation. From the literature review presented in this section, several constitutive equations will be chosen to assemble a constitutive model able to represent the material behavior up to failure under quasi-static and dynamic loading rates.

Experimental procedure and constitutive equations

Taken from: V.Davaze, N.Vallino, S.Feld-Payet, B.Langrand and J.Besson, Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings, Engineering Fracture Mechanics, Submitted

Introduction

In the automotive industry, the ecological concern leads to making car bodies from thin metallic (steel or aluminum) sheets. This helps reducing car weight and increases fuel efficiency. However, these very thin structures can be subjected to tearing, especially in crash conditions. As tearing should be avoided, simulations are carried out to ensure structural integrity. However, ductile failure initiation and crack tearing

are not yet reliably predicted by simulations. And, when a crack is detected by certification tests, parts and tools have to be re-designed, which increases the development cost and entails delays.

The poor numerical prediction of cracking can be explained by the use of too simple solutions such as basic fracture criteria used to 'delete' elements from the simulation when a critical value of plastic strain is reached. Although these fracture criteria are easy to implement, and often require a limited number of parameters to be identified, they do not always take into account the effect of stress triaxiality (here referred to as η) and the Lode angle (θ) which are known to control crack initiation. To improve the prediction of fracture criteria for crash simulations purposes, commonly used solutions are Rice and Tracey [START_REF] Rice | On the ductile enlargement of voids in triaxial stress fields[END_REF] (micromecanically based) or Johnson-Cook [START_REF] Johnson | Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures[END_REF] (phenomenologically based) criteria which both consider a decrease of the plastic strain at failure as stress triaxiality increases. This assumption, mostly verified at high stress triaxiality (η > 1/3), is not always correct for a wide range of stress triaxialities. Indeed, a potential drop of fracture strain can be also observed at very low stress triaxiality (η < 1/3), under shear conditions for instance. In order to remedy this shortcoming, Bai and Wierzbicki [START_REF] Bai | Application of extended Mohr-Coulomb criterion to ductile fracture[END_REF] have proposed a ductile failure criterion known as the Modified Mohr-Coulomb [START_REF] Coulomb | Essai sur une application des règles de maximis & minimis à quelques problèmes de statique, relatifs à l'architecture[END_REF][START_REF] Mohr | Abhandlungen aus dem Gebiete der technischen Mechanik[END_REF] (MMC) criterion, which is usually used to describe the failure of brittle materials. This MMC criterion can predict the strain at failure for a wide range of stress triaxiality and Lode angle combinations. The MMC criterion was further extended in [START_REF] Mohr | Micromechanically-motivated phenomenological Hosford-Coulomb model for predicting ductile fracture initiation at low stress triaxialities[END_REF] using the Hershey [START_REF] Hershey | The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals[END_REF]/Hosford [START_REF] Hosford | A Generalized Isotropic Yield Criterion[END_REF] equivalent stress instead of the Tresca stress [START_REF] Tresca | Mémoire sur l'écoulement des corps solides soumis à de fortes pressions[END_REF]. According to the authors, a better prediction under plane stress conditions is obtained. The Hosford-Coulomb failure criterion was also improved to introduce the effect of other phenomena such as strain-rate dependency [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF] or more recently necking effect [START_REF] Pack | Combined necking & fracture model to predict ductile failure with shell finite elements[END_REF][START_REF] Pack | Hosford-coulomb ductile failure model for shell elements: Experimental identification and validation for dp980 steel and aluminum 6016-t4[END_REF] for shell element applications. However, any improvement of these criteria leads to an increase of the number of parameters to identify and requires complex testing procedures to measure the plastic strain at failure for various stress triaxialities and Lode angle values. Moreover, using fracture criteria, damage does not influence the elasto-plastic behavior. This means that stress softening is not represented, which can cause a poor description of strain localization and of the crack path as the material does not lose its load-carrying capacity. From the numerical point of view, another difficulty may arise when performing simulations for dynamic problems (e.g. crash): when a critical value is reached for a given number of integration points in an element, this "sound" (i.e. undamaged) element is removed from the computation. This causes a sudden drop of the stresses at the material point that can lead to dynamic instabilities.

To improve the numerical prediction of ductile fracture in crash simulations, some contributions [START_REF] Pickett | Failure prediction for advanced crashworthiness of transportation vehicles[END_REF][START_REF] Ockewitz | Damage modelling of automobile components of aluminium materials under crash loading[END_REF][START_REF] Marzbanrad | Damage modeling in crashworthiness of dual-phase steel[END_REF] have considered, instead of fracture criteria, the use of coupled damage models, especially micromechanically based Gurson type models. These models consist in computing a damage variable generating stress softening and possibly offering a better representation of strain localization and the crack path. Numerically, if element deletion is then applied to fully broken elements it does not create spurious elastic waves in dynamic computations. Many damage models (see e.g. review in [START_REF] Besson | Continuum models of ductile fracture : A review[END_REF][START_REF] Son | Models for ductile damage and fracture prediction in cold bulk metal forming processes: a review[END_REF]) are designed to take into account the effect of stress triaxiality and/or Lode angle so as to be able to distinguish shear cracks at low triaxiality and necking cracks at high triaxiality.

This paper proposes to evaluate the ability of coupled damage models to predict fracture for a wide range of stress states on a representative ductile material commonly used in automotive industry as a shock absorber in crash: a DP450 "dual-phase" steel sheet. In order to build, calibrate and validate a model, a comprehensive experimental study, described in section 1.2.2, is carried out on various test specimens which can be easily tested on a tensile test machine. The extent of this experimental campaign constitute the main originality of this work. Several geometries are tested so as to vary stress states. Since crash simulations require the constitutive model to be able to predict failure at both very low and high velocities, the tests are performed at both low and high loading rates. The effect of temperature on the material behavior is also studied. On the basis of the observed phenomena, a plasticity model containing hardening, viscosity and self-heating is first proposed in section 1.2.4. The damage effects are represented using a modified version of the Gurson-Tvergaard-Needleman [START_REF] Tvergaard | Analysis of the Cup-cone Fracture in a Round Tensile Bar[END_REF] model which is introduced in section 1.2.5. Finally, the numerical validation of this original constitutive model is done by comparing tests on specimens that have CHAPTER 1. MATERIAL STUDY AND CONSTITUTIVE MODEL not been used to identify the model parameters and the corresponding simulations in the section 1.2.6.

Material and experimental procedure

In this first section, a brief description of the studied DP450 steel is given, and the experimental campaign is detailed.

DP450 "dual-phase" Steel

The material of this study is a dual-phase DP450 steel which is representative of the type of steel used for sheets in the car industry. Its large maximum elongation and its low yield stress are good properties for metal forming process and shock absorption in crash conditions. This DP steel is composed of a small amount of martensite within a ferrite matrix (see fig. 1.5). Alloying elements are given in tab. 1.1. The material is supplied as a 1.18 mm thick sheet obtained by rolling process. In the following the rolling direction will be referred to as L (0 • ), the transverse direction as T (90 • ) and the diagonal direction as D (45 • ). 

C

Mn Si P S Cu Al Fe 0.08 1.6 0.4 < 0.05 < 0.01 < 0.2 < 1. bal. 

Experimental procedures

A comprehensive experimental campaign was performed to highlight all possible phenomena that may have an influence on crack initiation and propagation. Almost 120 tests were carried out on specimens with 9 different geometries to vary stress state (see fig. 1.6). All the specimen geometries can be tested on a tensile machine. These specimens were tested at different loading rates and temperatures. Flat standard (see fig. 1.6a) and large (see fig. 1.6b) specimens were used to characterize the plastic behavior of the material. Strain rates were selected so that they correspond to rates in highly deformed zones during crash i.e. up to 200 s -1 .

Notched specimens, referred to as NT1 (fig. ), are relevant to analyze the effect of high stress triaxiality on plasticity and crack initiation. The smaller the notch is, the higher the stress triaxiality. To study crack initiation at lower stress triaxiality, a shear "M-shape" specimen (fig. 1.6g) was also used. Finally, crack propagation was studied using a Center Crack Panel (CCP) specimen (fig. 1.6h). A very thin notch was introduced in this specimen using Electro-Discharge Machining (EDM); the notch radius is, in that case, 0.1 mm. Note that because of the steel sheet small thickness (1.18 mm), buckling cannot be avoided in compression tests so that negative stress triaxiality was not considered in this experimental study. Some of these specimens (std. flat, NT1, V45, M-shape and CCP) were tested at low and high velocities using two different testing machines. For high velocities, the geometries of specimens tested employing the FastGrip system (see fig. 1.7c) needed to be modified so as to increase their lengths. The width of M-shape and CCP specimens was also reduced. This last modification has no influence in the case of the M-shape specimen as the strained area remains unchanged. It is however necessary to distinguish between the CCP specimens (CCP and CCP-dyna) as the initial ligament is reduced for specimens tested at high rates. The specific dimensions used at high rates are outlined in red in fig. 1.6. In all cases, it was checked that the prescribed velocity is such that the strain rates reached locally for the notched specimens are within the experimental range prescribed for the flat tensile specimens. 

Main experimental results

For the sake of clarity and brevity, a selection of experimental results among the tests listed in tab. 1.2 is presented here to outline the main observed phenomena. This section is organized as follows. First the elasto-plastic behavior under quasi-static loading is described. Strain rate dependence and related adiabatic heating are then presented. Finally damage growth and crack propagation are detailed.

Elasto-plastic behavior

Tensile tests on standard flat specimens (see fig. 1.6a) were carried out along several directions in the sheet plane from L (0 • ) to T (90 • ), by steps of 15 1.9e), allow to obtain a more precise characterization of the material anisotropy. Anisotropy is very limited for stresses and slightly more pronounced in the case of the Lankford coefficient. In the following the material will be considered as isotropic for the sake of simplicity. Note that in practice, forming of parts in automotive industry is conducted without considering sheet orientation. Nevertheless, all remaining quasi-static tests were performed along both L and T directions to check for possible anisotropic ductility which appeared in fact to be very limited. For that reason, tests for both L and T loading directions, and otherwise given testing conditions, were averaged. Consequently experimental scatter will also integrate the effect of anisotropy. For dynamic loading, the orientation of specimens was no longer considered so as to reduce the number of repeated tests. (c) Variation in plane of YS0.2. 
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Strain-rate and temperature effects

As a car crash is a dynamic event, it is necessary to characterize the effect of loading rate on the behavior of the material. To do so, dynamic tensile tests were performed on several geometries. Load-displacement curves obtained on FN specimens are given in fig. 1.10a (note that the for the highest velocity of 1.0 m.s -1 , results were filtered which made the elastic response disappear from the curve). A significant gain in strength with increasing loading rate is noticed which shows that the material is strain-rate dependent. The displacement at failure decreases with a steeper load drop. Infra-red pictures showed a significant temperature increase after the onset of necking and during cracking as exemplified in fig. 1.10b. In that case, an increase of 100 • C with respect to room temperature is observed for an intermediate (i.e. without inertia effects) loading rate equal to u = 8.33 mm.s -1 .

To characterize the effect of the temperature alone on material behavior, quasi-static tensile tests were carried out at 100 • C. The low loading rate ensures to keep the isothermal conditions as self-heating only appears at high rates. Several specimens were tested: standard flat, V45, and CCP. An oven and thermocouples were used to regulate the temperature of the specimens. Results obtained on these specimens are presented in fig. 1.11. A significant loss of strength and ductility is observed with increasing specimen temperature. This observation may explain the results obtained at high loading rates on FN specimens (see 

Crack initiation and propagation

Quasi-static tensile tests were performed on notched and shear specimens along T and L directions. Averaged results for several specimens are given in fig. 1.12. NT2, NT1 and V45 specimens (fig. 1.12a) have the same minimum cross section and allow positioning the clip extensometer at the same location. These notched specimens have a relatively high stress triaxiality before crack initiation (η > 0.35). The highest value is reached in the case of the V45 specimen so that it exhibits higher load levels before crack initiation (which is marked by in fig. 1.12a). The notch opening at crack initiation decreases with notch severity illustrating the usual dependence of ductility on stress triaxiality. Crack propagation is stable (i.e. no sudden load drop) in all cases up to complete failure. Load decrease is very steep for NT2 specimens but gradual for V45, which allows to use this specimen to characterize crack propagation. The M-shape specimen (see fig. 1.12b) shows an abrupt load decrease which limits its use to only characterizes initiation. This specimen (see fig. 1.6g) has two ligaments so that one of them fails first which causes dissymetric failure. The test is then stopped after this first failure which explains that the final recorded load is not equal to 0. For a better understanding of damage growth leading to failure, fracture surfaces were observed using a Scanning Electron Microscope (SEM). The fig. 1.13 shows a typical ductile fracture surface obtained for a NT1 specimen. Numerous small dimples can be observed. A polished longitudinal cross section is also shown in fig. 1.13b. Voids are exhibited below the fracture surface up to a distance of about 500 µm. It was checked that outside the necked area damage was not initiated Failure thus appears to be caused by void nucleation and growth in the material. Polished cross sections of the unstrained material showed no initial damage. 

Summary

The summary table of the performed tests for all specimens, loading rates and temperatures is given in tab. 1.2. From the observations made thanks to these tests, it is possible to summarize the phenomena that have an influence on crack initiation and propagation:

1. Plasticity : isotropic with hardening, 2. Strain rate sensitivity : increase in strength with the increasing strain rate, 3. Self-heating : heat generation at high strain rate that leads to a loss of macroscopic ductility, 4. Damage : nucleation, growth and coalescence of cavities responsible for fracture.

The next two sections of this study introduce the constitutive equations chosen from the literature to represent all these phenomena in a constitutive model. Constitutive equations for plasticity describing hardening, viscosity and self-heating are first introduced in section 1.2.4. These constitutive equations are then extended to account for damage in section 1.2.5. 0.002 mm.s -1 0.003 mm.s -1 0.004 mm.s -1 0.009 mm.s -1 0.035 mm.s 
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Constitutive equations for plasticity

The constitutive equations for plasticity are first described in this section. The hardening law, the plasticity yield criterion, the rate-dependency model and the rule for quasi adiabatic self-heating effects are detailed.
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Note that the elastic behavior is supposed to be linear and isotropic. The Young modulus is E = 192 GPa and obtained from experimental results in directions L and T. The Poisson ratio ν = 0.3 is chosen from [START_REF] Dalloz | Effect of shear cutting on ductility of a dual phase steel[END_REF].

Hardening model

Work-hardening has been observed on experimental results (see fig. 1.9a). To model this phenomenon, a Voce type law [START_REF] Voce | The Relationship between Stress and Strain for Homogeneous Deformation[END_REF] is often used in the literature [START_REF] Sarraf | Effect of rate-dependent constitutive equations on the tensile flow behaviour of DP600 using Rousselier damage model[END_REF]. This law leads to a maximum value of the flow stress. However, Le Maout et al. [START_REF] Le Maoût | Aluminum alloy damage evolution for different strain paths -application to hemming process[END_REF] have mentioned that for tests realized up to failure, an additional linear term might be considered to represent hardening at high strains. Thus the Voce law is modified accordingly by adding a linear hardening term to obtain the following expression for the hardening law:

R(p) = R e + Hp + Q(1 -exp(-bp)) (1.58)
where R e is the initial tensile yield stress, H the linear hardening coefficient, p the cumulated plastic strain, Q and b the two Voce parameters. The initial yield stress R e is set to the average of the experimental results for quasi-static tensile test on standard flat specimens (ε = 0.001 s -1 ) along L and T directions at room temperature: R e = 283 MPa. The other parameters are identified on the same average curve, using a least square optimization Python script for plastic strains between 0% and 20% (which is slightly below the strain at necking). The following parameters are obtained: H = 587 MPa, Q = 208 MPa and b = 23.9.

From the result of this identification the evolution of the nominal stress in fig. 1.14a is plotted as a function of the nominal strain. 

Plastic yield criterion

The choice of a plastic yield criterion requires several tests at different stress triaxialities. Notched specimens (NT1, NT2, V45) and M-shape shear specimen are used to determine and identify the appropriate isotropic plastic yield criterion. Considered candidates are Tresca [START_REF] Tresca | Mémoire sur l'écoulement des corps solides soumis à de fortes pressions[END_REF], von Mises [START_REF] Mises | Mechanik der festen Körper im plastisch-deformablen Zustand[END_REF], Hershey/Hosford [START_REF] Hershey | The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals[END_REF][START_REF] Hosford | A Generalized Isotropic Yield Criterion[END_REF] and Drucker [START_REF] Drucker | Experiments to Mathematical Theories of Plasticity[END_REF] yield criteria. The best fit is obtained using the Drucker criterion. Although the Hosford model leads to predictions which are quite close, the numerical implementation of the Drucker criterion is easier. The Drucker yield criterion is expressed as:

f = σ -σ F with σ = 6 1 27 -c 4 729 -1 (J 3 2 -cJ 2 3 ) (1.59)
where σ is the equivalent stress associated to the Drucker criterion, σ F the flow stress and c the Drucker parameter. J 2 and J 3 designate respectively the second and third deviatoric invariants which are expressed as:

J 2 = 1 2 s : s J 3 = det( s) (1.60)
where s is the deviatoric stress tensor and det(.) the determinant. If c = 0, the J 2 -plasticity of von Mises is recovered. Depending on the value of the c parameter, the Drucker yield surface lies between a smoothed Tresca surface (c = 2.25) and the upper bound of Mendelson [START_REF] Mendelson | Plasticity; theory and application[END_REF] (c = -27/8). Note that the Drucker yield criterion depends on the Lode angle (see below) as it is expressed as a function of both J 2 and J 3 .

The identification is made using Z-opt optimization software [START_REF] Le Riche | An object-oriented simulation-optimization interface[END_REF]. The simulated load-displacement curves are compared with the average (L and T) quasi-static results obtained on NT1, NT2, V45 and M-shape specimens (see fig. 1.12). These specimens are particularly relevant for this identification as they allow generating stress states close to shear (M-shape) and between uniaxial tension and plane strain (in particular V45 specimen is close to plane strain along the specimen width direction). The flow stress σ F is taken equal to R(p) (eq. (1.58)) as rate effects can be neglected for those tests. The identified parameter is c = 1.45. This result indicates that a classical Mises yield surface (c = 0) is not sufficient to well represent the yield surface for this material. The obtained yield surface is shown in fig. 1.14b where it is compared to the corresponding von Mises surface.

Strain rate dependence

A rate-dependant behavior has also been highlighted with tensile tests at high velocities. To represent this phenomenon, several models taken from the literature can be considered. The Johnson-Cook [START_REF] Gordon | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF] formula is most the commonly used rate-dependent approach in the automotive industry. Other well known works can be cited as Zerilli-Armstrong [START_REF] Zerilli | Dislocation mechanics based constitutive relations for material dynamics calculations[END_REF] or Zhao [START_REF] Zhao | A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets[END_REF] models. In this paper, it is first chosen to consider the Johnson-Cook approach. The flow stress is consequently changed by adding a factor in the expression of the flow stress as follows:

σ F = R(p) 1 + C ln ṗ ε0 + Strain rate dependence (1.61)
where C > 0 is a parameter; ε0 is the strain-rate below which strain dependency effects are negligible and . + designates the Macauley brackets. This equation implies that viscous effects appear as soon as the plastic strain rate ṗ is higher than the quasi-static limit strain-rate ε0 . Using the tensile test results on large and standard flat specimens at different loading rates, the value of ε0 is chosen as the maximum strain rate for which the material shows an inviscid response: ε0 = 0.00361 s -1 . The expression of the Johnson-Cook's rate-dependency equation indicates that parameter C corresponds to the slope of the σ p -lnp/ε 0 + curves for a given plastic strain level. Using this observation, parameter C is identified with a Python least square optimization script for plastic strain values contained between 2% and 15%. Considering the self-heating model based on the conversion of plastic work [START_REF] Ingram | The latent energy remaining in a metal after cold working[END_REF] presented below, this low level of plasticity allows neglecting the small increase of temperature at high velocity. The identification (see fig. Regarding the other models mentioned above, the physically based Zerilli-Armstrong model appears to be much more difficult to identify. Zhao rate dependent model is a good candidate in the case where experimental σ p -lnp/ε 0 + curves are not linear. This case can be observed at very high strain-rates (ε > 300 s -1 ). However, using Zhao model implies an increase in the number of parameters to be identified. Similarly, in a recent work, Sarraf et al. [START_REF] Sarraf | Effect of rate-dependent constitutive equations on the tensile flow behaviour of DP600 using Rousselier damage model[END_REF] have proposed a modified version of Johnson-Cook rate dependent model so as to make it "non-linear" by using ln ṗ/ε 0 n + instead of ln ṗ/ε 0 + where n is an additional parameter to be identified. 

Thermal softening and self-heating

At high loading rates and high level of plastic strain (p > 15%), self-heating was experimentaly observed leading to a loss of macroscopic ductility and a steeper load drop. This increase of temperature leads to a loss of load carrying capacity (thermal softening). Two candidate models have been considered to represent this phenomenon. On the on hand, the Johnson-Cook [START_REF] Gordon | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF] approach considers a non-linear softening between room temperature and melting temperature. On the other end, the Zhao [START_REF] Zhao | A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets[END_REF] thermal softening model considers a linear thermal softening which is, according to the author, sufficient for an automotive application since the temperature increase rarely exceeds a few hundred degrees. For this reason, this last model is preferred for this study. Note that both models only have one parameter to identify. Zhao thermal softening equation is introduced in the flow stress expression as:

σ F = R(p) 1 + C ln ṗ ε0 + Viscosity (1 -µ(T -T ref ))
Thermal softening

Strain-rate effects (1.62) where µ is the only parameter to identify, T the current temperature and T ref the reference temperature used throughout the identification of R(p). In this study, T ref corresponds to the room temperature (20

• C).
Strain rate effects result from the combination of rate dependence and thermal softening. Parameter µ can be easily identified using the quasi-static stress-strain curves obtained at room temperature (20 • C) and at 100 • C which corresponds to the level of observed temperature increase. Identification (Python script) leads to a value of µ equal to 0.00134 • C -1 . Note that this value is close to the value proposed by Zhao [START_REF] Zhao | A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets[END_REF] for a similar material used in the automotive industry. Experiments and simulations are compared in fig. 1.16a with good agreement.

As coupled thermo-mechanical simulations are avoided in the automotive industry to reduce computation time, the evolution of temperature is given by the following expression proposed by Roth and Mohr [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF]:

Ṫ = ω( ṗ) η k ρC p σ : εp (1.63)
where ω is a weight function described in eq. (1.64), η k is the Taylor-Quinney [START_REF] Ingram | The latent energy remaining in a metal after cold working[END_REF] coefficient, ρ the density, C p the heat capacity, σ the stress tensor and εp the plastic strain rate tensor. The temperature increase corresponds to the conversion of a given percentage (η k ) of the plastic work into heat. The value of this coefficient is taken from [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF] and set to η k = 0.9. Thermal properties of DP450 steel are assumed to be close to those of DP590, thus corresponding material parameters ρ=7850 kg.m -3 , and C p =420 J.kg -1 . • C -1 , proposed in [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF], are also taken. The weight function ω is used to obtain a continuous transition between isothermal conditions at low strain rates with no heat generation and quasi-adiabatic conditions at high strain rates with purely adiabatic heat generation. Its expression is:

ω( ṗ) =        0 if ṗ < εis ( ṗ -εis ) 2 (3ε ad -2 ṗ -εis ) (ε ad -εis ) 3 if εis ≤ ṗ ≤ εad 1 if ṗ > εad (1.64)
where εis is the isothermal limit strain rate and εad is the adiabatic limit strain rate. This weight function allows the constitutive model to be used for low loading rates and high loading rates as well. Note that the identification of εis and εad is only possible once the damage model is already introduced and identified because adiabatic heating is only very active in areas where damage is high. This identification (see section 1.2.5) is performed on quasi-static tests so as to perform fitting of parameters for damage and self-heating in two separate steps. Roth and Mohr [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF] have proposed to set εis = ε0 . Using this assumption (which would simplify the identification procedure) did not allow to obtain a good fit of the database and consequently εis was also tuned. As self-heating only affects the macroscopic response when the entire specimen cross-section undergoes temperature increase, large flat tensile specimens are used for the identification of εis =0.002 s -1 and εad =0.04 s -1 . This fit was validated on FN specimens which also show almost uniform self-heating. Identification requires to simulate the entire specimens so that an automatic optimization software must be used (Z-opt in this case). Comparison of experiments and simulations are shown in fig. 1.16b with reasonable agreement. 

Constitutive equations for damage

The constitutive model is completed by introducing damage effects. In the experimental study, it has been observed that failure of DP450 steel is due to the nucleation and growth of cavities. To represent these phenomena, a modified version of Gurson-Tvergaard-Needleman (GTN) coupled damage model [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF][START_REF] Tvergaard | Influence of voids on shear band instabilities under plane strain conditions[END_REF][START_REF] Tvergaard | Analysis of the Cup-cone Fracture in a Round Tensile Bar[END_REF] is used. This model considers spherical cavities surrounded by a material matrix in an representative
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elementary volume. The damage variable f t corresponds to the void volume fraction. The GTN model allows representing different damage phenomena: nucleation, growth and coalescence of cavities. In this study, it is assumed that the as-received material is damage free (f t = 0). Voids must thus be first created by nucleation of cavities during plastic deformation. The nucleated void volume fraction (assumed to correspond to martensite/ferrite debonding) is represented by the variable f n . Assuming strain controlled nucleation, the nucleation rate is expressed as: ḟn = A n (. . . ) ṗ. The Gaussian function proposed by Chu and Needleman [START_REF] Chu | Void Nucleation Effects in Biaxially Stretched Sheets[END_REF] is often used for A n . In this study, the nucleation rate proposed in [START_REF] Dalloz | Effect of shear cutting on ductility of a dual phase steel[END_REF] is used limiting the number of parameters to identify (2 instead of 3). The nucleation rate is then expressed as:

ḟn = H(p -ε d )A ṗ (1.65)
where H(.) is the Heaviside function and ε d represents the plastic strain for which nucleation starts. The nucleation rate is then considered as constant (parameter A). Growth of nucleated voids is represented by the variable f g . Its evolution is related to the plastic volume variation as:

ḟg = (1 -f t )Tr( εp ) (1.66)
where f t is the total void volume fraction (see eq. (1.69)) and Tr(.) is the trace. It can be noticed that the evolution of f g strongly depends on stress triaxiality. This means that the higher the triaxiality, the less ductile the material. However, under shear loading, the trace of the plastic strain tensor is null. In that case, f g has no effect and fracture of DP450 might not be well predicted. This is a well known issue encountered with the use of classical GTN model. To overcome this difficulty, it is proposed to use the modification introduced by Nahshon and Hutchinson [START_REF] Nahshon | Modification of the Gurson Model for shear failure[END_REF]. It considers a third void volume fraction linked to "shear" damage:

ḟsh = k w f t 1 -(cos(3θ)) 2 w (θ) s : εp σ (1.67)
where k w is a constant to identify, θ is the Lode angle, s the deviatoric stress tensor and σ the equivalent stress defined by the plastic yield criterion (Drucker in the present case). The Lode angle is expressed as:

cos(3θ) = 3 √ 3J 3 2J 2 √ J 2 (1.68)
The weight function w (θ) is such that shear damage is maximum for θ = π/6 (i.e. under shear or plane strain conditions) and equal to zero when θ is close to 0 and π/3 (any axisymmetric loading conditions). This implies that shear damage can be activated at high triaxialities under plane strain conditions. To avoid such a behavior, Nielsen and Tveergard [START_REF] Lau | Ductile shear failure or plug failure of spot welds modelled by modified Gurson model[END_REF] have proposed to modify the expression of w so that it is equal to zero over a given value of the triaxiality. In this paper, it is chosen to keep the original expression given in eq. (1.67) as triaxiality remains limited due to the sheet thickness. In addition, a good fit was obtained with the original model only. Note however that the triaxiality levels considered in [START_REF] Lau | Ductile shear failure or plug failure of spot welds modelled by modified Gurson model[END_REF] correspond to the levels observed in this work. "Shear" damage will thus have a small effect at moderate stress triaxiality that will be illustrated below. Other proposals can be found in the literature to improve the GTN model at low stress triaxialities. Pickett et al. [START_REF] Pickett | Failure prediction for advanced crashworthiness of transportation vehicles[END_REF] suggest to add a nucleation mechanism controlled by the shear components of the plastic strain tensor. More recently Malcher et al. [START_REF] Malcher | An extended GTN model for ductile fracture under high and low stress triaxiality[END_REF] and Jiang et al. [START_REF] Jiang | Modified GTN model for a broad range of stress states and application to ductile fracture[END_REF] have used the GTN model in which the matrix flow stress (σ F ) is affected by shear damage following the Lemaitre approach [START_REF] Lemaitre | A Continuous Damage Mechanics Model for Ductile Fracture[END_REF]. The total void volume fraction is then defined as follows:

f t = f n + f g + f sh (1.69)
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Void coalescence is described following the original GTN model using an effective porosity f * ≥ f t expressed as:

f * =    f t if f t < f c f c + f u -f c f r -f c (f t -f c ) if f t ≥ f c (1.70)
where f c is a critical value corresponding to the onset of coalescence. Parameter f r is the value of f t at fracture and f u is the value of f * at fracture. The GTN model uses a yield criterion accounting for the effect of damage and pressure which is expressed as:

φ = σ σ F 2 -1 Plasticity + 2q 1 f * cosh q 2 2 Tr( σ) σ F -(q 1 f * ) 2 Effect of cavities (1.71)
where σ is the Drucker equivalent stress which is introduced in the GTN yield surface following [START_REF] Amine | Plastic potentials for anisotropic porous solids[END_REF] instead of the von Mises stress, σ F is the flow stress described in section 1.2.4, q 1 and q 2 are model parameters to be identified.

Identification of this damage model can be simplified by choosing values from the literature. The yield function parameters are taken from [START_REF] Tvergaard | On localization in ductile materials containing spherical voids[END_REF] as q 1 = 1.5 and q 2 = 1.0. Parameter f u is equal to 1/q 1 . Remaining parameters to identify are ε d , A, k w , f c and f r . Two specimens are used for this identification: the NT1 notched specimen which is representative of high stress triaxiality specimend and the M-shape shear specimen for low stress triaxiality. The shear specimen is particularly important to identify the Nahshon and Hutchinson (N&H) coefficient k w . Quasi-static loadings are preferred to avoid any thermal effect on softening. Since damage models are well known to be mesh-dependent because of stress softening and damage localization [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF], the parameters have to be identified for a fixed mesh size which will represent the width of the damage localization band. It is then chosen to fix the mesh size L e at one sixth of the sheet thickness (6 hexahedral elements in the thickness), L e ≈ 0.2 mm. Using the Z-opt software, identification is realized using NT1 and M-shape specimen (see fig. 1.17). The experimental loading rate is applied (respectively 0.002 mm.s -1 and 0.003 mm.s -1 ) at room temperature. Simulations were automatically carried out by the optimization software up to full failure in order to match the entire load-displacement curves. Each iteration lasted about 1 hour. The optimized values are:

ε d = 0.3, A = 0.11, k w = 2.65, f c = 0.16 and f r = 0.2.
Note that if the Nahshon and Hutchinson modification is deactivated (k w = 0), the failure of M-shape specimen cannot be predicted (see fig. 1.17b). A slight difference is observed on NT1 results (see fig. 1.17a) because of plane strain conditions encountered in the center of the specimen as discussed above.

To simulate dynamic tests, it is assumed that damage parameters are temperature and strain rate independent. Using the GTN growth model implies [START_REF] Tanguy | An extension of the Rousselier model to viscoplastic temperature dependent materials[END_REF] that ductility for a given stress state is also temperature and strain rate independent as growth rate depends on a stress ratio (stress triaxiality) which remains constant. Nucleation could be affected by the stress level [START_REF] Needleman | Limits to ductility set by plastic flow localization[END_REF] but this possible effect was not accounted for in this study. Assuming strain controlled nucleation leads again to temperature and strain rate independent damage rates. Using these assumptions it is for instance possible to well describe the dynamic Charpy tests [START_REF] Tanguy | Ductile-brittle transition of a A508 steel characterized by the Charpy impact test. Part-II: modelling of the Charpy transition curve[END_REF][START_REF] Tanguy | Plastic and damage behavior of a high strength X100 pipeline steel: experiments and modelling[END_REF]. Indeed these assumptions are valid only if damage mechanisms remain similar. For instance dynamic strain aging (DSA) may reduce ductility in the case of duplex steels [START_REF] Queiroz | Study of dynamic strain aging in dual phase steel[END_REF]. Note that adiabatic heating will favor strain localization and therefore reduce the macroscopic ductility whereas local (material point) ductility remains unchanged.

Note also that only two specimens were required for the identification of the damage parameter. This was possible because for the two selected specimens, stress states differ and also because both crack initiation and propagation are considered in the identification procedure thanks to the stable load decrease for the NT1 specimen.

Finally a mesh size sensitivity analysis was carried out. It is concluded that a good fit can still be obtained when changing the mesh by only modifying the nucleation rate A proportionally to the new mesh size (L e ) as: A → A = A(L e /L e ). This simple rule can however only be applied for L e < 0.5 mm. Above this mesh size, the strain gradient is no longer well described so that M-shape, V45 and CCP specimens cannot be properly simulated as gradients are very steep in these specimens. 

Simulation of the database and validation of the model

In this last section, the constitutive model is implemented in the finite element software Z-set to perform simulations of several quasi-static and dynamic tests. Experiments and simulations are systematically compared to evaluate the prediction capability of the proposed model.

Numerical methods

In order to evaluate the performance of the proposed constitutive model, simulations are performed using the identified parameters for a mesh size of 0.2 mm that are summarized in tab. 1.3. Therefore three elements are used to represent the half-thickness. Note that the geometries and velocities used for the identification procedure are given in tab. 1.2 and marked with a yellow star (for plasticity) and blue star (for damage). Remaining experimental results on different specimens at different loading rates are used here for the evaluation of the model prediction capability. To perform these simulations, the constitutive model is implemented following a fully implicit scheme in the Z-set object oriented finite element software [START_REF] Foerch | Polymorphic constitutive equations in finite element codes[END_REF][START_REF] Besson | Large scale object-oriented finite element code design[END_REF]. This implementation is realized using the formalism proposed by Besson et al. [START_REF] Besson | Modeling of crack growth in round bars and plane strain specimens[END_REF]. The simulations are realized using regular meshes with a relatively constant mesh size of L e = 0.2 mm. These meshes consist in 8-node brick elements with full integration (8 Gauss points). To avoid pressure fluctuations within the elements, selective integration technique [START_REF] Thomas | Generalization of selective integration procedures to anisotropic and nonlinear media[END_REF] is used. It is emphasized that, in all cases, damage maximum values are localized on one row of Gauss points illustrating damage localization responsible for mesh size dependency. For this reason, it is important to keep a constant mesh size in the crack propagation zone.

Usual symmetry conditions are used so that 1/2 of the specimens is meshed (half thickness). Other symmetries are not accounted for so as to be able to represent non-symmetric crack paths experimentally observed for M-shape and FN specimens. For all simulations, the damage variable f t field during or after full failure is plotted with the same scale as presented in fig. 1.18c (see below). Considering the identified parameters (see tab. 1.3), element rupture is obtained for f t = f r = 0.20. Quasi-static tests are simulated using a static implicit scheme. Dynamic tests are simulated using a dynamic implicit numerical solver to consider inertia effects on the specimen response.
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[GPa] ν R e [MPa] H [MPa] Q [MPa] b c
192.0 0.3 283.0 587.0 208.0 23.9 1.45

ε0 [s -1 ] C µ [ • C -1 ] η k ρ [kg.m -3 ] C p [J.kg -1 . • C -1 ] εis [s -1 ]
0.00361 0.0236 0.00134 0.9 7850.0 420.0 0.002

εad [s -1 ] ε d A k w f c f r f u 0.04 0.3 0.11 2.65 0.16 0.2 1/q 1 q 1 q 2
1.5 1.0 In cases where cracks are initiated at the notch root, transverse strains can only be evaluated before the onset of cracking as the shadow tracking technique is not accurate enough to detect the crack tip. This situation prevails in all cases except for the standard flat specimens in which cracks are initiated at the center of the specimen. In all case a very good agreement is obtained between simulated and experimental load-displacement/notch opening curves up to full specimen failure (i.e. load= 0). This first shows that the hardening model is appropriately identified even for strain levels larger than the necking as shown, for instance, in fig. 1.18b where the engineering stress is plotted as a function of the transverse strain. A good agreement is also obtained in terms of macroscopic transverse strains. In all cases, loads are well predicted showing Crack initiation location is also well represented; in particular initiation at the center of the specimen for standard flat specimens is well captured by the model (see fig. 1.18b).

M-shape simulated failure given in fig. 1.19h occurs at one of the two sheared ligaments as observed experimentally. This disymmetric behavior is attributed to small differences between both side of the mesh and numerical errors. These small differences are increased due to the intrinsic softening character of the constitutive equations thus leading to a disymmetric response.

The CCP specimen, which is representative of long crack propagation, is also well represented (see fig. 1.20a and fig. 1.20b). Its overall behavior is close to that of the V45 specimen.

Due to its geometry, four crack initiation spots exist in the FN specimen. This lead to crack path dissymmetry and to various possible paths as exemplified in fig. 1.20d and fig. 1.20g. This is attributed to slightly different applied boundary conditions (due to e.g. a small misalignment in the griping system or specimen positioning). Note that, these differences are small enough so as to have no influence on the macroscopic load-displacement curves. To account for this experimental scatter, displacements measured using DIC were used as boundary conditions on horizontal lines located at ±17.5 mm from the center line of the specimens. This is done using the Escale software [START_REF] Garaud | escale : plateforme logicielle pour le dialogue essai -calcul[END_REF] which allows dialog between experiments and simulations. The simulation is then able to represent the corresponding crack paths of FN specimen in tests carried out at different slow loading rates of 0.009 mm.s -1 and 0.09 mm.s The model is however unable to reproduce to ductility loss observed at 100 • C under quasi-static conditions in fig. 1.11. In that case, the model predicts a constant ductility. This might be due to dynamic strain aging which was shown to reduce ductility [START_REF] Queiroz | Study of dynamic strain aging in dual phase steel[END_REF]. Its possible effect in not integrated in the present model. Note that these loading conditions do not correspond to car crash situation. 
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Dynamic tests

Dynamic tests are then simulated and results are given in fig. 1.21. These results also show an overall good prediction of strength levels and displacements at failure for all specimens. Note that, for the sake of clarity, only few loading rates are presented. No transverse strain measurements were performed during dynamic tests. Quasi-static results are also plotted for comparison. The simulated stress-strain curves at different plastic strain-rates (see fig. 1.21a) well represent the increase of strength due to viscous effects. The slight stress decrease observed at high strain rates (see the yellow frame) is caused by self-heating which is well reproduced by the simulation. A similar trend was observed in [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF] for flat tensile specimens. Large flat specimens were used for the identification of Roth and Mohr self-heating parameters and are already presented above in fig. 1.16b. Results illustrate the macroscopic loss of ductility with the increasing loading rates which is quite well reproduced by the model. The corresponding simulated temperature fields (see fig. 1.22) are also in good agreement with infra-red pictures. A slightly higher simulated temperature is however observed in the fracture areas.

Notched specimen NT1 (see fig. 1.21b) and V45 (see fig. 1.21c) are less sensitive to self-heating. Plastic strain being localized in the thin notched area, heat generation does not affect the entire specimen cross section and is not visible on the macroscopic response. Ductility is thus quasi-constant for all loading rates on these geometries. This behavior is also well represented by the model. The same observation is valid for CCP dyna. tests (see fig. 1.21d). Note that for this specimen, the level of strength for the fastest loading rate of 7.0 m.s -1 is slightly underestimated.

M-shape specimens are less ductile at high loading rates (see fig. 1.21e). This is consistent with results on tensile tests as the entire sheared areas are uniformly strained so that the entire cross section is submitted to heating. Localization is therefore favored compared to quasi-static loading so that failure occurs earlier.

FN specimens are simulated for two fast loading rated equal 8.33 mm.s -1 and 1.0 m.s -1 . Both show different levels of strength and displacement at failure. The specimen simulated responses well represent the material resistance level increase and the loss of macroscopic ductility due to thermal effects. Due to the inability to perform DIC analyses at high velocities, the accurate boundary conditions could not be applied for these simulations. This can explain the slight difference between the experimental and simulated elastic responses. Nevertheless, a good general agreement with experiments is still observed.

Conclusion

To overcome the shortcomings of fracture criteria for ductile cracking prediction in car simulations, a Gurson type damage model was proposed and evaluated. First of all, a very comprehensive experimental campaign allowed to observe the material response and to understand the phenomena involved in DP450 steel failure. These phenomena were modelled using an original set of constitutive equations with a limited number of parameters to identify. A practical identification procedure was proposed. It should be noted that the identification of the damage parameters, requires only a small number of tensile tests on relevant geometries, which is an advantage for industrial use. At last, the proposed model and fitted parameters were validated based on tests that were not used for the identification. Comparisons between tests and simulations for different stress states and loading rates have shown that the model is able to predict both the macroscopic response of the specimens in terms of load-displacement curves and the crack path, with good accuracy.

However, some improvements are still required to ensure a reliable crack prediction usable in automotive industry. First, crash simulations are mostly performed using dynamic explicit finite element codes more convenient for strongly non-linear problems and fast transients. It is then considered to implement the proposed constitutive model into the Europlexus [START_REF] Team | Europlexus: a computer program for the finite element simulation of fluid-structure systems under transient dynamic loading[END_REF] solver. As explicit solvers require numerous very small time increments, it is proposed to use an explicit integration scheme for the constitutive equations following the NICE ("Next Increment Correct Error") algorithm proposed by Halilovič et al. [START_REF] Halilovič | NICE h : a higher-order explicit numerical scheme for integration of constitutive models in plasticity[END_REF] so as to obtain a computationally efficient code. Note that to predict cracking at material scale, a very small mesh size are used in this paper. However the stability condition of dynamic explicit codes implies that the smaller the mesh size, the smaller the time step. The small mesh used in this study could therefore lead to prohibitive computational costs in large structural simulations. A possible solution could be to refit the material parameters for a larger given mesh size. However, representing the entire database using this solution could become difficult. Further studies will focus on remedying mesh dependency of the results. Indeed, it is important to note that due to stress-softening, the problem becomes ill posed and damage is finally localized in the smallest band that can be captured by the mesh. Thus, once the parameters have been identified for a given mesh size, all the simulations must be performed with the same mesh size. Besides, although that was not observed with the present results, it is well known that in some cases, coupled damage models might also be dependent to mesh orientation [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF]. And yet, since car parts can have very complex geometries modelled with the use of meshes mixing hexahedra/prismes (3D continuous elements) or triangles/quadrangles (shell elements), it is impossible to ensure a uniform mesh size or mesh orientation. A possible solution to ensure mesh-independent results could be to regularise the problem. A recently proposed non-local approach [START_REF] Diamantopoulou | Micromorphic constitutive equations with damage applied to metal forming[END_REF] compatible with dynamic explicit scheme could be for example considered. These models introduce an intrinsic material length scale so that below a given element size, results become mesh independent.

Résumé

Dans ce chapitre, une étude expérimentale a été réalisée sur la tôle d'acier DP450. Des essais de traction ont été effectués sur différentes géométries générant différentes triaxialités de contrainte, à différentes vitesses de sollicitation, afin d'observer le comportement plastique et la rupture du matériau. Les résultats ont indiqué une légère anisotropie, un écrouissage et une dépendance à la vitesse de déformation: viscosité et auto-échauffement. Il a également été noté un effet prononcé de la triaxialité des contraintes sur le comportement plastique et la rupture du matériau. À partir de ces résultats, un ensemble d'équations constitutives a été choisi à partir de la littérature et assemblé pour créer un modèle de comportement capable de représenter le comportement plastique et la rupture du matériau pour différentes triaxialités de contrainte et différentes vitesses de chargement. La plasticité du matériau est modélisée en associant le critère de Drucker [START_REF] Drucker | Experiments to Mathematical Theories of Plasticity[END_REF] qui inclut un effet de l'angle de Lode, à une loi d'écrouissage de type Voce/linéaire [START_REF] Le Maoût | Aluminum alloy damage evolution for different strain paths -application to hemming process[END_REF]. Le modèle de Johnson-Cook [START_REF] Gordon | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF] est utilisé pour représenter le gain en résistance observé à haute vitesse de déformation. L'auto-échauffement est modélisé par un modèle adoucissant de Zhao [START_REF] Zhao | A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets[END_REF] et une température calculée à partir du travail plastique [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF]. L'endommagement est quant à lui représenté par le modèle couplé de Gurson-Nahshon-Hutchinson [START_REF] Nahshon | Modification of the Gurson Model for shear failure[END_REF], permettant de prédire la rupture pour une large gamme de triaxialités. L'identification de chaque partie du modèle est détaillée et ne nécessite qu'un nombre restreint d'éprouvettes. En raison de la forte dépendance au maillage lié au comportement adoucissant (endommagement, température), le modèle de comportement a dû être identifié pour une taille fixe de maille de 0.2 mm. Une très bonne corrélation avec les résultats expérimentaux a été obtenue après simulation de la base expérimentale en utilisant systématiquement cette même taille de maille. L'identification du modèle nécessitant en partie l'outil numérique Z-opt ainsi que les simulations de résultats expérimentaux ont nécessité l'implémentation du modèle de comportement dans le solveur implicite Z-set. Ce solveur peut être utilisé pour simuler à la fois des essais quasi-statiques et dynamiques. Cette implantation numérique sera décrite dans le chapitre suivant. Cependant, comme les simulations de crash automobile sont réalisées à l'aide de codes de calcul dynamiques explicites, le modèle de comportement doit également être implémenté dans le solveur explicite Europlexus qui sera utilisé pour la suite de cette thèse. Cette implémentation est également décrite dans le chapitre suivant.

C H A P T E R

Numerical implementation of the constitutive model

In this chapter, the numerical implementation of the constitutive model introduced in chapter 1 is detailed. The general procedure of material numerical integration is first described in section 2.1. Then, as stated in section 1.2, the model was first implemented in the Z-set code which uses implicit solvers (quasi-static and dynamic). The aim was to simulate the experimental results at low and high loading rates using large time steps which limits computation time. The use of the Z-set code also enabled to identify more easily the constitutive parameters using the Z-opt optimization tool. As large time steps are used, and the best possible precision is wished for the model identification, it was chosen to implement the constitutive model using a very accurate but iterative numerical integration: the backward Euler implicit scheme. This first integration method is described in the section 2.2. Then, as the numerical method for crack prediction is developed for car crash simulations, the constitutive model must be implemented in an explicit dynamic code. This is realized in the Europlexus code as described in section 2.3. As very small time steps are used in this case, it is chosen to implement the constitutive model with a less accurate explicit method. This enables a faster computation with no iterative procedure, and ensures an easier implementation for an industrial application.

Generalities on numerical implementation of constitutive laws

The general purpose of the numerical constitutive model is to compute the new stress tensor σ from the strain tensor increment ∆ ε. For metals, two cases may be encountered: an elastic and linear material behavior below a limit stress state, or a non-linear material behavior (hardening, damage...) beyond this same stress state. The critical stress state to reach is defined by the yield function, also called yield criterion (denoted φ for the Gurson model in this work, see eq. (1.71)). This function enables to determine whether the material behavior is linear or non-linear depending on its value:

• If φ < 0 the material behavior is elastic and linear,

• If φ = 0 the material behavior is non-linear (plasticity, damage...).

The numerical implementation thus takes place in two steps. At first, an elastic prediction is realized to estimate the value taken by the yield function. Then in case of a non-linear behavior, a specific numerical treatment called "return mapping" must be realized.

Elastic prediction

To determine if the material behavior is elastic or plastic at the new time step n, an elastic prediction is realized by assuming that the input strain increment is purely elastic. The trial stress tensor is then defined as follows:

σn tr ial = σn-1 + C : ∆ εn (2.1)
where σn-1 is the stress tensor at the previous time step, and C the stiffness matrix. The stress tensor, the stiffness matrix and the strain tensor are written following the Voigt notation. Note that, in this work, the material elasticity is supposed to be linear and isotropic so that:

C = E (1 + ν)(1 -2ν)           1 -ν ν ν 0 0 0 ν 1 -ν ν 0 0 0 ν ν 1 -ν 1 -2ν 2 0 0 0 0 0 0 1 -2ν 2 0 0 0 0 0 0 1 -2ν 2           (2.2)
where E is the Young modulus, and ν the Poisson ratio.

A prediction of the yield function value is then realized using the trial stress tensor as follows:

φ pr ed = σn tr ial σ n-1 F 2 -1 + 2q 1 f * n-1 cosh q 2 2 Tr( σn tr ial ) σ n-1 F -(q 1 f * n-1 ) 2 (2.3)
where σ is the equivalent stress defined by the Drucker yield criterion (see eq. (1.59)), and σ F the flow stress defined in eq. (1.62). As described above, two cases may numerically occur:

1. If φ pr ed < 0: the material behavior is linear and elastic and the trial stress tensor is kept as the final stress tensor at time n σn = σn tr ial

(2.4)

The internal variables (and so the flow stress σ F ) are thus not modified and remain identical to their previous values:

εn p = εn-1 p , p n = p n-1 , f n t = f n-1 t , T n = T n-1 (2.5)
2. If φ pr ed ≥ 0: an meaningless value of the yield function is obtained since φ ≤ 0. The material behavior is then non-linear (plasticity, damage...) and a "correction" is necessary to bring the yield function value back to zero. This is realized by computing the new values of the internal variables and the stress tensor so as to respect φ ≈ 0. This procedure is commonly referred to as "return mapping". The trial stress tensor is then updated by removing the contribution of the plastic strain tensor:

σn = σn tr ial -C : ∆ εn p (2.6)
The internal variables and the flow stress are updated consequently:

εn p = εn-1 p + ∆ εn p , p n = p n-1 + ∆p n , f n t = f n-1 t + ∆f n t , T n = T n-1 + ∆T n (2.7)

Return mapping

The return mapping procedure aims at finding the appropriate combination of internal variables and to update the stress tensor so as to bring back the yield function to zero. This implies to solve numerically one or several non-linear equations. To do so, two different types of numerical scheme can be used:

• The implicit schemes as the Cutting Plane scheme [START_REF] Simo | A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations[END_REF][START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF] or the backward Euler method. They commonly lead to the iterative solving of a set of non-linear equations (consistency condition, constitutive equations...) using the Newton-Raphson algorithm [START_REF] Lagrange | Traité de la résolution des équations numériques de tous les degrés[END_REF]. These methods are unconditionally stable which enables to realize large strain increments while preserving a very good accuracy, since a convergence criterion must be respected. This point is particularly interesting in implicit finite element codes where large time steps are used. However, this iterative procedure can be costly and convergence can be difficult to reach especially in cases for brutal variations of the material behavior (e.g. damage, cracking...). Moreover, a Newton-Raphson algorithm may be difficult to implement and requires to express and invert a Jacobian matrix which size depends on the number of internal variables.

• The explicit schemes (Forward Euler [START_REF] Alireza | A framework for numerical integration of crystal elastoplastic constitutive equations compatible with explicit finite element codes[END_REF][START_REF] Sloan | Refined explicit integration of elastoplastic models with automatic error control : Erratum[END_REF], Next Increment Correct Error [START_REF] Halilovič | NICE h : a higher-order explicit numerical scheme for integration of constitutive models in plasticity[END_REF][START_REF] Miroslav | A robust explicit integration of elasto-plastic constitutive models, based on simple subincrement size estimation[END_REF]). They are based on an explicit computation of a plastic multiplier so as to verify the consistency condition. These algorithms are very fast and easier to implement than implicit schemes. They enable to avoid iterative procedures if the strain increment remains small which means that no convergence is required. This is particularly interesting for dynamic explicit codes where very small time steps are used. However, the solution is less accurate and the control of the return mapping error is more difficult to achieve. This error depends on the size of the input strain increment. This means that these schemes are conditionally stable. In case of large strain increments, e.g. fast loading or large time steps, a strain substepping procedure might be needed to ensure the scheme stability and an acceptable error.

In this thesis work, the Z-set implicit solver is used to simulate and identify the constitutive model on quasi-static and dynamic experimental results. Large time steps are used, and the best possible accuracy is expected. This is why, the constitutive model is the implemented using the Newton-Raphson iterative procedure to solve the implicitly defined constitutive equations following the backward-Euler scheme. Afterwards, the Europlexus explicit dynamic code is used for the rest of the study as this kind of solvers are preferred for car crash simulation. In this code, the recently proposed NICE ("Next Increment Correct Error") explicit scheme [START_REF] Halilovič | NICE h : a higher-order explicit numerical scheme for integration of constitutive models in plasticity[END_REF] will be preferred to realize the return mapping procedure.

Implicit return mapping in Z-set software 2.2.1 Besson et al. formalism for Gurson model

In the Z-set software, an implicit numerical integration of the presented constitutive model is realized. In this code, this is generally achieved by following the formalism proposed by Besson et al. [START_REF] Besson | Modeling of crack growth in round bars and plane strain specimens[END_REF]. This formalism is particularly interesting for the software modularity as the Gurson yield function φ given in eq. (1.71) is re-written so that its new expression is close to the "classic" form of an elasto-plastic flow potential. More particularly, the Besson et al. formalism will enable to easily introduce the viscoplastic model of Johnson-Cook that will be presented below. The new flow potential is then given by:

Φ = σ -R(p)(1 -µ(T -T r ef )) (2.8)
where Φ is the new yield function, and σ is an effective stress that is defined by:

φ = σ σ 2 -1 + 2q 1 f * cosh q 2 2 Tr( σ) σ -(q 1 f * ) 2 = 0 (2.9) CHAPTER 2.
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This effective stress is approximated by a Newton numerical resolution of the eq. (2.9). For the Gurson model, the plastic work is expressed as:

(1 -f t )σ ṗ = σ : εp (2.10)
Using the normality rule, the plastic multiplier, referred to as λ, is introduced in the equation above:

(1

-f t )σ ṗ = λσ : ∂ Φ ∂ σ = λσ : ∂σ ∂ σ (2.11)
As the σ is an homogeneous function of order 1, the Euler identity enables to write:

σ : ∂σ ∂ σ = σ =⇒ λ = (1 -f t ) ṗ (2.12)
Using the normality rule the strain rate tensor is then given by:

εp = (1 -f t ) ṗ ∂ Φ ∂ σ = (1 -f t ) ṗ ∂σ ∂ σ = (1 -f t ) ṗῡ (2.13)
where ῡ is the normal to the yield surface defined by eq. (2.8). Considering a constant porosity, a small variation of σ implies a variation of σ so that φ remains null:

∂φ ∂ σ : σ + ∂φ ∂σ σ = 0 (2.14)
Using the equation above, the expression of the normal to the potential Φ is:

ῡ = - ∂φ ∂σ -1 ∂φ ∂ σ = - ∂φ ∂σ -1 n (2.15)
with:

∂φ ∂σ = - 2σ 2 σ 3 - q 1 q 2 f * Tr( σ) σ 2 sinh q 2 Tr( σ) 2σ (2.16)
And n the normal to the GTN yield criterion φ that reads:

n = ∂φ ∂ σ = ∂φ ∂σ ∂σ ∂ σ + ∂φ ∂Tr σ ∂Tr σ ∂ σ (2.17) with: ∂φ ∂σ = 2σ σ 2 F (2.18)
And the normal to the Drucker plasticity criterion (given in eq. (1.59)) referred to as nD given by:

nD = ∂σ ∂ σ = 1 6 1 27 -c 4 27 2 -1 6 (J 3 2 -cJ 2 3 ) -5 6 3J 2 2 s -2cJ 3 ∂J 3 ∂ σ (2.19) ∂J 3 ∂ σ = s. s - 2 3 J 2 Ī (2.20)
Finally, the pressure-dependent derivatives read:

∂φ ∂Tr σ = q 1 q 2 f * σ F sinh q 2 Tr( σ) 2σ F (2.21) ∂Tr σ ∂ σ = Ī (2.22)
Once computed, the normal ῡ to the new yield criterion Φ can be introduced in the constitutive equations to define the set of non-linear equations to be solved using the Newton-Raphson procedure detailed below.

Johnson-Cook viscoplasticity

It worth noting that the new yield function Φ defined above (see eq. (2.8)) does not take into account the effect of Johnson-Cook rate dependence. This is explain by the fact that in this implicit return mapping procedure, the Johnson-Cook formula is not introduced as a "correction" of the hardening law but as a viscoplastic model. This is easily achieved using the Besson et al. formalism for the Gurson model presented before as the new flow potential Φ is a classic elasto-plastic yield function. To introduced the Johnson-Cook viscoplastic form, the model is re-written as proposed by Allix [START_REF] Allix | The bounded rate concept: A framework to deal with objective failure predictions in dynamic within a local constitutive model[END_REF]:

σ F = R(p)(1 -µ(T -T r ef )) 1 + C ln 1 + ṗ ε0 (2.23)
Unlike its previous form, this new expression enables the model to be continuous as no Macauley brackets are used. In case of an inviscid plastic behavior ṗ ε0 , the effective stress is

σ = R(p)(1 -µ(T -T r ef
)) and the eq. (2.8) gives Φ = 0. Accounting for viscoplasticity (i.e. ṗ ≥ ε0 ), the effective stress equals the flow stress defined above. In this case Φ > 0 and the following relation is obtained:

Φ = R(p)(1 -µ(T -T r ef )) 1 + C ln 1 + ṗ ε0 σ -R(p)(1 -µ(T -T r ef )) (2.24)
Which gives the cumulated plastic strain rate expression as:

ṗ = ε0 exp Φ C R(p)(1 -µ(T -T r ef )) -1 (2.25)

Backward-Euler method with Newton-Raphson iterative solving

In this implementation, the evolution of the internal variables is implicitly written following the backward-Euler method. In case of a return mapping at the time step n, the following set of equations is then obtained:

εn-1 el = εn el -∆t n ∂ εel ∂t n = εn el -∆t n ( εn -εn p ) (2.26) p n-1 = p n -∆t n ∂p ∂t n = p n -∆t n ṗn (2.27) f n-1 n = f n n -∆t n ∂f n ∂t n = f n n -∆t n ḟn (2.28) f n-1 g = f n g -∆t n ∂f g ∂t n = f n g -∆t n ḟ n g (2.29) f n-1 sh = f n sh -∆t n ∂f sh ∂t n = f n sh -∆t n ḟ n sh (2.30) T n-1 = T n -∆t n ∂T ∂t n = T n -∆t n Ṫ n (2.31) (2.32)
It worth noting that the implicit formulation implies that derivatives are evaluated at the current time step n. This set of equations can be re-written considering the rate equations of each internal variables presented in chapter 1. For the elastic strain tensor increment, the normality rule defined in eq. (2.13) gives:

∆ εel = ∆ ε -(1 -f n t )∆p ῡ (2.33) CHAPTER 2.

NUMERICAL IMPLEMENTATION OF THE CONSTITUTIVE MODEL

The plastic strain increment is given by the Johnson-Cook viscoplastic model detailed above (see eq. (2.25)):

∆p = ∆t n ε0 exp Φ R(p)(1 -µ(T -T r ef ))C -1 (2.34)
The damage variables increments can be expressed using respectively eq. (1.65), eq. (1.66) and eq. (1.67):

∆f n = AH(p -ε d )∆p (2.35
)

∆f g = (1 -f t ) 2 ∆pTr( ῡ) (2.36
)

∆f sh = k w w (θ)f t (1 -f t )∆p s : ῡ σ (2.37)
Finally, the temperature rate equation (see eq. (1.63)) gives the following relation:

∆T = ω( ṗ) η k ρC p (1 -f t )∆p σ : ῡ (2.38)
To solve this set of non-linear equations and determine the internal variable increments, the Newton-Raphson algorithm is used. Each equations is re-written in the form of a residual function to bring to a zero value:

R el = ∆ εel + (1 -f t )∆p ῡ -∆ ε = 0 (2.39) R p = ∆p -∆t ε0 exp Φ R(p)(1 -µ(T -T r ef ))C -1 = 0 (2.40) R fn = ∆f n -AH(p -ε d )∆p = 0 (2.41) R fg = ∆f g -(1 -f t ) 2 ∆pTr( ῡ) = 0 (2.42) R f sh = ∆f sh -k w w (θ)f t (1 -f t )∆p s : ῡ σ = 0 (2.43) R T = ∆T -ω( ṗ) η k ρC p (1 -f t )∆p σ : ῡ = 0 (2.44)
The entire system of residuals is gathered in a vector referred to as {R} = {R el , R p , ..., R T } and the internal variables increment are gathered in a vector {v } = {∆ εel , ∆p, ..., ∆T }. The Newton-Raphson iterative method is then used to approximate the solution of the following equation:

{R} = {0} (2.45)
This approximation is commonly realized in several iterations, on which the solution is approximated by a first order Taylor expansion. For instance, on the first iteration, the following relation is obtained:

{R} 1 = {R} 0 + ∂R ∂v 0 [J] 0 ({v } 1 -{v } 0 ) {δv } 1 = 0 (2.46)
where {δv } 1 is the internal variables increment vector on the first iteration, and [J] 0 the Jacobian matrix which expression is detailed below. The equation above can be re-written to compute the increments:

{δv } 1 = - ∂R ∂v -1 0 {R} 0 =⇒ {v } 1 = {v } 0 + {δv } 1 (2.47)
This expression can be generalized for the i-th iteration:

{δv } i = - ∂R ∂v -1 i-1 {R} i-1 = -[J] -1 i-1 {R} i-1 (2.48)
At each iteration the Jacobian matrix needs to be computed and inverted for the updated values of the state variable. It can be formally expressed as: 

∂R ∂v = [J] =         
∂R T ∂∆p ... ∂R T ∂∆T          (2.49)
For the sake of completeness, all the derivatives of this matrix are given in chapter A. At the end of each iteration, the new residual vector is evaluated. The convergence is reached when ||R|| 2 < 10 -12 .

It worth noting that this numerical implementation ensures that all constitutive equations are solved with a very fine accuracy. However, its implementation may be cumbersome: i.e. it requires to compute a lot of complex derivatives (up to the second order), and a numerical method for matrix inversion must be implemented (already done in the Z-set software).

Comment:

Note that an alternative approach is possible, offering to reduce the number of residual functions to only one residual function whose solution is a scalar value. To do so, the consistency condition on the yield function φ is rewritten following the backward Euler scheme leading to the following residual function:

R φ = φ n -φ pr ed -∆t n ∂φ ∂t n = -φ pr ed -∆φ n = 0 (2.50)
Note that in this equation, the considered initial state before solving is the prediction of the yield function value. Also, it is assumed that φ n ≈ 0 after correction. Using the normality rule defined below in eq. Thus, to realise the return mapping, the predicted yield function is corrected at each iteration i using the estimation of the plastic multiplier given by the following equation:

∆λ i = - φ i-1 -ni-1 : C : ni-1 + ∂φ ∂p i-1 ∂p ∂λ i-1 + ∂φ ∂f * i-1 ∂f * ∂λ i-1 + ∂φ ∂T i-1 ∂T ∂λ i-1 (2.52)
For each iterations, the internal variables are updated and derivatives are re-estimated. The convergence is obtained when |φ| < with a tolerance to define. ven if this new approach, also called Cutting Plane method [START_REF] Simo | A unified approach to finite deformation elastoplastic analysis based on the use of hyperelastic constitutive equations[END_REF][START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF], is easier to implement than the previous presented implicit method, one can note that in the equation above, the normal to the yield surface and the derivatives are estimated at the initial of each iteration. This implies that this method is not fully implicit like the backward Euler method. Moreover it does not lead to a direct estimation of the consistent tangent matrix ∂ σ/∂∆ ε, which can penalize an implicit global resolution such as the one used in the Z-set software. Also, it imposes to re-write the constitutive equations to make appear the plastic multiplier in each, and is not as modular as the previous method, if one wants to use a new hardening law, new yield criterion, etc ... Finally, even if this solution is very close to the explicit NICE method presented below used in the Europlexus software, and can thus be considered as an interesting alternative method, it imposes to realize several iterations to get the convergence. For these reasons, it is chosen not to retain this solution for this study.

Explicit return mapping in Europlexus software

Next Increment Correct Error method

Consistency condition

In the Europlexus software, it has been chosen to use an explicit numerical scheme to implement the constitutive model. This is realized using the NICE "Next Increment Correct Error" numerical scheme proposed by Halilovič et al. [START_REF] Halilovič | NICE h : a higher-order explicit numerical scheme for integration of constitutive models in plasticity[END_REF]. In case of a plastic correction at the time step n, this scheme proposes to compute a plastic multiplier referred to as ∆λ that enables to verify the following enhanced consistency condition:

φ n = φ n-1 + ∆φ n = 0 (2.53)
with

∆φ n = ∂φ ∂ σ n-1 : ∆ σn + ∂φ ∂p n-1 ∆p n + ∂φ ∂f * n-1 ∆f * n + ∂φ ∂T n-1 ∆T n (2.54)
In this explicit scheme, all derivatives are then evaluated at the previous time step n -1. It worth noting that in this implementation, the original GTN yield criterion φ defined in eq. (1.71) is used. One can also note that the modified consistency condition described above (see eq. (2.53)) introduces the previous value of φ to take into account the residual error after correction created at the previous time step ∆t n-1 . The plastic multiplier at the current time step ∆t n will thus be computed by "correcting" this residual error. This self-correcting property offers a better precision and helps to prevent the drift of the solution usually encountered with explicit plasticity algorithms. This drift is often corrected by performing costly iterations to ensure that the yield function remains close to zero. As drifting is prevented using the NICE scheme, no iterations are needed which helps to reduce the computation time.

Applying the normality rule one has:

∆ εp = ∆λ ∂φ ∂ σ = ∆λ n (2.55)
where n is the normal to the GTN yield surface whose computation is detailed in eq. (2.17) to eq. (2.22). Following the GTN model, the plastic work is expressed as:

(1 -f t )σ F ∆p = σ : ∆ εp (2.56)
This equality illustrates the equivalence of the dissipated energy in the material matrix (left member), whose volume fraction is (1 -f t ), and the dissipated energy in the total representative elementary volume (right member) considered by the Gurson model (see fig. 1.4) which accounts for the matrix and the void. The cumulated plastic strain increment is therefore related to the plastic multiplier by:

∆p = σ : n (1 -f t )σ F ∆λ = ∂p ∂λ ∆λ (2.57)
All internal variable increments depend either on the plastic strain increment tensor ∆ εp or on the cumulated plastic strain increment ∆p and can thus be rewritten introducing the plastic multiplier:

∆ σ = C : (∆ ε -∆λ n), ∆p = ∂p ∂λ ∆λ, ∆f * = ∂f * ∂λ ∆λ, ∆T = ∂T ∂λ ∆λ (2.58)
Using eq. (2.53), the expression of the plastic multiplier can be obtained as:

∆λ = φ n-1 + n : C : ∆ ε n : C : n - ∂φ ∂p ∂p ∂λ - ∂φ ∂f * ∂f * ∂λ - ∂φ ∂T ∂T ∂λ (2.59)
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Once ∆λ is calculated, the stress tensor and the internal variables are updated by computing the corresponding increments for time step ∆t n using eq. (2.58). This step only happens once, and thus no iterations are realized. Moreover, the implementation is much more easier than Newton-Raphson iterative return mapping presented before since it only requires the computation of a few derivatives of the first order. The expressions of these derivatives are then given below.

Plastic strain derivatives

Unlike the previous implementation, the original expression of the Johnson-Cook rate dependence (see eq. (1.62)) is kept for this explicit return mapping. However, due to numerical issues presented below, a filtered plastic strain rate, referred to as ṗf is introduced in the Johnson-Cook formula and considered as constant on the time step. The flow stress thus reads:

σ F = R(p)(1 -µ(T -T r ef )) 1 + C ln ṗf ε0 + (2.60)
This point is important for the derivatives computations.

The derivative related to the cumulated plastic strain p can be decomposed as follows:

∂φ ∂p = ∂φ ∂σ F ∂σ F ∂R ∂R ∂p (2.61)
As the plastic strain rate ṗ is replaced by its filtered counterpart ṗf in the flow stress expression and is supposed to be constant on the time step, the derivative related to the plastic strain is computed considering the sole hardening function R(p).

∂σ F ∂R = (1 -µ(T -T r ef )) 1 + C ln ṗf ε0 + (2.62)
Finally, the derivative of the hardening law is given by:

∂R ∂p = H + Qbexp(-bp) (2.63)
Note that the derivative ∂p/∂λ is already given in eq. (2.57).

Temperature derivatives

The derivative with respect to the temperature can be decomposed as:

∂φ ∂T = ∂φ ∂σ F ∂σ F ∂T (2.64) With: ∂σ F ∂T = -µR(p) 1 + C ln ṗf ε0 + (2.65)
Using the temperature evolution equation given in eq. (1.63), the derivative with respect to the plastic multiplier can be expressed using the normality rule (see eq. (2.55)) presented in:

∂T ∂λ = ω( ṗf ) η k ρC p σ : n (2.66)
One can note that, as for the Johnson-Cook rate dependence formula, the plastic strain rate is replaced by its filtered counterpart in the expression of the weight ω.

Damage derivatives

The derivative with respect to the effective damage f * is:

∂φ ∂f * = 2q 1 cosh q 2 2 Tr( σ) σ Y -2q 2 1 f * (2.67)
The derivatives with respect to the plastic multiplier can be decomposed as follows:

∂f * ∂λ = ∂f * ∂f t ∂f n ∂λ + ∂f g ∂λ + ∂f sh ∂λ (2.68)
With:

∂f * ∂f t =    1 if f t < f c (1/q 1 ) -f c f r -f c if f t ≥ f c (2.69)
Using respectively eq. (1.65), eq. (1.66), eq. (1.67), the normality rule (eq. (2.55)) and eq. (2.57), the remaining derivatives are then:

∂f n ∂λ = H(p -ε d )A ∂p ∂λ , ∂f g ∂λ = (1 -f t )Tr( n), ∂f sh ∂λ = k w f t w (θ) s : n σ (2.70)

Plastic strain-rate filtering

As mentionned in the previous section, in this explicit numerical integration, a filtered plastic strain-rate ṗf is introduced in the Johnson-Cook rate dependence model (see eq. (2.60)) and the self-heating model (see eq. (2.66)). This is explained by the fact that in dynamic explicit computations, the plastic strain rate can be strongly influenced by high frequency vibrations [START_REF]Large Displacement Finite Element Analysis[END_REF] (see fig. 2.1a). A low-pass filtering treatment enables to obtain more physical plastic strain-rate value (see fig. 2.1b). The filtered plastic strain-rate expression is given by:

ṗn f = 2π∆t n f cut 2π∆t n f cut + 1 ṗn + 1 - 2π∆t n f cut 2π∆t n f cut + 1 ṗn-1 f (2.71)
with f cut a cutting frequency set to 10 kHz. It is worth noting that the updating of the filtered plastic strain-rate is realized whether the material behavior is elastic or plastic.

Plane stress treatment for shell elements application

To be used in car crash simulations, the proposed constitutive model must be adapted to shell elements. Some under-integrated linear 2D shell elements are available in the Europlexus software (see section C.1). These elements follow the plane-stress assumption (σ zz = 0) and the Reissner-Mindlin thick plate theory (σ x z = 0 and σ y z = 0) detailed in section 4.1. 

Elasticity

Shell elements assume plane stress conditions. The stiffness tensor must be adapted consequently. To do so, the elastic strain tensor is firstly expressed using the compliance tensor S as follows:

        ε x x ε y y ε zz 2ε y z 2ε x z 2ε x y         = 1 E         1 -ν -ν 0 0 0 -ν 1 -ν 0 0 0 -ν -ν 1 0 0 0 0 0 0 2(1 + ν) 0 0 0 0 0 0 2(1 + ν) 0 0 0 0 0 0 2(1 + ν)         S         σ x x σ y y 0 σ y z σ x z σ x y         (2.72)
Supposing that the shell element is thin enough to neglect in-thickness shear components, the compliance matrix becomes:

  ε x x ε y y 2ε x y   = 1 E   1 -ν 0 -ν 1 0 0 0 2(1 + ν)     σ x x σ y y σ x y   (2.73)
The stiffness tensor is then found by inverting this reduced compliance matrix:

  σ x x σ y y σ x y   = E 1 -ν 2    1 ν 0 ν 1 0 0 0 1 -ν 2      ε x x ε y y 2ε x y   (2.74)
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The global stiffness tensor used for Reissner-Mindlin shell elements is obtained by re-introducing the components relative to transverse shear (σ x z and σ y z ):

Cshell = E 1 -ν 2           1 ν 0 0 0 0 ν 1 0 0 0 0 0 0 0 1 -ν 2 0 0 0 0 0 0 1 -ν 2 0 0 0 0 0 0 1 -ν 2          
(2.75)

Transverse strain and thickness variation

As in plane stress conditions the transverse strain is not necessarily null ε zz = 0, it must be computed in the constitutive law. The thickness increment ∆ε zz is set to a zero value at the beginning of material computation. It is then updated with the following decomposition:

∆ε zz = ∆ε e zz + ∆ε p zz (2.76)
Using the compliance tensors detailed in eq. (2.72), the equation above becomes:

∆ε zz = - ν E ∆σ x x - ν E ∆σ y y + ∆ε p zz (2.77)
Then, using the shell stiffness tensor presented in eq. (2.75), and introducing the plastic multiplier computed in eq. (2.59), the transverse strain increment is given by:

∆ε zz = - ν 1 -ν
(∆ε x x -∆λn x x + ∆ε y y -∆λn y y ) + ∆λn zz (2.78) where n ij are the components of the normal to the GTN yield surface. Finally, the transverse strain is updated consequently to compute the shell thickness variation as follows:

ε zz = e e 0 dh h =⇒ e = e 0 exp(ε zz ) (2.79)
where e 0 is the initial thickness and e the current thickness. The thickness variation enables a better integration of internal forces, especially in case of large membrane strain [START_REF] Casadei | Accounting for large membrane strains in q4gs and t3gs elements in europlexus[END_REF] and necking.

Error control and substepping

One major drawback of explicit plastic algorithms is their inability to ensure a good control of the residual error at the end of the correction. In some cases where ∆ ε is large, i.e. for large time steps or very fast loadings, the algorithm may not be able to get back φ sufficiently close to zero. The error might accumulate and the solution becomes unstable. According to Halilovič et al. [START_REF] Halilovič | NICE h : a higher-order explicit numerical scheme for integration of constitutive models in plasticity[END_REF], this issue is not relevant in dynamic explicit computation since time steps remain very small. Nevertheless, a stability analysis of the NICE scheme was proposed by Halilovič et al. [START_REF] Miroslav | A robust explicit integration of elasto-plastic constitutive models, based on simple subincrement size estimation[END_REF], where the stability of the scheme is ensured using a substepping technique.

Substepping techniques [START_REF] Sloan | Substepping schemes for the numerical integration of elastoplastic stress-strain relations[END_REF] propose to divide the strain increment into subincrements of the given time step. This leads to realize several return mapping on each subincrement and thus to limit the error accumulation of the plastic correction. The strain increment and the time step can thus be decomposed as follow:

∆ εn = ns i=1 ∆∆ εi ∆t n = ns i=1 ∆∆t i (2.80)
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where n s is the number of substeps, and ∆∆ ε the strain sub-increment, and ∆∆t the time substep.

To ensure a good precision of the consitutive model and to the user offer the possibility to control this precision, a substepping procedure was implemented in the Europlexus software. The difficulty is thus to estimate the minimum number of substeps to ensure a good precision. The solution proposed in [START_REF] Miroslav | A robust explicit integration of elasto-plastic constitutive models, based on simple subincrement size estimation[END_REF] was found too heavy to implement for this thesis work. A more simple procedure is then proposed here. At the beginning of the time step, the number of substeps is estimated so that the enhanced consistency condition remains under a user given error1 for each strain subincrements:

φ n-1 + n : C : α∆ εn < (2.81)
where α is the assumed "fraction" of the total strain increment ∆ ε that is assumed to keep the error below the value of after return mapping. The coefficient alpha is then expressed by:

α = -φ n-1 n : C : ∆ εn (2.82)
This leads to a coarse estimation of the number of substeps:

n s = 1 α (2.83)
where . is the ceiling function.

Benchmark tests on single elements 2.4.1 Benchmark Z-set -Europlexus

The implicit return mapping implemented in the Z-set solver leads to the best accuracy as it ensures that all constitutive equations are respected in addition to the consistency condition with a severe convergence criterion. It is then used as a reference to validate the explicit implementation realized in the Europlexus code. To do so, several benchmark tests are defined on a single element using a solid continuum linear and under-integrated element: c3d8r in Z-set and CUBE for Europlexus (see section C.1). Three loading cases (see fig. 2.2) are simulated, generating three different stress states (i.e. different stress triaxialities): the unixial tension (η = 1/3), biaxial tension (η = 2/3) and simple shear (η = 0). This range corresponds to the triaxialities obtained in the database. In each case, the loading is defined so that ṗ ≈ 20 s -1 , which is in the range of strain rates encountered in car crash simulations. The parameters used for the simulations are those given in tab. 1.3. For each loading case, the results obtained with the Europlexus codes are compared to the results of the Z-set simulations. Several characteristic curves, i.e. stress-strain curve and internal variables evolution as a function of time, are then compared as a validation. The results for the uniaxial tension test are given in fig. 2.3, for biaxial tension test in fig. 2.4 and for the simple shear in fig. 2.5. In all cases, the Europlexus results show a very good agreement with the Z-set ones, which confirm the validity of the explicit return mapping implementation. 

Benchmark solid elements -shell elements

In the Europlexus software, the constitutive model was extended to be used with Reissner-Mindlin shell elements. This implies a modification of the stiffness matrix (see eq. (2.75)) and the computation of the transverse strain ε zz in the constitutive law (see eq. (2.78)) to take into account the thickness variation (large membrane strain, necking). The same three loading cases as presented above are then simulated on an under-integrated quadrangle linear shell element Q4GR (see fig. 

C H A P T E R

Damage regularization in continuum elements

In the the previous chapters, a constitutive model was built to represent the behavior of the DP450 steel and was implemented in the Z-set and the Europlexus softwares. The constitutive model was identified for a mesh size of 0.2 mm on a set of specimens and has shown very good predictions for a different set of specimens. However, with such a softening model, damage localization is bound to occur, leading to a strong mesh dependency. This means that spurious results can be obtained using different mesh sizes or different mesh orientations. To explain these results a study of the localization phenomenon, in the case of dynamic explicit computations, is proposed in section 3.1. Then, as a solution to this issue, the use of a regularization method is considered. Several methods can be found in the literature and a review is proposed in section 3.2. Two of them are then chosen and implemented in the Europlexus software to regularize the implemented constitutive model, as described in section 3.3.

Localization phenomenon in dynamic computation

When the constitutive model is used with a mesh size (referred to as L e ) different than the one used for the identification (i.e. L e = 0.2 mm) or with an inappropriate mesh orientation, a poorer numerical prediction might be obtained in terms of crack path or dissipated energy (displacement at failure). This is illustrated in section 3.3. This well-known issue is due to the softening nature of the constitutive behavior (in this case due to damage or temperature increase) which leads to the localization of strains in one row of elements or integration points. In the case of dynamic explicit simulations, localization occurs when the discretized equilibrium equations loose their hyperbolic nature [START_REF] Zdeněk | Wave propagation in a strain& softening bar:exact solution[END_REF][START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] De Borst | Fundamental issues in finite element analyses of localization of deformation[END_REF]. To illustrate that point, it is proposed to consider the local equilibrium equation:

ρ ∂ 2 u ∂t 2 -div( σ) = ρf v ol (3.1)
Neglecting the volume forces f v ol and considering the one-dimensional case derived in time, the equation above becomes:

∂ σ ∂x = ρ ∂ 2 v ∂t 2 with σ = κε (3.2)
where κ is the tangent modulus (κ = E for a purely linear elastic behavior). Considering that ε = ∂v /∂x , this equation can be rewritten as follows: κ ρ

∂ 2 v ∂x 2 = ∂ 2 v ∂t 2 (3.3)
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Following the analysis given in [START_REF] Suffis | Développement d'un modèle d'endommagement à taux de croissance contrôlé pour la simulation robuste de ruptures sous impacts[END_REF][START_REF] Court | Consistent prediction of ductile failure under dynamic loads : bounded rates plastic exhaustion model[END_REF][START_REF] Chambart | Anisotropic damage and dynamic behavior of reinforced concrete structures until failure[END_REF], the partial differential equation above can be re-written in the generic shape:

A(x , t) ∂ 2 v ∂x 2 + 2B(x , t) ∂ 2 v ∂x ∂t + C(x , t) ∂ 2 v ∂t 2 = F(x , t) (3.4)
Knowing the functions A,B and C enable to determine the nature of the following equation:

1. If ∆ = B 2 (x , t) -4A(x , t)C(x , t) > 0, the equation is hyperbolic , 2. If ∆ = B 2 (x , t) -4A(x , t)C(x , t) = 0, the equation is parabolic , 3. If ∆ = B 2 (x , t) -4A(x , t)C(x , t) < 0, the equation is elliptic.
In the case of eq. ( 3.3), ∆ = 4κ/ρ which indicates that if the tangent modulus κ is positive (elasticity, work-hardening...), the equation above is hyperbolic and its solution is a wave that propagates at the speed κ/ρ. When the tangent modulus becomes negative (softening due to damage, self-heating ...), then the equation becomes elliptic (∆ < 0) and its solution is stationary. The propagation speed vanishes and the deformation wave is then trapped [START_REF] Wu | Deformation trapping due to thermoplastic instability in one-dimensional wave propagation[END_REF] in the first weakening element. The wave is not transmitted to the neighboring elements any more. The damage variable will only evolve in the weakening element and damage localization is observed. As the elementary fracture energy depends on the elements size, the smaller the mesh size, the less "ductile" the material macroscopic response. Therefore, different results might be obtained for different mesh sizes or mesh orientations.

Regularization methods

To limit the localization phenomenon presented in the previous section, regularization methods are available in the literature. They are commonly gathered in three groups:

1. Energetic regularization: regularization is ensured by maintaining a constant value of fracture energy, which is experimentally measurable, by adapting the elementary dissipated energy to the mesh size.

2.

Temporal localization limiters: a strain or damage rate dependency is introduced in the stress computation which helps to preserve the hyperbolicity of the equilibrium equations. Viscoplatic models can be used as well as the more recently proposed delayed damage approach. Both methods give damage time to spread out over a surrounding area, which limits the localization phenomenon.

Spatial localization limiters or non-local damage methods: a non-local variable (damage, plastic strain

) is computed at a given material point from the values computed at neighboring elements. The localization is avoided by introducing the non-local variable in the constitutive equations. These methods introduce a characteristic length that defines a volume containing the neighboring material points. It thus enables to control the strain localization band width referred to as L r .

A review of the these methods is proposed in the following sections.

Energetic regularization

To obtain mesh independent results, Hillerborg [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF] has first proposed to maintain a constant fracture energy G c , which is a material parameter, by adapting the elementary fracture energy depending to the elements' size (L e ). This method is also known as the Crack-Band method [START_REF] Zdeněk | Crack band theory for fracture of concrete[END_REF]. Numerically, if no regularization method is used, the finer the mesh, the less energy is needed to "break" the elements. This means that the structure becomes less ductile with the mesh refinement. However, fracture energy is a material constant, commonly named G c , that can be measured by experiment. It corresponds to the dissipated energy for creating a one unit surface crack. Hillerborg's method proposes to maintain the global fracture energy constant to G c for any mesh size.

The elementary dissipated energy g f is then adapted according to the mesh size L e , in order to dissipate G c at the global structure scale. Elementary dissipated energy can be written as:

g f = ∞ 0 σdε [J.m -3 ] (3.5)
Hillerborg's proposal consist in associating a crack opening u to a microcracked representative volume element of initial width L e so that dε = du/L e . The crack opens in mode I, and the maximum opening value corresponding to complete failure is obtained for u = L e :

g f = ∞ 0 σ du L e (3.6)
The material fracture energy can be written as:

G c = ∞ 0 σdu [J.m -2 ] (3.7)
The adapted dissipated energy during element failure is then:

g f = G c L e ( 3.8) 
It can be noticed that:

• The smaller the length L e , the higher the elementary dissipated energy,

• The higher the length L e , the smaller the elementary dissipated energy,

The elementary energy adaptation is realized using the damage model parameters that will depend on L e . This method ensures a good control of the dissipated energy for any mesh size. It is worth noting that using this method require the measure of the fracture energy. It is then more suitable for brittle materials, since fracture energy is difficult to estimate for ductile materials.

However, the Crack Band method assumes that damage will always be localized on a row of elements, for any mesh size (see fig. 3.1). The localized damage might then still be influenced by the mesh orientation as illustrated by Giry [START_REF] Giry | Modélisation objective de la localisation des déformations et de la fissuration des structures en béton soumises à des chargements statiques ou dynamiques[END_REF]. 

Mesh refinement

L 2 e g 1 f = G c /L 1 e g 2 f = G c /L 2

Temporal localization limiter

Other methods propose to introduce a strain or damage rate dependence in the stress computation. This helps to limit the mesh dependency [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] De Borst | Fundamental issues in finite element analyses of localization of deformation[END_REF] by preserving the hyperbolicity of the local equilibrium equation [START_REF] Allix | The bounded rate concept: A framework to deal with objective failure predictions in dynamic within a local constitutive model[END_REF].

Viscoplastic models [START_REF] Faria | A strain-based plastic viscous-damage model for massive concrete structures[END_REF][START_REF] Da | A simple model for viscous regularization of elasto-plastic constitutive laws with softening[END_REF][START_REF] Niazi | Viscoplastic regularization of local damage models: revisited[END_REF] have then been proposed as a solution to mesh dependency. Among viscoplastic models, one can cite the Norton model:

ṗ = f K n + (3.9)
where f is the yield function, K and n parameters to identify. Another commonly encountered solution is the Duvaut-Lions model [START_REF] Kluge | inequalities in mechanics and physics. (aus dem französischen), grundlagen aus den mathematischen wissenschaften 219[END_REF] used by Silva et al. [START_REF] Da | A simple model for viscous regularization of elasto-plastic constitutive laws with softening[END_REF] which is defined by:

εvp = C -1 : 1 τ ( σvp -σ) (3.10)
where εvp is a viscoplastic strain tensor, σvp the effective stress tensor (also called "over-stress"), σ the inviscid stress tensor and τ is a characteristic time to identify also called fluidity parameter. Viscoplastic model imply that the stress computation depends on the plastic-strain rate. Using these models, the elements can be temporarily "stronger" especially under very fast strain-rate (e.g. during localization) which helps to reduce the capture of the strain wave. This wave will be longer transmitted to neighboring elements and will damage these elements. The localization phenomenon is then slowed down.

Another approach was introduced by Ladeveze et al. [START_REF] Ladeveze | On a damage mechanics approach. Mechanics and mechanisms of damage in composites and multi-materials[END_REF]. It proposes to introduce a delay in the damage variable evolution, similar to a viscous effect. A new damage variable referred to as d, commonly called dynamic damage, is delayed with respect to a static (or inviscid) damage referred to as d s . In fact, the static damage corresponds to the variable given by the damage model (Gurson, Lemaître...). The delayed damage d has a viscous behavior and goes slower than the static damage. It then delays the capture of the strain wave by the weak element, in the same ways as the viscoplastic models.

Two major delayed damage methods can be found in the literature:

• The viscous damage method: method derived from the Duvaut-Lions viscoplastic model [START_REF] Da | A simple model for viscous regularization of elasto-plastic constitutive laws with softening[END_REF]. It defines the dynamic damage rate as follows:

ḋ = 1 τ (d s -d) (3.11)
where τ is a characteristic time to identify which corresponds to the delay between the dynamic and the static damage evolution.

• The bounded damage rate method: method proposed by Allix et al. [START_REF] Allix | Delayed-Damage Modelling for Fracture Prediction of Laminated Composites under Dynamic Loading[END_REF], that preserves the viscous properties of the previous method, but also ensures that the dynamic damage rate will not exceed a given value ḋ∞ :

ḋ = ḋ∞ (1 -e -b ds -d + ) (3.12)
where ḋ∞ is the bounding value of dynamic damage rate, and b a parameter to identify. A first order Taylor expansion of the above equation can be used to link these two parameters to the characteristic time of viscous damage method: τ = 1/( ḋ∞ b). A specific approach was developed in the case of ductile failure by Court et al. [START_REF] Court | Consistent prediction of ductile failure under dynamic loads : bounded rates plastic exhaustion model[END_REF] that is very close to a viscoplastic model.

A major benefit of this kind of regularization method is the very easy numerical implementation, since it only requires a modification of the constitutive model. Moreover, they ensure the mesh size and the mesh orientation independence since damage is not localized in a row of integration points or elements. However, it must be noted that the regularization will be rate-dependent. On one hand, at very low strain-rate the viscoplasticity or delay damage effects may not be effective enough to regularize the solution. On the other hand, at very high loading rate, the regularization might slow down damage evolution and ductility can be overestimated. There is thus no direct control of the dissipated energy depending on the loading rate. A major difficulty is then to coordinate the width of the strain localization band, the range of the studied loading rates and the regularization parameters.

Spatial localization limiter

The last regularization approaches are the so-called non-local methods. These methods compute a non-local damage variable at a given material point from the values computed in its neighborhood. The non-local variable is then introduced in the constitutive equations to limit the localization phenomenon. Note that for ductile materials, it is more commonly chosen to regularize the plastic strain and so to compute a non-local plastic strain. The presented methods will be explicated following this assumption. The main parameter of these methods is a characteristic length (referred to as ) that defines an interaction length between neighboring material points. It affects the regularization band width (L r ) and thus enables to control of the dissipated energy independently of the loading rate. Results can only be mesh-independent if the mesh size is smaller than the regularization band width.

Integral methods

A first non-local approach [START_REF] Pijaudier | Nonlocal damage theory[END_REF] replaces the usual cumulated plastic strain by its weighted spacial average over a representative volume (Ω c ) whose size is defined by the material characteristic length ( ). The non-local plastic strain variable at a material point x is then computed by taking into account the local contribution of neighboring material points y thanks to an integral form:

p nl (x ) = Ωc ω nl (y , x )p(y )dy (3.13)
The weighting function ω nl is often a Gaussian function, but other forms can be used [START_REF] Pijaudier-Cabot | Nonlocal damage model with evolving internal length[END_REF]. It is defined so that:

ω nl (x , s) = ω ∞ (||x -y ||) Ωc ω ∞ (||x -y ||)dy , lim ||x -y ||→+∞ ω ∞ (x , y ) → 0 (3.14)
where ω ∞ is the weight function for the infinite volume. Different weighting functions can be found in the literature, e.g. in [START_REF] Pijaudier | Strain localization and bifurcation in a nonlocal continuum[END_REF]:

ω ∞ (x , s) = 1 2π 3/2 3 exp - ||x -s|| 2 2 2 (3.15)
However, these non-local integral methods require to know the local values of p taken at the neighboring integration points. These operations may compromise parallel computing. Also, non-local integral methods necessitate a specific treatment at the boundaries to account for the fact that the integration volume is truncated. Therefore, the numerical integration is complex and is believed to be very detrimental in the case of explicit computations with respect to the computation time as they do not follow the "element by element" treatment required to achieve efficiency.

Second gradient methods

To solve the numerical and algorithmic problems associated with the previous non-local integral method, it was proposed to consider a Taylor expansion of the integral used to compute the non-local variables [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF][START_REF] Roy | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF]:

p(y ) = p(x ) + ∂p ∂x (y -x ) + 1 2! ∂ 2 p ∂x 2 (y -x ) 2 + 1 3! ∂ 3 p ∂x 3 (y -x ) 3 + ... (3.16)
The second gradient approach is obtained by introducing this expression in eq. (3.13), odd derivatives vanishes since ω nl is a pair function and derivatives higher than order two are neglected [START_REF] Peerlings | A critical comparison of nonlocal and gradient-enhanced softening continua[END_REF]. The detailed demonstration is given in [START_REF] Roy | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF][START_REF] Peerlings | A critical comparison of nonlocal and gradient-enhanced softening continua[END_REF]. This leads to an equation introducing the second order derivative (Laplacian ∇ 2 ) of the non-local variable. The explicit form of this equation [START_REF] Mühlhaus | A variational principle for gradient plasticity[END_REF][START_REF] De | Gradient-dependent plasticity: Formulation and algorithmic aspects[END_REF] uses the Laplacian of the local variable and is called explicit second gradient method:

p nl = p + 2 ∇ 2 p (3.17)
However, it faces similar problems as the integral methods as dialogue between Gauss points is still required to evaluate the gradients. The implicit second gradient equation proposed by Peerlings et al. [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF] is then proposed:

p nl -2 ∇ 2 p nl = p (3.18)
This implicit form considers the gradient of the non-local variable. This non-local variable is considered as a new field of degrees of freedom at nodes. This enables an easy evaluation of the gradients using standard finite element techniques. In particular the "element by element" treatment is preserved so that algorithms for parallel computing remain unchanged. Note however that a specific boundary condition must be defined for the new non local field so that:

∇p nl . n = 0 (3.19)
The non-local variable, computed at nodes, can be then interpolated at every Gauss point to be introduced in the softening constitutive equations.

Micromorphic methods

Another approach, very close to the implicit second gradient method, can be considered. Within the framework of thermodynamics of irreversible processes (described for continuum damage models in section 1.1), the micromorphic continuum theory proposes to regularize the solution by enriching the kinematic description and the free energy density with micromorphic variables and their first gradient. This framework was reviewed by Forest [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF]. The regularized internal variables (e.g. the plastic strain p) have a microscale (micromorphic) counterpart (referred to as p χ ) which is computed by taking into account the material interactions at the microscopic scale through its Laplacian. In the case of an elasto-plastic material [START_REF] Mazière | Strain gradient plasticity modeling and finite element simulation of lüders band formation and propagation[END_REF], the free energy expression becomes:

ψ( εe , p, p χ , ∇p χ ) = ψ e + ψ p (p) + ψ χ (p, p χ , ∇p χ ) (3.20)
The micromorphic potential expression is given below, considering an isotropic material:

ρψ χ = 1 2 H χ (p -p χ ) 2 + 1 2 A χ ∇p χ . ∇p χ (3.21)
where H χ and A χ are two moduli to identify. The micromorphic methods assume a specific form for the power density of internal forces that leads to the following relation:

p χ - A χ H χ ∇ 2 p χ = p (3.22)
By posing = A χ /H χ , the eq. (3.18) of the second gradient implicit expression is recovered. The microscale plastic strain is then a non-local variable that is computed as a new field of degrees of freedom. The introduction of the micromorphic plastic strain in the constitutive equation is obtained by differentiating eq. (3.20) with respect to p. This leads to a new expression of the hardening law:

R χ (p, p χ ) = R(p) -H χ (p χ -p) (3.23)
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The initial hardening law R is then replaced by its micromorphic counterpart R χ in the constitutive equations. Through the two moduli A χ and H χ , the influence of p χ and its gradient is introduced into the computation of p, which enables to limit the plastic strain localization. A priori, p χ = p. The equality p χ ≈ p can be obtained using a very large value for H χ which is a penalty factor. However, this can lead to numerical problems (convergence...).

Gradient enhanced energy

On a similar note, the gradient enhanced energy method also proposes to enrich the free energy density ψ with an additional term that ensures the regularization by introducing the gradient of the plastic strain or damage as proposed by Lorentz et al. [START_REF] Lorentz | Gradient constitutive relations: numerical aspects and application to gradient damage[END_REF][START_REF] Lorentz | Gradient damage models: Toward full-scale computations[END_REF]. More recently, Zhang et al. [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF] have established a regularized Gurson model by introducing the gradient of the cumulated plastic strain in the free energy density as follows:

ψ( ε, p, ∇p) = ψ el ( ε) + ψ p (p) + c 2 ∇a.∇a + L(a -p) (3.24)
where c is a specific modulus that must be identified and that enables the control of the regularization band width L r , and L is a Lagrange multiplier so that a ≡ p. With this method, one plastic strain is computed at Gauss points and another one is computed as a new field of degrees of freedom as presented for the implicit gradient method equation in eq. (3.18). Lagrange multipliers and additional field ensure that the two variables remains identical which enables to introduce the plastic strain gradient in the constitutive equations. Note that Zhang et al. [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF] have also proposed a solution for volumetric locking within this formulation.

Summary

This review has enabled to reference the regularization methods available in the literature. However, only a few of them are relevant for this thesis work. Because of the difficulty to measure the fracture energy G c of the studied DP450 steel material, and the mesh orientation dependency, the energetic based Crack Band method will not be considered. A rate-dependent plasticity is introduced into the constitutive model through the Johnson-Cook model but appears to be not sufficient in this case (see examples below). The delayed damage approach is attractive due to its easy implementation but strongly influence the material behavior and damage regularization cannot be ensured on a wide range of loading rates. For all these reasons, the non-local regularization methods will be considered as the best solutions for this work, offering a better control of the dissipated energy and a loading-rate independent regularization.

Non-local regularization in continuum elements

Taken from: V.Davaze, N.Vallino, S.Feld-Payet, B.Langrand and J.Besson, A non-local damage approach compatible with dynamic explicit simulations and parallel computing., International Journal of Solids and Structures, in preparation.

Introduction

Numerical crack prediction in car crash simulations has been a major issue for automotive industry over the last decades. Indeed, structures are becoming increasingly thinner due to ecological concern and thus can be subjected to tearing in crash conditions. For safety and structural integrity reasons, tearing must be prevented. To do so finite element simulations are used for dimensioning during the car design process. However, ductile failure is not yet reliably predicted by the numerical computations. Thus, when cracking is not numerically predicted but detected by the certification tests, parts and tools have to be re-designed, which increases the development cost and entails delays.

A previous work [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF] has proposed to improve the numerical prediction of crack initiation and propagation with the use of a fully coupled damage model instead of fracture criteria. The computed damage variable causes a decrease of local element resistance, offering a better modelling of strain localization. In the same work, simulations of several geometries with different stress triaxialities tested at different loading rates have validated the performance of the proposed Gurson type model, in terms of both simulated load-displacement curves and crack path.

However, stress softening associated with coupled damage models is responsible for the localization of the damage variable on a row of integration points. The numerical prediction of cracking is thus strongly dependent on mesh size, mesh orientation and element type. This well known difficulty requires to always use the same mesh size, then considered as constitutive model parameter, and sometimes to know and prescribe beforehand the crack path [START_REF] Besson | Modeling flat to slant fracture transition using the computational cell methodology[END_REF] so as to obtain the experimentally observed macroscopic behavior. The prediction capability of the model is therefore limited. Applying this strategy is not satisfactory for an industrial application since car parts may present very complex geometries. As the corresponding meshes are automatically generated it becomes difficult to obtain a constant mesh size and to prescribe mesh orientation. In addition these meshes may use different types of elements (e.g. hexahedrons, prismes and tetrahedrons).

To obtain mesh-independent results, several regularization methods are proposed in the literature. For example, [START_REF] Hillerborg | Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[END_REF][START_REF] Zdeněk | Crack band theory for fracture of concrete[END_REF] suggest to maintain a constant fracture energy G c , which is a material parameter, by adapting the elementary fracture energy depending on the elements' size (L e ). However, this well-known Crack-Band method is more suitable for brittle materials, since fracture energy is difficult to estimate for ductile materials. Moreover, damage remains localized and results may still depend on the mesh orientation.

Other papers [START_REF] Ladeveze | On a damage mechanics approach. Mechanics and mechanisms of damage in composites and multi-materials[END_REF][START_REF] Allix | Delayed-Damage Modelling for Fracture Prediction of Laminated Composites under Dynamic Loading[END_REF][START_REF] Suffis | Damage model with delay effect: Analytical and numerical studies of the evolution of the characteristic damage length[END_REF] have proposed, from a mathematical analysis of localization in dynamic simulations, a delayed damage approach. This method suggests to compute a new damage variable, delayed with respect to the original one, with a rate bounded [START_REF] Allix | The bounded rate concept: A framework to deal with objective failure predictions in dynamic within a local constitutive model[END_REF] by a given value to identify. Despite its easy implementation, it only requires a modification of the constitutive model, this approach strongly influences the material behavior. In addition the regularized band width depends on the loading rate. Thus, there is no direct control on the dissipated energy and material ductility may be overestimated at very high velocity if damage is over-delayed.

The last regularization approaches are the so called non-local methods. They consist in computing non-local damage variables at a given material point from the values computed in its neighbourhood. These methods introduce a material characteristic length (referred to as ) which affects the regularization band width (L r ) and enables the control of the dissipated energy independently of the loading rate. Thus, results will be mesh-independent as long as the mesh size is smaller than the regularization band width (3L e L r see [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF]) .

A first non-local approach [START_REF] Pijaudier | Nonlocal damage theory[END_REF] consist in replacing the usual damage variable with its weighted spacial average over a representative volume (Ω c ) whose size is the material characteristic length ( ). The weighting function is often a Gaussian function but other forms can be used [START_REF] Pijaudier-Cabot | Nonlocal damage model with evolving internal length[END_REF]. However, these non-local integral methods necessitate to establish a dialogue between Gauss points considering neighboring elements. These operations may compromise parallel computing, and necessitates a specific treatment at boundaries to account for the fact that the integration volume is truncated. They are believed to be very detrimental in the case of explicit computations with respect to the computation time as they do not follow the "element by element" treatment required to achieve efficiency.

To solve the numerical and algorithmic problems associated with the previous integral non-local, it was proposed to use a Taylor expansion of the integral used to computed the non-local variables [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF][START_REF] Roy | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF]. This leads to an equation introducing the second order derivative (Laplacian ∇ 2 ) of the non-local variable. The explicit form [START_REF] Mühlhaus | A variational principle for gradient plasticity[END_REF][START_REF] De | Gradient-dependent plasticity: Formulation and algorithmic aspects[END_REF] uses the Laplacian of the local variable and faces similar problems as the integral methods as dialogue between Gauss points is still required to evaluate the gradients. The implicit second gradient methods [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF] consider the gradient of the non-local variable which is then considered as a new field of degrees of freedom at nodes. This enables for an easy evaluation of the gradients using standard finite element techniques. In particular the "element by element" treatment is preserved so that algorithms for parallel computing remain unchanged.

Using micromorphic models [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF][START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF] is another solution which still uses local and non-local variables. The model is based on the definition of a enriched free energy depending on the gradient of the non-local variables. It leads to the same partial differential equation as the implicit second gradient methods for the non-local variables (see below). The difference between both methods lies in the treatment of the constitutive equations which is the micromorphic case are directly derived from the free energy. A similar enriched free energy approach is developed in [START_REF] Zhang | Ductile damage modelling with locking-free regularised gtn model[END_REF] which only uses one non-local variable known at Gauss points and at nodes. The equality between both quantities is weakly enforced using a Lagrange multiplier. Once again the constitutive equations are slightly modified.

In this paper, a recently proposed extension of implicit second-gradient equation [START_REF] Diamantopoulou | Micromorphic constitutive equations with damage applied to metal forming[END_REF] adapted to dynamic simulations is used to regularise the Gurson type damage model presented in [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF]. Its implementation is achieved by enriching classical linear under-integrated continuum elements of the Europlexus dynamic explicit solver: hexahedrons, prisms, and tetrahedrons. In section 3.3.2 the local constitutive model is presented and used to illustrate the mesh-dependency problem on practical examples. Then, the implicit second gradient method and its numerical implementation are detailed in section 3.3.3. The introduction of the non-local variable in the constitutive model is realized in section 3.3.4. The originality of this non-local approach is its compatibility with the dynamic explicit computations and the parallel computing. Note that all simulations presented is in work use the multi-domain parallel computing. An alternative approach using a micromorphic formulation is then presented in section 3.3.5. Finally, the implicit gradient formulation is used in section 3.3.6 to simulate experimental results obtain on the DP450 steel used in [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF].

Damage constitutive model and mesh dependency

In this section, the constitutive model proposed in [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF], which will be regularized later in this paper, is briefly described. The mesh dependency problem is then illustrated with several simulations realized with different mesh sizes and mesh orientations on specimens taken from the experimental campaign presented in the same paper.

Damage constitutive model

In a previous paper [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF], a Gurson type damage model was proposed to describe the behavior of dual-phase DP450 steel sheets. This model considers the presence of spherical cavities surrounded by a material matrix in a representative volume element. It uses the Gurson-Tvergaard-Needleman (GTN) yield criterion [START_REF] Gurson | Continuum theory of ductile rupture by void nucleation and growth: Part I-Yield criteria and flow rules for porous ductile media[END_REF][START_REF] Tvergaard | Influence of voids on shear band instabilities under plane strain conditions[END_REF][START_REF] Tvergaard | Analysis of the Cup-cone Fracture in a Round Tensile Bar[END_REF] accounting for the effect of damage and pressure which is expressed as:

φ( σ, σ F , f * ) = σ σ F 2 -1 Plasticity + 2q 1 f * cosh q 2 2 Tr( σ) σ F -(q 1 f * ) 2
Effect of damage (3.25) This yield criterion can be seen as composed of two parts. The plasticity part corresponds to an elasto-plastic criterion that compares an equivalent stress σ to the flow stress σ F . The Drucker equivalent stress [START_REF] Drucker | Experiments to Mathematical Theories of Plasticity[END_REF] is used in this case, and its expression is given below:

σ( σ) = 6 1 27 -c 4 729 -1 (J 3 2 -cJ 2 3 ) (3.26)
where J 2 is the second deviatoric invariant and J 3 the third deviatoric invariant of the stress tensor. The expression of the flow stress describes the effect of work-hardening [START_REF] Le Maoût | Aluminum alloy damage evolution for different strain paths -application to hemming process[END_REF], strain-rate dependency [START_REF] Gordon | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF] and
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thermal softening [START_REF] Zhao | A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets[END_REF] due to quasi-adiabatic self-heating at high loading rates. It is expressed as:

σ F (p, ṗ, T ) = (R e + Hp + Q(1 -exp(-bp))) Work hardening 1 + C ln ṗ ε0 + Viscosity (1 -µ(T -T ref ))
Thermal softening

Strain-rate effects (3.27) where p designates the cumulated plastic strain, R e is the initial yield stress, H the linear hardening, Q and b the two Voce [START_REF] Voce | The Relationship between Stress and Strain for Homogeneous Deformation[END_REF] parameters, C the Johnson-Cook [START_REF] Gordon | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF] parameter, ε0 the inviscid limit strain-rate, µ the Zhao [START_REF] Zhao | A constitutive model for metals over a large range of strain rates identification for mild-steel and aluminium sheets[END_REF] thermal softening parameter, T the temperature, and T ref the reference temperature chosen as the room temperature (20 • C). The temperature evolution [START_REF] Roth | Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[END_REF] is governed by a quasi-adiabatic conversion [START_REF] Ingram | The latent energy remaining in a metal after cold working[END_REF] of the plastic work into heat:

Ṫ = ω( ṗ) η k ρC p σ : εp (3.28)
The weight function ω is used to obtain a continuous transition between isothermal conditions at low strain rates with no heat generation and quasi-adiabatic conditions at high strain rates with purely adiabatic heat generation. Its expression is:

ω( ṗ) =        0 if ṗ < εis ( ṗ -εis ) 2 (3ε ad -2 ṗ -εis ) (ε ad -εis ) 3 if εis ≤ ṗ ≤ εad 1 if ṗ > εad (3.29)
The second part of the GTN yield criterion represents the effects of damage on the material behavior. The evolution of the damage variable f t is given by:

ḟt = AH(p -ε d ) ṗ Nucleation ḟn + (1 -f t )Tr( εp ) Growth ḟg + k w f t w(θ) s : εp σ "Shear damage" ḟsh (3.30)
It incorporates a nucleation term based on the Heaviside function H. Nucleation starts at a plastic strain equal to ε d . The nucleation rate is then constant (A). The void growth term is directly obtained from the plastic flow rule (mass conservation). Finally the model also uses the Nahshon and Hutchinson "shear damage" term [START_REF] Nahshon | Modification of the Gurson Model for shear failure[END_REF], enabling failure prediction under near pure shear conditions. The effective void volume fraction f * in the GTN criterion (see eq. (3.25)) is defined from f t and represents the coalescence of cavities that starts when f t exceeds a critical value f c :

f * =    f t if f t < f c f c + 1/q 1 -f c f r -f c (f t -f c ) if f t ≥ f c (3.31)
Material failure is obtained when f t = f r which is the void volume fraction at failure.

Numerical implementation

The presented constitutive model is implemented in the Europlexus dynamic explicit finite element code using the NICE 1 "Next Increment Correct Error" explicit numerical scheme for plasticity proposed by Halilovič et al. [START_REF] Halilovič | NICE h : a higher-order explicit numerical scheme for integration of constitutive models in plasticity[END_REF].

The constitutive law is called to compute the new stress tensor σn from the strain increment ∆ εn . At the beginning of the time step, the strain increment is supposed to be purely elastic, and the trial stress is computed as follows:

σtrial = σn + C : ∆ εn+1 (3.32)
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Where C is the assumed isotropic stiffness tensor defined with the Young modulus E and the Poisson ratio ν. The corresponding value of the yield function is then evaluated:

φ pr ed = φ( σtrial n , σ n-1 F , f * n-1
). If φ pr ed ≤ 0, the material behavior is linear and elastic. Otherwise, i.e. φ pr ed > 0, a plastic correction must be applied to bring the yield function back to a value close to zero by updating the stresses and the internal variables. In this case, the NICE 1 scheme proposes to explicitly compute the plastic multiplier ∆λ by verifying an enhanced consistency condition:

φ n-1 + ∆φ n = 0 (3.33)
with:

∆φ n = ∂φ ∂ σ n-1 : ∆ σn + ∂φ ∂p n-1 ∆p n + ∂φ ∂f * n-1 ∆f * n + ∂φ ∂T n-1 ∆T n (3.34)
It has to be noted that this modified consistency condition introduces the previous value of φ to take into account the remaining error after correction created at the previous time step ∆t n-1 . The plastic multiplier at the current time step ∆t n will thus be computed by "correcting" this residual error. This self-correcting property helps to prevent the drift of the solution usually encountered with explicit plasticity algorithms. This drift is often corrected by performing costly iterations to ensure that the yield function remains close to zero. As drifting is prevented using the NICE scheme, no iterations are needed which helps to reduce the computation time.

Applying the normality rule one has: ∆ εp = ∆λ ∂φ ∂ σ = ∆λ n where n is the normal to the yield surface. Following the GTN model, the plastic work is expressed as:

(1 -f t )σ F ∆p = σ : ∆ εp (3.35)
The cumulated plastic strain increment is therefore related to the plastic multiplier by:

∆p = σ : n (1 -f t )σ F ∆λ (3.36)
All the internal variable increments depend either on the plastic strain increment tensor ∆ εp or on the cumulated plastic strain increment ∆p and can thus be rewritten introducing the plastic multiplier:

∆ σ = C : (∆ ε -∆λ n), ∆p = ∂p ∂λ ∆λ, ∆f * = ∂f * ∂λ ∆λ, ∆T = ∂T ∂λ ∆λ (3.37)
Using eq. (3.33), the expression of the plastic multiplier can be obtained as:

∆λ = φ n-1 + n : C : ∆ ε n : C : n - ∂φ ∂p ∂p ∂λ - ∂φ ∂f * ∂f * ∂λ - ∂φ ∂T ∂T ∂λ (3.38)
Once ∆λ is calculated, the stress tensor and the internal variables are updated by computing the corresponding increments for time step ∆t n using eq. (3.37). Due to mesh dependency, the implemented constitutive model was identified in [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF] for a constant mesh size of L e = 0.2 mm. The corresponding parameters are given in tab. 3.1.

Mesh-dependency phenomenon

Theory

If the simulations are performed with a mesh size different from the one used for identification (i.e. L e = 0.2 mm), a poorer numerical prediction might be observed. This phenomenon is due to the softening nature
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192.0 0.3 283.0 587.0 208.0 23.9 1.45

ε0 [s -1 ] C µ [ • C -1 ] η k ρ [kg.m -3 ] C p [J.kg -1 . • C -1 ] εis [s -1 ]
0.00361 0.0236 0.00134 0.9 7850.0 420.0 0.002

εad [s -1 ] ε d A k w f c f r f u 0.04 0.3 0.11 2.65 0.16 0.2 1/q 1 q 1 q 2
1.5 1.0 (due to damage or temperature) of the constitutive model which leads to the localization of strains in one row of elements or Gauss integration points. From a mathematical point of view, this localization can be explained, in the case of dynamic explicit simulations, by a loss of hyperbolicity of the discretized equilibrium equations [START_REF] Zdeněk | Wave propagation in a strain& softening bar:exact solution[END_REF][START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] De Borst | Fundamental issues in finite element analyses of localization of deformation[END_REF]. To illustrate it, a one-dimensional case problem is considered. The discretized equilibrium equation is in this case:

∂∆σ ∂x = ρ ∂ 2 ∆u ∂t 2 with ∆σ = κ∆ε (3.39)
where κ is the tangent modulus (κ = E for a purely linear elastic behavior). Considering that ∆ε = ∂∆u/∂x , this equation can be rewritten as follows:

κ ρ ∂ 2 ∆u ∂x 2 = ∂ 2 ∆u ∂t 2 (3.40)
If the tangent modulus κ is positive (elasticity, work-hardening...), the equation above is hyperbolic and its solution is a wave that propagates at the speed κ/ρ. When the tangent modulus becomes negative (softening due to damage, self-heating ...), the equation becomes elliptic and its solution gets stationary. The propagation speed vanishes and the deformation wave is then trapped [START_REF] Wu | Deformation trapping due to thermoplastic instability in one-dimensional wave propagation[END_REF] in the first weakening element. This wave is no longer transmitted to neighboring elements. The damage variable will only evolve in the weakening element and damage localization is observed. As the elementary fracture energy depends on the elements size, the smaller the mesh size, the less "ductile" the material macroscopic response. Therefore, spurious results might be obtained for different mesh sizes or mesh orientations. Note that, some works [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF][START_REF] De Borst | Fundamental issues in finite element analyses of localization of deformation[END_REF] have shown that introducing a plastic strain-rate dependency in the constitutive model helps to regularise the solution. The examples presented below will illustrate that the rate dependency introduced by the Johnson-Cook model [START_REF] Gordon | A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[END_REF] is not sufficient in this case.

Examples of mesh dependency

In the presented constitutive model, two softening variables may introduce mesh dependency: the damage variable f t and the temperature T at high velocities. To illustrate this phenomenon on practical examples, two specimens taken from the experimental campaign presented in [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF] are used: FN and V45 (Sketches of the tests specimens are shown in section B.1). The FN specimen is relevant to see the mesh-dependence on crack initiation and crack bifurcation due to its specific "S-shape" crack path. The V45 specimen is more interesting to observe the mesh-dependency on crack propagation. These specimens were tested with a high speed tensile machine at loading rates of respectively 1.0 m.s -1 and 3.0 m.s -1 and at room temperature. Simulations are performed using the dynamic explicit software Europlexus with the identified parameters presented in tab. 3.1 on three different mixed (hexahedrons and prisms) meshes (see fig. 3.2) for both specimen.

The first mesh for each specimen (see fig. 3.2a and fig. 3.2d) is a regular mesh with a constant mesh size of L e = 0.2 mm corresponding to the identification size. For these meshes, the results are supposed to give the best predictions. The second mesh (see fig. 3.2b and fig. 3.2e) uses a smaller mesh size of L e = 0.15 mm and are disoriented on purpose (30 • for FN specimen and 50 • for V45 specimen) to observe a potential dependency to mesh orientation. Finally, the third mesh (see fig. 3.2c and fig. 3.2f) is regular and uses a very small mesh size equal to L e = 0.1 mm. Usual symmetry conditions are used so that only half the thickness of the specimen is represented. For the three mesh designs, this half thickness is respectively divided in 3, 4 and 6 elements. Simulations are performed using under-integrated linear hexahedrons (CUBE) with viscous hourglass control and prisms (PRIS). ). As expected the total crack length is larger for 0.15 mm mesh compared to the 0.2 mm mesh for the FN specimen. Regarding the FN disoriented mesh (see fig. 3.3b), the crack path shape seems to be in good agreement with the experiment, which leads to think that the local results are not influenced by the mesh orientation in this particular case. It is important to note, for the rest of the study, that this specimen has 3 crack initiation spots (see fig. 3.3a), which is also observed experimentally: two on the edges of the specimen, and one at the center. This gives a specific "S-shape" crack path. The fact that this crack path does not have the same orientation for the disoriented mesh cannot be attributed to mesh dependency. This is only due to small defects in the mesh, that induce the crack to choose one orientation or the other. The scatter of crack path orientation with meshes could be fixed by using exact boundary conditions extracted from DIC pictures (as presented in [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF]), that take into account a possible dissymmetry of the loading. In this work, nominal imposed displacement is used as DIC measurements are not available for these high velocities tests.

Regarding the V45 disoriented mesh (see fig. 3.3e), even if the crack path seems to be straight as expected, it shows local small deviations (zig-zag between element rows) and the crack progression is surprisingly smaller than for the coarsest mesh (see fig. 3.3d). A higher dependence to the mesh-orientation is therefore observed on the V45 specimen. The load-displacement curves (see fig. 3.4) also show different results at failure for both specimens, particularly visible for the V45 specimen. The finest mesh presents an earlier crack initiation for the FN specimen than the two others (see fig. 3.4a). The displacement at failure (and thus the dissipated energy) tends to decrease with the increasing mesh fineness. The same observation is made on the V45 curves (see fig. 3.4b). However, for this specimen, the disoriented 0.15 mm mesh shows a higher dissipated energy than observed for the 0.2 mm mesh, despite a quasi-identical final notch opening. This is directly related to the small deviations observed on the damage field (see fig. 3.3e) which indicates that more elements need to be broken to follow a quasi-straight path. 
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Implicit second-gradient non-local approach

Mesh dependent results have been observed for both FN and V45 specimens. In order to obtain meshindependent results, it is proposed in this section to use a modified version of the recently proposed extension of the implicit second gradient equation to dynamic explicit computations [START_REF] Diamantopoulou | Micromorphic constitutive equations with damage applied to metal forming[END_REF]. Since the damage variable f t and the temperature T both depend on the plastic strain, it is chosen to regularize the cumulated plastic strain p. The theory of the presented implicit second-gradient non-local approach is detailed. Its numerical implementation for continuum elements is then presented and illustrated.

Theory

Non-local implicit second gradient methods are based on a rewriting [START_REF] Roy | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF][START_REF] Peerlings | A critical comparison of nonlocal and gradient-enhanced softening continua[END_REF] of the non-local weighted integral models proposed by Pijaudier-Cabot et al. [START_REF] Pijaudier | Nonlocal damage theory[END_REF][START_REF] Pijaudier-Cabot | Comparison of various models for strain-softening[END_REF]. The main advantage is that there is no longer a need to perform integrals over a patch of elements for each integration point. However new degrees of freedom are introduced which correspond to the "non-local" counterpart of the local variable. A standard finite element implementation is then possible as it preserves the "element by element" evaluation of internal forces. This approach also enables preserving parallel computing which is an important issue for large size simulations preformed in the automotive industry. Based on the work of Peerlings et al. [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF], the following implicit second gradient equation could be used to define the non-local variable:

p nl -2 ∇ 2 p nl = p (3.41)
where p nl is the non-local value of the cumulated plastic strain. Note that an additional condition must be defined at the boundary of the structure (referred to as Γ ) for the new variable, which is usually:

∇p nl . n = 0 (3.42)
where n is the external normal unit vector. However, one can notice that eq. (3.41) describes the "quasi-static" evolution on the non-local variable p nl since no inertia effect is considered. Therefore this equation is not suitable for the numerical scheme used in dynamic explicit softwares and based on the Newmark central differences scheme which requires the evaluation of the acceleration of the degrees of freedom (p nl in the present case). Inspired by the work of Diamantopoulou et al. [START_REF] Diamantopoulou | Micromorphic constitutive equations with damage applied to metal forming[END_REF], a solution is proposed which consist in the introduction of a non-local "density" (unit s2 ) referred to as ζ, and of the acceleration of the non-local variable as follows:

This formulation implies that the solution p nl is a wave (as the displacements) that might oscillate in the case of sudden variation of the local variable p (e.g. crash, crack ...). For metal forming simulations, as studied by Diamantopoulou et al., quite slow loading rates are regarded. In this case, the non-local inertia should have a very limited influence since accelerations remain low. However, in the case of crash simulations, parasite oscillations might be observed in the p nl field. That is why, in this work, it is proposed to introduce a non-local damping parameter γ (unit s) as a factor of the non-local variable velocity to limit this phenomenon. The set of equations then considered for the rest of the study is given below:

2 ∇ 2 p nl -γ ṗnl + (p -p nl ) = ζp nl on Ω ∇p nl . n = 0 on Γ (3.44)
The implementation of this set of equations in an explicit finite element solver (Europlexus [START_REF] Team | Europlexus: a computer program for the finite element simulation of fluid-structure systems under transient dynamic loading[END_REF] in this case) is detailed in the following. Simulation are still performed with under-integrated linear continuum elements but with additional degrees of freedom for p nl .

Numerical implementation in continuum elements

To implement this non-local approach within the finite element method framework, the weak formulation of eq. ( 3 The "non-local equilibrium" above shows the balance between the different non-local forces. The non-local external forces contain the variable at the integration points to be regularized, i.e. p in this case. This external solicitation will induce the evolution of the non-local degree of freedom p nl . Using the standard finite element procedures, the previous integrals can be expressed as a sum over all elements of the structure. For each element, the integral is evaluated using Gauss quadrature (1 Gauss point per element in the present case). Let {p e nl } be the vector of the nodal values for the non-local plastic strain. The values at the Gauss points of p nl and its gradient ∇p nl are evaluated as: Standard assembly procedures are then used to obtain "forces" associated to each degree of freedom.

p nl = {N e }.

Description of the equilibrium procedure

The presented non-local equilibrium equation is used to compute the accelerations of the non-local variable, as shown in fig. 3.5 (detailed below), which makes the non-local variable evolve (like any other degree of freedoms). Each node of the discretized structure now has a extra degree of freedom p nl in addition to to the nodal displacements. Three steps are then necessary to calculate both sides of the equilibrium equation:

1. In the initialization of the computation (step 0. in the flow chart presented below in fig. 3.5), the global "mass matrix" is computed for the non-local variable considering elementary mass matrices. Considering eq. (3.49), the non-local elementary mass matrix is expressed as:

[M nl e ] = ζ Ωe {N e } T .{N e }dΩ (3.50) 
Note that, in dynamic explicit codes, the mass matrix is often lumped to make it diagonal and so easier to inverse. The elementary non-local lumped mass matrix is defined as follows:

[M nl e ] L i,i = n j=1 [M nl e ] i,j (3.51) 
where n is the number of nodes for the considered element. For the rest of the study, the mass matrix is supposed to be lumped, and the subscript L will be omitted. The non-local global mass matrix, which is lumped and so diagonal, will eventually be inverted to compute the acceleration of the additional degree of freedom in step 8. The mass matrix associated to displacements ([M]) is indeed also computed and lumped.

2.

At every time step, non-local forces are computed in each element (step 3. to 5. in fig. 3.5). As step 3. and 4. correspond to the introduction of the non-local variable into the constitutive model, these steps will be detailed in section 3.3.4 and section 3.3.5. The local variable p is then supposed to be known at step 5. As the inertial forces shown in eq. (3.47) are not computed at the element level, the non-local elementary forces are defined so as to gather the internal, damping and external non-local forces:

{f nl e } = Ωe 2 [B e ] T .[B e ] + {N e } T .{N e } .{p e nl } + γ({N e } T .{N e }).{ ṗe nl } -{N e } T p dV (3.52)
When all the elementary contributions {f nl e } are computed, they are assembled in the same way as described for the mass matrix to obtain the global non-local forces vector {f nl } (see step 7.). Note that the dialogue between elements is realized at this step. Indeed, all elements with a common non-local degree of freedom will add their contribution to its evolution.

3.

To finish, as the non-local variable p nl evolution is computed following the numerical scheme of Newmark central differences, it must respect a stability condition. A specific non-local critical time step must not be exceeded to preserve the numerical stability. A stability analysis (see section B.2) on a one dimensional wire element leads to the following expression for the non-local critical time:

∆t nl = min e 2L e √ 3ζ 12 2 + L 2 e ( 3.53) 
For the global computation stability, the minimum between local mechanical equilibrium critical time step, referred to as ∆t meca , and the non-local critical time step ∆t nl is retained. In addition a safety factor (C stab < 1) is applied to this minimum time increment. In the following, C stab = 0.8 will be used.

∆t c = min(∆t meca , ∆t nl ) with ∆t meca = L e E /ρ (3.54) 
It is important to note that the non-local critical time step depends on the value of the non-local parameters. From a physical point of view, the internal length generally remain of the order of magnitude of a few hundreds of micrometers and is thus not very critical. However, the parameter ζ must remain very low in order to prevent the "filtering" of the non-local variable evolution especially for very fast variations of p. A very low value of ζ might increase the computation time. As the minimum between mechanical and non-local critical time steps is retained, it is chosen to fix ζ so that it does not penalize the computation time in comparison with a classical simulation without non-local regularization:

∆t nl ≥ ∆t meca =⇒ ζ ≥ ρ(12 2 + L 2 e ) 12E (3.55) 
Considering a given value for and a possible range for L e (i.e. considering several meshes with different minimum mesh sizes), ζ must be computed using the largest value for L e if one wants a constant value for ζ. In the following, one uses = 0.4 mm and a maximum value for L e of 0.2 mm. This corresponds to a value for ζ equal to 6.67 × 10 -15 s 2 . However, in case of a large elongation due to loading, the element size L e might be increased. In this case, the critical value of ζ is also increased. That is why, as ζ is chosen as a constant, a conservative value of ζ = 1.0 × 10 -13 s 2 is retained for all the computations.

No other modifications are required for non-local parallel computation. The additional degrees of freedom are exchanged at the boundary of every domains like displacements. To summarize the implementation of the proposed method, fig. 3.5 shows the global algorithm including the modifications regarding a classic element necessary to introduce the implicit second gradient non-local approach. Standard procedures are used to time integrate displacements ({u}). The strain tensor increments are computed from the elementary nodal displacements as

∆ ε = [G e ].{∆u e } (see section B.4 for the calculation of [G e ]).
This second gradient non-local approach is then implemented in the Europlexus solver by modifying some classical under-integrated linear continuum elements (see section B.3): hexahedral (CUBE), prisme (PRIS) and tetrahedral (TETR). The non-local version of these three element types will be referred to as CBNL, PRNL and TTNL (see fig. 3.6). Note that because of the under-integration, a viscous hourglass treatment is used for hexahedral elements.

Non-local constitutive model

In this section, step number 4. of the algorithm presented in fig. 3.5 is detailed. For each element of the structure, the constitutive law (denoted F) is called to compute the stress tensor and the local cumulated plastic strain from the increment of total strain and the increment of non-local plastic strain:

( σ, p) = F(∆ ε, ∆p nl ) (3.56)
0. Computation of the global lumped mass matrix:

[M] = [M e ] , [M nl ] = [M nl e ] Initialization of d.o.f.s: {ü} 0 = [M] -1 .{f ext } 0 , { u} 1/2 = { u} 0 + {ü} 0 ∆t 0 /2 {p nl } 0 = 0, { ṗnl } 1/2 = 0, {p nl } 0 = 0
For each element:

1. {∆u} n = { u} n-1/2 ∆t n {∆p nl } n = { ṗnl } n-1/2 ∆t n 2. New configuration: {u} n-1 + {∆u} n , {p nl } n-1 + {∆p nl } n 3. Computation at Gauss point: ∆ εn = [G e ].{∆u e } n , ∆p n nl = {N e }.{∆p e nl } n 4. Calling constitutive law : ( σn , p n ) = F(∆ εn , ∆p n nl )
5. Computation of element forces: Compared to a use with a classical element, the constitutive equations must then be modified to introduced the non-local plastic strain p nl . To do so, it is proposed to follow the Peerlings et al. [START_REF] Peerlings | Gradient enhanced damage for quasi-brittle materials[END_REF] approach, also used by Engelen et al. [START_REF] Roy | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF] and Feld-Payet et al. [START_REF] Feld-Payet | Finite element analysis of damage in ductile structures using a nonlocal model combined with a three-field formulation[END_REF] who combined it with a solution to volumetric locking. This practical method consists in the introduction of the non-local plastic strain p nl in the rate equations of the softening variables: i.e. damage f t and temperature T . Consequently eq. (3.30) and eq. (3.28) are modified to respectively compute the rates of the non-local damage and of the non-local temperature as follows:

{f int e } n = V e [G e ] T . σn ( ) {f nl e } n = V e 2 [
{f int } n = {f int e } n {f nl } n = {f nl e } n 8. {ü} n = [M] -1 .({f ext } n -{f int } n ) {p nl } n = -[M nl ] -1 .{f nl } n 9. { u} n+1/2 = { u} n-1/2 + {ü} n (∆t n+1 + ∆t n )/2 { ṗnl } n+1/2 = { ṗnl } n-1/2 + {p nl } n (∆t n+1 + ∆t n )/2 { ṗnl } pr ed n+1 = { ṗnl } n+1/2 + {p nl } n (∆t n+1 )
d.o.fs              u x u y u z + p nl (a) CBNL element d.o.fs              ux uy uz + pnl (b) PRNL element d.o.fs              u x u y u z + p nl (c) TTNL element
ḟ nl t = AH(p nl -ε d ) ṗnl + (1 -f nl t )Tr( εnl p ) + k w f nl t w(θ) s : εnl p σ (3.57) Ṫnl = ω( ṗnl ) η k ρC p σ : εnl p (3.58)
To calculate the non-local plastic strain rate tensor εnl p from the non-local cumulated plastic strain ṗnl , a non-local plastic multiplier is computed using the Gurson energy equivalence:

(1 -f t )σ F ṗnl = λnl σ : n =⇒ λnl = (1 -f t )σ F ṗnl σ : n (3.59)
Note that this non-local plastic multiplier is only used to compute a non-local plastic strain tensor and remains different from the one computed with the NICE method for return mapping correction (see eq. (3.38)).

The non-local plastic strain-rate tensor is then obtained using the normality rule:

εnl p = λnl n = (1 -f t )σ F ṗnl σ : n n ( 3.60) 
The local effective damage f * and the local temperature T are then replaced by their non-local counterparts f * nl (obtained from f nl t using eq. (3.31)) and T nl in the yield criterion eq. (3.25) and the flow stress eq. (3.27):

φ( σ, σ F , f * nl ) = σ σ F 2 -1 + 2q 1 f * nl cosh q 2 2 Tr( σ) σ F -(q 1 f * nl ) 2 (3.61) σ F (p, ṗ, T nl ) = (R e + Hp + Q(1 -exp(-bp))) 1 + C ln ṗ ε0 + (1 -µ(T nl -T ref )) (3.62) 
In the expression of the flow stress, the work-hardening and the rate-dependency, are not modified and still depend on the local plastic strain p. This implies that only the softening behavior due to heating or damage is modified. Plasticity and rate-dependency remain unchanged. Using this approach, the numerical plastic algorithm scheme (presented in section 3.3.2.2) needs to be adapted with the following two steps:

1. As the non-local plastic strain is computed outside the element, it is an input variable of the constitutive law and is considered as constant during material computation. The non-local damage and temperature are then updated at the beginning of the increment. This operation is realized whether the material behavior is elastic or plastic.

f nl t = f nl t + ∆f nl t (∆p nl , ∆ εnl p ) and T nl = T nl + ∆T nl (∆p nl , ∆ εnl p , ṗnl ) (3.63)
2. As these two softening variables are not updated during the plastic correction but remain constant through the entire material computation process, they become weakly coupled with the element behavior. This is acceptable since dynamic computations use very low time steps. In case of plastic flow, the computation of the plastic multiplier is then modified since the only remaining internal variable is the local plastic strain p:

∆λ = φ n-1 + n : C : ∆ ε n : C : n - ∂φ ∂p ∂p ∂λ (3.64) 
The stress tensor σ and the local plastic strain p can be updated using eq. (3.37). This couple of outputs variables is then used for the computation of elementary forces (see step 5. of the flow chart given in fig. 3.5).

To illustrate the performance of this approach, the test cases of FN and V45 specimens with different mesh sizes and orientations presented above (see section 3.3.2) are considered. The chosen set of non-local parameters is: = 0.4 mm, ζ = 1.0 × 10 -13 s 2 , and γ = 1.0 × 10 -6 s. It enables to consider that mesh convergence is reached for L e ≤ 0.2 mm. The constitutive model parameters of the local model which gave results in agreement with the experiments with a mesh size of L e = 0.2 mm must be adapted to preserve this agreement. In [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF], it has been mentioned that the main parameter that must be modified in the event of a change in localization bandwidth/element size is the nucleation slope A proportionally to the size of the localization band. Using the non-local approach, the width of the localization band should be greater than the largest considered element size within the investigated range (i.e. L e ≤ 0.2 mm). The value A = 0.37 (instead of 0.11) is then retained. Note that the adaptation of the implicit gradient model parameters from the values identified for the local model remains straightforward, with only two different parameters: the non-local internal length and the nucleation slope.

The obtained damage fields for the three investigated mesh sizes are shown in fig. 3.7 at simulation time t = 6.95 ms for the FN specimen and t = 1.03 ms for the V45 specimen. In the case of the FN specimen, the same damage field is obtained so that complete failure occurs at the same time for all mesh sizes and orientations. It must be noticed that the "S-shape" crack path of the FN specimen is preserved as well as the three crack initiation spots (two on the edges, one in the middle, see fig. 3.7a). In the case of the V45 specimen, the mesh orientation dependence appears to be corrected so that small deviations are no longer observed on the crack path (see fig. 3.7e). In both cases, the damage variable is much less localized than for the local model (see fig. 3.3). Maximal damage is reached on more than one row of integration points which is consistent with the non-local approach principle detailed in section 3.3.3.

Regarding the load-displacement curves fig. 3.8, numerical results with different mesh sizes are also quasi-identical for both crack initiation (see FN results in fig. 3.8a) and crack propagation (see V45 results in fig. 3.8b). The displacements at failure and dissipated energy are very close. The mesh size dependence as well as mesh orientation dependence (for V45 specimen) have thus been solved. Moreover, the simulated curves are in very good agreement with the experimental results.

Micromorphic approach

Another approach is studied in this paper: the micromorphic approach. In the framework of thermodynamic of irreversible processes [START_REF] Lemaitre | Mechanics of Solid Materials[END_REF], the micromorphic continuum theory has been generalized by Forest [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] and recently used by Diamantopoulou et al. [START_REF] Diamantopoulou | Micromorphic constitutive equations with damage applied to metal forming[END_REF] in a dynamic explicit code for a ductile material. This method first considers a kinematic enrichment with micromorphic variables, i.e. , microscale variables that are computed, taking into account the effect of material interactions at the same scale through their Laplacian.

To limit the number of additional degrees of freedom, in this study, only one micromorphic variable is considered and corresponds to the non-local plastic strain p nl . It should be noticed that the non-local variable has here a physical meaning. The virtual power theory is then enriched by adding the contribution of p nl and its first gradient: where P int , P ex t and P ine are respectively the internal forces, external forces and inertial forces power. The virtual power of internal forces is expressed as:

P int + P ex t = P ine (3.65)
P int ( ˙ u * , ṗ * nl ) = - Ω σ : ∇ ˙ u * + a χ ṗ * nl + b χ ∇ ṗ * nl dV (3.66)
where a χ and b χ are two thermodynamics forces respectively associated to p nl and its first gradient ∇p nl . The virtual power of external forces is given by:

P ex t ( ˙ u * , ṗ * nl ) = Ω ρ f u . ˙ u * dV + Γ F u . ˙ u * dS + Ω H χ ζf p ṗ * nl + f gp . ∇ ṗ * nl dV + Γ F p ṗ * nl dS (3.67)
where f i are body forces, F i contact forces, H χ a modulus that will be defined below, and ζ is the non-local density parameter. Finally, in the case of a dynamic problem the virtual power of inertial forces density reads:

P ine ( ˙ u * , ṗ * nl ) = Ω ρ ¨ u ˙ u * + H χ ζp nl ṗ * nl dV (3.68)
Neglecting the contact forces and the body forces for the micromorphic variable and using the Green identity, the following set of balance equations is obtained:

div( b χ ) -a χ = H χ ζp nl on Ω b χ . n = 0 on Γ (3.69)
The (non-local) microscale plastic strain p nl is connected to its macroscale counterpart in the constitutive law p via the expression of the free energy which is enriched with a micromorphic potential referred to as ψ χ . In the case of a micromorphic plastic strain only, following the appendix in [START_REF] Mazière | Strain gradient plasticity modeling and finite element simulation of lüders band formation and propagation[END_REF], the expression of the free energy becomes:

ψ( εe , p, p nl , ∇p nl ) = 1 2 εe : C : εe Elastic potential + ψ p (p) Plastic potential + ψ χ (p, p nl , ∇p nl ) Micromorphic potential (3.70) 
The micromorphic potential is given below, considering an isotropic material:

ψ χ = 1 2 H χ (p -p nl ) 2 + 1 2 A χ ∇p nl . ∇p nl (3.71)
where H χ and A χ are then two micromorphic moduli to be identified. The state laws are obtained by differentiating the potentials in eq. (3.70) with respect to each state variable. The corresponding thermodynamic forces are then expressed as:

σ = C : εe (3.72) R χ = ∂ψ p ∂p + ∂ψ χ ∂p = R + H χ (p -p nl ) (3.73) a χ = ∂ψ χ ∂p nl = -H χ (p -p nl ) (3.74) b χ = ∂ψ χ ∂∇p nl = A χ ∇p nl (3.75)
The hardening function R χ contains the classical work hardening R defined in eq. (3.27) but also a micromorphic contribution H χ (pp nl ). It thus correspond to a micromorphic modified work-hardening function which is introduced in the flow stress expression. The obtained micromorphic modified flow stress is then referred to as σ χ F :

σ χ F (p, p nl , ṗ, T ) = ( R R e + Hp + Q(1 -exp(-bp)) -H χ (p nl -p)) Micromorphic work hardening Rχ 1 + C ln ṗ ε0 + (1 -µ(T -T ref ))
(3.76) The micromorphic approach assumes the balance equations given in eq. (3.69), which leads to:

     div( b χ ) -a χ = H χ ζp nl ⇔ Aχ Hχ ∇ 2 p nl + p -p nl = ζp nl on Ω b χ . n = 0 ⇔ ∇p nl . n = 0 on Γ (3.77)
An analogy can be drawn with the implicit second gradient equation (see eq. (3.41)) by denoting

A χ /H χ = 2 .
As in the case of the second gradient model, the previous form is not suitable for dynamic explicit computations so that the solution proposed in section 3.3.3 is again used, leading to:

A χ H χ ∇ 2 p nl -γ ṗnl + (p -p nl ) = ζp nl (3.78)
This implies that the main difference between the implicit gradient approach and the micromorphic approach, in this study, lies in the treatment of the non-local plastic strain in the constitutive model. Using the equation above, the micromorphic hardening law (see eq. (3.76)) can be expressed as:

R χ (p, p nl ) = R(p) -H χ ( 2 ∇ 2 p nl -γ ṗnl -ζp nl ) (3.79) 
In this paper, it is supposed that inertia effects are very low (ζ → 0) as well as damping (γ → 0), so that the hardening law can be rewritten as:

R χ = R -H χ 2 ∇ 2 p nl (3.80)
This means that the micromorphic method introduces in an indirect manner (i.e. using the term H χ (pp nl )) the Laplacian of the cumulated non-local plastic strain in the plasticity constitutive equations.This equation assumes that p and p nl are different. However, the modulus H χ can be considered as a penalty coefficient being very large so that p ≈ p nl . In this case, eq. (3.80) corresponds to the introduction of the Laplacian of the plastic strain p in the material law. The micromorphic method is implemented by replacing the original flow stress σ F by the new micromorphic flow stress σ χ F (see eq. (3.76)) in the GTN yield criterion:

φ( σ, σ χ F , f * ) = σ σ χ F 2 -1 + 2q 1 f * cosh q 2 2 Tr( σ) σ χ F -(q 1 f * ) 2 (3.81) 
Unlike the previous approach, damage and temperature evolutions remain unchanged in this approach and correspond to the original equations given respectively in eq. (3.30) and eq. (3.28). Thus they remain strongly coupled with the return mapping procedure. They still depend on the plastic strain p which is regularized by the influence of p nl in its computation. This means that the micromorphic method regularizes the entire behavior (plasticity, viscosity, damage and temperature) since all internal variables and constitutive equations depend on the plastic strain. Consequently, depending on the value of H χ , the constitutive model might need to be completely re-identified in spite of the identification of the local model parameters for a fixed mesh size, since even work-hardening will depend on the non-local plastic strain.

The return-mapping algorithm must be adapted to this modification since the non-local plastic strain increment is introduced in the consistency condition:

φ n-1 + ∂φ ∂ σ n-1 : ∆ σn + ∂φ ∂p n-1 ∆p n + ∂φ ∂p nl n-1 ∆p n nl + ∂φ ∂f * n-1 ∆f * n + ∂φ ∂T n-1 ∆T n = 0 (3.82)
Note that in this equation ∆p nl is an input variable as well as the total strain increment tensor ∆ ε and does not depend on the plastic multiplier ∆λ. The derivative with respect to p is modified and the one with respect to p nl is introduced:

∂φ ∂p = ∂φ ∂σ χ F ∂σ χ F ∂p = ∂φ ∂σ χ F ∂σ χ F ∂R χ ∂R ∂p + H χ (3.83) ∂φ ∂p nl = -H χ ∂φ ∂σ χ F ∂σ χ F ∂R χ (3.84) 
The remaining derivatives are unchanged. The plastic multiplier expression is then obtained as:

∆λ = φ n-1 + n : C : ∆ ε + ∂φ ∂p nl ∆p nl n : C : n - ∂φ ∂p ∂p ∂λ - ∂φ ∂f * ∂f * ∂λ - ∂φ ∂T ∂T ∂λ (3.85) 
The stress tensor and the internal variable are updated using this new plastic multiplier.

To illustrate the performance of the micromorphic approach, the FN and V45 test cases are once again used. The chosen non-local parameters are = 0.4 mm, H χ = 1500 MPa, γ = 1.0 × 10 -6 s and ζ = 1.0 × 10 -13 s 2 . The micromorphic Laplacian modulus is thus A χ = H χ 2 = 240 N. Note that in this case, H χ is not large enough to be considered as a penalty parameter so that p and p nl significantly differ. However, this ensures that the plastic model (work-hardening, rate-dependency) does not have to be too much modified by the non-local plastic strain and helps to simplify the identification procedure. As for the implicit gradient approach, the nucleation slope must be adapted. The chosen value is this time A = 0.35. Note that, given identified values for a local model with a fixed mesh size, this method still requires to identify three parameters: the non-local internal length, the nucleation slope and the micromorphic modulus. The identification is then less straightforward than for the implicit gradient approach.

The damage fields obtained for the different meshes at t = 6.90 ms for the FN specimen and t = 0.87 ms for the V45 specimen, are given in fig. 3.9. For the FN specimen, it can be observed that the damage maps (see fig. 3.9a, fig. 3.9b and fig. 3.9c) show a complete failure and quasi-identical results. One can also notice that maximum damage remains quite localized, unlike the previous approach, which is more consistent with cracking. However, the "S-shape" crack path is modified so that the cracks initiated at the edges of the FN specimen tend to go straight ahead (see zoom in fig. 3.9a). Two crack initiation spots are clearly observed, but the third at the center of the specimen appears to modified and is barely visible. In the case of the V45 specimen, damage fields (see fig. 3.9d, fig. 3.9e and fig. 3.9f), differ from one mesh to another. These results are very close to the ones obtained with the local constitutive model (see fig. 3.3). Moreover, the dependence to mesh orientation is still observed (see fig. 3.9e), with small deviations on the crack path.

The load-displacement curves of the FN specimen, for different mesh sizes in fig. 3.10a show a very good mesh convergence in terms of displacement at failure and dissipated energy. Moreover, results are in very good agreement with the experimental curve. As observed on the damage fields, the V45 specimen results obtained with different mesh sizes(see fig. 3.10b) still exhibit a strong mesh dependency. No improvement in comparison with purely local computations is obtained for this particular specimen.

Conflicting results have thus been obtained on the FN specimen and the V45 specimen with the micromorphic approach. This could be explained by the choice of a penalty parameter H χ which may be not large enough, so that p nl only has a little influence on the evolution of its local counterpart p in case of crack propagation in mode I. A better mesh convergence would have been obtained for the V45 specimen by using a higher value for H χ . However, in this case, the crack path of the FN specimen is significantly modified, since the central crack initiation spot disappears and the side cracks go straight. Even after a re-identification of the damage model parameters, no better solution could be found. Moreover, a higher value of H χ increases hardening, which means that the plasticity model must also be re-identified. Using the micromorphic approach in this configuration, i.e. with only one additional degree of freedom corresponding to the plastic strain, it appears to be difficult to simultaneously represent FN (mainly representative of crack initiation) and V45 (mainly representative of crack growth). A possible solution would be to add another degree of freedom to treat damage independently from plastic strain.

Simulation of experimental results

The implicit second gradient and micromorphic approaches have both lead to mesh-independent results for the FN specimen providing numerical results that are in good agreement with experiments. However, only the implicit gradient approach has been able to regularize crack propagation for the V45 specimen. The micromorphic approach potentially shows better agreement with the physics of crack propagation as maximum damage remains localized. However the model appears to be more difficult to identify and has been unable, for the chosen parameters, to represent experimental results for different crack propagation modes and to ensure mesh convergence in all cases. For these reasons, the implicit gradient approach is preferred for its robustness and practicality for the rest of the study. For the same reasons it appears to be preferable for a potential industrial application. The parameters of the entire non-local Gurson -implicit gradient constitutive model that offers converged results when the mesh size is smaller than 0.2 mm, are summarized in tab. 3.2.

E [GPa] ν R e [MPa] H [MPa] Q [MPa] b c
192.0 0.3 283.0 587.0 208.0 23.9 1.45

ε0 [s -1 ] C µ [ • C -1 ] η k ρ [kg.m -3 ] C p [J.kg -1 . • C -1 ] εis [s -1 ]
0.00361 0.0236 0.00134 0.9 7850.0 420.0 0.002 To validate the proposed non-local modeling strategy, additional experimental results taken from [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF] are simulated. Simulations are then compared with experimental results. Sketches of these specimens can be found in section B.1. These specimens have been chosen to assess the performance of the non-local model for different stress triaxialities and strain-rates for both crack initiation and propagation. In all cases simulations using mesh sizes equal to 0.1, 0.15 and 0.2 mm were investigated. The meshes having a minimum element size equal to 0.15 mm are disoriented similarly to chat has been done for the FN and V45 specimens (see fig. 3

εad [s -1 ] ε d A k w f c f r f u 0.04 0.3 0.37 2.65 0.16 0.2 1/q 1 q 1 q 2 [mm] ζ [s 2 ] γ [s] 1.5 1.0 0.4 1.0×10 -13 1.0×10 -6

.2).

The large flat tensile specimen tested at a loading rate of 1.0 m.s -1 is first investigated. This specimen has a large central area where strain remains homogeneous up to necking. A large portion of the specimen is therefore affected by adiabatic heating. This specimen is interesting to verify that the overall plastic behavior (which was fitted in [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF] assuming no damage) is not modified using the non-local model. The damage fields given in fig. 3.11a, fig. 3.11b and fig. 3.11c show complete failure for the three meshes for the same simulation time, i.e. t = 9.0 ms. Maximal damage occurs on several rows of elements. The corresponding load-displacement curves (see fig. 3.13a) show a very good mesh convergence and good agreement with experiment.

The NT1 specimen tested at a loading rate equal to 3.0 m.s -1 is then considered. This specimen has the same cross section as the V45 specimen but has a larger notch radius equal to 1 mm. Its stress triaxiality is therefore higher than the flat specimen triaxiality but lower than the V45 specimen triaxiality. The NT1 specimen is particularly interesting to evaluate both crack initiation and crack propagation. Moreover, the original local constitutive model was identified using this specimen [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF]. Damage fields (see fig. 3.11d, fig. 3.11e and fig. 3.11f) at t = 0.9 ms show quasi-identical crack lengths for the three meshes. The load-displacement curves for the different mesh sizes and orientations (see fig. 3.13b) are also very close and in relatively good agreement with experimental results.

To evaluate the performance of the non-local model over large crack propagation, a Central Crack Panel (CCP) specimen is used. The loading rate is in that case equal to 7.0 m.s -1 . Crack lengths at t = 0.658 ms (see fig. 3.11g, fig. 3.11h and fig. 3.11i) are quasi-identical for the different mesh sizes and orientations. In particular, the results for the disoriented mesh (0.15 mm) are in good agreement with the other results. Displacement at failure and dissipated energy (see fig. 3.13c) are very close illustrating a proper regularization in this case too. Relatively good agreement with experiment is also obtained.

Finally, the M-shape specimen [START_REF] Roth | Ductile fracture experiments with locally proportional loading histories[END_REF] is simulated for a loading rate equal to 3.0 m.s -1 . This specimen enables testing the material at low triaxiality under shear. Damage fields at t = 1.0 ms (see fig. 3.12) and loaddisplacement curves (see fig. 3.13d) are almost identical for all three meshes. However a significant difference in terms of displacement at failure and dissipated energy is observed in comparison with experimental results. In the case of the M-shape specimens, the ligament between the notches is only 3 mm long. These notches also somehow constrain strain localization to occur in a band having a thickness of 0.5 mm (see fig. B.1) in which stress/strain gradients are very high even before damage is nucleated and starts to grow. The size of the highly deformed zone is of the same order of magnitude than the internal length used to regularize the problem, so that a size effect is observed. The fact that ductility is overestimated indicates that a smaller internal length should have been chosen in order to closely reproduce the tests on the M-shape specimens. This is one of the drawbacks of regularized models which have difficulties capturing the physics of failure up to cracking which ultimately occurs in a very narrow band with regard to the internal length. Using a smaller internal length also implies using smaller elements (so as to obtain convergence) so that the size and duration of the calculations would be strongly increased. A comprise needs to be found. The case of the M-shape specimen illustrates the fact that the failure of parts in which the failure zone size is constrained by the geometry will not be well described if their sizes is not large enough compared to the internal length. One possible way to determine would be to use homothetic specimens. As size effect should be observed for very small specimens and could be used to tune the internal length.

Conclusion

To improve the numerical prediction of metal sheets ductile tearing in crash simulations, the use of a coupled Gurson-type model was proposed in [START_REF] Davaze | Plastic and fracture behavior of a dual phase steel sheet under quasi-static and dynamic loadings[END_REF]. However, the strong mesh dependency (size, orientation) due to the softening behavior was an important shortcoming that had to be solved to propose a reliable numerical crack prediction method usable in the automotive industry.

To obtain mesh-independent results, two different non-local approaches based on the same partial differential equation were considered: the implicit second gradient model and the micromorphic model. These methods both require an enrichment of under-integrated continuum elements to compute a non-local plastic strain that can simultaneously regularize both softening variables: damage and temperature. As this variable is a new degree of freedom stored at nodes, the implementation of both methods fits well with the finite element framework. Parallel computing is then automatically preserved, which is another important point for an industrial application. The non-local variable was introduced in the constitutive model following both the implicit gradient approach and micromorphic approach. After comparison, the implicit gradient appeared to be more practical, robust and easy to identify and was retained as the best solution. Simulations were then carried out on several geometries for which mesh independence (size or orientation) was demonstrated. In addition simulations are in good agreement with experimental results except for the M-shape shear specimen. In that case mesh independence is also obtained but ductility is overestimated. This discrepancy is attributed to the size of the highly deformed area in the M-shape specimen which is comparable to the internal length so that regularization is too strong. It appears that the selected internal length is too large to simulate this specimen. However, as car crash simulations are large computations it is desirable to have a relatively coarse mesh size (in particular for explicit calculations where the enabled time increment decreases with decreasing element size). In that case the internal length, , needs to be adapted to the mesh size but failure of zones relatively small compared to will no be well described. It is also suggested that a more physically based intrinsic internal length could be determined using homothetic specimens having very small sizes. As thin metal sheets are often modeled using shell elements in car crash simulations, the non-local method should be extended to be compatible with these elements.

! Important comment: using the non-local implicit gradient method implies that the non-local variable is a new field added at every nodes. The solution of the non-local momentum equilibrium given in eq. (3.43) is a wave. This means that a too brutal excitation (e.g. damage,crack) might create a strong instability in the non-local field. If the erosion is set on, the failed elements are taken off the computation. Erosion is important in some contact treatment and also to avoid keeping crossed elements in the simulation which make the critical time step drop. When an element is removed, its mechanical internal forces are null. However, this is not necessary true for the non-local forces. A peak of non-local plastic strain rate can then be observed, impacting the neighboring elements. An overestimated eroded area might thus be obtained with parasite crack initiation spots, which is purely numerical and not physical. To avoid this phenomenon, it was chosen to realize a "partial" erosion of the element by keeping it in the computation to only compute the evolution of its non-local degrees of freedom. In order to illustrate the presented issue, the full erosion and partial erosion results on the FN specimen are given in fig. 3 Pour la suite, comme dans l'industrie automobile les tôles d'aciers sont modélisées par des éléments de type coque pour les simulations de crash, le chapitre suivant sera dédié à l'extension de la méthode non-locale à ce type d'éléments.

CHAPTER 4. DAMAGE REGULARIZATION IN SHELL ELEMENTS

necessarily normal to the medium plane after deformation (along n) (unlike the Kirchoff-Love theory). The initial section normal to the medium plane may thus rotate after deformation. The rotation can occur around vector y (see fig. 4.1b) and is referred to as θ y , and/or around vector x (see fig. 4.1c) and is referred to as θ x . Note that the rotation are supposed small so that sin(θ) ≈ θ. Following this theory, for a given point located at a position z from the element centroid (i.e. the medium plane z = 0) in the thickness (blue cross on fig. 4.1b and fig. 4.1c), the displacement vector u can be expressed with the membrane displacement vector u 0 and the rotations around x and y :

u = {u} =   u x u y u z   =   u 0 x u 0 y u 0 z   + z   θ y -θ x 0   (4.1)
Displacements u x and u y may thus vary depending on the position along the thickness, especially with bending conditions. The displacement u z is however the same along the thickness. This theory requires the shell elements to have at least five degrees of freedom: three displacements (u x , u y , u z ) and two rotations (θ x , θ y ). A third rotation θ z is often added but is not necessary for the shell kinematics. However, in some cases, it helps to connect the element to other elements such as shells or beams, or to set specific boundary conditions. The strain tensor is obtain by derivation of the above displacements vector. By the linearity of derivation operation, it is possible to calculate separately the in-plane membrane strain and in-plane bending strain tensors:

εm =    ε m x ε m y 2ε m x y    =          ∂u 0 x ∂x ∂u 0 y ∂y ∂u 0 x ∂y + ∂u 0 y ∂x          εb =    ε b x ε b y 2ε b x y    = z           ∂θ y ∂x - ∂θ x ∂y ∂θ y ∂y - ∂θ x ∂x           (4.2)
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For a given point in the shell thickness, the in-plane strain tensor is then:

εpl =   ε x ε y 2ε x y   =    ε m x ε m y 2ε m x y    +    ε b x ε b y 2ε b x y    (4.
3)

The shear transverse strains are supposed to be constant in the thickness and are obtained as follows:

εts = 2ε x z 2ε y z =      ∂u 0 z ∂x -θ y ∂u 0 z ∂y + θ x      (4.4)
One can notice that the transverse strain ε zz is not computed from kinematics and is supposed to be null in the plate theory. However, it must be computed to consider the thickness variation as described in the chapter 2. This is achieved in the constitutive law following the plane stress assumption (detailed in section 2.3).

Let us consider a shell element with shape functions defined in the in-plane reference coordinates (ξ, η) and contained in a vector {N e }. Their derivatives with respect to global coordinates (x ,y ) are computed in the matrix [B e ]. The jacobian matrix of the transformation between the global and the reference coordinates is referred to as [J]. For every degrees of freedom u i , θ i , a vector of n nodes values (4 for a quadrangle and 3 for a triangle) is associated. The element total degrees of freedom n × u i + n × θ i are then contained in a vector {d}.

[B e ] = [J] -1      ∂N 1 ∂ξ ∂N 2 ∂ξ ... ∂N n ∂ξ ∂N 1 ∂η ∂N 2 ∂η ... ∂N n ∂η      {d} =         {u x } {u y } {u z } {θ x } {θ y } {θ z }         (4.5)
where {u i } are the translation along the axis i, and {θ i } the rotation around axis i. The membrane, bending and transverse strain can thus be computed from the vector {d} by introducing the matrices [G m ], [G b ] and [G ts ]: 

εm =   [B e ] 1,: {0} {0} {0} {0} {0} {0} [B e ] 2,: {0} {0} {0} {0} [B e ] 2,: [B e ] 1,: {0} {0} {0} {0}   [Gm] {d} εb = z   {0} {0} {0} {0} [B e ] 1,: {0} {0} {0} {0} -[B e ] 2,: {0} {0} {0} {0} {0} -[B e ] 1,: [B e ] 2,: {0}   [G b ] {d} (4.6) εts = {0} {0} {0} [B e ]

Thickness integration

According to eq. (4.1), in-plane displacements, and so in-plane strains (see eq. ( 4.3)), may vary along the thickness, especially with bending conditions. In this case, one half of the thickness is in tension and the other one in compression. There is a need to get a precise description of internal forces in the thickness especially for plastic constitutive models where stresses are not linear along the thickness. To do so, shell elements use a thickness integration. A set of Gauss points are then defined in the element thickness (see fig. 4.2a). Usually, an odd number of integration points is chosen, so as to have one point at the element centroid. The precision of the in-thickness gradient and the computation time directly depend of the number of thickness integration points. Five integration points are commonly used, to offer a good compromise between precision and computation time. The Gauss points positions and weights depend on their number [START_REF] Venkateshan | Chapter 9 -numerical integration[END_REF] (see fig. The internal forces vector can thus be computed by integration:

{f int e } = e 2 -e 2 [G m ] T . σpl + z[G b ] T . σpl + K[G ts ] T . σts Sdz (4.8)
with σpl and σts the in-plane and transverse shear stress tensors. The coefficient K is a shear "correction" factor [START_REF] Vlachoutsis | Shear correction factors for plates and shells[END_REF]. Indeed, the transverse shear stresses profiles are known to be parabolic in the thickness with the maximal value reached at the element centroid (z = 0). In the Reissner-Mindlin theory, constant values of the transverse shear strains (see eq. (4.4)), and thus shear stresses, are considered and computed at the central layer. This is why a "correction" factor, K < 1, is introduced to be more representative of the theoretical shear stresses profiles. The value of this coefficient is generally set at K = 5/6. Using Gauss quadrature, the equation above becomes:

{f int e } = n G i=1 [G m ] T . σi pl + β G i e 2 [G b ] T . σi pl + K[G ts ] T . σi ts ω i Se 2 (4.9)

Extension of implicit gradient method to shell elements

In this section the implicit second gradient method presented in the previous chapter is extended to shell elements. As their shape functions are defined in only two dimensions, the non-local computation will be twofold with first the in-plane regularization using the shape function derivatives and then the in-thickness regularization that will require a chain of "nested wire elements".

In-plane regularization

In chapter 3, under-integrated continuum elements were modified to compute the non-local plastic strain. As these elements only have one Gauss point, a unique value of the local plastic strain was introduced in the non-local equilibrium given in eq. (3.47). This means that only one additional degree of freedom was needed in this case. As seen in section 4.1, under-integrated shell elements use a unique Gauss point in the plane, but several Gauss points in their thickness. For n G Gauss points in the thickness, there will be n G local plastic strain values that require a non-local counterpart. The in-plane regularization is then realized by adding as many non-local degrees of freedom as there are in-thickness Gauss points. Generally, 5 points are used to get a good description of the stress and strain gradients in the thickness. Thus, it is proposed to modify the Q4GR element in the Europlexus code to add 5 more degrees of freedom. The new non-local shell element is referred to as Q4NL (see fig. 4.3).

...

p 2 p 1 d.o.fs u x θ x u y θ y u z θ z       
Thickness integration points ... For each of these additional degrees of freedom, the following steps must be added to the algorithm to compute their evolutions (see flow chart given in fig. 4.4):

p 2 p 1 d.o.fs                                            u x θ x u y θ y u z θ z + p 1
1. In the initialization of the computation (step 0.), the element mass matrix must be modified to add the "masses" of the non-local degrees of freedom. Regarding fig. 4.3, it must be noticed that each non-local degree of freedom is associated to a thickness Gauss points and so to a volume fraction of the total element volume. This fraction is set for each Gauss point by the value of the corresponding weight integration ω i . For each additional degree of freedom i, a mass matrix is then defined as follows: [M nl e ] i = ζ{N e } T .{N e }ω i e 0 2 S 0 (4.10)

where ζ is the non-local "density" defined in eq. (3.43), S 0 is the initial surface and e 0 the initial thickness.

2.

Then, for each time step, and for each element, the non-local forces vectors must be computed (see eq. (3.47)), one for each additional degree of freedom. As only in-plane regularization is considered, this step is referred as 5.a in fig. 4.4. The derivatives of the in-plane shape functions are contained in the matrix [B e ] (see eq. (4.5)). Thus, for each additional degrees of freedom, the following non-local forces vector is computed by taking into account for the volume fraction corresponding to each Gauss points: 

{f nl e } i =     2 [B e ] T .
M] = [Me ], [M nl ] = [M nl e ] Initialization of d.o.f.s: { d} 0 = [M] -1 .{f ext } 0 , { ḋ} 1/2 = { ḋ} 0 + { d} 0 ∆t 0 /2 {p nl } 0 = 0, { ṗnl } 1/2 = 0, {p nl } 0 = 0
For each element:

For each Gauss point in thickness i:

For each Gauss point in thickness i: As the shape functions of shell elements are defined in the plane, the matrix [B e ] enables to compute a 2D gradient. This first modification thus enables to perform an in-plane regularization only, and is similar to the solution proposed by Brunet et al. [START_REF] Brunet | Damage identification for anisotropic sheet-metals using a non-local damage model[END_REF][START_REF] Brunet | Failure analysis of anisotropic sheet-metals using a non-local plastic damage model[END_REF] for metal forming simulations. It means that results will be mesh independent for in-plane loadings (e.g. tension, plane shearing...) for which no gradient in the thickness of the local variable is observed (unlike bending loadings). For bending loadings, which are always encountered in car crash simulations, another treatment is needed to obtain a regularized evolution of plasticity in the thickness.

1. {∆d}n = { ḋ} n-1/2 ∆tn {∆p nl }n = { ṗnl } n-1/

In-thickness regularization

To take into account the in-thickness gradient of the local plastic strain, it is proposed to realize a preliminary regularization in the thickness before the in-plane regularization presented above. To achieve this computation, the "nested wire elements" method is here proposed.

This method proposes to evaluate the variation in the thickness of the non-local variable from its local counterpart by adding a string of wire elements (see fig. 4.5a). These wire elements do not exist in the global computation, i.e. these are only defined for the shell element routine. The number of elements is determined by the number of Gauss points in the thickness. It is chosen so that each Gauss point is framed by two nodes located at equal distance from it. For the five Gauss points configuration, the (6) nodes positions are given in tab. 4.1, and the associated shape functions which are chosen to be linear by part are also given in fig. 4.5b.

... β Every node has only one degree of freedom: a non-local "in-thickness" plastic strain referred to as p th nl . The in-thickness non-local pre-treatment consist in solving the non-local equilibrium (see eq. (3.47)) on the nested wire elements, using their shape functions. The objective is to obtain the non-local in thickness plastic strain at each Gauss points p th nl i from the local values p i at each Gauss point. Following the flow chart given in fig. 4.4, the in-thickness regularization treatment is taken into account in step 5.b. As this is a pre-treatment, it is supposed that the non-local variables in the thickness are delayed by a time step at the beginning of the computation. The non-local pre-treatment in the thickness is achieved with the following steps (see the flow chart given in fig. 4.6):

p 2 p 1 d.o.fs                                            u x θ x u y θ y u z θ z + p 1
N 1 β N 2 β N 3 β N 4 β N 5 β N 6 -1 β G 1 + |β G 1 -1| β G 2 +|β N 2 -β G 2 | β G 4 -|β N 5 -β G 4 | β G 5 -|β N 6 -β G 5 | 1
1. At first, in the initialization step (0.), a set of additional tables must be defined for each shell element to store the wire nodal data: {p th nl }, { ṗth nl } and {p th nl }. Then the mass matrix of the string of wire elements is computed. For each of wire element (and so Gauss point in the shell element thickness) i, the shape functions value are contained in a vector:

{N th e } i = β G i -β N i+1 β N i -β N i+1 ; β G i -β N i β N i+1 -β N i (4.14)
Note that this expression is obtained considering that the i-th Gauss point is framed by the nodes i and i + 1. The corresponding mass matrix of each wire element is:

[M nl e ] th i = ζ{N th e } T i .{N th e } i ω i S 0 e 0 2 (4.15)
The global mass matrix of the string of nested wire elements referred to as [M nl th ] is obtained after assembly of each wire element mass matrix and lumping (as detailed for the 3D elements in eq. (3.51)).

2.

After initialization, at each new time step, the wire nodal data are recovered and the speeds are predicted (see step 2.). Then, for each Gauss point in the thickness, the non-local forces vector is computed (step 3. to 5.). For each Gauss point in the thickness, the shape functions values are computed as described for the mass matrix above (see eq. (4.14)). Also, their derivatives with respect to the global coordinate z are computed in the [B th e ] i matrix. The non-local forces vector associated to the i-th wire element correspond to the two lines i and i + 1 of the global nested wire non-local forces vector. This enables to realize the computation and the assembly operation at once: 

{f nl th } n-1 i,i+1 = {f nl th } n-1 i,i+1

3.

Once the non-local global forces are computed for the string of nested wire elements, the lumped mass matrix is inverted to compute the accelerations (see step 6.). Following the Newmark central differences scheme, the speeds (step 7.) and the non-local plastic strains at nodes are updated (step 8.). The last step consists in the transfer of the nodal values to the Gauss points, using the wire elements shape functions vectors (step 9.).

4.

To finish, as this non-local in thickness treatment follows the central difference scheme, it is conditionally stable. Using the eq. (3.53), and considering the smallest distance between two nodes of the nested wire elements chain, the non-local thickness critical time step is:

∆t th nl = 2 √ 3ζL th 12 2 + L 2 th with L th = |β N 1 -β N 2 |e 2 (4.18)
Note that according to fig. 4.5b the smallest distance is the one between nodes 1 and 2 (or 5 and 6).

After realizing this first regularization in the thickness, the non-local in-thickness plastic strains p nl th i are introduced in the in-plane non-local equilibrium, instead of the local values p i (see step 5.b in fig. 4.4). This way, a 2D + 1D gradient is used to compute the non-local plastic strain, which is more consistent with a 3D case (see below). For each Gauss point in thickness i:

1. Wire nodal data recovery {p th nl } n-1 , { ṗth nl } n-3/2 , {p th nl } n-2 2. Velocity prediction { ṗth nl } pr ed n-1 = { ṗth nl } n-3/2 + {p th nl } n-2 ∆t n-1 2 
3. Computation of the wire shape functions: It is worth noting that using the nested wire solution, the non-local parameters and more particularly the characteristic length are identical and have the same meaning as for the in-plane regularization. After a first regularization along the thickness, the non-local variable in then regularized in the plane in the way described in the previous section.

{N th e } i = β G i -β N i+1 β N i -β N i+1 ; β G i -β N i β N i+1 -β N i 4. Computation wire element B-matrix: [B th e ] i = 2 e(β N i+1 -β N i ) - 1 

Transverse strain compatibility

As mentioned in section 4.1, precision for large membrane strain requires to consider the thickness variation. However, in plane stress computation the transverse strain is an output of the constitutive law. This implies that the thickness variation is computed from a local value (i.e. computed at the Gauss points) that does not verify any compatibility, i.e. ε zz is not expressed as ∂u z /∂z so that continuity is not assured with the values computed in neighboring elements (see fig. 4.7a). An additional instability (similar to damage localization) may thus appear. To enforce the continuity in this computation, it is proposed to introduce the non-local plastic multiplier (see eq. (3.59)) in the expression of the transverse strain increment: 

∆ε zz = - ν 1 -ν (∆ε x x -

Validation of the proposed formulation for shells

To illustrate the performance of the presented non-local formulation extension to shell elements, a set of practical examples are used in this section. At first, the mesh dependency phenomenon, and more specifically the transverse strain instability due to incompatibility, is illustrated on the FN specimen taken from the experimental campaign of chapter 1 (see fig. 

Mesh-dependency

In chapter 3, the FN specimen was used to illustrate mesh dependency using the local constitutive model on 3D continuum elements. It is then proposed to use once again this practical example with shell elements. As a reminder, this specimen is submitted to a tensile loading at a rate equals to 1 m.s -1 . Simulations are carried out on three meshes (see fig. Simulation are performed using the identified parameters for the local constitutive model presented in tab. 1.3. Note that these parameters are identified with a mesh size of L e = 0.2 mm using 3D continuum elements. The obtained damage fields are given in fig. 4.9. The three results on shell meshes are compared to the results obtain with the same local constitutive model and the mixed 3D continuum cube-prisme 0.1 mm regular mesh (already presented in fig. 3.3 and shown here again on the right). It can be observed that the specimen failure does not occur at the same simulation time between the shell results (t = 6.05 ms) and the continuum result (t = 6.9 ms). Also, the crack path is different, showing only two crack initiation spots (see fig. This can be explained by the additional instability introduced by the local transverse strain (see eq. (2.78)). The incompatibility leads to an additional localization phenomenon inducing different results between 2D shell and 3D continuum results. This means that parameters must be re-identified on a 2D shell mesh to use the local constitutive model (i.e. for an industrial application). At best, this identification would only be valid for a constant mesh size and a constant thickness. Indeed, different crack progression are observed between the shell meshes. The finest mesh is fully failed when the other two only show a partial failure. Also, one can notice that the disoriented mesh shows a deviation of the crack path (see fig. 4

.9b).

There is thus a mesh dependence to the mesh orientation and the mesh size. This is confirmed by the load-displacement curves given in fig. 4.10. The three shell meshes give different results, with a significant difference in displacement at failure with the 3D continuum results: the shell results show an earlier fracture of the specimen. 

In-plane regularization

Using the in-plane regularization presented above, and the parameters given in tab. 3.2 that give the mesh convergence for L e ≤ 0.2 mm, simulations are performed on the same FN meshes. The damage fields obtained at t = 6.8 ms for the shell meshes and the 0.1 mm continuum mesh are given in fig. 4.11. This time, all results are almost identical and the shell results all show three crack initiation spots. The crack path is thus in good agreement with both the 3D continuum results and the experimental results. The load-displacement curves given in fig. 4.12 confirm the good agreement between shell and continuum results, and a good agreement with experimental results. The good prediction is then preserved between these two types of elements. This means that damage localization and transverse strain instabilities are then corrected. This also means that using the non-local method, constitutive parameters can be identified either using 3D continuum or 2D shell elements which is an important point for the industrial application. 

In-thickness regularization

To illustrate the good performance of the non-local formulation computation in the thickness introducing the nested wire elements method, a numerical bending test case is used. This test case is only defined here because no bending specimen was tested in the experimental campaign detailed in the chapter 1. Simulation are realized on a shell mesh using the proposed non-local treatment for shell elements. The results are compared with the ones obtained with a 3D continuum mesh for validation.

The numerical test case considers a flat cantilever of dimensions 40 mm×10 mm×1.18 mm that is clamped at one of its end. At the other end, a displacement of δ = -5.0 mm is imposed in the transverse z direction. Three simulations are realized using the parameters given in tab. 3.2. The first one is done with a 3D mesh using non-local CBNL elements. Then two other simulations are realized with shell meshes: a first only using the in-plane regularization (i.e. following step 5.a in fig. 4.4) and the second one using both the in-plane and the in-thickness regularization proposed above (i.e. following step 5.b in fig. 4.4). All meshes are regular and use a constant mesh size equal to L e = 0.2 mm. The non-local plastic strain fields are plotted for each Gauss points in the thickness and compared to the 3D continuum simulation in fig. 4.13. For the shell computations, the five layers are represented. First, it can be observed that the CBNL and Q4NL fields are significantly different if only in-plane regularization is used (see fig. 4.13b). On the same figure, the central plane z = 0, remains entirely white which means that the non-local plastic strain computed in this layer equals to 0 (which is consistent with pure bending). However, the external layers show a much higher value than observed on the 3D continuum case given in fig. 4.13a. Using the non-local in-thickness treatment presented above, the resulting field (see fig. 4.13c) is much closer to the continuum results. This time, the central layer is not white, and the maximal value at the external layers is lower than for the in-plane regularization only. To obtain a more quantitative comparison, the non-local plastic strain profile is plotted along the central length of the flat cantilever, for the external, intermediary and central layer for the three simulations (see fig. 4.14). One can note that in all cases the shell simulations give an overestimated non-local plastic strain at the clamped end. However, the shell simulation that uses the non-local thickness computation gives results that are closer to the continuum simulation results. Especially, the regularization band width is in good agreement with the 3D case. To finish, the profile of the non-local plastic strain in the thickness is plotted at the central length and at several distances from the clamped end of the slat. The results obtained at 1 mm are given in fig. 4.15a. Even if the non-local plastic strain is slightly overestimated at the clamp for the shell simulations, the non-local computation with the in-thickness regularization has considerably improved the results in comparison with the results obtained with the continuum mesh. Then at 3 mm (see fig. 

Conclusion General conclusions

In this thesis work, a numerical strategy was proposed to obtain reliable numerical predictions of ductile fracture for car crash simulations. The approach is based on the use of a coupled damage model associated to a non-local regularization method compatible with the parallelization of computation and with the use of shell elements. This solution was developed in several stages using a "support" material: a DP450 steel sheet.

In the first chapter, a comprehensive experimental study was realized on the DP450 steel. From the results, a set of constitutive equations was chosen from the literature and was assembled to create a constitutive model able to represent the plastic and fracture behavior of the material for different stress triaxialities and loading rates. A Gurson-type coupled damage model was chosen to represent material failure. Due to stress softening, a strong mesh dependency was observed which required identifying the model for a given mesh size and then to use this size systematically for all simulations. With the model identified on a set of specimens, the simulation of the rest of the experimental database turned out to be in very good agreement with the experimental results.

This model was implemented in two codes, as described in chapter 2: on the one hand, the Z-set implicit solver for the identification of the model based on quasi-static and dynamic tests, and on the other hand, the Europlexus explicit dynamic code which serves as a demonstrator. This was respectively done following the backward-Euler implicit scheme and the NICE explicit scheme. The implicit scheme, despite its hard implementation and costly computation (matrix inversion, iterative procedure) offers a very good and stable precision. The NICE explicit scheme avoids the iterative return mapping and is thus computationally faster. Besides, its implementation is easier and only requires the computation of a few derivatives. However, it implies to use small times steps to remain stable and convergence is never checked. To ensure the validity of the results despite this, comparisons were made with a reference that was chosen to be the implicit backward-Euler scheme used in the Z-set solver. Several benchmarks on single elements have confirmed the good implementation of the constitutive model following the explicit scheme, and its applicability to Reissner-Mindlin shell elements.

To solve the mesh dependency issue, a non-local method was implemented in the Europlexus code to regularize the constitutive model. This was based on the computation of a non-local plastic strain considering its gradient on neighboring elements. Two approaches were considered: the implicit second gradient model and the micromorphic model. In both cases, the non-local variable is introduced in the computation as an additional degree of freedom which enables to compute its gradient using the derivatives of the shape functions. This is particularly interesting as it enables to preserve parallel computing. The main difference between the two formulation was in the introduction of the non-local variable in the constitutive model. The two methods were implemented by modifying under-integrated linear continuum elements of the Europlexus code in the third chapter. A critical comparison on practical examples has shown that the implicit second gradient method leads to a more robust regularization and an easier identification procedure. This method is believed to be the best solution for this work and the simulation of the experimental database has provided mesh-independent results in good agreement with the experimental results. However, some limitations have been highlighted. For problems where the size of the highly deformed area is comparable to 112 CONCLUSION the non-local internal length or smaller, the ductility can be overestimated due to a too strong regularization. Also, element erosion is not fully compatible with the non-local regularization, generating a strong instability in the non-local variable field when failed elements are removed. A solution was proposed to fix this issue by keeping the element in the computation after failure for the non-local part of the computation only.

Finally, as car crash simulations mainly use shell elements to represent the metal sheets, the non-local implicit second gradient method was extended to this type of element. Reissner-Mindlin shell elements have shape functions defined in only two dimensions. This means that these elements can only compute a 2D gradient which is sufficient to regularize the solution when only plane loadings (tension, shearing in the plane) are simulated. This is not sufficient for the non-local variable computation under bending conditions for which the thickness gradient has a strong influence. To fix this issue, the nested wire element method was introduced. The missing dimension to the gradient is added by evaluating the non-local variable evolution in the thickness thanks to a chain of wire elements. The 2D+1D gradient has enabled to obtain non-local results that are very close to those simulated with the 3D continuum non-local elements in bending conditions. Also, another instability due to transverse strain incompatibility between adjacent elements was corrected using the non-local variable to estimate the thickness variation. This now implies that parameters are consistent between the shell and the continuum simulations and can be identified using both element types.

Outlook and industrial application

To ensure a good integration of the proposed numerical solutions in the automotive industry, several numerical challenges must still be faced.

At first, as already mentioned, when using the implicit non-local gradient method, the element erosion is partially compromised. When the element is "fully" eroded, it is removed from the computation. This helps to avoid several numerical issues such as crossed elements. Also the element is not any more considered in the contact treatment (particularly important for car crash simulations). When one element fails, the internal mechanical forces are null which implies that the mechanical equilibrium is stabilized and the displacements evolution stops. However, at the same moment, the non-local equilibrium is not necessarily stabilized. If the element is eroded, the non-local field might be submitted to a strong instability. This instability leads to an overestimated set of broken elements during cracking. For the thesis work, this issue was addressed by keeping the failed element in the simulation but only for the computation of the non-local degrees of freedom. A first challenge would thus be to find a more robust solution model a discrete crack with the non-local regularization.

Another challenge to be faced is the validation of this numerical method on larger problems, closer to car crash simulations. To do so, a representative impact test is designed, inspired by the work of Pickett et al. [START_REF] Pickett | Failure prediction for advanced crashworthiness of transportation vehicles[END_REF] and Pack et al. [START_REF] Pack | Combined necking & fracture model to predict ductile failure with shell finite elements[END_REF]. A specimen was then defined to be tested with a three point bending benchtop tester. This specimen is a "hat assembly", see the technical draft is given in fig. 4.16. The hat section is closed by a back plate which is welded at numerous spots to be sure that failure will not occur at the spot-welds. A very thin notch (0.5 mm width) was then machined through the hat assembly (hat section and back plate). This notch is slightly shifted from the middle of the assembly length. The obtained geometry is then referred to as "starter crack" hat assembly.

The starter crack hat assembly is then tested using a benchtop tester. To do so, the specimen lies on two rollers of radius r = 20 mm. The centers of these rollers are spaced from each other by 320 mm. The specimen position is centred with respect to the middle of its length. The impactor has a mass of m = 141 kg, and has the same radius as the two rollers (r = 20 mm). The force sensor is located under the rollers. The displacement of the impactor is measured using a laser. The offset of the displacement is set at the contact with the hat assembly. Due to safety reasons, two absorbers are used to stop the impactor after a displacement of 80 mm. Two impact velocities are tested, 2.0 m.s -1 and 2.5 m.s -1 , so that different levels of energy, respectively 282 J and 440 J, are transmitted to the hat assembly and different crack lengths are obtained.

All tests were repeated three times. The results obtained for both velocities are given in fig. 4.17 and show a good repeatability. For the reaction force -impactor displacement curve, a Savitzky-Golay filtering is used to obtain a representative average curve.

Results obtained at the impact velocity of 2.0 m.s -1 given in fig. 4.17a show a crack length of almost 15 mm. Regarding the reaction force -impactor displacement curve, the maximum level of reaction force is around 10 kN. The input energy appears to be fully dissipated as the impactor is stopped before the maximal allowed displacement. One can also notice an elastic springback at the end of the curve.

Results obtained at the impact velocity of 2.5 m.s -1 given in fig. 4.17b show a much larger crack length of 35 mm. The reaction force -impactor displacement curve indicates that the input energy is not completely dissipated in this case since the maximal impactor displacement (80 mm) is reached without having reached a zero reaction force. The level of reaction force appears to be comparable to the one obtained with the impact velocity of 2.0 m.s -1 .

To validate the numerical approach developed in this thesis, it is proposed to simulate the presented tests and to check whether if it is possible to obtain both a good agreement with the experimental results (crack length, reaction force curves) and mesh independent results. As the problem is much larger that the tests on tensile specimens presented in this thesis, larger mesh sizes are considered which is consistent with the industrial application. Note that this implies an adaptation of the damage model parameters.

A numerical model is set using quadrangle shell elements. The impactor and the rollers are modelled using rigid bodies. The spot welds are supposed to be perfect and are modelled by tied contacts. The penalty contact method is used for the entire problem as commonly done in the automotive industrial simulations. The reaction force is measured as the resultant force applied on the nodes of the boundary conditions. This finite element models is illustrated in fig. 4.18. Several simulations were realized using different mesh sizes for the hat assemblies from 1 mm to 0.7 mm, and also different mesh orientations. These simulations were realized using the local and the non-local models to better illustrate the mesh-independence. Unfortunately, several numerical issues were encountered: significant level of hourglass energy (> 20%) and contact interpenetration in the impact area. Note that these issues are not related to the non-local regularization or the constitutive model. These issues could not be corrected before the end of this thesis. However, one numerical result obtained with a mesh size of L e = 0.7 mm with the local constitutive model with an impact velocity of 2.5 m.s -1 has shown encouraging results with a very few interpenetration and an acceptable level of hourglass energy (see fig. 4.19). The crack length and the reaction force -impactor displacement simulated curve appear to be in good agreement with the experimental results. Thus, for further work, these simulations should be carried out again using a better hourglass treatment and a revised contact treatment. 

Résumé

Dans cette thèse, une méthode numérique de prédiction de fissure dans les simulations élément-finis dynamiques explicites a été développée. Celle-ci se base sur l'utilisation de modèles d'endommagement couplés, i.e. générant un adoucissement des contraintes, associé à une méthode de régularisation non-locale.

Cette approche a été développée puis appliquée sur un matériau support: les tôles d'acier DP450. Des essais expérimentaux ont été réalisés afin de créer un modèle de comportement incluant un modèle d'endommagement couplé de type Gurson. Ce type de modèle complexes permet de tenir compte des effets de la triaxialité et de l'angle de Lode, permettant d'obtenir une localisation plus précise de la déformation et donc une meilleure prédiction de la rupture et du chemin de fissure. Ce modèle a été implémenté et identifié dans les codes implicites Z-set et explicites Europlexus. Par la suite, une méthode de régularisation non-locale de type second gradient a été rajoutée dans Europlexus, se basant sur un calcul d'une déformation plastique non-locale tenant compte de son gradient sur les éléments voisins. Cette variable non-locale est introduite comme un degré de liberté supplémentaire ce qui permet notamment de conserver la parallélisation du code de calcul. L'approche ainsi proposée a été validée par simulation de résultats expérimentaux obtenus sur éprouvettes à différentes vitesses de chargement et pour différentes triaxialités des contraintes. Afin de garantir une parfaite intégration de cette méthode dans les processus de conception industriel, quelques éléments restent à étudier. Tout d'abord, la compatibilité de l'érosion des éléments avec la méthode non-local à second gradient doit être améliorée. Par la suite, cette méthode devrait être validée sur des structures de plus large échelle, et sur des cas de chargement plus représentatifs du crash automobile. Pour ce faire, des essais d'impact en flexion trois points ont été réalisé sur une géométrie de longeron pré-entaillée spécialement conçue pour cette thèse. Les premières simulations réalisées ont malheureusement présenté quelques défauts numériques (forte énergie d'hourglass, problème de contact) qui ne sont cependant pas liés aux développements proposés dans cette thèse. A l'avenir, celles-ci devront être révisées afin de poursuivre cette validation.

A A P P E N D I X

Complements to the numerical implementation of the constitutive model

In the implicit implementation of the constitutive model presented in chapter 2, a system of residual functions is defined. These residuals must be nullify to realize the plastic correction. This requires the filling of a Jacobian matrix, by differentiating each residual by each internal variable of the system.

A.1 Derivatives of elastic strain tensor residual

The derivatives with respect to the elastic strain tensor residue are given below:

∂R el ∂ εe = Ī + (1 -f t )∆p V : C (A.1)
with the second normal to the flow potential Φ defined in eq. (2.8) computed with:

V = ∂ ῡ ∂ σ = ∂φ ∂σ -2 ∂ 2 φ ∂ σ∂σ ⊗ n - ∂φ ∂σ -1 ∂ n ∂ σ (A.2)
A first derivative is given in eq. (2.16). The remaining ones are given below:

∂ 2 φ ∂ σ∂σ = - 4σ σ 3 nD - q 1 q 2 f * σ 2 sinh
q 2 Tr( σ) 2σ Īq 1 q 2 2 f * 2σ 3 Tr( σ)cosh q 2 Tr( σ) 2σ

Ī (A.3)
The second normal to the GTN yield criterion is obtain by:

∂ n ∂ σ = 2 σ 2 nD ⊗ nD + σ ∂ nD ∂ σ + q 1 q 2 2 f * 2σ 2 cosh q 2 Tr( σ) 2σ Ī ⊗ Ī (A.4)
And the second normal to the Drucker yield criterion (see eq. (1.59)) that reads: 

∂ nD ∂ σ = 1 6 1 27 -c 4 27 2 -1 6 - 5 6 (J 3 2 -cJ 2 3 ) -11 6 9J 4 2 s ⊗ s -6cJ 3 J 2 2 s ⊗ ∂J 3 ∂ σ + ∂J 3 ∂ σ ⊗ s +4c 2 J 2 3 ∂J 3 ∂ σ ⊗ ∂J 3 ∂ σ + (J 3 2 -cJ 2 3 ) -5 6 6J 2 s ⊗ s + 3J 2 2 ∂ s ∂ σ -2c ∂J 3 ∂ σ ⊗ ∂J 3 ∂ σ -2cJ 3 ∂ 2 J 3 ∂ σ2 (A.5) With: ∂ s ∂ σ = Ī - 1 3 Ī ⊗ Ī, ∂ 2 J 3 ∂ σ2 = s ⊗ Ī + Ī ⊗ s - 2 3 s ⊗ Ī - 2 

A.2 Derivatives of plastic strain residual

The derivatives related to the cumulated plastic strain residual are: 

∂R p ∂ Φ = - ε0 ∆t R(p)(1 -µ(T -T r ef ))C exp Φ R(p)(1 -µ(T -T r ef ))C (A.

A.5 Derivatives of shear damage residual

The derivatives with respect to the shear damage variable f sh residual are given below: 

∂R f sh ∂w = -k w f t (1 -f t )

B.2 Stability condition for the non-local problem

In this appendix, the numerical stability analysis of the non-local equilibrium equation is studied. To find the expression of the non-local eigenfrequencies, the undamped (i.e. γ = 0) homogeneous form of equation is considered (i.e. p = 0): The stability condition on time step (see eq. (B.4)) can be rewritten using the equation above. The following "non-local" critical time step is obtained: 

∆t nl = 2 ω max = 2L e √ 3ζ
     u x u y u z CUBE N 1 = 1 8 (1 -ξ)(1 -η)(1 -β) N 2 = 1 8 (1 + ξ)(1 -η)(1 -β) N 3 = 1 8 (1 -ξ)(1 + η)(1 -β) N 4 = 1 8 (1 + ξ)(1 + η)(1 -β) N 5 = 1 8 (1 -ξ)(1 -η)(1 + β) N 6 = 1 8 (1 + ξ)(1 -η)(1 + β) N 7 = 1 8 (1 -ξ)(1 + η)(1 + β) N 8 = 1 8 (1 + ξ)(1 + η)(1 + β) (ξ G , η G , β G ) = (0, 0, 0)
     u x u y u z ξ η β PRIS N 1 = 1-β 2 (1 -ξ -η) N 2 = 1-β 2 ξ N 3 = 1-β 2 η N 4 = 1+β 2 (1 -ξ -η) N 5 = 1+β 2 ξ N 6 = 1+β 2 η (ξ G , η G , β G ) = (1/3, 1/3, 0)
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  Drucker c = 2.25 von Mises c = 0 Drucker c = -27/8 (b) Drucker criterion
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 11 Figure 1.1: Illustration of isotropic yield criteria.
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 510 Roth and Mohr [25] weight function.
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 12 Figure 1.2: Illustration of strain-rate effects.

  Damaged volume.

Figure 1 . 3 :

 13 Figure 1.3: Representative Elementary Volume (RVE) considered by continuum damage models.
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 14 Figure 1.4: Representative Elementary Volume (RVE) considered by micromechanical damage models.
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 15 Figure 1.5: Microstructure of DP450 steel after nital etching.

  1.6c), NT2 (fig. 1.6d), V45 (fig. 1.6e), Central hole (fig. 1.6f) and FN (fig. 1.6i
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 16201 Figure 1.6: Specimens used in the experimental campaign (measurement points are marked with •). Specific dimensions used at high rates are outlined in red.
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 17 Figure 1.7: Experimental setups and measure devices for quasi-static and dynamic tensile tests.

Figure 1 . 8 :

 18 Figure 1.8: Illustration of shadow tracking measure on NT1 specimen.

  Stress-strain curves for 3 directions.

  True longi. strain -True trans. strain Direction 0 o L Direction 45 o D Direction 90 o T (b) Longi. strain -trans. strain curves for 3 direc-

  Variation in plane of Lankford coef.

Figure 1 . 9 :

 19 Figure 1.9: Results obtained with quasi-static tensile test on standard flat specimen (ε = 0.001 s -1 ) along several directions in the plane to evaluate anisotropy.

  u = 0.009 mm.s -1 u = 0.09 mm.s -1 u = 8.33 mm.s -1 u = 1.0 m.s -1 Viscosity Self-heating (a) Load-displacement curves for FN specimen.

  Infrared picture for FN specimen ( u = 8.33 mm.s -1 ).

Figure 1 . 10 :

 110 Figure 1.10: Results obtained on FN specimen at several loading rates.

  Eng. stress [MPa] Average L -T -Temp. 20 o C Average L -T -Temp. 100 o C (a) Stress-strain curves at different temperatures for standard flat specimen.

  T -Temp. 20 o C L -Temp. 100 o C (c) CCP results at different temperatures.

Figure 1 . 11 :

 111 Figure 1.11: Effects of sole temperature on the material behavior.

  Notched specimens ( u = 0.002 mm.s -1 ).

  Shear specimen ( u = 0.003 mm.s -1 ).

Figure 1 . 12 :

 112 Figure 1.12: Results obtained with quasi-static tests on notched and shear specimens.

  Profile of the necking area.

Figure 1 . 13 :

 113 Figure 1.13: Scanning Electron Microscope pictures of a fractured NT1 specimen.

  Identified hardening law (ε = 0.001 s -1 ).

  Identified plastic yield criterion.

Figure 1 . 14 :

 114 Figure 1.14: Identification of plasticity model.

  1.15a) leads to C = 0.0236. The stress-strain curves obtained with this parameter are in good agreement with experimental results (see fig. 1.15b). Thus, in this case the Johnson-Cook model is considered as satisfactory.

Figure 1 . 15 :

 115 Figure 1.15: Identification of the strain rate dependence model: comparison with test results.

  Eng. stress [MPa] Average (L) -(T) -Temp. 20 o C Identified model -Temp. 20 o C Average (L) -(T) -Temp. 100 o C Identified model -Temp. 100 o C (a) Identification of the thermal softening part of the model on standard flat specimens Exp. u = 1.0 m.s -1 Sim. u = 1.0 m.s -1 Exp. u = 8.33 mm.s -1 Sim. u = 8.33 mm.s -1 Exp. u = 0.083 mm.s -1 Sim. u = 0.083 mm.s -1 (b) Identification of the self-heating part of the model on large flat specimens.

Figure 1 . 16 :

 116 Figure 1.16: Identification of the self-heating and thermal softening part of the model.

  N&H Identified model with N&H (a) NT1 specimen ( u = 0.002 mm.s -1 ). average L -T Identified model without N&H Identified model with N&H (b) M-shape specimen ( u = 0.003 mm.s -1 ).

Figure 1 . 17 :

 117 Figure 1.17: Damage model identification results obtained with Z-opt with a mesh size of L e = 0.2 mm.

  -1 (see respectively fig. 1.20e and fig. 1.20h). One can notice that the corresponding load-displacement curves given in fig. 1.20c and fig. 1.20f are also well reproduced.

  Std. flat longi. curve (ε = 0.001 s -1 ). Std. flat trans. curve (ε = 0.001 s -1 ). NT1 longi. curve ( u = 0.002 m.s -1 ). NT1 trans. curve ( u = 0.002 m.s -1 ). NT1 damage field.

6 4 6

 4 Notch opening ∆L [mm] Load [kN]Experiments Simulation (g) NT2 longi. curve ( u = 0.002 m.s -1 ). 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0 2 Eng. transverse strain ε eng tr ansLoad [kN]Experiments Simulation (h) NT2 trans. curve ( u = 0.002 m.s -1 ). NT2 damage field.
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 118 Figure 1.18: Comparison between simulation and quasi-static tensile tests -part I.

3

  Relative displacement ∆L [mm] Load [kN]Experiments Simulation (g) M-shape longi. curve ( u = 0.003 m.s -1 ).

  M-shape damage field.

Figure 1 . 19 :

 119 Figure 1.19: Comparison between simulation and quasi-static tensile tests -part II.

  Relative diplacement ∆L [mm] Load [kN]Experiments Simulation (a) CCP longitunal curve ( u = 0.004 m.s -1 ).

  CCP damage field.

  FN longi. curve ( u = 0.009 m.s -1 ). (d) FN final state ( u = 0.009 m.s -1 ).(e) FN damage field ( u = 0.009 m.s -1 ).

  FN longi. curve ( u = 0.09 m.s -1 ). (g) FN final state ( u = 0.09 m.s -1 ).(h) FN damage field ( u = 0.09 m.s -1 ).
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 120 Figure 1.20: Comparison between simulation and quasi-static tensile tests -part III.

88153

  Eng. stress [MPa] Exp. ṗ = 176.2 s -1 Sim. ṗ = 176.2 s -1 Exp. ṗ = 27.3 s -1 Sim. ṗ = 27.3 s -1 Exp. ṗ = 0.339 s -1 Sim. ṗ = 0.339 s -1 Exp. ṗ = 0.00361 s -1 Sim. ṗ = 0.00361 s -1 (a) Dynamic stress-strain curves. Notch opening ∆L [mm] Load [kN] Exp. u = 3.0 m.s -1 Sim. u = 3.0 m.s -1 Exp. u = 1.0 m.s -1 Sim. u = 1.0 m.s -1 Exp. quasi-static Sim. quasi-static (b) NT1 dynamic longitudinal curves. Notch opening ∆L [mm] Load [kN] Exp. u = 3.0 m.s -1 Sim. u = 3.0 m.s -1 Exp. quasi-static Sim. quasi-static (c) V45 dynamic longitudinal curves. Relative displacement ∆L [mm] Load [kN] Exp. u = 7.0 m.s -1 Sim. u = 7.0 m.s -1 Exp. u = 1.0 m.s -1 Sim. u = 1.0 m.s -1 (d) CCP dyna. longitudinal curves.Relative displacement ∆L [mm] Load [kN]Exp. u = 3.0 m.s -1 Sim. u = 3.0 m.s -1 Exp. quasi-static Sim. quasi-static (e) M-shape dynamic longitudinal curves.

  Exp. u = 1.0 m.s -1 Sim. u = 1.0 m.s -1 Exp. u = 8.33 mm.s -1Sim. u = 8.33 mm.s -1 Exp. quasi-static Sim. quasi-static (f) FN dynamic longitudinal curves.
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 121 Figure 1.21: Comparison between simulation and dynamic tensile tests.

1 Figure 1 . 22 :

 1122 Figure 1.22: Comparison between experimental and simulated temperature fields on Large flat specimen.

  (2.55), the yield function increment can be expressed as a function of the sole plastic multiplier ∆λ: ∆φ = ∆λ -n : C : n + ∂φ pr ed

  Plastic strain-rate field. (b) Filtered plastic strain-rate field.

Figure 2 . 1 :

 21 Figure 2.1: Illustration of the plastic strain-rate filtering used in the Europlexus implementation of the constitutive model on the FN specimen.
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 54222 Figure 2.2: Loading cases on solid elements used to validate the numerical implementation of the constitutive model.
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 26 Figure 2.6: Loading cases on shell elements use to validate the numerical implementation of the constitutive model.

Figure 2 . 3 :Figure 2 . 4 :

 2324 Figure 2.3: Comparison of numerical results obtained on a single element simulation under uniaxial tensile loading with Z-set and Europlexus finite element softwares.
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 2527 Figure 2.5: Comparison of numerical results obtained on a single element simulation under simple shear loading with Z-set and Europlexus finite element softwares.

e L 1 eFigure 3 . 1 :

 131 Figure 3.1: Crack band method principle.

  Regular -Le = 0.2 mm.

  Disoriented -Le = 0.15 mm. (c) Regular -Le = 0.1 mm. 24 mm (d) Regular -Le = 0.2 mm.50 o (e) Disoriented -Le = 0.15 mm. (f) Regular -Le = 0.1 mm.
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 32 Figure 3.2: Meshes of FN specimen (top) and V45 specimen (bottom) used to illustrate mesh dependency.

3Figure 3 . 3 :

 33 Figure 3.3: Damage fields obtained on FN specimen (1.0 m.s -1 at t = 6.9 ms) and V45 specimen (3.0 m.s -1 and t = 0.91 ms) with the local constitutive model (i.e. without regularization).

Figure 3 . 4 :

 34 Figure 3.4: Load-displacement curves obtained with different meshes on FN and V45 specimens illustrating the mesh dependency.

/ 2 ∆tFigure 3 . 5 :

 235 Figure 3.5: Global algorithm used for non-local dynamic explicit simulations. Nodal data are in red and Gauss points data in blue. ( : using under-integrated continuum elements, internal forces are computed using stresses at the single Gauss point and the element volume (V e ).)

Figure 3 . 6 :

 36 Figure 3.6: Non-local modified under-integrated elements.

Figure 3 . 7 :

 37 Figure 3.7: Damage fields obtained on FN specimen (1.0 m.s -1 and t = 6.95 ms) and V45 specimen (3.0 m.s -1 and t = 1.03 ms) with the non-local implicit second gradient approach.

  regular (b) V45 specimen.

Figure 3 . 8 :

 38 Figure 3.8: Load-displacement curves obtained with different meshes on FN and V45 specimens with the non-local implicit second gradient approach.

Figure 3 . 9 :

 39 Figure 3.9: Damage fields obtained on FN specimen (1.0 m.s -1 and t = 6.90 ms) and V45 specimen (3.0 m.s -1 and t = 0.87 ms) with the non-local micromorphic approach.

  regular (b) V45 specimen.

Figure 3 . 10 :

 310 Figure 3.10: Load-displacement curves obtained with different meshes on FN and V45 specimens with the non-local micromorphic approach.

  Lg. flat -Le = 0.2 mm. (b) Lg. flat -Le = 0.15 mm. (c) Lg. flat -Le = 0.1 mm. 20 mm (d) NT1 -Le = 0.2 mm. (e) NT1 -Le = 0.15 mm. (f) NT1 -Le = 0.1 mm. 20 mm (g) CCP -Le = 0.2 mm. (h) CCP -Le = 0.15 mm. (i) CCP -Le = 0.1 mm.

Figure 3 . 11 :

 311 Figure 3.11: Damage fields obtained on Large flat, NT1 and CCP specimen with the non-local constitutive model using the implicit second gradient approach.

Figure 3 . 12 :

 312 Figure 3.12: Damage fields obtained on M-shape specimen at the same simulation time t = 1.0 ms with the non-local constitutive model using the implicit second gradient approach.

Figure 3 . 13 :

 313 Figure 3.13: Load-displacement obtained with the non-local constitutive model using the implicit second gradient approach on several specimens.

. 14 .

 14 With full erosion (see fig. 3.14a), the eroded area is larger and four crack initiation spots are observed at the edges of the specimen. Using partial erosion (see fig. 3.14b), the eroded area is narrower and only two crack initiation spots at the edges are observed. (a) Full erosion (b) Partial erosion

Figure 3 . 14 :

 314 Figure 3.14: Illustration of the erosion issue due to the use of the non-local method on the FN specimen.

  Rotation around vector x

Figure 4 . 1 :

 41 Figure 4.1: Shell element kinematics based on Reissner-Mindlin plate theory.

  4.2b). Note that they are not equally distributed along the thickness. Gauss points position and weight

Figure 4 . 2 :

 42 Figure 4.2: Thickness integration used by shell elements.

Figure 4 . 3 :

 43 Figure 4.3: In-plane regularization in Q4NL element.
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 2782244 Figure 4.4: Global algorithm used for non-local dynamic explicit simulations using under-integrated shell elements. Nodal data are in red and Gauss points data in blue.

  Shape functions of the "thickness" wire elements.

Figure 4 . 5 :

 45 Figure 4.5: Nested wire elements principle for in-thickness regularization.

0.

  First time step [M nl e ] th Initialization of d.o.f.s: {p th nl } -2 = 0, { ṗth nl } -1/2 = 0, {p th nl } -1 = 0

Figure 4 . 6 :

 46 Figure 4.6: Algorithm of the "in-thickness non-local computation" presented in the 5.b step in fig. 4.4.

( a )Figure 4 . 7 :

 a47 Figure 4.7: Introduction of the thickness strain compatibility with the non-local method.

  1.6i). The result of the in-plane regularization only is then presented for the same specimen (step 5.a in fig.4.4). Finally, a bending test case is considered to evaluate, by comparison with the results of a 3D continuum non-local formulation, the performance of the in-thickness non-local treatment (step 5.b in fig.4.4).

  4.8). These meshes are mixed, i.e. they are composed of quadrangles and triangles. The first one corresponds to a mesh size of L e = 0.2 mm and is regular. The second is voluntary disoriented with an angle of 30 o and corresponds to a smaller mesh size of L e = 0.15 mm. A third very fine mesh is used, with a regular mesh size of L e = 0.1 mm. (b) Disoriented -Le = 0.15 mm (c) Regular -Le = 0.1 mm

Figure 4 . 8 :

 48 Figure 4.8: FN meshes using to illustrate the mesh dependency.

  4.9c) whereas three are expected numerically (see fig. 4.9d) and have been observed experimentally.

Figure 4 . 9 :

 49 Figure 4.9: Damage fields obtained on the FN meshes at t = 6.05 ms for the shell elements (a,b,c) and t = 6.9 ms for the continuum element (d) with the local constitutive model (i.e. without regularization)

Figure 4 . 10 :

 410 Figure 4.10: Load-displacement curves obtained on the FN meshes with the local constitutive model (i.e. without regularization)

Figure 4 . 11 :

 411 Figure 4.11: Damage fields obtained on the FN shell meshes at t = 6.8 ms with the non-local constitutive model.

Figure 4 . 12 :

 412 Figure 4.12: Load-displacement curves obtained with different shell meshes on FN specimen with the non-local constitutive model.

Figure 4 . 13 :

 413 Figure 4.13: Non-local plastic strain fields obtained on the continuum and shell meshes of the flat cantilever after a displacement of δ = -5.0 mm.

Figure 4 . 14 :

 414 Figure 4.14: Non-local plastic strain profile along the flat cantilever length for the external, intermediary and central layer.

  4.15b) and 5 mm (see fig. 4.15c) from the clamped ended, the shell results obtained with the non-local computation in the thickness are superimposed with the continuum results.
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Figure 4 . 15 :

 415 Figure 4.15: Non-local plastic strain profile at the central length along the flat cantilever thickness for several distance from the clamping.

Figure 4 . 16 :

 416 Figure 4.16: Technical draft of the three point bending "starter crack" hat assembly. The measures are given in millimeters. The spot welds are marked with blue squares .

  mm] Reaction force [kN] Exp. V0 = 2.5 m.s -1 Filtered average (b) Impact velocity 2.5 m.s -1

Figure 4 . 17 :

 417 Figure 4.17: Experimental results of the three point bending tests realized on the starter crack hat assembly at two impact velocities.

Figure 4 . 18 :

 418 Figure 4.18: Numerical simulation of the three points bending test on the starter-crack hat assembly.

  (a) Experiment V0 = 2.5 m.s -1 Reaction forces at the rollers -displacement of the impactor curves. (c) Simulation V0 = 2.5 m.s -1

Figure 4 . 19 :

 419 Figure 4.19: Comparison between experimental results and simulation of the three points bending test for a mesh size of L e = 0.7 mm and an initial velocity of V 0 = 2.5 m.s -1 .

Figure B. 1 :

 1 Figure B.1: Sketches of the various test specimens. Blue dots correspond to virtual extensometers defined for DIC measurements.

2 =⇒ 3 /3 and ξ = √ 3 / 3 . 8 ) 11 )B. 2 .

 23338112 Ωe ζ({N e } T .{N e }).{p nl } dV + Ωe 2 [B e ] T .[B e ] + {N e } T .{N e } .{p nl } dV = 0 (B.1) 121 122 APPENDIX B. COMPLEMENTS TO DAMAGE REGULARIZATION IN CONTINUUM ELEMENTS The equation above can be rewritten in matrix form as follows: [M nl e ].{p nl } + [K nl e ].{p nl } = Ωe ζ{N e } T .{N e }dV and [K nl e ] = Ωe 2 [B e ] T .[B e ] + {N e } T .{N e } dV (B.3)Using the Newmark central differences scheme to solve this equation imposes to respect a stability condition on time step:∆t ≤ 2 ω max (B.4)where ω max is the highest eigenfrequency that can be found by solving the following characteristic equation:det [K nl e ]ω 2 n [M nl e ] = 0 (B.5)with notation ω n designating the eigenfrequencies.The stability is then studied on a 1D linear wire element with two nodes located at the global coordinates x = 0 and x = L e . The section of the wire is referred to as A e . The corresponding reference element expressed with the local coordinate ξ is shown in fig. B.2. Its two nodes are located in ξ = -1 and ξ = 1, giving the following transformation between the global and local coordinates:{N e } = {N -1 N 1 } (B.7)To compute the mass matrix, these shape functions are computed at the two Gauss points which are located in ξ = -√ Their integration weights are both equal to one. The non-local mass matrix [M nl e ] is then computed and lumped a follows:The matrix [B e ] contains the derivatives of the shape functions with respect to the global coordinate:The characteristic equation (see eq. (B.5)) can be developed and the maximal eigenfrequency can be found by solving: STABILITY CONDITION FOR THE NON-LOCAL PROBLEM 123 By variable changing X = ω 2 n , this equation corresponds to a classical second order equation and the maximal solution is obtained for:

12 2 + L 2 e(Figure B. 2 :

 22 Figure B.2: Referential wire element used for stability analysis. Nodes are in red, and Gauss points in blue.

N 1 =B. 4 [

 14 (1ξηβ) N 2 = ξ N 3 = η N 4 = β (ξ G , η G , β G ) = (1/4, 1/4, 1/4) B.4. [B e ]AND [G e ] MATRICES FOR NON-LOCAL PLASTIC STRAIN AND STRAIN TENSOR COMPUTATIONS 125 B e ] and [G e ] matrices for non-local plastic strain and strain tensor computations

(B. 18 )

 18 This matrix is computed at the central Gauss point. All the displacement along the same axis i are contained in the vectors {u i } of size equal to the number of nodes. The notations [B e ] 1,: , [B e ] 2,: , [B e ] 3,: refer respectively to the first, second and third B-matrix lines and so to the derivatives with respect to x , y and z. The strain tensor at the central Gauss point can thus be computed, introducing the [G e ] matrix thanks to the following formula: e ] 3,: [B e ] 2,: [B e ] 1,: {0} {0} [B e ] 3,: [B e ] 2,: [B e ] 3,: {0} [B e ] 1,:

  

Table 1 .1: Nominal chemical composition (weight %)

 1 

Table 1 .2: Table summarizing the number of tests per configuration realized in the experimental campaign at room temperature of 20 • C. Tests also performed at 100 • C are marked with a red dot •. Those used for the plasticity constitutive model identification are marked with a yellow star , and those for the damage constitutive model are marked with a blue star . Tests realized on standard flat specimen to study anisotropy are not included.

 1 

Table 1 .3: Identified parameters for a fixed mesh size of

 1 

L e = 0.2 mm. 1.2.6.2 Quasi-static tests Quasi-static simulations at room temperature are first presented and results are shown in fig. 1.18 (standard flat, NT1, NT2), fig. 1.19 (V45, Central hole, M-shape) and fig. 1.20 (CCP, FN). An overall good prediction is observed for all specimens. Experimental scatter is represented by the filled area; this scatter corresponds to both material anisotropy and actual scatter (which is very limited). Experimental macroscopic transverse strains curves obtained by shadow tracking (see fig. 1.8) are also compared in fig. 1.18b, fig. 1.18e, fig. 1.18h, fig. 1.19b, fig. 1.19e.

Comparison of numerical results obtained on a solid continuum under-integrated element (CUBE) and a shell under-integrated element (Q4GR) under biaxial tensile loading with the Europlexus finite element software.

  

	2.4. BENCHMARK TESTS ON SINGLE ELEMENTS		59
	Stress σ xy [MPa]	100 200 300 400 500	Stress σ xx (σ y y ) [MPa]	200 400 600 800	Plastic strain p Epx. Solid Epx. Shell Epx. solid Epx. shell	0.2 0.4 0.6 0.8 1	Plastic strain p	0.2 0.4 0.6 0.8 1 Europlexus Epx. solid Epx. shell Z-set
	Damages f g ,f n ,f sh Plastic strain-rate ṗ [s -1 ] 0 0.00 0.00 0.05 0.10 0.15 0.20 0.00 0 5 10 15 20 25 Figure 2.8: 0 Damages f g ,f n ,f sh Plastic strain-rate ṗ [s -1 ] Figure 2.9:	0 0 0 0 0.00 0.05 0.10 0.15 0.20 0 5 10 15 20 1.00 1.00	0.1 0.02 0.02 Strain ε xx (ε y y ) 0.2 0.3 0.4 (a) 0.04 0.06 Time [s] fg Epx. solid fg Epx. shell 0.5 fn Epx. solid fn Epx. shell fsh Epx. solid fsh Epx. shell (c) 0.04 0.06 Time [s] Epx. solid Epx. shell (e) 1 1.5 Strain ε xy (a) 2.00 3.00 4.00 5.00 •10 -2 Time [s] fg Epx. solid 0.5 fg Epx. shell fn Epx. solid fn Epx. shell fsh Epx. solid fsh Epx. shell (c) Total damage f t 2.00 3.00 4.00 5.00 •10 -2 Time [s] Epx. solid Epx. shell (e) Temperature T [ • C]	Total damage f t Temperature T [ • C] 0.00 0 0.00 0.00 0.05 0.10 0.15 0.20 0.00 50 100 150 200 250	0 0 0 0 0.00 0.05 0.10 0.15 0.20 50 100 150 200 250 1.00 1.00 Epx. solid Epx. solid 0.02 0.02 Epx. shell 0.02 Epx. solid Epx. shell 2.00 Time [s] Time [s] 0.04 (b) 0.04 Time [s] (d) 0.04 Time [s] (f) 3.00 4.00 (b) 2.00 3.00 4.00 Time [s] Epx. shell (d) 1.00 2.00 3.00 4.00 Time [s] Epx. solid Epx. shell (f)	0.06 0.06 0.06 5.00 •10 -2 5.00 •10 -2 5.00 •10 -2

Comparison of numerical results obtained on a solid continuum under-integrated element (CUBE) and a shell under-integrated element (Q4GR) under shear loading with the Europlexus finite element software. Résumé Dans

  ce second chapitre, le modèle de comportement présenté dans le premier chapitre a été implémenté dans les codes de calcul Z-set et Europlexus. Ceci a été réalisé en utilisant respectivement le schéma implicite backward-Euler et le schéma explicite de Next Increment Correct Error (NICE). Le schéma implicite présente une implémentation difficile impliquant le calcul de nombreuses dérivées jusqu'à l'ordre 2. De plus, son coût de calcul est plus élevé nécessitant plusieurs itérations et inversions matricielles. Néanmoins, celui-ci offre une très bonne précision et est inconditionnellement stable. Le schéma explicite NICE évite quant à lui les itérations lors de la correction plastique et est donc plus rapide pour le calcul. De plus, son implémentation est très simple avec peu de dérivées à calculer, ce qui en fait un bon candidat pour une application industrielle. Cependant, celui-ci implique d'utiliser de petits pas de temps pour garantir la stabilité du schéma. C'est pourquoi son utilisation se justifie particulièrement dans le cas de codes dynamiques explicites. L'absence d'itération et de procédure de convergence implique cependant de valider son implémentation en comparant ses résultats avec une référence qui correspond, dans ce cas, à l'implémentation implicite réalisé dans le solveur Z-set. Plusieurs cas de benchmark ont alors été simulé sur un Volume Élémentaire Représentatif

(VER) et ont confirmé la bonne implémentation du schéma explicite NICE. Par la suite, le modèle de comportement a été étendu aux calculs sur éléments de type coque Reissner-Mindlin: ceci a nécessité la prise en compte de l'hypothèse contraintes-planes sur l'élasticité et le calcul de la déformation transverse dans la loi de comportement. Cette dernière modification permet notamment de considérer la variation de l'épaisseur de la coque dans le cas de grande déformations membranaires et de striction. Cette extension a également été validée par calcul sur VER dans le code Europlexus.

Table 3 .1: Identified parameters for a fixed mesh size of

 3 

L e = 0.2 mm.

  .44) is needed. Its expression is obtained by multiplying eq. (3.44) by a test function p * nl and integrating it on the volume of the structure Ω:

		-	Ω	γ ṗnl p * nl dV +		Ω	ζp nl p * nl dV
	=0 (by assumption)							
									(3.46)
	By re-writing the equation above, it is possible to draw an analogy between this non-local equation and
	the local mechanical equilibrium equations:						
	+	Ω	γ ṗnl p * nl dV	-	Ω	pp * nl dV	= -	(3.47)
	Internal forces	Damping forces		External forces	Inertial forces

Ω 2 ∇ 2 p nl p * nl dV -Ω γ ṗnl p * nl + Ω pp * nl dV -Ω p nl p * nl dV = Ω ζp nl p * nl dV

(3.45)

Green's identity enables the integration by parts of the previous equation. The assumed boundary condition presented in eq. (3.42) is then used to simplify the result:

-

Ω

2 ∇p nl . ∇p * nl dV + Γ 2 p * nl ∇p nl . n dS Ω pp * nl dV -Ω p nl p * nl dV = Ω 2 ∇p nl . ∇p * nl + p nl p * nl dV Ω ζp nl p * nl dV

  Ωe 2 [B e ] T .[B e ] + {N e } T .{N e } dΩ .{p e nl } +

	Ωe	ζ{N e } T .{N e }dΩ .{p e nl }
		(3.49)

{p e nl } ∇p nl = [B e ].{p e nl } (3.48) where matrices {N e } and [B e ] are expressed as functions of the shape functions and their derivatives. An appropriate choice of the test functions among the shape functions in eq. (3.47) leads to the following elementary contributions: Ωe γ{N e } T .{N e }dΩ .{ ṗe nl } -Ωe {N e } T pdΩ = -

  B e ] T .[B e ] + {N e } T .{N e } .{p e nl } n + γ({N e } T .{N e }).{ ṗe nl } pr ed

n

-{N e } T p n 6. Computation of ∆t e c = min(∆t e meca , ∆t e nl )

7. Assembling global forces:

Table 3 .2: Identified parameters for a non-local constitutive model using implicit second gradient approach enabling convergence for

 3 L e ≤ 0.2 mm.

  RésuméDans ce chapitre, une méthode de type non-local est envisagée pour régulariser le modèle de comportement proposé dans cette thèse. Ce type de méthode s'appuie sur le calcul d'une déformation plastique cumulée non-locale, c'est-à-dire, calculée en tenant compte de ses valeurs prises sur les éléments voisins. Le rayon d'interaction entre points matériels est déterminé à partir d'une longueur caractéristique à identifier. Deux méthodes non-locales sont alors extraites de la littérature, implémentées dans le code Europlexus, puis comparées. Ces deux méthodes, à savoir celle du second gradient implicite et la méthode micromorphe, considèrent la variable non-locale comme un degré de liberté supplémentaire, ce qui permet notamment de conserver la parallélisation du code. L'évaluation de cette variable non-locale se fait en tenant compte de son gradient qui est alors calculé à partir des dérivées des fonctions de forme de l'élément. L'implémentation de telles méthodes nécessite l'enrichissement d'éléments finis. Cette opération a été réalisée sur des éléments solides à trois dimensions (hexaèdres, tétraèdres, prismes), linéaires et sous-intégrés. Les paramètres non-locaux, et plus particulièrement la longueur caractéristique , ont été identifiés pour permettre d'obtenir une convergence en maillage pour des tailles de mailles inférieures à 0.2 mm. Après comparaison des résultats obtenus par simulation sur éprouvettes FN et V45, la méthode du second gradient implicite a été retenue pour la suite de la thèse. Celle-ci offre en effet une régularisation plus robuste et une identification simplifiée des paramètres. Le modèle de comportement a été adapté et les simulations sur d'autres géométries ont montré une bonne corrélation avec les résultats expérimentaux, mais également des résultats indépendants au maillage (taille, orientation). Cette approche non-locale offre donc à la fois des résultats fiables et une compatibilité avec le calcul parallèle faisant d'elle une solution envisageable pour application industrielle.Toutefois, un point important doit être souligné. Un effet d'échelle a en effet été observé sur un spécimen pour lequel la zone a rompre est de faible dimensions en comparaison aux autres éprouvettes. La nouvelle largeur de localisation est dans ce cas trop grande pour correctement représenter la rupture de cette éprouvette. Cela signifie que les paramètres non-locaux doivent être identifiés en tenant compte de la dimension des potentiels sites d'amorçages présent dans les simulations. De plus, l'érosion des éléments semble également partiellement compromise. En effet, l'érosion totale des éléments, i.e. impliquant leur suppression du calcul et des traitements de contact, entraîne une instabilité dans le champ non-local. La solution proposée est donc de garder l'élément dans le calcul en n'effectuant sur lui que les calculs permettant la mise à jour du degré de liberté non-local.

  [B e ] + {N e } T .{N e }For the global computation, the minimum between mechanical and non-local time-step is retained. Note that the mechanical time (see eq. (3.54)) step for shell elements is modified as follows to take into account the plane stress assumption:
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		∆t shell meca =	L e E /ρ(1 -ν 2 )	(4.13)
	0. Computation of the global lumped mass matrix: [	
					
			.{p i nl } + γ{N e } T .{N e } { ṗi nl } -{N e } T p i	   ω i	Se 2	(4.11)
		[K nl e ]		[D nl e ]
	3. As for the solid elements, a stability condition must be respected as the non-local equation is solved
	using the Newmark central differences scheme. Consequently, a non-local critical time-step must be
	computed as follows:	∆t nl =	2 12 2 + L 2 √ 3ζL e e	(4.12)

  2 ∆tn 2. New configuration: {d} n-1 + {∆d}n, {p nl } n-1 + {∆p nl }n 3. Computation at in-plane Gauss point:

	∆ εn				
					Se
					2
					In-thickness non-local computation:
	{f nl e }n = [K nl e ].{p e nl }n + [D nl e ].{ ṗe nl } pr ed n	-{Ne } T p n i	ω i	2 Se	(p th n nl 1 , p th n nl 2 , p th n nl 3 , p th n nl 4 , p th n nl 5 ) = f (p n 1 , p n 2 , p n 3 , p n 4 , p n 5 )
					{f nl e }n = [K nl e ].{p e nl }n + [D nl e ].{ ṗe nl } pr ed n	-{Ne } T p th n nl i

m = [Gm].{∆d e }n, ∆ εn b = [G b ].{∆d e }n, ∆ εn ts = [Gts ].{∆d e }n, {∆p n nl } = {Ne }.{∆p e nl }n 4. Calling constitutive law : ( σn i , p n i ) = F(∆ εn m + ∆ εn b i , ∆ εn ts , ∆p n nl i ) 5. Computation of element forces: {f int e }n = {f int e }n + [Gm] T .{ σn i } pl + β G i e 2 [G b ] T .{ σn i } pl + K[Gts ] T .{ σn i }ts ω i

Table 4 .1: Nodes positions of the nested wire elements for the five Gauss points in the shell thickness configuration. Positions of Gauss points are referred to as

 4 

β G i .

  1 Computation and storage of non-local plastic strain in thickness:{p th nl } n = {p th nl } n-1 + { ṗnl } n-1/2 ∆t n

		Inputs: local plastic strains
		p n 1 ,p	n 2 ,p	n 3 ,p	n 4 ,p	n 5
		5. Computation of wire non-local forces:
	{f nl th } n-1 i,i+1 = {f nl th } n-1 i,i+1 +	2 [B th e ] T i .[B th e ] i + {N th e } T i .{N th e } i .{p th nl } n-1 i,i+1 + γ({N th e } T i .{N th e } i ).{ ṗth nl } pr ed i,i+1 -{N th e } T i p n i	ω i	Se 2
	6. Computation and storage of accelerations: {p th nl } n-1 = -[M nl th ] -1 .{f nl th } n-1
	7. Computation and storage of velocities: { ṗth nl } n-1/2 = { ṗth nl } n-3/2 + {p th nl } n-1	∆t n + ∆t n-1 2
	8. 9. Transfert at thickness Gauss points: p th n nl i = {N th e } i .{p th nl } n
		Outputs: in-thickness non-local plastic strains
		p th n nl 1 ,p	th n nl 2 ,p	th n nl 3 ,p	th n nl 4 ,p nl 5 th n

  ∆λ nl n x x + ∆ε y y -∆λ nl n y y ) + ∆λ nl n zz(4.19) This way, the transverse strain is computed from the gradient of nodal data: the displacements gradient and the non-local variables gradient. This helps to obtain the continuity with neighboring elements (see fig.4.7b).

  RésuméDans ce dernier chapitre, la méthode non-locale du second gradient implicite a été étendue aux éléments de type coque Reissner-Mindlin à deux dimensions (triangles, quadrangles). Ces éléments disposant de nombreux points d'intégration, dû à l'intégration dans l'épaisseur, le nombre de degrés de liberté non-locaux a du être augmenté en comparaison aux éléments solides sous-intégrés vus au chapitre précédent. Les fonctions de formes des éléments coques sont définies en deux dimensions, et peuvent donc être utilisées pour calculer un gradient de la variable non-local dans le plan de la tôle uniquement. Cette régularisation a été vérifiée en ré-utilisant l'éprouvette FN présentée précédemment qui constitue un cas de traction et donc un chargement dans le plan. Or, dans un cas de flexion, un gradient à seulement deux dimensions fournit une régularisation incomplète. En effet, par comparaison avec un cas solide équivalent, les résultats se sont avérés erronés dans le cas des coques. Ceci s'explique par le fait que la variable non-locale doit être calculée à partir d'un gradient à trois dimensions, i.e. en tenant compte des valeurs prises dans l'épaisseur également. Pour résoudre ce problème, la méthode de l'élément fil imbriqué a alors été proposée. La dimension manquante au gradient des éléments coques est ajoutée en évaluant les variations dans l'épaisseur d'un élément grâce à des éléments fils. Ces éléments n'existent qu'à l'intérieur de l'élément coque et n'apparaît donc pas dans les tableaux du calcul global. Les fonctions de formes de ces nouveaux éléments sont alors utilisées pour calculer un gradient de la variable non-locale dans l'épaisseur de la coque en pré-traitement du calcul dans le plan. Cette régularisation 1D+2D permet d'obtenir des résultats non-locaux très proches de ceux simulés avec les éléments solides définis dans le chapitre précédent.

Une instabilité s'ajoutant à celle générée par l'endommagement et la température a été observée dans le cas de grandes déformations membranaires, e.g. traction jusqu'à striction. Celle-ci est liée au calcul au point de Gauss de la déformation transverse qui ne résulte d'aucun calcul de gradient de déplacements nodaux. Sa compatibilité entre éléments voisins n'est donc pas respectée. Le calcul local avec éléments coques sur éprouvette FN s'est donc non seulement révélé dépendant à la taille de maille mais également incohérent avec le calcul solide équivalent. La régularisation non-locale permet, en plus de limiter la localisation des variables adoucissantes, de corriger cette autre instabilité. Cela permet notamment, en utilisant les mêmes paramètres, d'obtenir des résultats identiques en utilisant des éléments solides ou des éléments coques. Ce dernier point est particulièrement intéressant pour une utilisation dans un cadre industriel.

  f t )∆p ῡf -∆p ῡ (A.8)With the derivative of the normal with respect to the damage variable:

			∂R el ∂p	= (1 -f t ) ῡ	(A.7)
	∂R el ∂f g = (1 ῡf = = ∂R el ∂f n = ∂R el ∂f sh ∂ ῡ ∂f * = ∂φ ∂σ -2 ∂ 2 φ ∂f * ∂σ	n -	∂φ ∂σ	-1 ∂ ∂f * n	(A.9)
	∂ 2 φ ∂f * ∂σ	= -	q 1 q 2 Tr( σ) σ 2	sinh	q 2 Tr( σ) 2σ	(A.10)
	∂ ∂f * = n	∂ 2 φ ∂f * ∂Tr( σ) Ī =	q 1 q 2 σ	sinh	q 2 Tr( σ) 2σ	Ī	(A.11)
				∂R el ∂T	= 0	(A.12)
								3 Ī ⊗ s	(A.6)
							117

Derivatives of cavities growth damage residual

  [START_REF] Forest | Micromorphic approach for gradient elasticity, viscoplasticity, and damage[END_REF] The derivatives with respect to the void growth damage variable f g residual are given below:f t )∆pTr( ῡ) -(1f t ) 2 ∆pTr( ῡf ) (A.24) f t )∆pTr( ῡ) -(1f t ) 2 ∆pTr( ῡf ) (A.25) 
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		A.4 ∂R fg ∂ εe	= -(1 -f t ) 2 ∆p Ī : ( V : C )	(A.22)
									∂R fg ∂p	= -(1 -f t ) 2 Tr( ῡ)	(A.23)
					∂R fg ∂f g = 1 + 2(1 ∂R fg ∂f n = ∂R fg ∂f sh = 2(1 ∂R fg ∂T	= 0	(A.26)
								∂R p ∂ εe	=	∂R p ∂ Φ ῡ : C	(A.14)
	∂R p ∂R	=	Φ R(p) ∂R p ε0 ∆t ∂p	= 1 -	∂R p ∂R	(H + Qbexp(-bp))	(A.16)
					∂R p ∂f g	=	∂R p ∂f n	=	∂R p ∂f sh	=	∂R p ∂ Φ ∂σ ∂f t	(A.17)
		∂R p ∂T	= -	ε0 ∆t Φµ R(p)(1 -µ(T -T r ef )) 2 C	exp	Φ R(p)(1 -µ(T -T r ef ))C	+	∂R p ∂ Φ µR(p)	(A.18)
	A.3 Derivatives of nucleation damage residual
									∂R fn ∂p	= -A	(A.19)
									∂R fn ∂f n	= 1	(A.20)
					∂R fn ∂ εel		=	∂R fn ∂f g	=	∂R fn ∂f sh	=	∂R fn ∂T	= 0	(A.21)

2 (1µ(T -T r ef ))C exp Φ R(p)(1µ(T -T r ef ))C + ∂R p ∂ Φ (1µ(T -T r ef )) (A

.15) 

6 Derivatives of temperature residual

  Finally, the derivatives with respect to the temperature T residual are given below:

	∂R T ∂ εel	= -ω( ṗ)	η k ρC p	(1 -f t )∆p ῡ : C -ω( ṗ)	η k ρC p	(1 -f t )∆p σ : ( V : C )	(A.38)
	∂R T ∂p	= -	∂ω ∂ ṗ η k ∆tρC p	(1 -f t )∆p σ : ῡ -ω( ṗ)	η k ρC p	(1 -f t ) σ : ῡ	(A.39)
				∂R T ∂f g	=	∂R T ∂f n	=	∂R T ∂f sh	= ω( ṗ)	η k ρC p	∆p σ : ῡ	(A.40)
															∂R T ∂T	= 1	(A.41)
															∆p	s : σ	ῡ	(A.27)
			∂w ∂J 2	=	81 4	J 2 3 J 4 2	,	∂w ∂J 3	= -	27J 3 2J 3 2	,	∂J 2 ∂ σ = s,	∂J 3 ∂ σ = s. s -	2J 2 3	Ī	(A.28)
														∂w ∂ σ =	∂w ∂J 2	∂J 2 ∂ σ +	∂w ∂J 3	∂J 3 ∂ σ	(A.29)
												∂R f sh ∂ s = -k ῡ σ ,	(A.30)
												∂R f sh ∂ n = -k s σ	(A.31)
												∂R f sh ∂σ	= k w w (θ)f t (1 -f t )∆p	ῡ σ2 s :	(A.32)
		∂R f sh ∂ εel	=		∂R f sh ∂w	∂w ∂ σ : C +	∂R f sh ∂ s ∂ s ∂ σ : C +	∂R f sh ∂ n : ( V : C ) +	∂R f sh ∂σ	nD : C	(A.33)
												∂R f sh ∂p	= -k w w (θ)f t (1 -f t )	s : σ	ῡ	(A.34)
		∂R f sh ∂f g	=	∂R f sh ∂f n	= -k w w (θ)(1 -2f t )	s : σ -k w w (θ)f t (1 -f t )∆p ῡ	s : ῡf σ	(A.35)
			∂R f sh ∂f s : ῡf σ	(A.36)
															∂R f sh ∂T	= 0	(A.37)

w w (θ)f t (1f t )∆p w w (θ)f t (1f t )∆p sh = 1k w w (θ)(1 -2f t ) s : ῡ σk w w (θ)f t (1f t )∆p

A.

  In this appendix, the [G e ] matrix for strain computation is detailed. Let us start by recalling the strain derivation formula: Considering an under-integrated 3D continuum elements, the derivatives of its shape functions N i with respect to global coordinates (x , y , z) are contained in the [B e ] matrix so that:

				ε x x =	∂u x ∂x	ε y y =	∂u y ∂y	ε zz =	∂u z ∂z	(B.16)
	2ε x y =	∂u x ∂y	+	∂u y ∂x		2ε y z =	∂u y ∂z	+	∂u z ∂y		2ε x z =	∂u x ∂z	+	∂u z ∂x	(B.17)
				[B e ] =	         	∂N 1 ∂x ∂N 1 ∂y ∂N 1 ∂z		∂N 2 ∂x ∂N 2 ∂y ∂N 2 ∂z		∂N 3 ∂x ∂N 3 ∂y ∂N 3 ∂z	... ... ...	∂N n ∂x ∂N n ∂y ∂z ∂N n	         
									Number of nodes n

(a) Failure of the B-pillar (purple). (b) Failure of the floor (grey)/tunnel (orange).Figure 0.1: Examples of cracking obtained during car crash tests.

In this thesis work, the substepping procedure is implemented but not used as time steps are very small (< 10 -6 s). However, if one wants to set on the substepping procedure, an error of ≈ 10 -3 could give a good compromise between precision and computation time.

∇ 2 p nl + (pp nl ) = ζp nl(3.43) 

(a) Regular -Le = 0.2 mm
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C H A P T E R

Damage regularization in shell elements

In the previous chapter, the non-local implicit second gradient method was introduced to regularize the constitutive model proposed in this thesis work. With this method, the non-local variable is computed from additional degrees of freedom added at every nodes of the elements. It was then implemented by modifying classical under-integrated linear continuum (3D) elements. However, in car crash simulations thin sheets of metal, such as DP450 steel sheets, are usually modelled by using two dimensional shell elements (quadrangles, triangles). This helps to save computation time by reducing the number of small elements as there are no elements in the sheet thickness. Moreover, thickness becomes an internal variable which makes the recovery of thickness variation computed with forming process simulations easier. The last step of this thesis work is then the adaptation of the non-local methods to this type of element. Shell element formulations can be more complex than continuum solid elements formulations. The section 4.1 will detail the formulation of the Reissner-Mindlin shell elements available in the Europlexus solver. Then, the extension of the non-local method to shell elements is presented in section 4.2. To finish, the validity of this extension is checked in section 4.3.

Reissner-Mindlin shell elements

In this section, a brief description of the 2D under-integrated shell elements implemented in the Europlexus solver is provided. These elements follow the Reissner-Mindlin thick plate theory and thus considers plane stress conditions.

Kinematics

Shell element [START_REF]Four-Node Shell Element (Reissner-Mindlin Plate Theory[END_REF] (see fig. 4.1a) formulations are more sophisticated than for continuum elements. Their kinematics is based on plates theories. These theories assume that one of the solid dimensions is sufficiently smaller than the two others (e.g. sheet thickness) to neglect the effect of the normal stress in this direction: i.e. plane stress conditions σ zz = 0. This assumption enables to approximate the real 3D solid by a 2D-equivalent plate. This equivalent problem will either follow the thin plate theory of Kirchoff-Love [START_REF] Edward | Xvi. the small free vibrations and deformation of a thin elastic shell[END_REF], if the thickness is sufficiently small (L e > 20e), or the thick plate theory of Reissner-Mindlin [START_REF] Reissner | The effect of transverse shear deformation on the bending of elastic plate models[END_REF][START_REF] Mindlin | Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[END_REF] (4e ≤ L e ≤ 20e). The main difference is based on the consideration of the transverse shear stresses σ x z and σ y z for the Reissner-Mindling theory. In the Europlexus finite element code, the thick plate theory is used for Q4GR and T3GS elements (see section C.1).

To describe the plate kinematics, the Reissner-Mindlin theory (see fig. 4.1b and fig. 4.1c) assumes that all material points located on a normal line to the initial surface (along n 0 ) remain on a line that is not 

MOTS CLÉS

Rupture ductile, comportement des tôles, endommagement non-local, simulations de crash automobile

ABSTRACT

In the event of a car crash, parts made of metal sheets are subjected to failure. Failure of ductile materials is currently not reliably predicted in an industrial context, involving additional costs and delays in the design process. This issue is then addressed in this Ph.D thesis work of the PSA Group carried out in collaboration with Onera and the Centre des Matériaux. The aim of this work is to develop and implement a reliable numerical strategy for crack prediction using the Finite Element Method (FE) in automotive crash simulations. A first part of this work consists in characterizing and then modelling the plastic and fracture behavior of a representative ductile material: the DP450 steel sheets. To do so, tests are performed over a wide range of loading rates, stress triaxialities, and at different temperatures. From the obtained results, a numerical constitutive model is built by taking into account the different observed phenomena influencing crack initiation and propagation: plasticity, strain-rate effects and damage. The constitutive model thus enables to take into account most of the observed phenomena. However, the use of softening models for modelling damage and thermal effects at high loading rate leads to a pathological dependence of the results on the mesh size and the mesh orientation. This problem is solved by the implementation of a non-local regularization method adapted to dynamic explicit computations. A non-local variable is then computed through the enrichment of finite elements (continuum and shell). It is therefore treated as a new degree of freedom, which facilitates the exchange of data between the elements while preserving the parallelization of the code. This variable is then introduced into the constitutive equations, allowing to obtain mesh independent results. The validation of the proposed approach is finally realized through the simulation of experimental results.
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