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Abstract

Understanding the functioning of the brain under normal and pathological conditions
is one of the challenges of the 21st century. In the last decades, neuroimaging has rad-
ically affected clinical and cognitive neurosciences. Amongst neuroimaging techniques,
magneto- and electroencephalography (M/EEG) stand out for two reasons: their non-
invasiveness, and their excellent time resolution. Reconstructing the neural activity
from the recordings of magnetic field and electric potentials is the so-called bio-magnetic
inverse problem.

Because of the limited number of sensors, this inverse problem is severely ill-posed, and
additional constraints must be imposed in order to solve it. A popular approach, con-
sidered in this manuscript, is to assume spatial sparsity of the solution: only a few brain
regions are involved in a short and specific cognitive task. Solutions exhibiting such a
neurophysiologically plausible sparsity pattern can be obtained through `2,1-penalized
regression approaches. However, this regularization requires to solve time-consuming
high-dimensional and non-smooth optimization problems, with iterative (block) prox-
imal gradients solvers.

Additionally, M/EEG recordings are usually corrupted by strong non-white noise, which
breaks the classical statistical assumptions of inverse problems. To circumvent this,
it is customary to whiten the data as a preprocessing step, and to average multiple
repetitions of the same experiment to increase the signal-to-noise ratio. Averaging
measurements has the drawback of removing brain responses which are not phase-
locked, i.e., do not happen at a fixed latency after the stimuli presentation onset.

In this work, we first propose speed improvements of iterative solvers used for the `2,1-
regularized bio-magnetic inverse problem. Typical improvements, screening and working
sets, exploit the sparsity of the solution: by identifying inactive brain sources, they
reduce the dimensionality of the optimization problem. We introduce a new working
set policy, derived from the state-of-the-art Gap safe screening rules. In this framework,
we also propose duality improvements, yielding a tighter control of optimality and
improving feature identification techniques. This dual construction extrapolates on an
asymptotic Vector AutoRegressive regularity of the dual iterates, which we connect to
manifold identification of proximal algorithms. Beyond the `2,1-regularized bio-magnetic
inverse problem, the proposed methods apply to the whole class of sparse Generalized
Linear Models.

Second, we introduce new concomitant estimators for multitask regression. Along with
the neural sources estimation, concomitant estimators jointly estimate the noise covari-
ance matrix. We design them to handle non-white Gaussian noise, and to exploit the
multiple repetitions nature of M/EEG experiments. Instead of averaging the observa-
tions, our proposed method, CLaR, uses them all for a better estimation of the noise.
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The underlying optimization problem is jointly convex in the regression coefficients and
the noise variable, with a “smooth + proximable” composite structure. It is therefore
solvable via standard alternate minimization, for which we apply the improvements
detailed in the first part. We provide a theoretical analysis of our objective function,
linking it to the smoothing of Schatten norms. We demonstrate the benefits of the
proposed approach for source localization on real M/EEG datasets.

Our improved solvers and refined modeling of the noise pave the way for a faster and
more statistically efficient processing of M/EEG recordings, allowing for interactive data
analysis and scaling approaches to larger and larger M/EEG datasets.





Notation

, Equal by definition

[d] Set of integers from 1 to d included

YX Set of functions from X to Y

Rd1×d2 Set of real matrices of size d1 by d2

Idn Identity matrix in Rn×n

Ai: ith row of matrix A

A:j jth column of matrix A

TrA Trace of A ∈ Rd×d TrA =
∑d

i=1Aii

A> Transpose of matrix A

A† Moore-Penrose pseudo-inverse of matrix A

supp(x) Support of x ∈ Rd
{
j ∈ [d] : xj 6= 0

}
‖·‖ Euclidean norm on vectors and matrices

‖·‖0 `0 pseudo-norm on vectors ‖x‖0 =
∣∣suppx

∣∣
‖·‖p `p-norm on vectors for p ∈ [1,+∞]

Bp Unit ball of `p-norm

Sn++ Positive definite matrices of size n× n

Sn+ Semipositive definite matrices of size n× n

‖·‖S ,p Schatten p-norm on matrices for p ∈ [1,+∞]

BS ,p Unit ball of Schatten p-norm

‖·‖2,1 Row-wise `2,1-mixed norm on matrices ‖A‖2,1 =
∑p

j=1‖Aj:‖

‖·‖2,∞ Row-wise `2,∞-mixed norm on matrices ‖A‖2,∞ = maxj∈[p]‖Aj:‖

〈·, ·〉S Vector scalar product weighted by S ∈ Sn++ 〈x, y〉S = x>Sy

‖·‖S Mahalanobis matrix norm induced by S ∈ Sn++ ‖A‖S =
√

Tr(A>SA)

‖·‖2 Spectral norm on matrices



14 notation

a ∨ b Maximum of real numbers a and b

a ∧ b Minimum of real numbers a and b

(a)+ Positive part of a ∈ R a ∨ 0

sign(x) Sign of x ∈ R sign(x) = x
|x| and

0
0 = 0

� Entrywise product between vectors (x� y)j = xjyj

0 Vector or matrix of zeros

1 Vector or matrix of ones

ST(x, τ) Soft-thresholding of x ∈ Rd at level τ > 0 (sign(xj)(|xj | − τ)+)j∈[d]

BST(A, τ) Block soft-thresholding of A ∈ Rd×d′ at level τ > 0 (1− τ/‖A‖)+ ·A

ΠC Euclidean projection onto convex set C

ιC Indicator function of set C Definition 1.6

f � g Infimal convolution of f and g Definition 1.7

f∗ Fenchel-Legendre transform of f Definition 1.8

∂f Subdifferential of f Definition 1.12

dom f Domain of f {x : f(x) < +∞}

Model specific

X ∈ Rn×p Design matrix

xi ∈ Rp ith row of the design matrix

y ∈ Rn Observation vector

Y ∈ Rn×q Observation matrix in multitask framework

Σ ∈ Sn++ Noise covariance matrix

S ∈ Sn++ Square root of noise covariance matrix

For two matrices S1 and S2 in Rn×n we write S1 � S2 (resp. S1 � S2) for S1−S2 ∈ Sn+
(resp. S1−S2 ∈ Sn++). When we write S1 � S2 we implicitly assume that both matrices
belong to Sn+.
There is an obvious notation clash: p refers to both the number of features and the
index of `p or Schatten p-norms: we ask for the reader’s forgiveness.

As much as possible, exponents between parenthesis (e.g., β(t)) denote iterates and
subscripts (e.g., βj) denote vector entries.

We extend the small-o notation to vector valued functions in the following way: for
f : Rn → Rn and g : Rn → Rn, f = o(g) if and only if ‖f‖ = o(‖g‖), i.e., ‖f‖/‖g‖
tends to 0 when ‖g‖ tends to 0.
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– Non te la ricordi ?
– Prima si, adesso mica tanto.”
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1.1 Optimization for statistical learning

1.1.1 Statistical learning

Let Z be a random variable in a domain Z. A statistical learning task is to find, in a
certain set of models H called hypothesis class, the most suitable one. Formally, for a
loss function ` : H×Z → R+, the best model minimizes the expected loss:

arg min
φ∈H

E[`(φ,Z)] . (1.1)

This framework encompasses tasks such as dimensionality reduction, classification, re-
gression, clustering or feature selection (Shalev-Shwartz and Ben-David, 2014). In this
thesis, we are interested in the prediction learning task: we wish to infer the relationship
between a random variable X and a target random variable Y, taking values in sets X
and Y respectively. In that case, Z = (X,Y), Z = X × Y and the set of models H is a
subset of YX , reflecting a priori knowledge about this dependency (Hastie et al., 2009).
As a loss function, we use `(φ, (x, y)) = L(φ(x), y) where L : Y × Y → R+ measures the
discrepancy between two values in Y. Problem (1.1) then becomes:

arg min
φ∈H

E[L(φ(X),Y)] . (1.2)
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Unfortunately, this expectation is generally impossible to compute since the joint dis-
tribution of X and Y is unknown. A most common setting is when a dataset D =
{(xi, yi)}i∈[n] ∈ (X × Y)n is available, comprising n independent samples drawn from
the joint distribution of X and Y. The unavailable E[L(φ(X),Y)] can be approxim-
ated by the empirical mean 1

n

∑n
i=1 L(φ(xi), yi), and a proxy for the best model can be

obtained in the Empirical Risk Minimization (ERM) framework, by solving:

arg min
φ∈H

1

n

n∑
i=1

L(φ(xi), yi) . (1.3)

We refer to the case where H = {x 7→ h(x;β) : β ∈ Rd}, with h : X × Rd → Y fixed,
as the (finite dimensional) parametric case. In this case, learning the optimal function
φ reduces to learning the optimal parameter vector β.

We will focus on a particular class of parametric statistical models, called Generalized
Linear Models (GLMs, introduced in McCullagh and Nelder 1989). For simplicity of
the presentation, we now assume that X = Rp and Y ⊂ R (the later used multitask
framework, Y = Rq, can be addressed easily at the price of heavier notation). First, let
us introduce an exponential family, that is, a family of parametric probability densities
(or mass functions), taking the form:

{f(υ; θ) = c(υ) exp(η(θ)>T (υ)− κ(θ)) : θ ∈ Θ} , (1.4)

and such that the support of f(·; θ) does not depend on θ. The function η is called the
natural parameter of the family, T is the sufficient statistic, κ the cumulant function, Θ
the parameter space and c reflects the integrating measure. Exponential families provide
a convenient unifying framework to analyze a variety of commonly used distributions:
Gaussian, Poisson, Bernoulli, multinomial, exponential, etc.

Example 1.1 (Real Gaussian). If Υ ∼ N (µ, σ2), its density at υ ∈ R is:

1√
2πσ2

exp
(
− (υ − µ)2

2σ2

)
=

1√
2π

exp
( µ
σ2

υ − 1

2σ2
υ2 − 1

2σ2
µ2 − log σ

)
, (1.5)

and it is easy to check that with:

c(υ) = 1/
√

2π ,

θ = (θ1, θ2) =
(
µ
σ2 ,− 1

2σ2

)
,

η(θ) = θ ,

T (υ) = (υ,υ2) ,

κ(θ) = − θ2
1

4θ2
− 1

2 log(−2θ2) = 1
2σ2µ

2 + log σ ,

Θ = R×
]
−∞, 0

[
,

(1.6)

Equation (1.5) fits the form of (1.4). Moreover, notice that:

∇κ(θ) =

(
− θ1

2θ2
,
θ2

1

4θ2
2

− 1

2θ2

)
=
(
µ, µ2 + σ2

)
= E[T (Υ)] . (1.7)
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Now consider that σ is known; we can change the parametrization to:

c(υ) = 1√
2πσ2

exp
(
− 1

2σ2 υ2
)
,

θ = µ
σ2 ,

η(θ) = θ ,

T (υ) = υ ,

κ(θ) = σ2

2 θ
2 ,

Θ = R .

(1.8)

In that case, T is the identity, i.e., Υ itself is a sufficient statistic, and one can easily
check that κ′(θ) = E[Υ].

From now on, we restrict ourselves to distributions for which T is the identity. It turns
out that we always have1 ∇κ(θ) = κ′(θ) = E[Υ], and κ′′(θ) = Var[Υ] > 0. This means
that the mapping θ 7→ µ , E[Υ] is one-one, which allows to parametrize the distribution
not with θ, but with µ (moment parametrization). In this situation, to postulate that
(X,Y) follows a GLM is to assume that for every x ∈ Rp the distributions of Y|X = x
(emphasis: not of Y) belong to a common exponential family, and that the parameter
µ , E[Y|X = x] is equal to ψ−1(β>x) (or θ = (κ′)−1 ◦ψ−1(x>β)), for a fixed parameter
β and a response function ψ.

The hypotheses of a GLM are summarized by:

fY|X=x(y;β) = c(y) exp
{
η
(

(κ′)−1 ◦ ψ−1(x>β)
)
y − κ

(
(κ′)−1 ◦ ψ−1(x>β)

)}
. (1.9)

Equation (1.9) evidences the two choices which characterize a GLM: the exponential
family via c, η, and κ, and the response function ψ. To model the data, the choice
of the exponential family usually depends on the nature of Y: continuous unbounded
data can be modeled by a Gaussian, count data by a Poisson distribution, intervals
by an exponential distribution, etc. The response function ψ is usually chosen so that
it matches the constraints on the exponential family’s mean, but different choices can
be made for the same Y. Note that there exists a canonical choice of ψ: ψ = (κ′)−1,
resulting in θ = x>β.

Performing parameter inference in this setting leads to a variety of popular losses for
ERM, with the key property that the Maximum Likelihood Estimator (MLE) problem
is a convex one (Pitman, 1936), and therefore the corresponding ERM also is. For the
previously introduced dataset D, denoting by θ(i) the parameters of the distributions
of Y|X = xi, independence of the samples leads to a log-likelihood equal to:

`(θ(1), . . . , θ(n)|D) =
n∑
i=1

log c(yi) +
n∑
i=1

η(θ(i))yi − κ(θ(i)) . (1.10)

We can write this as a function of β only, and the parameter β̂ leading to the MLE
(θ̂(1), . . . , θ̂(n)), is:

arg min
β∈Rp

n∑
i=1

κ ◦ (κ′)−1 ◦ ψ−1(x>i β)− η ◦ (κ′)−1 ◦ ψ−1(x>i β)yi , (1.11)

which is a finite dimensional, parametric instance of the ERM Problem (1.3) for L(ŷ, y) =
κ ◦ (κ′)−1(ŷ)− η ◦ (κ′)−1(ŷ)y, and H = {x 7→ ψ−1(β>x) : β ∈ Rp}.

1the general formula is ∇κ(θ) = Jacη(θ)> E[T (Υ)] where Jacη(θ) is the Jacobian matrix of η at θ
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Example 1.2 (Bernoulli variable). In this example, X = Rp and Y = {0, 1}. The
probability mass function of a Bernoulli variable of mean µ ∈]0, 1[ is:

p(y;µ) = µy + (1− µ)1−y = exp
(
y log

( µ

1− µ
)

+ log(1− µ)
)
, (1.12)

which belongs to an exponential family, with:

c(y) = 1 ,

θ = log
(

µ
1−µ

)
,

η(θ) = θ ,

T (y) = y ,

κ(θ) = log(1 + eθ) = − log(1− µ) ,

Θ =]0,+∞[ .

(1.13)

So if we postulate that Y|X = x is a Bernoulli random variable of mean µ = κ′(x>β) =

1/(1 − e−x>β), we have a GLM with canonical response function, and Problem (1.11)
can be written as:

arg min
β∈Rp

n∑
i=1

κ(β>xi)− η(β>xi)yi = arg min
β∈Rp

n∑
i=1

log(1 + exp(x>i β))− yix>i β , (1.14)

which is the logistic regression ERM. Alternatively, we could postulate that Y|X = x is
a Bernoulli random variable of mean µ = Φ(x>β), with Φ the cumulative distribution
function of a standard Gaussian. This is the probit model, with MLE accessible via:

arg min
β∈Rp

n∑
i=1

log

(
1 +

Φ(x>i β)

1− Φ(x>i β)

)
− log

(
Φ(x>i β)

1− Φ(x>i β)

)
yi

= arg min
β∈Rp

n∑
i=1

−yi log(Φ(x>i β))− (1− yi) log(1− Φ(x>i β)) . (1.15)

The examples derived above explain the ubiquity of problems of the form:

arg min

n∑
i=1

fi(x
>
i β) , (1.16)

that we consider in Part I. Finally, the following example is of primary importance for
the multitask case which arises in our application.

Example 1.3 (Multivariate Gaussian). Let X = Rp, let Y = Rq. Consider the density
of a multivariate Gaussian of mean µ ∈ Rq and covariance Σ ∈ Sq++, evaluated at
z ∈ Rq:

1

(2π)q/2(det Σ)1/2
exp

(
−1

2
(z − µ)>Σ−1(z − µ)

)

=
1

(2π)p/2
exp

(
z>Σ−1µ− 1

2
z>Σ−1z − 1

2
µ>Σ−1µ− 1

2
log det Σ

)

=
1

(2π)p/2
exp

(
z>Σ−1µ− 1

2
Tr Σ−1zz> − 1

2
µ>Σ−1µ− 1

2
log det Σ

)
. (1.17)

It belongs to an exponential family, with θ = (Σ−1µ,−1
2 Vec Σ−1), T (z) = (z,Vec zz>)

where Vec is the column-wise vectorization operator.
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Finally, going back to Example 1.1 leads to the most well-known instance of MLE:
Ordinary Least Squares (OLS). For X = Rp and Y = R, let us postulate that:

Y = X>β∗ + E , (1.18)

where E is a real-valued Gaussian of law N (0, σ2), independent from X, and β∗ ∈ Rp is
the true parameter vector. Then following Example 1.1, we have a GLM with:

θ = x>β ,

η(θ) = θ
σ2 ,

κ(θ) = θ2

2σ2 ,

ψ(u) = u ,

(1.19)

and the MLE derived in Problem (1.11) reads:

arg min
β∈Rp

n∑
i=1

κ(β>xi)− η(β>xi)yi = arg min
β∈Rp

1

σ2

n∑
i=1

1

2
(x>i β)2 − x>i βyi

= arg min
β∈Rp

n∑
i=1

(yi − x>i β)2

= arg min
β∈Rp

1

2

∥∥y −Xβ∥∥2
,

(1.20)

where we have introduced the design matrix X , (x>1 , . . . , x
>
n )> ∈ Rn×p, and the

observation vector y , (y1, . . . , yn) ∈ Rn. Dating back to Legendre and Gauss (Legendre
(1805); Gauss (1809), see also Plackett (1972) for a discussion on this discovery), least
squares are extremely popular, and optimal amongst linear unbiased estimators (they
have the lowest variance in this class2), but they also suffer from defects in certain
settings which we detail in the following.

1.1.2 Regularization and sparsity

Consider n realizations of the linear model Y = Xβ∗ + E, written in vector form as
above: y = Xβ∗ + ε (ε ∈ Rn with entries i.i.d. N (0, σ2), and σ known). Assuming that
p ≤ n and rankX = p, the OLS estimator is uniquely defined and reads:

β̂OLS = (X>X)−1X>y = β∗ + (X>X)−1X>ε . (1.21)

The expected (averaged) prediction error is:

E[ 1
n‖Xβ̂OLS −Xβ∗‖2] = E[ 1

n‖X(X>X)−1X>ε‖2]

= σ2 p

n
, (1.22)

which does not go to 0 when n→ +∞, unless p = o(n). This is problematic, as we may
want to consider cases where p and n go to infinity together and at the same speed.

Other issues arise for MLE, when the number of parameters p outgrows the number
of samples n: the solution of Problem (1.20) is not unique, meaning that multiple
models exist, all of them perfectly fitting the training data when rankX = n. In

2even when the noise is not Gaussian, provided the noise variance is constant across observations
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that case, which model must be chosen? In addition, perfectly fitting the data is not
necessarily a desirable property, as it may lead to poor generalization performance on
new data – recent analysis (Hastie et al., 2019) may qualify this interpretation. When
data is scarce, empirical risk minimization turns out to be insufficient, and we turn to
regularization: instead of looking for the model minimizing the sole datafitting criterion,
some constraint is added to the optimization problem, this constraint reflecting prior
belief about the desired model.

In the case of least squares, with R : Rp → R, this takes the form:

min
β∈Rp

1

2
‖y −Xβ‖2 s.t. R(β) ≤ 0 . (1.23)

A seminal choice for R is ‖·‖ − τ , with τ > 0. It is noteworthy that the three following
problems are equivalent:

min
β∈Rp

1

2
‖y −Xβ‖2 +

λ

2
‖β‖2 , (1.24)

min
β∈Rp
‖y −Xβ‖2 s.t. ‖β‖ ≤ τ , (1.25)

min
β∈Rp
‖β‖2 s.t. ‖y −Xβ‖ ≤ ε . (1.26)

Problems (1.24), (1.25) and (1.26) are respectively known as Tikhonov, Ivanov and
Morozov regularization (Tikhonov, 1943; Ivanov, 1976; Morozov, 1984), and also as
Ridge regression (Hoerl and Kennard, 1970). They are equivalent in the sense that
for each (positive) value of one parameter amongst λ, τ or ε, there exist values of
the remaining two such that the three problems share the same solution. Each of
these provides a different view on `2 regularization: formulation (1.26) looks for the
approximate solution to a linear system with the minimum `2 norm. Formulation (1.25)
looks for least squares solutions, with constrained `2 norm. Formulation (1.24) is the
most widely employed, but perhaps the less explicit one: while it is clear that in the
other formulations, norms can be squared or not in the objective functions, or squared
in the constraints provided τ or ε are squared, it is not easy to see that, up to another
choice of λ, Problem (1.24) retains the same solution if one of the squared norms is
replaced by a plain norm. In this sense, it is somehow misleading to talk about squared
`2 regularization: up to a change of value for λ, plain `2 regularization has the same
effect. It is only the geometry of the level lines of the regularizer which matter, and
those are not affected by squaring. The square in Tikhonov regularization is only used
for practical reasons, as it makes the regularizer smooth.

Tikhonov regularization limits the magnitude of the estimate. The type of regularization
considered in this work is different: for reasons detailed in Section 1.2, we want to favor
simple and interpretable solutions. Generally speaking, the idea that this kind of models
should be preferred can be dated back to Ockham’s Razor (Ockham, 1319), and in a
modern paradigm to Wrinch and Jeffreys’ simplicity principle:

“It is justifiable to prefer a simple law to a more complex one that fits our observations
slightly better.” (Wrinch and Jeffreys (1921))

In the context of GLMs, an application of this principle is to perform variable (or
feature) selection: search for models which do not include all the potential p variables,
but only a small subset of them. In mathematical terms, the estimator β̂ should be
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Figure 1.1 – Values of ‖·‖0 (black) and ‖·‖1 (grey) on B∞ in dimension 2. The `1 norm
is greater than any other convex minorant of ‖·‖0 on this set.

sparse: ‖β̂‖0 � p. Sparse solutions provide more interpretable models, since it is clear
that variables whose coefficients are 0 have no effect on the target variable.

The idea to favor sparse models has been applied in various fields: finance (portfolio
selection, Markowitz 1952), image processing (wavelet thresholding, Donoho and John-
stone 1994) or statistics (under the name best subset selection, see Miller (2002) for a
review). In geophysics, the work of Santosa and Symes (1986) stands out as the first
case of `1 penalized least-squares, central to this manuscript (earlier, Claerbout and
Muir (1973); Taylor et al. (1979) had used the `1 norm both as datafitting term and
regularizer).

However desirable sparse models may be, solving the underlying optimization problems
is non trivial. For example, instead of looking for the minimum `2 norm approximate
solution to a linear system as in Problem (1.26), one may seek the sparsest one by
solving:

min
β∈Rp
‖β‖0 s.t. ‖y −Xβ‖ ≤ ε . (1.27)

Unfortunately, Natarajan (1995) showed that this problem is NP-hard and hardly tract-
able when p is large, because the objective function ‖·‖0 is not convex. Approximate
solutions can nevertheless be computed. Forward and backward feature selection ap-
proaches exist (Efroymson, 1960), either starting from a null vector and iteratively
adding the feature improving the datafit the most, or starting with an OLS solution
and progressively removing the features less contributing to the model; bidirectional ap-
proaches can both add and remove features (Zhang, 2011). This is for example the spirit
of the Matching Pursuit (Mallat and Zhang, 1993) and Orthogonal Matching Pursuit
(Pati et al., 1993; Tropp, 2006) algorithms. Still, stepwise selection suffers from issues:
small changes in the data can result in large differences in models and the estimator is
not guaranteed to be sparse (Chen et al., 1998, Section 2.3.2).

Another massively followed route to sparsity has been the use of convex surrogates for
the `0 pseudo-norm, amongst which the `1 norm holds a place of choice. Indeed, as
Figure 1.1 illustrates in dimension 2, the `1 norm is the largest convex minorant of the
`0 pseudo-norm on the unit ball of the `∞ norm. The seminal sparse convex estimator,
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the Lasso (Tibshirani, 1996) (independently proposed by Chen and Donoho (1995) as
Basis Pursuit Denoising), solves, for τ ≥ 0:

arg min
β∈Rp

1

2
‖y −Xβ‖2 s.t. ‖β‖1 ≤ τ . (1.28)

A more employed equivalent form of Problem (1.28) is, for a regularization parameter
λ ≥ 0:

arg min
β∈Rp

1

2
‖y −Xβ‖2 + λ‖β‖1 . (1.29)

As for Tikhonov regularization, Problems (1.28) and (1.29) are equivalent3 in the sense
that for any value of λ, there exist a value of τ such that the two solutions coincide,
and vice versa. This (data dependent) mapping is again not explicit in general, and we
will therefore focus on the form (1.29), which is easier to solve in practice.

The respective impacts of `1 and (squared) `2 are well-illustrated on the so-called or-
thogonal design case, i.e., when X>X = Idp. In that case, the OLS solution is X>y,
the Lasso solution is ST(X>y, λ) , (sign(X>:j y) · (|X>:j y| − λ)+)j∈[p], and the Tikhonov
solution is 1

1+λX
>y. It is clear that Tikhonov regularization produces a downscaled

version of the OLS estimate, but does not set coefficients to 0, while the Lasso sets OLS
coefficients below λ in absolute value to 0, and shrinks others by λ.

The Lasso gave birth to numerous approaches, such as Elastic Net (Zou and Hastie,
2005), sparse logistic regression (Koh et al., 2007), group Lasso (Yuan and Lin, 2006),
sparse-group Lasso (Simon et al., 2013), graphical Lasso (Friedman et al., 2008), mul-
titask Lasso (Obozinski et al., 2010), square-root Lasso (Belloni et al., 2011) or nuclear
norm penalization for matrices (Fazel, 2002; Argyriou et al., 2006). These Lasso-type
problems all have a convex formulation, and can be solved via a multitude of well-studied
optimization algorithms: primal-dual (Chambolle and Pock, 2011), forward-backward
(Beck and Teboulle, 2010; Combettes and Pesquet, 2011), Alternating Direction Method
of Multipliers (Boyd et al., 2011), accelerated proximal gradient descent (Nesterov, 1983;
Beck and Teboulle, 2009), or proximal block coordinate descent (Wu and Lange, 2008;
Tseng and Yun, 2009).

The convex approach has two benefits: it leads to fast algorithms with global con-
vergence guarantees, and allows for an analysis of estimation consistency, prediction
performance (Bickel et al., 2009; Negahban et al., 2010) and model consistency (Zhao
and Yu, 2006). In Compressed Sensing, under some conditions, the `1 relaxation allows
to recover perfectly the `0 solution (Candès et al., 2006; Donoho, 2006).

On the other hand, a notorious drawback is that the resulting estimates are biased in
amplitude (Fan and Li, 2001), a bias which is easy to see on an orthogonal design.
Alternative substitutes to the `0 penalty were proposed, for instance Smoothly Clipped
Absolute Deviation (SCAD, Fan and Li 2001), Minimax Concave Penalty (MCP, Zhang
2010), `p pseudo-norms with 0 < p < 1 (Frank and Friedman 1993, Chartrand 2007 in
Compressed Sensing), log penalty (Candès et al., 2008) or CEL0 (Soubies et al., 2015).
This type of penalties are usually called folded concave penalties, because coordinate-
wise they are concave on R+ and symmetric w.r.t. origin. The interested reader may
refer to Huang et al. (2012) for a review of convex and non-convex approaches for feature
selection. An appealing property of SCAD and MCP is that, although not convex, their
proximal operator can be computed in closed-form. Solving other non-convex penalties

3note that equivalence does not hold for the `0 penalty (Nikolova, 2016)
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Figure 1.2 – Optimal value of the Lasso (left) and Concomitant Lasso (right) regular-
ization parameters λ determined by cross validation on prediction error (blue), for a
logarithmic grid of 100 values of λ between λmax and λmax/100, as a function of the
noise level on simulated values of y. As indicated by theory, the Lasso’s optimal λ grows
linearly with the noise level, while it remains constant for the Concomitant Lasso.

(log, square root) can be done by iterative reweighted `1 approaches (Zou, 2006; Candès
et al., 2008; Gasso et al., 2009; Ochs et al., 2015), hence it remains of high interest,
even in the non-convex setting, to have fast solvers for `1-type regularized problems.
Finally, although they perform well theoretically and in practice, the non-convexity of
these approaches often makes it difficult or impossible to find the exact solution in
practice: algorithms are sensitive to initialization, multiple local minima exist, and a
global convergence criterion is lacking.

In addition to interpretability, sparsity comes with statistical benefits. In the OLS
example, let us assume that β∗ is sparse, that its support S∗ of size s is known, and
that a sparse model is obtained by setting entries of β̂OLS outside S∗ to 0. Then,
Equation (1.22) can be greatly improved:

E[ 1
n‖X:S∗ β̂

OLS
S∗ −X:S∗β

∗
S∗‖2] = σ2 s

n
, (1.30)

which goes to 0 if s = o(n), without constraint on p. Of course, in practice S∗
is not known, but Lounici (2009) showed that under sufficient conditions and for
λ = Aσ

√
(log p)/n with A > 2

√
2, the Lasso estimator satisfies:

E[ 1
n‖Xβ̂ −Xβ∗‖2] = σ2 s

n
log s , (1.31)

i.e., that it only suffers a factor log s from the non-knowledge of S, which is a very
appealing statistical guarantee.

Yet this approach requires σ to be known and the noise to be homoscedastic, a situation
seldom happening in practice. Since this bound is valid for λ = Aσ

√
(log p)/n, it also

suggests that the optimal λ depends linearly on the unknown noise level. This is visible
on Figure 1.2, where for a fixed design X (10 000 first columns of the climate dataset),
we simulate y = Xβ∗ + σε for various σ, and for each σ we compute the optimal λ
by cross-validation. The dependency indeed appears to be linear in practice. It is
worth mentioning that Meinshausen and Bühlmann (2006) showed that prediction and
variable selection conflict for the Lasso: the statistically optimal λ for prediction gives
inconsistent variable selection results (see also Leng et al. (2006) in the orthogonal
design).

The Concomitant Lasso, the square-root or the Scaled Lasso estimators (Owen, 2007;
Belloni et al., 2011; Sun and Zhang, 2012) achieve the same bound as Equation (1.31),
with a regularization parameter independent of σ: in this thesis, we aim at generalizing
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this approach to correlated Gaussian noise in the multitask framework.

The statistical and practical benefits of sparsity have led to it being used in many applic-
ations: audio processing (Zibulevsky and Pearlmutter, 2001), astrophysics, sparse cod-
ing (Olshausen and Field, 1997), medical imaging through compressed sensing (Donoho,
2006; Candès et al., 2006), genomics (Bleakley and Vert, 2011), time series analysis
(Nardi and Rinaldo, 2011), etc.

We now introduce optimization tools involved in the study of Lasso-type problems.

1.1.3 Convex optimization tools

Throughout this manuscript, we will make extensive use of a convenient class of func-
tions, based on the framework of Bauschke and Combettes (2011).

Definition 1.4 (Proper, lower semicontinuous convex functions). We denote by Γ0(Rd)
the set of functions f : Rd →

]
−∞,+∞

]
which are:

• proper: dom f , {x ∈ Rd : f(x) < +∞} 6= ∅ ,

• lower semicontinuous: ∀x ∈ Rd, limy→x f(y) ≥ f(x) ,

• convex: ∀x, y ∈ Rd,∀α ∈ [0, 1], f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) .

Since non proper functions are of limited interest, in the sequel functions are assumed
to be proper even if not explicitly stated.

Strong convexity and smoothness are two function properties, used to derive convergence
guarantees and rates for algorithms minimizing functions:

Definition 1.5 (Strong convexity and smoothness). Let f be a differentiable function4

from Rd to
]
−∞,+∞

]
. For µ,M > 0, we say that f is µ-strongly convex if:

∀x, y ∈ Rd, f(x) ≥ f(y) +∇f(y)>(x− y) +
µ

2
‖x− y‖2 , (1.32)

and that f is M -smooth if:

∀x, y ∈ Rd, f(x) ≤ f(y) +∇f(y)>(x− y) +
M

2
‖x− y‖2 . (1.33)

If f is both µ-strongly convex and M -smooth, we have µ ≤M and the condition number
M
µ ≥ 1 is a useful quantity, appearing in the convergence rate of many algorithms.

Convex indicators, infimal convolution, Fenchel-Legendre transform and proximal op-
erators are the workhorses of continuous convex optimization.

Definition 1.6 (Indicator function). Let C be a subset of Rd. The indicator function
of C is:

ιC : Rd →
]
−∞,+∞

]
x 7→

0 , if x ∈ C ,

+∞ , otherwise .
(1.34)

4a more general definition exists for strong convexity, not requiring differentiability
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Table 1.1 – Useful Fenchel transforms

Function Fenchel transform

h∗ h, ∀h ∈ Γ0(Rd) (1.37)

g�h g∗ + h∗ (1.38)

ah ah∗
(
·
a

)
, ∀a > 0 (1.39)

‖·‖p ιBp∗ , where
1
p + 1

p∗ = 1 (1.40)

(h+ δ) h∗ − δ, ∀δ ∈ R (1.41)
1
2 ‖·‖

2 1
2 ‖·‖

2 (1.42)

We have that ιC ∈ Γ0(Rd) if and only if C is non empty, closed and convex (Bauschke
and Combettes, 2011, Examples 1.25 and 8.3).

Definition 1.7 (Infimal convolution). Let f and g be two functions from Rd to
]
−∞,+∞

]
.

The infimal convolution of f and g is:

f � g : Rd → [−∞,+∞]

x 7→ inf
u∈Rd

f(x− u) + g(u) . (1.35)

Definition 1.8 (Fenchel-Legendre transform). Let f : Rd → [−∞,+∞]. Its Fenchel-
Legendre transform or conjugate, f∗ is defined as:

f∗ : Rd →
]
−∞,+∞

]
u 7→ sup

x∈Rd
u>x− f(x) . (1.36)

Note that f needs not be convex, but f∗ always is. Frequently used Fenchel-Legendre
transforms are reminded in Table 1.1 (see Bauschke and Combettes 2011, Propositions
13.16, 13.20 and 13.21 and Example 13.24 (iv) for proofs).

Proposition 1.9 (Smoothness and strong convexity linked by Fenchel transform, Hiri-
art-Urruty and Lemaréchal 1993, Thm 4.2.1). Let f ∈ Γ0(Rd). Then, for γ > 0, f is
γ-smooth if and only if f∗ is 1/γ-strongly convex.

Proposition 1.9 provides a way to transform a function into a smooth one, that we will
use in Chapter 4. Given a non-smooth function f ∈ Γ0(Rd), we can add a strongly
convex function ω to f∗, thus making it strongly convex, then take the Fenchel trans-
form again to obtain a smooth function. Formally, the smooth approximation of f is
(f∗+ω)∗, which is also equal to f �ω∗ by Equation (1.38). As illustrated on Figure 1.3,
this technique is a possible construction for the famous Huber function, a smooth ap-
proximation to the absolute value function.

Definition 1.10 (Proximal operator). Let f ∈ Γ0(Rd). The proximal operator of f ,
introduced in the seminal work of Moreau (1965), is:

proxf : Rd → Rd

x 7→ arg min
y∈Rd

1

2
‖x− y‖2 + f(y) . (1.43)
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Figure 1.3 – Various ways to smooth the absolute value function f , by adding a strongly
convex term to f∗ = ι[−1,1]. Taking the Fenchel transform of the strongly convex
functions gρ : u 7→ f∗(u) + ρu2/2 and hρ : u 7→ f∗(u) + ρ(u2/2 − 1/2) yields smooth
approximations of f . As ρ increases, the approximations get smoother, but further away
from f .

The two following proximal operators are extensively used in our work.

Proposition 1.11 (Proximal operators of `1 and Euclidean norm, Bach et al. 2012,
Section 3.3, p. 45). Let x ∈ Rd, A ∈ Rd×d′ and τ > 0. The proximal operators of τ‖·‖1
and τ‖·‖ are respectively the soft-thresholding and block soft-thresholding operators:

proxτ‖·‖1(x) = ST(x, τ) ,
(

sign(xj)(|xj | − τ)+

)
j∈[d]

, (1.44)

proxτ‖·‖(A) = BST(x, τ) , (1− τ/‖A‖)+ ·A . (1.45)

Definition 1.12 (Subdifferential). Let f : Rd →
]
−∞,+∞

]
. The subdifferential of f

at x ∈ dom(f) is:

∂f(x) , {u ∈ Rd : ∀y ∈ Rd, f(y) ≥ f(x) + u>(y − x)} , (1.46)

i.e., the set of slopes of all affine minorants of f which are exact at x.

Elements of the subdifferential are called subgradients, and for a convex function f ,
its subdifferential is non empty at every point of the relative interior of dom f . In
some sense, subgradients are a generalization of gradients: for a convex differentiable
function, the subdifferential at x ∈ dom f has only one element: ∇f(x). Subdifferenti-
ability allows to generalize first order optimality conditions to non differentiable convex
functions.

Proposition 1.13 (Fermat’s rule). Let f be a proper convex function. Then, for all
x̂ ∈ Rd:

x̂ ∈ arg min
x∈Rd

f(x)⇔ 0d ∈ ∂f(x̂) . (1.47)

The notion of strong duality is extensively used in both Part I and Part II.

Proposition 1.14 (Fenchel duality, Rockafellar 1997, Thm. 31.3). Let f ∈ Γ0(Rn) and
g ∈ Γ0(Rp). Let X ∈ Rn×p and λ > 0. The following problems are called respectively
primal and dual problems:

β̂ ∈ arg min
β∈Rp

f(Xβ) + λg(β)︸ ︷︷ ︸
P(β)

, (1.48)
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θ̂ ∈ arg max
θ∈Rn

−f∗(−λθ)− λg∗(X>θ)︸ ︷︷ ︸
D(θ)

. (1.49)

Given β ∈ Rp and θ ∈ Rn, the duality gap is P(β)−D(θ) ≥ 0.

Strong duality, i.e., P(β̂) = D(θ̂) holds if and only if:

−λθ̂ ∈ ∂f(Xβ̂) , (1.50)

X>θ̂ ∈ ∂g(β̂) , (1.51)

or equivalently:

−Xβ̂ ∈ ∂f∗(−λθ̂) , (1.52)

β̂ ∈ ∂g∗(X>θ̂) . (1.53)

These conditions are called Kuhn-Tucker conditions. It is worth mentioning that a
sufficient condition for strong duality to hold is that the relative interiors of the domains
of f and g intersect, which happens for example if neither f nor g take the value +∞.

Definition 1.15 (Block indexing). Let β ∈ Rp, B ∈ Rp×q and X ∈ Rn×p. Let I denote
a partition of [p] and let I ∈ I.
The vector βI ∈ R|I| is obtained by keeping only entries of β whose indices are in I. In
the multitask setting, BI: ∈ R|I|×q (resp. X:I ∈ Rn×|I|) is the matrix obtained by keeping
only rows of B (resp. columns of X) whose indices are in I.

For a L-smooth function f ∈ Γ0(Rd), ∇If ∈ R|I| is the gradient of f when only coordin-
ates in I vary, and LI is the Lipschitz constant of this gradient (which exists because f
is itself L-smooth).

Proposition 1.16 (Proximal operator of separable function, Parikh et al. 2013, Sec.
2.1). Let I be a partition of [d] and g ∈ Γ0(Rd) be a function admitting a block decom-
posable structure: g(x) =

∑
I∈I gI(xI). Then, proxg(x) is equal to the vector obtained

by concatenation of the vectors proxgI (xI) ∈ R|I|, for I ∈ I.

Definition 1.17 (“Smooth + proximable” composite problem). Let f ∈ Γ0(Rd) be
L-smooth, and g ∈ Γ0(Rd) be such that proxg can be computed exactly. We call the
optimization problem:

min f(x) + g(x) , (1.54)

a “smooth + proximable” composite problem.

In general, non-smooth convex optimization is harder than smooth convex optimization,
in the sense that the worst case convergence rate for first order (subgradient) methods
is O(k−1/2) (Goffin, 1977), in opposition to O(k−1) and O(k−2) for (eventually accel-
erated) first order methods in the smooth case (Nesterov, 1983). But for problems
presenting a smooth + proximable structure, which are legion in Machine Learning,
one needs not worry: they can be solved with proximal gradient methods, with same
optimal rates as gradient methods – up to linear when f is strongly convex (Beck and
Teboulle, 2009). In this thesis, we will have a particular interest in solving instances
of Problem (1.54), using two algorithms: proximal gradient descent and proximal block
coordinate descent (Combettes and Pesquet, 2011). We recall them in Algorithms 1.1
and 1.2. Although both algorithms have worst case convergence rates of O(1/k), Fig-
ure 1.4 illustrates that practical results can be very different. Amongst the reasons
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Figure 1.4 – Convergence speed of proximal gradient descent and proximal coordinate
descent on a Lasso problem (subsampled climate dataset (n = 857, p = 10 000), λ =
λmax/20, resulting in ‖β̂‖0 = 220). Although both algorithm have the same convergence
rates, proximal coordinate descent outperforms gradient descent by several order of
magnitude.

Algorithm 1.1 Proximal gradient descent for Problem (1.54)
input : L, T
init : β(0)

1 for t = 1, . . . , T do
2 β(t) = prox λ

L
g

(
β(t−1) − 1

L∇f(β(t−1))
)

3 return β(T )

Algorithm 1.2 Cyclic proximal block coordinate descent for Prob-
lem (1.54)
input : {LI}I∈I , T
init : β(0)

1 for t = 1, . . . , T do
2 β(t) = β(t−1)

3 for I ∈ I do
4 β

(t)
I = prox λ

LI
gI

(
β

(t)
I − 1

LI
∇If(β(t))

)
5 return β(T )

explaining this disparity, the algorithms may take different times to identify the sup-
port (and they enjoy a linear convergence rate after support identification), or different
constant values in the O. This motivates our preference for coordinate descent in the
whole manuscript.

Equipped with this mathematical background, we now move to our application focus:
the bio-magnetic inverse problem.

1.2 The bio-magnetic inverse problem

1.2.1 Basis of M/EEG

Brain imaging modalities can be divided into two categories: indirect and direct ap-
proaches. Indirect approaches, such as near infrared spectroscopy or positron emis-
sion tomography, detect brain activity by measuring a correlated physical quantity,
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Figure 1.5 – Schematic view of a pyramidal neuron by the author. The name pyramidal
comes from the shape of the soma.

e.g., metabolic activity. The best-known indirect brain imaging modality is func-
tional magnetic resonance imaging (fMRI), which measures the hemodynamic response,
i.e., the delivery of blood to active neuronal tissues. The main feature of fMRI analysis
is its excellent spatial resolution, ranging from 4mm to 0.5mm for the most recent
MRI scanners (Duyn, 2012; Huber et al., 2017). However, because the hemodynamic
response is slow and lagging in time, the time resolution of fMRI is only around 1 s,
making it impractical for the study of dynamic brain processes.

On the contrary, electroencephalography (EEG), magnetoencephalography (MEG), in-
tracranial electroencephalography (iEEG, also known as electrocortigraphy) and ste-
reotaxic electroencephalography (sEEG) are direct approaches, which record electrical
potentials or magnetic fields generated by the activity of the brain. Because they dir-
ectly measure the quantity of interest, their temporal resolution is excellent: around
1ms. For this reason, they are widely used to localize foci of epilepsy, or to map brain
areas to be excluded from surgical removal, e.g., associated to speech or movement.
Very accurate techniques, iEEG and sEEG are also highly invasive: iEEG requires
craniotomy in order to insert a grid of electrodes inside the brain, and small openings
must be drilled in the skull to insert sEEG electrodes in the brain. In this manuscript,
we focus on magneto- and electroencephalography, which in contrast stand out by their
low invasiveness.

What do M/EEG measure? A neuron consists of a cell (the soma), and dendrites; neur-
ons can be connected to other neurons via axons. As visible on Figure 1.5, a pyramidal
neuron possesses an apical dendrite. Each neuron maintains a varying electrical poten-
tial at its soma’s membrane, due to ionic concentration differences within the cell. This
potential can trigger an action potential, traveling in the axon to connected neighbors,
with excitatory or inhibitory effect on the receiving cell.

When a neuron receives such a pulse, Excitatory Post-Synaptic Potentials (EPSPs) are
generated at its apical dendritic tree (Gloor, 1985). The resulting potential difference
between the apical dendritic tree on one side, and the membrane of the soma and basal
dendrites on the other causes primary electrical currents to travel intracellularly in
the dendrite, from the former to the latter. As a consequence, secondary (or volume)
currents travel extracellularly in the head tissue, closing the current loop. These currents
can be modeled by a current dipole, oriented along the dendrite. The typical moment
of such a dipole is very small: 20 fA.m, and neural activity is only made measurable
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Figure 1.6 – Left: sagittal MRI view of the brain. Right: pyramidal cells as drawn by
Ramon y Cajal (1899), with dipoles modeling currents from apical dendrites to somas
(orange). The parallel alignment of the dipoles results in constructive interference,
modeled as an Equivalent Current Dipole of larger moment (red).

because of two phenomena. First, as shown on Figure 1.6, the columnar functional
organization of the cortex causes large groups of pyramidal neurons to have parallel
alignment of apical dendrites, and thus EPSPs associated currents traveling in the same
direction. Second, the long duration of the post-synaptic potentials makes them likely to
overlap over a synchronized group of neurons. The axonal action potentials, on the other
hand, are not detected by M/EEG: the current flows are in opposite directions and are
too brief to interfere constructively (Nunez and Srinivasan, 2006). The spatio-temporal
superposition allow primary and secondary currents to interact constructively, adding
up to 50 nA.m, a threshold high enough to be measured extracranially by M/EEG
(Murakami and Okada (2015) estimate that the critical population comprises at least
10 000 neurons, corresponding to a cortical patch of 25mm2). The currents in such a
neuron population can be modeled at the macroscopic scale by an Equivalent Current
Dipole (ECD), which is the sum of all the current dipoles in the patch of synchronized
neurons.

EEG measures the difference of potentials between electrodes and a reference: around
60 electrodes are used, positioned at standard locations on the scalp to allow for repro-
ducibility of recordings.

The acquired potentials are of the order of 10µV. MEG is a somehow more refined
technique than EEG: the measured magnetic fields are of the order of 10 fT, seven or
eight orders of magnitude smaller than the Earth’s magnetic field. Recording such small
values is only made possible by the use of magnetic shielding and superconductivity-
exploiting magnetometers (superconductivity quantum interference device, SQUIDs).
Along with magnetometers, gradiometers measuring the spatial gradient of the magnetic
field are used to reduce the sensibility to interferences. There usually are around 200
magnetometers and 100 gradiometers, isolated in a liquid helium cooled vacuum flask,
which makes MEG sensors further away from the neural sources than EEG sensors.
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Figure 1.7 – Patient undergoing a cognitive experiment in a MEG scanner. Courtesy of
National Institute of Mental Health.

These technical differences are reflected in historical landmarks: while the first EEG
was recorded in 1924 by Hans Berger, the first MEG recording was performed by David
Cohen in 1968 (Cohen, 1968) and it is only in the nineties that the first full head
MEG devices were used for the first time. To this day, MEG is still more expensive
to operate than EEG, because of magnetic shielding and the liquid helium needed for
superconductivity in the sensors. The two techniques are complementary: EEG is
sensitive to radial and tangential dipoles, whereas MEG is insensitive to radial sources,
but has a higher signal-to-noise ratio, and can use more sensors. Instead of using only
MEG or EEG, pooling electrodes, magnetometers and gradiometers allows to locate
more accurately the origin of brain activity, for example in the case of epilepsy (Aydin
et al., 2015).

In our experimental setup, the patient undergoes repetitions of the same simple stim-
ulation (sensory, cognitive or motor) for a short period of time. Neuronal activity can
then be divided in two categories: spontaneous and event-related activity. Event-related
activity is triggered by the stimuli, and is either evoked if the response is phase-locked
with respect to the stimuli, or induced otherwise. Despite the sophisticated sensors and
shielding, M/EEG suffers from a poor signal-to-noise ratio (SNR); among corrupting
factors are eye movements, heartbeats and other muscle activity, movement, sensor drift
and ambient electromagnetic noise (Gross et al., 2013). Various signal preprocessing
techniques are used to increase the SNR (Parkonnen, 2010; Gross et al., 2013): spec-
tral filtering, signal decomposition via Independent Component Analysis (Makeig et al.,
1996; Ablin et al., 2018) or Signal Space Separation. Another mandatory step to in-
crease the SNR is to average several repetitions (called trials) of the experiment with
the same patient. As shown in Figure 1.8, as more and more trials are averaged, the
signal becomes smoother and the brain response to the stimuli at t = 0.1 s, appears once
the SNR is high enough. The averaging procedure preserves phase locked responses, but
removes induced response, hence the need for more refined solvers taking into account
all the trials and not only their average.
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Figure 1.8 – Amplitude of 59 EEG signals, averaged across 5 (top), 10 (middle), and 50
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Figure 1.9 – Covariance of the three types of sensors (left: magnetometers, middle:
gradiometers, right: electrodes). The covariance matrices are clearly not scalar: EEG
covariance has a band diagonal structure, and magnetometers covariance has a block
structure.

Apart from averaging data, another critical preprocessing step is spatial noise whitening
(Engemann et al., 2015). For the raw measurements, the noise is far from being white,
for example because there exist brain noise correlation between neighboring sensors,
as shown in Figure 1.9. To decorrelate the noise, a spatial whitening step is applied
during the preprocessing, based on an estimate of the noise covariance matrix. This
covariance can be estimated in multiple ways: empty room measurements if only MEG
is used or empirically using pre-stimulus data, considered as raw noise. When analysis
is performed over both EEG and MEG, spatial whitening also allows to harmonize
the different units (µV, fT and fT.m-1). Empirical estimation being imperfect, various
regularization techniques such as shrinkage (Ledoit and Wolf, 2004) have been proposed.
In their extensive review, Engemann and Gramfort (2015b) showed that there is no
single best approach, and devised an automatic way to select the best method on a
case-by-case basis.

The non-invasiveness of M/EEG comes at a price: the electrical activity is not measured
directly at its location in the brain, but outside the scalp, and is thus transformed
by the head tissues. Determining the causal factors (brain activity) from a set of
observations they produced (the electromagnetic measurements outside the head) is an
inverse problem, which can be solved in many ways.



1.2. THE BIO-MAGNETIC INVERSE PROBLEM 35

1.2.2 Solving the inverse problem

Historically, three kind of methods have emerged: parametric, scanning and imaging
ones. They share the same goal: to determine which areas of the brain are involved in
a cognitive task, and how these areas interact together.

Parametric methods Dipole fitting (Scherg and von Cramon, 1985) models the brain
activity by a fixed small number of ECD, whose varying locations and amplitudes are
estimated via gradient descent or simulated annealing (Uutela et al., 1998). Sequential
dipole fitting estimates the dipoles parameters one by one; for more than one dipole
the optimization process – non-linear least squares – is generally non-convex and thus
sensitive to initialization. It may also be difficult to correctly estimate the number of
dipoles a priori (possible approaches are based on ICA, PCA or SVD as in Kobayashi
et al. (2002); Koles and Soong (1998); Huang et al. (1998)), and sequential approaches
may fail in the presence of correlated or overlapped source activity.

Scanning methods Beamforming techniques (Van Veen et al., 1997) and signal clas-
sification ones (MUSIC, RAP-MUSIC, Mosher et al. 1999; Mosher and Leahy 1999) use
a predefined grid of potential locations. They apply spatial filters to evaluate the con-
tribution of each source. As dipole fitting techniques, beamforming fails when sources
are correlated (Robinson and Vrba, 1999) and requires a covariance to be estimated
from short signals. MUSIC and its derivative are greedy approaches and as such suffer
from a high sensitivity to the data.

Imaging methods In distributed source imaging, dipoles are fitted simultaneously
at a set of locations defined a priori. First, they require to solve the bio-electromagnetic
forward problem: determining the sensor measurements given a distribution of internal
currents. By Maxwell equations, the measurements are a linear function of the dipoles
activities. In an ideal noiseless setting, if we postulate a discrete grid of ECD locations
in the brain (the source model), then the noiseless measurements Y ∗ ∈ Rn×q and the
true parameter matrix B∗ ∈ Rp×q are linked by:

Y ∗ = XB∗ . (1.55)

Each row of Y ∗ is the activity of a sensor – a times series of length q – while B∗ contains
p time signals, each one corresponding to the activity of one neural source. Given the
source model and a realistic geometrical model of the patient’s head and conductivities
of the tissues involved (the head model), solving the forward problem (computing X) is
achieved with a numerical solver based on finite element or boundary element methods.

Given muscle activity, spontaneous brain and sensor noise, a realistic model is the
multitask regression one:

Y = Y ∗ + E = XB∗ + E . (1.56)

The typical orders of magnitude for Model (1.56) are n ≈ 100 sensors, q ≈ 100 time
instants, p ≈ 10 000 neural sources. This makes the problem ill-posed in the sense
of Hadamard: it cannot be solved directly without more assumptions. For example,
Ordinary Least Squares yield an infinity of solutions; it is still possible to use the one
with minimal Frobenius norm, (X>X)†X>Y , but it is highly sensitive to noise. Using
Tikhonov regularization leads to a unique and more stable solution, the Minimum Norm
Estimate (Hämäläinen and Ilmoniemi, 1994), which is very fast to compute. Alas, it
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Figure 1.10 – Sparsity patterns obtained by MCE/Lasso (left) and
`2,1/MxNE/Multitask Lasso (right). MCE does not yield a consistent set of act-
ive sources over time.

produces dense neural estimates, with activity smeared over all sources, making it unfit
to identify clearly localized brain activity. Other notable dense methods are dSPM
(Dale et al., 2000) and sLORETA (Pascual-Marqui et al., 2002). All of these are linear:
in various ways, each computes a kernel K ∈ Rp×q, and the estimate is KY .

On the contrary, sparse methods are usually non linear. Sparse Bayesian Learning is a
notable sparse approach (Wipf et al., 2008; Haufe et al., 2008), with algorithms such
as γ-MAP (Wipf and Nagarajan, 2009) and full MAP (Lucka et al., 2012). They rely
heavily on covariance estimation and are therefore not really “parameter free” as one
could think.

Straightforwardly applying the Lasso to the multitask framework (i.e., penalizing the
sum of the absolute values of the coefficients of B) yields a sparse estimate, known in
neuroscience as Selective Minimum Norm or Minimum Current Estimate (Matsuura
and Okabe, 1995; Uutela et al., 1999). It is easy to show that this approach amounts
to solving q Lasso problems independently; as visible on Figure 1.10, the support of the
estimate varies from one time instant to the next, which is not plausible. To produce a
consistent set of active sources over time, it has been proposed to use group penalties
(Ou et al., 2009) imposing joint sparsity over time, yielding the Mixed Norm Estimate
(MxNE) (Gramfort et al., 2012):

B̂ ∈ arg min
B∈Rp×q

1

2
‖Y −XB‖2 + λ‖B‖2,1 , (1.57)

a problem known in the optimization community as Multitask Lasso (Obozinski et al.,
2010), also an instance of group Lasso (Yuan and Lin, 2006). More refined formulations
based on MxNE have been proposed, for example using non-convex penalties (ir-MxNE,
Strohmeier et al. 2016) or sparse group Lasso formulation in the time frequency domain
to produce non stationary activations (TF-MxNE, Gramfort et al. 2013); we refer the
reader to Strohmeier (2016) for a very clear presentation of the topic. In this family of
estimators, MxNE remains the building block of stable spatio-temporal source recon-
struction. The setting of Problem (1.57) assumes a fixed orientation: the orientation
of each dipole is fixed across time (with a direction usually chosen normal to the cor-
tical mantle). The only quantity to estimate for a dipole is then its magnitude. We
may also consider free orientation, where the dipoles are allowed to rotate in time: at
each time instant, a dipole is represented by its coordinates in a basis of 3 orthogonal
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Figure 1.11 – Real (top) and simulated (bottom) magnetometers topographic maps.
We simulate the activity of two dipoles in the left and right auditory cortex; the real
topographic maps exhibits dipolar patterns similar to the simulated one, justifying the
dipolar assumption.

vectors. In this setting, X ∈ Rn×3p, and B ∈ R3p×q. Using a mixed `2,1 penalty would
bias the estimates towards the axes of the orthogonal basis used, which is arbitrary. A
formulation leading to an orientation-unbiased solution is:

B̂ ∈ arg min
B∈R3p×q

1

2
‖Y −XB‖2 + λ

p∑
g=1

‖BGg :‖ , (1.58)

where Gg = {3g, 3g + 1, 3g + 2}, and thus BGg : ∈ R3×q contains the 3gth, 3g + 1th and
3g+2th lines of B. This penalty encourages BGg : to be zero, but is isotropic as a change
of orthonormal basis does not affect ‖BGg :‖.

1.3 Contributions

The organization of this manuscript is as follows. Each chapter can be read inde-
pendently, and thus features a small introduction which can be redundant with this
introductory chapter: the reader may feel free to skip them.

Part I is devoted to the design of faster solvers for `1-type regularized ERM:

I In Chapter 2, we design an efficient solver for the seminal Lasso estimator. We
first describe the two main techniques used to speed-up proximal gradient and co-
ordinate descent solvers for sparse GLMs: screening rules and working set policies.
Both ignore non-significant variables from the optimization problem, making it
smaller, hence faster to solve. In a backward fashion, screening rules prune the
set of features, progressively reducing the number of variables. On the contrary,
working sets are forward techniques which solve a sequence of growing subprob-
lems, including more and more variables. We show that screening rules can be
used aggressively to design working set policies, and introduce aggressive screen-
ing, a working set policy based on the state-of-the-art Gap Safe screening rules.
Screening and working sets both rely on duality. We exhibit the Vector AutoRe-
gressive (VAR) behavior of the Lasso dual iterates, when the primal problem is
solved with proximal coordinate descent or proximal gradient descent. We exploit
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this structure to construct a dual point with extrapolation, which improves the
efficiency of Gap Safe screening rules and working sets. The combination of ag-
gressive screening and dual extrapolation is coined Celer (Constraint Elimination
for the Lasso with Extrapolated Residuals).

I In Chapter 3, we generalize the approach of the previous chapter to other datafit-
ting terms and penalties, making it applicable to sparse logistic regression or Mul-
titask Lasso. We adapt the previously introduced dual extrapolation procedure
to asymptotic Vector AutoRegressive sequences of dual iterates. We extensively
benchmark our approach against state-of-the-art solvers, and highlight the im-
provements that dual extrapolation brings to Gap Safe screening and working
sets. For non quadratic datafitting terms, taking into account the second order
information is known to provide a great speedup: we show how to adapt dual
extrapolation to the popular prox-Newton solver. We contribute to the repro-
ducibility of our findings by presenting a detailed explanation of the algorithms
used. We release Celer as a high-level open source Python package, with a detailed
documentation and examples to reproduce the benchmarks presented.

In Part II, we focus on Concomitant noise structure estimation for the bio-magnetic
inverse problem.

I In Chapter 4, we introduce new concomitant estimators for the bio-magnetic in-
verse problem. Along with the optimal regression parameters, concomitant estim-
ators estimate noise variables. The proposed estimators, the Smoothed General-
ized Concomitant Lasso (SGCL) and Concomitant Lasso with Repetitions (CLaR)
jointly compute the square-root of the noise covariance matrix. They are designed
to handle non-white Gaussian noise, with correlation and varying noise levels in
the model. The main estimator, CLaR, takes advantage of the multiple repetitions
which compose a M/EEG experiment to build a better estimate of the noise covari-
ance. The connections between CLaR’s optimization problem and the smoothing
of Schatten norms is highlighted: we show how our formulation amounts to solv-
ing the previously introduced Multivariate square root Lasso. This result paves
the way for an easier use of non-smooth Schatten norms as datafitting terms.

I In Chapter 5, we detail several alternative estimators for multitask regression
problems with non-white Gaussian noise. We benchmark the proposed approaches
against Concomitant and non Concomitant multi-task estimators. The source re-
covery performance is evaluated on real M/EEG measurements. The benchmarks
are made available in a public, open source implementation.

1.4 Publications

The works presented in this document resulted in the following peer-reviewed publica-
tions and preprints (star indicates equal contribution):

• M. Massias, A. Gramfort, and J. Salmon. From safe screening rules to working
sets for faster lasso-type solvers. In NIPS-OPT workshop, 2017
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• M. Massias, O. Fercoq, A. Gramfort, and J. Salmon. Generalized concomitant
multi-task Lasso for sparse multimodal regression. In AISTATS, pages 998–1007,
2018a

• M. Massias, A. Gramfort, and J. Salmon. Celer: a fast solver for the Lasso with
dual extrapolation. In ICML, pages 3321–3330, 2018b

• Q. Bertrand*, M. Massias*, A. Gramfort, and J. Salmon. Handling correlated
and repeated measurements with the smoothed Multivariate square-root Lasso.
In NeurIPS, 2019

• M.Massias, S. Vaiter, A. Gramfort, and J. Salmon. Dual extrapolation for sparse
Generalized Linear Models. arXiv preprint arXiv:1907.05830, 2019

Other articles were published during this PhD, which are not included in the manuscript:

• P. Ablin, T. Moreau, M. Massias, and A. Gramfort. Learning stepsizes for
unfolded sparse coding. In NeurIPS, 2019
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In this chapter, we address the need for faster Lasso solvers to handle high dimensional
modern datasets. To accelerate solvers, state-of-the-art approaches consist in reducing
the size of the optimization problem. In a regression context, this is achieved either by
discarding irrelevant features (screening techniques) or by prioritizing features likely to
be included in the support of the solution (working set techniques). The performances
of both of these approaches critically depends on the construction of a dual point, as
close as possible to optimum. To construct a dual point tighter than the one classically
used, we use an extrapolation procedure, which exploits the Vector AutoRegressive
structure of the sequence of residuals. We also use Gap Safe rules in an aggressive
fashion, to design a working set policy. The resulting method is coined Celer: Constraint
Elimination for the Lasso with Extrapolated Residuals. Thanks to our new dual point
construction, we show significant computational speedups on multiple real-world Lasso
problems.
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CHAPTER 2. FASTER SOLVERS FOR THE LASSO: SCREENING,

WORKING SETS AND DUAL EXTRAPOLATION

This chapter covers the following publications:

• M. Massias, A. Gramfort, and J. Salmon. From safe screening rules to working
sets for faster lasso-type solvers. In NIPS-OPT workshop, 2017

• M. Massias, A. Gramfort, and J. Salmon. Celer: a fast solver for the Lasso with
dual extrapolation. In ICML, pages 3321–3330, 2018b

2.1 Introduction

Following the seminal work on the Lasso (Tibshirani, 1996) and Basis Pursuit (Chen
and Donoho, 1995), convex sparsity-inducing regularizations have had a major impact
on machine learning (see Bach et al. (2012) for a review of practical applications). Now
thoroughly analyzed in terms of statistical efficiency (Bickel et al., 2009), the Lasso
yields a sparse solution, hence both a more interpretable model and reduced time for
prediction. In machine learning applications, the default algorithm to solve the Lasso
is (proximal) coordinate descent (Fu, 1998; Tseng, 2001; Friedman et al., 2010).

Since by design only a fraction of features are included in the optimal solution (what
we refer to as the solution’s support), state-of-the-art solver speed-ups rely on limiting
the size of the problems to consider. To do so, various approaches can be distinguished:
screening techniques (Wang et al., 2013; Ogawa et al., 2013; Fercoq et al., 2015), follow-
ing the seminal work of El Ghaoui et al. (2012), strong rules (Tibshirani et al., 2012),
or correlation screening (Xiang and Ramadge, 2012). Similar techniques have also been
considered to discard samples in stochastic gradient descent or Support Vector Machines
applications (Vainsencher et al., 2015; Shibagaki et al., 2016; Hong et al., 2019). When
a screening rule guarantees that all discarded features cannot be in the solution, it is
called safe. The current state-of-the-art safe screening rules are the so-called Gap Safe
rules (Ndiaye et al., 2017b), relying on duality gap evaluation and the knowledge of a
suitable dual point.

Alternatively, working sets (WS) techniques (Fan et al., 2008; Boisbunon et al., 2014;
Johnson and Guestrin, 2015) select a subset of important features according to a partic-
ular criterion, and approximately solve the subproblem restricted to these features. A
new subset is then defined, and the procedure is repeated. While screening techniques
start from full problems and prune the feature set, working set techniques rather start
with small problems and include more and more features if needed. Working sets are
also called active sets in the literature, for example in the domain of Linear Program-
ming where they originated (Thompson et al., 1966; Palacios-Gomez et al., 1982; Myers
and Shih, 1988); we choose working because in the screening literature, “active set”
refers to the non discarded features. For these techniques, duality can also come into
play, both in the stopping criterion of the subproblem solver, as well as in the working
set definition.

The organization of the chapter is as follows: in Section 2.2, we remind the practical
importance of duality for Lasso solvers and present a technique coined dual extrapolation
to obtain better dual points. We also shed some light on the success of our approach
when combined with cyclic coordinate descent by interpreting the latter as Dykstra’s
algorithm in the Lasso dual. In Section 2.3, we show how dual extrapolation is well-
suited to improve Gap Safe screening. We present in Section 2.4 a working set strategy
based on an aggressive relaxation of the Gap Safe rules. Experiments in Section 2.5
show significant computational speedups on multiple real-world Lasso problems.
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2.2 Duality for the Lasso

The Lasso estimator is defined as a solution of:

β̂ ∈ arg min
β∈Rp

1
2

∥∥y −Xβ∥∥2
+ λ

∥∥β∥∥
1︸ ︷︷ ︸

P(β)

, (2.1)

where λ is a positive scalar parameter controlling the trade-off between data-fitting and
regularization.

A dual formulation of the Lasso reads (see Proposition 1.14 or Kim et al. (2007) for a
precise derivation):

θ̂ = arg max
θ∈∆X

1

2

∥∥y∥∥2 − λ2

2

∥∥∥θ − y
λ

∥∥∥2

︸ ︷︷ ︸
D(θ)

, (2.2)

where ∆X , {θ ∈ Rn : ‖X>θ‖∞ ≤ 1} is the (rescaled) dual feasible set. The associated
duality gap is defined by G(β, θ) , P(β) − D(θ), for any primal-dual pair (β, θ) ∈
Rp ×∆X . In particular, as illustrated in Figure 2.2a, the dual problem is equivalent to
computing Π∆X

(y/λ), and θ̂ is unique even if the primal has more than one solution.

Remark 2.1. To fit the framework of Proposition 1.14 rigorously, the dual problem
should be unconstrained, and D(θ) should include a −ι∆X

(θ) term, so that non-feasible
points have an objective value of −∞. We sacrifice this rigor to the benefit of lighter
notation, and only apply D to feasible dual points.

Proposition 2.2. Strong duality holds for Problems (2.1) and (2.2):

G(β̂, θ̂) = 0 , (2.3)

and primal and dual solutions are linked by:

θ̂ =
1

λ
(y −Xβ̂) . (2.4)

Proof The primal problem is unconstrained and convex. The results follow from Pro-
position 1.14.

2.2.1 Stopping iterative solvers

In general, Problem (2.1) does not admit a closed-form solution. Iterative optimization
procedures such as (block) coordinate descent (BCD/CD, Tseng 2001; Friedman et al.
2007) (resp. FISTA, Beck and Teboulle 2009) are amongst the most popular algorithms
when dealing with high dimensional applications in machine learning (resp. in image
processing). A key practical question for iterative algorithms is the stopping criterion:
when should the algorithm be stopped? For any pair (β, θ) ∈ Rp × ∆X , we have
P(β) − P(β̂) ≤ G(β, θ), which means that the duality gap provides an upper bound
for the suboptimality gap. Therefore, given a tolerance ε > 0, if at iteration t of the
algorithm we can construct θ ∈ ∆X such that G(β(t), θ) ≤ ε, then the current primal
iterate β(t) is guaranteed to be an ε-optimal solution of Problem (2.1) – meaning that
it is at a distance less than ε of the optimum, in terms of objective function value. For
this reason, the corresponding θ is sometimes called a dual certificate.
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Algorithm 2.1 Cyclic coordinate descent for the Lasso, with dual ex-
trapolation
input : X = [X:1| . . . |X:p], y, λ, β

(0), ε
param: T,K = 5, fdual = 10
init : r = r(0) = y −Xβ(0), θ(0) = r/max(λ, ‖X>r‖∞)

1 for t = 1, . . . , T do
2 if t = 0 mod fdual then // θ every fdual epoch only

3 s = t/fdual // dual point indexing

4 r(s) = r

5 compute θ(s)
res and θ(s)

accel with eqs. (2.5), (2.25) and (2.26)
6 θ(s) = arg max

θ∈{θ(s−1),θ
(s)
accel,θ

(s)
res}
D(θ) // Equation (2.38)

7 if G(β(t), θ(s)) < ε then
8 break
9 for j = 1, . . . , p do

10 β
(t+1)
j = ST

(
β

(t)
j +

X>:j r

‖X:j‖2 ,
λ

‖X:j‖2

)
11 if β(t+1)

j 6= β
(t)
j then

12 r += (β
(t)
j − β

(t+1)
j )X:j

13 return β(t), θ(s)

Since Equation (2.4) holds at optimality, a canonical choice of dual point is called
residuals rescaling (Mairal, 2010). It consists in choosing, at iteration t where the gap
is to be computed, a dual feasible point proportional to the residuals r(t) , y −Xβ(t):

θ(t)
res , r

(t)/max(λ, ‖X>r(t)‖∞) . (2.5)

It is clear that if β(t) converges to β̂, θ(t)
res converges to θ̂, hence the duality gap for the

pair (β(t), θ
(t)
res) goes to 0. Additionally, the cost of computing θ(t)

res is moderate: O(np),
the same as a single proximal gradient descent step or an epoch of coordinate descent.

However, using rescaled residuals has two noticeable drawbacks: it ignores information
from previous iterates, and rescaling the residuals r(t) makes an “unbalanced” use of
computations in the sense that most of the burden is spent on improving β while θ is
obtained by solving a crude 1D optimization problem, i.e., min {α ∈ [λ,+∞] : r(t)/α ∈
∆X}. In practice (see Section 2.5), it turns out that, while safe and simple, such a
construction massively overestimates the suboptimality gap, leading to slow safe feature
identification and to numerical solvers running for more steps than actually needed. The
new dual point construction we propose aims at improving upon this default strategy.

Before we focus on duality, let us mention that other criteria than suboptimality are
also often considered. For instance, the solver can be stopped when the `2 or `∞ norm
of β(t)−β(t−1) goes below a threshold ε, or when the objective function stops decreasing
fast enough (P(β(t−1))−P(β(t)) < ε). However, contrary to duality gap based stopping
criteria, such heuristic rules do not offer a control on suboptimality. They are also
tightly coupled with the value of the step size, making the use of a general ε difficult.
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2.2.2 Dual extrapolation

Building on the work on nonlinear regularized acceleration by Scieur et al. (2016), we
propose a new construction to obtain a better dual point. Instead of relying only on
the last residuals r(t), the dual point is improved by extrapolating previous residuals,
i.e., using r(t), r(t−1), r(t−2), etc. We explain what is meant by “structure”, and how to
exploit it, in the following.

Definition 2.3 (Vector AutoRegressive sequence). We say that (r(t))t∈N ∈ (Rn)N is a
Vector AutoRegressive (VAR) sequence if there exists A ∈ Rn×n and b ∈ Rn such that
for t ∈ N:

r(t+1) = Ar(t) + b . (2.6)

Proposition 2.4 (Extrapolation for VAR sequences (Scieur, 2018, Thm 3.2.2)). Let
(r(t))t∈N be a VAR sequence in Rn, satisfying r(t+1) = Ar(t) + b with A ∈ Rn×n a
symmetric positive definite matrix such that ‖A‖2 < 1, b ∈ Rn and K < n. Assume
that for t ≥ K, the family {r(t−K) − r(t−K+1), . . . , r(t−1) − r(t)} is linearly independent
and define:

U (t) , [r(t−K) − r(t−K+1), . . . , r(t−1) − r(t)] ∈ Rn×K , (2.7)

(c1, . . . , cK) ,
(U (t)>U (t))−11K

1>K(U (t)>U (t))−11K
∈ RK , (2.8)

rextr ,
K∑
k=1

ckr
(t−K−1+k) ∈ Rn . (2.9)

Then, rextr satisfies: ∥∥Arextr − b− rextr

∥∥ ≤ O(ρK) , (2.10)

where ρ , 1−
√

1−‖A‖2
1+
√

1−‖A‖2
< 1.

The justification for this extrapolation procedure is the following: since ‖A‖2 < 1,
(r(t))t∈N converges: let us call its limit r̂. For t ∈ N, we have r(t+1) − r̂ = A(r(t) − r̂).
Let (a0, . . . , an) ∈ Rn+1 be the coefficients of A’s characteristic polynomial. By Cayley-
Hamilton’s theorem,

∑n
k=0 akA

k = 0. Given that ‖A‖2 < 1, 1 is not an eigenvalue of
A and

∑n
k=0 ak 6= 0, so we can normalize these coefficients to have

∑n
k=0 ak = 1. For

t ≥ n, we have:

n∑
k=0

ak

(
r(t−n+k) − r̂

)
=
( n∑
k=0

akA
k
)

(r(t−n) − r̂) = 0 , (2.11)

and so
n∑
k=0

akr
(t−n+k) =

n∑
k=0

akr̂ = r̂ . (2.12)

Hence, r̂ ∈ Span(r(t−n), . . . , r(t)).

Therefore, it is natural to seek to approximate r̂ as an affine combination of the (n+ 1)
last iterates (r(t−n), . . . , r(t)). Using (n+ 1) iterates might be costly for large values of
n, so one might rather consider only a smaller number K, i.e., find (c1, . . . , cK) ∈ RK
such that

∑K
k=1 ckr

(t−K−1+k) approximates r̂. Since r̂ is a fixed point of r 7→ Ar + b,
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k=1 ckr

(t−K−1+k) should be one too. Under the normalizing condition
∑K

k=1 ck = 1,
this means that the quantity

K∑
k=1

ckr
(t−K−1+k) −A

K∑
k=1

ckr
(t−K−1+k) − b =

K∑
k=1

ckr
(t−K−1+k) −

K∑
k=1

ck

(
r(t−K+k) − b

)
− b

=

K∑
k=1

ck

(
r(t−K−1+k) − r(t−K+k)

)
(2.13)

should be as close to 0n as possible; this leads to solving:

ĉ = arg min
c∈RK
c>1K=1

∥∥∥∥ K∑
k=1

ck

(
r(t−K+k) − r(t−K−1+k)

)∥∥∥∥ , (2.14)

which admits a closed-form solution:

ĉ =
(U (t)>U (t))−11K

1>K(U (t)>U (t))−11K
, (2.15)

where U (t) = [r(t−K+1) − r(t−K), . . . , r(t) − r(t−1)] ∈ Rn×K . In practice, the next pro-
position shows that when U (t) does not have full column rank, it is theoretically sound
to use a lower value for the number of extrapolation coefficients K.

Proposition 2.5. If U (t)>U (t) is not invertible, then r̂ ∈ Span(r(t−1), . . . , r(t−K)).

Proof Let x ∈ RK \ {0K} be such that U (t)>U (t)x = 0K , with xK 6= 0 (the proof is
similar if xK = 0, xK−1 6= 0, etc.). Then U (t)x =

∑K
k=1 xk(r

(t−K+k)−r(t−K+k−1)) = 0n
and, setting x0 , 0, r(t) = 1

xK

∑K
k=1(xk − xk−1)r(t−K+k−1) ∈ Span(r(t−1), . . . , r(t−K)).

Since 1
xK

∑K
k=1(xk − xk−1) = 1, it follows that:

r(t+1) = Ar(t) + b

= 1
xK

K∑
k=1

(xk − xk−1)(Ar(t−K+k−1) + b)

= 1
xK

K∑
k=1

(xk − xk+1)r(t−K+k) ∈ Span(r(t−1), . . . , r(t−K)) , (2.16)

and subsequently r(s) ∈ Span(r(t−1), . . . , r(t−K)) for all s ≥ t. By going to the limit,
r̂ ∈ Span(r(t−1), . . . , r(t−K)).

Using the identification property of coordinate descent and proximal gradient descent
(proved in Theorem 3.7 for a wider class of problems), we can formalize the VAR
behavior of dual iterates:

Theorem 2.6. When (β(t))t∈N is obtained by a cyclic coordinate descent or proximal
gradient descent applied to the Lasso problem, (Xβ(t))t∈N is a VAR sequence after sign
identification.

Proof Let t ∈ N denote an epoch after sign identification.
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Coordinate descent: Let j1, . . . , jS be the indices of the support of β̂, in increasing
order. As the sign is identified, coefficients outside the support are 0 and remain 0. We
decompose the t-th epoch of coordinate descent into individual coordinate updates.

Let β̃(0) ∈ Rp denote the initialization (i.e., the beginning of the epoch, β̃(0) = β(t)),
β̃(1) ∈ Rp the iterate after coordinate j1 has been updated, etc., up to β̃(S) after co-
ordinate jS has been updated, i.e., at the end of the epoch (β̃(S) = β(t+1)).

Let s ∈ [S], then β̃(s) and β̃(s−1) are equal everywhere, except at coordinate js:

β̃
(s)
js

= ST

(
β̃

(s−1)
js

+
1

‖X:js‖2
X>:js

(
y −Xβ̃(s−1)

)
,

λ

‖X:js‖2
)

= β̃
(s−1)
js

+
1

‖X:js‖2
X>:js

(
y −Xβ̃(s−1)

)
− λ sign(β̂js)

‖X:js‖2
, (2.17)

where we have used sign identification: sign(β̃
(s)
js

) = sign(β̂js). Therefore:

Xβ̃(s) −Xβ̃(s−1) = X:js

(
β̃

(s)
js
− β̃(s−1)

js

)
= X:js

(
X>:js(y −Xβ̃(s−1))− λ sign(β̂js)

‖X:js‖2
)

=
1

‖X:js‖2
X:jsX

>
:js

(
y −Xβ̃(s−1)

)
− λ sign(β̂js)

‖X:js‖2
X:js . (2.18)

This leads to the following linear recurrent equation:

Xβ̃(s) =
(

Idn−
1

‖X:js‖2
X:jsX

>
:js

)
︸ ︷︷ ︸

As∈Rn×n

Xβ̃(s−1) +
X>:jsy − λ sign(β̂js)

‖X:js‖2
X:js︸ ︷︷ ︸

bs∈Rn

. (2.19)

Hence, one gets recursively:

Xβ̃(S) = ASXβ̃
(S−1) + bS

= ASAS−1Xβ̃
(S−2) +ASbS−1 + bS

= AS . . . A1︸ ︷︷ ︸
A

Xβ̃(0) +AS . . . A2b1 + · · ·+ASbS−1 + bS︸ ︷︷ ︸
b

. (2.20)

We can thus write the following VAR equations for Xβ at the end of each coordinate
descent epoch:

Xβ(t+1) = AXβ(t) + b , (2.21)

Xβ(t+1) −Xβ̂ = A(Xβ(t) −Xβ̂) . (2.22)

Proximal gradient: Recall that β(t)
S , β̂S and X:S denote respectively β(t), β̂ and

X restricted to features in the support S = supp(β̂). Notice that since we are in the
identified sign regime, Xβ(t) = X:Sβ

(t)
S . With L = ‖X>X‖2 , a proximal gradient

descent update reads:

β
(t+1)
S = ST

(
β

(t)
S − 1

LX
>
:S(X:Sβ

(t)
S − y), λL

)
= β

(t)
S − 1

LX
>
:S

(
X:Sβ

(t)
S − y

)
− λ

L sign(β̂S)

=
(

IdS − 1
LX
>
:SX:S

)
β

(t)
S + 1

LX
>
:Sy − λ

L sign(β̂S) . (2.23)
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y
λ

0∆X

θ̂

y
λ

∆XFigure 2.1 – Illustration of the VAR nature of the dual iterates of the Lasso, on a toy
dataset with n = 2 and p = 3. Left: dual of the Lasso problem; the dual optimum
θ̂ is the projection of y/λ onto ∆X . Right: sequence of residuals after each update of
coordinate descent (first iterates in blue, last in yellow). After four updates, the iterates
alternate geometrically between the same two constraint hyperplanes.

Hence the equivalent of Equation (2.21) for proximal gradient descent is:

Xβ(t+1) =
(

Idn− 1
LX:SX

>
:S

)
Xβ(t) + 1

LX:SX
>
:Sy − λ

LX:S sign(β̂S) . (2.24)

Figure 2.1 represents the Lasso dual for a toy problem and illustrates the VAR nature
of r(t)/λ. As recently highlighted again by Tibshirani (2017) (see Section 2.2.3), the
iterates r(t)/λ correspond to the iterates of Dykstra’s algorithm to project y/λ onto ∆X .
During the first updates, the dual iterates do not have a regular trajectory. However,
after a certain number of updates (after the sign identification epoch is reached), they
alternate in a geometric fashion between the same two hyperplanes. In this regime,
it becomes beneficial to use extrapolation to obtain a point closer to θ̂. We recall the
correspondence between cyclic coordinate descent for the Lasso and Dykstra’s algorithm
more extensively in Section 2.2.3.

Remark 2.7. Equation (2.20) shows why we combine extrapolation with cyclic coordin-
ate descent: if the coefficients are not always updated in the same order (see Figures 2.2c
and 2.2d), the matrix A depends on the epoch, and the VAR structure may no longer
hold.

Having highlighted the VAR behavior of (Xβ(t))t∈N, we can introduce our proposed
dual extrapolation.

Definition 2.8 (Extrapolated dual point for the Lasso). For a fixed number K of
proximal gradient descent or coordinate descent epochs, let r(t) denote the residuals
y −Xβ(t) at epoch t of the algorithm. We define the extrapolated residuals:

r
(t)
accel =


r(t), if t ≤ K ,
K∑
k=1

ckr
(t+1−k), if t > K .

(2.25)

where c = (c1, . . . , cK)> ∈ RK is defined as in (2.15) with U (t) = [r(t+1−K)−r(t−K), . . . , r(t)−
r(t−1)] ∈ Rn×K . Then, we define the extrapolated dual point as:

θ
(t)
accel , r

(t)
accel/max(λ, ‖X>r(t)

accel‖∞) . (2.26)
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In practice, we use K = 5 and do not compute θ(t)
accel if U

(t)>U (t) cannot be inverted.
Additionally, to impose monotonicity of the dual objective, and guarantee an objective
function at least as high as with rescaled residuals, we use as dual point at iteration t:

θ(t) = arg max
θ∈{θ(t−1),θ

(t)
accel,θ

(t)
res}
D(θ) . (2.27)

There are two reasons why the results of Proposition 2.4 cannot be straightforwardly
applied to Equation (2.26):

1. the theoretical analysis by Scieur et al. (2016) requires A to be symmetrical, which
is the case for proximal gradient descent but not for cyclic coordinate descent (as
Idn−X:jsX

>
:js
/‖X:js‖2 and Idn−X:js′X

>
:js′
/‖X:js′‖2 only commute ifX:js andX:js′

are collinear). To circumvent this issue, we can make A symmetrical: instead of
considering cyclic updates, we could consider that iterates β(t) are produced by
a cyclic pass over the coordinates, followed by a cyclic pass over the coordinates
in reverse order. The matrix of the VAR in this case is no longer A = AS . . . A1,
but A1 . . . ASAS . . . A1 = A>1 . . . A

>
SAS . . . A1 = A>A (the As’s are symmetrical).

A result from Bollapragada et al. (2018) indicates that the bound still holds for
a non-symmetric A (coherent with the practical results from Section 3.5), at the
price of a much more complex analysis. Therefore, we still use regular cyclic passes
over the features.

2. for both proximal gradient and coordinate descent we have ‖A‖2 = 1 instead
of ‖A‖2 < 1 as soon as S < n: if the support of β̂ is of size smaller than n
(S < n), 1 is an eigenvalue of A. Indeed, for coordinate descent, if S < n,
there exists a vector u ∈ Rn, orthogonal to the S vectors X:j1 , . . . , X:js . The
matrix As = Idn− 1

‖X:js‖2
X:jsX

>
:js

corresponding the orthogonal projection onto
Span(X:js)

⊥, we therefore have Asu = u for every s ∈ [S], hence Au = u. For
proximal gradient descent, 1

LX:SX
>
:S is not invertible when S < n, hence 1 is

an eigenvalue of Idn− 1
LX:SX

>
:S . This seems to contradict the convergence of the

VAR sequence, but is addressed in Lemmas 2.9 and 2.10.

Lemma 2.9. For coordinate descent, if an eigenvalue of A = AS . . . A1 has modulus 1,
it is equal to 1.

Proof The matrix As = Idn− 1
‖X:js‖2

X:jsX
>
:js

corresponds to the orthogonal projection
onto Span(X:js)

⊥. Hence,

∀x ∈ Rn, ‖Asx‖ = ‖x‖ =⇒ Asx = x . (2.28)

Let (µ, x) ∈ C×Rn s.t. |µ| = 1, ‖x‖ = 1 and Ax = µx. This means ‖Ax‖ = 1. Because
‖A1x‖ < 1 =⇒ ‖AS . . . A1x‖ ≤ ‖AS . . . A2‖‖A1x‖ < 1 =⇒ ‖Ax‖ < 1, we must have
‖A1x‖ ≥ 1. Since it holds that ‖A1x‖ ≤ ‖x‖ = 1, we have ‖A1x‖ = ‖x‖, thus A1x = x
because A1 is an orthogonal projection. By a similar reasoning, A2x = x, etc. up to
ASx = x, hence Ax = x and µ = 1.

Lemma 2.10. For coordinate descent (resp. proximal gradient descent) applied to solve
the Lasso, the VAR parameters A ∈ Rn×n and b ∈ Rn defined in (2.20) (resp. (2.24))
satisfy b ∈ Ker(Idn−A)⊥.
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Proof Coordinate descent case: Let us remind that b = AS . . . A2b1 + · · ·+ASbS−1 +bS
in this case, with bs = X>:jsy−λ sign(β̂js)X:js/‖X:js‖2. Let v ∈ Ker(Idn−A). Following
the proof of Lemma 2.9, we have A1v = · · · = ASv = v. For s ∈ [S], since As is
the projection on Span(X:js)

⊥, this means that v is orthogonal to X:js . Additionally,
v>AS . . . As+1bs = (As+1 . . . ASv)>bs = v>bs = 0 since bs is collinear to X:js . Thus, v
is orthogonal to the S terms which compose b, and b ⊥ Ker(Idn−A).

Proximal gradient descent case: Let v ∈ Ker(Idn−A) = Ker(X:SX
>
:S). We have

v>X:SX
>
:Sv = 0 = ‖X>:Sv‖2, hence X>:Sv = 0. It is now clear that v>b = v>(−X:SX

>
:Sy+

λX:S sign β̂)/L = 0, hence b ⊥ Ker(Idn−A).

Proposition 2.11. Proposition 2.4 holds for the residuals r(t) (produced either by prox-
imal gradient descent or coordinate descent) even though ‖A‖2 = 1 in both cases.

Proof Let us write A = Ā+A with Ā the orthogonal projection on Ker(Idn−A). By
Lemma 2.9, ‖A‖2 < 1.

Then, one can check that AA = A2 and AĀ = Ā2 = Ā and Ab = Ab.

Let T be the epoch when support identification is achieved. For t ≥ T , we have:

r(t+1) = Ar(t) + b+ Ār(T ) . (2.29)

Indeed, it is trivially true for t = T and if it holds for t,

r(t+2) = Ar(t+1) + b

= A(Ar(t) + b+ Ār(T )) + b

= A2r(t) +Ab+ Ār(T ) + b

= A(Ar(t) + b) + Ār(T ) + b

= Ar(t+1) + Ār(T ) + b . (2.30)

Therefore, on Ker(Idn−A), the sequence (r(t))t∈N is constant, and on the orthogonal
of Ker(Idn−A) it is a VAR sequence with associated matrix A, whose spectral norm is
strictly less than 1. Therefore, the results of Proposition 2.4 still hold.

Although until now we have proven results for both coordinate descent and proximal
gradient descent for the sake of generality, we observed that coordinate descent con-
sistently converges faster (see Figure 1.4, page 30). Hence from now on, we will only
consider coordinate descent.
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2.2.3 Dual perspective on coordinate descent

Algorithm 2.2 Dykstra’s alternat-
ing projections L
input : ΠC1 , . . . ,ΠCp , z

init : θ = z, q1 = 0, . . . , qp = 0
1 for t = 1, . . . do
2 for j = 1, . . . , p do
3 θ̃ ← θ + qj

4 θ ← ΠCj (θ̃)

5 qj ← θ̃ − θ
6 return θ

Algorithm 2.3 Dykstra for the
Lasso dual
input : X = [X:1| . . . |X:p], y, λ
init : r = y, β̃1 = 0, . . . , β̃p = 0

1 for t = 1, . . . do
2 for j = 1, . . . , p do
3 r̃ ← r +X:j β̃j

4 r ← r̃ − ST
(

X>:j r̃

‖X:j‖2 ,
1

‖X:j‖2

)
·X:j

5 β̃j ← ST
(

X>:j r̃

‖X:j‖2 ,
1

‖X:j‖2

)
6 return r/λ

In this section, we provide some insights on the efficiency of extrapolation for cyclic
coordinate descent, described in Algorithm 2.1, by studying its connections with Dyk-
stra’s algorithm (Dykstra, 1983). As a reminder, note that the points extrapolated are
only the residuals r(t) obtained every fdual epochs: performing extrapolation and gap
computation at every coordinate descent update would be time consuming.

Dykstra’s algorithm aims at solving problems of the form:

θ̂ = arg min
θ∈∩pj=1Cj

∥∥z − θ∥∥2
, (2.31)

where C1, . . . , Cp are p closed convex sets, with associated projections ΠC1 , . . . ,ΠCp .
The iterates of the (cyclic1) Dykstra algorithm are defined in Algorithm 2.2 (see Bauschke
and Combettes (2011, Th. 29.2) for a convergence proof in the cyclic case).

The connection with coordinate descent for the Lasso has already been noticed (Tib-
shirani, 2017). In the Lasso dual, the closed convex sets are the p slabs Cj = {θ ∈ Rn :
−1 ≤ X>:j θ ≤ 1}, and the point to be projected is z = y/λ. In this context, Dykstra’s
algorithm produces (non-necessarily feasible) iterates converging to θ̂.

The connection with coordinate descent can be made noticing that:

(Idn−ΠCj )(θ) = ST(X>:j θ/‖X:j‖2, 1/‖X:j‖2) ·X:j . (2.32)

Using the change of variable r = λθ, r̃ = λθ̃ and qj = X:jβj/λ and the previous
expression, Algorithm 2.2 is equivalent to Algorithm 2.3. It is to be noted that this
is exactly cyclic coordinate descent for the Lasso, where the output r of the algorithm
corresponds to the residuals (and not the primal estimate β).

On Figure 2.2, we illustrate Problem (2.2) for n = 2, p = 3 (Figure 2.2a). Figure 2.2b
(resp. Figure 2.2c) shows the iterates at the end of each epoch, produced by the cyclic
(resp. shuffle) Dykstra algorithm, and their extrapolated version for K = 4. This
corresponds to Algorithm 2.1 with fdual = 1. On Figure 2.2b, the iterates eventually
always lie on the same hyperplane, and exhibit a VAR structure while converging to θ̂:
using only the last K = 4 points, extrapolation finds the true solution up to machine
precision at the 5th iteration (Figure 2.2d). On the contrary, when the projection order
on C1 and C2 is shuffled (Figure 2.2c), the iterates might not lie on the same hyperplane,

1in the shuffle variant, the order is shuffled after each epoch
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(a) Lasso dual problem with X ∈ R2×3. A close-up on the dashed rectangle around θ̂ is given
in Figure 2.2b and Figure 2.2c.
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(b) Close up for cyclic Dykstra in the dual (end of each epoch)
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Figure 2.2 – In the Lasso case, the dual solution θ̂ is the projection of y/λ onto the
convex set ∆X (the intersection of the three slabs).

and the trajectory tends to be less regular and harder to extrapolate. In what follows,
we only consider cyclic orders due to their appealing interplay with extrapolation.
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2.3 Gap Safe screening

The Lasso gives sparse solutions, meaning that ‖β̂‖0 � p. Hence, if it were possible
to discard features whose associated final coefficients vanish, the problem would be-
come much smaller while having the same solutions. Discarding such features is called
screening, and a key proposition for screening rules is the following:

∀j ∈ [p], |X>:j θ̂| < 1⇒ β̂j = 0 . (2.33)

Hence, the knowledge of θ̂ allows to identify the equicorrelation set {j ∈ [p] : |X>:j θ̂| =
1}. The problem restricted to the equicorrelation set has the same solutions as Prob-
lem (2.1), while being simpler: it typically has far less features. However, θ̂ is unknown
so Equation (2.33) is not practical. To address this issue, Fercoq et al. (2015) have
introduced the Gap Safe rules to remove the j-th feature:

|X>:j θ| < 1− ‖X:j‖
√

2

λ2
G(β, θ)⇒ β̂j = 0 , (2.34)

which for any primal-dual feasible pair (β, θ) ∈ Rp ×∆X , is safe, meaning that it will
not wrongly discard a feature.

The Gap Safe rules have the appealing property of being convergent: at optimality,
features not in the equicorrelation set have all been discarded. Additionally, they can
be applied in a safe way in a sequential setting (Ndiaye et al., 2017b) when only an
approximate solution of Problem (2.1) is available for a λ′ close to λ (e.g., when testing
multiple regularization parameters in a cross-validation setting). Dynamic screening
(Bonnefoy et al., 2014, 2015) is also possible using an iterate β(t) for a solver converging
to β̂: more and more features can be discarded along iterations.

Gap Safe rules performance depends strongly on how well θ approximates θ̂. Hence,
θ acts as a certificate to discard irrelevant features: if the duality gap is large, the
upper bound in Equation (2.34) is crude, resulting in fewer (possibly) discarded features.
Section 2.5.3 shows that θaccel helps discarding more features than θres, thus accelerating
coordinate descent solvers and achieving safe feature identification in fewer epochs.

A potential drawback of screening rules is that, if the first duality gaps are large,
coordinate descent computations are wasted on useless features during the first iterations
(note that this is not the case when an approximation is available, e.g., when performing
cross-validation; see Section 2.5.4). In the next section, we design a WS strategy to
address this issue.

2.4 Working sets with aggressive gap screening

Working set (WS) approaches involve two nested iteration loops: in the outer one, a set
of features W(t) ⊂ [p] is defined. In the inner one, an iterative algorithm is launched to
solve the problem restricted to X:W(t) (i.e., considering only the features in W(t)). In
this section, we propose a working set construction based on an aggressive use of Gap
Safe rules.

As it appears in Equation (2.34), the critical quantity measuring the importance of the
j-th feature is:

dj(θ) ,
1− |X>:j θ|
‖X:j‖

, (2.35)
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because:

dj(θ) >

√
2

λ2
G(β, θ)⇒ β̂j = 0 . (2.36)

Rather than discarding feature j from the problem if dj(θ) is too large, the working
set is composed of the coordinates achieving the lowest dj(θ)’s values. To do so, a first
approach would consist in introducing a parameter ρ ∈]0, 1[ and creating a working set
with features such that dj(θ) < ρ

√
2G(β, θ)/λ2. However, a pitfall for this strategy is

that the working set size is not explicitly under control: an inaccurate choice of ρ could
lead to extremely large working sets, and would limit their benefits. Instead, to achieve
a good control on the working set growth, we reorder the dj(θ)’s in a non-decreasing
way: djp(θ) ≥ · · · ≥ dj1(θ). Then, for a given working set size p(t), we choose:

W(t) = {j1, . . . , jp(t)} . (2.37)

This notation is clearly ambiguous, as j1 also depends on t. To avoid the heavy notation
j

(t)
1 , we warn the reader at this point: the value of j1 changes from one working set
definition to the next.

When θ = θ
(t)
res and the features are normalized (a common, but not systematic prepro-

cessing step), this working set construction simply consists in finding the X:j ’s achiev-
ing the largest correlation with the residual, i.e., finding the features leading to the
largest |X>:j r(t)|. Writing the data-fitting term F (β) =

∥∥y −Xβ∥∥2
/2, and checking

that ∇jF (β(t)) = −X>:j r(t), then the previous rule coincides with gradient-based and
correlation-based ones (Stich et al., 2017; Perekrestenko et al., 2017):

1− dj(θ(t)
res) = |X>:j r(t)|/max(λ, ‖X>r(t)‖∞)

∝ |X>:j r(t)| = |∇jF (β(t))| .

However, the advantage of Equation (2.35) is that there is no restriction on the choice
of the dual feasible point θ ∈ ∆X . If a better candidate than rescaled residuals is
available, it should be used instead. Considering the (ideal) case where the dual point
constructed is θ̂, then the working set rule (2.37) yields the equicorrelation set (if p(t)

has the proper value), which is the best performance to expect in general for a working
set construction.

When subproblems are solved with the same precision ε as considered for stopping
the outer-loop and if the working set W(t) grows geometrically (e.g., p(t+1) = 2p(t))
and monotonically (i.e., W(t) ⊂ W(t+1)), then convergence is guaranteed provided the
inner solver converges. Indeed, this growth strategy guarantees that as long as the
problem has not been solved up to precision ε, more features are added, eventually
starting the inner solver on the full problem until it reaches an ε-solution. The initial
working set size is set to p(1) = 100, except when an initialization β(0) 6= 0p is provided
(e.g., for path or sequential computations, see Section 2.5.4), in which case we set
p(1) = ‖β(0)‖0. This working set construction has many advantages: as it only requires
a dual point, it is flexible and can be adapted to other objective functions (contrary
to approaches such as Kim and Park (2010) which need to rewrite the Lasso as a
Quadratic Program). Moreover, exact resolution of the subproblems is not required
for convergence. Our policy to choose p(t) avoids two common working set drawbacks:
working sets growing one feature at a time, and cyclic behaviors, i.e., features entering
and leaving the working set repeatedly.
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Algorithm 2.4 Celer
input : X, y, λ, β(0)

param: pinit = 100, ε, ε = 0.3, T,prune = True

init : θ(0) = θ
(0)
inner = y/‖X>y‖∞

1 if β(0) 6= 0p then // warm start

2 p(1) = ‖β(0)‖0
3 else
4 p(1) = pinit

5 for t = 1, . . . , T do
6 compute θ(t)

res

7 θ(t) = arg max
θ∈{θ(t−1),θ

(t−1)
inner ,θ

(t)
res}
D(θ) // Equation (2.5)

8 g(t) = G(β(t−1), θ(t)) // global gap

9 if g(t) ≤ ε then
10 break
11 for j = 1, . . . , p do
12 compute d(t)

j = (1− |X>:j θ(t)|)/‖X:j‖
13 if prune then
14 εt = εg(t)

15 set (d(t))supp(β(t−1)) = −1 // monotonicity

16 if t ≥ 2 then
17 p(t) = min(2‖β(t−1)‖0, p) // Equation (2.39)

18 else
19 εt = ε

20 set (d(t))W(t−1) = −1 // monotonicity

21 if t ≥ 2 then
22 p(t) = min(2p(t−1), p) // doubling size

23 W(t) = {j ∈ [p] : d
(t)
j among p(t) smallest values of d(t)}

// Approximately solve sub-problem :

24 get β̃(t), θ
(t)
inner with Algorithm 2.1 applied to (y,X:W(t) , λ, (β(t−1))W(t) , εt)

25 set β(t) = 0p and (β(t))W(t) = β̃(t)

26 θ
(t)
inner = θ

(t)
inner/max(λ, ‖X>θ(t)

inner‖∞)

27 return β(t), θ(t)

We have coined our proposed algorithm implementing this working set strategy with
dual extrapolation Celer (Constraint Elimination for the Lasso with Extrapolated Re-
siduals).

2.5 Experiments

2.5.1 Practical implementation

The implementation is done in Python and Cython (Behnel et al., 2011). It is avail-
able at https://github.com/mathurinm/celer, and made available as a pip-installable
Python package which also contains the further developments of Chapter 3.

https://github.com/mathurinm/celer
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Linear system If the linear system (U (t))>U (t)z = 1K is ill-conditioned, rather than
using Tikhonov regularization and solve ((U (t))>U (t) + γI)z = 1K as proposed in Sci-
eur et al. (2016), we stop the computation for θaccel and set D(θaccel) = −∞ for this
iteration. In practice, this does not prevent the proposed methodology from computing
significantly lower gaps than the standard approach.

Practical cost of dual extrapolation The storage cost of dual extrapolation is
O(nK) (storing r(t), . . . , r(t−K)). The main computation cost lies in the dual rescaling
of the extrapolated residuals, which is O(np), and corresponds to the same cost as an
epoch of CD/ISTA. The cost of computing c is small, since the matrix (U (t))>U (t) is only
K × K. One should notice that there is no additional cost to compute the residuals:
in reasonable coordinate descent implementations, they have to be maintained at all
iterations to avoid costly partial gradients computation (see Algorithm 2.1); for ISTA
their computation is also required at each epoch to evaluate the gradients X>r(t). As
usual for iterative algorithms, we do not compute the duality gap (nor the dual points) at
every update of β, but rather after every fdual = 10 CD/ISTA epochs2. This makes the
cost of dual extrapolation small compared to the iterations in the primal. The influence
of fdual and K in practice is illustrated in additional experiments in Appendix A.1.1.

Robustifying dual extrapolation Even if in practice we have observed fast conver-
gence of θ(t)

accel towards θ̂, we cannot provide guarantees about the behavior of θ
(t)
accel when

the residuals are constructed from iterates of coordinate descent or other algorithms.
Hence, for a cost of O(np), in Algorithm 2.1 we also compute θ(t)

res and use as dual point:

θ(t) = arg max
θ∈{θ(t−1),θ

(t)
accel,θ

(t)
res}
D(θ) . (2.38)

Taking into account the previous dual point θ(t−1) ensures monotonic improvements
on the dual objective. The total computation cost of the dual is only doubled, which
remains small compared to the cost of fdual epochs of ISTA/CD, while guaranteeing
monotonicity of the dual objective, and a behavior at least as good as θ(t)

res.

Pruning While the monotonic geometric growth detailed in Section 2.4 guarantees
convergence, if p(1) is chosen too large, the working sets will never decrease. To remedi-
ate this, we introduce a variant called pruning :

p(t) = min(2‖β(t−1)‖0, p) , (2.39)

in which W(t) approximately doubles its size at each iteration. This still guarantees
that, even if p(1) was set too small, p(t) will grow quickly to reach the correct value. On
the other hand, if p(1) is too big, many useless features are included at the first iteration,
but is is likely that their coefficients will be 0, and hence ‖β(1)‖0 will be small, making
p(2) small. This is illustrated by an experiment in Appendix A.1.2.

2.5.2 Higher dual objective

We start by investigating the efficiency of our dual point in a case where λ is fixed.
Figure 2.3 shows, for the coordinate descent solver given in Algorithm 2.1, the duality
gaps evaluated with the standard approach P(β(t)) − D(θ

(t)
res) and our proposed dual

2This explains why the indices for β and θ differ in Algorithm 2.1
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extrapolation P(β(t))−D(θ
(t)
accel), as well as the exact suboptimality P(β(t))−P(β̂) (note

that the latter is not available to the practitioner before convergence). The experiment
is performed on the leukemia dataset (n = 72, p = 7129), with the design matrix
columns set to unit `2-norm, and y centered and set to unit `2-norm so that the first
primal objective is P(0p) = 0.5. The algorithm is run without warm start (β(0) = 0p)
for λ = λmax/20, and the values of θ(t)

accel and θ
(t)
res are monitored3. P(β̂) is obtained by

running the solver up to machine precision.

For a better analysis of the impact of dual extrapolation, in this experiment (and here
only), we have not imposed monotonicity of the various dual objectives, nor have we
used the best of both points as proposed in Equation (2.38).

As claimed in Section 2.2, we can observe that θres massively overestimates the sub-
optimality gap: while a true suboptimality gap of 10−6 is reached around epoch 200,
the classical upper bound achieves this value at epoch 400 only. This means that if the
duality gap were used as stopping criterion, the solver would run for twice too long. On
the contrary, after a number of iterations where it behaves like the canonical approach,
the proposed choice θaccel accelerates and provides a duality gap much closer to the
true suboptimality. After a sufficient number of epochs, the two are even almost equal,
meaning that θ(t)

accel is extremely close to θ̂. The difference between the two approaches
is particularly striking for low values of ε. We also see, that, although more bumpy than
the standard approach, our proposed duality gap does not behave erratically. Hence,
stabilizing it as stated in Equation (2.38) does not seem mandatory (but since it is
cheap, we still do it for other experiments). Practical choices of f and K are discussed
in Appendix A.1.1. The same behavior is visible in the following chapter (Figure 3.1a,
80).

0 200 400 600 800
epoch t

10−9
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10−3
P(βt)−D(θtres)

P(βt)−D(θtaccel)

P(βt)− P(β̂)

Figure 2.3 – Duality gaps evaluated with the canonical dual point θres and the proposed
construction θaccel, along with the true suboptimality gap. Performance is measured for
Algorithm 2.1 on the leukemia dataset, for λ = λmax/20. Our duality gap quickly gets
close to the true suboptimality, while the canonical approach constantly overestimates
it.

2.5.3 Better Gap Safe screening performance

Figure 2.3 shows that extrapolated residuals yield tighter estimates of the suboptimality
gap than rescaled residuals. However, one may argue either that using the duality gap
as stopping criterion is infrequent (let us nevertheless mention that this criterion is for
example the one implemented in the popular package scikit-learn (Pedregosa et al.,

3λmax , ‖X>y‖∞ is the smallest λ s.t. β̂ = 0p
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2011)), or that vanilla coordinate descent is seldom implemented alone, but rather
combined with screening or working set techniques. Here we demonstrate the benefit
of the proposed extrapolation when combined with screening: the number of screened
features grows more quickly when our new dual construction is used. This leads to
faster coordinate descent solvers, and quicker safe feature identification.

The dataset for this experiment is the Finance/E2006-log1p dataset (publicly available
from LIBSVM4), preprocessed as follows: features with strictly less than 3 non-zero
entries are removed, features are set to unit `2-norm, y is centred and set to unit `2-
norm, and an unregularized intercept feature is added. After preprocessing, n = 16 087
and p = 1 668 738.

0 250 500 750 1000 1250 1500
epoch t

0

1

#
sc

re
en

ed
va

ri
ab

le
s ×106

θt = θtres

θt = θtaccel

Figure 2.4 – Number of variables discarded by the (dynamic) Gap Safe rule as a function
of epochs of Algorithm 2.1, depending on the dual point used, for λ = λmax/5 (Finance
dataset).

Figure 2.4 shows the number of screened variables as a function of the number of epochs
in Algorithm 2.1, when using either standard residual rescaling or dual extrapolation
to get the dual point θ(t) in Equation (2.34). The solver stops once a duality gap of
10−6 is reached. We can see that the faster convergence of θ(t)

accel towards θ̂ observed in
Figure 2.3 translates into a better Gap Safe screening: features are discarded in fewer
epochs than when θ

(t)
res is used. The gain in number of screened variables is directly

reflected in terms of computation time: 70 s for the proposed approach, compared to
290 s for Gap Safe rule with rescaled residuals.

2.5.4 Working sets application to Lasso path

In practice, it rarely happens that the solution of Problem (2.1) must be computed
for a single λ: the ideal value of the regularization parameter is not known, and β̂ is
computed for several λ’s, before the best is selected (e.g., by cross-validation). The
values of λ are commonly5 chosen on a logarithmic grid of 100 values between λmax

and λmax/102 or λmax/103. For the Finance dataset, we considered λmax/102, leading
to a support of size 15 000. In such sequential context, warm start is standard and we
implement it for all algorithms. It means that all solvers computing β̂ are initialized
with the approximate solution obtained for the previous λ on the grid (starting from
λmax).

We refer to the PhD work Johnson (2018, Section 3.7) for a very extensive comparison
which shows that Blitz outperforms Lasso solvers such as L1_LS (Kim et al., 2007),
APPROX (Fercoq and Richtárik, 2015) or GLMNET (Friedman et al., 2010) on a large

4http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
5this is the default grid in GLMNET or scikit-learn

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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collections of datasets and settings. In our experiments, we use Blitz’s C++ open source
implementation, available at https://github.com/tbjohns/BlitzL1/.

Path computation For a fine (resp. coarse) grid of 100 (resp. 10) values of λ geo-
metrically distributed between λmax and λmax/100, the competing algorithms solve the
Lasso on various real world datasets from LIBLINEAR (Fan et al., 2008). Warm start
is used for all algorithms: except for the first value of λ, the algorithms are initialized
with the solution obtained for the previous value of λ on the path. Note that paths are
computed following a decreasing sequence of λ (from high value to low). Computing
Lasso solutions for various values of λ is a classical task, in cross-validation for example.
The values we choose for the grid are the default ones in scikit-learn or GLMNET.
For Gap Safe Rules (GSR), we use the strong warm start variant which was shown by
Ndiaye et al. (2017b, Section 4.6.4) to have the best performance. We refer to “GSR
+ extr.” when, on top of this, our proposed dual extrapolation technique is used to
create the dual points for screening. To evaluate separately the performance of work-
ing sets and extrapolation, we also implement “Celer w/o extr.”, i.e., Algorithm 2.4
without using an extrapolated dual point. Doing this, GSR can be compared to GSR
+ extrapolation, and Celer without extrapolation to Celer.

On Figures 2.5 to 2.7, one can see that using acceleration systematically improves the
performance of Gap Safe rules, up to a factor 3. Similarly, dual extrapolation makes
Celer more efficient than a working set approach without extrapolation (Blitz or Celer
w/o extr.) This improvement is more visible for low values of stopping criterion ε, as
dual extrapolation is beneficial once the support is identified. Generally, working set
approaches tend to perform better on coarse grids, while screening is beneficial on fine
grids – a finding corroborating Lasso experiments in Ndiaye et al. (2017b).
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Figure 2.5 – Time to compute a Lasso path from λmax to λmax/100 on the leukemia
dataset (left: coarse grid of 10 values, right: fine grid of 100 values). λmax/100 gives a
solution with 60 nonzero coefficients.
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Figure 2.6 – Time to compute a Lasso path from λmax to λmax/100 on the news20
dataset (left: coarse grid of 10 values, right: fine grid of 100 values). λmax/100 gives a
solution with 14 817 nonzero coefficients.

https://github.com/tbjohns/BlitzL1/
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Figure 2.7 – Time to compute a Lasso path from λmax to λmax/100 on the rcv1 dataset
(left: coarse grid of 10 values, right: fine grid of 100 values). λmax/100 gives a solution
with 4610 nonzero coefficients.

Table 2.1 – Computation time (in seconds) for Celer, Blitz and scikit-learn to reach
a given precision ε on the Finance dataset with λ = λmax/20 (without warm start:
β(0) = 0p).

ε 10−2 10−3 10−4 10−6

Celer 5 7 8 10
Blitz 25 26 27 30
scikit-learn 470 1350 2390 -

GLMNET comparison Another popular solver for the Lasso is GLMNET, which
uses working sets heuristics based on KKT conditions. However, the resulting solutions
are not safe in terms of feature identification. Figure 2.8 shows that for the same value
of stopping criterion6, the supports identified by GLMNET contain much more features
outside of the equicorrelation set (determined with Gap Safe rules after running Celer
with ε = 10−14).
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Figure 2.8 – Number of false positives for GLMNET and Celer on a Lasso path on the
leukemia dataset, depending on the stopping criterion ε.

6on primal decrease for GLMNET, on duality gap for Celer
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Single λ To demonstrate that the performance observed in Figures 2.5 to 2.7 is not
only due to the sequential setting, we also perform an experiment for a single value of
λ = λmax/20. The Lasso estimator is computed up to a desired precision ε which is
varied between 10−2 and 10−6 (all solvers use duality gap). Celer is orders of magnitude
faster than scikit-learn, which uses vanilla coordinate descent. The working set approach
of Blitz is also outperformed, especially for low ε values.

2.6 Conclusion

The working set approach of Blitz, analogous to that of Celer, is based on a geometric in-
terpretation of the dual. The criterion to buildW(t) can be reformulated to match (2.37)
(with the notable difference that p(t) is determined at runtime by solving an auxiliary
optimization problem). However, for the analysis to hold, the dual point θ(t) used in
the outer loop must be a barycenter of the previous dual point θ(t−1) and the current
residuals, rescaled on the subproblem r(t−1)/max(λ, ‖X>:W(t−1)

r(t−1)‖∞). This prevents
Blitz from using extrapolation. The flexibility of Celer w.r.t. the choice of dual point
enables it to benefit from the extrapolated dual point returned by the inner solver. The
experiments confirm that this dual point is key to outperform Blitz.

In this chapter, we have illustrated the importance of improving duality gap compu-
tations for practical Lasso solvers. Using an extrapolation technique to create more
accurate dual candidates, we were able to accelerate standard solvers relying on screen-
ing and working set techniques. Our experiments on popular (sparse or dense) datasets
showed the importance of dedicating some effort to the improvement of dual solutions:
the combined benefits obtained both from improved stopping time and from screening
accuracy has led to improved state-of-the-art solvers at little coding effort. The goal of
the next chapter is to generalize the proposed approach to other datafitting terms and
penalties.
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In this chapter, we generalize the dual extrapolation procedure for the Lasso (Celer) of
Chapter 2 to any `1-regularized GLM, in particular sparse Logistic regression. Theoret-
ical guarantees based on sign identification of coordinate descent are provided. Exper-
iments show that dual extrapolation yields more efficient Gap Safe screening rules and
working sets solvers. Finally, we adapt Celer to make it compatible with prox-Newton
solvers, and empirically demonstrate its applicability to the Multi-task Lasso, for which
the proof is left to future work.

This chapter is based on the following work, currently under review for the Journal of
Machine Learning Research:

• M.Massias, S. Vaiter, A. Gramfort, and J. Salmon. Dual extrapolation for sparse
Generalized Linear Models. arXiv preprint arXiv:1907.05830, 2019

Generalized Linear Models (GLM) form a wide class of regression and classification mod-
els, where prediction is a function of a linear combination of the input variables. For
statistical inference in high dimension, sparsity inducing regularizations have proven
to be useful while offering statistical guarantees. However, solving the resulting op-
timization problems can be challenging: even for popular iterative algorithms such as
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coordinate descent, one needs to loop over a large number of variables. To mitigate
this, techniques known as screening rules and working sets diminish the size of the
optimization problem at hand, either by progressively removing variables, or by solving
a growing sequence of smaller problems. For both techniques, significant variables are
identified thanks to convex duality arguments. In this paper, we show that the dual
iterates of a GLM exhibit an asymptotic Vector AutoRegressive (VAR) behavior after
sign identification, when the primal problem is solved with proximal gradient descent or
cyclic coordinate descent. Exploiting this regularity, one can construct dual points that
offer tighter certificates of optimality, enhancing the performance of screening rules and
helping to design competitive working set algorithms.

3.1 Introduction

Sparsity inducing penalties have been used in a variety of statistical estimators, both for
regression and classification tasks: sparse logistic regression (Koh et al., 2007), Group
Lasso (Yuan and Lin, 2006), Sparse Group Lasso (Simon et al., 2013), multitask Lasso
(Obozinski et al., 2010), Square-Root Lasso (Belloni et al., 2011). All of these estimators
fall under the framework of Generalized Linear Models (McCullagh and Nelder, 1989),
where the output is assumed to follow an exponential family distribution whose mean
depends on a linear combination of the input variables (see Section 1.1.1). The key
property of `1-type regularization is that it allows to jointly perform feature selection
and prediction, which is particularly useful in high dimensional settings. Indeed, it can
drastically reduce the number of variables needed for prediction, thus improving model
interpretability and computation time for prediction. Amongst the algorithms proposed
to solve these, coordinate descent1 (Tseng, 2001; Friedman et al., 2007) is the most
popular in machine learning scenarios (Fan et al., 2008; Friedman et al., 2010; Richtárik
and Takáč, 2014; Fercoq and Richtárik, 2015; Perekrestenko et al., 2017; Karimireddy
et al., 2018). It consists in updating the vector of parameters one coefficient at a time,
looping over all the predictors until convergence.

Since only a fraction of the coefficients are non-zero in the optimal parameter vector,
a recurring idea to speed up solvers is to limit the size of the optimization problem by
ignoring features which are not included in the solution. To do so, two approaches can
be distinguished:

• screening rules, introduced by El Ghaoui et al. (2012) and later developed by
Ogawa et al. (2013); Wang et al. (2013); Xiang et al. (2016); Bonnefoy et al.
(2014); Fercoq et al. (2015); Ndiaye et al. (2017b), progressively remove features
from the problems in a backward approach,

• working sets techniques (Fan and Lv, 2008; Roth and Fischer, 2008; Kowalski
et al., 2011; Tibshirani et al., 2012; Johnson and Guestrin, 2015) solve a sequence
of smaller problems restricted to a growing number of features.

One common idea between the current state-of-art methods for screening (Gap Safe
rules, Fercoq et al. 2015; Ndiaye et al. 2017b) and working sets (Blitz, Johnson and
Guestrin 2015, 2018) is to use a dual point to identify useful features. The quality of
such a dual point is critical here as it has a direct impact on performance. However,

1throughout the chapter, this means cyclic and proximal coordinate descent unless specified other-
wise
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although a lot of attention has been devoted to creating a sequence of primal iterates
that converges fast to the optimum (Fercoq and Richtárik, 2015), the construction of
dual iterates has not been scrutinized, and the standard approach to obtain dual iterates
from primal ones (Mairal, 2010), although converging, is crude.

In this chapter, we propose a principled way to construct a sequence of dual points that
converges faster than the standard approach proposed by Mairal (2010). Based on an
extrapolation procedure inspired by Scieur et al. (2016), it comes with no significant
extra computational costs, while retaining convergence guarantees of the standard ap-
proach. We first introduced this construction for non-smooth optimization in Chapter 2
for the Lasso case only: here, we generalize it here to any Generalized Linear Model
(GLM). We properly define, quantify and prove the asymptotic Vector AutoRegressive
(VAR) behavior of dual iterates for sparse GLMs solved with proximal gradient descent
or cyclic coordinate descent. As for the Lasso, the resulting new construction:

• provides a tighter control of optimality through duality gap evaluation,

• improves the performance of Gap Safe rules,

• improves the aggressive use of Gap Safe screening rules proposed in Chapter 2,
thanks to better feature identification,

• is easy to implement and combine with other solvers.

The chapter proceeds as follows. We introduce the framework of `1-regularized GLMs
and duality in Section 3.2. We generalize the techniques of the previous chatper to
a variety of problems in Sections 3.3 and 3.4. Results of Section 3.5 demonstrate a
systematic improvement in computing time when dual extrapolation is used together
with Gap Safe rules or working set policies.

Notation The design matrix X ∈ Rn×p is composed of observations xi ∈ Rp stored
row-wise, and whose j-th column is X:j ∈ Rn; the vector y ∈ Rn (resp. {−1, 1}n) is the
response vector for regression (resp. binary classification).

The sigmoid function is σ : x 7→ 1/(1 + e−x). Applied to vectors, sign, σ and ST(·, ν)
(for ν ∈ R+) act element-wise.

3.2 GLMs, Vector AutoRegressive sequences and sign
identification

We consider the following optimization problem:

Definition 3.1 (Sparse Generalized Linear Model).

β̂ ∈ arg min
β∈Rp

n∑
i=1

fi(β
>xi) + λ‖β‖1︸ ︷︷ ︸
P(β)

, (3.1)

where all fi belong to Γ0(R) (see Definition 1.4), and are differentiable with 1/γ-
Lipschitz gradients. The parameter λ is a non-negative scalar, controlling the trade-off
between data fidelity and regularization.
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Two popular instances of Problem (3.1) are the Lasso (fi(t) = 1
2(yi − t)2, γ = 1) and

Sparse Logistic regression (fi(t) = log(1 + exp(−yit)), γ = 4).

Note that Problem (3.1) could be called “`1-regularized ERM” rather than GLM, since
all instances of ERM do not come from the Maximum Likelihood Estimator of a GLM
(see Problem (1.11) in Section 1.1.1). This is a misuse of language, originating from our
focus on Lasso and Sparse Logistic regression.

We could use a more complex regularizer in Problem (3.1), to handle group penalties
for example. For the sake of clarity we rather remain specific, and generalize to other
penalties when needed in Section 3.3.2.

Proposition 3.2 (Strong duality for sparse GLMs). A dual formulation of Prob-
lem (3.1) reads:

θ̂ = arg max
θ∈∆X

(
−

n∑
i=1

f∗i (−λθi)
)

︸ ︷︷ ︸
D(θ)

, (3.2)

where ∆X = {θ ∈ Rn : ‖X>θ‖∞ ≤ 1}. The dual solution θ̂ is unique because the f∗i ’s
are γ-strongly convex (see Proposition 1.9) and the KKT conditions read:

∀i ∈ [n], θ̂i = −f ′i(β̂>xi)/λ (link equation) (3.3)

∀j ∈ [p], X>:j θ̂ ∈ ∂|·|(β̂j) (subdifferential inclusion) (3.4)

If for u ∈ Rn we write F (u) ,
∑n

i=1 fi(ui), the link equation reads θ̂ = −∇F (Xβ̂)/λ.

For any (β, θ) ∈ Rp ×∆X , one has D(θ) ≤ P(β), and D(θ̂) = P(β̂). The duality gap
P(β)−D(θ) can thus be used as an upper bound for the sub-optimality of a primal vector
β: for any ε > 0, any β ∈ Rp, and any feasible θ ∈ ∆X :

P(β)−D(θ) ≤ ε⇒ P(β)− P(β̂) ≤ ε . (3.5)

These results hold because Problem (3.1) is unconstrained; and the convex objective
function has domain Rp (Boyd and Vandenberghe, 2004, §5.2.3); see Proposition 1.14
for the general framework of duality.

Remark 3.3. Equation (3.5) shows that even though β̂ is unknown in practice and the
sub-optimality gap cannot be evaluated, creating a dual feasible point θ ∈ ∆X allows to
construct an upper bound which can be used as a tractable stopping criterion.

In high dimension, solvers such as proximal gradient descent (PG) and coordinate des-
cent (CD) are slowed down due to the large number of features. However, by design of
the `1 penalty, β̂ is expected to be sparse, especially for large values of λ. Thus, a key
idea to speed up these solvers is to identify the support of β̂ so that features outside of
it can be safely ignored. Doing this leads to a smaller problem that is faster to solve.
Removing features when it is guaranteed that they are not in the support of the solution
is at the heart of the so-called Gap Safe Screening rules (Fercoq et al., 2015; Ndiaye
et al., 2017b).

Proposition 3.4 (Gap Safe Screening rule, (Ndiaye et al., 2017b, Thm. 6)). The Gap
Safe screening rule for Problem (3.1) reads:

∀j ∈ [p],∀(β, θ) ∈ Rp ×∆X , |X>:j θ| < 1− ‖X:j‖
√

2
γλ2 (P(β)−D(θ)) =⇒ β̂j = 0 .

(3.6)
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Therefore, while running an iterative solver and computing the duality gap at iteration
t, the criterion (3.6) can be tested for all features j, and the features guaranteed to be
inactive at optimum can be ignored in the subsequent iterations.

Equations (3.5) and (3.6) do not require a specific choice of θ, provided it is in ∆X . It is
up to the user and so far it has not attracted much attention in the literature. Thanks
to the link equation θ̂ = −∇F (Xβ̂)/λ, a natural way to construct a dual feasible point
θ(t) ∈ ∆X at iteration t, when only a primal vector β(t) is available, is:

θ(t)
res , −∇F (Xβ(t))/max(λ, ‖X>∇F (Xβ(t))‖∞) . (3.7)

As detailed in Chapter 2, this was coined residuals rescaling (Mairal, 2010) following the
terminology used for the Lasso case where −∇F (Xβ) is equal to the residuals, y−Xβ.
To improve the control of sub-optimality, and to better identify useful features, the aim
of our proposed dual extrapolation is to obtain a better dual point (closer to the optimum
θ̂). The idea is to do it at a low computational cost by exploiting the structure of the
sequence of dual iterates (Xβ(t))t∈N (and not the residuals as for the Lasso). Since
the gradient of F is not linear in general, the structure is not exactly a VAR as in
Definition 2.3.

Definition 3.5 (Asymptotic Vector AutoRegressive sequence). We say that the se-
quence (r(t))t∈N, converging to r̂, is an asymptotic VAR sequence if there exist A ∈ Rn×n
and b ∈ Rn such that for t ∈ N:

r(t+1) −Ar(t) − b = o(r(t) − r̂) . (3.8)

Finally, we state the results on sign identification, which implies support identification.
For these results, which connect sparse GLMs to VAR sequences and extrapolation, we
need to make the following assumption.

Assumption 3.6. The solution of Problem (3.1) is unique.

Assumption 3.6 may seem stringent, as whenever p > n the loss function P is not strictly
convex and several global minima may exist. However, following earlier results by Rosset
et al. (2004), Tibshirani (2013) showed that when the entries of X are sampled from a
continuous distribution, Assumption 3.6 is satisfied almost surely. It is also worth noting
that other works on support identification (Nutini et al., 2017; Sun et al., 2019; Poon
et al., 2018) involve a non-degeneracy condition which boils down to Assumption 3.6 in
our case. Motivated by practical applications on real-life datasets, we will therefore use
Assumption 3.6.

In the following, we extend results by Hale et al. (2008) about sign identification from
proximal gradient to coordinate descent.

Theorem 3.7 (Sign identification for proximal gradient and coordinate descent). Let
Assumption 3.6 hold. Let (β(t))t∈N be the sequence of iterates converging to β̂ and
produced by proximal gradient descent or coordinate descent when solving Problem (3.1)
(reminded in lines 10 and 13 of Algorithm 3.1).

There exists T ∈ N such that: ∀j ∈ [p], t ≥ T =⇒ sign(β
(t)
j ) = sign(β̂j). The smallest

epoch T for which this holds is when sign identification is achieved.
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Proof For lighter notation in this proof, we denote lj = ‖X:j‖2/γ and hj(β) = βj −
1
lj
X>:j∇F (Xβ). For j ∈ [p], the subdifferential inclusion (3.4) reads:

−
X>:j∇F (Xβ̂)

λ
∈


{1} , if β̂j > 0 ,

{−1} , if β̂j < 0 ,

[−1, 1] , if β̂j = 0 .

(3.9)

Motivated by these conditions, the equicorrelation set introduced by Tibshirani (2013)
is:

E , {j ∈ [p] : |X>:j∇F (Xβ̂)| = λ} = {j ∈ [p] : |X>:j θ̂| = 1} . (3.10)

We introduce the saturation gap associated to Problem (3.1):

δ̂ , min

λ

lj

(
1−
|X>:j∇F (Xβ̂)|

λ

)
: j /∈ E

 = min

{
λ

lj

(
1− |X>:j θ̂|

)
: j /∈ E

}
> 0 .

(3.11)

As θ̂ is unique, δ̂ is well-defined, and strictly positive by definition of E. By Equa-
tion (3.9), the support of any solution is included in the equicorrelation set and we have
equality for almost every λ since we assumed that the solution is unique (Tibshirani,
2013, Lemma 13) – the non equality holding only at the kinks of the Lasso path, which
we exclude from our analysis.

Because of Assumption 3.6, we only need to show that the coefficients outside the
equicorrelation eventually vanish. The proof requires to study the primal iterates after
each update (instead of after each epoch), hence we use the notation β̃(s) for the primal
iterate after the s-th update of coordinate descent. This update only modifies the j-th
coordinate, with s ≡ j − 1 mod p :

β̃
(s+1)
j = ST

(
hj(β̃

(s)), λlj

)
. (3.12)

Note that at optimality, for every j ∈ [p], one has:

β̂j = ST

(
hj(β̂), λlj

)
. (3.13)

Let us consider an update s ∈ N of coordinate descent such that the updated coordinate
j verifies β̃(s+1)

j 6= 0 and j /∈ E, hence, β̂j = 0. Then:

|β̃(s+1)
j − β̂j | =

∣∣∣∣ ST
(
hj(β̃

(s)), λlj

)
− ST

(
hj(β̂), λlj

)∣∣∣∣
≤
∣∣∣hj(β̃(s))− hj(β̂)

∣∣∣− ( λlj − |hj(β̂)|
)
, (3.14)

where we used the following inequality (Hale et al., 2008, Lemma 3.2):

ST(x, ν) 6= 0,ST(y, ν) = 0 =⇒ |ST(x, ν)− ST(y, ν)| ≤ |x− y| − (ν − |y|) . (3.15)

Now notice that by definition of the saturation gap (3.11), and since j /∈ E :

λ

lj

(
1−
|X>:j∇F (Xβ̂)|

λ

)
≥ δ̂ ,

that is,
λ

lj
− |hj(β̂)| ≥ δ̂ (using β̂j = 0) . (3.16)
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Algorithm 3.1 PG/cyclic CD for Problem (3.1) with dual extrapolation

input : X = [x1| . . . |xp], y, λ, β(0), ε
param: T,K = 5, fdual = 10
init : Xβ = Xβ(0), θ(0) = −∇F (Xβ(0))/max(λ, ‖X>∇F (Xβ(0))‖∞)

1 for t = 1, . . . , T do
2 if t = 0 mod fdual then // compute θ and gap every f epoch only

3 t′ = t/fdual // dual point indexing

4 r(t′) = Xβ

5 compute θ(t′)
res and θ(t′)

accel with Equations (2.25), (2.26) and (3.7)

6 θ(t′) = arg max

{
D(θ) : θ ∈ {θ(t′−1), θ

(t′)
accel, θ

(t′)
res }

}
// robust dual extr. with

(2.27)
7 if P(β(t))−D(θ(t′)) < ε then break
8 if PG then // proximal gradient descent:

9 Xβ = Xβ(t)

10 β(t+1) = ST

(
β(t) − γ

‖X>X‖2
X>∇F (Xβ), λγ

‖X>X‖2

)
11 else if CD then // cyclic coordinate descent:

12 for j = 1, . . . , p do

13 β
(t+1)
j = ST

(
β

(t)
j −

γX>:j∇F (Xβ)

‖X:j‖2 ), γλ
‖X:j‖2

)
14 Xβ += (β

(t+1)
j − β(t)

j )X:j

15 return β(t), θ(t′)

Combining Equations (3.14) and (3.16) yields

|β̃(s+1)
j − β̂j | ≤ |hj(β̃(s))− hj(β̂)| − δ̂ . (3.17)

This can only be true for a finite number of updates, since otherwise taking the limit
would give 0 ≤ −δ̂, and δ̂ > 0 (Equation (3.11)). Therefore, after a finite number of
updates, β̃(s)

j = 0 for j /∈ E.

For j ∈ E, β̂j 6= 0 by Assumption 3.6, so β(t)
j has the same sign eventually since it

converges to β̂j .

The proof for proximal gradient descent is a result of Hale et al. (2008, Theorem 4.5),
who provide the bound T ≤ ‖β̃(s) − β̂‖22/δ̂2.

Equipped with these definitions, we can highlight and exploit the regularity of the dual
iterates.

3.3 Generalized linear models

3.3.1 Coordinate descent for `1 regularization

Theorem 3.8 (VAR for coordinate descent and Sparse GLM). When Problem (3.1) is
solved by cyclic coordinate descent, the dual iterates (Xβ(t))t∈N form an asymptotical
VAR sequence.
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Proof As in the proof of Theorem 2.6, we place ourselves in the identified sign regime,
and consider only one epoch t of CD: let β̃(0) denote the value of the primal iterate
at the beginning of the epoch (β̃(0) = β(t)), and for s ∈ [S], β̃(s) ∈ Rp denotes its
value after the js coordinate has been updated (β̃(S) = β(t+1)). Recall that in the
framework of Problem (3.1), the data-fitting functions fi have 1/γ-Lipschitz gradients,
and ∇F (u) = (f ′1(u1), . . . , f ′n(un)).

For s ∈ [S], β̃(s) and β̃(s−1) are equal everywhere except at entry js, for which the
coordinate descent update with fixed step size γ

‖X:js‖2
is:

β̃
(s)
js

= ST

(
β̃

(s−1)
js

− γ
‖X:js‖2

X>:js∇F (Xβ̃(s−1)), γ
‖X:js‖2

λ

)
= β̃

(s−1)
js

− γ
‖X:js‖2

X>:js∇F (Xβ̃(s−1))− γ
‖X:js‖2

λ sign(β̂js) . (3.18)

Therefore,

Xβ̃(s) −Xβ̃(s−1) = X:js

(
β̃

(s)
js
− β̃(s−1)

js

)
= X:js

(
− γ
‖X:js‖2

X>:js∇F (Xβ̃(s−1))− γ
‖X:js‖2

λ sign(β̂js)

)
. (3.19)

Using point-wise linearization of the function ∇F around Xβ̂, we have:

∇F (Xβ) = ∇F (Xβ̂) +D(Xβ −Xβ̂) + o(Xβ −Xβ̂) , (3.20)

where D , diag(f ′′1 (β̂>x1), . . . , f ′′n(β̂>xn)) ∈ Rn×n. Therefore:

Xβ̃(s) =

(
Idn− γ

‖X:js‖2
X:jsX

>
:jsD

)
Xβ̃(s−1)

+ γ
‖X:js‖2

(
X>:js(DXβ̂ −∇F (Xβ̂))− λ sign(β̂js)

)
X:js + o(Xβ̃(s) −Xβ̂) .

D1/2Xβ̃(s) =

(
Idn− γ

‖X:js‖2
D1/2X:jsX

>
:jsD

1/2

)
︸ ︷︷ ︸

As

D1/2Xβ̃(s−1)

+ γ
‖X:js‖2

X>:js(DXβ̂)D1/2X:js︸ ︷︷ ︸
bs

+ o(Xβ̃(s) −Xβ̂) , (3.21)

since the subdifferential inclusion (3.4) gives −X>:js∇F (Xβ̂) − λ sign(β̂js) = 0. Thus
(D1/2Xβ(t))t∈N is an asymptotical VAR sequence:

D1/2Xβ(t+1) = AS . . . A1D
1/2Xβ(t) + bS + . . .+AS . . . A2b1 + o(Xβ(t)−Xβ̂) , (3.22)

and so is (Xβ(t))t∈N:

Xβ(t+1) = D−
1
2AS . . . A1D

1
2︸ ︷︷ ︸

A

Xβ(t) +D−
1
2 (bS + . . .+AS . . . A2b1)︸ ︷︷ ︸

b

+o(Xβ(t) −Xβ̂) .

(3.23)
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Proposition 3.9. As in Lemmas 2.9 and 2.10, for the VAR parameters A and b
defined in Equation (3.23), 1 is the only eigenvalue of A whose modulus is 1 and
b ⊥ Ker(Idn−A).

Proof First, notice that as in the Lasso case, we have Idn � As � 0. Indeed, because
f ′′i takes values in ]0, 1/γ[, D1/2 exists and 1√

γ Idn � D1/2 � 0. For any u ∈ Rn,

u>D1/2X:jsX
>
:jsD

1/2u = (X>:jsD
1/2u)2 ≥ 0, (3.24)

and X>:jsD
1/2u ≤ ‖X:js‖‖D1/2u‖

≤ ‖X:js‖‖D1/2‖‖u‖
≤ 1√

γ ‖X:js‖‖u‖ , (3.25)

thus ‖X:js‖2
γ Idn � D1/2X:jsX

>
:js
D1/2 � 0 and Idn � As � 0.

However, contrary to the Lasso case, because ‖D1/2X:js‖ 6=
√
γ‖X:js‖, As is not the

orthogonal projection on (SpanD1/2X:js)
⊥. Nevertheless, we still have As = A>s ,

‖As‖ ≤ 1, and for v ∈ Rn, Asv = v means that v>D1/2X:js = 0, so the proof of
Lemma 2.9 can be applied to show that the only eigenvalue of AS . . . A1 which has
modulus 1 is 1. Then, observing that A = D−1/2AS . . . A1D

1/2 has the same spectrum
as AS . . . A1 concludes the first part of the proof.

For the second result, let v ∈ Ker(Idn−A), i.e., Av = v, hence AS . . . A1D
1/2v =

D1/2Av = D1/2v. Therefore D1/2v is a fixed point of AS . . . A1, and as in the Lasso
case this means that for all s ∈ [S], AsD1/2v = D1/2v and (D1/2v)>D1/2X:js = 0. Now
recall that

b = D−1/2(bS + . . .+AS . . . A2b1) , (3.26)

bs = γ
‖X:js‖2

(
X>:js(DXβ̂ −∇F (Xβ̂))− λ sign(β̂js)

)
D1/2X:js

= γ
‖X:js‖2

(X>:jsDXβ̂)D1/2X:js . (3.27)

Additionally, v>D−1/2AS . . . As+1bs = (As+1 . . . ASD
−1/2v)>bs = (D−1/2v)>bs = 0.

Hence v is orthogonal to all the terms which compose b, hence v>b = 0.

Theorem 3.8 and Proposition 3.9 show that we can construct an extrapolated dual
point for any sparse GLM, by extrapolating the sequence (r(t) = Xβ(t))t∈N with the
construction of Equation (2.25), and creating a feasible point with:

θ
(t)
accel , −∇F (r

(t)
accel)/max(λ, ‖X>∇F (r

(t)
accel)‖∞) . (3.28)

3.3.2 Multitask Lasso

Let q ∈ N be a number of tasks, and consider an observation matrix Y ∈ Rn×q, whose
i-th row is the target in Rq for the i-th sample.

Definition 3.10. The multitask Lasso estimator is defined as the solution of:

B̂ ∈ arg min
B∈Rn×q

1

2

∥∥Y −XB
∥∥2

F
+ λ

∥∥B
∥∥

2,1
. (3.29)
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Let j1 < · · · < jS denote the (row-wise) support of B̂, and let t denote an iteration after
support identification. Note that the guarantees of support identification for multitask
Lasso requires more assumptions than the case of the standard Lasso. In particular it
requires a source condition which depends on the design matrix X. This was investig-
ated for instance by Vaiter et al. (2018) when considering a proximal gradient descent
algorithm.

Let B(0) = B(t), and for s ∈ [S], let B(s) denote the primal iterate after coordinate js
has been updated. Let s ∈ [S], with B(s) and B(s−1) being equal everywhere, except
for their js row for which one iteration of proximal block coordinate descent gives
φ(B) , Bjs + 1

‖X:js‖2
X>:js(Y −XB) ∈ R1×q:

B
(s)
js:

=

(
1− λ/‖X:js‖2
‖φ(B(s−1))‖

)
φ(B(s−1)) . (3.30)

Hence

XB(s) −XB(s−1) = X:js(B
(s)
js:
− B

(s−1)
js:

)

= X:js

(
1

‖X:js‖2
X>:js(Y −XB(s−1))− λ/‖X:js‖2

‖φ(B(s−1))‖φ(B(s−1))

)
.

(3.31)

We are unable to show that (Xβ(t))t∈N is an asymptotic VAR sequence, because the
term φ(B)/‖φ(B)‖ cannot be linearized with respect to XB directly. Introducing Ψ ,
e>js − 1

‖X:js‖2
X>:jsX, so that φ(B) = φ(B̂) + Ψ(B− B̂), one has the following linearization

though:

φ(B)

‖φ(B)‖ =
φ(B̂)

‖φ(B̂)‖
+

1

‖φ(B̂)‖

(
Ψ(B− B̂)− Ψ(B− B̂)φ(B̂)>φ(B̂)

‖φ(B̂)‖2

)
+ o(B− B̂) ,

(3.32)

which does not allow to exhibit a VAR structure, as B should appear only on the right.

Despite the latter negative result, empirical results of Section 3.5 show that dual ex-
trapolation still provides a tighter dual point in the identified support regime. Celer
empirical adaptation to multitask Lasso consists in using d(t)

j = (1− ‖X>:j Θ(t)‖)/‖X:j‖
with the dual iterate Θ(t) ∈ Rn×q. The inner solver is cyclic block coordinate des-
cent (BCD), and the extrapolation coefficients are obtained by solving Equation (2.14),
which is an easy to solve matrix least-squares problem.

3.4 Working sets

Being able to construct a better dual point leads to a tighter gap and a smaller upper
bound in Equation (3.6), hence to more features being discarded and a greater speed-
up for Gap Safe screening rules. As we detail in this section, it also helps to better
prioritize features, and to design an efficient working set policy.

3.4.1 Improved working sets policy

In the context of this manuscript, a working set approach starts by solving Problem (3.1)
restricted to a small set of featuresW(0) ⊂ [p] (the working set), then defines iteratively
new working setsW(t) and solves a sequence of growing problems (Kowalski et al., 2011;
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Boisbunon et al., 2014; Santis et al., 2016). It is easy to see that when W(t) ( W(t+1)

and when the subproblems are solved up to the precision required for the whole problem,
then working sets techniques converge.

It is easy to see that every screening rule which writes:

∀j ∈ [p], dj > τ ⇒ β̂j = 0 , (3.33)

allows to define a working set policy. For example for Gap Safe rules,

dj = dj(θ) ,
1− |X>:j θ|
‖X:j‖

, (3.34)

is defined as a function of a dual point θ ∈ ∆X . The value dj can be seen as measuring
the importance of feature j, and so given an initial size p(1) the first working set can be
defined as:

W(1) = {j1, . . . , jp(1)} , (3.35)

with dj1(θ) ≤ · · · ≤ dj
p(1)

(θ) < dj(θ), ∀j /∈ W(0), i.e., the indices of the p(1) smallest

values of d(θ). As in Figure 1.7, this is an abuse of notation, as j1 should be j(1)
1

to highlight the dependency on the iteration. The latter notation unfortunately leads
to the rather inelegant notation d

j
(1)

p(1)

, therefore we take the liberty of omitting the

exponent notation in j1, . . . , jp(1) . The reader should keep in mind that j1, etc. are
overwritten at each iteration.

Once the working set has been defined, the subproblem solver is launched on XW(1) .
New primal and dual iterates are returned, which allow to recompute dj ’s and define
iteratively:

W(t+1) = {j1, . . . , jp(t+1)} , (3.36)

where we impose dj(θ) = −1 when β
(t)
j 6= 0 to keep the active features in the next

working set. As in Chapter 2, we choose p(t) = min(p, 2‖β(t)‖0) to ensure a fast initial
growth of the working set, and avoid growing too much when the support is nearly
identified. The stopping criterion for the inner solver on W(t) is to reach a gap lower
than a fraction ρ = 0.3 of the duality gap for the whole problem, P(β(t))−D(θ(t)). These
adaptive working set policies are commonly used in practice (Johnson and Guestrin,
2015, 2018).

The results of Section 3.3 justify the use of dual extrapolation for any sparse GLM, thus
enabling us to generalize Celer to the whole class of models (Algorithm 3.2).

3.4.2 Newton-Celer

When using a squared `2 loss, the curvature of the loss is constant: for the Lasso and
multitask Lasso, the Hessian does not depend on the current iterate. This is however
not true for other GLM data fitting terms, e.g., Logistic regression, for which taking
into account the second order information proves to be very useful for fast convergence
(Hsieh et al., 2014). To leverage this information, we can use a prox-Newton method
(Lee et al., 2012; Scheinberg and Tang, 2013) as inner solver; an advantage of dual
extrapolation is that it can be combined with any inner solver, as we detail below.
For reproducibility and completeness, we first briefly detail the Prox-Newton procedure
used. In the following and in Algorithms 3.4 to 3.6 we focus on a single subproblem
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Algorithm 3.2 Celer for Problem (3.1)
input : X, y, λ, β(0), θ(0)

param: K = 5, p(1) = 100, ε, MAX_WS
init : W(0) = ∅

1 if β(0) 6= 0p then p(1) = | supp(β(0))| // warm start

2 for t = 1, . . . , MAX_WS do
3 compute θ(t)

res // Equation (3.7)

4 if solver is Prox-Celer then
5 do K passes of CD on the support of β(t), extrapolate to produce θ(t−1)

accel

6 θ
(t−1)
inner = arg max

θ∈{θ(t−1),θ
(t−1)
inner }

D(θ)

7 θ(t) = arg max
θ∈{θ(t−1),θ

(t−1)
inner ,θ

(t)
res}
D(θ)

8 g(t) = P(β(t−1))−D(θ(t)) // global gap

9 if g(t) ≤ ε then break
10 ε(t),W(t) = create_WS() // get tolerance and working set with Algorithm 3.3

// Subproblem solver is Algorithm 3.1 or 3.4 for Prox-Celer:

11 get β̃(t), θ
(t)
inner with subproblem solver applied to (XW(t) , y, λ, (β(t−1))W(t) , ε(t))

12 θ
(t)
inner = θ

(t)
inner/max(1, ‖X>θ(t)

inner‖∞)

13 set β(t) = 0p and (β(t))W(t) = β̃(t)

14 return β(t), θ(t)

Algorithm 3.3 create_WS

input : X, y, λ, β(t−1), θ(t),W(t−1), g(t)

param: p(1) = 100, ρ = 0.3
init : d = 0p

1 for j = 1, . . . , p do
2 if β

(t−1)
j 6= 0 then d

(t)
j = −1

3 else d(t)
j = (1− |X>:j θ(t)|)/‖X:j‖

4 ε(t) = ρg(t)

5 if t ≥ 2 then p(t) = min(2‖β(t−1)‖0, p)
6 W(t) = {j ∈ [p] : d

(t)
j among p(t) smallest values of d(t)}

7 return ε(t),W(t)

optimization, so for lighter notation we assume that the design matrix X is already
restricted to features in the working set. The reader should be aware that in the rest
of this section, β, X and p in fact refers to βW(t) , X:W(t) , and p(t).

Writing the data-fitting term f(β) = F (Xβ), we have ∇2f(β) = X>DX, where D ∈
Rn×n is diagonal with f ′′i (β>xi) as its i-th diagonal entry. Using H = ∇2f(β(t)) we can
approximate the primal objective by2:

f(β(t)) +∇f(β(t))>(β − β(t)) +
1

2
(β − β(t))>H(β − β(t)) + λ

∥∥β∥∥
1
. (3.37)

2H and D should read H(t) and D(t) as they depend on β(t); we omit the exponent for brevity.
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Algorithm 3.4 Prox-Newton subproblem solver (illustrated on logistic regres-
sion)
input : X = [X:1| . . . |X:p] ∈ Rn×p, y ∈ Rn, λ, β(0) ∈ Rp, ε
param: MAX_CD = 20, MAX_BACKTRACK = 10,K = 5
init : ∆β = 0p, X∆β = 0n, θ

(0) = 0n, D = 0n×n, L = 0p,
1 for t = 1, . . . , T do
2 for i = 1, . . . , n do Dii = f ′′i (β>xi)

(
= exp(yiβ

>xi)/(1 + exp(yiβ
>xi))

2
)

3 for j = 1, . . . , p do Lj = 〈X:j , X:j〉D
(

=
∑n

i=1 x
2
ijexp(yiβ

>xi)/(1 + exp(yiβ
>xi))

2
)

4 if t = 1 then MAX_CD = 1
5 else MAX_CD = 20

6 ∆β = newton_direction(X, y, β(t−1), D, L = (L1, . . . , Lp), MAX_CD)

7 α(t) = backtracking(∆β,X∆β, y, λ, MAX_BACKTRACK)

8 β(t) = β(t−1) + α(t) ×∆β

9 θ
(t)
res = −∇F (Xβ(t))/λ

(
= −y/(λ1n + λ exp(y �Xβ(t)))

)
10 θ

(t)
res = θ

(t)
res/max(1, ‖X>θ(t)

res‖∞)

11 θ(t) = arg maxθ∈{θ(t−1),θres}D(θ)

12 if P(β(t))−D(θ(t)) < ε then
13 break
14 return β(t), θ(t)

Algorithm 3.5 newton_direction (illustrated on logistic regression)
input : X = [X:1| . . . |X:p] ∈ Rn×p, y ∈ Rn, β ∈ Rp, D ∈ Rn×n, L ∈ Rp, MAX_CD
param: ε, MIN_CD = 2
init : ∆β = 0p, X∆β = 0n

1 for k = 1, . . . , MAX_CD do
2 τ = 0 // stopping condition

3 for j = 1, . . . , p do
4 uj = βj + (∆β)j

5 ũj = ST

(
βj + (∆β)j − 1

Lj

(
X>:j∇F (Xβ(t))− 〈X:j , X∆β〉D

)
, λLj

)
// see (3.41)

6 (∆β)j = ũj − βj
7 X∆β += (ũj − uj)X:j

8 τ += (ũj − uj)2 × L2
j

9 if τ ≤ ε and k ≥ MIN_CD then break
10 return ∆β

Minimizing this approximation yields the direction ∆(t) for the proximal Newton step:

∆(t) + β(t) = arg min
β

1

2

∥∥∥β − β(t) +H−1∇f(β(t))
∥∥∥2

H
+ λ

∥∥β∥∥
1
. (3.38)

Then, a step size α(t) is found by backtracking line search (Algorithm 3.6), and:

β(t+1) = β(t) + α(t)∆(t) . (3.39)
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Solving (3.38) amounts to solving the following Lasso problem:

u = arg min
u

1

2
‖ỹ − X̃u‖22 + λ ‖u‖1 , (3.40)

where X̃ = D1/2X, ỹ = D1/2Xβ(t)−D−1/2X†>X>∇F (Xβ(t)) and X† is the pseudoin-
verse of X. While this may seem costly computationally, it turns out that the terms
X†, ỹ and X̃ are not needed to solve (3.40) with coordinate descent. A coordinate
descent update for (3.40) reads:

uj ← ST

(
uj +

1

lj
X̃>:j

(
ỹ − X̃u

)
,
λ

lj

)
, (3.41)

where

X̃>:j (ỹ − X̃u) = X>:jDXβ
(t) −X>:j∇F (Xβ(t))−X>:jDXu , (3.42)

lj = X>:jDX:j . (3.43)

Indeed, the update only involves X, y and inner products weighted by D. The algorithm
is summarized in Algorithm 3.5.

Contrary to coordinate descent, Newton steps do not lead to an asymptotic VAR, which
is required to guarantee the success of dual extrapolation. To address this issue, we
compute K passes of cyclic coordinate descent restricted to the support of the current
estimate β before defining a working set (Algorithm 3.2, line 5). The K values of
Xβ obtained allow for the computation of both θaccel and θres. The motivation for
restricting the coordinate descent to the support of the current estimate β comes from
the observation that dual extrapolation proves particularly useful once the support
is identified. The Prox-Newton solver we use is detailed in Algorithm 3.4. When
Algorithm 3.2 is used with Algorithm 3.4 as inner solver, we refer to it as the Newton-
Celer variant.

Values of parameters and implementation details In practice, Prox-Newton im-
plementations such as GLMNET (Friedman et al., 2010), newGLMNET (Yuan et al.,
2012) or QUIC (Hsieh et al., 2014) only solve the direction approximately in Equa-
tion (3.38). How inexactly the problem is solved depends on some heuristic values.
For reproducibility, we expose the default values of these parameters as inputs to the
algorithms. Importantly, the variable MAX_CD is set to 1 for the computation of the first
Prox-Newton direction. Experiments have indeed revealed that a rough Newton direc-
tion for the first update was sufficient and resulted in a substantial speed-up. Other
parameters are set based on existing Prox-Newton implementations such as Blitz.

3.5 Experiments

In this section, we numerically illustrate the benefits of dual extrapolation on vari-
ous data sets. Implementation is done in Python, Cython (Behnel et al., 2011) and
numba (Lam et al., 2015) for the low-level critical parts. The solvers exactly follow the
scikit-learn API (Pedregosa et al., 2011; Buitinck et al., 2013), so that Celer can be
used as a drop-in replacement in existing code. The package is available under BSD3
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Algorithm 3.6 backtracking (illustrated on logistic regression)
input : ∆β,X∆β, λ
param: MAX_BACKTRACK = 20
init : α = 1

1 for k = 1, . . . , MAX_BACKTRACK do
2 δ = 0
3 for j = 1, . . . , p do
4 if βj + α× (∆β)j < 0 then δ −= λ(∆β)j
5 else if βj + α× (∆β)j > 0 then δ += λ(∆β)j

6 else if βj + α× (∆β)j = 0 then δ −= λ
∣∣∣(∆β)j

∣∣∣
7 θ = ∇F (Xβ + α×X∆β)

(
= −y � σ(−y � (Xβ + α×X∆β))

)
8 δ += (X∆β)>θ
9 if δ < 0 then break

10 else α = α/2

11 return α

license at https://github.com/mathurinm/celer, with documentation and examples
at https://mathurinm.github.io/celer.

In all this section, the estimator-specific λmax refers to the smallest value giving a null
solution (for instance λmax = ‖X>y‖∞ in the Lasso case).

Table 3.1 – Characteristics of datasets used

name n p q density

leukemia 72 7129 - 1
news20 19 996 632 983 - 6.1 10−4

rcv1_train 20 242 19 960 - 3.7 10−3

Finance 16 087 1 668 738 - 3.4 10−3

Magnetoencephalography (MEG) 305 7498 49 1

3.5.1 Illustration of dual extrapolation

For the Lasso (Figure 3.1a), Logistic regression (Figure 3.1b) and Multitask Lasso (Fig-
ure 3.1c), we illustrate the applicability of dual extrapolation. For all problems, the
figures show that θaccel gives a better dual objective after sign identification. They also
show that the behavior is stable before identification. The peaks correspond to numer-
ical errors. We choose to present the bare result of extrapolation, but peaks would not
appear if we applied the robustifying procedure (2.27), as it forces the dual objective
to be monotonic.

In particular, Figure 3.1c shows that dual extrapolation works in practice for the Mul-
titask Lasso, even though there is no such result as sign identification, and we are not
able to exhibit a VAR behavior for (XB(t))t∈N.

https://github.com/mathurinm/celer
https://mathurinm.github.io/celer
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D(θ̂)−D(θ
(t)
res) D(θ̂)−D(θ

(t)
accel)
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(a) Lasso, on leukemia for λ = λmax/5.
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(b) Log. reg., on leukemia for λ = λmax/10.
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(c) Multitask Lasso, on MEG data for λ = λmax/20.

Figure 3.1 – Dual objectives with classical and proposed approach, for Lasso (top),
Logistic regression (middle), Multitask Lasso (bottom). The dashed line marks sign
identification (support identification for Multitask Lasso).

3.5.2 Improved screening and working set policy

In order to have a stopping criterion scaling with n, the solvers are stopped when the
duality gap goes below ε× F (0n).

Logistic regression

In this section, we evaluate separately the first order solvers (Gap Safe, Gap Safe with
extrapolation, Celer with coordinate descent as inner solver), and the Prox-Newton
solvers: Blitz, Newton-Celer with working set but without using dual extrapolation
(PN WS), and Newton-Celer.

GSR GGSR + extr. Celer w/o extr. Celer
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Figure 3.2 – Time to compute a Logistic regression path from λmax to λmax/100 on the
news20 dataset (left: coarse grid of 10 values, right: fine grid of 100 values). λmax/100
gives 5319 non-zero coefficients.

Figure 3.2 shows that when cyclic coordinate descent is used, extrapolation improves the
performance of screening rules, and that using a dual-based working set policy further
reduces the computational burden.

Figure 3.3 shows the limitation of dual extrapolation when second order information
is taken into account with a Prox-Newton: because the Prox-Newton iterations do not
create a VAR sequence, it is necessary to perform some passes of coordinate descent to
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Figure 3.3 – Time to solve a Logistic regression problem for different values of λ, on the
rcv1 dataset (ε = 10−6).

create θaccel, as detailed in Section 3.4.2. This particular experiment reveals that this
additional time unfortunately mitigates the gains observed in better working sets and
stopping criterion.

Multitask Lasso

The data for this experiment uses magnetoencephalography (MEG) recordings which are
collected for neuroscience studies. Here we use data from the sample dataset of the MNE
software (Gramfort et al., 2014). Data were obtained using auditory stimulation. There
are n = 305 sensors, p = 7498 source locations in the brain, and the measurements are
time series of length q = 49. Using a Multitask Lasso formulation allows to reconstruct
brain activitiy exhibiting a stable sparsity pattern across time (Gramfort et al., 2012).
The inner solver for Celer is block coordinate descent, which is also used for the Gap
Safe solver (Ndiaye et al., 2015).
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Figure 3.4 – Time to compute a Multitask Lasso path from λmax to λmax/100 on MEG
data (left: coarse grid of 10 values, right: fine grid of 100 values). λmax/100 gives 254
non-zero rows for B̂.

While Figure 3.1c showed that for the Multitask Lasso the dual extrapolation perform-
ance also gives an improved duality gap, here Figure 3.4 shows that the working set
policy of Celer performs better than Gap Safes rules with strong active warm start. We
could not include Blitz in the benchmark as there is no standard public implementation
for this problem.
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3.6 Conclusion

In this chapter, we have generalized the dual extrapolation procedure for the Lasso
(Celer) to any `1- regularized GLM, in particular sparse Logistic regression. We have
provided theoretical guarantees based on sign identification of coordinate descent. Ex-
periments show that dual extrapolation yields more efficient Gap Safe screening rules
and working sets solver. Finally, we have adapted Celer to make it compatible with
prox-Newton solvers, and empirically demonstrated its applicability to the Multi-task
Lasso.

These speed improvements are applicable tp the state-of-the-art MxNE approach used
for the bio-magnetic inverse problem. We now consider potentially more refined mod-
eling of the noise structure in this problem.
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4
Concomitant estimation in multitask and

multirepetition framework
It’s looks (sic) like a bird, but, it’s not a bird.
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Lasso-type estimators help to fight the statistical curses of high dimension by per-
forming variable selection. When the noise variance is constant, the regularization
parameter for which statistical analysis of the Lasso holds is a linear function of the
noise standard deviation, which is often unknown in practice. A way to address this
dependency is to consider estimators such as the Concomitant Lasso, which jointly
optimize over the regression coefficients and the noise level. In applications such as
magneto-electroencephalography (M/EEG) where the observations are pooled from dif-
ferent sources to increase sample size, noise levels differ and the homoscedastic assump-
tion of concomitant estimators no longer holds. More complex model are then needed,
but the averaging step performed to reduce the noise variance dramatically reduces
sample sizes, preventing finer modeling of the noise structure.

In this chapter, we provide new statistical and computational solutions to perform
regression with correlated Gaussian noise, in the multitask, multirepetition context of
M/EEG. We derive two joint estimators of the regression coefficients and the square root
of the noise covariance matrix, computable via a jointly convex optimization problem.
Joint convexity allows the estimators to be approximately computed easily with off-the-
shelf optimization techniques, a notable asset compared to existing non-convex or hard
to solve approaches. In particular, the block-coordinate descent techniques used in the
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alternate minimization are amenable to the improvements introduced in Part I. As a
theoretical analysis, we connect our optimization problem to the use of nuclear norm
as a datafitting term, through the theory of smoothing.
This chapter covers the following publications:

• M. Massias, O. Fercoq, A. Gramfort, and J. Salmon. Generalized concomitant
multi-task Lasso for sparse multimodal regression. In AISTATS, pages 998–1007,
2018a

• Q. Bertrand*, M. Massias*, A. Gramfort, and J. Salmon. Handling correlated
and repeated measurements with the smoothed Multivariate square-root Lasso.
In NeurIPS, 2019

4.1 Introduction

In many statistical applications, the number of parameters p is much larger than the
number of observations n. A popular approach to tackle regression problems in such
conditions is to consider convex `1-type penalties, as popularized by Tibshirani (1996).
The use of these penalties relies on a regularization parameter λ trading data fidelity
versus sparsity, which requires careful tuning. Unfortunately, Bickel et al. (2009) showed
that, in the case of homoscedastic Gaussian noise, the optimal λ linearly depends on the
standard deviation of the noise – the noise level. Because the latter is rarely known in
practice, one can jointly estimate the noise level and the regression coefficients, following
pioneering work on concomitant estimation (Huber and Dutter, 1974; Huber, 1981).
Adaptations to sparse regression have been analyzed under the names of square-root
Lasso (Belloni et al., 2011) or Scaled Lasso (Sun and Zhang, 2012). Alternatively,
Städler et al. (2010) considered a joint penalized maximum likelihood approach, using
a change of variable to avoid minimization of a non-convex function.

The Concomitant Lasso (Owen, 2007) is jointly convex and admits a “smooth + prox-
imable” structure for the minimization over the regression coefficients. This makes it
easy to solve in practice, even in high dimension: while solvers for the “non-smooth +
non-smooth” square-root Lasso relied on second order cone programming (Becker et al.,
2011), the concomitant solver of Ndiaye et al. (2017a) relies on coordinate descent. It
scales gracefully with the dimension p thanks to the use of screening rules (El Ghaoui
et al., 2012; Fercoq et al., 2015), making it as fast as a pure Lasso solver.

In the aforementioned contributions, the noise parameter is a single scalar, the variance.
Yet, in M/EEG and other applied settings, data of different natures or from different
sources must be aggregated to increase the number of observations and improve per-
formance. This often leads to correlation and magnitude variation in the noise: the
data may be contaminated with non-white noise (see the statistical analysis of Daye
et al. 2012; Wagener and Dette 2012; Kolar and Sharpnack 2012 for non-uniform noise
levels).

Wagener and Dette (2012) proposed to estimate the variance with a preliminary adapt-
ive Lasso step, and correct the data-fitting term in a second step. Other works model
the log-variance as a linear combination of the features, leading to non-convex object-
ive functions without convergence guarantees. Solvers considered for such approaches
require alternate minimization (Kolar and Sharpnack, 2012), possibly in an iterative
fashion (Daye et al., 2012), a notable difference with the jointly convex formulation
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proposed here, for which one can control global optimality with duality gap certificates.

In our application, the (far from scalar!) structure of the noise covariance of M/EEG
data is illustrated in Figure 1.9 (page 34), where we can also see that EEG noise has a
standard deviation of the order of a few µV, while gradiometers have a noise standard
deviation of a few fT/cm. When pooling such signals together, the absolute value of
the noise therefore differs by several orders of magnitude.

To address the correlated noise problem, estimators based on non-convex optimization
problems were proposed (Lee and Liu, 2012) and analyzed for sub-Gaussian covariance
matrices (Chen and Banerjee, 2017) through penalized Maximum Likelihood Estimation
(MLE). Other estimators (Rothman et al., 2010; Rai et al., 2012) assume that the in-
verse of the covariance (the precision matrix ) is sparse, but the underlying optimization
problems remain non-convex.

Our goal in this chapter is to propose a convex and numerically easy to solve approach
to heteroscedastic regression, as the noise covariance matrix estimation is a notorious
challenge for M/EEG data (Engemann and Gramfort, 2015a).

We first introduce the Smooth Generalized Concomitant Lasso (SGCL), the most gen-
eral extension of the Concomitant Lasso to the multitask case. This approach estimates
the full square root of the covariance, a statistical challenge when the number of tasks
does not dwarf the number of observation. As a proof of concept, we first introduce the
block model, where the noise is assumed to be homoscedastic per type of sensor.

In a more refined approach, we then exploit the multiple repetitions structure of M/EEG
data: because the SNR is too low, M/EEG measurements are commonly repeated and
averaged. Indeed, under the assumption that the signal of interest is corrupted by
additive independent realizations of noise, averaging measurements reduces the noise
variance by the number of repetitions. Popular estimators for M/EEG usually discard
the individual observations, therefore relying on homoscedastic noise models (Ou et al.,
2009; Gramfort et al., 2013).

We propose the Concomitant Lasso with Repetitions (CLaR), an estimator that is:

• designed to exploit all available measurements collected during repetitions of ex-
periments,
• defined as the solution of a convex minimization problem, handled efficiently by

proximal block coordinate descent techniques,
• built thanks to an explicit connection with nuclear norm smoothing,
• shown (through extensive benchmarks w.r.t. existing estimators) to leverage ex-

perimental repetitions to improve support identification

We first introduce briefly the seminal Concomitant Lasso estimator and its cousins.
In Section 4.2, we recall the framework of concomitant estimation, and introduce the
SGCL and its refinement, CLaR. In Section 4.3, we study the properties of CLaR from
the optimizer’s point of view, and derive an algorithm to solve it. In Section 4.4, we
justify the for through the use of a smoothed nuclear norm as a datafitting term.

4.1.1 The (homoscedastic) Concomitant Lasso

We start by considering the single task setting (y ∈ Rn, β ∈ Rp), with an homoscedastic
model y = Xβ∗+ε, ε ∈ Rn having i.i.d. entriesN (0, σ2

∗). To estimate β∗ with an optimal
regularization strength independent σ∗, the seminal estimator is the Concomitant Lasso,
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proposed under different forms in Owen (2007); Sun and Zhang (2012).

Definition 4.1. For λ > 0, the Concomitant Lasso regression coefficients and standard
deviation estimators are defined as solutions of the optimization problem

arg min
β∈Rp,σ>0

∥∥y −Xβ∥∥2

2nσ
+
σ

2
+ λ

∥∥β∥∥
1
. (4.1)

This estimator is closely connected to the square-root Lasso (Belloni et al., 2011).

Definition 4.2. For λ > 0, the square-root Lasso is defined as the solution of:

arg min
β∈Rp

∥∥y −Xβ∥∥√
n

+ λ
∥∥β∥∥

1
. (4.2)

The “close connexion” is the following: for a given λ > 0, any solution of the square-root
Lasso β̂√ such that y − Xβ̂√ 6= 0n is also a solution of the Concomitant Lasso with
same regularization parameter, and associated noise level estimate σ̂ = ‖y −Xβ̂√‖/√n.
As mentioned in the introduction in the case of Tikhonov regression, the square-root
Lasso and the Lasso have the same solution paths: the interest of the square-root Lasso
resides in an easier study of its regularization parameter.

Finally, notice that the data-fitting term of the square-root Lasso is not smooth (a
norm is never differentiable at the origin), making it a challenging “non-smooth +
non-smooth” optimization problem, while the Concomitant Lasso has a jointly convex
objective function ((a, b) 7→ a2/b is convex on (R∗+)2: its Hessian is 2/b · vv> with
v = (1,−a/b)>). Additionally, the objective’s dependency in β is amenable to proximal
coordinate descent. Nevertheless, numerical issues can arise for the Concomitant Lasso
when σ approaches 0; in Ndiaye et al. (2017a) it was proposed to add a constraint on
σ in the objective function. Following the terminology introduced in Nesterov (2005),
this was coined the Smoothed Concomitant Lasso.

Definition 4.3. For σ > 0 and λ > 0, the Smoothed Concomitant Lasso estimator and
its associated standard deviation estimator are defined as:

arg min
β∈Rp,σ≥σ

∥∥y −Xβ∥∥2

2nσ
+
σ

2
+ λ

∥∥β∥∥
1
. (4.3)

In these concomitant models, the assumption is that the noise is Gaussian homosce-
dastic. We aim at generalizing them to the more complex M/EEG noise structure.

4.2 Heteroscedastic concomitant estimation

Notation and probabilistic model For more compact notation, for σ > 0 we denote
S = σ Idn. Let r be the number of repetitions of the experiment (trials in M/EEG
vocabulary). The r observation matrices are denoted Y 1, . . . , Y r ∈ Rn×q with n the
number of samples (sensors) and q the number of tasks (time samples). The mean over
the repetitions of the observation matrices is written Ȳ , 1

r

∑r
l=1 Y

l. Let X ∈ Rn×p
be the design (or gain) matrix, with p features stored column-wise: X = [X:1| . . . |X:p].
The matrix B∗ ∈ Rp×q contains the coefficients of the linear regression model. The
residuals are defined as Rl , Y l −XB ∈ Rn×q.
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We assume that each measurement follows the common model:

∀l ∈ [r], Y l = XB∗ + S∗El , (4.4)

where the entries of El are i.i.d. samples from standard normal distributions, the El’s
are independent, and S∗ ∈ Sn++ is the co-standard deviation matrix. Note that even
if the observations Y 1, . . . , Y r differ because of the noise E1, . . . ,Er, both B∗ and the
noise structure S∗ are shared across repetitions. This is a natural assumption for stable
physical systems observed with sensor or background noise.

In low signal-to-noise ratio (SNR) situations, a standard way to deal with strong noise
is to use the averaged observation Ȳ ∈ Rn×q instead of the raw observations. The
associated model reads:

Ȳ = XB∗ + S̃∗Ẽ , (4.5)

with S̃∗ , S∗/
√
r and Ẽ has i.i.d. entries drawn from a standard normal distribution.

The SNR (see the rescaled definition we consider in Equation (5.13)) is multiplied by√
r, yet the number of samples goes from rnq to nq, making it statistically challenging

to estimate correctly the O(n2) parameters of S∗.

We originally considered Model (4.5) and designed an heteroscedastic estimator on
averaged data.

4.2.1 SGCL: Working on averaged data

Contrary to the Concomitant Lasso, the Smooth Generalized Concomitant Lasso es-
timates the full square root of the covariance of the noise.

Definition 4.4 (SGCL, Massias et al. (2018a)). The SGCL estimates the parameters
of Model (4.5), by solving:

(B̂SGCL, ŜSGCL) ∈ arg min
B∈Rp×q

S̃�σ/
√
r Idn

‖Ȳ −XB‖2
S̃−1

2nq
+

Tr(S̃)

2n
+ λ

∥∥B
∥∥

2,1
. (4.6)

As for σ in the Smoothed Concomitant Lasso, the constraint S � σ/
√
r Idn acts as a

regularizer in the dual, and is introduced for numerical stability. To set the value of
σ, one can use a proportion of the initial estimation of the noise standard deviation:
σ = 10−α‖Y ‖/√nq, with for example α ∈ {2, 3}. The SGCL corresponds to the
most general framework to adapt the Concomitant Lasso to multi-task and non scalar
covariances. However, in its general formulation it has an obvious drawback: in practice
estimating S̃∗ requires to fit n(n− 1)/2 parameters with only nq observations, which is
problematic if q is not large enough. Hence, additional regularization might be needed
to provide an accurate estimator of S∗. For example, the shrinking approach of Ledoit
and Wolf (2004) estimates the covariance as a weighted average of the identity and the
sample covariance matrix, in order to improve its conditioning; the resulting estimator is
proven to be well-conditioned and more asymptotically more accurate than the sample
covariance (when both p and n got to infinity).

Our first direction of research was to assume a more regular structure for S̃∗, motivated
by the specificities of the M/EEG inverse problem. More generally, in supervised learn-
ing problems where data come from an identified, finite set of sources, we proposed
a specification of Model (4.5), when the observations come from K different sources
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or K types of sensors (in the M/EEG case: magnetometers, gradiometers and elec-
trodes). In that case, the variant of Model (4.5) called the block homoscedastic model
constrains S̃∗ to be diagonal, the diagonal being constant over known blocks. For the
sake of completeness, this block model and proofs of concept experiments are presented
in Appendix B. However, this is a somehow simplistic model, and a better solution is
to estimate a full covariance by exploiting all repetitions instead of averaging them.

4.2.2 CLaR: Exploiting all epochs

To leverage the multiple repetitions while taking into account the noise structure, we
introduced the Concomitant Lasso with Repetitions (CLaR).

Definition 4.5 (CLaR, Bertrand, Massias, Gramfort, and Salmon (2019)). CLaR
estimates the parameters of Model (4.4) by solving:

(B̂CLaR, ŜCLaR) ∈ arg min
B∈Rp×q
S�σ Idn

1

2nqr

r∑
l=1

‖Y l −XB‖2S−1 +
Tr(S)

2n︸ ︷︷ ︸
,f(B,S)

+ λ
∥∥B
∥∥

2,1
, (4.7)

where λ > 0 controls the sparsity of B̂CLaR and σ > 0 controls the smallest eigenvalue
of ŜCLaR.

It is clear that CLaR is a generalization the SGCL, in the case of a single repetition
with lower noise.

Remark 4.6. CLaR and SGCL are the same when r = 1 and Y 1 = Ȳ . In the case
r > 1, note that ŜCLaR estimates S∗, while ŜSGCL estimates S̃∗ = S∗/

√
r. Since we

impose the constraint ŜCLaR � σ Idn, we rescale the constraint so that ŜSGCL � σ/√r Idn
in (4.6) for future comparisons.

The justification for CLaR is the following: if the quadratic loss
∥∥Y −XB

∥∥2 were
used, the parameters of Model (4.4) could be estimated by using either ‖Ȳ −XB‖2 or
1
r

∑‖Y l −XB‖2 as a data-fitting term. Yet, both alternatives yield the same solutions
as the two terms are equal up to constants. Hence, the quadratic loss does not leverage
the multiple repetitions and ignores the noise structure. On the contrary, the more
refined data-fitting term of CLaR allows to take into account the individual repetitions,
leading to improved performance in applications.

4.3 Optimization properties of CLaR and SGCL

We detail the principal results needed to solve Problem (4.7) numerically, leading to the
implementation proposed in Algorithm 4.1. We first recall useful results for alternate
minimization of convex composite problems.

4.3.1 Alternate minimization

Proposition 4.7. CLaR is jointly convex in (B, S). Moreover, f is convex and smooth
on the feasible set, and ‖·‖2,1 is convex and separable in Bj:’s, thus minimizing the
objective alternatively in S and in Bj:’s (see Algorithm 4.1) converges to a global min-
imum.
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Proof The expression of f is:

f(B, S) =
1

2nqr

r∑
1

∥∥∥Y l −XB
∥∥∥2

S−1
+

1

2n
Tr(S) =

1

2n
Tr(Z>S−1Z) +

1

2n
Tr(S) ,

(4.8)

with Z = 1√
qr [Y 1 −XB| . . . |Y r −XB] .

First note that the function (Z, S) 7→ TrZ>S−1Z is jointly convex over Rn×q × Sn++

(Boyd and Vandenberghe, 2004, Example 3.4). This means that f as a function of
(Z, S) is jointly convex. Moreover B 7→ [Y 1−XB| . . . |Y r−XB] is linear in B, thus f is
jointly convex in (B, S), meaning that (B, S) 7→ f + λ ‖·‖2,1 is jointly convex in (B, S).
Finally, the constraint set is convex and thus Problem (4.7) is convex.

The function f is convex and smooth on the feasible set and ‖·‖2,1 is convex in B and
separable in Bj:’s, thus f + λ ‖·‖2,1 can be minimized through coordinate descent in S
and the Bj:’s (Tseng, 2001; Tseng and Yun, 2009).

By virtue of Proposition 4.7, to solve Problem (4.7) we only need to consider solving
problems with B or S fixed, which we detail in the next propositions.

Definition 4.8 (Clipped Square Root). For S ∈ Sn+ with spectral decomposition S =
U diag(γ1, . . . , γn)U> (U is orthogonal and the γi’s are positive), let us define the
Clipped Square Root operator:

ClSqrt(S, σ) , U diag(
√
γ1 ∨ σ, . . . ,

√
γn ∨ σ)U> . (4.9)

Proposition 4.9. Let B ∈ Rn×q be fixed. The minimization of f(B, S) with respect to
S with the constraint S � σ Idn admits the closed-form solution:

S = ClSqrt

(
1

qr

r∑
l=1

(Y l −XB)(Y l −XB)>, σ

)
. (4.10)

Proof Minimizing f(B, ·) amounts to solving:

arg min
S�σ Idn

TrZ>S−1Z + Tr(S) , with Z = 1√
qr [Y 1 −XB| . . . |Y r −XB] , (4.11)

a problem for which strong duality holds since the objective function is convex and the
feasible set has non-empty interior. The associated Lagrangian formulation is:

min
S∈Sn+

max
Λ∈Sn+

TrZ>S−1Z + Tr(S) + Tr(Λ>(S − S))︸ ︷︷ ︸
L(S,Λ)

. (4.12)

Recall that the gradient of S 7→ TrZ>S−1Z is −S−1ZZ>S−1 (on Sn++), and that
ZZ> = 1

qr

∑r
l=1(Y l −XB)(Y l −XB)>. The first order optimality conditions read:

∂L(·,Λ̂)
∂S (Ŝ) = −Ŝ−1ZZ>Ŝ−1 + Idn−Λ̂ = 0n,n ,

Λ̂>(S − Ŝ) = 0n,n ,

Λ̂ ∈ Sn+ ,

Ŝ � S .

(4.13)
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Let U diag(λ1, . . . , λd, 0, . . . , 0)U> be an eigenvalue decomposition of ZZ>, with d the
rank of ZZ>, λ1 ≥ · · · ≥ λd > 0 and UU> = Idn.

For i ∈ [d], let us define µi ,
√
λi ∨ σ, S = U diag(µ1, . . . , µd, σ, . . . , σ)U>, and Λ =

Idn−S−1ZZ>S−1. It is clear by construction that S � S. We also have:

Λ = U diag(1, . . . , 1)U> − U diag(λ1

µ2
1
, . . . , λd

µ2
d
, 0, . . . , 0)U>

= U diag(1− λ1

µ2
1
, . . . , 1− λ1

µ2
1
, 1, . . . , 1)U>

� 0n,n , (4.14)

where the later holds by definition of the µi’s. Moreover:

Λ>(S−S) = U diag
(

(1− λ1

µ2
1
)(µ1−σ), . . . , (1− λd

µ2
d
)(µd−σ), 0, . . . , 0

)
U> = 0n,n , (4.15)

since ∀i ∈ [r], (1− λi
µ2
i
)(µi − σ) = 0 (either the left term or the right term of the LHS is

0 by construction).

This shows that the pair (S,Λ) satisfies all the first order conditions on the Lagrangian,
hence that S is solution of Problem (4.11).

Proposition 4.10. For a fixed S ∈ Sn++, each step of the block minimization of f(·, S)+
λ ‖·‖2,1 in the jth line of B admits a closed-form solution:

Bj: = BST

(
Bj: +

X>:j S
−1(Ȳ−XB)

‖X:j‖2
S−1

, λnq
‖X:j‖2

S−1

)
. (4.16)

Proof The function to minimize is the sum of a smooth term f(·, S) and a non-smooth
but row-wise separable term, ‖·‖2,1, whose proximal operator can be computed:

• f is ‖X:j‖2S−1/nq-smooth with respect to Bj:, with partial gradient ∇jf(·, S) =
− 1
nqX

>
:j S
−1(Ȳ −XB),

• ‖B‖2,1 =
∑p

j=1‖Bj:‖ is row-wise separable over B, with:

proxλnq/‖X:j‖2
S−1 ,‖·‖(·) = BST

(
·, λnq

‖X:j‖2S−1

)
. (4.17)

Hence, proximal block-coordinate descent converges (Tseng and Yun, 2009), and the
updates are given by Equation (4.16). The closed-form formula arises since the smooth
part of the objective is quadratic and isotropic w.r.t. Bj: .

As for the Lasso, there exists λmax ≥ 0 such that whenever λ ≥ λmax, the estim-
ated coefficients vanish. This critical value helps to roughly calibrate λ in practice, by
choosing it as a fraction of λmax.

Proposition 4.11 (Critical regularization parameter). For the CLaR estimator we
have, with Smax , ClSqrt

(
1
qr

∑r
l=1 Y

lY l>, σ
)
:

∀λ ≥ λmax , 1
nq‖X>S−1

maxȲ ‖2,∞, B̂CLaR = 0p,q . (4.18)
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Algorithm 4.1 Alternate minimization for CLaR
input : X, Ȳ , σ, λ, fdual, T
init : B = 0p,q, S−1 = σ−1 Idn, R̄ = Ȳ , covY = 1

r

∑r
l=1 Y

lY l> // precomputed

1 for t = 1, . . . , T do
2 if t = 1 (mod fdual) then // noise update

3 RR> = RRT(covY , Y,X,B) // eq. (4.20)

4 S = ClSqrt( 1
qrRR

>, σ) // eq. (4.10)

5 for j = 1, . . . , p do Lj = X>:j S
−1X:j

6 for j = 1, . . . , p do // coef. update

7 R̄ = R̄+X:jBj: // partial residual update

8 Bj: = BST
(
X>:j S

−1R̄

Lj
, λnqLj

)
9 R̄ = R̄−X:jBj: // residual update

10 return B, S

Proof First notice that if B̂ = 0, then Ŝ = ClSqrt
(

1
qr

∑r
l=1 Y

lY l>, σ
)
, Smax . Then,

according to Fermat’s rule:

B̂ = 0p,q ⇐⇒ 0p,q ∈ ∂
(
f(·, Smax) + λ‖·‖2,1

)
(0p,q)

⇐⇒ −∇f(0p,q, Smax) ∈ λB‖·‖2,∞
⇐⇒ 1

nq

∥∥∥X>S−1
maxȲ

∥∥∥
2,∞
, λmax ≤ λ . (4.19)

Remark 4.12. Once covY , 1
r

∑r
1 Y

lY l> is pre-computed, the cost of updating S does
not depend on r, i.e., is the same as working with averaged data. Indeed, with R =
[Y 1 −XB| . . . |Y r −XB], the following computation can be done in O(qn2):

RR> = RRT(covY , Y,X,B)

, rcovY + r(XB)(XB)> − rȲ >(XB)− r(XB)>Ȳ . (4.20)

Proof

RR> =

r∑
l=1

RlRl>

=

r∑
l=1

(Y l −XB)(Y l −XB)>

=

r∑
l=1

Y lY l> −
r∑
1

Y l(XB)> −
r∑
1

XBY l> + rXB(XB)>

= rcovY − rȲ >XB− r(XB)>Ȳ + rXB(XB)> . (4.21)

Additionally, statistical properties showing the advantages of using CLaR over SGCL
can be found in Appendix B.3.1.
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Thanks to the convex formulation, convergence of Algorithm 4.1 can be ensured using
the duality gap as a stopping criterion (as it guarantees a targeted sub-optimality level).
To compute the duality gap, we derive the dual of Problem (4.7) in Proposition 4.13.
In addition, convexity allows to leverage acceleration methods such as working sets
strategies (Fan and Lv, 2008; Tibshirani et al., 2012; Johnson and Guestrin, 2015) or safe
screening rules (El Ghaoui et al., 2012; Ndiaye et al., 2017b), and their improvements
detailed in Part I, while retaining theoretical guarantees of convergence. Such techniques
are trickier to adapt in the non-convex case, as they could change the local minima
reached.

4.3.2 Duality results

Proposition 4.13. With Θ̂ = (Θ̂1, . . . , Θ̂r), a dual formulation of Problem (4.7) is:

Θ̂ = arg max
(Θ1,...,Θr)∈∆X,λ

σ

2

(
1− qnλ2

r

r∑
l=1

Tr ΘlΘl>
)

+
λ

r

r∑
l=1

〈
Θl, Y l

〉
, (4.22)

with

Θ̄ =
1

r

r∑
1

Θl (4.23)

∆X,λ =

{
(Θ1, . . . ,Θr) ∈ (Rn×q)r : ‖X>Θ̄‖2,∞ ≤ 1,

∥∥∥ r∑
l=1

ΘlΘl>
∥∥∥

2
≤ r

λ2n2q

}
, (4.24)

Proof The primal optimum is:

p∗ , min
B∈Rp×q
S�σ Idn

1

2nqr

r∑
l=1

‖Y l −XB‖2S−1 +
1

2n
Tr(S) + λ

∥∥B
∥∥

2,1

= min
B∈Rp×q

Rl=Y l−XB, ∀l∈[r]
S�σ Idn

1

2nqr

r∑
l=1

‖Rl‖2S−1 +
1

2n
Tr(S) + λ

∥∥B
∥∥

2,1

= min
B∈Rp×q

R1,...,Rr∈Rn×q
S�σ Idn

max
Θ1,...,Θr∈Rn×q

1

2nqr

r∑
l=1

‖Rl‖2S−1 +
1

2n
Tr(S)

+ λ
∥∥B
∥∥

2,1
+
λ

r

r∑
l=1

〈
Θl, Y l −XB−Rl

〉
.
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Since Slater’s conditions are met min and max can be inverted:

p∗ = max
Θ1,...,Θr∈Rn×q

min
B∈Rp×q

R1,...,Rr∈Rn×q
S�σ Idn

1

2nqr

r∑
l=1

‖Rl‖2S−1 +
1

2n
Tr(S)

+ λ
∥∥B
∥∥

2,1
+
λ

r

r∑
l=1

〈
Θl, Y l −XB−Rl

〉

= max
Θ1,...,Θr∈Rn×q

(
min

S�σ Idn

1

r

r∑
l=1

min
Rl∈Rn×q

(‖Rl‖2S−1

2nq
− 〈Θl, Rl〉

)
+

1

2n
Tr(S)

+ λ min
B∈Rp×q

(∥∥B
∥∥

2,1
− 〈Θ̄, XB〉

)
+
λ

r

r∑
l=1

〈Θl, Y l〉
)
. (4.25)

Moreover we have:

min
Rl∈Rn×q

(‖Rl‖2S−1

2nq
− 〈Θl, Rl〉

)
= −nqλ

2

2

〈
ΘlΘl>, S

〉
(4.26)

min
B∈Rp×q

(∥∥B
∥∥

2,1
− 〈Θ̄, XB〉

)
= −max

(
〈X>Θ̄,B〉 −

∥∥B
∥∥

2,1

)
= −ιB2,∞(X>Θ̄) .

(4.27)

This leads to:

d∗ = max
Θ1,...,Θr∈Rn×q

min
S�σ Idn

−1

r

r∑
l=1

nqλ2

2 〈ΘlΘl>, S〉 − λιB2,∞(X>Θ̄) +
Tr(S)

2n

+
λ

r

r∑
l=1

〈Θl, Y l〉

= max
Θ1,...,Θr∈Rn×q

1

2n
min

S�σ Idn

(
〈Idn, S〉 −

qn2λ2

r

r∑
l=1

〈ΘlΘl>, S〉
)
− λιB2,∞(X>Θ̄)

+
λ

r

r∑
l=1

〈Θl, Y l〉

= max
Θ1,...,Θr∈Rn×q

1

2n
min

S�σ Idn

〈
Idn− qn2λ2

r

r∑
l=1

ΘlΘl>, S
〉
− λιB2,∞(X>Θ̄)

+
λ

r

r∑
l=1

〈Θl, Y l〉 . (4.28)

min
S�σ Idn

〈Idn− qn2λ2

r

r∑
l=1

ΘlΘl>, S〉

=


〈

Idn− qn2λ2

r

∑r
l=1 ΘlΘl>, σ Idn

〉
, if Idn � qn2λ2

r

∑r
l=1 ΘlΘl> ,

−∞ , otherwise.
(4.29)
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It follows that the dual problem of CLaR is:

max
(Θ1,...,Θr)∈∆X,λ

σ

2

(
1− qnλ2

r

r∑
l=1

Tr ΘlΘl>
)

+
λ

r

r∑
l=1

〈
Θl, Y l

〉
, (4.30)

where ∆X,λ ,
{

(Θ1, . . . ,Θr) ∈ Rn×q×r : ‖X>Θ̄‖2,∞ ≤ 1, ‖∑r
l=1 ΘlΘl>‖ ≤ r

λ2n2q

}
.

The link equation provides a natural way to construct a dual feasible point from any
pair (B, S) in the iterations of Algorithm 4.1. The dual point Θ at iteration t is obtained
through a residual rescaling similar to the “naive” procedure detailed in Part I, i.e., Θl =

1
nqλ(Y l − XB) (with B the current primal iterate); then the dual point is rescaled to
lie in ∆X,λ . This strategy would be amenable to the extrapolation improvements of
Chapter 3.

Remark 4.14. Equations (4.9) and (4.10) make it straightforward to compute S−1 and
TrS, which we rather store than S for computational efficiency in Algorithm 4.1. At
every update of S, it is also beneficial to precompute S−1X and S−1R: maintaining
S−1R rather than R avoids multiplication by S−1 at every BCD step.

Remark 4.15. Similarly to the Concomitant Lasso, and contrary to the Lasso, CLaR
is equivariant under scaling of the response, in the following sense. Consider the trans-
formation:

Y ′ = αY, B′ = αB, S′ = αS, (α > 0) ,

which leaves Models (4.4) and (4.5) invariant. Then one can check that the solutions of
Problem (4.7) are multiplied by the same factor: B̂′ = αB̂ and Ŝ′ = αŜ.

4.4 An analysis of CLaR through smoothing

The purpose of this section is to shed some light on the origin of the data-fitting term
‖Y −XB‖S−1 used in CLaR and SGCL. This datafitting term was introduced empir-
ically, as a way to generalize concomitant estimation to noise covariance estimation.
However, after publication of our works, we became aware of closely related estimators.

Definition 4.16 (Multivariate square-root Lasso). van de Geer (2016) introduced the
Multivariate square-root Lasso estimator, a solution of:

arg min
B∈Rp×q

1√
n
‖Y −XB‖S ,1 + λ

∑
i,j

|Bi,j | . (4.31)

The penalty used on B is not crucial to this estimator, and can be replaced by ‖B‖2,1 to
fit our framework without loss of interest.

As noted by van de Geer (2016, Lemma 3.4), this estimator is also a solution of:

arg min
B∈Rp×q ,Σ∈Sn++

1

n
‖Y −XB‖Σ−1/2 + Tr Σ1/2 + λ

∑
i,j

|Bi,j | , (4.32)

provided that the minimum is indeed attained at some Σ̂ ∈ Sn++. The statistical analysis
of this estimator, also pursued by Molstad (2019); Stucky (2017), is based on this
assumption. It suffers from two drawbacks:
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• the optimization problem is difficult to solve. Recently, Molstad (2019) proposed
two algorithms to solve it: a prox-linear ADMM, and accelerated proximal gradi-
ent descent, the latter lacking convergence guarantees since the composite ob-
jective has two non-smooth terms. Before that, van de Geer and Stucky (2016)
devised a fixed point method, lacking descent guarantees.

• the noise covariance estimate Σ̂ is never full rank when q < n, and even in cases
where q ≥ n, most likely because of the trace penalty, Σ̂ quickly becomes rank
deficient as λ decreases.

As it turns out, our approach can be interpreted as a smoothing (recall Proposition 1.9
and Figure 1.3 page 28) technique to replace the non-smooth datafitting term of Prob-
lem (4.31) by a smooth approximation.

We start by introducing some elements of smoothing theory (Nesterov, 2005; Beck and
Teboulle, 2012) for generic Schatten norms, then focus on the nuclear norm.

4.4.1 Smoothing of Schatten norms

In all this section, the variable is a matrix Z ∈ Rn×q unless in the multiple repetition
case. To smooth a function, a standard approach is to convolve it with a smooth function
(which, as in Figure 1.3, amounts to adding a strongly convex term to its Fenchel
transform, then taking the Fenchel conjugate again). Here, the smoothing function we
use is an isotropic parabola, and the function we smooth is a generic Schatten norm.

Proposition 4.17. Let ω : Rd → R be a convex function with Lipschitz gradient. Let
σ > 0 and ωσ , σω

(
·
σ

)
. Then:

ω(·) = 1
2 ‖·‖

2 + 1
2 =⇒ ω∗σ = σ

2 ‖·‖
2 − σ

2 . (4.33)

Proof The proof is a direct application of the results on frequently used Fenchel
transforms introduced in Equations (1.39), (1.41) and (1.42).

Lemma 4.18. Let c ∈ R, p ∈
[
1,+∞

]
. Let p∗ ∈

[
1,+∞

]
be the Hölder conjugate of p,

satisfying 1
p + 1

p∗ = 1. For the choice ω = 1
2 ‖·‖

2 + c:

(
‖·‖S ,p�ωσ

)
(Z) =

1

2σ

∥∥Z∥∥2
+ cσ − σ

2

∥∥∥∥ΠBS ,p∗

(
Z
σ

)
− Z

σ

∥∥∥∥2

.

Proof(
‖·‖S ,p�ωσ

)
(Z) =

(
‖·‖S ,p�ωσ

)∗∗
(Z) (using Equation (1.37))

=
(
‖·‖∗S ,p + ω∗σ

)∗
(Z) (using Equation (1.38))

=
(
ιBS ,p∗ + σ

2 ‖·‖
2 − cσ

)∗
(Z) (using Equations (1.40) and (4.33))

=
(
σ
2 ‖·‖

2 + ιBS ,p∗

)∗
(Z) + cσ (using Equation (1.41)) .

(4.34)
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We can now compute the last Fenchel transform remaining:(σ
2
‖·‖2 + ιBS ,p∗

)∗
(Z) = sup

U∈Rn×q

(
〈U,Z〉 − σ

2

∥∥U∥∥2 − ιBS ,p∗ (U)
)

= sup
U∈BS ,p∗

(
〈U,Z〉 − σ

2

∥∥U∥∥2
)

= −σ · inf
U∈BS ,p∗

(
1
2

∥∥U∥∥2 − 〈U, Zσ 〉
)

= −σ · inf
U∈BS ,p∗

(
1
2

∥∥∥U − Z
σ

∥∥∥2
− 1

2σ2

∥∥Z∥∥2
)

= 1
2σ

∥∥Z∥∥2 − σ
2 · inf

U∈BS ,p∗
(
∥∥∥U − Z

σ

∥∥∥2

= 1
2σ

∥∥Z∥∥2 − σ
2

∥∥∥∥ΠBS ,p∗

(
Z
σ

)
− Z

σ

∥∥∥∥2

. (4.35)

The result follows by combining Equations (4.34) and (4.35).

We detail the result of Lemma 4.18 for peculiar values of p in the next propositions.

Proposition 4.19 (Schatten 2-norm (Frobenius norm)). For the choice ω = 1
2 ‖·‖

2 + 1
2 ,

and for Z ∈ Rn×q then:

(
‖·‖�ωσ

)
(Z) = min

σ≥σ

(
1

2σ

∥∥Z∥∥2
+ σ

2

)
=


‖Z‖2

2σ + σ
2 , if ‖Z‖ ≤ σ ,

‖Z‖ , if ‖Z‖ > σ .
(4.36)

Notice that this is simply the Huber function (with parameter σ) applied to ‖Z‖.

Proof Let us recall that ‖·‖ = ‖·‖S ,2 . Therefore:

ΠBS ,2

(
Z

σ

)
=


Z
σ , if

∥∥Z∥∥ ≤ σ ,
Z

‖Z‖ , if
∥∥Z∥∥ > σ .

(4.37)

By combining Equation (4.37) and lemma 4.18 with p = p∗ = 2, and c = 1
2 , the later

yields: (
‖·‖�ωσ

)
(Z) =

 1
2σ

∥∥Z∥∥2
+ σ

2 , if
∥∥Z∥∥ ≤ σ ,∥∥Z∥∥ , if
∥∥Z∥∥ > σ .

Proposition 4.20 (Schatten infinity-norm (spectral norm)). For the choice ω = 1
2 ‖·‖

2+
1
2 and for Z ∈ Rn×q with singular value decomposition V diag(γ1, . . . , γn∨q)W

>, then:

(
‖·‖S ,∞�ωσ

)
(Z) =


1

2σ

∥∥Z∥∥2
+ σ

2 , if
∥∥Z∥∥

S ,1
≤ 1 ,

σ
2

∑n∧q
i=1

(
γ2
i
σ2 − ν2

)
+

+ σ
2 , if

∥∥Z∥∥
S ,1

> 1 ,

where ν ≥ 0 is defined by the implicit equation:∥∥∥∥∥
(

ST
(
γ1

σ , ν
)
, . . . ,ST

(
γn∧q
σ , ν

))∥∥∥∥∥
1

= 1 . (4.38)
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Proof The Hölder conjugate of p = +∞ is p∗ = 1. We remind that ΠBS ,1
, the

projection over BS ,1, is given by (Beck, 2017, Example 7.31):

ΠBS ,1

(
Z

σ

)
=


Z
σ , if

∥∥Z∥∥
S ,1
≤ σ ,

V diag
(

ST(γiσ , γ)
)
W> , if

∥∥Z∥∥
S ,1

> σ ,
(4.39)

the scalar γ being defined by the implicit equation:∥∥∥∥(ST(γ1

σ , γ), . . . ,ST(
γn∧q
σ , γ)

)∥∥∥∥
1

= 1 . (4.40)

By combining Equation (4.37) and Lemma 4.18 (with p∗ =∞, c = 1
2) it follows that:

(‖·‖�ωσ)(Z) =


1

2σ

∥∥Z∥∥2
+ σ

2 , if
∥∥Z∥∥

S ,1
≤ σ ,

1
2σ

∥∥Z∥∥2
+ σ

2 −
σ
2

∥∥∥∥ΠBS ,1

(
Z
σ

)
− Z

σ

∥∥∥∥2

, if
∥∥Z∥∥

S ,1
> σ .

(4.41)

Let us compute
∥∥∥ΠBS ,1

(
Z
σ

)
− Z

σ

∥∥∥2
. If

∥∥Z∥∥
S ,1

> σ we have:

∥∥∥∥ΠBS ,1

(
Z
σ

)
− Z

σ

∥∥∥∥2

=
1

σ2

∥∥∥∥V diag
(

(γi − νσ)+ − γi
)
W>

∥∥∥∥2

(using Equation (4.39))

=
1

σ2

n∧q∑
i=1

(
(γi − νσ)+ − γi

)2

=
1

σ2

( ∑
γi≥νσ

γ2σ2 +
∑
γi<νσ

γ2
i

)
. (4.42)

By plugging Equation (4.42) into Equation (4.41) it follows that if
∥∥Z∥∥

S ,1
> σ,(

‖·‖�ωσ
)

(Z) =
1

2σ

∑
i=1

γ2
i +

σ

2
− 1

2σ

∑
γi≥νσ

ν2σ2 − 1

2σ

∑
γi<νσ

γ2
i

=
1

2σ

∑
γi≥νσ

(
γ2
i − ν2σ2

)
+
σ

2

=
σ

2

n∧q∑
i=1

(γ2
i

σ2
− ν2

)
+

+
σ

2
. (4.43)

Proposition 4.20 follows by plugging Equation (4.43) for the case
∥∥Z∥∥

S ,1
> σ, and the

fact that when
∥∥Z∥∥

S ,1
≤ σ the result is straightforward.

Remark 4.21. Since ν 7→
∥∥∥(ST(γ1

σ , ν), . . . ,ST(
γn∧q
σ , ν)

)∥∥∥
1
is decreasing and piecewise

linear, the solution of Equation (4.38) can be computed exactly in O(n ∧ q log(n ∧ q))
operations.

We have a particular interest in the Schatten 1-norm.
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4.4.2 Smoothing of the nuclear norm

The next propositions are key to our framework and show the connection between the
SGCL, CLaR and the Schatten 1-norm used in the Multivariate square-root Lasso.
First, we derive a formula for the smoothing of this norm. Let us define the following
smoothing function:

ωσ ,
1

2

(
‖·‖2 + n ∧ q

)
σ . (4.44)

Proposition 4.22. The ωσ-smoothing of the Schatten 1-norm, i.e., ‖·‖S ,1�ωσ, is the
solution of the following smooth optimization problem:

(‖·‖S ,1�ωσ)(Z) = min
S�σ Idn

1
2

∥∥Z∥∥2

S−1 + 1
2 Tr(S) . (4.45)

Proof Let V diag(γ1, . . . , γn∧q)W
> be the singular value decomposition of Z. We

remind that ΠBS ,∞ , the projection over the unit ball of the Schatten ∞-norm BS ,∞, is
given by (see Beck 2017, Example 7.31):

ΠBS ,∞

(
Z
σ

)
= V diag

(
ΠB∞

(
γ1

σ , . . . ,
γn∧q
σ

))
W>

= V diag
(
γ1

σ ∧ 1, . . . ,
γn∧q
σ ∧ 1

)
W> , (4.46)

where we used that γi/σ ≥ 0. Then we have:∥∥∥ΠBS ,∞

(
Z
σ

)
− Z

σ

∥∥∥2 (4.46)
=

∥∥∥V diag
(
γ1

σ ∧ 1− γ1

σ , . . . ,
γn∧q
σ ∧ 1− γn∧q

σ

)
W>

∥∥∥2

=

n∧q∑
i=1

(
γi
σ ∧ 1− γi

σ

)2

=
1

σ2

n∧q∑
i=1

(
γi ∧ σ − γi

)2
. (4.47)

By combining Equation (4.47) and lemma 4.18 with p∗ =∞, c = n∧q
2 , the later yields:(

‖·‖S ,1�ωσ
)

(Z) = (n ∧ q)σ
2

+
1

2σ

∑
γi≤σ

γ2
i −

1

2

∑
γi≥σ

σ +
∑
γi≥σ

γi . (4.48)

Moreover:

min
S�σ Idn

1

2
Tr[Z>S−1Z] +

1

2
Tr(S) =

1

2

n∧q∑
i=1

γ2
i

γi ∨ σ
+

1

2

n∧q∑
i=1

γi ∨ σ

=
1

2σ

∑
γi≤σ

γ2
i +

1

2

∑
γi≥σ

γi +
1

2

∑
γi≤σ

σ +
1

2

∑
γi≥σ

γi

=
1

2σ

∑
γi≤σ

γ2
i +

∑
γi≥σ

γi +
1

2

∑
γi≤σ

σ + (n ∧ q)σ2 − (n ∧ q)σ2

=
1

2σ

∑
γi≤σ

γ2
i +

∑
γi≥σ

γi + (n ∧ q)σ
2
− 1

2

∑
γi≥σ

σ ,

(4.49)



4.4. AN ANALYSIS OF CLAR THROUGH SMOOTHING 101

and identifying Equations (4.48) and (4.49) leads to the result.

It is now easy to generalize this result to a matrix Z containing stacked residuals.

Proposition 4.23 (Schatten 1-norm (nuclear norm) with repetitions). Let Z1, . . . , Zr

be matrices in Rn×q, then we define Z ∈ Rn×qr by Z , [Z1| . . . |Zr]. For the choice
ω(Z) = 1

2

∥∥Z∥∥2
+ n∧qr

2 , then:(
‖·‖S ,1�ωσ

)
(Z) = min

S�σ Idn

1

2

r∑
l=1

Tr
(
Z l>S−1Z l

)
+

1

2
Tr(S) . (4.50)

Proof The result is a direct application of Proposition 4.22, with Z = [Z(1)| . . . |Z(r)].
It suffices to notice that TrZ>S−1Z =

∑r
l=1 Tr

(
Z l>S−1Z l

)
.

Proposition 4.24. Any solution of Problem (4.7), (B̂, Ŝ) = (B̂CLaR, ŜCLaR) is also a
solution of:

B̂ = arg min
B∈Rp×q

(
‖·‖S ,1�ωσ

)
(Z) + λn

∥∥B
∥∥

2,1

Ŝ = ClSqrt
(

1
rqZZ

>, σ
)
, where Z = [Y 1 −XB| . . . |Y r −XB].

Proof Proposition 4.24 follows from Proposition 4.23 by choosing:

Z = 1√
rq [Y 1 −XB| . . . |Y r −XB] , (4.51)

and by taking the arg min over B.

As mentioned above, properties similar to Proposition 4.24 can be traced back to van
de Geer (2016, Lemma 3.4), where the following variational formulation was used to
prove oracle inequalities for the multivariate square-root Lasso: if ZZ> � 0n,n,∥∥Z∥∥

S ,1
= min

S∈Sn++

1

2

∥∥Z∥∥2

S−1 +
1

2
Tr(S) . (4.52)

In other words Proposition 4.24 generalizes van de Geer (2016, Lemma 3.4) for all
matrices Z, getting rid of the condition ZZ> � 0n,n. Our formulation in Proposi-
tion 4.22 is motivated by computational aspects, as it helps to address the combined
non-differentiability of the data-fitting term ‖·‖S ,1 and the penalty ‖·‖2,1 term. Other
alternatives to exploit the multiple repetitions without simply averaging them, could
consist in investigating other Schatten p-norms:

arg min
B∈Rp×q

1√
rq

∥∥∥[Y 1 −XB| . . . |Y r −XB]
∥∥∥

S ,p
+ λn

∥∥B
∥∥

2,1
. (4.53)

Without smoothing, problems of the form given in Equation (4.53) have the drawback of
having two non-differentiable terms, and calling for primal-dual algorithms (Chambolle
and Pock, 2011) with costly proximal operators. Even if the non-smooth Schatten 1-
norm is replaced by the formula in (4.52), numerical challenges remain: S can approach
0 arbitrarily, hence, the gradient w.r.t. S of the data-fitting term is not Lipschitz over
the optimization domain. A similar problem was raised for the concomitant Lasso by
Ndiaye et al. (2017a) who used smoothing techniques to address it. Here we replaced
the nuclear norm by its smoothed version ‖·‖S ,1�ωσ.
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4.5 Conclusion

In this chapter, we have proposed the SGCL and CLaR, two new sparse regression es-
timators designed to deal with heterogeneous observations coming from different origins
and corrupted by different levels of noise – in the context of repeated observations for
CLaR. Despite the joint estimation of the regression coefficients as well as the noise
level, the problem considered is jointly convex, thus guaranteeing global convergence
which one can check by duality gap certificates. The resulting optimization problem
can be solved efficiently with state-of-the-art convex solvers, and the algorithmic cost
is the same as for single repetition data. The theory of smoothing connects CLaR to
the Schatten 1-Lasso in a principled manner, which opens the way to the use of more
sophisticated datafitting terms.

In the next chapter, we evaluate the benefits of CLaR for support recovery in hetero-
scedastic context against a large number of competitors, both on simulations and on
empirical MEG data.
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In this chapter, the practical benefits of convex and smooth concomitant estimation for
multitask regression are demonstrated on toy datasets, realistic simulated data and real
neuroimaging data.

Section 5.1 presents the alternative approaches to heteroscedastic multitask regression.
Empirical properties of CLaR are highlighted in Section 5.2, where the estimators per-
formance on real data is also evaluated.

5.1 Alternative estimators

We compare CLaR (Bertrand et al., 2019) to several estimators: SGCL (Massias et al.,
2018a), the (smoothed) `2,1-Maximum Likelihood (`2,1-MLE) and a version of the `2,1-
MLE with multiple repetitions (`2,1-MLER), an `2,1 penalized version of the Mul-
tivariate Regression with Covariance Estimation (Rothman et al. 2010, `2,1-MRCE), a
version of `2,1-MRCE with repetitions (`2,1-MRCER) and the Multi-Task Lasso (Oboz-
inski et al. 2010, MTL). The cost of an epoch of block coordinate descent and the cost
of computing the duality gap for each algorithm are summarized in Table 5.1. The
updates of each algorithms are summarized in Table 5.2.
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CLaR and SGCL were introduced in the previous chapter. Let us first introduce the
definitions of the alternative estimation procedures.

5.1.1 Multi-Task Lasso (MTL)

The Multitask Lasso (Obozinski et al., 2010) is the classical sparse multitask estimator
used when the additive noise is supposed to be homoscedastic (without correlation). It
is obtained by solving:

B̂MTL ∈ arg min
B∈Rp×q

1

2nq
‖Ȳ −XB‖2 + λ‖B‖2,1 . (5.1)

Remark 5.1. It can be seen that trying to use all the repetitions in the MTL leads to
MTL itself because ‖Ȳ −XB‖2 = 1

r

∑
l‖Y l −XB‖2 up to constant terms in B.

5.1.2 `2,1-Maximum Likelihood (`2,1-MLE)

Here we study a penalized Maximum Likelihood Estimator (Chen and Banerjee, 2017)
(`2,1-MLE). When minimizing `2,1-Maximum Likelihood the natural parameters of the
problem are the regression coefficients B and the precision matrix Σ−1. Since real
M/EEG covariance matrices are not full rank, one has to be algorithmically careful
when Σ becomes singular. To avoid such numerical errors and to be consistent with the
smoothed estimator proposed in Chapter 4, let us define the (smoothed) `2,1-MLE as:

(B̂`2,1−MLE, Σ̂`2,1−MLE) ∈ arg min
B∈Rp×q

Σ�σ2/r2 Idn

∥∥∥Ȳ −XB
∥∥∥2

Σ−1
− log det(Σ−1) + λ

∥∥B
∥∥

2,1
, (5.2)

and its repetitions version (`2,1-MLER):

(B̂`2,1MLER, Σ̂`2,1MLER) ∈ arg min
B∈Rp×q

Σ�σ2 Idn

r∑
1

∥∥∥Y l −XB
∥∥∥2

Σ−1
− log det(Σ−1)+λ

∥∥B
∥∥

2,1
. (5.3)

Problems (5.2) and (5.3) are not convex because the objective functions are not convex
in (B,Σ−1), however they are biconvex, i.e., convex in B and convex in Σ−1. Alternate
minimization can be used to solve Problems (5.2) and (5.3), but without guarantees to
converge toward a global minimum.

Minimization in Bj: As for CLaR and SGCL the updates in Bj:’s for `2,1-MLE and
`2,1-MLER read:

Bj: = BST

Bj: +
X>:j Σ−1(Y −XB)

‖X:j‖2Σ−1

,
λnq

‖X:j‖2Σ−1

 . (5.4)

Minimization in Σ−1: for `2,1-MLE (resp. `2,1-MLER) the update in Σ reads:

Σ = Cl(Σemp, σ2) (resp. Σ = Cl(Σemp,r, σ2)) , (5.5)

with Σemp , 1
q (Ȳ −XB)(Ȳ −XB)> (resp. Σemp,r , 1

rq

∑r
l=1(Y l −XB)(Y l −XB)>).

Let us prove the last result. Minimizing Problem (5.2) in Σ−1 amounts to solving:

Σ̂−1 ∈ arg min
0n,n≺Σ−1�1/σ2

〈
Σemp,Σ−1

〉
− log det(Σ−1) . (5.6)
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Theorem 5.2. Let Σemp = U diag(σ2
i )U

> be an eigenvalue decomposition of Σemp, a
solution to Problem (5.6) is given by:

Σ̂−1 = U diag

(
1

σ2
i ∨ σ2

)
U> . (5.7)

Theorem 5.2 is intuitive: the solution of the smoothed optimization problem (5.6) is
the solution of the non-smoothed problem, where the eigenvalues of the solution have
been lifted to satisfy the constraint.

Proof The KKT conditions of Problem (5.6) for conic programming (see Boyd and
Vandenberghe 2004, p. 267) state that the optimum in the primal Σ̂−1 and the optimum
in the dual Γ̂ should satisfy:

Σemp − Σ̂ + Γ̂ = 0n,n , Γ̂>(Σ̂−1 − 1

σ2
Idn) = 0n,n ,

Γ̂ ∈ Sn+ , 0n,n ≺ Σ̂−1 � 1

σ2
.

Since Problem (5.6) is convex these conditions are also sufficient. We exhibit a primal-
dual pair (Σ̂−1, Γ̂) satisfying the KKT conditions. Let Σemp = U diag(σ2

i )U
> be an

eigenvalue decomposition of Σemp, one can check that:

Σ̂−1 = U diag(
1

σ2
i ∨ σ2

)U> ,

Γ̂ = U diag(σ2
i ∨ σ2 − σ2

i )U
> .

verify the KKT conditions, leading to the desired result.

5.1.3 Multivariate Regression with Covariance Estimation (MRCE)

Introduced by Rothman et al. (2010), this estimator jointly estimates the regression
coefficients (assumed to be sparse) and the precision matrix (i.e., the inverse of the
covariance matrix), which is also assumed to be sparse. Originally in Rothman et al.
(2010) the sparsity enforcing term on the regression coefficients is a matrix `1-norm,
also denoted as ‖·‖1 in this section:

(B̂MRCE, Σ̂MRCE) ∈ arg min
B∈Rp×q

Σ−1�0n,n

‖Ȳ −XB‖2Σ−1 − log det(Σ−1) + λ‖B‖1 + µ‖Σ−1‖1 .

(5.8)
Problem (5.8) is not convex, but can be solved heuristically (see Rothman et al. 2010
for details) by coordinate descent for the udpdates in B and solving a Graphical Lasso
problem (Friedman et al., 2008) for the update in Σ−1. The `1-norm being not well
suited for our problem, we introduce an `2,1 version of MRCE:

(B̂`2,1MRCE, Σ̂`2,1MRCE) ∈ arg min
B∈Rp×q

Σ−1�0n,n

‖Ȳ −XB‖2Σ−1−log det(Σ−1)+λ‖B‖2,1+µ‖Σ−1‖1 .

(5.9)
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In order to combine `2,1-MRCE to take take advantage of all the repetitions, one can
think of the following estimator:

(B̂`2,1MRCER, Σ̂`2,1MRCER) ∈ arg min
B∈Rp×q

Σ−1�0n,n

r∑
1

‖Y l −XB‖2Σ−1−log det(Σ−1)+λ‖B‖2,1+µ‖Σ−1‖1 .

(5.10)
As for Problem (5.8), Problems (5.9) and (5.10) can be heuristically solved with altern-
ated block coordinate descent and Graphical Lasso steps.

Update in Bj: The minimization is the same as for `2,1-MLE and `2,1-MLER:

Bj: = BST

Bj: +
X>:j Σ−1(Y −XB)

‖X:j‖2Σ−1

,
λnq

‖X:j‖2Σ−1

 . (5.11)

Update in Σ−1 Solving Problem (5.9) in Σ−1 amounts to solving:

glasso(Σ, µ) , arg min
Σ−1�0n,n

〈Σemp,Σ−1〉 − log det(Σ−1) + µ‖Σ−1‖1 . (5.12)

This is a well known and well studied problem (Friedman et al., 2008) that can be
solved through coordinate descent. For our implementation we used the scikit-learn
(Pedregosa et al., 2011) version of the Graphical Lasso. Note that solving the Graphical
Lasso on very ill-conditioned empirical covariance matrices such as Σemp is very long:
we thus only considered `2,1-MRCER were the Graphical Lasso is applied on Σemp,r.

5.1.4 Algorithms summary

Each optimization problem is solved with block coordinate descent, whether there is the-
oretical guarantees for it to converge toward a global minimum (for convex formulations,
CLaR, SGCL and MTL), or not (for non-convex formulations, `2,1-MLE, `2,1-MLER,
`2,1-MRCER). The cost for the updates for each algorithm can be found in Table 5.1.
The formula for the updates in Bj:’s and S or Σ for each algorithm can be found in
Table 5.2.

Let fdual be the number of updates of B for one update of S or Σ.

Table 5.1 – Algorithms cost in time summary

CD epoch cost convex dual gap cost

CLaR O(n
3+qn2

fdual + pn2 + pnq) 3 O(rnq + p)

SGCL O(n
3+qn2

fdual + pn2 + pnq) 3 O(nq + p)

`2,1-MLER O(n
3+qn2

fdual + pn2 + pnq) 7 not convex

`2,1-MLE O(n
3+qn2

fdual + pn2 + pnq) 7 not convex

`2,1-MRCER O(O(glasso)
fdual + pn2 + pnq) 7 not convex

MTL O(npq) 3 O(nq + p)
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Recalling that Σemp , 1
q (Ȳ −XB)(Ȳ −XB)> and Σemp,r , 1

rq

∑r
l=1(Y l −XB)(Y l −

XB)>, a summary of the updates in S or Σ and Bj:’s for each algorithm is given in
Table 5.2.

Comments on Table 5.2 The updates in S/Σ and Bj:’s are given in Table 5.2.
Although the updates may look similar, all the algorithms can lead to very different
results, as Figures 5.6, 5.8, 5.10 and 5.12 will illustrate.

Table 5.2 – Algorithms updates summary

update in Bj: update in S or Σ

CLaR Bj: = BST

(
Bj: +

X>:j S
−1(Y−XB)

‖X:j‖2
S−1

, λnq
‖X:j‖2

S−1

)
S = ClSqrt(Σemp,r, σ)

SGCL Bj: = BST

(
Bj: +

X>:j S
−1(Y−XB)

‖X:j‖2
S−1

, λnq
‖X:j‖2

S−1

)
S = ClSqrt(Σemp, σ)

`2,1-MLER Bj: = BST

(
Bj: +

X>:jΣ−1(Y−XB)

‖X:j‖2
Σ−1

, λnq
‖X:j‖2

Σ−1

)
Σ = Cl(Σemp,r, σ2)

`2,1-MLE Bj: = BST

(
Bj: +

X>:jΣ−1(Y−XB)

‖X:j‖2
Σ−1

, λnq
‖X:j‖2

Σ−1

)
Σ = Cl(Σemp, σ2)

`2,1-MRCER Bj: = BST

(
Bj: +

X>:jΣ−1(Y−XB)

‖X:j‖2
Σ−1

, λnq
‖X:j‖2

Σ−1

)
Σ = glasso(Σemp,r, µ)

MTL Bj: = BST

(
Bj: +

X>:j (Y−XB)

‖X:j‖2 , λnq
‖X:j‖2

)
no update in S/Σ

5.2 CLaR

The Python code, with Numba compilation (Lam et al., 2015), is released as an open
source package: https://github.com/QB3/CLaR. It includes the code to run the SGCL
as a special instance of CLaR.

We compare CLaR to other estimators: SGCL (Massias et al., 2018a), an `2,1 version
of MLE (Chen and Banerjee, 2017; Lee and Liu, 2012) (`2,1-MLE), a version of the
`2,1-MLE with multiple repetitions (`2,1-MLER), an `2,1 penalized version of MRCE
(Rothman et al., 2010) with repetitions (`2,1-MRCER) and the Multi-Task Lasso (MTL,
Obozinski et al. 2010). The cost of an epoch of block coordinate descent is summarized
in Table 5.1 in Section 5.1.4 for each algorithm, along with the duality gap cost when
available. All competitors are detailed in Section 5.1.

Synthetic data Here we demonstrate the ability of our estimator to recover the sup-
port i.e., the ability to identify the predictive features. There are n = 150 observations,
p = 500 features, q = 100 tasks. The design X is random with Toeplitz-correlated
features with parameter ρX = 0.6 (correlation between X:i and X:j is ρ|i−j|X ), and its
columns have unit Euclidean norm. The true coefficient B∗ has 30 non-zeros rows whose
entries are independent and normally centered distributed. S∗ is a Toeplitz matrix with
parameter ρS . The SNR is fixed and constant across all repetitions:

SNR , ‖XB∗‖/√r‖XB∗ − Ȳ ‖ . (5.13)

https://github.com/QB3/CLaR
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CLaR SGCL `2,1-MLER `2,1-MLE `2,1-MRCER MTL
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Figure 5.1 – Influence of noise structure. ROC curves of support recovery (ρX = 0.6,
SNR = 0.03, r = 20) for different ρS values.
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Figure 5.2 – Influence of SNR. ROC curves of support recovery (ρX = 0.6, ρS = 0.4,
r = 20) for different SNR values.
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Figure 5.3 – Influence of the number of repetitions. ROC curves of support recovery
(ρX = 0.6, SNR = 0.03, ρS = 0.4) for different r values.

For Figures 5.1 to 5.3, the figure of merit is the ROC curve, i.e., the true positive
rate (TPR) against the false positive rate (FPR). For each estimator, the ROC curve
is obtained by varying the value of the regularization parameter λ on a geometric grid
of 160 points, from λmax (the smallest regularization strength leading to 0p,q being
solution), estimator-specific) to λmin, the latter also being estimator-specific and chosen
to obtain a FPR larger than 0.4.

Influence of noise structure. Figure 5.1 represents the ROC curves for different values
of ρS . As ρS increases, the noise becomes more and more heteroscedastic. From left
to right, the performance of heteroscedastic solvers (CLaR, SGCL, `2,1-MRCER, `2,1-
MRCE, `2,1-MLER) increases as they are designed to exploit correlations in the noise,
while the performance of MTL decreases, as its homoscedastic model becomes less and
less valid.
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CLaR SGCL `2,1-MLER `2,1-MLE `2,1-MRCER MTL
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Figure 5.4 – Influence of the number of repetitions. ROC curves with empirical X and
S and simulated B∗ (amp = 2 nA.m), for different number of repetitions.
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Figure 5.5 – Amplitude influence. ROC curves with empirical X and S and simulated
B∗ (r = 50), for different signal amplitudes.

Influence of SNR. On Figure 5.2 we can see that when the SNR is high (left), all
estimators (except `2,1-MLE) reach the (0, 1) point. This means that for each algorithm
(except `2,1-MLE), there exists a value of λ such that the estimated support is exactly
the true one. However, when the SNR decreases (middle), the performance of SGCL and
MTL starts to drop, while that of CLaR, `2,1-MLER and `2,1-MRCER remains stable
(CLaR performing better), highlighting their capacity to leverage multiple repetitions of
measurements to handle the noise structure. Finally, when the SNR is too low (right),
all algorithms perform poorly, but CLaR, `2,1-MLER and `2,1-MRCER still performs
better.

Influence of the number of repetitions. Figure 5.3 shows ROC curves of all compared
approaches for different r, starting from r = 1 (left) to 100 (right). Even with r = 20
(middle) CLaR outperforms the other estimators, and when r = 100, CLaR can better
leverage the large number of repetitions.

Realistic data We now evaluate the estimators on realistic magneto- and electroen-
cephalography (M/EEG) data. We recall (see Section 1.2) that the M/EEG recordings
measure the electrical potential and magnetic fields induced by the active neurons. Data
are time series of length q with n sensors and p sources mapping to locations in the brain.
Because the propagation of the electromagnetic fields is driven by the linear Maxwell
equations, one can assume that the relation between the measurements Y 1, . . . , Y r and
the amplitudes of sources in the brain B∗ is linear.

The M/EEG inverse problem consists in identifying B∗. Because of the limited number
of sensors (a few hundreds in practice), as well as the physics of the problem, the
M/EEG inverse problem is severely ill-posed and needs to be regularized. Moreover,



110 CHAPTER 5. EXPERIMENTAL VALIDATION

the experiments being usually short (less than 1 s.) and focused on specific cognitive
functions, the number of active sources is expected to be small, i.e., B∗ is assumed to
be row-sparse. This plausible biological assumption motivates the framework of Part II.

Dataset. We use the sample dataset from the MNE software (Gramfort et al., 2014).
The experimental conditions are here auditory stimulations in the right or left ears,
leading to two main foci of activations in bilateral auditory cortices (i.e., 2 non-zeros
rows for B∗). For this experiment, we keep only the gradiometer magnetic channels.
After removing one channel corrupted by artifacts, this leads to n = 203 signals. The
length of the temporal series is q = 100, and the data contains r = 50 repetitions. We
choose a source space of size p = 1281 which corresponds to about 1 cm distance between
neighboring sources. The orientation is fixed, and normal to the cortical mantle.

Realistic MEG data simulations. We use here true empirical values for X and S by
solving Maxwell equations and computing an empirical co-standard deviation matrix
on pre-stimulus data. To generate realistic MEG data we simulate neural responses B∗

with 2 non-zeros rows corresponding to areas known to be related to auditory processing
(Brodmann area 22). Each non-zero row of B∗ is chosen as a sinusoidal signal with
realistic frequency (5Hz) and amplitude (amp ∼ 1 − 10 nA.m). We finally simulate r
MEG signals following the model Y l = XB∗+S∗El, El being matrices with i.i.d. normal
entries.

The signals being contaminated with correlated noise, if one wants to use homoscedastic
solvers it is necessary to whiten the data first (and thus to have an estimation of the
covariance matrix, the later often being unknown). In this experiment we demonstrate
that without this whitening process, the homoscedastic solver MTL fails, as well as
solvers which does not take in account the repetitions: SGCL and `2,1-MLE. In this
scenario CLaR, `2,1-MLER and `2,1-MRCER do succeed in recovering the sources, CLaR
leading to the best results. As for the synthetic data, Figures 5.4 and 5.5 are obtained
by varying the estimator-specific regularization parameter λ from λmax to λmin on a
geometric grid.

Influence of the number of repetitions. Figure 5.4 shows ROC curves for different number
of repetitions r. When the number of repetitions is high (right, r = 50), the algorithms
taking into account all the repetitions (CLaR, `2,1-MLER, `2,1-MRCER) perform best,
almost hitting the (0, 1) corner, whereas the algorithms which do not take into account
all the repetitions (`2,1-MLE, MTL, SGCL) perform poorly. As soon as the number
of repetitions decreases (middle and left) the performances of all the algorithms except
CLaR start dropping severely. CLaR is once again the algorithm taking the most
advantage of the number of repetitions.

Amplitude influence. Figure 5.5 shows ROC curves for different values of the amplitude
of the signal. When the amplitude is high (right), all the algorithms perform well,
however when the amplitude decreases (middle) only CLaR leads to good results, almost
hitting the (0, 1) corner. When the amplitude gets lower (left) all algorithms perform
worse, CLaR still yielding the best results.

Real data As above, we use the sample dataset from MNE, keeping only the magne-
tometer magnetic channels (n = 102 signals). We choose a source space of size p = 7498
(about 5mm between neighboring sources). The orientation is fixed, and normal to the
cortical mantle. As for realistic data, X is the empirical design matrix, but this time we
use the empirical measurements Y 1, . . . , Y r. The experiment are left or right auditory
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(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) `2,1-MRCER (f) MTL

Figure 5.6 – Real data, left auditory stimulations (n = 102, p = 7498, q = 76, r = 63)
Sources found in the left hemisphere (top) and the right hemisphere (bottom) after left
auditory stimulations .

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) `2,1-MRCER (f) MTL

Figure 5.7 – Real data, right auditory stimulations (n = 102, p = 7498, q = 76, r = 33)
Sources found in the left hemisphere (top) and the right hemisphere (bottom) after
right auditory stimulations.

or visual stimulations. As two sources are expected (one in each hemisphere, in bilateral
auditory cortices), we vary λ by dichotomy between λmax (returning 0 sources) and a
λmin (returning more than 2 sources), until finding a value of λ giving exactly 2 sources.
Results are provided in Figures 5.6 and 5.7. Running times of each algorithm are of the
same order of magnitude and can be found in Section 5.4.

Comments on Figure 5.6, left auditory stimulations. Sources found by the algorithms
are represented by red spheres. SGCL, `2,1-MLE and `2,1-MRCER completely fail,
finding sources that are not in the auditory cortices at all (SGCL sources are deep, thus
not in the auditory cortices, and cannot be seen). MTL and `2,1-MLER do find sources
in auditory cortices, but only in one hemisphere (left for MTL and right for `2,1-MLER).
CLaR is the only one that finds one source in each hemisphere in the auditory cortices
as expected.

Comments on Figure 5.7, right auditory stimulations. In this experiment we only keep
r = 33 repetitions (out of 63 available) and it can be seen that only CLaR finds correct
sources, MTL finds sources only in one hemisphere and all the other algorithms do
find sources that are not in the auditory cortices. This highlights the robustness of
CLaR, even with a limited number of repetitions, confirming previous experiments (see
Figure 5.3).
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5.2.1 Right auditory stimulations

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) `2,1-MRCER (f) MTL

Figure 5.8 – Real data (n = 102, p = 7498, q = 76, r = 65): sources found in the left
hemisphere (top) and the right hemisphere (bottom) after right auditory stimulations.

Figures 5.8 and 5.9 show the solution given by each algorithm on real data after right
auditory stimulations. As two sources are again expected (one in each hemisphere, in
bilateral auditory cortices), we repeat the procedure detailed in the previous experiment
to find a suitable value of λ per estimator. Figure 5.8 (resp. Figure 5.9) shows the
solution given by the algorithms taking in account all the repetitions (resp. only half of
the repetitions). When the number of repetitions is high (Figure 5.8) only CLaR and
`2,1-MLER find one source in each auditory cortices, MTL does find sources only in one
hemisphere, all the other algorithms fail by finding sources not in the auditory cortices
at all. Moreover when the number of repetitions is decreasing (Figure 5.9) `2,1-MLER
fails and only CLaR does find 2 sources, one in each hemisphere. Once again CLaR is
more robust and performs better, even when the number of repetitions is lower.

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) `2,1-MRCER (f) MTL

Figure 5.9 – Real data (n = 102, p = 7498, q = 76, r = 33) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after right auditory stimulations.
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5.2.2 Left visual stimulations

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) `2,1-MRCER (f) MTL

Figure 5.10 – Real data (n = 102, p = 7498, q = 48, r = 71) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after left visual stimulations.

Figures 5.10 and 5.11 show the results for each algorithm after left visual stimulations.
As one source is expected (in the right hemisphere), we vary λ by dichotomy between
λmax (returning 0 source) and a λmin (returning more than 1 source), until finding a
value of λ giving exactly 1 source. When the number of repetitions is high (Figure 5.10)
only CLaR and `2,1-MLER do find a source in the visual cortex. When the number of
repetitions decreases, CLaR and `2,1-MLER still find one source in the visual cortex,
other algorithms fail. This highlights this importance to take in account the repetitions.

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) `2,1-MRCER (f) MTL

Figure 5.11 – Real data (n = 102, p = 7498, q = 48, r = 36) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after left visual stimulations.

5.2.3 Right visual stimulations

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) `2,1-MRCER (f) MTL

Figure 5.12 – Real data (n = 102, q = 7498, q = 48, r = 61) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after right visual stimulations.
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Figures 5.12 and 5.13 show the results for each algorithm after right visual stimulations.
As one source is expected (in the left hemisphere), we vary λ by dichotomy between
λmax (returning 0 sources) and a λmin (returning more than 1 source), until finding a
lambda giving exactly 1 source. When the number of repetitions is high (Figure 5.12)
only CLaR, `2,1-MLER and MTL do find a source in the visual cortex. When the
number of repetitions decreases (Figure 5.13), only CLaR finds one source in the visual
cortex, other algorithms fail. This highlights once again the robustness of CLaR, even
with a limited number of repetitions.

(a) CLaR (b) SGCL (c) `2,1-MLER (d) `2,1-MLE (e) `2,1-MRCER (f) MTL

Figure 5.13 – Real data (n = 102, q = 7498, q = 48, r = 31) Sources found in the left
hemisphere (top) and the right hemisphere (bottom) after right visual stimulations.

Finally, we describe the preprocessing pipeline used for the realistic and real data (see
Section 5.3). We then propose time comparison for all the algorithms (see Section 5.4).

5.3 Preprocessing steps for realistic and real data

When using multi-modal data without whitening, one has to rescale properly data,
indeed data needs to have the same order of magnitude, otherwise some mode (for ex-
ample EEG data) could be (almost) completely ignored by the optimization algorithm.
The preprocessing pipeline used to rescale realistic data (Figures 5.4 and 5.5) and real
data (Figures 5.6, 5.8, 5.10 and 5.12) is described in Algorithm 5.1.

Algorithm 5.1 Preprocessing steps for realistic and real data
input : X,Y 1, . . . , Y r

// rescale each line of X

1 for i = 1, . . . , n do
2 for l = 1, . . . , r do
3 Y l

i: ← Y l
i:/‖Xi:‖

4 Xi: ← Xi:/‖Xi:‖
// rescale each column of X

5 for j = 1, . . . , q do
6 X:j ← X:j/‖X:j‖
7 return X,Y 1, . . . , Y r
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5.4 Time comparison

The goal of this small experiment is to show that our algorithm (CLaR) is as costly
as a Multi-Task Lasso or other competitors (in the M/EEG context, i.e., n not too
large). The time taken by each algorithm to produce Figure 5.6 (real data, left auditory
stimulations) is given in Figure 5.14. In this experiment the stoppping tolerance is set
to ε = 10−3, the safe stopping criterion is duality gap < ε (only available for convex
optimization problems). The heuristic stopping criterion is to stop when the objective
no longer decrease steeply enough, i.e., we stop when P(B(t),Σ(t))−P(B(t+1),Σ(t+1)) <
ε/10. The safe stopping criterion is only available for CLaR, SGCL and MTL (it takes
too much time – more than 10 min – for SGCL to get to a duality gap inferior to ε).

CLaR SGCL 2, 1-MLER 2, 1-MLE 2, 1-MRCER MTL
Algorithms

0

1

2

3

4

5

6

7

8

Ti
m

e 
(s

)

Safe stop
Heuristic stop

Figure 5.14 – Time comparison, real data, n = 102, p = 7498, q = 54, r = 56. Time
for each algorithm to produce Figure 5.6.

Comment on Figure 5.14 Figure 5.14 shows that if we use the heuristic stopping
criterion, CLaR is as fast the other algorithm. In addition CLaR has a safe stopping
criterion which only take 2 to 3 more time than the heuristic one (less than 10 sec).





Conclusion and perspectives

Winter does not last forever.
Spring comes, snows melt.

In this thesis, we have introduced better numerical solutions to the `2,1-regularized
bio-magnetic inverse problem. First, we designed a better dual point construction for
coordinate descent solvers used in `1-type optimization. This point helps to identify
active features faster than previous approaches. Celer, the solver based on this con-
struction, shows improvements of Gap Safe screening rules and working set algorithms
in an extended benchmark. It is available as an easy to use Python package, for repro-
ducibility and practical impact. Initially designed for the Lasso, we then applied this
method to popular problems such as sparse Logistic regression and Multitask Lasso,
whose range of application go far beyond the field of brain imaging.

Then, we introduced concomitant noise estimators, to address the complex structure
of magneto-electroencephalographic measurements. We handle the multiple repetition
setting of M/EEG experiments for a better estimation of the noise matrix. Contrary
to existing “noise aware” estimators, they are jointly convex, and the smoothing of the
nuclear norm makes the underlying optimization problem easy to solve. The smoothing
analysis we provide for CLaR paves the way for a simplified use of Schatten norms as
datafitting term in sparse problems.

The performance obtained for dual extrapolation is visible after support identification.
In our Machine Learning setting, we have empirically observed that this identification
usually happens quickly. However, it may not be the case in other situations, and modi-
fying our extrapolation procedure for it to perform well before support identification
is a perspective to make it more efficient. We devoted our efforts to the construction
of a better dual point, as we had previously observed that the duality gap provided
a massive overestimation of the suboptimality. Now that this bottleneck has been re-
moved, a promising perspective is to apply extrapolation in the primal, and to generalize
to more schemes than cyclic coordinate descent.

Working set methods start with a small number of features. In homotopy methods,
the solvers start with a high value of λ, giving a very sparse solution, then decrease
it gradually. Connections between these techniques (parallel between geometric grid of
regularizers and the popular geometric growth of the working set size) may help us to
justify the multiple heuristics upon which efficient working set algorithms are based.

CLaR depends on a noise parameter controlling the smallest eigenvalue of the noise
covariance. Unfortunately, compared to its minimal noise level interpretation in the
Concomitant Lasso, this parameter has no simple explanation in the matrix case. We
are currently working on a statistical analysis of CLaR, shedding some light on the
optimal way to set its value.

Combination of the two parts, i.e., dual extrapolation for CLaR, as been implemented
as a proof of concept; however the preliminary step is to better understand the putative
VAR nature of Multitask Lasso iterates.
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A
Choice of parameters in Celer

A.1 Additional experiments

A.1.1 Choice of f and K

0 100 200 300 400 500
epoch t

10−12

10−10

10−8

10−6

10−4

10−2

P
(λ

) (β
t )
−
D

(λ
) (θ

t ac
ce

l)

f = 1

f = 5

f = 10

f = 20

f = 50

P (λ)(βt)− P (λ)(β̂(λ))

Figure A.1 – Duality gap evaluated with θaccel as a function of the parameter f , for
K = 5.

Figure A.1 shows that if the residuals used to extrapolate are too close (small f), the
performance of acceleration is too noisy (though the duality gap still converges to the
true suboptimality gap). For residuals too far apart (large f), the convergence towards
θ̂ is slower and the duality gap does not reach the true suboptimality gap as it should
ideally. fdual = 10 provides the best performance.
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Figure A.2 – Duality gap evaluated with θaccel as a function of the parameter K, for
fdual = 10.

Figure A.2 shows that the choice of K is not critical: all performances are nearly
equivalent. Hence, we keep the default choice K = 5 proposed in Scieur et al. (2016).
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A.1.2 Working set size policy

In this section, we demonstrate how the growth policy we chose in Equation (2.39)
behaves better than others. We consider two types of growth: geometric of factor γ:

p(t) = min(γ‖β(t−1)‖0, p) , (A.1)

and linear of factor γ:

p(t) = min(γ + ‖β(t−1)‖0, p) . (A.2)

We implement these two strategies with factor 2 and 4 for the geometric, and 10 and
50 for the linear. We consider two scenarios:

• undershooting, with p(1) = 10 much smaller than the true support size ‖β̂‖0 = 983
(obtained with λ = λmax/20),

• overshooting, with p(1) = 500 much larger than the true support size ‖β̂‖0 = 63
(obtained with λ = λmax/5).

Figure A.3 shows that, when the first working set is too small (choice of p(1) = 10),
the approximate solutions are dense and the subsequent W(t) grow in size. Amongst
the four strategies considered, the geometric growth with factor 2 quickly reaches the
targeted support size (contrary to the linear strategies), and does not create way too
large WS like the geometric strategy with factor 4 does.

Figure A.4 shows that, if the initial guess is too large, using ‖β(t−1)‖0 instead of |W(t−1)|
immediately decreases the size of W(1), thus correcting the initial mistake and avoiding
solving too large subproblems.
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Figure A.3 – Size of working sets defined by Celer with linear or geometric growth, when
the support size is underestimated.
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Figure A.4 – Size of working sets defined by Celer with linear or geometric growth, when
the support size is overestimated.

A.1.3 Path on other dataset

Table A.1 reproduces the results of Section 2.5.4 on another dataset: bcTCGA, obtained
from the The Cancer Genome Atlas (TCGA) Research Network1. For this dense dataset,
n = 536 and p = 17 323 (unregularized intercept column added). The grid goes from
λmax to λmax/100. The conclusions from Section 2.5.4 still hold.

Table A.1 – Computation time (in seconds) for Celer (no pruning) and Blitz to reach a
given precision ε for a Lasso path on a dense grid, on the bcTCGA dataset.

ε 10−2 10−4 10−6 10−8

Celer 6 45 160 255
Blitz 22 101 252 286

Note that for the lowest precision the Blitz solver stops running due to internal stopping
criterion measuring primal decrease and time spent on working set, but the evaluated
duality gap when the solver stops is not always lower than ε along the path.

1http://cancergenome.nih.gov/





B
Concomitant estimation

B.1 Block homosecedastic model

Formally, if the k-th group of sensors is composed of nk sensors (
∑K

1 nk = n), with
design matrix Xk ∈ Rnk×p, observation matrix Y k ∈ Rnk×q and noise level σ∗k > 0, the
block homoscedastic model is a combination of K homoscedastic models:

∀k ∈ [K], Y k = XkB∗ + σ∗kE
k , (B.1)

with the entries of Ek independently sampled from N (0, 1). In the following we denote

X =


X1

...
XK

 , Y =


Y 1

...
Y K

 , E =


E1

...
EK

 , and S∗ =


σ∗1 Idn1 0

. . .
0 σ∗K IdnK

 ∈ Sn++.

Following this model, we call multi-task Smoothed Block Homoscedastic Concomitant
Lasso (multi-task SBHCL) the estimator similar to the one of Problem (4.6) with the
additional constraint that S is a diagonal matrix diag(σ1 Idn1 , . . . , σK IdnK ), with K
constraints σk ≥ σk:

arg min
B∈Rp×q ,

σ1,...,σK∈RK++

σk≥σk,∀k∈[K]

K∑
k=1

(
‖Y k −XkB‖2

2nqσk
+
nkσk
2n

)
+ λ

∥∥B
∥∥

2,1
. (B.2)

Since Problem (B.2) does not admit a closed-form solution, we also propose an iterative
solver, along with a stopping condition based on the duality gap, which is derived for
this problem in Theorem B.1.

• When the constraints on the σk’s are not saturated at optimality, formulation Prob-
lem (B.2) has an equivalent square-root Lasso (Belloni et al., 2011) formulation:

arg min
B∈Rp×q

1

nq

K∑
k=1

√
nk‖Y k −XkB‖+ λ

∥∥B
∥∥

2,1
. (B.3)

• To fix the values of the lower bounds on the noise levels σk, we use an arbit-
rary proportion of the initial estimation of the noise variances per block i.e., S =
10−α diag(‖Y 1‖/√n1q Idn1 , . . . , ‖Y K‖/√nKq IdnK ). α = 3 is used in the experiments.

Theorem B.1. The dual formulation of Problem (B.2) is

Θ̂ = arg max
Θ∈∆

′
X,λ

〈Y, λΘ〉+
K∑
k=1

σk
2

(
nk
n
− nqλ2‖Θk‖2

)
,
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Algorithm B.1 Alternate min. for the block model
input : X1, . . . , XK , Y 1, . . . , Y K , σ1, . . . , σK , λ, T
init : B = 0p,q, ∀k ∈ [K], σk = ‖Y k‖/√nkq,Rk = Y k, ∀k ∈ [K],∀j ∈ [p], Lk,j =

‖Xk
j ‖22

1 for t = 1, . . . , T do
2 for j = 1, . . . , p do
3 for k = 1, . . . ,K do
4 Rk ← Rk +Xk

j Bj // residual update

5 Bj ← BST

( K∑
k=1

Xk >
j Rk

σk
, λnq/

K∑
k=1

Lk,j
σk

)
// block soft-thresholding

6 for k = 1, . . . ,K do
7 Rk ← Rk −Xk

j Bj // residual update

8 σk ← σk ∨
‖Rk‖√
nkq

// std dev update

9 return B, σ1, . . . , σk

where

∆
′
X,λ ,

{
Θ ∈ Rn×q : ‖X>Θ‖2,∞ ≤ 1,∀k ∈ [K], ‖Θk‖ ≤

√
nk

nλ
√
q

}
.

Proposition B.2. When optimizing Problem (B.2) with B fixed, then

Ŝ = diag(σ̂1 Idn1 , . . . , σ̂K IdnK ) , (B.4)

with residuals Rk = Y k −XkB̂ and σ̂k = σk ∨ (‖Rk‖/√nkq).

Proposition B.3. For the multi-task SBHCL the critical parameter is

λmax , 1
nq‖X>S−1

maxY ‖2,∞ , (B.5)

where Smax = diag(σmax
1 Idn1 , . . . , σ

max
K IdnK ) and ∀k ∈ [K], σmax

k = σk ∨ (‖Y k‖/√nkq).

The strategy of Algorithm 4.1 can also be applied to the multi-task SBHCL. Because of
the special form of S, the computations are lighter and the standard deviations σk’s can
be updated at each coordinate descent update. Indeed, updating all the σk’s may seem
costly, since a naive implementation requires to recompute all the residual norms ‖Rk‖,
where Rk = Y k −XkB, which is O(nq). However, it is possible to store the values of
‖Rk‖2 and update them at each Bj update with a O(kq) cost. Indeed, if we denote B̃j

and R̃k the values before the update, we have:

Rk = R̃k +Xk >
j (B̃j − Bj)

‖Rk‖2 = ‖R̃k‖2 + 2〈(B̃j − Bj), R̃
k >Xk

j 〉+ ‖B̃j − Bj‖2Lj,k

and all the quantities R̃k >Xk
j are already computed for the soft-thresholding step. As

k ≤ n, this makes the cost of one Bj update of Algorithm B.1 O(nq), the same cost as
for the `2,1 regularized Lasso, a.k.a. multi-task Lasso (MTL) (Obozinski et al., 2010).
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B.2 Experiments

B.2.1 Block homoscedastic model illustration

To demonstrate the benefits of handling non-homoscedastic noise, we now present ex-
periments using both simulations and real M/EEG data. First, we show that taking
into account multiple noise levels improves both prediction performance and support
identification. We then illustrate on M/EEG data that the estimates of the noise stand-
ard deviations using multi-task SBHCL match the expected behavior when increasing
the SNR of the data. We also demonstrate empirically the benefit of our proposed
multi-task SBHCL to reduce the variance of the estimation. The implementation is
done in Python/Cython and is available at https://github.com/mathurinm/SHCL.

We consider the case where the block structure of the noise is known by the practitioner.
Therefore, all experiments use the block homoscedastic setting. Note that this is relevant
with the M/EEG framework where the variability of the noise is due to different data
acquisitions sensors that are known.

B.2.2 Prediction performance

We first study the impact of the multi-task SBHCL on prediction performance, evaluated
on left-out data.

The experiment setup is as follows. There are n = 300 observations, p = 1000 features
and q = 100 tasks. The design X is random with Toeplitz-correlated features with
parameter ρ = 0.7 (correlation between features i and j is ρ|i−j|). The true coefficient
matrix B∗ has 20 non-zero rows, whose entries are independently and normally (centered
and reduced) distributed. We simulate data coming from K = 3 sources (each one
containing 100 observations) whose respective noise levels are σ∗, 2σ? and 5σ?. The
standard deviation σ? is chosen so that the signal-to-noise ratio

SNR , ‖Y ‖/‖XB∗‖ = 1 .

The two estimators are trained for λ varying on a logarithmic grid of 15 values between
the critical parameter1 λmax and λmax/10. The training set contains 150 samples (n1 =
n2 = n3 = 50 of each data source) and the test set consists of the remaining 150.

Figure B.1 shows prediction performance for the Smooth Concomitant Lasso (SCL),
which estimates a single noise level for all blocks, and the multi-task SBHCL. Since
each block has a different noise level, for each block k and each estimator, we report the
Root Mean Squared error (RMSE, ‖Y k −XkB̂‖/√qnk) normalized by the oracle RMSE
(‖Y k −XkB∗‖/√qnk). After taking the log, zero value means a perfect estimation, a
positive value means under-fitting of the block, while a negative value corresponds to
over-fitting. Figure B.1 reports normalized RMSE values on both the training and the
test data.

As it can be observed, the RMSE for the multi-task SBHCL is lower on every block of
the test set, meaning that it has better prediction performance. By attributing a higher
noise standard deviation to the noisiest block (block 3), the multi-task SBHCL is able
to down-weight the impact of these samples on the estimation, while still benefiting
from it.

1Note that λmax is model specific

https://github.com/mathurinm/SHCL
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Figure B.1 – RMSE normalized by oracle RMSE, per block, for the multi-task SBHCL
and Smooth Concomitant Lasso (SCL), on training (top) and testing (bottom) set, for
various values of λ. The flexibility of the block homoscedastic model enables the multi-
task Smoothed Block Homoscedastic Concomitant Lasso to reach a lower RMSE on
every block of the test set.

While the 3 normalized RMSE have similar behaviors on the test set for the SCL, for
low values of λ, the multi-task SBHCL overfits more on the least noisy block. However
this does not result in degraded prediction performance on the test set, neither for this
block nor for others, and the prediction is even better on the noisiest block. Indeed, the
SCL overfits more on the the noisiest block, which has a greater impact on prediction
(as overfitting on noiseless data would lead to perfect parameter inference). When the
regularization parameter becomes too low, taking into account different noise levels al-
lows our estimator to limit the impact of overfitting by favoring the most reliable source.
This experiments shows that our formulation is appealing for parameter selection, as
the best left-out prediction is obtained for similar values of λ.

B.2.3 Support recovery

In this experiment, we demonstrate the superior performance of the multi-task SBHCL
for support recovery, i.e., its ability to correctly identify the predictive features. The
experimental setup is the same as in Appendix B.2.2, except that the support of B∗

is of size 50. We also vary ρ ∈ {0.1, 0.9} and the SNR ∈ {1, 5} (additional results are
included in Appendix A.1).

The five estimators compared on Figure B.2 are the multi-task SBHCL, the SCL, the
MTL, and also the MTL and the SCL trained on the least noisy block (i.e., the most
favorable block). Following the empirical evaluation from (Bühlmann and Mandozzi,
2014), the figure of merit is the ROC curve, i.e., the true positive rate as a function of
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Figure B.2 – ROC curves of true support recovery for the SBHCL, the MTL and SCL
on all blocks, and the MTL and SCL on the least noisy block. The black curve marks
the limit of supports of size 0.9n. Top: SNR = 5, ρ = 0.1, middle: SNR=1, ρ = 0.1,
bottom: SNR = 1, ρ = 0.9.

the false positive rate. The curve is obtained by varying the value of λ (lower values
leading to larger predicted support and therefore potentially more false positives).

We can see that when the SNR is sufficiently high (top graph with SNR = 5), the
multi-task SBHCL, the SCL and the MTL successfully recover the true support, while
the MTL or SCL trained on the least noisy block with only one third of the data fails.
However, when the SNR is lower (middle graph with SNR = 1), the multi-task SBHCL
still achieves almost perfect support identification, while the performance of the MTL
and SCL decreases. The performance is naturally even worse when using only one
block of samples. Finally, when the features are more correlated (ρ = 0.9) and the
conditioning of X is degraded, the multi-task SBHCL, despite not perfectly recovering
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Table B.1 – Mean values of pAUC for the main estimators, across ten simulations of X
and Y .

SNR 1 1 5
ρ 0.1 0.9 0.1

SBHCL 0.92± 0.12 0.86± 0.05 0.98± 0.02
MTL 0.79± 0.08 0.71± 0.07 0.99± 0.00
MTL (block 1) 0.44± 0.04 0.48± 0.05 0.48± 0.04

the true support, still has superior performance. Note also that unsurprisingly the MTL
and the SCL lead to almost perfectly the same ROC curves as both estimators (if σ is
small enough) have the same solution path. Any difference between SCL and MTL in
our graph is due to the choice of a discrete set of λ values.

To study the stability of Figure B.2, we repeat the simulation 10 times. Since the curves
are not guaranteed to reach TPR = 1, it is not possible to use AUC as a scalar figure
of merit. As we are usually interested in sparse estimators when the recovered support
is small, we follow Bühlmann and Mandozzi (2014, Fig. 1-4), and limit the study to
estimated supports of size inferior to 0.9n (i.e., the part to the left of the black curve).
This leads to the use of pAUC or “0.9–performance”: the area under the ROC curve, but
restricted to the left of the black line, and normalized by its maximal value. The mean
pAUCs for 10 repetitions, for all estimators in the different settings are in Table B.1.

B.2.4 Results on joint M/EEG real data

We now evaluate our estimator on magneto- and electroencephalography (M/EEG)
data. The data consists of M/EEG recordings, which measure the electric potential and
magnetic field induced by active neurons. Data are time-series so that n corresponds
to the number of sensors and q to the number of consecutive time instants in the data.
Thanks to their high temporal resolution, M/EEG help to elucidate where and precisely
when cognitive processes happen in the brain. The so-called M/EEG inverse problem,
which consists in identifying active brain regions, can be cast as a high-dimensional
sparse regression problem. Because of the limited number of sensors, as well as the
physics of the problem, this problem is severely ill-posed, and regularization is needed
to provide solutions which are both biologically plausible and robust to measurement
noise (Wipf et al., 2008; Haufe et al., 2008; Gramfort et al., 2013). As foci of neural
activity are observed from a distance by M/EEG and since only a small number of brain
regions are involved in a cognitive task during a short time interval, it is common to
employ sparsity-promoting regularizations. Amongst these, the `1/`2 penalty has been
successfully applied to the M/EEG inverse problem in either time (Ou et al., 2009) or
frequency domain (Gramfort et al., 2013).

The experimental condition considered is a monaural auditory stimulation in the right
ear of the subject. The same subject undergoes the same stimulation 61 times, and
the M/EEG measurements are recorded from 0.2 s before to 0.5 s after the stimulus.
The data (from the MNE software (Gramfort et al., 2014)) thus contains 61 repetitions
(trials) of this stimulation.
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Figure B.3 – Noise standard deviation estimated on auditory data for q = 1, q = 20
and q = 34 time instants using the SBHCL estimator. Data consist of combined MEG
gradiometers (n1 = 203 sensors) and magnetometers (n2 = 102 sensors), as well as EEG
(n3 = 59 sensors). We used λ = 0.03λmax.

In the experimental setup we have 204 gradiometers, 102 magnetometers and 60 EEG
electrodes. We have discarded one magnetometer and one electrode corrupted by strong
artifacts. We therefore have K = 3 sensor types with n1 = 203, n2 = 102 and n3 = 59
(so n = 364). X is obtained by numerically solving the M/EEG forward problem using
p = 1884 candidate sources distributed over the cortical surface (X ∈ R364×1884). The
orientations of the dipoles are assumed known and normal to the cortical mantle.

The measurements for q = 1 (single time measurements) are selected 75ms after the
stimulus onset, and between 60 and 115 ms (resp. 70 and 102 ms) after the stimulus for
q = 34 (resp q = 20). This time interval corresponds to the main cortical response to
the auditory stimulation.

For a number t of repetitions of experiment (t ranging from 2 to 56), we create an
observation matrix Yt by averaging the first t trials. By doing so, the noise standard
deviations of each block should be proportional to 1/

√
t. We then run the multi-task

SBHCL with fixed λ, equal to 3% of λmax. Figure B.3 shows the noise standard deviation
estimated by the multi-task SBHCL, when ran on a single time instant (single task), 20
and 34 time instants.

We can see that the estimated values are plausible: they have the correct orders of
magnitude, as well as the expected 1/

√
t decrease. We also see that taking more tasks

into account leads to more stable noise estimation: for magnetometers, the curve is
smoother for q = 34 than for q = 20 and q = 1. Indeed, using more tasks reduces the
variance of the estimation.
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B.3 Statistical properties

B.3.1 Statistical comparison

In this subsection, we show the statistical interest of using all repetitions of the exper-
iments instead of using a mere averaging as SGCL would do (recall that the later is
equivalent to CLaR with r = 1 and Y 1 = Ȳ , see Remark 4.6).

Let us introduce Σ∗, the true covariance matrix of the noise (i.e., Σ∗ = S∗2 with
our notation). In SGCL and CLaR alternate minimization consists in a succession
of estimations of B∗ and Σ∗ (more precisely S = ClSqrt(Σ, σ) is estimated along the
process). In this section we explain why the estimation of Σ∗ provided by CLaR has
better statistical properties than that of SGCL. For that, we can compare the estimates
of Σ∗ one would obtain provided that the true parameter B∗ is known by both SGCL
and CLaR. In such “ideal” scenario, the associated estimators of Σ∗ could be written:

Σ̂CLaR ,
1

qr

r∑
l=1

(Y l −XB̂)(Y l −XB̂)> , (B.6)

Σ̂SGCL ,
1

qr

( r∑
l=1

Y l −XB̂

)( r∑
l=1

Y l −XB̂

)>
, (B.7)

with B̂ = B∗, and satisfy the following properties:

Proposition B.4. Provided that the true signal is known, and that the covariance
estimator Σ̂CLaR and Σ̂SGCL are defined thanks to Equations (B.6) and (B.7), then one
can check that

E(Σ̂CLaR) = E(Σ̂SGCL) = Σ∗ , (B.8)

cov(Σ̂CLaR) =
1

r
cov(Σ̂SGCL) . (B.9)

Proposition B.4 states that Σ̂CLaR and Σ̂SGCL are unbiased estimators of Σ∗ but our
newly introduced CLaR, improves the estimation of the covariance structure by a factor
r, the number of repetitions performed.

Empirically2, we have also observed that Σ̂CLaR has larger eigenvalues than Σ̂SGCL,
leading to a less biased estimation of S∗ after clipping the singular values.

Let us recall that:

ΣSGCL =
1

qr

( r∑
l=1

Rl
)( r∑

l=1

Rl
)>

and ΣCLaR =
1

qr

r∑
l=1

RlRl> . (B.10)

Proof If B = B∗, Rl = S∗El, where El are random matrices with normal i.i.d. entries,
and the result trivially follows.

If B̂ = B∗, Y l − XB̂ = S∗El, where the El’s are random matrices with normal
i.i.d. entries.

Now, on the one hand:

Σ̂SGCL =
1

qr

( r∑
l=1

S∗El
)( r∑

l=1

S∗El
)>

.

2In that case we plug B̂ = B̂CLaR (resp. B̂ = B̂CLaR) in Proposition B.4.
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Since 1√
r

∑r
l=1 S

∗El ∼
law

S∗E it follows that

Σ̂SGCL ∼
law

1

q
S∗E(S∗E)>,

cov(Σ̂SGCL) =
1

q2
cov(S∗E(S∗E)>) .

On the other hand:

Σ̂CLaR =
1

qr

r∑
l=1

S∗El(S∗El)> .

Since the El’s are independent it follows that:

cov(Σ̂CLaR) =
1

r2q2

r∑
l=1

cov
(
S∗El(S∗El)>

)
=

1

r2q2

r∑
l=1

cov
(
S∗E(S∗E)>

)
=

1

rq2
cov

(
S∗E(S∗E)>

)
=

1

r
cov

(
Σ̂SGCL

)
.
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Titre : Régression parcimonieuse en grande dimension en présence de bruit coloré hétéroscédastique: appli-
cation à la localisation de sources M/EEG

Mots clés : Optimisation convexe, parcimonie, hétéroscédasticité, lissage, extrapolation

Résumé : Parmi les techniques d’imagerie cérébrale,
la magnéto- et l’électro-encéphalographie se dis-
tinguent pour leur faible degré d’invasivité et leur
excellente résolution temporelle. La reconstruction
de l’activité neuronale à partir de l’enregistrements
des champs électriques et magnétiques constitue
un problème inverse extrêmement mal posé, auquel
il est nécessaire d’ajouter des contraintes pour le
résoudre. Une approche populaire, empruntée dans
ce manuscript, est de postuler que la solution est
parcimonieuse spatialement, ce qui peut s’obtenir
par une pénalisation L2/1. Cependant, ce type de
régularisation nécessite de résoudre des problèmes
d’optimisation non-lisses en grande dimension, avec
des méthodes itératives dont la performance se
dégrade avec la dimension. De plus, les enregistre-
ments M/EEG sont typiquement corrompus par un fort
bruit coloré, allant à l’encontre des hypothèses clas-
siques de résolution des problèmes inverses.
Dans cette thèse, nous proposons d’abord une
accélération des algorithmes itératifs utilisés
pour résoudre le problème bio-magnetique avec
régularisation L2/1. Les améliorations classiques

(règles de filtrage et ensemble actifs), tirent parti
de la parcimonie de la solution: elles ignorent les
sources cérébrales inactives, et réduisent ainsi la di-
mension du problème. Nous introduisons une nou-
velle technique d’ensemble actifs, reposant sur les
règles de filtrage les plus performantes actuellement.
Nous proposons des techniques duales avancées,
qui permettent un contrôle plus fin de l’optima-
lité et améliorent les techniques d’identification de
prédicteurs. Notre construction duale extrapole la
structure Vectorielle Autoregressive des itérés duaux,
régularité que nous relions aux propriétés d’identi-
fication de support des algorithmes proximaux. En
plus du problème inverse bio-magnétique, l’approche
proposée est appliquée à l’ensemble des modèles
linéaires généralisés régularisés L1.
Deuxièmement, nous introduisons de nouveaux esti-
mateurs concomitants pour la régression multitâche,
conçus pour traiter du bruit gaussien corrélé. Le
problème d’optimisation sous-jacent est convexe,
et présente une structure “lisse + proximable” at-
trayante ; nous lions la formulation de ce problème
au lissage des normes de Schatten.

Title : Sparse high dimensional regression in the presence of colored heteroscedastic noise: application to
M/EEG source imaging

Keywords : Convex optimization, sparsity, heteroscedasticity, smoothing, extrapolation; magneto-
electroencephalography

Abstract : Amongst neuroimaging techniques,
magneto- and electroencephalography (M/EEG)
stand out for their non-invasiveness and their ex-
cellent time resolution. Reconstructing the neural ac-
tivity from the recordings of magnetic field and electric
potentials is a severely ill-posed inverse problem, for
which it is popular to assume spatial sparsity of the
solution, obtained through `2,1-penalized regression
approaches. However, this regularization requires to
solve time-consuming high-dimensional optimization
problems. Additionally, M/EEG recordings are usually
corrupted by strong non-white noise, which breaks the
classical statistical assumptions of inverse problems.
In this thesis, we first propose speed improvements
of iterative solvers used for the `2,1-regularized bio-
magnetic inverse problem. Typical improvements,
screening and working sets, exploit the sparsity of
the solution: by identifying inactive brain sources, they
reduce the dimensionality of the optimization pro-
blem. We introduce a new working set policy, derived
from the state-of-the-art Gap safe screening rules,

and propose duality improvements, yielding a tigh-
ter control of optimality and improving feature iden-
tification techniques. Our dual construction extrapo-
lates on an asymptotic Vector AutoRegressive regula-
rity of the dual iterates, which we connect to manifold
identification of proximal algorithms. Beyond the `2,1-
regularized bio-magnetic inverse problem, the propo-
sed methods apply to the whole class of sparse Ge-
neralized Linear Models.
Second, we introduce new concomitant estimators for
multitask regression. We design them to handle non-
white Gaussian noise, and to exploit the multiple re-
petitions nature of M/EEG experiments. The under-
lying optimization problem is jointly convex in the re-
gression coefficients and the noise variable, with a
“smooth + proximable” composite structure. It is the-
refore solvable via standard alternate minimization, for
which we apply the improvements detailed in the first
part. We provide a theoretical analysis of our objec-
tive function, linking it to the smoothing of Schatten
norms.
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