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Abstract

In the last decade, high dynamic range (HDR) image and video technology gained a lot of

attention, especially within the multimedia community. Recent technological advancements

made the acquisition, compression, and reproduction of HDR content easier, and that led

to the commercialization of HDR displays and popularization of HDR content. In this

context, measuring the quality of HDR content plays a fundamental role in improving

the content distribution chain as well as individual parts of it, such as compression and

display. However, HDR visual quality assessment presents new challenges with respect to

the standard dynamic range (SDR) case. In this thesis, we identify some of these challenges

and suggest solutions to these problems.

The first challenge is the new conditions introduced by the reproduction of HDR content,

e.g. the increase in brightness and contrast. Even though accurate reproduction is not

necessary for most of the practical cases, accurate estimation of the emitted luminance is

necessary for the objective HDR quality assessment metrics. In order to understand the

effects of display rendering on the quality perception, an accurate HDR frame reproduction

algorithm was developed, and a subjective experiment was conducted to analyze the

impact of different display renderings on subjective and objective HDR quality evaluation.

Additionally, in order to understand the impact of color with the increased brightness

of the HDR displays, the effects of different color spaces on the HDR video compression

performance were also analyzed in another subjective study.

Another challenge is to estimate the quality of HDR content objectively, using computers

and algorithms. In order to address this challenge, the thesis proceeds with the performance

evaluation of full-reference (FR) HDR image quality metrics. HDR images have a larger

brightness range and higher contrast values. Since most of the image quality metrics are

developed for SDR images, they need to be adapted in order to estimate the quality of

HDR images. Different adaptation methods were used for SDR metrics, and they were

compared with the existing image quality metrics developed exclusively for HDR images.

Moreover, we propose a new method for the evaluation of metric discriminability based on

a novel classification approach.

Motivated by the need to fuse several different quality databases, in the third part of

the thesis, we compare subjective quality scores acquired by using different subjective test

methodologies. Subjective quality assessment is regarded as the most effective and reliable
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way of obtaining “ground-truth” quality scores for the selected stimuli, and the obtained

mean opinion scores (MOS) are the values to which generally objective metrics are trained

to match. In fact, strong discrepancies can easily be notified across databases when different

multimedia quality databases are considered. In order to understand the relationship

between the quality values acquired using different methodologies, the relationship between

MOS values and pairwise comparisons (PC) scaling results were compared. For this purpose,

a series of experiments were conducted using double stimulus impairment scale (DSIS)

and pairwise comparisons subjective methodologies. We propose to include cross-content

comparisons in the PC experiments in order to improve scaling performance and reduce

cross-content variance as well as confidence intervals. The scaled PC scores can also be

used for subjective multimedia quality assessment scenarios other than HDR.

Keywords: High dynamic range, objective quality assessment, image quality metrics,

display rendering, subjective quality assessment.



Abstract

Au cours de la dernière décennie, la technologie de l’image et de la vidéo à haute gamme

dynamique (High dynamic range - HDR) a attiré beaucoup d’attention, en particulier dans

la communauté multimédia. Les progrés technologiques récents ont facilité l’acquisition, la

compression et la reproduction du contenu HDR, ce qui a mené à la commercialisation

des écrans HDR et à la popularisation du contenu HDR. Dans ce contexte, la mesure de

la qualité du contenu HDR joue un rôle fondamental dans l’amélioration de la châıne de

distribution du contenu ainsi que des opérations qui la composent, telles que la compression

et l’affichage. Cependant, l’évaluation de la qualité visuelle HDR présente de nouveaux

défis par rapport au contenu à gamme dynamique standard (Standard dynamic range -

SDR). Dans cette thèse, nous identifions certains de ces défis et suggérons des solutions à

ces problèmes.

Le premier défi concerne les nouvelles conditions introduites par la reproduction du

contenu HDR, par ex. l’augmentation de la luminosité et du contraste. Même si une

reproduction exacte de la luminance d’une scène n’est pas nécessaire pour la plupart des

cas pratiques, une estimation précise de la luminance émise est cependant nécessaire pour

les mesures d’évaluation objectives de la qualité HDR. Afin de comprendre les effets du

rendu d’affichage sur la perception de la qualité, un algorithme permettant de réproduire

très précisement une image HDR a été développé et une expérience subjective a été menée

pour analyser l’impact de différents rendus sur l’évaluation subjective et objective de

la qualité HDR. En outre, afin de comprendre l’impact de la couleur avec la luminosité

accrue des écrans HDR, les effets des différents espaces de couleurs sur les performances de

compression vidéo HDR ont également été analysés dans une autre étude subjective.

Un autre défi consiste à estimer objectivement la qualité du contenu HDR, en utilisant

des ordinateurs et des algorithmes. Afin de relever ce défi, la thèse procède à l’évaluation

des performances des métriques de qualité d’image HDR avec référence (Full reference -

FR). Les images HDR ont une plus grande plage de luminosité et des valeurs de contraste

plus élevées. Étant donné que la plupart des métriques de qualité d’image sont développées

pour les images SDR, elles doivent être adaptées afin d’estimer la qualité des images HDR.

Différentes méthodes d’adaptation ont été utilisées pour les mesures SDR, et elles ont été

comparées avec les métriques de qualité d’image existantes développées exclusivement pour

les images HDR. De plus, nous proposons une nouvelle méthode d’évaluation des métriques
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objectives basée sur une nouvelle approche de classification.

Motivée par la nécessité de fusionner plusieurs bases de données de qualité, dans la

troisième partie de la thèse, nous comparons les scores de qualité subjectifs acquis en

utilisant différentes méthodologies de test subjectives. L’évaluation subjective de la qualité

est considérée comme le moyen le plus efficace et le plus fiable d’obtenir des scores de qualité

«vérité-terrain» pour les stimuli sélectionnés, et les scores moyens d’opinion (Mean opinion

scores - MOS) obtenus sont les valeurs auxquelles les métriques objectives sont entrâınées

pour correspondre. En fait, de fortes divergences peuvent facilement être rencontrés lorsque

différentes bases de données de qualité multimédia sont considérées. Afin de comprendre la

relation entre les valeurs de qualité acquises à l’aide de différentes méthodologies, la relation

entre les valeurs MOS et les résultats des comparaisons par paires rééchellonés (Pairwise

comparisons - PC) a été comparée. Á cette fin, une série d’expériences ont été menées entre

les méthodologies double stimulus impairment scale (DSIS) et des comparaisons par paires.

Nous proposons d’inclure des comparaisons inter-contenu dans les expériences PC afin

d’améliorer les performances de rééchelonnement et de réduire la variance inter-contenu

ainsi que les intervalles de confiance. Les scores de PC rééchellonés peuvent également être

utilisés pour des scénarios subjectifs d’évaluation de la qualité multimédia autres que le

HDR.

Mots clés: Haute gamme dynamique, évaluation objective de la qualité, métriques de

qualité d’image, rendu d’affichage, évaluation subjective de la qualité.
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Introduction

Context and Motivation

The human visual system (HVS) is able to perceive a much wider range of colors and

luminous intensities present in our environment than the traditional standard dynamic range

(SDR) imaging systems can capture and reproduce. High dynamic range (HDR) technology

attempts to overcome these limitations of SDR imaging systems and to enhance user

experience. Thanks to the advancements in the imaging and display technologies in the last

decade, we are now able to capture, store, transmit, and display images and videos in a more

realistic manner [BADC11, DLCMM16]. Being able to reproduce HDR scenes accelerated

the standardization efforts for HDR image and video compression [Ric13, LFH15, HRE16]

as parts of end-to-end HDR content delivery chain. In order to ensure that compression is

done with the highest quality possible, quality assessment is necessary for HDR images and

videos. However, the enhanced brightness and contrast of HDR introduce new conditions

and constraints to quality assessment problem.

This thesis focuses on the assessment and analysis of the high dynamic range image and

video. Image and video quality assessment problem is a widely studied problem in the signal

processing community [SSB06, SSBC10a, PJI+15] for the case of SDR. However, these

works have a number of limitations. Human perception of light is not proportional to the

physical magnitude of the light. In order to account for this non-linearity, the image pixel

values are processed using a power law curve, called gamma correction function [ITU11], for

SDR displays. After this operation, the SDR pixel values become perceptually linear where

the change in the magnitude will correspond to a proportional change in the perception.

Thus, the objective SDR quality assessment methods assume that the image pixels are

perceptually uniform. This is not the case for the HDR images, as HDR images generally

store physical luminance values, in cd/m2, or pixel values which are proportional to the

physical luminance values. Similarly, subjective HDR quality assessment is expected to be

different since the level and the ratio of brightness are different. For a proper assessment,

these new conditions have to be taken into account.

Although estimation and assessment of the quality of the video are essential for many

other applications, image and video compression is considered as the main source of

distortion throughout the thesis, as it is the most practical and realistic scenario. Based
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on these considerations, we ask the following question: What are the parameters that

affect the estimation of full-reference objective quality and the perception of

subjective quality for the case of HDR image and video compression?

Attempting to answer this question, we first identify two main aspects that may impact

both the objective and subjective quality assessment of HDR image and video:

• Although the luminance range of SDR can be made perceptually uniform using the

gamma correction function, the sRGB gamma correction function does not work for the

brighter and darker luminance values which are introduced by HDR [AMS08]. For this

purpose, a perceptually uniform (PU) encoding of HDR luminance values was proposed

by Aydın et al. [AMS08]. Using PU encoding, HDR pixel values can be represented

as perceptually linear values, and objective quality assessment methods yield better

results compared to using physical luminance (i.e. photometric) values [VDSLD14].

Nevertheless, in [VDSLD14], the display model is simulated, and the exact values

of the emitted luminance are not known. Objective quality metrics designed for

HDR images [NMDSLC15] and videos [NDSLC15] require emitted luminance values

for estimation of quality scores. However, the impact of the knowledge of emitted

luminance values and the effects of different display renderings on HDR quality

assessment have not been studied yet. Additionally, even though some researchers

analyzed the human visual system in terms of brightness and contrast perception for

a wider luminance range, the effects of different display renderings on the perceived

quality of complex images are not thoroughly analyzed in literature. Therefore, we

try to answer the following question: How does the HDR display rendering affect the

HDR quality assessment, both subjectively and objectively?

• Most of the SDR objective quality metrics work only on the luminance chan-

nel [DVKG+00, WB02, WSB03, WBSS04, SBDV05, SB06, CH07], and the effect

of color is generally overlooked in the SDR quality assessment, especially for image

and video compression scenarios. However, the increased luminance in HDR con-

ditions can change the way we perceive the quality, and color may influence the

perceptual quality due to some aspects of color appearance phenomena, e.g. the Hunt

effect, the Bezold-Brücke hue shift, etc. [Fai13]. As we consider compression as our

main distortion throughout the thesis, we try to analyze and understand the impact

of color on compression and thus ask the following question: What are the effects of

the color space transformation and the related color specific distortions on the HDR

quality assessment?

As we analyze the effects of these two aspects and evaluate the quality metrics in the

following chapters, we notice that the subjective evaluation results, i.e. mean opinion scores

(MOS), are found to have different ranges for the considered subjectively annotated quality

databases. This difference is due to several environmental and experiment-related factors
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such as the the training session conducted before the experiment, the aim of the subjective

experiment, the range of the distortions, etc. Even though the objective quality of the

stimuli are the same, the subjective quality score of a stimulus can be different for different

databases. This observation has important results for the subjective quality assessment.

As ‘quality’ is subjective by its definition, most of the objective quality assessment

algorithms use MOS values as ground-truth and find the necessary parameters for their

algorithms using these MOS values. In order to use these databases for either the evaluation

or development of objective metrics, MOS values need to be aligned. This way, subjective

quality scores of two stimuli with the same objective quality scores would be similar. In

order to address this issue, we try to answer the following question: How can we better

define a quality scale that would not be affected by the environmental factors and which

subjective quality assessment methodology should we use?

Throughout the thesis, we aim to answer these questions and understand the underlying

factors which affect the HDR quality assessment, with a series of subjective experiments

and extensive analyses.

Contributions

The following contributions are presented in this thesis. In addition to the contributions

discussed in this section, our collaborations throughout France, Spain, and Turkey have

brought about some other contributions to HDR image and video coding and perception

of brightness in HDR. The complete list of publications is presented in the Publications

section (Chapter 7) of the thesis.

• We propose an accurate HDR frame rendering model after detailed characterization of

the SIM2 HDR47 display in Chapter 2. The proposed model is based on an iterative

scaling algorithm. Experimental results show that the proposed algorithm is able to

both reconstruct the HDR images with their intended luminance values and estimate

the emitted luminance values accurately. This contribution is explained in detail in

the following paper:

Emin Zerman, Giuseppe Valenzise, and Frédéric Dufaux, “A Dual Modulation Algorithm

for Accurate Reproduction of High Dynamic Range Video”, IEEE 12th Image, Video, and

Multidimensional Signal Processing Workshop (IVMSP), Bordeaux, France, July 2016.

• We study the effects of display rendering on both human visual perception of com-

pression quality and objective HDR image quality assessment in Chapter 2. Results

are analyzed both quantitatively and qualitatively and show that using a simple

model of the display response is both necessary and sufficient for objective HDR

quality assessment. The details are presented in the following paper:

Emin Zerman, Giuseppe Valenzise, Francesca De Simone, Francesco Banterle, Frédéric

Dufaux, “Effects of Display Rendering on HDR Image Quality Assessment”, SPIE
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Optical Engineering+ Applications, Applications of Digital Image Processing XXXVIII,

San Diego, CA, USA, August 2015.

• We study the effects of color space transformation on the performance of HDR video

compression in Chapter 3. These effects are analyzed both subjectively and objectively.

Experimental results show that the color space does not have a significant effect on

compression performance and luminance-only metrics can predict the results at least

as efficiently as the color metrics. This study is presented in the following paper:

Emin Zerman, Vedad Hulusic, Giuseppe Valenzise, Rafa l Mantiuk, Frédéric Dufaux,

“Effect of Color Space on High Dynamic Range Video Compression Performance”,

9th International Conference on Quality of Multimedia Experience (QoMEX), Erfurt,

Germany, June 2017.

• We present the results of an extensive evaluation of full-reference HDR image quality

metrics in Chapter 4. This evaluation was done using 25 different quality metrics

some of which were SDR image quality metrics employed after a pixel encoding step.

In total, 690 compressed HDR images, which constitute the largest compressed HDR

image dataset to the best of our knowledge, are used in this evaluation. We find that

the MOS values coming from different databases need to be aligned, and SDR metrics

can perform similar to HDR metrics if pixel values are made perceptually linear.

• We propose a novel method for the evaluation of objective quality metric discrim-

inability in Chapter 4. This proposed method is used with other commonly used

statistical analysis methods to evaluate the objective metrics. Both the details of this

method and the evaluation results mentioned in the previous item are explained in

the following article:

Emin Zerman, Giuseppe Valenzise, and Frédéric Dufaux, “An Extensive Performance

Evaluation of Full-Reference HDR Image Quality Metrics”, Quality and User Experience,

volume 2, April 2017.

• In order to gather more robust subjective scores and to eliminate the need for

alignment that was found to be necessary in Chapter 4, we propose to use pairwise

comparison scaling results as the subjective quality assessment scores in Chapter 5.

Furthermore, we propose to add cross-content pairs to the standard pairwise com-

parisons subjective quality assessment methodology, which is found to reduce the

error accumulation during preference matrix scaling and the confidence intervals of

the resulting quality scores. To this end, a comparison of two different subjective

methodologies is made. The details are described in the following paper:

Emin Zerman, Vedad Hulusic, Giuseppe Valenzise, Rafa l Mantiuk, Frédéric Dufaux,

“The Relation Between MOS and Pairwise Compariosons and the Importance of Cross-

Content Comparisons”, IS&T/SPIE Electronic Imaging, Human Vision and Electronic

Imaging XXII, San Francisco, California, USA, January 2018.
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In order to better organize the thesis, these contributions are presented within five

main chapters which are discussed in the section below.

Structure of the thesis

The thesis consists of five chapters as follows:

• Chapter 1 provides a clear picture of the image and video quality assessment

methods proposed for the standard dynamic range conditions. The details of high

dynamic range imaging and the parts of HDR content delivery chain, from acquisition

to display, are also discussed in this chapter. Finally, the state-of-the-art in both

subjective and objective HDR quality assessment research is explained.

• In order to understand the new distortions that may be induced by the HDR displays,

Chapter 2 discusses and analyzes the effects of display rendering on the HDR

image quality assessment. For this purpose, we develop an HDR frame reproduction

algorithm after thorough analysis and characterization of the SIM2 HDR47 display.

The experimental validation of the proposed rendering method is performed in order

to understand its accuracy for reproduction and estimation of emitted luminance.

We also analyze the responses of the built-in rendering method of SIM2 display and

the developed frame reproduction algorithm, and we compare the effects of these two

rendering methods.

• Chapter 3 analyzes the effects of color space on HDR video compression performance

and quality perception, which is generally neglected in the case of SDR. To this

end, we design and conduct a subjective experiment with pairwise comparisons

methodology, where we compress HDR video sequences with different color space

transformations. For this experiment, we select the compressed video sequences to be

just noticeably different to capture the minute differences. Then, the performance of

compression is measured both objectively and subjectively.

• Based on the findings of the preceding chapters, in Chapter 4, the existing full-

reference HDR image quality metrics are evaluated. We collect different types of

contents and distortions together using four different subjectively annotated HDR

image quality databases, in addition to a new database which we create in this

chapter. These five different databases are merged by aligning their subjective scores,

and a larger set of compressed HDR images is created. In addition to the com-

monly employed statistical analysis methods, we propose a new method to evaluate

metric discriminability, which is based on a classification approach. The objective

quality metrics are analyzed using both the statistical methods and the proposed

discriminability analysis method.
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• Chapter 5 explains the methods of scaling pairwise comparisons data and the

relation between two subjective quality scores: mean opinion scores (MOS) and

pairwise comparisons (PC) scaling results. The PC scaling is expected to conceive a

“universal scale” on which several experiment results might be compared and fused

without a need for alignment of subjective scores as done in Chapter 4. Moreover,

we propose to extend the standard pairwise comparisons methodology by including

cross-content comparisons. The impact of including cross-content comparisons is

assessed subjectively and the findings are presented in this chapter.

The thesis ends with a summary of the experiments conducted, findings, proposed

methods, and the results, as well as a number of directions for the future work in this field.



Chapter 1

Background and State of the Art
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The multimedia quality assessment problem is important for many different areas of

application. Although it is previously studied for standard dynamic range systems, the

increased brightness, contrast, and color range introduced by the high dynamic range

technology bring about new conditions and challenges.

This chapter discusses the previous studies on subjective and objective quality assess-

ment, stages of the HDR content delivery from acquisition to display, and the state-of-the-art

of HDR quality assessment.

1.1 Subjective Quality Assessment

Although the word “quality” has a meaning of “a distinguishing attribute” or “peculiar

and essential character” [qua17b], in the context of multimedia quality assessment, its
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definition is closer to “how good or bad something is” [qua17a]. Indeed, in the white paper

of COST Action Qualinet, the word “quality” is defined as: “[Quality] [i]s the outcome of

an individual’s comparison and judgment process. It includes perception, reflection about

the perception, and the description of the outcome. In contrast to definitions which see

quality as ‘qualitas’, i.e. a set of inherent characteristics, we consider quality in terms of

the evaluated excellence or goodness ... ” [LCMP13]. Human perception, and the perceived

quality, is relative and subjective. Therefore, the subjective quality assessment is the most

reliable and effective way to understand and analyze the multimedia quality.

Perceived quality of the images and videos depend on several factors. These factors

may be simple features such as brightness, contrast, pixel resolution, sharpness, etc. or

may also be more complex such as the content, aesthetics, color grading, etc. Although

it is rather easy to understand the effects of these simple features (as they are used in

many subjective studies, see Subjective Assessment of Image and Video Quality part in this

section), other complex factors such as the artistic intent and aesthetics [MB11] are more

challenging they are found to be ‘highly subjective’ in its nature. In fact, in their images or

movies, artists often include noise, reduce the contrast, and change the color tones in order

to convey a certain feeling or tone. Ideally, these specific modifications must be preserved

during processing [BCMD17b]. However, most applications distort these complex features,

e.g. removing intended noise or increasing the contrast, and can lead to a higher quality.

A similar observation was made in the subjective quality scores of TID [PIL+13] color

image database, where some of the distorted stimuli had higher opinion scores. The target

application, or objective, is also important to understand and solve the quality assessment

problem. For some applications such as medical imaging, remote sensing, or astronomical

imaging the intelligibility can be more important compared to “evaluated excellence or

goodness”. In some other target applications such as surveillance, it is important that the

quality of the media should be both intelligible and good quality at the same time [KO05].

In this thesis, we limit our scope as the multimedia compression scenario and related quality

assessment techniques without focusing to a specific target application.

In subjective quality assessment experiments, the multimedia content (stimuli) are

presented to a group of people (subjects), and people are asked to rate or rank the stimuli

according to the perceived quality of the stimuli. While some subjective psychovisual

experiments use perceptual measurements to understand and analyze the human visual

perception of a specific attribute, most subjective quality experiments try to measure the

overall impression or overall quality of the presented multimedia content. Depending on

the purpose of the experiment and the research question, the responses can be collected

using either direct scaling (mostly using an interval scale) or indirect scaling (e.g. difference

threshold, pairwise comparisons, etc.) methods [DS12]. Direct scaling methods ask viewers

to determine the quality of the stimuli directly using a categorical or numerical interval

scale which can be discrete or continuous. Indirect scaling methods, on the other hand,

ask viewers to rank the presented stimuli according to their preferences, or the viewers
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are asked to increase or decrease certain parameters until they notice a difference in order

to find the threshold or just noticeable difference (JND). Most commonly used subjective

quality assessment methodologies are discussed below.

Subjective Quality Assessment Methodologies

In order to ensure that the subjective experiment results are collected properly and are

relevant, many standards or recommendations were published as guidelines for multimedia

or video quality assessment [ITU08, ITU12b, EBU03]. These standards thoroughly describe

the requirements for the subjective experiments such as the environmental set-up of the

experiment, the procedure and the methodology of the experiment, material selection,

etc. Methodologies can be generally classified as single-stimulus, double-stimulus, and

comparison methods.

Single-stimulus methods present only one stimulus at a time and ask viewers to rate

the quality of the presented stimulus. Some examples include single-stimulus with multiple

repetitions (SSMR) [ITU12b], absolute category rating (ACR) [ITU08], and single-stimulus

continuous quality evaluation (SSCQE) [ITU12b]. In ACR (or SSMR), the presentation of

stimuli and voting are sequential, whereas the voting is continuous in SSCQE and is done

alongside representation of the stimulus (generally video) in real time.

Double-stimulus methods present both the reference and the distorted stimulus to

the viewers before rating. Viewers may be asked to rate the distortion or rate both of

the stimuli. The presentation of the reference and distorted stimulus can be sequential or

simultaneously in side-by-side fashion depending on the variant of the methodology. Some

examples include double stimulus impairment scale (DSIS) [ITU12b], degradation category

rating (DCR) [ITU08], double stimulus continuous quality scale (DSCQS) [ITU12b], and

simultaneous double stimulus for continuous evaluation (SDSCE) [ITU12b]. Similar to the

case of SSCQE, the voting is continuous in SDSCE and is done simultaneously with the

representation.

Comparison methods present viewers two or more stimuli and ask them to compare

the presented stimuli. The presented stimuli can be voted with several levels (from ‘Much

worse’ to ‘Much better’) to indicate preference or relation to the other stimulus [ITU12b].

Alternatively, the subjects may be asked to prefer one of the stimuli (two alternative

forced choice) or, additionally, subjects may be allowed to select the “Same” option (three

alternative forced choice). The comparison methods are called pairwise comparisons (PC)

methods when there are only two stimuli compared at a time. Comparison methods are

more suitable to the cases where the visual difference between two stimuli is small. Although

they are generally used to understand the preference between two processing methods,

they are also used for other purposes such as finding JND points [LJH+15, JLH+16] or

estimation of quality scores [Thu27, BT52, LDSE11] (PC scaling is further discussed in

Section 5.1).
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The subjective assessment of multimedia video quality (SAMVIQ) [EBU03] is an

alternative method which is a mixture of single-stimulus, double-stimulus and comparison

methods. Viewers are presented a number of stimuli, and they can select a stimulus to rate.

Viewers can select the stimuli in their order of preference, go back, compare, and correct

their votes. This unique property of SAMVIQ makes it a multi-stimulus methodology.

The acquired subjective data is analyzed generally by finding the mean opinion score

(MOS) and standard deviation for the presented stimuli [ITU12b, ITU08, ITU12c]. De-

pending on the methodology, MOS values are found either by taking the mean of the

opinion scores (e.g. ACR), or taking the mean after subtracting the opinion scores from

each other (e.g. DSCQS). The weaknesses and strengths of these different methodologies

were compared by many researchers as discussed more in the next section.

Comparison of Subjective Quality Assessment Methodologies

There has been a substantial amount of work comparing different methodologies for the

subjective quality assessment. In [PW03a], Pinson and Wolf compared single-stimulus

and double-stimulus continuous quality evaluation methods (SSCQE and DSCQS) and

found that the quality estimates are comparable to one another. In [THOT10], ACR, DSIS,

DSCQS, and SAMVIQ were compared. The authors found no significant difference between

the compared methods. The compared methods were also ranked for the assessment times

and the ease of evaluation. It was found that from fastest to slowest, the ranking was ACR,

DSIS, SAMVIQ, and DSCQS. The ease of evaluation analysis yielded a similar result with

the exception that ACR with 11-point scale was the hardest to evaluate whereas ACR with

5-point scale was the easiest. SAMVIQ and ACR were further compared in [RPLCH10],

and SAMVIQ was found to require fewer subjects and longer time compared to ACR. In

the study of Mantiuk et al. [MTM12], four different subjective methods were compared:

single-stimulus categorical rating (absolute category rating with hidden reference (ACR-

HR)), double-stimulus categorical rating, forced-choice pairwise comparison, and pairwise

similarity judgments. No significant difference was found between double-stimulus and

single-stimulus methods, in agreement with the previous studies. The forced-choice pairwise

comparison method was found to be the most accurate and requiring the least experimental

effort amongst the four compared methods.

The methodology of a subjective experiment depends on the intent and research problem.

Although direct rating methods are able to obtain quality scores directly, ranking methods

such as pairwise comparison offer additional preference information.

Subjective Assessment of Image and Video Quality

Subjective assessment is used for many applications of computer graphics, computer vision,

and multimedia signal processing, such as perception of visual artifacts in image render-

ing [VLD07, VCL+11], image editing and computer vision [CFL+15, XPCH17], view con-
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version and segmentation [ASAU12, CHA+14], perception of artifacts like blur [MDWE02,

CDLN07] and blocking [KMFH05, MK05], and compression and multimedia applica-

tions [ABA05, BLCCC09, SJPK+10, SSBC10a, HRDSE12, CCPP15]. In addition to its

usage for assessing subjective quality of certain applications, a number of subjectively-

annotated databases were created after subjective assessment studies [Win12]. Some

of these databases focused on image quality, and they are widely used: Laboratory of

Image and Video Engineering (LIVE) Image Quality Database [WBSS04, SSB06], Com-

putational and Subjective Image Quality (CSIQ) [LC10], and Tampere Image Database

(TID) [PLZ+09, PJI+15]. Some others focused on video quality. This group includes Video

Quality Experts Group (VQEG) FR-TV Phase I [VQE00, RLCW00], VQEG HDTV [PS10],

IRCCyN/IVC 1080i [PPLC08a, PPLC08b], IRCCyN/IVC SD RoI [FBC09, BCPLC09],

PoliMI-EPFL Video Quality [DSNT+09, DSTN+10], Poly NYU [OZW10], and LIVE Video

Quality [SSBC10b, SSBC10a] databases.

There is a very strong link between the subjective studies and objective quality as-

sessment methods. In fact, most of these databases are used as ‘ground-truth’ data for

objective quality assessment metrics. Therefore, it is very important to understand the

relationship between the perception of quality and the representative quality score.

1.2 Objective Quality Assessment

Despite their accuracy, subjective quality assessment experiments are expensive to con-

duct in terms of time and resources. The quality of the presented stimuli can also be

estimated with the help of algorithms and computers, and it is called objective quality

assessment. Although not as precise as subjective quality assessment methods, objective

quality assessment methods are much faster and crucial for many applications.

Objective quality metrics are classified into three categories according to the availability

of the undistorted reference. Full-reference (FR) metrics require the reference in order to

estimate the objective quality of the stimulus. Reduced-reference (RR) metrics need only a

part of the reference information such as edges, areas, etc. No-reference (NR) metrics do not

require any reference information. In this thesis, we only consider full-reference objective

quality metrics as it is the most commonly used type of objective quality assessment metric

within the compression framework.

For the case of SDR, plenty of objective quality assessment metrics were proposed. In

the following subsections, we discuss some of the most popular metrics for image and video

quality used in this thesis. For a thorough analysis of objective quality metrics, interested

readers can refer to [Win05], [WB06], and [LJK11].
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1.2.1 Image Quality

Full-reference image quality metrics estimate the quality of an image with respect to

its reference. Most of these quality metrics work only on the luminance channel of the

images. The most popular image quality metrics are discussed below in four classes: simple

arithmetic, structural, information-theoretic, and color difference metrics.

Simple Arithmetic Difference Metrics

Mean squared error (MSE) and peak signal-to-noise ratio (PSNR) are two most commonly

used simple arithmetic difference metrics. MSE is calculated as:

MSE =
1

width× height

width∑
i=1

height∑
j=1

(IReference(i, j)− ITest(i, j))
2 (1.1)

where i is the column index and j is the row index, IReference and ITest are the reference

and test images with image width and height, respectively. Although MSE is not well

correlated with human perception and its use is a topic of debate [WB09], it is still widely

used in many applications where a simple and quick image difference metric is required.

PSNR is also popular especially for very specific applications where the type and

magnitude of the distortion are within some range, such as image and video compression.

However, it has the same drawbacks, as it is a logarithmic representation of MSE:

PSNR = 10 log

(
maxI

2

MSE

)
= 20 log

(
maxI√
MSE

)
(1.2)

where maxI is the maximum pixel value of the image I.

Structural Similarity Metrics

Universal quality index (UQI) [WB02], structural similarity index (SSIM) [WBSS04], and

multiscale SSIM (MSSIM) [WSB03] can be classified together as they all measure structural

similarity. In order to estimate objective quality, UQI uses simple statistical parameters of

the image pixel value such as mean, variance and covariance of the pixel value between

two images. These parameters are arranged to find the correlation of pixel values between

the images, as well as the change in image luminance and image contrast. To find a quality

estimate, these terms are multiplied.

SSIM is an extension of UQI metric. Similar to the UQI, mean signifies luminance,

variance signifies contrast, and covariance signifies the structural similarity between the

reference and the test image. Additionally, some constant variables are included in order

to regularize the quality score estimated by the metric. MSSIM further extends SSIM by

making computations on multiple scales of image. It calculates the contrast and structure

comparison parameters for different scales of the image and multiplies them with the
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luminance comparison parameter.

Information-Theoretic Metrics

The information fidelity criterion (IFC) [SBDV05], visual information fidelity (VIF) [SB06],

and its pixel-based version (VIFp) use information theoretic approaches. These metrics

analyze the natural scene statistics in order to estimate the quality of the given stimulus.

For this purpose, IFC estimates the quality scores by calculating the sum of the conditional

mutual information I(CN ;DN |sN ), which is computed considering a source, CN , and

distortion model, DN , for different wavelet decomposition subbands. VIF also includes a

human visual system (HVS) model in addition to the source and distortion models in order

to include the uncertainties in the human visual perception of images, and this uncertainty

is modeled as an additive Gaussian noise.

Color Difference Metrics

In order to find the differences between colors, the International Commission on Illumination

(Commission Internationale de l’Éclairage - CIE) developed CIE1976 (∆E∗ab) [CIE86] color

difference metric which finds the Euclidean distance between two colors using L∗a∗b∗

color space. It assumes that L∗a∗b∗ color space is perceptually uniform, where the unity

Euclidean distance would correspond to the same amount of perceptual difference. In

order to address the nonlinearity of L∗a∗b∗ color space, this metric was improved with the

developments of CIE94 (∆E94) [CIE95] and CIE DeltaE 2000 (∆E00) [LCR01].

Additionally, ∆E00 is further extended to be computed on S-CIELAB instead of

CIELAB [ZW97]. In their paper, Zhang and Wandell proposed to separate color image

into luminance and color opponent (R-G and B-Y) channels and filter spatially before

the color conversion to CIELAB. Then, the CIE ∆E00 is computed on spatially filtered

S-CIELAB color space, and we denote this spatial extension as ∆ES00. According to a recent

study [OJKP16], ∆E00 and ∆ES00 are found as the best performing color difference metrics.

1.2.2 Video Quality

Objective video quality assessment is harder compared to image quality assessment because

of the need to consider the temporal variations of the video. The perception of video is also

different compared to the case of image due to the response of human visual system and

its properties such as eye fixation duration and visual short-term memory. Even though

special care is required for objective video quality assessment, image quality algorithms are

also commonly used by pooling the frame-by-frame results. Averaging pixel values over the

frames is one of the most popular pooling methods used for this purpose.

Among many other works for full-reference video quality assessment [WM08, MB11], the

two most commonly used video quality metrics are ‘video quality metric’ (VQM) [PW04]

and motion-based video integrity evaluation (MOVIE) [SB10].



14 1. Background and State of the Art

VQM computes seven parameters through several filtering operations. These param-

eters are collected to analyze different aspects of video quality such as the differences

in edge information (blurring, edge sharpening, or edge enhancement via si_loss and

si_gain), shift in edge orientation (either for edges lost with blurring or edges created as a

result of blocking via hv_loss and hv_gain), color impairments (via chroma_spread and

chroma_extreme), and temporal impairments (by multiplying contrast information and

temporal information via ct_ati_gain). These parameters are then combined linearly to

find the VQM quality score.

MOVIE uses separable Gabor filterbanks to filter the video sequences. In order to find

the spatial error, the mean squared normalized error (error between the filtered video

sequences is normalized with a division operation) for each sub-band of the filtered video

sequence is found. This per sub-band error is combined with another error term where

Gaussian filtered video is used, and these error terms are pooled together to find Spatial

MOVIE index. The Temporal MOVIE index is found by pooling the temporal distortion,

which is computed using the optical flow information of the reference video and Gabor

filtered video sequences, for each frame. The overall MOVIE quality scores are found by

multiplying the Spatial MOVIE and Temporal MOVIE indices.

1.2.3 Evaluation of Quality Metric Performance

In order to measure the performance of an objective quality metric, several methods are

used [ITU04a, ITU12c, ITU04d]. These methods can be divided into two categories. The

first category includes the most commonly used statistical evaluation methods, and the

second category includes alternative methods for the evaluation of objective quality metric

performance.

Statistical Evaluation Methods

Statistical evaluation methods are used by an overwhelming majority of studies on qual-

ity assessment research. These methods are described in the ITU-T Recommendation

P.1401 [ITU12c] in detail. The objective quality metric results, using either a linear, poly-

nomial, or non-linear function, are fitted to subjective quality scores, and these fitted

(i.e. predicted) quality scores are used to compute the statistical evaluation metrics de-

scribed below. According to the ITU Recommendations [ITU12b, ITU04a, ITU04d], the

performance of objective quality metrics is characterized by the following three attributes:

• Prediction accuracy

• Prediction monotonicity

• Prediction consistency
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Prediction accuracy is computed by two evaluation metrics: Pearson correlation coef-

ficient (PCC) and root mean squared error (RMSE). PCC finds the correlation between

two sets of data, which are the subjective quality score and the predicted quality score for

metric evaluation problem, and it can be interpreted as the linearity of the relation. PCC

is calculated as:

PCC =
1

n− 1

∑n
i=1(Ssubj,i − Ŝsubj,i)(Spred,i − Ŝpred,i)

σSsubj,iσSpred,i
(1.3)

where i is the stimulus index, n is the number of stimuli, Ssubj,i and Spred,i are the subjective

and predicted quality scores, respectively, σSsubj,i and σSpred,i are the standard deviation

for subjective and predicted quality scores, and Ŝsubj,i indicates the mean of Ssubj,i. RMSE

is the absolute prediction error, and it can be interpreted as it assumes linearity to find

the accuracy of the given predicted (objective) quality scores compared to the subjective

quality scores. RMSE is calculated as:

RMSE =

√√√√ 1

n− 1

n∑
i=1

(Ssubj,i − Spred,i)2 (1.4)

Ideally, the relationship between subjective and predicted quality results should be

monotonic. That is, the predicted quality scores should increase when there is an increase in

subjective quality scores. Spearman rank-order correlation coefficient (SROCC) is commonly

used to find the prediction monotonicity. As it does not assume any relationship between

the predicted and subjective quality scores, it is also invariant to the non-linear fitting.

SROCC is calculated as:

SROCC =

∑n
i=1(Rsubj,i − R̂subj,i)(Rpred,i − R̂pred,i)√∑n

i=1(Rsubj,i − R̂subj,i)2 ×
√∑n

i=1(Rpred,i − R̂pred,i)2

(1.5)

where Rsubj,i and Rpred,i are the ranks of Ssubj,i and Spred,i, respectively, and R̂subj,i and

R̂pred,i are the mean ranks of Ssubj,i and Spred,i.

Prediction consistency is another attribute that needs to be checked in order to determine

the performance of an objective quality metric. In addition to the other attributes, it is

important to understand how consistent the prediction results are. For prediction consistency,

outlier detection (OR) is used. It is calculated as:

OR =
Total number of outliers

n
=

∑n
i=1 foutlier(i)

n
(1.6)
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where foutlier is the count function which counts the outliers:

foutlier(i) =

1 if |Ssubj,i − Spred,i| > 1.96× σSsubj,i
0 otherwise

(1.7)

In order to understand the performance of the objective quality metrics, the numerical

results of the PCC, RMSE, SROCC, and OR are reported in many studies [SSBC10a,

PJI+15, HBP+15, HRE16]. Without any other information, the differences may not be

clear and may be misleading in certain cases. Therefore, it is important to understand the

significance of these differences. In ITU-T Recommentation P.1401 [ITU12c], guidelines for

the significance analysis of PCC, RMSE, SROCC, and OR are given. In addition to the

numerical results of the statistical evaluation methods, significance analysis results are also

necessary to understand the impact of the difference between two objective quality metrics.

Alternative Evaluation Methods

The statistical evaluation methods (except RMSE* [ITU12c]) assume the subjective quality

scores as deterministic ‘ground-truth’ data. However, the subjective quality scores are

probabilistic as they are collected from a sample set of human population. The alternative

evaluation methods described in this part treat subjective quality scores as random variables,

and therefore, they present a better understanding in evaluating quality metrics.

Brill et al. [BLC+04] proposed a method to analyze the performance of the objective

quality metric and find the minimum significant objective quality score difference, also

called “resolving power”.

The steps of this algorithm are briefly described in the following: First, the objective

quality scores (Sobj) are converted to a common scale (Spred) by fitting the scores to a 4th

order polynomial function, and the quality difference ∆S = Spred,k − Spred,l is found. To

find the probability of significance to ∆S, subjective results are used in a one-tailed z-test.

The probability of significance is then found by sweeping the threshold for ∆S value and

the ∆S value corresponding to the 95% significance probability, p = 95%, is selected. Using

the selected quality difference value, the classification rates are found as:

• False Tie, i.e. Ssubj,k 6≡ Ssubj,l and Spred,k ≡ Spred,l

• False Differentiation, i.e. Ssubj,k ≡ Ssubj,l and Spred,k 6≡ Spred,l

• False Ranking, i.e. Ssubj,k < Ssubj,l and Spred,k > Spred,l or vice-versa

• Correct Decision

where k 6= l, the ≡ sign represents the statistical equivalence (i.e. Spred,k ≡ Spred,l if

Spred,k − Spred,l < ∆S), and Spred,k is the objective quality metric prediction of MOS for

data point k.
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This method is used in several other studies [PW08, Bar09, HŘE15, NVH16] and

standardized in ITU Recommendations [ITU04c, ITU04b]. Nevertheless, it has some

drawbacks. It needs polynomial fitting, and fitting may not be successful in some cases.

Also, the resolving power is defined as a function of the objective metric result itself,

i.e. RP (Sobj) = |f−1
(
f(Sobj) + ∆S

)
− Sobj |, where RP (·) is the resolving power function

and f(·) is the fitting function. Thus, it is not trivial to analyze a variable function for

a large number of metrics. Instead, it enables graphical comparison of the classification

performance of the objective metric.

Another method for evaluating objective metric performance was proposed by Krasula

et al. [KFLCK16]. Similar to the method of Brill et al. [BLC+04, ITU04b], z-scores

are calculated for subjective quality scores. The statistical equivalence (or statistically

significant difference) of these subjective quality scores is determined by checking whether

the probability of two stimuli being different from each other is greater than 95%. This

probability is calculated using the cumulative distribution function (CDF) of the normal

distribution. The results indicate whether two stimuli are equivalent and which one is

better if they are different. Without any fitting or preprocessing, the objective score

differences are calculated. These objective metric differences are then used to find the

receiver operating characteristics (ROC) for each objective quality metric. The ROC values

and correct classification rates are then used to determine if an objective quality metric is

better or worse than, or equal to, the other objective quality metric. In addition to the

different/similar and better/worse analyses, a statistical significance method was proposed

in this work.

In parallel to the work of Krasula et al. [KFLCK16], we also developed an alternative

metric evaluation method similar to their method. The similarities and differences are

discussed in Section 4.3.3 where we also explain our method.

The quality assessment methods described above are used for SDR display systems;

however, HDR changes some of the assumptions of SDR technology fundamentally. There-

fore, the HDR imaging and content delivery is discussed in the next section to provide an

understanding of HDR technology.

1.3 HDR Imaging and Content Delivery

The human visual system is capable of perceiving much larger range of brightness, contrast,

and color compared to those SDR systems can offer. Legacy SDR displays can display

up to 250 cd/m2 and have contrast ratio of ∼ 1000 : 11 whereas humans can see up to

9 magnitudes of luminance range (contrast ratio ∼ 109 : 1) [Hoe07] with a simultaneous

dynamic range higher than the SDR display (when the eyes adapt to a certain range – see

Figure 1.1).

1A standard Dell 20 (E2016H) monitor was taken as reference. http://www.dell.com/en-ie/shop/
dell-20-monitor-e2016h/apd/210-afpd/monitors-monitor-accessories. Accessed online: 02/12/2017

http://www.dell.com/en-ie/shop/dell-20-monitor-e2016h/apd/210-afpd/monitors-monitor-accessories
http://www.dell.com/en-ie/shop/dell-20-monitor-e2016h/apd/210-afpd/monitors-monitor-accessories
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Figure 1.1 – Comparison of SDR and HDR display systems with respect to the real world luminance
values and to the capabilities of human visual system. (Values of the scale are in
cd/m2.)

Until recently, the SDR display framework was the limiting factor for SDR imaging

and content delivery. Because of the displays, all captured content were converted to

8-bit integer pixels even though the camera sensors are able to capture a wider range.

The compression systems were also adapted to the 8-bit (or 24-bit with 3 color channels)

structure of images and videos.

With the advancements in HDR displays, HDR technology removes some of these

limitations and lets us to capture, store, transmit, and reproduce images and videos with

a larger range of luminance and color. In order to understand the challenges and the

limitations of HDR quality assessment, we need to understand the core concepts of HDR

imaging and content delivery. Therefore, in this section, we discuss the main points of

HDR frame acquisition and storage, HDR image and video compression, reproduction and

display of HDR content.

1.3.1 Acquisition and Storage

Although many camera sensors have the capability of capturing higher dynamic range

content, the frame acquisition pipeline [RSYD05] produces “display-referred” (also called

“output-referred”) content. That is, the images or video frames are captured and processed

for a specific set of output devices (in this case, SDR displays). Using the techniques

discussed in this subsection, most of the HDR imaging techniques/devices aims to capture

“scene-referred”content [MKMS07], which would have the values proportional to the physical

luminance values of the scene itself.

Acquisition

In order to capture the luminance values of the scene, both the darker parts and the brighter

parts of the scene should be acquired correctly. For this purpose, different techniques are
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used. HDR frame acquisition techniques can be divided into three [UHK16] according to

the method used to capture the natural scene:

• Temporal methods

Temporal methods capture multiple images with different exposures in order to get the

information from both dark and bright parts of the scene. Several approaches exist for

traditional temporal bracketing [MP95, DM97, MN99, GN03, RBS03, LGYS04]. A detailed

explanation for these methods can be found in [GS16]. These methods are easy to use but

take time to capture an HDR image. Therefore, they are susceptible to different sources of

disturbances such as misalignment and ghosting. As these methods require time, the camera

can move during the capture and the captured images may need to be aligned [War03, TM07].

Similarly, ghosting effects may occur if moving objects are present in the scene, and de-

ghosting may be required to ameliorate the image [ZBW11, GKTT13, KAR16].

• Spatial methods

In order to reduce the time required, the combination of different exposures can be done

spatially. These spatial methods decrease the time required to capture an HDR image in

exchange for increased noise and decreased spatial resolution. Nayar and Mitsunaga [NM00]

proposed high dynamic range image capture using spatially varying sensors. Using neutral

density filters, these sensors are able to capture the scene in different levels of exposures.

The acquired image is then processed to yield the HDR image. Rolling shutter is also used

to capture HDR images. In their work [GHMN10], Gu et al. proposed two different methods

for this purpose. One of these methods uses auto exposure by finding the exposure times of

each row adaptively. Their other method uses specific readout and exposure scheme which

reads three consecutive lines in different exposure times in order to generate HDR image

and handle motion blur.

• Optical methods

Optical methods change the amount of light directed to a sensor or camera using either

an optical device called beamsplitter or a semi-transparent mirror. This way, the image

captured by the sensor receiving a small percentage of the light can be considered as short

exposure image and the image captured by the sensor receiving a larger percentage of

the light can be considered as long exposure image. This method was employed using two

cameras during the capture of Stuttgart HDR video dataset [FGE+14]. The beamsplitters

can also be used within the camera [AA04], and multiple sensors can be used to receive

different percentages of light [TKTS11].

In addition to these methods, another very important and historically prior HDR

content acquisition method is the generation of HDR content using computer graphics

software such as 3D modeling and rendering [War94, Pau02]. These computer generated

images simulate the light absorbed, diffused, and reflected by the objects and create a

realistic scene.
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Storage

HDR images are either generated by computer graphics rendering software or captured by

HDR acquisition methods discussed above. For further processing (e.g. post-processing,

compression, transmission), the scene-referred pixel values need to be stored in floating

point numbers. However, using floating point numbers for each pixel is costly (96 bits-per-

pixel if single-precision is used). Three different pixel encoding and storage formats are

commonly used for this purpose: RGBE, TIFF, and EXR. These file formats are used for

HDR images and video frames alike, as there is no other specific file format for HDR video

at the time of writing this thesis.

As proposed in [War91, War94], the Radiance RGBE format (which uses .hdr file

extension) represents each pixel with 32 bits. As its name implies, these bits are divided

between red, green, blue, and exponent channels where each of them has 8 bits. The same

exponent value is used for all of the three mantissa parts of R, G, and B channels, and the

largest mantissa has its leftmost bit set to 1 (i.e. the largest mantissa is between 128 and

255). The 32-bit pixels are encoded with run-length encoding. This file format can also

be used with CIE XYZ color space to store color values without the limitation of RGB

(BT.709 [ITU15a] or BT.2020 [ITU15b]) color gamut. In that case, the file format can be

also called XYZE.

Tagged image file format (TIFF) is another file format used for storing HDR images. In

the LogLuv TIFF HDR file format [Lar98b, Lar98a], the colors are converted to CIE (u’,v’)

color coordinates, and luminance is found by taking the logarithm of the Y channel of CIE

XYZ converted image. It uses either 24-bit (10 bits of luminance and 14 bits for combined

chrominance channel) or 32-bit (16 bits of luminance and 8 bits for each chrominance

channel) structure. The resulting image is stored in a TIFF image.

OpenEXR [BKH03] is a commonly used open-source HDR image file format (which

uses .exr file extension). Each pixel consists of three half-precision floating point numbers

(16-bit per-channel and 48-bit per-pixel) for three color channels, including a sign bit, 5

bits of exponent, and 10 bits of mantissa. Although the required size for the same image

is greater compared to RGBE and LogLuv TIFF, OpenEXR can store a wider range of

luminance and color thanks to its ability to store negative numbers. In addition to its

precision, it can support lossless and lossy compression.

1.3.2 HDR Image and Video Compression

The wider range of luminance and color of HDR comes at the cost of large amount of

data which is difficult to store, transmit and reproduce. Therefore, efficient compression

algorithms are necessary for storing and transmitting the HDR content. Although the

file storage formats discussed above apply lossless compression to the HDR images, lossy

compression is also necessary to meet the needs of transmission channels for the images

and videos. In this subsection, we discuss the image and video compression systems for
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HDR content.

HDR Image compression

In order to compress HDR images, several compression methods were proposed through-

out the last decade [WS06, STZ+07, KE13, Bol14, AMR+15]. All of the HDR image

compression algorithms discussed here are backward-compatible.

In order to compress HDR images in a backward-compatible fashion, Ward and Sim-

mons [WS06] proposed JPEG-HDR. This method uses tone-mapping which is dynamic

range conversion from HDR to SDR image or video. In this encoding scheme, the HDR

image is tone-mapped to an 8-bit SDR image and the residual image is found. Both the

tone-mapped image and the residual image are encoded using standard JPEG compression

algorithm, and the compressed tone-mapped image is placed in base layer whereas the

compressed residual image is placed in the extension layer. This encoding scheme can be

extended to use other backward-compatible image compression algorithms such as JPEG

2000, as it is done in [VDSLD14].

JPEG XR [STZ+07] and JPEG 2000 [Bol14] are other compression methods that can

accommodate high bit-depth images which may include HDR images. Korshunov and

Ebrahimi [KE13] also proposed an JPEG backward-compatible compression method for

HDR images. They apply three simple tone-mapping operators, i.e. linear, logarithm, and

gamma, and they compare the proposed method to three other HDR image compression

schemes discussed above, i.e. JPEG-HDR, JPEG 2000, and JPEG XR.

JPEG-XT [AMR+15, AMR+16] (ISO/IEC 18477) is the backward-compatible HDR

image compression standard of Joint Photographic Experts Group (JPEG). In addition to

the enhancement layer, it generates a base layer bitstream which is compatible with legacy

SDR JPEG decoder. In order to generate the base layer, the HDR image is tone-mapped

and compressed with standard JPEG encoder. The residual image is then processed and

encoded according to one of the several profiles chosen. The quality levels for both base

layer and enhancement layer can be selected separately. Detailed information on JPEG XT

can be obtained from [Ric13, AMR+15, Ric16, AMR+16].

HDR Video compression

Most of the video compression methods, as well as the state-of-the-art compression al-

gorithms [TLSS09, SOHW12], are developed for SDR systems using 24-bit SDR images.

Furthermore, these compression methods assume that the relationship between the real

world luminance and the electrical signals are perceptually proportional. Although this

assumption holds for the case of SDR, the perceptual uniformity of HDR is found to be

different from the SDR case [AMMS08].

The relationship between the optical and electrical signals are defined through opto-

electronic transfer (OETF) and electro-optical transfer (EOTF) functions. For legacy SDR
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systems, a power-law EOTF [ITU11] was designed for cathode ray tube (CRT) systems for

gamma correction, and until recently, all of the displays were using the same EOTF. However,

the wider luminance range of HDR requires a more sophisticated EOTF and OETF for HDR

display systems. For this purpose, perceptual quantizer (PQ) [MND12, SMP14] EOTF and

hybrid log-gamma (HLG) [Bor14] OETF are proposed, and they are recommended for use

in HDR television systems [ITU17a, ITU17b]. Particularly, PQ EOTF finds widespread

use within the multimedia community. In the call for evidence (CfE) of Moving Picture

Experts Group (MPEG) for HDR/WCG video compression [LFH15], PQ EOTF is used in

the compression of anchor HDR video bitstreams. Additionally, some researchers focus on

the development of an adaptive PQ [YJK16, LSH+17] in order to improve its performance.

The compression of HDR videos can be done using either backward-compatible or

non-backward-compatible [MDBR+16] algorithms. The former [WS04, MEMS06, LK08,

FKZ+17] generally use a tone-mapping operator (TMO) in order to generate a base

layer stream which can be viewed in SDR displays, and a residual stream which contains

additional information for HDR video decoding. The latter [Lar98a, MKMS04, GT11]

can encode videos with high bit-depth quantization and employs state-of-the-art video

encoders [TLSS09, SOHW12].

In addition to generating an SDR bitstream, backward compatible HDR video compres-

sion algorithms also consider temporal information to reduce any temporal artifacts, such

as flickering and color change, and generate an enhancement/residual layer for conversion

to HDR. In [MDBR+16], the HDR image encoding algorithm proposed by Ward and

Simmons [WS04] was extended for video compression by using a newer version of photo-

graphic TMO [KRTT12] which considers temporal changes. The original algorithm uses

photographic TMO [RSSF02] to extend standard JPEG and stores the ratio between the

HDR image and tone-mapped image. Lee et al. [LK05] proposed an HDR video compression

algorithm which uses a temporally consistent TMO [LK07] in order to create SDR bitstream,

and a ratio stream is found similar to the hdrjpeg. This ratio stream is then filtered with

a bilateral filter to reduce the noise. Mantiuk et al. [MEMS06] also proposed a backward

compatible video compression algorithm which encodes the tone-mapped [RSSF02] SDR

frames using MPEG-4 encoder. The residual frames are then processed to remove noise

and encoded with MPEG encoder as well.

Although layer-based coding approaches are suitable and popular methods for back-

ward compatible video compression, the coding approach (or structure) and backward

compatibility is not directly correlated. Despite using a TMO-based encoding scheme, the

work of Ozcinar et al. [OLVD16] does not have any constraint on the quality or plausibility

of the SDR stream generated by their algorithm, and focus on the quality of decoded HDR

frames. The SDR images (or video frames) generated using a TMO or pixel transformation

for the purpose of HDR compression may not be always visually pleasing. Nevertheless, the

generation of visually pleasing (including the artistic intent of the original scene) SDR im-

ages or videos is very important for backward-compatibility [KD13, MMNW13, GRG+16].
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Figure 1.2 – HDR video compression pipeline as described in MPEG CfE [LFH15], and standardized
in ITU-R BT.2100 [ITU17b]

In [GRG+16], Gommelet et al. proposed a TMO in order to preserve the SDR image

quality and rate-distortion performance of a scalable coding approach for HDR content.

They also found that even though it performs well in terms of the quality of reconstructed

HDR frames, TMO proposed by Mai et al.[MMM+11] does not yield good objective qual-

ity compared to the reference SDR. Photographic TMO [RSSF02] is one of the TMO

found to perform well for both visual appeal and visual quality [LCTS05, GRG+16], and

it is used by many of the backward-compatible video compression algorithms discussed

above [WS04, MEMS06, GRG+16, MDBR+16].

Non-backward compatible algorithms commonly map much wider range of luminance

to a more compact range using a transform function such as PQ, logarithm, or a custom

perceptual quantization function [MKMS04]. They also use a higher bit depth compared to

backward compatible methods. Mantiuk et al. [MKMS04] proposed an HDR video coding

method which converts the color space to Lpu’v’ and extends MPEG-4 encoder to encode

HDR content. Computed similar to LogLuv [Lar98a], Lpu’v’ includes 11-bit luma channel

and 8-bit u’ and v’ chroma channels. Garbas and Thoma [GT11] also proposed another

method for encoding HDR videos. The Adaptive LogLuv algorithm [MT10] was modified

and, in order to reduce flickering, temporal consideration was included. The colors of HDR

video frame were converted to Lu’v’ color space similar to LogLuv [Lar98a] before 12-bit

luma and 8-bit u’ and v’ chroma channels are encoded.

In addition to these studies, the encoding scheme described in the MPEG CfE [LFH15]

can also be considered as a non-backward compatible compression method. The compressed

bitstreams need to be converted back to HDR pixel values by an EOTF, and they cannot be

displayed after decoding. Due to its use of High Efficiency Video Coding (HEVC) Main 10

profile, this method is also called as “HDR10”, and its core components are standardized in

ITU-R Recommentation BT.2100 [ITU17b], which include 10-bit or 12-bit bit depth; ITU

BT.2020 [ITU15b] wide color gamut (WCG) color space; use of RGB, Y’CbCr, ICtCp (or

ITP) [LPY+16] signal formats; and PQ [MND12, SMP14] or HLG [Bor14] optical transfer
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functions. An example of content delivery chain for HDR10 can be seen in Figure 1.2.

Dolby also recently published [Dol17] their own HDR content delivery format using 12-bit

depth and dynamic metadata in addition to PQ EOTF and BT.2020 color space.

1.3.3 Reproduction and Display

Due to the brightness and contrast requirements, HDR reproduction and display is one of

the most challenging aspects of HDR technology, and it was not possible until recently.

Because the contrast of LCD is limited, locally dimmable backlights are used for HDR

content reproduction [SHS+04]. This separation of brightness generation and color is called

dual modulation [NDSLC16a], and the most widespread dual modulation method is 2D

dimming via LED backlights and LCD panels.

Reproduction of HDR content may need processing, depending on the capabilities of

the display device. In this subsection, we will briefly discuss the tone-mapping techniques

and HDR display rendering methods.

Tone-Mapping Techniques

In order to reproduce captured and transmitted HDR scenes on a display with limited

dynamic range, tone-mapping techniques are employed. The target media can be an

electronic display which presents images and videos, or printed material. Regardless of the

target media, tone-mapping techniques can be used to re-target the dynamic range of the

HDR content. The tone mapping methods can be classified into two categories: global and

local.

Global tone mapping algorithms affect the whole image, and the same operation is

applied to all of the pixels. In general, these algorithms can be easy to implement, and

they can work in close-to real-time. These algorithms can be very basic simple operations

such as linear, logarithmic, or exponential functions [BADC11]. The global methods

can have different objectives such as brightness reproduction [TR93], modeling visual

adaptation [FPSG96], histogram adjustment [LRP97], adaptive log mapping [DMAC03],

minimization of reproduction error [MMM+11], or display adaptive presentation [MDK08].

Local methods, on the other hand, affect parts of image as the tone-mapping operator

is applied on a neighborhood of pixels at a time. These algorithms can preserve local

contrast and can look more appealing. However, the selection of kernel size is crucial as

it can create halos around the edges. Some examples include the work of Chiu [CHS+93],

Pattanaik [PFFG98], Reinhard [RSSF02], and Ashikmin [Ash02].

For the video tone-mapping, a special care needs to be taken due to the temporal

variation among video frames. In order to avoid strong temporal artifacts, temporally

coherent TMOs should be developed [BCTB13]. For an exhaustive analysis of tone-mapping

algorithms, interested readers can refer to [BADC11, BCTB13, EMU17].
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HDR Display Rendering

Dual modulation algorithms aim to modulate the backlight and the color components

separately. For reproduction of HDR content, the most commonly used scheme is LED-LCD

dual modulation. LED values can be modified by rendering algorithm to ensure that the

backlight is dimmed in the dark parts of the display. A similar approach is used in standard

LCD displays of notebook computers and smartphones by global backlight dimming [LT08]

for power consumption.

Local backlight dimming is a widely researched topic for SDR LCD displays [BNK+13,

MBK+15, NDSLC16a]. Some of the local backlight dimming methods use simple measures

to determine the backlight value such as maximum or average of the pixels [FKM00].

However, taking maximum pixel value may lead to LCD leakage [BNK+13] and may not

yield any power saving whereas taking average pixel value can yield darker backlight where

it should actually be brighter. Some other methods use additional information of the content.

Cho and Kwon [CK09] use the average value with a correction term which is computed by

finding the difference between the maximum and average brightness locally. Nam [Nam11]

computes the backlight for all the image and segment-based parts of the image in order to

improve local contrast and keep image appealing by avoiding discontinuities within the

image. Lin et al. [LHL+08] use a histogram based approach. They divide the backlight

into zones corresponding to LEDs and find weights for each zone by finding the inverse

function of the cumulative distribution function (CDF) of the global histogram. Another

method proposed by Atkins [Atk12] computes LCD values firstly, contrary to how it has

been done in the local backlight dimming literature. Some other studies attempt to solve

the dual modulation problem by formulating it as an optimization problem and solving

it either globally [BNK+12, BNK+13] or using blocks [BMN+14, CCLS15]. Some of these

studies are compared in [BNK+13] and [MBK+15].

Most of these existing works mainly focus on SDR LCD local backlight dimming

displays, and they consider a much smaller number of LEDs or edge-lit displays. Due to

the very high number of LEDs (∼ 2000) and very large point spread function (PSF) of

the light diffuser layer in HDR display systems, determination of LED and LCD values

becomes an optimization problem. However, even with graphical processing units (GPU)

and field-programmable gate arrays (FPGA), solving an optimization problem with this

scale is not possible in real-time [THW+07]. Therefore, sub-optimal solutions are necessary.

The first attempt for HDR display rendering was done by Seetzen et al. [SHS+04]. In

this method, the backlight is calculated by taking the square root of the target backlight

intensity of the image. The LED values are found by carrying out a single iteration of

Gauss-Seidel method, and the LCD values are found by dividing the image pixel values to

the simulated backlight of the LED values found. This method is explained in more detail

in the work of Trentacoste et al. [THW+07].

Another HDR display rendering algorithm was proposed by Narwaria et al. [NDSLC16a].
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This method has several steps as following. First, the HDR image is converted from scene-

referred values to display-referred pixel values, and, for each pixel, the maximum of each

color channel is taken to find the target backlight image. The backlight image is filtered

with a max-filter to ensure that it will have the minimum required luminance to show each

pixel. Next, using a power law function, the backlight is split into two components, and

LED values are normalized to keep the corresponding LCD values smaller than 255. The

target backlight is downsampled, and with a gradient based optimization step, LED values

are found. The backlight corresponding to the determined LED values is generated using

the PSF of the LEDs. Lastly, LCD pixel values are found by dividing the image to the

simulated backlight, and the LCD values are gamma corrected.

Albeit very similar to the method of Narwaria et al. [NDSLC16a], we propose another

HDR display rendering algorithm in this thesis which differs in a few aspects. The main

differences are the power law split and LED normalization for LCD values. In order to

ensure the most accurate reproduction of HDR image pixels, the target backlight is not split

with a power law function. Alternatively, it can be considered as we are using a power law

split using the exponent power of 1 to generate a higher contrast backlight. Additionally,

the LED values are not normalized for LCD pixel values. Because the backlight is not

split, this normalization step is not needed. The proposed algorithm also considers the

power limitations of the display in order to ensure that the displayed image luminance

values are as close as possible to the intended luminance values. This consideration for

power limitations of the display also allows for a much accurate estimation of the emitted

luminance. Details of the proposed algorithm are discussed in Section 2.1.2.

1.4 Quality Assessment for HDR Content

The previous section briefly introduces the new conditions and limitations brought by

HDR imaging and content delivery. In this section we discuss the subjective HDR quality

assessment studies and the objective HDR quality assessment methods used.

1.4.1 Subjective Quality Assessment

The human visual perception of luminance is not proportional to the physical real world

luminance. It follows the DeVries-Rose and Weber-Fechner laws for low luminance and

higher luminance values, respectively [KP86]. The wider range of luminance may change

the importance of distortion artifacts in the regions darker or brighter than SDR luminance

range. Therefore, subjective quality assessment is essential to understand how human

perception of quality changes in HDR luminance range. In addition to the assessment of

HDR content quality, understanding human perception and preferences of the viewers for

these new conditions of HDR are also important.
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Perception of HDR Content

The effects of wider dynamic range are analyzed in many perceptual subjective studies

using HDR displays. After a subjective experiment presenting distorted images on an SDR

and HDR display, Aydın et al. [AMS08] found that the increased brightness increases the

visibility of artifacts and distortions become more annoying. They also analyzed the human

visual system for HDR luminance range and proposed perceptually uniform (PU) encoding

in the same work. Akyüz et al. [AFR+07] answered two very important questions related to

the perception of HDR and SDR contents in the presence of an HDR display: “Do viewers

prefer HDR or SDR content on an HDR display?” and “What makes the HDR experience

superior?”. They found that viewers prefer HDR images to SDR images, and there is no

significant difference between best exposure SDR image and tone-mapped HDR image.

They also found that linearly augmented SDR images (i.e. the dynamic range of SDR

image is increased using a linear mapping function) are perceived either better than or as

good as HDR images.

Many studies were conducted to analyze the user preference regarding the peak lu-

minance of the display and ambient illumination. Seetzen et al. [SLY+06] conducted a

subjective experiment to find out the relationship between the peak luminance and the

contrast. One of their findings was that the viewers prefer brighter displays. Yoshida

et al. [YMMS06], Rempel et al. [RHLM09], and Hanhart et al. [HKE14b] also made similar

observations. Yoshida et al. [YMMS06] conducted a series of subjective experiments in

order to find good properties of a TMO and design one based on subjective experiment data.

They found that the responses of the viewers depend on the question asked. If they were

asked to find the best looking images, viewers enhanced contrast, whereas they avoided

changing contrast when they were asked to find the image most similar to the original.

In their study, Rempel et al. [RHLM09] found out that the viewers prefer lower display

brightness for low ambient light. They also found that HDR displays do not cause visual

fatigue and, regardless of ambient illumination, viewers prefer minimizing the black level

of the display. In a recent study, a subjective study was conducted in order to analyze the

brightness preference for SDR to HDR conversion by Bist et al. [BCMD17a]. The authors

found that the viewers’ preferred brightness is highly content dependent. In fact, subjects

preferred to have lower peak brightness for images with higher rate of bright pixels.

Tone-Mapping

Several subjective studies were conducted for the evaluation and comparison of tone-

mapping algorithms. Ledda et al. [LCTS05] conducted a subjective experiment to validate

6 different TMOs against the reference HDR image shown on an HDR display. They also

proposed to use a specific pairwise comparisons test to evaluate TMOs, where two SDR

and one HDR displays are prepared and users are asked to select the TMO they preferred.

Subjective results were analyzed by analysis multiple comparison test, and iCAM [JF03]
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and photographic tone mapping [RSSF02] are found to perform very well in different cases.

Using a methodology similar to one suggested in [LCTS05], Narwaria et al. [NPDSLCP14]

analyzed whether the viewers prefer single-exposure SDR image or tone-mapped image.

The experiment results showed that there is no statistical evidence that single-exposure

SDR images are better or worse than tone-mapped images, which is in agreement with the

findings of Akyüz et al. [AFR+07].

In [NDSLCP14a], Narwaria et al. analyzed five different TMOs by conducting a subjec-

tive experiment. In this experiment, 210 compressed HDR images were used, which are

compressed with JPEG 2000 using a backward-compatible encoding scheme [WS06]. The

results were also statistically analyzed. In another study, Narwaria et al. [NDSLCP14b]

conducted a subjective experiment in order to find how visual attention is affected by

different TMOs, which can be important for backward-compatible compression methods.

In a recent work, Krasula et al. [KNFLC17] conducted a subjective test for viewers’ prefer-

ence on TMOs and evaluated objective metrics using the subjective data collected. They

found that the presence of reference affects the viewers’ preferences significantly. They also

proposed a methodology, similar to [LCTS05], to evaluate tone-mapped images with or

without HDR reference. Furthermore, the created subjectively annotated data was made

publicly available.

Image Compression

Subjective quality assessment methods are used to evaluate different HDR image compres-

sion methods and parameters [NDSLCP13, NDSLCP14a, VDSLD14, HBK+14, KHR+15].

They are also used to collect opinion scores for evaluation of objective quality metrics. Nar-

waria et al. [NDSLCP13] conducted a subjective experiment with 140 HDR images which

are compressed with a tone-mapping based HDR image compression method using JPEG.

The database was also used to evaluate four different objective quality metrics. As also

mentioned in ‘Tone-Mapping’ part above, in another study, Narwaria et al. [NDSLCP14a]

created an HDR image quality database by subjective annotation of 210 compressed HDR

images. The compressed images were created using a backward-compatible compression

scheme using JPEG 2000. Valenzise et al. [VDSLD14] conducted a subjective test using

50 compressed HDR images. The HDR images were compressed using JPEG XT and

the backward-compatible compression scheme using JPEG and JPEG 2000. Subjective

experiment results were then used to compare the performance of objective quality metrics

such as HDR-VDP, PSNR, and SSIM. PSNR and SSIM were calculated using either

perceptually uniform or logarithmically encoded pixel values. The results showed that the

SDR quality metrics can successfully estimate objective quality when they are computed

using PU encoded pixel values.

Hanhart et al. [HBK+14] evaluated 13 objective quality metrics by conducting a

pairwise comparisons subjective experiment with 20 HDR images compressed using JPEG
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XT Profile A. Subjective results were converted to MOS using a Thurstone Case V [Thu27]

scaling method before evaluation. The results indicate that commonly used metrics such as

PSNR and SSIM perform poorly. In another study, Hanhart et al. [HKE14a] evaluated 11

different TMOs for their use in the JPEG XT Profile A compression. For this purpose, two

different crowdsourcing experiments were conducted. One of the experiments measured the

quality of the compressed images whereas the selected TMOs were evaluated in the other

experiment using a set of attributes, and the most suitable TMOs were found. Using DSIS

methodology, Korshunov et al. [KHR+15] subjectively evaluated the quality of 240 HDR

images compressed using JPEG XT encoder. For this HDR image quality database, 20 HDR

images were selected and tone-mapped using either [RSSF02] or [MMS06]. The images were

compressed with JPEG XT Profiles using 4 bitrates and 3 profiles. The subjective scores are

used to evaluate the objective quality metrics for JPEG XT standard [AMR+15, HBP+15].

Video Compression

In order to compare several state-of-the-art HDR video compression algorithms, Mukherjee

et al. [MDBR+16] conducted a subjective test. In order to keep the experiment short, a

ranking based evaluation method was used. The videos were compressed to have either

high or low quality level. The subjective experiment results were analyzed for statistical

significance, and the video compression methods were ranked accordingly. Non-backward

compatible compression algorithms were found to be performing better than the backward

compatible algorithms.

Subjective experiments can also be conducted for exploratory intents such as under-

standing the requirements of a good objective quality metric. In order to investigate the

performance of existing objective quality metrics, Řeřábek et al. [ŘHKE15] evaluated

several objective quality metrics by conducting a subjective quality assessment using

compressed HDR video sequences. Five video sequences were compressed at four bitrates

using HEVC with either YCbCr color space, 10-bits, and 4:2:0 chroma subsampling or

YCbCr color space, 12-bits, and 4:4:4 chroma subsampling.

Additionally, standardization activities of MPEG for HDR/WCG video compression has

driven some other subjective quality assessment studies for video compression. In [HŘE15],

Hanhart et al. conducted a subjective test in order to evaluate the responses (nine Category

1 and four Category 3a submissions) to the MPEG CfE for HDR/WCG video coding.

Pairwise comparisons methodology with three alternatives was used as subjective test

method. The subjective results were then used to evaluate objective quality metrics, and it is

found that the quality differences among submissions and the anchor video can be detected

using PSNR-DE1000, HDR-VDP-2 and PSNR-Lx metrics. In another study, Hanhart

et al. [HRE16] evaluated the responses (five Category 1 and four Category 3a submissions)

to the MPEG CfE for HDR/WCG video coding both subjectively and objectively. DSIS

was used as the subjective test methodolody. They found that the HEVC video coding
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efficiency for HDR video compression can be increased compared to the anchor of MPEG

CfE.

Subjective assessment methods are versatile and can be used for many different ap-

plications as we discussed in this subsection. For quality assessment, objective quality

metrics are much more efficient compared to subjective qualit assessment methodes, with

an acceptable accuracy. In the following subsection, we discuss objective HDR quality

assessment.

1.4.2 Objective Quality Assessment

As we mentioned previously, SDR multimedia quality assessment methods assume that the

image or video is perceptually proportional to the human perception, which is not true for

HDR. Still, objective SDR quality metrics can be used for HDR content provided that the

pixel values are converted to perceptually uniform scale before computation [VDSLD14].

For this purpose, perceptually uniform (PU) encoding [AMS08], logarithmic function, or

perceptual quantizer (PQ) EOTF [MND12, SMP14] are used [HŘE15, HRE16]. This usage

of SDR quality metrics for HDR content is also analyzed in Chapter 4.

At the time of writing this thesis, only three objective HDR quality assessment metrics

exist: DRIM [AMMS08], HDR-VDP [MDMS05, NMDSLC15], and HDR-VQM [NDSLC15].

Being the first quality metric designed for HDR content, HDR-VDP was developed

by extending Visible Differences Predictor (VDP) [Dal93]. In this extension, HDR-VDP

simulated the human eye for light scattering and modified the amplitude nonlinearity

and contrast sensitivity function (CSF) in order to accommodate the luminance range of

HDR. The HDR-VDP metric was further extended by Mantiuk et al. [MKRH11] to include

luminance masking, multi-scale decomposition, and quality score estimation. Moreover, the

pooling weights for quality prediction step was recalculated by Narwaria et al. [NMDSLC15]

using both SDR and HDR images with subjective scores, making the metric more accurate

for HDR image quality estimation.

Dynamic range independent image quality assessment metric (DRIM) [AMMS08] detects

three types of changes in the structure of the image: loss of visible contrast, amplification

of invisible contrast, and reversal of visible contrast. In order to find these changes, DRIM

first determines whether the structure (or the contrast) is visible. This is done using the

HDR-VDP’s contrast detection model which yields a perceptually normalized map. This

map is then split into several bands of different orientation and spatial bandwidth. Then a

distortion map is generated after pooling of results from several subbands. Although this

metric is able to detect the structural changes and is useful for qualitative analysis of the

methods, it does not have a pooling mechanism to create a single quality score for the test

image. Therefore, its use in quality prediction is rather limited.

HDR-VQM [NDSLC15] quality metric was designed specifically for HDR video. It

estimates HDR video quality in a number of steps. First, the emitted luminance values
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are found or simulated, and perceived luminance values are found after PU encoding. The

frames are then filtered using log-Gabor filters, and subband errors are calculated. The

quality score is predicted after the error-pooling step which includes pooling of subband

error for each short-term spatio-temporal tubes followed by a spatial and long-term temporal

pooling.

These metrics were evaluated in several studies for compressed HDR images [AMR+15,

HBP+15] and videos [ŘHKE15, HRE16]. However, these evaluation studies use data sets

which are limited either in size or types of distortions. In addition to these studies, results

of an extensive evaluation of objective quality methods are presented in Chapter 4.
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As discussed in detail in Section 1.3.3, HDR display technology has considerably evolved

in the last decade. HDR displays are now capable of reproducing much greater and much

smaller luminance values, and thus, they have a higher peak luminance and high contrast

compared to SDR displays. These conditions may introduce their own distortions compared

to the case of SDR where the electro-optical transfer function (EOTF) is standard and the

backlight is simple and uniform. Therefore, these augmented viewing conditions are needed

to be considered for HDR image and video quality assessment. In our studies, we use a

SIM2 HDR47E S 4K display. It is necessary to understand how the SIM2 display works

and which parameters affect display rendering in order to analyze the viewing conditions

and their effects on the quality assessment.

For objective quality assessment of HDR content, numerous studies try to take into

account these new conditions [MDMS05, NMDSLC15, NDSLC15, AMMS08] some of which

are evaluated in Chapter 4. Some other works [AMS08, VDSLD14] try to adapt the HDR

image pixel values by encoding them as perceptually uniform in order to use existing



34 2. Effects of Display Rendering on Quality

SDR objective quality metrics for HDR content. These new conditions are also taken

into consideration for the subjective quality assessment of HDR images. Even though

some studies address the effect of rendering algorithms [KMBF13, MBK+13], most of

the subjective studies focus on specific parameters, mostly the increased brightness and

contrast. In their work [HKE+15], Hanhart et al. showed that human observers prefer

images displayed at high brightness levels to images visualized at low brightness levels, a

result that was previously observed also by Akyuz et al. [AFR+07]. A similar observation

was made by Mantel et al. [MKF+15] and Rempel et al. [RHLM09] in their study where

they found that the preferred peak luminance increases with the increase in ambient light.

This brings forth the thought that the quality experienced by humans viewing images

on an HDR display may differ due to rendering differences [AMS08, MBK+13]. In this

chapter, we try to find out how the HDR display rendering affects both the objective

quality estimation and subjective HDR quality perception.

The accurate estimation of the luminance values emitted from the display is also crucial

to understand and analyze objective quality assessment algorithms. HDR image and video

quality algorithms HDR-VDP and HDR-VQM [MDMS05, NMDSLC15, NDSLC15] need

luminance values for calculation. These luminance values can be acquired in two ways:

a measurement of the display luminance can be made, or a simulation can be made to

estimate the luminance values of the display. Simulation (or estimation) of the emitted

luminance values is also necessary to design new objective quality metrics or to use existing

SDR quality metrics for HDR content. In order to simulate luminance values, it is necessary

to know the relationship between the pixel values of the input HDR file and the emitted

luminance values for the display’s rendering.

In this chapter, we assess the effects of the display rendering on both subjective and

objective quality assessment. For this study, we used a SIM2 HDR47 display which uses

the dual-modulation paradigm to generate higher brightness and contrast values. This

assessment of the effects on quality was made by comparing two different display rendering

methods: the built-in SIM2 rendering method, and a display rendering method which

we propose in this chapter. In the following sub-sections, we describe the image and

video reproduction of the proposed display rendering method, present the results of the

experimental validation, and discuss the effects of using different display rendering methods

on subjective and objective HDR image quality.

2.1 Accurate Reproduction of High Dynamic Range Frames

The most popular method for the production of HDR displays is using different layers

for brightness and color adjustment. This is done by coupling a locally dimmed light

source, such as a panel of LEDs, with a front LCD screen. This process allows both the

generation of high peak brightness values and keeping black levels very low with the help

of local dimming [SHS+04]. But, both LED and LCD pixel values have to be computed
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in order to reproduce an HDR frame within this framework. Given an HDR picture,

the problem of estimating the corresponding LED/LCD panel values is known as dual

modulation [SHS+04, NDSLC16a].

Due to the current technical limitations of HDR displays, dual modulation requires a

global optimization approach, since the overall rendering of an HDR picture may change

due to perturbations in the value of a single LED and can be influenced by the rendering

of the previous video frames [ZVD16]. In practice, many dual modulation algorithms relax

this globality constraint and act locally, trading reproduction accuracy for computational

complexity. For example, the rendering algorithms built into HDR displays generally give up

peak brightness and dynamic range in order to render HDR video in real time, at high frame

rates (e.g. built-in display rendering of SIM2 HDR47 display [ZVD16]). Indeed, built-in

rendering is often a common choice in many applications, e.g., it has been used in the

subjective evaluation of HDR compression performance [KHR+15, LSH+17], tone-mapping

studies [NDSLCP13, NDSLCP14a], and color studies [MSL+16, ZHV+17]. Nevertheless,

in some psycho-visual experiments, it could be desirable to reproduce the luminance levels

stored in the HDR content as accurately as possible, or at least to know the actual per pixel

luminance emitted by the display with a sufficient precision. The accurate reproduction

and estimation of luminance values, both for HDR images and videos, constitute the goal

and the contribution of the work presented in this section.

In this section, we propose a dual modulation algorithm for HDR image and video

content, which has the following three characteristics: i) it can accurately reproduce the

intended HDR luminance; ii) it enables us to estimate precisely and with pixel granularity

the luminance emitted by an image/video displayed using the proposed method; iii) it takes

into account temporal dependencies in HDR video, reducing the impact of reproduction

artifacts such as flickering. We tested the proposed algorithm on a SIM2 HDR47E S 4K

display [SIM14], comparing it with the built-in rendering provided by the manufacturer.

We show that our method is systematically more precise in reproducing HDR content

and that we can accurately estimate the emitted luminance, which is unfeasible with the

built-in rendering. At the same time, our results on HDR video are encouraging, showing

that temporal fluctuations can be reduced substantially by smoothing LED values across

time.

In the following sub-sections, we describe the characteristics of the SIM2 display used,

the proposed dual modulation algorithm for rendering HDR images and video, and the

experimental validation results.

2.1.1 Display Characteristics

The rendering algorithm we propose is designed to work on SIM2 HDR47E S 4K dis-

plays [SIM14]. The peak luminance of the display is measured as 4250 cd/m2, and its

contrast ratio is higher than 4 · 106 : 1. The screen is a dual-modulated display which
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(a) Layers of SIM2 display

(b) Point Spread Function

Figure 2.1 – SIM2 HDR display has (a) three layers: LED array constituting the backlight layer,
light diffuser layer, and the LCD panel. Light diffuser layer is necessary to avoid
discontinuities on the final image, and it introduces (b) a point spread function (PSF).

includes an LED array for backlight, a light diffuser layer, and an LCD panel in this order,

as shown in Figure 2.1.(a). There are 2202 independently controllable LED lights and a

1920× 1080 pixel LCD panel which can be controlled separately. The SIM2 display can be

controlled using the automatic built-in rendering (also known as HDR Mode), or through

a custom dual modulation input provided by users (also known as DVI Plus Mode). In the

built-in rendering mode, the user supplies the HDR image to a software that converts it to

Log Luv color space. The Log Luv image is then processed internally by the display, which

determines the values of LEDs and of LCD pixels transparently to the user, i.e., one cannot

know the values of single LEDs and of LCD pixels obtained in this process. In DVI Plus

mode, the user can supply the screen with customized LED and LCD values by indicating

them in the first two lines of the image. Hence, it enables the rendering of HDR image and

video frames using different rendering algorithms. In this work, the DVI Plus (also denoted

as DVI+) mode was used to drive the display.

In order to develop the rendering algorithm, it is necessary to model the characteristics

of the display properly. For this purpose, several measurements were made using the Konica

Minolta LS-100 light meter. Afterwards, a set of parameters were found to model the

display: the maximum power consumption of the display, average power consumption of

each LED, the point spread function (PSF) induced by the light diffuser layer. The point

spread function can be see in Figure 2.1.(b). Detailed explanations for these measurements

and the findings can be found in Annex A.

We would like to note that the proposed approach is still valid with other display

models, provided that some parameters of the device are known or previously measured.
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Notably, these include the maximum power consumption of the display, as well as an

estimation of the PSF induced by the light diffuser layer.

2.1.2 A Dual Modulation Algorithm for Image Reproduction

As discussed in Section 1.3.3, several dual-modulation algorithms for LED/LCD displays are

proposed in the literature [FKM00, LT08, CK09, BNK+12, BNK+13, KMBF13, BMN+14,

CCLS15]. Most of these works solve the dual modulation problem using some kind of

approximation, e.g., they find LED backlight illumination by taking the maximum, av-

erage, or weighted average of pixel values [FKM00, BNK+12], or use local block-based

approaches [LT08, CK09]. LCD values are generally obtained after the computation of the

LED values, by dividing the HDR image luminance by the backlight. Dual modulation can

be formulated more rigorously as an optimization problem [BNK+13, KMBF13, CCLS15].

However, these approaches have been mainly targeting low-resolution backlight panels, with

tens of LEDs, in the context of low-consumption, locally dimmed LCD displays. A larger

LED setup has been considered by Seetzen et al. [SHS+04], who use a local approximation

of the gradient with a single Gauss-Seidel iteration to solve for 760 LEDs and 1280× 1024

LCD pixels in their prototype HDR display. Current HDR technology, instead, requires

dealing with thousands of LEDs, as well as with their large point spread function.

The rendering process on an HDR display with LED-LCD system is essentially a

deconvolution problem, i.e., finding the values of the LEDs and of the LCD pixels in such a

way to minimize the distance from a target input image. In this process, a critical factor is

the asymmetry in the resolution of the LED and LCD panels – the number of pixels in the

LCD panel is much greater than the number of LEDs, and the point spread function (PSF)

of the LED diffuser has a size of approximately 1000× 1000 pixels, which is necessary to

avoid discontinuities in the LCD illumination. Additionally, there are other aspects such as

the LCD leakage [BNK+13] and power constraint. Due to their non-ideal response, LCD

cells allow a small percentage of incoming light to pass through them even when they are

completely closed (black), and this phenomenon is called leakage. Power constraint, on

the other hand, requires that the overall brightness should be modulated to account for

the maximal power consumption of the display. In practice, this causes some very bright

regions of the image to be clipped, causing detail loss [BNK+13].

Since SIM2 has 2202 LEDs, any direct optimization approach will be computation-

ally very complex and infeasible to use. So, an iterative scaling algorithm was pro-

posed [ZVDS+15, ZVD16]. The algorithm consists of the following parts:

• Preprocessing

• Computation of target backlight

• Iterative scaling
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• Computation of LCD pixel values

The details of these parts are described part by part below.

Preprocessing

First, we find the target display-referred luminance values from the input HDR image.

HDR images are generally scene-referred, i.e., they store values proportional to the physical

luminance of the scene. However, the luminance range that can be reproduced by an

HDR display is clearly inferior to that of the scene. Therefore, the images should be

“graded” to the display capabilities manually or by an automatic process, e.g., by using the

display-adaptive tonemapping of Mantiuk et al. [MDK08].

Here, we assume that the input images have been previously graded to the display,

and we just saturate luminance values in excess of the maximum display brightness, i.e.

4250 cd/m2. We denote the preprocessed image as I.

Computation of Target Backlight

Next, we find the target optimal backlight, BLtarget, that minimizes the required backlight

luminance to meet the power constraint and maximizes the fidelity to the target pixel

values. In order to find BLtarget, we define two other backlight images: BLmin and BLmax.

As liquid crystal cells can only block the light and cannot generate light, at least BLmin

is required to make sure that the backlight is sufficient for all the pixels of LCD panel.

If the backlight is sufficient enough, the intended luminance values can be reached by

changing only LCD values. In order to find BLmin, we compute the local maxima of the

target luminance over 30-pixel radius windows corresponding to the area of a single LED.

This ensures that even a very small bright point will have enough backlight. BLmin can

also be defined as:

BLmin = max
p∈Ap

(I(p)) (2.1)

where I is the image and p is the pixel within the 30 pixel radius area Ap.

Liquid crystal cells are known to be non-ideal and leak some light even if they are

completely closed. In order to control the effects of LCD leakage, the maximum luminance

for each pixel, BLmax, is found by dividing the image luminance values of that pixel by

the estimated LCD leakage factor ε = 0.005. The LCD leakage factor ε is found empirically

by measuring LCD leakage in different test patterns, using a Minolta LS-100 luminance

meter. BLmax can also be defined as:

BLmax =
I

ε
(2.2)

The resulting backlight images are compared pixelwise and the minimum values of

BLmin and BLmax for each pixel are collected within an image BLallowed. The BLallowed
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(a) HDR Image (Tonemapped using [MDK08] for
representation)

(b) BLtarget – Target backlight

(c) LED0 – LED Array initialized by sampling
target backlight

(d) S0 – Scale for the first iteration

(e) BL2 – Backlight found in second iteration (f) LEDfinal – LED array found

(g) BLfinal – Backlight found (h) LCD pixel values

Figure 2.2 – Steps of the HDR image rendering algorithm for the HDR image Market3
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values are smoothed and median filtered, and BLtarget is found. This filtering is done in

order to avoid any spurious peaks resulting from single bright spots or noise. This also

enables us to meet the energetic constraint of the display. Examples of an HDR image and

its target backlight can be seen in Figure 2.2.(a) and (b), respectively.

After the computation of the target backlight, the LEDs and backlight are initialized

by sampling BLtarget on LED locations and taking the convolution with the Point Spread

Function (PSF) (found in an earlier study [ZVDS+15]), respectively. That is:

BLt = LEDt ∗ PSF (2.3)

where t is the iteration number and t = 0 for initialization. LED0 corresponds to the initial

LED values found by sampling BLtarget, and BL0 is the backlight of LED0. An example

of LED0 can be seen in Figure 2.2.(c).

Iterative Scaling

A scale map is generated in order to update the LED values using the following equation:

St =
BLtarget
BLt

(2.4)

where t is the iteration number. The LED values are multiplied with the scale map found

as follows:

LEDt = LEDt−1 × St−1 = LEDt−1 ×
(
BLtarget
BLt−1

)
(2.5)

LEDt is then clipped to take values in [0, 1], i.e., it is projected onto the set of feasible

LED values at each iteration. After the LED values are found, backlight values are also

found using the Equation 2.3.

The operations in Equations 2.3 and 2.5 are carried out consecutively by increasing

the iteration number until
∑
||PU(BLt)− PU(BLt−1)||2 falls below a threshold. Taking

perceptually uniform (PU) [AMS08] encoded backlight makes the computation of the cost

function perceptually meaningful and speeds up convergence. When the iterative scaling

converges, the resulting LEDfinal values are possibly further scaled linearly to meet the

power constraints of the display. Examples of a scale map, backlight of the second iteration,

final LED array, and final backlight –BLfinal– can be seen in Figure 2.2.(d)-(g).

Computation of LCD Pixel Values

LCD pixel values are found by dividing (pixel-wise) each color channel of the original image

by the final backlight estimate, and by applying gamma correction, i.e.:

LCDk =

(
Ik

BLfinal

)1/γk,p

=

(
Ik

LEDfinal ∗ PSF

)1/γk,p

(2.6)
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where I is the HDR image, k ∈ {R,G,B} is the RGB channel indicator, p ∈ {0, 1, 2, ..., 255}
is the LCD pixel value, and γk,p is the gamma correction factor, determined experimentally

(see Annex A.2).

As explained in the Annex A.2, the gamma values are different for each channel which

is in agreement with the results of Nam [Nam10]. However, the measured gamma values

are not constant through the color channel. Therefore, the gamma correction is carried

out using a look-up-table. For this purpose, the gamma values were found by measuring

each color channel for LCD pixel values p ∈ {0, 1, 2, ..., 255}. The resulting γ values were

found by dividing the measured luminance of that color channel to the input value of the

LCD panel. Hence, the used γk,p is a function of both k and p where k is the RGB channel

indicator and p ∈ {0, 1, 2, ..., 255} is the LCD pixel value. An example of LCD pixel values

can be seen in Figure 2.2.(h).

Our Matlab implementation of this algorithm takes an average of 19 seconds (about 24

iterations) on an Intel i7-3630QM 2.40 GHz 8 GB RAM PC for rendering a 1920× 1080

pixels image. Examples of tonemapped HDR images, LED values, backlights, and LCD

values of HDR images “AirBellowsGap”, “DevilsBathtub”, “MasonLake(1)”, “LasVegasStore”

contents from Fairchild’s HDR dataset [Fai07] are presented in Figure 2.3.

Estimation of Emitted Luminance

Knowing the values of LEDs and LCD pixels, we can estimate the emitted luminance. The

HDR image pixels produced by the display are the product of backlight and LCD values.

That is, for each color channel k, the rendered image I ′k is:

I ′k = (LEDfinal ∗ PSF )× LCDk. (2.7)

Assuming ITU-R BT.709 primaries [ITU15a], we can compute the emitted luminance as:

L = 0.2126× I ′R + 0.7152× I ′G + 0.0722× I ′B, (2.8)

2.1.3 A Dual Modulation Algorithm for Video Reproduction

Rendering HDR video requires additional care compared to HDR image, as frame-by-frame

rendering might lead to temporal flickering due to high-frequency changes in the backlight.

Even though it is possible to reduce the flickering using post-processing [NMBF13], it is

preferable to directly handle it during rendering. Burini et al. [BMN+14] considered temporal

variation in video sequences and, in order to reduce the flickering effect, implemented

an infinite impulse response (IIR) filter integrated into their dual modulation method.

They proposed a block-based gradient descent algorithm, and they minimize both the

reproduction error and the power consumption required by the LEDs at the same time.

However, their work was effective for an LCD display with only 16 LEDs, and it is
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Figure 2.4 – Example of temporal smoothing of backlight pixel trajectories for the “ChristmassTree”
video sequence.

computationally too demanding to be extended to configurations with thousands of LEDs.

The HDR dual modulation algorithm described in the previous section provides accurate

HDR reproduction. However, small perturbations in the original HDR pixel values may lead

to overall changes in the produced backlight. In order to reduce the impact of flickering,

we consider two solutions. First, we initialize the LED values for the current frame f

using those of the previous frame, i.e., LEDf
0 = LEDf−1

final. Second, we smooth the target

backlights across time, over consecutive overlapping windows, as described in the following.

Given a video frame f , its initial target backlight BLftarget is computed as explained in

Section 2.1.2’s Computation of target backlight step. Then, for each frame, we consider a

look-ahead window of N frames, and we arrange their corresponding backlights in a stack

Af , i.e.:

Af =
[
BLftargetBL

f+1
target...BL

f+N−1
target

]
. (2.9)

where the dimensions of Af are 1080× 1920×N . Afterwards, we aim at smoothing the

trajectory of backlight pixel values over the window, by computing their upper envelope.

To this end, we extract the backlight pixel signal across time for each pixel location (i, j),

i.e., we obtain the N -dimensional column vector Afi,j . In order to compute the envelope of

this signal, one cannot simply employ a low-pass filter, as averaging may produce lower

target backlight than necessary, thus reducing peak brightness and reproduction fidelity.

Instead, we adopt a simple approach that consists of convolving each sample independently

by a Gaussian window and taking the maximum at each time instant.

More precisely, let Sl be a N × N matrix such that Sl(a, b) = 1 if a = b = l and 0

otherwise. Multiplying Afi,j by Sl yields:

T fi,j,l = [0 . . . Afi,j(l) . . . 0]T , (2.10)

i.e., a vector with all zeros but the lth element, which is the lth entry of Afi,j . Now, let

W f
i,j,l = T fi,j,l ∗ wσ be a low-pass version of T fi,j,l obtained by convolution with a Gaussian
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smoothing filter wσ of variance σ2. The envelope signal Mf
i,j is then obtained by stacking

the vectors {W f
i,j,l} for l = 1, . . . N into an N ×N matrix

Bf
i,j = [W f

i,j,1 . . .W
f
i,j,N ] (2.11)

where Bf
i,j is an N × N array. Then, Mf

i,j can be found by taking the maximum value

across the columns of Bf
i,j .

The procedure described through Equations 2.9 - 2.11 is repeated using a sliding window

approach, i.e., the backlight target is updated as BLftarget = Mf , and the frame index f is

increased by one. An example of filtered target backlight for a given pixel position of the

“ChristmassTree” [ABDD+14, BDAPN14] video sequence is shown in Figure 2.4. Once the

smoothed target backlight has been computed, the rest of the rendering part follows the

algorithm described in Section 2.1.2.

2.1.4 Experimental Validation

It is important to understand how the developed rendering method performs before any

further use of the algorithm. In order to analyze the performance of a display rendering

algorithm, test patterns and light meters are used generally. These light meters measure

the luminance of not directly a point but an area (i.e. a small solid angle). Therefore, they

cannot measure the pixel-wise luminance of the display.

In order to measure the emitted luminance on a pixel-wise granularity, we use a DSLR

camera and a light meter to capture an HDR image, register the HDR image pixels and

the pixels of the captured HDR image, apply morphological transformation to align the

images, and compare the resulting pixel images. The details of this process are given below

in the Measurement of pixel-wise luminance part.

The proposed display rendering algorithm is able to reproduce HDR images and video

frames, and it can also estimate the emitted luminance values. In this part, we report the

results of the experimental validation of the proposed HDR display rendering algorithm.

We measured and compared the peak brightness, the local contrast, and the fidelity of

reproduction of both the built-in rendering algorithm and the proposed rendering algorithm.

Furthermore, we also measured the accuracy of the estimated luminance values and the

temporal variation of the backlight for the case of video.

Brightness and Local Contrast

We characterize the performance of the rendering algorithm described in Section 2.1.2 with

respect to the built-in mode in terms of accuracy of brightness rendering and local contrast.

Since an evaluation of these two measures on complex content (such as natural images) is

itself a challenging and content-dependent task, we considered here simple stimuli, which

also enable a more accurate measurement of displayed luminance using the Minolta LS-100
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(a) Measurement of linear bright-
ness response and peak bright-
ness.

(b) Measurement of black level
and local contrast.
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Figure 2.5 – The test patterns for (a) brightness response and (b) local contrast, and the resulting
(c) Comparison of peak brightness, (d) black level luminance, and (d) local contrast of
the built-in rendering mode and the proposed rendering mode.

luminance meter. Specifically, we considered the following test patterns:

• Linear brightness response and peak luminance

We used the pattern of Figure 2.5(a) to measure the accuracy of produced luminance with

respect to the target one. The pattern consists of a white box covering 30% of the display

surface, surrounded by a black background. The 30% area is selected in order to be within

the limits of maximum power consumption of the display. A sequence of test patterns as

in Figure 2.5(a) was generated, for values of luminance levels of the white box ranging

from 1 to 4000 cd/m2. Figure 2.5(c) shows the value of luminance in cd/m2 measured in

correspondence of the cross in Figure 2.5(a), as a function of the target input luminance at

the same spot. The black solid line indicates the ideal case of a perfectly linear response,

i.e., measured luminance matches exactly the required one. This plot shows that: i) the

proposed rendering algorithm matches more precisely target luminance; ii) it also achieves

a higher peak brightness than the built-in rendering mode.

• Local contrast

Local contrast was tested with the pattern in Figure 2.5(b). This stimulus contains again a

white box of 30% of the screen area, but in the middle of the white area, there is a 64× 64

pixels square black patch. The small black square width was chosen in order to gauge how

LCD leakage affects local contrast in different renderings. We considered several versions
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of this pattern with different luminance levels of the white region. Figure 2.5(d) shows

the measured luminance of the center black surface versus the measured luminance of the

white box. Both measurements were made at the spots shown in Figure 2.5(b). The plot

shows how the black level of the center black square is darker for the proposed rendering

compared to the built-in rendering, i.e., the proposed rendering is better at handling LCD

leakage. The effect of this on local contrast, measured as the ratio between the luminance

of the white and black patches, is shown in Figure 2.5(e), which highlights the better local

contrast achievable with the proposed rendering.

Measurement of Pixelwise Luminance

In addition to the measurements made with test patterns, another set of measurements

were made using a DSLR camera. The use of DSLR camera enables us to measure the

pixel-wise luminance and compare the rendering methods using complex natural images.

First, 7 raw1 images with different exposures with exposure compensation values

∈ {−21
3 ,−1.5, −2

3 , 0,
2
3 , 1.5, 2

1
3} were captured using a Canon EOS700D DSLR camera with

18-55 mm lens. The camera was fixed using a tripod 1.7 meters away from the display to

capture the photographs of the display presenting HDR content, and the focal length of the

lens was fixed at 35mm. The distance and the lens zoom were selected to avoid or minimize

the moiré patterns. The raw images were captured by controlling the DSLR camera using a

third party software, and they were built into an HDR image using HDR-Toolbox [BADC11]

with the help of the following code:

saturation_value = 2^13 - 1;

stackExp = ReadRAWStackInfo(<folder_name>, ‘CR2’);

stack = ReadRAWStack(<folder_name>, ‘CR2’, saturation_value);

[img, ~] = BuildHDR(stack, stackExp, ‘linear’, [], ‘Deb97’);

Using the captured raw images and their exposure times, BuildHDR function generates

an HDR image. Captured with different exposure times, the images (which are already

‘linear’) are merged into a single HDR image file by taking a weighted sum of the images

using ‘Deb97’ [DM97] weight function. These newly created HDR images were registered

and aligned to the 1920× 1080 resolution. This operation was done for both the built-in

rendering method and the proposed algorithm. At the same time, the luminance values on

the 4 different spots of the image were measured using a Konica Minolta LS-100. Created

HDR images were then adjusted using these luminance measurements.

The resulting HDR images had the pixel-wise luminance values, and these images were

used to measure the luminance values of the two rendering methods compared. With the

help of this measurement, we were also able to understand the relationship between the

1The word ‘raw’ is used here to denote the uncompressed version of the captured image with linear
luminance values. Raw images are not tonemapped and/or gamma corrected.
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(a) “AirBellowsGap” (b) “PaulBunyan”

(c) “RedwoodSunset” (d) “UpheavalDome”

Figure 2.6 – Plots of measured luminance vs. expected luminance

HDR image pixel values and the emitted luminance values for the built-in rendering of the

SIM2 display.

In the following we refer to these three quantities, which are all expressed in cd/m2:

• Expected luminance, corresponding to the display-referred luminance stored in the HDR

file. Values higher than display peak luminance are clipped.

• Estimated luminance, i.e., pixel-wise luminance values estimated as in (2.8).

• Measured luminance, obtained following the procedure described above. The generated

images store the real emitted luminance values.

Fidelity of Reproduction

To gauge the fidelity of HDR reproduction, the measured luminance values were plot-

ted against expected luminance values for 7 different HDR contents from Fairchild

database [Fai07] selected in [VDSLD14]; namely, AirBellowsGap, DevilsBathtub, Hancock-

KitchenOutside, MasonLake(1), PaulBunyan, RedwoodSunset, and UpheavalDome. Example

plots can be seen in Figure 2.6. Notice that the built-in rendering method provides lower
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luminance and higher scatter compared to the proposed rendering algorithm. The fact

that the luminance emitted with the proposed algorithm matches the expected one (points

clustered on the 45◦ line) demonstrates the higher accuracy of our rendering. It is also

evident, especially from Figure 2.6.(a), that the built-in rendering has a linear response

and saturates after a point that is the practical maximum brightness of the display for that

case.

In order to have a more quantitative evaluation, Pearson Correlation Coefficient (PCC)

and Root Mean Squared Error (RMSE) indices were computed, measuring the linear

dependence between two variables and the variance of estimates, respectively. The resulting

PCC and RMSE values are reported in Table 2.1. As can be seen, the results of the proposed

algorithm are more precise than built-in rendering for each content.

Table 2.1 – Correlation results for luminance measurement for expected luminance and measured
luminance.

Image
Built-in Proposed

PCC RMSE PCC RMSE

AirBellowsGap 0.9807 311.16 0.9924 65.61
DevilsBathtub 0.8692 96.17 0.9089 59.61
HancockKitchenOutside 0.9400 103.88 0.9572 36.89
MasonLake(1) 0.9159 188.41 0.9312 76.10
PaulBunyan 0.9633 143.73 0.9703 37.83
RedwoodSunset 0.9933 107.69 0.9936 20.83
UpheavalDome 0.9782 142.11 0.9798 37.17

Fidelity of Estimation

In order to assess the emitted luminance estimation accuracy, the measured luminance values

were plotted against the estimated luminance values. We report as an example, the scatter

plots for four HDR images, namely “AirBellowsGap”, “PaulBunyan”, “RedwoodSunset”,

and “UpheavalDome”, in Figure 2.7. The plots show that the estimated luminance values

are in a linear relationship with the measured luminance, and the estimated luminance

values are very close to 45◦ line.

Pearson Correlation Coefficient (PCC) and Root Mean Squared Error (RMSE) indices

were also computed to have the quantitative results as in the Fidelity of reproduction part

above. The results are presented in Table 2.2. The PCC scores are above 0.90 and are very

close to 1 for the cases of “AirBellowsGap” and “RedwoodSunset”.

Regarding these results, we can say that the accuracy of the luminance estimation of

the proposed rendering algorithm has been validated for complex stimuli rather than test

patterns.
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(a) “AirBellowsGap” (b) “PaulBunyan”

(c) “RedwoodSunset” (d) “UpheavalDome”

Figure 2.7 – Plots of measured luminance vs. estimated luminance. These results are presented only
for the proposed rendering.

Temporal Variation

As discussed above, small high-frequency variations in the backlight across time may

produce flickering in the displayed HDR video. Although the proposed video rendering

method was not validated subjectively, in this part, we try to measure the temporal variation

using an objective calculation. In order to measure temporal variation in the backlight

produced by our rendering method, we compute the temporal perceptual information

index (TI) defined in ITU-T Recommendation P.910 [ITU08]. Since the main source of

the temporal variation on video is the backlight, we computed the frame differences over

backlight instead of image. TI is computed as:

TI = max
f

(
std(BLffinal −BL

f−1
final)

)
, (2.12)

where std denotes standard deviation computed over space, and f denotes frame number.

We computed TI for 5 different video sequences, namely Balloon, FireEater2, Market3,

Tibul2 [LLF13], and ChristmassTree [ABDD+14, BDAPN14], rendered using both the

frame-by-frame algorithm described in Section 2.1.2 and the video algorithm described in
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Table 2.2 – Correlation results for luminance measurement for estimated luminance and measured
luminance, using the proposed rendering method.

Image PCC RMSE

AirBellowsGap 0.9937 62.83
DevilsBathtub 0.9089 59.61
HancockKitchenOutside 0.9575 36.40
MasonLake(1) 0.9312 76.10
PaulBunyan 0.9695 38.29
RedwoodSunset 0.9947 23.86
UpheavalDome 0.9815 40.00

Section 2.1.3. For the latter, we considered different window sizes N = 1, 11, 21, 31, where

N = 1 corresponds to frame-by-frame processing with the only difference that LEDs are

initialized using previous LED values. The frame-wise standard deviations for “FireEater2”

and “Market3” sequences are illustrated in Figure 2.8. As expected, increasing the window

length N reduces the standard deviation of frame difference.
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(b) “Market3”

Figure 2.8 – Standard deviation change with respect to frame number for (a) “FireEater2” and (b)
“Market3” sequences

To compare the results, the TI values of each video sequence are reported in Table 2.3.

Again, TI values are dropping with increasing window length. These results show that

the proposed HDR video rendering algorithm can effectively reduce the effects caused by

temporal variation.
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Table 2.3 – TI for different video contents. (BL: Balloon, CT : ChristmassTree, FE : FireEater2,
MK : Market3, TB : Tibul2)

Rendering BL CT FE MK TB

framewise 30.68 184.79 85.37 49.92 142.61
N = 1 27.32 184.28 63.38 49.18 127.43
N = 11 27.00 115.13 67.41 33.05 76.29
N = 21 18.44 74.20 48.65 35.72 54.07
N = 31 18.92 44.51 39.66 32.63 55.53

2.2 Effects of Display Rendering

The quality metrics developed for the assessment of HDR image and video quality [MDMS05,

AMMS08, NMDSLC15, NDSLC15] require as input the per pixel luminance values (ex-

pressed in cd/m2) that an observer in front of the display would see. Moreover, the

estimation of pixel-wise luminance values is found to be important for the computation of

other objective quality metrics as well [AMS08, VDSLD14]. As a result, different renderings

could also have a potential impact on the calculation of objective quality. A different display

rendering can also impact the viewers’ experience and perception of quality due to the visual

changes such as brightness and contrast. In spite of this close connection between quality

evaluation and HDR visualization, the effect of different rendering on HDR subjective and

objective quality assessment has not been sufficiently investigated so far.

In the previous section, we introduced a simple, yet effective, HDR display rendering

algorithm for the SIM2 HDR47 display [SIM14]. We compared the proposed method

with the proprietary built-in visualization offered by the display. The proposed rendering

algorithm has clear differences from the built-in one, e.g., it yields brighter images, with

higher local contrast at low luminance levels.

Equipped with this new rendering, we conducted a subjective study to judge the quality

of compressed HDR images, using the same settings as in the previous work of Valenzise et

al. [VDSLD14], except that we displayed images with the proposed rendering algorithm.

The collected subjective quality scores were compared using multiple comparison analysis

in addition to the qualitative analysis of the resulting HDR images.

In order to understand the effect of rendering on the HDR objective quality assessment,

we estimated per pixel luminance produced by the display with our rendering algorithm

and used this as input to quality metrics for both pristine and compressed content. Since

a precise estimation of pixel-wise luminance using SIM2 HDR47 display is not available

with the built-in rendering mode, we simulated the luminance values using a simple linear

model which scales HDR pixels into the physical bounds of display luminance and clips

values that exceed the peak luminance of the device [VDSLD14].

In the following sub-sections, we compare two different rendering methods and assess

the impact of HDR image rendering on both subjective and objective scores.
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2.2.1 Impact on Subjective Evaluation

In this sub-section, we analyze how a different display rendering can affect subjective

quality, for the scenario of HDR image compression. In order to understand the impact

of different display renderings on the subjective quality perception, a subjective quality

experiment is needed. Due to its design, switching from built-in rendering to DVI+ mode

on the SIM2 HDR47 display takes several seconds. Additionally, it cannot be automated

and requires a manual intervention of the experimenter. Thus, designing a test presenting

the results of both renderings at the same time is not feasible. Therefore, in order to

simplify the experiment design, we only used the DVI Plus mode of the display with the

display rendering algorithm proposed in Section 2.1.2.

A subjectively annotated HDR image database was created and made publicly available

in the work of Valenzise et al. [VDSLD14]. They used the built-in rendering algorithm of

the SIM2 display while collecting the MOS values. This subjective test was designed to

use the same test material and same experimental conditions as in [VDSLD14] in order to

ensure that the only variable that was changed is the rendering mode. In the following parts,

we first summarize the test environment and methodology, and we analyze the differences

among the results through analysis of variance and multiple comparisons.

Test Environment and Methodology

In [VDSLD14], HDR images were compressed using three different encoders: JPEG, JPEG

2000, and JPEG XT. These compressed HDR images were displayed using the built-in

rendering of the SIM2 display, and a subjective experiment was conducted using the Double

Stimulus Impairment Scale (DSIS) methodology. In order to rule out all of the possible

independent variables except the different rendering, we kept the same test environment

and material. The experiment was conducted in a gray surfaced test space which was

isolated from all external light sources, conforming to the ITU recommendations BT.500-13

and BT.2022 standards [ITU12b, ITU12a]. The amount of ambient light, not directed to

the observer, was 20 cd/m2. The viewers were seated at about 1 meter distance from the

display.

As done in [VDSLD14], we also used DSIS [ITU12b] as the experiment methodology.

Two images, reference image A and distorted image B were shown to subjects in a sequential

manner. Before the experiment, a training session was conducted to familiarize the subjects

with the levels of distortion to be expected during the experiment. The subjects were also

told that the image A will always be the reference and image B will be the distorted image.

The subjects were asked to rate the distortion appearing in the distorted image B using

5 distinct adjectives (“Very annoying”, “Annoying”, “Slightly annoying”, “Perceptible but

not annoying”, “Imperceptible”), on a continuous scale between 0 and 100, 0 being “Very

annoying” and 100 “Imperceptible”.

During the pilot test, it was noticed that the magnitude of distortion in the images was
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Figure 2.9 – Mean Opinion Scores by different renderings for the tested contents. Points indicate
MOS values and bars indicate confidence intervals.

larger than that of [VDSLD14]. Therefore, it was more difficult to judge the quality of the

images compared to the case of [VDSLD14]. So, differently from the previous experiment,

compressed images were displayed for a duration of 8 seconds instead of the 6 seconds

used for the dataset of [VDSLD14]. The dataset consisted of 50 images in total, spanning

several contents and coding conditions as explained in the original paper [VDSLD14]. The

experiment was paused during the interactive voting, giving the subjects as much time as

they wish to complete the task. During the pilot test, it was noted that the average voting

time is between 4 and 8 seconds. Hence, one session of the experiment took approximately

20 minutes on average.

Sixteen people (fourteen men and two women) participated in the subjective experiment

with the developed rendering. The subjects were aged between 23 and 39, and the average

age was 27.75. All the subjects reported normal or corrected-to-normal vision. Two of

the subjects were found to be outliers with the standard detection procedure [ITU12b].

The mean opinion score (MOS) and confidence interval (CI) for each of the 50 tested

images are calculated after outlier removal, assuming that scores follow a Student’s-t

distribution [ITU12c].

Experiment Results

The resulting MOS values for each content are shown in Figure 2.9. After concluding the

tests, we noticed that two samples of “Perceptible” level of the “RedwoodSunset” content
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(a) Original HDR values (b) The proposed rendering

(c) Stimulus no.8, HDR values (d) Stimulus no.8, The proposed rendering

Figure 2.10 – A detail of the “AirBellowsGap” content showing clipping effects on small and very
bright regions. Stimulus number 8 corresponds to JPEG compression with a quality
factor of 90. The subfigures show (a) the original and (c) the compressed HDR
values as stored in the HDR file, as well as (b) the proposed rendering of the original
and (d) the proposed rendering of the compressed HDR image. Here the clipping
artifacts overcome compression artifacts, i.e., the latter become invisible and thus the
MOS of this stimulus is significantly higher with the proposed rendering. Images are
tone-mapped for visualization purposes.

were erroneously repeated twice in place of the corresponding “Imperceptible” level. Hence,

we excluded them from this comparison. The results of the proposed rendering were

compared with MOS values collected using the built-in rendering, which are published

with the associated dataset [VDSLD14]. These plots show a substantial level of agreement

between the scores obtained with the two renderings, with some differences in some specific

contents such as “AirBellowsGap” and “UpheavalDome”.

Overall, the collected MOS values using the built-in rendering and the rendering

proposed in Section 2.1.2 have a linear correlation of 0.99. A qualitative analysis shows that

the distortion in “UpheavalDome” becomes more visible, due to an increased brightness of

the rendering, while for “AirBellowsGap” the opposite happens, i.e., details and blocking

artifacts become invisible around the sun region, which is clipped in our proposed DVI+

rendering since its brightness is much higher than that of the built-in rendering mode.

Examples of the latter phenomenon are illustrated in Figure 2.10.

More details about the differences produced by the two renderings were obtained by

performing a one-way analysis of variance, followed by multiple comparison analysis on the

MOS values of the built-in rendering and the proposed rendering separately.

Multiple comparison enables us to group stimuli in each dataset according to their
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(a) The built-in rendering
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(b) The proposed rendering

Figure 2.11 – Multiple comparison results for MOS of subjective experiments with different ren-
derings. Each of the 50 rows/columns in each matrix corresponds to a pair of MOS
values. For convenience, stimuli are grouped according to their adjectives, as found in
the test material selection procedure [VDSLD14].

equivalence in terms of observed mean opinion scores. Changes in the results of multiple

comparison may reveal significant differences in the relative perceived quality levels of the

stimuli with the two renderings. The results of multiple comparison analysis are reported in

Figure 2.11, where the two binary matrices were obtained by comparing all the pairs of MOS

values in each dataset and applying the Tukey’s honestly significant difference criterion. A

black entry in the matrix indicates that no statistical evidence has been found to show

that the corresponding pair of MOS values is significantly different. In both Figure 2.11.(a)

and (b), we can observe that stimuli are grouped around five clusters, which correspond

approximately to the five adjectives of the quality scale which are reported for convenience

in the figure.

A qualitative evaluation of Figure 2.11 suggests that the clustering of stimuli MOS

values does not change significantly with the two rendering modes. In the highest quality

levels, i.e., “Perceptible” and “Imperceptible”, though, the results are more intertwined.

Considering only these two adjectives (i.e., 190 pairs), there are only 26 pairs of stimuli

whose quality appears to be significantly different with the proposed DVI+ rendering

algorithm. For the built-in rendering, this number grows to 41. Overall, the proportion of

significantly different pairs of stimuli is the same in the built-in rendering and the proposed

rendering cases. This suggests that with the proposed rendering subtle details become

less visible at higher quality levels, i.e., display artifacts overcome compression artifacts.

Conversely, the higher brightness and local contrast offered by the proposed rendering

make distortion differences more visible at lower quality levels, with respect to the built-in

rendering mode.
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2.2.2 Impact on Objective Evaluation

The techniques for measuring HDR image quality can be broadly divided into two classes.

On one hand, metrics such as the HDR-VDP and HDR-VQM [MDMS05, NMDSLC15,

NDSLC15] accurately model visual perception in such a way to predict and quantify

significant visual differences between images. On the other hand, many quality metrics

commonly used in the case of SDR imaging directly assume that input values are perceptually

linear in order to compute meaningful operations on pixels. The perceptual linearization is

implicitly done for the case of SDR images by the gamma encoding of sRGB [ITU11].

In the case of HDR signals, a typical mapping function is the perceptually uniform

(PU) encoding [AMS08]. Both HDR-VDP and PU-metrics (metrics computed on PU-

encoded values) require as input photometric values of the displayed images. Generally

speaking, these values can be estimated by the display rendering algorithm. In practice,

using the built-in rendering mode of SIM2 HDR47 display, the displayed luminance values

are not known and cannot be estimated accurately. Therefore, in the work of Valenzise

et al. [VDSLD14], displayed luminance values were simulated (or estimated) assuming a

simple linear response of the display, with saturation at the maximum display luminance,

i.e., Lout = min(Lin, Lmax), where Lin is the “display-referred” luminance values to display,

and Lmax = 4250 cd/m2. We call this simulation the “linear display model” or “linear model”

throughout the thesis. In fact, the results presented in Section 2.1.4 suggest that this

linear model is a scaled version of the true response of the built-in rendering of SIM2. An

advantage of the DVI+ rendering algorithm described in Section 2.1.2 –and validated in

Section 2.1.4– is that it can accurately estimate per pixel displayed luminance, and these

estimated pixelwise luminance values can be used as input to HDR quality metrics.

In this sub-section, we compare the performance of several objective metrics when

their input is provided by either a simple linear model of the display or by a sophisticated

estimate obtained through the knowledge of rendering algorithm. Specifically, we computed

the predictions of six quality metrics computed on either Lout values (i.e. linear model) or

on the estimated luminance values of our proposed DVI+ algorithm, and we correlated

them with the MOS values obtained from the subjective experiment discussed in the

Experiment results part of the Section 2.2.1. Considered full-reference metrics include

the peak signal to noise ratio (PSNR), the structural similarity index (SSIM) [WBSS04]

and its multi-scale version [WSB03], the information fidelity criterion (IFC) [SBDV05],

the visual information fidelity (VIF) [SB06], and the HDR-VDP 2.2 [NMDSLC15]. The

source code for the objective quality metrics is taken from http://sourceforge.net/

projects/hdrvdp/files/hdrvdp/ for HDR-VDP-2.2, and from http://ollie-imac.cs.

northwestern.edu/~ollie/GMM/code/metrix_mux/ for other objective metrics. All the

metrics except HDR-VDP are computed on PU encoded values [AMS08].

Due to the limited size of the dataset, we evaluated the performance of metric predictions

using a non-parametric index such as the Spearman rank-order correlation coefficient

http://sourceforge.net/projects/hdrvdp/files/hdrvdp/
http://sourceforge.net/projects/hdrvdp/files/hdrvdp/
http://ollie-imac.cs.northwestern.edu/~ollie/GMM/code/metrix_mux/
http://ollie-imac.cs.northwestern.edu/~ollie/GMM/code/metrix_mux/
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Figure 2.12 – SROCC with 95% confidence intervals for three scenarios: i) displayed luminance
computed with the linear model and MOS values collected with the built-in rendering
mode [VDSLD14]; ii) displayed luminance computed with the linear model and
MOS values collected with the proposed display rendering algorithm; iii) displayed
luminance estimated by the proposed display rendering and MOS values collected
with the proposed display rendering algorithm.

(SROCC), which measures the degree of monotonicity of MOS estimates. In addition to

SROCC values, we also computed confidence intervals of the correlation coefficients using

bootstrap (bootci Matlab function with bias-corrected accelerated percentile method, 2000

bootstrap repetitions). Figure 2.12 reports the SROCC values with their 95% confidence

intervals for the linear model –denoted as Linear (Proposed)– and the estimation of the

proposed rendering –denoted as Estimated (Proposed)–. For comparison, we also report

the results of the previous experiment of Valenzise et al. [VDSLD14], i.e., the SROCC

between metrics computed using the linear model and MOS values obtained with the

built-in rendering –denoted as Linear (Built-in)–.

As Figure 2.12 illustrates, the three sets of correlations are very close to each other, and

there is no clear gain in using more accurate luminance as input to HDR metrics. To confirm

this observation, we tested the significance of the difference of SROCC values for each

metric, using the method for comparing dependent 2 correlation coefficients proposed by

Zou [Zou07]. This method constructs a confidence interval for the difference of the correlation

coefficients. If zero is within this interval, the null hypothesis that the two correlations are

equal must be retained. Based on this test, we found the two following results: i) the linear

model to compute displayed luminance gives statistically indistinguishable performance

for two different renderings (the built-in and the proposed rendering, respectively); ii)

an accurate knowledge of displayed luminance (with the proposed rendering) does not

2The dependency of the two correlations is apparent, due to the fact that they are computed on the
same dataset of images. In addition, the correlations of Linear (Proposed) and Estimated (Proposed) are
overlapping, since they are computed against the same MOS values.
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significantly increase the performance of objective metrics with respect to the linear model.

In fact, for the case of PU-SSIM, there is a visible decrease of the SROCC coefficients.

However, PU-SSIM results are generally very close to one, which makes it difficult to

understand the discriminability of this metric in practice for the case of HDR.

This result is quite surprising, as it contradicts the assumptions of many HDR quality

metrics, which compute fidelity using the displayed physical luminance as input. A possible

explanation for this phenomenon is that, despite the differences between the built-in

rendering and the proposed rendering, the reproduced outputs are highly correlated, as

the MOS analysis of Section 2.2.1 shows. Furthermore, the saturation in the linear model

reduces the effect of outliers in the scene-referred HDR and improves its performance

significantly. On the other hand, the proposed DVI+ rendering has a globally linear behavior

for the majority of rendered pixels – clipped regions are limited to highlights such as the sun

in Figure 2.10, but the saturation in the linear model actually produces a very similar result.

This justifies the effectiveness of the linear model for the case of the proposed rendering

(i.e. the case denoted as ‘Linear (Proposed)’). Finally, there is one important caveat to take

into account. The results presented here are valid for a very specific, although popular,

processing task, i.e., HDR image compression, and it is known that for simple additive

distortion even simple arithmetic metrics such as the PSNR perform quite well [HTG08].

2.3 Discussion

In this chapter, we analyzed the impact of a different display rendering on both sub-

jective and objective quality assessment of compressed HDR images. For this purpose,

the characteristics of the SIM2 display were modeled, and a simple iterative HDR image

and video frame reproduction algorithm was developed for the widely used SIM2 HDR47

display, which yields higher brightness and contrast than the built-in rendering method.

The algorithm employs a sliding window-based filter to avoid flickering for the case of

video. It is also validated that the proposed dual modulation method can reproduce HDR

content and estimate the emitted luminance accurately. The frame reproduction algorithm

presented in this chapter was published in [ZVD16], and it is proved to be of use for

psychophysical experimental studies where the knowledge of the emitted luminance is

crucial to understand human perception of light and contrast. It is used in a number of

studies [HVP+16, HDVD17, KHV+17] in order to find the perceived dynamic range for

HDR content and the preference of the viewers on the display gamma.

Using this rendering, we conducted a subjective study to analyze the impact of a

different rendering on the subjective quality, and the findings of this comparative study

were published in [ZVDS+15]. To understand the effects of display rendering, a subjectively

annotated HDR image quality database [VDSLD14] was used where the MOS values

were collected using the built-in rendering of the SIM2 display. Test conditions were kept

as similar as possible in order to single out the differences in mean opinion scores due
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to the only varying factor, i.e., visualization. The MOS values acquired were compared

through a multiple comparison analysis. The results show that, overall, MOS values are

not dramatically impacted by the employed rendering, although in some cases small and

localized compression artifacts might become invisible due to rendering artifacts. At the

same time, distortion may become more visible in darker or uniform regions, due to

increased brightness.

From the point of view of objective quality metrics, our experiments do not bring

enough evidence to support the hypothesis that giving accurate estimates of displayed

luminance in input to HDR image quality metrics does bring significant advantages or

changes over using a simple linear model of the display response. This simple linear model

requires only the peak brightness of the display. Nevertheless, the results of the objective

quality analysis show that a simple linear model, which is almost independent from the

display, can provide reliable results as if a detailed knowledge of the reproduction display

were available.

Another hypothesis for the lack of meaningful difference can be that the simple linear

model was accurate enough in the first place. The measured luminance values of the built-in

rendering of the SIM2 display show that the actual response of the SIM2 display is, in

fact, a scaled version of the linear model used. It can be clearly seen, especially from

Figure 2.6.(a), that the built-in rendering has the same characteristics as the linear model.

The luminance values saturate after the practical maximum brightness of the display.

This result has important practical implications, since it suggests that HDR quality

estimation can be performed with only a rough knowledge of the characteristics of the

reproduction device.
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The effect of color on the perceived quality is normally discarded in the case of SDR,

especially for image and video compression scenarios. However, color may influence the

perceptual quality in HDR conditions, as a result of its augmented brightness and contrast

levels, due to some aspects of color appearance phenomena, e.g. the Hunt effect, the

Bezold-brucke hue shift, etc. [Fai13]. In this chapter, we try to understand the effect of color

on the perceived quality. For this purpose, we selected a practical and realistic application

scenario, HDR video compression, and we compared the effects of three different color

spaces on HDR video compression performance.

For SDR videos, it is common to transform the RGB signal to Y’CbCr color space

prior to compression [ITU15a], as it is done in state-of-the-art video compression standards,

i.e. H.264/AVC [TLSS09] or H.265/HEVC [SOHW12]. Similarly, in the standardization

efforts of MPEG [LFH15] for HDR, this color space transformation is utilized, while the

Y channel is coded with Perceptual Quantization (PQ) [MND12, SMP14] instead of the

gamma correction function [ITU11]. In addition to Y’CbCr color space transformation,

Lu et al. [LPY+16] recently proposed the ITP (ICtCp) color space transformation which
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shows better baseband properties than Y’CbCr for HDR/WCG compression with 10-

bit quantization. LogLuv [Lar98a] color space transformation is another commonly used

transformation among existing HDR video compression algorithms [MKMS04, GT11]. This

color space transformation has been slightly modified in this thesis in order to use the same

10-bit encoding scheme and find the effects of it independently of the effects of bit depth.

Therefore, we define Ypu’v’ which converts pixel values from RGB to Lu’v’, and encodes L

channel with PQ EOTF [SMP14] in order to get Yp, hence takes the name Ypu’v’. In this

chapter, we investigate the effect of these three color spaces on HDR video compression:

Y’CbCr [ITU15a], and ITP (ICtCp) [LPY+16] and Ypu’v’.

To this end, we conducted a psychophysical study to compare video sequences coded at

different bit rates with the three aforementioned color spaces. We employed a reduced-design

pairwise comparison methodology to get the most precise results, comparing stimuli across

different bit rates with the goal of converting the obtained preferences to quality scores.

The choice of compression levels (bit rates) in this case is crucial, and requires selecting

test stimuli carefully in such a way to avoid cases where viewers would unanimously prefer

one stimulus over the other, or where they would not be able to observe any difference

between pairs of video sequences coded at two consecutive bit rates. Therefore, prior to

the main experiment, we conducted a preliminary subjective test to select the bit rates

for the stimuli, and we selected four bit rate levels for each content. Specifically, in the

preliminary experiment, we presented stimuli coded at different bit rates, with the goal to

select compression levels spaced apart by one just noticeable difference (JND), i.e., such

that 50% of participants could observe a quality difference in a pair of stimuli. Using these

four bit rate levels, the videos are compressed and used in the main experiment.

The results of the main experiment were analyzed by scaling the preference probabilities

for each pair of stimuli into global just objectionable differences (JOD) scores, as described

in Section 3.2.2. One JOD difference between two stimuli corresponds to selecting one video

as higher quality than the other in 75% of the trials. We employ the term JOD instead of

JND in this case to emphasize that, in the main experiment, participants were asked to

give a quality judgment (i.e., select the video which has better overall quality), rather than

assess whether a difference between the stimuli exists (as in the preliminary experiment).

JOD can then be interpreted similarly to the DMOS concept, and this makes it possible to

compare different methods using quality-rate curves. We completed the analysis by testing

the statistical significance of JOD differences among different color spaces, and found that,

overall, there is no substantial gain of ITP over Y’CbCr, while Ypu’v’ has slightly lower

performance for some sequences.

3.1 Selection of the Test Stimuli

The pairwise comparisons methodology was selected to compare the effects of different

color spaces because the differences between videos compressed with different color spaces
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are subtle. For some pairs, viewers can unanimously decide that one stimulus is better

than the other, or vice versa. In order to acquire meaningful data without such decisions,

the test stimuli should be selected carefully. For this purpose, we conducted a preliminary

experiment to select the stimuli for the subjective experiment for color space comparison.

This preliminary experiment was designed to find perceptually uniform distances

between compressed HDR video sequences, rendered at different levels of compression. These

distances are measured in just noticeable difference (JND) units. For each content, four JND

steps, starting from the uncompressed sequence, were found. During the experiment, only

the sequences encoded using Y’CbCr color space were examined, and their corresponding

bit rates were used as a reference for compression of the sequences in other two color spaces

for the main study.

3.1.1 Details of the Subjective Experiment for Stimuli Selection

Experiment Design

This experiment was conducted in four sessions using two alternative forced-choice (2AFC)

pairwise comparisons (PC) evaluation, where the question was: “Can you observe any

quality difference between the two displayed videos?”, and the subjects were able to respond

either ‘Yes’ or ‘No’. In the study, the perceptual responses of the participants were evaluated

in a randomized design. The sequence and the compression rate were the independent

variables. The dependent variable was the user preference.

The dataset contained 7 video sequences, with a significant variance in image statistics,

as described in the Selected Materials part below. In each session, for each scene, five to

seven sequences with different levels of compression (with different quantization parameters

(QP)) were generated, so that QPk,i = QP refk + ji, where j = {1, 2, 4, 6, 8, 10, 14}, i is

the index, and k is the quality level. Each of these sequences, compressed using QPk,i,

were compared to the reference sequence with QP refk . Then, the QP corresponding to 1

JND difference from the reference, Q̂P k, is selected. In the first session, the uncompressed

sequence was the reference and the lowest compression level was selected in the pilot study

made with expert viewers. In subsequent sessions, the reference, QP refk , was the previously

found sequence, Q̂P k−1, with one JND from its own reference, QP refk−1.

In each trial, two videos of the same content but different compression levels were

displayed in a side-by-side fashion. Videos were 5 seconds long, and they were repeated

once. Upon the video presentation, the voting sign was displayed allowing the participants

to make their choice. They were asked if they can perceive any difference in quality with

respect to compression artifact, previously demonstrated during the training session. The

voting time was not restricted. The next set of stimuli was presented one second after the

user voted. The test design is visualized in Figure 3.1.
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Figure 3.1 – Visualization for the subjective experiment for stimuli selection

Selected Materials

7 HDR video sequences were used in the study: the “BalloonFestival” (Balloon), “Mar-

ket3Clip4000r2” (Market) and “Tibul2Clip4000r1” (Tibul) sequences proposed in MPEG

by Technicolor and CableLabs [TF15], the “Bistro-01-pad16” (Bistro) and “Showgirl-02-

pad16” (Showgirl) sequences from the Stuttgart HDR Video Database [FGE+14], “EBU-04-

Hurdles” (Hurdles) and “EBU-06-Starting” (Starting) sequences from EBU Zurich Athletics

2014 (https://tech.ebu.ch/testsequences/zurich). Names in parentheses will be used to refer

to the scenes for the rest of the chapter. See Figure 3.2 for the screenshots of each video

sequence. The frame rates and the horizontal crop locations are reported in Table 3.1.

Table 3.1 – The corresponding frame rates and horizontal crop windows (in pixels) of the test
sequences used in the preliminary experiment

Sequence fps H-crop

Balloon 24 921–1872
Bistro 30 855–1806
Hurdles 50 1–952
Market 50 471–1422
Showgirl 30 429–1380
Starting 50 541–1492
Tibul 30 481–1432

The sequences were selected based on the image statistics and the pilot study, so

that the dynamic range (DR), image key (IK), spatial (SI) and temporal (TI) perceptual

information measures and image content vary and are evenly distributed across the data

set, see Figure 3.3. These features are briefly summarized below:

• Dynamic Range: Simply DR = log10 (Lummax/Lummin), where Lummax and

Lummin is the maximum and minimum luminance values of the HDR image.

• Image Key: Indicates the brightness of the image, Key =
logLumavg−logLummin
logLummax−logLummin

where the logLumavg is calculated as logLumavg = mean(logLum), and Lum is the

luminance of the HDR image.
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(a) Balloon (b) Bistro (c) Hurdles

(d) Market (e) Showgirl (f) Starting

(g) Tibul

Figure 3.2 – Starting frames of the 7 HDR video sequences used in the preliminary experiment.
The Balloon, Market and Tibul sequences were proposed in MPEG by Technicolor
and CableLabs [TF15]; the Bistro and Showgirl sequences are from the Stuttgart
HDR Video Database [FGE+14]; and Hurdle and Starting sequences are from EBU
Zurich Athletics 2014 (https://tech.ebu.ch/testsequences/zurich). The images
were tonemapped [MDK08] for representation. Showgirl and Tibul scenes were not
used in the main study.

https://tech.ebu.ch/testsequences/zurich
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Figure 3.3 – Image statistics for selected scenes. The values were sorted for better representation.

• Spatial Perceptual Information (SI): As proposed in ITU-T Rec. P.910 [ITU08],

SI is calculated as

SI = max
n

(stdspace [Sobel(Lumn)])

where n is the frame number. It was designed and recommended for SDR images. In

order to adapt it for HDR, we modified the physical luminance values (in cd/m2) by

PQ encoding [SMP14] and mapping them to the range of [0, 1] before calculation.

• Temporal Perceptual Information (TI): TI is calculated as

TI = max
n

(stdspace [Lumn − Lumn−1])

where n is the frame number. It was designed and recommended for SDR videos [ITU08].

As in the case of SI, the physical luminance values (in cd/m2) were PQ encoded and

mapped to the range of [0, 1] before calculation.

Since the SIM2 HDR47 display is only capable of displaying the color gamut described

in ITU-R Recommendation BT.709, all of these sequences were processed in BT.709 color

gamut. Several of these sequences (including Balloon, Hurdles, Market, Starting, and Tibul)

were directly acquired from MPEG files, and their pixel values were already in the BT.709

color gamut. Two other sequences, Bistro and Showgirl, were acquired from Stuttgart
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HDR Video Database [FGE+14] in ALEXA-Wide-Gamut OpenEXR format. Their pixel

values were clipped to fall within BT.709 color gamut. Normally, such a clipping operation

is expected to create strong artifacts such as banding or saturation. However, no visible

artifacts were observed both on the undistorted reference and on the compressed videos

since most of these clipped pixels are in the dark regions and mostly camera acquisition

noise.

Test sequences were generated using the following chain of operations: First, the RGB

HDR frames were encoded using PQ EOTF and then transformed to Y’CbCr color space.

After 4:2:0 chroma subsampling, Y’CbCr frames were encoded using HEVC Main-10

profile with HM 16.5 [SOHW12, BFSS17]. The encoded bit streams were then decoded

and both the color transformation and EOTF encoding were inverted. The resulting frames

were stored in an AVI file as uncompressed video frames. After JND was found for that

level, the set of videos for the next level with different QPs were generated, as described in

the Experiment Design part above.

The experiments were conducted in a dark, quiet room, with the luminance of the

screen when turned off at 0.03 cd/m2. The stimuli were presented on a calibrated HDR

SIM2 HDR47E S 4K 47” display with 1920 × 1080 pixel resolution, peak brightness of

4250 cd/m2, used in its native built-in rendering mode. The distance from the screen was

fixed to three heights of the display (i.e. approximately 180 cms), with the observers’ eyes

positioned zero degrees horizontally and vertically from the center of the display [ITU98].

The framework was developed in MATLAB R2014b and run on a Dell T5500 computer

with Intel Xeon X5680 processor at 3.33GHz, 24GB RAM and NVIDIA Quadro FX 580

graphics card. Due to the immense content size, we stored all the test materials on an SSD

hard drive for faster content loading and seamless display.

Participants and Procedure

33 people (20 men and 13 women) with an average age of 33.6, volunteered for the experiment.

In each of the four sessions there were 13, 17, 11 and 12 participants respectively, among

whom most took part in two nonconsecutive sessions. All of them reported normal or

corrected-to-normal visual acuity.

Prior to the experiment, the participants were briefed about the purpose of the experi-

ment. This was followed by a verbal explanation of the experimental procedure and a short

training session with 8 sample trials. At this time, two sequences that were not used in the

study, rendered at several levels of compression, were utilized and the nature of the artifacts

was explained. Towards the end of the training, the participants were asked to evaluate

a few pairs of stimuli. Doing so, the experimenter was able to understand whether the

participants understood the task. This further helped to stabilize their opinion, to adjust

to the magnitude of the quality degradation, and to further familiarize themselves with

the experimental framework. Following the training, the experiment commenced and no
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Figure 3.4 – Removing the inconsistency in user voting. In this case, QP=27 was selected as the
threshold.

further interaction between the participant and the experimenter occurred until debriefing

once all trials were conducted.

3.1.2 Stimuli Selection for the Color Space Experiment

In order to find the stimuli 1 JND apart from each other, the experiment was conducted in

an iterative fashion as described in the Experiment Design part above. To find the stimulus

which was 1 JND apart from the anchor video, the following operations were carried out in

this order for each level k. For the sake of simplicity and continuity throughout the chapter,

we call these levels JODk where k ∈ {1, 2, 3, 4} is the quality level.

After each session, the resulting data was gathered and screened for consistency. The

results of each video sequence for each participant were grouped together and analyzed.

Some of the results were interesting as all the responses of a participant for a particular scene

were “Same” (or “Different”). This means either that there was no perceivable difference

between any of the pairs (for the case of all are “Same”) or that difference was perceived

in all compared pairs (for the case of all “Different”). The former is highly unlikely to

happen as the distortion is eminently noticeable between the sequences generated with the

∆QP ≈ 10. The latter is even less likely since even the expert viewers could not perceive

any quality difference at ∆QP = 1 for any of the tested scenes. Therefore, the cases where

all the responses were “Same” or “Different” were considered as outliers, and the results

of that particular participant for that particular scene were discarded. During the whole

analysis, 37 out of 273 comparisons (per participant and per scene) were removed in total.

The results were further analyzed for their consistency. The gathered results for each

participant and each video sequence were expected to follow a simple pattern: users would

not see any difference in the videos with QPk,l,m,i < θk,l,m until a certain threshold point

and would see the difference in all of the stimuli after that point, i.e. QPk,l,m,i ≥ θk,l,m,

where θk,l,m is the QP threshold point for kth quality level for lth observer and mth scene.

The results which did not follow this expected behavior were considered inconsistent, and
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(c) Q̂P 3 = 32
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(d) Q̂P 4 = 36

Figure 3.5 – The process of finding 1 JND distance videos for Balloon video sequence. The cor-
responding QP values are found where only 50% of the participants could see the
difference between the videos. The values zero and one on the y-axis indicates that the
difference can be observed by none or all of the observers, respectively.

they were modified to be consistent. That is, the θk,l,m was found as the minimum QP

value which ensured that all of the following data points were all different. Assume that

Rk,l,m,i is the pairwise comparisons results obtained for QPk,l,m,i:

θk,l,m = min{QPk,l,m,i | Rk,l,m,(i+n) = “Different”, ∀n ≥ 0} (3.1)

Afterwards, all of the data points Rk,l,m,i with QPk,l,m,i < θk,l,m was set to “Same”. Please

notice that θk,l,m is different for each observer l and scene m. This operation is visualized

in Figure 3.4, where θk,l,m = 27.

The modified results R̂k,l,m,i were summed across the participants, and the result was

plotted. The result of this sum resembles –as expected– a cumulative distribution function

(CDF) of the probability of seeing a difference. For the videos with lower QP (and higher

bitrate), there is little or no difference to the video of the previous level, Q̂P k−1. After one

point, the CDF becomes 1. This means that every video with that QP was and every other

video with higher QP will be noticed by all of the observers. The underlying CDF was

estimated by using a logistic fitting. The video QP which yields 1 JND with the anchor

video, i.e. Q̂P k, was determined by finding the closest QP value corresponding to the 50%

of observers seeing difference. Examples of this operation are shown in Figure 3.5, and the

process of determining Q̂P k is indicated with dashed lines.

The resulting QP and bitrate values are reported in Table 3.2 on the rows indicated as

Y’CbCr. As can be seen from the table, there is not any simple relationship between the

QP values of the quality levels and their bitrates. Both the QP value and the bitrate of a

video seem to be related to the characterstics of the video. Bistro video sequence appears

to have some special characteristics considering its very low bitrate. These very low bitrate
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values may be due to the low key, SI, and TI values of the video.

The QP values for videos compressed with other color spaces, namely ITP and Ypu’v’,

were found by finding the QP values minimizing the bitrate difference between the Y’CbCr

video. For this purpose, the raw videos were compressed using a set of QP values QPk,i =

Q̂P
Y’CbCr

k +ji where j ∈ {−2,−1, 0, 1, 2} for kth quality level and i is the index. Afterwards,

the bitrates of these videos were compared, and the QP value of the video yielding minimal

bitrate difference was chosen. The resulting QP values and bitrates are reported in Table 3.2.

Table 3.2 – Compression levels: All of the QP values and the corresponding bit rates (in kbps)
across scenes and JOD levels.

Sequence
Color
Space

JOD1 JOD2 JOD3 JOD4

Q̂P 1 BR1 Q̂P 2 BR2 Q̂P 3 BR3 Q̂P 4 BR4

Balloon

Y’CbCr 22 4945.69 26 2653.65 32 1151.99 36 678.08
ITP 22 5128.45 26 2742.05 32 1185.61 36 705.98
Ypu’v’ 23 4531.33 27 2466.26 33 1072.66 37 650.01

Bistro

Y’CbCr 23 520.48 27 278.21 32 143.54 34 111.04
ITP 23 525.09 27 287.10 32 148.58 34 114.80
Ypu’v’ 25 569.49 28 278.77 33 141.20 35 111.42

Hurdles

Y’CbCr 22 7077.85 25 4147.72 28 2557.50 31 1674.57
ITP 22 6610.88 25 3923.48 28 2465.01 31 1644.14
Ypu’v’ 22 7526.22 25 4364.39 29 2390.68 32 1567.09

Market

Y’CbCr 25 6252.36 29 3108.43 34 1339.03 36 969.68
ITP 25 5797.64 29 2934.46 34 1283.06 36 936.23
Ypu’v’ 25 6090.28 29 3089.60 34 1348.33 36 988.16

Starting

Y’CbCr 19 7210.73 25 2170.69 28 1337.33 30 1010.40
ITP 20 6879.85 25 2250.69 28 1373.15 30 1052.30
Ypu’v’ 22 7575.62 27 2260.09 30 1342.80 32 927.63

3.2 Color Space Effect on Compression

In this main experiment, the compression performance when coding HDR video sequences

using different color spaces was investigated. The bit rates were selected based on the

results of the preliminary experiment as explained in the Section 3.1.2 above.

3.2.1 Details of the Subjective Experiment

Experiment Design

For the main experimental task, we chose paired comparisons methodology which provides

higher sensitivity and easier experimental task than direct rating. However, this method

may require comparing an excessive number of pairs when a large number of conditions

is involved [MTM12], as in our case. For the complete design in our experiment, it would

be necessary to make 390 unique comparisons, which would require multiple long sessions.
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ITP - BR3

ITP - BR2

Figure 3.6 – Incomplete pairwise comparisons experiment design used for the main color space
subjective experiment. Solid black lines indicate the comparisons made within the
same color space, and dashed red lines indicate the comparison accross color spaces
for the same bitrate.

At the same time, comparing stimuli with significantly high perceptual difference leads

to obvious and unnecessary results. Therefore, an incomplete design in which only the

relevant pairs were compared was employed.

HDR video sequences were compared across bit rates for the same color space, and

across color spaces using the same bit rate, as shown in Figure 3.6. For the former, only

the sequences compressed at the neighboring bit rates were compared, e.g. BR1 vs BR2,

or BR3 vs BR4. The uncompressed sequence was compared only with the three videos

compressed at the highest bit rates. In each trial, the participants had to select the sequence

with higher quality, i.e. with lower magnitude and amount of perceivable artifacts.

Selected Materials

Due to the high inconsistencies of the preliminary experiment results for Tibul and Showgirl

scenes, these sequences were discarded in this experiment. Showgirl scene has the face of

a showgirl which is the only salient part, and because of that, other parts of the video

become not important for the users. Moreover, the face starts on the mirror and changes
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location during the sequence. This rapid change in the speed of the face makes it harder

for viewers to understand the quality. Additionally, in this scene, the salient region is close

to the display boundary. As mentioned in the Annex A.3, the boundary effect present in

the built-in rendering heavily affects the user votes due to the brighter boundary regions.

Tibul scene also suffers from similar problems. The salient region change quickly due to

the movement of the ship. It also has the same boundary problem as Showgirl, and Tibul

looks unnatural due to its lighting and color scheme.

The test sequence generation was done similar to the description made in Selected

Materials part in Section 3.1.1. RGB videos were either transformed to Y’CbCr after PQ

EOTF encoding, to ITP, or to Ypu’v’. After 4:2:0 chroma subsampling, converted frames

were encoded using HEVC Main-10 profile with HM 16.5 [SOHW12, BFSS17]. The encoded

bit streams were then decoded, and color transformation and EOTF encoding were inverted.

The resulting frames were stored in an AVI file as uncompressed video frames. As described

in the previous section, Section 3.1.1, JND levels were found using only Y’CbCr color space

transformation. The QP values for ITP and Ypu’v’ were found by finding similar bit rates

to selected Y’CbCr videos corresponding to different JND levels.

Participants and Procedure

18 people (14 men and 4 women), with an average age of 29.44, volunteered for the main

experiment. All of them reported normal or corrected-to-normal visual acuity and were

tested for color acuity using Ishihara test. This time, the participants were asked to select

the sequence with the higher quality and thus fewer compression artifacts, or otherwise

make the best guess. 14 participants took part in two sessions, composed of the same pairs

but displayed in different order, i.e. A vs B, and B vs A. The total number of user responses

per pair was 32.

3.2.2 Analysis of the Subjective Results

The subjective results were collected using the subjective test the details which were

explained in the previous sub-section. These results were analyzed after a scaling was done.

The results of a pairwise comparisons test are generally gathered in a preference or

comparison matrix. This matrix includes the preference ratios of the stimuli, and these

preference ratios can be converted into quality scores by a procedure called “scaling”. There

are several methods to carry out scaling [BT52, Thu27, LDSE11, TG11], and these methods

use two models: Bradley-Terry model [BT52], and Thurstone’s model [Thu27]. Scaling

pairwise comparisons data is discussed in more detail in Section 5.1.
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Figure 3.7 – Image scores obtained by scaling preferences to relative quality distances (in JOD
units) for the three tested color spaces.
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Scaling of Pairwise Comparisons Results

The obtained pairwise comparison results were scaled using publicly available pwcmp

software1. The software uses a Bayesian method, which employs a maximum-likelihood-

estimator to maximize the probability that the collected data explains the scaled quality

scores under the Thurstone Case V assumptions. The optimization procedure finds a

quality value for each pair of stimuli that maximizes the likelihood, which is modeled by

the binomial distribution. Unlike standard scaling procedures, the Bayesian approach can

robustly scale pairs of conditions for which there is unanimous agreement. Such pairs are

common when a large number of conditions are compared. It can also scale the result of

an incomplete and unbalanced pair-wise design, when not all the pairs are compared and

some pairs are compared more often than the others.

The distribution parameters of the software are adjusted so that the difference of one

quality value corresponds to the 75% preference rate. 75% rate is the mid-point between

the same quality (i.e. 50% or random guess) and different quality (i.e. 100%), and it implies

that only half of the observers were able to see a difference. Although this is very close

to the just noticeable difference (JND) as a concept, we use the term just objectionable

difference (JOD) to indicate that these quality scores are distances from the original perfect

quality, as JOD indicates overall quality. That is, two stimuli may have several JNDs

between them but they may both have 1 JOD difference from the original. In this sense,

JOD values can be viewed as quality scores similar to MOS (or DMOS) values, and they

can be used to understand the overall quality of the stimulus.

As the pairwise comparisons can provide only relative information about the quality,

the JOD values are also relative. To maintain consistency across the video sequences, we

always fix the starting point of the JOD scale at 0 for different distortions and thus the

quality degradation results in negative JOD values.

Comparison of Pairwise Scaling Results

The comparison matrix for each video sequence was formed separately since each stimulus

was compared to another stimulus with the same content. For each video sequence, the

original uncompressed video was fixed to have zero JOD value in order to fix the relativity

to the original video. Afterwards, the JOD values were found for the stimuli using the

pwcmp scaling software. The confidence intervals were found using bootstrapping.

The resulting JOD values are reported in Figure 3.7 for each video sequence. The videos

compressed with three color spaces have very similar JOD values. Looking at the scaled data,

we can say that, overall, there is no significant difference between the video compression

performances using tested color spaces despite the numerical differences. However, there

are a few cases where a preference of using one color space over the other is evident, e.g.

Starting scene at higher bit rates. In this sequence, there were two predominant regions of

1pwcmp toolbox for scaling pairwise comparison data https://github.com/mantiuk/pwcmp

https://github.com/mantiuk/pwcmp
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Figure 3.8 – An example of the difference in compression performance between the Y’CbCr and
Ypu’v’ color spaces, both compressed at BR2 level. The color spaces affect the artifacts
differently in the (b) bottom-left (patch #1) corner of the scene and in the (c) top
(patch #2) part of the scene.

interest, where the compression artifacts appeared to be the most obvious. These regions

are, specifically, the red tape on the ground (patch #1, indicated with solid red box) and

the wire which is visible in the sky (patch #2, indicated with dashed blue box), as shown

in Figure 3.8. The red tape on the ground has better quality for the case of Ypu’v’ and

worse quality for Y’CbCr. On the other hand, the wire in the sky retains a bigger portion

of it for the case of Y’CbCr and a smaller portion for Ypu’v’.

At high bit rates (BR1 and BR2), user ratings were highly dependent on which of

these two regions they were focusing while making the comparison. Due to the conflicting

appearance of the artifacts, the confidence intervals for Starting sequence for the cases of

BR1 and BR2 quality levels are larger then those of other video sequences. At lower bit

rates (BR3 and BR4), the details in the bottom (patch #1) part were corrupted in all the

methods, resulting in more uniform responses and more similar JOD values.

In order to test the statistical significance between the color spaces, two methods were

used. The first method we used was the statistical significance test of the pwcmp software. In

order to test the significance of the compared pairs, the pw_plot_ranking_triangles and

pw_signifiance_matrix functions were used. These functions use the covariance matrix,

C, found as a result of the JOD calculation and calculate the probability of two conditions

being different based on the variance of the difference between the said two conditions. The

variance between the conditions i and j is found by v = Ci,i+Cj,j−2×Ci,j . Assuming that

the difference follows normal distribution, the significance of the pair is found with α = 5%.



76 3. Effects of Color Space on Compression & Quality

(a) Balloon (b) Bistro (c) Hurdles

(d) Market (e) Starting

Figure 3.9 – Difference between test conditions after significance test on JODs. Only the conditions
at the same bit rate are reported. Entries named as PQ refer to the color transformation
with PQ and Y’CbCr. Black entries at position (i, j) indicate that stimulus i has been
found to be significantly better than stimulus j, at 95% confidence. Similar results are
obtained by performing a pairwise binomial test on raw (unscaled) data.

As a results of this significance test, several cases were found as significantly better than

their counterpart as shown in Figure 3.9. This test was in accordance with the results from

Figure 3.7, showing that Ypu’v’ color space mainly has the worst effect on compression

performance, while ITP is not significantly better than Y’CbCr except for a few cases.

Second, we conducted a binomial test between the different color spaces using the

unscaled experimental data, only at the same bitrate as the differences are obvious for

different bitrates. The results are shown in Figure 3.10. The colored cells show that the

p-value of the test is lower than α = 5%. The associated intensity at the position (i, j) is

not the p-value of the comparison, but it is the probability that stimulus i was selected

over stimulus j as found in the test. The results of both significance tests are in agreement

with each other.

Comparison of Objective Quality Scores

In addition to the subjective results, the video quality was predicted using two objective

quality metrics: an objective quality metric for HDR video, i.e. HDR-VQM [NMDSLC15],

and a color difference metric, i.e. ∆E2000 [LCR01]. HDR-VQM was computed using only the
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(a) Balloon (b) Bistro (c) Hurdles

(d) Market (e) Starting

Figure 3.10 – Difference between test conditions after the binomial test on the raw (unscaled)
experimental data. Only the conditions at the same bit rate are reported. Entries
named as PQ refer to the color transformation with PQ and Y’CbCr. Colored entries
at position (i, j) indicate that the p-value of the test is lower than 5%. Intensity
values indicate the probability of stimulus i being significantly better than stimulus j.

luminance channel. The results of the HDR-VQM quality metric are shown in Figure 3.11,

and the results of ∆E2000 are shown in Figure 3.12.

Comparing the same stimuli using the HDR-VQM objective metric, we found almost

identical results to the subjective experiment. In most of the cases, compression with Ypu’v’

color space results with the lowest quality, except for the Market scene where there is

almost no difference in scores. We observed a similar situation in the Balloon scene, where

only at low bit rates, a minor difference between the three methods is found. Notice that

we selected the HDR-VQM metric for objective evaluation since this is the only HDR

full-reference metric specific to video.

The compressed videos were also evaluated using ∆E2000 color difference metric. ∆E2000

was calculated for each frame, and the calculation results were placed in a vector. The

markers in Figure 3.12 indicate the average ∆E2000 value for each case of compressed

video, and the whiskers indicate the span of ∆E2000 values from minimum to the maximum.

Looking at the results reported, we can say that there is not any overall conclusion. In

terms of color difference, Y’CbCr appears to yield less color difference for Starting sequence

whereas ITP yields more color difference for Market and Bistro sequences. For all other

cases, the differences are not significant.

Considering the ∆E2000 results, we would expect that Y’CbCr should have higher
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Figure 3.11 – The results obtained by comparing all the scenes for the three color spaces using the
HDR-VQM metric. All scores are normalized, where 1 means perfect quality and
lower scores represent a decrease in quality.
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Figure 3.12 – The results obtained by comparing all the scenes for the three color spaces using the
∆E2000 metric. Higher ∆E2000 scores represent an increase in the color difference,
and stimuli more similar to the original video yield lower scores.
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preference rates (or lower JOD values) for Starting sequence. Similarly, ITP should have

lower preference rates for Market and Bistro sequences. However, the results of ∆E2000 are

different from what has been observed in both subjective experiment results and HDR-VQM

objective metric results. Even though it is a color-blind metric, HDR-VQM predicts the

quality of the compressed videos better than ∆E2000. Nevertheless, we observe that the

prediction accuracy of HDR-VQM is not sufficient to predict the quality scores found

in the subjective experiment precisely, e.g. Hurdles and Bistro have significantly lower

predicted quality than the actual one. The color difference metric ∆E2000 has been found

to predict the visual quality poorly. These findings are in agreement with the previous

works [SW03, OCHZ09, OJKP16, ZVD17].

3.3 Discussion

In this chapter, the effect of color space on compression performance of HDR videos was

investigated. RGB videos were transformed to either Y’CbCr after PQ EOTF encoding;

ITP; or Ypu’v’ color space. The videos were compressed using HEVC Main-10 profile

with HM 16.5 after 4:2:0 chroma subsampling. Two subjective tests were conducted: a

preliminary experiment to find the bit rates at approximately one JOD level from each

other, and the main color space experiment where five HDR video sequences, rendered

at four previously found bit rates, were compared. To verify the significance of the user

preference, the significance test on JODs was performed and validated using the pairwise

binomial test. The resulting data was finally compared with the results generated by

two objective quality metrics: HDR-VQM and ∆E2000. The obtained results after both

subjective and objective analysis of the effects of color space on compression and quality

were published in [ZHV+17].

The results of our test on the effect of color space on compression performance for HDR

video reveal that the influence of color space on coding performance is, in general, small.

With the exception of a few specific, content-dependent cases, we did not find evidence

of the ITP color space being significantly better than Y’CbCr. Instead, we observed that

Ypu’v’ has in general a lower performance for coding, although the differences in quality

are generally small. Even in those cases where a difference can be observed, we found

that this is strongly content dependent, and is highly influenced by the visual attention

patterns of each observer. This produces larger confidence intervals in the estimated quality

scores, indicating that the problem of assessing visual quality for small differences in the

magnitude of the distortion across stimuli (such as those produced by changing the color

space) can be strongly subject-dependent and requires both a careful choice of test material

and appropriate analysis tools. We did so in this chapter by selecting test stimuli through

a preliminary subjective study, aimed at well conditioning the scaling procedure carried

out after the main study to find JOD quality scores.

Our results also confirm that the HDR video quality metric, HDR-VQM, can predict the



3.3. Discussion 81

general trend and ranking between stimuli, but it is not sufficiently precise to distinguish

very tiny perceptual differences and predict absolute quality levels. This motivates further

studies in that direction. The color difference results of ∆E2000 cannot be generalized as the

results are highly content dependent. Moreover, ∆E2000 results are not in agreement with

the subjective quality results or the objective HDR-VQM results. Both this disagreement

and the HDR-VQM’s ability to predict the general trend of the subjective results indicate

that the perceived quality for HDR video compression is dominated by the structural

distortion caused by the changes in the luminance channel. These findings are in agreement

with the previous studies on color in the case of SDR content [SW03, OCHZ09, OJKP16].

Therefore, we expect that the color-blind (or luminance-only) metrics will perform at least

as efficiently as the color metrics for the HDR compression scenario.
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As a concept and technology, high dynamic range imaging augments current imaging

technologies. It enables the acquisition and reproduction of everyday scenes with a larger

brightness range as well as a wider range of color. Very bright and very dark objects

can be simultaneously captured and displayed together [DLCMM16]. These properties of

HDR make it a great tool to improve the human experience of visual media, compared

to standard dynamic range technologies. HDR image and video cameras and displays

have become available for commercial market, and parts of HDR storage and compression

are in the process of standardization within MPEG [LFH15, HRE16] and JPEG [Ric13]

communities. Therefore, it is necessary to understand the capabilities and shortcomings of

the objective HDR quality assessment algorithms.

Compared to SDR quality assessment, new challenges emerge for the evaluation of

HDR visual quality [NdSLC+16b]. The visibility of the artifacts are increased with the

increased luminance and widened color range of HDR. On the other hand, this increase in
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brightness also alters where viewers focus and their attention patterns compared to the

case of SDR [NDSLCP14b]. Additionally, increased brightness augments the effect of color

distortions within the overall perception of quality [Fai13]. HDR quality is affected by all

these factors. Although they are time-consuming, expensive to design, and need expertise,

the most accurate methods of assessing HDR quality are subjective quality assessment

experiments. In addition, special equipment such as HDR displays and light meters are

required in the case of HDR. All of these limitations and the growing interest in HDR led

to increasing research for the design and fine-tune of full-reference HDR quality metrics in

the past few years [MKRH11, NDSLC15, NMDSLC15, AMS08, NLCV+16].

As discussed in detail in Section 1.4.2, two of the full-reference quality metrics developed

exclusively for HDR images and videos, HDR-VDP [MKRH11] and HDR-VQM [NDSLC15]

respectively, model the human visual system and estimate the visual quality according to

the HVS model. The early stages of the HVS such as intra-ocular scattering, luminance

masking, and achromatic response of the photoreceptors are accurately modeled by HDR-

VDP. HDR-VQM also models the HVS by considering the average fixation duration of the

human eye during the calculation of spatio-temporal errors and humans assess the videos

by making “continuous assessments of the impact of short term errors” during the pooling

step of its own quality estimation.

On the other hand, the quality metrics developed for SDR content can be used also

for HDR content. As discussed in Section 1.2.1, these metrics can be arithmetic (PSNR,

MSE), structural (SSIM [WBSS04] and its multiscale version MSSIM [WSB03]) and

information-theoretic (e.g., VIF [SB06]). The SDR quality metrics were developed for the

gamma-corrected 8-bit (or 24-bit if colored) images, and the gamma-correction ensures that

the pixel values of these SDR images are perceptually linear. However, pixel values of HDR

images are captured and stored as proportional to the physical luminance of the scene,

and they are not perceptually linear. Human perception has a complex behavior: it can be

approximated by a square-root in low luminance values and is approximately proportional

to luminance ratios in higher luminance values, as expressed by the DeVries-Rose and

Weber-Fechner laws, respectively [KP86]. Thus, in order to employ these metrics, the

HDR content needs to be perceptually linearized, e.g., using a logarithmic or perceptually

uniform (PU) encoding [AMS08].

Both the metrics developed exclusively for HDR content and the SDR metrics with

perceptual linearization are compared against the mean opinion scores (MOS) of the

subjects in several subjective studies for compression scenarios [VDSLD14, HBP+15,

NDSLCP13, NDSLCP12]. The purpose of these studies is to show the performance of the

considered objective quality metrics; however, the results and the conclusions of these

studies differ from each other. For instance, the correlation values of PU-SSIM, i.e., SSIM

metric applied after the PU encoding of [AMS08], differ substantially between the study

of Narwaria et al. [NMDSLC15] and that of Valenzise et al. [VDSLD14]. This difference

can be explained by considering the two studies using different sets of stimuli. While 50
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subjectively annotated HDR images compressed using JPEG, JPEG 2000 and JPEG-XT

encoders are used in [VDSLD14], Narwaria et al. [NMDSLC15] used a larger set using a

number of subjectively annotated databases with different experimental conditions which

have different distortions. Apart from these, Hanhart et al. [HBP+15] evaluate objective

quality metrics on HDR images with a single distortion: compression with JPEG-XT

encoder. Even though all of these studies have their strengths and advantages, it is very

hard to draw a simple and clear conclusion for the considered objective quality metrics’

performance.

In this chapter, we aim to bring more clarity to this field, by providing an extensive,

reliable, and consistent benchmark of the most popular HDR image fidelity metrics. To

achieve this, a new database was created using different image encoders and pixel encoding

functions. In addition, all the available public HDR image quality databases were collected,

and the MOS values of all images were aligned using the iterated nested least square

algorithm (INLSA) proposed in [PW03b], in order to obtain a common subjective scale.

This aligned database consists of a total of 690 compressed HDR images, and it is the

largest set on which HDR metrics have been tested so far to the best of our knowledge.

Using this large set of data, we analyze the prediction accuracy and the discriminability

(i.e., the ability to detect when two images have different perceived quality) of 25 fidelity

metrics, including those tested in MPEG standardization.

The main contributions include:

• the most extensive evaluation (using 690 subjectively annotated HDR images) of

HDR full-reference image quality metrics available so far;

• the proposal of a new subjective database with 50 distorted HDR images, com-

bining 3 image codecs and 2 pixel encoding algorithm (SMPTE-2084 Perceptual

Quantization [SMP14] and a global tone-mapping operator);

• an evaluation of metric discriminability, that complements the conventional statistical

accuracy analysis, based on a novel classification approach.

HVS has different perception mechanisms for image and video because of the fixation

duration of the eye and because the temporal characteristics of image and video are

different. Therefore, the quality assessment of image and video are different. However, some

commonly used image quality metrics –e.g. PSNR, MSE, or SSIM– are often applied to

the cases of video on a frame-by-frame basis. Therefore, the result of this work could be

indicative of frame-by-frame objective metrics performance in the case of video as well.

4.1 Considered Subjective Databases

There is a large number of publicly available repositories of high-quality HDR pic-

tures [DM04, Fai07, DM08, EMP13, pfs15]. They include high-resolution and high-quality
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Table 4.1 – Number of observers, subjective methodology, number of stimuli, compression type
and tone mappings employed in the HDR image quality databases used in this paper.
TMOs legend: AS : Ashikmin, RG : Reinhard Global, RL: Reinhard Local, DR: Durand,
Log : Logarithmic, MT : Mantiuk.

Database No Observers Methodology Stimuli Compression TMO

#1 [NDSLCP13] 27 ACR-HR 140 JPEG† iCAM-06 [KJF07]

#2 [NDSLCP14a] 29 ACR-HR 210 JPEG 2000†

AS [Ash02]
RG [RSSF02]
RL [RSSF02]
DR [DD02]

Log

#3 [KHR+15] 24 DSIS 240 JPEG-XT
RG [RSSF02]
MT [MMS06]

#4 [VDSLD14] 15 DSIS 50
JPEG†

JPEG 2000†

JPEG-XT
Mai [MMM+11]

#5 15 DSIS 50
JPEG†

JPEG 2000†
Mai [MMM+11]

PQ [MND12, SMP14]

† The distorted images are generated through a scalable coding scheme [WS06]: the HDR image is converted
to SDR using a TMO; then, the SDR picture is encoded & decoded by a legacy codec; finally, the image is
converted back to HDR range.

undistorted images, even with luminance measurements of each image for some of these

repositories. Compared to this availability of undistorted HDR images, the number of

publicly available subjectively annotated HDR image quality databases is very small.

We selected four publicly available HDR image quality assessment databases for this

analysis. In addition, we propose a new database which is described in Section 4.1. Each of

these databases contains compressed HDR images and MOS values for these HDR images.

The compression algorithms, number of observers, the number of stimuli used, and the

experiment methodologies are different, and these parameters are summarized in Table 4.1.

The interested reader can refer to original publications for further details.

Database #1 – Narwaria et al. (2013) [NDSLCP13]

In their work, Narwaria et al. [NDSLCP13] proposed a tone mapping based HDR image

compression scheme and conducted a subjective experiment for the subjective quality

assessment. The subjective experiment was conducted in a controlled test room which

had a 130 cd/m2 room illumination. A SIM2 HDR47E S 4K display was used for the

experiment, and the distance from the display was set as 3×H (approximately 178 cm).

The participants were asked to rate overall image quality using the Absolute Category

Rating with Hidden Reference (ACR-HR) methodology, employing a five-level discrete

scale where 1 is bad and 5 is excellent quality. The test material was obtained from 10

pristine HDR pictures, including both indoor and outdoor, natural or computer-generated

scenes. The distorted images are generated through a backward compatible scheme [WS06]:
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the HDR image is the first converted to SDR by using a tone mapping operator (TMO);

then, the SDR picture is coded using a legacy image codec; finally, the compressed image

is expanded by inverse tone mapping to the original HDR range. The coding scheme

in [NDSLCP13] employs iCAM06 [KJF07] as TMO, and JPEG compression at different

qualities. In addition, the authors proposed two criteria to optimize the quality of the

reconstructed HDR. As a result, a total of 10 contents × 7 bitrates × 2 optimization

criteria = 140 test images were evaluated. 27 subjects participated the test. This database

is publicly available at http://ivc.univ-nantes.fr/en/databases/JPEG_HDR_Images/.

The analysis in [NDSLCP13] shows that Mean Squared Error (MSE) and Structural

Similarity Index Measure (SSIM) perform well in estimating human predictions and ordering

distorted images when each content is assessed separately. However, these results do not

apply when different contents are considered at the same time. HDR-VDP-2 was found

to be the best performing (in terms of linear correlation with MOSs) metric, but not

statistically different from the metric proposed in [NLM+12].

Database #2 – Narwaria et al. (2014) [NDSLCP14a]

In another work, Narwaria et al. [NDSLCP14a] subjectively assess the effect of using

different TMOs on HDR image compression. The test material includes 6 original scenes,

both indoor and outdoor, from which a total of 210 test images were created using

JPEG 2000 image compression algorithm after the application of several TMOs, including

Ashikmin [Ash02], both local and global versions of Reinhard [RSSF02], Durand [DD02],

and logarithmic TMO. The experiment setup was the same as in Narwaria et al. (2013)

Database #1 described above. The subjective test is conducted with 29 observers using

ACR-HR methodology.

Results show that the choice of TMO greatly affects the quality scores. It is also found

that local TMOs, with the exception of Durand’s, generally yield better results than global

TMOs as they tend to preserve more details. No evaluation of objective quality metrics is

reported in the original paper [NDSLCP14a].

Database #3 – Korshunov et al. (2015) [KHR+15]

In the study of Korshunov et al. [KHR+15], an HDR image quality database, publicly

available at http://mmspg.epfl.ch/jpegxt-hdr, was created using backward-compatible

JPEG-XT standard [Ric13] with different profiles and quality levels. For this database, 240

test images were produced, using either Reinhard [RSSF02] or Mantiuk [MMS06] TMO

for the base layer, 4 bit rates for each original image and 3 profiles of JPEG-XT. The test

room was illuminated with a 20 lux lamp, and a SIM2 HDR display was used. At any

time, 3 observers took the test simultaneously. The subjective scores were collected from

24 participants, using Double Stimulus Impairment Scale (DSIS) Variant I methodology,

i.e., images were displayed side-by-side, one of the images was the reference and the other

http://ivc.univ-nantes.fr/en/databases/JPEG_HDR_Images/
http://mmspg.epfl.ch/jpegxt-hdr
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the distorted one.

This subjective database was used in the work of Artusi et al. [AMR+15]. In this work,

an objective evaluation of JPEG-XT compressed HDR images was carried out. The results

show that SDR metrics such as PSNR, SSIM, and multi-scale SSIM (MSSIM) give high

correlation scores when they are used with the PU encoding of [AMS08], while the overall

best correlated quality metric is HDR-VDP-2.

Database #4 – Valenzise et al. (2014) [VDSLD14]

Valenzise et al. [VDSLD14] were the first to collect subjective data with the specific goal

to analyze the performance of HDR image fidelity metrics. Their database is composed of

50 compressed HDR images, obtained from 5 original scenes in the Fairchild HDR image

survey [Fai07]. Three different coding schemes were used to produce the test material, i.e.,

JPEG, JPEG 2000 and JPEG-XT. In the first two cases, the HDR image is first tone

mapped to SDR using the minimum-MSE TMO proposed by Mai et al. [MMM+11]. The

images were displayed on a SIM2 HDR47E S 4K display, with an ambient luminance of

20 cd/m2. Subjective scores were collected using DSIS methodology, i.e., pairs of images

(original and distorted) were presented to the viewers, who had to evaluate the level of

annoyance of distortion in the second image on a continuous quality scale ranging from 0

to 100, where 0 corresponds to very annoying artifacts and 100 to imperceptible artifacts.

Fifteen observers rated the images. The database is available at http://webpages.l2s.

centralesupelec.fr/perso/giuseppe.valenzise/download.htm.

The results of this study showed that SDR fidelity metrics could accurately predict

image quality, provided that the display response is somehow taken into account (in

particular, its peak brightness), and that a perceptually uniform (PU) encoding [AMS08]

is applied to HDR pixel values to make them linear with respect to perception.

Database #5 – New subjective database

In addition to the databases described above, we construct a new subjective HDR image

database of 50 images, as an extension to the previous work of Valenzise et al. [VDSLD14].

The new database features 5 original images, selected in such a way to be representative of

different image features, including the dynamic range, image key, and spatial information.

The five images are shown in Figure 4.1. The images “Balloon”, “FireEater2”, and “Market3”

are chosen among the frames of the MPEG HDR sequences proposed by Technicolor [LLF13].

“Showgirl” is taken from Stuttgart HDR Video Database [FGE+14]. “Typewriter” is from

HDR photographic survey dataset [Fai07]. All images have either 1920× 1080 pixels spatial

resolution, or are zero-padded to have the same resolution.

Similarly to [VDSLD14], the test images are obtained by using a backward compatible

HDR coding scheme [WS06], using JPEG and JPEG 2000 (with different bitrates) as SDR

codecs. We did not include JPEG-XT in this experiment since some of the contents we

http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm
http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm
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(a) “Balloon” (b) “FireEater2” (c) “Market3”

(d) “Showgirl” (e) “Typewriter”

Figure 4.1 – Original contents for the new proposed image database described in Section 4.1,
rendered using the TMO in [MDK08].

selected (e.g., “Showgirl” and “Typewriter”) were already part of the Database #3. In order

to convert HDR to SDR, we use two options: i) the TMO of Mai et al. [MMM+11]; and

ii) the electro-optical transfer function SMPTE ST 2084 [MND12, SMP14], commonly

known as Perceptual Quantization (PQ). The latter is a fixed, content-independent transfer

function which has been designed in such a way that the increments between codewords

have minimum visibility, according to Barten’s contrast sensitivity function [Bar99]. We

choose this transfer function as an alternative to tone mapping, as it has been proposed as

the anchor scheme in current MPEG HDR standardization activities [LFH15]. Both PQ

and Mai et al.’s TMO were applied per color channel.

The test environment and methodology were carefully controlled to be the same as in

Database #4 (Valenzise et al. (2014)) [VDSLD14]. The DSIS methodology was employed,

where the reference image was shown for 6 seconds, followed by 2 seconds of mid-gray

screen and 8 seconds of degraded image. The asymmetry in timing between distorted

and reference image was determined in a pilot test, taking into account the fact that the

reference image is shown several times, while the degraded image is different at each round

and requires a longer evaluation interval. After both the original and distorted images are

displayed, the observer takes all the time she/he needs to rate the level of annoyance on the

same continuous scale as in [VDSLD14]. The sequence of tested images is randomized to

avoid context effects [DS12]. Moreover, too bright (“Market3”) and too dark (“FireEater2”)

stimuli are not placed one after another in order to avoid any masking caused by sudden

brightness change. In addition to randomization, stabilizing images (one from each content

and featuring each quality level) are shown at the beginning of the experiment to stabilize

viewers’ votes (which are discarded for those images).

In addition to the contents reported in Figure 4.1, a small subset of the stimuli of
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Database #4 was included in the test. This enabled aligning the two databases, #4 and

#5, in order for the corresponding MOS values to be on the same scale [PEB+11]. Thus,

in the following, we will refer to the union of these two databases as Database #4 & 5.

A panel of 15 people (3 women, 12 men; average age of 26.8 years), mainly Ph.D.

students naive to HDR technology and image compression, participated in the test. Subjects

reported normal or corrected-to-normal vision. The outlier detection and removal procedure

described in BT.500-13 [ITU12b] resulted in no detected outlier. Then, mean opinion

scores and their confidence interval (CI) were computed assuming that data follows a

t-Student distribution. These scores, together with the test images, are available at http:

//webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm.

4.2 Alignment of MOS Values

During the training phase of subjective experiments, the subjects are generally instructed

to use the whole range of grades (or distortions) in the scale while evaluating. However,

the quality of the test material for different experiments may not be the same when they

are compared to each other. The viewers may not share the same understanding and

expectations of image or video quality. Hence, the MOS values generally do not show

the absolute quality of the stimuli. In Figure 4.2, we observe the MOS distribution for

non-aligned databases as a function of the HDR-VQM metric. Due to the characteristics

of the experiments and the test material of each database, a similar level of impairment

in the subjective scale may correspond to very different values of the objective metrics.

Therefore, in order to use the MOS values of different subjective databases in a consistent

way, these need to be mapped onto a common quality scale.

In order to align the MOS values of all five HDR image databases, we use the iterated

nested least square algorithm (INLSA) proposed in [PW03b]1. INLSA aligns the subjective

quality values collected in different subjective experiments using some common external

variables. These external variables are chosen as the objective quality metrics’ estimations

for the case of multimedia quality.

The alignment is done by changing the weights of the objective quality metrics, w, and

changing the weights of the subjective quality scores, (ai, bi), iteratively. Before any other

operation, the subjective quality scores si from the ith experiment are normalized between

0 and 1, according to Equation 4.1:

si =
soi − besti

worsti − besti
(4.1)

where soi are the original values of the subjective scores, besti and worsti are the best and

worst subjective quality values repectively. After the normalization of the scores, INLSA

1INLSA implementation on Matlab was downloaded from http://www.its.bldrdoc.gov/resources/

video-quality-research/guides-and-tutorials/insla-code.aspx

http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm
http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm
http://www.its.bldrdoc.gov/resources/video-quality-research/guides-and-tutorials/insla-code.aspx
http://www.its.bldrdoc.gov/resources/video-quality-research/guides-and-tutorials/insla-code.aspx
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Figure 4.2 – MOS vs HDR-VQM scores before INLSA alignment.

brings all the subjective scores onto a common scale by changing the weights, ai and bi:

s̃i = aisi + bi1 (4.2)

where si are the normalized subjective quality scores, s̃i are the resulting ’corrected’ quality

scores. After this first step, iteration is continued with the second step to find the best

weights for the objective quality scores, q:

s̃ ≈ ŝ = Pw (4.3)

P is the parameter matrix P = [p1 p2 ... pr] which consists of parameter vectors pi for r

different objective quality metrics, and pi consists of n quality scores qj , pi = [q1 q2 ... qn]ᵀ.

INLSA does not change the images themselves. It only changes the subjective quality

values. This means that the objective metric results are not changed after INLSA alignment.

Thus, INLSA only alters the subjective quality values in a linear manner, and it inherently

assumes that the relationship between the objective quality estimates and the collected

subjective quality values is linear. Considering that each HDR image has a distinct distortion,

the objective quality metric score for that image should be unique to that particular image.

However, it has been discussed that there are different perceptual effects [DS12] that

influence human subjects’ vote during the experiment. Hence, it is possible for these HDR

images to have different absolute quality scores. This makes using the linear model feasible.

Use of a non-linear model, on the other hand, may lead to biasing the data. Such kind of

alignment may change the MOS values in a non-linear way, which is not intended in the

original experiment in the first place. Additionally, we believe that non-linear correction

should not be done during the alignment, but in the metric itself. These points show that

a linear alignment is both necessary and sufficient for the task at hand.
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Selection of the Anchor Metrics

INLSA requires objective parameters (i.e. objective quality metric results) for the alignment,

under the assumption that those are linear and sufficiently well correlated with respect to

MOS. Therefore, we analyzed the considered metrics (see Section 4.3.1) in order to select

the best candidates for this operation. We call these metrics ’anchor metrics’.

To select any metric as an anchor metric, we need to be sure that the quality estimation

of this metric is accurate for the considered cases and robust to different conditions

presented by the considered databases. Selecting very few metrics will dominate the results

in their favor. On the other hand, using all the metrics will introduce noise and reduce the

effectiveness of the INLSA alignment. Thus, the most correlated 5 metrics were chosen for

alignment in order to reduce the dominance of any particular metric and avoid introducing

noise. Since PCC is a correlation index showing the linearity of the data and SROCC is a

correlation index showing the monotonicity of the data, we found the 5 metrics which have

the highest value for the product of PCC and SROCC as shown in Table 4.2: HDR-VDP-

2.2, HDR-VQM, PU-IFC, PU-UQI, and PU-VIF (the calculation of PU-metrics will be

explained in detail in Section 4.3.1). The linear behavior of the metric results is clear from

the plots of subjective quality vs objective quality from Figure 4.3.

Table 4.2 – Selection of Metrics for INLSA alignment - Correlation indices were calculated without
applying non-linear fitting prior to calculation. Last column indicates the product of
PCC and SROCC for each metric. Bold typeface indicates the selected metrics.

Metrics PCC SROCC Product

HDR-VQM 0.859 0.894 0.768
PU-VIF 0.843 0.842 0.710
HDR-VDP-2.2 Q 0.793 0.836 0.663
PU-UQI 0.810 0.818 0.663
PU-IFC 0.781 0.847 0.661
Log-IFC 0.779 0.846 0.659
Photometric-UQI 0.805 0.812 0.654
PU-MSSIM 0.756 0.864 0.653
Log-UQI 0.801 0.810 0.649
Photometric-IFC 0.765 0.831 0.636
PU-SSIM 0.699 0.860 0.601
mPSNR 0.718 0.745 0.535
Log-PSNR 0.716 0.735 0.526
Log-SSIM 0.552 0.856 0.472
tPSNR-YUV 0.639 0.649 0.414
Photometric-VIF 0.614 0.650 0.399
Log-MSE 0.540 0.735 0.397
Log-VIF 0.596 0.646 0.385
PU-PSNR 0.613 0.611 0.374
CIE ∆ES00 0.574 0.624 0.358
CIE ∆E00 0.552 0.555 0.307
PU-MSE 0.468 0.611 0.286
Photometric-SSIM 0.417 0.590 0.246
Photometric-PSNR 0.437 0.464 0.203
Photometric-MSE 0.282 0.451 0.127
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Figure 4.3 – Plots of MOS vs objective quality scores for the selected objective metrics selected showing the linearity of the metric estimations
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Alignment Results

The MOS values of all of the 5 databases were brought together and aligned using the INLSA

algorithm with the help of five anchor metrics selected. The scatter plots of MOS values

vs. objective quality values estimated by HDR-VQM and PU-VIF metrics after alignment

can be seen in Figure 4.4. It can be observed that data points having similar objective

quality values have similar MOS values after INLSA alignment. After the alignment, all

the MOS values were mapped onto a common subjective scale, and they can be used in

the evaluation of the objective quality metrics.

From Figure 4.4.(b), 4.4.(d) and the initial observations of the test images, we notice that

the images in Database #2 [NDSLCP14a] have very different characteristics compared to

others, and MOS values are much more scattered than other databases after the alignment.

This behavior is also evident in Figure 4.3. The metric results become more scattered

for the case of Database #2. This is mainly due to the characteristics of this database,

i.e., the stimuli were mainly obtained by changing the tone mapping algorithm used in

the compression, including many TMOs which are definitely not adapted to be used in

coding as they produce strong color artifacts in the reconstructed HDR image, and they

are therefore not used in any practical coding scheme. Also, different kinds of distortion are

present simultaneously, such as color banding, saturation etc. In some cases, it is noticed

that false contours are generated, and some color channels are saturated. This makes the

quality assessment problem much more difficult for any objective metric. It may be the

case for Database #2, these artifacts decrease the subjective quality a lot whereas the

saturation and false contours may limit the decrease in objective quality. Initial inspection

of both test images and objective metric results indicate that the considered metrics do

not capture the effect of color on quality as humans do.

As viewers were rating very different distortions with respect to the other databases,

which contain similar kinds of visual impairments, Database #2 is very challenging for all

the quality metrics we considered in this work. Therefore, in order to provide a complete

overview of the performance of HDR fidelity metrics, in the following, we report results

both with and without Database #2 in the evaluations.

4.3 Analysis of Objective Quality Metrics

After the alignment of MOS values of the databases, we obtain an image data set consisting

of 690 (or 480 images if Database #2 is excluded) images compressed using different

image compression methods such as JPEG, JPEG-XT, and JPEG 2000. In this section,

we provide a thorough analysis of the performance of several HDR image fidelity metrics.

The performance of these quality metrics was evaluated both from the point of view of

prediction accuracy and of their ability to tell whether two images are actually perceived

as being of different quality.
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Figure 4.4 – Plots of MOS vs objective quality scores for HDR-VQM and PU-VIF before and after INLSA alignment. In order to compare the scatter
plot quantitatively, the root mean squared error (RMSE) of the data is reported for each case.
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4.3.1 Objective Quality Metrics under Consideration

We include in our evaluation a number of commonly used full-reference image quality

metrics, including the mean squared error (MSE), peak signal to noise ratio (PSNR),

structural similarity index (SSIM) [WBSS04], multi-scale SSIM (MSSIM) [WSB03], in-

formation fidelity criterion (IFC) [SBDV05], universal quality index (UQI) [WB02], and

VIF [SB06]. In addition to those metrics, we consider HDR-VDP-2.2 [NMDSLC15], HDR-

VQM [NDSLC15], additional full-reference metrics recently proposed for HDR video such

as mPSNR, tPSNR, CIE ∆E 2000 [TS15], and spatial extension of CIE ∆E 2000 [ZW97]

which is computed with S-CIELAB model.

The objective quality metrics under consideration can be grouped as following:

• HDR-specific metrics: HDR-VDP-2.2 and HDR-VQM are recent full-reference

quality metrics developed for HDR image and video, respectively. They model several

phenomena that characterize the perception of HDR content and thus require some

knowledge of viewing conditions (such as distance from the display, ambient luminance,

etc.). The mPSNR is PSNR applied on an exposure bracket extracted from the HDR

image, and then averaged across exposures.

• Color difference metrics: we use CIE ∆E 2000 (denoted as CIE ∆E00), which

entails a color space conversion in order to get perceptually uniform color differ-

ences [LCR01], and its spatial extension [ZW97] (denoted as CIE ∆ES00). More

sophisticated color appearance models were not considered in this study, as their use

in quality assessment has been marginal so far.

• SDR metrics applied after a transfer function: SDR metrics such as MSE,

PSNR, VIF, SSIM, MSSIM, IFC, and UQI. To compute these SDR metrics we use:

– Physical luminance of the scene directly, denoted with the prefix Photometric-,

– Perceptually uniform [AMS08] encoded pixel values, denoted with the prefix

PU-,

– Logarithmic coded pixel values, denoted with the prefix Log-, or

– Perceptually quantized [MND12, SMP14] pixel values. For this case, only tPSNR-

YUV was considered as in HDRtools [TS15].

Calculation of the Objective Quality Metrics

In order to calculate quality metrics, we first scaled pixel values to the range of luminance

emitted by the HDR displays used in each subjective experiments. This is especially

important for those metrics such as HDR-VDP 2.2 which rely on physical luminance. In

order to compute these values, we converted HDR pixels into luminance emitted by a

hypothetical HDR display, assuming it has a linear response between the minimum and
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maximum luminance of the display. As all the experiments use the same display (i.e. SIM2

HDR47E S 4K), we selected the same parameters for all experiments, i.e., 0.03 cd/m2 and

4250 cd/m2 for minimum an maximum luminance, respectively.

Although the emitted luminance on HDR displays depends on many factors and is

not exactly a linear function of input pixel values, we found in our previous work that

it is adequately close to linear [ZVD16] and from a practical point of view, this simple

linear assumption is equivalent to more sophisticated luminance estimation techniques

which require a detailed knowledge of the reproduction device [VDSLD14]. Thus, the pixel

values were multiplied with the luminance efficacy constant 179 [VDSLD14] and then were

clipped below the minimum or above the maximum luminance values, generating a linear

model for the HDR display used.

We used the publicly available implementation of these metrics, i.e., HDR-VDP-2.2.1

available at http://sourceforge.net/projects/hdrvdp/files/hdrvdp/ , HDR-VQM avail-

able at https://sites.google.com/site/narwariam/hdr-vqm , HDRtools version 0.4 [TS15]

developed within MPEG, the MeTriX MuX library for Matlab, available at http://

ollie-imac.cs.northwestern.edu/~ollie/GMM/code/metrix_mux/ .

4.3.2 Statistical Analysis

The performance of the aforementioned full-reference quality metrics was evaluated in

terms of prediction accuracy, prediction monotonicity, and prediction consistency [DS12].

For prediction accuracy, Pearson correlation coefficient (PCC), and root mean squared

error (RMSE) were computed. Spearman rank-order correlation coefficient (SROCC)

was used to find the prediction monotonicity, and outlier ratio (OR) was calculated to

determine the prediction consistency. These performance metrics were computed after a

non-linear regression performed on objective quality metric results using a logistic function,

as described in the final report of VQEG FR Phase I [RLC+00]. This logistic function is

given in Equation 4.4:

Yi = β2 +
β1 − β2

1 + e
−(

Xi−β3
|β4|

)
, (4.4)

where Xi is the objective score for the ith distorted image, and Yi is the mapped objective

score. It minimizes the least-square error between the MOS values and the objective results.

This fitting was done using the nlinfit function of Matlab to find optimal β parameters

for each objective quality metric. After fitting, the performance scores were computed using

the mapped objective results, Yi, and MOS values.

The results of these performance indices (SROCC, PCC, RMSE, and OR) were computed

for each database separately, as well as considering all of the data together. The results

are reported in Tables 4.3-4.6. The aligned data scores are denoted as “Combined”, and

“Except Database #2” for the data aligned excluding Database #2 as explained in

Section 4.2.

http://sourceforge.net/projects/hdrvdp/files/hdrvdp/
https://sites.google.com/site/narwariam/hdr-vqm
http://ollie-imac.cs.northwestern.edu/~ollie/GMM/code/metrix_mux/
http://ollie-imac.cs.northwestern.edu/~ollie/GMM/code/metrix_mux/
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Table 4.3 – Pearson Correlation Coefficient (PCC) Results for Each Database and for Aligned Data

Metric
Database

#1
Database

#2
Database

#3
Database
#4 & 5

Combined
Except

Database #2

Photometric-MSE 0.4153 0.1444 0.7080 0.5095 0.3817 0.6876
Photometric-PSNR 0.4292 0.2564 0.7132 0.5594 0.5123 0.6511
Photometric-SSIM 0.4041 0.3583 0.8655 0.6708 0.6392 0.7397
Photometric-IFC 0.7795 0.8234 0.9183 0.8195 0.8296 0.7762
Photometric-UQI 0.8090 0.8208 0.8846 0.7876 0.8414 0.7967
Photometric-VIF 0.7489 0.5076 0.8666 0.6144 0.6224 0.8297

PU-MSE 0.5146 0.3309 0.8559 0.8024 0.6316 0.7836
PU-PSNR 0.5506 0.3269 0.8606 0.8009 0.6314 0.7889
PU-SSIM 0.8178 0.7049 0.9532 0.9201 0.8316 0.8954
PU-IFC 0.8034 0.8422 0.9201 0.8566 0.8575 0.8201
PU-MSSIM 0.8567 0.7236 0.9564 0.9038 0.8480 0.9184
PU-UQI 0.8058 0.8507 0.8768 0.7777 0.8453 0.7925
PU-VIF 0.8212 0.7583 0.9349 0.9181 0.8624 0.8870

Log-MSE 0.4946 0.5314 0.8856 0.8820 0.6502 0.7579
Log-PSNR 0.5120 0.5624 0.8870 0.8819 0.6628 0.7575
Log-SSIM 0.6722 0.8035 0.9235 0.8255 0.7971 0.8023
Log-IFC 0.8224 0.8366 0.9167 0.8551 0.8603 0.8318
Log-UQI 0.8197 0.8268 0.8786 0.7830 0.8388 0.7933
Log-VIF 0.1858 0.6202 0.8354 0.7065 0.4803 0.5180

HDR-VDP-2.2 Q 0.9127 0.5482 0.9531 0.9408 0.7498 0.9171
HDR-VQM 0.8936 0.7932 0.9612 0.9332 0.8759 0.9460

mPSNR 0.5938 0.6564 0.8593 0.8587 0.7283 0.7888
tPSNR-YUV 0.5654 0.4524 0.8319 0.7789 0.6524 0.7735

CIE ∆E00 0.6165 0.2553 0.7889 0.6082 0.5042 0.7794
CIE ∆ES00 0.6549 0.3331 0.8793 0.7322 0.5958 0.8154

Table 4.4 – Spearman Rank-Ordered Correlation Coefficient (SROCC) Results for Each Database
and for Aligned Data

Metric
Database

#1
Database

#2
Database

#3
Database
#4 & 5

Combined
Except

Database #2

Photometric-MSE 0.4294 0.1235 0.7227 0.5711 0.3423 0.7087
Photometric-PSNR 0.4341 0.2783 0.7183 0.5737 0.5006 0.6610
Photometric-SSIM 0.4436 0.3063 0.8792 0.6770 0.6274 0.7609
Photometric-IFC 0.7739 0.8254 0.9179 0.8109 0.8322 0.7811
Photometric-UQI 0.7859 0.8299 0.8686 0.8017 0.8420 0.7943
Photometric-VIF 0.7363 0.4915 0.8723 0.4864 0.5924 0.8163

PU-MSE 0.5147 0.2959 0.8617 0.8065 0.6159 0.7911
PU-PSNR 0.5147 0.2959 0.8617 0.8065 0.6157 0.7909
PU-SSIM 0.8099 0.7234 0.9503 0.9121 0.8419 0.9081
PU-IFC 0.7939 0.8433 0.9165 0.8489 0.8587 0.8226
PU-MSSIM 0.8394 0.7363 0.9517 0.8969 0.8500 0.9219
PU-UQI 0.7801 0.8608 0.8569 0.7932 0.8454 0.7895
PU-VIF 0.8030 0.7662 0.9306 0.9083 0.8620 0.8865

Log-MSE 0.4822 0.5843 0.8892 0.8719 0.6333 0.7458
Log-PSNR 0.4821 0.5843 0.8892 0.8710 0.6450 0.7466
Log-SSIM 0.6749 0.7869 0.9268 0.8179 0.8058 0.8122
Log-IFC 0.8080 0.8420 0.9140 0.8482 0.8610 0.8338
Log-UQI 0.7993 0.8232 0.8592 0.7960 0.8399 0.7894
Log-VIF 0.0278 0.5908 0.8385 0.6653 0.4996 0.4813

HDR-VDP-2.2 Q 0.9077 0.5727 0.9503 0.9298 0.7550 0.9268
HDR-VQM 0.8865 0.8126 0.9572 0.9193 0.8733 0.9471

mPSNR 0.5705 0.6496 0.8648 0.8521 0.7225 0.7948
tPSNR-YUV 0.5550 0.4342 0.8374 0.7901 0.6394 0.7782

CIE ∆E00 0.5929 0.2551 0.7824 0.5951 0.4883 0.7825
CIE ∆ES00 0.6337 0.3096 0.8779 0.7430 0.5991 0.8208
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Table 4.5 – Root Mean Squared Error (RMSE) Results for Each Database and for Aligned Data
(Please note that, in order to have comparable results, RMSE values were calculated
after all MOS values were scaled to the range of [0,100].)

Metric
Database

#1
Database

#2
Database

#3
Database
#4 & 5

Combined
Except

Database #2

Photometric-MSE 23.409 27.459 22.163 25.684 23.723 17.833
Photometric-PSNR 23.242 26.791 22.000 24.742 22.043 18.641
Photometric-SSIM 23.537 25.907 15.719 22.138 19.738 16.527
Photometric-IFC 16.119 15.748 12.426 17.105 14.331 15.485
Photometric-UQI 15.125 15.850 14.635 18.392 13.871 14.842
Photometric-VIF 17.053 23.909 15.659 23.551 20.089 13.709

PU-MSE 22.063 26.187 16.232 17.814 19.898 15.259
PU-PSNR 21.481 26.225 15.984 17.874 19.904 15.091
PU-SSIM 14.808 19.683 9.489 11.688 14.254 10.934
PU-IFC 15.323 14.963 12.295 15.403 13.203 14.053
PU-MSSIM 13.273 19.153 9.165 12.775 13.605 9.719
PU-UQI 15.238 14.586 15.093 18.765 13.712 14.979
PU-VIF 14.683 18.089 11.142 11.828 12.994 11.342

Log-MSE 22.364 23.508 14.574 14.067 19.500 16.021
Log-PSNR 22.104 22.945 14.494 14.071 19.219 16.032
Log-SSIM 19.052 16.520 12.038 16.847 15.497 14.660
Log-IFC 14.639 15.201 12.540 15.477 13.083 13.633
Log-UQI 14.738 15.611 14.988 18.567 13.973 14.954
Log-VIF 25.284 21.769 17.249 21.126 22.513 21.007

HDR-VDP-2.2 Q 10.517 23.209 9.496 10.120 16.982 9.791
HDR-VQM 11.549 16.900 8.657 10.725 12.383 7.962

mPSNR 20.704 20.934 16.053 15.298 17.589 15.094
tPSNR-YUV 21.224 24.748 17.418 18.721 19.452 15.566

CIE ∆E00 20.261 26.830 19.285 23.694 22.165 15.388
CIE ∆ES00 19.445 26.165 14.949 20.330 20.614 14.218

Table 4.6 – Outlier Ratio (OR) Results for Each Database and for Aligned Data

Metric
Database

#1
Database

#2
Database

#3
Database
#4 & 5

Combined
Except

Database #2

Photometric-MSE 0.779 0.933 0.787 0.830 0.832 0.744
Photometric-PSNR 0.786 0.905 0.767 0.820 0.806 0.725
Photometric-SSIM 0.829 0.938 0.679 0.780 0.781 0.675
Photometric-IFC 0.743 0.871 0.546 0.610 0.654 0.621
Photometric-UQI 0.643 0.871 0.558 0.640 0.643 0.604
Photometric-VIF 0.729 0.948 0.617 0.800 0.797 0.621

PU-MSE 0.800 0.933 0.633 0.680 0.777 0.619
PU-PSNR 0.743 0.919 0.579 0.660 0.778 0.627
PU-SSIM 0.693 0.948 0.404 0.560 0.671 0.504
PU-IFC 0.707 0.886 0.500 0.610 0.633 0.592
PU-MSSIM 0.671 0.933 0.388 0.570 0.652 0.438
PU-UQI 0.621 0.848 0.583 0.680 0.645 0.602
PU-VIF 0.650 0.943 0.450 0.520 0.626 0.565

Log-MSE 0.771 0.924 0.592 0.570 0.716 0.642
Log-PSNR 0.750 0.919 0.588 0.580 0.755 0.658
Log-SSIM 0.771 0.876 0.525 0.570 0.733 0.585
Log-IFC 0.650 0.833 0.529 0.610 0.625 0.581
Log-UQI 0.643 0.843 0.579 0.630 0.645 0.606
Log-VIF 0.821 0.924 0.654 0.730 0.862 0.783

HDR-VDP-2.2 Q 0.529 0.938 0.342 0.490 0.741 0.471
HDR-VQM 0.636 0.890 0.392 0.530 0.638 0.431

mPSNR 0.750 0.895 0.667 0.610 0.722 0.635
tPSNR-YUV 0.721 0.952 0.625 0.670 0.771 0.637

CIE ∆E00 0.750 0.924 0.675 0.760 0.819 0.656
CIE ∆ES00 0.700 0.933 0.613 0.710 0.796 0.615
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These results show that the performance of many full-reference quality metrics may

significantly vary from one database to another, due to the different characteristics of the

test material and of the subjective evaluation procedure. In particular, Database #2 is

the most challenging for all the considered metrics, due to its more complex distortion

features, as discussed in Section 4.2. Despite the variations across databases, we can observe

a consistent behavior for some metrics. Photometric-MSE is the worst correlated one, for

all databases. This is expected as mean squared error is computed on photometric values,

without any consideration of visual perception phenomena. On the other hand, HDR-VQM,

HDR-VDP-2.2 Q, and PU-MSSIM are the best performing metrics, with the exception of

Database #2.

When we analyze the objective metrics for each transfer function, we observe that

Photometric-IFC is the best correlated and Photometric-MSE is the worst in the linear

domain; Log-IFC is the best correlated and Log-VIF is the worst in the logarithmic domain.

Among the objective metric results in PU domain, PU-MSSIM and PU-SSIM display

high correlation coefficients, while PU-MSE is again the worst performer. Comparing the

three transfer functions, PU is the most effective, as PU-MSSIM and PU-SSIM achieve

performance very close to HDR-VDP-2.2 Q and HDR-VQM. In general, metrics which

are based on MSE and PSNR (PU-MSE, Log-MSE, PU-PSNR, mPSNR, etc.) yield worse

results compared to other metrics. Instead, more advanced SDR metrics such as IFC, UQI,

SSIM, and MSSIM yield much better results. We also notice that mPSNR, tPSNR-YUV,

and CIE ∆E 2000, which have been recently used in MPEG standardization activities,

perform rather poorly in comparison to the others.

We also evaluate the significance of the difference between the considered performance

indices, as proposed in ITU-T Recommendation P.1401 [ITU12c]. In this recommendation,

three different tests were proposed to evaluate the significance of the difference of the

correlation scores. These are the evaluation of the significance of the difference between

correlation coefficients such as PCC and SROCC, evaluation of the significance of the

difference between ORs, evaluation of the significance of the difference between RMSEs. The

correlation scores calculated above were evaluated by these tests. The results are provided

in Fig. 4.5 and Fig. 4.6 for “Combined” and “Except Database #2” cases respectively. The

bars indicate statistical equivalence between the quality metrics. For example, there is not

a statistically significant difference between HDR-VQM, PU-VIF, PU-IFC, and Log-IFC in

terms of PCC, SROCC, OR, and RMSE.

We observe that the performance of HDR-VQM –along with PU-VIF, PU-IFC, and

Log-IFC– in the combined database is significantly different from the others while PU-VIF,

PU-IFC, Log-IFC and some other metrics have essentially equivalent performance across the

combined databases. Although HDR-VDP-2.2 has a lower performance on combined dataset

compared to its performance on individual databases, it is among the three most correlated

metrics with HDR-VQM and PU-MSSIM on the case excluding Database #2. Interestingly,

the HDR-VQM metric, which was designed to predict video fidelity, gives excellent results
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Figure 4.5 – Statistical analysis results for correlation indices for combined data according to ITU-T
Recommendation P.1401 [ITU12c]. The bars signify statistical equivalence between
the quality metrics if they have the same bar aligned with two quality metrics; e.g.,
there is not a statistically significant difference between HDR-VQM, PU-VIF, PU-IFC,
and Log-IFC in terms of PCC, SROCC, OR, and RMSE.

also in the case of static images and is indeed more accurate on Database #2 than HDR-

VDP-2.2. Furthermore, we notice that all metrics except CIE ∆E00 and CIE ∆ES00 consider

only luminance values. Although CIE ∆E00 and CIE ∆ES00 have been found to be among

the most relevant color difference metrics among others in a recent study [OJKP16], they

have lower correlation scores when compared to luminance-only metrics. In fact, this result

is not in disagreement with [OJKP16], which did not consider compression artifacts in the

experiments, as the impact of those on image quality was deemed to be much stronger than

color differences. Thus, our analysis confirms that luminance artifacts such as blocking,

etc., play a dominant role in the formation of quality judgments, also in the case of HDR.

4.3.3 Discriminability Analysis

MOS values are estimated from a sample of human observers, i.e., they represent expected

values of random variables (the perceived annoyance or quality). Moreover, the individual

opinion scores are affected by several different factors. These factors may include many

things that are known to affect the perception of human viewers such as the small physi-
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Figure 4.6 – Statistical analysis results for correlation indices for combined data excluding
Database #2 according to ITU-T Recommendation P.1401 [ITU12c]. The bars signify
statistical equivalence between the quality metrics if they have the same bar aligned
with two quality metrics; e.g., There is a statistically significant difference between
HDR-VQM and all the other metrics considered in terms of PCC, SROCC, and RMSE.

cal variations in test set-up, emotional variations of the viewers like mood and previous

experiences, or the attention levels. Therefore, MOS values are as well random variables

which are known with some uncertainty, which is typically represented by their confidence

intervals [ITU12b]. As a result, different MOS values could correspond to the same under-

lying distribution of subjective scores and two images with different MOS might indeed

have the same visual quality in practice (with confidence level). The performance scores

considered in Section 4.3.2 assume instead that MOS values are deterministically known,

and that the goal of full-reference quality metrics is to predict them as precisely as possible,

without taking into account whether two different subjective scores do actually correspond

to different quality. Therefore, in the following, we consider another evaluation approach,

which aims at assessing if a full-reference objective quality metric is able to discriminate

whether two images have significantly different subjective quality.

The intrinsic variability of MOS scores is not a completely new problem, and several

approaches have been proposed in the literature to take this into account while evaluating

objective metrics. Brill et al. [BLC+04] introduced the concept of resolving power of

an objective metric, which indicates the minimum difference in the output of a quality
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prediction algorithm such that at least p% of viewers (where generally p = 95%) would

observe a difference in quality between two images. This approach was also standardized in

ITU Recommendation J.149 [ITU04b], and used in subsequent work [PW08, Bar09, HŘE15,

NVH16]. Nevertheless, this technique has a number of disadvantages. Resolving power is

computed after transforming MOS to a common scale, which requires applying a fitting

function; however, the fitting problem could be ill-posed in some circumstances, yielding

incorrect results. Also, the resolving power in the common scale corresponds to a variable

metric resolution in the original scale, which makes it difficult to interpret. Moreover, it is

not always possible to fix the level of significance p to be the same for different metrics,

as there could be cases when the percentage of observers seeing a difference between

image qualities is lower than p for any metric difference values. Finally, the results of this

approach are generally evaluated in a qualitative manner, e.g., by considering how the

number of correct decisions, false rankings, false differentiations, etc., vary as a function of

objective metric differences [BLC+04, HŘE15]; conversely, a compact, quantitative measure

is desirable in order to fairly compare different metrics. Another approach to this problem

has been recently proposed by Krasula et al. [KFLCK16]. In their paper, Krasula et al. find

the accuracy of an objective image or video quality metric by transforming the problem

into a classification problem. For this purpose, they find z-score of subjective scores and

the difference of objective scores for each pair of stimuli, and then find the accuracy of the

metric by calculating classification rates. Two analysis are conducted: different vs. similar,

and better vs. worse. They also propose a method to determine the statistical significance

of the results.

Due to the factors above limiting the effectiveness of resolving power, in this chapter,

we propose an alternative approach in the original scale of the metric similar to what has

been presented in Krasula et al. [KFLCK16], which enables to evaluate its discrimination

power while avoiding the shortcomings discussed above. Despite the similarities, the

implementation and the data processing steps of their work and the proposed algorithm

are not the same. Therefore, we give the details of the proposed algorithm below in order

to clarify differences.

The basic idea of the proposed method is to convert the classical regression problem of

accurately predicting MOS values, into a binary classification (detection) problem [Kay98].

We denote the subjective (MOS) and objective quality of stimulus I by S(I) and O(I),

respectively, for a certain objective quality metric. Given two stimuli Ii, Ij , we model the

detection problem as one of choosing between the two hypotheses H0, i.e., there is no

significant difference between the visual quality of Ii and Ij , and H1, i.e., Ii and Ij have

significantly different visual quality. Formally:

H0 : S(Ii) ∼= S(Ij);

H1 : S(Ij) � S(Ij), (4.5)



104 4. Evaluation of FR HDR Image Quality Metrics

(a) MOS equivalence matrix at 95% confidence level (b) HDR-VDP-2.2 Q estimated equivalence matrix
(τ fixed for maximum accuracy)

Figure 4.7 – Equivalence maps for the (sorted) combined database. White entries correspond to
S(Ii) ∼= S(Ij), black to S(Ii) � S(Ij).

where we use ∼= (resp. �) to indicate that the means of two populations of subjective

scores (i.e., two MOS values) are the same (resp. different). Given a dataset of subjective

scores, it is possible to apply a pairwise statistical test (e.g., a two-way t-test or z-test)

to determine whether two MOSs are the same, at a given significance level. In our work,

we employ a one-way analysis of variance (ANOVA), with Tukey’s honestly significant

difference criterion to account for the multiple comparison bias [HL87], as it is also stated

as the ideal way to find statistical significance in [KFLCK16]. Figure 4.7.(a) shows the

results of ANOVA on our combined database, thresholded at a confidence level of 95% (i.e.,

5% significance). For the convenience of visualization, MOS values were sorted in ascending

order before applying ANOVA. White entries represent MOS pairs which are statistically

indistinguishable.

In order to decide between H0 and H1, similar to Krasula et al. [KFLCK16], we consider

the simple test statistic ∆O
ij = |O(Ii)−O(Ij)|, i.e., we look at the difference between the

objective scores for the two stimuli and compare it with a threshold τ , that is:

Decide:

H0 if ∆O
ij ≤ τ

H1 otherwise.
(4.6)

For a given value of τ , we can then label the set of stimuli as being equivalent or not, as

shown in Figure 4.7.(b). The performance of the detector in (4.6) depends on the choice of

τ . Intuitively, when τ is small (in the extreme case, equal to zero), all pairs of stimuli will

be labeled as being of different quality. This maximizes the probability of detecting images
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(b) PU-PSNR

Figure 4.8 – Example of ROC curves for two objective quality metrics, with corresponding area
under the curve (AUC). Metrics with higher AUC enable better discrimination between
the two hypotheses H0 and H1.

that are actually of different quality; however, many pairs of stimuli having the same MOS

will be misclassified as different. On the other hand, when τ is large (in the limit, when it

tends to infinity), all pairs of stimuli will be labeled as being of the same quality. Thus,

the opposite kind of error happens, i.e., many pairs of stimuli with different MOSs will be

misclassified as being equivalent.

After finding equivalence matrices for both MOS values and objective quality metrics

scores, the evaluation problem is converted to a binary classification problem, that is

whether two images have the same quality. We call true positive rate (TPR) the ratio

of images with different MOSs correctly classified as being of different quality, and false

positive rate (FPR) the ratio of images with equal MOSs incorrectly classified as being

of the different quality. By varying the value of τ , we can trace a Receiver Operating

Characteristic (ROC) curve, which represents the TPR at a given value of FPR [Kay98].

An example of ROC curves for two objective metrics O is reported in Figure 4.8.

The area under the ROC curve (AUC) is higher when the overlap between the marginal

distributions of ∆O
ij under each hypothesis, that is, p(∆O

ij ;H0) and p(∆O
ij ;H1), is smaller.

Therefore, the AUC is a measure of the discrimination power of an objective quality metric.

Table 4.7 reports the AUC values for the combined case and the combination with-

out Database #2. In addition to the area under the ROC curve, we also compute the

balanced classification accuracy, which is an extension of the conventional accuracy mea-

sure to unbalanced datasets, i.e., where the number of positive and negative samples is

different [BOSB10]:

Acc =
2× TP
TP + FN

+
2× TN
TN + FP

. (4.7)

In Table 4.7 we report the maximum classification accuracy, Acc∗ = maxτ Acc, which

characterizes the global detection performance, as well as the value of the detector threshold
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Table 4.7 – Results of discriminability analysis: area under the ROC curve (AUC), threshold τ at
5% false positive rate, maximum classification accuracy. We report for comparison the
fraction of Correct Decisions (CD) at 95% confidence level as proposed in [BLC+04].
For CD, ‘–’ indicates that the 95% confidence level cannot be achieved.

Combined Except Database #2

Metric AUC τ.05 Acc*
CD

[BLC+04]
AUC τ.05 Acc*

CD
[BLC+04]

Photometric-MSE 0.534 26718.659 0.531 – 0.648 30534.138 0.618 -
Photometric-PSNR 0.582 24.798 0.563 – 0.645 18.135 0.607 0.241
Photometric-SSIM 0.605 0.061 0.588 – 0.673 0.038 0.635 0.319
Photometric-IFC 0.713 6.610 0.664 0.384 0.682 7.554 0.633 0.343
Photometric-UQI 0.774 0.333 0.713 0.405 0.754 0.381 0.696 0.339
Photometric-VIF 0.602 0.730 0.582 0.203 0.703 0.730 0.644 0.414

PU-MSE 0.595 390.075 0.577 – 0.679 390.075 0.642 0.389
PU-PSNR 0.626 19.902 0.595 – 0.724 17.415 0.671 0.391
PU-SSIM 0.706 0.063 0.652 0.372 0.791 0.048 0.716 0.503
PU-IFC 0.730 6.081 0.677 0.450 0.707 6.896 0.653 0.419
PU-MSSIM 0.726 0.092 0.670 0.421 0.831 0.065 0.754 0.591
PU-UQI 0.777 0.318 0.716 0.413 0.753 0.364 0.695 0.337
PU-VIF 0.787 0.419 0.725 0.472 0.826 0.455 0.755 0.542

Log-MSE 0.557 1.423 0.549 0.248 0.554 1.090 0.551 0.401
Log-PSNR 0.638 27.767 0.595 0.255 0.674 27.767 0.625 0.406
Log-SSIM 0.681 0.169 0.626 0.341 0.701 0.135 0.654 0.396
Log-IFC 0.732 6.074 0.680 0.459 0.714 6.903 0.660 0.432
Log-UQI 0.779 0.324 0.718 0.395 0.754 0.371 0.696 0.326
Log-VIF 0.605 0.425 0.570 0.210 0.612 0.351 0.604 -

HDR-VDP-2.2 Q 0.683 23.955 0.626 0.269 0.836 20.962 0.744 0.592
HDR-VQM 0.786 1.962 0.723 0.483 0.900 1.503 0.821 0.701

mPSNR 0.678 13.557 0.638 0.277 0.721 13.164 0.668 0.399
tPSNR-YUV 0.629 17.041 0.596 0.168 0.707 17.041 0.653 0.381

CIE ∆E00 0.580 7.643 0.557 0.172 0.724 6.688 0.668 0.346
CIE ∆ES00 0.609 6.718 0.583 0.189 0.744 5.878 0.690 0.382

at FPR = 5%, that is,

τ.05 = min{τ : p(∆O
ij > τ ;H0) ≤ 0.05}, (4.8)

which indicates the minimum value of τ in order to keep below 5% the probability of

incorrectly classifying two stimuli as being of different quality. This latter measure provides

somehow the resolution of an objective metric (with a 5% tolerance) in the original metric

scale.

These results in Table 4.7 are complemented with the percentage of correct decisions

(CD) in [BLC+04], which is to be compared with Acc∗. Furthermore, we present the results

of statistical significance evaluation of the reported AUC values according to the guidelines

presented in Krasula et al. [KFLCK16]. The results of this statistical significance evaluation

are presented in Fig. 4.9. The results show that HDR-VQM is the best performing metric,

and PU-VIF and –in the case excluding Database #2– PU-MSSIM perform better than
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Figure 4.9 – Statistical analysis results for the discriminability analysis, according to the procedure
described in Krasula et al. [KFLCK16]. The bars signify statistical equivalence between
the quality metrics if they have the same bar aligned with two quality metrics. It
can be said that among PU-UQI, Log-UQI, and Photometric-UQI, there is not any
statistically significant difference. Whereas, there is a statistically significant difference
between HDR-VQM and all the other metrics considered.

most of the considered metrics. Although its performance is reduced in the combined case,

HDR-VDP-2.2 Q also is statistically better than most other metrics in the case excluding

Database #2.

We notice that, in general, the values of CD are much lower than Acc∗. This is due

to the fact that the method in [BLC+04] not only aims at distinguishing whether two

images have the same quality but also to determine which one has better quality. Thus the

classification task is more difficult, as there are three classes – equivalent, better or worse –

to label. Indeed, we observe a certain coherence between our approach and [BLC+04], and

with the statistical analysis in Section 4.3.2: the best performing metrics are HDR-VQM

and those based on PU transfer function such as PU-MSSIM, PU-VIF, and PU-SSIM.

Nevertheless, our analysis provides a better insight into the discrimination power of fidelity

metrics compared to [BLC+04], and gives practical guidelines on which should be the

minimal differences between the objective scores of two images in order to claim that

those have different visual quality. Finally, the fact that, even for the best performing

metrics in terms of correlation with MOSs, maximum accuracy saturates at 0.8, suggesting
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that there is still space for improving existing HDR objective quality measures, as far

as discriminability (and not only prediction accuracy) is included in the evaluation of

performance.

4.4 Discussion

An extensive evaluation of full-reference objective HDR image quality metrics was conducted,

and its results were presented in this chapter. In order to conduct this evaluation, four

different publicly available HDR image quality databases were collected, and a new HDR

image quality database was created. These five databases were aligned using the INLSA

algorithm in order to have consistent MOS values. In total, 690 compressed HDR images

were evaluated using several full-reference HDR image quality assessment metrics.

The performance of these metrics was evaluated from two different aspects; statistical

analysis and discriminability analysis. The statistical analysis considers the quality estima-

tion as a regression problem and uses conventional statistical accuracy and monotonicity

measures [DS12]. Discriminability analysis, on the other, focuses on the ability of objective

metrics to discriminate whether two stimuli have the same perceived quality.

The analysis results show that recent metrics designed for HDR content, such as

HDR-VQM and to some extent HDR-VDP-2.2, provide accurate predictions of MOSs.

It is necessary to point out that these results are gathered using HDR image quality

databases which have compression-like distortions. The results also confirm the findings

of the previous work [VDSLD14, HBP+15] as the results indicate that legacy SDR image

quality metrics have a good prediction and discrimination performance, provided that a

proper transformation such as PU encoding is done beforehand. This somehow suggests

that the quality assessment problem for HDR image compression is similar to the case

of SDR, if HDR pixels are properly preprocessed. Nonetheless, the performance results

of the metrics reveal that none of the tested metrics provides highly reliable predictions,

when all of the databases with heterogeneous characteristics are considered together (e.g.

Database #2 in our experiments).

Except two of them, all of the considered metrics are computed on the luminance

channel of the images. Interestingly, the non color-blind metrics, CIE ∆E00 and CIE ∆ES00,

display poor performance in our evaluation. While other studies report different results in

terms of correlation with MOSs [HRE16], we believe that a partial explanation for these

results is that in the case of coding artifacts, the structural distortion (blocking, blur)

in the luminance channel dominates the color differences, captured by CIE ∆E00 and

CIE ∆ES00 . The important aspect of color fidelity metrics for HDR content, however, is

still little understood. The importance of color on the human perception of the quality is a

prospective future research for HDR/WCG.

Finally, an alternative evaluation methodology is proposed in this chapter of the

thesis. This evaluation methodology is based on the discriminability of a metric, and it
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provides a complementary perspective on the performance of objective quality metrics.

As the subjective experiments are done on a small sample set of observers, MOS values

are probabilistic in their nature and are known with uncertainty. The proposed method

recognizes the stochastic nature of MOS values, and it evaluates the objective quality

metrics’ ability to detect whether images have significantly different quality. The relevance

of this alternative point of view is demonstrated by the amount of efforts to go beyond

classical statistical measures such as correlation in the last decade, from the seminal work

of Brill et al. [BLC+04] to the very recent work of Krasula et al. [KFLCK16], developed

in parallel to our study.These analyses show that, even for metrics which can accurately

predict MOS values, the rate of incorrect classifications is still quite high (20% or more).

This suggests that novel and more performing object quality metrics could be designed,

provided that new criteria such as discriminability are taken into account alongside the

correlation indices used to find statistical accuracy.

Along with the results of this extensive evaluation, details of the proposed evaluation

methodology was published in the journal article [ZVD17]. In order to support the research

efforts on HDR image quality, the proposed database (merger of Database #4 and #5)

of 100 HDR images have been made publicly-available over the Internet. These HDR

images, along with their subjective quality scores, are available at http://webpages.l2s.

centralesupelec.fr/perso/giuseppe.valenzise/download.htm.

http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm
http://webpages.l2s.centralesupelec.fr/perso/giuseppe.valenzise/download.htm
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Subjective quality assessment is used in many domains including psychology, medical

applications, computer graphics, and multimedia. Regardless of the domain, it is regarded

as a reliable method of quality assessment, and it is often employed to collect “ground-truth”

quality scores.

Two of the main methods of subjective quality assessment for multimedia content are

direct rating and ranking [ITU08, ITU12b]. Direct rating methods ask the observers to assign

scores to observed stimuli. They may involve displaying a single stimulus (absolute category

rating (ACR), single stimulus continuous quality evaluation (SSCQE)) or displaying two

stimuli (double stimulus impairment scale (DSIS), double stimulus continuous quality

evaluation (DSCQE)). Ranking methods ask the observers to compare two or more stimuli

and order them according to their quality. The most commonly employed ranking method

is pairwise comparisons (PC). Pairwise comparisons methodology was argued to be more

suitable for collecting quality datasets because of the simplicity of the task and consistency

of the results [PLZ+09, PJI+15]. The works of Ponomarenko et al. [PLZ+09, PJI+15],

however, did not consider an important step in the analysis of pairwise comparisons data,
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which is scaling pairs of comparisons onto an interval quality scale. Here, we analyze the

importance of this step and demonstrate how it enables yielding a unified quality scale

between rating and ranking methods.

In the previous chapter, the evaluation of FR HDR objective quality metrics shows

that aligning subjective datasets is tricky and not straightforward. The MOS values are

susceptible to many different factors such as the environmental factors of the subjective

test, the instructions given to the subject in the training session before the experiment,

the experimenters’ understanding of quality, the range (or strength) of distortions applied

to the stimuli, and even the mood of the subjects. Thus, MOS values may have a very

different meaning and scale, depending on how they are collected. The objective alignment

we used in the previous chapter, INLSA [PW03b], is valid under some assumptions. It is

important to understand whether there is a more general method for alignment. How can

we find a more robust method to align quality databases? What is a good measure to use

while comparing the quality of two different stimuli? In order to answer these questions,

we should first understand what causes the variance in perceived quality, and we should be

able to reduce the variance.

In general, most of the subjective quality assessment studies use direct rating methods.

The three mostly used direct rating methodologies are ACR [PPLC08b, GSI10, GDSE10,

BPLC+11], absolute category rating with hidden reference (ACR-HR) [SSB06, DSNT+09,

OZW10, SSBC10a, SSBC10b], and DSIS [LCA05, KHR+15, HRE16]. For these method-

ologies, human observers evaluate the stimuli considering all the other stimuli in their mind.

In order to make proper quality judgments, they need to remember how they voted for

other stimuli. This necessity essentially creates a quality scale in the minds of observers and

makes it harder to compare and judge as the number of stimuli grows. On the other hand,

basic ranking methods, e.g. pairwise comparisons, are generally much more straightforward

and simple compared to direct rating methodologies. Especially in the case of pairwise

comparisons, we can argue that comparing between two stimuli is truly simpler than com-

paring among many. In their work, Mantiuk et al. [MTM12] found that the forced-choice

pairwise comparisons methodology was the most accurate, as well as the most time-efficient,

among four methodologies compared: single-stimulus categorical rating (i.e. ACR-HR),

double-stimulus categorical rating, forced-choice PC, and similarity judgments.

The PC experiment and the results of PC scaling are much less influenced by the

human factors by their nature. Thus, it can be used as a “universal” scale which you can

align your datasets to. In this chapter, we try to understand the relation between the direct

rating –i.e. MOS– and ranking –i.e. PC scaling– results, and we compare the MOS values

and the scaling results of the PC experimental data.

The vast majority of studies employing the pairwise comparisons method compare

only the images depicting the same content, for example comparing different distortion

levels applied to the same original image. This “apple-to-apple” comparison simplifies the

observers’ task, making results consistent within content. However, it also comes with



5.1. Scaling Pairwise Comparisons Data 113

some limitations. On one hand, assessing and scaling each content independently makes it

difficult to obtain scores that correctly capture quality differences between conditions across

different contents on a common quality scale. On the other hand, pairwise comparisons

capture only relative quality relations. Therefore, in order to assign an absolute value to

such relative measurements, the experimenter needs to assume a fixed quality for a certain

condition which is then used as the reference for the scaling. As a result, the scaling error

accumulates as conditions get perceptually farther from the reference.

In this chapter, we also study the effect of adding cross-content comparisons, showing

that this not only allows unifying the quality scale across content but also improves the

accuracy of scaled quality scores significantly. In order to understand the effect of cross-

content pairwise comparisons, four different experiments were conducted using pairwise

comparisons and double stimulus impairment scale methodologies. There are three major

findings of the study described in this chapter:

• There is a strong linear relation between the mean opinion scores (MOS) obtained

by direct rating, and scaled PC results;

• The addition of cross-content comparisons to the traditional PC reduces error accu-

mulation and increases accuracy when scaling PC results;

• Cross-content comparisons align the PC scaling results of different contents to a

common quality scale, reducing content dependency.

For this study, we use the high dynamic range (HDR) video quality dataset, presented

in Section 3.2. Detailed information on scaling, the video quality database used, and the

results are presented in the following sections.

5.1 Scaling Pairwise Comparisons Data

The results of a pairwise comparison experiment can be gathered in a preference matrix,

also known as a comparison matrix. Its elements contain the counts of how many times

one condition is voted as better than the other. These preference matrices can be used to

find a quality score for each condition using one of several scaling methods [BT52, Thu27,

LDSE11, TG11].

Commonly, pairwise comparison experiments are described by either of the two models:

Bradley-Terry model [BT52] or Thurstone’s model [Thu27]. Bradley-Terry model finds

the quality, or rating, of each stimulus which satisfies
∑N

i=1 πi = 1 and P (i > j) = πi
πi+πj

,

where N is the total number of stimuli and πi is the quality of stimulus i. It assumes that

the difference between the quality of two stimuli i and j, πi− πj , has a logistic distribution.

Thurstone’s model, on the other hand, assumes that people may have different opinions

about each stimulus and the quality, or rating, of each stimulus can be estimated with a
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Gaussian distribution. Thurstone [Thu27] considers five different cases which have different

properties. The most commonly used case is Case V which assumes that each option has

equal variance and equal (or zero) correlations.

Other scaling methods proposed are generally based on these two models. Lee et

al. [LDSE11] proposed Paired Evaluation via Analysis of Reliability (PEAR) which is based

on Bradley-Terry model. It computes the quality scores and their confidence intervals using

the distribution of winning frequencies and ties. The scores are then found by maximizing

the log-likelihood function. Tsukida and Gupta [TG11] compares several methods based

on both Bradley-Terry and Thurstone’s model, such as least-square estimation, maximum

likelihood estimation, and maximum a posteriori estimation.

In this chapter, we use pwcmp, an open source software1 for scaling pairwise comparison

results [POM17]. As also described in Section 3.2.2, this software estimates the quality scores

using a Bayesian method, which employs a maximum-likelihood-estimator to maximize the

probability that the collected data explains the quality scores under the Thurstone Case

V assumptions. It is robust against incomplete and unbalanced designs, and it can scale

pairs which have a unanimous agreement. The preference probabilities are converted to

quality scores considering that the probability of 0.75 (mid-point between random guess

(0.5) and certainty (1)) maps to 1 just objectionable difference (JOD). The concept of JOD

and its difference from JND is better explained in the ‘JNDs and JODs’ part below. The

pwcmp software also computes the confidence intervals using bootstrapping. Due to the

relative nature of the pairwise comparison experiment, JOD values are relative. Therefore,

we always fix the undistorted reference image at 0, and the distorted stimuli have negative

JOD values.

JNDs and JODs

The results of paired comparisons are typically scaled in Just-Noticeable-Difference (JND)

units [Eng00, SF01]. Two stimuli are 1 JND apart if 50% of observers can see the difference

between them. However, we believe that considering measured differences as “noticeable”

leads to an incorrect interpretation of the experimental results. Let us take as an example

the two distorted images shown in Figure 5.1: one image is distorted by noise, the other by

blur. Both images are definitely noticeably different, and intuitively they should be more

than 1 JND apart. However, the question we ask in an image quality experiment is not

whether they are different but rather which one is closer to the perfect quality reference.

Note that a reference image does not need to be shown to answer this question as we

usually have a mental notion of how a high quality image should look. Therefore, the data

we collect does not measure visual differences between images, but rather it measures image

quality difference in relation to a perfect quality reference. For that reason, we describe

this quality measure as Just-Objectionable-Differences (JODs) [AVS+17] rather than JNDs.

1pwcmp toolbox for scaling pairwise comparison data https://github.com/mantiuk/pwcmp

https://github.com/mantiuk/pwcmp
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Figure 5.1 – Illustration of the difference between just-objectionable-differences (JODs) and just-
noticeable-differences (JNDs). The image affected by blur and noise may appear to be
similarly degraded in comparison to the reference image (the same JOD), but they are
noticeably different and therefore several JNDs apart. The mapping between JODs and
JNDs can be very complex and the relation shown in this plot is just for illustrative
purposes.

Note that the measure of JOD is more similar to the quality expressed as a difference mean

opinion score (DMOS) rather than to JNDs.

Is Scaling Necessary?

Scaling methods are not always used to convert a preference matrix into quality, and

some researchers use alternative methods. In [PLZ+09] and [PJI+15], the quality values

were estimated by counting the times one stimulus was preferred over another. However,

this approach requires a complete experiment design, in which all pairs are compared,

or a heuristic that would infer missing comparisons. In contrast to vote counts, scaling

methods introduce an additional step of converting preference probabilities into an interval

quality scale. In order to understand the difference between vote counts and the results

of scaling, we compared both to the collected MOS values. We converted the results of

the first pairwise comparison experiment to vote counts by counting how many times one

condition was preferred over another.

To simulate how it was done in [PLZ+09, PJI+15], the missing comparisons were

populated by the following operations: V (A,C) = min(V (A,B), V (B,C)) and V (C,A) =

min(V (B,A), V (C,B)) where V (x, y) is the number of votes in the preference matrix,

provided that comparison of A and C was missing, but they were both compared to B.

The resulting scores are presented in Figure 5.2. The plots show that PC scaling (in this

case, JOD) scores are better correlated to MOS values compared to the quality estimates

according to the number of votes. Considering this result, it can be claimed that using a
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Figure 5.2 – Comparison of two different quality score estimation methods. The results of the first
experiment is used to find the preference matrix. PC scaling done by pwcmp software
(a) yields a better correlation to the MOS values than the quality score estimation via
counting the number of votes (b).

scaling method yields results which are better correlated with MOS values.

Difference between MOS and PC Scaling

Although the mean opinion scores (MOS) are commonly used for the analysis of the

subjective quality experiment results, there are several drawbacks of MOS values. The

outcome of the MOS experiments strongly depends on the training procedure used to

familiarize participants with the quality scale. Because of the differences in this training

phase, measured scores are relative and are different for each session. The MOS values

can result in different scales according to the instructor who does the training and also

according to the experiment design. As it has been noticed in the Chapter 4, MOS values

coming from different datasets may not be comparable with each other. While combining

different datasets, an alignment step is often necessary; however, this is usually overlooked.

Pairwise comparison scaling in general, and JOD scaling used here in particular, does

not require training and, in principle, should give consistent results for each session. Since

pairwise comparison is a much more straightforward procedure, JOD values should be

comparable between different datasets.

5.2 The Relation Between MOS and Pairwise Comparisons

In this section, we present the results of the subjective test conducted in order to understand

the relation between MOS values and PC scaling results.
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5.2.1 Details of the Subjective Experiments

In order to compare the MOS values to PC scaling results, two subjective tests were

conducted. In these subjective tests, we used the HDR video quality dataset created in

Section 3.2. This dataset consists of 60 compressed HDR videos. 5 original video sequences

were compressed using HEVC Main 10 profile with 3 different color space conversions

(RGB→ Y’CbCr, ITP, and Ypu’v’) and 4 different bitrates which are reported in Table 3.2.

Each video sequence was 10 seconds long, composed of two identical 5-second long video

segments played twice in succession.

The experiments were conducted in a quiet and dark room conforming to ITU Recom-

mendations [ITU12b, ITU98]. The ambient illumination of the room was set to 2.154 lux,

and the luminance of the screen when turned off was 0.03 cd/m2. A calibrated HDR SIM2

HDR47 S 4K 47” display with 1920× 1080 pixel resolution was used in its native built-in

rendering mode. The subjects’ distance from the screen was fixed to three heights of the

display, with the observers’ eyes positioned zero degrees horizontally and vertically from

the center of the display [ITU98].

The conducted experiments share a common set of parameters in addition to those of

the test room. The stimuli were presented as pairs with a side-by-side representation. A

gray screen was shown before each pair for 2 seconds. The stimuli were presented, and the

viewers were asked to vote. The duration of voting was not limited. A training session was

conducted before each test, and the duration of the tests was less than 30 minutes including

the training. All of the observers were screened and reported normal or corrected-to-normal

visual acuity.

Pairwise Comparisons Experiment

The first experiment conducted was a pairwise comparisons experiment with incomplete

design. In this experiment, a pair of videos with two consecutive bitrates from the same

color space or with the same bitrate from two different color spaces was compared, as

shown in Figure 5.3.(a). In order to keep the experiment short, other pair combinations

were not included in this test. These comparisons were made only within the same content.

In total, 65 videos (5 contents × 3 color spaces × 4 bitrates + 5 reference sequences)

were compared in 240 pairs (including mirrored versions). In order to keep each session

under 30 minutes, the tests were conducted in two sessions. The order of the pairs was

randomized for each session and the second session comprised of the mirrored versions of

the videos of the first session. The duration of each session was approximately 30 minutes.

There were 18 participants (14 men and 4 women) with an average age of 29.44. Further

explanations on the experiment design are given in Section 3.2.

The confidence intervals get more precise (or narrower) with the increasing number of

subjects [PPLC08b]. Therefore, in order to be able to compare the confidence intervals in a

fair manner, it is desirable to have the same number of subjects. Since the DSIS experiment
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(a) Standard Pairwise Comparisons - Incomplete design
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(b) Double Stim-
ulus Impairment
Scale

Figure 5.3 – Compared pairs for the (a) pairwise comparisons and (b) DSIS experiments. To avoid
cluttering, comparisons for DSIS experiment are shown for each color space CSk where
k is the index of CS = {Y’CbCr, ITP, Ypu’v’}.

has 15 participants, in order to keep the number of the participants the same in all of the

experiments, opinion scores of 3 random participants were removed from the results of this

experiment.

Double Stimulus Impairment Scale Experiment

In order to analyze the pairwise comparisons scaling results and understand whether these

scaling results are comparable to the quality scores, a second experiment was conducted

following the double stimulus impairment scale (DSIS) methodology. In this second experi-

ment, DSIS Variant I methodology with a side-by-side presentation was used, as in [HRE16].

A continuous scale ([0,100], 100 corresponding to “Imperceptible”) was used instead of a

categorical one (5 point impairment scale). All of the distorted videos were compared with

the non-distorted reference video, as shown in Figure 5.3.(b).

A total of 120 pairs were compared (including mirrored versions). In order not to

distract the viewers, left or right side was selected, and original videos were always placed

on the selected side for each viewer. To avoid any contextual effects, the original videos
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Figure 5.4 – JODStandard vs. MOS. Solid red line indicates the best linear fit to the data, and the
dashed violet line indicates the best linear fit line of the case ’All Together’.
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were presented on the left side of the display for half of the viewers and on the right side

for the other half of the viewers. The duration of the DSIS tests was approximately 18

minutes. In total, 15 people (8 men and 7 women) with the mean age of 26.87 participated

in the test.

5.2.2 Comparison of MOS and Pairwise Comparisons

The preference matrices of the PC experiments were found, and JOD scores were estimated

using pwcmp software. For the DSIS experiment, the MOS values were calculated by taking

the mean of opinion scores. Confidence intervals (CI), on the other hand, were calculated

using bootstrapping in order to compare them to the CIs of JOD scores. The resulting

JOD scores (denoted as JODStandard to indicate that the standard pairwise comparisons

methodology was used) were plotted against MOS values. The plots are shown in Figure 5.4.

The results show that there is a strong relation between MOS values and JOD scores.

As presented in Figure 5.4, JOD scores and MOS values show almost linear behavior for all

contents. This relation was also verified with PCC and SROCC computations. Reported in

Table 5.1, PCC and SROCC values show that the relation is almost perfectly linear for

each video sequence.

Table 5.1 – Linearity of the relation between MOS and JOD

Sequence PCC SROCC

Balloon 0.9936 0.9835
Bistro 0.9824 0.9890
Hurdles 0.9864 0.9670
Market 0.9696 0.9615
Starting 0.9897 0.9835

All Contents 0.9337 0.9420

We noticed that the MOS values have CIs close to uniform; however, the CIs of

JOD values increase as absolute JOD values themselves increase. This was caused by the

accumulation of the estimation errors, which results from comparing consecutive pairs.

Note that running the full design, in which all pairs are compared, will not decrease such

error to a large extent as the comparison for conditions that differ more than 2 JODs do

not contribute much to the estimation.

5.3 Extending Pairwise Comparisons: Cross-Content Com-

parisons

The pairwise comparisons experiments are designed to compare conditions coming from

the same content so that “apples” are compared to “apples”. Because only the reference

condition is anchored and the quality of all other conditions is estimated from paired-
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Figure 5.5 – Experiment design for two additional experiments. Selected additional pairs are shown
with black arrows, where Referencei is the reference (original) for video content i,
BRi

j is video content i compressed with the j-th bitrate (j = 1 is the highest bitrate).
The pairs shown with dashed gray arrows are the pairs (shown in Figure 5.3.(a))
compared for the standard pairwise comparisons, as described in Section 5.2.1. To
avoid cluttering, the comparisons between color spaces are not shown in subfigure (a).

relations, the estimation error is accumulated while moving away from the anchor. Instead,

comparing “apples” to “oranges” may introduce new information, improve the scaling, and

reduce cross-content variance.

In this section, we propose to extend the standard pairwise comparisons methodology

to include cross-content comparisons. It is found that including cross-content comparisons

improves the accuracy of PC scaling and reduces error accumulation.

5.3.1 Cross-Content Pairwise Comparisons Experiment

In addition to the subjective experiments described in the previous section, two additional

experiments were conducted in order to analyze and understand the effects of cross-content

pairwise comparisons. All of the variables except the selected pair of stimuli were kept

the same. We were motivated to run such a cross-content comparison experiment after

observing that such comparisons are indirectly performed in the DSIS methodology. When

the viewers rate sequences, they judge the quality in relation to all other sequences they

have seen, also the sequences presenting different content.

To keep the additional experiments short, for cross-content experiment, we paired

videos with different contents and same bitrate, as shown in Figure 5.5.(a) using the

comparisons shown with solid black arrows. The obtained results were combined with the
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standard (same-content) pairwise comparison experiment results (shown with grey arrows

in Figure 5.5) and scaled again using the same pwcmp software. The results are presented

in the corresponding section below. The new JOD scores obtained from the combination of

standard PC and cross-content experiment are called JODCrossContent.

In order to conduct the test in one session and within 30 minutes, only videos encoded

using Y’CbCr color space were compared, and the test set consisted of a total of 80 pairs

(including mirrored versions). The duration of the tests was approximately 20 minutes. 15

people (8 men and 7 women) with an average age of 28 years took part to the test. Viewers

were introduced the compression artifacts in the training part, and they were asked “Which

one of the pairs have a better quality in terms of compression artifacts?”.

In order to make a fair comparison in terms of the number of total comparisons, an

additional same-content experiment was also conducted. To keep the additional number of

pairs in a similar range, the test consisted of a total of 90 pairs (including mirrored versions).

For this purpose, we selected pairs with consecutive bitrates and same color spaces, as shown

with solid black arrows in Figure 5.5.(b). They are essentially additional observations of

some of the pairs of the standard PC test described in the previous section. These pairs were

compared by 15 people (8 men and 7 women) with an average age of 29. These additional

same-content pairs were again combined with the standard PC experiment results and

scaled again with pwcmp software. The JOD scores obtained from the combination of

standard PC and additional same-content experiment are called JODSameContent.

5.3.2 Impact of Cross-Content Comparisons

The JOD values we use were found using three different sets of PC data. As described in

the previous section, JODStandard was found using the data acquired in the within-content

PC experiment shown in Figure 5.3.(a). JODSameContent was found using the combination

of standard PC experiment results and additional same-content experiment results, and

JODCrossContent was found using the combination of standard PC experiment results and

the cross-content experiment results.

Although the cross-content comparisons were made only for the videos with Y’CbCr

color space, the JOD scores for all videos with all three color spaces are updated after

re-scaling. The updated JOD values, JODSameContent and JODCrossContent, were plotted

against MOS and CI in Figures 5.6 and 5.7, respectively. The updated results show that

the high CI values for high JOD scores are now significantly reduced with the addition of

cross-content pairs. The slopes of the best linear fit change. Therefore, the relationship

between JOD and MOS becomes much more linear and the correlation between JOD and

MOS becomes much higher.
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Figure 5.6 – JODSameContent vs. MOS. JODSameContent is found using a combination of standard
PC experiment (shown as in Figure 5.3.(a)) and additional same-content pairs as
shown in Figure 5.5.(b). Solid red line indicates the best linear fit to the data, and the
dashed violet line indicates the best linear fit line of the case ’All Together’.
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Figure 5.7 – JODCrossContent vs. MOS. Instead of only same-content pairs, a combination of
same-content (shown as in Figure 5.3.(a)) and cross-content pairs were used to find
JODCrossContent. Solid red line indicates the best linear fit to the data, and the dashed
violet line indicates the best linear fit line of the case ’All Together’.
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Table 5.2 – Linearity of the relation between MOS and JODs of two different cases: standard
PC experiment with additional same-content pairs, JODSC , and the proposed PC
experiment with same-content and cross-content pairs, JODCC .

Sequence Case PCC SROCC Slope Stdp2l

Balloon
JODSameContent 0.9939 0.9835 6.43 0.3582
JODCrossContent 0.9907 0.9835 6.84 0.4018

Bistro
JODSameContent 0.9836 0.9835 9.42 1.4544
JODCrossContent 0.9860 0.9890 8.43 0.8499

Hurdles
JODSameContent 0.9833 0.9615 9.19 0.9639
JODCrossContent 0.9882 0.9725 6.66 0.4885

Market
JODSameContent 0.9721 0.9670 5.63 1.5853
JODCrossContent 0.9772 0.9670 6.45 0.5154

Starting
JODSameContent 0.9883 0.9890 7.23 0.4369
JODCrossContent 0.9914 0.9835 6.68 0.3649

All Together
JODSameContent 0.9248 0.9324 6.69 1.0841
JODCrossContent 0.9788 0.9733 7.08 0.5516

Linear Relationship Between MOS and PC Scaling

The linear behavior observed between the JODStandard and MOS values holds for the

cases of JODSameContent and JODCrossContent, as well. Furthermore, the introduction of

cross-content pairs increases the correlation and linearity of the relationship between JOD

and MOS. The JOD scores become more linear after the combination of same-content and

cross-content pairs, as can be seen in Figure 5.6.(f), Figure 5.7.(f), and in Table 5.2.

Reduced Content Dependency

In both Figure 5.6 and 5.7, the slopes of the best fitted line are found for each content.

These slopes are reported in Table 5.2. In order to find the effect of the addition of

cross-content pairs, the variance of these slopes was found. Variance of the slopes in the

case of JODSameContent was 2.7972 and in the case of JODCrossContent was 0.6445. This

significant reduction in the variance of the slopes implies that the best linear fit for each

content is much closer, and there is less variance across different contents.

Another metric, Stdp2l, was computed for the points plotted in each sub-figure presented.

It is calculated as:

Stdp2l =
√
mean(d(P, l)2) (5.1)

where d(P, l) is the perpendicular distance from point P to line l. Stdp2l was computed for

the best linear fit of the case ‘All Together’. The best linear fit corresponds to the dashed

violet line in the sub-figures (a)-(e). The results of Stdp2l are reported in Table 5.2.

It is clear that the addition of cross-content pairs decreases the variance of the slopes

of the best fitted line for each content and Stdp2l as well, thus bringing JOD scores closer
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Contents CIStandard CISameContent CICrossContent RatioCC/SC

Balloon

BR1 1.23 1.23 1.53 1.25
BR2 2.21 1.68 1.86 1.11
BR3 3.03 2.84 2.48 0.87
BR4 3.93 3.36 2.56 0.76

Bistro

BR1 1.60 1.70 1.25 0.73
BR2 2.12 1.91 1.46 0.76
BR3 2.92 2.49 2.00 0.81
BR4 3.34 2.91 2.26 0.78

Hurdles

BR1 1.45 1.50 1.12 0.75
BR2 2.31 1.90 1.55 0.82
BR3 3.12 2.36 2.46 1.04
BR4 3.43 2.96 2.62 0.89

Market

BR1 2.12 2.35 0.85 0.36
BR2 3.05 2.80 1.63 0.58
BR3 4.32 3.18 2.57 0.81
BR4 4.73 3.28 2.94 0.90

Starting

BR1 3.52 3.50 1.29 0.37
BR2 4.45 4.06 1.47 0.36
BR3 5.61 4.76 1.97 0.41
BR4 6.04 5.11 2.29 0.45

Table 5.3 – Average confidence intervals of the videos with different bitrates (BR1 is the highest) for
the considered experiments. The last column is the ratio of the CI of the combined PC
data with additional cross-content pairs (CICrossContent, CI of JODCrossContent) to
the CI of the combined PC data with additional same-content pairs (CISameContent, CI
of JODSameContent). CI of standard PC experiment (CIStandard, CI of JODStandard)
are also reported for completeness.

on a common quality scale.

Reduced Error Accumulation

In order to analyze the change in CI, average CI values are reported in Table 5.3. Since

the CI does not change with respect to the color space much, the CI values were averaged

for the same bitrate. The last column of Table 5.3 shows that the CIs decrease for almost

every case up to 60%, especially at higher bitrates where scaling error would instead

accumulate in the standard PC. With cross-content comparisons, the CI size becomes more

uniform across different levels of quality. Even though the total number of comparisons

for JODCrossContent is very close to those of JODSameContent, we observe a reduction in

confidence intervals. These results show that the decrease in confidence intervals is not

due to the increase in the total number of comparisons, but through the new information

introduced by the comparison of cross-content pairs.

All the results indicate that the scaling of the pairwise comparisons data yields JOD

scores that are highly correlated to MOS values acquired in the DSIS experiment. The



5.4. Discussion 127

introduction of cross-content pairs make JOD more uniform and reduce the confidence

intervals.

5.4 Discussion

Subjective quality assessment is considered as the most reliable approach for multimedia

quality assessment. Although there are several different methodologies for measuring the

subjective quality, pairwise comparisons methodology is considered to be one of the simplest,

yet most precise, of all the well-known methodologies. The results of pairwise comparisons

experiments can also be converted to numerical quality scores after a process called scaling.

In this chapter, we proposed to add cross-content comparisons in pairwise comparisons

methodology to reduce the error accumulation that occurs during scaling. We present the

results of three different experiments and analyze the effect of the proposed cross-content

comparisons. Results show that the scaling performance improves and the confidence

intervals reduce when cross-content pairs are introduced.

Pairwise comparisons methodology does not suffer from the quality scale difference

as MOS experiments do, and JOD scores can be used as a more robust representation of

subjective quality. This study serves as a preliminary study towards finding a more effective

method to align datasets and develop novel hybrid methodologies where one can fuse MOS

values and PC scaling results in order to have a better scale of quality scores. The results

and findings of this study on the relation between MOS and pairwise comparisons was

published in [ZHV+18].
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Chapter 6

Conclusion and Future Work

Summary

In this thesis, we addressed some of the limitations and challenges of quality assessment

in the context of high dynamic range image and video. Specifically, the goal of this thesis

was to study the new conditions of HDR display technology and provide insight into the

assessment and analysis of HDR video quality. For this purpose, we investigated three

aspects of HDR quality assessment.

First, we analyzed the parameters affecting the subjective and objective HDR quality

assessment in order to understand the influence of the new conditions introduced by HDR

technology, and for this purpose, we developed an HDR frame rendering algorithm. In this

part, we focused on the effects of display rendering (related to the brightness and contrast

of the display) and color on HDR quality assessment.

Second, based on our findings, we evaluated the objective HDR image quality assessment

methods using a 690-images dataset created by aligning MOS values of different databases,

and we proposed a novel classification-based discriminability analysis method for the

evaluation of objective metric performance.

Third, we compared pairwise comparisons scaling results to MOS values, with the

intention of finding a common representation to align quality datasets and eliminating the

need for the alignment step which was found to be necessary. Additionally, we proposed to

include cross-content comparisons to pairwise comparisons methodology in order to reduce

the cross-content variance and confidence intervals of PC scaling results.

The details of these three aspects are further discussed in the following sections.

Effects of the Display Rendering and Color

We first analyzed the characteristics of SIM2 HDR47 display, and we developed an HDR

frame rendering algorithm. The developed algorithm estimates the LED and LCD values by

calculating the convolution of the LED values with the point spread function and scaling
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the backlight values iteratively. The experimental results show that the proposed algorithm

both reproduces the intended luminance values and estimates the emitted luminance values

accurately.

In order to understand the effects of display rendering, a subjective experiment was

conducted by displaying the HDR images using the proposed rendering. The subjective

results of this experiment were then compared to the results of another experiment in

which the same HDR images were displayed using the built-in rendering of SIM2 display.

Results show that there is no significant difference in subjective quality scores, as the MOS

values do not change much. The reason for this was found after qualitative inspection of

the images. Although the artifacts in darker regions became visible, artifacts in brighter

regions became saturated and invisible to human eye. Overall, the subjective quality of the

images stayed similar.

The comparison in the objective quality scores also showed no significant difference

between the two rendering methods. The results show that a simple linear model is able to

provide reliable results as if a detailed knowledge of the reproduction display were available,

and it can be used to compute objective quality metrics. Moreover, the measurement results

show that this simple model is actually very close to the real display response of the SIM2

display (see Figure 2.6.(a)).

In order to understand the effects of color, we created an HDR video compression

dataset consisting of 60 videos in total, which were compressed with HEVC (HM 16.5) Main

10 Profile using three different color spaces: Y’CbCr, ITP, and Ypu’v’. These compressed

videos were displayed using the built-in rendering of SIM2 display for a pairwise comparisons

subjective experiment. The gathered PC data were scaled to find quality scores in terms

of JOD. The results show that the influence of color space on coding performance is, in

general, little and content dependent.

The quality of the compressed videos were also assessed using a luminance-only quality

metric, i.e. HDR-VQM, and a color difference metric, i.e. ∆E00. The results show that

HDR-VQM can predict the general trend of the subjective quality scores, but it is not

precise enough to predict absolute quality levels of JOD. This difference in quality levels

motivates further studies in this direction.

The results of ∆E00 are not in agreement with either the subjective JOD scores or

the objective HDR-VQM scores. Both this disagreement and the HDR-VQM’s ability to

predict the general trend of the subjective results indicate that the perceived quality for

HDR video compression is dominated by the structural distortion caused by the changes in

the luminance channel.

Objective Quality Metric Evaluation

We evaluated 25 objective quality metrics using five different HDR image quality databases

consisting of 690 compressed HDR images in total. Due to the characteristics of the
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experiments and the test material of each database, the MOS values can be in different

ranges, and a similar level of impairment in the subjective scale may correspond to very

different values of objective metrics. The MOS values of these considered databases had

the same problem (see Figure 4.2), and we aligned the MOS values using INLSA algorithm

prior to the computation of the objective quality metrics.

In addition to the statistical analysis techniques used, we proposed a novel classification-

based discriminability analysis method. The significance of the aligned MOS values are

found using multiple comparison test and are fed into the proposed method as ground-truth

subjective quality. Then, the proposed method calculates the classification rates by sweeping

for the objective quality score difference threshold, τ from 0 to the maximum, in order

to find the performance indicators: area under curve (AUC) and the maximum balanced

accuracy. Having high rate of incorrect classification hints that there may be still room

for improvement, and the proposed method can be a useful indicator of performance in

addition to the statistical analysis methods.

The objective quality estimations were compared to the MOS values, and the metrics

were evaluated using both the proposed discriminability analysis and the statistical analysis

methods. In addition to the numerical results, the proposed method and statistical analysis

methods were analyzed for the significance of difference. The results indicate that although

HDR-specific metrics yield the highest correlation scores, legacy SDR image quality metrics

also have a good prediction and discrimination performance, provided that a proper

transformation such as PU encoding is done beforehand. Moreover, the higher performance

of luminance-only quality metrics compared to color difference metrics, ∆E00 and ∆ES00,

supports the claim that HDR image and video compression is dominated by the structural

distortion.

In addition to the results of the evaluation, the database consisting of 100 compressed

HDR images, which was created as a merger of Database #4 and #5, has been made

publicly available over the Internet in order to support the research efforts on HDR image

quality assessment.

Comparison of Subjective Quality Scores

As the evaluation of the quality metrics show, the MOS values may be different for different

databases, and this result affects not only subjective quality assessment but also objective

quality assessment as the training and adjustments of objective quality metrics depend on

the subjective quality scores. In order to find a common representation for different quality

databases, we compared pairwise comparisons scaling results to MOS values, conducting a

series of subjective experiments.

For the comparison of MOS values to JOD values, we conducted a DSIS subjective

experiment with the same material used in the PC subjective experiment described in

Section 3.2. The results show that there is an almost perfectly linear relationship between
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MOS and JOD values.

In order to improve scaling performance and reduce cross-content variance, we proposed

to include cross-content comparisons in pairwise comparisons methodology. In order to

analyze the effect of adding cross-content pairs, the variance between the best-fit slopes

and standard deviation of point to best-fit line distances were calculated. Results show

that the inclusion of cross-content pairs reduces the confidence intervals of the PC scaling

results (i.e. JOD values) and the cross-content variance of the relationship between JOD

and MOS values. It also improves the overall scaling performance.

Since pairwise comparisons methodology is easier for subjects compared to the direct

rating methods, it is expected to result in more reliable quality scores. Moreover, we showed

that inclusion of cross-content pairs improve scaling performance. Presenting these results,

this study serves as a preliminary study towards finding a more effective method to align

datasets and develop novel hybrid methodologies where one can fuse MOS values and PC

scaling results in order to have a better scale of quality scores.

Future Research Directions

Rapid commercialization of HDR/WCG technology and increasing volume of HDR content

bring about new perspectives for future research. We believe that some aspects of the

HDR/WCG technology need further investigations, and we describe a number of possible

extensions of this thesis.

Estimation of Emitted Color

Although the proposed rendering method is able to estimate the emitted luminance

accurately, it cannot estimate the emitted chrominance at the moment. Its output includes

color information, but the color information is acquired simply by dividing the color HDR

image to the backlight value.

For accurate chrominance estimation, the LCD panel response and color primaries of

the SIM2 display should be better studied. This new rendering method which can estimate

emitted color may be useful for possible subjective experiments related to color perception

in HDR and wide color gamut studies.

Understanding Color Artifacts for HDR/WCG

For the case of compression, the structural distortions created by the differences in luminance

channel are found to be dominant over the human perception of HDR image and video

quality. However, in cases other than compression, changes in color may still influence the

perceptual quality. Color artifacts can be created by several reasons such as color space or

color gamut conversions and EOTF conversions. Hence, a wider range of color distortions

may be studied to understand the effects of color artifacts in the sense of HDR/WCG. The
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findings can be used to develop a more suitable color fidelity (or color difference) metric

for HDR content.

Additionally, as we noticed from the results of Chapter 3 and Chapter 4, the color

difference metrics are not able to predict the quality of compressed HDR content. The

findings of the proposed color artifacts study can also be used for the development of

a quality metric which takes color into account for the case of HDR image and video

compression.

Evaluation of Objective Metrics

The evaluation of HDR image quality metrics in Chapter 4 has important results and

conclusions, some of which can be extended for the case of video. In this thesis, we could

not carry out such an evaluation for HDR video due to scarcity of publicly available HDR

video quality databases at the time of this study. Therefore, a similar evaluation can be

done for the case of HDR video, in order to take the temporal characteristics into account.

New technologies such as 4/8K and high frame rate can also be considered in combination

with HDR/WCG technologies. This combination may introduce new challenges for objective

quality assessment algorithms.

JOD as a Universal Subjective Quality Score

As we discussed previously, we believe that JOD can be a universal subjective quality score

thanks to the easiness and robustness of its calculation. Although the initial results are

promising, this claim needs to be validated with a larger set of data with various distortions

and quality levels. Provided that it is validated, the JOD values can be used for aligning

different databases, and this can improve both the evaluation and development of objective

HDR quality metrics.

By its nature, the proposition of JOD as a universal subjective quality score is not

limited to HDR quality assessment, and JOD can be used in almost all multimedia quality

assessment applications.
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Annex A

SIM2 Display Measurements

In order to understand the characteristics of the SIM2 HDR47E S 4K display used in our

studies, detailed and extensive measurements were made. For the sake of reproducible

research and in order to help other researchers, these measurements are reported in this

chapter. These measurements were taken in a room which was sealed to block all external

light. Konica Minolta LS-100 was used as a light meter. The focus of the light meter was

set to 1-meter, and all of the measurements were taken at a 1-meter distance to the SIM2

display, perpendicularly.

The following sections explain the LED measurements, LCD measurements, and the

measurements made to understand the point spread function and the “border effect”.

(a) Only one LED (b) Square LEDs (c) All LEDs

(d) Luminance of one LED (e) Luminance of square LEDs (f) Luminance of all LEDs

Figure A.1 – Test patterns created for LED measurements for three different cases using (a) only
one LED, (b) a collection of LEDs that covers 30% of the display area, and (c) all the
LEDs of the backlight layer. LCD values for these test patterns were set to 255 in order
to ensure that all of the backlight passes the LCD layer. Estimated luminance values
(presented in (d)-(f)) were normalized for representation. The emitted luminance
values were measured at the center of the display for each case.
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A.1 LED measurements

As described in the Section 2.1.1, the SIM2 display has three different layers: backlight

layer, light diffuser layer, and LCD layer. To understand how the LEDs of the backlight

layer work, the duality of the ‘dual modulation’ of the SIM2 display has to be suspended.

For this purpose, LCD values for these test patterns were set to 255 in order to ensure that

all of the backlight passes the LCD layer. We created a few test patterns to be displayed

through a custom dual modulation input provided by the user, also known as DVI Plus (or

DVI+) Mode. These test patterns are shown in Figure A.1.

These three test patterns let us understand i) the relationship between the LED value

stated in the DVI+ header and the luminance of the LED, ii) the same relationship in

the case of multiple LEDs, and iii) the relationship between the physical (i.e. power)

limitations of the display and the emitted luminance. For the case (i), we used a single

LED and measured its luminance for different values of the LED ∈ {5, 15, 25, . . . , 255}.
The representation of the position of the selected LED and its estimated luminance are

shown in Figure A.1.(a) and (d), respectively.

In the technical manual of the SIM2 display, it is stated that the brightness of the

LEDs is limited by the power limitation of the display which is around 1500 W. It is also

stated that this limit is reached when approximately 40% of the LEDs are lit at their

maximum brightness. Therefore, we used a collection of LEDs forming a rectangle that

covers 30% of the display area for the case (ii), in order to be within the power limitation.

The representation of the positions of the selected LEDs and their estimated luminance are

shown in Figure A.1.(b) and (e), respectively. Lastly, we try to understand how the emitted

luminance changes when the power consumption of LEDs exceeds the power limitation

of the display hardware. For this last case, case (iii), all the LEDs of the backlight layer

were set to the same value. The representation of the positions of all the LEDs and their

estimated luminance are shown in Figure A.1.(c) and (f) respectively.
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Figure A.2 – Plots of the measured luminance with respect to the LED value for the case of (a)
only one LED and (b) multiple LEDs. The plots show a linear (or close to piecewise
linear in the case of all LEDs) relationship between the LED values and the emitted
luminance. Since the scale of luminance values are not comparable in the case of only
one LED and multiple LEDs, they are presented in different sub-figures.
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The emitted luminance values were measured using the Konica Minolta LS-100 light

meter. The luminance measurements taken are reported in Table A.1, and the variation of

the emitted luminance with respect to the LED value is shown in Figure A.2. Considering

the case of only one LED and square LEDs, it is clear that there is a linear relationship

between the LED value and the emitted luminance. In the case of all LEDs, the slope of

all LEDs case is steeper than the case of square LEDs, and this is expected due to the

increased number of LEDs. When LED values pass some threshold, the emitted luminance

values are saturated due to the power limitation of the display.

These results show us that the response of individual LEDs is very close to linear and

the power limitation is needed to be taken into consideration for an accurate reproduction

of the HDR images and video frames.

Table A.1 – The luminance measurements (cd/m2) for the LED values for three distinct cases. Only
one LED was used in the case of ‘One-LED’, a collection of LEDs forming a rectangle
that covers 30% of the display area was used for the case of ‘Square’, and all of the
LEDs were used for the case of ‘All-LEDs’.

LED
Value

One-LED Square All-LEDs

5 24.51 64 101.4
15 31.05 191 297.3
25 38.33 316 501
35 45.8 445 697.3
45 52.98 572 891.7
55 59 701 1096
65 67 827 1284
75 75.03 954 1478
85 83.31 1070 1666
95 90 1200 1851

105 95.88 1315 1902
115 105.9 1446 1931
125 112.7 1568 1943
135 120.9 1695 1964
145 126.6 1810 1973
155 136 1928 1981
165 144.9 2051 1998
175 151.4 2163 2006
185 160.9 2287 2010
195 168.6 2400 2010
205 174.1 2500 2014
215 184.3 2630 2015
225 194.3 2755 2014
235 201.5 2858 2008
245 209.6 2956 2004
255 220.4 3061 1999
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A.2 LCD Measurements and the Analysis of the Display

Gamma

Similar to the previous section, the duality of the ‘dual modulation’ of the SIM2 display

was suspended by setting all the LEDs same value and creating a constant backlight. We

created seven different test patterns for the LCD measurement and displayed these patterns

on SIM2 using DVI+ mode. All the pixels of the LCD was set to the same value –or same

color– and these colors were chosen as the primary and secondary colors, i.e. Red, Green,

Blue, Yellow, Cyan, and Magenta. We also added ‘White’ to this list to act as the reference

luminance values.

The emitted luminance values were measured using the Konica Minolta LS-100 light

meter. The measured luminance values were reported in Table A.2. Using these luminance

values, we estimated the display gamma value of the SIM2 display. The display gamma

–denoted by γ– was calculated using the three color channels; red, green, blue.

Table A.2 – The luminance measurements for the analysis of the display gamma. Measurements
were made (in cd/m2) for each LCD pixel value p where p ∈ {0, 15, 30, . . . , 255}. LED
values were kept same during the whole measurement. The luminance values were
measured using different color schemes where only the pixel values of the indicated
channels were changed, i.e. the first and third channels were changed in the ‘Magenta’
color scheme, and the second channel pixels were kept as zero.

Luminance Values (cd/m2) for Different Color Schemes
Pixel

Value p
White
[p p p]

Red
[p 0 0]

Green
[0 p 0]

Blue
[0 0 p]

Yellow
[p p 0]

Cyan
[0 p p]

Magenta
[p 0 p]

0 0.35 0.355 0.356 0.354 0.349 0.339 0.341
15 2.5 0.757 1.711 0.532 2.034 1.827 0.988
30 13.2 2.838 9.176 1.222 11.48 9.967 3.961
45 34.55 7.36 24.4 2.602 30.84 26.27 9.862
60 68.32 14.51 49 5.01 62.31 52.79 19.28
75 115.8 24.91 83.48 8.462 106.9 89.91 32.75
90 180 39.15 130.7 13.03 168.2 140.5 51.18

105 263 56.93 191 18.91 245.7 205.7 74.05
120 364.3 78.47 266.1 26.6 343.1 286.1 104.1
135 477 102.4 348.6 35.65 450.1 376.5 133.7
150 606 129.4 441.8 46.24 570.5 477.7 170.1
165 744 158.6 543.1 57.21 700 588.2 206.5
180 899 192.7 653.1 69.84 848.4 707.7 250.1
195 1058 229.3 779.1 83.82 1003 842.1 297.6
210 1250 265.3 919.6 100.1 1177 992.5 346.1
225 1436 307.2 1068 118.9 1362 1148 402.8
240 1650 349.9 1223 141 1548 1318 463.4
255 1857 397.1 1379 174.7 1740 1502 541
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The γ values were found using the following equation:

Vout,k = A× Vin,k
γ (A.1)

where A = 1 and k ∈ {R,G,B} corresponding to ‘Red’, ‘Green’, and ‘Blue’ channels. The

luma values Vin,k(p) for pixel value p are found by normalizing the luminance value Yk(p).

This normalization was carried out using the following equation:

Vout,k(p) =
Yk(p)−min(Yk)

max(Yk)−min(Yk)
(A.2)

where k ∈ {R,G,B} corresponding to the color channels, max(Yk) and min(Yk) is the

maximum and minimum luminance levels for the color channel k, respectively. The maximum

and minimum luminance levels are reported in the Table A.2 corresponding to p = 255

and p = 0, respectively, for each color channel considered (i.e. for red channel, Vout,R(p) =

(YR(p)− 0.355)/396.745). The luma values are presented in Table A.3. After this operation,

γ values were found by

γk(p) =
log Vout,k(p)

log Vin,k(p)
(A.3)

where p is the pixel value p ∈ {0, 15, 30, . . . , 255}. The resulting γk(p) values are presented

in Table A.4.

Table A.3 – Normalized channel values for the analysis of the display Gamma.

Input
Luma

Red Green Blue

Vin VR VG VB

0.0000 0.0000 0.0000 0.0000
0.0588 0.0010 0.0010 0.0010
0.1176 0.0063 0.0064 0.0050
0.1765 0.0177 0.0174 0.0129
0.2353 0.0357 0.0353 0.0267
0.2941 0.0619 0.0603 0.0465
0.3529 0.0978 0.0945 0.0727
0.4118 0.1426 0.1383 0.1064
0.4706 0.1969 0.1928 0.1505
0.5294 0.2572 0.2526 0.2024
0.5882 0.3253 0.3202 0.2632
0.6471 0.3989 0.3937 0.3261
0.7059 0.4848 0.4735 0.3986
0.7647 0.5771 0.5649 0.4787
0.8235 0.6678 0.6668 0.5721
0.8824 0.7734 0.7744 0.6799
0.9412 0.8810 0.8868 0.8067
1.0000 1.0000 1.0000 1.0000
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Table A.4 – The γ values found by each pixel value p ∈ {0, 15, 30, . . . , 255} considered and each
color channel. The average value for each channel is given at the bottom row.

Input
Luma

Red Green Blue

Vin γR γG γB

0.0588 2.4335 2.4442 2.4308
0.1176 2.3709 2.3606 2.4778
0.1765 2.3271 2.3342 2.5084
0.2353 2.3037 2.3113 2.5039
0.2941 2.2736 2.2950 2.5072
0.3529 2.2325 2.2648 2.5170
0.4118 2.1951 2.2297 2.5248
0.4706 2.1560 2.1841 2.5121
0.5294 2.1351 2.1635 2.5115
0.5882 2.1166 2.1461 2.5157
0.6471 2.1114 2.1415 2.5740
0.7059 2.0786 2.1466 2.6411
0.7647 2.0495 2.1291 2.7458
0.8235 2.0796 2.0875 2.8761
0.8824 2.0529 2.0425 3.0819
0.9412 2.0893 1.9808 3.5430

Average 2.1878 2.2039 2.6544

The relationship between Vin and Vout for each color channel is shown in Figure A.3.(a).

It is clear from both Figure A.3.(a) and Table A.4 that the gamma values for each color

channel are different. The luma values are gamma corrected as the following:

V corrected
in,k = V

1/γ̂k
in,k

V corrected
out = A× (V corrected

in )γ

V corrected
out,k = A× V γ/γ̂k

in,k

V corrected
out,k = A× V 1/γ̂k

out,k

(A.4)

where γ̂k is the average gamma per color channel as found in the Table A.4, which are in

agreement with the gamma values reported in the work of Nam [Nam10]. The resulting

V corrected
out is shown in Figure A.3.(b).

The variation between the γ values presented in Table A.4 are quite high. In addition

to that, gamma corrected values are found to have high variation both objectively and

subjectively. Subjectively, viewers were able to notice that the gamma corrected images

had some bluish or yellowish color artifacts. This finding is supported objectively by the

plot shown in Figure A.3.(c). For each color channel, V corrected
out deviates from Vin. The

plot in Figure A.3.(c) shows us that the gamma correction step is not properly handled.

Furthermore, the plot suggests that the gamma value is not constant even for each color
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channel.

In order to remove this effect and fix gamma correction part, each color channel was

measured again with the light meter using pixel values p ∈ {0, 1, 2, 3, ..., 255}. The values

found were used to create a look-up table for the gamma correction, and this look-up table

was used in the gamma correction step in Section 2.1.2 for each pixel value p.
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Figure A.3 – Plots for the computation of display gamma. (a) The relationship between Vin and
Vout for each color channel. The plots show that each color channel has different γ
values. (b) Plot of input luma and output luma after gamma correction. (c) Deviation
of V corrected

out from Vin for each color channel.
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(a) Only the bottom-most LEDs (b) Luminance of the selected LEDs
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(c) Luminance of pixels at the solid-red cross-section
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(d) Luminance of pixels at the dashed-green cross-
section

Figure A.4 – Figures of a measurement test where (a) only the bottom-most LEDs were selected.
The (b) luminance of the selected LEDs were measured following the solid-red and
dashed-green lines. (c) The measured luminance values for the solid-red cross-section
are in agreement with the estimated luminance values, and it shows that the estimation
of the developed algorithm is accurate. However, (d) the measured luminance values
for the dashed-green cross-section reveals a strange phenomenon. The luminance
values increase as we move away from the light source and get closer to the edge.

A.3 Point Spread Function & “Border Effect”

In order to fully understand the working principles of the SIM2 display, it is crucial to

understand the point spread function (PSF) introduced by the light diffuser layer of the

display. Even though a single LED cannot be defined as a point source, within the context

of this thesis, we define the light spread caused by a single LED as the point spread function.

For the custom rendering made available through the DVI+ mode of the display, the

knowledge of the PSF is imperative in order to estimate the generated and emitted light.

The point spread function of the SIM2 display was measured by Dr. Francesco Banterle.

During the measurement of the PSF, a DSLR camera and a light meter were used. The

pixel values acquired by the DSLR camera were normalized using the measurements taken

using the light meter. After the normalization, the PSF of the SIM2 display’s light diffuser

layer has been found with the approximate size of 1000× 1000 pixels.

During the development process of the display rendering algorithm proposed in Sec-

tion 2.1, several measurements were taken to ensure that the reproduction of the developed
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algorithm is accurate as well as its estimation of emitted luminance. These tests included

several combinations of LED and LCD values as well as different LED patterns. One of the

patterns was turning only the bottom-most LEDs on, of which a representation is shown in

Figure A.4.(a). The estimated luminance of these LEDs is normalized for the presentation

in Figure A.4.(b). A series of measurements was taken on the pixels indicated with a

solid-red line on Figure A.4.(b). The measured luminance values were compared to the

estimated luminance values, and the estimation results matched the measured luminance

values. These two sets of luminance values are shown in the Figure A.4.(c). Nevertheless,

a strange phenomenon was observed during these measurements. It was expected that

the luminance values should decrease as the measurement point moves away from the

LEDs. Contrarily, the measured luminance was increasing. In order to better show this

phenomenon, the measured luminance values are re-plotted for the upper-half of the screen,

and this plot is shown in the Figure A.4.(d).

According to these measurements, it can be hypothesized that the light generated by

the LEDs can bounce back from the chassis of the display and create an imaginary light

source at the other end of the display. The measurement results shown in Figure A.4.(d)

support this hypothesis.

(a) Only the left-most LEDs (b) Luminance of the selected LEDs
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(c) Luminance of pixels at the solid red cross-section

Figure A.5 – Figures of a measurement test where (a) only the left-most LEDs are selected. The (b)
luminance of the selected LEDs were measured following the solid-red line. (c) The
measured luminance values for the solid-red cross-section show that the edges of the
display has more light compared to the center part.

Moreover, this phenomenon was also observed in another measurement session where
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only the left-most LEDs were turned on, as shown in Figure A.5.(a). Again, a series of

measurements was taken on the pixels indicated with a solid-red line on Figure A.5.(b).

The light coming from the left side of the display was expected to decay until the other

edge of the display. It was assumed that the light would have a near-constant luminance

for all the pixels on the solid-red line indicated. The measurements made on those pixels

reveal that not only the other end but also all edges of the display have this behavior. The

luminance values seem to increase while getting close to the edges as it is shown in the

Figure A.5.(c).

These measurements were replicated in several other tests. Similar experiments were

conducted with different patterns of LEDs, and the same phenomenon was observed over

and over again in all the other experiments.

These results update the hypothesis. Although we do not know the exact cause of this

circumstance, it is hypothesized that the light generated by the LEDs can bounce back

from the chassis of the display, and it affects all of the display’s edges. We call this effect

“border effect”. After comprehensive measurements, this border effect was integrated within

the HDR frame rendering algorithm developed.

The results of these measurements helped us to understand the characteristics of the

LEDs, the pixels of the LCD panel, and the overall working principles of the SIM2 display.

We were able to model some key parameters related to these characteristics, and we

integrated the findings into the display rendering algorithm proposed in Section 2.1.



Annex B

Résumé de thèse

B.1 Introduction

Le système visuel humain (HVS - Human Visual System) est capable de percevoir une

gamme beaucoup plus large de couleurs et d’intensités lumineuses présentes dans notre en-

vironnement que les systèmes d’imagerie à dynamique standard (SDR - Standard Dynamic

Range) traditionnels peuvent capturer et reproduire. Avec les développements de la technolo-

gie à dynamique haute (HDR - High Dynamic Range), nous sommes maintenant en mesure

de capturer, stocker, transmettre et afficher des images et des vidéos d’une manière plus

réaliste [BADC11, DLCMM16]. Pouvoir reproduire des scènes HDR a accéléré les efforts de

standardisation pour la compression d’images et de vidéos HDR [Ric13, LFH15, HRE16]

en tant que parties d’une châıne de livraison de contenu HDR de bout en bout. Afin de

s’assurer que la compression est effectuée avec la meilleure qualité possible, une évaluation

de la qualité est nécessaire pour les images et les vidéos HDR.

Cette thèse se concentre sur l’évaluation et l’analyse de l’image et de la vidéo à haute

gamme dynamique. Le problème de l’évaluation de la qualité de l’image et de la vidéo

est un problème largement étudié dans la communauté du traitement du signal [SSB06,

SSBC10a, PJI+15] pour le cas du SDR. La perception humaine de la lumière n’est pas

proportionnelle à la magnitude physique de la lumière. Pour ce faire, les valeurs des pixels de

l’image sont traitées à l’aide d’une courbe de loi de puissance, appelée fonction de correction

de gamma [ITU11], pour les affichages SDR. Après cette opération, les valeurs de pixels

SDR deviennent perceptiblement linéaires où le changement de magnitude correspondra

à un changement proportionnel de la perception. Ainsi, les mesures objectives de qualité

SDR supposent que les pixels de l’image sont perceptiblement uniformes. Ce n’est pas

le cas pour les images HDR, car les images HDR stockent généralement des valeurs de

pixels proportionnelles aux valeurs de luminance physique. De même, on s’attend à ce que

l’évaluation subjective de la qualité HDR soit différente puisque le niveau et le ratio de

luminosité sont différents. Pour une évaluation correcte, ces nouvelles conditions doivent

être prises en compte.
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Bien que l’estimation et l’évaluation de la qualité de la vidéo soient essentielles pour de

nombreuses autres applications, la compression de l’image et de la vidéo est considérée

comme la principale source de distorsion tout au long de la thèse, car il s’agit du scénario

le plus pratique et le plus réaliste. Sur la base de ces considérations, nous posons la

question suivante : Quels sont les paramètres qui affectent l’estimation de la

qualité objective avec référence et la perception de la qualité subjective dans le

cas de la compression d’image et de vidéo HDR ?

Pour tenter de répondre à cette question, nous identifions d’abord deux aspects princi-

paux qui peuvent avoir un impact sur l’évaluation objective et subjective de la qualité de

l’image et de la vidéo HDR :

• Afin de rendre les valeurs de pixels HDR perceptiblement uniformes, plusieurs

méthodes de codage des pixels ont été proposées [AMS08, SMP14, MND12, Bor14].

Cependant, l’impact de la connaissance des valeurs de luminance émises et les

effets des différents rendus d’affichage sur l’évaluation de la qualité HDR n’ont pas

encore été étudiés. C’est pourquoi nous essayons de répondre à la question suivante :

Comment le rendu de l’affichage HDR affecte l’évaluation de la qualité HDR, à la

fois subjectivement et objectivement ?

• La luminance accrue dans les conditions HDR peut changer la façon dont nous

percevons la qualité, et la couleur peut influencer la qualité perceptuelle en raison

de certains aspects des phénomènes d’apparence des couleurs, par exemple l’effet

Hunt, le changement de teinte Bezold-Brücke, etc. [Fai13]. Comme nous considérons

la compression comme notre principale distorsion tout au long de la thèse, nous

essayons d’analyser et de comprendre l’impact de la couleur sur la compression et

donc de poser la question suivante : Quels sont les effets de la transformation de

l’espace couleur et des distorsions spécifiques à la couleur sur l’évaluation de la qualité

HDR ?

En analysant les effets de ces deux aspects et en évaluant les mesures de qualité dans les

chapitres suivants, nous constatons que les résultats subjectifs de l’évaluation, c.-à-d. les

notes d’opinion moyennes (MOS - Mean Opinion Scores), ont des fourchettes différentes

pour les bases de données de qualité annotées subjectivement que nous considérons. Même

si la qualité objective des stimuli est la même, le score de qualité subjective d’un stimulus

peut être différent pour différentes bases de données. Cette observation a des résultats

importants pour l’évaluation subjective de la qualité.

Comme la ‘qualité’ est subjective par définition, la plupart des algorithmes d’évaluation

objective de la qualité utilisent les valeurs MOS comme vérité terrain. Afin d’utiliser ces

bases de données pour l’évaluation ou l’élaboration de mesures objectives, les valeurs MOS

doivent être alignées. De cette façon, les scores subjectifs de qualité de deux stimuli avec

les mêmes scores objectifs de qualité seraient similaires. Pour s’attaquer à ce problème,
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nous essayons de répondre à la question suivante : Comment pouvons-nous mieux définir

une échelle de qualité qui ne serait pas affectée par les facteurs environnementaux et quelle

méthodologie subjective d’évaluation de la qualité devrions-nous utiliser ?

Tout au long de la thèse, nous visons à répondre à ces questions et à comprendre les

facteurs sous-jacents qui affectent l’évaluation de la qualité HDR, par une série d’expériences

subjectives et d’analyses approfondies.

B.2 Notions de base

Dans le chapitre 1, les études précédentes sur l’évaluation subjective et objective de la

qualité, les étapes de la distribution du contenu HDR et l’état de l’art de l’évaluation de la

qualité HDR ont été discutées. Premièrement, les méthodes subjectives d’évaluation de la

qualité, leur comparaison et leur utilisation dans l’évaluation de la qualité de l’image et de

la vidéo ont été discutées, ainsi que les méthodes objectives d’évaluation de la qualité de

l’image et de la vidéo couramment utilisées. En outre, des méthodes statistiques et d’autres

méthodes d’évaluation objective de la qualité ont été décrites. Deuxièmement, l’imagerie

HDR et la distribution du contenu ont été expliquées en détail, en commençant par les

méthodes d’acquisition et de stockage et en incluant les méthodes de compression d’images

et de vidéo HDR jusqu’à la reproduction et l’affichage. Enfin, les recherches de pointe pour

l’évaluation subjective et objective de la qualité ont été discutées pour le contenu HDR.

B.3 Effets du rendu d’affichage sur l’évaluation de la qualité

d’image HDR

Les écrans HDR ont une luminance de crête plus élevée et un contraste élevé par rapport aux

écrans SDR. Dans le chapitre 2, nous examinons le fonctionnement du SIM2 et analysons

les conditions de visualisation et leurs effets sur l’évaluation subjective et objective de la

qualité. Cette évaluation des effets sur la qualité a été faite en comparant deux méthodes

de rendu d’affichage différentes : la méthode de rendu SIM2 intégrée et une méthode de

rendu d’affichage que nous proposons dans ce chapitre. Dans ce qui suit, nous décrivons en

détails la méthode de rendu d’affichage proposée, présentons les résultats de la validation

expérimentale et discutons des effets de l’utilisation de différentes méthodes de rendu

d’affichage sur la qualité subjective et objective de l’image HDR.

B.3.1 Reproduction précise d’image à haute gamme dynamique

La méthode la plus populaire pour la production d’écrans HDR est l’utilisation de différentes

couches pour le rétroéclairage et l’ajustement des couleurs, une méthode connue sous le

nom de dual modulation [SHS+04, NDSLC16a]. Cela se fait en couplant une source de

lumière à gradation locale, comme un panneau de LEDs, avec un écran LCD frontal. Mais,
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les valeurs des pixels LED et LCD doivent être calculées afin de reproduire une image HDR

dans ce cadre.

Caractéristiques d’affichage

L’algorithme de rendu que nous proposons est conçu pour fonctionner sur les affichages SIM2

HDR47E S 4K [SIM14]. L’écran est un double affichage modulé qui comprend un réseau de

LED pour le rétro-éclairage, une couche de diffuseur de lumière et un panneau LCD dans

cet ordre. Il y a 2202 lumières LED contrôlables indépendamment et un panneau LCD de

1920× 1080 pixel qui peut être contrôlé séparément. L’affichage SIM2 peut être contrôlé

à l’aide du rendu automatique intégré ou d’une entrée double modulation personnalisée

fournie par les utilisateurs.

Un algorithme de double modulation pour la reproduction d’images

Dans cette thèse, nous proposons et développons une méthode de rendu à double modulation

sur mesure afin de reproduire les images HDR avec une très grande précision et fidélité par

rapport aux valeurs de luminance prévues. L’algorithme se compose des parties suivantes :

• Prétraitement : Tout d’abord, nous trouvons les valeurs de luminance cibles se référant

à moniteur (display-referred) à partir de l’image HDR se référant à scène (scene-

referred). En supposant que les images d’entrée ont été préalablement graduées à

l’affichage –manuellement ou par un processus automatique [MDK08]–, nous saturons

juste des valeurs de luminance supérieures à la luminance maximale de l’affichage,

c.-à-d. 4250 cd/m2. Nous notons I l’image prétraitée.

• Calcul du rétroéclairage cible : Ensuite, nous trouvons le rétroéclairage optimal cible,

BLtarget, qui minimise la luminance du rétroéclairage requis. Pour trouver BLtarget,

nous définissons deux autres images rétroéclairées : BLmin et BLmax. Comme les

cellules à cristaux liquides ne peuvent que bloquer la lumière et ne peuvent pas

générer de lumière, au moins BLmin est nécessaire pour s’assurer que le rétroéclairage

est suffisant pour tous les pixels. Pour trouver BLmin, on calcule les maxima locaux

de la luminance cible sur des fenêtres d’un rayon de 30 pixels correspondant à la

surface d’une seule LED. Les cellules à cristaux liquides ne sont pas idéales et laissent

échapper de la lumière même si elles sont complètement fermées. Afin de contrôler

les effets de fuite de l’écran LCD, la luminance maximale pour chaque pixel, BLmax,

est obtenue en divisant les valeurs de luminance de l’image de ce pixel par le facteur

de fuite estimé de l’écran LCD ε = 0, 005, ce qui est empirique. BLtarget est alors

trouvé en filtrant et en combinant les BLmin et BLmax.

Après le calcul du rétroéclairage cible, les LEDs et le rétroéclairage sont initialisés en

échantillonnant BLtarget sur les emplacements des LEDs et en prenant la convolution



B.3. Effets du rendu d’affichage sur la qualité 151

(a) L’image HDR
(Tone mappée en util-
isant [MDK08] pour la
représentation)

(b) BLtarget – Rétroé-
clairage cible

(c) LED0 – Réseau
de LED initialisé par
l’échantillonnage du
rétroéclairage cible

(d) S0 – Échelle pour la
première itération

(e) BL2 – Rétroéclairage
trouvé lors de la seconde
itération

(f) LEDfinal – Réseau
de LED trouvé

(g) BLfinal – Rétroé-
clairage trouvé

(h) Valeurs des pixels de
l’écran LCD

Figure B.1 – Étapes de l’algorithme de rendu d’image HDR pour l’image HDR Market3

avec la PSF, respectivement. C’est à dire :

BLt = LEDt ∗ PSF (B.1)

où t est l’index d’itération et t = 0 pour l’initialisation. LED0 correspond aux valeurs

initiales des LEDs trouvées en échantillonnant BLtarget, et BL0 est le rétroéclairage

de LED0.

• Mise à l’échelle itérative : Une carte à l’échelle est générée afin de mettre à jour les

valeurs des LED à l’aide de l’équation suivante :

St =
BLtarget
BLt

(B.2)

où t est le nombre d’itération. Les valeurs des LED sont multipliées par la carte à

l’échelle trouvée comme suit :

LEDt = LEDt−1 × St−1 = LEDt−1 ×
(
BLtarget
BLt−1

)
(B.3)

LEDt est ensuite clippé pour prendre des valeurs en [0, 1], c.-à-d. qu’il est projeté

sur l’ensemble des valeurs LED réalisables à chaque itération. Une fois les valeurs

LED trouvées, les valeurs de rétroéclairage sont également trouvées à l’aide de

l’équation B.1.

Les opérations dans les équations B.1 et B.3 sont effectuées consécutivement en

augmentant le nombre d’itération jusqu’à ce que
∑
||PU(BLt) − PU(BLt−1)||2

tombe en dessous d’un seuil. Lorsque la mise à l’échelle itérative converge, les valeurs
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LEDfinal résultantes peuvent être mises à l’échelle linéairement pour répondre aux

contraintes d’alimentation de l’affichage.

• Calcul des valeurs des pixels de l’écran LCD : Les valeurs de pixels LCD sont trou-

vées en divisant (par pixels) chaque canal de couleur de l’image HDR originale par

l’estimation finale du rétroéclairage, et en appliquant une correction gamma, c.-à-d.:

LCDk =

(
Ik

BLfinal

)1/γk,p

=

(
Ik

LEDfinal ∗ PSF

)1/γk,p

(B.4)

où I est l’image HDR, k ∈ {R,G,B} est l’indicateur de canal RGB, p ∈ {0, 1, 2, ..., 255}
est la valeur du pixel LCD, et γk,p est le facteur de correction gamma, déterminé

expérimentalement comme expliqué dans l’annexe A.2.

Des exemples de résultats étape par étape de l’algorithme de reproduction proposé

peuvent être vus dans la figure B.1, y compris l’image de rétroéclairage cible, une carte de

l’échelle, le rétroéclairage de la seconde itération, le réseau de LED final et le rétroéclairage

final –BLfinal–, et les valeurs des pixels de l’écran LCD.

• Estimation de la luminance émise : Connaissant les valeurs des LEDs et des pixels

LCD, nous pouvons estimer la luminance émise. Les pixels de l’image HDR produits

par l’écran sont le produit du rétroéclairage et des valeurs LCD. C’est-à-dire, pour

chaque canal de couleur k, l’image rendue I ′k est :

I ′k = (LEDfinal ∗ PSF )× LCDk. (B.5)

En supposant que l’on utilise les primaires de l’ITU-R BT.709 [ITU15a], nous pouvons

calculer la luminance émise comme suit :

L = 0.2126× I ′R + 0.7152× I ′G + 0.0722× I ′B, (B.6)

Un algorithme de double modulation pour la reproduction vidéo

Afin de réduire l’impact du scintillement, nous envisageons deux solutions. Tout d’abord,

nous initialisons les valeurs des LED pour l’image actuelle f en utilisant celles de l’image

précédente, c.-à-d. LEDf
0 = LEDf−1

final. Deuxièmement, nous lissons les rétroéclairage cible

dans le temps, sur des fenêtres consécutives qui se chevauchent, comme décrit ci-dessous.

Étant donné l’image f d’une vidéo, son rétroéclairage cible initial BLftarget est calculé

comme expliqué dans la section précédente. Ensuite, pour chaque image, nous considérons

une fenêtre d’anticipation de N images, et nous arrangeons leur rétroéclairage correspondant

dans une pile Af . Par la suite, nous visons à lisser la trajectoire des valeurs des pixels

rétroéclairés sur la fenêtre, en adoptant une approche simple qui consiste à convolutionner

chaque échantillon indépendamment par une fenêtre gaussienne et à prendre le maximum
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(a) Luminance mesurée par rapport à
la luminance attendue

(b) Luminance mesurée par rapport à
la luminance estimée

Figure B.2 – Résultats de validation expérimentale pour l’image “AirBellowsGap”.

à chaque instant. Plus précisément, nous trouvons T fi,j,l = [0 . . . Afi,j(l) . . . 0]T et Bf
i,j =

[W f
i,j,1 . . .W

f
i,j,N ] où W f

i,j,l = T fi,j,l ∗wσ est le vecteur résultant obtenu par le filtre de lissage

wσ. Ensuite, les valeurs lissées, Mf
i,j , peuvent être trouvées en prenant la valeur maximale

à travers les colonnes de Bf
i,j .

Cette procédure est répétée en utilisant une approche par fenêtre coulissante. Une fois

que le rétroéclairage cible lissé a été calculé, le reste de la partie rendu suit l’algorithme

décrit précédemment.

Validation expérimentale

La performance de l’algorithme de rendu proposé a été validée par différentes expériences :

• Réponse de luminosité linéaire et luminance de crête : À l’aide d’un photomètre, nous

avons mesuré la luminance au centre du motif (une bôıte blanche couvrant 30% de la

surface d’affichage, entourée d’un fond noir) pour le rendu intégré et le rendu proposé.

Le rendu proposé est plus précis et atteint une luminosité de crête plus élevée.

• Contraste local : À l’aide d’un photomètre et d’un autre modèle (une bôıte blanche

de 30% de la surface de l’écran avec une tache noire carrée de 64× 64 pixels carrés au

milieu), la luminance sur la tache noire centrale et la zone blanche juste à l’extérieur

ont été mesurées. Les résultats montrent que le rendu proposé est meilleur pour

traiter les fuites de l’écran LCD et permet d’obtenir un contraste plus élevé.

• Mesure de la luminance en pixels : Pour mesurer la luminance en pixels, nous avons

capturé 7 images à l’aide d’un appareil photo reflex numérique avec différentes

expositions, nous les avons fusionnées en une seule image HDR et normalisé les

valeurs d’image HDR par les mesures du photomètre. Ensuite, nous avons vérifié

la fidélité de l’algorithme proposé en termes de reproduction et d’estimation de la

luminance émise. Les résultats montrent que l’algorithme proposé est capable de
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reproduire l’image HDR et d’estimer très précisément sa luminance émise, et qu’il

génère également des images plus lumineuses comme le montre la figure B.2.

• Variation temporelle : Bien que la méthode de rendu vidéo proposée n’ait pas été

validée subjectivement, dans cette partie, nous avons mesuré la variation temporelle

à l’aide d’un calcul objectif. Puisque la principale source de la variation temporelle

sur la vidéo est le rétroéclairage, nous avons calculé les différences d’image sur le

rétroéclairage au lieu de l’image, et nous avons mesuré la variation temporelle en

utilisant l’indice de perception temporelle de l’information perceptuelle (TI) [ITU08].

Les résultats montrent que l’approche fenêtrée réduit objectivement le scintillement

dans le rétroéclairage et l’augmentation de la longueur de la fenêtre N réduit l’écart

type de la différence d’image, comme prévu.

B.3.2 Effets du rendu d’affichage

Différents rendus peuvent avoir un impact potentiel sur le calcul de la qualité objective, en

effet le HDR [MDMS05, AMMS08, NMDSLC15, NDSLC15] et le SDR [AMS08, VDSLD14]

requièrent des valeurs de luminance par pixel (exprimées en cd/m2) en entrée. Un rendu

d’affichage différent peut également avoir un impact sur l’expérience et la perception de la

qualité par les téléspectateurs. Dans cette partie, nous avons comparé deux méthodes de

rendu différentes et évalué l’impact du rendu des images HDR sur les scores subjectifs et

objectifs.

Impact sur l’évaluation subjective

Equipé du rendu que nous avons proposé dans la section précédente, nous avons mené une

étude subjective pour comparer la qualité perçue des images HDR compressées rendues

par deux algorithmes différents. Pour ce faire, nous avons utilisé les mêmes paramètres,

méthodologie et environnement de test que dans le travail précédent de Valenzise et

al. [VDSLD14], sauf que nous avons affiché des images avec l’algorithme de rendu proposé.

Les scores de qualité subjective recueillis ont été comparés à l’aide d’analyses comparatives

multiples en plus de l’analyse qualitative des images HDR obtenues. Les détails de cette

expérience ont été décrits en détail dans la section 2.2.1.

Les valeurs MOS résultantes pour chaque contenu sont indiquées dans la figure B.3.

Les résultats du rendu proposé ont été comparés aux valeurs MOS collectées à l’aide du

rendu intégré [VDSLD14]. Ces graphiques montrent un niveau substantiel de concordance

entre les scores obtenus avec les deux rendus. Ce résultat est corroboré par les résultats

de l’analyse comparative multiple sur les valeurs MOS effectuée après une analyse de la

variance unidirectionnelle. Les résultats montrent que, dans l’ensemble, les valeurs MOS ne

sont pas affectées de façon spectaculaire par le rendu employé.
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0 2 4 6 8 10 12
0

20

40

60

80

100

Image Index

M
O

S

Built-in
Proposed

(b) “LasVegasStore”
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Figure B.3 – Notes moyennes d’opinion par différents rendus pour les contenus testés. Les points
indiquent les valeurs MOS et les barres indiquent les intervalles de confiance.

Impact sur l’évaluation objective

Nous avons également comparé les performances de différents cas de calcul de mesures

objectives de qualité. Afin de comprendre l’effet du rendu sur l’évaluation objective de la

qualité HDR, nous avons estimé la luminance par pixel produite par l’affichage à l’aide de

notre algorithme de rendu et l’avons utilisé comme entrée dans les mesures de qualité pour le

contenu vierge et compressé. Les résultats calculés à l’aide de la luminance estimée n’étaient

pas significativement différents des résultats calculés à l’aide d’une fonction linéaire très

simple, appelée modèle linéaire. Les résultats de l’analyse objective de la qualité montrent

qu’un modèle linéaire simple, qui n’exige que la luminosité maximale de l’écran, peut

fournir des résultats fiables comme si une connaissance détaillée de l’écran de reproduction

était disponible.

B.4 Effets de l’espace colorimétrique sur la compression et

la qualité vidéo HDR

La couleur peut influencer la qualité perceptuelle dans les conditions HDR, du à ses

niveaux de luminosité et de contraste accrus, en raison de certains aspects des phénomènes

d’apparence des couleurs, par exemple l’effet Hunt, le changement de teinte Bezold-brucke,

etc. [Fai13]. Dans le chapitre 3, nous essayons de comprendre l’effet de la couleur sur

la qualité perçue. Pour ce faire, nous avons choisi un scénario d’application pratique et

réaliste, la compression vidéo HDR, et nous avons comparé les effets de trois espaces de

couleurs différents sur les performances de compression vidéo HDR : Y’CbCr [ITU15a],
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ITP (ICtCp) [LPY+16] et Ypu’v’ – un espace couleur basé sur LogLuv [Lar98a] modifié

pour le contenu HDR.

B.4.1 Sélection des stimuli de test

La méthodologie des comparaisons par paires a été choisie pour comparer les effets de

différents espaces colorimétriques, car les différences entre les vidéos compressées avec

différents espaces colorimétriques sont subtiles. Afin d’acquérir des données significatives

sans décisions unanimes, nous avons d’abord mené une expérience préliminaire pour

sélectionner les stimuli. Cette expérience préliminaire a été conçue pour trouver des distances

perceptuellement uniformes entre des séquences vidéo HDR compressées à différents niveaux,

mesurées en unités de différence juste perceptible (JND - Just Noticeable Difference). Pour

chaque contenu, quatre échelons de JND ont été trouvées.

Détails de l’expérience subjective pour la sélection des stimuli

Cette expérience a été menée en quatre séances à l’aide d’évaluation de comparaisons

par paires (PC - pairwise comparisons) à choix forcé à deux alternatives (2AFC - two

alternative forced-choice), où la question était : “Pouvez-vous observer une différence de

qualité entre les deux vidéos affichées ?”, et les sujets ont été en mesure de répondre ‘Oui’

ou ‘Non’. Dans chaque essai, deux vidéos ayant le même contenu mais des niveaux de

compression différents ont été affichées côte à côte.

Les images RGB HDR ont été encodées en utilisant le quantificateur perceptuel (PQ

- perceptual quantizer) [SMP14] EOTF puis transformées en espace couleur Y’CbCr et

encodées en utilisant le profil HEVC Main-10 avec HM 16.5 [SOHW12, BFSS17]. Les flux

de bits codés ont ensuite été décodés et la transformation des couleurs et le codage EOTF

ont été inversés. Les images résultantes ont été stockées dans un fichier AVI sous forme

d’images vidéo non compressées.

33 personnes (20 hommes et 13 femmes) d’un âge moyen de 33,6 ans se sont portées

volontaires pour l’expérience. Les expériences ont été menées dans une pièce sombre et

silencieuse, avec la luminance de l’écran éteint à 0,03 cd/m2. Les stimuli ont été présentés

sur un écran calibré SIM2 HDR47 avec une résolution de 1920× 1080 pixels, une luminosité

maximale de 4250 cd/m2, utilisé dans son mode de rendu intégré natif.

Sélection de stimuli pour l’expérience de l’espace colorimétrique

Afin de trouver les stimuli séparés par 1 JND, l’expérience a été menée de manière itérative.

Après chaque séance, les données résultantes ont été recueillies et examinées pour en assurer

la cohérence. Les résultats de chaque séquence vidéo pour chaque participant ont été

regroupés et analysés. Les cas où toutes les réponses étaient “Même” ou “Différentes” ont été

considérés comme des valeurs aberrantes, et les résultats de ce participant particulier pour

cette scène particulière ont été rejetés, car ces conditions sont extrêmement improbables.
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Figure B.4 – Le processus de recherche des vidéos de distance 1 JND pour la séquence vidéo Balloon.
Les valeurs de QP correspondantes sont trouvées, où seulement 50% des participants
ont pu voir la différence entre les vidéos. Les valeurs zéro et un sur l’axe vertical
indiquent que la différence peut être observée par aucun ou tous les observateurs,
respectivement.

Les résultats ont été analysés plus en profondeur pour en vérifier la cohérence. Les

résultats rassemblés pour chaque participant et chaque séquence vidéo devaient suivre un

modèle simple : les utilisateurs ne verraient aucune différence dans les vidéos jusqu’à un

certain point de seuil et verraient la différence dans tous les stimuli après ce point. Les

résultats qui n’ont pas suivi ce comportement attendu ont été considérés comme incohérents,

et ils ont été modifiés pour être cohérents comme décrit en section 3.1.2.

Les résultats modifiés R̂k,l,m,i des différents participants ont été additionnés, et le

résultat a été tracé. Le résultat de cette somme ressemble –comme attendu– à une fonction

de distribution cumulative (CDF) de la probabilité de voir une différence. La paramètre QP

correspondant à un écart de 1 JND avec la vidéo de référence, c.-à-d. Q̂P k, a été déterminée

en trouvant la valeur de QP la plus proche correspondant aux 50% d’observateurs qui

voient la différence. Des exemples de cette opération sont montrés dans la figure B.4, et le

processus de détermination de Q̂P k est indiqué par des lignes pointillées. Les valeurs de

QP pour les vidéos compressées avec d’autres espaces de couleur, à savoir ITP et Ypu’v’,

ont été déterminée en prenant les valeurs de QP minimisant la différence de débit par

rapport à la vidéo Y’CbCr.

B.4.2 Effet de l’espace de couleur sur la compression

Détails de l’expérience subjective

Pour la tâche expérimentale principale, nous avons choisi la méthodologie des comparaisons

par paires qui offre une plus grande sensibilité et simplifié l’expérimentation par rapport aux

méthodes de notation directe. Cependant, cette méthode peut nécessiter la comparaison

d’un nombre excessif de paires lorsqu’un grand nombre de conditions est impliqué [MTM12].

Afin d’éviter des résultats évidents et inutiles, un schéma incomplet dans lequel seules les
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Figure B.5 – Les scores d’image obtenus en rééchelonnant les préférences en fonction des distances
de qualité relative (en unités JOD) pour les trois espaces colorimétriques testés.

paires pertinentes sont comparées a été utilisé. Les séquences vidéo HDR ont été comparées

à travers des débits consécutifs pour le même espace couleur, et à travers des espaces

couleur utilisant le même débit. 18 personnes (14 hommes et 4 femmes), avec une moyenne

d’âge de 29,44 ans, se sont portées volontaires pour l’expérience principale.

Les résultats d’un test de comparaison par paires sont généralement rassemblés dans une

matrice de préférence ou de comparaison. Cette matrice comprend les ratios de préférence

des stimuli, et ces ratios de préférence peuvent être convertis en scores de qualité par une

procédure appelée“rééchelonnement”(“scaling”en anglais). Il existe plusieurs méthodes pour

effectuer le rééchelonnement [BT52, Thu27, LDSE11, TG11], et ces méthodes utilisent

deux modèles : le modèle Bradley-Terry [BT52], et le modèle Thurstone [Thu27]. Les

résultats de comparaison par paires obtenus ont été rééchelonnés à l’aide du logiciel pwcmp

accessible au public1. Le logiciel utilise une méthode bayésienne, qui utilise un estimateur

du maximum de vraisemblance pour maximiser la probabilité que les données recueillies

expliquent les scores de qualité à l’échelle sous les hypothèses du scénario V de Thurstone.

Il peut rééchelonner le résultat d’un schéma incomplet et déséquilibré par paire, ainsi que

les cas où il y a accord unanime. Les paramètres de distribution du logiciel sont ajustés de

manière à ce que la différence d’une valeur de qualité corresponde au taux de préférence de

75%. Comme les comparaisons par paires ne peuvent fournir que des informations relatives

sur la qualité, les valeurs JOD (‘just objectionable difference’ en anglais) sont également

relatives. Pour maintenir la cohérence entre les séquences vidéo, nous fixons toujours le

point de départ de l’échelle JOD à 0 pour différentes distorsions et la dégradation de la

1pwcmp toolbox pour le rééchelonnement des données de comparaison par paires https://github.com/
mantiuk/pwcmp

https://github.com/mantiuk/pwcmp
https://github.com/mantiuk/pwcmp
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Figure B.6 – Les résultats obtenus en comparant toutes les scènes pour les trois espaces couleurs
en utilisant la métrique HDR-VQM. Tous les scores sont normalisés, où 1 signifie une
qualité parfaite et des scores plus faibles représentent une diminution de la qualité.

qualité se traduit par des valeurs JOD négatives.

Analyse des résultats subjectifs

La matrice de comparaison pour chaque séquence vidéo a été formée séparément puisque

chaque stimulus a été comparé à un autre stimulus avec le même contenu. Pour chaque

séquence vidéo, la vidéo originale non compressée a été fixée à zéro JOD afin de fixer

la relativité à la vidéo originale. Ensuite, les valeurs de JOD ont été trouvées pour les

stimuli en utilisant le logiciel pwcmp. Les intervalles de confiance ont été trouvés à l’aide

du bootstrapping.

Les valeurs JOD résultantes sont rapportées dans figure B.5 pour chaque séquence vidéo.

Les vidéos compressées avec trois espaces de couleur ont des valeurs JOD très similaires.

En regardant les données rééchelonnées, on peut dire que, dans l’ensemble, il n’y a pas de

différence significative entre les performances de compression vidéo en utilisant les espaces

colorimétriques testés malgré les différences numériques. De même, les résultats du test

de signification statistique et du test binomial conviennent qu’il n’y a pas de différence

significative entre les espaces colorimétriques comparés.

Comparaison des scores de qualité objective

En plus des résultats subjectifs, la qualité vidéo a été prédite en utilisant deux mesures

objectives de qualité : une mesure objective de qualité pour la vidéo HDR, c.-à-d. HDR-

VQM [NMDSLC15], et une mesure de différence de couleur, c.-à-d. ∆E2000 [LCR01]. Le

HDR-VQM a été calculé en utilisant uniquement le canal de luminance. Les résultats de la
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Figure B.7 – Les résultats obtenus en comparant toutes les scènes pour les trois espaces couleurs
en utilisant la métrique ∆E2000. Plus ∆E2000 scores représentent une augmentation
de la différence de couleur. Les scores faibles correpondent à des stimuli proches de la
vidéo originale.

métrique de qualité HDR-VQM sont montrés dans la figure B.6, et les résultats de ∆E2000

sont montrés dans la figure B.7.

En comparant les mêmes stimuli à l’aide de la métrique objective HDR-VQM, nous

avons trouvé des résultats presque identiques à l’expérience subjective. Les résultats de

∆E2000 sont différents de ce qui a été observé à la fois dans les résultats d’expériences

subjectives et dans les résultats métriques objectifs HDR-VQM. Meme si la métrique

HDR-VQM est insensible à la couleur, elle donne de meilleures prédiction de la qualité

des vidéo compressées que ∆E2000. Le désaccord de ∆E2000 avec les scores subjectifs et la

capacité du HDR-VQM à prédire la tendance générale des résultats subjectifs indiquent que

la qualité perçue de la compression vidéo HDR est dominée par la distorsion structurelle

causée par les changements dans le canal de luminance.

B.5 Évaluation des performances des métriques de qualité

d’image HDR avec référence

Par rapport à l’évaluation de la qualité SDR, de nouveaux défis apparaissent pour

l’évaluation de la qualité visuelle HDR [NdSLC+16b]. Pour l’évaluation de la qualité

du contenu HDR, les métriques développées exclusivement pour le contenu HDR [MKRH11,

NDSLC15] et les métriques SDR [WSB03, WBSS04, SB06] avec linéarisation perceptuelle

sont comparés aux notes d’opinion moyennes (MOS) des sujets dans plusieurs études subjec-
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Table B.1 – Nombre d’observateurs, méthodologie subjective, nombre de stimuli, type de
compression et correspondance des tons (TMO) utilisés dans les bases de données
(DB) de qualité d’image HDR utilisées dans cet article. Légende des TMO : AS
: Ashikmin, RG : Reinhard Global, RL : Reinhard Local, DR : Durand, Log :
Logarithmique, MT : Mantiuk.

Numéro de DB Observateurs Méthodologie Stimuli Compression TMO

#1 [NDSLCP13] 27 ACR-HR 140 JPEG† iCAM-06

#2 [NDSLCP14a] 29 ACR-HR 210 JPEG 2000†
AS, RG, RL

DR,Log

#3 [KHR+15] 24 DSIS 240 JPEG-XT RG, MT

#4 [VDSLD14] 15 DSIS 50
JPEG†

JPEG 2000†

JPEG-XT
Mai

#5 15 DSIS 50
JPEG†

JPEG 2000†
Mai
PQ

† Les images altérées sont générées par un système de codage scalable [WS06] : l’image HDR est convertie
en SDR en utilisant un TMO ; ensuite, l’image SDR est codée & décodée par un codec existant ; enfin,
l’image est convertie en gamme HDR.

tives pour des scénarios de compression [VDSLD14, HBP+15, NDSLCP13, NDSLCP12].

Dans le chapitre 4, nous visons à apporter plus de clarté dans ce domaine, en fournissant

un benchmark étendu, fiable et cohérent des métriques de fidélité d’image HDR les plus

populaires. Nous alignons les valeurs MOS de 5 bases de données et fusionnons les valeurs

MOS. Cette base de données alignée se compose d’un total de 690 images HDR compressées.

À notre connaissance, il s’agit du plus grand ensemble sur lequel les mesures HDR ont été

testées jusqu’à présent au meilleur de nos connaissances. À l’aide de ce vaste ensemble de

données, nous analysons la précision de prédiction et la discriminabilité (c.-à-d. la capacité

de détecter lorsque deux images ont une qualité perçue différente) de 25 mesures de fidélité,

y compris celles qui ont été testées dans le cadre de la normalisation MPEG. Pour l’analyse

de la discriminabilité, nous proposons une nouvelle méthode basée sur une approche de

classification.

B.5.1 Les bases de données subjectives considérées

Par rapport à la disponibilité des images HDR de haute résolution et de haute qualité

sans distorsion [DM04, Fai07, DM08, EMP13, pfs15], le nombre de bases de données (DB -

database) de qualité d’image HDR subjectivement annotées et accessibles au public est

très faible. Pour cette étude, nous utilisons 5 bases de données différentes. Nous avons

sélectionné quatre bases de données d’évaluation de la qualité d’image HDR accessibles au

public pour cette analyse. En outre, nous proposons une nouvelle base de données. Chacune

de ces bases de données contient des images HDR compressées et des valeurs MOS pour

ces images HDR. Les algorithmes de compression, le nombre d’observateurs, le nombre de

stimuli utilisés et les méthodologies d’expérimentation sont différents, et ces paramètres
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sont résumés dans le tableau B.1.

En plus des bases de données mentionnées, nous construisons une nouvelle base de don-

nées d’images HDR subjectives de 50 images, dans le prolongement des travaux précédents

de Valenzise et al. [VDSLD14]. La nouvelle base de données comprend 5 images originales,

sélectionnées de manière à être représentatives des différentes caractéristiques de l’image, y

compris la gamme dynamique, la clé d’image et l’information spatiale. Les images de test

sont obtenues en utilisant un schéma de codage HDR rétrocompatible [WS06], en utilisant

JPEG et JPEG 2000 comme codecs SDR. Pour convertir de HDR à SDR, nous avons

utilisé soit le TMO de Mai et al. [MMM+11] soit la courbe PQ-EOTF [MND12, SMP14].

L’environnement de test et la méthodologie ont été soigneusement contrôlés pour être les

mêmes que dans DB #4 (Valenzise et al. (2014)) [VDSLD14], et la méthodologie DSIS a

été employée. Un panel de 15 personnes (3 femmes, 12 hommes ; âge moyen de 26,8 ans),

principalement des doctorants näıfs à la technologie HDR et à la compression d’image,

ont participé au test. Les deux bases de données, #4 et #5, sont alignées à l’aide d’un

ensemble commun, et l’ensemble de données combiné est appelé DB #4 & 5 tout au long

de la thèse.

B.5.2 Alignement des valeurs MOS

Dans de nombreuses expériences subjectives, on demande aux sujets d’utiliser toute la

gamme des notes de l’échelle lors de l’évaluation. Toutefois, la qualité du matériel de test

pour différentes expériences peut ne pas être la même lorsqu’elles sont comparées les unes

aux autres. Dans la figure B.8, nous observons la distribution du MOS pour les bases de

données non alignées en fonction de la métrique HDR-VQM. En raison des caractéristiques

des expériences et du matériel de test de chaque base de données, un niveau similaire de

détérioration d’après l’échelle subjective peut correspondre à des valeurs très différentes

d’après les metriques objectives. Par conséquent, afin d’utiliser de manière cohérente les

valeurs MOS de différentes bases de données subjectives, celles-ci doivent être ajustées sur

une échelle de qualité commune.

Afin d’aligner les valeurs MOS des cinq bases de données d’images HDR, nous utilisons

l’algorithme des moindres carrés imbriqués itéré (INLSA - Iterated Nested Least Square

Algorithm) proposé dans [PW03b]. L’INLSA aligne les valeurs subjectives de qualité collec-

tées dans différentes expériences subjectives en utilisant des variables externes communes,

c.-à-d. des résultats métiques objectifs.

L’INLSA exige des paramètres objectifs pour l’alignement, en supposant que ceux-ci

sont linéaires et suffisamment bien corrélés par rapport aux MOS. Par conséquent, nous

avons analysé les paramètres considérés (décrits ci-dessous) afin de sélectionner les meilleurs

candidats pour cette opération. Puisque PCC est un indice de corrélation montrant la

linéarité des données et SROCC est un indice de corrélation montrant la monotonie des

données, nous avons trouvé les 5 métriques qui ont la valeur la plus élevée pour le produit
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Figure B.8 – Diagrammes des scores MOS par rapport aux scores objectifs de qualité pour le
HDR-VQM avant et après l’alignement INLSA. Afin de comparer quantitativement le
diagramme de dispersion, l’erreur quadratique moyenne (RMSE - root mean squared
error) des données est rapportée pour chaque cas.

de PCC et SROCC : HDR-VDP-2.2, HDR-VQM, PU-IFC, PU-UQI, PU-UQI et PU-VIF.

Les valeurs MOS de l’ensemble des 5 bases de données ont été rassemblées et alignées

à l’aide de l’algorithme INLSA à l’aide de cinq métriques d’ancrage sélectionnées. Les

diagrammes de dispersion des valeurs MOS par rapport aux valeurs objectives de qualité

estimées par HDR-VQM après alignement sont présentés en figure B.8.

Après les observations initiales des images de test, nous remarquons que les images

de DB #2 [NDSLCP14a] ont des caractéristiques très différentes par rapport aux autres,

et les valeurs MOS sont beaucoup plus dispersées que les autres bases de données après

l’alignement. Les déteriorations visuelles dans DB #2 sont très difficiles à prédire pour toutes

les métriques de qualité que nous avons pris en compte dans ce travail. Par conséquent, afin

de fournir une vue d’ensemble complète de la performance des mesures de fidélité HDR,

nous présentons les résultats avec et sans DB #2 dans les évaluations.

B.5.3 Analyse des métriques de qualité objectives

Mesures de qualité objectives à l’étude

Nous incluons dans notre évaluation un certain nombre de mesures de qualité d’image avec

référence (FR - full-reference), y compris l’erreur quadratique moyenne (MSE), le rapport

signal sur bruit (PSNR), l’indice de similarité structurelle (SSIM) [WBSS04], multi-échelle

SSIM (MSSIM) [WSB03], critère de fidélité à l’information (IFC) [SBDV05], indice universel

de qualité (UQI) [WB02], et VIF [SB06]. En plus de ces mesures, nous considérons HDR-

VDP-2.2 [NMDSLC15], HDR-VQM [NDSLC15], des métriques de référence supplémentaires

récemment proposées pour les vidéos HDR telles que mPSNR, tPSNR, CIE ∆E 2000 [TS15],

et l’extension spatiale de CIE ∆E 2000 [ZW97] qui est calculée avec le modèle S-CIELAB.

Les mesures objectives de la qualité à l’étude peuvent être regroupées comme le montre le

tableau B.2.

Pour calculer les mesures de qualité, nous avons d’abord rééchelonné les valeurs des

pixels en fonction de la plage de luminance émise par les écrans HDR utilisés dans chaque
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Table B.2 – Les mesures de qualité d’image HDR avec référence sont regroupées. Les mots en
italique indiquent l’encodage des pixels et les tirets indiquent le préfixe.

HDR Écart de couleur SDR

Mesures
HDR-VDP-2.2

HDR-VQM
mPSNR

CIE ∆E00

CIE ∆ES00

Photometric- MSE, PSNR, VIF
SSIM, MSSIM

IFC, UQI
PU-
Log-
PQ tPSNR-YUV

expérience subjective, une plage de luminance de 0,03 à 4250 cd/m2. Ensuite, nous utilisons

le modèle linéaire tel qu’il a été trouvé car la fonction réelle se trouve être suffisamment

proche d’être linéaire. [ZVD16].

Analyses statistiques

La performance des mesures de qualité avec référence considérée dans cette étude a été

évaluée en termes d’exactitude, de monotonie, et de constance de la prédiction [DS12].

Pour ces catégories, le coefficient de corrélation de Pearson (PCC), l’erreur quadratique

moyenne (RMSE), le coefficient de corrélation de Spearman (SROCC) et le rapport des

valeurs aberrantes (OR) ont été calculés [ITU12c]. Ces mesures de performance ont été

calculées après une régression non linéaire effectuée sur des résultats de mesures objectives

de qualité en utilisant une fonction logistique, tel que décrit dans le rapport final de VQEG

FR Phase I [RLC+00]. Cette fonction logistique est donnée dans l’équation 4.4 :

Les résultats de ces indices de performance (SROCC, PCC, RMSE et OR) ont été

calculés pour chaque base de données séparément, ainsi que pour l’ensemble des données

et pour le cas excluant DB #2. Pour déterminer les performances des métriques, nous

évaluons l’importance de la différence entre les indices de performance considérés, comme

proposé dans la Recommandation ITU-T P.1401 [ITU12c]. Les résultats sont fournis dans

les figures B.9 et B.10 pour les cas “Combiné” et “Sauf DB #2” respectivement. Les barres

indiquent l’équivalence statistique entre les mesures de qualité.

Nous observons que la performance de HDR-VQM –ainsi que PU-VIF, PU-IFC et

Log-IFC– dans la base de données combinée est significativement différente des autres. De

plus, nous remarquons que toutes les métriques à l’exception de CIE ∆E00 et CIE ∆ES00

ne prennent en compte que les valeurs de luminance. Une étude récente sur les mesures de

différence de couleur [OJKP16] ne tient pas compte des artefacts de compression dans les

expériences, car l’impact de ceux-ci sur la qualité de l’image a été jugé beaucoup plus fort

que les différences de couleur. Ainsi, notre analyse confirme que les artefacts de luminance

tels que le blocage, etc. jouent un rôle dominant dans la formation des jugements de qualité,

y compris dans le cas HDR.
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Figure B.9 – Résultats de l’analyse statistique pour les indices de corrélation des données combinées
selon la Recommandation ITU-T P.1401 [ITU12c]. Par exemple, il n’y a pas de
différence statistiquement significative entre HDR-VQM, PU-VIF, PU-VIF, PU-IFC
et Log-IFC en termes de PCC, SROCC, OR et RMSE.

Analyse de la discrimination

Les valeurs MOS sont sont estimées à partir d’un échantillon d’observateurs humains,

c.-à-d. qu’elles représentent les valeurs attendues de variables aléatoires (la gêne ou la

qualité perçue). Par conséquent, les valeurs MOS sont également des variables aléatoires

qui sont connues avec une certaine incertitude, qui est typiquement représentée par leurs

intervalles de confiance [ITU12b]. Les méthodes d’analyse statistique supposent plutôt que

les valeurs MOS sont connues de façon déterministe. Par conséquent, dans ce qui suit,

nous considérons une autre approche d’évaluation, qui vise à évaluer si une métrique de

qualité objective avec référence est capable de discriminer si deux images ont une qualité

subjective significativement différente.

Pour y remédier, Brill et al. [BLC+04] ont introduit le concept de pouvoir de résolution

d’une métrique objective, qui est la différence minimale dans la qualité prédite de telle sorte

qu’au moins p% de téléspectateurs (par exemple p = 95%) différencient deux images. Cette

approche a également été normalisée [ITU04b], et utilisée dans les travaux ultérieurs [PW08,

Bar09, HŘE15, NVH16]. Une autre approche de ce problème a été récemment proposée

par Krasula et al. [KFLCK16]. Dans leur récent article, Krasula et al. trouvent la précision
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PCC

HDR-VQM

PU-MSSIM

HDR-VDP-2.2 Q

PU-SSIM

PU-VIF

Log-IFC

Photometric-VIF

PU-IFC

CIE ∆ES00
Log-SSIM

Photometric-UQI

Log-UQI

PU-UQI

PU-PSNR

mPSNR

PU-MSE

CIE ∆E00

Photometric-IFC

tPSNR-YUV

Log-MSE

Log-PSNR

Photometric-SSIM

Photometric-MSE

Photometric-PSNR

Log-VIF

SROCC

HDR-VQM

HDR-VDP-2.2 Q

PU-MSSIM

PU-SSIM

PU-VIF

Log-IFC

PU-IFC

CIE ∆ES00
Photometric-VIF

Log-SSIM

mPSNR

Photometric-UQI

PU-MSE

PU-PSNR

PU-UQI

Log-UQI

CIE ∆E00

Photometric-IFC

tPSNR-YUV

Photometric-SSIM

Log-PSNR

Log-MSE

Photometric-MSE

Photometric-PSNR

Log-VIF

OR

HDR-VQM

PU-MSSIM

HDR-VDP-2.2 Q

PU-SSIM

PU-VIF

Log-IFC

Log-SSIM

PU-IFC

PU-UQI

Photometric-UQI

Log-UQI

CIE ∆ES00
PU-MSE

Photometric-IFC

Photometric-VIF

PU-PSNR

mPSNR

tPSNR-YUV

Log-MSE

CIE ∆E00

Log-PSNR

Photometric-SSIM

Photometric-PSNR

Photometric-MSE

Log-VIF

RMSE

HDR-VQM

PU-MSSIM

HDR-VDP-2.2 Q

PU-SSIM

PU-VIF

Log-IFC

Photometric-VIF

PU-IFC

CIE ∆ES00
Log-SSIM

Photometric-UQI

Log-UQI

PU-UQI

PU-PSNR

mPSNR

PU-MSE

CIE ∆E00

Photometric-IFC

tPSNR-YUV

Log-MSE

Log-PSNR

Photometric-SSIM

Photometric-MSE

Photometric-PSNR

Log-VIF

Figure B.10 – Résultats de l’analyse statistique pour les indices de corrélation pour les données
combinées à l’exclusion de DB #2 selon la Recommandation ITU-T P.1401 [ITU12c].
Il y a une différence statistiquement significative entre le HDR-VQM et toutes les
autres mesures considérées en termes de PCC, SROCC et RMSE.

d’une image objective ou d’une métrique de qualité vidéo en transformant le problème en

un problème de classification, et deux analyses sont effectuées : différente vs. similaire, et

meilleure vs. pire.

Dans ce chapitre, nous proposons une approche alternative similaire à celle présen-

tée dans Krasula et al. [KFLCK16], qui permet d’évaluer son pouvoir de discrimination.

L’idée de base de la méthode proposée est de convertir le problème classique de régres-

sion de prédiction précise des valeurs MOS, en un problème de classification binaire

(détection) [Kay98].

Nous dénotons la qualité subjective (MOS) et objective du stimulus I par S(I) et O(I),

respectivement. Étant donné deux stimuli Ii, Ij , nous modélisons le problème de détection

comme l’une des deux hypothèses H0, c.-à-d., il n’y a pas de différence significative entre la

qualité visuelle de Ii et Ij , et H1, c.-à-d., Ii et Ij ont une qualité visuelle significativement

différente.

Dans notre travail, nous utilisons une analyse de variance à sens unique (ANOVA),

avec le critère de différence honnêtement significative de Tukey pour tenir compte du biais

de comparaison multiple [HL87], car c’est aussi le moyen idéal pour trouver la signification
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(a) Matrice d’équivalence MOS à un niveau
de confiance de 95%

(b) HDR-VDP-2.2 Q matrice d’équivalence
estimée (τ fixe pour une précision maximale)

Figure B.11 – Cartes d’équivalence pour la base de données combinées (triées). Les entrées blanches
correspondent à S(Ii) ∼= S(Ij), noir à S(Ii) � S(Ij).

statistique dans [KFLCK16]. La figure B.11.(a) montre les résultats de l’analyse de variance

sur notre base de données combinée, avec un seuil de confiance de 95% (c.-à-d. une

signification de 5%). Pour faciliter la visualisation, les valeurs MOS ont été triées par ordre

croissant avant d’appliquer ANOVA. Les entrées blanches représentent des paires MOS qui

sont statistiquement indiscernables.

Pour choisir entre H0 et H1, de même que Krasula et al. [KFLCK16], nous considérons

la statistique de test simple ∆O
ij = |O(Ii)−O(Ij)|, c.-à-d, nous regardons la différence entre

les scores objectifs pour les deux stimuli et nous la comparons avec un seuil τ , c’est-à-dire

H0si ∆O
ij ≤ τ . Pour une valeur donnée de τ , nous pouvons alors étiqueter l’ensemble des

stimuli comme étant équivalents ou non, comme le montre la Figure B.11.(b).

Après avoir trouvé des matrices d’équivalence pour les valeurs MOS et les scores des

métriques de qualité objective, le problème d’évaluation est converti en un problème

de classification binaire. En faisant varier la valeur de τ , on peut tracer une courbe

caractéristique de fonctionnement du récepteur (ROC) [Kay98]. L’aire sous la courbe ROC

(AUC - area under curve) est plus élevée lorsque le chevauchement entre les distributions

marginales de ∆O
ij sous chaque hypothèse

(
p(∆O

ij ;H0) et p(∆O
ij ;H1)

)
, est plus petit. Par

conséquent, l’AUC est une mesure du pouvoir de discrimination d’une mesure objective de

la qualité.

Les résultats de cette évaluation de la signification statistique sont présentés figure B.12.

Les résultats montrent que HDR-VQM est la métrique la plus performante, et PU-VIF

–dans le cas excluant DB #2– PU-MSSIM donnent de meilleurs résultats que la plupart des

métriques considérées.
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Figure B.12 – Résultats de l’analyse statistique pour l’analyse de la discriminabilité, selon la
procédure décrite dans Krasula et al. [KFLCK16]. Les barres signifient l’équivalence
statistique entre les métriques de qualité si elles ont la même barre alignée avec deux
métriques de qualité. On peut dire que parmi les PU-UQI, Log-UQI et Photometric-
UQI, il n’y a pas de différence statistiquement significative. Attendu qu’il existe
une différence statistiquement significative entre le HDR-VQM et toutes les autres
mesures considérées.

B.6 La relation entre MOS et les comparaisons par paires

Dans le chapitre précédent, l’évaluation des mesures objectives de qualité FR HDR montre

que l’alignement des ensembles de données subjectives est délicat et non direct. Cette

observation nous amène à nous poser les questions suivantes : Comment trouver une

méthode plus robuste pour aligner des bases de données de qualité ? Qu’est-ce qu’une

bonne mesure à utiliser pour comparer la qualité de deux stimuli différents ? Pour répondre

à ces questions, nous devons d’abord comprendre ce qui cause la variance de la qualité

perçue, et nous devrions être en mesure de réduire la variance.

En comparant quatre méthodologies différentes, Mantiuk et al. [MTM12] a constaté que

la méthodologie des comparaisons par paires (PC - Pairwise Comparisons) à choix forcé

était la plus précise et la plus efficace en termes de temps. L’expérience PC et les résultats

du rééchelonnement de PC sont beaucoup moins influencés par les facteurs humains de

par leur nature. Ainsi, il peut être utilisé comme une échelle “universelle” à laquelle vous

pouvez aligner vos ensembles de données.
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Dans le chapitre 5, nous essayons de comprendre la relation entre les méthodes de

notation directe –c.-à-d. MOS– et de classement –c.-à-d. le rééchelonnement de PC– et nous

comparons les valeurs MOS et les résultats du rééchelonnement des données expérimentales

de PC. Nous étudions également l’effet de l’ajout de comparaisons de contenu croisé,

en montrant que cela permet non seulement d’unifier l’échelle de qualité à travers le

contenu, mais aussi d’améliorer significativement la précision des scores de qualité de

rééchelonnement.

B.6.1 Rééchelonnement des données de comparaisons par paires

Les résultats d’une expérience de comparaison par paires peuvent être rassemblés dans une

matrice des préférences, également connue sous le nom de matrice de comparaison. Ses

éléments contiennent le décompte du nombre de fois qu’une condition est votée aussi bien que

l’autre. Ces matrices de préférences peuvent être utilisées pour trouver un score de qualité

pour chaque condition en utilisant l’une de plusieurs méthodes rééchelonnement [BT52,

Thu27, LDSE11, TG11]. Dans ce travail, nous utilisons pwcmp, un logiciel open source

pour mettre à l’échelle les résultats des comparaisons par paires [POM17]. Comme décrit

précédemment, ce logiciel estime les scores de qualité à l’aide d’une méthode bayésienne,

qui utilise un estimateur de probabilité maximale pour maximiser la probabilité que les

données recueillies expliquent les scores de qualité sous les hypothèses du scénario V de

Thurstone.

Les résultats des comparaisons par paires sont généralement rééchelonnés en Just-

Noticeable-Difference (JND) unités [Eng00, SF01]. Deux stimuli sont espacés de 1 JND

si 50% des observateurs peuvent voir la différence entre eux. Pour faire référence à la

différence de qualité d’image par rapport à une référence de qualité parfaite, nous décrivons

cette mesure de qualité comme Just-Objectionable-Differences (JODs) [AVS+17] plutôt

que JNDs.

B.6.2 La relation entre MOS et les comparaisons par paires

Détails des expériences subjectives

Afin de comparer les valeurs MOS aux résultats du rééchelonnement de PC, deux tests

subjectifs ont été effectués. Dans ces tests subjectifs, nous avons utilisé l’ensemble de données

de qualité vidéo HDR créé dans la section 3.2, qui consiste en 60 vidéos HDR compressées.

Les expériences ont été menées dans une pièce silencieuse et sombre, conformément aux

Recommandations de l’ITU [ITU12b, ITU98]. Un écran SIM2 HDR47 calibré avec une

résolution de 1920 × 1080 pixel a été utilisé dans son mode de rendu intégré natif. La

distance des sujets par rapport à l’écran était fixée à trois hauteurs d’affichage [ITU98]. Les

expériences réalisées partagent un ensemble de paramètres communs en plus de ceux de la

salle de test. Les stimuli ont été présentés en paires avec une représentation côte à côte.
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La première expérience menée était une expérience de comparaisons par paires avec

un design incomplet. Dans cette expérience, une paire de vidéos avec deux débits binaires

consécutifs provenant du même espace couleur ou avec le même débit binaire provenant de

deux espaces couleur différents a été comparée, comme cela a été fait dans la section B.4.2.

Afin d’analyser les résultats des comparaisons par paires et de comprendre si ces résultats

du rééchelonnement sont comparables aux scores de qualité, une deuxième expérience a

été menée selon la méthodologie de double stimulus impairment scale (DSIS). Dans cette

deuxième expérience, la méthodologie DSIS Variante I avec une présentation côte à côte a

été utilisée, comme dans [HRE16]. Toutes les vidéos déformées ont été comparées avec la

référence non déformée.

Table B.3 – Linéarité de la relation entre MOS et JOD

Séquence PCC SROCC

Balloon 0.9936 0.9835
Bistro 0.9824 0.9890
Hurdles 0.9864 0.9670
Market 0.9696 0.9615
Starting 0.9897 0.9835

Tous les contenus 0.9337 0.9420

Comparaison des MOS et comparaisons par paires

Les matrices de préférence des expériences PC ont été trouvées, et les scores JOD ont

été estimés à l’aide du logiciel pwcmp. Pour l’expérience DSIS, les valeurs MOS ont été

calculées en prenant la moyenne des scores d’opinion. Les intervalles de confiance (CI), par

contre, ont été calculés à l’aide du bootstrapping afin de les comparer aux CI des scores

JOD. Les scores JOD résultants (notés JODStandard pour indiquer que la méthodologie

des comparaisons par paires standard a été utilisée) ont été tracés par rapport aux valeurs

MOS. Les résultats montrent qu’il existe une forte relation entre les valeurs MOS et les

scores JOD, et les scores JOD et les valeurs MOS montrent un comportement presque

linéaire pour tous les contenus. Cette relation a également été vérifiée avec les calculs PCC

et SROCC. Rapporté dans le tableau B.3, les valeurs PCC et SROCC montrent que la

relation est presque parfaitement linéaire pour chaque séquence vidéo.

Nous avons remarqué que les valeurs MOS ont des CI proches de l’uniforme ; cependant,

les CI des valeurs JOD augmentent au fur et à mesure que les valeurs absolues JOD

elles-mêmes augmentent. Cela a été causé par l’accumulation des erreurs d’estimation, qui

résulte de la comparaison de paires consécutives.
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(b) Expérience supplémentaire sur le même contenu

Figure B.13 – Designs d’expérience pour deux expériences supplémentaires. Les paires supplémen-
taires sélectionnées sont affichées avec des flèches noires, où Referencei est la référence
(original) pour le contenu vidéo i, BRi

j est le contenu vidéo i compressé avec le j-ième
bitrate (j = 1 est le bitrate le plus élevé). Les paires illustrées par des flèches grises
en pointillés sont les paires comparées pour les comparaisons par paires standard,
comme décrit dans la section 5.2.1. Pour éviter l’encombrement, les comparaisons
entre les espaces colorimétriques ne sont pas affichées dans la sous-figure (a).

B.6.3 Extension de PC: Comparaisons inter-contenus

Expérience de comparaison par paires inter-contenus

Les expériences de comparaison par paires sont conçues pour comparer des conditions

provenant du même contenu, de sorte que les “pommes” sont comparées aux “pommes”.

Étant donné que seule la condition de référence est ancrée et que la qualité de toutes

les autres conditions est estimée à partir des relations de paires, l’erreur d’estimation est

accumulée en s’éloignant du point d’ancrage. Au lieu de cela, comparer des “pommes” à

des “oranges” peut introduire de nouvelles informations, améliorer le rééchelonnement et

réduire la variance de contenu croisé.

En plus des expériences subjectives décrites dans la section précédente, deux autres

expériences ont été menées afin d’analyser et de comprendre les effets des comparaisons

croisées par paires. Toutes les variables, à l’exception de la paire de stimuli sélectionnée, sont

restées les mêmes. Nous avons été motivés à mener une telle expérience de comparaison de

contenu croisé après avoir observé que de telles comparaisons sont effectuées indirectement

dans la méthodologie DSIS. Lorsque les téléspectateurs évaluent les séquences, ils jugent la

qualité par rapport à toutes les autres séquences qu’ils ont vues, ainsi que les séquences
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présentant un contenu différent.

Pour que les expériences supplémentaires soient courtes, nous avons jumelé des vidéos

avec des contenus différents et un même débit binaire, comme le montre la figure B.13.(a) en

utilisant les comparaisons montrées avec des flèches noires pleines. Les résultats obtenus ont

été combinés avec les résultats de l’expérience de comparaison par paires de l’étalon (même

contenu) (illustrés par des flèches grises dans la figure B.13) et rééchelonné à nouveau en

utilisant le même logiciel pwcmp. Les résultats sont présentés dans la section correspondante

ci-dessous. Les nouveaux scores JOD obtenus à partir de la combinaison de PC standard

et de l’expérience de contenu croisé sont appelés JODCrossContent.

Afin d’établir une comparaison équitable en ce qui concerne le nombre total de com-

paraisons, une expérience supplémentaire sur le même contenu a également été menée.

Afin de maintenir le nombre de paires supplémentaires dans une fourchette similaire, le

test a consisté en un total de 90 paires (y compris les versions en miroir). Pour cela, nous

avons sélectionné des paires avec des débits binaires consécutifs et des espaces de couleur

identiques, comme indiqué par des flèches noires pleines dans la figure B.13.(b). Il s’agit

essentiellement d’observations supplémentaires de certaines paires du test PC standard

décrit dans la section précédente. Ces paires ont été comparées par 15 personnes (8 hommes

et 7 femmes) avec une moyenne d’âge de 29 ans. Ces paires supplémentaires de même

contenu ont de nouveau été combinées avec les résultats de l’expérience PC standard et

mises à l’échelle avec le logiciel pwcmp. Les scores JOD obtenus à partir de la combinaison

d’un PC standard et d’une expérience supplémentaire de même contenu sont appelés

JODSameContent.

Impact des comparaisons inter-contenus

Les valeurs JOD que nous utilisons ont été trouvées en utilisant trois ensembles différents

de données PC. Comme décrit dans la section précédente, JODStandard a été trouvé en

utilisant les données acquises dans l’expérience PC avec le même contenu. JODSameContent

a été trouvé en utilisant la combinaison des résultats de l’expérience PC standard et des

résultats de l’expérience de même contenu, et JODCrossContent a été trouvé en utilisant la

combinaison des résultats de l’expérience PC standard et des résultats de l’expérience de

contenu croisé.

Le comportement linéaire observé entre les valeurs JODStandard et MOS s’applique

également aux cas JODSameContent et JODCrossContent. De plus, l’introduction de paires

de contenus croisés augmente la corrélation et la linéarité de la relation entre JOD et MOS.

On calcul la pente de la droite la mieux adaptée à chaque contenu, en utilisant les

tracés de MOS vs JOD. Afin de trouver l’effet de l’addition de paires de contenus croisés,

la variance de ces pentes a été également calculée. La variance des pentes dans le cas de

JODSameContent était de 2, 7972 et dans le cas de JODCrossContent était de 0, 6445. Cette

réduction significative de la variance des pentes implique que le meilleur ajustement linéaire
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Contenu CIStandard CISameContent CICrossContent RatioCC/SC

Balloon

BR1 1.23 1.23 1.53 1.25
BR2 2.21 1.68 1.86 1.11
BR3 3.03 2.84 2.48 0.87
BR4 3.93 3.36 2.56 0.76

Bistro

BR1 1.60 1.70 1.25 0.73
BR2 2.12 1.91 1.46 0.76
BR3 2.92 2.49 2.00 0.81
BR4 3.34 2.91 2.26 0.78

Hurdles

BR1 1.45 1.50 1.12 0.75
BR2 2.31 1.90 1.55 0.82
BR3 3.12 2.36 2.46 1.04
BR4 3.43 2.96 2.62 0.89

Market

BR1 2.12 2.35 0.85 0.36
BR2 3.05 2.80 1.63 0.58
BR3 4.32 3.18 2.57 0.81
BR4 4.73 3.28 2.94 0.90

Starting

BR1 3.52 3.50 1.29 0.37
BR2 4.45 4.06 1.47 0.36
BR3 5.61 4.76 1.97 0.41
BR4 6.04 5.11 2.29 0.45

Table B.4 – Intervalle de confiance moyen des vidéos avec différents débits binaires (BR1 est le
plus élevé) pour les expériences considérées. La dernière colonne est le rapport du
CI des données PC combinées avec des paires de contenu croisé supplémentaires
(CICrossContent, CI de JODCrossContent) au CI des données PC combinées avec des
paires de contenu identique supplémentaires (CISameContent, CI de JODSameContent).
Les CI de l’expérience PC standard (CIStandard, CI de JODStandard) sont également
rapportés par souci d’exhaustivité.

pour chaque contenu est beaucoup plus proche et qu’il y a moins de variance entre les

différents contenus.

Une autre métrique, Stdp2l, a été calculée pour les points tracés dans chaque sous-figure

présentée. Elle est calculée comme suit :

Stdp2l =
√
mean(d(P, l)2) (B.7)

où d(P, l) est la distance perpendiculaire du point P à la ligne l. Stdp2l a été calculée pour

le meilleur ajustement linéaire du cas ‘Tous ensemble’. Le meilleur ajustement linéaire

correspond à la ligne violette en pointillés dans les sous-figures (a) à (e). Il est clair que

l’ajout de paires de contenu croisé diminue la variance des pentes de la ligne la mieux

ajustée à chaque contenu et Stdp2l également, rapprochant ainsi les scores JOD sur une

échelle de qualité commune.

Afin d’analyser la variation de CI, les valeurs moyennes de CI sont rapportées dans

le tableau B.4. Comme le CI ne change pas beaucoup par rapport à l’espace couleur, la
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moyenne des valeurs CI a été calculée pour le même débit binaire. La dernière colonne du

table B.4 montre que les CIs diminuent pour presque tous les cas jusqu’à 60%, surtout à

des débits binaires plus élevés où l’erreur de mise à l’échelle s’accumulerait plutôt dans le

PC standard. Avec les comparaisons de contenu croisé, la taille de CI devient plus uniforme

entre les différents niveaux de qualité.

Tous les résultats indiquent que le rééchelonnement des données des comparaisons par

paires donne des scores JOD fortement corrélés aux valeurs MOS acquises dans l’expérience

DSIS. L’introduction de paires de contenu croisé rend JOD plus uniforme et réduit les

intervalles de confiance.

B.7 Conclusions et travaux futurs

Dans cette thèse, nous avons abordé certaines des limites et des défis de l’évaluation de

la qualité dans le contexte de l’image et de la vidéo à haute gamme dynamique. Plus

précisément, le but de cette thèse était d’étudier les nouvelles conditions de la technologie

d’affichage HDR et de fournir un aperçu de l’évaluation et de l’analyse de la qualité vidéo

HDR. Pour ce faire, nous avons examiné trois aspects de l’évaluation de la qualité HDR.

Tout d’abord, nous avons analysé les paramètres affectant l’évaluation subjective

et objective de la qualité HDR afin de comprendre l’influence des nouvelles conditions

introduites par la technologie HDR, et à cette fin, nous avons développé un algorithme

de rendu d’image HDR. Dans cette partie, nous nous sommes concentrés sur les effets du

rendu de l’affichage (liés à la luminosité et au contraste de l’affichage) et de la couleur sur

l’évaluation de la qualité HDR.

Deuxièmement, à partir de nos observations, nous avons évalué les méthodes objectives

d’évaluation de la qualité des images HDR à l’aide d’un ensemble de données de 690

images créé en alignant les valeurs MOS de différentes bases de données, et nous avons

proposé une nouvelle méthode d’analyse de la discriminabilité basée sur la classification

pour l’évaluation de la performance métrique objective.

Troisièmement, nous avons comparé les résultats des comparaisons par paires avec les

valeurs MOS, dans l’intention de trouver une représentation commune pour aligner les

ensembles de données de qualité et d’éliminer de l’étape d’alignement jusqu’alors nécessaire.

De plus, nous avons proposé d’inclure des comparaisons de contenu croisé à la méthodologie

des comparaisons par paires afin de réduire la variance de contenu croisé et les intervalles

de confiance des résultats du rééchelonnement de PC.

La commercialisation rapide de la technologie HDR/WCG et l’augmentation du vol-

ume de contenu HDR ouvrent de nouvelles perspectives pour la recherche future. Nous

pensons que certains aspects de la technologie HDR/WCG nécessitent des recherches plus

approfondies, et nous décrivons un certain nombre d’extensions possibles de cette thèse.

Bien que la méthode de rendu proposée soit capable d’estimer avec précision la luminance

émise, elle ne peut pas estimer la chrominance émise pour le moment. Son rendement inclut



B.7. Conclusions et travaux futurs 175

l’information de couleur, mais l’information de couleur est acquise simplement en divisant

l’image de couleur HDR à la valeur de rétro-éclairage. Ainsi, la méthode de rendu peut

être étendue à l’estimation de la chrominance.

Dans le cas de la compression, les distorsions structurelles créées par les différences de

canal de luminance sont dominantes par rapport à la perception humaine de la qualité

de l’image et de la vidéo HDR. Cependant, dans les cas autres que la compression, les

changements de couleur peuvent encore influencer la qualité perceptuelle. Les artefacts de

couleur peuvent être créés pour plusieurs raisons telles que les conversions d’espace ou de

gamme de couleurs et les conversions EOTF. Par conséquent, une gamme plus large de

distorsions de couleur peut être étudiée pour comprendre les effets des artefacts de couleur

dans le sens de HDR/WCG.

L’évaluation des paramètres de qualité d’image HDR dans le chapitre 4 a d’importants

résultats et conclusions, dont certains peuvent être étendus pour le cas de la vidéo. Dans

cette thèse, nous n’avons pas pu procéder à une telle évaluation pour la vidéo HDR en

raison de la rareté des bases de données de qualité vidéo HDR accessibles au public au

moment de cette étude. Par conséquent, une évaluation similaire peut être faite pour le cas

de la vidéo HDR, afin de prendre en compte les caractéristiques temporelles.

Comme nous l’avons vu précédemment, nous pensons que JOD peut être un score de

qualité subjectif universel grâce à la facilité et à la robustesse de son calcul. Bien que

les premiers résultats soient prometteurs, cette affirmation doit être validée par un plus

grand nombre de données avec des distorsions et des niveaux de qualité variés. Pour autant

qu’elles soient validées, les valeurs JOD peuvent être utilisées pour aligner différentes bases

de données, ce qui peut améliorer à la fois l’évaluation et l’élaboration de mesures objectives

de la qualité HDR.
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lich, and G. Su, “ITP colour space and its compression performance for high
dynamic range and wide colour gamut video distribution”. ZTE Communications,
Feb 2016. Cited in Sec. 1.3.2, 3, B.4

[LRP97] G. W. Larson, H. Rushmeier, and C. Piatko, “A visibility matching tone
reproduction operator for high dynamic range scenes”. IEEE Transactions on
Visualization and Computer Graphics, vol. 3 (4), pp. 291–306, Oct 1997. Cited in
Sec. 1.3.3

[LSH+17] Y. Liu, N. Sidaty, W. Hamidouche, O. Déforges, G. Valenzise, and E. Zer-
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