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Résumé en Français

Le domaine de la mécanique, en particulier de la micromécanique, a connu de
grands développements. Il est bien connu que l’écoulement plastique dans un
monocristal est anisotrope, ce qui peut être modélisé à l’aide de lois de comporte-
ment phénoménologiques à l’échelle moyenne. Le développement de lois micromé-
caniques a pour objectif de relier le comportement de chaque grain, de prédire
l’évolution de la plasticité et, à son tour, de rendre compte des propriétés macro-
scopiques de la structure. Cette thèse a porté sur deux problèmes physiques, à
savoir le comportement des matériaux soumis à un chargement asymétrique dans
des conditions limites fondées soit sur des contraintes cycliques soit sur des dé-
placements cycliques. Ces chargements entraînent une accumulation de contrainte
supplémentaire ou une relaxation de contrainte moyenne à l’échelle macroscopique.
Les modèles numériques conventionnels donnent un excès des deux quantités. Dans
ce travail, il est montré qu’une approche par éléments finis de plasticité cristalline
de mésoéchelle peut répondre à ces deux problèmes. Différents états mécaniques
existant dans des structures chargées cycliquement sont examinés et une interpré-
tation micromécanique est donnée concernant leur comportement macroscopique
caractéristique. Les résultats statistiques de différentes quantités constitutives au
sein d’un polycristal sont également analysés, ce qui permet de mieux comprendre
ce qui se passe au niveau local.
L’autre partie de la thèse concerne le traitement de données volumineuses dans le
domaine de la science des matériaux informatique. Tout en résolvant des problèmes
d’éléments finis à grande échelle, de grandes quantités de ressources de calcul sont
utilisées et souvent les résultats au cours du temps sont ignorés après les études
et ne sont utilisés pour les prévisions futures. Dans ce travail, il est montré qu’en
utilisant des données déjà générées, de nouveaux cas de test peuvent être prédits à
partir de simulations précédentes. La méthode utilisée est appelée hyper-réduction
hybride. Elle utilise un protocole d’apprentissage automatique non supervisé as-
socié à la technique gappy POD pour exécuter des simulations aux éléments finis
réduits. Ces simulations réduites aident à capturer les valeurs extrêmes de plas-
ticité. Des résultats de fatigue à faible nombre de cycles dans un superalliage à
base de fer et de nickel (Inconel 718) sont utilisés comme test.
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Abstract

The field of mechanics, particularly micromechanics, has undergone great devel-
opments. It is well known that plastic flow in a single crystal is anisotropic which
may be modeled using phenomenological constitutive laws at the mesoscale. The
idea behind the development of micromechanical laws is to relate the behavior of
each individual element of the geometry, predict evolving plasticity, and in turn
account for the macroscopic properties of the structure.
Two physical problems have been considered is this thesis i.e. the behavior of
materials when they are asymmetrically loaded under cyclic stress or strain based
boundary conditions. These loadings cause incremental strain accumulation or
mean stress relaxation at the macroscopic scale. Conventional numerical models
give an excess of both quantities. In this work it is shown that a mesoscale crystal
plasticity finite element approach can give an answer to both problems. Differ-
ent mechanical states existing in cyclically loaded structures are scrutinized and a
micromechanical interpretation is given about their characteristic macroscopic be-
havior. Statistical results of different constitutive quantities within a polycrystal
are also analyzed which give a new insight into what is happening at a local level.
The other part of the thesis pertains to big data problems in computational ma-
terials science. While solving large scale finite element problems, vast amounts
of computational resources are utilized and many a times the evolving results are
discarded after studying; not using them for future predictions. In this work it is
shown that by utilizing already generated data, new test cases may be predicted
from previous simulations. The method employed is called hybrid hyper-reduction
which uses an unsupervised machine learning protocol coupled with the gappy
proper orthogonal decomposition technique to run reduced finite element simula-
tions. These reduced simulations help in capturing extreme values of plasticity.
Low cycle fatigue in a nickel iron based super alloy (Inconel 718) is taken as a test
case.
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Notations and abbreviations

In this thesis, vectors are underlined once, second order tensors twice and fourth
order tensors four times. For instance “A” represents a vector, whereas “A” is a
second order tensor. The transpose of a tensor is denoted by a superscipt “T”
(AT ), whereas the inverse is portrayed by a superscipt of “−1” (A−1). The term
“:” denotes the inner product of two tensors, and “⊗” denotes the tensor or dyadic
product between tensors. Other notations are defined as needed along the way.
The following are some of the abbreviations used:

CPFEM . . . . Crystal plasticity finite element method
RVE, VE . . . Representative volume element, volume element
POD . . . . . Proper orthogonal decomposition
FCC . . . . . . Face centered cubic
RAM . . . . . Random-access memory
LK, HK . . . . Low kinematic, high kinematic
RB . . . . . . Reduced basis
FOM . . . . . Full order model
ROM . . . . . Reduced order model
DOFs . . . . . Degrees of freedom
PCA . . . . . . Principal component analysis
DEIM . . . . . Discrete empirical interpolation method
HROM . . . . Hyper-reduced order model
RID . . . . . . Reduced integration domain
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Chapter 1

Introduction

Introduction

Depuis des temps immémoriaux, les matériaux sont développés pour répondre
aux besoins de l’humanité. Ces besoins évoluent avec le temps et, aujourd’hui
plus que jamais, il est nécessaire de comprendre les mécanismes fondamentaux qui
régissent la réponse mécanique des matériaux. Plus important encore, au cours de
leur durée de vie, les matériaux d’ingénierie devaient répondre à certains critères de
performance. On s’attend à ce que ces matériaux résistent à différents scénarios de
charge associés à des conditions thermiques ou mécaniques en service. Par exemple,
dans les moteurs d’avion à turbine à gaz, l’efficacité du moteur augmente avec
l’augmentation de la température de fonctionnement. Il en résulte une réduction
de la consommation de carburant, ce qui réduit les coûts d’exploitation, mais limite
le choix des matériaux qui peuvent être utilisés dans le moteur à turbine à gaz.
Par conséquent, la réponse mécanique de ces matériaux doit être caractérisée en
ce qu’ils peuvent être utilisés efficacement comme matériaux d’ingénierie.

Un autre problème, en particulier dans les moteurs d’avion, est que les différents
composants sont soumis à un chargement cyclique qui réduit la durée de vie de ces
composants par de nombreux plis. L’un de ces composants est l’aube de turbine,
qui est souvent le composant limitant d’un moteur à réaction. En effet, dans un en-
vironnement d’ingénierie, ces pales doivent subir plusieurs types de chargements
externes dont l’amplitude et la fréquence varient. De plus, comme différentes
conditions de charge sont appliquées, c.-à-d. une contrainte ou une déformation
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CHAPTER 1. INTRODUCTION 10

contrôlée, ces composants présentent des réponses mécaniques complètement dif-
férentes. Il est important de comprendre les limites auxquelles un matériau peut
être soumis, car cela permettra d’obtenir une meilleure estimation de sa durée de
vie. Par conséquent, la caractérisation de ces réponses est cruciale pour l’industrie
et la communauté scientifique. Ce qui est encore plus important, c’est que dans le
matériau, la plasticité se localise aux endroits préférés et que l’identification de ces
points critiques est importante pour une meilleure compréhension de la réponse
des matériaux hétérogènes. Pour ce faire, une approche numérique a été prise en
compte dans ce travail.

Le but de ce travail est d’utiliser une description mathématique du matériau
communément appelée modèle de matériau constitutif pour souligner les effets
physiques. En d’autres termes, les modèles matériels sont une tentative d’incarner
les mécanismes et les comportements fondamentaux des systèmes au moyen d’un
ensemble d’équations mathématiques, et ce type d’approche a fait l’objet d’un
battage publicitaire important au cours des dernières décennies. Les techniques
numériques ont été développées à tel point que des conclusions rationnelles peu-
vent être tirées de ces modèles. Il faut également comprendre que le concept de
modélisation des matériaux n’est pas une idée récente. Certaines des définitions de
modélisation utilisées aujourd’hui ont été postulées il y a de nombreuses années,
par exemple le critère de Tresca pour la production (Tresca, 1864), encore large-
ment utilisé dans diverses définitions de matériaux, a été proposé pour la première
fois au milieu du XVIIIème siècle.

Pour commencer par la modélisation des matériaux, la réponse d’un système peut
être mathématiquement caractérisée sous différentes formes. Une des approches
est la modélisation empirique, qui est entièrement fondée sur des données expéri-
mentales, de sorte que ces modèles ne sont pas basés sur des données hypothèses
et approximations dans le contexte de différents principes physiques. Par contre,
les modèles empiriques ne sont applicables que dans la gamme de données dont
ils sont issus et sont peu utiles dans le domaine de la déformation plastique des
matériaux. Cette approche n’est, en général, valable que lorsque de nouveaux
matériaux sont manipulés et que leurs réponses ne sont pas pleinement réalisées.

L’approche phénoménologique est une autre voie pour la modélisation des matéri-
aux. Ces modèles ne tiennent pas explicitement compte des détails d’un matériau,
mais émettent plutôt l’hypothèse d’une réponse matérielle au moyen d’un cadre
mathématique prédéfini. Ces cadres mathématiques se présenteront sous la forme
de paramètres indéterminés et ces paramètres peuvent être uniques pour chaque
matériau à une température donnée. Ces modèles phénoménologiques peuvent être
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utilisés en association avec des équations directrices en mécanique des milieux con-
tinus et, contrairement aux modèles empiriques, les modèles phénoménologiques
peuvent donner un aperçu du comportement de déformation d’un matériau. La
plasticité ainsi que les différents mécanismes de déformation peuvent être carac-
térisés comme une variable dans les modèles phénoménologiques et comme les
déformations du matériau, l’évolution de ces variables peut être suivie. Des condi-
tions aux limites appropriées ainsi que des équations directrices sont ensuite util-
isées dans les modèles phénoménologiques. Les équations déterminantes peuvent
être résolues en utilisant des méthodes de discrétisation comme les éléments finis
ou la transformée de Fourier rapide. Par conséquent, la réponse prévue peut être
comparée aux résultats expérimentaux et le modèle est étalonné en conséquence.

La modélisation des matériaux des chercheurs incorporent plusieurs théories dans
leurs modèles, en ce qui concerne le comportement des matériaux. Les trois plus
courantes sont les théories de l’élasticité, de (visco)plasticité et de la déformation
des dommages. Les théories élastiques s’appliquent généralement aux matériaux
qui subissent de petites déformations et reviennent à leur état initial une fois la
charge enlevée. Un exemple est la loi de Hookes, qui n’est applicable que dans
la région élastique. Les modèles classiques de plasticité intègrent la notion selon
laquelle le matériau se déforme d’abord élastiquement, mais commence à se dé-
former lorsqu’il dépasse sa limite élastique. Un exemple commun pour un mod-
èle de plasticité est Tresca (1864). Une autre approche comprend des modèles
d’endommagement qui tiennent compte de la dégradation de la charge appliquée
supportable du matériau, et un exemple commun est le modèle de Gurson pour la
rupture ductile.

Une autre sous-classification de la modélisation des matériaux est qu’elle peut être
divisée en différentes échelles de longueur dont les trois plus communes sont macro,
méso et micro. La macro-échelle décrit le comportement général d’un matériau en
tant que partie intégrante du matériau dans son ensemble, c’est-à-dire dans le sens
d’une structure de laboratoire. La micro-échelle décrit le comportement de base
d’un matériau comme les grains, les dislocations, etc. A cette échelle, la description
moyenne des matériaux comme à l’échelle macro devient invalide. La méso-échelle
est un niveau d’échelle intermédiaire, qui est habituellement décrit par l’approche
de la mécanique des milieux continus. Dans ce contexte, microscopique se réfère
aux défauts de réseau sous l’échelle du grain, mésoscopique se réfère aux défauts
à l’échelle du grain et macroscopique à l’échelle de la géométrie de l’échantillon.
Les travaux de cette thèse portent sur des modèles définis au niveau du système
de glissement.
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1.1 Introduction

Since time immemorial materials are being developed to suit mankind’s needs.
These needs change with time and today more than ever before there is a need to
understand fundamental mechanisms governing the mechanical response of materi-
als. More importantly, during their lifetime, engineering materials are anticipated
to meet certain performance benchmarks. These materials are expected to with-
stand different loading scenarios coupled with thermal or mechanical in-service
conditions. For instance, in gas turbine aircraft engines see figure 1.1, the effi-
ciency of the engine increases with an increase in the operation temperature. This
causes less fuel to be consumed which lowers operation costs but limits the choice
of materials which can be used in the gas turbine engine. Hence, the mechanical
response of such materials needs to be characterized so that they can be effectively
used as engineering materials.

Figure 1.1: Gas turbine engine (Safran M88-2, manufactured by Safran Aircraft
Engines) which has components subjected to complex loadings1

Another problem especially in aircraft engines is that various components are sub-
jected to a cyclic load environment which reduces the lifetime of such components
by many folds. One such component is the turbine blade as shown in figure 1.2,
which is often the limiting component of a jet engine. This is because in an en-
gineering environment, these blades have to go through several types of external
loading conditions which vary in amplitude and frequency. Complimenting that,
as different loading conditions are applied i.e. stress or strain controlled, these

1Picture taken by Matthieu Sontag at Paris Air Show 2007



CHAPTER 1. INTRODUCTION 13

components exhibit completely different mechanical responses. Understanding the
limits to which a material can be put through is important because it will lead
to a better lifetime estimation. Hence, the characterization of such responses is
crucial for the industry as well as the scientific community. Even more important
is the fact that within the material, plasticity localizes at preferred locations and
the identification of such hot-spots is important for a better understanding of the
response of heterogeneous materials. To cater for this, a numerical approach has
been considered in this work.

Figure 1.2: High pressure turbine blade which is usually the limiting component
of a jet engine

The intent of this work is to use a mathematical description of the material re-
sponse, commonly known as a constitutive material model (Lemaitre and Chaboche,
1994) to underline physical effects. In other words, material models are an attempt
to embody fundamental mechanisms and behaviors of systems through a set of
mathematical equations, and this type of an approach has gained significant hype
in the last few decades. Numerical techniques have been developed to such an
extent that rational conclusions can be derived from such models. It should also
be appreciated that the concept of material modeling is not a recent idea. Some
of the modeling definitions being used today were postulated many years ago, for
example the Tresca criterion for yielding (Tresca, 1864), still widely being used in
various material definitions was first proposed in the mid eighteenth century.

To start with material modelling, the response of a system can be mathematically
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characterized in various forms. One approach is empirical modeling, which bases its
postulations entirely on experimental data such that these models are not based on
assumptions and approximations in context to different physical principles. On the
downside, empirical models are applicable only within the range of data from which
they have been derived, and are of little use in the realm of plastic deformation of
materials. This approach is, in general, only valid when new materials are being
handled and their responses are not fully realized (Rao and Deshpande, 2014).

A different path for material modeling is the phenomenological approach. These
models do not explicitly consider the details of a material but rather hypothesize
material response through a predefined mathematical framework. These math-
ematical frameworks will be in the form of undetermined parameters and these
parameters may be unique for every material at a given temperature. These phe-
nomenological models can be used in association with governing equations in con-
tinuum mechanics and unlike empirical models, phenomenological models can give
insight into the deformation behavior of a material. Plasticity as well as different
deformation mechanisms can be characterized as a variable in phenomenological
models and as the material deforms, the evolution of these variables can be mon-
itored. Appropriate boundary conditions as well as governing equations are then
used in phenomenological models. The governing equations can be solved by using
discretization methods like finite elements or fast Fourier transform. As a result,
the predicted response may be compared with experimental results and the model
is calibrated accordingly (Morgeneyer et al., 2009).

Researchers modeling materials incorporate several theories into their models, re-
garding material behavior. The three most common are elastic, (visco)plastic and
damage deformation theories. Elastic theories are usually applicable for materials
which undergo small deformations and return to their original state once the load
is removed. An example is the Hookes law, which is only applicable in the elastic
region (Slaughter, 2002). Classical plasticity models incorporate the notion that
first the material deforms elastically, but starts plastic deformation upon exceed-
ing its yield stress (Besson et al., 2009; Soutis and Beaumont, 2005). A common
example for a plasticity model is Tresca (1864). Another approach includes dam-
age models which consider the degradation in the bearable applied load of the
material, and a common example is the Gurson model for ductile fracture(Zhang
et al., 2000).

Another sub-classification of material modeling is that it can be divided into dif-
ferent length scales of which the three most common are macro, meso and micro.
Macro scale describes the general behavior of a material as part of the material
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as a whole i.e. in the sense of a laboratory framework. Microscale describes the
basic behavior of a material such as grains, dislocations, etc. At this scale, the
average material description as in the macro scale becomes invalid. The mesoscale
is an intermediate scale level, which is usually described by continuum mechanics
approaches (Bull, 2012). In this context, microscopic refers to lattice defect as-
semblies below the grain scale, mesoscopic refers to defects at the grain scale and
macroscopic points to the scale of sample geometry (Raabe, 2004). The work in
this thesis pertains to models defined on the slip system level (Rice, 1971; Méric
et al., 1991).

1.2 Crystal plasticity finite element method

It is well known that metallic alloys have an inherent substructure which de-
fines their macroscopic properties. Earlier advancements to describe anisotropic
crystalline materials did not consider the mechanical interactions among different
crystals nor did they consider external or internal boundary conditions (Roters
et al., 2011). That is why variational methods in the form of finite element ap-
proximations have become popular in this field. These methods are known as
crystal plasticity finite element methods.

The crystal plasticity finite element method is an approach that uses finite element
calculations to describe the time and crystal orientation dependent deformation of
crystalline materials. A weak form of the principle of virtual work, in a given finite
volume element, is used to support the variational solution of force equilibrium. It
is hence appropriate to say that CPFEM approaches can be used as constitutive
material models and consequently may be used into finite element programs to
solve industrial, large scale problems.

Deforming microstructures often show multiple deformation mechanisms taking
place simultaneously. Speaking in terms of material modeling, this requires multi-
ple sub-models to describe the evolution of these interactions at the same material
point, and this need is catered for by CPFE. Figure 1.3 simplifies this point even
further where figure 1.3 (a) shows just one type of deformation mechanism and
one phase at one integration point, while figure 1.3 (b) shows multiple deformation
mechanics taking place at a single point.

Among the many advantages of CPFE models, one is that it has the ability to solve
crystal mechanical problems under internal or external boundary conditions. This
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Figure 1.3: Constituents in CPFE. (a) Scenario with just one type of deformation
mechanisms and one phase. (b) Scenario showing the case of multiple deformations
mechanics and phases taken at a single integration point (Roters et al., 2010).
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is an imperative part of crystal mechanics because CPFE takes into account dif-
ferent inter and intra micromechanical grain interactions (Sachtleber et al., 2002).
As shown by Arsenlis et al. (2004), and Arsenlis and Parks (1999) CPFE methods
give an edge to incorporate constitutive formulations for hardening and plastic
flow at elementary slip system levels.

CPFE simulations have the capability of being used both at mesoscopic and macro-
scopic levels (Raabe et al., 2002). At mesoscopic levels, CPFE is gaining momen-
tum because of the difficulty to control experimental boundary conditions, which
in a numerical context can be given by the user with ease. At small scales, CPFE
applications range from nano-indentation simulations (Wang et al., 2004) to me-
chanics at interfaces (Clark et al., 1992) to damage initiation (Bieler et al., 2009),
fatigue behaviour (McDowell and Dunne, 2010) etc. Macroscopic applications of
CPFE include forming and texture simulations (Kraska et al., 2009) where the pri-
mary concern is to predict the precise product shape, material failure, thickness
distribution and material flow of the formed product.

Since the foundations of CPFE were first laid by Asaro and Rice (1977) and then
further elaborated by Peirce et al. (1982), this method has been improved into a
whole framework of constitutive formulations. These simulations started off for
single crystals but were later utilized for polycrystalline materials (Harren et al.,
1988) in a two dimensional setup using only two to three slip systems. Later,
Becker et al. (1991) became the first to simulate a three dimensional model for
a twelve slip system FCC crystal lattice. Increases in computational power have
further eased these CPFE simulations. More recently, in the realm of grain bound-
ary mechanics, recent advances have allowed researchers to simulate polycrystal
behavior with great efficiency (Barbe et al., 2001; Ma et al., 2006).

In context to fatigue, several authors have used crystal plasticity approaches to
model the cyclic response of metallic materials (Goh et al., 2006; Morrissey et al.,
2003; Bennett and McDowell, 2003; Goh et al., 2001; Ozturk et al., 2016; Dunne
et al., 2007a; Li et al., 2015).

This is a crucial couple because fatigue is extremely sensitive to microstructural
features, especially as the number of cycles progresses, plasticity segregates at
certain local locations. If these locations can be pinpointed, predictions of fatigue
crack initiation become easier (Proudhon et al., 2016). Also, understanding how
local non-linearities emerge to give a certain cyclic response is a topic which can
lead to an effective design of engineering components. More light will be shed on
this in chapter 2 of the thesis.
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1.3 Reduced order modeling

When material microstructures are under consideration, continuum models can be
an attractive approach to assess mechanical properties. Coupling micro-mechanical
laws with complex geometries has in present times gained massive popularity
(Gérard et al., 2013; Gu et al., 2019). One way to do this is to use the concept of a
representative volume elements (RVE) where a virtual microstructural realization
is generated and appropriate boundary conditions are prescribed (Prithivirajan
and Sangid, 2018; Zhang et al., 2016; Kotha et al., 2019; Sun et al., 2018). These
boundary conditions usually represent an average stress or strain state of the ma-
terial which conforms to the macroscopic averaged response of the material. This
is followed by a numerical procedure to solve the boundary value problem. One of
the most popular methods to discretize the weak form of the constitutive equations
is the Finite Element method, which is also employed in this article. Using this
method, the constitutive equations can be integrated at each material point and
huge insight can be gained as to what is happening locally at certain geometric
locations. This requires considerable computational resources for direct numerical
simulations. Although the current state of computer science is considerably ad-
vanced, with numerous parallel as well as high performance computing strategies
available (Shantsev et al., 2017; Yagawa and Shioya, 1993), full resolution sim-
ulations are still not optimal because of their high computational costs. Model
order reduction techniques pertain to problems where the order of the model de-
pends on the number of independent state variables. Several authors (Matouš
et al., 2017) have proposed model reduction techniques for the approximation of
plasticity problems. For instance Pelle and Ryckelynck (2000) proposed to use
the LATIN method to iteratively approximate the solution. Fritzen and Hassani
(2018) use a space-time technique where a low number of nonlinear equations
is solved in the reduced setting but full spatial information can be recovered at
any given time. Michel and Suquet (2003) have proposed to use the nonuniform
transformation field analysis (NTFA) approach where they consider nonuniform
plastic strain fields with the aim of reducing the number of macroscopic inter-
nal variables. Another model order reduction technique used frequently is proper
orthogonal decomposition (POD), first proposed by Karhunen (1946) and Loève
(1963) developed initially for statistical analyses. This POD basis comprises of
the state subspace which is made of different time steps of a simulation or even
different mechanical problems altogether. Using POD bases to predict mechanical
models was first done by N. Lorenz (1956) for weather forecasts. In the context
of RVE homogenization Yvonnet and He (2007) have already used a POD based
technique for hyper-elastic materials whereas Hernàndez et al. (2014) used a hyper-
reduced POD procedure to reduced the order of the model. The size of the full
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the engineering world to develop numerical tools for the understanding of the local
nature of plasticity. In this context, a topic understudied is of non symmetric
cyclic loadings in metallic materials. In such a setting polycrystalline materials
give differing mechanical responses which lead to a decrease in lifetime as well as
an early onset of failure. Very few studies have been done to model this type of
behavior at the microstructure level. The first objective of this work is to model
non symmetric cyclic loadings using the crystal plasticity finite element approach.
Characterization has to be done based on both the macroscopic as well as the
mesoscopic response of the microstructure. The main idea is then to correlate the
results at both scales and give a physical interpretation for such complex phenom-
ena. This will lead to a better understanding of the evolution of plasticity and will
shed light on how local hardening combines to give heterogeneous materials their
characteristic mechanical properties. It is also known that different crystal plas-
ticity parameters can result in similar mechanical responses. The objective of this
work is also to scrutinize different parameter sets and characterize how varying
hardening parameters govern the cyclic properties of polycrystalline materials.

The crystal plasticity finite element method has complex phenomenological laws
associated to it and integrating them at each time step leads to extremely heavy
computations. The second objective of this work is to couple model order reduction
approaches with crystal plasticity finite element simulations. A benefit of this is
the acceleration of computationally intensive simulations, which can lead to an
estimate of the nonlinear development of plasticity.

Reduced order models are valid for a certain parameter space which means that
conventionally they should be used within certain limits. An objective is also to
understand these limits in the context of CPFEM. The hybrid hyper-reduction
method will be employed as the model order reduction technique. The resulting
combination of numerical modeling with reduced order approximations are topics
under scrutiny by the scientific community and hold great value for the engineering
world.

1.5 Outline

The main content of this work is split into three different chapters:

• In Chapter 2 non symmetric cyclic loadings are modeled using CPFEM.
A detailed characterization is done for both single as well as polycrystals.
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The mechanical states at cyclic stability are characterized using elaborate
diagrams. Details on the nonlinear evolution of hardening are presented
and the factors affecting their macroscopic behavior are discussed. It is also
shown how different regions in the microstructure accommodate each other
and this local rearrangement in hypothesized as the origin of a particular
macroscopic response.

• Chapter 3 starts by giving a brief introduction of the model reduction ap-
proach pertaining to crystal plasticity finite element simulations adopted in
this work. Hyper-reduction is compared with hybrid hyper-reduction and the
superiority of the later is shown numerically. As a test case, strain ratchet-
ing predictions are done on a large finite element mesh. Macroscopic as well
as local statistics are presented on different constitutive variables and errors
on each variable are elaborated. Computational times for using the model
order reduction procedure are also shown and compared with the full field
estimation.

• Chapter 4 presents how model order reduction can be used for parametric
simulations in crystal plasticity. Characterization of the parameter space is
done by taking some numerical examples, and finally the limits to which the
ROM can be used, as observed by the authors, are elaborated.

Conclusions and future work are proposed in Chapter 5.



Chapter 2

Crystal plasticity modeling of the
cyclic behavior of polycrystalline
aggregates under non-symmetric
uniaxial loading

Résumé

Lorsqu’un échantillon est soumis à une charge cyclique sous une contrainte ou
une déformation moyenne, on observe généralement un rochet incrémentiel de
contrainte ou des phénomènes de relaxation de contrainte moyenne. Les expéri-
ences montrent que pour les matériaux métalliques, il n’y a généralement pas de
relaxation complète des contraintes moyennes, ni de saturation du rochet macro-
scopique de déformation. Peu d’attention a été accordée à la modélisation de ces
phénomènes à l’aide d’agrégats polycristallins, en particulier en ce qui concerne le
régime de stabilité mécanique cyclique. Dans ce travail basé sur un modèle élé-
mentaire de plasticité cristalline pour les cristaux FCC et des simulations à grande
échelle par éléments finis, il est démontré que l’interaction entre différents grains
est suffisante pour prédire des phénomènes aussi complexes. Il est mis en évidence
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comment différentes régions du polycristal s’accommodent les unes aux autres et
comment la définition classique du rochet de déformation à vitesse constante ou
d’une contrainte moyenne nulle est presque impossible à appliquer à un agrégat
polycristallin. De plus, il est démontré que même si une boucle d’hystérésis de
contrainte macroscopique stable est observée, des phénomènes de rochet peuvent
encore être observés à l’échelle locale. Les distributions de différentes quantités
constitutives à l’intérieur d’un polycristal sont également analysées, ce qui donne
une nouvelle idée de ce qui se passe à l’intérieur d’un polycristal en termes de
redistribution des contraintes et des déformations. En particulier, l’existence de
distributions bimodales évolutives des contraintes et des déformations plastiques
accumulées est mise en évidence et liée à l’apparition de secousses plastiques et à
une relaxation moyenne incomplète des contraintes. Deux critères numériques de
détection du phénomène de rochet sont finalement proposés et discutés.

2.1 Introduction

Most metallic materials have a heterogeneous microstructure, and this local dis-
order results in specific mechanical properties. Several studies have already been
undertaken to link micro-macro properties of metals (Barbe et al., 2001; Dunne
et al., 2007b; Zhang et al., 2007, 2016; Guilhem et al., 2018), but how local prop-
erties affect macroscopic properties is still not fully understood. In particular,
the behavior of metallic materials under cyclic loading conditions (Ghorbanpour
et al., 2017; Smith et al., 2018; Yu et al., 2013) is still the subject of consider-
able attention. This chapter explores two topics, namely ratcheting and mean
stress relaxation in polycrystal aggregates under cyclic loading. Both phenomena
are controlled by exactly the same physical processes form the crystallographic
slip perspective, differing only by virtue of the applied boundary conditions. For
example, asymmetric stress-controlled uniaxial cyclic loading can result in strain
ratcheting, i.e. a progressive, incremental inelastic deformation leading to a shift
of the stress-strain hysteresis loop along the strain axis (Kang et al., 2010; Fournier
and Pineau, 1977; Ohno et al., 1998; Jiang and Sehitoglu, 1994; Hassan and Kyr-
iakides, 1994a; Portier et al., 2000; Hassan and Kyriakides, 1994b). Mean stress
in this article is defined as (Σmax + Σmin)/2 where Σmax and Σmin are the maxi-
mum and minimum stresses in a cyclically loaded component. On the other hand
stress amplitude is defined as (Σmax −Σmin)/2. With regards to asymmetric strain
controlled cyclic loadings, it is also known that under a given stress amplitude, in-
creasing the stress amplitude under a constant non zero mean stress or increasing
the applied mean stress, both increase the rate of ratcheting (Goodman, 1984). On
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the other hand, experimental observations indicate levels of mean stress for which
there is very low ratcheting and the mechanical state of the material converges to-
wards plastic shakedown (Pellissier-Tanon et al., 1982). Similarly, for asymmetric
strain controlled loading conditions, a cyclic mean stress is observed, and several
experimental studies (Wehner and Fatemi, 1991; Nikulin et al., 2019; Prithivirajan
and Sangid, 2018) have deciphered the corresponding physical mechanisms. These
observations show that for a given positive mean strain, and a low strain ampli-
tude, the mean stress does not completely relax to zero. Also, increasing the strain
amplitude leads to a nonlinear decrease of the mean stress until it finally vanishes
(Arcari et al., 2009). From a modeling perspective, the mechanical cyclic response
is sensitive to the strain path and is driven by the Bauschinger effect, as mod-
eled by Chaboche (1986, 1989). Classical macroscopic models (Chaboche, 1989)
predict an excess of strain ratcheting as well as mean stress. Some researchers
have proposed to introduce additional kinematic and isotropic hardening terms
(Chaboche et al., 2012), resulting in numerous material parameters to be cali-
brated. Any change in the material requires recalibration of parameters. Also,
no microstructural characteristics of the underlying material are captured by such
phenomenological models, which inhibits further inspection of the physics of de-
formation of the material. Crystal plasticity models coupled with computational
homogenization, on the other hand, offer a way to link cyclic micro-macro prop-
erties of metallic materials (Shenoy et al., 2008). The deformation behavior of
a single crystal at the slip system level is used to determine the properties of
polycrystalline aggregates using representative volume elements. This procedure,
although phenomenological at constitutive single crystal level, provides a realis-
tic insight into what is happening within a polycrystal as shown by comparison
between simulations and strain field measurements (Zhao et al., 2008; Zaafarani
et al., 2006).

For strain ratcheting studies, Morrissey et al. (2003) were first to show using crys-
tal plasticity that the transition to void formation and growth failure mode at high
R ratios in Ti-64 were due to a transition to cyclic ratcheting, and discussed this a
breach of the percolation limit for ratchet strain. Goh et al. (2006) studied ratch-
eting and shakedown under fretting fatigue. Shenoy et al. (2008) used experiments
and full field CPFEM simulations to train an artificial neural network for notch
root responses with ratcheting for Ni-base superalloy IN100. Zhang et al. (2007)
used CPFEM to model response of polycrystals under mean stress, with unloading
and large ratchet strains. Zhang et al. (2009) used CPFEM to model ratchetting
under fretting contacts. Xie et al. (2004) and Sinha and Ghosh (2006), followed by
Dingreville et al. (2010), were among the first authors to use polycrystalline aggre-
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gates coupled with CPFEM to model ratcheting. These researchers simulated the
first few cycles and then extrapolated their results to larger cycle numbers. More
recently, Hennessey et al. (2017) and Cruzado et al. (2017) proposed to change
the kinematic hardening law from an Frederick and Armstrong (2007) formulation
to a modified Ohno and Wang (1993) type law. Hennessey et al. use an accel-
erated simulation and run the simulation for a hundred cycles, while Cruzado et
al. resort to a cycle jump technique (Cruzado et al., 2012; Azzouz et al., 2010;
Mary and Fouvry, 2007) to extrapolate the constitutive response. Both groups
focus on the macroscopic properties of the aggregate rather than on local stress
and strain distributions. The main limitations of all the conducted studies are
that local heterogeneities and the physics behind these phenomena are neglected
in favor of focusing on the macroscopic stability of the stress-strain hysteresis loop.
Attention is paid essentially to matching simulation and experimental results at
the macroscopic level. In a recent contribution by Colas et al. (2019) the authors
evidence local ratcheting phenomena in a polycrystalline aggregate under symmet-
ric strain loading conditions. Local ratcheting phenomena are found to be more
pronounced at a free surface than in the bulk. The analysis is however limited
to one single realization, without statistical considerations. The objective of the
present work is to show that simulations of polycrystalline aggregates based on
the most simple crystal plasticity laws can reproduce the main phenomenological
features of asymmetric cyclic uniaxial plasticity and to correlate them with the
stress and strain distributions inside the aggregates.

As stated earlier, the driving force for strain ratcheting and cyclic mean stress
relaxation is the Bauschinger effect, which in a modeling perspective is governed
by kinematic hardening. Kinematic hardening controls the ratcheting behavior
as well as mean stress relaxation in structural components. Isotropic hardening,
on the other hand, decreases the rate of plastic strain evolution per cycle. Single
crystal behavior exhibits isotropic hardening effects due to multiplication and in-
teraction of dislocations, as well as kinematic hardening as a result of polarization
of dislocation structures Méric et al. (1994). In a polycrystal, the cyclic response
results from these two hardening components inside the grains and from the inter-
granular interactions. Hence, to assess these complex mechanisms, a very simple
constitutive law is retained at the single crystal level for the systematic study of
the present work. It is first limited to purely kinematic hardening. This is a simpli-
fication which complies with usual observations that isotropic hardening remains
very limited in metallic materials used for engineering purposes such as nickel-
based superalloys under cyclic loading, which is the target material class of the
present work (Chaboche et al., 2012). A rate–independent crystal plasticity model
formulation is used to avoid the contamination of the final results by viscosity ef-
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fects. The selected crystal plasticity model by (Forest and Rubin, 2016) exhibits a
smooth elasto-plastic transition and is strictly rate-independent. In what follows,
finite element simulations of polycrystalline aggregates will be shown to provide
a realistic description of ratcheting and mean stress relaxation in face centered
cubic (FCC) metals, without resorting to complex memory variables in contrast
to macroscopic approaches. Two types of materials are taken into account, one
with a low hardening limit and high yield strength similar to Nickel base superal-
loys, and a second one with stronger hardening and a low yield strength as seen
in copper based alloys as a reference (Siska et al., 2007). Finally, the results are
analyzed along two lines, i.e. at the macroscopic scale first and then at the local
scale looking at field variables influencing the phenomena.

In this article it is shown that without changing the constitutive equation, a poly-
crystal can mimic experimental response. Macroscopic averaged results are shown
to reproduced different regimes observed while asymmetrically cycling a metallic
material. Diagrams are also built to characterize ratcheting and cyclic mean stress
relaxation both in single as well as polycrystals. Local analyses of the results then
sheds light on the microstructural response of the polycrystal. More specifically,
trends in the evolution of plasticity are shown in the entire microstructure with
the help of probability density plots. These plots are then analyzed and concrete
statistical conclusions are drawn for the first time to answer why a polycrystal
stops ratcheting or retains a cyclic mean stress.

The chapter is organized in the following manner. In Section 2.2 the crystal plas-
ticity material model is formulated. Section 2.3 presents the finite element model,
material parameters, as well as the physical aspects of the microstructure. Results
and discussions are provided in Sections 2.4, regarding macroscopic aspects, and
2.5, regarding local stress and strain fields. A long cyclic simulation is presented
in Section 2.6. Discussion about the obtained results and their qualitative com-
parison with experimental findings is done in Section 2.7. This is followed by the
conclusions in Section 2.8.

2.2 Crystal plasticity model

In the present work a small strain crystal plasticity formulation is used for the
computation as most local strains remain below 5%. Each grain is considered as
an initially homogeneous single crystal. To ease the interpretation of the numer-
ical results, a rate–independent formulation is selected, using the single crystal
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plasticity model recently proposed by Forest and Rubin (2016). An advantage
of using a rate–independent model coupled with a small strain assumption is the
numerical efficiency which is crucial when simulating hundreds of cycles under var-
ious load amplitudes. In addition, it has been decided to use exclusively kinematic
hardening because it governs ratcheting and mean stress relaxation. Face centered
cubic (fcc) single crystal metallic materials comprising n plastic slip systems, each
having a slip system direction ℓs and a normal to the slip plane ns are considered.
The partition of the strain tensor introduces elastic and plastic parts:

ε = εe + εp (2.1)

The Hooke law relates the stress tensor to the elastic strain tensor. For cubic
elasticity, a fourth rank tensor of elastic moduli C, involving three independent
parameters, governs the elastic behavior:

σ = Cεe (2.2)

The plastic strain rate results from the slip processes with respect to all active slip
systems,

ε̇p =
n
∑

s=1

γ̇sms (2.3)

with ms being the Schmid orientation tensor defined as

ms =
1

2
(ℓ⊗ ns + n⊗ ℓs) (2.4)

The amount of slip on each slip system is denoted by the variable γs. The driving
force for plastic slip on slip system s is the resolved shear stress, computed using
the Cauchy stress tensor (σ) according to:

τ s = σ : ms = σijm
s
ij (2.5)

The yield criterion is a generalization of Schmid’s law involving scalar hardening
variables rs and xs according to Méric et al. (1991).

f s(σ, xs, rs) = |τ s − xs| − rs (2.6)

Here, rs denotes the radius of the elastic domain and xs is a scalar back-stress char-
acterizing the center of the elastic range in the one-dimensional space of resolved
shear stresses. In slip based crystal plasticity, there are n such elastic ranges.
Plastic slip can occur only if the function f s becomes positive. The viscoplastic
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flow rule given by Cailletaud et al. (1991), is proposed in terms of the viscosity
parameters, K and n:

γ̇s =

⟨

f s

K

⟩n

sign(τ s − xs) (2.7)

with the Macaulay brackets < x >= Max(x, 0). In the present work following
Forest and Rubin (2016), the rate of slip on each slip system is replaced by a
rate-independent formulation of the form:

γ̇s = ε̇

⟨

f s

K

⟩

sign(τ s − xs) (2.8)

where K is a positive constant having now the unit of stress and ε̇ is a non-negative
homogeneous function of order one in the total strain rate. In this model, ε̇ is taken
to be the total equivalent distortional strain rate:

ε̇ =

√

2

3
ε̇′ : ε̇′, ε̇′ = ε̇− 1

3
(trace(ε̇))1 (2.9)

where ε′ is the deviatoric part of the total strain rate tensor ε̇ and 1 the unit.
Since the rate of inelasticity is linear in the total equivalent strain rate ε̇, all
the evolution equations in the proposed theory are homogeneous of order one in
time, characterizing a rate-independent response. Also, the rate of inelasticity is
used for all states entailing no need for special treatment of loading and unloading
conditions. In particular no consistency condition is needed in contrast to standard
rate–independent plasticity. The amplitude of the overstress is controlled by the
value of parameter K. It tends to zero for vanishing values of K. There is no
indeterminacy in the selection of active slip systems according to the present model.
The functional form of f and the evolution equations for isotropic (rs) as well
as kinematic (xs) hardening remain unchanged compared to the original model
(Cailletaud et al., 1991). The accumulated slip variable vs is defined for each slip
system by the following evolution equation:

v̇s = |γ̇s| (2.10)

The evolution equations for the kinematic hardening variable is taken from Méric
et al. (1991) and Busso and Cailletaud (2005) without modification. The nonlinear
kinematic hardening evolution law

ẋs = Cγ̇s −Dv̇sxs (2.11)

depends on two material parameters, C and D. In the present chapter, there
is no isotropic hardening so that the variable rs has a constant value r0, which
corresponds to the initial resolved shear stress.
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Two crystal plasticity parameter sets were chosen, as stated in table 2.2, where
the saturated resolved shear stress is the same (i.e. r0 + C/D = 420 MPa for both
parameter sets); The difference however lies in the flipping of kinematic hardening
and initial critical resolved shear stress. Parameter set ’LK’ has a low kinematic
hardening but a high initial critical resolved shear stress resembling aerospace
alloys such as Inconel where the saturated value of the kinematic hardening variable
is around one third of the initial yield stress. Parameter set ’HK’ resembles an alloy
with a low yield stress and a strong hardening such as copper where the saturated
value of the kinematic hardening variable is three times that of the initial yield
stress (Siska et al., 2007). Both parameter sets pertain to unit cells made of FCC
crystals deforming plastically on octahedral slip systems {111}⟨110⟩. The slip
systems, as ordered in the implicit simulation software Z–set package (2013), are
given in table 2.1.

Slip system Slip plane normal Slip direction

1 (111) [101]
2 (111) [011]
3 (111) [110]
4 (111) [101]
5 (111) [011]
6 (111) [110]
7 (111) [011]
8 (111) [110]
9 (111) [101]
10 (111) [110]
11 (111) [101]
12 (111) [011]

Table 2.1: The 12 octahedral FCC slip systems numbered in the same order as
they are defined in the code

2.3 FE model description

The numerical model was implemented in the implicit finite element solver Z–set
package (2013). Literature findings show that the macroscopic representation of a
micro-heterogeneous metallic material can be achieved with as few as one hundred
grains (Barbe et al., 2001; Kanit et al., 2003), but matching macroscopic properties
is not the goal. The goal here is to have a large enough statistical database so
that local material response can be analyzed. Of course computational limitations
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have to be acknowledged and extremely large polycrystals cannot be used. For this
reason the microstructure generated is called a volume element (VE) as opposed to
representative volume element (RVE). Two aggregates containing equiaxed grains,
respectively called VE1 and VE2, were generated using the Voronoi tessellation
technique with the help of the software VORO++ (Rycroft, 2009). A periodicity
constraint was applied to obtain periodic microstructures. The software Gmsh was
used to mesh both geometries, enforcing conditions of periodicity for the obtained
meshes. Both aggregates contain 300 grains and reduced quadratic tetrahedral
elements C3D10. The mesh of VE1 contains 194903 nodes and 130171 elements
whereas the mesh of VE2 is made of 192042 nodes and 128166 elements (see figure
2.1 (a) and (d)). Each tetrahedral finite element has 10 nodes and 4 Gauss points.

The grain sizes in both VEs (as seen in figure 2.1 (b) and (e)), have a normal
distribution with the crystal orientations uniformly distributed in the polycrystal
(figure 2.1 (c) and (f)).

- Parameter set LK Parameter set HK

Cubic elasticity
C1111 = 259600 MPa C1111 = 259600 MPa
C1122 = 179000 MPa C1122 = 179000 MPa
C1212 = 109600 MPa C1212 = 109600 MPa

Critical resolved shear stress r0 = 320 MPa r0 = 100 MPa

Kinematic hardening C = 100000 MPa C = 320000 MPa
D = 1000 D = 1000

Overstress K = 9 MPa K = 9 MPa

Table 2.2: Crystal plasticity parameters used for both parameter sets. The satu-
rated resolved shear stress is the same for both parameter sets; The difference being
that parameter set LK has a low kinematic hardening and high critical resolved
shear stress and vice versa.

Computational requirements

The implicit finite element code (Z–set package, 2013) is used to solve the problem.
The global equilibrium is solved using a Newton-Raphson algorithm. Integration
of constitutive equations at the Gauss points is performed using the second order
Runge-Kutta method with automatic time stepping (Besson et al., 2009). For
a crystal plasticity simulation, loading one job of the present size requires 31.5
gigabytes RAM. The MPI parallel computing algorithm implemented in Zebulon





CHAPTER 2. RATCHETING AND MEAN STRESS RELAXATION 32

is used with 4 processors for each job. Each job requires around 24 hours to
complete one cycle and to run one hundred cycles, it required 100 days each.
More than 320 simulations are being post-processed for this chapter, while the
actual number of calculated test cases is at least fifty times more than this. Given
the number of DOFs of each mesh and the cyclic nature of the problem, data of
more than 20 TBytes were generated.

Boundary conditions

In the article, ε will be used to refer to the local strain tensor, and E will point to
the macroscopic symmetric second-rank strain tensor defined as the average strain
over the whole volume:

< ε >=
1

V

∫

V
εdV = E (2.12)

Similarly, σ will be the local stress tensor and the macroscopic stress Σ will be
defined as its spatial average as follows:

< σ >=
1

V

∫

V
σdV = Σ (2.13)

Periodic boundary conditions were prescribed on the VEs such that the displace-
ment vector field u over the entire volume takes the form:

u = E.x + v ∀x ∈ V (2.14)
where the fluctuation v is periodic. This fluctuation takes the same value for each
pair of homologous points at ∂V . Anti-periodic boundary conditions are prescribed
to the traction vector σ.n where n is the outer normal to ∂V at x. The displacement
and traction vectors are assumed to be continuous at the grain boundaries. For
strain ratcheting, the macroscopic stress component Σ11 was imposed, whereas for
mean stress relaxation the macroscopic strain component E11 was controlled. In
both cases, all remaining volume averaged stress components are fixed to zero i.e.
Σ22,Σ33,Σ12,Σ23,Σ31 = 0.

2.4 Results at macroscopic scale

This section presents the results obtained at a global level by averaging the stress
and strain fields on the whole aggregate. Two loading types are investigated leading
to ratcheting and mean stress relaxation respectively. In each case, the response
obtained with a single crystal is given as an elementary reference.
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2.4.1 Ratcheting in single crystals

The simulations of this subsection are performed at the material point level as-
suming homogeneous deformation. A uniaxial cyclic stress was imposed on the
material element. Depending on the stress amplitude (∆Σ/2) and the mean stress
Σ̄, the resulting cyclic behavior can be broken down into three distinct responses
i.e. elasticity, elastic shakedown and ratcheting. Figure 2.2 depicts these regimes in
a stress amplitude (∆Σ/2 = (Σmax−Σmin)/2) vs mean stress (Σ̄ = (Σmax+Σmin)/2)
diagram. From figure 2.2, it can be seen that elastic shakedown refers to the ma-
terial deforming plastically during the first few cycles and the subsequent response
being elastic. Ratcheting in a single crystal is the progressive accumulation of
strain per cycle without stopping, as signified by the red region. So depending on
the loading type, a single crystal is bound to either ratchet or elastically shake-
down. A missing region, as opposed to experimental observations, is that of plastic
shakedown, which refers to an open stress-strain hysteresis loop which does not
move forward on the strain axis. These three regimes can be classified as follows:

• Elastic if ∆Σ/2 is smaller than the yield strength

• Shakedown if ∆Σ/2 is smaller than the combination of the yield strength
and the saturated isotropic hardening

• Ratcheting if ∆Σ/2 is greater than the combination of the yield strength and
the saturated isotropic hardening

Two single crystal response have been shown in 2.3 using the parameter set LK,
where (a) and (b) show the responses of the orientation [001] and [111]. It can
be seen that the regions which ratchet and shakedown preserve a constant ratio
among each other, while the size of the whole diagram changes depending on the
crystallographic orientation.

2.4.2 Ratcheting in polycrystals

In this section simulations were run on polycrystal aggregates as shown in figure
2.1. A periodic macroscopic stress (Σ11) was imposed on polycrystalline volume
element periodic boundary conditions. Two stress strain curves pertaining to the
two parameter sets are shown in figure 2.4. The boundary conditions for both
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Figure 2.2: Under asymmetric load control, the single crystal response which shows
three distinct regions i.e. elastic, shakedown and ratcheting
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Figure 2.3: Under asymmetric load control, using parameter set LK, a single
crystal response for crystallographic orientations: (a) [001] (b) [111]
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simulations are kept the same where Σmax = 1020 MPa and RΣ = −0.7 (RΣ =
Σmin/Σmax) and the first ten cycles are plotted for both simulations. From the
plot it can be seen that the curve for parameter set HK ratchets much more than
the curve for parameter set LK because of the presence of a much higher kinematic
hardening in the former.
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Figure 2.4: For an asymmetric load controlled test, stress (Σ11) vs strain (E11)
curves for both parameter sets. The loading conditions are kept the same for both
i.e. Σmax = 1020MPa and RΣ = −0.7. Only the first ten cycles are plotted in each
case.

Both simulations ratchet at a different rate and comparing the accumulated axial
strain can give a misleading estimation of what is ratcheting and what is shake-
down. The same argument is valid for tests done at different amplitudes or loading
ratios. Also, for a polycrystal, no matter how high the applied loading, the incre-
ment in accumulated strain ∆E = En+1 − En always tends to decrease. This calls
for the formulation of a robust test for discriminating ratcheting from shakedown.
A test is proposed such that the delta accumulated strain per cycle is plotted
(∆E11) against the number of cycles and identified with a power law series in the
form:

E11(N) = A
N
∑

n=1

1

nα
(2.15)

where α is the slope of the series. The condition α > 1 is required for the power
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law series to converge. It follows that

the test series






converges, if α > 1.

diverges, if α ≤ 1.
(2.16)

The left plot in figure 2.5 shows 3 simulations that were run for parameter set LK
for three different stress amplitudes. For comparison, a slope of -1 is also plotted
on the left corner. The series test was performed after running the simulations
for a hundred cycles each. There is a clear difference between a curve that will
converge (shakedown) or one that will diverge (ratchet). As a second criterion,
the second derivative at cycle 100 is also computed for all curves which indicates
the convexity (ratcheting) or concavity (shakedown) of the curves. After applying
the convergence or divergence criteria, the converging test cases are broken into
two parts depending on whether or not the width of the stress strain loop is open
or closed at cycle 100. An open loop signifies that there is plastic shakedown,
whereas a closed loop points to elastic shakedown. A small offset of tolerance
is needed to establish what is meant by a closed loop. In the present work, the
tolerance for the width of the loop at its mean stress is set to be δ = 1.0 × 10−6.
The right hand plot in figure 2.5 shows the macroscopic stress vs strain response
for three selected cases at the first and at the hundredth cycle. It can already be
established that the red curves are diverging while the green and blue curves are
converging. Multiple simulations are run, on the polycrystal aggregates, at various
load amplitudes and mean stresses for a hundred cycles each. Then the evolution of
macroscopic strain in each simulation is assessed using the series comparison test,
and a diagram similar to that of figure 2.2 is drawn for four cases i.e. for both VEs
and for both parameter sets. Figure 2.6 shows that this diagram differs from the
single crystal case. Four regions can be seen i.e. elastic, elastic shakedown, plastic
shakedown and ratcheting instead of three in the single crystal case. The elastic
region is determined using the plasticity criterion for metals of a yield strength
of 0.2% plastic strain Ep, and is characterized by the gray region. The maximum
stress limit for the polycrystal is computed by applying a macroscopic strain of
4%, the resulting stress being taken to be the limit above which the material
cannot be loaded i.e. the top and bottom right corner of each plot in figure 2.6.
In the same figure, the dots are found to concentrate into three regions, namely
elastic shakedown, plastic shakedown and ratcheting respectively. For parameter
set LK, the region in which ratcheting and plastic shakedown occur is very small
because of the low kinematic hardening. Parameter set HK, on the other hand,
leads to a much larger region for plastic shakedown and ratcheting. It should
however be noted that the diagrams of figure 2.6 (a) and (b), as well as (c) and (d)
are very similar signifying that it is both VEs can be regarded as representative
microstructures capable of reproducing the typical cyclic mechanical behavior of
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the material.
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Figure 2.5: For asymmetric load controlled tests, the left figure shows the evolution
of the ratcheting strain increment as a function of cycle number for 3 polycrystal
simulations using parameter set LK, with three different stress amplitudes. The
macroscopic stress (Σ11) vs strain (E11) plot is shown on the right for three simu-
lations showing the cyclic response at cycles 1 and 100. The simulations selected
illustrate the elastic shakedown, plastic shakedown and ratcheting phenomena.

2.4.3 Mean stress relaxation in single crystals

Under asymmetric cyclic strain control, the mean stress relaxes to a certain value
when increasing the cycle number. At the macroscopic level, this mean stress Σ̄11,
defined as (Σmax + Σmin)/2, where Σmax and Σmin are the maximum and minimum
stresses under peak strains. In this case, a single crystal cyclic response can be
broken down into three distinct scenarios which are represented in figure 2.7 (a)
and (b). Focusing on figure 2.7 (a), the first scenario shows the elastic regime
where cyclic loading will have no effect on the cyclic mean stress redistribution.
To remain in this regime plasticity has to be avoided i.e. the applied maximum
strain (Emax) should be:

Emax <
Σy

Y
, (2.17)

where Σy is the stress at which yielding starts and Y is the Young’s modulus of
the single crystal in the loading direction. Next, in the second scenario plasticity
is observed only during the first tensile loading but upon unloading immediately
after, elastic response is observed in the following cycles. To characterize the
second scenario, the loading ratio RE is defined as:

RE =
Emin

Emax

, (2.18)
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where Emin is the minimum applied strain. Then, the maximum applied strain
Emax in the second regime should be in the following interval:

Σy

Y
< Emax <

2Σy

Y (1 −RE)
, (2.19)

in the absence of isotropic hardening. Finally in the last regime, the mean stress
relaxes to zero and the maximum applied strain should be:

Emax >
2Σy

Y (1 −RE)
. (2.20)

Fig. 2.7 (b) then depicts the curve of the mean stress at saturation vs maximum
applied axial strain. The first scenario corresponds to the initial straight line with
a slope of Y (1 − RE)/2; The second scenario depends on the type of kinematic
hardening, and finally in the third scenario, a zero mean stress is found.

Figure 2.7: For a single crystal under asymmetric strain controlled loading, (a)
stress vs strain plot showing the three scenarios of cyclic mean stress relaxation,
and (b) mean stress at saturation vs maximum axial strain plot.

Example: analytic computation of mean stress relaxation in
a single crystal

The following example pertains to FCC single crystals where the goal is to impose
a strain based cyclic load and calculate the stress at the peak and valley of each
cycle. For ease of analytic computation a purely elasto-plastic model is formulated
as follows. The total applied strain (εtotal) can be broken down into its elastic (εe)
and plastic (εp) part:

εtotal = εe + εp (2.21)
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and the elastic strain can be substituted by the macroscopic stress (σ) as follows:

εtotal =
σ

E
+ εp (2.22)

Speaking in terms of the slip rate (γ̇), the plastic strain is defined as:

εp =
n
∑

s

γsms (2.23)

where n is the number of slip systems, and ms is the Schmid factor for an individual
slip system. For an FCC single crystal oriented at [001], eight octahedral slip
systems are active, each having an identical Schmid factor of ”

√
6”, which gives a

plastic strain of:

εp = 8 × γ√
6

(2.24)

It is also known that the macroscopic stress is equal to:

σ = τ s ×ms, (2.25)
where τ s is the resolved shear stress for any arbitrary slip system s. Substituting
equations 2.24 and 2.25 into equation 2.22, the following is obtained:

εtotal =

√
6τ

E
+

8γ√
6

(2.26)

Here, the path breaks into two routes: tension and compression.

Tension

For the tensile case, the kinematic hardening state variable (α) evolves as follows:

α̇s = (1 −Dαs)γ̇ (2.27)
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where D is the kinematic hardening material parameter. Integrating this relation,
the following is obtained:

αf =
(Dαi − 1) exp[D(γi − γf )] + 1

D
(2.28)

where the subscripts f and i are short for final and initial state. The evolution of
the resolved shear stress for the tensile case will be as follows:

τ = Cα+ τy (2.29)
where C is the kinematic hardening material parameter, and τy is the critical
resolved shear stress. Rearranging 2.26 and substituting it and equation 2.28 into
equation 2.29, the following is obtained:

τf =
C

D

[

(Dαi − 1) exp

[

D

(

γi −
(√

6εmax

8
− 3τf

4E

))]

+ 1

]

+ τy (2.30)

τf is then solved iteratively using the Newton-Raphson algorithm.

Compression

For the compressive case, the kinematic hardening state variable (α) evolves as
follows:

α̇s = (1 +Dαs)γ̇ (2.31)
where D is the kinematic hardening material parameter. Integrating this relation
will result in:

αf =
(Dαi + 1) exp[D(γf − γi)] − 1

D
(2.32)

The evolution of the resolved shear stress for the compressive case will be as follows:

τ = Cα− τy (2.33)
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Rearranging equation 2.26 and substituting it and equation 2.32 into equation
2.33:

τf =
C

D

[

(Dαi + 1) exp

[

D

(

−γi +

(√
6εmax

8
− 3τf

4E

))]

− 1

]

− τy (2.34)

τf is then solved iteratively using the Newton-Raphson algorithm.

For a single crystal, the three regimes in asymmetric cyclic loadings can be quan-
tified in terms of maximum strain amplitude as follows:

Regime 1
Regardless of the loading ratio, the maximum applied strain should be:

εmax <

√
6τy

E

<

√
6.00 × 320.00

113494.12
< 0.69%

Regime 3
The maximum strain needed for redistribution depends on the loading ratio and
in this a loading ration of R = −0.2 has been selected. Hence, εmax should be:

εmax >
2
√

6τy

E(1 −R)

>
2.00

√
6.00 × 320.00

113494.12(1.00 − (−0.20))

> 1.15%

Regime 2
In this regime, εmax should be between that calculated for the first and third regime
i.e.

0.69% < εmax < 1.15%





CHAPTER 2. RATCHETING AND MEAN STRESS RELAXATION 44

-50

 0

 50

 100

 150

 200

 250

 300

 350

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

M
e
a
n
 s

tr
e
s
s
 a

t 
s
a
tu

ra
ti

o
n
 (

M
P
a
)

Strain amplitude (%)

Analytic
Finite element

Figure 2.9: Comparison of the saturated mean stress between the analytic and
finite element solution for a single crystal oriented at [001]
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Figure 2.10: Under asymmetric strain controlled boundary conditions on VE 1,
stress (Σ11) vs strain (E11) plot for both parameter sets with RE = -0.2, and E11

= 0.85%. Responses were extracted at cycles 1 and 100 for both parameter sets.
Cyclic mean stresses (Σ̄11) are also given for each case respectively.
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According to Fig. 2.11, the response of the polycrystal can be characterized by
the mean stress vs maximum axial strain diagram. Each point represents one
simulation, with 100 cycles each, and a total of 21 simulations were run ranging
from E11 = 0.3% to 1.3% with R = −0.2 for parameter set LK and VE 1. Similarly,
21 simulations ranging from E11 = 0.11% to 1.31% with R = −0.2 were performed
for parameter set HK and VE 1. Figure 2.11 (a) and (b) show the response for
parameters set LK and HK. It can be seen how the cyclic mean stress relaxes
with the number of cycles. The response of a single crystal oriented at ⟨001⟩ is
also plotted for both parameter sets for comparison. For both parameter sets, it
was found that a steady state was achieved at cycle 100. Figure 2.11 (c) and (d)
shows the response of both VEs for each parameter set at cycle 1 and 100. It can
be seen that parameter set LK does not lead to mean stress relaxation to zero
even at a high maximum axial strain. In contrast the material with parameter
set HK relaxes to zero for E11 = 0.5%. It can be seen that, when compared to a
single crystal, the polycrystal response displays a smooth transition between the
three scenarios which conforms to experimental findings (Chaboche et al., 2012).
In addition, both VEs produce a similar response suggesting that the considered
volume elements are representative with respect to this macroscopic response.

2.5 Analysis of local results

Attention is now focused on intragranular response of the material. Two types of
local results are considered here, namely contour plots of stress and plane strain
fields, as well as Gauss point statistics. For the contour plots, VE 1 and 2 are
sliced at x = 0.5, as depicted in figure 2.12.

2.5.1 Local ratcheting behavior

The results of one stress controlled simulation up to 100 cycles with Σ11 = 1021
MPa and RΣ = −0.7 for both VE 1 and 2 are analyzed. They are plotted in figure
2.13 at the time step corresponding to the tensile peak of the one hundredth cycle.
An overlay of the grain boundaries is also superimposed on top of each contour
map to make the observations easier to interpret. Eight contour plots are shown
for the following field variables:
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Figure 2.11: Mean stress relaxation in polycrystals (a) VE 1, parameter set LK,
(b) VE 1 parameter set HK, (c) comparison of VE 1 and 2 for parameter set
LK and HK at cycle 1, (d) comparison of VE 1 and 2 for parameter set LK and
HK at cycle 100. Comparison with single crystal response with lattice orientation
< 001 >, for figures (a) and (b).
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Figure 2.12: A slice of VE 1 and 2 along the 2-3 plane, at x = 0.5
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• von Mises strain εvM =

√

2

3
ε′

ij
ε′

ij
, where ε′ is the deviatoric part of the local

strain tensor,

• equivalent plastic strain εp
eq =

√

2

3
εp

ijε
p
ij

• accumulated plastic strain εacc =
∫ t

0

√

2

3
ε̇

ij
ε̇

ij
dt,

• von Mises stress σvM =

√

3

2
σ′

ij
σ′

ij
, where σ′ is the deviatoric part of the local

stress tensor,

• stress triaxiality σtri =
σ

ii
/3

√

3
2
σ′

ij
σ′

ij

,

• number of active slip systems:
(

N
∑

s=1

|γs|
)

/ max
s=1,N

(|γs|), where s is the slip

system,

• maximum axial Schmid factor per grain mmax = max
s=1,N

(|ms|), where ms =

(ns.t)(ls.t), t being the tensile direction and s the slip system. This factor is
computed assuming uniaxial tension.

• total axial Schmid factor per grain mtotal =
N
∑

s=1

|ms|.

For both VEs, the von Mises strain and equivalent plastic strain maps in Fig. 2.13
show that both quantities have very similar maps and it can be seen that they
concentrate in some regions of the microstructure. These regions do not specifically
conform to any specific grain or orientation. Similar observation is made for the
accumulated plastic strain map. One important feature from the accumulated
plastic strain map is the extreme heterogeneity with locations experiencing very
little plastic strain accumulation, and regions of accumulated plastic activity as
high as 55%. Looking at the von Mises stress plot, it can be seen that there is
much less heterogeneity, at least when compared to the strain plots. The von
Mises stress scale begins at 800 MPa and even at this scale, not many regions can
be seen to have such low stresses. Nonetheless, the von Mises stress seems to obey
morphological constraints such as grains and grain boundaries, in contrast to other
quantities. The same holds for the stress triaxiality plot. The map of the number
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of active slip systems is also given in Fig. 2.13. This variable ranges in principle
from 1 to 12. However, it can be seen that the estimated number of activated
slip systems does not reach such large values but mostly remains between 1 and
3. The plot shows that a value of 1 is observed mostly at the core of the grains
where a single slip system is active. On the other hand, darker regions of the active
slip system plot exist at the grain boundaries where different grains interact and
multislip is likely. Lastly, two plots for the Schmid factors are provided in Fig.
2.13: the maximum axial Schmid factor mmax and the total axial Schmid factor
mtotal. A high value of mmax indicates that the grains are rather soft, meaning
that they experience low stress values. No clear correlation can be seen between
the mmax map and the previous stress and strain maps. In contrast, interesting
observations can be made from the mtotal map. The variable mtotal is the sum of all
Schmid factors for unixial tensile direction. This quantity, is another indicator of
multislip activity. A clear correlation can be seen between the mtotal map and the
field of von Mises stress. Wherever there is a high value of the von Mises stress,
mtotal is low and vice versa.

Observation of local ratcheting phenomena

Up till now the series comparison test to detect ratcheting or shakedown has been
applied to the macroscopic averaged results. In this section the test is applied
to each element of the finite element mesh in order to detect local ratcheting
phenomenon. The elements which ratchet are then displayed in red while those
which exhibit shakedown are shown in blue. For the application of this test, three
simulations are selected for from the asymmetric stress controlled batch (VE 1,
parameter set LK) after running 100 cycles. All three have the same loading ratio
of RΣ = -0.7 while the maximum applied stress varies as follows:

1. Σ11 = 849 MPa, macroscopic shakedown, 1.9% of ratcheting volume

2. Σ11 = 983 MPa, macroscopic shakedown, 29.0% of ratcheting volume

3. Σ11 = 1021 MPa, macroscopic ratcheting, 53.8% of ratcheting volume

Using the series comparison test for ratcheting and shakedown, the first two cases
display macroscopic shakedown while the third exhibits macroscopic ratcheting.
Figure 2.14 elaborates this further where the three aforementioned cases are shown.
The first line shows the whole VE. In the second line of the figure, only the finite
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Figure 2.13: (b) For VE 2, contour plots of a simulation with Σ11 = 1021 MPa,
and asymmetric load with RΣ = −0.7 after running one hundred cycles, extracted
at the maximum stress of the one hundredth cycle. The contour plots show the
von Mises strain, accumulated plastic strain, von Mises stress, stress triaxaility,
maximum slip divided by total slip, and the axial highest Schmid factor, and the
total Schmid factor.



CHAPTER 2. RATCHETING AND MEAN STRESS RELAXATION 52

elements of the volume which undergo ratcheting can be seen for all three loads.
The third line shows a 2D slice with the ratcheting and shakedown regions. It
seems that the regions that ratchet do not conform to grain morphology or any
particular locations and are rather random in nature.

It can be seen that the ratcheting zones of the polycrystal tend to percolate to
form a connected ratcheting domain when increasing the applied stress and be-
fore macroscopic ratcheting is observed. The volume fraction of the percolating
ratcheting zone has been determined following the method proposed in Kanit et al.
(2006) and was found to reach full percolation for the two higher loads illustrated
in Fig. 2.14. In contrast, in the left column of Fig. 2.14 for lower load values,
isolated islands of ratcheting are observed. No direct link could be derived between
the corresponding percolation threshold and the occurrence of plastic shakedown
or ratcheting.

Probability density distributions

Figure 2.15 presents Gauss point distribution plots for Σ11 = 1021 MPa, and
RΣ = -0.7. Both VEs are considered: The solid line represents VE 1, while the
dotted line represents VE 2. To show the evolution of each variable with respect
to cycle number, the statistics are collected at the tension peak of cycles 1, 10 and
100. In figure 2.15(a), the histogram plot of von Mises stress shows a multi-modal
distribution where the peaks can be seen to progressively split as the number of
simulated cycles increases. This point will be analyzed in the next paragraph and
in the next two figures. With regards to the accumulated plastic strain according
to Fig. 2.15(c), it can be seen that for the first cycle, the distributions are first
unimodal but as the cycle number increases, a hump is produced in the left part
of the curves. This will be characterized later in this article. Looking at the von
Mises strain distribution, it can be seen that, with an increase in the number
of cycles, the curves translate along the strain axis, as a result of the ratcheting
phenomenon. The standard deviation of von Mises strain is found to increase with
the cycle number. Regarding the stress triaxiality, the standard deviation similarly
increases with the cycle number. Lastly, the number of active slip systems can be
seen to be less than six and with the progression of cycles, single slip starts to
dominate. The representativity of the results is confirmed by the fact that all the
dotted and solid lines corresponding to VE 1 and 2 are close to each other. An
exception is the von Mises strain distribution plots for which slight deviations are
observed, which shows a slightly different ratcheting intensity of each volume. The
intensity of ratcheting surely is a very sensitive result of polycrystalline material
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Figure 2.14: Three different asymmetric stress controlled simulations with Σ11 =
849 MPa, Σ11 = 983 MPa, and Σ11 = 1021 MPa, and RΣ = -0.7 for all cases (VE
1, parameter set LK). Macroscopically, the first and second shakedown while the
third ratchets. Local regions for ratcheting and shakedown (per finite element) are
respectively shown in red and blue for each case.
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response. More precise estimates would require the consideration of additional
volume elements.
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Figure 2.15: Distribution curves of Gauss point variables for an asymmetric stress
controlled test using parameter set 1, RΣ = -0.7 and Σ11 = 1021 MPa. The
variables shown are (a) von Mises stress (b) von Mises strain, (c) accumulated
slip, (d) accumulated plastic strain, and (e) stress triaxiality.
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Evidence of bimodal stress distribution

As seen in figure 2.15, the von Mises stress probability distribution curves exhibit
a multimodal distribution. This fact has already been observed by several authors
using crystal plasticity simulations (Osipov et al., 2008; Schwartz et al., 2013; Lee
et al., 2011; Choi et al., 2012). What is missing is a detailed analysis showing the
origin of this phenomenon. Figure 2.16 shows the von Mises stress distribution
curve taken at the tensile peak of the 100th cycle for Σ11 = 1021 MPa and RΣ

= -0.7. Two distinct peaks can be seen in the distribution arbitrarily separated
by a dashed line. This separation makes it possible to split the polycrystalline
volume into two parts, the first (resp. second) one containing the Gauss point
displaying a von Mises equivalent stress lower (resp. larger) than this separation
value. The volume fractions in each peak are then shown in the 3D and 2D views
of Fig. 2.16, with a gray (resp. black) color corresponding to the first (resp.
second) peak. It can be noted that the black and grey regions contain mostly
full grains, i.e. each grain is either completely black or grey. Of course there
are some exceptions where some grains are split into grey and black zones. They
reflect the fact that the distribution curve of von Mises stress was split arbitrarily
and the region between the two black dotted lines in the histogram of figure 2.16
has overlapping points. The observation of the total axial Schmid factors plot of
figure 2.13 indicates that the black regions correspond to hard grains, and the grey
regions correspond to soft grains. It is concluded that the polycrystal aggregate
progressively splits into main regions of high and low stresses strongly correlated
with the hard/soft character of the grains.

Evidence of bimodal accumulated plastic strain distribution

Bimodality is also observed in the distribution of accumulated plastic strain or
accumulated slip in figure 2.15(c,d), when the number of simulated cycles increases.
This is not always the case. Figure 2.17 shows the Gauss point results from five
simulations. These simulations pertain to parameter set HK, Σ11 = 284, 368, 452,
536, 620 MPa, and RΣ = 0. The trend that can be seen in log accumulated plastic
strain plot distribution curves of these plots is that the first and last plots (Σ11

= 284 and 620 MPa) are unimodal regardless of the number of simulated cycles
while the other three plots start with one peak and then split into two peaks. This
bimodality represents two regions that develop inside the polycrystal: a first where
shakedown occurs and the second where ratcheting takes place. It can also be seen
that the volume of these regions depends on the applied load.
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Most importantly, it is noted that this bimodality does not always appear. It
is therefore possible to draw a diagram of the existence of bimodal accumulated
plastic strain distribution depending on the applied stress amplitude and mean
stress. This is done in Fig. 2.18 taking the already performed simulations for
VE 1 and parameter set HK. The obtained modality diagram of Fig. 2.18 can
be compared to the ratcheting diagram of Fig. 2.6 based on the series criterion.
It is remarkable that the domain of bimodality is found to almost coincide with
the domain of plastic shakedown. This major finding suggests that stable bimodal
plastic strain distributions correspond to a transition regime between shakedown
(elastic or plastic) and ratcheting material response. This feature can be also be
used as a criterion for the detection of plastic shakedown replacing or in addition
to the series convergence criterion. This conclusion is confirmed by the results of
VE 2 (modality map not provided here for conciseness).
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Figure 2.17: Probability distribution curves for the accumulated plastic strain in
five simulations with RΣ = 0 and Σ11 = 284 - 620 MPa, using parameter set HK.
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Figure 2.18: Modality diagram for parameter set HK, VE 1. It characterizes the
existence of unimodal or bimodal distributions of accumulated plastic strain. All
values are in MPa
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2.5.2 Mean stress relaxation

The analysis of the local results must also be performed for other loading condi-
tions. Such an analysis is performed in this section in the case of strain controlled
tests in order to characterize some microstructural features associated with mean
stress relaxation. For the next three figures a strain controlled simulation for VE 1
with parameter set LK and RE = -0.2 and E11 = 0.85% is considered. The results
plotted pertain to the tensile peak of the 100th cycle. The contour plots of figure
2.19 can be compared with those of figure 2.13 (a) (stress controlled compared to
strain controlled). It can be seen that both are very similar. In particular, the map
of the von Mises strain shows that the most deformed grains are almost the same
for both simulations, except that the strain controlled simulation leads to much
lower strain values. The following definition of a local mean stress is proposed:

((σt
11 + σt

22 + σt
33) + (σc

11 + σc
22 + σc

33))/2 (2.35)

where the subscripts t ans c indicate that the variables were collected at the macro-
scopic tensile or compressive peak of their cycle. The observation of the mean
stress plot indicates that it concentrates at the grain boundaries or at triple junc-
tions, and is less prone to be high within the grains. It is hypothesized that
this intergranular interaction prevents the mean stress from relaxing to zero in a
polycrystal.

Next, in table 2.3 a quantitative analysis of the interdependence of some constitu-
tive variables is done using the Pearson correlation coefficient (ρ1) (Rodgers and
Nicewander, 1988). This table is symmetric and only the upper half is presented
while labeling the lower half as ”sym”. The values of this coefficient range from
-1 (negatively correlated) to +1 (positively correlated), where attention should be
paid to the magnitude of the coefficient; a high magnitude signifies correlation
while low means no linear correlation. Also, figure 2.20 shows six selected scatter
plots for the relationship between these variables. Judging from these results, the
mean stress is strongly related to the stress triaxiality (ρ = 0.73) which is also, to
some extent, visible in the contour plots of figure 2.19. It can be argued that this
interdependence is because both quantities are stress measures, but this argument
is not valid when σvM is compared to σmean which gives a very weak interde-
pendence (ρ = -0.08). When comparing the von Mises stress with the maximum
axial Schmid and the total axial Schmid factor, a strong negative relationship can
be seen for both quantities but mtotal is dominant (ρ = -0.69) which postulates

1ρX,Y = cov(X,Y )
SX SY

where cov is the covariance between two random variables X and Y, SX is
the standard deviation of X, and SY is the standard deviation of Y.
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that slip does not just depend on the softest slip system, rather it depends on
the combination of multiple slip systems. The triaxial stress is weakly negatively
correlated to the von Mises stress (ρ = -0.31) which to some extent makes sense
because both quantities are stress measures and they must have a mutual depen-
dence. The strongest relationship of all variables is of the von Mises strain with
the accumulated plastic strain (ρ = 0.70), which is also obvious from the contour
plots.

σmean σvM σtri εvM εp
acc mmax mtotal

σmean 1.00 -0.08 0.73 -0.14 -0.13 0.00 -0.01
σvM sym 1.00 -0.31 -0.03 0.38 -0.41 -0.69
σtri sym sym 1.00 -0.07 -0.12 0.11 0.18
εvM sym sym sym 1.00 0.70 0.32 0.40
εp

acc sym sym sym sym 1.00 0.16 -0.08
mmax sym sym sym sym sym 1.00 0.62
mtotal sym sym sym sym sym sym 1.00

Table 2.3: Pearson correlation coefficient matrix for a simulation with E11 = 0.85%
and RE = −0.2 after running one hundred cycles, extracted at the maximum strain
of the one hundredth cycle.

It is well documented in literature that tensile mean stress decreases fatigue life
by increasing crack openings, whereas compressive mean stress inhibits fatigue
cracks because of the contrary (Morrow et al., 1974; Kwofie and Chandler, 2001;
Christ et al., 1997; Xia et al., 1996; Yuan et al., 2016). This is nonetheless a
hypothesis and is better explored in figure 2.19 which shows the interdependence
of different variables especially the mean stress, using scatter plots, for the same
simulation. Because the number of points is huge (0.5 million), to avoid clutter
only 8000 points are shown in the scatter plot. The plot for mean stress vs stress
triaxiality in figure 2.20 (c), shows a high correlation but this result is trivial
because both quantities are stress measures and are bound to give such a result.
On the other hand, rather curiously, as seen in (a) the von Mises stress does not
correlate to the mean stress. Another interesting finding is that as seen in (b),
von Mises stress and von Mises strain do not have a direct correlation, pointing
to the notion that highly stressed regions need not necessarily have high strains.
Similar findings have been reported for the scatter plot between stress and strain
inside the polycrystal using finite element crystal plasticity by Flipon et al. (2019)
signifying that the scatter plot, although seeming uncorrelated to the naked eye,
has in fact some underlying physical reason behind it, and it might be interesting
to work on why such a relationship exists. The Pearson correlation coeffecient
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fails to see a connection because it only gives linear correlations among different
variables. Next, the von Mises strain and the accumulated plastic strain are highly
correlated; this of course signifies that the regions which are highly strained will
produce the most plasticity but it also points to the fact that the instantaneous
value of the strain tensor is highly (but not completely) correlated to the plasticity
which has been accumulated up to this point. It may be interesting to find the
regions in which the remaining plasticity has dissipated.

The distribution curves for Gauss point variables are plotted in figure 2.21. The
solid lines represent VE 1 while dotted lines represent VE 2. Both VEs exhibit a
matching response which signifies good representativity of the material. The von
Mises stress plot shows the distributions curves translating back on the stress axis
which reflects the decrease of the average mean stress per cycle. Again, multi-
modality is observed for the strain based loading conditions as it was observed for
stress control in the previous section with regards to ratcheting. Von Mises strain
and stress triaxiality plots display somewhat similar distributions. The plot of the
number of active slips systems indicates that single slip gets more dominant as the
number of cycles increases. Accumulated slip and accumulated plastic strain ex-
hibit bimodal distributions as in the stress controlled case. The next figure sheds
some light on the development of bimodality in the context of mean stress relax-
ation test. Figure 2.22 shows the breakdown of bimodality in accumulated plastic
strain for parameter set LK, VE 1 and 2. It can be seen that for the first two cases
(a) and (b), the curves start as a unimodal distribution but then split into bimodal
distributions. Just like in the stress controlled case, these curves indicate that a
hundred cycles are not enough to reach a saturated response, as the bimodal peaks
are still splitting. The two peaks that form imply that the microstructure splits
into two regions, one in which plastic activity stops after some cycles (the first
stagnant peak), and the other accommodating all plastic deformation (the second
peak which keeps moving forward). At high strains, as shown in figure 2.22 (d),
the whole microstructure undergoes plastic activity resulting in a unimodal distri-
bution. It is hypothesized from the present observations that when the plasticity
distribution becomes unimodal, mean stress will relax to zero.

2.6 Simulations at high cycle numbers

The previous observations have been made from the hundred cycle response of
the polycrystalline aggregates. The objective of this last section is to check the
validity of the drawn conclusions at higher cycle numbers. Using crystal plasticity
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Figure 2.20: Scatter plots of Gauss point variables for an asymmetric strain con-
trolled test using parameter set LK and VE 1, RE = -0.2 and E11 = 0.85%. The
variables shown are (a) von Mises stress vs mean stress, (b) von Mises stress vs
von Mises strain, (c) stress triaxiality vs mean stress, (d) von Mises stress vs ac-
cumulated plastic strain, (e) accumulated plastic strain vs mean stress, and (f)
accumulated plastic strain vs von Mises strain. Each plot also shows the aver-
age macroscopic value of the variables with a red cross. The Pearson correlation
coefficient (ρ) is also stated for each scatter plot.



CHAPTER 2. RATCHETING AND MEAN STRESS RELAXATION 65

100 2× 100 3× 100 4× 100 6× 100
0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

10 4 10 3 10 2 10 1 100 101
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 2 10 1 100 101 102 103
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

10 2 10 1 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

600 800 1000 1200 1400 1600 1800
0.0

0.2

0.4

0.6

0.8

1.0

100
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Figure 2.21: Distribution curves of Gauss point variables for an asymmetric strain
controlled test using parameter set LK, RE = -0.2 and E11 = 0.85%. The variables
shown are (a) von Mises stress (b) von Mises strain, (c) accumulated slip, (d)
accumulated plastic strain, and (e) stress triaxiality.
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Figure 2.22: For VE 1 and 2, parameter set LK, distribution curves for the accu-
mulated plastic strain per Gauss point for four maximum axial strain values. (a),
(b) and (c) show a bimodal while (d) shows a unimodal distribution. (e) gives the
mean stress for different maximum axial strains at cycle 100.
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for low cycle fatigue, some authors have already simulated thousands of cycles
(Joseph et al., 2010; Zhang et al., 2015), but the results provided here for the first
time pertain to a finely meshed polycrystal aggregate under asymmetric loading
conditions. The mesh is fine enough to provide detailed distribution of local stress
and strain fields as illustrated in the previous sections. For instance the present
finite element meshes contain almost 600000 degrees of freedom (DOFs) for 300
grains to be compared with 150000 d.o.f. and 250 grains considered by Colas et al.
(2019) where more than 1000 cycles were simulated. Two cases are reported in this
section where the first case pertains to one simulation on VE 1 under asymmetric
strain controlled periodic boundary conditions with RE = -0.2, and E11 = 0.7
% run for 1500 cycles. Fig. 2.23 (a) and (b) illustrate the global mean stress
relaxation over the 1500 cycles. It can be seen that the cyclic mean stress does
not relax to zero even after 1500 cycles, and seems to have reached a saturated
value signified by the saturating curve of mean stress in (b). The accumulated
plastic strain plot of Fig. 2.23 (c) further confirms the bimodal distribution with
one part of the aggregate experiencing further plastic activity whereas the first
peak corresponds to an elastically accommodated region of the crystal. The same
trend was observed after 100 cycles and is continuing further after 1500 cycles.

It is instructive to compare the obtained results with a simulation involving a larger
number of grains at the expense of a coarse mesh. The objective is to confirm the
representativity of the presented results even though this feature was supported by
the consideration of VE 1 and 2. A new VE with 153 = 3375 grains and with one
single hexahedral quadratic element per grain is generated, see Fig. 2.24(a). Using
parameter set LK, asymmetric periodic strain loading of 0.6% and RE = -0.2 is
imposed. The simulation is run for 6000 cycles. Fig. 2.24(b) shows the macroscopic
stress strain response while (c) shows the accumulated plastic strain at the first,
hundredth and six thousandth cycles. It can be seen that the macroscopic stress
strain response does not change from the hundredth to the thousandth cycle but
the accumulated slip has the same bimodal response as observed in the previous
simulations. Just as before, the microstructure divides into two distinct regions:
one that stops accumulating plasticity, and the other which takes all the plastic
deformation indicating that these results are consistent with the study presented
in this chapter.
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Figure 2.23: Long cyclic simulation with asymmetric strain controlled boundary
conditions for VE 1, parameter set LK: E11 = 0.7 %, RE = -0.2. (a) The stress
strain hysteresis loops for cycles 1, 10, 100 and 1500. (b) Macroscopic mean
stress plotted against the number of cycles. (c) Gauss point distribution of the
accumulated plastic strain for different cycles.
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Figure 2.24: Using asymmetric strain controlled boundary conditions, with E11 =
0.6% and RE = -0.2 and parameter set LK: (a) a coarse meshed volume element
with 3375 grains and one quadratic element per grain, (b) The macroscopic stress
vs strain loops for cycles 1, 100 and 6000. (c) Accumulated plastic strain after the
three cyclic instances.
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2.7 Discussion

The motivation behind this article was to present the capabilities of the crystal
plasticity model to reproduce asymmetric cyclic responses of engineering metallic
materials. The phenomenon behind complex behavior was studied numerically
and links to the mechanics behind them were established. The idea was not to
match macroscopic curves but to represent that the different zones produced in
asymmetric cyclic experimental tests i.e. ratcheting, elastic shakedown, plastic
shakedown, and a complete or incomplete mean stress relaxation are obtainable
with the model.

In context to asymmetric stress controlled simulations, figure 2.6 presented dif-
ferent cyclic regimes experienced by polycrystals. These regimes i.e. ratcheting,
plastic shakedown and elastic shakedown, depend on the applied stress ampli-
tude and mean stress. For 316 stainless steel Pellissier-Tanon et al. (1982) have
presented experimental evidence for plastic shakedown and ratcheting. Similarly,
with an increasing mean stress, Park et al. (2007) presents experimental data for
ratcheting in Inconel 718, and Lim et al. (2009); Das and Chakraborti (2011) for
ratcheting in copper. For 316 and 304 steels, an important discovery by Goodman
(1984); Taleb and Keller (2018) was that increasing the stress amplitude under a
constant non-zero mean stress or increasing the applied mean stress under a given
stress amplitude, both increase the rate of ratcheting. Figure 2.6 in the present
article numerically characterizes these complex cyclic phenomena and gives an in-
sight of how a little variation in the applied stress can result in a switch between
shakedown or ratcheting. Of course, no explicit experimental comparisons were
been done but from the aforementioned literature sources it can be anticipated
that using the present model such mechanical regimes are reproducible.

In contrast, under asymmetric strain controlled loadings, depending on the ap-
plied strain amplitude, experiments usually present a non-zero cyclic mean stress.
For Inconel 718, this has been demonstrated experimentally by Prithivirajan and
Sangid (2018); Gribbin et al. (2016) whereas for steels Wehner and Fatemi (1991);
Nikulin et al. (2019) have shown such behaviour. In compliment, asymmetric strain
controlled experiments show that the mean stress relaxes to progressively lower
values with an increasing strain amplitude as shown for Inconel 718 by Chaboche
et al. (2012) and aluminum by Hao et al. (2015). Figures 2.10 and 2.11 showed a
qualitative replication of such behaviors where increasing the applied strain am-
plitude, the mean stress smoothly lowered until finally vanishing. Using literature
findings to validate the results on mean stress relaxation, two simulations were run
using parameter set LK and compared with the experimental findings reported by
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distribution of the accumulated plastic strain but only after a monotonic tensile
load. A major finding, as shown in figures 2.15 and 2.21, is that under asymmet-
ric cyclic loads, the accumulated plastic strain splits into a bimodal distribution,
which helps materials exhibit plastic shakedown in the case of stress controlled
loadings, or retain a mean stress in the case of strain controlled loadings. Also
the distribution curves in the paper pertain to the bulk of the polycrystal whereas
experimental findings usually adhere to surface measurements. Interestingly, ev-
idence of crack size distributions in a nickel-based superalloy under high cycle
fatigue loading conditions was found by Shenoy et al. (2007). Such damage dis-
tributions can be correlated with the distribution of Fatigue Indicator Parameters
(FIPs) directly linked to plastic activity in the grains. Extensive work has been
done by Castelluccio et al. (2016) for the development of FIPs extracted from
full field CPFEM statistical volume element simulations. However, such papers
deal with symmetric loading conditions which also in computations result in a
unimodal plastic strain distribution. To this extent, no evidence of bimodal strain
distributions has been found in literature.

As a final comment the motivation of this study was to address the open question
of how local hardening effects the macroscopic response of metallic materials. Al-
though the parameter sets are close to copper and nickel based superalloys, they
were not quantitatively calibrated because the intention was not to adhere to a
particular material but to focus on what can be extracted from the polycrystal
model using the scale transition rule. A qualitative analysis was done for the
origin of different mechanisms when a single crystal transitions into a polycrystal.

2.8 Conclusion and ongoing work

2.8.1 Conclusion

Using rate-independent crystal plasticity with kinematic hardening, the cyclic re-
sponse of FCC polycrystalline materials has been characterized both at the macro-
scopic and local levels. The macroscopic response was summarized by appropriate
mean stress / stress amplitude maps whereas the mechanisms underlying each type
of material response were explored using local statistics. For these two crystal plas-
ticity. Two sets of materials parameters with various amounts of yield stress and
hardening were considered in order to illustrate the capability of the polycrystal
model to capture complex loading behavior under strain or stress loading control.
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All simulations were run for a hundred cycles each, and more than 1000 cycles for
some of them, and then the response was analyzed. The single crystal material
model was kept as simple as possible because it is sufficient to explain, at least
qualitatively, most features of the observed polycrystal behavior. Evaluation of
the results reveals the following major findings:

• For stress controlled asymmetric simulations:

1. Strain ratcheting in a single (resp. poly) crystal is characterized into
three (resp. four) regimes. Elastic accommodation, elastic shakedown
and ratcheting regimes are common to single and polycrystals. In con-
trast, plastic shakedown takes place only in polycrystals.

2. A series comparison test as well as the bimodality of accumulated plastic
strain distribution criterion were proposed to detect ratcheting or plastic
shakedown. A remarkable result of the analysis is the evidence of a
correlation between the existence of a bimodal distribution and overall
plastic shake down.

3. A theoretical diagram for ratcheting in single crystals is built in terms
of the stress amplitude versus mean stress. Several simulations were run
and a similar diagram was filled for the polycrystal showing different
regimes of elastic and plastic shakedown as well as ratcheting.

4. Gauss point statistics indicate that the von Mises stress in polycrystals
is bimodal. These two modes become more prominent under progressive
cyclic loading and they correspond to different regions of the polycrystal
respectively made of soft and hard grains in the sense of Schmid factor.

5. Local ratcheting events were observed in polycrystals experiencing plas-
tic shakedown at the macroscopic scale.

6. Evolution of the number of activated slip systems during cycling shows a
trend towards single slip occurring the core of the grains while multislip
is observed mostly at grain boundaries.

• For strain controlled asymmetric simulations:

1. Cyclic mean stress relaxation in a single crystal can be broken down into
three distinct regimes: Purely elastic response, elastic accommodation
after a first elastoplastic period and plastic shakedown with vanishing
mean stress. Instead, in a polycrystal, a smooth transition between
these scenarios is observed. Mean stress relaxation towards stabilized
finite values was observed for polycrystals.
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2. Cyclic mean stress relaxes to near zero for parameter set HK (high
kinematic hardening), whereas it does not relax to zero for parameter
set LK (high yield strength).

3. Distribution curves of the accumulated plastic strain are found to be
bimodal under some loading conditions. One part of the microstructure
undergoes purely elastic accommodation whereas the remaining part
of the polycrystal experiences continuing plastic activity. From the
observations, it is conjectured that the mean stress in a polycrystal will
relax to zero when the distribution becomes unimodal.

4. Contour plots reveal that the high cyclic mean stress is more susceptible
to concentrate at grain boundaries or at triple junctions and this local
interaction causes a nonzero mean stress in a polycrystal.

These results show that the grain to grain interactions induce cyclic responses that
strongly differ from that of the single crystal. In particular these interactions are
responsible for the existence of plastic shakedown regimes under stress control and
of incomplete mean stress relaxation under strain control. These results contribute
to the understanding of complex stress-strain redistribution phenomena at work
in cyclically loaded polycrystals using computer based phenomenological models.
These crystal plasticity models are already extensively in use and their capability
to mimic real polycrystals has been scrutinized in this article. The macroscopic
responses of both load and strain controlled tests are in good agreement with
experimental results for engineering FCC alloys where a plastic shakedown as well
as a non-zero mean stress are frequently observed.

Other methods of statistical analysis could be used to dig into the huge amount
of data produced in this work. Machine learning techniques have also been used
in recent works to find out some meta-models for fatigue crack initiation. The
potential of such methods is considered by Rovinelli et al. (2018) to examine
correlations of various parameters near small fatigue cracks in polycrystals.



Chapter 3

Hybrid hyper-reduction in crystal
plasticity

Résumé

Les simulations par éléments finis de plasticité cristalline à haute résolution ex-
igent d’énormes ressources informatiques, en particulier dans les cas où des cen-
taines de cycles de charge sont impliqués dans les prédictions du phénomène de
rochet. Plus important encore, en raison de la nature cyclique du problème, l’erreur
d’approximation peut s’accumuler au fil des cycles. Cela nécessite que les erreurs
d’approximation soient minimes. Dans ce contexte, nous proposons une méth-
ode de réduction de l’ordre fondée sur un modèle de projection qui couple les
approximations locales par éléments finis dans un domaine d’intégration réduite
à une approximation de base par ordre réduit. Il s’agit d’un schéma hybride
d’hyperréduction. De plus, comme les prédictions complètes par éléments finis du
rochet sont hors de portée, les données de simulation non complétées sont utilisées
pour former la base d’ordre réduit via une analyse en composantes principales non
centrée. Seuls quelques cycles de charge sont prévus dans l’étape d’apprentissage.
La méthode hybride d’hyper-réduction est utilisée et comparée à l’approche con-
ventionnelle de l’hyper-réduction pour un agrégat polycristallin de grande taille.
Par exemple, on simule un ensemble d’informations statistiques suffisamment im-
portant pour que la réponse matérielle locale puisse être analysée à l’aide de la
méthode proposée, comme si les simulations par éléments finis habituelles avaient
été effectuées.

75
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3.1 Introduction

In its most general definition, model order reduction aims at proposing a model
whose number of DOFs are reduced, reduced order model (ROM), compared to a
full order model (FOM), obtained by a classical approximation method. To reduce
the number of DOFs, the idea is to look for the solution of the problem in as small
an approximation space as possible. The domain covered by the term model order
reduction is very broad which is why an inventory of existing methods will not be
made, but those methods which will directly affect this work will be stated. Also,
the methods employed here are part of the framework of unsupervised machine
learning methods, where empirical knowledge of feature space is extracted from
simulation data that is not annotated. In practice, this is usually done using
matrix factorization methods after having grouped the data into matrices. In this
regard there are two broad categories of model order reduction methods available a
priori and a posteriori. The methods being used in this thesis are posteriori which
approximate the behavior of the object of study using experiences or empirical
evidence. For these types of methods, data is needed to construct the reduced
bases (RB). The data collected are generally the result of results of calculations,
obtained using the FOM, in the parametric or temporal space studied. These
calculation results are commonly called snapshots according to the terminology
used by Sirovich (1987). The RB is then composed of either snapshots or vectors
obtained by extracting the most important information using data compression
techniques. It is also possible to relate these types of methods to the non-centered
principal component analysis method used in unsupervised machine learning.

Of particular interest in recent times is the method of using a RB. The strategy
adopted in such methods involves projecting the FOM onto a subspace generated
by some selected functions to represent the solutions of the FOM for a certain
subspace. The first work concerning this type of method was carried out for me-
chanical problems of linear and non-linear structures Almroth et al. (1981, 1978a);
Noor (1982). Later on, more work was done by several researchers for the RB
method Prud’Homme et al. (2002); Maday et al. (2002); Maday and Rønquist
(2002). Here it is important to clarify two terms which are generally used in pos-
teriori methods: the online and offline. The offline part of posteriori methods
consists of a learning phase where relationships are built between different pa-
rameters and an approximation subspace is constructed. In the offline phase, an
estimation of the system is done using the knowledge extracted during the offline
phase.

One of the best-known and most widely used posteriori technique for model order
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reduction is the POD-Galerkin method, which is based on the proper orthogonal
decomposition (POD), and is known to help obtain an optimal RB. Its first use for
model order reduction was done by Aubry et al. (1988) while more recent studies
can be found in Akkari et al. (2014); Liberge and Hamdouni (2010). An overview
of the POD technique as well as snapshots will be given in the following subsec-
tions. For understanding purposes, hyper-reduction in elasticity will be presented
in Section 3.2 which will be followed by the hyper-reduction formulation for non-
linear mechanics of materials in Section 3.3. The finite element mesh description
will be detailed in Section 3.4, and the numerical setup in Section 3.5. Results and
conclusions will be given in Sections 3.6 and 3.7

3.1.1 Model order reduction using POD

POD, originally developed by Pearson (1901) for graphical analyses, is a widely
used method for low rank approximations of high dimensional processes. A start
can be taken by supposing that there exists a function G(x) over some domain
of interest. This function can be written as a linear combination of some basis
functions ζ i(x) such that:

G(x) ≈
M
∑

i=1

ai.ζ i
(x) (3.1)

where the solution tends to get better as M is increased. The amplitudes of
the expansion, ai are chosen after the basis function and are determined by a
minimization process, which for the approximation in the least square sense can
be stated as the minimum of:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

G(x) −
M
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i=1

aiζ i
(x)
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∣

∣
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∣

∣

∣

∣

∣

∣

L2

(3.2)

From equation 3.1 it can be anticipated that its representation will not be unique
because the choice of basis functions ζ i(x) to approximateG(x) is arbitrary. Hence,
the objective is to create a basis for a relatively small number M to approximate
the function G(x). POD is used as a tool to choose and construct the optimal
basis for the function in question.

In the POD formulation, basis selection is done keeping in view orthonormality of
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these functions such that:

∫

Ω
ζ

i
(x).ζ

j
(x)dx =







1 if i = j

0 if i ̸= j
(3.3)

The amplitude then takes the form:

ai =
∫

Ω
G(x).ζ

i
(x)dΩ (3.4)

signifying that each amplitude depends only on its own basis vector and not on
those of the others. Also, the basis vectors are optimized in such a way that for
any value of M the approximation is optimal. In other words, our goal is to find a
sequence of orthonormal functions such that the first n basis vectors give the best
n-term approximation. These ordered orthogonal functions are called the proper
orthogonal modes for the function G(x) and equation 3.1 is known as the POD
of G(x). Now putting in time dependence of the problem such that u(x, tj) is a
function of time and x, equation 3.1 can be reformulated to look like:

min
ζ

k
(x)

m
∑

j=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

u(x, tj) −
M
∑

k=1

ζ
k
(x)

∫

Ω
u(x, tj)ζk

(x)dx

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω×[0,time])

(3.5)

such that ||ζ
k
||2L2(Ω×[0,time]) = 1 i.e. the L2 norm is equal to 1. Then, it can be

supposed that

u(x, tj) =
N
∑

i=1

ψi(x)Qij, (3.6)

such that ψi is a finite element shape function and Q is a matrix containing sim-
ulation results and

ζ
k

=
N
∑

i=1

ψi(x)Vik. (3.7)
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The integral of their product over the whole domain (Ω) leads to:

∫

Ω
u(x, tj)ζk

dΩ =
∑

α

∑

β

∫

Ω
ψα(x)ψβ(x)dxQ

α
V

β

= QT

j
MV

k

= QT

j
LLTV

k

(3.8)

where α and β are two variables in space. Also QTL = Q̃T and LTV
k

= Ṽ , and
Q̃ = LTQ, Ṽ = LTV where L is a lower triangular matrix with real and positive
diagonal entries, and the mass matrix M

αβ
equates to:

M
αβ

=
∫

Ω
ψα(x)ψβ(x)dΩ (3.9)

The Cholesky decompositon of the positive definite mass matrix reads:

M = LLT (3.10)
Then the minimization problem of equation 3.5 reads:

min
V ,V T V =I

||Q− V V TLLTQ||M (3.11)

or:

min
Ṽ , ˜V T Ṽ =I

||Q̃− Ṽ Ṽ T Q̃|| (3.12)

where:



















V TV = I

Q̃ = LTQ

Ṽ = LTV

(3.13)

signify that the columns of V are orthogonal to each other i.e. they are orthogonal
basis vectors.
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3.1.2 Discrete POD theory

Discrete POD theory, also referred to as principal component analysis (PCA) or
Karhunen-Loeve decomposition(K. Karhunen, 1947), is a method that deals with
random variables and is of a discrete nature. Our goal in PCA is to reduce the
dimensionality of the dataset consisting of a large number of correlated variables,
while keeping the variation in the dataset. Data can be transformed to a new set
of variables called the principal components, which are uncorrelated, and ordered
such that the first few contain the most information. After identifying the principal
components, the dimension of the original space is reduced by keeping just the
first few components. In essence, the PCA finds the solution of the minimization
problem in equation 3.12.

y y

x x

Figure 3.1: Uncorrelated and closely co-related vectors

Considering a simple case of 2-dimensional space where the number of variables is
just two, PCA can be geometrically visualized. Variables here are the components
of each 2-D vector. Figure 3.1 shows such an interpretation where the left plot
shows uncorrelated variables while the plot on the right shows highly correlated
variables. In such a case, the reduction of dimensionality means that the resulting
vectors can be expressed with just one component (instead of two).

Figure 3.2 considers the orientations of the vectors, where it can be seen that
in the current setting a one component approximation will lead to considerable
approximation errors. But a new coordinate system can be introduced which is
able to approximate the data using just one component (x′). Principal component
analysis defines a new coordinate system to minimize this loss of data. In this case
the new axis (x′) is chosen in such a way that it gives the best one component
approximation, and this new basis is the proper orthogonal basis for the vectors
set. This concept can be extended to higher dimensions where the goal is to find
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orthogonal directions in a n-dimensional space; n being the original dimensionality
of the vectors in set. Two ways to construct this POD basis are shown below.

y

x

y'

x'

Figure 3.2: One component approximation of a two-variable space

3.1.3 PCA by minimizing the error approximation

A set containing M, n-dimensional vectors in a matrix Q are assumed. The goal
is to find a set of orthonormal basis vectors that minimizes this error but first a
covariance matrix is defined such that:

C = Q̃Q̃T . (3.14)

A detailed derivation of the error minimization procedure is given in Buljak (2012).
The crux is that a set of M , n-dimensional vectors are stored in Q. Then the covari-
ance matrix is computed, which is followed by the computation of the eigenvectors
of the covariance matrix stored in the matrix Φ

V
and it is declared that the error

of approximation is minimized if the new basis is constructed of k eigenvectors
that correspond to the first k largest eigenvalues of the covariance matrix C. If all
the eigenvectors of matrix C are taken into account, there will be no error when
projecting available data on eigenvectors; the only difference being that all the
vectors vi will be expressed in a different coordinate basis.
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3.1.4 Construction of the POD basis using the SVD ap-
proach

Singular value decompositon (SVD) can be viewed as an extension of the eigenvalue
decomposition for the case of nonsquare matrices. SVD states that for any N ×M
matrix Q there exist two orthonormal matrices i.e. Ṽ which is N × N and W

which is M ×M such that

Q̃ = Ṽ SW T , (3.15)

then:

Q = V SW T , with V TV = I, W TW = I (3.16)

where S is a rectangular N × M matrix with S = diag(σ1, ..., σp) ∈ R
N×M and

σ1 ≥ σ2 ≥ ... ≥ σp > 0, p = min(M,N). σis are the singular values of the matrix
Q. Then, the idea is to keep the first k singular values in a square k × k diagonal
matrix S

k
and collect the corresponding columns from V and W . Hence, the kth

approximation of Q is given by:

Q ≈ V
k
S

k
W T

k
. (3.17)

This scheme is optimized by the fact that the singular values are arranged in
descending order along the diagonal of matrix S which signifies that any k singular
values will give the best rank k approximation of Q. As stated before, SVD can
be applied to rectangular matrices as opposed to orthogonal decomposition which
deals with square matrices. But the relation between the two can be quantified
in what follows. As defined before, the covariance matrix is C = QQT , and
substituting the singular value decomposed components into it will lead to:

QQT = V SQT (V SQT )T

= V SW TWV ST

= V S(V S)T

= V SSTV T

= V S2V T
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and since V is orthogonal, the following is obtained:

CV = V S2 (3.18)
Equation 3.18 shows that the columns of V are the eigenvectors of matrix C and
that the singular values of matrix Q are the square roots of the eigenvalues of
matrix C. Similarly, if a modified covariance matrix is defined such that:

C
modified

= QTQ, (3.19)

after doing the same procedure, it can be found that C
modified

W = WS2, which
signifies that the columns of W are the eigenvectors of C

modified
. Therefore, it can

be seen that there is a full equivalence between the approximation given by SVD
and POD basis such that:

Q ≈ V
k
S

k
W T

k

For posteriori methods, a RB is constructed which generates the subspace of ap-
proximation. The data is collected from simulation results obtained using the
FOM. A ROM is then obtained by a Galerkin type projection from the FOM on to
the RB. In the context of finite element method, continuum problems are solved
on discretized domains, where as a resulting response discrete fields are obtained,
represented by values at the nodes and integration points. This suggests that the
results of these simulations can be treated by the aforementioned discrete POD
theory. For this the concept of a snapshot is introduced (Sirovich, 1987).

A snapshot represents some output of a system corresponding to some input. It
is a collection of n discrete values of a certain state variable evolving at each
time increment. In the present case, snapshots of nodal displacement and flux
at certain time increments are saved. In other words, snapshots are a collection
of instances taken from a simulation. A set of si snapshots, corresponding to
different time instances are collected in a matrix Q, the snapshot matrix (see figure
3.3). Hence, the matrix represents the responses of one system corresponding to
different parameter values. It should also be anticipated that there will be a
strong correlation between the snapshots as they are just the outputs of a system
where certain parameters are varying. This correlation gives the opportunity to
implement the aforementioned POD theory and construct a new low dimensional
basis. For instance, as the displacement field of some body is considered, all nodal
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values of the image:

Il = V (V [F , :]TV [F , :])−1V [F , :]T I[F ] (3.20)

In the framework of model order reduction used in this thesis, this is the non-
linear term which will be approximated from a few DOFs. What varies is the
method with which the RB was built and the choice of interpolation points. One
of the first propositions of such techniques was the Empirical Interpolation Method
(EIM) (Barrault et al., 2004). The points coming out of empirical interpolation,
also called ”magic points” according to Maday et al. (2007) are obtained using a
greedy algorithm (Edmonds, 1971; Vince, 2002) where at each iteration the point
selected is the one that maximizes the error between the (i+ 1)-th function of the
RB and its reconstruction using i interpolation points already calculated.

The discrete version of EIM (Chaturantabut and Sorensen, 2010) abbreviated
DEIM is applied to a RB preferably built by POD. Similar to the EIM, while
doing DEIM, the selection of interpolation points is done using a greedy algo-
rithm. The benefit of providing a RB obtained by POD with the DEIM algorithm
is that the column vectors are ordered by importance. The interpolation points
are then selected iteratively so as to approximate the vectors in order of impor-
tance. A depiction of the hyper-reduction approach is done in figure 3.4 where all
simulation results are stored in a matrix Q ∈ R

N×m. A RB V is then extracted
using a POD approximation. If the POD approximation is exact then there exists
a reduced coordinate γ, such that:

Q = V γ (3.21)

γ = arg min
γ∗

||Q[F , :] − V [F , :]γ∗||2 (3.22)

where γ the reduced coordinate. This reduced coordinate is minimum only when
the following holds:

γ = (V T [F , :]V [F , :])−1V T [F , :] (3.23)

Plugging this value of γ into equation 3.21 the following formulation for the gappy
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POD is obtained:

Q
Gappy

= V (V T [F , :]V [F , :])−1V T [F , :] (3.24)

The term gappy signifies that incomplete data sets are used for the predictions.
This term stems from the postulation of Everson and Sirovich (1995) which states
that if a field has a RB approximation, it is possible to measure this field at a
few points Everson and Sirovich (1995). It should also be noted that the rows of
the matrix V correspond to the DOFs of the system, while the columns are the
empirical modes used to estimate Q. In this thesis hyper-reduction (Ryckelynck,
2009) will be based on a reduced integration domain (RID). For nonlinear mechan-
ics, the method greatly reduces the calculation time because at each iteration the
reduced system of equations has to be solved. Also, this method is non-intrusive
for material behavior, which means that the constitutive equation stays the same
in the reduced setting. Such an approach enables transfer learning (Pan and Yang,
2010) from mechanics of materials to machine learning in solid mechanics. In the
next section hyper-reduction is detailed for an elastic problem.

Q!=!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!≈!!!!!!!!!!!V!!!!!!!!(V[F,:]T!V[F,:])+1!V[F,:]T!!!!!!!Q[F,:]!!!!!

Figure 3.4: The gappy POD procedure applied to simulation results where Q holds
all simulation results and V is the extracted reduced basis



CHAPTER 3. ROM IN CRYSTAL PLASTICITY 87

3.2 Hyper-reduction in elasticity

Although HR has been introduced to deal with materials with non-linear behavior,
to get a better understanding of topic, the equations formulated below are for a
classical problem of elasto-static mechanics.

3.2.1 Strong formulation of the elastic problem

Let Ω ∈ R
D be a bounded domain representing the reference configuration of a

solid of dimension D. The static equilibrium equation of solids says that all forces
on the body should sum to zero:

divσ + f = 0 in Ω (3.25)
where σ is the second order symmetric Cauchy stress tensor and f the body forces
per unit volume. Assuming that the material is linear elastic and under the as-
sumption of small perturbations, the behavior law is written as:

σ = C : ε in Ω (3.26)

where the strain tensor ε is defined using the displacement field u according to the
equation:

ε =
1

2
(gradu+ (gradu)T ) in Ω (3.27)

The fourth order tensor for the modulus of elasticity C has the following symme-
tries:

C
ijkl

= C
jikl

= C
klij

(3.28)

Two types of boundary conditions are imposed on the body i.e. either a displace-
ment u0 imposed on ΓD (Dirichlet) or surface forces g on ΓN (Neumann), where
Γ denotes the piecewise smooth boundary of the body:

u = u0 over ΓD (3.29)
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g = σn over ΓN (3.30)
where n denotes the normal outgoing unit vector. Moreover, it is necessary that
the surfaces ΓD and ΓN form a partition of ∂Ω, the edge of Ω. That is, the surfaces
ΓD and ΓN on which the boundary conditions 3.29 and 3.30 are imposed should
obey ∂Ω = ΓD ∪ΓN and ΓD ∩ΓN = ∅. The problem is then well posed in the sense
that boundary conditions guarantee the existence and uniqueness of the solution
in displacements and stresses. If ΓD is non-zero, the solution of displacement u is
unique to rigid body movement.

In a more condensed way, the strong formulation of the elasto-static problem
under the assumption of small deformations is written as the following system of
equations:

−divσ = f in Ω

σ = C : ε in Ω

ε =
1

2
(grad(u) + (grad(u))T ) in Ω

u = u0 over ΓD

σ.n = g over ΓN

(3.31)

3.2.2 Formulation of a weak from for the elastic problem

Let V0 be the vector space of a kinematically admissible displacement field such
that:

V0 = {v ∈ (H1(Ω))D|v = 0 over ΓD} (3.32)

Here H1(Ω) is the space of scalar functions with genelarized partial derivatives of
order ≤ 1 i.e. square integrable, in other words u ∈ H1(Ω) if

||u||2H1(Ω) =
∫

Ω

∂u

∂xj

∂u

∂xj

dΩ +
∫

Ω
uudΩ ≤ ∞ (3.33)
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The integral formulation equivalent to the static equilibrium equation 3.25, ob-
tained by making the scalar product L2(Ω) with an application v ∈ V0 is written:

−
∫

Ω
div(σT )vdΩ =

∫

Ω
fTvdΩ ∀v ∈ V0 (3.34)

By replacing the term under the integral of the first term of equation 3.34 by its
equivalent in the relation:

div(σTv) = div(σ)Tv + σ : grad(v) (3.35)
equation 3.34 becomes:

−
∫

Ω
div(σTv)dΩ +

∫

Ω
σ : grad(v)dΩ =

∫

Ω
fTvdΩ, ∀v ∈ V0 (3.36)

By applying the divergence theorem, to the first term of equation 3.36, the latter
is written:

−
∫

∂Ω
(σv)TndΓ +

∫

Ω
σ : grad(v)dΩ =

∫

Ω
fTvdΩ ∀v ∈ V0 (3.37)

Since σ is symmetric, the following relation is used on the first term of equation
3.37.

(σv)Tn = (σn)Tv (3.38)
The symmetry of σ also makes it possible to simplify the second term of equation
3.37 by noting that the product doubly contracted between σ and the antisym-
metric part of gradv in equation 3.39 is zero. The decomposition of gradv as a
sum of a symmetric tensor and an antisymmetric tensor, taking into account that
the symmetrical part is the linearized strain tensor 3.27, is written as:

grad(v) = ε(v) +
1

2
(grad(v) − (grad(v))T ) (3.39)

With these two modifications taken into account in equation 3.37, the weak form
of the equilibrium local equation 3.25 is obtained as follows:

∫

Ω
σ : ε(v)dΩ =

∫

Ω
fTvdΩ +

∫

∂Ω
(σn)TdΓ ∀v ∈ V0 (3.40)
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In equation 3.40 taking into account the elastic behavior 3.26 and the doubly
contracted product definition, and the Neumann boundary condition (3.30), the
primitive variational formulation of the problem (3.31) is written under these con-
ditions:

Find u ∈ V such that
a(u, v) = l(v), ∀v ∈ V0

(3.41)

where a and l are defined as:

a(u, v) =
∫

Ω
ε(v) : C : ε(u)dΩ (3.42)

l(v) =
∫

Ω
fTvdΩ +

∫

ΓN

gTvdΓ (3.43)

3.2.3 Finite element method for a material with elastic be-
havior

The domain Ω is discretized into a set of Ki elements such that ∪iK̄i = Ω̄. This
spatial discretization is called the mesh. The finite element shape functions are
denoted by (ψ

j
)m

j=1 , with m the number of nodes of the mesh to which those be-
longing to ΓD are removed. The shape functions (ψ

i
)N

i=1, N = mD are introduced
as they verify:

ψ
i

= ψjek with i = (j − 1)D + k, j ∈ [1,m], k ∈ [1, D] (3.44)

and (ek)D
k=1 the vectors associated with Cartesian coordinates. (ψ)N

i=1 defined by
3.44 form a basis for the finite-dimensional subspace Vj ⊂ V0. The Galerkin’s
method then consists of looking for a field of displacement of the form:

uh(x) = u0(x) +
N
∑

i=1

ψ
i
(x)ai, ∀x ∈ Ω (3.45)
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By applying the finite element method, the discretized problem is achieved using
the weak formulation 3.41:

Find a ∈ R
N such that

Ka = F
(3.46)

where K is the stiffness matrix and F the vector of generalized forces. Both
quantities are defined below as:

(K)ij = a(ψ
j
, ψ

i
), ∀i, j ∈ [1, N ]2 (3.47)

(F i) = l(ψ
i
) −

∫

Ω
ε(u0) : C : ε(ψ

i
)dΩ, ∀i ∈ [1, N ] (3.48)

3.3 Hybrid hyper-reduction in mechanics of ma-
terials

The displacement field can be decomposed over a set of basis functions ψi(x) which
correspond to the shape functions of an FE model defined on domain Ω.

u(x, t) =
Nd
∑

i=1

ai(t)ψi(x) (3.49)

where Nd corresponds to the number of DOFs of the mesh and ai the ith nodal
DOFs of the FE model. Hyper reduction methods have already been proposed in
literature (Ryckelynck et al., 2010) and are capable of reducing the need of large
computational resources. Hyper-reduced models restrict a set of Finite Element
(FE) equations for a RID and using a RB, seek an approximate solution of these
FE equations. In essence, to set up the reduced equations for a given FE model,
this approach accounts for a low rank of the reduced approximation. This can
be elaborated using a linear elastic finite element model where the FE balance
equation reads:

KaF E = F (3.50)
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where aF E ∈ R
Nd , and K ∈ R

Nd×Nd is the stiffness matrix of the FE model,
whereas c ∈ R

Nd the right hand side term of the FE equation. For a given RB of
rank NRV ∈ R

Nd×Nd , the approximate reduced solution of the balance equations
is denoted by aR as follows:

aR = V bR (3.51)

where bR ∈ R
NR are ROM variables. To find a unique solution bR the rank of KV

needs to only be NR. Since Nd is usually larger than NR, a few rows of KV can be
selected to preserve the rank of the submatrix. The set of selected rows is denoted
as F . This row selection is achieved by considering balance equations set up on
the RID. This RID is denoted by ΩR which is a subset of the whole domain. For
a given RID, the set F is defined as:

F = {i ∈ {0, ..., Nd},
∫

Ω\ΩR

ψ2
i (x)dx = 0} (3.52)

These hyper reduced balance equations are restricted to the RID using convenient
test functions such that:

(V [F , :])TK[F , :]V bR = (V [F , :])TF [F ] (3.53)
Also, the RID must be large enough to have rank(K[F , :]V ) = NR and rank(V [F , :
]) = NR; hence cardinality of the number of DOFs in the RID should be greater
than or equal to NR. The current reduced setting uses a hybrid hyper-reduction
approach which signifies that a FE correction function is also added to the reduced
domain (Baiges et al., 2013). In the hybrid hyper-reduction method the RID
is generated using the assembly of elements containing the interpolation points
related to the reduced bases of stresses and displacements. Hence, ΩR, the reduced
integration domain, has four sub-domains, i.e. the sub-domains provided by the
displacement and stress fields (Ωu

R , Ωσ
R), the sub-domain provided by the user

(Ωuser
z ) and an additional domain Ω+ which corresponds to a set of neighboring

elements of the previous sub-domains. The first two sub-domains are automatically
provided by the appropriately selected modes while the third sub-domain is called
the zone of interest. This zone is provided wherever in which region the user
perceives to be important. This zone can be taken anywhere in the geometry and
can range from clusters of grains to whole free surfaces.

ΩR = Ωu
R ∪ Ωσ

R ∪ Ωuser
R ∪ Ω+

R (3.54)
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I is the set of DOFs connected to F and is not in F

I = {i /∈ F , ∃j ∈ F Kij ̸= 0} (3.55)
By construction, I ∪ F is the set of all the DOFs of the RID.

The reduced mesh and hybrid hyper-reduction

Finite element shape functions of the reduced mesh are denoted by (ψ̄i)i=1,...card(F̄)

such that:

ψ̄i(x) = ψF̄(x)∀x ∈ ΩR (3.56)
where F̄i is the ith index in the set F̄ of the DOFs in RID. A new set F∗ is defined
which contains the indices of the reduced mesh such that:

F∗ = {i ∈ {1, .., card(F̄)}|F̄i ∈ F} (3.57)
The complement set of F∗ is denoted by I. It contains the DOFs in ΩR that are
connected to Ω\ΩR in the original mesh. Also, for a given RB V , V̄ ∈ R

card(F̄×N̄)

is its restriction to the RID:

V̄ = V [F , :] (3.58)
The hybrid hyper-reduced approximation is acquired by adding a few columns of
the identity matrix to V̄ . Figure 3.5 depicts the scenario clearly where in (a) a
2D linear quadilateral mesh is shown and in (b) the reduced mesh is portrayed.
The grey part is where the solely a POD approximation will be done. FE DOFs
are added to the part of the mesh which is not connected to the set I i.e. the
red region. Hence, the resulting set of DOFs is denoted by R. Strong coupling
ensues in the resulting hybrid approximation and the sub-domain connected to I
is defined as follows:

ΩI = ∪i∈Isupp(ψ̄i) (3.59)
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deduced that the hybrid hyper-reduced equations for a linear problem read:

(V H [F , :])T K[F , :]V H bR = (V H [F , :])T F [F ] (3.64)
where K is the tangent stiffness matrix computed on the reduced mesh and F is
the right hand side of the FE balance equation. An important thing to note here
is that when ΩR = Ω, then the hybrid hyper reduction formulation is the same as
the FE on the full mesh. This can be deduced by the following proof: If ΩR = Ω,
then I = ∅, F∗ = R = {1, ..., Nd} then the reduced mesh is the full field mesh and
there is no reduction. Also, all the empirical modes have to be removed from V H

to get a full rank system of equations, making V H an identity matrix. Hence, the
hybrid hyper reduction equations are the same as the original FE equations. As a
consequence there is no dimensionality reduction.

3.4 Crystal plasticity model and finite element
mesh description

The crystal plasticity model is the same as detailed in Chapter 2. The details
of the finite element mesh as well as the boundary conditions and computational
requirements are stated in the next section.

FE model description

The numerical model was implemented in the implicit finite element solver Z–set
package (2013). Literature findings show that the macroscopic representation of a
micro-heterogeneous metallic material can be achieved with as few as one hundred
grains (Kanit et al., 2003), but matching macroscopic properties is not the goal.
The goal here is to have a large enough statistical pool of information so that local
material response can be analyzed. Of course computational limitations have to
be acknowledged and extremely large polycrystals cannot be used. An aggregate
containing equiaxed 1000 grains was generated using the Voronoi tessellation tech-
nique with the help of the software VORO++ (Rycroft, 2009). Gmsh was used
to mesh the geometry containing 1.1 million nodes and 850,000 reduced quadratic
elements 3.6. Each finite element had four Gauss points respectively. The crystal
plasticity parameter set employed in this chapter is given in table 3.1
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Cubic elasticity
C1111 = 259600 MPa
C1122 = 179000 MPa
C1212 = 109600 MPa

Critical resolved shear stress R0 = 320 MPa

Kinematic hardening C = 100000 MPa
D = 1000

Overstress P = 9 MPa

Table 3.1: The crystal plasticity parameter set being used

Computational requirements

An implicit finite element code (Z–set package, 2013) is used to solve the problem
where the global equilibrium is solved using a Newton-Raphson algorithm. Inte-
gration of constitutive equations at the Gauss points is performed using the second
order Runge-Kutta method with automatic time stepping (Besson et al., 2009).
For a crystal plasticity simulation, loading one job of the size being used requires
more than 220 gigabytes of RAM. The MPI parallel computing algorithm imple-
mented in Zebulon is used with 24 processors when solving constitutive equations.

Boundary conditions and material parameters for the offline
phase

Stress controlled mixed boundary conditions are applied such that the traction
vector σ.n is prescribed over the whole face:

Σ11 = constant on Face+
1

u1 = 0 ∀x ∈ Face−
1

Trivial boundary conditions (free boundary conditions) are imposed on all oppos-
ing faces i.e.

σ21n1 = σ31n1 = 0 ∀x ∈ Face+
1 ∪ Face−

1

σ12n2 = σ22n2 = σ32n2 = 0 ∀x ∈ Face+
2 ∪ Face−

2

σ13n3 = σ23n3 = σ33n3 = 0 ∀x ∈ Face+
3 ∪ Face−

3
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3.5 Setup

A thousand grain polycrystal was chosen as an example where figure 3.6 shows a
meshed finite element geometry with mixed traction boundary conditions. The
finite element mesh consists of 1.1 million nodes and 860000 reduced C8D10
quadratic tetrahedral elements. Each element consists of four Gauss points. The
crystallographic orientations chosen were randomly distributed throughout the
polycrystal. Figure 3.6 also shows the first ten stress strain cycles which were
simulated using Σ11 = 1000 MPa and RΣ = -0.7. The same ten cycles are used as
the offline training phase for the hyper reduced model.

Figure 3.6: A 1000 grain meshed microstructure with prescribed boundary condi-
tions, the inverse pole figure and the corresponding stress strain response for the
first 10 cycles.

Figure 3.7 shows the proper orthogonal modes of displacement and stress. As
anticipated, the magnitude of singular values exponentially decreases with the
number of modes. It is also important to note that the magnitude of the singular
values is displayed in a log-scale, and a dotted red line represents the cut-off
for the selected POD modes. For displacement 9 and for stress, 20 modes are
considered, and this cutoff is arbitrary and dependent on the user. By looking at
the contour plot of the modes in both cases it can be seen that the first few modes
are homogeneously distributed while the later ones are high gradient modes. Also
the modes of displacement decrease in magnitude more rapidly as compared to the



CHAPTER 3. ROM IN CRYSTAL PLASTICITY 98

modes of stress implying that most information for displacements can be retained
in a few orthogonal selections. It is also precised that POD modes do not have
units and their magnitudes are obtained according to an L2 norm in space.
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Figure 3.7: Selection of the first (a) 9 POD modes of displacement and (b) 20
POD modes of stress for the reduced basis. Only the first six modes are plotted
for both cases.

Figure 3.8 (a) shows the reduced mesh constructed using the selected POD modes
where the red part signifies the zone of interest which is provided by the user while
the grey part is the region provided by the DEIM algorithm after considering the
POD RB of displacements and stresses. The part of the finite element mesh pro-
vided in the zone of interest depends on which part of the mesh is the most critical
according to the user. The hybrid HROM solution is computed on the RID and
is then projected over the whole mesh. Hence, the retained region in the RID will
then have the best predicted solution followed by other regions of the mesh. In
the case being presented, the face of the geometry where pressure is being applied
is included in the zone of interest, because this region experiences the most strain
under a tensile load. Hypothetically, under a cyclic loading scenario, strain should
also incrementally segregate on this part of the geometry. In figure 3.8 (b) two
distinct regions can be observed in the mesh where the red part represents the
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region where the usual hyper-reduction will be used while the grey part of the
geometry represents the regions where a finite element correction function is com-
puted. It should be noted that the hyper-reduced scheme enables the integration
of constitutive equations only on the elements shown in figure 3.8 (both red and
grey) while the results over the entire domain are recovered as a post-process by
doing a product of the resulting reduced coordinate at the end of the simulation.

Figure 3.8: Reduced mesh showing the (a) zone of interest provided by the user
(red) and the region provided by the DEIM algorithm by considering the reduced
bases (grey), (b) region where the finite element calculation is done (grey), and
where the usual POD is approximated (red).

3.6 Results

After constructing the RB and the gappy finite element mesh using an offline
learning phase of just 10 cycles, computations were performed on the reduced
domain for one hundred stress controlled cycles. The loading was kept the same
at RΣ = -0.7 and Σ11 = 1000 MPa. To compare the results, a full field simulation
was also run for 100 cycles. Figure 3.9 shows the macroscopic stress (Σ11) vs strain
(E11) response of the three cases, hybrid hyper-reduction, hyper-reduction and the
full field for comparison. To avoid clutter, responses are plotted only at cycles 1
and 100. It can be seen that the hybrid approach is much better than the usual
hyper-reduction at cycle 100. One important point to be noted is that, as seen
in figure 3.8, even at cycle 1 the hybrid and HROM approximations are not the
same as the full field response, although the RB has been constructed using the
first ten cycles, and theoretically, in this domain the results should be exact. The
reason for this phenomenon is that the RB was constructed by selecting only nine
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Figure 3.12: ε11 contour plots at the tensile peak of the 100th cycle for the full
field, hyper-reduced (HROM), and hybrid hyper-reduced (hybrid) simulation. In
the second line, error plots for the HROM and the Hybrid are plotted.

- Full field HROM Hybrid

Nodes 1174719 57874 57874

Elements 859848 36041 36041

Computation time 880 h 70 h 450 h

Parallel processors 24 1 1

RAM 221.2 Gbs 1.5 Gbs 1.5 Gbs

Table 3.2: Finite element mesh details and the resources needed to run the full field
(FF), hyper-reduced (HROM) and hybrid hyper-reduced (Hybrid) simulations
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Figure 3.13: σ11 contour plots at the tensile peak of the 100th cycle for the full
field, hyper-reduced (HROM), and hybrid hyper-reduced (hybrid) simulation. In
the second line, error plots for the HROM and the Hybrid are plotted.
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3.7 Conclusion

In this chapter the hybrid hyper-reduced formulation has been presented and ap-
plied to finite element polycrystal aggregate simulations. The capabilities of the
reduced simulation are explored using the macroscopic stress strain plot, local
materials point statistics as well as visual contour plots. Results show the su-
periority of the hybrid over the usual hyper-reduction method when an accurate
prediction is required. In terms of computational time, the hybrid approach is six
times costlier than the HROM. Resources required to launch the Hybrid and the
HROM simulations are identical and around a hundred and fifty times less than
their full field counter-part. Without changing the local constitutive equation,
a hybrid hyper-reduced simulation is quite accurately able to characterize local
nonlineaties. This type of study is beneficial when the asymptotic mechanical re-
sponse, such as strain ratcheting, is under question. It is also shown that errors in
stress prediction are minimal as compared to strain.

As a next step, this type of formulation may be applied to run large scale sim-
ulations with differing local constituents. This will be beneficial in assessing the
preferred locations of plasticity segregation. Accurate parametric studies in poly-
crystal aggregates is also a direction which can be pursued. Lastly, error estimators
to approximate cyclic errors can also be developed in this context.



Chapter 4

Parametric simulations in crystal
plasticity

4.1 Résumé

Il est bien connu que la réponse d’un monocristal est anisotrope, même si la réponse
macroscopique d’un agrégat de ces cristaux ne l’est pas. Une telle anisotropie lo-
cale oblige les simulations de plasticité cristalline à être extrêmement lourdes, tant
en termes de stockage que de temps de calcul. L’hyper-réduction vise à limiter
l’utilisation de ces ressources en convertissant le modèle détaillé en un modèle ré-
duit (ROM) en supposant que les variables d’état appartiennent à un sous-espaces
fonctionnel réduit et, ce faisant, de réduire le nombre de variables d’état. Le cadre
de la POD qui provient de l’analyse statistique des données vectorielles est adopté.
On peut l’imaginer comme la mesure d’un certain événement un nombre de fois
n, chaque mesure xi, i = 1, ..., n étant un vecteur contenant un grand nombre, m,
d’entrées, c’est-à-dire xi ∈ Rn (Dans ce cas, m est le nombre d’incréments de la
simulation par éléments finis). L’objectif est de trouver les similitudes et les inter-
dépendances entre les données extraites et de les réduire à un nombre beaucoup
plus petit. Dans le cadre de la POD, formellement, toutes les solutions possibles
d’équations paramétriques devraient être considérées, pour toutes les valeurs de
paramètres dans un espace paramétrique D. Mais dans la plasticité cristalline,
il n’est pas possible de prendre en compte toutes les microstructures possibles
pour un élément de volume représentatif donné. Par conséquent, un protocole
d’apprentissage automatique est proposé qui nous permet d’effectuer des analyses
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statistiques en recourant à des ROMs très rapides.

Les paramètres sont divisés en trois ensembles, c’est-à-dire les paramètres mi-
crostructuraux utilisés pour générer des milieux aléatoires, y compris le mail-
lage, les paramètres liés aux conditions aux limites appliquées au volume élémen-
taire représentatif, et tous les autres paramètres. Toutes les prédictions possibles
sont considérées comme des tenseurs de second ordre ayant un rang bas. Ici, les
paramètres et la variable temps sont regroupés en une seule variable multidimen-
sionnelle. En raison des paramètres microstructuraux, on ne s’attend pas à ce que
le rang de ce tenseur soit suffisamment faible pour générer des approximations de
base réduite efficaces.

Dans l’approche présentée, l’espace de paramètres inclut les orientations cristallo-
graphiques, les distributions de voisinage et de taille des grains, le type de charge-
ment, les conditions aux limites, les paramètres du modèle phénoménologique et,
pour résoudre ces problèmes par éléments finis, la taille du maillage et sa densité.
L’espace paramétrique implique que les informations collectées lors d’une étape
hors ligne, sont valables pour une variation limitée des paramètres autour des
points échantillonnés dans l’espace choisit. Cet espace peut être augmenté mais
alors le domaine réduit ne sera pas ”réduit” et simultanément les imprécisions
d’échantillonnage augmenteront.

4.2 Introduction

It is well known that the response of a single crystal is anisotropic; even if the
macroscopic response of an aggregates of these crystals is not. Such local anisotropy
compels crystal plasticity simulations to be extremely heavy, both in terms of stor-
age as well as computational time. Hyper reduction aims to limit the use of such
resources by converting the detailed model into a reduced order model (ROM)
assuming that the state variables belong to a restricted functional subspace; and
in the process reducing the number of independent state variables. The framework
of POD is adopted which originates from the statistical analysis of vector data.
It can be imagined as measuring a certain incident an n number of times, each
measurement xi, i = 1, ..., n being a vector containing a large number, m, of en-
tries i.e. xi ∈ Rn (In this case m is the number of increments of the finite element
simulation.). The objective is to find the similarities and inter-dependencies in the
extracted data and reduce it to a much smaller number. In the framework of POD,
formally, all possible solutions of parametric equations should be considered, for
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all parameter values in a parametric space D. But in crystal plasticity it is not
possible to account for all possible microstructures for a given representative vol-
ume element. Therefore, a machine learning protocol is proposed which enables
us to run statistical analysis by resorting to fast hyper ROMs.
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Figure 4.1: Dividing the parameter space into three components: µ =

[µmicro, µBC , µ⋆]

As shown in figure 4.1, parameters are split into three sets i.e. the microstructural
parameters used to generate randomized media including the mesh, the parameters
related to the boundary conditions applied to the RVE, and all other parameters.
Then, µ = [µmicro, µBC , µ⋆], where µmicro is the vector of microstructural param-
eters, µBC is the vector of boundary conditions parameters, and µ⋆ is the vector
related to all the remaining parameters. All possible predictions are viewed as
second order tensors having a low rank. Here parameters and the time variable
are grouped in a single multidimensional variable in order to define this second
order tensor: u(z, θ) = u(z, t;µ), θ = (t, µ). By sampling the possible values of θ
the rank of the tensor can be evaluated. But here, because of the microstructural
parameters the rank of this tensor is not expected to be small enough to generate
efficient RB approximations.

In the presented approach the parameter space includes crystallographic orienta-
tions, grain neighborhood and size distributions, loading type, boundary condi-
tions, the phenomenological model parameters, and when solving these problems
using finite elements, the mesh size and its density. The parameter space implies
that the information collected during an offline stage, is valid for a limited varia-
tion of parameters around sampled points in the prescribed space. This space can
be increased but then the reduced domain will fail to be ”reduced” and simulta-
neously sampling inaccuracies will increase in the reduced setting. This chapter is
organized in the following manner. Section 4.3 will present the incremental POD
formulation as well as the characterization of the microstructural space (µmicro).
Section 4.4 will explore the boundary conditions (µBC), as well as the constitutive
equation parameter sets (µ*). This will be followed by the conclusion in Section
4.5.
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4.3 Testing the microstructural space

The contents of the following part are based on the idea of an incremental POD
(Brand, 2002; Ryckelynck et al., 2006), where the intention is to expand the existing
subspace spanned by the basis functions. The motivation is to create a huge RB
which may be able to simulate datasets without new offline trainings. As stated in
the previous chapter, all simulation results are stored in a matrix Q. An existing
POD done on the matrix of simulation results takes the form:

Q = V γ + error, V TV = I
N
, max(|λ(error)|) < √

ϵP OD max(|λ(Q)|), (4.1)

where max(|λ(Q)|) is the maximal singular value of Q. Now lets say that new is
obtained and the RB has to be extended by adding a new snapshot at the end of
each time step: [Q, q]. The reduced coordinate q will read:

β = V T q. (4.2)
The orthogonal residual of the projection on V will read:

δq = (I − V V T )q, p =
√

δqT δq, (4.3)
such that:

[V γ, q] = [V , δq/p]

[

γ β

0 p

]

. (4.4)

Hence, if ||δq||∞ > ϵR||q||∞, ϵR = 10−6, a new eigen-decompositon is performed on
an (N + 1) × (N + 1) matrix such that:

BΛ =

[

γ β

0 p

] [

γ β

0 p

]T

B+error′, max(|λ(error′)|) < √
ϵP OD max(|λ(Q)|), (4.5)

the updated POD will read:

[Q, q] = Ṽ γ̃ + ˜errorṼ = [V , δq/p]Bγ̃ = BT

[

γ β

0 p

]

, (4.6)
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4.4 Testing boundary conditions and parameter
sets

In the following three examples are shown which explore the capabilities of the
ROM for crystal plasticity finite element simulations. A thousand grain poly-
crystal is chosen as an example where figure 4.6 shows a meshed finite element
geometry with mixed displacement based boundary conditions. The finite element
mesh consists of 1174719 nodes and 859848 reduced C8D10 quadratic tetrahedral
elements. Each element consists of four Gauss points. The crystallographic orien-
tations chosen were randomly distributed throughout the polycrystal. Figure 4.6
also shows the first ten stress vs strain cycles which were simulated using E11 =
1.0 % and RΣ = 0.0. The same ten cycles were used as the offline training phase
for the hyper-reduced model.

4.4.1 Case 1: Changing the macroscopic boundary condi-
tions

In structural simulations often different types of boundary conditions have to be
simulated. Especially in context to micro-heterogeneous materials different macro-
scopic boundary conditions give a different local response because of the nonlinear
evolution of micro hardening variables. In this example a different macroscopic
load is applied as compared to the offline phase i.e both simulations had RE =
0.0, while the maximum strain for the online phase was 0.8% as compared to the
offline phase of 1.0%. Figure 4.7 shows the results where the offline and online
case are presented. For comparison purposes a full field simulation for the online
phase is also shown. The online simulation can be seen to be in good conformance
with the full field result.

4.4.2 Case 2: Changing the constitutive parameters

Constitutive parameters of phenomenological equations governing the behavior of
a single crystal are difficult to calibrate. Adding to that is the fact that after a
certain crystal plasticity parameter set has been employed, changing even a single
parameter can lead to a different evolution of local hardening. Especially when
running cyclic simulation, a change in parameter set can lead to great variations
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in the nonlinear evolution of plasticity. Another point is that in the context of
crystal plasticity where complex phenomenological laws are used at the local scale,
different constitutive parameter sets may yield the same macroscopic response.
This can lead to a completely different interpretation of local mechanics resulting in
macroscopic hardening. In light of this motivation, table 4.1 shows the parameters
used in the offline stage as well as those used in the online stage. The initial resolved
shear stress and the kinematic hardening parameter of the online case are changed
by about 30 %. Figure 4.8 shows the stress vs strain response of the online and
offline simulations. The simulations show good conformance and it is concluded
that the reduced domain is valid for a large change in constitutive parameters.

Offline parameters Online parameters
C1111 = 259600.0 MPa C1111 = 259600.0 MPa
C1122 = 179000.0 MPa C1122 = 179000.0 MPa
C1212 = 109600.0 MPa C1212 = 109600.0 MPa
R0 = 320.0 MPa R0 = 220.0 MPa

C = 100000.0 MPa C = 80000.0 MPa
D = 1000.0 D = 1000.0

K = 9 K = 9

Table 4.1: Parameters used for extracting the reduced basis (offline parameters),
and those used to predict the material response (online parameters).
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4.4.3 Case 3: Model reduction of large scale simulations

In low cycle fatigue long cyclic simulations are sometimes necessary to check the
stabilized response of the material. This example shows one practical need for
running parametric simulations in crystal plasticity. As shown in chapter 2, un-
der asymmetric cyclic strain boundary conditions, different strain amplitudes give
differing stabilized mean stress regimes. As reported by multiple authors (Morrow
et al., 1974; Kwofie and Chandler, 2001; Christ et al., 1997; Xia et al., 1996; Yuan
et al., 2016), the retention of mean stress in a cyclically loaded component causes
an early onset of failure. Modeling such a response using crystal plasticity FEM
enables the elaboration of local effects which lead to a retention of mean stress.

The offline phase is shown in figure 4.6 where training is done on the first ten cycles
of an asymmetric strain controlled simulation with Emax = 1.0% and RE = 0.0. In
the online phase, twenty reduced cyclic simulations were run, as shown in figure 4.9,
between Emax = 0.2 − 1.0% for one thousand cycles each. The computational cost
for running multiple full field simulations would be at least 800 hours each. But
in a reduced setting each simulation costs less than 170 hours. More importantly,
each reduced simulation needs less than 125 megabytes of memory, and is run
using just one processor. The idea being portrayed here is that without neglecting
the physics, the deformation behavior resulting from long cyclic simulations can be
studied. This is of great importance because the high fidelity approach presented
in chapter 2 cost thousands of hours of computational time and the reduction of
such a system leads to an accelerated analysis of the physics of deformation.

- Full field Reduced

Nodes 1174719 18408

Elements 859848 10299

Computation time 800 h 70 h

Parallel processors 24 1

RAM 221.2 Gbs 125 Mbs

Table 4.2: Finite element mesh details and the resources needed to run one full
field and one reduced simulations
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4.5 Conclusion

Some cases have been demonstrated showing the capabilities of hyper-reduction
for finite element simulations in crystal plasticity. The selection of a suitable
parameter space is important to anticipate what can be extracted from a ROM.
The conclusion with this regard is that the microstructural parameter space has
to be sampled before starting the reduction process, whereas the macroscopic
boundary conditions and phenomenological model parameters may serve as a good
parameter space. This was demonstrated by testing the given parameter space
constituents as well as by giving a practical test for crystal plasticity. It was
also demonstrated that adding more information to the RB does not necessarily
mean that it will get better. As a future outlook more work may be done in this
context by working on the potential improvement of the RB by anticipating which
parameter space may be fed to it, to have a large enough information pool for
online simulations.



Chapter 5

Conclusion and outlook

5.1 Conclusions

Le premier objectif de cette thèse était de caractériser les charges cycliques non
symétriques dans le cas de matériaux métalliques polycristallins. L’approche util-
isée était une méthode par éléments finis en prenant en compte la plasticité
Cristalline à l’échelle mésoscopique couplée à des éléments de volume représen-
tatifs (VER). En raison de la complexité de la méthode, le deuxième objectif était
d’appliquer la réduction de modèle au problème pour accélérer les calculs ainsi que
pour explorer l’espace des paramètres pour des simulations de plasticité cristalline
de façon extrêmement rapide. Pour atteindre ces objectifs, la thèse a été divisée
en plusieurs parties:

• Caractérisation détaillée de simulations cycliques non symétriques selon la
méthode CPFE pour les monocristaux et les polycristaux

• Réduction de modèle appliquée au problème cyclique CPFE

• Caractérisation de l’espace des paramètres utilisable pour la réduction de
modèle

La première partie a commencé par la prise de deux agrégats polycristallins avec
des grains équiaxes et une distribution d’orientation cristallographique isotrope
aléatoire.
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Cela a été fait dans le but d’étudier les effets locaux fondamentaux qui produisent
différents phénomènes macroscopiques. On ne souhaitait pas s’en tenir à une mi-
crostructure matérielle spécifique; bien que les ensembles de paramètres de plastic-
ité cristalline aient été établis à proximité de deux matériaux techniques : Inconel
718 et cuivre. Ensuite, on a commencé par observer la réponse mécanique cyclique
saturée d’un monocristal. Il a été noté que pour les monocristaux, des régimes
discrets de plasticité cyclique ont été observés aussi bien pour les contraintes
asymétriques que pour les déformations asymétriques. Dans l’étape suivante,
une transition vers un polycristal représentatif a montré que les régimes macro-
scopiques distincts observés dans les monocristaux disparaissent et des réponses
macroscopiques lisses ont été obtenues. Ceci a également conduit à la caractérisa-
tion de différents régimes qui sont typiquement observés dans les expériences de
cliquetis de souche. Pour résoudre le problème de la caractérisation du cliquettage
de déformation, on a mis au point un test comparatif en série qui permet de dis-
criminer le shakedown mécanique du cliquetis. Pour les simulations de relaxation
des contraintes moyennes, le polycristal a montré une diminution en douceur de la
contrainte moyenne saturée avec une augmentation de la déformation appliquée.
Ces résultats sont importants car ils montrent que sans changer les lois constitu-
tives, les résultats expérimentaux peuvent être reproduits à l’aide du CPFEM, à
l’échelle macroscopique.

Les résultats obtenus sur un point de Gauss ont ensuite été analysés et deux
résultats majeurs ont été élaborés, à savoir la bimodalité de la contrainte et la
bimodalité de la contrainte plastique accumulée. On a observé que la contrainte à
l’intérieur d’un agrégat polycristallin se divisait progressivement en deux parties
avec une augmentation du nombre de cycles simulés ; et ces deux parties concer-
naient les grains durs et mous. On a émis l’hypothèse que, dans des conditions de
charge cyclique, les contraintes migrent des grains durs vers les grains mous, où les
grains durs et mous sont caractérisés par leur facteur de Schmid axial total. On a
constaté que les déformations plastiques accumulées n’étaient bimodales que dans
certaines conditions mécaniques et que cela ne se produisait que lorsque le poly-
cristal subissait un choc plastique ou qu’il avait conservé une contrainte moyenne
cyclique. Ces constatations supposaient que dans des conditions asymétriques de
contrainte ou de charge de traction, une microstructure se divise en deux parties:
une partie qui prend en charge toute la plasticité et l’autre qui stagne, c’est-à-dire
arrête l’accumulation de la plasticité.

Le coût de calcul de ces simulations était également très élevé, c’est-à-dire que
des téraoctets de données étaient produits chaque semaine, et chaque simulation
coûtait 32 gigaoctets de RAM à charger. Pour ce faire, un cluster dédié ”Cristal”



CHAPTER 5. CONCLUSION AND OUTLOOK 124

a été mis en place pour exécuter ces simulations qui comportaient 18 nœuds avec
256 gigaoctets de RAM et 24 unités de traitement par nœud. Les données issues
de ces calculs seront également bientôt disponibles gratuitement sur un serveur
dédié.

L’objectif de la deuxième partie de la thèse était de réduire l’ordre du modèle
de plasticité cristalline à l’aide d’une approche Gappy POD, puis d’effectuer des
simulations cycliques sur le modèle réduit. Le premier problème rencontré dans
cette partie est que les simulations par cliquet de déformation ont une très faible
tolérance d’erreur et que celle-ci peut être réduite en ajoutant une fonction de
correction par éléments finis dans l’estimation. Ceci a été illustré par l’exécution
de simulations d’écrouissage de déformation sur un granulat de mille grains, puis
la comparaison du résultat de la commande réduite à l’aide de la méthode HROM
conventionnelle et de la méthode hybride. Néanmoins, l’approximation hybride
s’est avérée meilleure tant au niveau macroscopique qu’au niveau local. Une ob-
servation importante dans les simulations d’ordre réduit est que, tout en utilisant
la plasticité cristalline, il est beaucoup plus facile d’estimer les contraintes que de
prédire les déformations parce que les déformations se localisent.

Après avoir démontré la supériorité de l’approche hyperréduction hybride, l’espace
de paramètres a été caractérisé. Il a été démontré que les caractéristiques mi-
crostructurales telles que les distributions d’orientation ou la géométrie ne peu-
vent être réduites dans la procédure actuelle de réduction de l’ordre des modèles.
D’autre part, une bonne conformité a été constatée tout en variant les paramètres
constitutifs de l’équation. Ceci est d’une grande importance car il est nécessaire
de tester différents paramètres de plasticité cristalline pour établir une première
estimation des propriétés des matériaux. Il a également été démontré que les
paramètres des conditions limites peuvent être modifiés une fois qu’une base ré-
duite a été construite.

5.2 Conclusion

The first objective of this thesis was to characterize non-symmetric cyclic loadings
in polycrystalline metallic materials. The approach used was a mesoscale scale
crystal plasticity finite element method coupled with representative volume ele-
ments. Due to the complexity of the method, the second objective was to apply
model order reduction techniques to the problem in the anticipation to accelerate
as well as explore the parameter space in crystal plasticity simulations. To achieve
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these objectives the thesis was divided into the following parts:

1. Detailed characterization of non-symmetric cyclic simulations using the CPFE
method for single as well as polycrystals.

2. Model order reduction applied to the cyclic CPFE problem.

3. Characterization of the parameter space associated to the employed model
order reduction technique.

The first part began by taking two polycrystal aggregates with equiaxed grains
and a random isotropic crystallographic orientation distribution. This was done
because the intention was to study the fundamental local effects which produce
different macroscopic phenomena, and not to stick to a particular material mi-
crostructure; although, the crystal plasticity parameter sets were set close to two
engineering materials: Inconel 718 and copper. Then a start was taken by ob-
serving the saturated cyclic mechanical response of a single crystal. It was noted
that for single crystals, discrete regimes of cyclic plasticity were observed for both
asymmetric stress as well as asymmetric strain. In the next step, a transition to a
representative polycrystal showed that the distinct macroscopic regimes observed
in single crystals disappear and smooth macroscopic responses were obtained. This
also led to the characterization of different regimes which are typically observed
in strain ratcheting experiments. To cater for the problem of characterizing strain
ratcheting, a series comparison test was devised which discriminated mechanical
shakedown from ratcheting. For mean stress relaxation simulations the polycrys-
tal showed a smooth decrease in the saturated mean stress with an increase in
the applied strain. These findings are important because they show that with-
out changing the constitutive laws, experimental findings can be reproduced using
CPFEM, at the macroscopic scale.

Gauss point results were then analyzed where two major findings were elaborated
i.e. the bimodality of stress and the bimodality of accumulated plastic strain. The
stress inside a polycrystal aggregate was observed to progressively split into two
parts with an increase in the number of simulated cycles; and these two parts
pertained to hard and soft grains. This hypothesized that under cyclic loading
conditions stresses migrate from hard to soft grains where hard and soft grains were
characterized by their total axial Schmid factors. Accumulated plastic strains were
seen to be only bimodal under certain mechanical conditions and it was observed
that this happened only when the polycrystal experiences plastic shakedown or has
retained a cyclic mean stress. These findings hypothesized that under asymmetric
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stress or strain loading conditions, a microstructure splits into two parts; one
part which takes over all the plasticity and the other which stagnates i.e. stops
accumulating plasticity.

The computational cost of these simulations was also very high i.e. terabytes of
data was produced on a weekly basis, and each simulation cost 32 gigabytes of
RAM to load. To cater for this, a dedicated cluster ”Cristal” was set up to run
these simulations which had 18 nodes with 256 gigabytes of RAM and 24 processing
units per node. Data from these computations will also be freely available soon
on a dedicated server.

The objective of the second part of the thesis was to reduce the order of the crystal
plasticity model using a gappy POD approach and then to run cyclic simulations
on the reduced setting. The first problem encountered in this part was that strain
ratcheting simulations have a very low error tolerance and this can be lowered by
adding a finite element correction function in the estimation. This was portrayed
by running strain ratcheting simulations on a thousand grain aggregate and then
comparing the reduced order result using the conventional HROM as well as the
hybrid approach. Nevertheless, the hybrid approximation came out to be better
both at the macrosopic as well as the local level. One important observation in
the reduced order simulations was that while using crystal plasticity estimating
stresses is much easier as compared to predicting strains because strains localize.

After demonstrating the superiority of the hybrid hyper-reduction approach, the
parameter space was characterized. It was shown that microstructural features
such as orientation distributions or the geometry cannot be reduced in the current
model order reduction procedure. On the other hand, good conformity was seen
while varying the constitutive equation parameters. This is of great importance
because testing different crystal plasticity parameters is necessary to establish a
first estimate of the properties of materials. It was also shown that the boundary
condition parameters can be changed once a RB has been constructed. This also
carries significance, as shown by a practical example in figure 4.9 where a RB is
constructed using just one simulation and then a large number of results are re-
covered using the hyper-reduction technique. This merge of model order reduction
with large scale crystal plasticity simulations is extremely beneficial in assessing
the response of huge aggregates and designing new materials for a better world.
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5.3 Perspectives

Dans un premier temps, cette thèse a présenté certains aspects de la physique de la
déformation dans les polycristaux chargés cycliquement et dans un second temps,
un couplage de simulations par éléments finis avec des techniques de réduction
de modèles a été élaboré. Certaines orientations, telles que proposées ci-dessous,
peuvent être suivies pour les travaux futurs.

Pour la partie physique, les stratégies suivantes sont proposées :

• Dans la présente étude, le modèle de plasticité cristalline n’a eu qu’une
contribution de durcissement cinématique qui a ignoré l’effet de la ma-
trice d’interaction sur la relaxation des contraintes moyennes ainsi que le
phénomène de rochet. L’intégration de ces données dans de nouvelles études
peut permettre d’élaborer les effets de l’interaction entre les systèmes de
glissement et la façon dont ils affectent la réponse macroscopique dans les
structures chargées cycliquement.

• On a également supposé que la texture cristallographique était distribuée
aléatoirement. Il est également nécessaire de comprendre comment le phénomène
de rochet évolue dans les agrégats à forte texture cristallographique ou pour
les matériaux multiphasiques à inclusions et vides.

• Des études expérimentales à l’échelle locale peuvent être effectuées pour
valider les résultats de la simulation, mais à cette fin, il est difficile de re-
produire des champs pour des variables telles que la déformation plastique
cumulée. Néanmoins, pour la relaxation des contraintes moyennes, il est
possible de mesurer le champ des contraintes locales au moyen d’expériences
synchrotron afin de comprendre les phénomènes locaux.

• Les techniques d’apprentissage automatique pour corréler les tendances des
données peuvent être utilisées pour stimuler l’évolution non linéaire de la
plasticité tout en calculant des centaines de cycles.

• Il est également possible d’étudier des voies de chargement multiaxiales et
complexes, ce qui est généralement le cas en pratique.

En ce qui concerne la réduction de modèle, les recherches futures suivantes sont
proposées :
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• La base réduite peut être enrichie pour incorporer différentes conditions aux
limites multiaxiales.

• La méthode d’analyse par composante principale linéaire actuellement util-
isée peut être remplacée par l’analyse par composante principale du noyau
pour développer des relations non linéaires dans la base réduite.

• Dans la présente formulation, la base réduite utilisée pour les estimations
ne tient compte que des champs de déplacement. Cette base réduite peut
également être enrichie par l’ajout d’autres variables constitutives.

• Des estimateurs d’erreurs robustes peuvent être formulés dans le contexte de
la plasticité cristalline.

• Une extension peut être faite pour modéliser les fissures et les vides dans les
matériaux polycristallins.

Ici ont été présentés quelques points qui pourraient être développés dans des études
futures, mais de multiples autres directions peuvent également être prises pour
comprendre la physique de la déformation des matériaux ainsi que pour développer
les techniques de réduction de modèle.

5.4 Outlook

In the frst phase, the thesis presented some aspects of the physics of deformation
in cyclically loaded polycrystals and in the second phase a coupling of finite el-
ement simulations with model order reduction techniques was elaborated. Some
directions, as proposed below, can be followed for future works.

For the physics part the following strategies are proposed:

• In the current study, the crystal plasticity model only had a contribution
of kinematic hardening which ignored the effect of the hardening matrix
on mean stress relaxation as well as ratcheting. Incorporating this in new
studies can elaborate the effects of the interaction between slip systems and
how they affect the macroscopic response in cyclically loaded structures.
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• It was also assumed that the crystallographic texture was randomly dis-
tributed. Understanding how ratcheting evolves in aggregates with strong
crystallographic texture or for multiphase materials with inclusions and voids
is also necessary.

• Experimental investigations at the local scale can be done to validate the
simulation results but to this end it is difficult to reproduce fields for vari-
ables such as the accumulated plastic strain. Nevertheless, for mean stress
relaxation, local stress field measurements through synchrotron experiments
can be done to understand local phenomena.

• Machine learning techniques to correlate data trends can be used for the
estimation of nonlinear evolution of plasticity while computing hundreds of
cycles.

• Multiaxial and complex loading paths can also be studied which are usually
the case in a practical engineering environment

With regards to model order reduction the following future research is proposed:

• The RB can be enriched to incorporate different multiaxial boundary condi-
tions.

• The linear PCA method currently being used can be substituted by kernel
PCA to develop nonlinear relationships in the RB.

• In the present formulation, the RB used for the estimations incorporates
only displacement fields. This RB may also be enriched by adding data from
plastic strains or other constitutive equation variables.

• Robust error estimators can be formulated in the context of crystal plasticity.

• An extension can be done to model cracks and voids in polycrystalline ma-
terials.

Multiple other directions can also be taken to understand the physics of material
deformation as well as develop the model order reduction technique, but this was
just a set of few points which could be elaborated in future studies



Appendix A

Ongoing work

The current ongoing work deals with multiaxial boundary conditions, which is to
a large extent, an understudied topic especially using micromechanical techniques.
This is one of the requirements of the industry because in-service engineering
components are more often subjected to varying types of boundary conditions
which combine both stress and strain at the same time. A type of scenario, as
presented in A.1 pertains to stress controlled loadings where different combinations
of traction and shear are postulated. The problem is portrayed in figure A.1 (a)
where three different boundary conditions are applied as follows1:

• Traction and shear: a traction of 900 MPa is applied on Σ11 which is followed
by a shear of 200 MPa on component Σ12 (blue curve)

• Shear and traction: a shear of 200 MPa is applied on Σ12 and then a traction
of 900 MPa in Σ11 (red curve)

• Shear and traction together: Both Σ12 (200 MPa) and Σ11 (900 MPa) are
applied together (black curve)

Marked by a gray cross in figure A.1 (a) the final macroscopic stress state is the
same in all three cases but the difference lies only in the path taken. Figures A.1
(b) and (c) show the macroscopic axial strain and the accumulated plastic strain
for all three scenarios. It can be seen that when first traction and then shear is

1As a test case VE 1 with parameter set LK was used.
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Appendix B

Analysis of mesh sensitivity

Selecting the appropriate mesh density for finite element polycrystal simulations is
not straightforward. A start can be taken by refining the mesh until a converged
macroscopic tensile curve is obtained but finding macroscopic properties is not
the only goal of the work. If macroscopic properties were the main goal, then
macroscopic models could have been used or even mean field models which take
into account a lot of local information and are much faster to perform as well
as require considerably less computational resources. The goal here is also to
assess local responses inside the grains. This requires large number of DOFs in
each grain. Also there is considerable difference in the solutions obtained using
different boundary conditions. In this article two types of boundary conditions are
used: Periodic strain control or periodic stress control. Periodic stress boundary
conditions are anticipated to produce more convergence issues as compared to
periodic strain because in metal plasticity, a small increment in stress produces a
large increment in strain. This effect is even more pronounced at the local level
because of severe heterogeneity in crystal plasticity simulations. With regards to
VE 1 which contains 300 grains, three mesh densities were tested for this chapter:

1. coarse mesh with 112565 nodes and 74270 quadratic elements

2. mesh in use with 194903 nodes and 130171 quadratic elements

3. fine mesh with 270670 nodes and 181905 quadratic elements
This appendix sheds light on the choice of mesh density in Chapter 2
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A tensile test on these meshes was performed and three responses were compared
i.e. the macroscopic averaged stress strain response, the von Mises equivalent
stress and strain at each Gauss point at the maximum traction/displacement. For
periodic strain control a 2% macroscopic strain was imposed while for periodic
stress a macroscopic stress of 1110 MPa was imposed in the tensile direction.
Figures B.1 and B.2 show the three responses for both loading conditions. For
strain controlled loading, all three meshes provide a somewhat converged solution,
both at the macroscopic level and at the local level. Apart from some mismatch
in the local von Mises stress distribution curve there even the coarse mesh seems
to do the job. This is not the case for stress based loading conditions. At the
macroscopic scale, the three meshes do not lead to the same value of the mean
strain at the final loading point, see Fig. B.2(a). The largest discrepancies are
found for the equivalent stress distribution, Fig. B.2(b). This shows that load
controlled asymmetric simulations require a very fine mesh to obtain converged
local strain distributions. Also, even if there is a small error in the applied stress
at each increment, it can result in a significant error in the calculated strains. Using
24 parallel cores for each job, the time needed to run one tensile load controlled test
on each mesh was 10, 33 and 60 hours respectively. Although differences can be
observed in the load controlled simulation, hundreds of tests were required for this
study and hence the intermediate mesh size with 130171 elements was selected.
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Figure B.1: Using parameter set LK, tensile test simulations for three finite element
meshes under a macroscopic periodic strain of 2%: (a) macroscopic averaged stress
strain plot,(b) and (c) von Mises equivalent strain and stress distributions at the
peak macroscopic strain.
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Figure B.2: Using parameter set LK, tensile test simulations for three finite element
meshes under a macroscopic periodic load of 1100 MPa: (a) macroscopic averaged
stress strain plot, (b) and (c) show the von Mises equivalent strain and stress at
the peak macroscopic stress.



Appendix C

Grain size distribution

This appendix shows the investigation of grain sizes and shapes for a polycrystal
with an isotropic crystallographic texture distribution. Figure C.1 shows three
different polycrystal geometries, each having 1000 grains. The difference lies in
their grain size distribution as well as finite element mesh. The three geometries
contain:

• Cubic grains with identical sizes and a hexahedral mesh

• Voronoi tessellated geometry with a tetrahedral mesh

• A different Voronoi tessellated geometry with a tetrahedral mesh

The grain size of the cubic geometry was constant i.e. 10 µm while the grain size
distribution for the other two geometries is shown in figure C.2.

The three geometries were subjected to a 2% macroscopic strain and the corre-
sponding mechanical responses may be viewed in figure C.3. All three geometries
regardless of their grain size distribution or finite element mesh type show very
similar macroscopic as well as local responses. One plus for using an irregular mesh
as compared to brick elements is the ease with which grain boundaries can be rep-
resented i.e. with regular elements, a staircase type of grain boundary emerges
rather than a smooth layer.
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