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In the last decade, high dynamic range (HDR) image and video technology gained a lot of attention, especially within the multimedia community. Recent technological advancements made the acquisition, compression, and reproduction of HDR content easier, and that led to the commercialization of HDR displays and popularization of HDR content. In this context, measuring the quality of HDR content plays a fundamental role in improving the content distribution chain as well as individual parts of it, such as compression and display. However, HDR visual quality assessment presents new challenges with respect to the standard dynamic range (SDR) case. In this thesis, we identify some of these challenges and suggest solutions to these problems.

The first challenge is the new conditions introduced by the reproduction of HDR content, e.g. the increase in brightness and contrast. Even though accurate reproduction is not necessary for most of the practical cases, accurate estimation of the emitted luminance is necessary for the objective HDR quality assessment metrics. In order to understand the effects of display rendering on the quality perception, an accurate HDR frame reproduction algorithm was developed, and a subjective experiment was conducted to analyze the impact of different display renderings on subjective and objective HDR quality evaluation.

Additionally, in order to understand the impact of color with the increased brightness of the HDR displays, the effects of different color spaces on the HDR video compression performance were also analyzed in another subjective study.

Another challenge is to estimate the quality of HDR content objectively, using computers and algorithms. In order to address this challenge, the thesis proceeds with the performance evaluation of full-reference (FR) HDR image quality metrics. HDR images have a larger brightness range and higher contrast values. Since most of the image quality metrics are developed for SDR images, they need to be adapted in order to estimate the quality of HDR images. Different adaptation methods were used for SDR metrics, and they were compared with the existing image quality metrics developed exclusively for HDR images.

Moreover, we propose a new method for the evaluation of metric discriminability based on a novel classification approach.

Motivated by the need to fuse several different quality databases, in the third part of the thesis, we compare subjective quality scores acquired by using different subjective test methodologies. Subjective quality assessment is regarded as the most effective and reliable way of obtaining "ground-truth" quality scores for the selected stimuli, and the obtained mean opinion scores (MOS) are the values to which generally objective metrics are trained to match. In fact, strong discrepancies can easily be notified across databases when different multimedia quality databases are considered. In order to understand the relationship between the quality values acquired using different methodologies, the relationship between MOS values and pairwise comparisons (PC) scaling results were compared. For this purpose, a series of experiments were conducted using double stimulus impairment scale (DSIS) and pairwise comparisons subjective methodologies. We propose to include cross-content comparisons in the PC experiments in order to improve scaling performance and reduce cross-content variance as well as confidence intervals. The scaled PC scores can also be used for subjective multimedia quality assessment scenarios other than HDR.

objectives basée sur une nouvelle approche de classification.

Motivée par la nécessité de fusionner plusieurs bases de données de qualité, dans la troisième partie de la thèse, nous comparons les scores de qualité subjectifs acquis en utilisant différentes méthodologies de test subjectives. L'évaluation subjective de la qualité est considérée comme le moyen le plus efficace et le plus fiable d'obtenir des scores de qualité vérité-terrain pour les stimuli sélectionnés, et les scores moyens d'opinion (Mean opinion scores -MOS) obtenus sont les valeurs auxquelles les métriques objectives sont entraînées pour correspondre. En fait, de fortes divergences peuvent facilement être rencontrés lorsque différentes bases de données de qualité multimédia sont considérées. Afin de comprendre la relation entre les valeurs de qualité acquises à l'aide de différentes méthodologies, la relation entre les valeurs MOS et les résultats des comparaisons par paires rééchellonés (Pairwise comparisons -PC) a été comparée. Á cette fin, une série d'expériences ont été menées entre les méthodologies double stimulus impairment scale (DSIS) et des comparaisons par paires.

Nous proposons d'inclure des comparaisons inter-contenu dans les expériences PC afin d'améliorer les performances de rééchelonnement et de réduire la variance inter-contenu ainsi que les intervalles de confiance. Les scores de PC rééchellonés peuvent également être utilisés pour des scénarios subjectifs d'évaluation de la qualité multimédia autres que le HDR.

Mots clés: Haute gamme dynamique, évaluation objective de la qualité, métriques de qualité d'image, rendu d'affichage, évaluation subjective de la qualité.
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Introduction Context and Motivation

The human visual system (HVS) is able to perceive a much wider range of colors and luminous intensities present in our environment than the traditional standard dynamic range (SDR) imaging systems can capture and reproduce. High dynamic range (HDR) technology attempts to overcome these limitations of SDR imaging systems and to enhance user experience. Thanks to the advancements in the imaging and display technologies in the last decade, we are now able to capture, store, transmit, and display images and videos in a more realistic manner [START_REF] Banterle | Advanced High Dynamic Range Imaging: Theory and Practice[END_REF][START_REF] Dufaux | High Dynamic Range Video: From Acquisition, to Display and Applications[END_REF]. Being able to reproduce HDR scenes accelerated the standardization efforts for HDR image and video compression [START_REF] Richter | On the standardization of the JPEG XT image compression[END_REF][START_REF] Luthra | Call for Evidence (CfE) for HDR and WCG Video Coding[END_REF][START_REF] Hanhart | Subjective and objective evaluation of HDR video coding technologies[END_REF] as parts of end-to-end HDR content delivery chain. In order to ensure that compression is done with the highest quality possible, quality assessment is necessary for HDR images and videos. However, the enhanced brightness and contrast of HDR introduce new conditions and constraints to quality assessment problem. This thesis focuses on the assessment and analysis of the high dynamic range image and video. Image and video quality assessment problem is a widely studied problem in the signal processing community [SSB06, SSBC10a, PJI + 15] for the case of SDR. However, these works have a number of limitations. Human perception of light is not proportional to the physical magnitude of the light. In order to account for this non-linearity, the image pixel values are processed using a power law curve, called gamma correction function [START_REF] Itu-R | Reference electro-optical transfer function for flat panel displays used in HDTV studio production[END_REF], for SDR displays. After this operation, the SDR pixel values become perceptually linear where the change in the magnitude will correspond to a proportional change in the perception. Thus, the objective SDR quality assessment methods assume that the image pixels are perceptually uniform. This is not the case for the HDR images, as HDR images generally store physical luminance values, in cd/m 2 , or pixel values which are proportional to the physical luminance values. Similarly, subjective HDR quality assessment is expected to be different since the level and the ratio of brightness are different. For a proper assessment, these new conditions have to be taken into account.

Although estimation and assessment of the quality of the video are essential for many other applications, image and video compression is considered as the main source of distortion throughout the thesis, as it is the most practical and realistic scenario. Based on these considerations, we ask the following question: What are the parameters that affect the estimation of full-reference objective quality and the perception of subjective quality for the case of HDR image and video compression?

Attempting to answer this question, we first identify two main aspects that may impact both the objective and subjective quality assessment of HDR image and video:

• Although the luminance range of SDR can be made perceptually uniform using the gamma correction function, the sRGB gamma correction function does not work for the brighter and darker luminance values which are introduced by HDR [START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF]. For this purpose, a perceptually uniform (PU) encoding of HDR luminance values was proposed by Aydın et al. [START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF]. Using PU encoding, HDR pixel values can be represented as perceptually linear values, and objective quality assessment methods yield better results compared to using physical luminance (i.e. photometric) values [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF].

Nevertheless, in [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF], the display model is simulated, and the exact values of the emitted luminance are not known. Objective quality metrics designed for HDR images [START_REF] Narwaria | HDR-VDP-2.2: A calibrated method for objective quality prediction of high-dynamic range and standard images[END_REF] and videos [START_REF] Narwaria | HDR-VQM: An objective quality measure for high dynamic range video[END_REF] require emitted luminance values for estimation of quality scores. However, the impact of the knowledge of emitted luminance values and the effects of different display renderings on HDR quality assessment have not been studied yet. Additionally, even though some researchers analyzed the human visual system in terms of brightness and contrast perception for a wider luminance range, the effects of different display renderings on the perceived quality of complex images are not thoroughly analyzed in literature. Therefore, we try to answer the following question: How does the HDR display rendering affect the HDR quality assessment, both subjectively and objectively?

• Most of the SDR objective quality metrics work only on the luminance channel [DVKG + 00, WB02, WSB03, WBSS04, SBDV05, SB06, CH07], and the effect of color is generally overlooked in the SDR quality assessment, especially for image and video compression scenarios. However, the increased luminance in HDR conditions can change the way we perceive the quality, and color may influence the perceptual quality due to some aspects of color appearance phenomena, e.g. the Hunt effect, the Bezold-Brücke hue shift, etc. [START_REF]Color Appearance Models[END_REF]. As we consider compression as our main distortion throughout the thesis, we try to analyze and understand the impact of color on compression and thus ask the following question: What are the effects of the color space transformation and the related color specific distortions on the HDR quality assessment?

As we analyze the effects of these two aspects and evaluate the quality metrics in the following chapters, we notice that the subjective evaluation results, i.e. mean opinion scores (MOS), are found to have different ranges for the considered subjectively annotated quality databases. This difference is due to several environmental and experiment-related factors such as the the training session conducted before the experiment, the aim of the subjective experiment, the range of the distortions, etc. Even though the objective quality of the stimuli are the same, the subjective quality score of a stimulus can be different for different databases. This observation has important results for the subjective quality assessment.

As 'quality' is subjective by its definition, most of the objective quality assessment algorithms use MOS values as ground-truth and find the necessary parameters for their algorithms using these MOS values. In order to use these databases for either the evaluation or development of objective metrics, MOS values need to be aligned. This way, subjective quality scores of two stimuli with the same objective quality scores would be similar. In order to address this issue, we try to answer the following question: How can we better define a quality scale that would not be affected by the environmental factors and which subjective quality assessment methodology should we use?

Throughout the thesis, we aim to answer these questions and understand the underlying factors which affect the HDR quality assessment, with a series of subjective experiments and extensive analyses.

Contributions

The following contributions are presented in this thesis. In addition to the contributions discussed in this section, our collaborations throughout France, Spain, and Turkey have brought about some other contributions to HDR image and video coding and perception of brightness in HDR. The complete list of publications is presented in the Publications section (Chapter 7) of the thesis.

• We propose an accurate HDR frame rendering model after detailed characterization of the SIM2 HDR47 display in Chapter 2. The proposed model is based on an iterative scaling algorithm. Experimental results show that the proposed algorithm is able to both reconstruct the HDR images with their intended luminance values and estimate the emitted luminance values accurately. This contribution is explained in detail in the following paper: Emin Zerman, Giuseppe Valenzise, and Frédéric Dufaux, "A Dual Modulation Algorithm for Accurate Reproduction of High Dynamic Range Video", IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), Bordeaux, France, July 2016.

• We study the effects of display rendering on both human visual perception of compression quality and objective HDR image quality assessment in Chapter 2. Results are analyzed both quantitatively and qualitatively and show that using a simple model of the display response is both necessary and sufficient for objective HDR quality assessment. The details are presented in the following paper: Emin Zerman, Giuseppe Valenzise, Francesca De Simone, Francesco Banterle, Frédéric Dufaux, "Effects of Display Rendering on HDR Image Quality Assessment", SPIE Optical Engineering+ Applications, Applications of Digital Image Processing XXXVIII, San Diego, CA, USA, August 2015.

• We study the effects of color space transformation on the performance of HDR video compression in Chapter 3. These effects are analyzed both subjectively and objectively.

Experimental results show that the color space does not have a significant effect on compression performance and luminance-only metrics can predict the results at least as efficiently as the color metrics. This study is presented in the following paper: Emin Zerman, Vedad Hulusic, Giuseppe Valenzise, Rafa l Mantiuk, Frédéric Dufaux, "Effect of Color Space on High Dynamic Range Video Compression Performance", 9th International Conference on Quality of Multimedia Experience (QoMEX), Erfurt, Germany, June 2017.

• We present the results of an extensive evaluation of full-reference HDR image quality metrics in Chapter 4. This evaluation was done using 25 different quality metrics some of which were SDR image quality metrics employed after a pixel encoding step.

In total, 690 compressed HDR images, which constitute the largest compressed HDR image dataset to the best of our knowledge, are used in this evaluation. We find that the MOS values coming from different databases need to be aligned, and SDR metrics can perform similar to HDR metrics if pixel values are made perceptually linear.

• We propose a novel method for the evaluation of objective quality metric discriminability in Chapter 4. This proposed method is used with other commonly used statistical analysis methods to evaluate the objective metrics. Both the details of this method and the evaluation results mentioned in the previous item are explained in the following article: Emin Zerman, Giuseppe Valenzise, and Frédéric Dufaux, "An Extensive Performance Evaluation of Full-Reference HDR Image Quality Metrics", Quality and User Experience, volume 2, April 2017.

• In order to gather more robust subjective scores and to eliminate the need for alignment that was found to be necessary in Chapter 4, we propose to use pairwise comparison scaling results as the subjective quality assessment scores in Chapter 5.

Furthermore, we propose to add cross-content pairs to the standard pairwise comparisons subjective quality assessment methodology, which is found to reduce the error accumulation during preference matrix scaling and the confidence intervals of the resulting quality scores. To this end, a comparison of two different subjective methodologies is made. The details are described in the following paper: Emin Zerman, Vedad Hulusic, Giuseppe Valenzise, Rafa l Mantiuk, Frédéric Dufaux, "The Relation Between MOS and Pairwise Compariosons and the Importance of Cross-Content Comparisons", IS&T/SPIE Electronic Imaging, Human Vision and Electronic Imaging XXII, San Francisco, California, USA, January 2018.

In order to better organize the thesis, these contributions are presented within five main chapters which are discussed in the section below.

Structure of the thesis

The thesis consists of five chapters as follows:

• Chapter 1 provides a clear picture of the image and video quality assessment methods proposed for the standard dynamic range conditions. The details of high dynamic range imaging and the parts of HDR content delivery chain, from acquisition to display, are also discussed in this chapter. Finally, the state-of-the-art in both subjective and objective HDR quality assessment research is explained.

• In order to understand the new distortions that may be induced by the HDR displays, Chapter 2 discusses and analyzes the effects of display rendering on the HDR image quality assessment. For this purpose, we develop an HDR frame reproduction algorithm after thorough analysis and characterization of the SIM2 HDR47 display.

The experimental validation of the proposed rendering method is performed in order to understand its accuracy for reproduction and estimation of emitted luminance.

We also analyze the responses of the built-in rendering method of SIM2 display and the developed frame reproduction algorithm, and we compare the effects of these two rendering methods.

• Chapter 3 analyzes the effects of color space on HDR video compression performance and quality perception, which is generally neglected in the case of SDR. To this end, we design and conduct a subjective experiment with pairwise comparisons methodology, where we compress HDR video sequences with different color space transformations. For this experiment, we select the compressed video sequences to be just noticeably different to capture the minute differences. Then, the performance of compression is measured both objectively and subjectively.

• Based on the findings of the preceding chapters, in Chapter 4, the existing fullreference HDR image quality metrics are evaluated. We collect different types of contents and distortions together using four different subjectively annotated HDR image quality databases, in addition to a new database which we create in this chapter. These five different databases are merged by aligning their subjective scores, and a larger set of compressed HDR images is created. In addition to the commonly employed statistical analysis methods, we propose a new method to evaluate metric discriminability, which is based on a classification approach. The objective quality metrics are analyzed using both the statistical methods and the proposed discriminability analysis method.

• Chapter 5 explains the methods of scaling pairwise comparisons data and the relation between two subjective quality scores: mean opinion scores (MOS) and pairwise comparisons (PC) scaling results. The PC scaling is expected to conceive a "universal scale" on which several experiment results might be compared and fused without a need for alignment of subjective scores as done in Chapter 4. Moreover, we propose to extend the standard pairwise comparisons methodology by including cross-content comparisons. The impact of including cross-content comparisons is assessed subjectively and the findings are presented in this chapter.

The thesis ends with a summary of the experiments conducted, findings, proposed methods, and the results, as well as a number of directions for the future work in this field. The multimedia quality assessment problem is important for many different areas of application. Although it is previously studied for standard dynamic range systems, the increased brightness, contrast, and color range introduced by the high dynamic range technology bring about new conditions and challenges. This chapter discusses the previous studies on subjective and objective quality assessment, stages of the HDR content delivery from acquisition to display, and the state-of-the-art of HDR quality assessment.

Subjective Quality Assessment

Although the word "quality" has a meaning of "a distinguishing attribute" or "peculiar and essential character" [qua17b], in the context of multimedia quality assessment, its Perceived quality of the images and videos depend on several factors. These factors may be simple features such as brightness, contrast, pixel resolution, sharpness, etc. or may also be more complex such as the content, aesthetics, color grading, etc. Although it is rather easy to understand the effects of these simple features (as they are used in many subjective studies, see Subjective Assessment of Image and Video Quality part in this section), other complex factors such as the artistic intent and aesthetics [START_REF] Moorthy | Visual quality assessment algorithms: What does the future hold?[END_REF] are more challenging they are found to be 'highly subjective' in its nature. In fact, in their images or movies, artists often include noise, reduce the contrast, and change the color tones in order to convey a certain feeling or tone. Ideally, these specific modifications must be preserved during processing [START_REF]Tone expansion using lighting style aesthetics[END_REF]. However, most applications distort these complex features, e.g. removing intended noise or increasing the contrast, and can lead to a higher quality.

A similar observation was made in the subjective quality scores of TID [PIL + 13] color image database, where some of the distorted stimuli had higher opinion scores. The target application, or objective, is also important to understand and solve the quality assessment problem. For some applications such as medical imaging, remote sensing, or astronomical imaging the intelligibility can be more important compared to "evaluated excellence or goodness". In some other target applications such as surveillance, it is important that the quality of the media should be both intelligible and good quality at the same time [START_REF] Korshunov | Critical video quality for distributed automated video surveillance[END_REF].

In this thesis, we limit our scope as the multimedia compression scenario and related quality assessment techniques without focusing to a specific target application.

In subjective quality assessment experiments, the multimedia content (stimuli ) are presented to a group of people (subjects), and people are asked to rate or rank the stimuli according to the perceived quality of the stimuli. While some subjective psychovisual experiments use perceptual measurements to understand and analyze the human visual perception of a specific attribute, most subjective quality experiments try to measure the overall impression or overall quality of the presented multimedia content. Depending on the purpose of the experiment and the research question, the responses can be collected using either direct scaling (mostly using an interval scale) or indirect scaling (e.g. difference threshold, pairwise comparisons, etc.) methods [START_REF] Simone | Selected Contributions on Multimedia Quality Evaluation[END_REF]. Direct scaling methods ask viewers to determine the quality of the stimuli directly using a categorical or numerical interval scale which can be discrete or continuous. Indirect scaling methods, on the other hand, ask viewers to rank the presented stimuli according to their preferences, or the viewers 1.1. Subjective Quality Assessment are asked to increase or decrease certain parameters until they notice a difference in order to find the threshold or just noticeable difference (JND). Most commonly used subjective quality assessment methodologies are discussed below.

Subjective Quality Assessment Methodologies

In order to ensure that the subjective experiment results are collected properly and are relevant, many standards or recommendations were published as guidelines for multimedia or video quality assessment [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF][START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF][START_REF] Ebu | SAMVIQ -subjective assessment methodology for video quality[END_REF]. These standards thoroughly describe the requirements for the subjective experiments such as the environmental set-up of the experiment, the procedure and the methodology of the experiment, material selection, etc. Methodologies can be generally classified as single-stimulus, double-stimulus, and comparison methods.

Single-stimulus methods present only one stimulus at a time and ask viewers to rate the quality of the presented stimulus. Some examples include single-stimulus with multiple repetitions (SSMR) [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF], absolute category rating (ACR) [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF], and single-stimulus continuous quality evaluation (SSCQE) [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF]. In ACR (or SSMR), the presentation of stimuli and voting are sequential, whereas the voting is continuous in SSCQE and is done alongside representation of the stimulus (generally video) in real time.

Double-stimulus methods present both the reference and the distorted stimulus to the viewers before rating. Viewers may be asked to rate the distortion or rate both of the stimuli. The presentation of the reference and distorted stimulus can be sequential or simultaneously in side-by-side fashion depending on the variant of the methodology. Some examples include double stimulus impairment scale (DSIS) [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF], degradation category rating (DCR) [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF], double stimulus continuous quality scale (DSCQS) [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF], and simultaneous double stimulus for continuous evaluation (SDSCE) [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF]. Similar to the case of SSCQE, the voting is continuous in SDSCE and is done simultaneously with the representation.

Comparison methods present viewers two or more stimuli and ask them to compare the presented stimuli. The presented stimuli can be voted with several levels (from 'Much worse' to 'Much better') to indicate preference or relation to the other stimulus [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF].

Alternatively, the subjects may be asked to prefer one of the stimuli (two alternative forced choice) or, additionally, subjects may be allowed to select the "Same" option (three 

Background and State of the Art

The subjective assessment of multimedia video quality (SAMVIQ) [START_REF] Ebu | SAMVIQ -subjective assessment methodology for video quality[END_REF] is an alternative method which is a mixture of single-stimulus, double-stimulus and comparison methods. Viewers are presented a number of stimuli, and they can select a stimulus to rate.

Viewers can select the stimuli in their order of preference, go back, compare, and correct their votes. This unique property of SAMVIQ makes it a multi-stimulus methodology.

The acquired subjective data is analyzed generally by finding the mean opinion score (MOS) and standard deviation for the presented stimuli [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF][START_REF]Subjective video quality assessment methods for multimedia applications[END_REF][START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF]. Depending on the methodology, MOS values are found either by taking the mean of the opinion scores (e.g. ACR), or taking the mean after subtracting the opinion scores from each other (e.g. DSCQS). The weaknesses and strengths of these different methodologies were compared by many researchers as discussed more in the next section.

Comparison of Subjective Quality Assessment Methodologies

There has been a substantial amount of work comparing different methodologies for the subjective quality assessment. In [START_REF] Pinson | Comparing subjective video quality testing methodologies[END_REF], Pinson and Wolf compared single-stimulus and double-stimulus continuous quality evaluation methods (SSCQE and DSCQS) and found that the quality estimates are comparable to one another. In [START_REF] Tominaga | Performance comparisons of subjective quality assessment methods for mobile video[END_REF], ACR, DSIS, DSCQS, and SAMVIQ were compared. The authors found no significant difference between the compared methods. The compared methods were also ranked for the assessment times and the ease of evaluation. It was found that from fastest to slowest, the ranking was ACR, DSIS, SAMVIQ, and DSCQS. The ease of evaluation analysis yielded a similar result with the exception that ACR with 11-point scale was the hardest to evaluate whereas ACR with 5-point scale was the easiest. SAMVIQ and ACR were further compared in [START_REF] Rouse | Tradeoffs in subjective testing methods for image and video quality assessment[END_REF],

and SAMVIQ was found to require fewer subjects and longer time compared to ACR. In the study of Mantiuk et al. [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF], four different subjective methods were compared: single-stimulus categorical rating (absolute category rating with hidden reference (ACR-HR)), double-stimulus categorical rating, forced-choice pairwise comparison, and pairwise similarity judgments. No significant difference was found between double-stimulus and single-stimulus methods, in agreement with the previous studies. The forced-choice pairwise comparison method was found to be the most accurate and requiring the least experimental effort amongst the four compared methods.

The methodology of a subjective experiment depends on the intent and research problem.

Although direct rating methods are able to obtain quality scores directly, ranking methods such as pairwise comparison offer additional preference information.

Subjective Assessment of Image and Video Quality

Subjective assessment is used for many applications of computer graphics, computer There is a very strong link between the subjective studies and objective quality assessment methods. In fact, most of these databases are used as 'ground-truth' data for objective quality assessment metrics. Therefore, it is very important to understand the relationship between the perception of quality and the representative quality score.

Objective Quality Assessment

Despite their accuracy, subjective quality assessment experiments are expensive to conduct in terms of time and resources. The quality of the presented stimuli can also be estimated with the help of algorithms and computers, and it is called objective quality assessment. Although not as precise as subjective quality assessment methods, objective quality assessment methods are much faster and crucial for many applications.

Objective quality metrics are classified into three categories according to the availability of the undistorted reference. Full-reference (FR) metrics require the reference in order to estimate the objective quality of the stimulus. Reduced-reference (RR) metrics need only a part of the reference information such as edges, areas, etc. No-reference (NR) metrics do not require any reference information. In this thesis, we only consider full-reference objective quality metrics as it is the most commonly used type of objective quality assessment metric within the compression framework.

For the case of SDR, plenty of objective quality assessment metrics were proposed. In the following subsections, we discuss some of the most popular metrics for image and video quality used in this thesis. For a thorough analysis of objective quality metrics, interested readers can refer to [START_REF] Winkler | Digital Video Quality: Vision models and metrics[END_REF], [START_REF]Modern Image Quality Assessment[END_REF], and [START_REF] Lin | Perceptual visual quality metrics: A survey[END_REF].

Image Quality

Full-reference image quality metrics estimate the quality of an image with respect to its reference. Most of these quality metrics work only on the luminance channel of the images. The most popular image quality metrics are discussed below in four classes: simple arithmetic, structural, information-theoretic, and color difference metrics.

Simple Arithmetic Difference Metrics

Mean squared error (MSE) and peak signal-to-noise ratio (PSNR) are two most commonly used simple arithmetic difference metrics. MSE is calculated as:

M SE = 1 width × height width i=1 height j=1 (I Reference (i, j) -I Test (i, j)) 2 (1.1)
where i is the column index and j is the row index, I Reference and I Test are the reference and test images with image width and height, respectively. Although MSE is not well correlated with human perception and its use is a topic of debate [START_REF]Mean squared error: Love it or leave it? a new look at signal fidelity measures[END_REF], it is still widely used in many applications where a simple and quick image difference metric is required.

PSNR is also popular especially for very specific applications where the type and magnitude of the distortion are within some range, such as image and video compression.

However, it has the same drawbacks, as it is a logarithmic representation of MSE:

P SN R = 10 log max I 2 M SE = 20 log max I √ M SE (1.2)
where max I is the maximum pixel value of the image I.

Structural Similarity Metrics

Universal quality index (UQI) [START_REF] Wang | A universal image quality index[END_REF], structural similarity index (SSIM) [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF], and multiscale SSIM (MSSIM) [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF] can be classified together as they all measure structural similarity. In order to estimate objective quality, UQI uses simple statistical parameters of the image pixel value such as mean, variance and covariance of the pixel value between two images. These parameters are arranged to find the correlation of pixel values between the images, as well as the change in image luminance and image contrast. To find a quality estimate, these terms are multiplied.

SSIM is an extension of UQI metric. Similar to the UQI, mean signifies luminance, variance signifies contrast, and covariance signifies the structural similarity between the reference and the test image. Additionally, some constant variables are included in order to regularize the quality score estimated by the metric. MSSIM further extends SSIM by making computations on multiple scales of image. It calculates the contrast and structure comparison parameters for different scales of the image and multiplies them with the luminance comparison parameter.

Information-Theoretic Metrics

The information fidelity criterion (IFC) [START_REF] Sheikh | An information fidelity criterion for image quality assessment using natural scene statistics[END_REF], visual information fidelity (VIF) [START_REF] Sheikh | Image information and visual quality[END_REF],

and its pixel-based version (VIFp) use information theoretic approaches. These metrics analyze the natural scene statistics in order to estimate the quality of the given stimulus.

For this purpose, IFC estimates the quality scores by calculating the sum of the conditional mutual information I(C N ; D N |s N ), which is computed considering a source, C N , and distortion model, D N , for different wavelet decomposition subbands. VIF also includes a human visual system (HVS) model in addition to the source and distortion models in order to include the uncertainties in the human visual perception of images, and this uncertainty is modeled as an additive Gaussian noise.

Color Difference Metrics

In order to find the differences between colors, the International Commission on Illumination Additionally, ∆E 00 is further extended to be computed on S-CIELAB instead of CIELAB [START_REF] Zhang | A spatial extension of CIELAB for digital colorimage reproduction[END_REF]. In their paper, Zhang and Wandell proposed to separate color image into luminance and color opponent (R-G and B-Y) channels and filter spatially before the color conversion to CIELAB. Then, the CIE ∆E 00 is computed on spatially filtered S-CIELAB color space, and we denote this spatial extension as ∆E S 00 . According to a recent study [START_REF] Ortiz-Jaramillo | Evaluating color difference measures in images[END_REF], ∆E 00 and ∆E S 00 are found as the best performing color difference metrics.

Video Quality

Objective video quality assessment is harder compared to image quality assessment because of the need to consider the temporal variations of the video. The perception of video is also different compared to the case of image due to the response of human visual system and its properties such as eye fixation duration and visual short-term memory. Even though special care is required for objective video quality assessment, image quality algorithms are also commonly used by pooling the frame-by-frame results. Averaging pixel values over the frames is one of the most popular pooling methods used for this purpose.

Among many other works for full-reference video quality assessment [START_REF] Winkler | The evolution of video quality measurement: From PSNR to hybrid metrics[END_REF][START_REF] Moorthy | Visual quality assessment algorithms: What does the future hold?[END_REF], the two most commonly used video quality metrics are 'video quality metric' (VQM) [START_REF]A new standardized method for objectively measuring video quality[END_REF] and motion-based video integrity evaluation (MOVIE) [START_REF] Seshadrinathan | Motion tuned spatio-temporal quality assessment of natural videos[END_REF].

Background and State of the Art

VQM computes seven parameters through several filtering operations. These parameters are collected to analyze different aspects of video quality such as the differences in edge information (blurring, edge sharpening, or edge enhancement via si_loss and si_gain), shift in edge orientation (either for edges lost with blurring or edges created as a result of blocking via hv_loss and hv_gain), color impairments (via chroma_spread and chroma_extreme), and temporal impairments (by multiplying contrast information and temporal information via ct_ati_gain). These parameters are then combined linearly to find the VQM quality score.

MOVIE uses separable Gabor filterbanks to filter the video sequences. In order to find the spatial error, the mean squared normalized error (error between the filtered video sequences is normalized with a division operation) for each sub-band of the filtered video sequence is found. This per sub-band error is combined with another error term where Gaussian filtered video is used, and these error terms are pooled together to find Spatial MOVIE index. The Temporal MOVIE index is found by pooling the temporal distortion, which is computed using the optical flow information of the reference video and Gabor filtered video sequences, for each frame. The overall MOVIE quality scores are found by multiplying the Spatial MOVIE and Temporal MOVIE indices.

Evaluation of Quality Metric Performance

In order to measure the performance of an objective quality metric, several methods are used [START_REF]Objective perceptual video quality measurement techniques for standard definition digital broadcast television in the presence of a full reference[END_REF][START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF][START_REF]Tutorial -objective perceptual assessment of video quality: Full reference television[END_REF]. These methods can be divided into two categories. The first category includes the most commonly used statistical evaluation methods, and the second category includes alternative methods for the evaluation of objective quality metric performance.

Statistical Evaluation Methods

Statistical evaluation methods are used by an overwhelming majority of studies on quality assessment research. These methods are described in the ITU-T Recommendation P.1401 [START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF] in detail. The objective quality metric results, using either a linear, polynomial, or non-linear function, are fitted to subjective quality scores, and these fitted (i.e. predicted) quality scores are used to compute the statistical evaluation metrics described below. According to the ITU Recommendations [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF][START_REF]Objective perceptual video quality measurement techniques for standard definition digital broadcast television in the presence of a full reference[END_REF][START_REF]Tutorial -objective perceptual assessment of video quality: Full reference television[END_REF], the performance of objective quality metrics is characterized by the following three attributes:

• Prediction accuracy 

P CC = 1 n -1 n i=1 (S subj,i -S subj,i )(S pred,i -S pred,i ) σ S subj,i σ S pred,i (1.3) 
where i is the stimulus index, n is the number of stimuli, S subj,i and S pred,i are the subjective and predicted quality scores, respectively, σ S subj,i and σ S pred,i are the standard deviation for subjective and predicted quality scores, and S subj,i indicates the mean of S subj,i . RMSE is the absolute prediction error, and it can be interpreted as it assumes linearity to find the accuracy of the given predicted (objective) quality scores compared to the subjective quality scores. RMSE is calculated as:

RM SE = 1 n -1 n i=1 (S subj,i -S pred,i ) 2 (1.4)
Ideally, the relationship between subjective and predicted quality results should be monotonic. That is, the predicted quality scores should increase when there is an increase in subjective quality scores. Spearman rank-order correlation coefficient (SROCC) is commonly used to find the prediction monotonicity. As it does not assume any relationship between the predicted and subjective quality scores, it is also invariant to the non-linear fitting.

SROCC is calculated as:

SROCC = n i=1 (R subj,i -R subj,i )(R pred,i -R pred,i ) n i=1 (R subj,i -R subj,i ) 2 × n i=1 (R pred,i -R pred,i ) 2 (1.5)
where R subj,i and R pred,i are the ranks of S subj,i and S pred,i , respectively, and R subj,i and R pred,i are the mean ranks of S subj,i and S pred,i .

Prediction consistency is another attribute that needs to be checked in order to determine the performance of an objective quality metric. In addition to the other attributes, it is important to understand how consistent the prediction results are. For prediction consistency, outlier detection (OR) is used. It is calculated as:

OR = Total number of outliers n = n i=1 f outlier (i) n (1.6)
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where f outlier is the count function which counts the outliers:

f outlier (i) =    1 if |S subj,i -S pred,i | > 1.96 × σ S subj,i 0 otherwise (1.7)
In order to understand the performance of the objective quality metrics, the numerical results of the PCC, RMSE, SROCC, and OR are reported in many studies [SSBC10a, PJI + 15, HBP + 15, HRE16]. Without any other information, the differences may not be clear and may be misleading in certain cases. Therefore, it is important to understand the significance of these differences. In ITU-T Recommentation P.1401 [START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF], guidelines for the significance analysis of PCC, RMSE, SROCC, and OR are given. In addition to the numerical results of the statistical evaluation methods, significance analysis results are also necessary to understand the impact of the difference between two objective quality metrics.

Alternative Evaluation Methods

The statistical evaluation methods (except RMSE* [START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF]) assume the subjective quality scores as deterministic 'ground-truth' data. However, the subjective quality scores are probabilistic as they are collected from a sample set of human population. The alternative evaluation methods described in this part treat subjective quality scores as random variables, and therefore, they present a better understanding in evaluating quality metrics.

Brill et al. [BLC + 04

] proposed a method to analyze the performance of the objective quality metric and find the minimum significant objective quality score difference, also called "resolving power".

The steps of this algorithm are briefly described in the following: First, the objective quality scores (S obj ) are converted to a common scale (S pred ) by fitting the scores to a 4 th order polynomial function, and the quality difference ∆S = S pred,k -S pred,l is found. To find the probability of significance to ∆S, subjective results are used in a one-tailed z-test.

The probability of significance is then found by sweeping the threshold for ∆S value and the ∆S value corresponding to the 95% significance probability, p = 95%, is selected. Using the selected quality difference value, the classification rates are found as:

• False Tie, i.e. S subj,k ≡ S subj,l and S pred,k ≡ S pred,l In parallel to the work of Krasula et al. [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF], we also developed an alternative metric evaluation method similar to their method. The similarities and differences are discussed in Section 4.3.3 where we also explain our method.

The quality assessment methods described above are used for SDR display systems; however, HDR changes some of the assumptions of SDR technology fundamentally. Therefore, the HDR imaging and content delivery is discussed in the next section to provide an understanding of HDR technology.

HDR Imaging and Content Delivery

The human visual system is capable of perceiving much larger range of brightness, contrast, and color compared to those SDR systems can offer. Legacy SDR displays can display up to 250 cd/m 2 and have contrast ratio of ∼ 1000 : 11 whereas humans can see up to 9 magnitudes of luminance range (contrast ratio ∼ 10 9 : 1) [Hoe07] with a simultaneous dynamic range higher than the SDR display (when the eyes adapt to a certain range -see Until recently, the SDR display framework was the limiting factor for SDR imaging and content delivery. Because of the displays, all captured content were converted to 8-bit integer pixels even though the camera sensors are able to capture a wider range.

The compression systems were also adapted to the 8-bit (or 24-bit with 3 color channels) structure of images and videos.

With the advancements in HDR displays, HDR technology removes some of these limitations and lets us to capture, store, transmit, and reproduce images and videos with a larger range of luminance and color. In order to understand the challenges and the limitations of HDR quality assessment, we need to understand the core concepts of HDR imaging and content delivery. Therefore, in this section, we discuss the main points of HDR frame acquisition and storage, HDR image and video compression, reproduction and display of HDR content.

Acquisition and Storage

Although many camera sensors have the capability of capturing higher dynamic range content, the frame acquisition pipeline [RSYD05] produces "display-referred" (also called "output-referred") content. That is, the images or video frames are captured and processed for a specific set of output devices (in this case, SDR displays). Using the techniques discussed in this subsection, most of the HDR imaging techniques/devices aims to capture "scene-referred" content [START_REF] Mantiuk | High dynamic range imaging pipeline: Perception-motivated representation of visual content[END_REF], which would have the values proportional to the physical luminance values of the scene itself.

Acquisition

In order to capture the luminance values of the scene, both the darker parts and the brighter parts of the scene should be acquired correctly. For this purpose, different techniques are used. HDR frame acquisition techniques can be divided into three [START_REF] Unger | Unified reconstruction of raw HDR video data[END_REF] according to the method used to capture the natural scene:

• Temporal methods

Temporal methods capture multiple images with different exposures in order to get the information from both dark and bright parts of the scene. Several approaches exist for traditional temporal bracketing [MP95, DM97, MN99, GN03, RBS03, LGYS04]. A detailed explanation for these methods can be found in [START_REF] Gallo | Stack-based algorithms for HDR capture and reconstruction[END_REF]. These methods are easy to use but take time to capture an HDR image. Therefore, they are susceptible to different sources of disturbances such as misalignment and ghosting. As these methods require time, the camera can move during the capture and the captured images may need to be aligned [START_REF] Ward | Fast, robust image registration for compositing high dynamic range photographs from hand-held exposures[END_REF][START_REF] Tomaszewska | Image registration for multi-exposure high dynamic range image acquisition[END_REF].

Similarly, ghosting effects may occur if moving objects are present in the scene, and deghosting may be required to ameliorate the image [ZBW11, GKTT13, KAR16].

• Spatial methods

In order to reduce the time required, the combination of different exposures can be done spatially. These spatial methods decrease the time required to capture an HDR image in exchange for increased noise and decreased spatial resolution. Nayar and Mitsunaga [START_REF] Nayar | High dynamic range imaging: Spatially varying pixel exposures[END_REF] proposed high dynamic range image capture using spatially varying sensors. Using neutral density filters, these sensors are able to capture the scene in different levels of exposures.

The acquired image is then processed to yield the HDR image. Rolling shutter is also used to capture HDR images. In their work [START_REF] Gu | Coded rolling shutter photography: Flexible space-time sampling[END_REF], Gu et al. proposed two different methods for this purpose. One of these methods uses auto exposure by finding the exposure times of each row adaptively. Their other method uses specific readout and exposure scheme which reads three consecutive lines in different exposure times in order to generate HDR image and handle motion blur.

• Optical methods

Optical methods change the amount of light directed to a sensor or camera using either an optical device called beamsplitter or a semi-transparent mirror. This way, the image captured by the sensor receiving a small percentage of the light can be considered as short exposure image and the image captured by the sensor receiving a larger percentage of the light can be considered as long exposure image. This method was employed using two cameras during the capture of Stuttgart HDR video dataset [FGE + 14]. The beamsplitters can also be used within the camera [START_REF] Aggarwal | Split aperture imaging for high dynamic range[END_REF], and multiple sensors can be used to receive different percentages of light [START_REF] Tocci | A versatile HDR video production system[END_REF].

In addition to these methods, another very important and historically prior HDR content acquisition method is the generation of HDR content using computer graphics software such as 3D modeling and rendering [START_REF] Ward | The RADIANCE lighting simulation and rendering system[END_REF][START_REF] Paul | Image-based lighting[END_REF]. These computer generated images simulate the light absorbed, diffused, and reflected by the objects and create a realistic scene. OpenEXR [START_REF] Bogart | The OpenEXR image file format[END_REF] is a commonly used open-source HDR image file format (which uses .exr file extension). Each pixel consists of three half-precision floating point numbers (16-bit per-channel and 48-bit per-pixel) for three color channels, including a sign bit, 5 bits of exponent, and 10 bits of mantissa. Although the required size for the same image is greater compared to RGBE and LogLuv TIFF, OpenEXR can store a wider range of luminance and color thanks to its ability to store negative numbers. In addition to its precision, it can support lossless and lossy compression.

HDR Image and Video Compression

The wider range of luminance and color of HDR comes at the cost of large amount of data which is difficult to store, transmit and reproduce. Therefore, efficient compression algorithms are necessary for storing and transmitting the HDR content. Although the file storage formats discussed above apply lossless compression to the HDR images, lossy compression is also necessary to meet the needs of transmission channels for the images and videos. In this subsection, we discuss the image and video compression systems for HDR content.

HDR Image compression

In order to compress HDR images, several compression methods were proposed through- 

out

HDR Video compression

Most of the video compression methods, as well as the state-of-the-art compression algorithms [START_REF] Tourapis | H.264/14496-10 AVC reference software manual[END_REF][START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF], are developed for SDR systems using 24-bit SDR images.

Furthermore, these compression methods assume that the relationship between the real world luminance and the electrical signals are perceptually proportional. Although this assumption holds for the case of SDR, the perceptual uniformity of HDR is found to be different from the SDR case [START_REF] Aydin | Dynamic range independent image quality assessment[END_REF].

The relationship between the optical and electrical signals are defined through optoelectronic transfer (OETF) and electro-optical transfer (EOTF) functions. For legacy SDR In addition to these studies, the encoding scheme described in the MPEG CfE [START_REF] Luthra | Call for Evidence (CfE) for HDR and WCG Video Coding[END_REF] can also be considered as a non-backward compatible compression method. The compressed bitstreams need to be converted back to HDR pixel values by an EOTF, and they cannot be displayed after decoding. Due to its use of High Efficiency Video Coding (HEVC) Main 10 profile, this method is also called as "HDR10", and its core components are standardized in ITU-R Recommentation BT.2100 [START_REF]Image parameter values for high dynamic range television for use in production and international programme exchange[END_REF], which include 10-bit or 12-bit bit depth; ITU BT.2020 [START_REF]Parameter values for ultra-high definition television systems for production and international programme exchange[END_REF] Reproduction of HDR content may need processing, depending on the capabilities of the display device. In this subsection, we will briefly discuss the tone-mapping techniques and HDR display rendering methods.

Tone-Mapping Techniques

In order to reproduce captured and transmitted HDR scenes on a display with limited dynamic range, tone-mapping techniques are employed. The target media can be an electronic display which presents images and videos, or printed material. Regardless of the target media, tone-mapping techniques can be used to re-target the dynamic range of the HDR content. The tone mapping methods can be classified into two categories: global and local.

Global tone mapping algorithms affect the whole image, and the same operation is applied to all of the pixels. In general, these algorithms can be easy to implement, and they can work in close-to real-time. Pattanaik [START_REF] Pattanaik | A multiscale model of adaptation and spatial vision for realistic image display[END_REF], Reinhard [START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF], and Ashikmin [START_REF] Ashikhmin | A tone mapping algorithm for high contrast images[END_REF].

For the video tone-mapping, a special care needs to be taken due to the temporal variation among video frames. In order to avoid strong temporal artifacts, temporally coherent TMOs should be developed [START_REF] Boitard | Temporal coherency in video tone mapping, a survey[END_REF]. For an exhaustive analysis of tone-mapping algorithms, interested readers can refer to [START_REF] Banterle | Advanced High Dynamic Range Imaging: Theory and Practice[END_REF][START_REF] Boitard | Temporal coherency in video tone mapping, a survey[END_REF][START_REF] Eilertsen | A comparative review of tonemapping algorithms for high dynamic range video[END_REF].

HDR Display Rendering

Dual modulation algorithms aim to modulate the backlight and the color components separately. For reproduction of HDR content, the most commonly used scheme is LED-LCD dual modulation. LED values can be modified by rendering algorithm to ensure that the backlight is dimmed in the dark parts of the display. A similar approach is used in standard LCD displays of notebook computers and smartphones by global backlight dimming [START_REF] Lai | Backlight power reduction and image contrast enhancement using adaptive dimming for global backlight applications[END_REF] for power consumption. 

Quality Assessment for HDR Content

The previous section briefly introduces the new conditions and limitations brought by HDR imaging and content delivery. In this section we discuss the subjective HDR quality assessment studies and the objective HDR quality assessment methods used.

Subjective Quality Assessment

The human visual perception of luminance is not proportional to the physical real world luminance. It follows the DeVries-Rose and Weber-Fechner laws for low luminance and higher luminance values, respectively [START_REF] Kundu | Thresholding for edge detection using human psychovisual phenomena[END_REF]. The wider range of luminance may change the importance of distortion artifacts in the regions darker or brighter than SDR luminance range. Therefore, subjective quality assessment is essential to understand how human perception of quality changes in HDR luminance range. In addition to the assessment of HDR content quality, understanding human perception and preferences of the viewers for these new conditions of HDR are also important.

Perception of HDR Content

The effects of wider dynamic range are analyzed in many perceptual subjective studies using HDR displays. After a subjective experiment presenting distorted images on an SDR and HDR display, Aydın et al. [START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF] found that the increased brightness increases the visibility of artifacts and distortions become more annoying. They also analyzed the human visual system for HDR luminance range and proposed perceptually uniform (PU) encoding in the same work. They found that the responses of the viewers depend on the question asked. If they were asked to find the best looking images, viewers enhanced contrast, whereas they avoided changing contrast when they were asked to find the image most similar to the original.

In their study, Rempel et al. [START_REF] Rempel | Video viewing preferences for HDR displays under varying ambient illumination[END_REF] found out that the viewers prefer lower display brightness for low ambient light. They also found that HDR displays do not cause visual fatigue and, regardless of ambient illumination, viewers prefer minimizing the black level of the display. In a recent study, a subjective study was conducted in order to analyze the brightness preference for SDR to HDR conversion by Bist et al. [START_REF] Bist | QoE-based brightness control for HDR displays[END_REF]. The authors found that the viewers' preferred brightness is highly content dependent. In fact, subjects preferred to have lower peak brightness for images with higher rate of bright pixels.

Tone-Mapping

Several subjective studies were conducted for the evaluation and comparison of tonemapping algorithms. Subjective assessment methods are versatile and can be used for many different applications as we discussed in this subsection. For quality assessment, objective quality metrics are much more efficient compared to subjective qualit assessment methodes, with an acceptable accuracy. In the following subsection, we discuss objective HDR quality assessment.

Objective Quality Assessment

As we mentioned previously, SDR multimedia quality assessment methods assume that the image or video is perceptually proportional to the human perception, which is not true for HDR. Still, objective SDR quality metrics can be used for HDR content provided that the pixel values are converted to perceptually uniform scale before computation [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF].

For this purpose, perceptually uniform (PU) encoding [START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF], logarithmic function, or perceptual quantizer (PQ) EOTF [START_REF] Miller | Perceptual signal coding for more efficient usage of bit codes[END_REF][START_REF] Smpte | High dynamic range electro-optical transfer function of mastering reference displays[END_REF] are used [H ŘE15,[START_REF] Hanhart | Subjective and objective evaluation of HDR video coding technologies[END_REF]. This usage of SDR quality metrics for HDR content is also analyzed in Chapter 4. As discussed in detail in Section 1. In this chapter, we assess the effects of the display rendering on both subjective and objective quality assessment. For this study, we used a SIM2 HDR47 display which uses the dual-modulation paradigm to generate higher brightness and contrast values. This assessment of the effects on quality was made by comparing two different display rendering methods: the built-in SIM2 rendering method, and a display rendering method which we propose in this chapter. In the following sub-sections, we describe the image and video reproduction of the proposed display rendering method, present the results of the experimental validation, and discuss the effects of using different display rendering methods on subjective and objective HDR image quality.

Accurate Reproduction of High Dynamic Range Frames

The most popular method for the production of HDR displays is using different layers for brightness and color adjustment. This is done by coupling a locally dimmed light source, such as a panel of LEDs, with a front LCD screen. This process allows both the In this section, we propose a dual modulation algorithm for HDR image and video content, which has the following three characteristics: i) it can accurately reproduce the intended HDR luminance; ii) it enables us to estimate precisely and with pixel granularity the luminance emitted by an image/video displayed using the proposed method; iii) it takes into account temporal dependencies in HDR video, reducing the impact of reproduction artifacts such as flickering. We tested the proposed algorithm on a SIM2 HDR47E S 4K display [SIM14], comparing it with the built-in rendering provided by the manufacturer.

We show that our method is systematically more precise in reproducing HDR content and that we can accurately estimate the emitted luminance, which is unfeasible with the built-in rendering. At the same time, our results on HDR video are encouraging, showing that temporal fluctuations can be reduced substantially by smoothing LED values across time.

In the following sub-sections, we describe the characteristics of the SIM2 display used, the proposed dual modulation algorithm for rendering HDR images and video, and the experimental validation results.

Display Characteristics

The rendering algorithm we propose is designed to work on SIM2 HDR47E S 4K displays [SIM14]. The peak luminance of the display is measured as 4250 cd/m 2 , and its contrast ratio is higher than 4 • 10 6 : 1. The screen is a dual-modulated display which We would like to note that the proposed approach is still valid with other display models, provided that some parameters of the device are known or previously measured.

Notably, these include the maximum power consumption of the display, as well as an estimation of the PSF induced by the light diffuser layer.

A Dual Modulation Algorithm for Image Reproduction

As discussed in Section 1. Since SIM2 has 2202 LEDs, any direct optimization approach will be computationally very complex and infeasible to use. So, an iterative scaling algorithm was proposed [ZVDS + 15, ZVD16]. The algorithm consists of the following parts:

• Preprocessing

• Computation of target backlight

• Iterative scaling

• Computation of LCD pixel values
The details of these parts are described part by part below.

Preprocessing

First, we find the target display-referred luminance values from the input HDR image.

HDR images are generally scene-referred, i.e., they store values proportional to the physical luminance of the scene. However, the luminance range that can be reproduced by an HDR display is clearly inferior to that of the scene. Therefore, the images should be "graded" to the display capabilities manually or by an automatic process, e.g., by using the display-adaptive tonemapping of Mantiuk et al. [START_REF] Mantiuk | Display adaptive tone mapping[END_REF].

Here, we assume that the input images have been previously graded to the display, and we just saturate luminance values in excess of the maximum display brightness, i.e.

4250 cd/m 2 . We denote the preprocessed image as I.

Computation of Target Backlight

Next, we find the target optimal backlight, BL target , that minimizes the required backlight luminance to meet the power constraint and maximizes the fidelity to the target pixel values. In order to find BL target , we define two other backlight images: BL min and BL max .

As liquid crystal cells can only block the light and cannot generate light, at least BL min is required to make sure that the backlight is sufficient for all the pixels of LCD panel.

If the backlight is sufficient enough, the intended luminance values can be reached by changing only LCD values. In order to find BL min , we compute the local maxima of the target luminance over 30-pixel radius windows corresponding to the area of a single LED.

This ensures that even a very small bright point will have enough backlight. BL min can also be defined as:

BL min = max p∈Ap (I(p)) (2.1)
where I is the image and p is the pixel within the 30 pixel radius area A p .

Liquid crystal cells are known to be non-ideal and leak some light even if they are completely closed. In order to control the effects of LCD leakage, the maximum luminance for each pixel, BL max , is found by dividing the image luminance values of that pixel by the estimated LCD leakage factor = 0.005. The LCD leakage factor is found empirically by measuring LCD leakage in different test patterns, using a Minolta LS-100 luminance meter. BL max can also be defined as:

BL max = I (2.2)
The resulting backlight images are compared pixelwise and the minimum values of BL min and BL max for each pixel are collected within an image BL allowed . The BL allowed 

BL t = LED t * P SF (2.3)
where t is the iteration number and t = 0 for initialization. LED 0 corresponds to the initial LED values found by sampling BL target , and BL 0 is the backlight of LED 0 . An example of LED 0 can be seen in Figure 2.

2.(c).

Iterative Scaling

A scale map is generated in order to update the LED values using the following equation:

S t = BL target BL t (2.4)
where t is the iteration number. The LED values are multiplied with the scale map found as follows: 

LED t = LED t-1 × S t-1 = LED t-1 × BL target BL t-1 (2.

Computation of LCD Pixel Values

LCD pixel values are found by dividing (pixel-wise) each color channel of the original image by the final backlight estimate, and by applying gamma correction, i.e.:

LCD k = I k BL f inal 1/γ k,p = I k LED f inal * P SF 1/γ k,p (2.6)
where I is the HDR image, k ∈ {R, G, B} is the RGB channel indicator, p ∈ {0, 1, 2, ..., 255} is the LCD pixel value, and γ k,p is the gamma correction factor, determined experimentally (see Annex A.2).

As explained in the Annex A.2, the gamma values are different for each channel which is in agreement with the results of Nam [START_REF] Nam | A color compensation algorithm to avoid color distortion in active dimming liquid crystal displays[END_REF]. However, the measured gamma values are not constant through the color channel. Therefore, the gamma correction is carried out using a look-up-table. For this purpose, the gamma values were found by measuring each color channel for LCD pixel values p ∈ {0, 1, 2, ..., 255}. The resulting γ values were found by dividing the measured luminance of that color channel to the input value of the LCD panel. Hence, the used γ k,p is a function of both k and p where k is the RGB channel indicator and p ∈ {0, 1, 2, ..., 255} is the LCD pixel value. An example of LCD pixel values can be seen in Figure 2.

2.(h).

Our Matlab implementation of this algorithm takes an average of 19 seconds (about 24 iterations) on an Intel i7-3630QM 2.40 GHz 8 GB RAM PC for rendering a 1920 × 1080 pixels image. Examples of tonemapped HDR images, LED values, backlights, and LCD values of HDR images "AirBellowsGap", "DevilsBathtub", "MasonLake(1)", "LasVegasStore" contents from Fairchild's HDR dataset [START_REF] Fairchild | The HDR photographic survey[END_REF] are presented in Figure 2.3.

Estimation of Emitted Luminance

Knowing the values of LEDs and LCD pixels, we can estimate the emitted luminance. The HDR image pixels produced by the display are the product of backlight and LCD values.

That is, for each color channel k, the rendered image I k is:

I k = (LED f inal * P SF ) × LCD k .
(2.7)

Assuming ITU-R BT.709 primaries [START_REF] Itu-R | Parameter values for the HDTV standards for the studio and for international programme exchange[END_REF], we can compute the emitted luminance as:

L = 0.2126 × I R + 0.7152 × I G + 0.0722 × I B , (2.8) 

A Dual Modulation Algorithm for Video Reproduction

Rendering HDR video requires additional care compared to HDR image, as frame-by-frame rendering might lead to temporal flickering due to high-frequency changes in the backlight.

Even though it is possible to reduce the flickering using post-processing [START_REF] Nadernejad | Flicker reduction in LED-LCDs with local backlight[END_REF], it is preferable to directly handle it during rendering. Burini et al. [BMN + 14] considered temporal variation in video sequences and, in order to reduce the flickering effect, implemented an infinite impulse response (IIR) filter integrated into their dual modulation method.

They proposed a block-based gradient descent algorithm, and they minimize both the reproduction error and the power consumption required by the LEDs at the same time.

However, their work was effective for an LCD display with only 16 LEDs, and it is computationally too demanding to be extended to configurations with thousands of LEDs.

(m) HDR Image (Tonemapped) (n) LED values (o) Backlight (p) LCD values
The HDR dual modulation algorithm described in the previous section provides accurate HDR reproduction. However, small perturbations in the original HDR pixel values may lead to overall changes in the produced backlight. In order to reduce the impact of flickering, we consider two solutions. First, we initialize the LED values for the current frame f using those of the previous frame, i.e., LED f 0 = LED f -1 f inal . Second, we smooth the target backlights across time, over consecutive overlapping windows, as described in the following.

Given a video frame f , its initial target backlight BL f target is computed as explained in Section 2.1.2's Computation of target backlight step. Then, for each frame, we consider a look-ahead window of N frames, and we arrange their corresponding backlights in a stack A f , i.e.:

A f = BL f target BL f +1 target ...BL f +N -1 target . (2.9)
where the dimensions of A f are 1080 × 1920 × N . Afterwards, we aim at smoothing the trajectory of backlight pixel values over the window, by computing their upper envelope.

To this end, we extract the backlight pixel signal across time for each pixel location (i, j),

i.e., we obtain the N -dimensional column vector A f i,j . In order to compute the envelope of this signal, one cannot simply employ a low-pass filter, as averaging may produce lower target backlight than necessary, thus reducing peak brightness and reproduction fidelity.

Instead, we adopt a simple approach that consists of convolving each sample independently by a Gaussian window and taking the maximum at each time instant.

More precisely, let S l be a N × N matrix such that S l (a, b) = 1 if a = b = l and 0 otherwise. Multiplying A f i,j by S l yields:

T f i,j,l = [0 . . . A f i,j (l) . . . 0] T , (2.10) 
i.e., a vector with all zeros but the l th element, which is the l th entry of A f i,j . Now, let W f i,j,l = T f i,j,l * w σ be a low-pass version of T f i,j,l obtained by convolution with a Gaussian smoothing filter w σ of variance σ 2 . The envelope signal M f i,j is then obtained by stacking the vectors {W f i,j,l } for l = 1, . . . N into an N × N matrix

B f i,j = [W f i,j,1 . . . W f i,j,N ] (2.11)
where B f i,j is an N × N array. Then, M f i,j can be found by taking the maximum value across the columns of B f i,j . The procedure described through Equations 2.9 -2.11 is repeated using a sliding window approach, i.e., the backlight target is updated as BL f target = M f , and the frame index f is increased by one. An example of filtered target backlight for a given pixel position of the "ChristmassTree" [ABDD + 14, BDAPN14] video sequence is shown in Figure 2.4. Once the smoothed target backlight has been computed, the rest of the rendering part follows the algorithm described in Section 2.1.2.

Experimental Validation

It is important to understand how the developed rendering method performs before any further use of the algorithm. In order to analyze the performance of a display rendering algorithm, test patterns and light meters are used generally. These light meters measure the luminance of not directly a point but an area (i.e. a small solid angle). Therefore, they cannot measure the pixel-wise luminance of the display.

In order to measure the emitted luminance on a pixel-wise granularity, we use a DSLR camera and a light meter to capture an HDR image, register the HDR image pixels and the pixels of the captured HDR image, apply morphological transformation to align the images, and compare the resulting pixel images. The details of this process are given below in the Measurement of pixel-wise luminance part.

The proposed display rendering algorithm is able to reproduce HDR images and video frames, and it can also estimate the emitted luminance values. In this part, we report the results of the experimental validation of the proposed HDR display rendering algorithm.

We measured and compared the peak brightness, the local contrast, and the fidelity of reproduction of both the built-in rendering algorithm and the proposed rendering algorithm. Furthermore, we also measured the accuracy of the estimated luminance values and the temporal variation of the backlight for the case of video.

Brightness and Local Contrast

We characterize the performance of the rendering algorithm described in Section 2.1.2 with respect to the built-in mode in terms of accuracy of brightness rendering and local contrast.

Since an evaluation of these two measures on complex content (such as natural images) is itself a challenging and content-dependent task, we considered here simple stimuli, which also enable a more accurate measurement of displayed luminance using the Minolta LS-100 luminance meter. Specifically, we considered the following test patterns:

• Linear brightness response and peak luminance

We used the pattern of Figure 2.5(a) to measure the accuracy of produced luminance with respect to the target one. The pattern consists of a white box covering 30% of the display surface, surrounded by a black background. The 30% area is selected in order to be within the limits of maximum power consumption of the display. A sequence of test patterns as in i.e., measured luminance matches exactly the required one. This plot shows that: i) the proposed rendering algorithm matches more precisely target luminance; ii) it also achieves a higher peak brightness than the built-in rendering mode.

• Local contrast

Local contrast was tested with the pattern in Figure 2.5(b). This stimulus contains again a white box of 30% of the screen area, but in the middle of the white area, there is a 64 × 64 pixels square black patch. The small black square width was chosen in order to gauge how LCD leakage affects local contrast in different renderings. We considered several versions of this pattern with different luminance levels of the white region. shows how the black level of the center black square is darker for the proposed rendering compared to the built-in rendering, i.e., the proposed rendering is better at handling LCD leakage. The effect of this on local contrast, measured as the ratio between the luminance of the white and black patches, is shown in Figure 2.5(e), which highlights the better local contrast achievable with the proposed rendering.

Measurement of Pixelwise Luminance

In addition to the measurements made with test patterns, another set of measurements were made using a DSLR camera. The use of DSLR camera enables us to measure the pixel-wise luminance and compare the rendering methods using complex natural images.

First, 7 raw1 images with different exposures with exposure compensation values

∈ {-2 1 3 , -1.5, -2 3 , 0, 2 3 , 1.5, 2 1 
3 } were captured using a Canon EOS700D DSLR camera with 18-55 mm lens. The camera was fixed using a tripod 1.7 meters away from the display to capture the photographs of the display presenting HDR content, and the focal length of the lens was fixed at 35mm. The distance and the lens zoom were selected to avoid or minimize the moiré patterns. The raw images were captured by controlling the DSLR camera using a third party software, and they were built into an HDR image using HDR-Toolbox [START_REF] Banterle | Advanced High Dynamic Range Imaging: Theory and Practice[END_REF] with the help of the following code: In the following we refer to these three quantities, which are all expressed in cd/m 2 :

• Expected luminance, corresponding to the display-referred luminance stored in the HDR file. Values higher than display peak luminance are clipped.

• Estimated luminance, i.e., pixel-wise luminance values estimated as in (2.8).

• Measured luminance, obtained following the procedure described above. The generated images store the real emitted luminance values.

Fidelity of Reproduction

To gauge the fidelity of HDR reproduction, the measured luminance values were plotted against expected luminance values for 7 different HDR contents from Fairchild database [START_REF] Fairchild | The HDR photographic survey[END_REF] selected in [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]; namely, AirBellowsGap, DevilsBathtub, Hancock-KitchenOutside, MasonLake(1), PaulBunyan, RedwoodSunset, and UpheavalDome. Example plots can be seen in Figure 2.6. Notice that the built-in rendering method provides lower luminance and higher scatter compared to the proposed rendering algorithm. The fact that the luminance emitted with the proposed algorithm matches the expected one (points clustered on the 45 • line) demonstrates the higher accuracy of our rendering. It is also evident, especially from Figure 2.6.(a), that the built-in rendering has a linear response and saturates after a point that is the practical maximum brightness of the display for that case.

In order to have a more quantitative evaluation, Pearson Correlation Coefficient (PCC)

and Root Mean Squared Error (RMSE) indices were computed, measuring the linear dependence between two variables and the variance of estimates, respectively. The resulting PCC and RMSE values are reported in Table 2.1. As can be seen, the results of the proposed algorithm are more precise than built-in rendering for each content. 

Fidelity of Estimation

In order to assess the emitted luminance estimation accuracy, the measured luminance values were plotted against the estimated luminance values. We report as an example, the scatter plots for four HDR images, namely "AirBellowsGap", "PaulBunyan", "RedwoodSunset", and "UpheavalDome", in 2.2. The PCC scores are above 0.90 and are very close to 1 for the cases of "AirBellowsGap" and "RedwoodSunset".

Regarding these results, we can say that the accuracy of the luminance estimation of the proposed rendering algorithm has been validated for complex stimuli rather than test patterns. 

Temporal Variation

As discussed above, small high-frequency variations in the backlight across time may produce flickering in the displayed HDR video. Although the proposed video rendering method was not validated subjectively, in this part, we try to measure the temporal variation using an objective calculation. In order to measure temporal variation in the backlight produced by our rendering method, we compute the temporal perceptual information index (TI) defined in ITU-T Recommendation P.910 [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF]. Since the main source of the temporal variation on video is the backlight, we computed the frame differences over backlight instead of image. TI is computed as:

T I = max f std(BL f f inal -BL f -1 f inal ) , (2.12) 
where std denotes standard deviation computed over space, and f denotes frame number.

We computed TI for 5 different video sequences, namely Balloon, FireEater2, Market3, Tibul2 [START_REF] Lasserre | Description of HDR sequences proposed by technicolor[END_REF], and ChristmassTree [ABDD + 14, BDAPN14], rendered using both the frame-by-frame algorithm described in Section 2.1.2 and the video algorithm described in rendering can also impact the viewers' experience and perception of quality due to the visual changes such as brightness and contrast. In spite of this close connection between quality evaluation and HDR visualization, the effect of different rendering on HDR subjective and objective quality assessment has not been sufficiently investigated so far.

In the previous section, we introduced a simple, yet effective, HDR display rendering algorithm for the SIM2 HDR47 display [SIM14]. We compared the proposed method with the proprietary built-in visualization offered by the display. The proposed rendering algorithm has clear differences from the built-in one, e.g., it yields brighter images, with higher local contrast at low luminance levels.

Equipped with this new rendering, we conducted a subjective study to judge the quality of compressed HDR images, using the same settings as in the previous work of Valenzise et al. [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF], except that we displayed images with the proposed rendering algorithm.

The collected subjective quality scores were compared using multiple comparison analysis in addition to the qualitative analysis of the resulting HDR images.

In order to understand the effect of rendering on the HDR objective quality assessment, we estimated per pixel luminance produced by the display with our rendering algorithm and used this as input to quality metrics for both pristine and compressed content. Since a precise estimation of pixel-wise luminance using SIM2 HDR47 display is not available with the built-in rendering mode, we simulated the luminance values using a simple linear model which scales HDR pixels into the physical bounds of display luminance and clips values that exceed the peak luminance of the device [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF].

In the following sub-sections, we compare two different rendering methods and assess the impact of HDR image rendering on both subjective and objective scores.

Impact on Subjective Evaluation

In this sub-section, we analyze how a different display rendering can affect subjective quality, for the scenario of HDR image compression. In order to understand the impact of different display renderings on the subjective quality perception, a subjective quality experiment is needed. Due to its design, switching from built-in rendering to DVI+ mode on the SIM2 HDR47 display takes several seconds. Additionally, it cannot be automated and requires a manual intervention of the experimenter. Thus, designing a test presenting the results of both renderings at the same time is not feasible. Therefore, in order to simplify the experiment design, we only used the DVI Plus mode of the display with the display rendering algorithm proposed in Section 2.1.2.

A subjectively annotated HDR image database was created and made publicly available in the work of Valenzise et al. [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]. They used the built-in rendering algorithm of the SIM2 display while collecting the MOS values. This subjective test was designed to use the same test material and same experimental conditions as in [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF] in order to ensure that the only variable that was changed is the rendering mode. In the following parts, we first summarize the test environment and methodology, and we analyze the differences among the results through analysis of variance and multiple comparisons.

Test Environment and Methodology

In [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF], HDR images were compressed using three different encoders: JPEG, JPEG 2000, and JPEG XT. These compressed HDR images were displayed using the built-in rendering of the SIM2 display, and a subjective experiment was conducted using the Double Stimulus Impairment Scale (DSIS) methodology. In order to rule out all of the possible independent variables except the different rendering, we kept the same test environment and material. The experiment was conducted in a gray surfaced test space which was isolated from all external light sources, conforming to the ITU recommendations BT.500-13 and BT.2022 standards [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF][START_REF]General viewing conditions for subjective assessment of quality of SDTV and HDTV television pictures on flat panel displays[END_REF]. The amount of ambient light, not directed to the observer, was 20 cd/m 2 . The viewers were seated at about 1 meter distance from the display.

As done in [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF], we also used DSIS [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF] as the experiment methodology.

Two images, reference image A and distorted image B were shown to subjects in a sequential manner. Before the experiment, a training session was conducted to familiarize the subjects with the levels of distortion to be expected during the experiment. The subjects were also told that the image A will always be the reference and image B will be the distorted image.

The subjects were asked to rate the distortion appearing in the distorted image B using 5 distinct adjectives ("Very annoying", "Annoying", "Slightly annoying", "Perceptible but not annoying", "Imperceptible"), on a continuous scale between 0 and 100, 0 being "Very annoying" and 100 "Imperceptible".

During the pilot test, it was noticed that the magnitude of distortion in the images was larger than that of [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]. Therefore, it was more difficult to judge the quality of the images compared to the case of [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]. So, differently from the previous experiment, compressed images were displayed for a duration of 8 seconds instead of the 6 seconds used for the dataset of [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]. The dataset consisted of 50 images in total, spanning several contents and coding conditions as explained in the original paper [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]. The experiment was paused during the interactive voting, giving the subjects as much time as they wish to complete the task. During the pilot test, it was noted that the average voting time is between 4 and 8 seconds. Hence, one session of the experiment took approximately 20 minutes on average.

Sixteen people (fourteen men and two women) participated in the subjective experiment with the developed rendering. The subjects were aged between 23 and 39, and the average age was 27.75. All the subjects reported normal or corrected-to-normal vision. Two of the subjects were found to be outliers with the standard detection procedure [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF].

The mean opinion score (MOS) and confidence interval (CI) for each of the 50 tested images are calculated after outlier removal, assuming that scores follow a Student's-t distribution [START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF].

Experiment Results

The resulting MOS values for each content are shown in Figure 2.9. After concluding the tests, we noticed that two samples of "Perceptible" level of the "RedwoodSunset" content were erroneously repeated twice in place of the corresponding "Imperceptible" level. Hence, we excluded them from this comparison. The results of the proposed rendering were compared with MOS values collected using the built-in rendering, which are published with the associated dataset [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]. These plots show a substantial level of agreement between the scores obtained with the two renderings, with some differences in some specific contents such as "AirBellowsGap" and "UpheavalDome".

Overall, the collected MOS values using the built-in rendering and the rendering proposed in Section 2.1.2 have a linear correlation of 0.99. A qualitative analysis shows that the distortion in "UpheavalDome" becomes more visible, due to an increased brightness of the rendering, while for "AirBellowsGap" the opposite happens, i.e., details and blocking artifacts become invisible around the sun region, which is clipped in our proposed DVI+ rendering since its brightness is much higher than that of the built-in rendering mode.

Examples of the latter phenomenon are illustrated in Figure 2. 10.

More details about the differences produced by the two renderings were obtained by performing a one-way analysis of variance, followed by multiple comparison analysis on the MOS values of the built-in rendering and the proposed rendering separately.

Multiple comparison enables us to group stimuli in each dataset according to their A qualitative evaluation of Figure 2.11 suggests that the clustering of stimuli MOS values does not change significantly with the two rendering modes. In the highest quality levels, i.e., "Perceptible" and "Imperceptible", though, the results are more intertwined.

Considering only these two adjectives (i.e., 190 pairs), there are only 26 pairs of stimuli whose quality appears to be significantly different with the proposed DVI+ rendering algorithm. For the built-in rendering, this number grows to 41. Overall, the proportion of significantly different pairs of stimuli is the same in the built-in rendering and the proposed rendering cases. This suggests that with the proposed rendering subtle details become less visible at higher quality levels, i.e., display artifacts overcome compression artifacts.

Conversely, the higher brightness and local contrast offered by the proposed rendering make distortion differences more visible at lower quality levels, with respect to the built-in rendering mode.

Impact on Objective Evaluation

The techniques for measuring HDR image quality can be broadly divided into two classes.

On one hand, metrics such as the HDR-VDP and HDR-VQM [MDMS05, NMDSLC15, NDSLC15] accurately model visual perception in such a way to predict and quantify significant visual differences between images. On the other hand, many quality metrics commonly used in the case of SDR imaging directly assume that input values are perceptually linear in order to compute meaningful operations on pixels. The perceptual linearization is implicitly done for the case of SDR images by the gamma encoding of sRGB [START_REF] Itu-R | Reference electro-optical transfer function for flat panel displays used in HDTV studio production[END_REF].

In Due to the limited size of the dataset, we evaluated the performance of metric predictions using a non-parametric index such as the Spearman rank-order correlation coefficient (SROCC), which measures the degree of monotonicity of MOS estimates. In addition to SROCC values, we also computed confidence intervals of the correlation coefficients using bootstrap (bootci Matlab function with bias-corrected accelerated percentile method, 2000 bootstrap repetitions). Figure 2.12 reports the SROCC values with their 95% confidence intervals for the linear model -denoted as Linear (Proposed)-and the estimation of the proposed rendering -denoted as Estimated (Proposed)-. For comparison, we also report the results of the previous experiment of Valenzise et al. [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF], i.e., the SROCC between metrics computed using the linear model and MOS values obtained with the built-in rendering -denoted as Linear (Built-in)-.

As Figure 2.12 illustrates, the three sets of correlations are very close to each other, and there is no clear gain in using more accurate luminance as input to HDR metrics. To confirm this observation, we tested the significance of the difference of SROCC values for each metric, using the method for comparing dependent2 correlation coefficients proposed by Zou [Zou07]. This method constructs a confidence interval for the difference of the correlation coefficients. If zero is within this interval, the null hypothesis that the two correlations are equal must be retained. Based on this test, we found the two following results: i) the linear model to compute displayed luminance gives statistically indistinguishable performance for two different renderings (the built-in and the proposed rendering, respectively); ii)

an accurate knowledge of displayed luminance (with the proposed rendering) does not significantly increase the performance of objective metrics with respect to the linear model.

In fact, for the case of PU-SSIM, there is a visible decrease of the SROCC coefficients.

However, PU-SSIM results are generally very close to one, which makes it difficult to understand the discriminability of this metric in practice for the case of HDR.

This result is quite surprising, as it contradicts the assumptions of many HDR quality metrics, which compute fidelity using the displayed physical luminance as input. A possible explanation for this phenomenon is that, despite the differences between the built-in rendering and the proposed rendering, the reproduced outputs are highly correlated, as the MOS analysis of Section 2.2.1 shows. Furthermore, the saturation in the linear model reduces the effect of outliers in the scene-referred HDR and improves its performance significantly. On the other hand, the proposed DVI+ rendering has a globally linear behavior for the majority of rendered pixels -clipped regions are limited to highlights such as the sun in Figure 2.10, but the saturation in the linear model actually produces a very similar result.

This justifies the effectiveness of the linear model for the case of the proposed rendering (i.e. the case denoted as 'Linear (Proposed)'). Finally, there is one important caveat to take into account. The results presented here are valid for a very specific, although popular, processing task, i.e., HDR image compression, and it is known that for simple additive distortion even simple arithmetic metrics such as the PSNR perform quite well [START_REF] Huynh-Thu | Scope of validity of PSNR in image/video quality assessment[END_REF].

Discussion

In this chapter, we analyzed the impact of a different display rendering on both subjective and objective quality assessment of compressed HDR images. For this purpose, the characteristics of the SIM2 display were modeled, and a simple iterative HDR image and video frame reproduction algorithm was developed for the widely used SIM2 HDR47 display, which yields higher brightness and contrast than the built-in rendering method. The effect of color on the perceived quality is normally discarded in the case of SDR, especially for image and video compression scenarios. However, color may influence the perceptual quality in HDR conditions, as a result of its augmented brightness and contrast levels, due to some aspects of color appearance phenomena, e.g. the Hunt effect, the Bezold-brucke hue shift, etc. [START_REF]Color Appearance Models[END_REF]. In this chapter, we try to understand the effect of color on the perceived quality. For this purpose, we selected a practical and realistic application scenario, HDR video compression, and we compared the effects of three different color spaces on HDR video compression performance.

For To this end, we conducted a psychophysical study to compare video sequences coded at different bit rates with the three aforementioned color spaces. We employed a reduced-design pairwise comparison methodology to get the most precise results, comparing stimuli across different bit rates with the goal of converting the obtained preferences to quality scores.

The choice of compression levels (bit rates) in this case is crucial, and requires selecting test stimuli carefully in such a way to avoid cases where viewers would unanimously prefer one stimulus over the other, or where they would not be able to observe any difference between pairs of video sequences coded at two consecutive bit rates. Therefore, prior to the main experiment, we conducted a preliminary subjective test to select the bit rates for the stimuli, and we selected four bit rate levels for each content. Specifically, in the preliminary experiment, we presented stimuli coded at different bit rates, with the goal to select compression levels spaced apart by one just noticeable difference (JND), i.e., such that 50% of participants could observe a quality difference in a pair of stimuli. Using these four bit rate levels, the videos are compressed and used in the main experiment.

The results of the main experiment were analyzed by scaling the preference probabilities for each pair of stimuli into global just objectionable differences (JOD) scores, as described in Section 3.2.2. One JOD difference between two stimuli corresponds to selecting one video as higher quality than the other in 75% of the trials. We employ the term JOD instead of JND in this case to emphasize that, in the main experiment, participants were asked to give a quality judgment (i.e., select the video which has better overall quality), rather than assess whether a difference between the stimuli exists (as in the preliminary experiment).

JOD can then be interpreted similarly to the DMOS concept, and this makes it possible to compare different methods using quality-rate curves. We completed the analysis by testing the statistical significance of JOD differences among different color spaces, and found that, overall, there is no substantial gain of ITP over Y'CbCr, while Ypu'v' has slightly lower performance for some sequences.

Selection of the Test Stimuli

The pairwise comparisons methodology was selected to compare the effects of different color spaces because the differences between videos compressed with different color spaces are subtle. For some pairs, viewers can unanimously decide that one stimulus is better than the other, or vice versa. In order to acquire meaningful data without such decisions, the test stimuli should be selected carefully. For this purpose, we conducted a preliminary experiment to select the stimuli for the subjective experiment for color space comparison.

This preliminary experiment was designed to find perceptually uniform distances between compressed HDR video sequences, rendered at different levels of compression. These distances are measured in just noticeable difference (JND) units. For each content, four JND steps, starting from the uncompressed sequence, were found. During the experiment, only the sequences encoded using Y'CbCr color space were examined, and their corresponding bit rates were used as a reference for compression of the sequences in other two color spaces for the main study.

Details of the Subjective Experiment for Stimuli Selection

Experiment Design

This experiment was conducted in four sessions using two alternative forced-choice (2AFC) pairwise comparisons (PC) evaluation, where the question was: "Can you observe any quality difference between the two displayed videos?", and the subjects were able to respond either 'Yes' or 'No'. In the study, the perceptual responses of the participants were evaluated in a randomized design. The sequence and the compression rate were the independent variables. The dependent variable was the user preference.

The dataset contained 7 video sequences, with a significant variance in image statistics, as described in the Selected Materials part below. In each session, for each scene, five to seven sequences with different levels of compression (with different quantization parameters (QP)) were generated, so that QP k,i = QP ref k + j i , where j = {1, 2, 4, 6, 8, 10, 14}, i is the index, and k is the quality level. Each of these sequences, compressed using QP k,i , were compared to the reference sequence with QP ref k . Then, the QP corresponding to 1 JND difference from the reference, QP k , is selected. In the first session, the uncompressed sequence was the reference and the lowest compression level was selected in the pilot study made with expert viewers. In subsequent sessions, the reference, QP ref k , was the previously found sequence, QP k-1 , with one JND from its own reference, QP ref k-1 . In each trial, two videos of the same content but different compression levels were displayed in a side-by-side fashion. Videos were 5 seconds long, and they were repeated once. Upon the video presentation, the voting sign was displayed allowing the participants to make their choice. They were asked if they can perceive any difference in quality with respect to compression artifact, previously demonstrated during the training session. The voting time was not restricted. The next set of stimuli was presented one second after the user voted. The test design is visualized in Figure 3.1. The sequences were selected based on the image statistics and the pilot study, so • Spatial Perceptual Information (SI): As proposed in ITU-T Rec. P.910 [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF],

SI is calculated as

SI = max n (std space [Sobel(Lum n )])
where n is the frame number. It was designed and recommended for SDR images. In order to adapt it for HDR, we modified the physical luminance values (in cd/m 2 ) by PQ encoding [START_REF] Smpte | High dynamic range electro-optical transfer function of mastering reference displays[END_REF] and mapping them to the range of [0, 1] before calculation.

• Temporal Perceptual Information (TI): TI is calculated as

T I = max n (std space [Lum n -Lum n-1 ])
where n is the frame number. It was designed and recommended for SDR videos [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF].

As in the case of SI, the physical luminance values (in cd/m 2 ) were PQ encoded and mapped to the range of [0, 1] before calculation.

Since the SIM2 HDR47 display is only capable of displaying the color gamut described 

Participants and Procedure

33 people (20 men and 13 women) with an average age of 33.6, volunteered for the experiment.

In each of the four sessions there were 13, 17, 11 and 12 participants respectively, among whom most took part in two nonconsecutive sessions. All of them reported normal or corrected-to-normal visual acuity.

Prior to the experiment, the participants were briefed about the purpose of the experiment. This was followed by a verbal explanation of the experimental procedure and a short training session with 8 sample trials. At this time, two sequences that were not used in the study, rendered at several levels of compression, were utilized and the nature of the artifacts was explained. Towards the end of the training, the participants were asked to evaluate a few pairs of stimuli. Doing so, the experimenter was able to understand whether the participants understood the task. This further helped to stabilize their opinion, to adjust to the magnitude of the quality degradation, and to further familiarize themselves with the experimental framework. Following the training, the experiment commenced and no
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.4 -Removing the inconsistency in user voting. In this case, QP=27 was selected as the threshold.

further interaction between the participant and the experimenter occurred until debriefing once all trials were conducted.

Stimuli Selection for the Color Space Experiment

In order to find the stimuli 1 JND apart from each other, the experiment was conducted in an iterative fashion as described in the Experiment Design part above. To find the stimulus which was 1 JND apart from the anchor video, the following operations were carried out in this order for each level k. For the sake of simplicity and continuity throughout the chapter, we call these levels JOD k where k ∈ {1, 2, 3, 4} is the quality level.

After each session, the resulting data was gathered and screened for consistency. The results of each video sequence for each participant were grouped together and analyzed.

Some of the results were interesting as all the responses of a participant for a particular scene were "Same" (or "Different"). This means either that there was no perceivable difference between any of the pairs (for the case of all are "Same") or that difference was perceived in all compared pairs (for the case of all "Different"). The former is highly unlikely to happen as the distortion is eminently noticeable between the sequences generated with the ∆QP ≈ 10. The latter is even less likely since even the expert viewers could not perceive any quality difference at ∆QP = 1 for any of the tested scenes. Therefore, the cases where all the responses were "Same" or "Different" were considered as outliers, and the results of that particular participant for that particular scene were discarded. During the whole analysis, 37 out of 273 comparisons (per participant and per scene) were removed in total.

The results were further analyzed for their consistency. The gathered results for each participant and each video sequence were expected to follow a simple pattern: users would not see any difference in the videos with QP k,l,m,i < θ k,l,m until a certain threshold point and would see the difference in all of the stimuli after that point, i.e. QP k,l,m,i ≥ θ k,l,m , where θ k,l,m is the QP threshold point for k th quality level for l th observer and m th scene.

The results which did not follow this expected behavior were considered inconsistent, and they were modified to be consistent. That is, the θ k,l,m was found as the minimum QP value which ensured that all of the following data points were all different. Assume that R k,l,m,i is the pairwise comparisons results obtained for QP k,l,m,i :

θ k,l,m = min{QP k,l,m,i | R k,l,m,(i+n) = "Different", ∀n ≥ 0} (3.1)
Afterwards, all of the data points R k,l,m,i with QP k,l,m,i < θ k,l,m was set to "Same". Please notice that θ k,l,m is different for each observer l and scene m. This operation is visualized in Figure 3.4, where θ k,l,m = 27.

The modified results R k,l,m,i were summed across the participants, and the result was plotted. The result of this sum resembles -as expected-a cumulative distribution function (CDF) of the probability of seeing a difference. For the videos with lower QP (and higher bitrate), there is little or no difference to the video of the previous level, QP k-1 . After one point, the CDF becomes 1. This means that every video with that QP was and every other video with higher QP will be noticed by all of the observers. The underlying CDF was estimated by using a logistic fitting. 

Color Space Effect on Compression

In this main experiment, the compression performance when coding HDR video sequences using different color spaces was investigated. The bit rates were selected based on the results of the preliminary experiment as explained in the Section 3.1.2 above.

Details of the Subjective Experiment

Experiment Design

For the main experimental task, we chose paired comparisons methodology which provides higher sensitivity and easier experimental task than direct rating. However, this method may require comparing an excessive number of pairs when a large number of conditions is involved [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF], as in our case. For the complete design in our experiment, it would be necessary to make 390 unique comparisons, which would require multiple long sessions. At the same time, comparing stimuli with significantly high perceptual difference leads to obvious and unnecessary results. Therefore, an incomplete design in which only the relevant pairs were compared was employed.

HDR video sequences were compared across bit rates for the same color space, and across color spaces using the same bit rate, as shown in Figure 3.6. For the former, only the sequences compressed at the neighboring bit rates were compared, e.g. BR 1 vs BR 2 , or BR 3 vs BR 4 . The uncompressed sequence was compared only with the three videos compressed at the highest bit rates. In each trial, the participants had to select the sequence with higher quality, i.e. with lower magnitude and amount of perceivable artifacts.

Selected Materials

Due to the high inconsistencies of the preliminary experiment results for Tibul and Showgirl The resulting frames were stored in an AVI file as uncompressed video frames. As described in the previous section, Section 3.1.1, JND levels were found using only Y'CbCr color space transformation. The QP values for ITP and Ypu'v' were found by finding similar bit rates to selected Y'CbCr videos corresponding to different JND levels.

Participants and Procedure

18 people (14 men and 4 women), with an average age of 29.44, volunteered for the main experiment. All of them reported normal or corrected-to-normal visual acuity and were tested for color acuity using Ishihara test. This time, the participants were asked to select the sequence with the higher quality and thus fewer compression artifacts, or otherwise make the best guess. 14 participants took part in two sessions, composed of the same pairs but displayed in different order, i.e. A vs B, and B vs A. The total number of user responses per pair was 32.

Analysis of the Subjective Results

The subjective results were collected using the subjective test the details which were explained in the previous sub-section. These results were analyzed after a scaling was done.

The results of a pairwise comparisons test are generally gathered in a preference or comparison matrix. This matrix includes the preference ratios of the stimuli, and these preference ratios can be converted into quality scores by a procedure called "scaling". There 

Scaling of Pairwise Comparisons Results

The obtained pairwise comparison results were scaled using publicly available pwcmp software 1 . The software uses a Bayesian method, which employs a maximum-likelihoodestimator to maximize the probability that the collected data explains the scaled quality scores under the Thurstone Case V assumptions. The optimization procedure finds a quality value for each pair of stimuli that maximizes the likelihood, which is modeled by the binomial distribution. Unlike standard scaling procedures, the Bayesian approach can robustly scale pairs of conditions for which there is unanimous agreement. Such pairs are common when a large number of conditions are compared. It can also scale the result of an incomplete and unbalanced pair-wise design, when not all the pairs are compared and some pairs are compared more often than the others.

The distribution parameters of the software are adjusted so that the difference of one quality value corresponds to the 75% preference rate. 75% rate is the mid-point between the same quality (i.e. 50% or random guess) and different quality (i.e. 100%), and it implies that only half of the observers were able to see a difference. Although this is very close to the just noticeable difference (JND) as a concept, we use the term just objectionable difference (JOD) to indicate that these quality scores are distances from the original perfect quality, as JOD indicates overall quality. That is, two stimuli may have several JNDs between them but they may both have 1 JOD difference from the original. In this sense, JOD values can be viewed as quality scores similar to MOS (or DMOS) values, and they can be used to understand the overall quality of the stimulus.

As the pairwise comparisons can provide only relative information about the quality, the JOD values are also relative. To maintain consistency across the video sequences, we always fix the starting point of the JOD scale at 0 for different distortions and thus the quality degradation results in negative JOD values.

Comparison of Pairwise Scaling Results

The comparison matrix for each video sequence was formed separately since each stimulus was compared to another stimulus with the same content. For each video sequence, the original uncompressed video was fixed to have zero JOD value in order to fix the relativity to the original video. Afterwards, the JOD values were found for the stimuli using the pwcmp scaling software. The confidence intervals were found using bootstrapping.

The resulting JOD values are reported in Figure 3.7 for each video sequence. The videos compressed with three color spaces have very similar JOD values. Looking at the scaled data, we can say that, overall, there is no significant difference between the video compression performances using tested color spaces despite the numerical differences. However, there are a few cases where a preference of using one color space over the other is evident, e.g.

Starting scene at higher bit rates. In this sequence, there were two predominant regions of In order to test the statistical significance between the color spaces, two methods were used. The first method we used was the statistical significance test of the pwcmp software. In order to test the significance of the compared pairs, the pw_plot_ranking_triangles and pw_signifiance_matrix functions were used. These functions use the covariance matrix, C, found as a result of the JOD calculation and calculate the probability of two conditions being different based on the variance of the difference between the said two conditions. The variance between the conditions i and j is found by v = C i,i + C j,j -2 × C i,j . Assuming that the difference follows normal distribution, the significance of the pair is found with α = 5%. As a results of this significance test, several cases were found as significantly better than their counterpart as shown in Figure 3.9. This test was in accordance with the results from Figure 3.7, showing that Ypu'v' color space mainly has the worst effect on compression performance, while ITP is not significantly better than Y'CbCr except for a few cases.

Second, we conducted a binomial test between the different color spaces using the unscaled experimental data, only at the same bitrate as the differences are obvious for different bitrates. The results are shown in Figure 3.10. The colored cells show that the p-value of the test is lower than α = 5%. The associated intensity at the position (i, j) is not the p-value of the comparison, but it is the probability that stimulus i was selected over stimulus j as found in the test. The results of both significance tests are in agreement with each other.

Comparison of Objective Quality Scores

In addition to the subjective results, the video quality was predicted using two objective quality metrics: an objective quality metric for HDR video, i.e. HDR-VQM [START_REF] Narwaria | HDR-VDP-2.2: A calibrated method for objective quality prediction of high-dynamic range and standard images[END_REF],

and a color difference metric, i.e. ∆E 2000 [START_REF] Luo | The development of the CIE 2000 colourdifference formula: CIEDE2000[END_REF]. HDR-VQM was computed using only the Comparing the same stimuli using the HDR-VQM objective metric, we found almost identical results to the subjective experiment. In most of the cases, compression with Ypu'v' color space results with the lowest quality, except for the Market scene where there is almost no difference in scores. We observed a similar situation in the Balloon scene, where only at low bit rates, a minor difference between the three methods is found. Notice that we selected the HDR-VQM metric for objective evaluation since this is the only HDR full-reference metric specific to video.

The compressed videos were also evaluated using ∆E 2000 color difference metric. ∆E 2000 was calculated for each frame, and the calculation results were placed in a vector. The markers in Figure 3 

Discussion

In this chapter, the effect of color space on compression performance of HDR videos was investigated. RGB videos were transformed to either Y'CbCr after PQ EOTF encoding;

ITP; or Ypu'v' color space. The videos were compressed using HEVC Main-10 profile with HM 16.5 after 4:2:0 chroma subsampling. Two subjective tests were conducted: a preliminary experiment to find the bit rates at approximately one JOD level from each other, and the main color space experiment where five HDR video sequences, rendered at four previously found bit rates, were compared. To verify the significance of the user preference, the significance test on JODs was performed and validated using the pairwise binomial test. The resulting data was finally compared with the results generated by two objective quality metrics: HDR-VQM and ∆E 2000 . The obtained results after both subjective and objective analysis of the effects of color space on compression and quality were published in [ZHV + 17].

The results of our test on the effect of color space on compression performance for HDR video reveal that the influence of color space on coding performance is, in general, small.

With the exception of a few specific, content-dependent cases, we did not find evidence of the ITP color space being significantly better than Y'CbCr. Instead, we observed that Ypu'v' has in general a lower performance for coding, although the differences in quality are generally small. Even in those cases where a difference can be observed, we found that this is strongly content dependent, and is highly influenced by the visual attention patterns of each observer. This produces larger confidence intervals in the estimated quality scores, indicating that the problem of assessing visual quality for small differences in the magnitude of the distortion across stimuli (such as those produced by changing the color space) can be strongly subject-dependent and requires both a careful choice of test material and appropriate analysis tools. We did so in this chapter by selecting test stimuli through a preliminary subjective study, aimed at well conditioning the scaling procedure carried out after the main study to find JOD quality scores.

Our results also confirm that the HDR video quality metric, HDR-VQM, can predict the general trend and ranking between stimuli, but it is not sufficiently precise to distinguish very tiny perceptual differences and predict absolute quality levels. This motivates further studies in that direction. communities. Therefore, it is necessary to understand the capabilities and shortcomings of the objective HDR quality assessment algorithms.

Compared to SDR quality assessment, new challenges emerge for the evaluation of On the other hand, the quality metrics developed for SDR content can be used also for HDR content. As discussed in Section 1.2.1, these metrics can be arithmetic (PSNR, MSE), structural (SSIM [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF] and its multiscale version MSSIM [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF]) and information-theoretic (e.g., VIF [START_REF] Sheikh | Image information and visual quality[END_REF]). The SDR quality metrics were developed for the gamma-corrected 8-bit (or 24-bit if colored) images, and the gamma-correction ensures that the pixel values of these SDR images are perceptually linear. However, pixel values of HDR images are captured and stored as proportional to the physical luminance of the scene, and they are not perceptually linear. Human perception has a complex behavior: it can be approximated by a square-root in low luminance values and is approximately proportional to luminance ratios in higher luminance values, as expressed by the DeVries-Rose and Weber-Fechner laws, respectively [START_REF] Kundu | Thresholding for edge detection using human psychovisual phenomena[END_REF]. Thus, in order to employ these metrics, the HDR content needs to be perceptually linearized, e.g., using a logarithmic or perceptually uniform (PU) encoding [START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF].

Both the metrics developed exclusively for HDR content and the SDR metrics with In this chapter, we aim to bring more clarity to this field, by providing an extensive, reliable, and consistent benchmark of the most popular HDR image fidelity metrics. To achieve this, a new database was created using different image encoders and pixel encoding functions. In addition, all the available public HDR image quality databases were collected, and the MOS values of all images were aligned using the iterated nested least square algorithm (INLSA) proposed in [START_REF]An objective method for combining multiple subjective data sets[END_REF], in order to obtain a common subjective scale.

This aligned database consists of a total of 690 compressed HDR images, and it is the largest set on which HDR metrics have been tested so far to the best of our knowledge.

Using this large set of data, we analyze the prediction accuracy and the discriminability (i.e., the ability to detect when two images have different perceived quality) of 25 fidelity metrics, including those tested in MPEG standardization.

The main contributions include:

• the most extensive evaluation (using 690 subjectively annotated HDR images) of HDR full-reference image quality metrics available so far;

• the proposal of a new subjective database with 50 distorted HDR images, combining 3 image codecs and 2 pixel encoding algorithm (SMPTE-2084 Perceptual Quantization [START_REF] Smpte | High dynamic range electro-optical transfer function of mastering reference displays[END_REF] and a global tone-mapping operator);

• an evaluation of metric discriminability, that complements the conventional statistical accuracy analysis, based on a novel classification approach.

HVS has different perception mechanisms for image and video because of the fixation duration of the eye and because the temporal characteristics of image and video are different. Therefore, the quality assessment of image and video are different. However, some commonly used image quality metrics -e.g. PSNR, MSE, or SSIM-are often applied to the cases of video on a frame-by-frame basis. Therefore, the result of this work could be indicative of frame-by-frame objective metrics performance in the case of video as well.

Considered Subjective Databases

There is a large number of publicly available repositories of high-quality HDR pictures [DM04, Fai07, DM08, EMP13, pfs15]. They include high-resolution and high-quality undistorted images, even with luminance measurements of each image for some of these repositories. Compared to this availability of undistorted HDR images, the number of publicly available subjectively annotated HDR image quality databases is very small. We selected four publicly available HDR image quality assessment databases for this analysis. In addition, we propose a new database which is described in Section 4.1. Each of these databases contains compressed HDR images and MOS values for these HDR images.

The compression algorithms, number of observers, the number of stimuli used, and the experiment methodologies are different, and these parameters are summarized in Table 4.1.

The interested reader can refer to original publications for further details.

Database #1 -Narwaria et al. (2013) [NDSLCP13]

In their work, Narwaria et al. [START_REF] Narwaria | Tone mappingbased high-dynamic-range image compression: Study of optimization criterion and perceptual quality[END_REF] proposed a tone mapping based HDR image compression scheme and conducted a subjective experiment for the subjective quality assessment. The subjective experiment was conducted in a controlled test room which had a 130 cd/m 2 room illumination. A SIM2 HDR47E S 4K display was used for the experiment, and the distance from the display was set as 3 × H (approximately 178 cm).

The participants were asked to rate overall image quality using the Absolute Category Rating with Hidden Reference (ACR-HR) methodology, employing a five-level discrete scale where 1 is bad and 5 is excellent quality. The test material was obtained from 10 pristine HDR pictures, including both indoor and outdoor, natural or computer-generated scenes. The distorted images are generated through a backward compatible scheme [START_REF]JPEG-HDR: A backwards-compatible, high dynamic range extension to JPEG[END_REF]: the HDR image is the first converted to SDR by using a tone mapping operator (TMO); then, the SDR picture is coded using a legacy image codec; finally, the compressed image is expanded by inverse tone mapping to the original HDR range. The coding scheme in [START_REF] Narwaria | Tone mappingbased high-dynamic-range image compression: Study of optimization criterion and perceptual quality[END_REF] employs iCAM06 [START_REF] Kuang | iCAM06: A refined image appearance model for HDR image rendering[END_REF] as TMO, and JPEG compression at different qualities. In addition, the authors proposed two criteria to optimize the quality of the reconstructed HDR. As a result, a total of 10 contents × 7 bitrates × 2 optimization criteria = 140 test images were evaluated. 27 subjects participated the test. This database is publicly available at http://ivc.univ-nantes.fr/en/databases/JPEG_HDR_Images/.

The analysis in [START_REF] Narwaria | Tone mappingbased high-dynamic-range image compression: Study of optimization criterion and perceptual quality[END_REF] shows that Mean Squared Error (MSE) and Structural Similarity Index Measure (SSIM) perform well in estimating human predictions and ordering distorted images when each content is assessed separately. However, these results do not apply when different contents are considered at the same time. HDR-VDP-2 was found to be the best performing (in terms of linear correlation with MOSs) metric, but not statistically different from the metric proposed in [NLM + Results show that the choice of TMO greatly affects the quality scores. It is also found that local TMOs, with the exception of Durand's, generally yield better results than global TMOs as they tend to preserve more details. No evaluation of objective quality metrics is reported in the original paper [START_REF] Narwaria | Impact of tone mapping in high dynamic range image compression[END_REF].

Database #3 -Korshunov et al. (2015) [KHR + 15]

In the study of Korshunov et al. [KHR + 15], an HDR image quality database, publicly available at http://mmspg.epfl.ch/jpegxt-hdr, was created using backward-compatible JPEG-XT standard [START_REF] Richter | On the standardization of the JPEG XT image compression[END_REF] with different profiles and quality levels. For this database, 240 test images were produced, using either Reinhard [START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF] or Mantiuk [START_REF] Mantiuk | A perceptual framework for contrast processing of high dynamic range images[END_REF] TMO for the base layer, 4 bit rates for each original image and 3 profiles of JPEG-XT. The test room was illuminated with a 20 lux lamp, and a SIM2 HDR display was used. At any time, 3 observers took the test simultaneously. The subjective scores were collected from 24 participants, using Double Stimulus Impairment Scale (DSIS) Variant I methodology, i.e., images were displayed side-by-side, one of the images was the reference and the other Valenzise et al. [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF] were the first to collect subjective data with the specific goal to analyze the performance of HDR image fidelity metrics. Their database is composed of 50 compressed HDR images, obtained from 5 original scenes in the Fairchild HDR image survey [START_REF] Fairchild | The HDR photographic survey[END_REF]. Three different coding schemes were used to produce the test material, i.e., JPEG, JPEG 2000 and JPEG-XT. In the first two cases, the HDR image is first tone mapped to SDR using the minimum-MSE TMO proposed by Mai et al. [MMM + 11]. The images were displayed on a SIM2 HDR47E S 4K display, with an ambient luminance of 20 cd/m 2 . Subjective scores were collected using DSIS methodology, i.e., pairs of images (original and distorted) were presented to the viewers, who had to evaluate the level of annoyance of distortion in the second image on a continuous quality scale ranging from 0 to 100, where 0 corresponds to very annoying artifacts and 100 to imperceptible artifacts.

Fifteen observers rated the images. The database is available at http://webpages.l2s. centralesupelec.fr/perso/giuseppe.valenzise/download.htm.

The results of this study showed that SDR fidelity metrics could accurately predict image quality, provided that the display response is somehow taken into account (in particular, its peak brightness), and that a perceptually uniform (PU) encoding [START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF] is applied to HDR pixel values to make them linear with respect to perception.

Database #5 -New subjective database

In addition to the databases described above, we construct a new subjective HDR image database of 50 images, as an extension to the previous work of Valenzise et al. [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF].

The new database features 5 original images, selected in such a way to be representative of different image features, including the dynamic range, image key, and spatial information.

The five images are shown in Figure 4.1. The images "Balloon", "FireEater2", and "Market3" are chosen among the frames of the MPEG HDR sequences proposed by Technicolor [START_REF] Lasserre | Description of HDR sequences proposed by technicolor[END_REF].

"Showgirl" is taken from Stuttgart HDR Video Database [FGE + 14]. "Typewriter" is from HDR photographic survey dataset [START_REF] Fairchild | The HDR photographic survey[END_REF]. All images have either 1920 × 1080 pixels spatial resolution, or are zero-padded to have the same resolution.

Similarly to [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF], the test images are obtained by using a backward compatible HDR coding scheme [START_REF]JPEG-HDR: A backwards-compatible, high dynamic range extension to JPEG[END_REF], using JPEG and JPEG 2000 (with different bitrates) as SDR codecs. We did not include JPEG-XT in this experiment since some of the contents we where the reference image was shown for 6 seconds, followed by 2 seconds of mid-gray screen and 8 seconds of degraded image. The asymmetry in timing between distorted and reference image was determined in a pilot test, taking into account the fact that the reference image is shown several times, while the degraded image is different at each round and requires a longer evaluation interval. After both the original and distorted images are displayed, the observer takes all the time she/he needs to rate the level of annoyance on the same continuous scale as in [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]. The sequence of tested images is randomized to avoid context effects [START_REF] Simone | Selected Contributions on Multimedia Quality Evaluation[END_REF]. Moreover, too bright ("Market3") and too dark ("FireEater2")

stimuli are not placed one after another in order to avoid any masking caused by sudden brightness change. In addition to randomization, stabilizing images (one from each content and featuring each quality level) are shown at the beginning of the experiment to stabilize viewers' votes (which are discarded for those images).

In addition to the contents reported in Figure 4.1, a small subset of the stimuli of Database #4 was included in the test. This enabled aligning the two databases, #4 and #5, in order for the corresponding MOS values to be on the same scale [PEB + 11]. Thus, in the following, we will refer to the union of these two databases as Database #4 & 5.

A The alignment is done by changing the weights of the objective quality metrics, w, and changing the weights of the subjective quality scores, (a i , b i ), iteratively. Before any other operation, the subjective quality scores s i from the i th experiment are normalized between 0 and 1, according to Equation 4.1:

Alignment of MOS Values

s i = s o i -best i worst i -best i (4.1)
where s o i are the original values of the subjective scores, best i and worst i are the best and worst subjective quality values repectively. After the normalization of the scores, INLSA brings all the subjective scores onto a common scale by changing the weights, a i and b i :

si = a i s i + b i 1 (4.2)
where s i are the normalized subjective quality scores, si are the resulting 'corrected' quality scores. After this first step, iteration is continued with the second step to find the best weights for the objective quality scores, q:

s ≈ ŝ = P w (4.3) P is the parameter matrix P = [p 1 p 2 ... p r ] which consists of parameter vectors p i for r different objective quality metrics, and p i consists of n quality scores q j , p i = [q 1 q 2 ... q n ] .

INLSA does not change the images themselves. It only changes the subjective quality values. This means that the objective metric results are not changed after INLSA alignment.

Thus, INLSA only alters the subjective quality values in a linear manner, and it inherently assumes that the relationship between the objective quality estimates and the collected subjective quality values is linear. Considering that each HDR image has a distinct distortion, the objective quality metric score for that image should be unique to that particular image.

However, it has been discussed that there are different perceptual effects [START_REF] Simone | Selected Contributions on Multimedia Quality Evaluation[END_REF] that influence human subjects' vote during the experiment. Hence, it is possible for these HDR images to have different absolute quality scores. This makes using the linear model feasible.

Use of a non-linear model, on the other hand, may lead to biasing the data. Such kind of alignment may change the MOS values in a non-linear way, which is not intended in the original experiment in the first place. Additionally, we believe that non-linear correction should not be done during the alignment, but in the metric itself. These points show that a linear alignment is both necessary and sufficient for the task at hand.

Selection of the Anchor Metrics

INLSA requires objective parameters (i.e. objective quality metric results) for the alignment, under the assumption that those are linear and sufficiently well correlated with respect to MOS. Therefore, we analyzed the considered metrics (see Section 4.3.1) in order to select the best candidates for this operation. We call these metrics 'anchor metrics'.

To select any metric as an anchor metric, we need to be sure that the quality estimation of this metric is accurate for the considered cases and robust to different conditions presented by the considered databases. Selecting very few metrics will dominate the results in their favor. On the other hand, using all the metrics will introduce noise and reduce the effectiveness of the INLSA alignment. Thus, the most correlated 5 metrics were chosen for alignment in order to reduce the dominance of any particular metric and avoid introducing noise. Since PCC is a correlation index showing the linearity of the data and SROCC is a correlation index showing the monotonicity of the data, we found the 5 metrics which have the highest value for the product of PCC and SROCC as shown in Table 4.2: HDR-VDP- In order to compare the scatter plot quantitatively, the root mean squared error (RMSE) of the data is reported for each case.

Objective Quality Metrics under Consideration

We include in our evaluation a number of commonly used full-reference image quality metrics, including the mean squared error (MSE), peak signal to noise ratio (PSNR), structural similarity index (SSIM) [START_REF] Wang | Image quality assessment: From error visibility to structural similarity[END_REF], multi-scale SSIM (MSSIM) [START_REF] Wang | Multiscale structural similarity for image quality assessment[END_REF], information fidelity criterion (IFC) [START_REF] Sheikh | An information fidelity criterion for image quality assessment using natural scene statistics[END_REF], universal quality index (UQI) [START_REF] Wang | A universal image quality index[END_REF], and VIF [START_REF] Sheikh | Image information and visual quality[END_REF]. In addition to those metrics, we consider HDR-VDP-2. which is computed with S-CIELAB model.

The objective quality metrics under consideration can be grouped as following:

• HDR-specific metrics: HDR-VDP-2.2 and HDR-VQM are recent full-reference quality metrics developed for HDR image and video, respectively. They model several phenomena that characterize the perception of HDR content and thus require some knowledge of viewing conditions (such as distance from the display, ambient luminance, etc.). The mPSNR is PSNR applied on an exposure bracket extracted from the HDR image, and then averaged across exposures.

• Color difference metrics: we use CIE ∆E 2000 (denoted as CIE ∆E 00 ), which entails a color space conversion in order to get perceptually uniform color differences [START_REF] Luo | The development of the CIE 2000 colourdifference formula: CIEDE2000[END_REF], and its spatial extension [START_REF] Zhang | A spatial extension of CIELAB for digital colorimage reproduction[END_REF] (denoted as CIE ∆E S 00 ). More sophisticated color appearance models were not considered in this study, as their use in quality assessment has been marginal so far.

• SDR metrics applied after a transfer function: SDR metrics such as MSE, PSNR, VIF, SSIM, MSSIM, IFC, and UQI. To compute these SDR metrics we use:

-Physical luminance of the scene directly, denoted with the prefix Photometric-, -Perceptually uniform [START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF] encoded pixel values, denoted with the prefix PU-, -Logarithmic coded pixel values, denoted with the prefix Log-, or -Perceptually quantized [START_REF] Miller | Perceptual signal coding for more efficient usage of bit codes[END_REF][START_REF] Smpte | High dynamic range electro-optical transfer function of mastering reference displays[END_REF] pixel values. For this case, only tPSNR-YUV was considered as in HDRtools [START_REF] Tourapis | HDRTools: Software updates[END_REF].

Calculation of the Objective Quality Metrics

In order to calculate quality metrics, we first scaled pixel values to the range of luminance emitted by the HDR displays used in each subjective experiments. This is especially important for those metrics such as HDR-VDP 2.2 which rely on physical luminance. In order to compute these values, we converted HDR pixels into luminance emitted by a hypothetical HDR display, assuming it has a linear response between the minimum and maximum luminance of the display. As all the experiments use the same display (i.e. SIM2 HDR47E S 4K), we selected the same parameters for all experiments, i.e., 0.03 cd/m 2 and 4250 cd/m 2 for minimum an maximum luminance, respectively.

Although the emitted luminance on HDR displays depends on many factors and is not exactly a linear function of input pixel values, we found in our previous work that it is adequately close to linear [START_REF] Zerman | A dual modulation algorithm for accurate reproduction of high dynamic range video[END_REF] and from a practical point of view, this simple linear assumption is equivalent to more sophisticated luminance estimation techniques which require a detailed knowledge of the reproduction device [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]. Thus, the pixel values were multiplied with the luminance efficacy constant 179 [START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF] and then were clipped below the minimum or above the maximum luminance values, generating a linear model for the HDR display used. We used the publicly available implementation of these metrics, i.e., HDR-VDP-2.2.1 available at http://sourceforge.net/projects/hdrvdp/files/hdrvdp/ , HDR-VQM available at https://sites.google.com/site/narwariam/hdr-vqm , HDRtools version 0.4 [START_REF] Tourapis | HDRTools: Software updates[END_REF] developed within MPEG, the MeTriX MuX library for Matlab, available at http:// ollie-imac.cs.northwestern.edu/~ollie/GMM/code/metrix_mux/ .

Statistical Analysis

The performance of the aforementioned full-reference quality metrics was evaluated in terms of prediction accuracy, prediction monotonicity, and prediction consistency [START_REF] Simone | Selected Contributions on Multimedia Quality Evaluation[END_REF].

For prediction accuracy, Pearson correlation coefficient (PCC), and root mean squared error (RMSE) were computed. Spearman rank-order correlation coefficient (SROCC) was used to find the prediction monotonicity, and outlier ratio (OR) was calculated to determine the prediction consistency. These performance metrics were computed after a non-linear regression performed on objective quality metric results using a logistic function, as described in the final report of VQEG FR Phase I [RLC + 00]. This logistic function is given in Equation 4.4:

Y i = β 2 + β 1 -β 2 1 + e -( X i -β 3 |β 4 | ) , (4.4) 
where X i is the objective score for the i th distorted image, and Y i is the mapped objective score. It minimizes the least-square error between the MOS values and the objective results.

This fitting was done using the nlinfit function of Matlab to find optimal β parameters for each objective quality metric. After fitting, the performance scores were computed using the mapped objective results, Y i , and MOS values.

The results of these performance indices (SROCC, PCC, RMSE, and OR) were computed for each database separately, as well as considering all of the data together. The results are reported in Tables 4.3-4.6. The aligned data scores are denoted as "Combined", and "Except Database #2" for the data aligned excluding Database #2 as explained in Section 4.2. These results show that the performance of many full-reference quality metrics may significantly vary from one database to another, due to the different characteristics of the test material and of the subjective evaluation procedure. In particular, Database #2 is the most challenging for all the considered metrics, due to its more complex distortion features, as discussed in Section 4.2. Despite the variations across databases, we can observe a consistent behavior for some metrics. Photometric-MSE is the worst correlated one, for all databases. This is expected as mean squared error is computed on photometric values, without any consideration of visual perception phenomena. On the other hand, HDR-VQM, HDR-VDP-2.2 Q, and PU-MSSIM are the best performing metrics, with the exception of Database #2.

When we analyze the objective metrics for each transfer function, we observe that Photometric-IFC is the best correlated and Photometric-MSE is the worst in the linear domain; Log-IFC is the best correlated and Log-VIF is the worst in the logarithmic domain. also in the case of static images and is indeed more accurate on Database #2 than HDR-VDP-2.2. Furthermore, we notice that all metrics except CIE ∆E 00 and CIE ∆E S 00 consider only luminance values. Although CIE ∆E 00 and CIE ∆E S 00 have been found to be among the most relevant color difference metrics among others in a recent study [START_REF] Ortiz-Jaramillo | Evaluating color difference measures in images[END_REF], they have lower correlation scores when compared to luminance-only metrics. In fact, this result is not in disagreement with [START_REF] Ortiz-Jaramillo | Evaluating color difference measures in images[END_REF], which did not consider compression artifacts in the experiments, as the impact of those on image quality was deemed to be much stronger than color differences. Thus, our analysis confirms that luminance artifacts such as blocking, etc., play a dominant role in the formation of quality judgments, also in the case of HDR.

Discriminability Analysis

MOS values are estimated from a sample of human observers, i.e., they represent expected values of random variables (the perceived annoyance or quality). Moreover, the individual opinion scores are affected by several different factors. These factors may include many things that are known to affect the perception of human viewers such as the small physi- Due to the factors above limiting the effectiveness of resolving power, in this chapter, we propose an alternative approach in the original scale of the metric similar to what has been presented in Krasula et al. [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF], which enables to evaluate its discrimination power while avoiding the shortcomings discussed above. Despite the similarities, the implementation and the data processing steps of their work and the proposed algorithm are not the same. Therefore, we give the details of the proposed algorithm below in order to clarify differences.
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The basic idea of the proposed method is to convert the classical regression problem of accurately predicting MOS values, into a binary classification (detection) problem [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection theory[END_REF].

We denote the subjective (MOS) and objective quality of stimulus I by S(I) and O(I), respectively, for a certain objective quality metric. Given two stimuli I i , I j , we model the detection problem as one of choosing between the two hypotheses H 0 , i.e., there is no significant difference between the visual quality of I i and I j , and H 1 , i.e., I i and I j have significantly different visual quality. Formally: where we use ∼ = (resp. ) to indicate that the means of two populations of subjective scores (i.e., two MOS values) are the same (resp. different). Given a dataset of subjective scores, it is possible to apply a pairwise statistical test (e.g., a two-way t-test or z-test)

H 0 : S(I i ) ∼ = S(I j );
to determine whether two MOSs are the same, at a given significance level. In our work, we employ a one-way analysis of variance (ANOVA), with Tukey's honestly significant difference criterion to account for the multiple comparison bias [START_REF] Hogg | Engineering Statistics[END_REF], as it is also stated as the ideal way to find statistical significance in [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF]. In order to decide between H 0 and H 1 , similar to Krasula et al. [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF], we consider

the simple test statistic ∆ O ij = |O(I i ) -O(I j )|, i.e.
, we look at the difference between the objective scores for the two stimuli and compare it with a threshold τ , that is:

Decide:    H 0 if ∆ O ij ≤ τ H 1 otherwise. (4.6)
For a given value of τ , we can then label the set of stimuli as being equivalent or not, as shown in Figure 4.7.(b). The performance of the detector in (4.6) depends on the choice of τ . Intuitively, when τ is small (in the extreme case, equal to zero), all pairs of stimuli will be labeled as being of different quality. This maximizes the probability of detecting images that are actually of different quality; however, many pairs of stimuli having the same MOS will be misclassified as different. On the other hand, when τ is large (in the limit, when it tends to infinity), all pairs of stimuli will be labeled as being of the same quality. Thus, the opposite kind of error happens, i.e., many pairs of stimuli with different MOSs will be misclassified as being equivalent.

After finding equivalence matrices for both MOS values and objective quality metrics scores, the evaluation problem is converted to a binary classification problem, that is whether two images have the same quality. We call true positive rate (TPR) the ratio of images with different MOSs correctly classified as being of different quality, and false positive rate (FPR) the ratio of images with equal MOSs incorrectly classified as being of the different quality. By varying the value of τ , we can trace a Receiver Operating Characteristic (ROC) curve, which represents the TPR at a given value of FPR [START_REF] Kay | Fundamentals of Statistical Signal Processing: Detection theory[END_REF].

An example of ROC curves for two objective metrics O is reported in Figure 4.8.

The area under the ROC curve (AUC) is higher when the overlap between the marginal

distributions of ∆ O ij under each hypothesis, that is, p(∆ O ij ; H 0 ) and p(∆ O ij ; H 1
), is smaller. Therefore, the AUC is a measure of the discrimination power of an objective quality metric. Table 4.7 reports the AUC values for the combined case and the combination without Database #2. In addition to the area under the ROC curve, we also compute the balanced classification accuracy, which is an extension of the conventional accuracy measure to unbalanced datasets, i.e., where the number of positive and negative samples is different [START_REF] Brodersen | The balanced accuracy and its posterior distribution[END_REF]:

Acc = 2 × T P T P + F N + 2 × T N T N + F P . (4.7)
In Table 4.7 we report the maximum classification accuracy, Acc * = max τ Acc, which characterizes the global detection performance, as well as the value of the detector threshold .9 -Statistical analysis results for the discriminability analysis, according to the procedure described in Krasula et al. [START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF]. The bars signify statistical equivalence between the quality metrics if they have the same bar aligned with two quality metrics. It can be said that among PU-UQI, Log-UQI, and Photometric-UQI, there is not any statistically significant difference. Whereas, there is a statistically significant difference between HDR-VQM and all the other metrics considered.

most of the considered metrics. Although its performance is reduced in the combined case, HDR-VDP-2.2 Q also is statistically better than most other metrics in the case excluding Database #2.

We notice that, in general, the values of CD are much lower than Acc * . This is due to the fact that the method in [BLC + 04] not only aims at distinguishing whether two images have the same quality but also to determine which one has better quality. Thus the classification task is more difficult, as there are three classes -equivalent, better or worseto label. Indeed, we observe a certain coherence between our approach and [BLC + 04], and with the statistical analysis in Section 4.3.2: the best performing metrics are HDR-VQM and those based on PU transfer function such as PU-MSSIM, PU-VIF, and PU-SSIM.

Nevertheless, our analysis provides a better insight into the discrimination power of fidelity metrics compared to [BLC + 04], and gives practical guidelines on which should be the minimal differences between the objective scores of two images in order to claim that those have different visual quality. Finally, the fact that, even for the best performing metrics in terms of correlation with MOSs, maximum accuracy saturates at 0.8, suggesting that there is still space for improving existing HDR objective quality measures, as far as discriminability (and not only prediction accuracy) is included in the evaluation of performance.

Discussion

An extensive evaluation of full-reference objective HDR image quality metrics was conducted, and its results were presented in this chapter. In order to conduct this evaluation, four different publicly available HDR image quality databases were collected, and a new HDR image quality database was created. These five databases were aligned using the INLSA algorithm in order to have consistent MOS values. In total, 690 compressed HDR images were evaluated using several full-reference HDR image quality assessment metrics.

The performance of these metrics was evaluated from two different aspects; statistical analysis and discriminability analysis. The statistical analysis considers the quality estimation as a regression problem and uses conventional statistical accuracy and monotonicity measures [START_REF] Simone | Selected Contributions on Multimedia Quality Evaluation[END_REF]. Discriminability analysis, on the other, focuses on the ability of objective metrics to discriminate whether two stimuli have the same perceived quality.

The analysis results show that recent metrics designed for HDR content, such as HDR-VQM and to some extent HDR-VDP-2.2, provide accurate predictions of MOSs.

It is necessary to point out that these results are gathered using HDR image quality databases which have compression-like distortions. The results also confirm the findings of the previous work [VDSLD14, HBP + 15] as the results indicate that legacy SDR image quality metrics have a good prediction and discrimination performance, provided that a proper transformation such as PU encoding is done beforehand. This somehow suggests that the quality assessment problem for HDR image compression is similar to the case of SDR, if HDR pixels are properly preprocessed. Nonetheless, the performance results of the metrics reveal that none of the tested metrics provides highly reliable predictions, when all of the databases with heterogeneous characteristics are considered together (e.g.

Database #2 in our experiments).

Except two of them, all of the considered metrics are computed on the luminance channel of the images. Interestingly, the non color-blind metrics, CIE ∆E 00 and CIE ∆E S 00 , display poor performance in our evaluation. While other studies report different results in terms of correlation with MOSs [HRE16], we believe that a partial explanation for these results is that in the case of coding artifacts, the structural distortion (blocking, blur) in the luminance channel dominates the color differences, captured by CIE ∆E 00 and CIE ∆E S 00 . The important aspect of color fidelity metrics for HDR content, however, is still little understood. The importance of color on the human perception of the quality is a prospective future research for HDR/WCG. Finally, an alternative evaluation methodology is proposed in this chapter of the thesis. This evaluation methodology is based on the discriminability of a metric, and it provides a complementary perspective on the performance of objective quality metrics. This suggests that novel and more performing object quality metrics could be designed, provided that new criteria such as discriminability are taken into account alongside the correlation indices used to find statistical accuracy.

Along with the results of this extensive evaluation, details of the proposed evaluation methodology was published in the journal article [START_REF]An extensive performance evaluation of full-reference HDR image quality metrics[END_REF]. In order to support the research efforts on HDR image quality, the proposed database (merger of Database #4 and #5) of 100 HDR images have been made publicly-available over the Internet. These HDR images, along with their subjective quality scores, are available at http://webpages.l2s. centralesupelec.fr/perso/giuseppe.valenzise/download.htm.

Chapter 5

The Relation Between MOS and Pairwise Comparisons Subjective quality assessment is used in many domains including psychology, medical applications, computer graphics, and multimedia. Regardless of the domain, it is regarded as a reliable method of quality assessment, and it is often employed to collect "ground-truth" quality scores.

Two of the main methods of subjective quality assessment for multimedia content are direct rating and ranking [START_REF]Subjective video quality assessment methods for multimedia applications[END_REF][START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF]. Direct rating methods ask the observers to assign scores to observed stimuli. They may involve displaying a single stimulus (absolute category rating (ACR), single stimulus continuous quality evaluation (SSCQE)) or displaying two stimuli (double stimulus impairment scale (DSIS), double stimulus continuous quality evaluation (DSCQE)). Ranking methods ask the observers to compare two or more stimuli and order them according to their quality. The most commonly employed ranking method is pairwise comparisons (PC). Pairwise comparisons methodology was argued to be more suitable for collecting quality datasets because of the simplicity of the task and consistency of the results [PLZ + 09, PJI + 15]. The works of Ponomarenko et al. [PLZ + 09, PJI + 15], however, did not consider an important step in the analysis of pairwise comparisons data, which is scaling pairs of comparisons onto an interval quality scale. Here, we analyze the importance of this step and demonstrate how it enables yielding a unified quality scale between rating and ranking methods.

In the previous chapter, the evaluation of FR HDR objective quality metrics shows that aligning subjective datasets is tricky and not straightforward. The MOS values are susceptible to many different factors such as the environmental factors of the subjective test, the instructions given to the subject in the training session before the experiment, the experimenters' understanding of quality, the range (or strength) of distortions applied to the stimuli, and even the mood of the subjects. Thus, MOS values may have a very different meaning and scale, depending on how they are collected. The objective alignment we used in the previous chapter, INLSA [START_REF]An objective method for combining multiple subjective data sets[END_REF], is valid under some assumptions. It is important to understand whether there is a more general method for alignment. How can we find a more robust method to align quality databases? What is a good measure to use while comparing the quality of two different stimuli? In order to answer these questions, we should first understand what causes the variance in perceived quality, and we should be able to reduce the variance.

In general, most of the subjective quality assessment studies use direct rating methods.

The three mostly used direct rating methodologies are ACR [PPLC08b, GSI10, GDSE10, BPLC + 11], absolute category rating with hidden reference (ACR-HR) [SSB06, DSNT + 09, OZW10, SSBC10a, SSBC10b], and DSIS [LCA05, KHR + 15, HRE16]. For these methodologies, human observers evaluate the stimuli considering all the other stimuli in their mind.

In order to make proper quality judgments, they need to remember how they voted for other stimuli. This necessity essentially creates a quality scale in the minds of observers and makes it harder to compare and judge as the number of stimuli grows. On the other hand, basic ranking methods, e.g. pairwise comparisons, are generally much more straightforward and simple compared to direct rating methodologies. Especially in the case of pairwise comparisons, we can argue that comparing between two stimuli is truly simpler than comparing among many. In their work, Mantiuk et al. [START_REF] Mantiuk | Comparison of four subjective methods for image quality assessment[END_REF] found that the forced-choice pairwise comparisons methodology was the most accurate, as well as the most time-efficient, among four methodologies compared: single-stimulus categorical rating (i.e. ACR-HR), double-stimulus categorical rating, forced-choice PC, and similarity judgments.

The PC experiment and the results of PC scaling are much less influenced by the human factors by their nature. Thus, it can be used as a "universal" scale which you can align your datasets to. In this chapter, we try to understand the relation between the direct rating -i.e. MOS-and ranking -i.e. PC scaling-results, and we compare the MOS values and the scaling results of the PC experimental data.

The vast majority of studies employing the pairwise comparisons method compare only the images depicting the same content, for example comparing different distortion levels applied to the same original image. This "apple-to-apple" comparison simplifies the observers' task, making results consistent within content. However, it also comes with some limitations. On one hand, assessing and scaling each content independently makes it difficult to obtain scores that correctly capture quality differences between conditions across different contents on a common quality scale. On the other hand, pairwise comparisons capture only relative quality relations. Therefore, in order to assign an absolute value to such relative measurements, the experimenter needs to assume a fixed quality for a certain condition which is then used as the reference for the scaling. As a result, the scaling error accumulates as conditions get perceptually farther from the reference.

In this chapter, we also study the effect of adding cross-content comparisons, showing that this not only allows unifying the quality scale across content but also improves the accuracy of scaled quality scores significantly. In order to understand the effect of crosscontent pairwise comparisons, four different experiments were conducted using pairwise comparisons and double stimulus impairment scale methodologies. There are three major findings of the study described in this chapter:

• There is a strong linear relation between the mean opinion scores (MOS) obtained by direct rating, and scaled PC results;

• The addition of cross-content comparisons to the traditional PC reduces error accumulation and increases accuracy when scaling PC results;

• Cross-content comparisons align the PC scaling results of different contents to a common quality scale, reducing content dependency.

For this study, we use the high dynamic range (HDR) video quality dataset, presented in Section 3.2. Detailed information on scaling, the video quality database used, and the results are presented in the following sections.

Scaling Pairwise Comparisons Data

The results of a pairwise comparison experiment can be gathered in a preference matrix, also known as a comparison matrix. Its elements contain the counts of how many times one condition is voted as better than the other. These preference matrices can be used to find a quality score for each condition using one of several scaling methods [BT52, Thu27, LDSE11, TG11].

Commonly, pairwise comparison experiments are described by either of the two models: Bradley-Terry model [START_REF] Bradley | Rank analysis of incomplete block designs: I. the method of paired comparisons[END_REF] or Thurstone's model [START_REF] Thurstone | A law of comparative judgement[END_REF]. Bradley-Terry model finds the quality, or rating, of each stimulus which satisfies N i=1 π i = 1 and P (i > j) = π i π i +π j , where N is the total number of stimuli and π i is the quality of stimulus i. It assumes that the difference between the quality of two stimuli i and j, π i -π j , has a logistic distribution.

Thurstone's model, on the other hand, assumes that people may have different opinions about each stimulus and the quality, or rating, of each stimulus can be estimated with a Gaussian distribution. Thurstone [START_REF] Thurstone | A law of comparative judgement[END_REF] considers five different cases which have different properties. The most commonly used case is Case V which assumes that each option has equal variance and equal (or zero) correlations.

Other scaling methods proposed are generally based on these two models. Lee et al. [START_REF] Lee | Subjective quality evaluation via paired comparison: Application to scalable video coding[END_REF] proposed Paired Evaluation via Analysis of Reliability (PEAR) which is based on Bradley-Terry model. It computes the quality scores and their confidence intervals using the distribution of winning frequencies and ties. The scores are then found by maximizing the log-likelihood function. Tsukida and Gupta [START_REF] Tsukida | How to analyze paired comparison data[END_REF] compares several methods based on both Bradley-Terry and Thurstone's model, such as least-square estimation, maximum likelihood estimation, and maximum a posteriori estimation.

In this chapter, we use pwcmp, an open source software 1 for scaling pairwise comparison results [POM17]. As also described in Section 3.2.2, this software estimates the quality scores using a Bayesian method, which employs a maximum-likelihood-estimator to maximize the probability that the collected data explains the quality scores under the Thurstone Case V assumptions. It is robust against incomplete and unbalanced designs, and it can scale pairs which have a unanimous agreement. The preference probabilities are converted to quality scores considering that the probability of 0.75 (mid-point between random guess (0.5) and certainty (1)) maps to 1 just objectionable difference (JOD). The concept of JOD and its difference from JND is better explained in the 'JNDs and JODs' part below. The pwcmp software also computes the confidence intervals using bootstrapping. Due to the relative nature of the pairwise comparison experiment, JOD values are relative. Therefore, we always fix the undistorted reference image at 0, and the distorted stimuli have negative JOD values.

JNDs and JODs

The results of paired comparisons are typically scaled in Just-Noticeable-Difference (JND) units [START_REF] Engeldrum | Psychometric Scaling: A Toolkit for Imaging Systems Development[END_REF][START_REF] Silverstein | Efficient method for paried comparison[END_REF]. Two stimuli are 1 JND apart if 50% of observers can see the difference between them. However, we believe that considering measured differences as "noticeable" leads to an incorrect interpretation of the experimental results. Let us take as an example the two distorted images shown in Figure 5.1: one image is distorted by noise, the other by blur. Both images are definitely noticeably different, and intuitively they should be more than 1 JND apart. However, the question we ask in an image quality experiment is not whether they are different but rather which one is closer to the perfect quality reference.

Note that a reference image does not need to be shown to answer this question as we usually have a mental notion of how a high quality image should look. Therefore, the data we collect does not measure visual differences between images, but rather it measures image quality difference in relation to a perfect quality reference. For that reason, we describe this quality measure as Just-Objectionable-Differences (JODs) [AVS + 17] rather than JNDs. Note that the measure of JOD is more similar to the quality expressed as a difference mean opinion score (DMOS) rather than to JNDs.

Is Scaling Necessary?

Scaling methods are not always used to convert a preference matrix into quality, and some researchers use alternative methods. In [PLZ + 09] and [PJI + 15], the quality values were estimated by counting the times one stimulus was preferred over another. However, this approach requires a complete experiment design, in which all pairs are compared, or a heuristic that would infer missing comparisons. In contrast to vote counts, scaling methods introduce an additional step of converting preference probabilities into an interval quality scale. In order to understand the difference between vote counts and the results of scaling, we compared both to the collected MOS values. We converted the results of the first pairwise comparison experiment to vote counts by counting how many times one condition was preferred over another.

To simulate how it was done in [PLZ + 09, PJI + 15], the missing comparisons were populated by the following operations:

V (A, C) = min(V (A, B), V (B, C)) and V (C, A) = min(V (B, A), V (C, B))
where V (x, y) is the number of votes in the preference matrix, provided that comparison of A and C was missing, but they were both compared to B.

The resulting scores are presented in Figure 5.2. The plots show that PC scaling (in this case, JOD) scores are better correlated to MOS values compared to the quality estimates according to the number of votes. Considering this result, it can be claimed that using a scaling method yields results which are better correlated with MOS values.

Difference between MOS and PC Scaling

Although the mean opinion scores (MOS) are commonly used for the analysis of the 
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In this section, we present the results of the subjective test conducted in order to understand the relation between MOS values and PC scaling results.

Details of the Subjective Experiments

In order to compare the MOS values to PC scaling results, two subjective tests were conducted. In these subjective tests, we used the HDR video quality dataset created in Section 3.2. This dataset consists of 60 compressed HDR videos. 5 original video sequences were compressed using HEVC Main 10 profile with 3 different color space conversions (RGB → Y'CbCr, ITP, and Ypu'v') and 4 different bitrates which are reported in Table 3.2.

Each video sequence was 10 seconds long, composed of two identical 5-second long video segments played twice in succession.

The experiments were conducted in a quiet and dark room conforming to ITU Recommendations [START_REF]Methodology for the subjective assessment of the quality of television pictures[END_REF][START_REF] Itu-R | Subjective assessment methods for image quality in high-definition television[END_REF]. The ambient illumination of the room was set to 2.154 lux, and the luminance of the screen when turned off was 0.03 cd/m 2 . A calibrated HDR SIM2 HDR47 S 4K 47" display with 1920 × 1080 pixel resolution was used in its native built-in rendering mode. The subjects' distance from the screen was fixed to three heights of the display, with the observers' eyes positioned zero degrees horizontally and vertically from the center of the display [START_REF] Itu-R | Subjective assessment methods for image quality in high-definition television[END_REF].

The conducted experiments share a common set of parameters in addition to those of the test room. The stimuli were presented as pairs with a side-by-side representation. A gray screen was shown before each pair for 2 seconds. The stimuli were presented, and the viewers were asked to vote. The duration of voting was not limited. A training session was conducted before each test, and the duration of the tests was less than 30 minutes including the training. All of the observers were screened and reported normal or corrected-to-normal visual acuity.

Pairwise Comparisons Experiment

The first experiment conducted was a pairwise comparisons experiment with incomplete design. In this experiment, a pair of videos with two consecutive bitrates from the same color space or with the same bitrate from two different color spaces was compared, as shown in Figure 5.3.(a). In order to keep the experiment short, other pair combinations were not included in this test. These comparisons were made only within the same content.

In total, 65 videos (5 contents × 3 color spaces × 4 bitrates + 5 reference sequences)

were compared in 240 pairs (including mirrored versions). In order to keep each session under 30 minutes, the tests were conducted in two sessions. The order of the pairs was randomized for each session and the second session comprised of the mirrored versions of the videos of the first session. The duration of each session was approximately 30 minutes.

There were 18 participants (14 men and 4 women) with an average age of 29.44. Further explanations on the experiment design are given in Section 3.2.

The confidence intervals get more precise (or narrower) with the increasing number of subjects [START_REF]Suitable methodology in subjective video quality assessment: A resolution dependent paradigm[END_REF]. Therefore, in order to be able to compare the confidence intervals in a fair manner, it is desirable to have the same number of subjects. Since the DSIS experiment has 15 participants, in order to keep the number of the participants the same in all of the experiments, opinion scores of 3 random participants were removed from the results of this experiment.

Reference Y'CbCr -BR 1 Y'CbCr -BR 2 Y'CbCr -BR 3 Y'CbCr -BR 4 ITP -BR 1 Ypu'v' -BR 1 Ypu'v' -BR 2 Ypu'v' -BR 3 Ypu'v' -BR 4 ITP -BR 4 ITP -BR 3 ITP -BR 2 (a) Standard Pairwise Comparisons -Incomplete design Reference CS k -BR 1 CS k -BR 4 CS k -BR 3 CS k -BR 2 (b) Double Stim- ulus Impairment Scale

Double Stimulus Impairment Scale Experiment

In order to analyze the pairwise comparisons scaling results and understand whether these scaling results are comparable to the quality scores, a second experiment was conducted following the double stimulus impairment scale (DSIS) methodology. In this second experiment, DSIS Variant I methodology with a side-by-side presentation was used, as in [START_REF] Hanhart | Subjective and objective evaluation of HDR video coding technologies[END_REF].

A continuous scale ([0,100], 100 corresponding to "Imperceptible") was used instead of a categorical one (5 point impairment scale). All of the distorted videos were compared with the non-distorted reference video, as shown in Figure 5.

3.(b).

A total of 120 pairs were compared (including mirrored versions). In order not to distract the viewers, left or right side was selected, and original videos were always placed on the selected side for each viewer. To avoid any contextual effects, the original videos were presented on the left side of the display for half of the viewers and on the right side for the other half of the viewers. The duration of the DSIS tests was approximately 18 minutes. In total, 15 people (8 men and 7 women) with the mean age of 26.87 participated in the test.

Comparison of MOS and Pairwise Comparisons

The preference matrices of the PC experiments were found, and JOD scores were estimated using pwcmp software. For the DSIS experiment, the MOS values were calculated by taking the mean of opinion scores. Confidence intervals (CI), on the other hand, were calculated We noticed that the MOS values have CIs close to uniform; however, the CIs of JOD values increase as absolute JOD values themselves increase. This was caused by the accumulation of the estimation errors, which results from comparing consecutive pairs.

Note that running the full design, in which all pairs are compared, will not decrease such error to a large extent as the comparison for conditions that differ more than 2 JODs do not contribute much to the estimation.

Extending Pairwise Comparisons: Cross-Content Comparisons

The pairwise comparisons experiments are designed to compare conditions coming from the same content so that "apples" are compared to "apples". Because only the reference condition is anchored and the quality of all other conditions is estimated from paired- relations, the estimation error is accumulated while moving away from the anchor. Instead, comparing "apples" to "oranges" may introduce new information, improve the scaling, and reduce cross-content variance.

Reference 1 Y'CbCr -BR 1 1 Y'CbCr -BR 4 1 Y'CbCr -BR 3 1 Y'CbCr -BR 2 1 Reference 2 Y'CbCr -BR 1 2 Y'CbCr -BR 4 2 Y'CbCr -BR 3 2 Y'CbCr -BR 2 2 (a) Additional cross-content experiment Reference Y'CbCr -BR 1 Y'CbCr -BR 2 Y'CbCr -BR 3 Y'CbCr -BR 4 ITP -BR 1 Ypu'v' -BR 1 Ypu'v' -BR 2 Ypu'v' -BR 3 Ypu'v' -BR 4 ITP -BR 4 ITP -BR 3 ITP -BR 2 (b) Additional same-content experiment
In this section, we propose to extend the standard pairwise comparisons methodology to include cross-content comparisons. It is found that including cross-content comparisons improves the accuracy of PC scaling and reduces error accumulation.

Cross-Content Pairwise Comparisons Experiment

In addition to the subjective experiments described in the previous section, two additional experiments were conducted in order to analyze and understand the effects of cross-content pairwise comparisons. All of the variables except the selected pair of stimuli were kept the same. We were motivated to run such a cross-content comparison experiment after observing that such comparisons are indirectly performed in the DSIS methodology. When the viewers rate sequences, they judge the quality in relation to all other sequences they have seen, also the sequences presenting different content.

To keep the additional experiments short, for cross-content experiment, we paired videos with different contents and same bitrate, as shown in Figure 5 In order to conduct the test in one session and within 30 minutes, only videos encoded using Y'CbCr color space were compared, and the test set consisted of a total of 80 pairs (including mirrored versions). The duration of the tests was approximately 20 minutes. 15 people (8 men and 7 women) with an average age of 28 years took part to the test. Viewers were introduced the compression artifacts in the training part, and they were asked "Which one of the pairs have a better quality in terms of compression artifacts?".

In order to make a fair comparison in terms of the number of total comparisons, an additional same-content experiment was also conducted. To keep the additional number of pairs in a similar range, the test consisted of a total of 90 pairs (including mirrored versions).

For this purpose, we selected pairs with consecutive bitrates and same color spaces, as shown with solid black arrows in Figure 5.5.(b). They are essentially additional observations of some of the pairs of the standard PC test described in the previous section. These pairs were compared by 15 people (8 men and 7 women) with an average age of 29. These additional same-content pairs were again combined with the standard PC experiment results and scaled again with pwcmp software. The JOD scores obtained from the combination of standard PC and additional same-content experiment are called JOD SameContent .

Impact of Cross-Content Comparisons

The JOD values we use were found using three different sets of PC data. As described in the previous section, JOD Standard was found using the data acquired in the within-content PC experiment shown in Figure 5.3.(a). JOD SameContent was found using the combination of standard PC experiment results and additional same-content experiment results, and JOD CrossContent was found using the combination of standard PC experiment results and the cross-content experiment results.

Although the cross-content comparisons were made only for the videos with Y'CbCr color space, the JOD scores for all videos with all three color spaces are updated after re-scaling. The updated JOD values, JOD SameContent and JOD CrossContent , were plotted against MOS and CI in Figures 5.6 and 5.7, respectively. The updated results show that the high CI values for high JOD scores are now significantly reduced with the addition of cross-content pairs. The slopes of the best linear fit change. Therefore, the relationship between JOD and MOS becomes much more linear and the correlation between JOD and MOS becomes much higher. 5.2.

Reduced Content Dependency

In both Figure 5.6 and 5.7, the slopes of the best fitted line are found for each content.

These slopes are reported in Table 5.2. In order to find the effect of the addition of cross-content pairs, the variance of these slopes was found. Variance of the slopes in the case of JOD SameContent was 2.7972 and in the case of JOD CrossContent was 0.6445. This significant reduction in the variance of the slopes implies that the best linear fit for each content is much closer, and there is less variance across different contents.

Another metric, Std p2l , was computed for the points plotted in each sub-figure presented.

It is calculated as: on a common quality scale.

Std p2l = mean(d(P, l) 2 ) (5.

Reduced Error Accumulation

In order to analyze the change in CI, average CI values are reported in Table 5.3. Since the CI does not change with respect to the color space much, the CI values were averaged for the same bitrate. The last column of Table 5.3 shows that the CIs decrease for almost every case up to 60%, especially at higher bitrates where scaling error would instead accumulate in the standard PC. With cross-content comparisons, the CI size becomes more uniform across different levels of quality. Even though the total number of comparisons for JOD CrossContent is very close to those of JOD SameContent , we observe a reduction in confidence intervals. These results show that the decrease in confidence intervals is not due to the increase in the total number of comparisons, but through the new information introduced by the comparison of cross-content pairs.

All the results indicate that the scaling of the pairwise comparisons data yields JOD scores that are highly correlated to MOS values acquired in the DSIS experiment. The introduction of cross-content pairs make JOD more uniform and reduce the confidence intervals.

Discussion

Subjective quality assessment is considered as the most reliable approach for multimedia quality assessment. Although there are several different methodologies for measuring the subjective quality, pairwise comparisons methodology is considered to be one of the simplest, yet most precise, of all the well-known methodologies. The results of pairwise comparisons experiments can also be converted to numerical quality scores after a process called scaling.

In this chapter, we proposed to add cross-content comparisons in pairwise comparisons methodology to reduce the error accumulation that occurs during scaling. We present the Chapter 6

Conclusion and Future Work Summary

In this thesis, we addressed some of the limitations and challenges of quality assessment in the context of high dynamic range image and video. Specifically, the goal of this thesis was to study the new conditions of HDR display technology and provide insight into the assessment and analysis of HDR video quality. For this purpose, we investigated three aspects of HDR quality assessment.

First, we analyzed the parameters affecting the subjective and objective HDR quality assessment in order to understand the influence of the new conditions introduced by HDR technology, and for this purpose, we developed an HDR frame rendering algorithm. In this part, we focused on the effects of display rendering (related to the brightness and contrast of the display) and color on HDR quality assessment.

Second, based on our findings, we evaluated the objective HDR image quality assessment methods using a 690-images dataset created by aligning MOS values of different databases, and we proposed a novel classification-based discriminability analysis method for the evaluation of objective metric performance.

Third, we compared pairwise comparisons scaling results to MOS values, with the intention of finding a common representation to align quality datasets and eliminating the need for the alignment step which was found to be necessary. Additionally, we proposed to include cross-content comparisons to pairwise comparisons methodology in order to reduce the cross-content variance and confidence intervals of PC scaling results.

The details of these three aspects are further discussed in the following sections.

Effects of the Display Rendering and Color

We first analyzed the characteristics of SIM2 HDR47 display, and we developed an HDR In order to understand the effects of display rendering, a subjective experiment was conducted by displaying the HDR images using the proposed rendering. The subjective results of this experiment were then compared to the results of another experiment in which the same HDR images were displayed using the built-in rendering of SIM2 display.

Results show that there is no significant difference in subjective quality scores, as the MOS values do not change much. The reason for this was found after qualitative inspection of the images. Although the artifacts in darker regions became visible, artifacts in brighter regions became saturated and invisible to human eye. Overall, the subjective quality of the images stayed similar.

The comparison in the objective quality scores also showed no significant difference between the two rendering methods. The results show that a simple linear model is able to provide reliable results as if a detailed knowledge of the reproduction display were available, and it can be used to compute objective quality metrics. Moreover, the measurement results

show that this simple model is actually very close to the real display response of the SIM2 display (see Figure 2.6.(a)).

In order to understand the effects of color, we created an HDR video compression dataset consisting of 60 videos in total, which were compressed with HEVC (HM 16.5) Main 10 Profile using three different color spaces: Y'CbCr, ITP, and Ypu'v'. These compressed videos were displayed using the built-in rendering of SIM2 display for a pairwise comparisons subjective experiment. The gathered PC data were scaled to find quality scores in terms of JOD. The results show that the influence of color space on coding performance is, in general, little and content dependent.

The quality of the compressed videos were also assessed using a luminance-only quality metric, i.e. HDR-VQM, and a color difference metric, i.e. ∆E 00 . The results show that HDR-VQM can predict the general trend of the subjective quality scores, but it is not precise enough to predict absolute quality levels of JOD. This difference in quality levels motivates further studies in this direction.

The results of ∆E 00 are not in agreement with either the subjective JOD scores or the objective HDR-VQM scores. Both this disagreement and the HDR-VQM's ability to predict the general trend of the subjective results indicate that the perceived quality for HDR video compression is dominated by the structural distortion caused by the changes in the luminance channel. In addition to the statistical analysis techniques used, we proposed a novel classificationbased discriminability analysis method. The significance of the aligned MOS values are found using multiple comparison test and are fed into the proposed method as ground-truth subjective quality. Then, the proposed method calculates the classification rates by sweeping for the objective quality score difference threshold, τ from 0 to the maximum, in order to find the performance indicators: area under curve (AUC) and the maximum balanced accuracy. Having high rate of incorrect classification hints that there may be still room for improvement, and the proposed method can be a useful indicator of performance in addition to the statistical analysis methods.

Objective Quality Metric Evaluation

The objective quality estimations were compared to the MOS values, and the metrics were evaluated using both the proposed discriminability analysis and the statistical analysis methods. In addition to the numerical results, the proposed method and statistical analysis methods were analyzed for the significance of difference. The results indicate that although HDR-specific metrics yield the highest correlation scores, legacy SDR image quality metrics also have a good prediction and discrimination performance, provided that a proper transformation such as PU encoding is done beforehand. Moreover, the higher performance of luminance-only quality metrics compared to color difference metrics, ∆E 00 and ∆E S 00 , supports the claim that HDR image and video compression is dominated by the structural distortion.

In addition to the results of the evaluation, the database consisting of 100 compressed HDR images, which was created as a merger of Database #4 and #5, has been made publicly available over the Internet in order to support the research efforts on HDR image quality assessment.

Comparison of Subjective Quality Scores

As the evaluation of the quality metrics show, the MOS values may be different for different databases, and this result affects not only subjective quality assessment but also objective quality assessment as the training and adjustments of objective quality metrics depend on the subjective quality scores. In order to find a common representation for different quality databases, we compared pairwise comparisons scaling results to MOS values, conducting a series of subjective experiments.

For the comparison of MOS values to JOD values, we conducted a DSIS subjective experiment with the same material used in the PC subjective experiment described in Section 3.2. The results show that there is an almost perfectly linear relationship between MOS and JOD values.

In order to improve scaling performance and reduce cross-content variance, we proposed to include cross-content comparisons in pairwise comparisons methodology. In order to analyze the effect of adding cross-content pairs, the variance between the best-fit slopes and standard deviation of point to best-fit line distances were calculated. Results show that the inclusion of cross-content pairs reduces the confidence intervals of the PC scaling results (i.e. JOD values) and the cross-content variance of the relationship between JOD and MOS values. It also improves the overall scaling performance.

Since pairwise comparisons methodology is easier for subjects compared to the direct rating methods, it is expected to result in more reliable quality scores. Moreover, we showed that inclusion of cross-content pairs improve scaling performance. Presenting these results, this study serves as a preliminary study towards finding a more effective method to align datasets and develop novel hybrid methodologies where one can fuse MOS values and PC scaling results in order to have a better scale of quality scores.

Future Research Directions

Rapid commercialization of HDR/WCG technology and increasing volume of HDR content bring about new perspectives for future research. We believe that some aspects of the HDR/WCG technology need further investigations, and we describe a number of possible extensions of this thesis.

Estimation of Emitted Color

Although the proposed rendering method is able to estimate the emitted luminance accurately, it cannot estimate the emitted chrominance at the moment. Its output includes color information, but the color information is acquired simply by dividing the color HDR image to the backlight value.

For accurate chrominance estimation, the LCD panel response and color primaries of the SIM2 display should be better studied. This new rendering method which can estimate emitted color may be useful for possible subjective experiments related to color perception in HDR and wide color gamut studies.

Understanding Color Artifacts for HDR/WCG

For the case of compression, the structural distortions created by the differences in luminance channel are found to be dominant over the human perception of HDR image and video quality. However, in cases other than compression, changes in color may still influence the perceptual quality. Color artifacts can be created by several reasons such as color space or color gamut conversions and EOTF conversions. Hence, a wider range of color distortions may be studied to understand the effects of color artifacts in the sense of HDR/WCG. The findings can be used to develop a more suitable color fidelity (or color difference) metric for HDR content.

Additionally, as we noticed from the results of Chapter 3 and Chapter 4, the color difference metrics are not able to predict the quality of compressed HDR content. The findings of the proposed color artifacts study can also be used for the development of a quality metric which takes color into account for the case of HDR image and video compression.

Evaluation of Objective Metrics

The evaluation of HDR image quality metrics in Chapter 4 has important results and conclusions, some of which can be extended for the case of video. In this thesis, we could not carry out such an evaluation for HDR video due to scarcity of publicly available HDR video quality databases at the time of this study. Therefore, a similar evaluation can be done for the case of HDR video, in order to take the temporal characteristics into account.

New technologies such as 4/8K and high frame rate can also be considered in combination with HDR/WCG technologies. This combination may introduce new challenges for objective quality assessment algorithms.

JOD as a Universal Subjective Quality Score

As we discussed previously, we believe that JOD can be a universal subjective quality score thanks to the easiness and robustness of its calculation. Although the initial results are promising, this claim needs to be validated with a larger set of data with various distortions and quality levels. Provided that it is validated, the JOD values can be used for aligning different databases, and this can improve both the evaluation and development of objective HDR quality metrics.

By its nature, the proposition of JOD as a universal subjective quality score is not limited to HDR quality assessment, and JOD can be used in almost all multimedia quality assessment applications.

A.1 LED measurements

As described in the Section 2.1.1, the SIM2 display has three different layers: backlight layer, light diffuser layer, and LCD layer. To understand how the LEDs of the backlight layer work, the duality of the 'dual modulation' of the SIM2 display has to be suspended.

For this purpose, LCD values for these test patterns were set to 255 in order to ensure that all of the backlight passes the LCD layer. We created a few test patterns to be displayed In the technical manual of the SIM2 display, it is stated that the brightness of the LEDs is limited by the power limitation of the display which is around 1500 W. It is also stated that this limit is reached when approximately 40% of the LEDs are lit at their maximum brightness. Therefore, we used a collection of LEDs forming a rectangle that covers 30% of the display area for the case (ii), in order to be within the power limitation. the case of only one LED and square LEDs, it is clear that there is a linear relationship between the LED value and the emitted luminance. In the case of all LEDs, the slope of all LEDs case is steeper than the case of square LEDs, and this is expected due to the increased number of LEDs. When LED values pass some threshold, the emitted luminance values are saturated due to the power limitation of the display.

These results show us that the response of individual LEDs is very close to linear and the power limitation is needed to be taken into consideration for an accurate reproduction of the HDR images and video frames. A.2 LCD Measurements and the Analysis of the Display Gamma Similar to the previous section, the duality of the 'dual modulation' of the SIM2 display was suspended by setting all the LEDs same value and creating a constant backlight. We created seven different test patterns for the LCD measurement and displayed these patterns on SIM2 using DVI+ mode. All the pixels of the LCD was set to the same value -or same color-and these colors were chosen as the primary and secondary colors, i.e. Red, Green, Blue, Yellow, Cyan, and Magenta. We also added 'White' to this list to act as the reference luminance values.

The emitted luminance values were measured using the Konica Minolta LS-100 light meter. The measured luminance values were reported in Table A.2. Using these luminance values, we estimated the display gamma value of the SIM2 display. The display gamma -denoted by γ-was calculated using the three color channels; red, green, blue. 

V corrected in,k = V 1/γ k in,k V corrected out = A × (V corrected in ) γ V corrected out,k = A × V γ/γ k in,k V corrected out,k = A × V 1/γ k out,k (A.4)
where γk is the average gamma per color channel as found in the Table A.4, which are in agreement with the gamma values reported in the work of Nam [START_REF] Nam | A color compensation algorithm to avoid color distortion in active dimming liquid crystal displays[END_REF]. The resulting

V corrected out is shown in Figure A.3.(b).
The variation between the γ values presented in Table A.4 are quite high. In addition to that, gamma corrected values are found to have high variation both objectively and subjectively. Subjectively, viewers were able to notice that the gamma corrected images had some bluish or yellowish color artifacts. This finding is supported objectively by the plot shown in Furthermore, the plot suggests that the gamma value is not constant even for each color channel.

In order to remove this effect and fix gamma correction part, each color channel was measured again with the light meter using pixel values p ∈ {0, These results update the hypothesis. Although we do not know the exact cause of this circumstance, it is hypothesized that the light generated by the LEDs can bounce back from the chassis of the display, and it affects all of the display's edges. We call this effect "border effect". After comprehensive measurements, this border effect was integrated within the HDR frame rendering algorithm developed.

The results of these measurements helped us to understand the characteristics of the LEDs, the pixels of the LCD panel, and the overall working principles of the SIM2 display.

We were able to model some key parameters related to these characteristics, and we integrated the findings into the display rendering algorithm proposed in Section 2.1.

Annex B

Résumé de thèse • Mise à l'échelle itérative : Une carte à l'échelle est générée afin de mettre à jour les valeurs des LED à l'aide de l'équation suivante :

S t = BL target BL t (B.2)
où t est le nombre d'itération. Les valeurs des LED sont multipliées par la carte à l'échelle trouvée comme suit : • Calcul des valeurs des pixels de l'écran LCD : Les valeurs de pixels LCD sont trouvées en divisant (par pixels) chaque canal de couleur de l'image HDR originale par l'estimation finale du rétroéclairage, et en appliquant une correction gamma, c.-à-d.: 

LED t = LED t-1 × S t-1 = LED t-1 × BL target BL t-1 (B.
LCD k = I k BL f inal 1/γ k,p = I k LED f inal * P SF 1/γ k,p (B.
f i,j,l = [0 . . . A f i,j (l) . . . 0] T et B f i,j = [W f i,j,1 . . . W f i,j,N ] où W f i,j,l = T f i,j
,l * w σ est le vecteur résultant obtenu par le filtre de lissage w σ . Ensuite, les valeurs lissées, M f i,j , peuvent être trouvées en prenant la valeur maximale à travers les colonnes de B f i,j . Cette procédure est répétée en utilisant une approche par fenêtre coulissante. Une fois que le rétroéclairage cible lissé a été calculé, le reste de la partie rendu suit l'algorithme décrit précédemment.

Validation expérimentale

La performance de l'algorithme de rendu proposé a été validée par différentes expériences :

• Réponse de luminosité linéaire et luminance de crête : À l'aide d'un photomètre, nous avons mesuré la luminance au centre du motif (une boîte blanche couvrant 30% de la surface d'affichage, entourée d'un fond noir) pour le rendu intégré et le rendu proposé.

Le rendu proposé est plus précis et atteint une luminosité de crête plus élevée. 

Impact sur l'évaluation objective

Nous avons également comparé les performances de différents cas de calcul de mesures objectives de qualité. Afin de comprendre l'effet du rendu sur l'évaluation objective de la qualité HDR, nous avons estimé la luminance par pixel produite par l'affichage à l'aide de Les résultats d'un test de comparaison par paires sont généralement rassemblés dans une matrice de préférence ou de comparaison. Cette matrice comprend les ratios de préférence des stimuli, et ces ratios de préférence peuvent être convertis en scores de qualité par une procédure appelée "rééchelonnement" ("scaling" en anglais Pour calculer les mesures de qualité, nous avons d'abord rééchelonné les valeurs des pixels en fonction de la plage de luminance émise par les écrans HDR utilisés dans chaque 

Analyses statistiques

La performance des mesures de qualité avec référence considérée dans cette étude a été évaluée en termes d'exactitude, de monotonie, et de constance de la prédiction [START_REF] Simone | Selected Contributions on Multimedia Quality Evaluation[END_REF]. 

B.6.3 Extension de PC: Comparaisons inter-contenus

Expérience de comparaison par paires inter-contenus

Les expériences de comparaison par paires sont conçues pour comparer des conditions provenant du même contenu, de sorte que les "pommes" sont comparées aux "pommes". Étant donné que seule la condition de référence est ancrée et que la qualité de toutes les autres conditions est estimée à partir des relations de paires, l'erreur d'estimation est accumulée en s'éloignant du point d'ancrage. Au lieu de cela, comparer des "pommes" à des "oranges" peut introduire de nouvelles informations, améliorer le rééchelonnement et réduire la variance de contenu croisé.

En plus des expériences subjectives décrites dans la section précédente, deux autres On calcul la pente de la droite la mieux adaptée à chaque contenu, en utilisant les tracés de MOS vs JOD. Afin de trouver l'effet de l'addition de paires de contenus croisés, la variance de ces pentes a été également calculée. La variance des pentes dans le cas de Bien que la méthode de rendu proposée soit capable d'estimer avec précision la luminance émise, elle ne peut pas estimer la chrominance émise pour le moment. Son rendement inclut
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 6 Incomplete pairwise comparisons experiment design used for the main color space subjective experiment. Solid black lines indicate the comparisons made within the same color space, and dashed red lines indicate the comparison accross color spaces for the same bitrate. . . . . . . . . . . . . . . . . . . . . 3.7 Image scores obtained by scaling preferences to relative quality distances (in JOD units) for the three tested color spaces. . . . . . . . . . . . . . . . . 3.8 An example of the difference in compression performance between the Y'CbCr and Ypu'v' color spaces, both compressed at BR 2 level. The color spaces affect the artifacts differently in the (b) bottom-left (patch #1) corner of the scene and in the (c) top (patch #2) part of the scene. . . . . . . . . . 3.9 Difference between test conditions after significance test on JODs. Only the conditions at the same bit rate are reported. Entries named as PQ refer to the color transformation with PQ and Y'CbCr. Black entries at position (i, j) indicate that stimulus i has been found to be significantly better than stimulus j, at 95% confidence. Similar results are obtained by performing a pairwise binomial test on raw (unscaled) data. . . . . . . . . . . . . . . . . 3.10 Difference between test conditions after the binomial test on the raw (unscaled) experimental data. Only the conditions at the same bit rate are reported. Entries named as PQ refer to the color transformation with PQ and Y'CbCr. Colored entries at position (i, j) indicate that the p-value of the test is lower than 5%. Intensity values indicate the probability of stimulus i being significantly better than stimulus j. . . . . . . . . . . . . . . . . . . . 3.11 The results obtained by comparing all the scenes for the three color spaces using the HDR-VQM metric. All scores are normalized, where 1 means perfect quality and lower scores represent a decrease in quality. . . . . . . . 3.12 The results obtained by comparing all the scenes for the three color spaces using the ∆E 2000 metric. Higher ∆E 2000 scores represent an increase in the color difference, and stimuli more similar to the original video yield lower scores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1 Original contents for the new proposed image database described in Section 4.1, rendered using the TMO in [MDK08]. . . . . . . . . . . . . . . . . 4.2 MOS vs HDR-VQM scores before INLSA alignment. . . . . . . . . . . . . . 4.3 Plots of MOS vs objective quality scores for the selected objective metrics selected showing the linearity of the metric estimations . . . . . . . . . . . . 4.4 Plots of MOS vs objective quality scores for HDR-VQM and PU-VIF before and after INLSA alignment. In order to compare the scatter plot quantitatively, the root mean squared error (RMSE) of the data is reported for each case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5 Statistical analysis results for correlation indices for combined data according
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 2 Comparison of two different quality score estimation methods. The results of the first experiment is used to find the preference matrix. PC scaling done by pwcmp software (a) yields a better correlation to the MOS values than the quality score estimation via counting the number of votes (b). . . . . . 5.3 Compared pairs for the (a) pairwise comparisons and (b) DSIS experiments. To avoid cluttering, comparisons for DSIS experiment are shown for each color space CS k where k is the index of CS = {Y'CbCr, ITP, Ypu'v'}. . . . 5.4 JOD Standard vs. MOS. Solid red line indicates the best linear fit to the data, and the dashed violet line indicates the best linear fit line of the case 'All Together'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Experiment design for two additional experiments. Selected additional pairs are shown with black arrows, where Reference i is the reference (original) for video content i, BR i j is video content i compressed with the j-th bitrate (j = 1 is the highest bitrate). The pairs shown with dashed gray arrows are the pairs (shown in Figure 5.3.(a)) compared for the standard pairwise comparisons, as described in Section 5.2.1. To avoid cluttering, the comparisons between color spaces are not shown in subfigure (a). . . . . . . . . . . . . . . . . . . 5.6 JOD SameContent vs. MOS. JOD SameContent is found using a combination of standard PC experiment (shown as in Figure 5.3.(a)) and additional same-content pairs as shown in Figure 5.5.(b). Solid red line indicates the best linear fit to the data, and the dashed violet line indicates the best linear fit line of the case 'All Together'. . . . . . . . . . . . . . . . . . . . . . . . . 5.7 JOD CrossContent vs. MOS. Instead of only same-content pairs, a combination of same-content (shown as in Figure 5.3.(a)) and cross-content pairs were used to find JOD CrossContent . Solid red line indicates the best linear fit to the data, and the dashed violet line indicates the best linear fit line of the case 'All Together'. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A.1 Test patterns created for LED measurements for three different cases using (a) only one LED, (b) a collection of LEDs that covers 30% of the display area, and (c) all the LEDs of the backlight layer. LCD values for these test patterns were set to 255 in order to ensure that all of the backlight passes the LCD layer. Estimated luminance values (presented in (d)-(f)) were normalized for representation. The emitted luminance values were measured at the center of the display for each case. . . . . . . . . . . . . . . . . . . . A.2 Plots of the measured luminance with respect to the LED value for the case of (a) only one LED and (b) multiple LEDs. The plots show a linear (or close to piecewise linear in the case of all LEDs) relationship between the LED values and the emitted luminance. Since the scale of luminance values are not comparable in the case of only one LED and multiple LEDs, they are presented in different sub-figures. . . . . . . . . . . . . . . . . . . . . . . A.3 Plots for the computation of display gamma. (a) The relationship between V in and V out for each color channel. The plots show that each color channel has different γ values. (b) Plot of input luma and output luma after gamma correction. (c) Deviation of V corrected out from V in for each color channel. . . . . A.4 Figures of a measurement test where (a) only the bottom-most LEDs were selected. The (b) luminance of the selected LEDs were measured following the solid-red and dashed-green lines. (c) The measured luminance values for the solid-red cross-section are in agreement with the estimated luminance values, and it shows that the estimation of the developed algorithm is accurate. However, (d) the measured luminance values for the dashed-green cross-section reveals a strange phenomenon. The luminance values increase as we move away from the light source and get closer to the edge. . . . . . . 144 A.5 Figures of a measurement test where (a) only the left-most LEDs are selected. The (b) luminance of the selected LEDs were measured following the solidred line. (c) The measured luminance values for the solid-red cross-section show that the edges of the display has more light compared to the center part.145 B.1 Étapes de l'algorithme de rendu d'image HDR pour l'image HDR Market3 151 B.2 Résultats de validation expérimentale pour l'image "AirBellowsGap". . . . . 153 B.3 Notes moyennes d'opinion par différents rendus pour les contenus testés. Les points indiquent les valeurs MOS et les barres indiquent les intervalles de confiance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 B.4 Le processus de recherche des vidéos de distance 1 JND pour la séquence vidéo Balloon. Les valeurs de QP correspondantes sont trouvées, où seulement 50% des participants ont pu voir la différence entre les vidéos. Les valeurs zéro et un sur l'axe vertical indiquent que la différence peut être observée par aucun ou tous les observateurs, respectivement. . . . . . . . . . . . . . . 157 B.5 Les scores d'image obtenus en rééchelonnant les préférences en fonction des distances de qualité relative (en unités JOD) pour les trois espaces colorimétriques testés. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 B.6 Les résultats obtenus en comparant toutes les scènes pour les trois espaces couleurs en utilisant la métrique HDR-VQM. Tous les scores sont normalisés, où 1 signifie une qualité parfaite et des scores plus faibles représentent une diminution de la qualité. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 B.7 Les résultats obtenus en comparant toutes les scènes pour les trois espaces couleurs en utilisant la métrique ∆E 2000 . Plus ∆E 2000 scores représentent une augmentation de la différence de couleur. Les scores faibles correpondent à des stimuli proches de la vidéo originale. . . . . . . . . . . . . . . . . . . . 160 B.8 Diagrammes des scores MOS par rapport aux scores objectifs de qualité pour le HDR-VQM avant et après l'alignement INLSA. Afin de comparer quantitativement le diagramme de dispersion, l'erreur quadratique moyenne (RMSE -root mean squared error) des données est rapportée pour chaque cas.163 B.9 Résultats de l'analyse statistique pour les indices de corrélation des données combinées selon la Recommandation ITU-T P.1401 [ITU12c]. Par exemple, il n'y a pas de différence statistiquement significative entre HDR-VQM, PU-VIF, PU-VIF, PU-IFC et Log-IFC en termes de PCC, SROCC, OR et RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.10 Résultats de l'analyse statistique pour les indices de corrélation pour les données combinées à l'exclusion de DB #2 selon la Recommandation ITU-T P.1401 [ITU12c]. Il y a une différence statistiquement significative entre le HDR-VQM et toutes les autres mesures considérées en termes de PCC, SROCC et RMSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B.11 Cartes d'équivalence pour la base de données combinées (triées). Les entrées blanches correspondent à S(I i ) ∼ = S(I j ), noir à S(I i ) S(I j ). . . . . . . . . B.12 Résultats de l'analyse statistique pour l'analyse de la discriminabilité, selon la procédure décrite dans Krasula et al. [KFLCK16]. Les barres signifient l'équivalence statistique entre les métriques de qualité si elles ont la même barre alignée avec deux métriques de qualité. On peut dire que parmi les PU-UQI, Log-UQI et Photometric-UQI, il n'y a pas de différence statistiquement significative. Attendu qu'il existe une différence statistiquement significative entre le HDR-VQM et toutes les autres mesures considérées. . . . . . . . . . B.13 Designs d'expérience pour deux expériences supplémentaires. Les paires supplémentaires sélectionnées sont affichées avec des flèches noires, où Reference i est la référence (original) pour le contenu vidéo i, BR i j est le contenu vidéo i compressé avec le j-ième bitrate (j = 1 est le bitrate le plus élevé). Les paires illustrées par des flèches grises en pointillés sont les paires comparées pour les comparaisons par paires standard, comme décrit dans la section 5.2.1. Pour éviter l'encombrement, les comparaisons entre les espaces colorimétriques ne sont pas affichées dans la sous-figure (a). . . . . . . . . . . . . . . . . . . . .

  alternative forced choice). The comparison methods are called pairwise comparisons (PC) methods when there are only two stimuli compared at a time. Comparison methods are more suitable to the cases where the visual difference between two stimuli is small. Although they are generally used to understand the preference between two processing methods, they are also used for other purposes such as finding JND points [LJH + 15, JLH+ 16] or estimation of quality scores [Thu27, BT52, LDSE11] (PC scaling is further discussed in Section 5.1).

(

  Commission Internationale de l' Éclairage -CIE) developed CIE1976 (∆E * ab ) [CIE86] color difference metric which finds the Euclidean distance between two colors using L * a * b * color space. It assumes that L * a * b * color space is perceptually uniform, where the unity Euclidean distance would correspond to the same amount of perceptual difference. In order to address the nonlinearity of L * a * b * color space, this metric was improved with the developments of CIE94 (∆E 94 ) [CIE95] and CIE DeltaE 2000 (∆E 00 ) [LCR01].
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  At the time of writing this thesis, only three objective HDR quality assessment metrics exist: DRIM[START_REF] Aydin | Dynamic range independent image quality assessment[END_REF], HDR-VDP[START_REF] Mantiuk | Predicting visible differences in high dynamic range images: Model and its calibration[END_REF][START_REF] Narwaria | HDR-VDP-2.2: A calibrated method for objective quality prediction of high-dynamic range and standard images[END_REF], and HDR-VQM[START_REF] Narwaria | HDR-VQM: An objective quality measure for high dynamic range video[END_REF].Being the first quality metric designed for HDR content, HDR-VDP was developed by extending Visible Differences Predictor (VDP)[START_REF] Daly | The visible differences predictor: An algorithm for the assessment of image fidelity[END_REF]. In this extension, HDR-VDP simulated the human eye for light scattering and modified the amplitude nonlinearity and contrast sensitivity function (CSF) in order to accommodate the luminance range of HDR. The HDR-VDP metric was further extended by Mantiuk et al.[START_REF] Mantiuk | HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions[END_REF] to include luminance masking, multi-scale decomposition, and quality score estimation. Moreover, the pooling weights for quality prediction step was recalculated by Narwaria et al.[START_REF] Narwaria | HDR-VDP-2.2: A calibrated method for objective quality prediction of high-dynamic range and standard images[END_REF] using both SDR and HDR images with subjective scores, making the metric more accurate for HDR image quality estimation.Dynamic range independent image quality assessment metric (DRIM)[START_REF] Aydin | Dynamic range independent image quality assessment[END_REF] detects three types of changes in the structure of the image: loss of visible contrast, amplification of invisible contrast, and reversal of visible contrast. In order to find these changes, DRIM first determines whether the structure (or the contrast) is visible. This is done using the HDR-VDP's contrast detection model which yields a perceptually normalized map. This map is then split into several bands of different orientation and spatial bandwidth. Then a distortion map is generated after pooling of results from several subbands. Although this metric is able to detect the structural changes and is useful for qualitative analysis of the methods, it does not have a pooling mechanism to create a single quality score for the test image. Therefore, its use in quality prediction is rather limited. HDR-VQM[START_REF] Narwaria | HDR-VQM: An objective quality measure for high dynamic range video[END_REF] quality metric was designed specifically for HDR video. It estimates HDR video quality in a number of steps. First, the emitted luminance values are found or simulated, and perceived luminance values are found after PU encoding. The frames are then filtered using log-Gabor filters, and subband errors are calculated. The quality score is predicted after the error-pooling step which includes pooling of subband error for each short-term spatio-temporal tubes followed by a spatial and long-term temporal pooling.These metrics were evaluated in several studies for compressed HDR images [AMR + 15, HBP + 15] and videos[START_REF] Řeřábek | Subjective and objective evaluation of HDR video compression[END_REF][START_REF] Hanhart | Subjective and objective evaluation of HDR video coding technologies[END_REF]. However, these evaluation studies use data sets which are limited either in size or types of distortions. In addition to these studies, results of an extensive evaluation of objective quality methods are presented in Chapter 4.
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 33 HDR display technology has considerably evolved in the last decade. HDR displays are now capable of reproducing much greater and much smaller luminance values, and thus, they have a higher peak luminance and high contrast compared to SDR displays. These conditions may introduce their own distortions compared to the case of SDR where the electro-optical transfer function (EOTF) is standard and the backlight is simple and uniform. Therefore, these augmented viewing conditions are needed to be considered for HDR image and video quality assessment. In our studies, we use a SIM2 HDR47E S 4K display. It is necessary to understand how the SIM2 display works and which parameters affect display rendering in order to analyze the viewing conditions and their effects on the quality assessment. For objective quality assessment of HDR content, numerous studies try to take into account these new conditions [MDMS05, NMDSLC15, NDSLC15, AMMS08] some of which are evaluated in Chapter 4. Some other works [AMS08, VDSLD14] try to adapt the HDR image pixel values by encoding them as perceptually uniform in order to use existing SDR objective quality metrics for HDR content. These new conditions are also taken into consideration for the subjective quality assessment of HDR images. Even though some studies address the effect of rendering algorithms [KMBF13, MBK + 13], most of the subjective studies focus on specific parameters, mostly the increased brightness and contrast. In their work [HKE + 15], Hanhart et al. showed that human observers prefer images displayed at high brightness levels to images visualized at low brightness levels, a result that was previously observed also by Akyuz et al. [AFR + 07]. A similar observation was made by Mantel et al. [MKF + 15] and Rempel et al. [RHLM09] in their study where they found that the preferred peak luminance increases with the increase in ambient light. This brings forth the thought that the quality experienced by humans viewing images on an HDR display may differ due to rendering differences [AMS08, MBK + 13]. In this chapter, we try to find out how the HDR display rendering affects both the objective quality estimation and subjective HDR quality perception. The accurate estimation of the luminance values emitted from the display is also crucial to understand and analyze objective quality assessment algorithms. HDR image and video quality algorithms HDR-VDP and HDR-VQM [MDMS05, NMDSLC15, NDSLC15] need luminance values for calculation. These luminance values can be acquired in two ways: a measurement of the display luminance can be made, or a simulation can be made to estimate the luminance values of the display. Simulation (or estimation) of the emitted luminance values is also necessary to design new objective quality metrics or to use existing SDR quality metrics for HDR content. In order to simulate luminance values, it is necessary to know the relationship between the pixel values of the input HDR file and the emitted luminance values for the display's rendering.

  generation of high peak brightness values and keeping black levels very low with the help of local dimming [SHS + 04]. But, both LED and LCD pixel values have to be computed in order to reproduce an HDR frame within this framework. Given an HDR picture, the problem of estimating the corresponding LED/LCD panel values is known as dual modulation [SHS + 04, NDSLC16a].Due to the current technical limitations of HDR displays, dual modulation requires a global optimization approach, since the overall rendering of an HDR picture may change due to perturbations in the value of a single LED and can be influenced by the rendering of the previous video frames[START_REF] Zerman | A dual modulation algorithm for accurate reproduction of high dynamic range video[END_REF]. In practice, many dual modulation algorithms relax this globality constraint and act locally, trading reproduction accuracy for computational complexity. For example, the rendering algorithms built into HDR displays generally give up peak brightness and dynamic range in order to render HDR video in real time, at high frame rates (e.g. built-in display rendering of SIM2 HDR47 display[START_REF] Zerman | A dual modulation algorithm for accurate reproduction of high dynamic range video[END_REF]). Indeed, built-in rendering is often a common choice in many applications, e.g., it has been used in the subjective evaluation of HDR compression performance [KHR + 15, LSH + 17], tone-mapping studies[START_REF] Narwaria | Tone mappingbased high-dynamic-range image compression: Study of optimization criterion and perceptual quality[END_REF][START_REF] Narwaria | Impact of tone mapping in high dynamic range image compression[END_REF], and color studies [MSL + 16, ZHV+ 17]. Nevertheless, in some psycho-visual experiments, it could be desirable to reproduce the luminance levels stored in the HDR content as accurately as possible, or at least to know the actual per pixel luminance emitted by the display with a sufficient precision. The accurate reproduction and estimation of luminance values, both for HDR images and videos, constitute the goal and the contribution of the work presented in this section.

  (a) Layers of SIM2 display (b) Point Spread Function
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 21 Figure 2.1 -SIM2 HDR display has (a) three layers: LED array constituting the backlight layer, light diffuser layer, and the LCD panel. Light diffuser layer is necessary to avoid discontinuities on the final image, and it introduces (b) a point spread function (PSF).
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 33 several dual-modulation algorithms for LED/LCD displays are proposed in the literature [FKM00, LT08, CK09, BNK + 12, BNK + 13, KMBF13, BMN + 14, CCLS15]. Most of these works solve the dual modulation problem using some kind of approximation, e.g., they find LED backlight illumination by taking the maximum, average, or weighted average of pixel values [FKM00, BNK + 12], or use local block-based approaches [LT08, CK09]. LCD values are generally obtained after the computation of the LED values, by dividing the HDR image luminance by the backlight. Dual modulation can be formulated more rigorously as an optimization problem [BNK + 13, KMBF13, CCLS15]. However, these approaches have been mainly targeting low-resolution backlight panels, with tens of LEDs, in the context of low-consumption, locally dimmed LCD displays. A larger LED setup has been considered by Seetzen et al. [SHS + 04], who use a local approximation of the gradient with a single Gauss-Seidel iteration to solve for 760 LEDs and 1280 × 1024 LCD pixels in their prototype HDR display. Current HDR technology, instead, requires dealing with thousands of LEDs, as well as with their large point spread function.The rendering process on an HDR display with LED-LCD system is essentially a deconvolution problem, i.e., finding the values of the LEDs and of the LCD pixels in such a way to minimize the distance from a target input image. In this process, a critical factor is the asymmetry in the resolution of the LED and LCD panels -the number of pixels in the LCD panel is much greater than the number of LEDs, and the point spread function (PSF) of the LED diffuser has a size of approximately 1000 × 1000 pixels, which is necessary to avoid discontinuities in the LCD illumination. Additionally, there are other aspects such as the LCD leakage [BNK + 13] and power constraint. Due to their non-ideal response, LCD cells allow a small percentage of incoming light to pass through them even when they are completely closed (black), and this phenomenon is called leakage. Power constraint, on the other hand, requires that the overall brightness should be modulated to account for the maximal power consumption of the display. In practice, this causes some very bright regions of the image to be clipped, causing detail loss [BNK+ 13].

  (a) HDR Image (Tonemapped using [MDK08] for representation) (b) BLtarget -Target backlight (c) LED0 -LED Array initialized by sampling target backlight (d) S0 -Scale for the first iteration (e) BL2 -Backlight found in second iteration (f) LED f inal -LED array found (g) BL f inal -Backlight found (h) LCD pixel values
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 22 Figure 2.2 -Steps of the HDR image rendering algorithm for the HDR image Market3

5 )

 5 LED t is then clipped to take values in [0, 1], i.e., it is projected onto the set of feasible LED values at each iteration. After the LED values are found, backlight values are also found using the Equation 2.3. The operations in Equations 2.3 and 2.5 are carried out consecutively by increasing the iteration number until ||P U (BL t ) -P U (BL t-1 )|| 2 falls below a threshold. Taking perceptually uniform (PU) [AMS08] encoded backlight makes the computation of the cost function perceptually meaningful and speeds up convergence. When the iterative scaling converges, the resulting LED f inal values are possibly further scaled linearly to meet the power constraints of the display. Examples of a scale map, backlight of the second iteration, final LED array, and final backlight -BL f inal -can be seen in Figure 2.2.(d)-(g).
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 2324 Figure 2.3 -Examples of tonemapped HDR images, LED values, backlights, and LCD values of HDR images (top to bottom) "AirBellowsGap","DevilsBathtub", "MasonLake(1)", "LasVegasStore"

  (a) Measurement of linear brightness response and peak brightness. (b) Measurement of black level and local contrast.
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 25 Figure 2.5 -The test patterns for (a) brightness response and (b) local contrast, and the resulting (c) Comparison of peak brightness, (d) black level luminance, and (d) local contrast of the built-in rendering mode and the proposed rendering mode.
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 2 5(a) was generated, for values of luminance levels of the white box ranging from 1 to 4000 cd/m 2 . Figure 2.5(c) shows the value of luminance in cd/m 2 measured in correspondence of the cross in Figure 2.5(a), as a function of the target input luminance at the same spot. The black solid line indicates the ideal case of a perfectly linear response,

Figure 2 .

 2 5(d) shows the measured luminance of the center black surface versus the measured luminance of the white box. Both measurements were made at the spots shown in Figure2.5(b). The plot

  saturation_value = 2^13 -1; stackExp = ReadRAWStackInfo(<folder_name>, 'CR2'); stack = ReadRAWStack(<folder_name>, 'CR2', saturation_value); [img, ~] = BuildHDR(stack, stackExp, 'linear', [], 'Deb97'); Using the captured raw images and their exposure times, BuildHDR function generates an HDR image. Captured with different exposure times, the images (which are already 'linear') are merged into a single HDR image file by taking a weighted sum of the images using 'Deb97' [DM97] weight function. These newly created HDR images were registered and aligned to the 1920 × 1080 resolution. This operation was done for both the built-in rendering method and the proposed algorithm. At the same time, the luminance values on the 4 different spots of the image were measured using a Konica Minolta LS-100. CreatedHDR images were then adjusted using these luminance measurements.The resulting HDR images had the pixel-wise luminance values, and these images were used to measure the luminance values of the two rendering methods compared. With the help of this measurement, we were also able to understand the relationship between the
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 26 Figure 2.6 -Plots of measured luminance vs. expected luminance
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 27 The plots show that the estimated luminance values are in a linear relationship with the measured luminance, and the estimated luminance values are very close to 45 • line. Pearson Correlation Coefficient (PCC) and Root Mean Squared Error (RMSE) indices were also computed to have the quantitative results as in the Fidelity of reproduction part above. The results are presented in Table
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 27 Figure 2.7 -Plots of measured luminance vs. estimated luminance. These results are presented only for the proposed rendering.
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 28 Figure 2.8 -Standard deviation change with respect to frame number for (a) "FireEater2" and (b) "Market3" sequences

Figure 2 .

 2 Figure 2.9 -Mean Opinion Scores by different renderings for the tested contents. Points indicate MOS values and bars indicate confidence intervals.

  (a) Original HDR values (b) The proposed rendering (c) Stimulus no.8, HDR values (d) Stimulus no.8, The proposed rendering

Figure 2 .

 2 Figure 2.10 -A detail of the "AirBellowsGap" content showing clipping effects on small and very bright regions. Stimulus number 8 corresponds to JPEG compression with a quality factor of 90. The subfigures show (a) the original and (c) the compressed HDR values as stored in the HDR file, as well as (b) the proposed rendering of the original and (d) the proposed rendering of the compressed HDR image. Here the clipping artifacts overcome compression artifacts, i.e., the latter become invisible and thus the MOS of this stimulus is significantly higher with the proposed rendering. Images are tone-mapped for visualization purposes.
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 2 Figure 2.11 -Multiple comparison results for MOS of subjective experiments with different renderings. Each of the 50 rows/columns in each matrix corresponds to a pair of MOS values. For convenience, stimuli are grouped according to their adjectives, as found in the test material selection procedure [VDSLD14].
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 2 Figure 2.12 -SROCC with 95% confidence intervals for three scenarios: i) displayed luminance computed with the linear model and MOS values collected with the built-in rendering mode [VDSLD14]; ii) displayed luminance computed with the linear model and MOS values collected with the proposed display rendering algorithm; iii) displayed luminance estimated by the proposed display rendering and MOS values collected with the proposed display rendering algorithm.
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 31 Figure 3.1 -Visualization for the subjective experiment for stimuli selection

  that the dynamic range (DR), image key (IK), spatial (SI) and temporal (TI) perceptual information measures and image content vary and are evenly distributed across the data set, see Figure 3.3. These features are briefly summarized below: • Dynamic Range: Simply DR = log 10 (Lum max /Lum min ), where Lum max and Lum min is the maximum and minimum luminance values of the HDR image. • Image Key: Indicates the brightness of the image, Key = log Lumavg-log Lum min log Lummax-log Lum min where the log Lum avg is calculated as log Lum avg = mean(log Lum), and Lum is the luminance of the HDR image.
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 32 Figure 3.2 -Starting frames of the 7 HDR video sequences used in the preliminary experiment. The Balloon, Market and Tibul sequences were proposed in MPEG by Technicolor and CableLabs [TF15]; the Bistro and Showgirl sequences are from the Stuttgart HDR Video Database [FGE + 14]; and Hurdle and Starting sequences are from EBU Zurich Athletics 2014 (https://tech.ebu.ch/testsequences/zurich). The images were tonemapped [MDK08] for representation. Showgirl and Tibul scenes were not used in the main study.
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 33 Figure 3.3 -Image statistics for selected scenes. The values were sorted for better representation.

  in ITU-R Recommendation BT.709, all of these sequences were processed in BT.709 color gamut. Several of these sequences (including Balloon, Hurdles, Market, Starting, and Tibul ) were directly acquired from MPEG files, and their pixel values were already in the BT.709 color gamut. Two other sequences, Bistro and Showgirl, were acquired from Stuttgart HDR Video Database [FGE+ 14] in ALEXA-Wide-Gamut OpenEXR format. Their pixel values were clipped to fall within BT.709 color gamut. Normally, such a clipping operation is expected to create strong artifacts such as banding or saturation. However, no visible artifacts were observed both on the undistorted reference and on the compressed videos since most of these clipped pixels are in the dark regions and mostly camera acquisition noise.Test sequences were generated using the following chain of operations: First, the RGB HDR frames were encoded using PQ EOTF and then transformed to Y'CbCr color space.After 4:2:0 chroma subsampling, Y'CbCr frames were encoded using HEVC Main-10 profile with HM 16.5[START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF][START_REF] Bossen | HM software manual[END_REF]. The encoded bit streams were then decoded and both the color transformation and EOTF encoding were inverted. The resulting frames were stored in an AVI file as uncompressed video frames. After JND was found for that level, the set of videos for the next level with different QPs were generated, as described in the Experiment Design part above.The experiments were conducted in a dark, quiet room, with the luminance of the screen when turned off at 0.03 cd/m 2 . The stimuli were presented on a calibrated HDR SIM2 HDR47E S 4K 47" display with 1920 × 1080 pixel resolution, peak brightness of 4250 cd/m 2 , used in its native built-in rendering mode. The distance from the screen was fixed to three heights of the display (i.e. approximately 180 cms), with the observers' eyes positioned zero degrees horizontally and vertically from the center of the display[START_REF] Itu-R | Subjective assessment methods for image quality in high-definition television[END_REF].The framework was developed in MATLAB R2014b and run on a Dell T5500 computer with Intel Xeon X5680 processor at 3.33GHz, 24GB RAM and NVIDIA Quadro FX 580 graphics card. Due to the immense content size, we stored all the test materials on an SSD hard drive for faster content loading and seamless display.
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 35 Figure 3.5 -The process of finding 1 JND distance videos for Balloon video sequence. The corresponding QP values are found where only 50% of the participants could see the difference between the videos. The values zero and one on the y-axis indicates that the difference can be observed by none or all of the observers, respectively.
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 36 Figure 3.6 -Incomplete pairwise comparisons experiment design used for the main color space subjective experiment. Solid black lines indicate the comparisons made within the same color space, and dashed red lines indicate the comparison accross color spaces for the same bitrate.

  scenes, these sequences were discarded in this experiment. Showgirl scene has the face of a showgirl which is the only salient part, and because of that, other parts of the video become not important for the users. Moreover, the face starts on the mirror and changes location during the sequence. This rapid change in the speed of the face makes it harder for viewers to understand the quality. Additionally, in this scene, the salient region is close to the display boundary. As mentioned in the Annex A.3, the boundary effect present in the built-in rendering heavily affects the user votes due to the brighter boundary regions. Tibul scene also suffers from similar problems. The salient region change quickly due to the movement of the ship. It also has the same boundary problem as Showgirl, and Tibul looks unnatural due to its lighting and color scheme. The test sequence generation was done similar to the description made in Selected Materials part in Section 3.1.1. RGB videos were either transformed to Y'CbCr after PQ EOTF encoding, to ITP, or to Ypu'v'. After 4:2:0 chroma subsampling, converted frames were encoded using HEVC Main-10 profile with HM 16.5 [SOHW12, BFSS17]. The encoded bit streams were then decoded, and color transformation and EOTF encoding were inverted.
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 37 Figure 3.7 -Image scores obtained by scaling preferences to relative quality distances (in JOD units) for the three tested color spaces.
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 38 Figure 3.8 -An example of the difference in compression performance between the Y'CbCr and Ypu'v' color spaces, both compressed at BR 2 level. The color spaces affect the artifacts differently in the (b) bottom-left (patch #1) corner of the scene and in the (c) top (patch #2) part of the scene.
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 39 Figure 3.9 -Difference between test conditions after significance test on JODs. Only the conditions at the same bit rate are reported. Entries named as PQ refer to the color transformation with PQ and Y'CbCr. Black entries at position (i, j) indicate that stimulus i has been found to be significantly better than stimulus j, at 95% confidence. Similar results are obtained by performing a pairwise binomial test on raw (unscaled) data.
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 310 Figure 3.10 -Difference between test conditions after the binomial test on the raw (unscaled) experimental data. Only the conditions at the same bit rate are reported. Entries named as PQ refer to the color transformation with PQ and Y'CbCr. Colored entries at position (i, j) indicate that the p-value of the test is lower than 5%. Intensity values indicate the probability of stimulus i being significantly better than stimulus j.
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 311 Figure 3.11 -The results obtained by comparing all the scenes for the three color spaces using the HDR-VQM metric. All scores are normalized, where 1 means perfect quality and lower scores represent a decrease in quality.

Figure 3 . 12 -

 312 Figure3.12 -The results obtained by comparing all the scenes for the three color spaces using the ∆E 2000 metric. Higher ∆E 2000 scores represent an increase in the color difference, and stimuli more similar to the original video yield lower scores.

  HDR visual quality [NdSLC + 16b]. The visibility of the artifacts are increased with the increased luminance and widened color range of HDR. On the other hand, this increase in brightness also alters where viewers focus and their attention patterns compared to the case of SDR[START_REF] Narwaria | Tone mapping based HDR compression: Does it affect visual experience?[END_REF]. Additionally, increased brightness augments the effect of color distortions within the overall perception of quality[START_REF]Color Appearance Models[END_REF]. HDR quality is affected by all these factors. Although they are time-consuming, expensive to design, and need expertise, the most accurate methods of assessing HDR quality are subjective quality assessment experiments. In addition, special equipment such as HDR displays and light meters are required in the case of HDR. All of these limitations and the growing interest in HDR led to increasing research for the design and fine-tune of full-reference HDR quality metrics in the past few years [MKRH11, NDSLC15, NMDSLC15, AMS08, NLCV+ 16].As discussed in detail in Section 1.4.2, two of the full-reference quality metrics developed exclusively for HDR images and videos, HDR-VDP[START_REF] Mantiuk | HDR-VDP-2: A calibrated visual metric for visibility and quality predictions in all luminance conditions[END_REF] and HDR-VQM[START_REF] Narwaria | HDR-VQM: An objective quality measure for high dynamic range video[END_REF] respectively, model the human visual system and estimate the visual quality according to the HVS model. The early stages of the HVS such as intra-ocular scattering, luminance masking, and achromatic response of the photoreceptors are accurately modeled by HDR-VDP. HDR-VQM also models the HVS by considering the average fixation duration of the human eye during the calculation of spatio-temporal errors and humans assess the videos by making "continuous assessments of the impact of short term errors" during the pooling step of its own quality estimation.

  perceptual linearization are compared against the mean opinion scores (MOS) of the subjects in several subjective studies for compression scenarios [VDSLD14, HBP + 15, NDSLCP13, NDSLCP12]. The purpose of these studies is to show the performance of the considered objective quality metrics; however, the results and the conclusions of these studies differ from each other. For instance, the correlation values of PU-SSIM, i.e., SSIM metric applied after the PU encoding of[START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF], differ substantially between the study of Narwaria et al.[START_REF] Narwaria | HDR-VDP-2.2: A calibrated method for objective quality prediction of high-dynamic range and standard images[END_REF] and that of Valenzise et al. [VDSLD14]. This difference can be explained by considering the two studies using different sets of stimuli. While 50 subjectively annotated HDR images compressed using JPEG, JPEG 2000 and JPEG-XT encoders are used in [VDSLD14], Narwaria et al. [NMDSLC15] used a larger set using a number of subjectively annotated databases with different experimental conditions which have different distortions. Apart from these, Hanhart et al. [HBP + 15] evaluate objective quality metrics on HDR images with a single distortion: compression with JPEG-XT encoder. Even though all of these studies have their strengths and advantages, it is very hard to draw a simple and clear conclusion for the considered objective quality metrics' performance.

Database # 2 -

 2 Narwaria et al. (2014) [START_REF] Narwaria | Impact of tone mapping in high dynamic range image compression[END_REF] In another work, Narwaria et al.[START_REF] Narwaria | Impact of tone mapping in high dynamic range image compression[END_REF] subjectively assess the effect of using different TMOs on HDR image compression. The test material includes 6 original scenes, both indoor and outdoor, from which a total of 210 test images were created using JPEG 2000 image compression algorithm after the application of several TMOs, including Ashikmin[START_REF] Ashikhmin | A tone mapping algorithm for high contrast images[END_REF], both local and global versions of Reinhard[START_REF] Reinhard | Photographic tone reproduction for digital images[END_REF], Durand[START_REF] Durand | Fast bilateral filtering for the display of high-dynamicrange images[END_REF], and logarithmic TMO. The experiment setup was the same as in[START_REF] Narwaria | Tone mappingbased high-dynamic-range image compression: Study of optimization criterion and perceptual quality[END_REF] Database #1 described above. The subjective test is conducted with 29 observers using ACR-HR methodology.

4 .

 4 Evaluation of FR HDR Image Quality Metrics the distorted one. This subjective database was used in the work of Artusi et al. [AMR + 15]. In this work, an objective evaluation of JPEG-XT compressed HDR images was carried out. The results show that SDR metrics such as PSNR, SSIM, and multi-scale SSIM (MSSIM) give high correlation scores when they are used with the PU encoding of [AMS08], while the overall best correlated quality metric is HDR-VDP-2. Database #4 -Valenzise et al. (2014) [VDSLD14]

Figure 4 . 1 -

 41 Figure 4.1 -Original contents for the new proposed image database described in Section 4.1, rendered using the TMO in [MDK08].

  During the training phase of subjective experiments, the subjects are generally instructed to use the whole range of grades (or distortions) in the scale while evaluating. However, the quality of the test material for different experiments may not be the same when they are compared to each other. The viewers may not share the same understanding and expectations of image or video quality. Hence, the MOS values generally do not show the absolute quality of the stimuli. In Figure 4.2, we observe the MOS distribution for non-aligned databases as a function of the HDR-VQM metric. Due to the characteristics of the experiments and the test material of each database, a similar level of impairment in the subjective scale may correspond to very different values of the objective metrics. Therefore, in order to use the MOS values of different subjective databases in a consistent way, these need to be mapped onto a common quality scale. In order to align the MOS values of all five HDR image databases, we use the iterated nested least square algorithm (INLSA) proposed in [PW03b] 1 . INLSA aligns the subjective quality values collected in different subjective experiments using some common external variables. These external variables are chosen as the objective quality metrics' estimations for the case of multimedia quality.
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 42 Figure 4.2 -MOS vs HDR-VQM scores before INLSA alignment.

2. 2 ,

 2 HDR-VQM, PU-IFC, PU-UQI, and PU-VIF (the calculation of PU-metrics will be explained in detail in Section 4.3.1). The linear behavior of the metric results is clear from the plots of subjective quality vs objective quality from Figure 4.3.
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 43 Figure 4.3 -Plots of MOS vs objective quality scores for the selected objective metrics selected showing the linearity of the metric estimations

Figure 4 . 4 -

 44 Figure 4.4 -Plots of MOS vs objective quality scores for HDR-VQM and PU-VIF before and after INLSA alignment. In order to compare the scatter plot quantitatively, the root mean squared error (RMSE) of the data is reported for each case.

2 [

 2 [START_REF] Narwaria | HDR-VDP-2.2: A calibrated method for objective quality prediction of high-dynamic range and standard images[END_REF], HDR-VQM[START_REF] Narwaria | HDR-VQM: An objective quality measure for high dynamic range video[END_REF], additional full-reference metrics recently proposed for HDR video such as mPSNR, tPSNR, CIE ∆E 2000[START_REF] Tourapis | HDRTools: Software updates[END_REF], and spatial extension of CIE ∆E 2000[START_REF] Zhang | A spatial extension of CIELAB for digital colorimage reproduction[END_REF] 

  Among the objective metric results in PU domain, PU-MSSIM and PU-SSIM display high correlation coefficients, while PU-MSE is again the worst performer. Comparing the three transfer functions, PU is the most effective, as PU-MSSIM and PU-SSIM achieve performance very close to HDR-VDP-2.2 Q and HDR-VQM. In general, metrics which are based on MSE and PSNR (PU-MSE, Log-MSE, PU-PSNR, mPSNR, etc.) yield worse results compared to other metrics. Instead, more advanced SDR metrics such as IFC, UQI, SSIM, and MSSIM yield much better results. We also notice that mPSNR, tPSNR-YUV, and CIE ∆E 2000, which have been recently used in MPEG standardization activities, perform rather poorly in comparison to the others.We also evaluate the significance of the difference between the considered performance indices, as proposed in ITU-T Recommendation P.1401[START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF]. In this recommendation, three different tests were proposed to evaluate the significance of the difference of the correlation scores. These are the evaluation of the significance of the difference between correlation coefficients such as PCC and SROCC, evaluation of the significance of the difference between ORs, evaluation of the significance of the difference between RMSEs. The correlation scores calculated above were evaluated by these tests. The results are provided in Fig.4.5 and Fig.4.6 for "Combined" and "Except Database #2" cases respectively. The bars indicate statistical equivalence between the quality metrics. For example, there is not a statistically significant difference between HDR-VQM, PU-VIF, PU-IFC, and Log-IFC in terms of PCC, SROCC, OR, and RMSE.We observe that the performance of HDR-VQM -along with PU-VIF, PU-IFC, and Log-IFC-in the combined database is significantly different from the others while PU-VIF, PU-IFC, Log-IFC and some other metrics have essentially equivalent performance across the combined databases. Although HDR-VDP-2.2 has a lower performance on combined dataset compared to its performance on individual databases, it is among the three most correlated metrics with HDR-VQM and PU-MSSIM on the case excluding Database #2. Interestingly, the HDR-VQM metric, which was designed to predict video fidelity, gives excellent results
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 45 Figure 4.5 -Statistical analysis results for correlation indices for combined data according to ITU-T Recommendation P.1401 [ITU12c]. The bars signify statistical equivalence between the quality metrics if they have the same bar aligned with two quality metrics; e.g., there is not a statistically significant difference between HDR-VQM, PU-VIF, PU-IFC, and Log-IFC in terms of PCC, SROCC, OR, and RMSE.
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 46 Figure 4.6 -Statistical analysis results for correlation indices for combined data excludingDatabase #2 according to ITU-T Recommendation P.1401[START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF]. The bars signify statistical equivalence between the quality metrics if they have the same bar aligned with two quality metrics; e.g., There is a statistically significant difference between HDR-VQM and all the other metrics considered in terms of PCC, SROCC, and RMSE.

  has been recently proposed by Krasula et al.[START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF]. In their paper, Krasula et al. find the accuracy of an objective image or video quality metric by transforming the problem into a classification problem. For this purpose, they find z-score of subjective scores and the difference of objective scores for each pair of stimuli, and then find the accuracy of the metric by calculating classification rates. Two analysis are conducted: different vs. similar, and better vs. worse. They also propose a method to determine the statistical significance of the results.

H 1 :

 1 S(I j ) S(I j ), (4.5) (a) MOS equivalence matrix at 95% confidence level (b) HDR-VDP-2.2 Q estimated equivalence matrix (τ fixed for maximum accuracy)
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 47 Figure 4.7 -Equivalence maps for the (sorted) combined database. White entries correspond to S(I i ) ∼ = S(I j ), black to S(I i ) S(I j ).

Figure 4 . 7 .

 47 (a) shows the results of ANOVA on our combined database, thresholded at a confidence level of 95% (i.e., 5% significance). For the convenience of visualization, MOS values were sorted in ascending order before applying ANOVA. White entries represent MOS pairs which are statistically indistinguishable.
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 48 Figure 4.8 -Example of ROC curves for two objective quality metrics, with corresponding areaunder the curve (AUC). Metrics with higher AUC enable better discrimination between the two hypotheses H 0 and H 1 .

Figure 4

 4 Figure 4.9 -Statistical analysis results for the discriminability analysis, according to the procedure described in Krasula et al.[START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF]. The bars signify statistical equivalence between the quality metrics if they have the same bar aligned with two quality metrics. It can be said that among PU-UQI, Log-UQI, and Photometric-UQI, there is not any statistically significant difference. Whereas, there is a statistically significant difference between HDR-VQM and all the other metrics considered.

  As the subjective experiments are done on a small sample set of observers, MOS values are probabilistic in their nature and are known with uncertainty. The proposed method recognizes the stochastic nature of MOS values, and it evaluates the objective quality metrics' ability to detect whether images have significantly different quality. The relevance of this alternative point of view is demonstrated by the amount of efforts to go beyond classical statistical measures such as correlation in the last decade, from the seminal work of Brill et al. [BLC + 04] to the very recent work of Krasula et al. [KFLCK16], developed in parallel to our study.These analyses show that, even for metrics which can accurately predict MOS values, the rate of incorrect classifications is still quite high (20% or more).
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 51 Figure 5.1 -Illustration of the difference between just-objectionable-differences (JODs) and justnoticeable-differences (JNDs). The image affected by blur and noise may appear to be similarly degraded in comparison to the reference image (the same JOD), but they are noticeably different and therefore several JNDs apart. The mapping between JODs and JNDs can be very complex and the relation shown in this plot is just for illustrative purposes.

Figure 5 . 2 -

 52 Figure 5.2 -Comparison of two different quality score estimation methods. The results of the first experiment is used to find the preference matrix. PC scaling done by pwcmp software (a) yields a better correlation to the MOS values than the quality score estimation via counting the number of votes (b).

  subjective quality experiment results, there are several drawbacks of MOS values. The outcome of the MOS experiments strongly depends on the training procedure used to familiarize participants with the quality scale. Because of the differences in this training phase, measured scores are relative and are different for each session. The MOS values can result in different scales according to the instructor who does the training and also according to the experiment design. As it has been noticed in the Chapter 4, MOS values coming from different datasets may not be comparable with each other. While combining different datasets, an alignment step is often necessary; however, this is usually overlooked. Pairwise comparison scaling in general, and JOD scaling used here in particular, does not require training and, in principle, should give consistent results for each session. Since pairwise comparison is a much more straightforward procedure, JOD values should be comparable between different datasets.
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 53 Figure 5.3 -Compared pairs for the (a) pairwise comparisons and (b) DSIS experiments. To avoid cluttering, comparisons for DSIS experiment are shown for each color space CS k where k is the index of CS = {Y'CbCr, ITP, Ypu'v'}.
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 54 Figure 5.4 -JOD Standard vs. MOS. Solid red line indicates the best linear fit to the data, and the dashed violet line indicates the best linear fit line of the case 'All Together'.

  using bootstrapping in order to compare them to the CIs of JOD scores. The resulting JOD scores (denoted as JOD Standard to indicate that the standard pairwise comparisons methodology was used) were plotted against MOS values. The plots are shown in Figure 5.4. The results show that there is a strong relation between MOS values and JOD scores. As presented in Figure 5.4, JOD scores and MOS values show almost linear behavior for all contents. This relation was also verified with PCC and SROCC computations. Reported inTable 5.1, PCC and SROCC values show that the relation is almost perfectly linear for each video sequence.
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 55 Figure 5.5 -Experiment design for two additional experiments. Selected additional pairs are shown with black arrows, where Reference i is the reference (original) for video content i, BR i j is video content i compressed with the j-th bitrate (j = 1 is the highest bitrate). The pairs shown with dashed gray arrows are the pairs (shown in Figure 5.3.(a)) compared for the standard pairwise comparisons, as described in Section 5.2.1. To avoid cluttering, the comparisons between color spaces are not shown in subfigure (a).

  .5.(a) using the comparisons shown with solid black arrows. The obtained results were combined with the standard (same-content) pairwise comparison experiment results (shown with grey arrows in Figure 5.5) and scaled again using the same pwcmp software. The results are presented in the corresponding section below. The new JOD scores obtained from the combination of standard PC and cross-content experiment are called JOD CrossContent .
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 35657 Figure 5.6 -JOD SameContent vs. MOS. JOD SameContent is found using a combination of standard PC experiment (shown as in Figure 5.3.(a)) and additional same-content pairs as shown in Figure 5.5.(b). Solid red line indicates the best linear fit to the data, and the dashed violet line indicates the best linear fit line of the case 'All Together'.

  The linear behavior observed between the JOD Standard and MOS values holds for the cases of JOD SameContent and JOD CrossContent , as well. Furthermore, the introduction of cross-content pairs increases the correlation and linearity of the relationship between JOD and MOS. The JOD scores become more linear after the combination of same-content and cross-content pairs, as can be seen in Figure5.6.(f), Figure 5.7.(f), and in Table

1 )

 1 where d(P, l) is the perpendicular distance from point P to line l. Std p2l was computed for the best linear fit of the case 'All Together'. The best linear fit corresponds to the dashed violet line in the sub-figures (a)-(e). The results of Std p2l are reported in

  results of three different experiments and analyze the effect of the proposed cross-content comparisons. Results show that the scaling performance improves and the confidence intervals reduce when cross-content pairs are introduced. Pairwise comparisons methodology does not suffer from the quality scale difference as MOS experiments do, and JOD scores can be used as a more robust representation of subjective quality. This study serves as a preliminary study towards finding a more effective method to align datasets and develop novel hybrid methodologies where one can fuse MOS values and PC scaling results in order to have a better scale of quality scores. The results and findings of this study on the relation between MOS and pairwise comparisons was published in [ZHV + 18].

  frame rendering algorithm. The developed algorithm estimates the LED and LCD values by calculating the convolution of the LED values with the point spread function and scaling the backlight values iteratively. The experimental results show that the proposed algorithm both reproduces the intended luminance values and estimates the emitted luminance values accurately.

  We evaluated 25 objective quality metrics using five different HDR image quality databases consisting of 690 compressed HDR images in total. Due to the characteristics of the experiments and the test material of each database, the MOS values can be in different ranges, and a similar level of impairment in the subjective scale may correspond to very different values of objective metrics. The MOS values of these considered databases had the same problem (see Figure4.2), and we aligned the MOS values using INLSA algorithm prior to the computation of the objective quality metrics.

  through a custom dual modulation input provided by the user, also known as DVI Plus (or DVI+) Mode. These test patterns are shown in Figure A.1. These three test patterns let us understand i) the relationship between the LED value stated in the DVI+ header and the luminance of the LED, ii) the same relationship in the case of multiple LEDs, and iii) the relationship between the physical (i.e. power) limitations of the display and the emitted luminance. For the case (i), we used a single LED and measured its luminance for different values of the LED ∈ {5, 15, 25, . . . , 255}. The representation of the position of the selected LED and its estimated luminance are shown in Figure A.1.(a) and (d), respectively.

  The representation of the positions of the selected LEDs and their estimated luminance are shown in Figure A.1.(b) and (e), respectively. Lastly, we try to understand how the emitted luminance changes when the power consumption of LEDs exceeds the power limitation of the display hardware. For this last case, case (iii), all the LEDs of the backlight layer were set to the same value. The representation of the positions of all the LEDs and their estimated luminance are shown in Figure A.1.(c) and (f) respectively.

Figure A. 2 -

 2 Figure A.2 -Plots of the measured luminance with respect to the LED value for the case of (a) only one LED and (b) multiple LEDs. The plots show a linear (or close to piecewise linear in the case of all LEDs) relationship between the LED values and the emitted luminance. Since the scale of luminance values are not comparable in the case of only one LED and multiple LEDs, they are presented in different sub-figures.

  Figure A.3.(c). For each color channel, V corrected out deviates from V in . The plot in Figure A.3.(c) shows us that the gamma correction step is not properly handled.

  The relationship between Vin and Vout for each color channel

Figure A. 3 -

 3 Figure A.3 -Plots for the computation of display gamma. (a) The relationship between V in and V out for each color channel. The plots show that each color channel has different γ values. (b) Plot of input luma and output luma after gamma correction. (c) Deviation of V corrected out

  Figure A.5 -Figures of a measurement test where (a) only the left-most LEDs are selected. The (b) luminance of the selected LEDs were measured following the solid-red line. (c) The measured luminance values for the solid-red cross-section show that the edges of the display has more light compared to the center part.

  Figure B.1 -Étapes de l'algorithme de rendu d'image HDR pour l'image HDR Market3

. 6 )

 6 [START_REF] Kane | Subjects Prefer to View a Linear Image When Both the Image and the Display Have the Same Dynamic Range[END_REF] où I est l'image HDR, k ∈ {R, G, B} est l'indicateur de canal RGB, p ∈ {0, 1, 2, ..., 255} est la valeur du pixel LCD, et γ k,p est le facteur de correction gamma, déterminé expérimentalement comme expliqué dans l'annexe A.2.Des exemples de résultats étape par étape de l'algorithme de reproduction proposé peuvent être vus dans la figure B.1, y compris l'image de rétroéclairage cible, une carte de l'échelle, le rétroéclairage de la seconde itération, le réseau de LED final et le rétroéclairage final -BL f inal -, et les valeurs des pixels de l'écran LCD.• Estimation de la luminance émise : Connaissant les valeurs des LEDs et des pixels LCD, nous pouvons estimer la luminance émise. Les pixels de l'image HDR produits par l'écran sont le produit du rétroéclairage et des valeurs LCD. C'est-à-dire, pour chaque canal de couleur k, l'image rendue I k est :I k = (LED f inal * P SF ) × LCD k . (B.5)En supposant que l'on utilise les primaires de l'ITU-R BT.709[START_REF] Itu-R | Parameter values for the HDTV standards for the studio and for international programme exchange[END_REF], nous pouvons calculer la luminance émise comme suit :L = 0.2126 × I R + 0.7152 × I G + 0.0722 × I B ,(BUn algorithme de double modulation pour la reproduction vidéo Afin de réduire l'impact du scintillement, nous envisageons deux solutions. Tout d'abord, nous initialisons les valeurs des LED pour l'image actuelle f en utilisant celles de l'image précédente, c.-à-d. LED f 0 = LED f -1 f inal . Deuxièmement, nous lissons les rétroéclairage cible dans le temps, sur des fenêtres consécutives qui se chevauchent, comme décrit ci-dessous. Étant donné l'image f d'une vidéo, son rétroéclairage cible initial BL f target est calculé comme expliqué dans la section précédente. Ensuite, pour chaque image, nous considérons une fenêtre d'anticipation de N images, et nous arrangeons leur rétroéclairage correspondant dans une pile A f . Par la suite, nous visons à lisser la trajectoire des valeurs des pixels rétroéclairés sur la fenêtre, en adoptant une approche simple qui consiste à convolutionner chaque échantillon indépendamment par une fenêtre gaussienne et à prendre le maximum

  Figure B.2 -Résultats de validation expérimentale pour l'image "AirBellowsGap".

•Figure B. 3 -

 3 Figure B.3 -Notes moyennes d'opinion par différents rendus pour les contenus testés. Les points indiquent les valeurs MOS et les barres indiquent les intervalles de confiance.

Figure B. 5 -

 5 Figure B.5 -Les scores d'image obtenus en rééchelonnant les préférences en fonction des distances de qualité relative (en unités JOD) pour les trois espaces colorimétriques testés.

  tives pour des scénarios de compression [VDSLD14, HBP + 15, NDSLCP13, NDSLCP12].Dans le chapitre 4, nous visons à apporter plus de clarté dans ce domaine, en fournissant un benchmark étendu, fiable et cohérent des métriques de fidélité d'image HDR les plus populaires. Nous alignons les valeurs MOS de 5 bases de données et fusionnons les valeurs MOS. Cette base de données alignée se compose d'un total de 690 images HDR compressées. À notre connaissance, il s'agit du plus grand ensemble sur lequel les mesures HDR ont été testées jusqu'à présent au meilleur de nos connaissances. À l'aide de ce vaste ensemble de données, nous analysons la précision de prédiction et la discriminabilité (c.-à-d. la capacité de détecter lorsque deux images ont une qualité perçue différente) de 25 mesures de fidélité, y compris celles qui ont été testées dans le cadre de la normalisation MPEG. Pour l'analyse de la discriminabilité, nous proposons une nouvelle méthode basée sur une approche de classification.B.5.1 Les bases de données subjectives considéréesPar rapport à la disponibilité des images HDR de haute résolution et de haute qualité sans distorsion [DM04, Fai07, DM08, EMP13, pfs15], le nombre de bases de données (DBdatabase) de qualité d'image HDR subjectivement annotées et accessibles au public est très faible. Pour cette étude, nous utilisons 5 bases de données différentes. Nous avons sélectionné quatre bases de données d'évaluation de la qualité d'image HDR accessibles au public pour cette analyse. En outre, nous proposons une nouvelle base de données. Chacune de ces bases de données contient des images HDR compressées et des valeurs MOS pour ces images HDR. Les algorithmes de compression, le nombre d'observateurs, le nombre de stimuli utilisés et les méthodologies d'expérimentation sont différents, et ces paramètres sont résumés dans le tableau B.1. En plus des bases de données mentionnées, nous construisons une nouvelle base de données d'images HDR subjectives de 50 images, dans le prolongement des travaux précédents de Valenzise et al. [VDSLD14]. La nouvelle base de données comprend 5 images originales, sélectionnées de manière à être représentatives des différentes caractéristiques de l'image, y compris la gamme dynamique, la clé d'image et l'information spatiale. Les images de test sont obtenues en utilisant un schéma de codage HDR rétrocompatible [WS06], en utilisant JPEG et JPEG 2000 comme codecs SDR. Pour convertir de HDR à SDR, nous avons utilisé soit le TMO de Mai et al. [MMM + 11] soit la courbe PQ-EOTF [MND12, SMP14]. L'environnement de test et la méthodologie ont été soigneusement contrôlés pour être les mêmes que dans DB #4 (Valenzise et al. (2014)) [VDSLD14], et la méthodologie DSIS a été employée. Un panel de 15 personnes (3 femmes, 12 hommes ; âge moyen de 26,8 ans), principalement des doctorants naïfs à la technologie HDR et à la compression d'image, ont participé au test. Les deux bases de données, #4 et #5, sont alignées à l'aide d'un ensemble commun, et l'ensemble de données combiné est appelé DB #4 & 5 tout au long de la thèse. B.5.2 Alignement des valeurs MOS Dans de nombreuses expériences subjectives, on demande aux sujets d'utiliser toute la gamme des notes de l'échelle lors de l'évaluation. Toutefois, la qualité du matériel de test pour différentes expériences peut ne pas être la même lorsqu'elles sont comparées les unes aux autres. Dans la figure B.8, nous observons la distribution du MOS pour les bases de données non alignées en fonction de la métrique HDR-VQM. En raison des caractéristiques des expériences et du matériel de test de chaque base de données, un niveau similaire de détérioration d'après l'échelle subjective peut correspondre à des valeurs très différentes d'après les metriques objectives. Par conséquent, afin d'utiliser de manière cohérente les valeurs MOS de différentes bases de données subjectives, celles-ci doivent être ajustées sur une échelle de qualité commune. Afin d'aligner les valeurs MOS des cinq bases de données d'images HDR, nous utilisons l'algorithme des moindres carrés imbriqués itéré (INLSA -Iterated Nested Least Square Algorithm) proposé dans [PW03b]. L'INLSA aligne les valeurs subjectives de qualité collectées dans différentes expériences subjectives en utilisant des variables externes communes, c.-à-d. des résultats métiques objectifs. L'INLSA exige des paramètres objectifs pour l'alignement, en supposant que ceux-ci sont linéaires et suffisamment bien corrélés par rapport aux MOS. Par conséquent, nous avons analysé les paramètres considérés (décrits ci-dessous) afin de sélectionner les meilleurs candidats pour cette opération. Puisque PCC est un indice de corrélation montrant la linéarité des données et SROCC est un indice de corrélation montrant la monotonie des données, nous avons trouvé les 5 métriques qui ont la valeur la plus élevée pour le produit

Figure B. 8 -

 8 Figure B.8 -Diagrammes des scores MOS par rapport aux scores objectifs de qualité pour le HDR-VQM avant et après l'alignement INLSA. Afin de comparer quantitativement le diagramme de dispersion, l'erreur quadratique moyenne (RMSE -root mean squared error) des données est rapportée pour chaque cas.

  Pour ces catégories, le coefficient de corrélation de Pearson (PCC), l'erreur quadratique moyenne (RMSE), le coefficient de corrélation de Spearman (SROCC) et le rapport des valeurs aberrantes (OR) ont été calculés[START_REF] Itu-T | Methods, metrics and procedures for statistical evaluation, qualification and comparison of objective quality prediction models[END_REF]. Ces mesures de performance ont été calculées après une régression non linéaire effectuée sur des résultats de mesures objectives de qualité en utilisant une fonction logistique, tel que décrit dans le rapport final de VQEG FR Phase I [RLC + 00]. Cette fonction logistique est donnée dans l'équation 4.4 : Les résultats de ces indices de performance (SROCC, PCC, RMSE et OR) ont été calculés pour chaque base de données séparément, ainsi que pour l'ensemble des données et pour le cas excluant DB #2. Pour déterminer les performances des métriques, nous évaluons l'importance de la différence entre les indices de performance considérés, comme proposé dans la Recommandation ITU-T P.1401 [ITU12c]. Les résultats sont fournis dans les figures B.9 et B.10 pour les cas "Combiné" et "Sauf DB #2" respectivement. Les barres indiquent l'équivalence statistique entre les mesures de qualité.Nous observons que la performance de HDR-VQM -ainsi que PU-VIF, PU-IFC etLog-IFC-dans la base de données combinée est significativement différente des autres. De plus, nous remarquons que toutes les métriques à l'exception de CIE ∆E 00 et CIE ∆E S 00 ne prennent en compte que les valeurs de luminance. Une étude récente sur les mesures de différence de couleur[START_REF] Ortiz-Jaramillo | Evaluating color difference measures in images[END_REF] ne tient pas compte des artefacts de compression dans les expériences, car l'impact de ceux-ci sur la qualité de l'image a été jugé beaucoup plus fort que les différences de couleur. Ainsi, notre analyse confirme que les artefacts de luminance tels que le blocage, etc. jouent un rôle dominant dans la formation des jugements de qualité, y compris dans le cas HDR.

Figure B. 9 -

 9 Figure B.9 -Résultats de l'analyse statistique pour les indices de corrélation des données combinées selon la Recommandation ITU-T P.1401 [ITU12c]. Par exemple, il n'y a pas de différence statistiquement significative entre HDR-VQM, PU-VIF, PU-VIF, PU-IFC et Log-IFC en termes de PCC, SROCC, OR et RMSE.

  Figure B.11 -Cartes d'équivalence pour la base de données combinées (triées). Les entrées blanches correspondent à S(I i ) ∼ = S(I j ), noir à S(I i ) S(I j ).
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 1261 Figure B.12 -Résultats de l'analyse statistique pour l'analyse de la discriminabilité, selon la procédure décrite dans Krasula et al.[START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF]. Les barres signifient l'équivalence statistique entre les métriques de qualité si elles ont la même barre alignée avec deux métriques de qualité. On peut dire que parmi les PU-UQI, Log-UQI et Photometric-UQI, il n'y a pas de différence statistiquement significative. Attendu qu'il existe une différence statistiquement significative entre le HDR-VQM et toutes les autres mesures considérées.
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 113 Figure B.13 -Designs d'expérience pour deux expériences supplémentaires. Les paires supplémentaires sélectionnées sont affichées avec des flèches noires, où Reference i est la référence (original) pour le contenu vidéo i, BR i j est le contenu vidéo i compressé avec le j-ième bitrate (j = 1 est le bitrate le plus élevé). Les paires illustrées par des flèches grises en pointillés sont les paires comparées pour les comparaisons par paires standard, comme décrit dans la section 5.2.1. Pour éviter l'encombrement, les comparaisons entre les espaces colorimétriques ne sont pas affichées dans la sous-figure (a).

  expériences ont été menées afin d'analyser et de comprendre les effets des comparaisons croisées par paires. Toutes les variables, à l'exception de la paire de stimuli sélectionnée, sont restées les mêmes. Nous avons été motivés à mener une telle expérience de comparaison de contenu croisé après avoir observé que de telles comparaisons sont effectuées indirectement dans la méthodologie DSIS. Lorsque les téléspectateurs évaluent les séquences, ils jugent la qualité par rapport à toutes les autres séquences qu'ils ont vues, ainsi que les séquences présentant un contenu différent. Pour que les expériences supplémentaires soient courtes, nous avons jumelé des vidéos avec des contenus différents et un même débit binaire, comme le montre la figure B.13.(a) en utilisant les comparaisons montrées avec des flèches noires pleines. Les résultats obtenus ont été combinés avec les résultats de l'expérience de comparaison par paires de l'étalon (même contenu) (illustrés par des flèches grises dans la figure B.13) et rééchelonné à nouveau en utilisant le même logiciel pwcmp. Les résultats sont présentés dans la section correspondante ci-dessous. Les nouveaux scores JOD obtenus à partir de la combinaison de PC standard et de l'expérience de contenu croisé sont appelés JOD CrossContent . Afin d'établir une comparaison équitable en ce qui concerne le nombre total de comparaisons, une expérience supplémentaire sur le même contenu a également été menée. Afin de maintenir le nombre de paires supplémentaires dans une fourchette similaire, le test a consisté en un total de 90 paires (y compris les versions en miroir). Pour cela, nous avons sélectionné des paires avec des débits binaires consécutifs et des espaces de couleur identiques, comme indiqué par des flèches noires pleines dans la figure B.13.(b). Il s'agit essentiellement d'observations supplémentaires de certaines paires du test PC standard décrit dans la section précédente. Ces paires ont été comparées par 15 personnes (8 hommes et 7 femmes) avec une moyenne d'âge de 29 ans. Ces paires supplémentaires de même contenu ont de nouveau été combinées avec les résultats de l'expérience PC standard et mises à l'échelle avec le logiciel pwcmp. Les scores JOD obtenus à partir de la combinaison d'un PC standard et d'une expérience supplémentaire de même contenu sont appelés JOD SameContent . Impact des comparaisons inter-contenus Les valeurs JOD que nous utilisons ont été trouvées en utilisant trois ensembles différents de données PC. Comme décrit dans la section précédente, JOD Standard a été trouvé en utilisant les données acquises dans l'expérience PC avec le même contenu. JOD SameContent a été trouvé en utilisant la combinaison des résultats de l'expérience PC standard et des résultats de l'expérience de même contenu, et JOD CrossContent a été trouvé en utilisant la combinaison des résultats de l'expérience PC standard et des résultats de l'expérience de contenu croisé. Le comportement linéaire observé entre les valeurs JOD Standard et MOS s'applique également aux cas JOD SameContent et JOD CrossContent . De plus, l'introduction de paires de contenus croisés augmente la corrélation et la linéarité de la relation entre JOD et MOS.

Std

  p2l = mean(d(P, l) 2 ) (B.7) où d(P, l) est la distance perpendiculaire du point P à la ligne l. Std p2l a été calculée pour le meilleur ajustement linéaire du cas 'Tous ensemble'. Le meilleur ajustement linéaire correspond à la ligne violette en pointillés dans les sous-figures (a) à (e). Il est clair que l'ajout de paires de contenu croisé diminue la variance des pentes de la ligne la mieux ajustée à chaque contenu et Std p2l également, rapprochant ainsi les scores JOD sur une échelle de qualité commune. Afin d'analyser la variation de CI, les valeurs moyennes de CI sont rapportées dans le tableau B.4. Comme le CI ne change pas beaucoup par rapport à l'espace couleur, la moyenne des valeurs CI a été calculée pour le même débit binaire. La dernière colonne du table B.4 montre que les CIs diminuent pour presque tous les cas jusqu'à 60%, surtout à des débits binaires plus élevés où l'erreur de mise à l'échelle s'accumulerait plutôt dans le PC standard. Avec les comparaisons de contenu croisé, la taille de CI devient plus uniforme entre les différents niveaux de qualité. Tous les résultats indiquent que le rééchelonnement des données des comparaisons par paires donne des scores JOD fortement corrélés aux valeurs MOS acquises dans l'expérience DSIS. L'introduction de paires de contenu croisé rend JOD plus uniforme et réduit les intervalles de confiance. B.7 Conclusions et travaux futurs Dans cette thèse, nous avons abordé certaines des limites et des défis de l'évaluation de la qualité dans le contexte de l'image et de la vidéo à haute gamme dynamique. Plus précisément, le but de cette thèse était d'étudier les nouvelles conditions de la technologie d'affichage HDR et de fournir un aperçu de l'évaluation et de l'analyse de la qualité vidéo HDR. Pour ce faire, nous avons examiné trois aspects de l'évaluation de la qualité HDR. Tout d'abord, nous avons analysé les paramètres affectant l'évaluation subjective et objective de la qualité HDR afin de comprendre l'influence des nouvelles conditions introduites par la technologie HDR, et à cette fin, nous avons développé un algorithme de rendu d'image HDR. Dans cette partie, nous nous sommes concentrés sur les effets du rendu de l'affichage (liés à la luminosité et au contraste de l'affichage) et de la couleur sur l'évaluation de la qualité HDR. Deuxièmement, à partir de nos observations, nous avons évalué les méthodes objectives d'évaluation de la qualité des images HDR à l'aide d'un ensemble de données de 690 images créé en alignant les valeurs MOS de différentes bases de données, et nous avons proposé une nouvelle méthode d'analyse de la discriminabilité basée sur la classification pour l'évaluation de la performance métrique objective. Troisièmement, nous avons comparé les résultats des comparaisons par paires avec les valeurs MOS, dans l'intention de trouver une représentation commune pour aligner les ensembles de données de qualité et d'éliminer de l'étape d'alignement jusqu'alors nécessaire. De plus, nous avons proposé d'inclure des comparaisons de contenu croisé à la méthodologie des comparaisons par paires afin de réduire la variance de contenu croisé et les intervalles de confiance des résultats du rééchelonnement de PC. La commercialisation rapide de la technologie HDR/WCG et l'augmentation du volume de contenu HDR ouvrent de nouvelles perspectives pour la recherche future. Nous pensons que certains aspects de la technologie HDR/WCG nécessitent des recherches plus approfondies, et nous décrivons un certain nombre d'extensions possibles de cette thèse.

  RP (S obj ) = |f -1 f (S obj ) + ∆S -S obj |, where RP (•) is the resolving power function and f (•) is the fitting function. Thus, it is not trivial to analyze a variable function for a large number of metrics. Instead, it enables graphical comparison of the classification performance of the objective metric.

	This method is used in several other studies [PW08, Bar09, H ŘE15, NVH16] and
	standardized in ITU Recommendations [ITU04c, ITU04b]. Nevertheless, it has some
	drawbacks. It needs polynomial fitting, and fitting may not be successful in some cases.
	Also, the resolving power is defined as a function of the objective metric result itself,
	i.e.

• False Ranking, i.e. S subj,k < S subj,l and S pred,k > S pred,l or vice-versa

• Correct Decision

where k = l, the ≡ sign represents the statistical equivalence (i.e. S pred,k ≡ S pred,l if S pred,k -S pred,l < ∆S), and S pred,k is the objective quality metric prediction of MOS for data point k.

Another method for evaluating objective metric performance was proposed by Krasula et al.

[START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF]

. Similar to the method of Brill et al. [BLC + 04, ITU04b], z-scores are calculated for subjective quality scores. The statistical equivalence (or statistically significant difference) of these subjective quality scores is determined by checking whether the probability of two stimuli being different from each other is greater than 95%. This probability is calculated using the cumulative distribution function (CDF) of the normal distribution. The results indicate whether two stimuli are equivalent and which one is better if they are different. Without any fitting or preprocessing, the objective score differences are calculated. These objective metric differences are then used to find the receiver operating characteristics (ROC) for each objective quality metric. The ROC values and correct classification rates are then used to determine if an objective quality metric is better or worse than, or equal to, the other objective quality metric. In addition to the different/similar and better/worse analyses, a statistical significance method was proposed in this work.

Table 2 .

 2 1 -Correlation results for luminance measurement for expected luminance and measured luminance.

	Image	Built-in PCC RMSE	Proposed PCC RMSE
	AirBellowsGap	0.9807 311.16 0.9924	65.61
	DevilsBathtub	0.8692	96.17 0.9089	59.61
	HancockKitchenOutside 0.9400 103.88 0.9572	36.89
	MasonLake(1)	0.9159 188.41 0.9312	76.10
	PaulBunyan	0.9633 143.73 0.9703	37.83
	RedwoodSunset	0.9933 107.69 0.9936	20.83
	UpheavalDome	0.9782 142.11 0.9798	37.17

Table 2 .

 2 2 -Correlation results for luminance measurement for estimated luminance and measured luminance, using the proposed rendering method.

	Image	PCC	RMSE
	AirBellowsGap	0.9937	62.83
	DevilsBathtub	0.9089	59.61
	HancockKitchenOutside 0.9575	36.40
	MasonLake(1)	0.9312	76.10
	PaulBunyan	0.9695	38.29
	RedwoodSunset	0.9947	23.86
	UpheavalDome	0.9815	40.00

Section 2.1.3. For the latter, we considered different window sizes N = 1, 11, 21, 31, where N = 1 corresponds to frame-by-frame processing with the only difference that LEDs are initialized using previous LED values. The frame-wise standard deviations for "FireEater2" and "Market3" sequences are illustrated in Figure

2

.8. As expected, increasing the window length N reduces the standard deviation of frame difference.

Table 2

 2 

.3.

Again, TI values are dropping with increasing window length. These results show that the proposed HDR video rendering algorithm can effectively reduce the effects caused by temporal variation.

Table 2 .

 2 

	3 -TI for different video contents. (BL: Balloon, CT : ChristmassTree, FE : FireEater2,
	MK : Market3, TB : Tibul2)				
	Rendering	BL	CT	FE	MK	TB
	framewise 30.68 184.79 85.37 49.92 142.61
	N = 1	27.32 184.28 63.38 49.18 127.43
	N = 11	27.00 115.13 67.41 33.05	76.29
	N = 21	18.44	74.20	48.65 35.72	54.07
	N = 31	18.92	44.51	39.66 32.63	55.53
	2.2 Effects of Display Rendering		

The quality metrics developed for the assessment of HDR image and video quality [MDMS05, AMMS08, NMDSLC15, NDSLC15] require as input the per pixel luminance values (expressed in cd/m 2 ) that an observer in front of the display would see. Moreover, the estimation of pixel-wise luminance values is found to be important for the computation of other objective quality metrics as well

[START_REF] Aydın | Extending quality metrics to full luminance range images[END_REF][START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF]

. As a result, different renderings could also have a potential impact on the calculation of objective quality. A different display

  The algorithm employs a sliding window-based filter to avoid flickering for the case of video. It is also validated that the proposed dual modulation method can reproduce HDR content and estimate the emitted luminance accurately. The frame reproduction algorithm presented in this chapter was published in[START_REF] Zerman | A dual modulation algorithm for accurate reproduction of high dynamic range video[END_REF], and it is proved to be of use for psychophysical experimental studies where the knowledge of the emitted luminance is crucial to understand human perception of light and contrast. It is used in a number of studies [HVP + 16, HDVD17, KHV + 17] in order to find the perceived dynamic range for HDR content and the preference of the viewers on the display gamma.

	to the only varying factor, i.e., visualization. The MOS values acquired were compared
	through a multiple comparison analysis. The results show that, overall, MOS values are
	not dramatically impacted by the employed rendering, although in some cases small and
	localized compression artifacts might become invisible due to rendering artifacts. At the
	same time, distortion may become more visible in darker or uniform regions, due to increased brightness. Chapter 3
	From the point of view of objective quality metrics, our experiments do not bring
	enough evidence to support the hypothesis that giving accurate estimates of displayed
	luminance in input to HDR image quality metrics does bring significant advantages or Effects of Color Space on HDR
	Video Compression and Quality

Using this rendering, we conducted a subjective study to analyze the impact of a different rendering on the subjective quality, and the findings of this comparative study were published in [ZVDS

+ 15]

. To understand the effects of display rendering, a subjectively annotated HDR image quality database

[START_REF] Valenzise | Performance evaluation of objective quality metrics for HDR image compression[END_REF] 

was used where the MOS values were collected using the built-in rendering of the SIM2 display. Test conditions were kept as similar as possible in order to single out the differences in mean opinion scores due changes over using a simple linear model of the display response. This simple linear model requires only the peak brightness of the display. Nevertheless, the results of the objective quality analysis show that a simple linear model, which is almost independent from the display, can provide reliable results as if a detailed knowledge of the reproduction display were available.

Another hypothesis for the lack of meaningful difference can be that the simple linear model was accurate enough in the first place. The measured luminance values of the built-in rendering of the SIM2 display show that the actual response of the SIM2 display is, in fact, a scaled version of the linear model used. It can be clearly seen, especially from Figure 2.6.(a), that the built-in rendering has the same characteristics as the linear model. The luminance values saturate after the practical maximum brightness of the display. This result has important practical implications, since it suggests that HDR quality estimation can be performed with only a rough knowledge of the characteristics of the reproduction device.

Contents 3.1 Selection of the Test Stimuli . . . . . . . . . . . . . . . . . . . . . 62 3.1.1 Details of the Subjective Experiment for Stimuli Selection . . . . 63 3.1.2 Stimuli Selection for the Color Space Experiment . . . . . . . . . 68 3.2 Color Space Effect on Compression . . . . . . . . . . . . . . . . . 70 3.2.1 Details of the Subjective Experiment . . . . . . . . . . . . . . . . 70 3.2.2 Analysis of the Subjective Results . . . . . . . . . . . . . . . . . 72 3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

  SDR videos, it is common to transform the RGB signal to Y'CbCr color space prior to compression[START_REF] Itu-R | Parameter values for the HDTV standards for the studio and for international programme exchange[END_REF], as it is done in state-of-the-art video compression standards, has been slightly modified in this thesis in order to use the same 10-bit encoding scheme and find the effects of it independently of the effects of bit depth. Therefore, we define Ypu'v' which converts pixel values from RGB to Lu'v', and encodes L channel with PQ EOTF[START_REF] Smpte | High dynamic range electro-optical transfer function of mastering reference displays[END_REF] in order to get Yp, hence takes the name Ypu'v'. In this chapter, we investigate the effect of these three color spaces on HDR video compression: Y'CbCr[START_REF] Itu-R | Parameter values for the HDTV standards for the studio and for international programme exchange[END_REF], and ITP (ICtCp) [LPY+ 16] and Ypu'v'.

	shows better baseband properties than Y'CbCr for HDR/WCG compression with 10-
	bit quantization. LogLuv [Lar98a] color space transformation is another commonly used
	transformation among existing HDR video compression algorithms [MKMS04, GT11]. This
	color space transformation

i.e. H.264/AVC

[START_REF] Tourapis | H.264/14496-10 AVC reference software manual[END_REF] 

or H.265/HEVC

[START_REF] Sullivan | Overview of the high efficiency video coding (HEVC) standard[END_REF]

. Similarly, in the standardization efforts of MPEG

[START_REF] Luthra | Call for Evidence (CfE) for HDR and WCG Video Coding[END_REF] 

for HDR, this color space transformation is utilized, while the Y channel is coded with Perceptual Quantization (PQ)

[START_REF] Miller | Perceptual signal coding for more efficient usage of bit codes[END_REF][START_REF] Smpte | High dynamic range electro-optical transfer function of mastering reference displays[END_REF] 

instead of the gamma correction function [ITU11]. In addition to Y'CbCr color space transformation, Lu et al. [LPY + 16] recently proposed the ITP (ICtCp) color space transformation which

Table 3 .

 3 1 -The corresponding frame rates and horizontal crop windows (in pixels) of the test sequences used in the preliminary experiment

	Sequence fps	H-crop
	Balloon	24	921-1872
	Bistro	30	855-1806
	Hurdles	50	1-952
	Market	50	471-1422
	Showgirl	30	429-1380
	Starting	50	541-1492
	Tibul	30	481-1432

  The video QP which yields 1 JND with the anchor video, i.e. QP k , was determined by finding the closest QP value corresponding to the 50% of observers seeing difference. Examples of this operation are shown in Figure 3.5, and the process of determining QP k is indicated with dashed lines. These very low bitrate values may be due to the low key, SI, and TI values of the video.The QP values for videos compressed with other color spaces, namely ITP and Ypu'v', were found by finding the QP values minimizing the bitrate difference between the Y'CbCr video. For this purpose, the raw videos were compressed using a set of QP values QP k,i = + j i where j ∈ {-2, -1, 0, 1, 2} for k th quality level and i is the index. Afterwards, the bitrates of these videos were compared, and the QP value of the video yielding minimal bitrate difference was chosen. The resulting QP values and bitrates are reported in Table3.2.

	QP	Y'CbCr k

The resulting QP and bitrate values are reported in Table

3

.2 on the rows indicated as Y'CbCr. As can be seen from the table, there is not any simple relationship between the QP values of the quality levels and their bitrates. Both the QP value and the bitrate of a video seem to be related to the characterstics of the video. Bistro video sequence appears to have some special characteristics considering its very low bitrate.

Table 3 .

 3 2 -Compression levels: All of the QP values and the corresponding bit rates (in kbps) across scenes and JOD levels.

	Sequence	Color Space	JOD 1 QP 1 BR 1	JOD 2 QP 2 BR 2	JOD 3 QP 3 BR 3	JOD 4 QP 4 BR 4
		Y'CbCr	22	4945.69	26	2653.65	32	1151.99	36	678.08
	Balloon	ITP	22	5128.45	26	2742.05	32	1185.61	36	705.98
		Ypu'v'	23	4531.33	27	2466.26	33	1072.66	37	650.01
		Y'CbCr	23	520.48	27	278.21	32	143.54	34	111.04
	Bistro	ITP	23	525.09	27	287.10	32	148.58	34	114.80
		Ypu'v'	25	569.49	28	278.77	33	141.20	35	111.42
		Y'CbCr	22	7077.85	25	4147.72	28	2557.50	31	1674.57
	Hurdles	ITP	22	6610.88	25	3923.48	28	2465.01	31	1644.14
		Ypu'v'	22	7526.22	25	4364.39	29	2390.68	32	1567.09
		Y'CbCr	25	6252.36	29	3108.43	34	1339.03	36	969.68
	Market	ITP	25	5797.64	29	2934.46	34	1283.06	36	936.23
		Ypu'v'	25	6090.28	29	3089.60	34	1348.33	36	988.16
		Y'CbCr	19	7210.73	25	2170.69	28	1337.33	30	1010.40
	Starting	ITP	20	6879.85	25	2250.69	28	1373.15	30	1052.30
		Ypu'v'	22	7575.62	27	2260.09	30	1342.80	32	927.63

  .12 indicate the average ∆E 2000 value for each case of compressed video, and the whiskers indicate the span of ∆E 2000 values from minimum to the maximum.
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Looking at the results reported, we can say that there is not any overall conclusion. In terms of color difference, Y'CbCr appears to yield less color difference for Starting sequence whereas ITP yields more color difference for Market and Bistro sequences. For all other cases, the differences are not significant.

Considering the ∆E 2000 results, we would expect that Y'CbCr should have higher

  The color difference results of ∆E 2000 cannot be generalized as the results are highly content dependent. Moreover, ∆E 2000 results are not in agreement with the subjective quality results or the objective HDR-VQM results. Both this disagreement and the HDR-VQM's ability to predict the general trend of the subjective results indicate that the perceived quality for HDR video compression is dominated by the structural distortion caused by the changes in the luminance channel. These findings are in agreement with the previous studies on color in the case of SDR content [SW03, OCHZ09, OJKP16].Therefore, we expect that the color-blind (or luminance-only) metrics will perform at least as efficiently as the color metrics for the HDR compression scenario.

	Chapter 4
	Performance Evaluation of
	Full-Reference HDR Image
	Quality Metrics
	As a concept and technology, high dynamic range imaging augments current imaging
	technologies. It enables the acquisition and reproduction of everyday scenes with a larger
	brightness range as well as a wider range of color. Very bright and very dark objects
	can be simultaneously captured and displayed together [DLCMM16]. These properties of
	HDR make it a great tool to improve the human experience of visual media, compared
	to standard dynamic range technologies. HDR image and video cameras and displays
	have become available for commercial market, and parts of HDR storage and compression
	are in the process of standardization within MPEG [LFH15, HRE16] and JPEG [Ric13]

Contents 4.1 Considered Subjective Databases . . . . . . . . . . . . . . . . . . 85 4.2 Alignment of MOS Values . . . . . . . . . . . . . . . . . . . . . . 90 4.3 Analysis of Objective Quality Metrics . . . . . . . . . . . . . . . 94 4.3.1 Objective Quality Metrics under Consideration . . . . . . . . . . 96 4.3.2 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.3.3 Discriminability Analysis . . . . . . . . . . . . . . . . . . . . . . 101 4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Table 4 .

 4 1 -Number of observers, subjective methodology, number of stimuli, compression type and tone mappings employed in the HDR image quality databases used in this paper. TMOs legend: AS : Ashikmin, RG: Reinhard Global, RL: Reinhard Local, DR: Durand, Log: Logarithmic, MT : Mantiuk. The distorted images are generated through a scalable coding scheme[START_REF]JPEG-HDR: A backwards-compatible, high dynamic range extension to JPEG[END_REF]: the HDR image is converted to SDR using a TMO; then, the SDR picture is encoded & decoded by a legacy codec; finally, the image is converted back to HDR range.

	Database No	Observers Methodology Stimuli Compression	TMO
	#1 [NDSLCP13]	27	ACR-HR	140	JPEG †	iCAM-06 [KJF07]
						AS [Ash02]
						RG [RSSF02]
	#2 [NDSLCP14a]	29	ACR-HR	210	JPEG 2000 †	RL [RSSF02]
						DR [DD02]
						Log
	#3 [KHR + 15]	24	DSIS	240	JPEG-XT	RG [RSSF02] MT [MMS06]
					JPEG †	
	#4 [VDSLD14]	15	DSIS	50	JPEG 2000 †	Mai [MMM + 11]
					JPEG-XT	
	#5	15	DSIS	50	JPEG † JPEG 2000 †	Mai [MMM + 11] PQ [MND12, SMP14]
	†					

Table 4 . 2

 42 

	Metrics	PCC SROCC Product
	HDR-VQM	0.859	0.894	0.768
	PU-VIF	0.843	0.842	0.710
	HDR-VDP-2.2 Q 0.793	0.836	0.663
	PU-UQI	0.810	0.818	0.663
	PU-IFC	0.781	0.847	0.661
	Log-IFC	0.779	0.846	0.659
	Photometric-UQI	0.805	0.812	0.654
	PU-MSSIM	0.756	0.864	0.653
	Log-UQI	0.801	0.810	0.649
	Photometric-IFC	0.765	0.831	0.636
	PU-SSIM	0.699	0.860	0.601
	mPSNR	0.718	0.745	0.535
	Log-PSNR	0.716	0.735	0.526
	Log-SSIM	0.552	0.856	0.472
	tPSNR-YUV	0.639	0.649	0.414
	Photometric-VIF	0.614	0.650	0.399
	Log-MSE	0.540	0.735	0.397
	Log-VIF	0.596	0.646	0.385
	PU-PSNR	0.613	0.611	0.374
	CIE ∆E S 00	0.574	0.624	0.358
	CIE ∆E00	0.552	0.555	0.307
	PU-MSE	0.468	0.611	0.286
	Photometric-SSIM	0.417	0.590	0.246
	Photometric-PSNR	0.437	0.464	0.203
	Photometric-MSE	0.282	0.451	0.127

-Selection of Metrics for INLSA alignment -Correlation indices were calculated without applying non-linear fitting prior to calculation. Last column indicates the product of PCC and SROCC for each metric. Bold typeface indicates the selected metrics.

Table 4 .

 4 3 -Pearson Correlation Coefficient (PCC) Results for Each Database and for Aligned Data

	Metric	Database #1	Database #2	Database #3	Database #4 & 5	Combined	Except Database #2
	Photometric-MSE	0.4153	0.1444	0.7080	0.5095	0.3817	0.6876
	Photometric-PSNR	0.4292	0.2564	0.7132	0.5594	0.5123	0.6511
	Photometric-SSIM	0.4041	0.3583	0.8655	0.6708	0.6392	0.7397
	Photometric-IFC	0.7795	0.8234	0.9183	0.8195	0.8296	0.7762
	Photometric-UQI	0.8090	0.8208	0.8846	0.7876	0.8414	0.7967
	Photometric-VIF	0.7489	0.5076	0.8666	0.6144	0.6224	0.8297
	PU-MSE	0.5146	0.3309	0.8559	0.8024	0.6316	0.7836
	PU-PSNR	0.5506	0.3269	0.8606	0.8009	0.6314	0.7889
	PU-SSIM	0.8178	0.7049	0.9532	0.9201	0.8316	0.8954
	PU-IFC	0.8034	0.8422	0.9201	0.8566	0.8575	0.8201
	PU-MSSIM	0.8567	0.7236	0.9564	0.9038	0.8480	0.9184
	PU-UQI	0.8058	0.8507	0.8768	0.7777	0.8453	0.7925
	PU-VIF	0.8212	0.7583	0.9349	0.9181	0.8624	0.8870
	Log-MSE	0.4946	0.5314	0.8856	0.8820	0.6502	0.7579
	Log-PSNR	0.5120	0.5624	0.8870	0.8819	0.6628	0.7575
	Log-SSIM	0.6722	0.8035	0.9235	0.8255	0.7971	0.8023
	Log-IFC	0.8224	0.8366	0.9167	0.8551	0.8603	0.8318
	Log-UQI	0.8197	0.8268	0.8786	0.7830	0.8388	0.7933
	Log-VIF	0.1858	0.6202	0.8354	0.7065	0.4803	0.5180
	HDR-VDP-2.2 Q	0.9127	0.5482	0.9531	0.9408	0.7498	0.9171
	HDR-VQM	0.8936	0.7932	0.9612	0.9332	0.8759	0.9460
	mPSNR	0.5938	0.6564	0.8593	0.8587	0.7283	0.7888
	tPSNR-YUV	0.5654	0.4524	0.8319	0.7789	0.6524	0.7735
	CIE ∆E 00	0.6165	0.2553	0.7889	0.6082	0.5042	0.7794
	CIE ∆E S 00	0.6549	0.3331	0.8793	0.7322	0.5958	0.8154
	Table 4.4 -Spearman Rank-Ordered Correlation Coefficient (SROCC) Results for Each Database
	and for Aligned Data					
	Metric	Database #1	Database #2	Database #3	Database #4 & 5	Combined	Except Database #2
	Photometric-MSE	0.4294	0.1235	0.7227	0.5711	0.3423	0.7087
	Photometric-PSNR	0.4341	0.2783	0.7183	0.5737	0.5006	0.6610
	Photometric-SSIM	0.4436	0.3063	0.8792	0.6770	0.6274	0.7609
	Photometric-IFC	0.7739	0.8254	0.9179	0.8109	0.8322	0.7811
	Photometric-UQI	0.7859	0.8299	0.8686	0.8017	0.8420	0.7943
	Photometric-VIF	0.7363	0.4915	0.8723	0.4864	0.5924	0.8163
	PU-MSE	0.5147	0.2959	0.8617	0.8065	0.6159	0.7911
	PU-PSNR	0.5147	0.2959	0.8617	0.8065	0.6157	0.7909
	PU-SSIM	0.8099	0.7234	0.9503	0.9121	0.8419	0.9081
	PU-IFC	0.7939	0.8433	0.9165	0.8489	0.8587	0.8226
	PU-MSSIM	0.8394	0.7363	0.9517	0.8969	0.8500	0.9219
	PU-UQI	0.7801	0.8608	0.8569	0.7932	0.8454	0.7895
	PU-VIF	0.8030	0.7662	0.9306	0.9083	0.8620	0.8865
	Log-MSE	0.4822	0.5843	0.8892	0.8719	0.6333	0.7458
	Log-PSNR	0.4821	0.5843	0.8892	0.8710	0.6450	0.7466
	Log-SSIM	0.6749	0.7869	0.9268	0.8179	0.8058	0.8122
	Log-IFC	0.8080	0.8420	0.9140	0.8482	0.8610	0.8338
	Log-UQI	0.7993	0.8232	0.8592	0.7960	0.8399	0.7894
	Log-VIF	0.0278	0.5908	0.8385	0.6653	0.4996	0.4813
	HDR-VDP-2.2 Q	0.9077	0.5727	0.9503	0.9298	0.7550	0.9268
	HDR-VQM	0.8865	0.8126	0.9572	0.9193	0.8733	0.9471
	mPSNR	0.5705	0.6496	0.8648	0.8521	0.7225	0.7948
	tPSNR-YUV	0.5550	0.4342	0.8374	0.7901	0.6394	0.7782
	CIE ∆E 00	0.5929	0.2551	0.7824	0.5951	0.4883	0.7825
	CIE ∆E S 00	0.6337	0.3096	0.8779	0.7430	0.5991	0.8208

Table 4 .

 4 6 -Outlier Ratio (OR) Results for Each Database and for Aligned Data

	Metric	Database #1	Database #2	Database #3	Database #4 & 5	Combined	Except Database #2
	Photometric-MSE	0.779	0.933	0.787	0.830	0.832	0.744
	Photometric-PSNR	0.786	0.905	0.767	0.820	0.806	0.725
	Photometric-SSIM	0.829	0.938	0.679	0.780	0.781	0.675
	Photometric-IFC	0.743	0.871	0.546	0.610	0.654	0.621
	Photometric-UQI	0.643	0.871	0.558	0.640	0.643	0.604
	Photometric-VIF	0.729	0.948	0.617	0.800	0.797	0.621
	PU-MSE	0.800	0.933	0.633	0.680	0.777	0.619
	PU-PSNR	0.743	0.919	0.579	0.660	0.778	0.627
	PU-SSIM	0.693	0.948	0.404	0.560	0.671	0.504
	PU-IFC	0.707	0.886	0.500	0.610	0.633	0.592
	PU-MSSIM	0.671	0.933	0.388	0.570	0.652	0.438
	PU-UQI	0.621	0.848	0.583	0.680	0.645	0.602
	PU-VIF	0.650	0.943	0.450	0.520	0.626	0.565
	Log-MSE	0.771	0.924	0.592	0.570	0.716	0.642
	Log-PSNR	0.750	0.919	0.588	0.580	0.755	0.658
	Log-SSIM	0.771	0.876	0.525	0.570	0.733	0.585
	Log-IFC	0.650	0.833	0.529	0.610	0.625	0.581
	Log-UQI	0.643	0.843	0.579	0.630	0.645	0.606
	Log-VIF	0.821	0.924	0.654	0.730	0.862	0.783
	HDR-VDP-2.2 Q	0.529	0.938	0.342	0.490	0.741	0.471
	HDR-VQM	0.636	0.890	0.392	0.530	0.638	0.431
	mPSNR	0.750	0.895	0.667	0.610	0.722	0.635
	tPSNR-YUV	0.721	0.952	0.625	0.670	0.771	0.637
	CIE ∆E 00	0.750	0.924	0.675	0.760	0.819	0.656
	CIE ∆E S 00	0.700	0.933	0.613	0.710	0.796	0.615

  Also, the resolving power in the common scale corresponds to a variable metric resolution in the original scale, which makes it difficult to interpret. Moreover, it is not always possible to fix the level of significance p to be the same for different metrics,

	prediction algorithm such that at least p% of viewers (where generally p = 95%) would
	observe a difference in quality between two images. This approach was also standardized in
	ITU Recommendation J.149 [ITU04b], and used in subsequent work [PW08, Bar09, H ŘE15,
	NVH16]. Nevertheless, this technique has a number of disadvantages. Resolving power is
	computed after transforming MOS to a common scale, which requires applying a fitting
	function; however, the fitting problem could be ill-posed in some circumstances, yielding
	incorrect results.
	). The performance scores
	considered in Section 4.3.2 assume instead that MOS values are deterministically known,
	and that the goal of full-reference quality metrics is to predict them as precisely as possible,
	without taking into account whether two different subjective scores do actually correspond
	to different quality. Therefore, in the following, we consider another evaluation approach,
	which aims at assessing if a full-reference objective quality metric is able to discriminate
	whether two images have significantly different subjective quality.

The intrinsic variability of MOS scores is not a completely new problem, and several approaches have been proposed in the literature to take this into account while evaluating objective metrics. Brill et al. [BLC + 04] introduced the concept of resolving power of an objective metric, which indicates the minimum difference in the output of a quality as there could be cases when the percentage of observers seeing a difference between image qualities is lower than p for any metric difference values. Finally, the results of this approach are generally evaluated in a qualitative manner, e.g., by considering how the number of correct decisions, false rankings, false differentiations, etc., vary as a function of objective metric differences [BLC + 04, H ŘE15]; conversely, a compact, quantitative measure is desirable in order to fairly compare different metrics. Another approach to this problem

Table 4 .

 4 [START_REF] Kane | The Preferred System Gamma is Primarily Determined by the Ratio of Dynamic Range of the Original Scene and the Displayed Image[END_REF] -Results of discriminability analysis: area under the ROC curve (AUC), threshold τ at 5% false positive rate, maximum classification accuracy. We report for comparison the fraction of Correct Decisions (CD) at 95% confidence level as proposed in [BLC + 04]. For CD, '-' indicates that the 95% confidence level cannot be achieved.

			Combined			Except Database #2
	Metric	AUC	τ.05	Acc*	CD [BLC + 04]	AUC	τ.05	Acc*	CD [BLC + 04]
	Photometric-MSE	0.534	26718.659	0.531	-	0.648	30534.138	0.618	-
	Photometric-PSNR 0.582	24.798	0.563	-	0.645	18.135	0.607	0.241
	Photometric-SSIM 0.605	0.061	0.588	-	0.673	0.038	0.635	0.319
	Photometric-IFC	0.713	6.610	0.664	0.384	0.682	7.554	0.633	0.343
	Photometric-UQI	0.774	0.333	0.713	0.405	0.754	0.381	0.696	0.339
	Photometric-VIF	0.602	0.730	0.582	0.203	0.703	0.730	0.644	0.414
	PU-MSE	0.595	390.075	0.577	-	0.679	390.075	0.642	0.389
	PU-PSNR	0.626	19.902	0.595	-	0.724	17.415	0.671	0.391
	PU-SSIM	0.706	0.063	0.652	0.372	0.791	0.048	0.716	0.503
	PU-IFC	0.730	6.081	0.677	0.450	0.707	6.896	0.653	0.419
	PU-MSSIM	0.726	0.092	0.670	0.421	0.831	0.065	0.754	0.591
	PU-UQI	0.777	0.318	0.716	0.413	0.753	0.364	0.695	0.337
	PU-VIF	0.787	0.419	0.725	0.472	0.826	0.455	0.755	0.542
	Log-MSE	0.557	1.423	0.549	0.248	0.554	1.090	0.551	0.401
	Log-PSNR	0.638	27.767	0.595	0.255	0.674	27.767	0.625	0.406
	Log-SSIM	0.681	0.169	0.626	0.341	0.701	0.135	0.654	0.396
	Log-IFC	0.732	6.074	0.680	0.459	0.714	6.903	0.660	0.432
	Log-UQI	0.779	0.324	0.718	0.395	0.754	0.371	0.696	0.326
	Log-VIF	0.605	0.425	0.570	0.210	0.612	0.351	0.604	-
	HDR-VDP-2.2 Q	0.683	23.955	0.626	0.269	0.836	20.962	0.744	0.592
	HDR-VQM	0.786	1.962	0.723	0.483	0.900	1.503	0.821	0.701
	mPSNR	0.678	13.557	0.638	0.277	0.721	13.164	0.668	0.399
	tPSNR-YUV	0.629	17.041	0.596	0.168	0.707	17.041	0.653	0.381
	CIE ∆E00	0.580	7.643	0.557	0.172	0.724	6.688	0.668	0.346
	CIE ∆E S 00	0.609	6.718	0.583	0.189	0.744	5.878	0.690	0.382
	at FPR = 5%, that is,							
			τ .05 = min{τ : p(∆ O ij > τ ; H 0 ) ≤ 0.05},		(4.8)
	which indicates the minimum value of τ in order to keep below 5% the probability of
	incorrectly classifying two stimuli as being of different quality. This latter measure provides
	somehow the resolution of an objective metric (with a 5% tolerance) in the original metric
	scale.								
	These results in Table 4.7 are complemented with the percentage of correct decisions

(CD) in [BLC + 04], which is to be compared with Acc * . Furthermore, we present the results of statistical significance evaluation of the reported AUC values according to the guidelines presented in Krasula et al.

[START_REF] Krasula | On the accuracy of objective image and video quality models: New methodology for performance evaluation[END_REF]

. The results of this statistical significance evaluation are presented in Fig.

4

.9. The results show that HDR-VQM is the best performing metric, and PU-VIF and -in the case excluding Database #2-PU-MSSIM perform better than

Table 5 .
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	1 -Linearity of the relation between MOS and JOD
	Sequence	PCC	SROCC
	Balloon	0.9936	0.9835
	Bistro	0.9824	0.9890
	Hurdles	0.9864	0.9670
	Market	0.9696	0.9615
	Starting	0.9897	0.9835
	All Contents 0.9337	0.9420

Table 5 .

 5 2 -Linearity of the relation between MOS and JODs of two different cases: standard PC experiment with additional same-content pairs, JOD SC , and the proposed PC experiment with same-content and cross-content pairs, JOD CC .

	Sequence	Case	PCC	SROCC Slope Std p2l
	Balloon	JOD SameContent 0.9939 JOD CrossContent 0.9907	0.9835 0.9835	6.43 0.3582 6.84 0.4018
	Bistro	JOD SameContent 0.9836 JOD CrossContent 0.9860	0.9835 0.9890	9.42 1.4544 8.43 0.8499
	Hurdles	JOD SameContent 0.9833 JOD CrossContent 0.9882	0.9615 0.9725	9.19 0.9639 6.66 0.4885
	Market	JOD SameContent 0.9721 JOD CrossContent 0.9772	0.9670 0.9670	5.63 1.5853 6.45 0.5154
	Starting	JOD SameContent 0.9883 JOD CrossContent 0.9914	0.9890 0.9835	7.23 0.4369 6.68 0.3649
	All Together	JOD SameContent 0.9248 JOD CrossContent 0.9788	0.9324 0.9733	6.69 1.0841 7.08 0.5516
	Linear Relationship Between MOS and PC Scaling

Table 5 . 2 .

 52 It is clear that the addition of cross-content pairs decreases the variance of the slopes of the best fitted line for each content and Std p2l as well, thus bringing JOD scores closerContents CI Standard CI SameContent CI CrossContent Ratio CC/SC

		BR 1	1.23	1.23	1.53	1.25
	Balloon	BR 2 BR 3	2.21 3.03	1.68 2.84	1.86 2.48	1.11 0.87
		BR 4	3.93	3.36	2.56	0.76
		BR 1	1.60	1.70	1.25	0.73
	Bistro	BR 2 BR 3	2.12 2.92	1.91 2.49	1.46 2.00	0.76 0.81
		BR 4	3.34	2.91	2.26	0.78
		BR 1	1.45	1.50	1.12	0.75
	Hurdles	BR 2 BR 3	2.31 3.12	1.90 2.36	1.55 2.46	0.82 1.04
		BR 4	3.43	2.96	2.62	0.89
		BR 1	2.12	2.35	0.85	0.36
	Market	BR 2 BR 3	3.05 4.32	2.80 3.18	1.63 2.57	0.58 0.81
		BR 4	4.73	3.28	2.94	0.90
		BR 1	3.52	3.50	1.29	0.37
	Starting	BR 2 BR 3	4.45 5.61	4.06 4.76	1.47 1.97	0.36 0.41
		BR 4	6.04	5.11	2.29	0.45

Table 5 .

 5 3 -Average confidence intervals of the videos with different bitrates (BR 1 is the highest) for the considered experiments. The last column is the ratio of the CI of the combined PC data with additional cross-content pairs (CI CrossContent , CI of JOD CrossContent ) to the CI of the combined PC data with additional same-content pairs (CI SameContent , CI of JOD SameContent ). CI of standard PC experiment (CI Standard , CI of JOD Standard ) are also reported for completeness.

Table A .

 A 1 -The luminance measurements (cd/m 2 ) for the LED values for three distinct cases. Only one LED was used in the case of 'One-LED', a collection of LEDs forming a rectangle that covers 30% of the display area was used for the case of 'Square', and all of the LEDs were used for the case of 'All-LEDs'.

	LED Value	One-LED Square All-LEDs
	5	24.51	64	101.4
	15	31.05	191	297.3
	25	38.33	316	501
	35	45.8	445	697.3
	45	52.98	572	891.7
	55	59	701	1096
	65	67	827	1284
	75	75.03	954	1478
	85	83.31	1070	1666
	95	90	1200	1851

Table A .

 A 2 -The luminance measurements for the analysis of the display gamma. Measurements were made (in cd/m 2 ) for each LCD pixel value p where p ∈ {0, 15, 30, . . . , 255}. LED values were kept same during the whole measurement. The luminance values were measured using different color schemes where only the pixel values of the indicated channels were changed, i.e. the first and third channels were changed in the 'Magenta' color scheme, and the second channel pixels were kept as zero.

		Luminance Values (cd/m 2 ) for Different Color Schemes
	Pixel	White	Red	Green	Blue	Yellow	Cyan	Magenta
	Value p	[p p p]	[p 0 0]	[0 p 0]	[0 0 p]	[p p 0]	[0 p p]	[p 0 p]
	0	0.35	0.355	0.356	0.354	0.349	0.339	0.341
	15	2.5	0.757	1.711	0.532	2.034	1.827	0.988
	30	13.2	2.838	9.176	1.222	11.48	9.967	3.961
	45	34.55	7.36	24.4	2.602	30.84	26.27	9.862
	60	68.32	14.51	49	5.01	62.31	52.79	19.28
	75	115.8	24.91	83.48	8.462	106.9	89.91	32.75
	90	180	39.15	130.7	13.03	168.2	140.5	51.18
	105	263	56.93	191	18.91	245.7	205.7	74.05
	120	364.3	78.47	266.1	26.6	343.1	286.1	104.1
	135	477	102.4	348.6	35.65	450.1	376.5	133.7
	150	606	129.4	441.8	46.24	570.5	477.7	170.1
	165	744	158.6	543.1	57.21	700	588.2	206.5
	180	899	192.7	653.1	69.84	848.4	707.7	250.1
	195	1058	229.3	779.1	83.82	1003	842.1	297.6
	210	1250	265.3	919.6	100.1	1177	992.5	346.1
	225	1436	307.2	1068	118.9	1362	1148	402.8
	240	1650	349.9	1223	141	1548	1318	463.4
	255	1857	397.1	1379	174.7	1740	1502	541

Table A .

 A [START_REF] Kane | Subjects Prefer to View a Linear Image When Both the Image and the Display Have the Same Dynamic Range[END_REF] -The γ values found by each pixel value p ∈ {0, 15, 30, . . . , 255} considered and each color channel. The average value for each channel is given at the bottom row.The relationship between V in and V out for each color channel is shown in Figure A.3.(a). It is clear from both Figure A.3.(a) and Table A.4 that the gamma values for each color channel are different. The luma values are gamma corrected as the following:

	Input Luma	Red Green Blue
	V in	γ R	γ G	γ B
	0.0588 2.4335 2.4442 2.4308
	0.1176 2.3709 2.3606 2.4778
	0.1765 2.3271 2.3342 2.5084
	0.2353 2.3037 2.3113 2.5039
	0.2941 2.2736 2.2950 2.5072
	0.3529 2.2325 2.2648 2.5170
	0.4118 2.1951 2.2297 2.5248
	0.4706 2.1560 2.1841 2.5121
	0.5294 2.1351 2.1635 2.5115
	0.5882 2.1166 2.1461 2.5157
	0.6471 2.1114 2.1415 2.5740
	0.7059 2.0786 2.1466 2.6411
	0.7647 2.0495 2.1291 2.7458
	0.8235 2.0796 2.0875 2.8761
	0.8824 2.0529 2.0425 3.0819
	0.9412 2.0893 1.9808 3.5430
	Average 2.1878 2.2039 2.6544

  1, 2, 3, ..., 255}. The values found were used to create a look-up table for the gamma correction, and this look-up table was used in the gamma correction step in Section 2.1.2 for each pixel value p.

  Le problème de l'évaluation de la qualité de l'image et de la vidéo est un problème largement étudié dans la communauté du traitement du signal [SSB06, SSBC10a, PJI + 15] pour le cas du SDR. La perception humaine de la lumière n'est pas proportionnelle à la magnitude physique de la lumière. Pour ce faire, les valeurs des pixels de l'image sont traitées à l'aide d'une courbe de loi de puissance, appelée fonction de correction BL target , qui minimise la luminance du rétroéclairage requis. Pour trouver BL target , nous définissons deux autres images rétroéclairées : BL min et BL max . Comme les cellules à cristaux liquides ne peuvent que bloquer la lumière et ne peuvent pas générer de lumière, au moins BL min est nécessaire pour s'assurer que le rétroéclairage est suffisant pour tous les pixels. Pour trouver BL min , on calcule les maxima locaux de la luminance cible sur des fenêtres d'un rayon de 30 pixels correspondant à la surface d'une seule LED. Les cellules à cristaux liquides ne sont pas idéales et laissent échapper de la lumière même si elles sont complètement fermées. Afin de contrôler les effets de fuite de l'écran LCD, la luminance maximale pour chaque pixel, BL max ,

	Bien que l'estimation et l'évaluation de la qualité de la vidéo soient essentielles pour de nous essayons de répondre à la question suivante : Comment pouvons-nous mieux définir les valeurs des pixels LED et LCD doivent être calculées afin de reproduire une image HDR
	nombreuses autres applications, la compression de l'image et de la vidéo est considérée une échelle de qualité qui ne serait pas affectée par les facteurs environnementaux et quelle dans ce cadre.
	comme la principale source de distorsion tout au long de la thèse, car il s'agit du scénario méthodologie subjective d'évaluation de la qualité devrions-nous utiliser ?
	le plus pratique et le plus réaliste. Sur la base de ces considérations, nous posons la Tout au long de la thèse, nous visons à répondre à ces questions et à comprendre les Caractéristiques d'affichage
	question suivante : Quels sont les paramètres qui affectent l'estimation de la facteurs sous-jacents qui affectent l'évaluation de la qualité HDR, par une série d'expériences L'algorithme de rendu que nous proposons est conçu pour fonctionner sur les affichages SIM2
	qualité objective avec référence et la perception de la qualité subjective dans le subjectives et d'analyses approfondies. HDR47E S 4K [SIM14]. L'écran est un double affichage modulé qui comprend un réseau de
	cas de la compression d'image et de vidéo HDR ? LED pour le rétro-éclairage, une couche de diffuseur de lumière et un panneau LCD dans
	Pour tenter de répondre à cette question, nous identifions d'abord deux aspects princi-B.2 Notions de base cet ordre. Il y a 2202 lumières LED contrôlables indépendamment et un panneau LCD de
	paux qui peuvent avoir un impact sur l'évaluation objective et subjective de la qualité de 1920 × 1080 pixel qui peut être contrôlé séparément. L'affichage SIM2 peut être contrôlé
	l'image et de la vidéo HDR : à l'aide du rendu automatique intégré ou d'une entrée double modulation personnalisée
	• Afin de rendre les valeurs de pixels HDR perceptiblement uniformes, plusieurs fournie par les utilisateurs.
	méthodes de codage des pixels ont été proposées [AMS08, SMP14, MND12, Bor14].
	Les écrans HDR ont une luminance de crête plus élevée et un contraste élevé par rapport aux
	écrans SDR. Dans le chapitre 2, nous examinons le fonctionnement du SIM2 et analysons
	les conditions de visualisation et leurs effets sur l'évaluation subjective et objective de la
	En analysant les effets de ces deux aspects et en évaluant les mesures de qualité dans les qualité. Cette évaluation des effets sur la qualité a été faite en comparant deux méthodes
	chapitres suivants, nous constatons que les résultats subjectifs de l'évaluation, c.-à-d. les de rendu d'affichage différentes : la méthode de rendu SIM2 intégrée et une méthode de
	notes d'opinion moyennes (MOS -Mean Opinion Scores), ont des fourchettes différentes rendu d'affichage que nous proposons dans ce chapitre. Dans ce qui suit, nous décrivons en
	de gamma [ITU11], pour les affichages SDR. Après cette opération, les valeurs de pixels pour les bases de données de qualité annotées subjectivement que nous considérons. Même détails la méthode de rendu d'affichage proposée, présentons les résultats de la validation
	SDR deviennent perceptiblement linéaires où le changement de magnitude correspondra si la qualité objective des stimuli est la même, le score de qualité subjective d'un stimulus expérimentale et discutons des effets de l'utilisation de différentes méthodes de rendu
	à un changement proportionnel de la perception. Ainsi, les mesures objectives de qualité peut être différent pour différentes bases de données. Cette observation a des résultats d'affichage sur la qualité subjective et objective de l'image HDR.
	SDR supposent que les pixels de l'image sont perceptiblement uniformes. Ce n'est pas importants pour l'évaluation subjective de la qualité.

B.1 Introduction

Le système visuel humain (HVS -Human Visual System) est capable de percevoir une gamme beaucoup plus large de couleurs et d'intensités lumineuses présentes dans notre environnement que les systèmes d'imagerie à dynamique standard (SDR -Standard Dynamic Range) traditionnels peuvent capturer et reproduire. Avec les développements de la technologie à dynamique haute (HDR -High Dynamic Range), nous sommes maintenant en mesure de capturer, stocker, transmettre et afficher des images et des vidéos d'une manière plus réaliste [BADC11, DLCMM16]. Pouvoir reproduire des scènes HDR a accéléré les efforts de standardisation pour la compression d'images et de vidéos HDR [Ric13, LFH15, HRE16] en tant que parties d'une chaîne de livraison de contenu HDR de bout en bout. Afin de s'assurer que la compression est effectuée avec la meilleure qualité possible, une évaluation de la qualité est nécessaire pour les images et les vidéos HDR. Cette thèse se concentre sur l'évaluation et l'analyse de l'image et de la vidéo à haute gamme dynamique. le cas pour les images HDR, car les images HDR stockent généralement des valeurs de pixels proportionnelles aux valeurs de luminance physique. De même, on s'attend à ce que l'évaluation subjective de la qualité HDR soit différente puisque le niveau et le ratio de luminosité sont différents. Pour une évaluation correcte, ces nouvelles conditions doivent être prises en compte. Cependant, l'impact de la connaissance des valeurs de luminance émises et les effets des différents rendus d'affichage sur l'évaluation de la qualité HDR n'ont pas encore été étudiés. C'est pourquoi nous essayons de répondre à la question suivante : Comment le rendu de l'affichage HDR affecte l'évaluation de la qualité HDR, à la fois subjectivement et objectivement ? • La luminance accrue dans les conditions HDR peut changer la façon dont nous percevons la qualité, et la couleur peut influencer la qualité perceptuelle en raison de certains aspects des phénomènes d'apparence des couleurs, par exemple l'effet Hunt, le changement de teinte Bezold-Brücke, etc. [Fai13]. Comme nous considérons la compression comme notre principale distorsion tout au long de la thèse, nous essayons d'analyser et de comprendre l'impact de la couleur sur la compression et donc de poser la question suivante : Quels sont les effets de la transformation de l'espace couleur et des distorsions spécifiques à la couleur sur l'évaluation de la qualité HDR ? Comme la 'qualité' est subjective par définition, la plupart des algorithmes d'évaluation objective de la qualité utilisent les valeurs MOS comme vérité terrain. Afin d'utiliser ces bases de données pour l'évaluation ou l'élaboration de mesures objectives, les valeurs MOS doivent être alignées. De cette façon, les scores subjectifs de qualité de deux stimuli avec les mêmes scores objectifs de qualité seraient similaires. Pour s'attaquer à ce problème, Dans le chapitre 1, les études précédentes sur l'évaluation subjective et objective de la qualité, les étapes de la distribution du contenu HDR et l'état de l'art de l'évaluation de la qualité HDR ont été discutées. Premièrement, les méthodes subjectives d'évaluation de la qualité, leur comparaison et leur utilisation dans l'évaluation de la qualité de l'image et de la vidéo ont été discutées, ainsi que les méthodes objectives d'évaluation de la qualité de l'image et de la vidéo couramment utilisées. En outre, des méthodes statistiques et d'autres méthodes d'évaluation objective de la qualité ont été décrites. Deuxièmement, l'imagerie HDR et la distribution du contenu ont été expliquées en détail, en commençant par les méthodes d'acquisition et de stockage et en incluant les méthodes de compression d'images et de vidéo HDR jusqu'à la reproduction et l'affichage. Enfin, les recherches de pointe pour l'évaluation subjective et objective de la qualité ont été discutées pour le contenu HDR. B.3 Effets du rendu d'affichage sur l'évaluation de la qualité d'image HDR B.3.1 Reproduction précise d'image à haute gamme dynamique La méthode la plus populaire pour la production d'écrans HDR est l'utilisation de différentes couches pour le rétroéclairage et l'ajustement des couleurs, une méthode connue sous le nom de dual modulation [SHS + 04, NDSLC16a]. Cela se fait en couplant une source de lumière à gradation locale, comme un panneau de LEDs, avec un écran LCD frontal. Mais, Un algorithme de double modulation pour la reproduction d'images Dans cette thèse, nous proposons et développons une méthode de rendu à double modulation sur mesure afin de reproduire les images HDR avec une très grande précision et fidélité par rapport aux valeurs de luminance prévues. L'algorithme se compose des parties suivantes : • Prétraitement : Tout d'abord, nous trouvons les valeurs de luminance cibles se référant à moniteur (display-referred) à partir de l'image HDR se référant à scène (scenereferred). En supposant que les images d'entrée ont été préalablement graduées à l'affichage -manuellement ou par un processus automatique [MDK08]-, nous saturons juste des valeurs de luminance supérieures à la luminance maximale de l'affichage, c.-à-d. 4250 cd/m 2 . Nous notons I l'image prétraitée. • Calcul du rétroéclairage cible : Ensuite, nous trouvons le rétroéclairage optimal cible, est obtenue en divisant les valeurs de luminance de l'image de ce pixel par le facteur de fuite estimé de l'écran LCD = 0, 005, ce qui est empirique. BL target est alors trouvé en filtrant et en combinant les BL min et BL max . Après le calcul du rétroéclairage cible, les LEDs et le rétroéclairage sont initialisés en échantillonnant BL target sur les emplacements des LEDs et en prenant la convolution

  Les valeurs JOD résultantes sont rapportées dans figure B.5 pour chaque séquence vidéo. Les vidéos compressées avec trois espaces de couleur ont des valeurs JOD très similaires. Les résultats obtenus en comparant toutes les scènes pour les trois espaces couleurs en utilisant la métrique ∆E 2000 . Plus ∆E 2000 scores représentent une augmentation de la différence de couleur. Les scores faibles correpondent à des stimuli proches de la vidéo originale. VQM est insensible à la couleur, elle donne de meilleures prédiction de la qualité des vidéo compressées que ∆E 2000 . Le désaccord de ∆E 2000 avec les scores subjectifs et la capacité du HDR-VQM à prédire la tendance générale des résultats subjectifs indiquent que la qualité perçue de la compression vidéo HDR est dominée par la distorsion structurelle causée par les changements dans le canal de luminance.
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	). Il existe plusieurs méthodes pour effectuer le rééchelonnement [BT52, Thu27, LDSE11, TG11], et ces méthodes utilisent deux modèles : le modèle Bradley-Terry [BT52], et le modèle Thurstone [Thu27]. Les résultats de comparaison par paires obtenus ont été rééchelonnés à l'aide du logiciel pwcmp accessible au public 1 . Le logiciel utilise une méthode bayésienne, qui utilise un estimateur du maximum de vraisemblance pour maximiser la probabilité que les données recueillies expliquent les scores de qualité à l'échelle sous les hypothèses du scénario V de Thurstone. Il peut rééchelonner le résultat d'un schéma incomplet et déséquilibré par paire, ainsi que En regardant les données rééchelonnées, on peut dire que, dans l'ensemble, il n'y a pas de différence significative entre les performances de compression vidéo en utilisant les espaces colorimétriques testés malgré les différences numériques. De même, les résultats du test Figure B.7 -B.5 Évaluation des performances des métriques de qualité de signification statistique et du test binomial conviennent qu'il n'y a pas de différence les cas où il y a accord unanime. Les paramètres de distribution du logiciel sont ajustés de manière à ce que la différence d'une valeur de qualité corresponde au taux de préférence de significative entre les espaces colorimétriques comparés. d'image HDR avec référence
	75%. Comme les comparaisons par paires ne peuvent fournir que des informations relatives

sur la qualité, les valeurs JOD ('just objectionable difference' en anglais) sont également relatives. Pour maintenir la cohérence entre les séquences vidéo, nous fixons toujours le point de départ de l'échelle JOD à 0 pour différentes distorsions et la dégradation de la Figure B.6 -Les résultats obtenus en comparant toutes les scènes pour les trois espaces couleurs en utilisant la métrique HDR-VQM. Tous les scores sont normalisés, où 1 signifie une qualité parfaite et des scores plus faibles représentent une diminution de la qualité. qualité se traduit par des valeurs JOD négatives. Analyse des résultats subjectifs La matrice de comparaison pour chaque séquence vidéo a été formée séparément puisque chaque stimulus a été comparé à un autre stimulus avec le même contenu. Pour chaque séquence vidéo, la vidéo originale non compressée a été fixée à zéro JOD afin de fixer la relativité à la vidéo originale. Ensuite, les valeurs de JOD ont été trouvées pour les stimuli en utilisant le logiciel pwcmp. Les intervalles de confiance ont été trouvés à l'aide du bootstrapping. Comparaison des scores de qualité objective En plus des résultats subjectifs, la qualité vidéo a été prédite en utilisant deux mesures objectives de qualité : une mesure objective de qualité pour la vidéo HDR, c.-à-d. HDR-VQM [NMDSLC15], et une mesure de différence de couleur, c.-à-d. ∆E 2000 [LCR01]. Le HDR-VQM a été calculé en utilisant uniquement le canal de luminance. Les résultats de la métrique de qualité HDR-VQM sont montrés dans la figure B.6, et les résultats de ∆E 2000 sont montrés dans la figure B.7. En comparant les mêmes stimuli à l'aide de la métrique objective HDR-VQM, nous avons trouvé des résultats presque identiques à l'expérience subjective. Les résultats de ∆E 2000 sont différents de ce qui a été observé à la fois dans les résultats d'expériences subjectives et dans les résultats métriques objectifs HDR-VQM. Meme si la métrique HDR-Par rapport à l'évaluation de la qualité SDR, de nouveaux défis apparaissent pour l'évaluation de la qualité visuelle HDR [NdSLC + 16b]. Pour l'évaluation de la qualité du contenu HDR, les métriques développées exclusivement pour le contenu HDR [MKRH11, NDSLC15] et les métriques SDR [WSB03, WBSS04, SB06] avec linéarisation perceptuelle sont comparés aux notes d'opinion moyennes (MOS) des sujets dans plusieurs études subjec-

Table B .

 B 1 -Nombre d'observateurs, méthodologie subjective, nombre de stimuli, type de compression et correspondance des tons (TMO) utilisés dans les bases de données (DB) de qualité d'image HDR utilisées dans cet article. Légende des TMO : AS : Ashikmin, RG : Reinhard Global, RL : Reinhard Local, DR : Durand, Log : Logarithmique, MT : Mantiuk. Mai PQ † Les images altérées sont générées par un système de codage scalable [WS06] : l'image HDR est convertie en SDR en utilisant un TMO ; ensuite, l'image SDR est codée & décodée par un codec existant ; enfin, l'image est convertie en gamme HDR.

	Numéro de DB Observateurs Méthodologie Stimuli Compression	TMO
	#1 [NDSLCP13]	27	ACR-HR	140	JPEG †	iCAM-06
	#2 [NDSLCP14a]	29	ACR-HR	210	JPEG 2000 †	AS, RG, RL DR,Log
	#3 [KHR + 15]	24	DSIS	240	JPEG-XT	RG, MT
					JPEG †	
	#4 [VDSLD14]	15	DSIS	50	JPEG 2000 †	Mai
					JPEG-XT	
	#5	15	DSIS	50	JPEG † JPEG 2000 †	

Table B .

 B 2 -Les mesures de qualité d'image HDR avec référence sont regroupées. Les mots en italique indiquent l'encodage des pixels et les tirets indiquent le préfixe. une plage de luminance de 0,03 à 4250 cd/m 2 . Ensuite, nous utilisons le modèle linéaire tel qu'il a été trouvé car la fonction réelle se trouve être suffisamment proche d'être linéaire.[START_REF] Zerman | A dual modulation algorithm for accurate reproduction of high dynamic range video[END_REF].

		HDR	Écart de couleur	SDR
	Mesures	HDR-VDP-2.2 HDR-VQM mPSNR	CIE ∆E 00 CIE ∆E S 00	Photometric-MSE, PSNR, VIF SSIM, MSSIM PU-IFC, UQI Log-PQ tPSNR-YUV
	expérience subjective,		

Table B .

 B 3 -Linéarité de la relation entre MOS et JOD Comparaison des MOS et comparaisons par paires Les matrices de préférence des expériences PC ont été trouvées, et les scores JOD ont été estimés à l'aide du logiciel pwcmp. Pour l'expérience DSIS, les valeurs MOS ont été calculées en prenant la moyenne des scores d'opinion. Les intervalles de confiance (CI), par contre, ont été calculés à l'aide du bootstrapping afin de les comparer aux CI des scores JOD. Les scores JOD résultants (notés JOD Standard pour indiquer que la méthodologie des comparaisons par paires standard a été utilisée) ont été tracés par rapport aux valeurs MOS. Les résultats montrent qu'il existe une forte relation entre les valeurs MOS et les scores JOD, et les scores JOD et les valeurs MOS montrent un comportement presque linéaire pour tous les contenus. Cette relation a également été vérifiée avec les calculs PCC et SROCC. Rapporté dans le tableau B.3, les valeurs PCC et SROCC montrent que la relation est presque parfaitement linéaire pour chaque séquence vidéo. Nous avons remarqué que les valeurs MOS ont des CI proches de l'uniforme ; cependant, les CI des valeurs JOD augmentent au fur et à mesure que les valeurs absolues JOD

	Séquence	PCC	SROCC
	Balloon	0.9936	0.9835
	Bistro	0.9824	0.9890
	Hurdles	0.9864	0.9670
	Market	0.9696	0.9615
	Starting	0.9897	0.9835
	Tous les contenus 0.9337	0.9420

elles-mêmes augmentent. Cela a été causé par l'accumulation des erreurs d'estimation, qui résulte de la comparaison de paires consécutives.

Table B .

 B SameContent était de 2, 7972 et dans le cas de JOD CrossContent était de 0, 6445. Cette réduction significative de la variance des pentes implique que le meilleur ajustement linéaire Contenu CI Standard CI SameContent CI CrossContent Ratio CC/SC 4 -Intervalle de confiance moyen des vidéos avec différents débits binaires (BR 1 est le plus élevé) pour les expériences considérées. La dernière colonne est le rapport du CI des données PC combinées avec des paires de contenu croisé supplémentaires (CI CrossContent , CI de JOD CrossContent ) au CI des données PC combinées avec des paires de contenu identique supplémentaires (CI SameContent , CI de JOD SameContent ). Les CI de l'expérience PC standard (CI Standard , CI de JOD Standard ) sont également rapportés par souci d'exhaustivité. pour chaque contenu est beaucoup plus proche et qu'il y a moins de variance entre les différents contenus. Une autre métrique, Std p2l , a été calculée pour les points tracés dans chaque sous-figure présentée. Elle est calculée comme suit :

		BR 1	1.23	1.23	1.53	1.25
	Balloon	BR 2 BR 3	2.21 3.03	1.68 2.84	1.86 2.48	1.11 0.87
		BR 4	3.93	3.36	2.56	0.76
		BR 1	1.60	1.70	1.25	0.73
	Bistro	BR 2 BR 3	2.12 2.92	1.91 2.49	1.46 2.00	0.76 0.81
		BR 4	3.34	2.91	2.26	0.78
		BR 1	1.45	1.50	1.12	0.75
	Hurdles	BR 2 BR 3	2.31 3.12	1.90 2.36	1.55 2.46	0.82 1.04
		BR 4	3.43	2.96	2.62	0.89
		BR 1	2.12	2.35	0.85	0.36
	Market	BR 2 BR 3	3.05 4.32	2.80 3.18	1.63 2.57	0.58 0.81
		BR 4	4.73	3.28	2.94	0.90
		BR 1	3.52	3.50	1.29	0.37
	Starting	BR 2 BR 3	4.45 5.61	4.06 4.76	1.47 1.97	0.36 0.41
		BR 4	6.04	5.11	2.29	0.45

A standard Dell

(E2016H) monitor was taken as reference. http://www.dell.com/en-ie/shop/ dell-20-monitor-e2016h/apd/210-afpd/monitors-monitor-accessories. Accessed online: 02/12/2017

The word 'raw' is used here to denote the uncompressed version of the captured image with linear luminance values. Raw images are not tonemapped and/or gamma corrected.

The dependency of the two correlations is apparent, due to the fact that they are computed on the same dataset of images. In addition, the correlations of Linear (Proposed) and Estimated (Proposed) are overlapping, since they are computed against the same MOS values.

pwcmp toolbox for scaling pairwise comparison data https://github.com/mantiuk/pwcmp

Effects of Color Space on Compression & Quality

INLSA implementation on Matlab was downloaded from http://www.its.bldrdoc.gov/resources/ video-quality-research/guides-and-tutorials/insla-code.aspx

pwcmp toolbox pour le rééchelonnement des données de comparaison par paires https://github.com/ mantiuk/pwcmp

l'information de couleur, mais l'information de couleur est acquise simplement en divisant l'image de couleur HDR à la valeur de rétro-éclairage. Ainsi, la méthode de rendu peut être étendue à l'estimation de la chrominance.Dans le cas de la compression, les distorsions structurelles créées par les différences de canal de luminance sont dominantes par rapport à la perception humaine de la qualité de l'image et de la vidéo HDR. Cependant, dans les cas autres que la compression, les changements de couleur peuvent encore influencer la qualité perceptuelle. Les artefacts de couleur peuvent être créés pour plusieurs raisons telles que les conversions d'espace ou de gamme de couleurs et les conversions EOTF. Par conséquent, une gamme plus large de distorsions de couleur peut être étudiée pour comprendre les effets des artefacts de couleur dans le sens de HDR/WCG. L'évaluation des paramètres de qualité d'image HDR dans le chapitre 4 a d'importants résultats et conclusions, dont certains peuvent être étendus pour le cas de la vidéo. Dans cette thèse, nous n'avons pas pu procéder à une telle évaluation pour la vidéo HDR en raison de la rareté des bases de données de qualité vidéo HDR accessibles au public au moment de cette étude. Par conséquent, une évaluation similaire peut être faite pour le cas de la vidéo HDR, afin de prendre en compte les caractéristiques temporelles.Comme nous l'avons vu précédemment, nous pensons que JOD peut être un score de qualité subjectif universel grâce à la facilité et à la robustesse de son calcul. Bien que les premiers résultats soient prometteurs, cette affirmation doit être validée par un plus grand nombre de données avec des distorsions et des niveaux de qualité variés. Pour autant qu'elles soient validées, les valeurs JOD peuvent être utilisées pour aligner différentes bases de données, ce qui peut améliorer à la fois l'évaluation et l'élaboration de mesures objectives de la qualité HDR.

HDR-VQM PU-VIF Log-IFC PU-IFC PU-MSSIM PU-UQI Photometric-UQI Log-UQI VQM PU-VIF Log-IFC PU-IFC PU-MSSIM PUVIF PU-IFC HDR-VQM Photometric-UQI PU-UQI Log-UQI PUPU-VIF Log-IFC PU-IFC PU-MSSIM PU

Alignment Results

The MOS values of all of the 5 databases were brought together and aligned using the INLSA algorithm with the help of five anchor metrics selected. The scatter plots of MOS values vs. objective quality values estimated by HDR-VQM and PU-VIF metrics after alignment can be seen in This behavior is also evident in Figure 4.3. The metric results become more scattered for the case of Database #2. This is mainly due to the characteristics of this database, i.e., the stimuli were mainly obtained by changing the tone mapping algorithm used in the compression, including many TMOs which are definitely not adapted to be used in coding as they produce strong color artifacts in the reconstructed HDR image, and they are therefore not used in any practical coding scheme. Also, different kinds of distortion are present simultaneously, such as color banding, saturation etc. In some cases, it is noticed that false contours are generated, and some color channels are saturated. This makes the quality assessment problem much more difficult for any objective metric. It may be the case for Database #2, these artifacts decrease the subjective quality a lot whereas the saturation and false contours may limit the decrease in objective quality. Initial inspection of both test images and objective metric results indicate that the considered metrics do not capture the effect of color on quality as humans do.

As viewers were rating very different distortions with respect to the other databases, which contain similar kinds of visual impairments, Database #2 is very challenging for all the quality metrics we considered in this work. Therefore, in order to provide a complete overview of the performance of HDR fidelity metrics, in the following, we report results both with and without Database #2 in the evaluations.

Analysis of Objective Quality Metrics

After the alignment of MOS values of the databases, we obtain an image data set consisting of 690 (or 480 images if Database #2 is excluded) images compressed using different image compression methods such as JPEG, JPEG-XT, and JPEG 2000. In this section, we provide a thorough analysis of the performance of several HDR image fidelity metrics.

The performance of these quality metrics was evaluated both from the point of view of prediction accuracy and of their ability to tell whether two images are actually perceived as being of different quality. 

SIM2 Display Measurements

In order to understand the characteristics of the SIM2 HDR47E S 4K display used in our studies, detailed and extensive measurements were made. For the sake of reproducible research and in order to help other researchers, these measurements are reported in this chapter. These measurements were taken in a room which was sealed to block all external light. Konica Minolta LS-100 was used as a light meter. The focus of the light meter was set to 1-meter, and all of the measurements were taken at a 1-meter distance to the SIM2 display, perpendicularly.

The following sections explain the LED measurements, LCD measurements, and the measurements made to understand the point spread function and the "border effect". The γ values were found using the following equation:

where A = 1 and k ∈ {R, G, B} corresponding to 'Red', 'Green', and 'Blue' channels. The luma values V in,k (p) for pixel value p are found by normalizing the luminance value Y k (p).

This normalization was carried out using the following equation:

where k ∈ {R, G, B} corresponding to the color channels, max(Y k ) and min(Y k ) is the maximum and minimum luminance levels for the color channel k, respectively. The maximum and minimum luminance levels are reported in the 

Input Luma

Red Green Blue

0.0000 0.0000 0.0000 0.0000 

A.3 Point Spread Function & "Border Effect"

In order to fully understand the working principles of the SIM2 display, it is crucial to understand the point spread function (PSF) introduced by the light diffuser layer of the display. Even though a single LED cannot be defined as a point source, within the context of this thesis, we define the light spread caused by a single LED as the point spread function.

For the custom rendering made available through the DVI+ mode of the display, the knowledge of the PSF is imperative in order to estimate the generated and emitted light.

The point spread function of the SIM2 display was measured by Dr. Francesco Banterle.

During the measurement of the PSF, a DSLR camera and a light meter were used. The pixel values acquired by the DSLR camera were normalized using the measurements taken using the light meter. After the normalization, the PSF of the SIM2 display's light diffuser layer has been found with the approximate size of 1000 × 1000 pixels.

During the development process of the display rendering algorithm proposed in Section 2.1, several measurements were taken to ensure that the reproduction of the developed QP values