
HAL Id: tel-02559592
https://pastel.hal.science/tel-02559592

Submitted on 30 Apr 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Economics of information security and the market for
software vulnerabilities

Arrah-Marie Jo

To cite this version:
Arrah-Marie Jo. Economics of information security and the market for software vulnerabilities. Eco-
nomics and Finance. Institut Polytechnique de Paris, 2019. English. �NNT : 2019IPPAT003�. �tel-
02559592�

https://pastel.hal.science/tel-02559592
https://hal.archives-ouvertes.fr

Acknowledgement

I started my PhD without actually realizing what I was undertaking. I was getting

out of four years of Big4’s consulting life and so eager to have an intellectually more

consistent experience, imagining that from now on, I would be able to contribute to a

better society. I was charmed by the power of economic analysis and the discipline of

Industrial Organization that I had discovered through the Master IREN’s courses. I

was so happy to be a student again and to learn new things of interest to me.

Doing a PhD was, of course, much harder and more serious than I expected. But

most of all, it introduced me to an exciting profession: becoming a researcher. I feel

so thankful to all the people who accompanied me through this learning process and

who did not hesitate to play their part in it to orientate me on the right way. This

section gives me the chance to express my gratitude to those who advised, listened to,

and supported me throughout this period. I hope I can bring equal support to others

that come after me and help them go through this fascinating journey.

First and foremost, I owe a great debt of gratitude to Professor Marc Bourreau,

for having accepted to supervise my thesis. I thank him for his intellectual, moral,

and financial support throughout these four years. I was fortunate to have a director

who was always available, patient, and rigorous. He gave one of the most comfortable

working environment for me to focus on my PhD. He also provided me with excellent

opportunities to conduct my work, develop and share my work, and to learn under the

best conditions.

I am honored to have as the referees of my thesis Thierry Burger-Helmchen and

Thierry Pénard, as well as Maya Bacache, Rainer Böhme, and Thierry Rayna as

members of my thesis committee. Thank you very much for having accepted to

participate in the evaluation and the presentation of my work. I am also particularly

grateful to Maya and Thierry (P.), who advised me at various stages of my research.

Furthermore, I am truly thankful to Rainer’s career advice and feedback for several

papers presented in this thesis.

I am invaluably grateful to the people who encouraged me and helped me refine

my papers during various conferences, seminars, and workshops. I wish to express my

gratitude especially to Grazia Cecere, Daniel Ershov, Axel Gautier, Ulrich Laitenberger,

1

Patrick Legros, Doh-Shin Jeon, and Christine Zulehner, who provided me with such

valuable comments and feedback, even at the most preliminary stages of my works.

I wish to express my gratitude to Alexandre De Cornière for receiving me so well

during my research stay at Toulouse School of Economics. I am also grateful to

Eric Brousseau who accepted me to master IREN, without which I would not have

started this fantastic journey. I am thankful to Laurent Gille for his encouragement

and valuable advice since master IREN. Thank you to all the colleagues from the

Association Francophone de Recherche en Economie du Numérique (AFREN) for their

encouragement and insightful advice.

I also had the great pleasure to spend four years with my amazing colleagues

Adrien, Ambre, Alexis, Angela, Constance, Elie, Enrick, François, Jean-Marc, Jordana,

Lukasz, Marie-Josée, Martin, Raphaël, Uli, Vicente, and Yann. I thank them for their

good mood, their kindness, and openness. My research has greatly benefited from our

discussions and their recommendations.

I thank my big and lovely family-in-law for their warm support. I thank my long-

time friend Marie-Hélène, who often helped me with her multilingual talent to review

several parts of my papers and who encouraged me remotely.

I am eternally grateful to my parents, who gave me the desire and the strength to

complete this project successfully. They always put their trust in me, encouraged me,

and advised me with the right words.

Last but not least, I thank my partner, who backed me and accompanied me all

the way in this thesis as it was his own.

2

Contents

General Introduction 1

0.1 The economics of information security 1
0.2 Some barriers to overcome . 3
0.3 The market for software vulnerabilities, platforms and open innovation . 5
0.4 Presentation of the three chapters . 8

1 The effect of competition intensity on software security 11

1.1 Introduction . 12
1.2 Literature review . 14
1.3 The web browser and its revenue model 16
1.4 A model of competition in security quality 18
1.5 Empirical specification . 21
1.6 Data and method . 27
1.7 Estimation results . 33
1.8 Conclusion . 40
1.9 Appendix . 42

2 Hackers’ self-selection in crowdsourced bug bounty programs 49

2.1 Introduction . 50
2.2 Related literature . 53
2.3 Hypothesis development . 56
2.4 Data and empirical framework . 58
2.5 Results . 65
2.6 Conclusion . 70
2.7 Appendix . 73

3 Software vulnerability disclosure and third parties involvement 79

3.1 Introduction . 80
3.2 Related work . 82
3.3 Data and empirical Strategy . 85
3.4 Results . 95
3.5 Interpretation and conclusion . 102
3.6 Appendix . 104

General Conclusion 114

Bibliography 117

Résumé en Français 123

Abstract in English 124

3

General Introduction

0.1 The economics of information security

Almost every day, a new headline reminds us that the use of technology is fraught

with opportunities and risks. The advent of the Internet and other information and

communication technologies has dramatically modernized and simplified our daily life

and fostered economic growth. The transformation brought about by digitalization

creates new dependencies; cyberspace has become an inseparable component of our

economic, social, and political activities. Along with our increasing dependence to this

interconnected digital environment, systems and networks are exposed to a growing

number and a wider variety of threats. This rapidly evolving landscape brings new and

growing challenges to cybersecurity.

Cyber risks are today at the top of the international agenda and are becoming a

key business priority for an increasing number of companies.1 Technical progress meets

only partly the needs for cybersecurity. Engineers and security experts design security

systems by guessing how an opponent would do to break the system. Modern software

editors adopt secure coding practices and integrate security into the foundations of

the development cycles. In the meantime, practitioners and academics progressively

realize that approaching digital security risks solely from a technical perspective is not

sufficient.2

1In a 2014 OECD survey (http://dx.doi.org/10.1787/9789264232440-en), governments identi-
fied cybersecurity as the second-highest priority area, while according to a survey run by ESG research,
40% of companies claim that cybersecurity is the top priority driving their technology spending (See
https://www.esg-global.com/2019-technology-spending)

2Recent reports on how to manage digital risks insist on the importance of viewing digital risk
management as an economic and social rather than purely technical challenge, which incorporates
aspects of economics, human psychology, and other disciplines. See for instance the 2017 OECD report
on Digital Security Risk Management, this article from Deloitte https://www2.deloitte.com/au/en/

pages/risk/articles/cybercrime-tech-problem.html, or this article from Harvard Business Review
https://hbr.org/2017/05/why-is-cybersecurity-so-hard

1

In particular, a number of researchers, mostly in computer science, started advoc-

ating that many of the existing security issues could be explained more clearly using

the language of microeconomics (Anderson, 2001; Gordon and Loeb, 2002; Anderson,

Böhme, Clayton, and Moore, 2008). This movement started forming an interdisciplinary

research area called the economics of information security. It has become a growing

and fast-moving discipline since about 2000, gathering practitioners and academic

researchers of various backgrounds, from security engineers and economists to lawyers

and sociologists. Publications in top journals in computer science, economics and

management, the growing number of active researchers, the creation of conferences

dedicated to the economics of information security (e.g., Workshop of Economics and

Information Security3) testify the interest around the subject in the academic world.

One of the main lessons that economic analysis brought to information security is

that security problems often occur because incentives are wrong. One seminal example

is how banks’ investment in security technology in different countries depended on

their liability in case of online fraud or card loss affecting their customers (Anderson,

1993, 2007). The security of a system also often depends on the effort exerted by

each individual, which in turn depends on their own benefits and costs, the efforts

exerted by other individuals and their interdependencies. This makes information

security a public good in many ways (Varian, 2004). In sum, a significant part of this

literature builds on the analysis of externalities each agent suffers from and how to

realign their incentives. Various questions are addressed, from modeling the interaction

between attackers and defenders (Varian, 2004; Bier, Oliveros, and Samuelson, 2007;

Bohme and Moore, 2010), examining the role of different liability and information

disclosure policies (Kannan and Telang, 2005; Arora, Caulkins, and Telang, 2006a; Kim,

Chen, and Mukhopadhyay, 2011; August and Tunca, 2011; Lam, 2016), risk sharing

and coordination possibilities between vendors and users (August and Tunca, 2006;

Cavusoglu, Cavusoglu, and Zhang, 2008; Kim, Chen, and Mukhopadhyay, 2009), how

market structure and competition impact security investments (Gal-Or and Ghose, 2005;

Arora, Forman, Nandkumar, and Telang, 2010a), to the effect of product differentiation

on software security (August, Niculescu, and Shin, 2014; Dey, Lahiri, and Zhang,

2014). Although theoretical studies are much more numerous than empirical ones, this

3See https://econinfosec.org

2

literature contributes to a large number of applied areas related to information security

like software vulnerability management and patching, security investment decisions and

market insurance, network security, malware and botnets, or payment system security.

0.2 Some barriers to overcome

This field of research went through a rapid development during the last two decades.

However, it seems that the enthusiasm and effervescence of the beginning have fallen,

with a recent slowdown in scientific production after a relatively short flourishing

period.4 This slowdown can be attributed to two main factors. The first one is related

to some inherent difficulties in scientific practice. Studies on academic disciplines

and research process suggest that the domain-specific structure of disciplines plays an

important role in explaining why interdisciplinary fields have hardly a long-term success.

Indeed, disciplines tend to direct intellectual focus toward the center of their own field

(e.g., Chubin, 1976; Jacobs, 2014). Specifically, Raasch, Lee, Spaeth, and Herstatt

(2013) show that within very few years after the inception of an interdisciplinary field,

there is a shift from interdisciplinary to multidisciplinary research, and from joint

problem solving to parallel problem-solving. Researchers from different disciplines still

study the same topics years after the creation of the field, but do so increasingly from

their own disciplinary lenses.

A similar phenomenon is observed in information security economics. Computer

scientists favor analysis that provide practical results, like concrete security solutions

that can be applied in real situations. Consequently, many of the analytical works

produced by computer scientists using economic theory focus on numerical simulations

and measures applied to a real case. On the other side, economists usually prefer to

provide a general causal relationship or an analytical result that depends on particular

assumptions, which may be considered as too theoretical to computer scientists. Fur-

thermore, for economists, the information security environment may be considered as a

specific situation in which their models can be applied. Thus unless the information

security framework gives a stunning new insight or unless some splendid data set

becomes available, there is not much reason for a generalist economist to study the

4For instance, the number of publications in peer-reviewed academic journals is superior between
2009 to 2014 than recently.

3

particular case of information security.

The second barrier for the development of the field of economics of information

security is the difficulty to obtain reliable, exhaustive, and exploitable data, which

particularly hinders the development of robust empirical studies. For example, according

to a survey conducted in 2016 by UK’s Bank and Institute of Directors, nearly three-

quarters of cyberattacks went unreported.5 Others have suggested that between 60%

and 89% of all cyber-incidents go unreported (Edwards, Hofmeyr, and Forrest, 2016).

The main reason is the confidential and strategic nature of the information. Victims of

cyber incidents are unwilling to share information about a breach, not only because it

increases the risk that the information is used against them, but also for reputational

concerns (Telang and Wattal, 2007). Another difficulty is that much of the available data

is collected by parties with a vested interest in under or over-reporting (Anderson et al.,

2008). The absence of a compulsory and common monitoring system also restricts the

reliability of data. For instance, few EU Member States regularly collect official data on

cyber-related matters, which hinders comparability.6 Fortunately, institutions become

increasingly aware of the necessity to impose mandatory reporting and to define a

consistent reporting mechanism. A significant advance is the creation of security-breach

reporting laws, implemented today in many US states starting from California in 2003

and in the EU since the implementation of the General Data Protection Regulation

(GDPR) in May 2018.

*

Despite these obstacles, tools and insights from economic analysis have clearly a lot

to contribute to a better understanding of the market failures in information security,

helping to improve the management of security risk. What is all the more fascinating

about information security economics is that the rapid evolution of the cybersecurity

landscape and its relation with innovation and new forms of digital markets make it

more challenging to provide valuable and robust analysis.

In the light of all these elements, the objective of this thesis is to contribute

5Source: https://www.cso.com.au/article/595298/most-cybersecurity-breaches-go-

unreported-uninsured-despite-executive-concern-barclays
6Source: 2019 briefing paper by the European Court Auditors on Challenges to effective EU

cybersecurity policy (https://www.eca.europa.eu/en/Pages/DocItem.aspx?did=49416)

4

empirically to the research field of information security economics, by referring to

traditional tools and knowledge in economics and especially in Industrial Organization –

e.g., the relationship between competition and quality provision, contract theory, belief

updating. I focus on new and evolving elements in the cybersecurity environment

such as the use of free software revenue models in digital markets (Chapter 1), the

introduction of crowdsourcing mechanisms to improve software security (Chapter 2), or

the increasing involvement of third parties in software security (Chapter 3). I mainly

conduct empirical analysis using original data that I have personally collected and

consolidated. The general question I want to investigate is to understand the incentives

of major actors that contribute to software security, namely software vendors, the

white-hat hackers, security firms, and other third parties.

0.3 The market for software vulnerabilities, platforms and

open innovation

The economics of platforms and open innovation are two important streams of research

that have not been extensively exploited in information security, despite their importance

in the current digital security environment and their potential value for this discipline.

These two streams of research are central in the three articles that constitute the three

chapters of my thesis.

While it has been largely admitted that better information sharing in security would

be socially beneficial, the problem in sharing vulnerability information is similar to the

one of the market for ideas: unless the information is revealed, one cannot accurately

assess its value (Arrow, 1962). In the same way as this friction makes it difficult for

innovators to sell their ideas profitably, it discourages organizations to share security

information with others. To overcome this problem, engaging a third party that could

build a trustful relationship and guarantee the interest of each agent appeared as a

reasonable solution. These third parties are often referred to as security firms, security

infomediaries, or vulnerability brokers in the literature (Kannan and Telang, 2005;

Böhme, 2006). Mostly private companies, these intermediaries buy security-related

information and share it within a closed group of subscribers. Clients are both the

software vendors to whom they communicate the vulnerability information so that

5

the vendors can fix the security issues, and the users of software who want to protect

their systems. In other words, a market for software vulnerabilities has been developed,

where information about a new vulnerability has become henceforth a product that is

bought and sold.7

Besides, the development of collaborative web tools and infrastructures allowed

the emergence of web platforms that collaborate with the crowd for all kinds of

tasks, including those that require creativity and innovativeness. Organizations in

cybersecurity started crowdsourcing benign vulnerability identifiers – the so-called

white-hat hackers – to improve software security. The first bug bounty platforms were

launched in late 2013. They gather on one side of the platform the companies who want

to organize a Vulnerability Research Program (VRP) and on the other side hackers

who want to get compensated for discovering new vulnerabilities.8 Bug bounty contests

already existed before the emergence of such platforms.9 But the scale became beyond

comparison: for example, HackerOne, a US-based platform which currently dominates

the market, collaborates with around 250,000 hackers in the world and more than 1,200

organizations have launched a VRP on it, including the U.S. Department of Defense

and big companies in various industries like General Motors, Goldman Sachs, Twitter,

Qualcomm or Starbucks.10

As it is well documented by the rich literature on platform economics, the notable

success of bug bounty platforms comes mainly from their two-sidedness. Firms launch

their contest on the platform because they can get access to a large pool of hackers,

while hackers benefit from accessing a large number of VRPs on a single platform,

which additionally allows them to manage a profile that cumulates experience from

the different VRPs. The platform combines intermediation, assembling, and knowledge

management activities all at the same time and greatly benefits from cross-sided network

7Böhme (2006) distinguishes four concepts that are often included in the terminology of “vulnerab-
ility market”: bug challenges, vulnerability brokers, exploit derivatives, and cyber-insurance. Here, we
limit the vulnerability market on the activity of buying and selling vulnerability information, for which
vulnerability brokers act as an intermediary. Bug challenges are included as one example of how this
market takes place.

8The terms “Vulnerability research program”, “Bug bounty program”, “Bug bounty contest” all
designate an event that crowdsources individuals and rewards them for finding vulnerabilities in a
software or a system.

9Crowdsourcing started being employed in software security already a decade ago by software
vendors themselves. For instance, Netscape was one of the first company offering a financial reward to
those who found valuable bugs in the beta version of its web browser in 1995.

10See https://www.hackerone.com/customers

6

effects between the two sides (Brousseau and Pénard, 2007). As it is common in this

type of markets, the platform uses an asymmetric pricing strategy, where hackers get

free access to the platform, while companies pay a usage fee. Hackers can multi-home,

while companies usually launch their contests on a single platform, as it is costly for

them to manage multiple contests using distinct platforms. Capitalizing from the

knowledge and the data it acquires, the platform also offers a range of associated

services.

All in all, bug bounty platforms are a good example of the development of two-

sided business models in cybersecurity. The increasing dependency of companies and

organizations to these platforms and their predominance is not yet of a central concern

to the security community. Nonetheless, some papers show that the presence of a

monopolistic market-based infomediary is welfare-decreasing. For instance, Kannan

and Telang (2005) show that a market-based mechanism for vulnerability disclosure

increases the inequalities in users’ security by exposing non-subscribers to more attacks.

The rich literature on platform economics is for now barely used in information

security, although a number of theoretical works account for different network external-

ities in security to explain some market failures in information security (e.g., Arora

et al., 2006a; Choi, Fershtman, and Gandal, 2010; Dey, Lahiri, and Zhang, 2012).

In the first chapter of this thesis, I study one particular element that characterizes

a two-sided business model often used in digital markets and see how it affects the

security level provided by the platform owner. Specifically, I show that in a market

where the revenue model is based on offering the software to end-users for free while

charging the advertisers, market concentration is not necessarily harmful to provision

of a good-quality security. In the second chapter, I use data collected from a dominant

bug bounty platform to study the crowdsourcing mechanism used in software security.

Open innovation is another important stream of research for this thesis. The devel-

opment of a market-based mechanism for fixing software vulnerabilities demonstrates

how external actors are increasingly involved in improving software security (and more

generally corporate cybersecurity). In addition to it, considering that finding new

vulnerabilities consists essentially in finding an innovative way to penetrate a system

that has not been thought of before, then the process happening in the market for

vulnerabilities perfectly fits with the definition of open innovation, which puts the

7

emphasis on the collaboration of in-house resources and external partners for innovative

purposes (Pénin, Hussler, and Burger-Helmchen, 2011). In fact, among other reasons,

because open source projects were initially born from a software development environ-

ment, information security always had a strong relationship with users and especially

open-source communities.11 Users have become developers, innovators and consumers

all at the same time, i.e., they have become “prosumers”. In this context, users and

software vendors have a collaborative and cooperative relationship rather than a simple

buyer-seller relationship (Rayna and Striukova, 2016).

Thereby, the security of a software depends not only on the company that develops

the software but also on external communities. Furthermore, the progressive implication

of private companies in open-source projects and in the security community, along with

the development of a market-based mechanism in vulnerability disclosure, illustrate

how open innovation strategies are widely used in IT security. In summary, it is difficult

to have a general understanding of the mechanisms in information security by only

focusing on software vendors’ behavior or on the vendor-user relationship.

However, for now, existing works in information security economics generally focus on

the interactions between software vendors, users, and attackers, ignoring the implication

of other third parties. My dissertation fills this gap by studying the behavior and

the incentives of multiple actors actively involved in cybersecurity: the first chapter

focuses on software vendors’ behavior, the second chapter on crowdsourced individual

researchers, and the third chapter on all the different actors that participate in the

discovery of software vulnerabilities, including corporate users, security firms and public

organizations.

0.4 Presentation of the three chapters

This thesis is organized in three chapters, each addressing a separate research question.

One of the main ideas in the literature of information security economics is that

systems often fail because organisations that are able to defend those systems do not

bear the full costs of failure. A significant part of the literature accuses software editors

11Von Hippel and Von Krogh (2003) recall that open source became a central feature of the “hacker
culture”. In communities of open-source programmers, the term ‘hacker’ designates initially a person
who enjoys exploring the details of programmable systems and how to stretch their capabilities, as
opposed to most users. It is a positive term applied to talented and dedicated programmers.

8

of negligence, showing how they may prefer to release a software early than to release

it with fewer bugs, or how they delay the release of a patch unless the vulnerability is

disclosed to the public (Arora et al., 2006a; Choi et al., 2010). Nevertheless, few works

actually provide empirical evidence on software vendors’ behavior in securing their

products. In particular, within a digital environment where new forms of markets such

as two-sided markets have become abundant, does competition affect their investment

in security in the same way? This is where I focus my interest in the first chapter. I

analyze the relationship between competition intensity and the security level provided

by a software vendor, examining the case of a software at the center of Internet security,

namely the web browser, in which the vendors derive their revenue from advertising

and compete in quality. I find that a higher market concentration positively impacts

the vendor’s responsiveness in patching vulnerabilities, although this effect is reduced

when the vendor is too dominant.

In a second chapter, I focus on the crowdsourcing mechanism of white-hat hackers

through the vulnerability research programs (VRPs), which is representative of the

market for vulnerabilities that capitalizes on third parties’ contribution. A VRP is

a typical example of an innovation contest run in a web environment. The main

challenge in managing such contest is to attract enough participants, while limiting the

low-quality ones. In this context, I study how the hackers’ perception of the uncertainty

to obtain a reward, determined by the level of information the contest provides about

the contractual terms through its written policy, affects participations and therefore

the outcome of the contest. I show that this self-selection process of participants leads

to a trade-off between having a larger number of participation but attracting less

performant participants and attracting higher quality participants but generating fewer

participations.

Lastly, while the literature has mostly explored how to incentivize software vendors

to better secure their software, a dearth of research exists on the role of third parties

that contribute to software security. In a third chapter, I try to go beyond the

limited framework of software vendor and users’ relationship, and examine third

parties. In particular, I examine how the disclosure of a critical vulnerability affects the

contribution of third parties in discovering new vulnerabilities and compare it with the

software vendors’ reaction. I find that third parties’ overall contribution in improving

9

software security is considerable and that their contribution is significantly affected by

externalities such as the disclosure of a critical vulnerability.

10

Chapter One: The effect of competition intensity on

software security - An empirical analysis of security

patch release on the web browser market∗

Abstract

This paper examines the effect of competition intensity on software vendors’ security
investments. We consider two aspects that reflect the competition intensity in a market:
market concentration and the dominant position of a firm. We first develop a formal
model where the user demand depends only on product quality and investigate whether
equilibrium levels of security quality increase as competition intensifies. Then, we
test the model’s predictions using a 10-year pooled cross-sectional data set on web
browser vulnerabilities discovered and patched from 2009 to 2018. Contrary to many
empirical works examining the link between competition and quality, we find that
market concentration is not necessarily harmful to quality provision: a higher market
concentration positively impacts the vendor’s responsiveness in patching vulnerabilities,
although this effect is reduced when the vendor is too dominant.
Keywords: competition, software quality, information security

∗I thank my thesis advisor Marc Bourreau for his patient guidance and support, Rainer Böhme,
Grazia Cecere, Jens Grossklags, Thomas Maillart and Tong Wang for valuable suggestions. I also thank
the anonymous reviewers at WEIS 2017 (San Diego), audience of Toulouse School of Economics 2018
Digital Economics conference (Toulouse), AFSE 2016 (Nice), CRESSE 2016 (Rhodes), EARIE 2016
(Lisbon), and JEI 2016 (Palma).

11

1.1 Introduction

As society gets increasingly dependent on networked computers and the Internet,

practitioners warn against the danger of having homogenous systems. In 2003, a group

of leading cyber-security experts including Bruce Schneier published a report claiming

that “IT monoculture” is a major threat to global computer security (Geer, Bace,

Gutmann, Metzger, Pfleeger, Quarterman, and Schneier, 2003).1 They argue that

market concentration magnifies security risks because first, when users rely on a single

system they are all subject to the same vulnerabilities and as such to the same attacks;

secondly, a dominant software vendor has less incentive to provide a good security level

because of its strong market power.

A decade later, facts still support actively the idea that software monoculture

is harmful to global security, as illustrated by the recent outbreaks of Wannacry

ransomware and Petya wiper malware in early 2017. Both malware affected thousands

of computers in no time and paralyzed critical infrastructures in numerous countries,

from hospitals in England, telecom, gas and electrical companies in Spain, an Ukrainian

nuclear power plant, airports and central bank, to ports of Mumbai and Los Angeles.

In both cases, only systems running on Microsoft Windows OS – which currently still

dominates the OS market for desktop – were vulnerable.2

Homogenous systems visibly enlarge the number of potential victims. Nonetheless,

it is not clear whether a dominant position actually reduces the vendor’s incentive

to secure its product; in the case of WannaCry and Petya, Microsoft had delivered

a security patch two months before the attacks.3 Likewise, Google is now dominant

in several markets such as the mobile OS market or the web browser market, but it

seems difficult to prove that it provides a lower security quality then it would have if

the market were more competitive.4

In this paper, we propose to analyze in greater detail and with empirical evidence,

the relationship between competition intensity and software vendors’ patch release

1By IT monoculture, we refer to an IT environment where a large fraction of systems run the same
software (Lala and Schneider, 2009).

2The total market share of Microsoft in the desktop OS market in 2017 was 87.0% according to
Statcounter.com.

3Both WannaCry (struck in May 2017) and Petya (struck in June 2017) exploited the same
vulnerability, called EternalBlue, for which Windows delivered a patch in March 2017.

4In 2017, the market share of Google Android in the mobile OS market was 64.2% and Google
Chrome had 53.2 % of the web browser market according to Statcounter.com

12

behavior, which will help to better assess the impact of “software monoculture” on

cyber-security. We study particularly two aspects that reflect competition intensity:

market concentration and the dominant position of a firm. We first present a simple

theoretical model in which firms compete in product’s security quality and examine how

the security investment level of a firm changes according to the number of competitors

in the market. The model shows that the smaller the number of firms competing in

the market, the higher the equilibrium level of security investment of a firm. However,

when we account for the existence of an installed base of loyal users, the positive impact

of market concentration on the security investment choice becomes less clear: the larger

the market share of the dominant firm, the larger its installed base of users and the

lower its incentive to provide a higher security level. Then we test empirically the

model’s predictions, using data on security patch release decisions on the web browser

market for a period of 10 years. We compiled a pooled cross-sectional data set of

874 web browser vulnerabilities, discovered and patched from January 2009 to June

2018. We find strong evidence that higher market concentration positively impacts the

vendor’s responsiveness in patching vulnerabilities. On the other hand, a dominant

position in the market affects negatively the editor’s promptness to release a patch and

reduces the positive effect of having less competitors.

By considering the case of the web browser market, we study a market in which the

good is provided free of charge to consumers. Since the software is offered for free to

consumers, vendors primarily compete on the basis of quality. Indeed, free software and

especially free web applications such as web browsers are primarily or even exclusively

financed through the exploitation of user data.5 In these markets, vendors compete in

quality in order to attract users and derive revenue from another market that makes

use of their web traffic. The case of free software is all the more of interest as it is very

common in today’s digital markets. Our study provides policy makers with empirical

evidence on whether competition acts in the same way on firms’ security investment

incentives in such markets as it does in the case of one-sided business models.

The rest of the paper is organized as follows. In Section 1.2, we review the relevant

literature. Then we describe the specificities of the web browser market and its

5Web browsers are primarily financed through search engines’ revenue, which in turn are mostly
financed through online advertising.

13

revenue model in Section 1.3. Section 1.4 presents the theoretical model. We then

describe in Section 1.5 the link between the security quality of a software and patching

vulnerabilities, and the econometric model. Section 1.6 presents the data, estimation

results follow in Section 1.7 and the final section provides some conclusions.

1.2 Literature review

This paper contributes to two main streams of research: the economics of information

security, and the relation between competition and quality provision.

The literature on the economics of information security is recent and thriving; it

aims at studying the potential market failures causing information systems’ insecurity.

Vulnerability discovery and patch management are one of the topics at the heart of this

field. Our paper contributes empirically to this literature by studying the relationship

between market structure and software vendors’ security provision behavior, considering

their patching decisions as a measure of the security quality they provide.

Analytical works on investment in software security deal with various questions,

from welfare and investment implications of interdependent security risks (e.g. August

et al., 2014; Acemoglu, Malekian, and Ozdaglar, 2016), the role of different liability

and information disclosure policies (Kannan and Telang, 2005; Arora et al., 2006a;

Choi et al., 2010; August and Tunca, 2011), to coordination between software vendors

and customers in the patch management process (August and Tunca, 2006; Cavusoglu

et al., 2008). Some theoretical papers account for the impact of market structure and

competition intensity on vendors’ security provision behavior, but their focus is on

firms’ cooperation decisions in information and cost sharing (Gal-Or and Ghose, 2005;

Kim et al., 2009).

On the other hand, empirical work is globally limited to issues related to vulnerability

information disclosure (Gordon, Loeb, Lucyshyn, and Sohail, 2006; Telang and Wattal,

2007; Arora, Krishnan, Telang, and Yang, 2010b; Mitra and Ransbotham, 2015),

presumably because of the lack of available data to researchers. Among existing

studies, several papers exploit similar data as ours. Arora et al. (2010b) investigate

software vendor’s responsiveness to vulnerability information disclosure and the impact

of information disclosure on the frequency of cyber attacks. Ransbotham, Mitra,

14

and Ramsey (2012) use security alerts data from a private security service provider

to examine the impact of vulnerability disclosure on the risk of cyber attacks. Our

empirical model accounts for some of the elements studied by these papers – the

patching time, vulnerability and software characteristics – but we are not interested in

the effect of information disclosure. Temizkan, Kumar, Park, and Subramaniam (2012)

also compile a similar data set as ours to analyze how characteristics specific to the

vulnerability or the software affect the patch release behavior of software vendors.

To the best of our knowledge, only one paper has studied the impact of competition

on software publishers’ patching behavior (Arora et al., 2010a). Interestingly, our

findings are opposed to their results. While they find that vendors are more responsive

when there is more competition, our results show that vendors provide a better security

quality when the market is more concentrated. Our approach actually differs to theirs

in several aspects. First, Arora et al. (2010a) analyze software vendors’ reaction

with regard to the patching behavior of other vendors that are affected by the same

vulnerability. They consider that sharing a common vulnerability puts vendors in a

competitive situation, whether they are actually operating in the same market or not.

In our case, we consider a narrower definition of competition by limiting our analysis

to interactions within a single market and using market concentration as a measure

of competition intensity. Secondly, we focus on a specific software market – the web

browser market – in which vendors adopt a particular revenue model, providing the

good free of charge to users. By studying a market at the heart of internet security and

which presents a revenue model increasingly used by web applications, our empirical

study contributes to better evaluating the actual impact of “software monoculture” on

software security. Lastly, we study a relatively long period of time – a ten-year-period,

which strengthens the robustness of our study, while Arora et al. (2010a) consider a

large panel of different software during a shorter period.6

In order to define our empirical hypothesis, we start by examining theoretically the

quality choice a firm would make, considering the number of competitors in the market

and its market position. Our model applies to the case of information goods which are

offered free of charge to consumers. The link between competition and quality has been

6Our data covers an 11-year-period from 2007 to 2018, while Arora et al. (2010a) consider a
4-year-period from 2000 to 2003

15

a topic of interest in the literature for a long time, essentially in product differentiation

models. Nevertheless, few papers consider a framework where firms compete in quality,

and no existing model corresponds to the case we study.

Dey et al. (2014) study the incentives for quality differentiation in the security

software market. By incorporating a negative network effect that arises from a con-

sumer’s desire to free-ride when other consumers invest in security, they explain why

in the security software market we observe relatively high quality products with high

price and little quality differentiation. It is interesting to mention that this paper is

one of the few that gives an insight on quality competition in software market, but

the studied framework is distant from ours.7 Among the few papers dealing with free

products, Waterman (1990) finds that firms invest more in quality when consumers do

not bear any cost; but his focus is on the effect of competition on product diversity.

Argenton and Prüfer (2012) study competition between search engines. They show

that the competitive advantage of having a larger installed base allows the dominant

firm to drive out its competitors, which leads to a stable monopoly. As they do,

we model competition as a tournament between web browser publishers that choose

simultaneously their security quality.

The relationship between competition and quality provision has been studied

empirically in a broad range of industries, including legal services (Domberger and

Sherr, 1989), airline industry (Mazzeo, 2003), supermarket (Matsa, 2011), and software

(Arora et al., 2010a). All of these papers study markets with one sided business models

and find that an increasing competition leads to higher quality provision. We consider

the case of “free” products where firms compete in quality and our results show that

on the contrary, market concentration leads to higher product quality.

1.3 The web browser and its revenue model

A web browser is a software that gives access to information resources on the World

Wide Web (WWW). Its primary role is to retrieve and display content from remote

web servers using the HyperText Transfer Protocol (HTTP).

7In Dey et al. (2014), it is consumers who buy a security product while in our paper we aim to
study the investment behavior of firms – the software vendors –. Moreover, in their paper, products –
security software – are not free of charge.

16

breaches, viruses, malware..), how fast it is (browsing and rendering speed), and how

user-friendly it is. Conceivably, this is the reason why Google heavily communicates on

its web browser’s simplicity, performance and security for instance.8 In this paper, we

consider that the quality of a web browser corresponds to its security level.

Besides, there may be a discrepancy between consumers’ choice of web browser

and the true quality of a product. First, because quality presents some degree of

subjectivity. This aspect is disregarded in our work. Secondly, because of consumers’

loyalty. Consumers can be loyal because they are imperfectly informed about the

security quality or about the available choices, as well as because of the existence of

switching costs.9 In the theoretical model we present in the next section, we account

for the existence of an installed base of loyal consumers who stick to their choice of

web browser no matter the changes in each web browser’s security quality. This allows

us to model situations where a firm benefits from a larger installed base than its rivals.

1.4 A model of competition in security quality

We have seen that web browser publishers offer their software free of charge to users

and derive revenues from a neighboring market that monetizes the browsing traffic.

In this section, we develop a formal model of oligopolistic competition where firms

compete in security quality and study how the equilibrium levels of security investment

change as the number of firms competing in the market increases. The web browser

market motivates our study; however, the model would also fit to other markets with a

similar revenue model.

We consider n firms, labeled 1 to n. Each firm i ∈ {1, . . . , n} offers one product -

a web browser - for which it must choose a security quality level si. We assume that

the security quality si is measurable, with values in [0, ∞). Moreover, each firm has an

installed base of loyal consumers bi ∈ [0, 1], where
n
∑

i=1

bi ≤ 1. Loyal consumers stick to

their choice of web browser, whereas non-loyal consumers can switch. For simplicity,

we assume that firms are symmetric except for the size of their installed base of loyal

8“Speed, simplicity and security are the key aspects of Google Chrome”: When launching
Google Chrome, the official press events and press release communicated about Chrome web
browser using key words such as “lightweight”, “fastest”, “speed”, “simplicity”, “secure”. Source:
https://googleblog.blogspot.fr/2009/11/releasing-chromium-os-open-source.html

9Indeed, although no contractual or compatibility cost exist in the case of web browsers, changing
from a web browser to another may imply important migration costs and the loss of connected services.

18

consumers.

On the demand side, there is a unit mass of consumers, each of which acquiring

one web browser. The market is fully covered.10 We assume that consumers’ utility

depends only on the security quality level and that the revenue a software publisher

derives per user is exogenous.

Similar to Argenton and Prüfer (2012), we model competition as a tournament

between web browsers with simultaneous security quality choices. More precisely, firms

choose simultaneously their security quality and demands are allocated to firms in

proportion to their relative security quality.

We assume that the marginal cost of production is equal to zero, which is a standard

assumption in the literature on information goods (e.g. Arora et al., 2006a; Kim et al.,

2009; Choi et al., 2010). Moreover, as it is standard in studies on quality provision (see,

for instance, Allen (1984) and Ronnen (1991)), we consider an increasing and convex

cost function for security quality investments. More precisely, a firm i has to invest

φs2
i /2 to deliver a security quality level si, where φ > 0 is the fixed cost parameter for

quality investments.

Denoting by a the per-capita revenue and by B =
n
∑

j=1

bj the total installed base of

loyal consumers in the market, firm i’s profit is then:

πi = a











bi + (1 − B)
si

n
∑

j=1

sj











−
φs2

i

2
. (1.1)

In equation 1.1, bi is a part of the demand already acquired by firm i which insures

a gain of a · bi regardless of the security level it chooses to provide. Conversely, 1 − B

is the share of non loyal consumers for which all firms in the market compete for.

The first-order condition (FOC) of profit maximization with respect to si is:

∂πi

∂si

= a(1 − B)

n
∑

j=1

sj − si

(
n
∑

j=1

sj)2

− φsi = 0 . (1.2)

10The assumption of a fully covered market is consistent with the web browser market, where every
Internet user needs the product to surf on the Internet and there is no significant cost that of using the
product.

19

Since ∂2πi/∂2si = −2a(1 − B)
n
∑

j=1

j 6=i

sj/(
n
∑

j=1

sj)
3 − φ < 0, the second-order condition

is always satisfied. Solving for the FOC (1.2), we obtain the symmetric equilibrium

security quality level for each firm:

s∗
i =

√

(1 − B) ·
n − 1

n2
·

a

φ
. (1.3)

The following proposition outlines the main insight of this model:

Proposition 1. In an oligopolistic market where firms compete in security quality, the

security level provided by a firm decreases as the number of competitors increases (i.e.,

δs∗
i /δn < 0).

Equation 1.3 shows that the security level provided by a monopolist is zero in

our model. This is because security is costly and does not lead to market expansion.

Therefore, in this setting, a monopolist would not invest. The equilibrium level of

security then increases from a monopoly to a duopoly market. Then, for n ≥ 2, the

smaller the number of firms n, the higher the equilibrium level of security investment of

each firm. This result comes from the fact that, as the number of firms in the market

decreases, firms can attract a larger share of consumers by investing in security.

All in all, market concentration has a positive effect on the security level provided

by a firm.

Secondly, the security investment chosen by a vendor depends not only on the

number of competitors in the market but also on the total share of loyal consumers B.

Take the case of a firm that highly dominates the market. Assuming that firm i’s share

of loyal consumer is large enough to ignore the effect of the rest of the market, we set

B = bi = αimi, where mi ∈ (0, 1] is the firm’s total market share and αi ∈ (0, 1] the

share of loyal consumers among firm i’s consumers. Then we have that:

Proposition 2. The security quality chosen by a highly dominant firm decreases with

respect to its market share (∂s∗
i /∂mi < 0).

Proposition 3. When a firm is in a dominant position, the positive effect of market

concentration on the security level it provides is reduced (∂2s∗
i /∂n∂mi < 0).

The equilibrium level of security quality is always lower than what it would be

in a situation without an installed base of loyal consumers. This corresponds to the

20

its securing by the delivery of a patch and its installation. This timeline is consistent

with its representation by Ioannidis, Pym, and Williams (2012), Beres, Griffin, Shiu,

Heitman, Markle, and Ventura (2008), or Frei, May, Fiedler, and Plattner (2006). Five

key events outline the different phases during the lifecycle of a vulnerability: (1) the

discovery of the vulnerability, (2) the vendor being informed about the existence of

the vulnerability, (3) the public disclosure of the vulnerability, (4) patch release by the

vendor, and (5) patch installation by the user.

Software vulnerabilities are often discovered first by an agent who does not work

for the affected software vendor (1). We call it then a zero-day vulnerability, since the

software vendor has zero day left to deliver a patch before someone exploits the security

flaw. The exposure risk of the software can grow very quickly: information about the

vulnerability can be kept by a discoverer who does not have any malicious intent, but

it also may well be discovered by a hacker who releases an exploit and make it freely

accessible on the Internet. From the moment the vulnerability is discovered, each day

that passes without a patch increases the exposure risk of the software (Schneier, 2000;

McGraw and CTO, 2004). Thus, the security quality of a software depends on how

quickly the vendor releases a security fix (Arora et al., 2006a).

In our empirical model, we consider the promptness of a software vendor to provide

security patches as a proxy of its investment level, which determines the software’s

security quality. The security level of a software does not solely depend on the effort

exerted in fixing the security flaws discovered ex-post product delivery. However, we

consider that the ability of a firm to be responsive when it discovers a vulnerability

represents its willingness to secure its product, i.e., the security quality it chooses to

provide. Indeed, in order to be fast in delivering the security patches, the vendor should

do considerable investment in security beforehand, such as having dedicated resources

for software security or an internal organization that is able to deliver unexpected new

updates.

At the same time, the vendor may decide to spend more or less resources to deliver

a given patch according to the order of priority at the given moment. Specifically, we

measure the duration between the moment the software publisher is informed about

the existence of a vulnerability and when it releases a patch to fix it. This duration

corresponds to the difference between time (4) and time (2) in the timeline in Figure

22

1.2, which we call the “patching time”.

Time (2) corresponds to the moment when the vendor discovers the vulnerability.

The vendor can either discover the flaw by himself or be notified by a third party.

While it is indispensable to know the exact date of time (2) in order to measure the

responsiveness of a software editor in securing its product, it is an information often

kept confidential by the software vendor. In our paper, we use information that is

disclosed by third parties who have discovered the vulnerabilities. Indeed, some private

organizations pay individual researchers to identify security flaws in software that are

used by their clients, and an increasing number of software vendors manage their own

security research team or offer monetary incentives for vulnerability discovery. It is

precisely these vulnerability research programs which are the main data sources of our

study, namely Tipping Point’s Zero Day Initiative (ZDI) program, Verisign’s iDefense

Vulnerability Contributor Program (VCP), and Google Project Zero.

Two main considerations will affect the vendor’s patching decision (4): the cost

to develop the patch and the extent to which it internalizes user losses related to the

security flaw (Arora et al., 2010a). In more practical terms, the vendor will consider a

number of factors such as the importance of the flaw in terms of security, the competitive

pressure, the complexity to fix the flaw, the human resources available to develop the

patch, or the impact on its reputation especially when the information is disclosed to

the public. In our paper, we are particularly interested in the impact the presence of

competitors may have on the vendor’s patching decision, when everything else is equal.

Note that in the case of web browsers, it is common that one update contains

several security patches. Thus time (4) is equal for all security fixes delivered in a

single update. However, this does not alter the idea that (4) − (2) reflects the security

level provided by a vendor. Indeed, the shorter the period between when the editor has

developed the patch and it actually releases the update package is, the more regularly

the editor is likely to publish updates, which is more costly and which would mean in

turn that the editor invests more in security.

Vulnerability information can be publicly disclosed before the vendor releases a

security fix (3). Though the public disclosure of vulnerability information increases the

exposure to attack, many advocate that disclosure makes the vendors more responsive

in patching their software (e.g. Arora et al., 2006a). Vulnerability research organisms

23

generally apply a policy of “responsible disclosure”, keeping the vulnerability information

confidential during a period of time, after having notified the affected vendor. Usually,

they also grant an additional period of confidentiality if the editor asks for it. Our

study does not account for the impact of information disclosure.12

Lastly, a system affected by the vulnerability will be exposed to security risks until

the user actually installs the patch (6). Some researchers discuss the responsibility of

software vendors in users’ patch installation (Cavusoglu et al., 2008), but it is beyond

the scope of this paper.

1.5.2 Econometric model

Our goal is to examine the effect of competition intensity on the time a software

publisher spends to release a patch, taking into account other exogenous factors that

may have an impact on its responsiveness. Relying on the theoretical results in Section

1.4, we particularly focus on two measures of competition: market concentration and

the dominant market position of a firm.

First, to estimate the effect of market concentration on the responsiveness of the

vendor affected by the vulnerability, we define the following equation:

Patching timeij = β0 + β1Concentration + β2Xi + β3Xj + β4Time effect + ǫ ,

(1.1)

where Patching timeij is the time spent by web browser publisher j in releasing a

security patch for a given vulnerability i discovered at a given date. Concentration is

a measure of market concentration at the date the vulnerability was discovered. We

use two different measures of concentration: the number of firms competing in the

market (-n) and the Herfindahl Hirschman Index (HHI). In line with Proposition 1

which suggests a positive effect of market concentration on the security level provided

by a vendor, we expect a negative sign for parameter β1.

Patching time is a measure of the responsiveness of a vendor in securing its

product and we consider that it reflects its investment level in security. Thus regressing

Patching time by Concentration arises some reverse causality issue. Our objective

12We are not able to capture the effect of applying a responsible disclosure policy on the responsiveness
of a vendor as the three programs from where our data come from are applying similar rules.

24

here is to examine the impact of market concentration on a firm’s security investment

but market shares and subsequently market concentration can also be affected by the

security quality provided by the firm. We introduce an instrument to correct for this

potential endogeneity problem. We identified the ratio between Windows and Mac

OSX market shares in personal computer (PC) operating system (OS) market as a

valid instrument. Indeed, the competition in the OS market has a direct impact on web

browser market concentration (for instance, because of the presence of pre-installed

web browsers on operating systems), but shares in these markets are not affected by the

security level of web browsers. The same instruments are applied for the HHI. The

detailed identification tests for the validity of the instruments are reported in Section

1.7.

Additionally, we control for a list of other factors that may have an impact on

the responsiveness of a web browser publisher in releasing a security patch. First, Xi

is a vector of variables accounting for the characteristics of the vulnerability, such

as its severity or its type. Developers may be more or less rapid to find a secure

solution according to the type of the vulnerability. On the other hand, a vendor would

conceivably patch more rapidly a vulnerability that has a more severe security impact on

the product. Specifically, we use two types of information: the Common Vulnerability

Scoring System (CVSS) and the Common Weakness Enumeration (CWE).13 CVSS

has a value ranging from 1 to 10 that ranks a vulnerability according to the degree of

threats it represents. The CWE categorizes software weaknesses into general classes.14

In our model, CVSS values are directly used as a variable (V ulnerability severityi),

while the CWE catalog is used as a vector of dummies.

Secondly, the vector Xj represents characteristics specific to the affected web browser

and its publisher, such as the age of the software and publisher fixed effects. The

Software agej variable accounts for the difficulties to fix a flaw due to the code quality

of the affected version. Indeed, according to practitioners, the quickness to find the root

13CVSS is an industry standard, initially defined by the US government’s National Infrastructure
Advisory Council (NIAC) and maintained today by the Forum of Incident Response and Security
Teams (FIRST). The CWE is created and maintained by the MITRE Corporation, which owns and
maintains the Common Vulnerabilities and Exposures (CVE) system.

14The principal common weaknesses that characterizes web browser vulnerabilities are: improper
restriction of operations within the bounds of a memory buffer, improper control of generation of
code, information exposure, improper input validation, numeric errors, permissions, privileges, and
access controls, concurrent execution using shared resource with Improper synchronization, ressource
management errors, and user after free weaknesses.

25

cause of a flaw depends considerably on the quality of the code, which generally depends

on how old are the software and the development tools the original programmers have

used.15 We also account for software and vendor-specific characteristics by a vector

of dummies. Indeed, vendors may have specific patch release policies that affect their

patch release decisions, but are unobserved by us. Some of them may care more about

their reputation because of the spillover effect on their other products. The patching

time can also depend on their general financial ability. In Arora et al. (2010b), this gap

between vendors is controlled by the firm’s size. In our case, web browser publishers

present heterogeneous forms of organization and business models, from open source

foundations to multinationals listed on the stock exchange. The size of a firm is hence

not an adequate information to account for the vendor specific unobserved factors and

we preferred to attribute a dummy variable to each vendor.

Third, Time effect captures effects that are correlated with time, such as the

growing awareness both among consumers and practitioners about security issues, which

in turn, makes editors more responsive in patching vulnerabilities. For that, we use

the quarterly date in which the vulnerability is discovered (Qyear). In alternative

regressions, we use the total number of mobile broadband subscription in the world

to account specifically for the effect of the rise of mobile use (MobilevsBroadband).

Lastly, ǫ represents the unobservable error term.

Next, to estimate whether the effect of market concentration is identical when the

affected firm highly dominates the market, we specify a variant model as follow:

Patching timeij = β0 + β1aConcentration + β1bBig msharei

+ β1cConcentration · Big msharei

+ β2Xi + β3Xj + β4Time effect + ǫ

(1.2)

In this equation, we added to the baseline model (1.1) the variable Big msharei

and an interaction term of this variable with Concentration. Big msharei is a dummy

equal to 1 if the affected web browser publisher’s market share is greater than a certain

percentage of the market at the moment the vulnerability is discovered. Following the

definition of a dominant position given by the OECD, we use the threshold values of

15Source: interview with Nicolas Ruff, security engineer at Google Security.

26

40% and 50% for Big msharei.
16 This variable captures the effect for a firm to have a

relatively large installed base (of loyal consumers) compared to its competitors at the

time it is informed about the security flaw. The coefficient of the interaction term β1c

represents the difference in the effect of market concentration between when the affected

firm is in a dominant position in the market and when it is not. We expect β1b to be

positive according to Proposition 2 and β1c to be positive according to Proposition 3.

Our models are estimated with weighted least squares (WLS) and weighted likelihood

negative binomial (NB) regressions. To instrument Concentration, we use instrumental

variable regression and control function approach (Wooldridge, 2015).

1.6 Data and method

For the purpose of our empirical analysis, we have constructed a 10-year pooled cross-

sectional data set consisting of web browser vulnerabilities identified and patched

from January 2009 to June 2018. We combined data from a variety of sources: (1)

vulnerability information collected from vulnerability research programs, (2) patch

and update release dates of each web browser from publishers’ websites, (3) quarterly

market shares of each web browsers and operating systems from Statcounter.com, (4)

the evolution of the number of mobile internet subscription from the International

Telecommunication Union (ITU), and (5) additional vulnerability information from the

National Vulnerability Database (NVD).

Our data come mainly from private vulnerability research programs, namely Tip-

ping Point’s Zero Day Initiative (ZDI), iDefense’s Vulnerability Contributor Program

(iDefense), and Google Project Zero. ZDI is a program run by the security firm Tipping

Point since 2005. iDefense is the corresponding program of Verisign initiated in 2003.17

ZDI and iDefense are the two main players in the commercial vulnerability market,

which financially reward security researchers in exchange for information about security

flaws that were unknown before. Both ZDI and iDefense notify the affected vendors

and communicate with them until they release a patch. Similar to these programs,

Google Project Zero is a project initiated by Google in 2014, which focuses on vulner-

16https://stats.oecd.org/glossary/detail.asp?ID=3199
17iDefense was acquired by Accenture in 2017 but data we collect from iDefense dates from 2009 to

2017.

27

abilities that affect directly or indirectly Google’s own products, meaning that a flaw

affecting Internet Explorer can be treated by the project as much as a vulnerability in

Google Chrome. We excluded Google Chrome’s vulnerabilities found by Google Project

Zero from our data set in order to have the same configuration for every observation:

vendors are notified about the discovery of a vulnerability by a third party. From

these three programs, we compiled information related to web browser vulnerabilities

they discovered. We consider only vulnerabilities specifically assigned to web browser

publishers, i.e., that can be fixed by web browser publishers themselves without a

third-party intervention. For instance, Adobe Flash vulnerabilities are not taken into

account since patches are mainly developed by Adobe and not by the web browser

publishers themselves, although the security of web browsers is impacted by these

vulnerabilities.

One observation consists in a pair of vulnerability i and the associated web browser

publisher j. For vulnerabilities that affect more than one web browser, we have

duplicated the vulnerability information in several observations, each associated to a

distinct publisher, in order to assess each publisher’s strategy separately.

The time a software vendor spends in patching a vulnerability – the Patching time,

our dependent variable – corresponds to the duration between the date at which the

vulnerability is reported to the vendor and the delivery date of the associated patch

in number of days. The patch release date is collected from release notes of the web

browser’s official website. The notification date of the vulnerability to the publisher is

collected from vulnerability research programs’ record. These programs are actually

some of the few sources that reveal such information, given its highly confidential

nature especially from the software vendor’s point of view.

For each vulnerability-browser pair, we collect from Statcounter.com the market

share of the affected web browser at the date the vulnerability was reported to the

publisher. We determine the number of firms in the market and the Herfindahl

Hirschman Index (HHI) for each quarter from January 2009 to June 2018 using these

data.18 Specifically, the market share of a software vendor is the sum of the user

18In order to determine the number of firms in the market, we count a browser publisher as “present”
in the market if its market share is greater than 0.5% at the time the vulnerability is discovered. Thus,
the number of firms is the number of browsers that have at least 0.5% of market share at the date the
vulnerability is discovered.

28

share of all the web browsers owned by this vendor. These market shares and market

concentration measures are used as our main explanatory variables.19 Market shares

of operating systems that are used to build the instrument for our main explanatory

variables were also collected from the same website. Specifically, we collected Apple

Mac OSX and Microsoft Windows OS market shares in PCs from January 2009 to

June 2018.

This database has been completed with information about vulnerability character-

istics, such as the severity (CVSS) and the type of the vulnerability (CWE) from the

National Vulnerability Database (NVD).20 Additionally, we use the yearly number of

mobile broadband subscription in the world from 2009 to 2018 provided by the ITU,

which is used as a control variable accounting for the rise of mobile use. Lastly, from

each web browser’s website, we collected information about each version in order to

determine how old the affected versions affected by the vulnerability are. For a given

vulnerability-browser pair, we use the oldest versions’ age to build the Software age

variable.21

1.6.1 Representativeness of the studied sample

Table 1.1 – Comparison with NVD listed vulnerabilities

Number of vulnerabilities Sum of CVSS score

Product Our data NVD ourdata
NV D

Our data NVD ourdata
NV D

Google Chrome 33 1555 2.1% 254 9288 2.7%
Mozilla Firefox 68 1399 4.9% 606 8735 6.9%

Microsoft IE/Edge 580 1457 39.8% 4896 10344 47.3%
Apple Safari 193 890 21.7% 1398 5870 23.8%

Total 874 5301 16.5% 7154 34237 20.9%
Average CVSS score 8.19 6.46

Our analysis is based on 874 observations consisting in web browser vulnerabilities

identified from January 2009 to June 2018 by the three vulnerability research programs

19Market shares are not used as is. It is used in defining the dummy Big mshare, which identi-
fies whether the publisher of the affected web browser should be considered as “highly dominant”.
Big mshare is equal to 1 when the affected web browser’s market share exceeds a certain amount;
values of 40% and 50% are used.

20The Common Vulnerability Scoring System (CVSS) is a scoring system that aims at prioritizing
the vulnerabilities according to threats they represent. Scores are calculated based on a formula that
depends on several metrics that approximate ease of exploit and the impact of exploit. They range from
0 to 10, with 10 being the most severe. The Common Weakness Enumeration (CWE) is a categorization
of software weaknesses. The dictionary is maintained by the MITRE Corporation.

21Even though a vulnerability affects several versions of a given web browser, patches are always
published the same day for all versions. Thus one observation in our data set includes all versions of a
given web browser affected by one vulnerability.

29

mentioned earlier. The description of variables and summary statistics are reported in

Table 1.11 and Table 1.10 of the Appendix.

Our data set represents 16.5% of the total web browser vulnerabilities referenced on

NVD during the studied period in terms of number of observations.22 Since the impact

of a vulnerability on a software security depends on its severity, the representativeness

of our data can also be measured by summing the severity of the observations. Table

1.13 reports the representativeness of our data compared to NVD depending on whether

we consider the number of discovered vulnerabilities or the sum of their CVSS. Our

data represents 20.9% of the mother population when we consider the severity of the

discovered vulnerabilities.

One important issue we note by comparing our data set to NVD referenced vul-

nerabilities is that some web browsers are more represented than others in our data

set. This may come from the fact that vulnerabilities in our data are choice-based: the

programs that pay for vulnerability discovery and from where our data comes from

may have some preferences in the software and the severity of vulnerabilities they are

looking for. To overcome this problem, we apply a probability weight on each regression

we estimate as suggested by Solon, Haider, and Wooldridge (2015). More precisely, we

use Weighted Linear Regressions (WLS) instead of OLS regressions by weighting each

contribution to the sum of squares by its inverse probability of selection and for Poisson

regressions we maximise the log likelihood that weights each observation’s contribution

to the conventional log likelihood by its inverse probability of selection. We apply two

types of probability weights and compare the results: the first one is based on the

number of vulnerabilities yearly referenced in NVD for each web browsers (PW1), the

second one is based on the sum of their severity (PW2).

1.6.2 Dependent variable

The dependent variable Patching time is a positive integer as the time spent by the

vendor to release a patch is measured in number of days. Although it is a count variable,

we note that it takes a wide range of values from 0 to 302 and the mean and the median

are distant from 0. We thus consider that both OLS and count models are suitable

22NVD is sponsored by the US government and is one of the most comprehensive database for public
vulnerability reports. We thus consider vulnerabilities listed on this database as the mother population.

30

greater than 40% and 50% of the market at the moment the vulnerability is discovered.

Values of 40% or 50% are set according to the definition of a “dominant position” given

by the OECD, which corresponds in our case, to the dominance of Microsoft Internet

Explorer and Google Chrome as illustrated in Figure 1.4b in Appendix.

1.7 Estimation results

In this section, we report the estimation results for the econometric models. We

first show results for the baseline model (1.1), which estimates the effect of market

concentration on the responsiveness of a publisher. We next estimate model (1.2),

in which we account both for the number of firms competing in the market and for

whether the web browser is “dominant” in the market at the time the security flaw is

discovered.

1.7.1 Effect of competition intensity on the responsiveness of web

browser publishers in patching security flaws, using the number

of firms and the HHI as concentration measures

To begin with, we report in Table 1.4 regression results for model (1.1), which estimates

the effect of market concentration on the patch release time. In each triplet of columns,

we report both OLS and WLS results, using either a probability weight based on the

number of vulnerability (PW1) in the NVD mother population, or on the sum of their

severity (PW2). We use two different measures of concentration – the number of firms

and the HHI. Consistent with our theoretical model, the coefficients of Concentration

are negative. That is, web browser publishers are more responsive in patching security

flaws when the market is more concentrated, i.e., when the market is less competitive.

More precisely, a web browser publisher releases a security patch about 3 days earlier

when there is one less competitor in the market and about 1 day earlier when the

HHI increases by 0.01 point. We note that the results does not change qualitatively

when we correct for the sampling issue by weighting the regressions. In the main tables

thereafter, we only report results for weighted regressions. Additionally, using OLS or

Poisson regressions produce very similar results (See Table 1.12 in Appendix).

Regarding other explanatory variables, the impact of vulnerability severity score

33

Table 1.4 – Results for model (1.1) using -n and HHI as concentration measures

Using as Concentration measure: -n

OLS WLS PW1 WLS PW2
(1) (2) (3)

Concentration -3.401** -2.776* -2.817*
(1.726) (3.386) (4.553)

V ulnerability severity -2.530 -15.62 -14.73
(1.706) (9.533) (9.003)

V ulnerability type X X X

Software age 1.597*** 2.343* 2.028*
(0.343) (0.990) (0.776)

Apple -18.00*** -42.84 -37.22
(4.965) (19.03) (18.68)

Google -22.70*** -20.92 -14.54
(8.174) (11.49) (12.61)

Mozilla -43.33*** -60.05** -55.17**
(6.166) (11.54) (14.20)

Qyear -1.789*** -3.395** -3.253***
(0.243) (0.641) (0.484)

Constant 474.3*** 926.5** 883.1**
(60.12) (228.0) (201.4)

Observations 874 874 874
R2 0.197 0.333 0.347
VIF for Concentration 1.38

Using as Concentration measure: HHI

(4) (5) (6)

Concentration -93.88*** -190.0** -188.5**
(32.01) (59.27) (66.42)

V ulnerability severity -3.005* -16.28 -15.20
(1.716) (8.737) (8.336)

V ulnerability type X X X

Software age 1.558*** 2.386 2.082*
(0.342) (1.136) (0.877)

Apple -17.10*** -43.01 -36.93
(4.927) (18.59) (17.66)

Google -22.97*** -25.59 -18.35
(8.151) (11.10) (12.13)

Mozilla -42.54*** -60.58** -54.21**
(6.151) (11.73) (13.56)

Qyear -1.670*** -3.458** -3.179**
(0.233) (0.792) (0.616)

Constant 506.4*** 1,030** 954.1**
(61.27) (241.3) (198.3)

Observations 874 874 874
R2 0.201 0.354 0.365
VIF for Concentration 1.24

Note: OLS regressions for Columns (1) and (4), Weighted Linear Regression using
a probability weight based on the number of vulnerabilities yearly referenced in
NVD for each web browsers for Columns (2) and (5), and again a WLS with
a probability weight based on the sum of the severity of the vulnerabilities in
NVD for Columns (3) and (6). As we use 8 distinct dummies to account for
V ulnerability type fixed effects, we do not report their coefficients in this table.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

34

(V ulnerability severity) is negative, meaning that editors are likely to respond faster

to more severe vulnerabilities. Besides, by regressing V ulnerability severity by

V ulnerability type dummies, we note that there is a strong correlation between the

type of the vulnerability and the severity score (see Table 1.7 in Appendix). The

characteristics of the vulnerability (its severity, its type) may influence the patching

time not only because it has an impact on the intent of the vendor (prioritization

according to the severity, impact on its reputation), but also because of technical

reasons (difficulties to develop the patch for some types of vulnerability, learning effects

on types that are frequently identified...). Although it is interesting to note it, our

model does not study further the relationship between vulnerability characteristics

and the patch release time as we focus specifically on the impact of the competition

intensity.

As to variables accounting for software characteristics, Software age has a positive

coefficient, meaning that patches are released slower when the software version is older.

This is an expected result as the older the version of the software is, the less incentives

the vendor has in investing on it. Moreover, the older the version is, the code is more

likely to be longer and complex; therefore, it takes more time to identify and fix the flaw

(see paragraph 1.5.2). As to vendor-specific characteristics, we note that coefficients for

vendor dummies loose their significance when we correct for the endogenous sampling

issue, except for Mozilla dummy. We find that Mozilla Firefox vulnerabilities are

patched on average 45 to 50 days faster than vulnerabilities of Microsoft Internet

Explorer and faster than Google Chrome or Apple Safari by 20 to 30 days, confirming

the idea suggested by the literature about the benefits of open source projects.

Lastly, coefficients for Qyear are significant and negative: each quarter, the patch

release time for web browser vulnerabilities is reduced by around 3 days. We attribute

this effect on trends that we cannot measure but which are correlated with time, such

as the growing awareness of and interest in web application security. For instance, the

increasing number of mobile broadband subscription seems to explain an important

part of this effect (see Appendix 1.8) although we cannot attribute the “time effect”

solely to the rise of mobile use.

We now turn into instrumental variable estimation to fix the simultaneity is-

sue between Concentration and Patching time. As a reminder, we instrument

35

Table 1.5 – Results for model (1.1) - instrumenting Concentration with
WinvsMac PCs

Using as Concentration: -n

PW1 PW2

IV FS IV FS
(1) (2) (3) (4)

Concentration -26.13*** -24.89***
(8.600) (8.898)

V ulnerability severity -16.60*** -0.0169 -15.12*** -0.00224
(5.877) (0.0445) (5.742) (0.0405)

V ulnerability type X X X X

Software age 2.320** -0.00560 1.887* -0.0122
(0.991) (0.0114) (1.000) (0.00971)

Apple -37.51*** 0.321** -29.60** 0.411***
(12.17) (0.139) (12.56) (0.122)

Google -29.87** -0.167 -20.25 -0.0826
(13.79) (0.139) (14.30) (0.138)

Mozilla -57.19*** 0.129 -49.65*** 0.197
(12.13) (0.137) (14.50) (0.137)

Qyear -4.329*** 0.0800*** -3.854*** 0.0903***
(0.795) (0.0124) (0.747) (0.0115)

W inV sMac P Cs (Instrument) 0.305*** 0.310***
(0.0236) (0.0225)

Observations 874 874 874
R2 0.243 0.471 0.276 0.444
Partial R2 (excluded instr.) 0.290 0.291
F stat (excluded instr.) 166.6 190.8

Using as Concentration measure: HHI

(5) (6) (7) (8)

Concentration -274.2*** -264.6***
(87.64) (91.48)

V ulnerability severity -16.63*** -0.00172 -15.41*** -0.00131
(5.535) (0.00165) (5.482) (0.00146)

V ulnerability type FE X X X X

Software age 2.403*** -0.000231 2.096** -0.000355
(0.914) (0.000486) (0.947) (0.000431)

Apple -42.80*** 0.0113** -36.42*** 0.0129**
(11.08) (0.00568) (11.46) (0.00527)

Google -28.13** -0.00952* -20.18 -0.00751
(12.53) (0.00564) (13.03) (0.00531)

Mozilla -60.67*** -0.000420 -53.54*** 0.00386
(12.05) (0.00681) (14.46) (0.00667)

Qyear -3.536*** 0.0105*** -3.181*** 0.0110***
(0.638) (0.000607) (0.628) (0.000541)

W inV sMac P Cs (Instrument) 0.0290*** 0.0292***
(0.00125) (0.00113)

Observations 874 874 874 874
R2 0.350 0.714 0.362 0.710
Partial R2 (excluded instr.) 0.681 0.670
F stat (excluded instr.) 536.5 665.0

Note: 2SLS and Weighted 2SLS regressions. All the 8 distinct V ulnerability type dummies
are included in the regressions but we do not report their coefficients in this table. Standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

36

Concentration by the market share ratio between Microsoft Windows and Apple

Mac OS in the desktop market. We consider that market shares in desktop OS may

affect the market concentration (and thus the competition intensity) in the web browser

market but do not affect directly the responsiveness of a web browser publisher in

patching a vulnerability. Results are presented in Table 1.5. From columns 1 to 4, we

report results for estimation using the number of firms as concentration measure, while

columns 5 to 7 report results when using the HHI as concentration measure. First,

results show stable coefficients for every variable between estimation 1 and 3 and 5

and 7, suggesting little influence of the sampling. First stage regressions show that

the excluded instrument is correlated with the endogenous variable, meaning that the

market structure of operating systems has a significant influence on the web browser

market structure. Additionally, we have one instrument and the F statistics on the

excluded instrument are much more greater than 16.38, which is the size of nominal

5% Wald test. The Stock-Yogo test is satisfied and we consider that our instrument

is not weak. Estimation for the second stage shows that using an instrument for

Concentration does not change the sign of its effect on the Patching time. On the

other hand, it enlarges significantly the magnitude of the effect. It is reasonable to find

a greater positive effect of market concentration on the responsiveness of a vendor as

we are considering that a reverse causality exists between the patch release time and

concentration. Indeed, the reverse causality we are worried about here is the fact that

the responsiveness of a vendor in releasing a patch, which is a proxy of the security

quality it provides to users, has a positive impact on user shares and in turn on market

concentration. That is, a longer patch release time would decrease the firm’s market

share and in turn decrease market concentration. Thus controlling for this reverse

causality would enlarge the effect of a shorter patching time for higher concentration.

All in all, IV estimation results strengthens our findings.

For another robustness check, we estimate model (1.1) without each of the control

variables (Table 1.13 in Appendix). Not controlling for vulnerability characteristics

(V ulnerability severity by V ulnerability type dummies) or software and vendor’s

characteristics (Software age, software vendor’s dummies) does not qualitatively affect

our main results.

To sum up, from this baseline model, we find that market concentration impacts

37

positively the responsiveness of web browser publishers in securing their product. This

result is in line with Proposition 1 of the theoretical model, which states that in an

oligopolistic market where firms compete in security quality, the security level provided

by a firm decreases as the number of competitors increases (δs∗
i /δn < 0).

1.7.2 The effect of being in a dominant position

Table 1.6 – Results for model (1.2), effect of Big mshare

Big mshare = 1 when the affected
web browser’s market share is:

≥ 0.50 ≥ 0.40

PW1 PW2 PW1 PW2

Concentration -28.48*** -28.90*** -29.76*** -30.70***
(8.970) (9.082) (8.770) (8.737)

Big mshare 536.4*** 520.9*** 481.4*** 474.6***
(119.3) (119.7) (85.39) (88.81)

Big mshare × Concentration 81.18*** 78.00*** 71.08*** 70.24***
(18.71) (18.60) (12.07) (12.53)

Vulnerability specific effects
V ulnerability severity -9.981 -8.613 -12.17** -10.23*

(6.204) (6.133) (5.465) (5.413)
V ulnerability type FE X X X X

Software age 0.744 0.416 -0.292 -0.313
(0.927) (1.047) (0.913) (1.024)

Vendor specific FE X X X X

Qyear -2.913*** -2.630*** -3.096*** -2.869***
(0.816) (0.781) (0.707) (0.687)

Correction term for Concentration 29.35*** 28.45*** 25.02*** 25.74***
(9.881) (10.37) (9.097) (9.421)

Correction term for
Big mshare × Concentration

-19.30*** -16.80*** -12.94** -11.39*

(6.104) (6.079) (5.683) (6.023)

Observations 874 874 874 874
R2 0.353 0.376 0.385 0.398

Note: Dependent variable is Patching time. Weighted Linear Regressions.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Table 1.6 reports estimations for model (1.2), which focuses on the change in the

responsiveness of a publisher when the web browser publisher has a dominant position.

In the two first columns, we report results for Big mshare equal to 1 when the affected

web browser’s market share is more than 50% of the market; in the two other columns,

estimation results for the threshold value of 40% are reported.

First, results for model (1.2) confirms the result obtained in the baseline model.

Keeping everything else equal, we obtain qualitatively and quantitatively similar results

for the effect of Concentration in the two models: a web browser publisher releases a

security patch for about 29 days more quickly when there is one less competitor in the

market.

38

Nevertheless, this “positive” effect is dependent to whether the affected web

browser has a dominant position or not. First, both coefficients of Big mshare

and Big mshare × Concentration are positive, meaning that when a web browser is

dominant, the vendor releases a security patches less rapidly than it would have released

if it was not. Moreover, comparing the coefficients’ magnitude when the threshold

market share is ≥ 0.40 to ≥ 0.50, the higher the market share of the publisher, the

larger is the negative effect of market dominance on the responsiveness of the vendor.

This result corroborates Proposition (2) which suggests that the security quality chosen

by a highly dominant firm decreases with respect to its market share (∂s∗
i /∂mi < 0).

Secondly, the interaction term Big mshare × Concentration presents a positive sign.

That is, the positive effect of market concentration in reducing the patching time is

weakened when the affected publisher has a dominant position. Specifically, for a

given number of firms competing in the market, a web browser editor which has more

than 50% of the market would release a patch 520 days later than if it was not in a

dominant position. Note that we measure here the causal effect of market dominance

on the responsiveness of the vendor, after having removed the effect related to reverse

causality, which explains why we have such a big coefficient. Moreover, this negative

effect is strengthened when we consider a higher threshold of market share for the

Big mshare dummy. More precisely, the effect of the interaction term is 1.14 times

larger when we consider that being in a dominant position is having more than 50% of

the market compared to 40%. These results support the theoretical result suggested in

Proposition (3), which states that the larger the market share of the dominant firm,

the more reduced is the positive effect of market concentration on the security level the

firm provides (∂2s∗
i /∂n∂mi < 0).

All in all, our results show that less competition in the market leads to higher security

quality provision by web browser publishers. However, when a web browser is dominant,

we find that the negative effect of a significant dominance on the responsiveness of the

software vendor is greater than the positive effect of having less competitors.

To recapitulate our identification strategy, first, we have compared our data set to

a more comprehensive database (NVD) and we applied a probability weight for each

observation according to (1) the number of vulnerabilities observed for each browser

each year and (2) the sum of their severity. Weighting or not our estimations does not

39

qualitatively modify the results. Secondly, we used IV estimations to correct for the

endogeneity of our explanatory variable. We used the fact that concentration in the web

browser market is strongly correlated to market share ratio between Microsoft Windows

and Mac OS in the operating system market. By instrumenting the endogenous variable,

we obtain a greater positive effect of market concentration in reducing the patch release

time. Third, we control for a number of effects that might influence the patch release

time in order to correctly isolate the effect attributed to the competition intensity in

the market. We control for vendor fixed effects, the characteristics of the vulnerability,

the software age, and a time variable which represent effects correlated to the time such

as the rise of mobile use and the increasing attention given to web security. Whether

we control or not for all of these effects does not modify our main findings except for

the time effect.

1.8 Conclusion

Our objective in this paper was to examine the impact of competition intensity on

software vendor’s security investment behavior. To answer empirically to this question,

we took the case of the web browser market. Using a dataset of 874 web browser

vulnerabilities identified and patched over a period of ten years, we examined the effect

of market concentration and being in a dominant position, on web browser publishers’

promptness to release a security patch.

We find that market concentration is not necessarily harmful to security provision:

less competition makes a web browser publisher more responsive in delivering security

patches, although this effect is reduced when the publisher is highly dominant in

the market. Through a theoretical model, we explain this result by a particularity

of the market we study: because companies does not compete in price but compete

in quality, they have more incentives to invest in quality when competition is less

intense. Nevertheless, because security is costly and does not lead to market expansion,

a dominant position in the market does not encourage a firm to invest more in

security(quality).

Academics and practitioners together have largely insisted on the danger of software

monoculture. Our findings give an additional insight on this issue, suggesting that it is

40

important as well to take account the vendor’s actual incentives to invest in security,

which is affected by the degree of competition in the market. Furthermore, in line with

some practitioners’ opinion, we find that diverse externalities such as the severity of

the vulnerability, the software age or open source licensing also significantly impact the

vendor’s incentives to release a patch more quickly.

This study also provides policy makers with empirical evidence on whether com-

petition acts in the same way on firms’ security investment incentives in free software

markets such as the web browser one, a case which is even more of interest as it is very

common in today’s digital markets.

41

1.9 Appendix

Table 1.7 – dep. var: V ulnerability severity

cwe119 0.915***
(0.158)

cwe94 1.895***
(0.213)

cwe20 0.582**
(0.256)

cwe189 1.494***
(0.354)

cwe416 0.717*
(0.374)

cwe399 1.741***
(0.175)

cwe264 -1.287***
(0.251)

cwe200 -4.054***
(0.284)

Constant 7.390***

(0.149)

Observations 874

R-squared 0.481

S.E in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.8 – Model (1.1) using MobilevsBroadband as a control

-n HHI

PW1 IV PW2 IV PW1 IV PW2 IV

Concentration -22.12*** -22.52** -227.9*** -229.6**
(8.153) (9.138) (83.43) (91.76)

V ulnerability severity -16.53*** -15.26*** -16.40*** -15.32***
(5.612) (5.551) (5.363) (5.333)

V ulnerability type FE X X X X

Software age 2.442** 2.047** 2.459*** 2.172**
(0.990) (1.014) (0.924) (0.959)

V endor FE X X X X

MobilevsBroadband -0.0368*** -0.0337*** -0.0304*** -0.0278***
(0.00636) (0.00621) (0.00522) (0.00522)

Observations 874 874 874 874
R2 0.295 0.311 0.366 0.376

Note: Dependent variable is Patching time. Weighted 2SLS regressions.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

42

Table 1.11 – Description of variables

Variable Description

P atching time Time spent by the editor to release a patch (unit: number of days)

-n
n represents the number of firms in the market at the time the
vulnerability is discovered.

HHI The Herfindahl-Hirschman Index at the vulnerability discovery date

Big mshare

Equal to 1 if the affected web browser publisher’s market share at the
moment the vulnerability is discovered is greater than 50% (40%) of
the market, 0 otherwise

V ulnerability severity Vulnerability severity score (CVSS base score from 1 to 10)

V ulnerabililty type

dummies

Dummies for type of weakness such as ‘cross site scripting’, SQL
injection’, ‘Information leak’, etc. 8 types of weakness were associated
to web browsers vulnerabilities.

Software age
Age of the software at the time when the vulnerability is discovered
(unit: number of years).

V endor dummies Dummies associated to each web browser publisher except Microsoft

Qyear
The date at which the vulnerability was reported to the editor (unit:
date in quarter).

W in vs MacOS
Ratio between Windows and Mac OS’s market share in the desktop
operating system market

44

Table 1.12 – Results for model (1.1) with Poisson regressions

Using as Concentration measure: -n HHI

Poisson
PW1

Poisson
PW2

Poisson
Poisson

PW1
Poisson

PW2
Poisson

Concentration -4.331*** -4.422 -4.726 -106.9*** -213.8*** -206.2**
(0.379) (3.972) (5.083) (6.847) (81.25) (89.78)

V ulnerability severity -2.235*** -14.48* -13.02* -2.788*** -14.59** -13.06**
(0.390) (8.306) (7.428) (0.393) (7.169) (6.456)

V ulnerability type FE X X X X X X

Software age 1.384*** 1.886* 1.546* 1.357*** 1.851* 1.551*
(0.0743) (1.073) (0.839) (0.0744) (1.111) (0.859)

Apple -14.62*** -32.76** -27.34** -14.05*** -33.03** -27.19**
(1.005) (13.94) (13.91) (1.002) (13.03) (12.60)

Google -19.87*** -20.94** -14.98 -20.32*** -26.21*** -19.29*
(1.569) (10.43) (11.05) (1.562) (9.858) (9.994)

Mozilla -35.85*** -50.12*** -46.80*** -35.52*** -51.17*** -46.62***
(1.029) (8.222) (10.65) (1.032) (7.622) (9.601)

Qyear -1.794*** -3.347*** -3.175*** -1.679*** -3.492*** -3.154***
(0.0551) (0.492) (0.390) (0.0524) (0.742) (0.570)

Observations 874 874 874 874 874 874

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

45

Table 1.13 – Estimation results for model 1.1 with or without control variables

Using: -n
Weighted IV (PW1) Weighted IV (PW2)

Concentration -26.1*** -25.5*** -25.0*** -28.9*** -27.8** -24.9*** -26.1*** -25.9*** -30.6*** -30.0***
(8.60) (9.53) (9.64) (10.5) (11.3) (8.90) (9.64) (9.72) (10.8) (11.6)

V endorFE X X

Software age X X X X

V ulnerability type FE X X X X X X

V ulnerability severity X X X X X X X X

Qyear X X X X X X X X X X

Observations 874 874 874 874 874 874 874 874 874 874
R2 0.243 0.186 0.188 0.103 0.061 0.276 0.226 0.227 0.128 0.091

Using: HHI

Weighted IV (PW1) Weighted IV (PW2)

Concentration -274*** -271*** -268*** -302*** -291** -265*** -279*** -279*** -323*** -317***
(87.6) (99.7) (101) (112) (120) (91.5) (101) (103) (115) (122)

V endor FE X X

Software age X X X X

V ulnerability type FE X X X X X X

V ulnerability severity X X X X X X X X

Qyear X X X X X X X X X X

Observations 874 874 874 874 874 874 874 874 874 874
R2 0.350 0.279 0.279 0.216 0.165 0.362 0.310 0.310 0.238 0.197

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

46

Table 1.14 – Results for model (1.2), using OLS and Poisson regressions

Using as Concentration: -n

Big mshare = 1 when the affected web browser’s market share is: ≥ 0.50 ≥ 0.40

OLS IV Poisson IV OLS IV Poisson IV

Concentration -22.22*** -21.99*** -27.42*** -27.24***
(4.566) (1.090) (4.215) (1.026)

Big mshare 394.8*** 319.9*** 229.8*** 208.2***
(117.0) (24.84) (77.33) (17.08)

Big mshare × Concentration 65.96*** 54.11*** 34.59*** 32.20***
(22.27) (4.814) (13.28) (2.980)

V ulnerability severity -1.012 -1.395*** -3.293* -2.983***
(2.121) (0.479) (1.855) (0.431)

V ulnerability type FE X X X X

Software age 0.823** 0.741*** 0.644* 0.598***
(0.364) (0.0805) (0.352) (0.0782)

V endor FE X X X X

Qyear -1.610*** -1.719*** -2.048*** -2.085***
(0.333) (0.0752) (0.283) (0.0655)

Correction term for Big mshare 18.41*** 17.58*** 23.33*** 22.84***
(5.068) (1.199 (4.671) (1.127)

Correction term for Big mshare × Concentration -13.27 -6.612*** 3.186 3.608**
(9.446) (1.951) (6.495) (1.438)

Observations 874 874 874 874

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
For Poisson regression average marginal effects are reported.

47

Table 1.15 – Results for model (1.2) with or without control variables

Using as Concentration: -n

Big mshare = 1 when the affected web browser’s
market share is:

≥ 0.50

Concentration -27.45*** -31.05*** -30.64*** -32.94*** -31.32***
(8.566) (9.349) (9.312) (10.75) (11.55)

Big mshare 249.2* 360.1** 361.6** 263.2* 296.5**
(145.8) (145.8) (145.2) (136.4) (143.5)

Big mshare × Concentration 37.02* 50.25** 50.53** 37.40* 42.86**
(22.27) (21.96) (21.88) (20.40) (21.54)

Software age X X

V ulnerability type FE X X X

V ulnerability severity X X X X

Qyear -3.813*** -3.448*** -3.408*** -4.143*** -3.184***
(0.874) (0.839) (0.833) (1.135) (0.995)

Correction term for Concentration 31.40*** 31.64*** 31.16*** 32.02*** 30.72**
(9.701) (9.857) (9.620) (11.50) (12.10)

Correction term -7.394 -5.534 -5.731 -3.088 -4.852
for Big mshare × Concentration (7.224) (6.916) (6.929) (6.517) (6.899)

Observations 874 874 874 874 874
R2 0.377 0.331 0.331 0.249 0.203

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1
All columns report Weighted IV estimation (PW1).

48

Chapter Two: Hackers’ self-selection in crowdsourced

bug bounty programs∗

Abstract

A bug bounty program, also called Vulnerability Research Program (VRP), is a form of
crowdsourcing increasingly employed by modern companies to improve their system’s
security. It consists in offering monetary rewards to individuals that find new security
flaws in a software or a system.

One of the key challenges in the design of such contests is to attract enough
participants while limiting the low quality participations. In this paper, we study how
hackers’ perception of the uncertainty to obtain a reward, determined by the level
of information a contest provides about the contractual terms, affects the outcome
of the contest both quantitatively (the number of participations) and qualitatively
(participants’ quality). Specifically, we examine how a hacker’s choice to participate to
a VRP depends on this level of information.

Using an unbalanced panel data set on 156 bug bounty programs run on a well-known
bug bounty platform, we find that a more detailed contest policy and in particular more
information about the compensation scheme attracts a greater number of participants.
On the contrary, providing less detail induces less participation but attracts more
performant and more experienced hackers. Hackers self-select whether to participate
in a VRP according to the level of information about the contest’s contractual terms,
which leads to a trade-off between inducing more participation and attracting more
valuable participants.
Keywords: bug bounty program, vulnerability research program, innovation contest,
contract-related incentives, self-selection effect, hackers.

∗I thank my thesis advisor Marc Bourreau for his support. I also thank Maya Bacache, Christine
Zulehner, and the seminar audiences at 3EN 2018, EARIE 2018, DIF Lyon 2018, ZEW summer
Workshop 2018, and at the TSE Digital Seminar for their useful comments on a previous version of the
paper.

49

2.1 Introduction

Five years ago, a 17-year-old teenager in India discovered a serious vulnerability in

several airline booking systems that allowed to get free plane tickets. Despite his effort

to reach the airline companies and to alert them about the flaw, only one company

took him seriously and reacted.1 This is less true nowadays: an increasing number of

companies seek to collaborate with benign vulnerability identifiers – the so-called white-

hat hackers – to improve their systems’ security. Methodical approaches have been

developed to work with independent researchers, such as offering incentives in the form

of a “bounty”. Organizations started running Vulnerability Research Programs (VRPs)

– also commonly called Bug Bounty Programs – which give monetary compensation to

crowdsourced resources in exchange of information about vulnerabilities. Along with

it, web platforms called “Bug bounty platforms” have emerged, hosting and managing

these VRPs as a third party (E.g. HackerOne, BugCrowd, Yeswehack).

Launching a VRP has become a modern way to improve software and systems’

security and is becoming accepted as a normal part of the software development lifecycle.

However, managing a successful VRP is not an easy task. One of the key challenges

companies face is to make the right balance between attracting enough participants

and setting sufficiently high standards for participation in order to limit the proportion

of low-value participations.2 Indeed, a VRP intends to benefit from the diversity of

participants, thus it is important to let a large pool of individuals to participate. Yet,

each participation induces a cost, as it requires dedicated resources to sort the relevant

participations out of the invalid ones and to communicate with participants.

One method applied by bug bounty platforms to reduce the rate of invalid particip-

ations is to allow only individuals that have been sufficiently efficient in the past to

participate.3 Unfortunately, one can also lose potentially valuable participations by

applying such restrictive policies (Zhao, Laszka, and Grossklags, 2017). Apart from

setting such a minimum quality standard, it is the contest’s policy – i.e., the terms and

rules of the contest – that may shape the outcome of the contest.

1Source: https://medium.com/@kanishksajnani/how-i-could-have-travelled-the-world-

for-free-5bb10ac46ae5
2Source: https://www.hackerone.com/blog/signal-requirements
3For instance, HackerOne allows hackers to submit a report only when they meet a given level of

valid to invalid submission ratio

50

The policy of a crowdsourced contest such as VRPs is comparable to an employment

contract, as it defines the contractual relationship between the contest owner and

participants, especially by specifying the compensation scheme the contest offers to

participants and what it expects in exchange. The relationship between workers’

performance and the attributes of an employment contract have been largely studied

by economists. The literature distinguishes at least two types of effects. First, a

compensation scheme can affect a worker’s performance – for instance, through a

pay-for-performance scheme – by inducing a certain level of effort from the worker,

which may be referred to as effort effects. Secondly, it can have an effect on personal

attributes. For example, a number of empirical works show that more productive

workers systematically prefer a variable-pay to fixed-pay schemes (e.g., Dohmen and

Falk, 2011). The possibility that agents with different individual characteristics feel

attracted by different pay schemes and therefore self-select into particular forms of

contracts may be referred to as self-selection effects.

In the same way as an employment contract, the characteristics of a contest’s policy

may affect both the level of effort provided by participants and the type of individuals

that choose to participate in the contest. In this paper, we focus on the second aspect,

that is, how the attributes of a VRP affects the decision of an individual to participate.

In particular, we are interested in how the completeness of the contract offered by a

VRP affects a hacker’s choice to participate. By completeness of the contract, we mean

how much information the VRP’s policy provides about the compensation scheme and

about what it expects as an outcome.

Crowdsourced innovation contests like VRPs present several important specificities

that make it difficult to derive the answer to our question directly from the case of

a standard employment contract. First, the number of participants – the number of

brains that work on a problem – is an important factor that defines the effectiveness

of a crowdsourced innovation contest (Terwiesch and Xu, 2008; Boudreau, Lacetera,

and Lakhani, 2011). A contest policy should be thus applicable and attractive enough

to a large panel of individuals. At the same time, it has to be accurate enough to

provide adequate incentives and make the research process efficient. Secondly, in VRPs,

participants are asked to find new security flaws that were unknown before. That is,

they are asked to find an innovative way to penetrate a system rather than to carry out

51

predefined tasks like it is the case in standard crowdsourcing platforms (e.g., Amazon

Mechanical Turk). Certain types of individuals may be more qualified to innovate.

Solvers who have deep knowledge and experience in the problem domain could be most

effective. Or, on the contrary, technical and social marginality could be an advantage

to successfully solve the problem (Jeppesen and Lakhani, 2010). All in all, the success

of an innovation contest largely depends on how to sort and to attract the right kind of

solvers. Third, a VRP offers only a variable-pay: participants are compensated only

if their contributions are relevant enough, regardless of the effort they have actually

provided. Variable-pay schemes are likely to attract more productive workers than

fixed-pay schemes, but they encompass also a sorting effect on other attributes such

as the relative self-assessment or risk preference (Dohmen and Falk, 2011) that might

alter the effectiveness of a contest.

The purpose of this study is to examine how the completeness of the contract

proposed by a VRP affects its effectiveness. As the goal for a bug bounty program is to

find as many relevant vulnerabilities as possible (i.e., it is interested in maximizing the

sum across all outcomes opposed to a one-prize contest in which the goal is to maximize

the value of the highest outcome), we examine the effect both on the quantity (the

number of participations) and the quality of the participants.

Our analysis is based on publicly available data from the web platform HackerOne.

We use an unbalanced panel data set on 156 bug bounty programs run from January

2015 to February 2019. VRPs on the platform we analyze are free to choose the level

of information they provide about the contractual terms through a written policy.

They can provide more or less detail about their compensation scheme, from fully

specifying the payouts for each task to having a large degree of discretion about the

monetary rewards and the targeted scope. They can also modify their policy over time.

We consider that the level of information provided in the written policy reflects the

degree of completeness of the contract the contest offers. We find that the more precise

and detailed the policy is, the more participants it attracts. However, it also attracts

participants with more heterogenous performance and it reduces the average quality of

participants. On the contrary, leaving more uncertainty about the monetary rewards

and the targeted scope generates fewer, more homogenous participants, but with higher

quality in average.

52

This paper proceeds as follows. Section 2.2 reviews the relevant literature, Section

2.3 develops our hypothesis for analysis and Section 2.4 describes the data and estimation

strategies. Section 2.5 reports the results, and Section 2.6 concludes.

2.2 Related literature

Our paper is closely related to three streams of research. The first one is on the

economics of information security. The literature on the economics of information

security aims at studying the potential market failures causing information systems

insecurity. Vulnerability discovery is one of the topics at the heart of this field. We

contribute empirically to this literature, first by studying a marketplace – a market

for software vulnerabilities, where hackers sell vulnerability information to software

vendors and companies – that has been barely studied for now because of its novelty, and

secondly by studying how the design of a bug bounty program affects the contribution

of the individual researchers.

Among the few papers that focus on VRPs, Finifter, Akhawe, and Wagner (2013)

analyze two programs run by big pioneers in the vulnerability research community

(Google and Mozilla) and examine whether running a VRP is economically profitable

for a firm. Zhao et al. (2017) develop an analytical framework that compares different

policies that aims at reducing the number of invalid reports.4 To our knowledge,

there are only two empirical studies that analyze data from bug bounty platforms.5

Zhao, Grossklags, and Liu (2015) compare the currently biggest bug bounty platform

HackerOne (run by a US-based company) to Wooyun, a well-known Chinese bug

disclosure platform. They compare the trend in the discovered vulnerabilities in the

two platforms, the different reward structures VRPs offer, and how offering monetary

incentives attract more participants to a VRP. Maillart, Zhao, Grossklags, and Chuang

(2017) also use data from HackerOne and show that the number of participations in a

VRP is considerably reduced over its duration and that hackers strategically switch to

new programs when new programs become available.

Along with these two papers, our paper is among the few ones that provides an

4They suggest that in VRPs, a penalty system for the invalid reports is more efficient than applying
a minimum quality standard. Their model also shows that an increasing number of participants may
decrease both the organization’s and the hackers’ utilities.

5See definition and description of a bug bounty platform in Subsection 2.4.1

53

empirical analysis about bug bounty platforms. Besides the principal characteristics of

VRPs already examined by existing papers – such as the effects related to monetary

incentives or the decreasing probability to find new vulnerabilities –, we identify an

important mechanism that affects the effectiveness of a VRP. We are the first one that

focuses on how the amount of information provided by a VRP about its contractual

terms affects its effectiveness. We assimilate a VRP’s policy to an employment contract

proposed by a firm to workers and we study how the perception of the uncertainty to

obtain a reward affects a worker’s choice to participate in the contest. Our data set

is also unique, in that it is a recent and large panel data set on VRPs run by diverse

types of organizations while they are managed on a single platform. As we have a

panel data set, we are able to account for the different fixed effects and identify in

a robust way the effect attributed to a change in a VRP’s policy. Moreover, we use

both quantitative (the number of participations) and qualitative (participants’ average

quality and variance) information that defines the outcome of a contest.

Our paper is also related to the literature on innovation contests and tournaments.

VRPs are a type of contest in which the organizer commits to reward the participants

according to the rules and terms it defined, and participants spend resources in order

to win the rewards. For each new security flaw, only the first finder is rewarded. It is

thus close to an innovation contest in that the goal of the contest is to find a new idea –

an innovative way to penetrate the system and secure it. Economists have studied from

various angles the optimal design of contests, mainly about how to allocate the prizes

(Archak and Sundararajan, 2009; Liu, Yang, Adamic, and Chen, 2014) and whether

free entry or restricted numbers of participants yield to better outcomes (Terwiesch

and Xu, 2008; Boudreau et al., 2011).

As Boudreau et al. (2011), we are interested in how the degree of uncertainty faced

by participants affects the outcome of the contest. However, our scope and approach

differ from them in several aspects. First, we study a type of contest increasingly used

with the rise of crowdsourcing but barely studied for now. As mentioned earlier, in

contests like VRPs, the goal is to maximize the sum of the outcomes, while “traditional”

innovation contests like those launched on the well-known web platform InnoCentive

aims at selecting one best solution.6 Secondly, in Boudreau et al. (2011), the degree of

6Boudreau et al. (2011) use data from the web platform InnoCentive.

54

uncertainty is measured by the number of problem domains on which a given solution

draws. They focus on the fact that participants exert less effort when they face more

uncertainty to solve the problem. In our case, the uncertainty comes from the level

of information provided by the contest and we are interested in how the preference

for uncertainty attracts a given type of participants. Lastly, the results we obtain

are different from the findings of Boudreau et al. (2011). In our work, we find that

uncertainty attracts more performant participants, which has a positive effect on the

overall outcome, while in their case, it is the number of participants that compensate

the reduced effort of each individual due to problem uncertainty.

We also build our analysis on results from the rich body of literature on employment

contracts. Specifically, in our paper, we are interested in the incentive schemes used by

firms to attract specific types of workers, namely the self-selection effect as defined in

Salop and Salop (1976) or in Chow (1983). Analytical works show that individuals with

higher skills are more likely to choose a performance-based pay schemes than low-skill

workers (e.g., Salop and Salop, 1976; Demski and Feltham, 1978; Lazear, 2000b; Jensen,

2003). The basic idea is that a worker evaluates the match between his self-perceived

personal attributes and the perceived attributes of available employment contracts and

selects the contract that maximizes his expected utility. This theory is supported by a

number of empirical papers. Most of them are laboratory experiments (Chow, 1983;

Waller and Chow, 1985; Cadsby, Song, and Tapon, 2007; Eriksson and Villeval, 2008;

Dohmen and Falk, 2011), except from a field experiment by Fehrenbacher, Kaplan, and

Pedell (2017) and studies of Lazear (2000a,b) based on a large data set on an auto

glass company’s workforce.

The originality of our work also comes from the fact that we investigate the

mechanism of a crowdsourcing contest by referring to researches applied to a standard

employment framework. In particular, our focus is on participants’ self selection, while

studies on contests are more concerned with the relationship between the design of the

contest and the effort exerted by participants.

To our knowledge, Eriksson and Villeval (2008) is the unique paper that studied the

self-selection effect in the context of tournaments. In a laboratory experiment, they show

that when workers are allowed to choose between a performance-pay and a tournament,

there is a considerable reduction in the variance of effort among contestants in the

55

tournament. They suggest that this is due to the fact that subjects self-select their

payment scheme according to the degree of risk aversion. We also rely on their findings

and see whether their arguments can be applied to a more general case where the degree

of uncertainty perceived by the participants differs by the level of information the contest

provides about the contractual terms. Our work confirms the findings of Eriksson and

Villeval (2008) – which is based on a laboratory experiments on 120 students – in a

more robust way, using a “natural setting” from 156 contests involving 184 participants

in average. Additionally, most researches that study the self-selection effect, including

Eriksson and Villeval (2008), compare variable-pay schemes to “less variable” pay

schemes. Our approach is unique, as the uncertainty of being compensated is reflected

through several measures that reflect the completeness of a contract: the amount of

information provided in the policy, whether the VRP gives detailed information about

the rewards, and about the scope. This allows us to have a greater granularity in the

degree of uncertainty a contract represents.

2.3 Hypothesis development

The relationship between the number of participants in a contest and its efficiency have

received considerable attention in the literature on tournaments and innovation contests.

The literature identifies two opposing effects related to the number of contestants. The

first one is on how the competition between participants affects the amount of effort

exerted by each participant. Related to this effect, analytical works (e.g, Fullerton and

McAfee, 1999; Moldovanu and Sela, 2001; Terwiesch and Xu, 2008) suggest that having

many contributors working on a single issue leads to a lower equilibrium effort for each

contributor because they face a greater risk of not being rewarded for the effort they

are exerting. Empirical works have also provided evidence of an effort-reducing impact

of an increased number of participants (Casas-Arce and Mart́ınez-Jerez, 2009; Garcia

and Tor, 2009).

The second effect is on the probability to find a solution by increasing the number

of “brains” working on a subject. Terwiesch and Xu (2008) argue that a larger number

of participants is not necessarily inefficient because it brings a more diverse set of

solutions, which can outweight the negative effect from the underinvestment of each

56

individuals. Boudreau et al. (2011) empirically show that in the case of problems

with high-uncertainty, adding additional participants increases the overall contest

performance. In fact, this second effect – the positive effect of having a large number

of solvers – is particularly applicable to innovation contests, in which the discovery of a

solution and thus obtaining a reward presents a high degree of uncertainty.

Regarding the impact of uncertainty on the decision of an individual to participate,

Eriksson and Villeval (2008) suggest that when participants are free to choose whether

to participate or not in a contest, the uncertainty of success sorts the participants

before they enter the contest. The idea is that facing uncertainty, some individuals

would choose the minimum effort, that is, they drop out of competition, securing the

loser’s prize without bearing any cost. In sum, if there is too much uncertainty to win

a reward or it is perceived as is by potential participants, the contest may lose some

contributors that would have otherwise exerted an effort, even small.

Based on this discussion, we predict the following about the relationship between

the degree of completeness of a VRP’s policy and the number of participants.

Hypothesis 1. A VRP that provides more detailed information about the contractual

terms, i.e., less uncertainty about winning a reward, attracts a larger number of

participants.

According to Terwiesch and Xu (2008) and Boudreau et al. (2011), the uncertainty

about getting rewarded may negatively affect the overall outcome as it reduces the

number of participants that work on the problem. However, Eriksson and Villeval

(2008) argue that the degree of uncertainty also sorts the type of participants that

actually participate to the contest, hence leads to an ex-ante selection process. They

show that when workers are given the possiblity to choose the degree of uncertainty of

their payment scheme, they are sorted by their attributes. This results in a pool of

participants with less variance in their performance in tournaments (contests), compared

to piece-rate payment schemes.

Based on this reasoning, we predict the following:

Hypothesis 2. Providing less details about the contractual terms attract participants

more homogeneous in their performance.

Finally, what Eriksson and Villeval (2008) argue is that when we give the possibility

57

to choose whether to participate or not in a contest, subjects who have a higher

probability to win choose to enter the contest, which actually have a positive effect on

the overall efficiency of tournaments.

More generally, the main idea suggested by studies on the self-selection effect

in employment is that the ex-ante sorting effects contribute significantly to output

difference between different incentive systems. For instance, Dohmen and Falk (2011)

show in a laboratory experiment that the output in all variable-payment schemes (piece

rate, tournament, or revenue-sharing schemes) is higher than the results under the

fixed-wage regime and that this output difference is mainly attributable to productivity

sorting. That is, when facing the alternative between more or less uncertain payments,

more productive workers systematically prefer a payment scheme which is linked to

their own performance even though it is more risky. Additionally, in payment schemes

like tournaments in which the compensation depends on relative performance, they

show that relative self-assessment plays an important role in sorting into tournaments.

Considering that hackers who have participated more numerous times in other VRPs

in the past (i.e., that have more experience in the platform) are more likely to have a

better relative self-assessment, we hypothesize the following:

Hypothesis 3. A VRP that provides less information about the contractual terms

sorts the participants into more performant and more experienced participants.

2.4 Data and empirical framework

2.4.1 Data

For the purpose of our analysis, we have collected publicly available data from Hack-

erOne. HackerOne is a well-known web platform, created in November 2013, which

intermediates companies that want to run a Vulnerability Research Programs (VRPs)

and white-hat hackers who want to participate in such programs.7 HackerOne is

7Bug bounty platforms take full advantage of their two-sidedness. They benefit from cross-sided
network effects between VRPs and hackers: firms launch their VRP on the platform, because they can
get access to a large pool of hackers, while hackers benefit from accessing a large number of contests
on a single platform, which additionally allows them to manage a “hacker” profile that cumulates
experiences from the different VRPs run on the platform. As it is common in these type of markets,
the platform uses an asymmetric pricing strategy, where hackers get free access to the platform, while
companies pay a usage fee. Besides, hackers can multi-home while companies usually launch their
VRPs on a single platform, as it is costly for them to manage multiple VRPs using distinct platforms.

58

currently the most dominant bug bounty platform on the market. Bug bounty plat-

forms such as HackerOne are different from innovation crowdsourcing platforms such

as InnoCentive, as VRPs do not aim at choosing one winner that suggests the best

solution but look for as many valuable contributions as they can get. That is, in VRPs,

all the relevant submissions are rewarded. VRPs are also different from crowdsourcing

platforms such as Amazon Mechanical Turk, in which workers are usually asked to

carry out very simple tasks.

In order to launch a VRP, the organizing company first needs to define and publish

its policy on the platform. The policy provides information about the contractual terms

of the contest: the vulnerability types the VRP is looking for, the scope it is targeting,

the reward structure, a vulnerability disclosure agreement, etc. On HackerOne, it is

upon each VRP to define its policy and the level of information it provides within this

policy. Some VRPs provide minimal description about their expectations, while others

develop detailed sections describing the targeted scope of the VRP, the requirements for

being eligible for a bounty or the detailed reward structure and amounts. In Figures 2.1

in Appendix, we provide an example of a VRP on HackerOne that gives only some basic

information about the compensation and what it is looking for, while Figure 2.2 is an

example of a VRP providing a greater amount of information about the compensation

and about what they expect in exchange. A VRP can also modify its policy after the

program has been launched: it can add new details, change the reward conditions, add

some bonus rewards, etc.

In our study, we only consider VRPs that offer monetary rewards, that are publicly

accessible and that do not pre-select their participants. Any hacker that has an account

on the platform can participate to these public VRPs. Participating to a contest consists

in submitting a report about a vulnerability and fixing the reported vulnerability in

collaboration with the coordinators of the VRP. The submitted report has to respect

the rules and the guidelines defined by the VRP. After a report is submitted, the VRP

evaluates whether the submission is relevant and how valuable the submitted report is

Regarding the usage fee, HackerOne requests a fee proportional to the amount of rewards a VRP pays
to hackers (HackerOne requires around 20 % of each reward, which also include the taxes). The basic
service a company can subscribe to is the access to the web platform and a customized web interface
to manage its VRP. The platform also offers a range of services companies can subscribe, related to
the management of a VRP: they can help for the triage of the submitted reports, manage the whole
program, etc.

59

(i.e., how critical and how important the discovered vulnerability is). If the report is

evaluated as not relevant or as a duplicate, then it is rejected. For reports that are

considered as relevant, the VRP validates the submission and starts exchanging with

the participant to fix the vulnerability. When the vulnerability is fixed, the report

becomes “resolved” and the VRP offers a reward to the participant. Then finally, the

submitted report is closed.

The data we have collected concerns 156 active VRPs on HackerOne during the

period from January 2015 to February 2019. As VRPs’ policies evolve over time, we

were able to build a panel data set. It is an unbalanced panel data set, as all the VRPs

are not always active during the studied period. We have collected information about

each VRPs each month, including the number of valid submissions, the performance

indicators of each hacker at the date their submissions were accepted, the number of

words used in the policy, whether a VRP presents a dedicated section that describes

the scope of the contest, and whether it details the reward structure. We also collected

data on how old a program is – i.e., the number of months since it has been launched–,

and whether the program is managed by HackerOne or by the company itself. We

also count the total number of active VRPs each month on the platform. Additionally,

we have completed this database with information about the companies that run the

VRPs from several other sources (Wikipedia, Crunchbase, Owler.com). We use the

number of employees as a proxy for the size of the company and we categorized the

companies into 11 different industries. We also account for the origin of the companies

(they come from 24 distinct countries) and whether they have been acquired by another

firm during the studied period.

2.4.2 Empirical specification

Our objective is to analyze how the level of information given by the contest through its

written policy affects the outcome of the contest. As the goal of a VRP is to maximise

the sum of the values of all the participations, we consider two complementary aspects

that defines the outcome of a VRP and that we are able to measure: the quantity of

participations and the quality of the participants.

First, to analyze the effect of the level of information on the quantity of participations,

60

we use the following baseline specification:

Nb participationit =β0 + β1Information Levelit + β2Prog Ageit + FEi + FEt + ǫit,

(2.1)

where, Nb participation, our dependent variable, is the number of submissions re-

ceived by VRP i validated at period t. Our explanatory variable of interest is

Information Level, which measures how detailed the policy of VRP i is in period t.

Three alternative variables are used as Information Level. The first one is Nb words,

which counts how many words are used in a given VRP’s policy in a given period.

The second variable is Reward, a dummy which identifies whether the VRP provides

detailed information about the structure and the amount of the rewards at period t.

The third variable we use for Information Level is the dummy Scope, which identifies

whether the VRP’s policy includes a dedicated section that describes in detail the scope

targeted by the contest.

According to Hypothesis 1, we expect to obtain a positive coefficient for β1. That is,

we expect that the more information a VRP provides about its policy, the less uncertain

participants feels about winning a reward, and the more participations it generates.

Prog Age measures how long it has been since the VRP has been launched (in number

of month). FEi and FEt represent respectively VRPs and time fixed effects. In this

specification, as we account for program and time fixed effect, we do not account for

variables at the program level that do not vary over time. Lastly, ǫit is an error term.

Next, we use the following alternative specification:

Nb participationit =β′
0 + β′

1Information Levelit + β′
2Prog Ageit + β′

3aManaged by HOi

+ β′
3bFirm Sizei + β′

3cPlatform Growtht + Industry FEi

+ Country FEi + ǫit.

(2.2)

In this specification, we include a range of variables specific to VRPs instead of

accounting for VRP specific fixed effects. On the platform HackerOne, each VRP is

run by a distinct company.8 Thus each VRP is associated to one company. We account

8Theoretically, a company can run more than one VRP but this is not the case in our data set.

61

for the type of industry the company belongs to (Industry FE), the country where

the companies come from (Country FE), a dummy which identifies whether the VRP

is fully managed by HackerOne (Managed by HO), for how long the VRP has been

launched (Prog Age), and how big the company is (Firm Size). For the Firm Size,

we employ the definition of small and medium-sized and big company used by the

World Bank. Specifically, we classify the companies into 4 categories according to

the number of employees they have during the observed period. Platform Growth

measures the number of active VRP at period t on the platform. It accounts for the

time trend. Lastly, ǫit is an error term. As in the first specification, we expect β′
1 to be

positive according to Hypothesis 1.

To construct our dependent variable Nb Participation, we use the number of

participations that have been evaluated as “valid” participations. In other words,

we ignore the number participations that have actually occurred but that have been

rejected by the VRP. This can be an issue for our specification as the number of

valid number of participations could also account for some qualitative effect, as valid

participations may come from participants with higher Signal score (See the paragraph

below describing the qualitative performance indicators we use). In other words, the

valid number of participation can be represented as the product of the number of actual

participations (rejected participations included) and the probability of each participants

to submit a valid report. We perform additional regressions using this definition for

the dependent variable, in order to test the robustness of our principal results.

Moreover, our estimation results can be biased because we ignore that the number

of participations in period t − k (k > 0) can affect the decision of a VRP to modify its

policy in period t. In other words, we might ignore the potential simultaneity between

the choice of the hackers to participate to a VRP (the supply) and the demand of

the VRP. Regarding this issue, statistics from Zhao et al. (2017) show that invalid

submissions in HackerOne are relatively constant over time.9 We could thus consider

that ignoring the rejected participations does not have an effect on our estimation.

Nonetheless, we instrument our main regressor Information Level in order to account

for the potential reverse causality.

9In Zhao et al. (2017), the percentage of valid reports in public VPRs remains relatively stable
around 25% of the total submission during the total observed period of 2 years.

62

Specifically, we use two variables as our instruments. The first one is a dummy

which identifies whether the company that owns the VRP (and that finances it) is

being Acquired by another company at period t. The acquisition of the company could

cause a change in the VRP’s demand and thus on its policy while it does not affect

directly the decision of a hacker to participate or not in the VRP. We thus consider

that the exclusion restriction is satisfied. The second instrument we use is PSD2,

which accounts for the effect of the second European Directive on Payment Services

on cybersecurity investments. This directive came into force in January 2018 and

one of its major goals is to improve the security of online and mobile payments and

cross-border payment services. The variable PSD2 identifies whether the core activity

of the company that owns the VRP i concerns the online or mobile payment sector,

whether it is a European company, and whether period t is after January 2018. We

consider that PSD2 satisfies the exclusion restriction as it may have some direct impact

on the investment decision of a VRP especially for companies that are regulated (and

thus on the choice of the Information Level of a VRP’s policy) but not on hackers’

participation.

In order to analyze the effect of the level of information on the quality of participants,

we use a set of dependent variables that reflects the average quality of the participants

(Av Reputation, Av Signal, and Av Impact) and the standard deviation of these

average quality (Sd Reputation, Sd Signal, and Sd Impact).

HackerOne provides three different performance indicators that reflect the quality of

a hacker over time, which are the Reputation score, the Signal score and the Impact

score. These are the indicators we use to build our dependent variables for the quality

of the participants. The Reputation score is a measure of a hacker’s level of experience

on the platform. It is an aggregate score of its contribution since the hacker has entered

the platform (since it has created an account on HackerOne). It takes account both the

number of valid reports the hacker has submitted and how valuable these contributions

are. The Signal score is the average relevance of the reports submitted by the hacker.

The lower the Signal score is, the higher the probability that the hacker submits an

invalid report is (an invalid report is a report that is considered as not relevant enough

or that another participant has already submitted to the VRP). The Impact score

is a measure of the average severity of the vulnerabilities reported by the hacker. It

63

represents the average value of the relevant reports submitted by the hacker. We

compute the mean value of each indicators for participants in each VRP each month to

construct our dependent variables Av Reputation, Av Signal, and Av Impact.

The same specification as for Nb Participation (Specification 2.1) is used to examine

the effect of the Information Level on the average quality of the participants. That

is:

Av Qualityit =β′′
0 + β′′

1 Information Levelit + β′′
2 Prog Ageit + FEi + FEt + ǫit,

(2.3)

where we use Av Reputation, Av Signal, and Av Impact as a measure of the average

quality (Av Quality). Following Hypothesis 3, we expect that β′′
1 is negative, i.e., the

more detailed a VRP’s policy is, the lower the participants’ average level of experience

and level of performance are.

Lastly, we compute the standard deviation of each quality indicators to define the

last series of dependent variables (Sd Reputation, Sd Signal, and Sd Impact). These

variables allow us to examine the effect of the level of contractual information provided

by a VRP on the variance of participants’ quality. Again, the same specification is

used (Specification 2.1). As Hypothesis 2 specifies, we expect the coefficient of our

main explanatory variable β′′
1 to be negative, that is, a less detailed policy attracts

participants more homogenous in their level of experience and performance.

2.4.3 Summary statistics

Table 2.5 to 2.8 in Appendix provide a range of information about the data set we use.

Table 2.5 provides a description of the variables and Table 2.6 reports the summary

statistics. In Table 2.7, we estimate the mean value of each of our dependent variables

(Nb Participation, Av Reputation, Av Signal, and Av Impact) according to the total

duration of a VRP. Lastly, Table 2.8 reports a correlation matrix for a list of variables.

Our data set is composed by 156 VRPs. During the observed period, a VRP is run

during 25 months in average with a large standard deviation of 27 months. The per-

month number of participations varies considerably according to the VRP, with a large

proportion of VRP-month pair with 0 participations (25 % of the observations are equal

64

to 0). It is for this reason that we use a Poisson regression with robust standard errors

for the specifications using the number of participation as the dependent variable.10

A VRP receives an average of 184 valid reports during the total duration of the

program and an average of 6.4 valid reports in a month. Overall, for a given VRP, the

number of participations decreases over time. Interestingly, the number of participations

is not correlated to the average amount of reward a VRP offers. We also observe that

VRPs which are run during a longer period of time have a higher per-month participation

rate. On the other hand, it is not because a VRP is run during a longer period of time

that participants are more performant in average (See Table 2.7).

Regarding our main explanatory variables, on average, a VRP’s policy is composed

of 514 words with large disparity. Policies evolve over time, with an average of difference

of 654 words between the shortest and the longest version over time. As to the variables

Reward and Scope, we observe from the correlation matrix (See Table 2.8) that they

have a positive relation with Nb Words, i.e., a longer policy has more probability to

include a reward and a scope section. However the three variables are not strongly

correlated. Additionally, VRPs are more likely to include Reward and Scope sections

when they get “older”, but it is not because a VRP is run for a longer duration in total

that it presents a more detailed policy since the beginning of its launch. Lastly, we

observe that the number of participations and the average quality of participants are

very weakly correlated even though we observe a positive relationship between them.

2.5 Results

2.5.1 Effect of the level of information of a VRP’s policy on the

number of participations

Table 2.1 reports the regression results for specification 2.1 and 2.2 using the number

of participations as the dependent variable. In each pair of columns, we have repor-

ted the results using the three different measures for our main regressor of interest

Information Level, namely Nb Words, Reward, and Scope. The first column of each

pair of columns reports the estimation results for Specification 2.1 and the second

10We consider that Poisson regressions with robust standard errors are more reliable than Negative
Binomial regressions when accounting for Fixed Effects (Silva and Tenreyro, 2010).

65

Table 2.1 – Estimation results for the effect of Information Level on the
Nb Participation - Regressions without IVs

(1) (2) (3) (4) (5) (6)

Poisson FE Poisson Poisson FE Poisson Poisson FE Poisson

Nb W ords 0.00499*** 0.00463***
(7.65e-05) (0.000355)

Reward 3.329*** 2.215***
(0.0826) (0.416)

Scope 1.100*** 0.161*
(0.0801) (0.406)

P rog Age 0.00695** 0.0347*** 0.0296*** 0.0522*** 0.0461*** 0.0684***
(0.00272) (0.0124) (0.00272) (0.0140) (0.00270) (0.0138)

P latform Growth -0.0694*** -0.0280*** -0.0184***
(0.00344) (0.00335) (0.00337)

F irm Size 2.920*** 3.392*** 3.717***
(0.0590) (0.0606) (0.0616)

Managed byHO -0.305 0.106 -0.177
(0.421) (0.426) (0.407)

VRP FE X X X

Time FE X X X

Industry dummies X X X

Country dummies X X X

Observations 4,174 3,192 4,174 3,192 4,174 3,192
Wald χ2 392.75 631.04 182.66 388.58 160.92 329.25
Number of VRPs 156 156 156

Note: Dependent variable is Nb Participation. Poisson FE and Poisson regressions
with robust standard errors. Coefficients are Average Marginal Effects. Standard errors
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The number of observations in columns
(2), (4), and (6) are reduced because we do not have the information for the Firm Size
for every VRPs.

one for Specification 2.2. As expected, the coefficients for Nb Words, Reward, and

Scope – i.e., β1 and β′
1 in Specification 2.1 and 2.2 – are all positive and statistically

significant. That is, the higher the level of information of a VRP’s policy is, the more

participations it generates. For example, according to the reported average marginal

effects in column (3) and (5), when a VRP provides detailed information about the

rewards, the number of participation is increased by three more participations per

month, while giving detailed information about the scope of the contest attracts one

more participant per month. This also shows that providing a reward section has a

stronger effect than providing a scope section.

Regarding other control variables, we observe that Prog Age presents a positive

coefficient, meaning that everything else kept fixed, the number of participations

increases over the duration of a VRP. The magnitude of the effect is larger when we

do not account for VRP’s fixed effects. This is because in column (2), (4) and (6)

Prog Age also accounts for the attractiveness specific to each VRPs and as we have

66

seen in the summary statistics, VRPs that are launched during a longer period of

time are likely to generate more participations on the whole. We also observe that

the larger the number of active VRPs on the platform (Platform Growth), the less

participations a VRP receives. This may be due to the fact that new hackers are not

entering the platform as fast as new VRPs are created and the amount of effort a hacker

dedicates to a single VRP is reduced with the number of contests that are launched on

the platform. As to coefficients for Firm Size, they are positive and always significant,

showing that VRP of larger firms generate a larger number of participations.

Note that in these regressions we use simple Poisson regressions that do not include

any instruments to deal with the potential reverse causality between the number of

participations and the level of information of a VRP’s policy. The next table reports

the estimation results using IV regressions.

Table 2.2 – Estimation results of the effect of Information Level on Nb Participation
- Regressions with IVs.

(1) (2) (3)

Nb W ords 0.00627***
(0.000448)

Reward 3.477***
(0.383)

Scope 0.823**
(0.388)

P rog Age -0.00635 0.0290** 0.0494***
(0.0105) (0.0114) (0.0126)

Corr. term for Acquired -0.000176 -9.113*** -13.39***
(0.00132) (2.455) (4.329)

Corr. term for P SD2 -0.00379*** 8.442*** 14.87***
(0.00135) (2.467) (4.412)

Time FE X X X

program FE X X X

Observations 4,177 4,177 4,177
Wald Chi2 304.56 141.81 47.70
Fstat (excluded instr.) 179.06 125.66 45.40
Number of VRPs 156 156 156

Note: Dependent variable is Nb Participation. Poisson IV regressions with
robust standard errors, using a control function approach. Coefficients are
Average Marginal Effects. Standard errors in parentheses. *** p<0.01, ** p<0.05,
* p<0.1

Table 2.2 reports the estimation results when we include the instrumental variables

in our regressions, using Specification 2.1. As specified in Subsection 2.4.2, we use two

instruments: Acquired and PSD2. The estimation results for the first stage is reported

in Table 2.9 in Appendix. First stage regressions show that the excluded instrument is

67

correlated with the endogenous variable and the Stock-Yogo test is satisfied.11 Table

2.10 in Appendix shows that the over-identification restrictions are also valid, thus we

consider our instruments as valid.

As in Table 2.1, we report the results for the three different measures for Information Level

in each pair of columns. We observe that the coefficients for our main explanatory

variables remain all positive and statistically significant. Additionally, the magnitude

of these coefficients are greater than in Table 2.1 for Nb Words and Reward, meaning

that the actual causal effect is greater than when we do not correct for the simultaneity

between hackers’ participations and the VRP’s demand for participation. Interestingly,

this does not hold for the case of Scope (Column (3)). That is, providing detailed

information about the scope generates a greater number of participations but a part of

the effect is due to the reverse causality. Nevertheless, this effect is smaller than the

causal effect of Scope on the number of participations.

All in all, our results confirm Hypothesis 1, showing that more information about

the VRP’s contractual terms and especially providing more details about the reward

generates more participations.

2.5.2 Effect of the level of information of a VRP’s policy on the

quality of the participants

Table 2.3 reports the results for estimations that examine the effect of the level of

information of a VRP’s policy on the quality of participants, using as dependent

variables Av Reputation, Av Signal, and Av Impact.

Each triplet of columns in Table 2.3 report regression results using the three

different measures for Information Level (Nb Words, Reward, and Scope) and for

each columns of each triplet, we use the three different measures of participants’ quality

Av Reputation, Av Signal, and Av Impact. As a reminder, Reputation represents

the experience level of a participant, Signal reflects the probability that the participant

submits a valid solution and Impact reflects the average severity of the vulnerabilities

that are found by the hacker, i.e., how valuable its participation is in average. We use

a Poisson regression for Av Reputation while we use linear regressions for Av Signal

11We have two instruments and F statistics for the excluded instruments are much more greater
than 19.93 which is the size of nominal 5% Wald test for 2SLS.

68

Table 2.3 – Estimation results for the effect of Information Level on participants’
quality - dependent variables are normalized.

Dep. var. is Av Reputation Av Signal Av Impact

(1) (2) (3)

Nb W ords -2.05e-05*** -2.06e-05** -1.16e-05
(3.50e-06) (9.83e-06) (8.13e-06)

P rog Age -0.000544*** 0.00474*** 0.00138
(0.000118) (0.00125) (0.000928)

Time FE X X X

program FE X X X

Observations 2,943 2,946 2,946
VRPs 156 156 156
Wald χ2 or R2 78.24 0.296 0.275

(4) (5) (6)

Reward -0.0127*** -0.0495*** -0.0266***
(0.00350) (0.0125) (0.0102)

P rog Age -0.000657*** 0.00469*** 0.00137
(0.000122) (0.00123) (0.000913)

Time FE X X X

program FE X X X

Observations 2,943 2,946 2,946
VRPs 156 156 156
Wald χ2 or R2 65.90 0.299 0.276

(7) (8) (9)

Scope -0.00316 -0.00163 0.00225
(0.00327) (0.0116) (0.00913)

P rog Age -0.000740*** 0.00524*** 0.00174*
(0.000119) (0.00126) (0.000917)

Time FE X X X

program FE X X X

Observations 2,943 2,946 2,946
VRPs 156 156 156
Wald χ2 or R2 44.96 0.295 0.275

Note: Dependent variables were normalized (value rescaled from 0 to 1) in
order to compare the magnitudes of the effects. We use Poisson regression for
Av Reputation, OLS regressions for Av Signal and Av Impact scores. For
all regressions, VRP and time fixed effects are included. Coefficients are AME
for Poisson regression. Standard errors in parentheses. *** p<0.01, ** p<0.05,
* p<0.1

69

and Av Impact. We use a normalized value of our dependent variables (i.e., values are

rescaled from 0 to 1), so that one can compare the effect of the explanatory variables

on the different measures of participants’ quality (See Table 2.11 in Appendix for the

estimation results using the original values of the dependent variables).

As expected, the coefficients for Information Level are negative, meaning that less

information about the contractual terms, i.e., more uncertainty about getting rewarded,

attracts higher quality participants on average. Specifically, hackers who are more

experienced, who find more critical vulnerabilities and who makes less mistakes are

likely to self-select into VRPs with a lower level of information about the contractual

terms. We also observe that the effect of the amount of information provided in the

written policy or detailing the amounts of rewards are statistically significant while the

effect of detailing the scope is not always significant. On the other hand, the magnitude

of the effect does not vary a lot for the different quality indicators.

While the dependent variables in Table 2.3 is the measure of the quality itself, we

report in Table 2.4 the regression results for the effect of the Information Level on

the variance of participants’ quality. In Table 2.4, each triplet of columns reports the

regression results using as dependent variables the standard deviation of Av Reputation,

Av Signal and Av Impact. The coefficients for Information Level are all positive,

corroborating Hypothesis 2. That is, providing more information about the contract

increases the variance of participants’ performance and experience, while providing

less information attracts participants that are more homogenous in their attributes.

The coefficients are also always statistically significant except for the case where we

use Scope as a measure of the level of information. We note that the coefficients

for Prog age are always negative, meaning that participants’ quality becomes more

homogenous over the duration of a VRP. Lastly, from Table 2.3 and 2.4, we also observe

that detailing the VRP’s scope does not have a statistically significant effect neither on

the participants’ performance (Signal and Impact scores), nor on their variances.

2.6 Conclusion

The objective of this paper was to see how the main communication tool for a VRP,

its written policy, may affect its efficiency. We particularly focused on the level of

70

Table 2.4 – Estimation results for the effect of Information Level on the variance of
participants’ quality.

Dep. var. is Sd Reputation Sd Signal Sd Impact

(1) (2) (3)

Nb W ords 0.221*** 0.000255*** 0.00119***
(0.00159) (7.31e-05) (0.000232)

P rog Age -1.363*** -0.0162* -0.0619**
(0.0542) (0.00923) (0.0252)

Time FE X X X

program FE X X X

Observations 3,057 3,057 3,057
VRPs 156 156 156

(4) (5) (6)

Reward 72.32*** 0.225** 1.138***
(1.620) (0.0922) (0.311)

P rog Age 0.296*** -0.0203** -0.0801**
(0.0533) (0.00922) (0.0311)

Time FE X X X

program FE X X X

Observations 3,057 3,057 3,057
VRPs 156 156 156

(7) (8) (9)

Scope 269.0*** 0.107 0.455
(1.572) (0.0851) (0.287)

P rog Age -0.890*** -0.0203** -0.0819**
(0.0528) (0.00942) (0.0318)

Time FE X X X

program FE X X X

Observations 3,057 3,057 3,057
VRPs 156 156 156

Note: Dependent variable is the Standard Deviation of participants’ quality
(Av Reputation, Av Signal, Av Impact scores) during the month. Poisson
regression for Sd Reputation, OLS regressions for Sd Signal and Sd Impact
scores. For all regressions, VRP and time fixed effects are included. Coefficients
are AME for Poisson regression. Standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1

information provided about the contractual terms. We consider that the level of

information determines the uncertainty perceived by the participants about getting

compensated and we used three variables that represent different aspects of the level of

information: the length of the VRP’s policy, whether it provides detailed information

about the reward, and about the scope of the contest.

Using a data set covering 4 years of activities, we find that providing more in-

formation about the contest generates more participations but also reduces the overall

quality of participants and enlarges the variance of their quality. It is interesting

to note that revealing more information about the rewards does not attract higher

quality participants. On the contrary, leaving more uncertainty about the rewards and

71

what is expected in exchange attracts more homogenous, more performant and more

experienced participants. Furthermore, monetary aspects like precising the reward

structure seem to have a more significant self-selection effect than providing detailed

information about the scope of the contest.

Our results suggest that in the context of tournaments such as a VRP, the possibility

that agents with different characteristics feel attracted by different types of contract

leads the VRP owner to a trade-off between having a larger number of participation

but attracting less performant participants and attracting higher quality participants

but generating fewer participations. This ex-ante self selection process is all the more

important for contest like VRPs since it reduces the cost induced to manage the

non-relevant participations.

72

2.7 Appendix

Table 2.5 – Description of variables

Variable Description

Nb P articipations The total number of valid reports the VRP processed during the month

Av Reputation

The average Reputation score of the participants to a given VRP at a
given month. The Reputation score is an aggregate score of a hackers’
contribution in terms of vulnerability severity, relevancy, and quantity

Av Signal

The average Signal score of the participants to a given VRP at a given
month. The Signal score is the average relevance of the reports
submitted by a hacker

Av Impact

The average Impact score of the participants to a given VRP at a given
month. Impact is a measure of the average severity of the vulnerabilities
a hacker have reported.

Sd Reputation Standard deviation of Av Reputation

Sd Signal Standard deviation of Av Signal

Sd Impact Standard deviation of Av Impact

Nb W ords Number of words of the written policy at the observed period

Reward

A dummy which identifies whether the VRP provides detailed
information about the structure and the amount of the rewards at
period t

Scope
A dummy which identifies whether the policy includes a dedicated
section that describes in detail the scope targeted by the contest.

P rog Age Number of month since the VRP has been launched

F irm size
Categorization of the size of the company which owns the VRP by their
number of employees (Small, Medium Size company, Big company)

Industry dummies The type of industry the VRP’s owner company belongs
Country dummies Country of origin of the company that owns the VRP

Managed by HO
A dummy which identifies whether the VRP is fully managed by
HackerOne

P latform Growth The number of active VRP on the platform at a given period

Acquired

A dummy which identifies whether the company that owns the VRP
(and thus that finances it) is being Acquired by another company at
period t

P SD2
A dummy which identifies whether the core activity of the company that
owns the VRP i concerns the online or mobile payment sector, whether
it is a European company, and whether period t is after January 2018

Table 2.6 – Summary statistics

Variable Obs Mean Std. Dev. Min Max

Nb P articipation 4177 6.38 10.58 0 140
Av Reputation 2943 2507.66 3079.62 8 36120
Av Signal 2946 2.81 1.83 -4 7
Av Impact 2946 14.35 5.67 0 38
Sd Reputation 2386 2309.93 2542.78 0 25142.6
Sd Signal 2391 1.88 .99 0 7.21
Sd Impact 2391 5.65 3.91 0 25
Nb W ords 4177 513.91 475.74 0 2509
Reward 4177 .36 .48 0 1
Scope 4177 .43 .5 0 1
P rog Age 4177 16.98 14.3 0 64
Managed by HO 4177 .245 .43 0 1
F irm Size 3260 2.89 1.03 1 4
P latform Growth 4177 66 15.51 19 89
Acquired 4177 .028 .17 0 1
P SD2 4177 .052 .22 0 1

73

Table 2.7 – Mean values of the dependent variables according to the duration of a VRP

Duration of a
VRP (in months)

Mean value of
Nb P articipation

Mean value of
Av Reputation

Mean value of
Av Signal

Mean value of
Av Impact

0 - 5 6.5 2588 3 13.1
5 - 15 4.7 2309 2.5 12.7
15 - 25 5.6 2776 2.8 14.4
25 - 35 4.5 2466 2.9 13.9
35 - 45 6.6 2475 2.7 14.5
45 - 55 7.2 2687 3.1 15.2
55 - 65 11.6 2296 2.8 15.3

Table 2.8 – Correlation matrix of the principal variables

Nb P articipation Av Impact Scope

Av Reputation Nb W ords P rog Age

Av Signal Reward P rog Du.

Nb P articipation
1

Av Reputation 0.04 1
Av Signal 0.15 0.31 1
Av Impact 0.09 0.25 0.49 1
Nb W ords 0.24 -0.14 0.01 -0.1 1
Reward 0.16 -0.1 -0.01 -0.06 0.56 1
Scope 0.06 -0.04 0.02 -0.05 0.45 0.25 1
P rog Age 0.06 -0.13 5.0ê-3 -0.05 0.3 0.25 0.2 1
P rog Duration 0.12 0 0.03 0.12 0.1 0.16 0.05 0.67 1

Table 2.9 – First Stage regressions for Table 2.2

(1) (2) (3) (4) (5) (6)

Dep. var. is: Nb W ords Reward Scope

P SD2 1,605*** 0.702*** -0.311***
(91.16) (0.0778) (0.0858)

Acquired 478.2*** 0.814*** 0.638***
(79.51) (0.0650) (0.0718)

P rog Age -19.99*** -21.95*** -0.00917*** -0.00799*** -0.0228*** -0.0200***
(1.683) (1.748) (0.00144) (0.00143) (0.00158) (0.00158)

VRP FE X X X X X X

Time FE X X X X X X

Observations 4,177 4,177 4,177 4,177 4,177 4,177
Number of
VRPs

156 156 156 156 156 156

Note: Linear FE regressions. Standard errors in parentheses. *** p<0.01, ** p<0.05,
* p<0.1.

76

Table 2.10 – Validity of over-identification restrictions

Included IVs:
P SD2 &
Acquired

Only P SD2
Only

Acquired

P SD2 &
Acquired

Only
P SD2

Only
Acquired

P SD2 &
Acquired

Only
P SD2

Only
Acquired

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Nb W ords 0.00627*** 0.00597*** 0.00627***
(0.000448) (0.000426) (0.000448)

Reward 3.477*** 3.558*** 3.385***
(0.383) (0.381) (0.380)

Scope 0.823** 0.844** 0.751*
(0.388) (0.387) (0.385)

P rog Age -0.00635 -0.00271 -0.00636 0.0290** 0.0274** 0.0290** 0.0494*** 0.0484*** 0.0493***
(0.0105) (0.0105) (0.0105) (0.0114) (0.0114) (0.0115) (0.0126) (0.0126) (0.0126)

Corr. term for P SD2 -0.000176 -0.00353*** -9.113*** -1.135 -13.39*** 1.150
(0.00132) (0.000747) (2.455) (0.987) (4.329) (0.890)

Corr. term for Acquired -0.00379*** -0.00394*** 8.442*** -0.284 14.87*** 1.596*
(0.00135) (0.000738) (2.467) (1.014) (4.412) (0.904)

VRP FE X X X X X X X X X

Time FE X X X X X X X X X

Observations 4,177 4,177 4,177 4,177 4,177 4,177 4,177 4,177 4,177

Note: Dependent variable is Nb Participation. Poisson IV regressions with robust standard errors, using a control function
approach. Coefficients are Average Marginal Effects. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

77

Table 2.11 – Estimation results for the effect of Information Level on participants’
quality - dependent variables are not normalized

Dep. var. is Av Reputation Av Signal Av Impact

(1) (2) (3)

Nb W ords -0.741*** -0.000227** -0.000442
(0.126) (0.000108) (0.000309)

P rog Age -19.65*** 0.0521*** 0.0524
(4.254) (0.0138) (0.0352)

Observations 2,943 2,946 2,946
VRPs 156 156 156
Wald χ2 or R2 78.24 0.296 0.275

(4) (5) (6)

Reward -457.8*** -0.545*** -1.012***
(126.5) (0.137) (0.389)

P rog Age -23.71*** 0.0516*** 0.0519
(4.405) (0.0136) (0.0347)

Observations 2,943 2,946 2,946
VRPs 156 156 156
Wald χ2 or R2 65.90 0.299 0.276

(7) (8) (9)

Scope -114.3 -0.0180 0.0856
(118.2) (0.128) (0.347)

P rog Age -26.73*** 0.0577*** 0.0662*
(4.297) (0.0139) (0.0349)

Observations 2,943 2,946 2,946
VRPs 156 156 156
Wald χ2 or R2 44.96 0.295 0.275

Note: We use Poisson regression for Av Reputation, OLS regressions for
Av Signal and Av Impact scores. For all regressions, VRP and time fixed
effects are included. Coefficients are AME for Poisson regression. Standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

78

Chapter Three: Software vulnerability disclosure and

third parties’ involvement in security∗

Abstract

Around the debate on software vulnerability disclosure, existing works have mostly
explored how disclosure gives an incentive to software vendors to better secure their
software. The role of third parties such as business users, security firms, downstream
software vendors or service providers is rarely taken account, while in fact these actors
are increasingly involved in improving the security of a software. In this paper, we
examine how the public disclosure of a critical vulnerability impacts not only the
software vendor’s behavior but most of all that of other third parties. Using data
from 2009 to 2018 on vulnerabilities disclosed on SecurityFocus BugTraq, we compare
how the contribution of each type of actors in finding new security flaws evolves for
the software affected by a critical vulnerability disclosure and for the others. We find
that the overall number of discovered vulnerabilities increases after the vulnerability
disclosure. In particular, third parties’ contribution – more specifically, all actors other
than the software vendor and its competitors – are more positively affected by the
announcement than the software vendors’ contribution. Our findings bring into focus
the need to take account third parties’ action when analyzing the incentives to provide
software security.

Keywords: information security economics, software vulnerability disclosure, vulner-
ability discovery, software security

∗I thank my thesis advisor Marc Bourreau for his patient guidance and support. I also thank Rainer
Böhme, Ulrich Laitenberger, Patrick Legros, Julien Pénin, anonymous reviewers and audience at WEIS
2019, audiences at ACDD Strasbourg 2019, IOEA 2019, and 3EN 2019 for their useful comments on a
previous version of the paper.

79

3.1 Introduction

In January 2018, Intel revealed that millions of their computer processors were exposed

to a critical vulnerability named Spectre and Meltdown.1 Instead of going public right

after its discovery, Intel had exclusively informed some of its main customers and kept

the information confidential for more than half a year.2 The secrecy kept by Intel

can be explained by the increasing security risk it would have been exposed to if the

vulnerability information became public before they find a solution to secure the flaw

(Schneier, 2000). However, it also prevented other firms and users to timely assess their

own risk and to react.

In line with Intel’s defense, the public disclosure of a vulnerability can be harmful to

a system’s security because it increases the probability that the disclosed information

is exploited by a malevolent actor. Empirical estimates support this idea, showing how

the frequency of attacks increases when the vulnerability is disclosed to public (Arora,

Nandkumar, and Telang, 2006b). On the other side, many studies, both theoretical

and empirical, find that vulnerability disclosure encourages software vendors to deliver

patches more quickly and to provide a better software quality over time (Nizovtsev

and Thursby, 2007; Cavusoglu, Cavusoglu, and Raghunathan, 2007; Arora, Telang,

and Xu, 2008; Arora et al., 2010b). All of these studies consider that the disclosure

of a vulnerability allows the attackers to exploit the disclosed information and in

turn affects the users and the software vendors’ behavior. Besides, a vulnerability

disclosure may also impact the stakeholders’ behavior without being specifically related

to the disclosed vulnerability information. It may act as a signal, to third parties like

consumers, investors, or security experts, that the actual security level of the affected

software is lower than what it was considered until now. For instance, Telang and

Wattal (2007) show that public vulnerability announcements lead to significant loss

in the affected software vendor’s market value. In our paper, we consider precisely

this ‘signaling effect’ and study whether the disclosure of a specific vulnerability on a

software gives an incentive to improve its overall security.

Specifically, we examine empirically how the public disclosure of a critical vulner-

1https://meltdownattack.com
2https://www.wsj.com/articles/intel-warned-chinese-companies-of-chip-flaws-before-u-s-

government

80

ability with heavy media coverage affects the discovery of new vulnerabilities in the

software that is subject to the disclosure. We study the case of three markets – by

market, we mean a group of software that belong to the same type and which present

strong substitutability – at the heart of Internet security and which are well-known to

standard users and thus generate significant attention from general media as well as

from the security community, namely the web browser, the desktop operation system

and the mobile operation system markets. For each market, we identify a vulnerability

that has received a particularly large media coverage and has generated a peak in

web search volumes. Then, using data collected from a well-known public vulnerab-

ility database on software vulnerabilities – SecurityFocus BugTraq – reported from

January 2009 to December 2018, we examine the impact of the disclosure event on

the number of vulnerabilities reported by each type of actors over time. We use a

difference-in-difference specification in order to measure the change in the level of

security effort exerted on the software affected by the disclosure compared to other

unaffected software.

Theoretically, the answer to our question is not straightforward. First, regarding the

effect on users, the vulnerability disclosure may reduce the perceived security quality

of a software. If users are passive agents that do not contribute to the security level

of the software, the disclosure of a vulnerability may just reduce the user demand.

However if they can also choose to invest in security, they could be affected by the

disclosure in a different way, depending on the available alternatives, the switching

costs, and their investment capability in software security. The larger a business is –

i.e., the larger and complex its information system is –, the less flexible it would be to

switch from one software to another even though it realizes that the software it uses

has a poor security quality. Companies who have large switching costs may prefer to

actively collaborate with the software vendor and other third parties (security firms,

individual security experts, public organizations, etc.) to improve the security of the

software rather than waiting for the vendor to provide a better security. Secondly, the

disclosure of a critical vulnerability may also act as an event that revises the belief –

i.e., the subjectif probability – to find new vulnerabilities. Thus for actors that look

for new opportunities to contribute to software security – such as security firms or

individual researchers –, vulnerability disclosure may give an incentive to exert more

81

effort in discovering new vulnerabilities. However if the disclosed information is public

and shared with everyone, the increased probability to compete with others can also

deter them to exert an additional effort. All in all, the overall effect of vulnerability

disclosure on the effort exerted by different actors to improve the affected software’s

security is uncertain.

Our analysis shows strong evidence that after the disclosure of a critical vulnerability,

the vulnerability research activity on the software affected by the disclosure significantly

increases compared to the control group of unaffected software. Interestingly, third

parties are more affected by the disclosure than the software vendor itself. In particular,

the number of vulnerabilities discovered by security firms and individual researchers

increases significantly. This result is all the more important as our analysis shows that

third parties contribute more than the software vendor to the discovery of new security

flaws in general. Our findings suggest that one should not ignore the incentives and

the potential contribution of third parties when studying software security.

The rest of the paper is structured as follows. In the next section, we review the

relevant literature. Section 3.3 presents the identification strategy and the data. We

present the estimation results in Section 3.4 and Section 3.5 concludes.

3.2 Related work

Who should invest in security and how to encourage the right actor in the right way is

a question at the heart of information security economics. Various topics are handled in

this literature, from modeling attack and defense (Varian, 2004; Bier et al., 2007; Bohme

and Moore, 2010), liability policies (Kim et al., 2011; August and Tunca, 2011; Lam,

2016), risk sharing and coordination between vendor and users (August and Tunca,

2006; Cavusoglu et al., 2008; Kim et al., 2009), to product differentiation (August et al.,

2014; Dey et al., 2014). In particular, some papers participate to the debate around

whether promoting software vulnerability disclosure is socially desirable (Cavusoglu

et al., 2007; Arora et al., 2008; Choi et al., 2010; Nizovtsev and Thursby, 2007). Their

main finding is that, when vendors do not sufficiently internalize user loses, vulnerability

disclosure provides an incentive for vendors to secure their product more quickly.3

3Besides, Choi et al. (2010) take also account the probability of an attack in relation with network
effects and show that mandatory disclosure is not necessarily welfare improving.

82

Our paper tackles two aspects lacking in this literature. First, prior works mostly

consider that users are passive agents, which mainly undertake damage control activities

(patch installations, work-arounds) rather than actively engaging in preventive actions.

However, a considerable part of users, especially business users – i.e., companies that

use the software, including downstream and upstream software vendors and service

providers – contribute actively and significantly to global cybersecurity. They often

manage their own security research and incident response team, pay security firms

to secure their systems, collaborate with public CERTs and academic researchers,

crowdsource individuals through vulnerability reward programs. In fact, businesses

with large scale information systems necessarily have “a lot at stake”, hence they

have not only the ability but also the incentives to actively find and fix software

vulnerabilities. In our paper, users actively invest in software security by discovering

and reporting vulnerabilities to the software vendor.

To our knowledge, only one paper considers the active involvement of users in

security (Nizovtsev and Thursby, 2007). They consider the case of open source software

where users can actively participate in finding and fixing vulnerabilities and show that

the positive effect of vulnerability disclosure becomes greater when users are able to

fix the software by themselves. Our paper is in line with the idea of Nizovtsev and

Thursby (2007) that parties other than the software vendor may actively contribute

in software security and we examine it empirically in markets that are not exclusively

open source.

Secondly, a dearth of research exists on the role of third parties, while in practice,

they are often actively involved in the lifecycle of a software and in improving security.

Indeed, a company’s information system is formed by multiple software; these software

use various frameworks and libraries created and maintained by external organiza-

tions, they use components, modules and extensions provided by other editors, they

communicate with each other and with the outside network through various protocols

whose guidelines are maintained by public entities. Thus, the security of a company’s

system depends on a multitude of actors that in turn are dependent each other. In fact,

this complexity already exists for the security of a single software. For example, any

organization that has some networked data accessible on the Web (e.g., e-commerce

companies, website hosting service providers) is necessarily dependent to the security of

83

web browsers, since a web browser is the main tool used to access to the World Wide

Web. The security of a web browser is in turn dependent to a multitude of components,

from language like Javascript, runtime environment like Adobe Flash, communication

protocol and cryptography library like OpenSSL, plug-ins and web applications, etc.

Since developers and users of each components internalize a part of the security risk,

each of them may have an incentive to improve web browsers’ security. This paper

tries to fill the gap in the literature by analyzing not only the behavior of the software

vendors but also of other third parties that actively contribute to software security, like

downstream and upstream software vendors, security firms and individual researchers,

public organizations and competitors.

Several empirical studies examine the impact of vulnerability disclosure on security

related activities such as on the attack frequencies (Arora et al., 2006b), on software

vendors’ market value (Telang and Wattal, 2007), and on software vendors’ patch

release behavior (Arora et al., 2010b). We are also interested in whether a vulnerability

disclosure gives an incentive to improve the security of the affected software. However

our approach differs from them at least in two ways. First, we consider the disclosure

of a vulnerability as a signal that updates the perceived security quality of the affected

software rather than considering the effect that is directly related to the disclosed

information. Secondly, we are interested in the impact of vulnerability disclosure on

an activity – vulnerability discovery – that is specifically related to security spending.

This is in line with the idea that the expected cost to breach a system, i.e., finding a

vulnerability that was unknown before, can be a reasonable measure of the strength

of a system (Schechter, 2002). Further, some argues that the market price to find an

additional vulnerability may be a practical measure of the security level of a system

(Camp and Wolfram, 2000; Schechter, 2002; Ozment, 2004).

Our work is also related to the recent economic literature on open innovation.

A large number of researches document how users have been contributing efficiently

to improve products and processes. Besides, open innovation is not only limited to

the involvement of user communities; it encompasses all the “inflows and outflows of

knowledge” that contribute to innovation (Chesbrough, Vanhaverbeke, and West, 2006).

That is, it is most of all about an ecosystem of partners with whom to collaborate.

In that sens, this stream of research is in tight relation with the industry platform

84

literature, which focus on strategies that platforms employ to influence and stimulate

collaboration on complementary products and services from third parties (Gawer and

Cusumano, 2014). One of the main goal of these streams of research is to examine the

means and conditions that induce a more efficient participation from external resources.

In our paper, we also study how a particular event affects third parties’ incentives to

exert an additional effort.

Furthermore, many researches insist on the fact that the notion of collaboration

within the context of open source project and in business context is different (Boudreau

and Lakhani, 2009; Pénin et al., 2011). In contrast with this observation, we study

cases in which there is a mix between the contribution of user communities and a

market mechanism. Indeed, by third parties, we designate both private actors that

benefit from the market for software vulnerabilities as well as public actors and user

communities. Moreover, the delimitation between private business purposes and the

security community’s goal is blurred. For instance, private actors like security firms are

part of the security community and are even major actors that actively contributes to

it. All in all, the effort exerted by an actor to improve software security can be either

motivated by direct benefits from improving the security of the software because it is

dependent to it, because of some intrinsic motivation to contribute to global security,

or because of monetary incentives and other extrinsic motivation (reputation feedback,

reciprocity).

3.3 Data and empirical Strategy

Our goal is to examine how a critical vulnerability disclosure on a software affects

the effort exerted by various actors to improve its security. For that, we consider the

effort exerted by an actor to discover new security flaws as a measure of its effort to

improve the overall security of the software.4 We study three markets, which attract

significant media attention from end users and thus for which we are able to identify a

vulnerability disclosure that raised a particular media coverage compared to others:

the web browser, the mobile OS and the desktop OS markets.

4The idea that the cost-to-break, i.e., the cost to find new vulnerabilities is an effective metric to
measure the security level of a software has been defended by a number of researchers (Camp and
Wolfram, 2000; Schechter, 2002; Ozment, 2004).

85

In order to study the causal relationship between a vulnerability disclosure and the

effort of each actor that contributes actively to the security of the software, we use a

difference-in-difference specification. That is, we compare the difference in the number

of vulnerabilities reported by each actor, before and after the extensive media coverage

of a security flaw on the targeted software (the treatment group) and other software

(the control group).

The main data set we use comes from Security Focus Bugtraq, which is a public

database on software vulnerabilities. From this database, we collected information

about all the vulnerabilities that affect any web browsers and operation systems and

published from January 2009 to December 2018.5 The raw data set provides the

disclosure date of the vulnerability, which software it affects and who discovered it.

We categorize the discoverers of the vulnerabilities into 6 types of actors: the software

vendor, users (including companies that use the software or provide a service related

to the affected vulnerability, as well as downstream and upstream vendors), security

firms, individual researchers who do not precise their affiliation to a company or an

organization, academics and public organizations, and the competitors of the affected

software. The dependent variables for each specifications are built by consolidating this

raw data set in several ways (see Subsection 3.3.3). The treatment is identified using

Google Trends data. More precisely, we identify a particular vulnerability disclosure

that has generated a spike in media coverage compared to all other vulnerability

disclosures in a market (i.e., in web browsers, mobile OS or desktop OS).6 We then

examine how this shock affects the number of vulnerabilities that are discovered for

each software belonging to the market.

We detail the econometric specification in the next subsection, then Subsection

3.3.2 presents the raw data set. Subsection 3.3.3 describes how we build our dependent

variable for the three different specifications we use, then follows Subsection 3.3.4 where

we discuss the identification of our treatment variable. Lastly, we verify the parallel

trend assumption and detail the descriptive statistics in Subsection 3.3.5.

5The reason we limit our study to this period is because a considerable amount of manual checks
is needed to build our data set, especially in order to categorize the actors that have identified each
vulnerabilities. We consider that a period of 10 years is large enough to have a robust result.

6For the web browser market, the data set is composed of vulnerabilities that affect only web
browsers, and for operation system market only vulnerabilities that affect operation systems.

86

3.3.1 Empirical specifications

We use a difference-in-difference specification to study how a vulnerability disclosure

affects the effort made by an actor to secure the software. This identification strategy

allows us in particular to overcome the reverse causality issue between the number of

vulnerabilities and the media coverage intensity that we would have had if we simply

used the intensity of a vulnerability media coverage as our regressor.

Specifically, the baseline specification we use is as following:

yit =β0 + β1Ai · Pt + FEi + FEt + γXit + ǫit, (3.1)

Where, yit, our dependent variable, is the total number of vulnerabilities affecting

software i, reported at period t (monthly date). In this first specification, the effort

of the different actors are taken altogether and we first focus on how the disclosure

affects the global security investment level. Ai (referring to “Affected software”) is a

dummy which indicates whether software i is the software targeted by the vulnerability

disclosure, i.e., whether it belongs to the treatment group (Ai = 1) or to the control

group (Ai = 0).7 Pt (referring to “treatment Period”) is a dummy which is equal to

one for the period we consider as “affected” by the critical vulnerability disclosure

event, and to zero outside this period. We use 4 alternative specifications for this

treatment period: the first 6 months following the vulnerability disclosure (post6m),

the first year (post12m), the two first years (post24m), and the whole period after the

vulnerability disclosure (post).8 FEi and FEt are software and time fixed effects.9

Xit is a vector of control variables at the software level. It includes the SoftwareAge

and a dummy which indicates whether the vendor provides support for the software

at period t (EndofLife). Lastly, ǫit is the error term. Our explanatory variable of

interest is the interaction term Ai · Pt, which represents the difference in the effect of

the vulnerability disclosure – our treatment – between the treatment group and the

control group. We expect that the sign of the coefficient β1 is positive, i.e., a critical

7In our data set, the treatment group is the software that suffers from the disclosure and all other
software in the same market – unaffected by the disclosed vulnerability – belongs to the control group.

8We consider that periods of more than 6 months are appropriate because the discovery of new
vulnerabilities on a software (which differs for instance to discovering a simple bug on a functionality)
does not happens more frequently.

9Thus the effect of Ai and Pt are included in the fixed effects

87

vulnerability disclosure would increase the global effort made in securing the software

that suffers from the vulnerability disclosure.

Next, we estimate the following equation:

yijt =β0 + β1Ai · Pt + β2Ai · Pt · ThirdPartyj + β3Ai · ThirdPartyj

+ β4Pt · ThirdPartyj + β5ThirdPartyj + FEi + FEt + γXit + ǫijt,

(3.2)

where yijt is the number of vulnerabilities affecting software i, discovered by type of

actors j at period t. ThirdPartyj is a dummy which is equal to 0 if the identifier of

the vulnerabilities is the software vendor and equal to 1 if it is a third party. The

interaction between our treatment variable Ai · Pt and the ThirdPartyj dummy allows

us to measure the difference between the impact of the vulnerability disclosure on a

third party and on a software vendor (the software vendor being the base value).

Lastly, we use the following specification to study the effect of the vulnerability

disclosure on each actor separately:

yijt =β0 + β1Ai · Pt

+
∑

Kj∈Identifier T ype

β
Kj

2
Ai · Pt · Kj + β

Kj

3
Ai · Kj + β

Kj

4
Pt · Kj + β

Kj

5
Kj

+ FEi + FEt + γXit + ǫijt,

(3.3)

where Identifier Type = {Usersj , Sec firmsj , Individualsj , Public orgj , Competitorsj}

and Kj ∈ Identifier Type is a dummy equal to one if j belongs to the identifier type

K. In this specification, the coefficients of interest are the five different β
Kj

2
, which

reflect the difference in the effect of a vulnerability disclosure on each actors’ behavior,

while the base value is the software vendor’s behavior.

3.3.2 Raw data set

The raw data set consists in all the vulnerabilities reported from January 2009 to

December 2018, associated to one or multiple web browsers or operation systems. The

data is collected from Security Focus Bugtraq, which is a well-known public database

on vulnerabilities. We use this database because it is the unique public database

that provides information about who discovered – i.e., who first reported – a given

vulnerability. An example of the raw information on Security Focus Bugtraq is presented

88

in Figure 3.9 in Appendix.

Table 3.1 – Number of observations in the raw data set

Type of software
Total number

of
vulnerabilities

Number of
considered
software

List of considered software

Web browser 2 651 6

Apple Safari, Google Chrome,
Microsoft Internet Explorer or
Edge, Mozilla Firefox, Mozilla
Seamonkey, and Opera.

OS 12 539 16
of which:

Desktop OS 8 864

Apple MacOS, Debian Linux,
Microsoft Windows, Oracle Linux,
Red Hat Linux, SUSE Linux,
Ubuntu Linux

Mobile OS 1 143 Apple iOS, Google Android
Other Unix like OS 1 625 FreeBSD, GNU, Oracle Solaris
Server OS 297 CentOS
Router/Switch OS 610 Cisco IOS, Juniper Junos

All the vulnerabilities in our data set have a patch at the date they are disclosed to

public.10 For vulnerabilities that affect more than one product, we have duplicated the

observations in order to take the vulnerability into account for each software. Table 3.1

presents the number of observations we have in the raw data set for each market we

consider. Software that do not present sufficient number of disclosed vulnerabilities

during the observed period of time, i.e., that have less than one vulnerability discovered

each month, are ignored. For instance, mobile OS such as RIM Blackberry, Nokia

mobile or Windows mobile are not considered in our data set.11

Figure 3.8 (in Appendix) shows the evolution of the total number of vulnerabilities

affecting web browsers and operation systems during the studied period. We observe

that there is a slight increase in the number of vulnerabilities over time. Note that our

specifications include a time fixed effect.

3.3.3 Dependent variable

Our dependent variable for the first specification (see Subsection 3.3.1 for the economet-

ric specifications) is the total number of vulnerabilities discovered in each software, each

month, while for the second and third specifications, it is the number of vulnerabilities

discovered in each software each month by each type of actor.

10We exclude from our data set vulnerabilities that cannot be fixed with a patch. Within the scope
we study, only 2 vulnerabilities belong to this case.

11This is why for mobile OS, only Apple iOS and Google Android are considered. Besides, in our
regressions, we consider the operation systems as a whole and not the mobile OS separately.

89

In the raw data set, the discovery of each vulnerability is credited either to an

individual, an organization, or a group of individuals and organizations. For each

vulnerability, we code the type of actor the discoverers belong to.12 When a vulnerab-

ility is credited to more than one contributor, we replicate the observation as many

times as the number of contributors and we attribute to each observation a weight

of one over the number of contributors. Then the raw data at vulnerability level is

aggregated at a monthly level in 3 different manners so as to be used in the 3 different

specifications presented in Subsection 3.3.1. For the first data set, we count the number

of vulnerabilities affecting each software each month without considering who are the

actors that have contributed. In the second data set, we define a dummy variable

which indicates whether the identifier of the vulnerability is the software vendor or

a third party (ThirdParty dummy). Then we count the number of vulnerabilities in

each software each month either by a third party or the software vendor. In the third

data set, we count the number of vulnerabilities in each software, each month for each

type of actor. An example of how we have built our dependent variable is given in

Table 3.6 in Appendix.

3.3.4 Treatment variables

Our goal is to measure the impact of a vulnerability disclosure on vulnerability discovery

activity. In the three markets we study, an average of 5 to 14 vulnerabilities are reported

each month for each software, all severity level taken together (see Table 3.7 for summary

statistics). Measuring the effect of all of these vulnerability disclosures separately is

not possible; we thus focus on the effect of a disclosure that is sufficiently serious and

critical to have a significant impact compared to other events. For that, we need to

identify a vulnerability that has raised particularly large media attention compared to

other vulnerabilities. By considering a vulnerability that has been particularly critical

and highly publicized compared to others, we claim that the effects that we identify

are due to this disclosure rather than to other events.

In order to identify a vulnerability disclosure that has received a particularly intense

media coverage, we use Google Trend (http://trends.google.fr), which allows us

12As mentioned before, we categorize the vulnerability discoverers into 6 types of actors. Table 3.6.1
in Appendix describes how each actor may value the externality caused by the security of a software
and thus would be affected by the disclosure of a critical vulnerability.

90

to visualize the relative evolution of a given search term on Google Search compared to

other search terms. We consider that the overall information seeking behavior on a

search engine is correlated to the magnitude of the media coverage. Specifically, we

checked the search trend on Google for the terms that associate the name of a software

and the word “vulnerability”. For example, in the case of web browsers, we compare the

search trends for the terms “Internet Explorer vulnerability”, “Chrome vulnerability”,

“Safari vulnerability”, “Firefox vulnerability” and “Opera vulnerability” (see Figure

3.5 in Appendix). Then, for each of the three markets we study, we identify a peak

search volume from the graphs obtained from Google Trend, which actually corresponds

to the disclosure of a critical vulnerability. For instance, in Figure 3.5, we observe a

peak search volume in mid 2014 for the search term “Internet Explorer vulnerability”.

This peak corresponds to a critical vulnerability affecting Internet Explorer, disclosed

to public in April 26th 2014. This vulnerability was discovered by an independent

security firm FireEye who reported it to Microsoft. It is a zero day vulnerability, that

is, a vulnerability that is all the more critical because it did not have a security patch

at the time it was disclosed. For the second case, the mobile operation systems, the

identified critical vulnerability disclosure event corresponds to the disclosure of Android

StageFright vulnerability in July 2015. As for the Zero Day in Internet Explorer, this

critical and well-known vulnerability was also discovered by an independent security

firm. Lastly, for desktop operation systems, the peak search volumes corresponds to

the famous WannaCry ransomware attack happened in May 2017. It was the NSA

that previously warned Microsoft about the possible theft of EternalBlue, which is

the exploit used in WannaCry. Each of these events can be considered as unexpected,

except by the software vendor. More details about the three vulnerability disclosure

are presented in Figure 3.9 in Appendix.

These three vulnerability disclosures are our treatments in each market. We consider

the software that is targeted by the vulnerability disclosure as the treatment group

while other software in the same market belongs to the control group. With regard to

the treatment period, we consider that a “treatment” begins at the date of the peak

search volumes. Four alternative treatment periods are used, corresponding to a 6

months to 2 year-period after the disclosure.13

13Specifically, we consider the first 6 months after the disclosure, the first year, the first two years,

91

Besides, in the three cases we study, the software vendor who is targeted by the

critical vulnerability disclosure is alerted about the existence of the vulnerability

before the public announcement. This means that an increase in the number of

vulnerabilities reported on Security Focus at the moment (just before or just after)

the vulnerability is disclosed can be due to an action that does not reflect the actual

effort put in vulnerability discovery activity. Indeed, the software editor can suddenly

become responsive in patching vulnerabilities that were actually reported by third party

identifiers before the critical disclosure happens. To overcome this bias, we exclude all

the vulnerabilities that are disclosed during a six months period around the disclosure

date. Indeed, most organizations apply these days a disclosure policy of 90 days.14

Excluding the last three months preceding the disclosure and the first three months

following it insures that we do not take into account the flaws that would have been

reported to the vendor before the discovery of the critical vulnerability and which

would have been fixed by the software editor in response to the disclosure.

3.3.5 Descriptive statistics

In this subsection, we provide some descriptive statistics related to the dependent

variable and the impact of the treatment. Then we discuss the distribution of the

different actors’ contribution in our data set.

In Figures 3.1a, 3.1b, and 3.1c we first plot the average number of reported vulner-

abilities over time, for the treatment group and the control group. In each case, we do

not observe any remarkable difference in the evolution of the number of vulnerabilities

between the treatment and the control groups, before the critical vulnerability dis-

closure occurs. Then, for each cases, we visualize a significant increase in the number

of vulnerabilities on the treatment group after the year the public announcement of

a critical vulnerability occurs. We note that for Figure 3.1a and Figure 3.1c, the

number of vulnerabilities drastically increases just after the disclosure, while it is less

the case for Google Android. There are two possible explanations for this immediate

reaction. First, as mentioned in subsection 3.3.4, the sudden increase in the number

of vulnerabilities could reflect the software vendor’s behavior that suddenly publishes

and the whole period after the disclosure as the alternative treatment periods.
14In the case of web browsers, Jo (2017) estimates the average patching time by a software vendor

at 88 days.

92

3.4 Results

Table 3.2 reports the estimation results for our baseline specification (equation 3.1), for

the three cases we study. In each column, we report the results for each alternative

treatment periods, from the first 6 months after the vulnerability disclosure (post6m)

to the whole period after the disclosure (post).

Table 3.2 – Effect of a critical vulnerability disclosure on the number of discovered
vulnerabilities.

(1) (2) (3) (4)
treatment period is: post6m post12m post24m post

Case of Internet Explorer Zero Day vulnerability disclosure

A · P 0.808* 0.712** 1.057*** 1.775***
(0.481) (0.357) (0.273) (0.220)

Observations 819 819 819 819
Number of software
Wald χ2 432.85 433.99 445.66 490.81

AME of A · P 4.179* 3.673** 5.372*** 8.752***
(2.510) (1.867) (1.449) (1.271)

Case of Android Stagefright vulnerability disclosure

A · P 0.747 0.611* 2.194*** 3.332***
(0.493) (0.369) (0.270) (0.265)

Observations 1,872 1,872 1,872 1,872
Number of software
Wald χ2 646.61 646.95 720.50 814.01

AME of A · P 4.123 3.369* 12.00*** 18.23***
(2.729) (2.045) (1.601) (1.653)

Case of Windows Eternal Blue vulnerability disclosure

A · P 0.686 0.648* 1.320***
(0.476) (0.348) (0.283)

Observations 1,856 1,856 1,856
Number of software
Wald χ2 626.02 627.50 648.96

AME of A · P 3.676 3.464* 7.066***
(2.574) (1.881) (1.603)

Note: Negative binomial regressions. Dependent variable is number of reported vulner-
abilities. Product fixed effects and time fixed effects are included in all specifications
as well as other controls (SoftwareAge, EndofLife) and a constant. For Eternal Blue
case, post24m = post. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

We have count data and given the presence of significant over-dispersion of the

dependent variable with standard deviation superior to the mean (see Summary Stat-

istics in Appendix Table 3.7), we use a negative binomial regression to estimate the

equations. To facilitate the exposition, we only report the main regressors of interest,

although all the regressions include the product and time fixed effects as well as other

controls (SoftwareAge, EndofLife) and a constant. For the Eternal Blue case, the

95

last column (4) is empty as our data is limited to the period before 2019 (thus post24m

= post).

As expected, all the coefficients for A · P are positive for each of the three markets

we study. That is, after the disclosure of a critical vulnerability, the total number

of vulnerabilities discovered on the software concerned by the disclosure increases.

Specifically, 5 more vulnerabilities are discovered in Microsoft Internet Explorer each

month during the two years after the disclosure of a critical Zero Day on it compared

to the unaffected web browsers. In the same way, the disclosure of Android Stagefright

vulnerability disclosure has increased the number of vulnerabilities discovered in Google

Android by 12 additional vulnerabilities each month during the first two years following

the disclosure, while the number of vulnerabilities found in Microsoft Windows has

increased by 7 more vulnerabilities each month after the disclosure of Eternal Blue. We

also observe that the effect of the disclosure becomes more significant when we consider

a longer period as the treatment period, and that the magnitude of the effect also

increases with a longer treatment period. This suggests that the vulnerability disclosure

does not have an immediate effect on the behavior of the vulnerability discoverers but

rather a gradual effect over time. Two explanations can be advanced. First, discovering

new security flaws in a software is not a trivial task; it is not because one puts an effort

in vulnerability research that it would systematically find some relevant information to

improve software security. Secondly, we count the number of vulnerabilities found in a

given period using the date each vulnerability was disclosed. The actual discovery of

the vulnerability might have occurred before the date we consider in our estimations,

which means that our result may show a lagged effect. Nevertheless, this imprecision

does not alter the main result we are interested in.

Additionally, Figure 3.3a to 3.3c display the coefficients of the interaction term

between the year dummies and the Ai (Affected Software) dummy which identifies

whether the observation belongs to the treatment or the control group, with 95%

confidence intervals. The plotted estimation includes all the control variables and fixed

effects included in Specification 3.1. Each graph shows that the difference between

the treatment and the control groups is not varying significantly over time during the

non-treated period. This visual inspection allows us to check the validity of the parallel

trend assumption and to visualise the timing of the effect.

96

Table 3.3 – Effect of a highly publicized vulnerability disclosure on the software vendor
vs. third party identifiers’ behavior

(1) (2) (3)
treatment period is: post12m post24m post

Case of Internet Explorer Zero-day vulnerability disclosure

A · P -0.556 -1.051** -0.619*
(0.746) (0.468) (0.333)

A · P · T hirdP arty 1.500 1.870*** 1.339***
(0.912) (0.584) (0.412)

T hirdP arty 1.971*** 2.034*** 2.137***
(0.0970) (0.100) (0.106)

Observations 1,734 1,734 1,734

Wald χ2 992.48 998.28 1027.34

Case of Android Stagefright vulnerability disclosure

A · P 0.424 0.627 1.499***
(0.661) (0.488) (0.369)

A · P · T hirdP arty -0.0146 0.487 1.124**
(0.910) (0.658) (0.496)

T hirdP arty 2.297*** 2.309*** 2.365***
(0.0641) (0.0656) (0.0679)

Observations 3,744 3,744 3,744

Wald χ2 2028.30 2036.17 2119.79

Case of Windows Eternal Blue vulnerability disclosure

A · P 0.675 0.121 0.549
(0.629) (0.463) (0.378)

A · P · T hirdP arty 0.284 1.030 1.351***
(0.865) (0.636) (0.514)

T hirdP arty 2.304*** 2.376*** 2.465***
(0.0648) (0.0662) (0.0677)

Observations 3,712 3,712 3,712

Wald χ2 2016.87 2038.32 2093.08

Note: Dependent variable is the number of reported vulnerabilities. Negative binomial
regressions. A·ThirdParty, P ·ThidParty, Product fixed effects and time fixed effects are
included in all specifications as well as other controls (SoftwareAge, EndofLife). For
Eternal Blue case, post24m = post. Coefficients are average marginal effects. Standard
errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

as expected, as the distribution of each actors’ contribution (see Subsection 3.6.1)

already shows that in general less than 25 % of the vulnerabilities are found by the

software vendor itself. Regarding the interaction term between ThirdParty and the

treatment variable A · P , the coefficient is not systematically significant, but it is always

positive. That is, overall, the behavior of third parties is more affected by the critical

vulnerability disclosure than the software vendor, but the effect is not always significant.

Indeed, the effect of the vulnerability disclosure on a given type of actor could be

different from another, but as we encompass all the different actors in one category

– the “ThirdParty” –, the significant positive effect on some type of actors could be

mitigated by a less significant or negative effect on others.

98

In Figure 3.4a to 3.4c, we plot again the yearly evolution of the difference in the

number of vulnerabilities between the treatment and control group, but we separate the

effort of the software vendor (in black dots) from the third parties’ effort (in blue dots).

The graphs clearly show that in each of the three cases, third parties’ contribution

increases significantly after the critical vulnerability disclosure occurs, while the change

is less significant for the software vendor’s contribution.

Table 3.4 – Effect of a highly publicized vulnerability disclosure on each actors (post24m
as the treatment period).

(1) (2) (3)
Web browser case Mobile OS case Desktop OS case

A · P -0.475 1.321*** 0.515
(0.350) (0.364) (0.371)

A · P · P ublic org 0.455 1.042 2.232***
(0.960) (0.775) (0.663)

A · P · Competitors 0.916* -1.789 -15.74
(0.556) (28,494) (2,417)

A · P · Users 0.264 1.179** 1.665***
(0.664) (0.549) (0.522)

A · P · Individuals 0.826* 1.126** 1.017*
(0.472) (0.512) (0.524)

A · P · Sec firms 1.805*** 0.969* 0.956*
(0.492) (0.512) (0.516)

P ublic org -1.256*** -1.644*** -1.603***
(0.160) (0.0829) (0.0814)

Competitors -0.0505 -0.991*** -0.831***
(0.127) (0.0751) (0.0724)

Users -1.300*** 0.518*** 0.655***
(0.163) (0.0665) (0.0646)

Individuals 1.815*** 1.552*** 1.635***
(0.114) (0.0651) (0.0632)

Sec firms -0.0633 -0.276*** -0.244***
(0.129) (0.0695) (0.0678)

Observations 5,202 11,232 11,136

Note: Dependent variable is the number of reported vulnerabilities. Negative binomial
regressions. A, P , A · K and P · K with K ∈ Identifier type, product fixed effects
and time fixed effects, SoftwareAge, EndofLife and a constant are included in all the
regressions, but are not reported (see Appendix for more detailed results). P = post24m.
Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

Lastly, Table 3.4 reports the effect of a critical vulnerability disclosure on each actors’

behavior. To facilitate the exposition, we report the results using only one specification

for the treatment period (post24m). Moreover, we only report the coefficients for our

main explanatory variables, namely the treatment variable, the interaction between

the treatment variable and the Identifier type dummies, and the Identifier type

dummies. The estimation results using other specifications are reported in Table 3.8 in

Appendix.

100

With regard to the Identifier type dummies, the base line value is the Software vendor.

Estimation results show that actors that contribute the most are the individuals, while

academics and public organizations contribute the less. Software vendors contribute less

than individual researchers and users but they contribute more than their competitors

or the security firms. Note that the coefficient for Users dummy is negative for the web

browser case, meaning that contrary to the case of operation systems, the contribution

of the users is lower than the software vendor’s. This could be explained by the fact that

there might be a greater number of companies contributing actively to IT security and

which considers that operation systems’ security is more important than the security of

web browsers. As to the interaction terms between the treatment variable A · P and the

identifier’s dummy, we observe that most of the coefficients are positive except for the

term A · P · Competitors. That is, our estimation results suggest that third parties are

more sensible to vulnerability disclosure than the software vendor, except the competing

software vendors. Overall, users are the most affected by the vulnerability disclosure,

but they are more affected in the case of operation systems than in web browser. On

the contrary, security firms react more to vulnerability disclosure in web browsers than

in operation systems. While security firms contribute less than software vendors in

general to the discovery of new security flaws, their effort is more positively affected

by the vulnerability disclosure. Besides, it is interesting to note that the actors that

contribute the most are still the individuals that do not specify their affiliation and

that they are also affected positively by the vulnerability disclosure.

In sum, the increasing number of vulnerabilities after the disclosure of a critical

vulnerability is likely to be largely produced by actors that want to seize the opportunity

to find new vulnerabilities, such as the security firms and the individual researchers.

The increase in the contribution of companies that are dependent to the security of

the affected software – those that we designate as “Users” – after the vulnerability

disclosure is also significant and greater than the change in the software vendor’s effort

to find new security flaws.

101

3.5 Interpretation and conclusion

By studying the impact of three renowned vulnerability disclosure on three different

types of software, we analyze how the vulnerability discovery activity on a software is

impacted by the disclosure of a critical vulnerability.

First, our results show that after the disclosure of a critical vulnerability, the number

of vulnerabilities that are found in the software affected by the disclosure increases

significantly compared to other software. Moreover, the effect becomes greater and

more significant over time. Secondly, we find that third parties are more affected by

vulnerability disclosure than the software vendor. Users and individual researchers are

not only contributing more than the software vendor in general but their contribution

is also more affected by the disclosure. While security firms are contributing less than

the software vendor in general, the number of vulnerabilities they find increases after

the disclosure of a critical vulnerability. These results are all the more important as

(1) existing works on software security focus much more on the behavior of software

vendors in providing security than on the contribution of other third parties, while (2)

we show that third parties’ overall contribution in software security is considerable,

and (3) their contribution is significantly affected by externalities like the disclosure of

a critical vulnerability. Overall, our results suggest that is is important to take account

the incentives of third parties to invest in security to better understand the economic

mechanisms behind software security.

With regard to the larger impact of a vulnerability disclosure on users than on

software vendors, it may be explained by the fact that the vulnerability disclosure acts

more significantly as a negative signal to users than to the software vendor. Indeed,

the software vendor may be more aware of its actual security quality than others. As

to the effect on individuals and security firms, vulnerability disclosure is likely to be

perceived as an opportunity to find new security flaws and to benefit from it: security

firms would benefit from selling new security solutions, individuals would have more

opportunity to gain reputation and peer recognition.

This work is still at its preliminary stage and presents a number of limitations, that

present opportunities for future research. First, in a future version of the work, in

order to obtain more robust results, I intend to examine the correlation between some

102

particular security investment events and the contribution of third parties. Indeed, one

concern regarding the result we obtain is that third parties’ contribution could actually

be affected by the launch of particular vulnerability research programs sponsored by

the software vendor itself or a specific group of users. Secondly, our findings rely on

three specific cases on three markets that present some similarities each other. The

study of an additional case may strengthen the reliability of our results. Lastly, it

might be possible to go further in the empirical analysis by building some proxies for

the users’ switching cost, which would allow to study whether vulnerability disclosure

affects the users in different magnitude according to their switching cost.

103

3.6 Appendix

3.6.1 Categorization of the actors

The public announcement of a vulnerability may affect each type of actors for different

reasons and in different degrees. Depending on how a given actor values the externality

caused by a vulnerability disclosure (or more generally by the security of a software),

we can categorize them as following:

• Competitors: by competitors we designate software vendors that play in the

same market. Their behavior can be affected by the disclosure in several ways.

First, it may have a negative effect on the affected software reputation (i.e. the

competing product). This can be an incentive for a competitor to put more

effort in finding new flaws in its adversary’s product. At the same time, investing

in a competitor’s product security can be costly and may not be so profitable.

Secondly, vulnerability disclosure on one product in the market can deteriorate

the overall reputation of the market and thus have a negative effect on the overall

demand. Considering this effect, vulnerability disclosure may give an incentive to

firms to provide an effort to secure competitors’ product as much as theirs. More

importantly, products within the same market often share common vulnerabilities.

Thus the effort made by a vendor to improve its own product’s security may have

some spillover on the security of competing products whether it is intentional

or not. Overall, it is difficult to predict whether a vulnerability disclosure on

a software would have a positive or negative effect on a competitor’s effort to

improve the security of the software affected by the disclosure.

• Users, downstream and upstream software vendors and service providers: they

are dependent to the security of the affected software in various degrees and thus

internalize a part of the risk due to vulnerability disclosure. If these actors have

the possibility to choose between switching to another product or spending some

effort to secure the vulnerable software, their behavior would depend on how high

the switching cost is compared to the security investment cost.

• Security firms: these firms provide security solution and services to vendors

and users. We include here firms that sell all types of security solutions, from

104

anti-virus software to incident response services, as well as consulting services such

as security assessment or penetration testing. The profits of a security firm comes

from selling security solutions to its clients whether the client is the software

vendor or the users, and finding a new vulnerability increases the value of its

services. The disclosure of a new vulnerability can work as a signal that updates

the probability to find additional vulnerabilities in the affected software. Thus it

can be an incentive to security firms to look more thoroughly at the security of

the affected software. Additionally, a security firm which has signed a contract

with the software users or has sold a security product to them internalizes a part

of the user damage cost. At the same time, as the disclosed information is shared

with all the other third parties, competition can also reduce the effort they may

exert.

• Academic researchers, public CERTs, and public organizations:15 we group in

this category actors for which the main goal is to improve global security rather

than making their own profit. They may internalize a part of the loss due to a

vulnerability disclosure on a software, but this might be insignificant compared

to the end users.

• Individuals: in our dataset, the discovery of numerous vulnerabilities are credited

to an individual or a group of individuals without an affiliation. Even though

they can actually be affiliated to an organization, we consider that when the

affiliation is not specified, the discovery of the vulnerability is voluntarily credited

to the individual itself. Here, we can relate the motivation of an individual to find

and fix security flaws to the intrinsic and extrinsic motives attributed to open

source phenomenon, which has been widely dealt in the literature. A vulnerability

disclosure can signal the existence of additional undiscovered vulnerabilities and

give an incentive to individuals that look for an opportunity to signal their skills

to the community.

This categorization suggests that the public announcement of a vulnerability may affect

each type of actors for different reasons and in different degrees.

15Private CERTs are accounted as a private company

105

Table 3.6 – Example illustrating how we have built the three data sets

Exemple of raw data set

id software
Disclosed
date

Credit Explanation

49732 Android 12/4/2019
the software vendor
and Individual α

Two types of actors have contributed in finding
this vulnerability. Thus we consider that each of
the two actors (the software vendor and the
individual researchers) have discovered 1

2
of the

vulnerability.

49900 Android 27/4/2019
Individual β and a
security firm

1

2
vulnerability is attributed to the type of actor

“Individual researchers” and the other 1

2
is

attributed to the software vendor.
49999 Android 01/5/2019 Individual γ

50206 Android 01/5/2019
Downstream vendor,
Individual α and the
software vendor

58326 Android 29/5/2019 Public organization

Aggregated data set for Specification 3.1

yit software monthly date Explanation

2 Android 2019m4
A total of 2 vulnerabilities were found in April 2019 (id 49732
and id 49900)

3 Android 2019m5 A total of 3 vulnerabilities were found in May 2019

Aggregated data set for Specification 2

yijt software mdate T hirdP arty Explanation

0.5 Android 2019m4 0
In April 2019, the software vendor discovered one
vulnerability (Id 49732) with an individual so it has
found 1

2
vulnerability

1.5 Android 2019m4 1
0.33 Android 2019m5 0
2.67 Android 2019m5 1

Aggregated data set for Specification 3

yijt software mdate Identifier T ype Explanation

0.5 Android 2019m4 Software vendor

1 Android 2019m4 Individuals

In April 2019, “Individual researchers” have
participated in the discovery of two
vulnerabilities (of Ids 49732 and 49900) and for
each vulnerability they discovered it with
another type of actors. In sum, they discovered
1

2
+ 1

2
vulnerabilities.

0.5 Android 2019m4 Security firms
0.33 Android 2019m5 Software vendor
1.33 Android 2019m5 Individuals
0.33 Android 2019m5 Users
1 Android 2019m5 Public Organizations

111

Table 3.7 – Summary statistics

Web browser Mobile OS Desktop OS

Variable Obs Mean SD Min Max Obs Mean SD Min Max Obs Mean SD Min Max
1st Yit 819 5.17 7.4 0 67 1872 14.07 17.7 0 112 1856 13.95 17.68 0 112
specification Ai 819 0.14 0.35 0 1 1872 0.06 0.24 0 0 1856 0.06 0.24 0 1

post6m 819 0.05 0.22 0 1 1872 0.05 0.22 0 1 1856 0.05 0.22 0 1
post12m 819 0.1 0.3 0 1 1872 0.1 0.3 0 1 1856 0.1 0.3 0 1
post24m 819 0.21 0.4 0 1 1872 0.21 0.4 0 1 1856 0.17 0.38 0 1
post 819 0.49 0.5 0 1 1872 0.34 0.47 0 1 1856 0.17 0.38 0 1
id software 819 4 2 1 7 1872 8.5 4.61 1 16 1856 8.5 4.61 1 16
mdate 819 2014m2 35 2009m1 2018m12 1872 2013m12 35 2009m1 2018m12 1856 2013m11 35 2009m1 2018m12
SoftwareAge 819 14.62 5.16 3 25 1872 15.56 8.34 0 35 1856 15.49 8.33 0 35
EndofLife 819 0 0 0 0 1872 0 0.05 0 1 1856 0 0.05 0 1

2nd Yijt 1734 2.62 5.26 0 59 3744 6.95 13.47 0 111 3712 6.89 13.45 0 111
specification Ai 1734 0.19 0.39 0 1 3744 0.06 0.24 0 1 3712 0.06 0.24 0 1

post6m 1734 0.05 0.21 0 1 3744 0.05 0.22 0 1 3712 0.05 0.22 0 1
post12m 1734 0.1 0.3 0 1 3744 0.1 0.3 0 1 3712 0.1 0.3 0 1
post24m 1734 0.21 0.41 0 1 3744 0.21 0.4 0 1 3712 0.17 0.38 0 1
post 1734 0.52 0.5 0 1 3744 0.34 0.47 0 1 3712 0.17 0.38 0 1
T hirdP arty 1734 0.5 0.5 0 1 3744 0.5 0.5 0 1 3712 0.5 0.5 0 1
id software 1734 4 2 1 7 3744 8.5 4.61 1 16 3712 8.5 4.61 1 16
mdate 1734 2014m2 35 2009m1 2018m12 3744 2013m12 35 2009m1 2018m12 3712 2013m11 35 2009m1 2018m12
SoftwareAge 1734 13.89 5.85 0 25 3744 15.56 8.34 0 35 3712 15.49 8.32 0 35
EndofLife 1734 0 0 0 0 3744 0 0.05 0 1 3712 0 0.05 0 1

3rd Yijt 5202 0.87 2.49 0 34 11232 2.32 5.73 0 61 11136 2.23 5.73 0 61
specification Ai 5202 0.19 0.39 0 1 11232 0.06 0.24 0 1 11136 0.06 0.24 0 1

post6m 5202 0.05 0.21 0 1 11232 0.05 0.22 0 1 11136 0.05 0.22 0 1
post12m 5202 0.1 0.3 0 1 11232 0.1 0.3 0 1 11136 0.1 0.3 0 1
post24m 5202 0.21 0.41 0 1 11232 0.21 0.4 0 1 11136 0.17 0.38 0 1
post 5202 0.52 0.5 0 1 11232 0.34 0.47 0 1 11136 0.17 0.38 0 1
public org 5202 0.17 0.37 0 1 11232 0.17 0.37 0 1 11136 0.17 0.37 0 1
competitors 5202 0.17 0.37 0 1 11232 0.17 0.37 0 1 11136 0.17 0.37 0 1
users 5202 0.17 0.37 0 1 11232 0.17 0.37 0 1 11136 0.17 0.37 0 1
individuals 5202 0.17 0.37 0 1 11232 0.17 0.37 0 1 11136 0.17 0.37 0 1
sec firms 5202 0.17 0.37 0 1 11232 0.17 0.37 0 1 11136 0.17 0.37 0 1
id software 5202 4 2 1 7 11232 8.5 4.61 1 16 11136 8.5 4.61 1 16
mdate 5202 2014m2 35 2009m1 2018m12 11232 2013m12 35 2009m1 2018m12 11136 2013m11 34 2009m1 2018m12
SoftwareAge 5202 13.89 5.85 0 25 11232 15.56 8.34 0 35 11136 15.49 8.32 0 35
EndofLife 5202 0 0 0 0 11232 0 0.05 0 1 11136 0 0.05 0 1

112

Table 3.8 – Effect of a critical vulnerability disclosure on each actors (Other treatment periods)

Case 1 Case 2 Case 3

Treatment Period is: post6m post12m post24m post6m post12m post24m post6m post12m post24m

P ublic org -1.467*** -1.367*** -1.256*** -1.812*** -1.794*** -1.644*** -1.758*** -1.684*** -1.603***
(0.152) (0.155) (0.160) (0.0785) (0.0803) (0.0829) (0.0789) (0.0804) (0.0814)

Competitors -0.319*** -0.205* -0.0505 -1.034*** -1.009*** -0.991*** -1.011*** -0.923*** -0.831***
(0.119) (0.122) (0.127) (0.0697) (0.0713) (0.0751) (0.0702) (0.0714) (0.0724)

Users -1.409*** -1.293*** -1.300*** 0.434*** 0.450*** 0.518*** 0.448*** 0.546*** 0.655***
(0.150) (0.153) (0.163) (0.0623) (0.0638) (0.0665) (0.0624) (0.0635) (0.0646)

Individuals 1.658*** 1.718*** 1.815*** 1.458*** 1.469*** 1.552*** 1.471*** 1.555*** 1.635***
(0.105) (0.108) (0.114) (0.0610) (0.0626) (0.0651) (0.0608) (0.0619) (0.0632)

Sec firms -0.240** -0.156 -0.0633 -0.282*** -0.289*** -0.276*** -0.384*** -0.325*** -0.244***
(0.119) (0.123) (0.129) (0.0643) (0.0661) (0.0695) (0.0653) (0.0667) (0.0678)

P · A -0.518 -0.947* -0.475 0.402 0.602 1.321*** 0.591 -0.0118 0.515
(0.793) (0.491) (0.350) (0.658) (0.483) (0.364) (0.617) (0.454) (0.371)

P ublic org · P · A 1.293 1.039 0.455 -20.17 0.0871 1.042 0.0663 0.699 2.232***
(1.524) (1.296) (0.960) (26,854) (1.083) (0.775) (1.282) (0.891) (0.663)

Competitors · P · A -0.292 1.086 0.916* -0.667 -0.486 -1.789 -15.47 -14.99 -15.74
(1.215) (0.756) (0.556) (27,412) (12,213) (28,494) (2,577) (2,314) (2,417)

Users · P · A -21.03 1.169 0.264 -1.721 -0.408 1.179** 0.712 2.051*** 1.665***
(39,847) (1.023) (0.664) (1.150) (0.736) (0.549) (0.866) (0.639) (0.522)

Individuals · P · A 0.452 1.169* 0.826* 0.670 0.953 1.126** 0.0696 0.616 1.017*
(1.068) (0.668) (0.472) (0.925) (0.671) (0.512) (0.874) (0.646) (0.524)

Sec firms · P · A 3.808*** 2.760*** 1.805** -0.701 -0.105 0.969* -0.449 0.280 0.956*
(1.250) (0.705) (0.492) (0.942) (0.674) (0.512) (0.862) (0.635) (0.516)

Observations 5,202 5,202 5,202 11,232 11,232 11,232 11,136 11,136 11,136

Note: Negative binomial regressions. Product fixed effects and time fixed effects are included in all specifications as well as other controls (SoftwareAge,
EndofLife). Coefficients are average marginal effects. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1

113

General Conclusion

Dealing with cybersecurity issues has become as vital as technology itself to our

modern society. In response to this need, computer scientists started working with

practitioners and researchers from multiple fields to revisit the way to approach IT

security. Following the idea that economic analysis can bring valuable insights to better

understand and manage security risks, this thesis aims to contribute to the field of

economics of information security.

In this thesis, we have conducted three empirical studies by collecting and building

three original data sets related to software vulnerability discovery and patching. We

have considered several ways to measure the effort exerted by an actor that contributes

to software security, from measuring the responsiveness of a software editor to release a

security patch to considering how many new vulnerabilities a third party reports to the

software vendor. We examined how the security of a software is affected by the incentives

of the actors that depend on it through various standpoints: the security level of a

software can be considered as the product quality chosen by a vendor that maximizes

its profit according to the competition intensity in the market; the effort exerted to

improve a software security can depend on the disclosure of a critical vulnerability;

or, the security can be improved through a crowdsourced contest in which the level of

information provided to the participants determines their performance.

In the present section, we summarize our results and present relevant future research

directions.

114

In Chapter 1, we examined the impact of competition intensity on software vendors’

security investment behavior. While both academics and practitioners have insisted on

the danger of software monoculture, we find that market concentration is not necessarily

harmful to security provision: higher market concentration positively impacts vendors’

responsiveness in patching vulnerabilities, although this effect is reduced when a vendor

is too dominant. Our findings challenge conventional understanding about the effect

of competition in security. It also provides policy makers with empirical evidence on

the impact of competition on firms’ security investment incentives in free software

markets such as the web browser one, a case which is even more of interest as it is

very common in today’s digital markets. Furthermore, in line with some practitioners’

claims, we find that diverse externalities such as the severity of the vulnerability, the

software age or open source licensing also significantly impact the vendors’ incentives to

release a patch quickly. This chapter presents a number of limitations. One important

limitation is that I focus on a specific market that presents a unique position on the

web environment, with some vendors that are omnipresent in the digital market and

have a predominant position such as Google. Another limitation is that security is not

always the primary feature valued by a regular web browser user. Possible future work

would be to look at the effect of competition in a market where security is the most

central feature of the product and in which we can assume that all users are able to

correctly assess the security quality. For instance, security software used by corporate

users fit into these criteria.

In Chapter 2, I study how hackers’ perception of the uncertainty to obtain a reward,

determined by the level of information a contest provides about the contractual terms,

affects the effectiveness of the contest. Our results suggest that in the context of

tournaments such as a vulnerability research programs (VRPs), the possibility that

agents with different characteristics feel attracted by different types of contract leads

the VRP owner to a trade-off between having a larger number of participation but

attracting less performant participants and attracting higher quality participants but

generating fewer participations. This ex-ante self selection process of the “workers” is

all the more important for contests like VRPs since this can reduce the cost induced to

manage the non-relevant participations. Furthermore, bug bounty platforms provide

valuable data and study cases to analyze the ecosystem around software vulnerability

115

discovery and fixing. For now, few empirical studies exist on bug bounty platforms, one

reason being the difficulty to exploit the data because researchers have usually only

partial access to it. An interesting question that could be investigated is whether the

VRPs are used simply because it is less costly to employ external individual resources,

or because companies truly benefit from the crowd’s innovativeness.

Finally, in Chapter 3, we examined how the public disclosure of a critical vulnerability

impacts not only the software vendor’s behavior but also the behavior of other third

parties. We showed that third parties’ overall contribution in software security is

considerable and that their contribution is significantly affected by externalities like

the disclosure of a critical vulnerability. Our findings suggest that one should not

ignore the incentives and the potential contribution of third parties when studying

software security. This suggests to account for the interactions between all the security

actors when analyzing the mechanisms concerning software security rather than to

analyze separately the behavior of a software editor or its reaction to attacks. One

possible extension of our empirical study would be to create proxies for corporate users’

switching costs, which would allow to study whether vulnerability disclosure affects

users in different magnitudes according to different kinds of switching costs.

116

Bibliography

D. Acemoglu, A. Malekian, and A. Ozdaglar. Network security and contagion. Journal
of Economic Theory, 166:536–585, 2016.

F. Allen. Reputation and product quality. The RAND Journal of Economics, pages
311–327, 1984.

R. Anderson. Why cryptosystems fail. In Proceedings of the 1st ACM Conference on
Computer and Communications Security, pages 215–227. ACM, 1993.

R. Anderson. Why information security is hard-an economic perspective. In Proceedings
of the 17th Annual Computer Security Applications Conference, page 358. IEEE
Computer Society, 2001.

R. Anderson. Closing the phishing hole–fraud, risk and nonbanks. In Federal Reserve
Bank of Kansas City–Payment System Research Conferences, pages 41–56, 2007.

R. Anderson, R. Böhme, R. Clayton, and T. Moore. Security economics and the internal
market. Study commissioned by ENISA, 2008.

N. Archak and A. Sundararajan. Optimal design of crowdsourcing contests. ICIS 2009
proceedings, page 200, 2009.

C. Argenton and J. Prüfer. Search engine competition with network externalities.
Journal of Competition Law and Economics, 8(1):73–105, 2012.

A. Arora, J. P. Caulkins, and R. Telang. Research note-sell first, fix later: Impact of
patching on software quality. Management Science, 52(3):465–471, 2006a.

A. Arora, A. Nandkumar, and R. Telang. Does information security attack frequency
increase with vulnerability disclosure? an empirical analysis. Information Systems
Frontiers, 8(5):350–362, 2006b.

A. Arora, R. Telang, and H. Xu. Optimal policy for software vulnerability disclosure.
Management Science, 54(4):642–656, 2008.

A. Arora, C. Forman, A. Nandkumar, and R. Telang. Competition and patching of
security vulnerabilities: An empirical analysis. Information Economics and Policy,
2010a.

A. Arora, R. Krishnan, R. Telang, and Y. Yang. An empirical analysis of software
vendors’ patch release behavior: impact of vulnerability disclosure. Information
Systems Research, 2010b.

117

K. Arrow. Economic welfare and the allocation of resources for invention. In The Rate
and Direction of Inventive Activity: Economic and Social Factors, pages 609–626.
Princeton University Press, 1962.

T. August and T. I. Tunca. Network software security and user incentives. Management
Science, 52(11):1703–1720, 2006.

T. August and T. I. Tunca. Who should be responsible for software security? a
comparative analysis of liability policies in network environments. Management
Science, 57(5):934–959, 2011.

T. August, M. F. Niculescu, and H. Shin. Cloud implications on software network
structure and security risks. Information Systems Research, 25(3):489–510, 2014.

Y. Beres, J. Griffin, S. Shiu, M. Heitman, D. Markle, and P. Ventura. Analysing the
performance of security solutions to reduce vulnerability exposure window. pages
33–42, 2008.

V. Bier, S. Oliveros, and L. Samuelson. Choosing what to protect: Strategic defensive
allocation against an unknown attacker. Journal of Public Economic Theory, 9(4):
563–587, 2007.

R. Böhme. A comparison of market approaches to software vulnerability disclosure. In
International Conference on Emerging Trends in Information and Communication
Security, pages 298–311. Springer, 2006.

R. Bohme and T. Moore. The iterated weakest link. IEEE Security & Privacy, 8(1):
53–55, 2010.

K. Boudreau and K. Lakhani. How to manage outside innovation. MIT Sloan manage-
ment review, 50(4):69, 2009.

K. J. Boudreau, N. Lacetera, and K. R. Lakhani. Incentives and problem uncertainty
in innovation contests: An empirical analysis. Management science, 57(5):843–863,
2011.

E. Brousseau and T. Pénard. The economics of digital business models: A framework
for analyzing the economics of platforms. Review of network Economics, 6(2), 2007.

C. B. Cadsby, F. Song, and F. Tapon. Sorting and incentive effects of pay for per-
formance: An experimental investigation. Academy of management journal, 50(2):
387–405, 2007.

L. J. Camp and C. Wolfram. Pricing security. In Proceedings of the CERT Information
Survivability Workshop, pages 31–39, 2000.

P. Casas-Arce and F. A. Mart́ınez-Jerez. Relative performance compensation, contests,
and dynamic incentives. Management Science, 55(8):1306–1320, 2009.

H. Cavusoglu, H. Cavusoglu, and S. Raghunathan. Efficiency of vulnerability disclosure
mechanisms to disseminate vulnerability knowledge. IEEE Transactions on Software
Engineering, 33(3):171–185, 2007.

H. Cavusoglu, H. Cavusoglu, and J. Zhang. Security patch management: Share the
burden or share the damage? Management Science, 54(4):657–670, 2008.

H. Chesbrough, W. Vanhaverbeke, and J. West. Open innovation: Researching a new
paradigm. Oxford University Press on Demand, 2006.

118

J. P. Choi, C. Fershtman, and N. Gandal. Network security: Vulnerabilities and
disclosure policy. The Journal of Industrial Economics, 58(4):868–894, 2010.

C. W. Chow. The effects of job standard tightness and compensation scheme on
performance: An exploration of linkages. The Accounting Review, 58(4):667, 1983.

D. E. Chubin. State of the field the conceptualization of scientific specialties. The
sociological quarterly, 17(4):448–476, 1976.

J. S. Demski and G. A. Feltham. Economic incentives in budgetary control systems.
Accounting Review, pages 336–359, 1978.

D. Dey, A. Lahiri, and G. Zhang. Hacker behavior, network effects, and the security
software market. Journal of Management Information Systems, 29(2):77–108, 2012.

D. Dey, A. Lahiri, and G. Zhang. Quality competition and market segmentation in the
security software market. Mis Quarterly, 38(2), 2014.

T. Dohmen and A. Falk. Performance pay and multidimensional sorting: Productivity,
preferences, and gender. American Economic Review, 101(2):556–90, 2011.

S. Domberger and A. Sherr. The impact of competition on pricing and quality of legal
services. International Review of Law and Economics, 9(1):41–56, 1989.

B. Edwards, S. Hofmeyr, and S. Forrest. Hype and heavy tails: A closer look at data
breaches. Journal of Cybersecurity, 2(1):3–14, 2016.

T. Eriksson and M. C. Villeval. Performance-pay, sorting and social motivation. Journal
of Economic Behavior & Organization, 68(2):412–421, 2008.

D. D. Fehrenbacher, S. E. Kaplan, and B. Pedell. The relation between individual char-
acteristics and compensation contract selection. Management Accounting Research,
34:1–18, 2017.

M. Finifter, D. Akhawe, and D. Wagner. An empirical study of vulnerability re-
wards programs. In Presented as part of the 22nd {USENIX} Security Symposium
({USENIX} Security 13), pages 273–288, 2013.

S. Frei, M. May, U. Fiedler, and B. Plattner. Large-scale vulnerability analysis. pages
131–138, 2006.

R. L. Fullerton and R. P. McAfee. Auctionin entry into tournaments. Journal of
Political Economy, 107(3):573–605, 1999.

E. Gal-Or and A. Ghose. The economic incentives for sharing security information.
Information Systems Research, 16(2):186–208, 2005.

S. M. Garcia and A. Tor. The n-effect: More competitors, less competition. Psychological
Science, 20(7):871–877, 2009.

A. Gawer and M. A. Cusumano. Industry platforms and ecosystem innovation. Journal
of product innovation management, 31(3):417–433, 2014.

D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger, J. S. Quarterman, and
B. Schneier. Cyberinsecurity: The cost of monopoly. Computer and Communications
Industry Association (CCIA), 2003.

119

L. A. Gordon and M. P. Loeb. The economics of information security investment. ACM
Transactions on Information and System Security (TISSEC), 5(4):438–457, 2002.

L. A. Gordon, M. P. Loeb, W. Lucyshyn, and T. Sohail. The impact of the sarbanes-
oxley act on the corporate disclosures of information security activities. Journal of
Accounting and Public Policy, 25(5):503–530, 2006.

C. Ioannidis, D. Pym, and J. Williams. Information security trade-offs and optimal
patching policies. European Journal of Operational Research, 216(2):434–444, 2012.

J. A. Jacobs. In defense of disciplines: Interdisciplinarity and specialization in the
research university. University of chicago Press, 2014.

M. C. Jensen. Paying people to lie: The truth about the budgeting process. European
Financial Management, 9(3):379–406, 2003.

L. B. Jeppesen and K. R. Lakhani. Marginality and problem-solving effectiveness in
broadcast search. Organization science, 21(5):1016–1033, 2010.

A.-M. Jo. The effect of competition intensity on software security-an empirical analysis
of security patch release on the web browser market. In Proceedings of the 16th
Annual Workshop on the Economics of Information Security (WEIS 2017), San
Diego, 2017.

K. Kannan and R. Telang. Market for software vulnerabilities? think again. Management
Science, 51(5):726–740, 2005.

B. C. Kim, P.-Y. Chen, and T. Mukhopadhyay. An economic analysis of the software
market with a risk-sharing mechanism. International Journal of Electronic Commerce,
14(2):7–40, 2009.

B. C. Kim, P.-Y. Chen, and T. Mukhopadhyay. The effect of liability and patch release
on software security: The monopoly case. Production and Operations Management,
20(4):603–617, 2011.

J. H. Lala and F. B. Schneider. It monoculture security risks and defenses. IEEE
Security & Privacy, 7(1):12–13, 2009.

W. M. W. Lam. Attack-prevention and damage-control investments in cybersecurity.
Information Economics and Policy, 37:42–51, 2016.

E. P. Lazear. Performance pay and productivity. American Economic Review, 90(5):
1346–1361, 2000a.

E. P. Lazear. The power of incentives. American Economic Review, 90(2):410–414,
2000b.

T. X. Liu, J. Yang, L. A. Adamic, and Y. Chen. Crowdsourcing with all-pay auctions:
A field experiment on taskcn. Management Science, 60(8):2020–2037, 2014.

T. Maillart, M. Zhao, J. Grossklags, and J. Chuang. Given enough eyeballs, all bugs are
shallow? revisiting eric raymond with bug bounty programs. Journal of Cybersecurity,
3(2):81–90, 2017.

D. A. Matsa. Competition and product quality in the supermarket industry. The
Quarterly Journal of Economics, 126(3):1539–1591, 2011.

120

M. J. Mazzeo. Competition and service quality in the us airline industry. Review of
industrial Organization, 22(4):275–296, 2003.

G. McGraw and C. CTO. Exploiting software: How to break code. In Invited Talk,
Usenix Security Symposium, San Diego, 2004.

S. Mitra and S. Ransbotham. Information disclosure and the diffusion of information
security attacks. Information Systems Research, 26(3):565–584, 2015.

B. Moldovanu and A. Sela. The optimal allocation of prizes in contests. American
Economic Review, 91(3):542–558, 2001.

D. Nizovtsev and M. Thursby. To disclose or not? an analysis of software user behavior.
Information Economics and Policy, 19(1):43–64, 2007.

A. Ozment. Bug auctions: Vulnerability markets reconsidered. In Third Workshop on
the Economics of Information Security, pages 19–26, 2004.

J. Pénin, C. Hussler, and T. Burger-Helmchen. New shapes and new stakes: a portrait
of open innovation as a promising phenomenon. Journal of Innovation Economics
Management, (1):11–29, 2011.

C. Raasch, V. Lee, S. Spaeth, and C. Herstatt. The rise and fall of interdisciplinary
research: The case of open source innovation. Research policy, 42(5):1138–1151, 2013.

S. Ransbotham, S. Mitra, and J. Ramsey. Are markets for vulnerabilities effective?
Mis Quarterly, pages 43–64, 2012.

T. Rayna and L. Striukova. Involving consumers: the role of digital technologies in
promoting ‘prosumption’and user innovation. Journal of the Knowledge Economy,
pages 1–20, 2016.

U. Ronnen. Minimum quality standards, fixed costs, and competition. The RAND
Journal of economics, pages 490–504, 1991.

J. Salop and S. Salop. Self-selection and turnover in the labor market. The Quarterly
Journal of Economics, pages 619–627, 1976.

S. E. Schechter. Quantitatively differentiating system security. In The First Workshop
on Economics and Information Security, pages 16–17. Citeseer, 2002.

B. Schneier. Managed security monitoring: Closing the window of exposure. Counter-
pane Internet Security, 2000.

J. S. Silva and S. Tenreyro. On the existence of the maximum likelihood estimates in
poisson regression. Economics Letters, 107(2):310–312, 2010.

G. Solon, S. J. Haider, and J. M. Wooldridge. What are we weighting for? Journal of
Human resources, 50(2):301–316, 2015.

R. Telang and S. Wattal. An empirical analysis of the impact of software vulnerability
announcements on firm stock price. Software Engineering, IEEE Transactions on, 33
(8):544–557, 2007.

O. Temizkan, R. L. Kumar, S. Park, and C. Subramaniam. Patch release behaviors of
software vendors in response to vulnerabilities: An empirical analysis. Journal of
management information systems, 28(4):305–338, 2012.

121

C. Terwiesch and Y. Xu. Innovation contests, open innovation, and multiagent problem
solving. Management science, 54(9):1529–1543, 2008.

H. Varian. System reliability and free riding. pages 1–15, 2004.

E. Von Hippel and G. Von Krogh. Open source software and the “private-collective”
innovation model: Issues for organization science. Organization science, 14(2):
209–223, 2003.

W. S. Waller and C. W. Chow. The self-selection and effort effects of standard-based
employment contracts: A framework and some empirical evidence. Accounting Review,
pages 458–476, 1985.

D. Waterman. Diversity and quality of information products in a monopolistically
competitive industry. Information Economics and Policy, 4(4):291–303, 1990.

J. M. Wooldridge. Control function methods in applied econometrics. Journal of
Human Resources, 50(2):420–445, 2015.

M. Zhao, J. Grossklags, and P. Liu. An empirical study of web vulnerability discovery
ecosystems. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1105–1117. ACM, 2015.

M. Zhao, A. Laszka, and J. Grossklags. Devising effective policies for bug-bounty
platforms and security vulnerability discovery. Journal of Information Policy, 7:
372–418, 2017.

122

Titre: Economie de la cybersécurité et le marché des vulnérabilités

Mots clés: économie de la cybersécurité, sécurité de l’information, économie de l’innovation,

économie industrielle

Résumé: L’environnement cybernétique est

devenu un maillon essentiel au fonction-

nement de notre société et de nos activités

socio-économiques. Cette transformation va

de pair avec un changement d’échelle et de

portée des menaces de sécurité numérique,

qui deviennent d’autant plus nombreuses et

plus sophistiquées.

Dans un environnement mondialisé où les

systèmes sont connectés à de millions

d’autres systèmes, les parties prenantes

sont engagées dans de multiples interactions

stratégiques. Qui doit-on responsabiliser et

de quelle manière, afin d’inciter à une ges-

tion efficace de la sécurité ? De quelle façon

les différentes motivations économiques de

chacun influencent-elles les décisions en

matière de sécurité et par conséquent ont-

elles des impacts sur la vulnérabilité d’un

système ? Les récentes et rapides évolutions

en matière de cybersécurité apportent de

nouveaux défis et force est de constater que

le développement des solutions techniques

ne suffit pas à comprendre et mâıtriser les

risques.

Dans cette thèse, nous mobilisons les

outils de l’économie industrielle pour

appréhender des éléments qui ont trans-

formé l’environnement de la cybersécurité :

L’adoption de modèle de revenu basé

sur la gratuité des logiciels, l’utilisation

de mécanisme de crowdsourcing dans

la découverte des failles de sécurité,

l’implication croissante des acteurs externes

à l’entreprise tels que les chercheurs in-

dividuels, les concurrents, les firmes de

sécurité, ou les organismes publiques im-

pliqués dans l’amélioration de la sécurité des

logiciels. Nous nous attachons en particulier

à comprendre les motivations des acteurs

majeurs de la sécurité, allant de l’éditeur

de logiciels aux tierces parties telles que les

white-hat hackers et les firmes de sécurité.

Cette thèse est constituée de trois chapitres

distincts, présentant chacun une contri-

bution empirique. Le premier chapitre

s’intéresse à la relation entre la réactivité des

éditeurs de logiciel à corriger les failles de

sécurité et l’intensité de la concurrence sur le

marché. Nous étudions le cas d’un marché au

coeur de la sécurité d’Internet, celui des nav-

igateurs web, où l’utilisateur jouit d’une gra-

tuité et les éditeurs dérivent leur revenu d’un

autre marché connexe – celui des moteurs de

recherche – et par conséquent sont en concur-

rence par la qualité du navigateur. A travers

l’analyse économétrique de données de la cor-

rection des failles de sécurité sur les navig-

ateurs web sur une dizaine d’années, nous

montrons que la concurrence sur le marché

n’incite pas nécessairement les éditeurs à ren-

forcer la sécurité. Le deuxième chapitre se fo-

calise sur le crowdsourcing des hackers pour

découvrir des failles de sécurité, mécanisme

représentatif du marché des vulnérabilités

qui capitalise sur la contribution des tierce-

parties. A travers l’analyse empirique de 156

programmes de chasse aux bug gérés sur la

plateforme HackerOne, nous montrons com-

ment la perception de l’incertitude à être

rémunérés des hackers, défini par le niveau

de détail des termes contractuels, affecte

leur choix de participation et par conséquent

l’efficacité du programme. Enfin, dans un

troisième chapitre, nous examinons comment

la divulgation publique d’une vulnérabilité

critique sur un système affecte le comporte-

ment des acteurs à fournir un effort pour

améliorer sa sécurité. A travers l’analyse de

panels de données sur 3 cas de divulgation

de faille de sécurité particulièrement critique,

nous montrons combien les acteurs autres

que l’éditeur de logiciel - les chercheurs indi-

viduels, les firmes de sécurité, les organismes

publiques, etc. - , contribuent de manière sig-

nificative à améliorer la sécurité du logiciel

et sont davantage impactés par des extern-

alités telles que la divulgation publique de

failles critiques.

	General Introduction
	The economics of information security
	Some barriers to overcome
	The market for software vulnerabilities, platforms and open innovation
	Presentation of the three chapters

	The effect of competition intensity on software security
	Introduction
	Literature review
	The web browser and its revenue model
	A model of competition in security quality
	Empirical specification
	Data and method
	Estimation results
	Conclusion
	Appendix

	Hackers' self-selection in crowdsourced bug bounty programs
	Introduction
	Related literature
	Hypothesis development
	Data and empirical framework
	Results
	Conclusion
	Appendix

	Software vulnerability disclosure and third parties involvement
	Introduction
	Related work
	Data and empirical Strategy
	Results
	Interpretation and conclusion
	Appendix

	General Conclusion
	Bibliography
	Résumé en Français
	Abstract in English

