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RESUME iii

Résumé

Les écoulements au sein d’ouvrages hydrauliques — déversement au-dessus d’un barrage, défer-
lement d’une vague sur une digue, etc. — sont le siége de forts mélanges d’eau et d’air qui se
traduisent visuellement par la formation d’eaux blanches a la dynamique complexe. Représenter
fidélement le phénomeéne d’entrainement/capture des bulles d’air dans I’eau revét donc un aspect
stratégique important pour le dimensionnement de ces ouvrages. La modélisation tant physique
que numérique de tels cas s’avere délicate a cause du fort rapport de densité entre les phases et
de la nature multi-échelle de ces écoulements impliquant des effets de turbulence et de tension de
surface. La méthode numérique SPH (Smoothed Particle Hydrodynamics), approche totalement
lagrangienne qui représente I’écoulement comme un ensemble de particules en mouvement sans
recours a un maillage, est particuliérement adaptée a la simulation de tels écoulements forte-
ment déformés. Néanmoins, les limites actuelles de puissance de calcul empéchent encore de
simuler finement des cas d’application industriels a large emprise en hydraulique. On se propose
donc dans cette thése de modéliser ces écoulements de maniére macroscopique via un modéle de
mélange qui consiste a voir chaque particule SPH comme un volume de mélange d’eau et d’air en
mouvement. On détaille d’abord la dérivation des équations continues de ce modele de mélange,
puis on présente un état de ’art des simulations multiphasiques SPH. A partir du modéle con-
tinu et des outils actuels de discrétisation, un modele de mélange diphasique SPH est ensuite
mis en place en vue de son implémentation sur GPU (Graphics Processing Unit). Un accent tout
particulier est mis sur les éléments originaux de discrétisation développés, notamment la déri-
vation d’un schéma aux bonnes propriétés numériques pour le suivi de I’évolution des volumes
par phase et écriture d’un formalisme de frontiéres ouvertes pour un mélange. La turbulence,
centrale dans le phénomene d’entrainement d’air, est modélisée via un modele k — € incluant
un terme de flottabilité. Ce modele de mélange est validé sur des cas académiques bidimen-
sionnels de complexité croissante tels que la séparation d’'un mélange eau-huile, un écoulement
de Poiseuille diphasique, 'instabilité de Rayleigh—Taylor et un laché de sédiments, illustrant sa
polyvalence. La phénoménologie de '’entrainement d’air est ensuite décrite, et le modéle ap-
pliqué a des structures communément rencontrées en hydraulique, comme des jets plongeants
et des coursiers en marches d’escalier, en introduisant une fermeture spécifique de la vitesse rel-
ative entre les phases. Enfin, on présente un premier cas d’application industriel a la géométrie

et dynamique complexes.

Mots-clé:

SPH, entrainement d’air, turbulence, ouvrages d’eau, diphasique.
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Abstract

Flows over hydraulic works — a nappe falling over a spillway, a wave breaking on a dike, etc. — un-
dergo strong mixtures of air and water that lead to the appearance of white waters with complex
dynamics. Faithfully capturing the phenomenon of air bubbles entrainment/entrapment in the
flowing water is therefore pivotal for the design of those works. Both experimental and numer-
ical modeling prove to be complex due to the high density ratio between phases and the multi-
scale nature of those flows involving turbulence and surface tension effects. The SPH (Smoothed
Particle Hydrodynamics) method, a fully Lagrangian approach that models the flow as a set of
moving particles without any mesh, is particularly well-suited to simulate such highly-distorted
flows. Nevertheless, the current computational limits still prevent one from finely simulating
industrial application cases with large domains in hydraulics. In this work, we aim at simulating
macroscopically those flows with a mixture model in which each SPH particle stands for a moving
volume of air and water. The derivation of the continuous equations of this mixture model is first
detailed, then a state of the art of multiphase simulations in SPH is presented. Equipped with this
continuous model and the existing discretization tools, a two-phase SPH mixture model is then
derived and implemented on GPU (Graphics Processing Unit). A focus is made on original ele-
ments developed in the discretization, especially the derivation of a scheme with good numerical
properties to follow the phase volume variations and the writing of an open boundary framework
for mixtures. Turbulence, prominent for the air entrainment phenomenon, is modeled with a k—e
model including a buoyancy term. This model is validated against bidimensional academic test
cases of increasing complexity, namely an oil-water separation, a two-phase Poiseuille flow, the
Rayleigh-Taylor instability and a sand dumping case, proving its versatility. The air entrainment
phenomenology is then described and the model is applied to common structures in hydraulics
such as plunging jets and stepped spillways by introducing a specific closure for the relative
velocity between phases. Finally, a first industrial application case with complex geometry and

dynamics is presented.

Keywords:

SPH, air entrainment, turbulence, hydraulic works, two-phase flows.
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n Unit vector normal toasurface ........... ... ... .. .. -)
n Hindering power ... ... i -)
n” Unit vector normal to an interface .............. ... ... i, -)
Ny Dimension of the Riemann system .............. .. ... ... i i =)
Ny Power for velocity profile fitting on the stepped spillway case .................. -)
P Production of turbulent kinetic energy ......... ... ... .. oo (m?/s?)
P Matrix of eigenvectors

Mixture pressure including turbulent kinetic energy .................... (kg/m/s?)
P MIXEULE PIESSUIE . ..ottt ittt ettt ettt et e e e (kg/m/s?)
rE Upwind solution of the moving Riemann problem for pressure in SPH-ALE (kg/m/s?)
Doy Riemann PreSSUre .. ... ......oneee et (kg/m/s?)
Pab Inter-particle PreSSUIe .. ................ooeuneeenneeieieaeeennnn. (kg/m/s?)
DB Background pressure . ... (kg/m/s?)
plfg Phase background pressure ........... ... .. i (kg/m/s?)
Db new Corrected SPH neighbor pressure of Zhou ............ ... .. ... .. ... (kg/m/s?)
p? Dynamic component of the pressure ............... ... (kg/m/s?)
Pp Volumic disturbance kinetic energy ............ .. ..o, (kg/m/s?)
DI Pressure at the interface of the hydrostaticcase ......................... (kg/m/s?)
Di Interface Pressure .. .........o.o.iiii i (kg/m/s?)
P/ Production of turbulent kinetic energy relying on the volumetric flux ....... (m?/s?)
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DPtn

Qk

Qs*

qt

= B~ )
XE

ﬁ\

Partial pressure of thephase &k .......... ... . (kg/m/s?)
Interfacial partial pressure ............. .. (kg/m/s?)
Perimeter of an interface disturbance .................. ... ... ... ... (m)
Volumic turbulent kinetic energy ............... .. ... .o (kg/m/s?)
Analytical solution for pressure ........ ... ... .. i (kg/m/s?)
Dimensionless distance to kernel center .............. ... ... ... ... ... ... ... -)
Volume flow rate of phase k .......... .. (m3/s)
Volume flow rate of phase k per unitwidth ................................ (m?/s)
Phase quasi-buoyancy contribution ............. ... ... oL (m/s?)
Turbulent velocity ...... ..o (m/s)
POSItION VECTOT ...\ttt (m)
VISCOSIEY TAtIO . ..ottt et e e e e =)
Distance between SPH particlesaand b ........... ... ... .. i, (m)
Critical radius of deformation of an interface ................................. (m)
Non linear resistance force ........... ... ... . i (kg.m/s?)
Mid-point position vector between particlesaand b ............. ... ... L (m)
Phase Reynolds Stress tensor ..............ouiiieiiniiiieneniann.. (m?/s?)

Riemann invariant, k € {—1, +1}

Acceptable radius of deformation of an interface .................... ... . .... (m)
Dynamic relative viscosity ratio for the Poiseuille flow ...................... ... -)
Kinematic relative viscosity ratio for the Poiseuille flow ..................... ... -)
Neighbor position Vector .......... ..ot (m)
Relative density ratio for the Poiseuille flow .................................. =)
Radius of curvature of a surface disturbance .................................. (m)

Eigen vector, k € {—1,0,+1}

Relative position vector between SPH particlesaand b ........................ (m)
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SErain rate teNSOT ... ...ttt ettt e et e (s
Strain rate tensor relying on the volumetric flux ......... ... .. ... .. .. .. (s
Scalar mean rate-of-strain ........... ... ... i (s
Material surface ........ ... .. (m?)
Shock speed .. ... . (m/s)
Scalar mean rate-of-strain relying on the volumetric flux .................... (s
Phase strain rate tensor .......... ..ottt s™h
Area of an interface disturbance .......... ... ... .. (m?)
Segment surface .......... .. (m?)
Shear stress tenSOr ... ...ttt (kg/m/s?)
Unit vector tangent toasurface ........ ... =)
TeMPETAtUTIE . . ..ottt et et e e e e (K)
TIIME .« .ottt e (s)
Reference time for the falling sand cloud ............ .. .. ... .. ... ... (s)
Wall tangential vector ........... ..ot -)
Slope of achute .. ... ..o i )
Hybrid vector . ... -)
Interfacial phase shear stress tensor ... ... (kg/m/s?)
Average viscous stress tensor with reference velocity 5 .................. (kg/m/s?)
Diffusion stress tensor with reference velocity 5 ........................ (kg/m/s?)
Additional terms to the viscoustensor ................... ..., (kg/m/s?)
Turbulent stress tensor with reference velocity 5 ........................ (kg/m/s?)
Phase shear Stress tensor . ...... ...ttt (kg/m/s?)
Turbulent phase shear stress tensor ................ .. . .. ... .. ... (kg/m/s?)
Shear stress tensor at an intermediate time step ......................... (kg/m/s?)

Average viscous stress tensor with reference velocity v .................. (kg/m/s?)
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Th
Tr
Tow
u

U

V0, eff

Diffusion stress tensor with reference velocity v ........................ (kg/m/s?)
Turbulent stress tensor with reference velocity v ....................... (kg/m/s?)
Wall shear stress tensor .. ......ouutiint i e (kg/m/s?)
Single-fluid velocity ...... ... . .. (m/s)
Reference velocity ...... ... (m/s)
Reference velocity for the falling sand cloud ................................ (m/s)
Phase diffusion velocity ......... ... i (m/s)
Discharge of the single-phase Poiseuille flow ............................... (m/s)
Discharge of the two-phase Poiseuille mixture flow ......................... (m/s)
Normal component of the velocity at an open boundary ..................... (m/s)
Friction velocity ... ... ..o e (m/s)
Tangential component of the velocity at an open boundary .................. (m/s)
Clear-water flow velocCity .......... ..ot (m/s)
VOlUIMIE ... (m?)
Material volume . ........... .. (m?3)
Velocity of the moving frame of reference for SPH-ALE ...................... (m/s)
Pressure gradient/gravity part of the relative velocity ....................... (m/s)
Reference volume .......... ... i (m?)
Effective relative velocity .......... ..o (m/s)
Impact velocity of the jet ........ .. (m/s)
Characteristic turbulent velocity of the impingingjet ........................ (m/s)
Longitudinal interfacial velocity at Yoo .........c.cooiiiiiii i (m/s)

Upwind solution of the moving Riemann problem for velocity in SPH-ALE ... (m/s)
Riemann velocity ....... ... ... (m/s)
Transport velocity for SPH-ALE .. ... ... .. i (m/s)

Reference volume . ....... ..ot (m?3)
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V.
Vd

V4

Vm ax

Critical velocity .. ... (m/s)
Mean drift VeloCity .. .......ouion i (m/s)
Barycentric velocity defined by Price ............ ... ... L, (m/s)
Onset velocity for air entrainment ........... ... ... i (m/s)
Phase veloCity . ........oouoii i (m/s)
Entrainment velocity limit .......... ... .. . (m/s)
Interfacial air-water velocity ............ .. .. (m/s)
Phase volume . .......... .. (m?)
Phase volume before application of the volume diffusion ..................... (m?3)
Maximal velocity magnitude .......... ... . (m/s)
Mixture velocity with respect to the masscenter ............................ (m/s)
Velocity the nozzle ...... ... i (m/s)
Inward component of the average liquid velocity on the interface ............ (m/s)
Characteristic turbulent velocity ......... ... .. ..o i (m/s)
Volume of a bubble/grain .......... .. .. . (m?3)
Velocity fluctuation according to the ¢ coordinate, i € {z,y} ................. (m/s)
Mean relative velocity .......... ... i (m/s)
Relative mean velocity . ........ ...t (m/s)
Effective relative velocity .......... ..o (m/s)
Normal component of the relative velocity at an open boundary ............. (m/s)
Tangential component of the relative velocity at an open boundary ........... (m/s)
Total volume before application of the volume diffusion ...................... (m?)
Wall tangential velocity ... ... ..o (m/s)
Wall VeloCity ... ..o (m/s)
Longitudinal interfacial air-water velocity ............ ... .. ... .. ... ..., (m/s)

Maximal longitudinal velocity .......... ... .. . i (m/s)
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w Width of the sand cloud ...... .. ... . (m)
w Kernel function ........ ... i (m~%)
Wo Initial width of the sand cloud ........ ... .. .. . ... .. .. . . . (m)
Wb Kernel function applied to 7gp <o vvveee i (m~%)
wry Normalized kernel function ............. ... .. .. ... .. . . i, (m~%
We Falling sand cloud frontal velocity ........... ... ... . i it (m/s)
Wi Riemann invariant

W Width of the channel ......... .. ... i e (m)
w State vector

(z,y,2z) Coordinates of the position vector in the space basis .......................... (m)
1 Distance to the nozzle ........ ... ... .. i (m)
Yoo Vertical position of the point with 90% of air ......... ... ... ... ... ... . ... (m)
Y s Transverse location of the maximum volume fraction ......................... (m)
V& Mass fraction of the phase k ... ... ... =)
Yk Fluctuation of the mass fraction of the phase k ................................ ()
yt Dimensionless distance to a wall in turbulent regime .......................... =)
Yvso Transverse location at which Vo = Vimax /2 oo (m)
Z Depth of the sand cloud front .......... ... .. .. i (m)
Zw Fluctuations of the free surface elevation ..................................... (m)
Greek symbols

@ Volume fraction of the liquid phase ............ .. .. .. .. .. ... .. -)
g Initial uniform volume fraction ............... ... .. . . i =)
aq Volume fraction factor for the two-phase Poiseuille flow ....................... =)
af Tuning coefficient for artificial viscosity .......... ... ... . i, =)
Omax Maximum volume fraction .............o it =)
Qmp Maximum packing . ....... ... =)
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O, Bn  Tuning parameters for shifting ......... .. ... . -)
Qs Tuning coefficient for 0-SPH. ......... ... i -)
Qy Dust fraction defined by Price ........ ... i =)
Qup Analytical solution for volume fraction ........... ... .. ... .. i =)
Qy d Normalized constant of the Wendland kernel in geometrical dimension d ....... =)
I} Volume fraction of the gasphase ............ ... . i -)
X" Phase characteristic function ................. .. ... . . . i -)
A Brezzi diffusionterm ......... . .. (kg/m?/s)
0 Dirac distribution . ............oiuiiiii i (m~%
A« Variation of volume fraction .......... ... .. . i =)
5%/ © Part of the inlet/outlet contribution in the continuity equation ............... (s
Ap, Variation of dimensionless pressure ...............cccoviiiiiiiiiaean... (kg/m/s?)
or Particle diameter ......... ... i i e (m)
Orqs Normal distance tothe wall ........ ... . ... . . . (m)
0T ga! SPH particle shift ........ ... (m)
srilo Virtual displacement at inlet/outlet .......... .. ... .. ... ... L. (m)
A Size of the LES spatial filter ........... ... . .. (m)
s Tuning coefficient for 5-SPH. ... ... ... i -)
) 0'2/ © Part of the inlet/outlet contribution in the continuity equation .............. (m~3)
ot THIME SEEP . .t ottt ettt et e e e (s)
% Volume of air entrained per unit time ................ ... .. ... . ... ..., (m3/s)
AV, Variation of interfacial velocity .......... ... .. i (m/s)
Az, Variation of dimensionless vertical position ........... ... .. ... .. oL (m)
€ Dissipation rate of the turbulent kinetic energy ........................... (m?/s3)
é Favre-averaged dissipation rate of the turbulent kinetic energy ............. (m?/s?)
€* Dissipation rate of the turbulent kinetic energy at an intermediate time step (m?/s%)
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Ta

N

Weighting factor for artificial viscosity ............ ... ..o il (kg/m?)
Fitting coefficient for the phase volume positivity condition .................... -)
Coefficient for the drag force computation .............................. (kg/m3/s)
Kernel wall renormalization function at position = ............................ -)
Shepard renormalization factor ............ ... .. . i -)
Kernel wall renormalization factor ................ ... .. .. ... ... -)
Phase Shepard renormalization factor ............ ... ... .. ... . L. -)
Von KArman constant ........... ...t =)
Brezzi diffusion coefficient ............ ... -)
Scale factor ... ..ot =)
A (T Th) e et e e e e )
Phase second viscosity or volume viscosity ................ ... ... ..., (kg/m/s)
Eigenvalues of the Riemann problem k € {—1,0,+1} ....................... (m/s)
Turbulent thermal diffusivity .......... .. ... i (m?/s)
Dynamic VISCOSILY . ...ttt ettt et (kg/m/s)
Reference dynamic viscosity ................iiiiiiiiiiiiiiii (kg/m/s)
Phase dynamic viSCOSItY ... .........oiutoiii i (kg/m/s)
Dynamic eddy VISCOSILY ... ......iuuiit e (kg/m/s)
Phase dynamic eddy viscosity ... (kg/m/s)
Kinematic VISCOSITY ... ...ttt (m?/s)
Artificial kinematic viSCOSIty ............oiiii (m?/s)
Phase kinematic viSCOSIty ... ........ooiuiii (m?/s)
Kinematic eddy viSCOSIty . ..........o.iiuiiiii i (kg/m/s)
Phase kinematic eddy viscosity ........... ... . .. i (m?/s)
Maximum kinematic eddy viscosity ................ i (m?/s)
Kinematic eddy viscosity at an intermediate time step ...................... (m?/s)
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br

Tab
Tab
Ve
Ur

Pm

Pt

]
Oe¢
O¢

Ok

gs

€a
gk

Part of the Riemann invariant for the mixture model related to « variations

Individual term of the SPH viscous operator .................c.ccoviveno... (m?/s?)
Individual term of the continuity —SPH diffusion operator ............... (kg/m*)
Intermediate function for the analytical volume fraction profile computation . ... (-)

Part of the Riemann invariant for the classical or mixture model related to p or o

variations respectively

Mixture density ... .....coouueii i (kg/m?)

Phase density ........ ..o (kg/m?)
Dimensionless phase density ................ i (kg/m?)
Reference phase density ......... ...t (kg/m?)
Density of the surrounding fluid .......... ... ... .. ... L (kg/m?)
Total density defined by Price ........... ... i (kg/m?)
Inverse of the mixture volume ............. ... ... ... ... . i, (m~3)
Cauchy Stress tenSOr . ..........tiitt i (kg/m/s?)
Inverse of the reference mixture volume ................................... (m~3)
Kernel standard deviation ............ .. ... .0 it (m)

Constant of the £ — ¢ model

Constant of the &£ — € model

Phase Cauchy Stress tensor ............c.ovuiinteieineoneennennnannns (kg/m/s?)
Surface tenSIoN . ...ttt e (kg/s?)
Ratio of the SPH particle mass with respect to the reference mass ............... =)
Fitting coefficient for the phase volume positivity condition .................... -)
Phase polytropic index . ....... ... e -)
Power of Richardson and Zaki’s correlation ................................... -)



NOMENCLATURE xliii

¢k Bulk viSCOSILY . ..ottt (kg/m/s)
Differential Symbols
% Derivative with respect to the normal to the interface considered ............ (m1)
% Derivative with respect to the tangent to the interface considered ........... (m~1)
V7 Gradient of the wall renormalization factor ................................ (m~1)
dr’ Surface element . ........ ... .. . (m?)
VYas Contribution of the segment s to the gradientof vg ......................... (m~1)
YV wap Kernel gradient ........ ... (m—91)
% Material derivative with respecttov .......... ... i (sh
% Material derivative with respectto 7 ......... ... i (s™h
fl—’; Material derivative with respect tov* ... ... ... .. .. ... ... ... (s™h
Sets
ck Set of functions with continuous £ first derivatives
[3)9] Boundary of the computational domain
0€); Interface between fluids
o9, Inflow/outflow boundary of the computational domain
0y, Wall boundary of the computational domain
F Set of free particles

Neighborhood in R™"
Q Computational domain
QF Computational domain occupied by phase k
Q, Support of the kernel function centered on r
P Set of fluid particles
S Set of boundary segments
S1/o Set of inlet/outlet boundary segments
1% Set of vertex particles
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p1/o Set of inlet/outlet vertex particles
Dimensionless numbers

A Atwood number

Ca o limitation for time step

CcrL CFL number

Co Drag coefficient

Cp,eff Drag coefficient including a hindering term
C, v limitation for time step

Cp Pressure coefficient

Cuisc Viscous limitation for time step
Eo Eo6tvos number

Eu Euler number

Fr Froude number

Ma Mach number

Mo Morton number

Peg Reference Péclet number

Pe Péclet number

Pe, Numerical Péclet number

Re Reynolds number

ReF Particle Reynolds number

Scp Turbulent Schmidt number

Tu Turbulent intensity

We Weber number

We,. Critical Weber number
Mathematical Symbols

z General average operator
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[z], Continuous SPH interpolation

T Component-weighted average

adj(x)  Adjugate matrix

2]} Renormalized continuous SPH interpolation
], Discrete SPH interpolation

det(x)  Determinant

2] Renormalized discrete SPH interpolation
F [z] Fourier transform

zv Favre average

I Identity tensor

[2]pq, ~ Jump at the interface 0¢;

Lio Dilogarithm function

& Limiter function

ty Transpose operation

T Covariant derivative

Wo Principal branch of the Lambert function
[z], z (7a)

(]~ Negative part

[z]T Positive part
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Introduction

Un torrent dévalant les pentes alpines, une vague cassant sur les rives cariocas... les
eaux blanches résultant du mélange eau-air sont un phénoméne commun, tant dans les
écoulements environnementaux que dans le domaine industriel, avec des effets parfois
positifs, parfois délétéres. Le caractére diphasique de I’écoulement modifie de maniére
importante sa dynamique. La compréhension de l'entrainement d’air — la capture
de bulles d’air par le flot d’eau — revét un intérét majeur pour la sécurité et le bon
fonctionnement des ouvrages hydrauliques. La turbulence est centrale dans les mé-
canismes physiques mis en jeu et renforce aspect multi-échelles de [’écoulement. La
modélisation physique, et plus récemment numeérique, de ce phénomeéne a fait I’'objet
de nombreux travaux, mais l’enjeu reste de taille pour comprendre I’ensemble des mé-
canismes physiques générateurs et pour les simuler dans des temps raisonnables. Des
modeéles diphasiques moyennés ont notamment été développés, les plus simples d’entre
eux prenant la forme de modéles de mélange. De récents travaux ont soulevé U'intérét
de tenter ce type d’approches dans la méthode Lagrangienne Smoothed Particle Hy-
drodynamics (SPH), bien adaptée da la simulation d’écoulements fortement déformés
tels que ceux rencontrés sur les structures hydrauliques. L’objectif de cette thése est
de développer et d’implémenter dans un environnement GPU un modéle de mélange
SPH diphasique et de Uappliquer a la simulation d’écoulements aérés communément
rencontrés dans les écoulements environnementaux et configurations industrielles. Les
équations continues de ce modéle font I'objet du Chapitre 1. Le Chapitre 2 présente
ensuite un état de l’art des simulations multiphasiques dans la méthode SPH. Dans
le Chapitre 3, la discrétisation SPH du modéle retenu est exposée et validée sur des
cas académiques simples. La physique de Uentrainement d’air est ensuite détaillée au

Chapitre 4 et le modéle est appliqué a des cas réalistes.



2 INTRODUCTION

A torrent swirling and hurtling the slopes of the Alps along a hiking path, a wave breaking and
hunting the surfers at a spot of Rio de Janeiro, the Falls of the Rhine captured by the brush of W.
Turner... white waters resulting from the air-water intense mixing are permanently occurring
on the Earth’s surface as illustrated on Figure 1, despite the large density ratio that tends to gen-
erate well separated configurations. Its aesthetic has been inspirational for artists, as exemplified
on Figure 2, and its visual effect leveraged in structures. The entrapment of air bubbles of the
surrounding atmosphere into the flowing water, called air entrainment or aeration, has not only
natural but also artificial occurrences: structuring the design of fountains as in Figure 3, it is also
of prominent significance for industrial applications, from the chemical industry to hydraulic and
nuclear facilities. Its presence might be desirable or not depending on the situation as detailed
by Bin [24]: while it proves to be useful to increase the interfacial area and hence the gas-liquid
transfers in chemical mixing, wastewater treatment process or water oxygenation during stress-
ful periods for fish farming, it can also lead to harmful effects in industrial processes for molten
glass, metals, plastics, etc. or in defense applications for surface ships due to propeller cavitation
or detrimental underwater noise and wakes generated by the air entrained by waves along the
hull [271].

Those air-water mixtures fall within the scope of the wide and complex field of two-component
gas-liquid flows. The presence of two components strongly modifies the dynamics of the flow,
especially due to the interactions with turbulence, the vertical momentum introduced together
with the changes in bulk fluid in terms of density, viscosity and compressibility. Those interac-
tions are still the object of active research because of their complexity. An accurate modeling of
the phenomenon is of prime importance for the design, good performance and safe operation of
hydraulic works — dams and adjacent structures - as illustrated by Falvey [122] and Kobus [189]

for free surface and confined flows.

Turbulence is often at the core of the entrainment phenomenon and makes it a full multi-scale
problem as characteristic lengths go from the several meters of a separated flow to the millimeter
size of a dispersed flow of bubbles and drops. It deforms the air-water interface and the conse-
quent irregularities can then trap air bubbles. The downwards vertical velocity generated by the
turbulence, if strong enough to exceed the resisting forces of gravity and surface tension main-

taining a continuous interface, leads to diffusion of air in the bulk of the liquid.

Regarding the role of surface tension and turbulence in bubble entrainment dynamics, it is all
but impossible representing with perfect similarity these flows in physical scale models of a lab-
oratory. However, they still give prominent insights for the considered flows as highlighted by
Chanson [62] and a wide literature is available. Conversely, numerical modeling appears as an
enticing, cheap and versatile tool, even though the accurate prediction of the air-entrainment
process in a wide variety of air-water turbulent flows remains a computationally challenging
problem under current investigation. Following Lopes et al. [224], “an ideal numerical model
needs to be accurate and fast in the definition of a macroscopic interface and simultaneously

precise enough to take into account the formation of bubbles through the free surface, their
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(b) Torrent (Briancon, France)

(c) Waterfall (Tijuca Park, Rio, Brazil) (d) Wave breaking (Barra de Tijuca, Rio, Brazil)

(e) Rooster tail (Camaret-Sur-Mer, France)

Figure 1: Air entrainment in environmental flows.
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(a) The Falls of the Rhine at Schaffhausen, 1841 (b) Upper Falls of the Reichenbach, 1802

Figure 2: Paintings of William Turner, The Courtauld Gallery.

(a) Fontaine aux Lions, Paris, France (b) Fontaine Saint-Sulpice, Paris, France

Figure 3: Fountains.
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transport and their natural interactions”. One needs to define what are the practical quantities of
interest for the engineering applications considered and design a numerical model accordingly.
Among the possible questions are the following: how much air is entrained locally and globally?
What is the air bubble size distribution? What is the relative velocity between air and water?
How does the air presence modify the flow dynamics? How does it affect the water quality?
[188]

Complete resolution of air-water flows over an hydraulic structure being beyond numerical capa-
bilities, a variety of averaged multiphase models were designed and implemented in CFD codes,
generally in an Eulerian framework, to handle such cases in reasonable times. Two-fluid model
as built by Ishii [176] and further studied by Rusche [316] is a very common approach that
proves to give good results as soon as interfacial interactions are correctly modeled. A further
simplification consists in mixture models as extensively presented by Ishii [176], Manninen and
Taivassalo [239] for which an algebraic relation on the relative velocity between phases can be
given, substituting to one of the phase momentum equations. Such models implemented in Eu-
lerian codes gave some promising results on air-water flows [281]. At the same time, as highly
deformed flows are considered, Lagrangian approaches such as the Smoothed Particle Hydrody-
namics (SPH) method can be an asset thanks to the mesh-free feature. Without any tracking
of the interface, recent developments of the numerical framework have allowed to model some
air-water flows [86, 150, 170, 171, 307]. However the accurate description of air entrainment
would still require some very refined simulations. Mixture models were introduced in the SPH
approach [90, 149, 297, 305] but never applied to air-water flows to the author’s knowledge. If
such models lose the sharp interface property when diffusion of phases occur, it is still of interest
to see what can be their performances in a mesh-free Lagrangian approach that does not trigger
numerical diffusion due to advection modeling and can handle complex geometries as found in
practical industrial applications without the need to build a mesh. Moreover, their use can bring
some interesting insights for other types of flows such as sediment flows (for which the air phase

modeling is not required) and one can indeed see some active research in this field today [330].

The aim of this thesis is to build an SPH model for industrial applications able to:

« Model 3D free surface or confined aerated flows;

« Predict the air concentration and velocity profiles altered by the air presence together with

pressure forces applied to the structures;

« Handle different types of components from moderate (water-sediment) to high density

ratios (air-water).
The main achievements of this work are:

+ The development of a Weakly Compressible SPH (WCSPH) mixture model with relative

velocity between phases;
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« Its adaptation to the semi-analytical (USAW) wall boundary conditions;
+ The extension of an open boundaries formulation to handle mixtures;

« The application of this model to schematic bidimensional and industrial three-dimensional

cases.

The numerical developments were implemented into the EDF in-house research SPH code Sph-
ynx, a fork from the open-source software GPUSPH [1]. It was written in the Cuda programming

language for GPU.

This thesis consists of four chapters:

+ Chapter 1 outlines the derivation of a volume-based two-component mixture model from
the Navier-Stokes equations in a weakly compressible framework together with its bound-

ary conditions. It sketches the assumptions underlying the mixture approach.

« Chapter 2 is a literature review of the existing SPH formulations for two-component flows,
from the usual multifluid approach to recently developed mixture approaches. It shall give

the necessary numerical tools to discretize the two-component mixture model.

« Chapter 3 describes the two-component SPH mixture model developed in this work and
validates it on academic cases. Special focus is made on the derivation of a numerical
scheme with good numerical properties to follow the interface motions. Moreover, the

SPH open boundary formulation for mixture is comprehensively detailed.

+ Chapter 4 first focuses on the physics of the air entrainment phenomenon to propose an
adequate formulation in the mixture model, especially regarding the relative velocity ex-
pression. The present SPH model is then applied to experimental test cases. Finally, prelim-

inary results on a three-dimensional industrial application of air-water flows are presented.



Chapter 1

Governing equations and modeling

choices

Ce chapitre s’attache a présenter les équations continues du modéle de mélange régis-
sant I’évolution des écoulements diphasiques considérés. On présente la dérivation du
modele de mélange a partir des équations de Navier—Stokes diphasiques. On détaille
les choix adoptés pour la modélisation de la turbulence, via un modéle k — €, ainsi
que les modéles de fermeture retenus pour la vitesse relative entre les phases. Les hy-
pothéses et approximations faites lors des choix de modélisation sont exposées. A l'issue
de ce chapitre, nous nous trouvons munis du systéme d’équations continues qu’il faudra

résoudre numériquement.
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This chapter aims at introducing the notations used, together with the derivation of the two-
component mixture model implemented and tested in Chapters 3 and 4. It does not claim to be an
exhaustive review of the literature about two-phase flow modeling that one can find in [114, 177]
but rather, it shall stress the underlying set of hypotheses and modeling choices to draw the scope
of this model. Due to the proximity of the mixture model with single-fluid formulation, the latter

will first be introduced before highlighting the additional terms brought by the former.

1.1 From the local instant formulation to the mixture model

1.1.1 Diversity and complexity of multicomponent flows

Multiphase flows are encountered in a wide variety of situations from power (boiler, pump) to
process (fluidized beds, chemical reactor, porous media) systems, from transport (pipeline, hy-
drofoil) to lubrication facilities, from environmental (sedimentation, cloud, dune, landslide) to
biological (blood, breathing) domains [176]. While the same set of transport laws rule those dif-
ferent flows, it leads to a large range of flow behaviors that can be classified with respect to the
nature of the phases (solid, liquid, gas, plasmas), their miscibility and the flow topology gener-
ated (three main classes: separated, mixed/transitional and dispersed flows). In the following,
we will consider an isothermal flow consisting of two immiscible weakly compressible viscous

fluids denoted o and 3 without phase changes.

1.1.2 Local instant formulation

The analysis of multicomponent flows can be performed with the standard approach of con-
tinuum mechanics: the domain of interest €2 is divided into single-phase regions with moving
boundaries. The multiphase flow problem therefore corresponds to a set of standard differential
balance equations in each region complemented by jump conditions between phases and bound-
ary conditions: this problem is the local instant formulation, being expressed as a function of
local instant variables. The application of mathematical tools detailed hereafter relies on a suf-
ficient regularity of the variables. The practical use of this formulation remains limited to the
study of separated flows or single/small number of bubbles or droplets [45, 48]. The complexity
stems from the multiple deformable and moving interfaces, the fluctuations due to turbulence
and interface motion, the large discontinuities of fluid properties at interfaces. It proves to be
hard to tackle and prevents many mathematical developments or direct computational applica-
tion. However, this formulation is the breeding ground of the macroscopic two-phase flow models

generated by proper averaging processes detailed in this chapter.
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1.1.2.1 Single-phase balance equation

Let us introduce the phase density p®, the flux J¢, the body source ¢ and a quantity per unit
mass ¢¥*. The general integral balance states that the temporal variation of p®1“ in a material

volume V,,, depends on the flux through its material boundary .S;,, and the body source [177]:

d

— piYedV = —7{ n® -Jads+/ pEptdV (1.1)
dt ‘/TYL m m

where ¢ is the time and n® is the outward-pointing unit normal vector. Some mathematical

relations will be of practical use in the following. Let us consider an arbitrary C' field F.

Theorem 1.1.1 (Leibniz’s rule) For an arbitrary control volume V (t) bounded by the surface

S(t) of displacement velocity v -

r
4 de:i/ OF v 4 Fo-nds (1.2)
dt Jv ORL S(t)

Theorem 1.1.2 (Reynolds transport theorem) Applying the Leibniz’s rule 1.1.1 to the material

volume V,,, delimited by the material surface Sy,

d oF
— FdV = —d Fv® - -nd 1.3
dt/vm Vv /Vm 5 V+7§m v - ndS (1.3)

where v denotes the velocity of a fluid material point.

Theorem 1.1.3 (Green theorem)

(Avr—ﬁme (1.4)

Applying these theorems to the relation (1.1) leads to the differential balance:

8po¢¢o¢
ot

+ V- () = —V - I p%° (15)
One can then deduce the conservation equations:

+ Mass conservation (¢ = 1, ¢¢ = 0, J* = 0)

ap”
- t V- (") =0 1.6
+ Momentum conservation (¢ = v¢, ¢ = g, J* = —X)
8pa’lja (63N e% « (07 e (e
+ V- (p*v*@0vY)=-Vp*4+ V. -T+ p% (1.7)

ot
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where 3% = —p®I 4 T is the Cauchy stress tensor depending on the phase pressure p©,

T is the shear stress tensor and g is a body force, generally the standard gravity.

Constitutive relations We now need a proper set of constitutive equations that forms a math-
ematical model for the response and behavior of certain groups of fluids. For the stress tensor,
a mechanical constitutive equation is required. We will work in the framework of Newtonian
fluids as the fluids considered in this work are generally air and water, so that the shear stress

tensor T is linearly linked to the strain rate tensor s through:
T = \*V - 0T 4+ 248 (1.8)

where ¢ is the dynamic molecular viscosity, A = (* — % ©® is the second/volume viscosity
with (* the bulk viscosity and s is defined as:

(Vo +' Vo®) (1.9)

N

s¥ =

where the superscript ! denotes the transpose operation. Under the Stokes hypothesis, we will

neglect the second viscosity contribution [87].

The second constitutive equation is the state law. In the standard WCSPH (Weakly Compressible
SPH) approach, the flow is considered as barotropic and the pressure is calculated based on the
density values, using the Tait equation of state (adiabatic form of the stiffened equation of state

for liquids) as reported in [88] and commonly used in SPH [266]:

o — PB(eD)’ (pa)ga .
£« 1%}

where p{ is a reference density (1000 kg/m? for the water and 1.23 kg/m? for the air), £ is the

+ p% (1.10)

polytropic index (generally taken to 7 for water and 1.4 for air), c is the speed of sound at p® =
pg (physical values are 1480 m/s for the water and 340 m/s for the air) and p% is a background
pressure (numerical parameter to avoid the occurrence of spurious negative pressures and voids).

One can then deduce the local speed of sound c*:

o [0 /<pa>5a_1
C = — = ( —_— (111)
ap> O\ \p§

This speed is chosen so that only slight variations of the density, below 1%, are allowed. Intro-

ducing the material derivative:
do O
o = a, 1.12
a oY (112)
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The momentum equation (1.7) writes:

d,v®

dt

1 1

Dimensionless numbers By introducing reference quantities fj for each variable f and non-

dimensionalizing them under the form f, = f - fo, this relation becomes:

da v 1 11 1
L SR A S 1.14
dt e Pt Re p¢ T Fr2 (1.14)
where Re = poLoUy/po is the Reynolds number (ratio of inertial to viscous forces), Fr =

VUZ/ (Log) is the Froude number (whose square is the ratio of kinetic energy to gravitational
potential energy) with g = |g

, €5 = g/g and we have assumed py = poU¢Z (i.e. Euler number
Eu=po/ (poU3) equal to 1) and:
a—#(a)f‘”—l (1.15)
Py =42 ¢o Px .
where Ma = Uj/cg is the Mach number (whose square is the ratio of inertial to compressibility

forces).

1.1.2.2 Interfacial balance

Sharp changes of variables across interfaces between phases require writing specific balance
equations to rule the exchanges of mass and momentum. Let us underline that a wall forms a
special case of interface. For the sake of legibility, we do not detail the reasoning to write those
conditions, that consists in deriving a balance equation on a control volume encompassing the
interface. As we do not consider phase changes, there is no mass transfers across interfaces so
that the interfacial mass balance is not used. For the interfacial momentum balance, in absence

of mass transfers, it writes:

Z n* . 2¥ = 2Hg,09m + t, AV (05) (1.16)
ke{a,B}

where the right-hand side accounts for surface tension og effects through the normal force due
to the mean curvature Hg,, (positive if the interface is convex with respect to phase «), the local
normal n pointing from « to 3, and the tangential force generated by the surface tension gradient
in a surface curved coordinates (with the hybrid vector ¢;, the surface metric tensor A" and the
covariant surface derivative () j, see [12, 177] for more details). If one neglects the surface tension
and projects the relation along the local normal n and the tangent T vectors to the interface, one
gets:

(pa—p*8>n—n‘('ﬂ‘a—']l"3>:0 (1.17)
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- (Ta _ Tﬁ) -0 (1.18)

1.1.3 Multifluid models

The complexity of multiphase flows was highlighted in the preceding section. However, the
prediction of small-scale interfaces might not be either possible or desirable, e.g. in sedimenta-
tion tanks, cyclone separators, heat exchangers [98]... Multifluid approaches were developed to
model them [159]. To avoid postulating macroscopic equations without references to the mi-
croscopic behaviour, an averaging process is required [111]. Temporal or spatial averages can
be interpreted as a low-pass filtering getting rid of local instant fluctuations originating from
turbulence and deforming interfaces while an ensemble average considers a two-phase flow as
a particular sample of a random process [105]. Statistical information on the fluctuations will
nevertheless be required to model the macroscopic behavior conveniently. Indeed, the interfa-
cial structure will deeply influence the macroscopic flows, e.g. the wave dynamics in a separated
flow, the bubble coalescence, collapse, nucleation in a dispersed flow. We will focus here on
an Eulerian average, naturally consistent with observation and instrumentation, with time and
space considered as independent variables. The averaging has a fundamental consequence: the
two-phase medium turns into two continua coexisting simultaneously at each point, the interface

being no longer explicitly tracked.

The averaging operation This process consists in introducing the averaging operator, de-
noted by an overlining © — 7, a characteristic function x® (x, t) that will identify the presence
of component « at position « and time ¢ (equal to 1 if the phase « is present, 0 otherwise), and
writing conveniently the Leibniz (1.1.1) and Green (1.1.3) rules in this new framework to formally
switch averaging and differential operators. The average operation applied to the characteristic

function will precisely give what is usually referred to as volume fraction a:

a=yx (1.19)

Let us underline that the choice of average (temporal as in [176], spatial as in [383], combinations
of them as in [112] or ensemble as in [114]; in an Eulerian, Lagrangian or Boltzmann statistical
framework) influences the definition of the averaged quantities that are used. The temporal
or spatial dimension of averaging is considered large enough to smooth the local fluctuations
of the properties and small enough compared to the scale of variability of the macroscopic flow
(spatially the size of the flow domain, temporally the scale of unsteadiness). Assumptions behind
each of those approaches, regarding the stationarity, homogeneity or statistic uniformity of the
flows to which they are applied, shall condition their area of applications and the interpretation of
the variables, e.g. the particular nature of the local time fraction (for a temporal average), volume
fraction (for a volume average) or the expected value of the ratio of the volume of component « to

the total volume (for an ensemble average). Drew and Passman [114] highlighted links between
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the usual averaging approaches under assumptions of ergodicity or homogeneity of the flow. A
convenient consequence of those averaging processes is nevertheless their leading to formally
equivalent sets of equations of motion, so that we will not give further details and refer the reader
to the extensive treatment of this question in the cited literature. An important property that will

be useful in the following is the saturation condition:

Y a=1 (1.20)

which states that the domain is fully occupied by the different present components. Another
variable of interest to describe the topological structure of the interfaces is the interfacial area
density of component a:

A* = —po . Vx> (1.21)

It refers to the expected value of the ratio of interfacial area in a small volume to the volume

itself, and thus has the dimension of the inverse of length.

Component and mass weighted averages From a general field F’ associated with the two
components, considered to be continuously differentiable everywhere but in the interfacial re-
gions, we define the associated field of a-phase F'* = x“F'. From the averaging process, one

can define:

+ The component-weighted average:

. af
Fo =X (1.22)
XO/,

« The mass-weighted (or Favre) average [124]:

. aF _
Fo¥ = X and T =

X“p

(1.23)

[

As a result of the average properties, one can write:
= - ==X
F=) Fr=) oF® (1.24)
(e «

Assuming the smoothness of mean values, the average operator is idempotent. Fluctuations of
the variables resulting from turbulence or component motions due to deformation of the inter-

faces are defined with respect to the mean field through:

F'=p_-F" (1.25)

Let us define mixture quantities, component-weighted or mass-weighted depending on their na-
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ture:

+ The mixture density:

p=> = ap™ (1.26)
(e} o

+ The mass fraction:

Ha
yo =2 (1.27)
D

that accounts for the prominence of a-phase mass with respect to the mixture mass.

« The mixture velocity with respect to the center of mass:
pv 1 1 - _
oXP = ’OT == Zpava == Zpa ’l)axp _ Zya,vaXP (1.28)
p p [e% p « [e%

+ The mixture velocity with respect to the center of volume, or mixture volumetric flux:

=Y av™ (1.29)
«
« The mixture flux:
I=Y aJ@" (1.30)
(e}
« The mixture source term:
o= v (1.31)

«

To study the behavior of the two-phase flow, several velocity fields can prove to be useful:

+ The relative mean velocity:

v =X B (1.32)
+ The relative velocity with respect to the mass center or diffusion velocity:
u® =’ _pxp (1.33)
« The relative velocity with respect to the volume center or drift velocity:
je=v""—j (1.34)

These quantities can be linked through relations detailed in Appendix E. Within this framework,
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the average convective flux of a mixture for a scalar quantity ¢ writes:

T=piv = Y, 0000 =Y, ap7 07 o7 + 3, ap e

(1.35)
R S

—XP_XP — X—XP—
= Py T+ ap e

Where J7 = WX correspond to the covariance of the turbulent flux. One can identify
three transport mechanisms: the first due to mixture properties, the second due to the macro-
scopic phase diffusion and the last due to statistical two-phase effects and turbulent fluctuations.
Equipped with these variables and the adequate theorems of interchange of the derivation and
average operators (dependent on the averaging operator) that generate interfacial terms, one can

write the mixture general balance:

95 &Xﬂ
ot

+V. (ﬁ EX%XP) =V - J+50 +1 (1.36)

and the balance equation for the a-phase writes:

80zp7‘x @xp

StV (osz"X WXPFX”) -V [a (JTVX 4 J%)} Lap® 56 I (137)

where I and I, interfacial sources for the mixture and the a-phase respectively, are related
through I = >~ I and will be addressed in the Section 1.1.5. The two-fluid model and the
mixture model can now be derived from these balance equations. For the sake of legibility, we
will now drop the averaging overlining. One can refer to the present paragraph to check the
kind of averaging applied to each mean field. We will work throughout this work with averaged
fields.

1.1.4 Two-component models

Two different kinds of models can be derived from these balance equations:

+ Two-fluid models. Each phase is described by a continuity and a momentum equations.
Interfacial interactions introduce additional terms in these equations. They are closed by
constitutive laws, depending on the flow regime, but their determination can prove to be

tedious;

« Mixture models. The flow is seen as a single-fluid flow with one continuity and one mo-
mentum equations that rule the evolution of mixture quantities complemented by an ad-
ditional equation for the mass conservation of one phase. Additional terms linked to the
relative velocity between phases, computed through a closure law depending on the flow
regime, appear in these equations. In the absence of relative velocity, one gets a so-called

homogeneous formulation.
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These models are of common use when one phase is dispersed in another phase considered as

continuous. In such a configuration, some specific simplifications and closures can be made.

1.1.4.1 Two-fluid field equations
The balance equation (1.37) can be applied for each phase:
+ Mass conservation (¢ =1, ¢ =0, J* =0, J$ = 0, I* = 0)

dap®
ot

+ V- (ap®v®) =0 (1.38)

There is no interfacial source term due to the absence of phase change in the present work.
« Momentum conservation (¢ = v%, ¢ = g, I* = =X, J§ = T}, I* = M?)

T-FV'(ozp v @vY) = -V (ap®) + V- [a(T* + TF)] + ap®g + M“ (1.39)
M denotes the a-phase interfacial momentum transfer. Under the assumption of New-
tonian fluids and considering that densities and viscosities are constant over the averaging

domain, the viscous tensor writes [177]:
T = pu® (Vva +! Vo + 2]D>a) (1.40)

where D stands for an interfacial extra deformation tensor resulting from the fluctuating
component of the phase velocity (the average operator applied to (1.8) generates an inter-
facial term linked to the deformations of the interface). In absence of phase changes, for

sufficiently regular interface motions in a dispersed regime, one can write [177]:

D*=0 (1.41)
1
28

where « is the dispersed phase. Regarding the turbulent viscous contribution, we have:

DP = (VB@v" +v" @ Vp) (1.42)
O I o I 0 e i e pa
T7 = —prv"* @ v =—prv'*®uv =—p°R (1.43)

———XP
where R® = v @ v is the Reynolds stress tensor that needs to be modeled: the

turbulence closure is addressed in the Section 1.2.

1.1.4.2 Mixture field equations

The mixture is now considered as a whole. One can apply the mixture balance equation (1.36)

for continuity and momentum equations, and complement it by a diffusion equation to track
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concentration changes:

« Continuity (v» =1,¢ =0,J = 0)

op B
n +V . (pv)=0 (1.44)

+ Mass conservation for one phase stemming from (1.38):

dap®
ot

+ V. (ap®v) = =V - (ap®u®) (1.45)

« Momentum conservation (¢ = v, ¢ = g, J] = —X where ¥ = TV + T}, 4 T%, I = M):

0
aL:JrV-(pv@v):—Vp+V-(T“+"]I‘}3+T”T)+pg+M (1.46)

where M denotes the mixture interfacial momentum transfer and cancels out if surface
tension is neglected as highlighted in Section 1.1.5 so that no interfacial term appears in this
mixture momentum equation. The other quantities are the mixture pressure p = ) ap®,
the average viscous stress TV = ) aT¢, the diffusion stress T}, = — > ap®u® @ u®

and the turbulent stress T = — > ap®v’™ @ v"e.

The mixture model can be deduced from the two-fluid model by summing the mass and momen-
tum equations respectively: summing (1.38) for both phases leads to (1.44) while summing (1.39)
gives (1.46).

1.1.5 Interfacial momentum transfer

Molecular fluxes at the interface form source terms for mass and momentum equations. With-
out phase changes, only the interfacial momentum source resulting from stresses acting on the

interface remains. It is defined as [114]:

M®= -3 Vy° (1.47)

Let us introduce the interfacial pressure p$* and viscous stresses T§' to separate the mean field

from local effects in the interfacial force associated to the interface ¢ of interfacial area density
A

_ pn® - Ve
= e

The interfacial momentum source becomes:

Tana . VXa

& T = 1.4
D; and i e (1.48)

M®*=piVa—-T} Va+ M" (1.49)
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where the interfacial extra momentum source M"® accounts for local surface forces resulting
from pressure and shear stress deviations from interfacial average values: it includes drag, lift,
virtual mass and transient effects. It is usually assumed that this term can be approximated as a
linear combination of the constitutive relations for each individual effect [113]. In the following,
we will only consider the drag contribution. For a two-phase flow with a dispersed phase a in a

continuous phase (§ with constant surface tension, common assumptions are [112]:
Py =p and pf =p; —2Hg,05 (1.50)

T¢ =T and T =T/ (1.51)

Within this framework, if M"® = — M5, given the relation (1.20), one gets:
M = M+ M"? = —2Hg,05 (1.52)

so that the sum of interfacial momentum sources cancels out in absence of surface tension. Be-
fore going any further, we shall write an appropriate closure for the tensor linked to velocity

fluctuations T7.

1.2 Turbulence modeling

For high Reynolds numbers, as one can encounter on hydraulic structures, Navier-Stokes equa-
tions exhibit a chaotic behavior, unsteady and of complex structure, that corresponds to the
turbulence. The turbulent structures cover a wide range of sizes that makes the system a full
multiscale problem complex to solve. As detailed in Chapter 4, air entrainment and turbulence
are deeply linked. It is therefore of prime importance to include turbulent effects in the model.
The Direct Numerical Simulation (DNS) solves all these structures, at the price of very small spa-
tial and temporal steps and hence prohibitively high computational cost, not admissible for in-
dustrial applications. Therefore, turbulence modeling is required. However, writing constitutive
relations for turbulent fluxes is a hard task, even for single-phase flows. Motion of the interface
and induced turbulence form part of an increased complexity in two-phase flows. Large-Eddy
Simulation (LES) models were developed, representing the turbulent eddies down to a given scale
and employing a sub-grid model to take into account the effects of smaller eddies. This interme-
diate approach remains computationally expensive on large domains. Once the Navier—Stokes
equations are treated by a low-pass filter, one can define a turbulent viscosity thanks to a sub-grid

scale model first introduced by Smagorinsky [334]:
Ve = (CsAg)* V250 : s (1.53)

where (' is a constant usually taken around 0.1 and Ay is the size of the spatial filter. The LES ap-

proach is more and more used, allowing modelers to deal with more complex flows, but remains
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too expensive for the hydraulic applications considered here. A common practice in turbulence
modeling is to work with Reynolds-averaged models: the averaging process indeed generates a
Reynolds stress tensor (1.43) that requires modeling. The compressible two-phase flow frame-
work led us to work with the Favre average instead of the Reynolds average of common use in
single-phase incompressible flows: it has some modeling consequences that will be highlighted.
Two modeling approaches exist: either propose a phenomenological closure as illustrated by the
mixing length approach of Prandtl or solve additional dynamical equations describing the turbu-
lent transport through higher moments of the momentum equation. Heuristic closure is though

still needed as non-closed one-order-higher moments always appear.

1.2.1 Eddy viscosity models

Eddy viscosity model consists in a first-order closure that accounts for the turbulent contribution
through diffusion due to the turbulent eddy viscosity v prefigured in [33] and an additional
pressure induced by the flow through the turbulent kinetic energy defined as:

1 1—
ko — 5” (R*) = 5U//a . U//axp (1.54)
This model reads: 5 9
R = —2u3s* + §1/% (Vv I+ gko‘I (1.55)

The turbulent kinetic energy and the eddy viscosity shall be modeled as well. The turbulent
kinetic energy transport equation can be deduced by taking the trace of the Reynolds transport
equation deduced from the higher moment of the momentum equation.

1.2.2 The k — € approach

In this work, we use a two-equation turbulence model: the k£ — € model developed by Launder
and Spalding [206] with the model constants presented in Table 1.1. The average operators will
appear in this section for the sake of precision.

1.2.2.1 The incompressible formulation

For an incompressible single-phase flow (we drop locally the « superscripts), it writes:

ok

ot

1 1 1
+v-Vk=--V_. <2p(v’~v’)v’+p’v’—T-v’> —v v :5—-T:Vv (1.56)
p p

where the mean strain rate tensor is denoted s and the single prime notation refers to the fluc-
tuation with respect to the Reynolds average. One can identify three different contributions in

the right-hand side of this relation:
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« The first term corresponds to the turbulent transport of kinetic and potential energy and

the molecular diffusion. It is modeled through a diffusion term:

1 ] —mi— — 1
--V. <p(v’ o) v +pv —T- U’) =-V. [(u + NT) Vk} (1.57)
p 2 p o
 The second term is a production term defined as P = — R : s and can be approximated by

using the eddy viscosity model (1.55) and neglecting the divergence contributions:
P = vpS? (1.58)

where the scalar mean rate-of-strain is defined as S = /25 : S.

« The last term refers to the dissipation of turbulent kinetic energy and will be denoted €

defined as: )
e=-T: Vv (1.59)
p
The relation (1.56) becomes:
ok 1
+'v-Vk:V-[<,u—|—'uT>Vk‘]—|—IP’—e (1.60)
ot 1% Ok

In the k¥ — € model, the dissipation is computed thanks to a transport equation homogeneous to

the turbulent kinetic energy counterpart:

86 _ . 1 ur €
o +0-Ve= pV [(u+ p > Ve] + . (Ce, P — Cee) (1.61)

Let us underline that this relation is not theoretically derived and relies on empirical determina-
tion of the constants. According to the Kolmogorov dimensional analysis [191], the eddy viscos-
ity depends on & and e. The dependence is achieved following the relation:
k‘2
v = Cp— (1.62)
€
where C), is the Prandtl-Kolmogorov constant. Due to over-estimations of the turbulent kinetic

energy for high values of the strain rate, the production term is limited at high strain rate fol-

lowing Guimet and Laurence [154]:

P = min (, /CLkS, VTSQ> (1.63)
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Table 1.1: Constants of the £k — € model.

Cy Cp o | e | Ca | Ce K
5210091013144 | 192 | 041

Moreover in this model, eddies can be arbitrarily large, so that an increase of the dissipation of

turbulent kinetic energy is introduced following Yap [394] by modifying the C,, coefficient:

CY = max (C’ — max [0 0.83 (LT — 1> (LT>2] 0> (1.64)
€ €2 ) e Lc Lc ) .

3
where L, is a characteristic size of the flow and L7 = C} k3/2 /€ is a measure of the size of
the large eddies. In this work, the density can undergo significant changes due to the mixture

presence. One should therefore rather consider the compressible version of the k£ — € model.

1.2.2.2 The compressible formulation

In the compressible framework, a Favre-averaged formulation (l% = %v” 0" andé = %’I[‘ : Vo)
in place of a Reynolds-averaged formulation (k = %v’ -v'and € = %T : V' resulting from a
statistical average). The turbulent energy equation [76] is modified accordingly:

ok

A 1
IV . VE =
ar "

v - <p('v” . ’U”) ,qup + p"v” —T- ’U"> V'R ,qup . VgXP

2

D= D=

T Vo'~ Lo Vot v o
p P

(1.65)
Please note p’ = p — P is defined in a Reynolds-average sense whereas v = v — ©X” is defined
with respect to the Favre average (1.25) (and therefore v” # 0). If we put aside the discrepancy
of averaging, compared to the relation (1.56), one can notice the appearance of the last two
terms in the second line that correspond to the mean pressure work and the pressure dilatation
correlation generated by non solenoidal velocity fluctuations. Moreover, another difference is
the dissipation term that comprises of a solenoidal and dilatation parts. Following Vallet et al.

[358], in their framework of mixture model for two-phase flow, one can compute:

w1 1
o = "y B’ </3 B a) (1.66)
PP p
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— o XP : : . . .
where v”YP""" also appears as the dispersion term in transport equation of the mass fraction

and is modeled through a gradient law:

— i XP X
sy = P Gys (1.67)
Scr
Similarly to the incompressible case, one can write on the same model an equation on the dissi-

pation:

o¢ 1 f___
e ve = oV KWF‘;T) Vé} —C’q%v”@)v”xpzvgxp
2 ‘ (1.68)

El— __ €l———
- Cez? - 063;51)” ’ Vp + Ce4z%plv v

where it has been assumed that the non solenoidal part of the dissipation was negligible.

1.2.2.3 A two-phase k — ¢ model

Another part of the complexity arise from the two-phase nature of the considered flow. Some
literature is devoted to the development and test of £ — € models for two-phase flows following
Elghobashi and Abou-Arab [118]. Politano et al. [295] used a classical k — ¢ model with mixture
quantities and added production and suppression terms due to modeled bubble-induced turbu-
lence following the model developed by Kataoka et al. [184] for dilute bubbly flows in pipes: those
terms proved to have significant impact on the bubbly spillway surface jet they studied. Berto-
dano et al. [22] presented a two-phase k —e model for bubbly flows assuming linear superposition
of shear-induced and bubble-induced turbulence, further used by Lahey Jr. [201]. Troshko and
Hassan [350] proposed a two-phase k£ — € model for bubbly flows deriving from the exact turbu-
lent kinetic energy equation of a two-phase mixture and included wall functions (logarithmic law
with constants depending on the flow parameters) accounting for the two-phase nature of the
flow. Those models assumed a dilute bubbly phase and got reasonable agreements in bubbly pipe
flows. As noted in [350], when gravity dominates in a bubbly flow, the instant relative velocity
is primarily aligned with the gravity so that the fluctuations of bubble motions will enhance the
component of the liquid velocity fluctuation aligned with gravity: this anisotropy is not taken
into account by such eddy viscosity models. However to avoid to increase the complexity of the
modeling with an unsure gain in accuracy due to fundamental weaknesses of these closures, it
appears safer as a first approach to use the £ — € model directly for the mixture and avoid to
combine phase quantities. This approach may miss some coupling terms: buoyancy effects are
nevertheless included through the term G = —v” - Vp completed by the relations (1.66) and
(1.67). Consistently with this approach, following Simonin [332], Viollet and Simonin [370], this

term derived from the instantaneous fluid momentum equations is related to the relative velocity
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expression and, anticipating with the notations introduced in the following section, writes:
G=ayV" V¢ (1.69)

where V7 is the average relative velocity (1.94) (to distinguish from the relative mean velocity
introduced in (1.32)) and V¢ is a mean drift velocity (1.97). In the following, as in [50], we will
neglect the pressure-dilatation correlation, last term of (1.65) and make an additional approxima-
tion: the volumetric flux 7 will replace the mixture velocity v involved in the advection and strain
rate terms, neglecting the relative velocity contribution detailed in the relation (E.5). Omitting

from now on the hat symbols, the system becomes:

1 .
%+j.vk:V.[<M+“T>Vk]+IP’J+G—6 (1.70)
ot p Ok

0 5 Ve=2v. [0+ ") We| + £ (CuP + CuG - Cuye) (1.71)
at " J p T kO @ “ '

The C¢; term weakens turbulence in case of stable stratification. We will take it equal to 1 if

G < 0 and 0 otherwise. The production term [P/ is computed following (1.63):
PI = min (/CukS?, v (57)%) (1.72)

but the strain rates depend on the volumetric flux j rather than the mixture velocity v, neglecting

the relative velocity contribution:

S =V2si:si with s = (Vj+tVy) (1.73)

N

1.2.2.4 k — ¢ model boundary conditions

Due to the presence of walls denoted 02, the turbulence becomes anisotropic and shearing
effects resulting from the high velocity gradient to fit the wall no-slip condition increase the
production of turbulence. The development of boundary layers is pivotal in many air entrainment
industrial applications so that the near-wall turbulence must be properly modeled. To avoid the
need of a refined discretization near the wall, semi-empirical relations can be used to introduce
wall functions: in the Lagrangian framework, an Eulerian mean velocity with non-zero tangential
value is set at the wall to get the adequate wall shear stress and used for the rate-of-strain and

viscous force computations. Let us introduce 3 the dimensionless distance to a wall defined as:

+ _ Yux
v

(1.74)

where y is the wall normal coordinate, v a mixture kinematic viscosity to be defined (as we con-

sidered the mixture as a whole, but this is also an approximation as the usual wall law considers
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a single fluid) and u, the friction velocity defined as:

-

2
Uy =v (1.75)
i dy lpq,
with j; the wall tangential velocity. The shear stress at the wall follows:
Ty = —puf‘]—,‘ (1.76)
J

and the friction velocity is assumed to satisfy the logarithmic law for a smooth velocity profile:

_
= )+ (1.77)
Uy K

where £ is the Von Karman constant. Following the work of Leroy [212], Neumann conditions
derived from the equilibrium P = ¢ in the logarithmic zone for fully developed turbulence are

used in the second order differential operator computation close to the walls (small y):

V- nlyg, =0
b (1.78)
kY2

VE' n|aﬂw - —

At an imposed velocity boundary, the turbulent kinetic energy and its dissipation are imposed
whereas at an imposed pressure boundary they are computed through an homogeneous Neu-
mann condition. Finally, on free surfaces, we will consider in this work that an homogeneous
Neumann condition is fulfilled for both fields: while legitimate for the turbulent kinetic energy

due to the absence of energy flux, the free surface condition for the dissipation is questionable.

1.2.2.5 Limits of the £ — ¢ model and possible variations

In addition to the limits already detailed with respect to the compressibility and two-phase be-
havior inherent to the chosen implementation in this work, the k& — € model finds its limitations
for non-inertial flows or in case of streamline curvature effects. However it is of wide use for
industrial applications since it deals with enriched physics compared to a mixing length model
and appears as a good starting point for the integration of turbulence. Higher order models can
be used, with transport equations on the Reynolds stresses, as done for liquid jet atomization
through an air-water mixture model in Carrasco [50], Luca et al. [229]: such modifications will
be left to further work if the numerical results clearly highlight some deficiency. Many variations
are available in the literature. Several references [214, 281] dealing with air entrainment cases
considered the realizable k¥ — ¢ model developed by Shih et al. [329] in combination with the
mixture model approach. Nikseresht et al. [281] highlighted that among the k — ¢ models, the
Re-Normalisation Group (RNG) approach following [389] performed better in the cases they con-

sidered. Behzadi et al. [19] developed a mixture k — ¢ model able to work at all volume fractions
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of the dispersed phase. Even though numerical results might benefit from these modifications
of the standard model (e.g. regarding the backward facing flows appearing in the stepped spill-
way treated in Chapter 4), the additional modeling effort required to include such approaches in
the SPH model (adapt boundary terms, include variable density effects) led us to firstly use the
standard approach given by equations (1.70) and (1.71).

1.3 Volume-weighted mixture model

1.3.1 Choice of variables

As seen before, several choices of variables can be made for the phase weighting coefficient
(volume fraction or mass fraction), mixture velocity and relative velocity. This choice can be
driven by two main aspects: a natural way of writing the equations or expressing a closure arising
for a certain definition of the variables (mixture viscous efforts in terms of volumetric flux as at
the end of Appendix E, closure on the drift velocity [177]) and a friendly writing of the equations
in view of their numerical discretization. A common approach is to retain the previous system

with the variables (o, v,u®), now written in Lagrangian form where the material derivative

refers to: D 5
—_— = = -V 1.79
Di ot (1.79)
The system becomes:
Dp
_r_ _ . 1.80
Dy pV v (1.80)
D (04
ar _ —ap*V v -V - (ap*u®) (1.81)
Dt
Dv 1 1 1
— =—=-Vp+ -V - (T"4+TH +T% -M 1.82
T, g P+p (T + Tp + T)+Q+p (1.82)

Another common practice is to write the system using the mass fraction (Y, v, u®), that changes

the phase mass conservation equation into:

DYy«
Dt

_ _;v - (pYu) (1.83)

Even though this relation appears simpler at first sight, the numerical treatment of the right-hand
side of this relation proved to trigger some conservation issues at high density ratios, due to the
lack of symmetry between phases combined with the weighting by the density that significantly
differs in both fluids. To have a symmetric writing of the equations and get rid of the density
weight in the phase mass conservation, the choice of variables («, 7, v") is enticing. However,
deriving the consequent system from the two-phase equations without adding too much com-
plexity to the system (temporal and spatial derivatives) requires an additional assumption: we

will consider constant phase densities as in the Volume of Fluid (VoF) approach [165]. Let us
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underline that the material derivative is denoted:

d 0

GtV (1.84)

The derivation is made in Appendix E and leads to the following system:

V-j=0 (1.85)
d
d%‘ = -V (afv") (1.86)
dj 1 1 I ' 1
d—;:—;Ver;V-(T3+T7D+T{F)+g+;M
o B oy (1.87)
+aﬁp —P <81; +va~V'va—vﬂ~Vvﬁ>

where:
T = p(Vji+t Vi) +ap (V(Bv")+ V (Bv")) — B’ (V (av”) +1 V (av”))
+2 (ap“D* + BuPDP)
T, = pr(Vji+iVj) — 2okl
+apg (V (B07) + V (Bv7)) = Buf (V (av”) +' V (av"))
T, = -V (afv" @v")
(1.88)

where we defined the viscosity:
p=oau®+ B’ (1.89)

A mixture viscosity The definition (1.89) shall not be seen as the expression of a mixture
viscosity, as some additional viscous terms appear. In the literature of mixture models, it is a
common use to introduce apparent mixture viscosity [239]. Moreover, instead of introducing the
combination of dynamic viscosities, one could make a similar combination of the kinematic ones,
but Chanteperdrix [75] does not find a final conclusion on this point. Let us note that the chosen

definition here is somewhat natural in the derivations.

The volume fraction equation The relation (1.86), if we except the relative velocity term, is
somewhat similar to the Volume of Fluid approach proposed by Hirt and Nichols [165] or the
topological equation introduced in 7-equations models for two-phase flows as detailed by Baer
and Nunziato [16], neglecting compressibility and thermodynamical effects. A volume fraction
equation has been proposed by Chanteperdrix [75] and includes additional terms due to com-

pressibility effects that might be considered in further studies.
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Volume-weighted models in the literature FEarly works with volume-weighted mixture
models with relative/drift velocity were performed with monodimensional® [373] or bidimen-
sional [404] two-phase mixture models at imposed kinematics (or drift-flux models) to study
pipe flows [105]. They were used more recently for example [280] for buoyant mixture flows to
take advantage of the divergence-free condition of the volumetric flux - interest already under-
lined by [176] - or [77] to handle dry granular materials in which one constituent (in that case
the voids) has a significantly lower density than the other. Brethour and Hirt [38] implemented a
mixture model in the commercial software FLOW-3D® with a relative velocity depending on the
pressure gradient and switching of dispersed phase definition depending on the volume fraction.
They gave the example of an oil-water dispersion. Solid-liquid-gas flows were studied with that

kind of approach by Bohorquez [30].

At this point, compared to the mass-weighted formulation, the only additional approximation is
that phase densities are constant. Due to the choice of variables, we see that an additional term
arose in the fourth line of (1.87). We are now going to further simplify this relation in view of

the physics considered and in order to have a practical way of solving this equation.

1.3.2 Mixture model for a two-phase dispersed flow at high density ratio

We consider a dispersed two-phase flow. Following Ishii and Hibiki [177], Manninen and Taivas-

salo [239], several common assumptions are made:

+ The phase « is dispersed within the continuous phase 3, so that one can use the closures
(1.41) and (1.42);

+ Alocal equilibrium of phases is reached over short spatial length scales so that we consider
that the last term of (1.87) is negligible;

« Surface tension effects are neglected, hence one can approximate M = 0;

« There is a mechanical equilibrium of partial pressures, giving p = p® = p°, as the pressure
relaxation time is generally small compared to the other characteristic times of the flow,

as illustrated in [200] in case of bubbly flows.

For the turbulent contribution, we make the additional assumption that the velocity fluctuations
are equal in both phases, yielding k& = k® = k. Under this set of hypotheses, and defining a

new pressure including turbulent fluctuations:

2
P=p+3pk (1.90)

'Let us underline that a monodimensional flow cannot exhibit mixed phases as shown by Landau and Lifshitz
[202]. We are here talking of monodimensional mixture models.
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The momentum equation finally becomes:
% - —;VP—i-;V- (’Irf'+1rg+’1r§) +g (1.91)
where
T = pu(Vi+' Vi) +1V-(a(u*—p’) [V (Bo")+' V (Bv)])
T, = pr(Vji+Vj)
+apg (V (Bo") +1 V (B0")) — Bl (V (av”) +1 V (aw"))
’JI‘{D = -V (afv" ®@v")

(1.92)

To work in a Lagrangian framework, we introduce an equation of advection accounting for the

resolution at moving points:

dr .
= (1.93)

where r is the position vector.

1.3.3 Relative velocity closure

To close the system, an algebraic relation substituting to one of the momentum equations (1.39) of
the two-fluid model and allowing us to compute the relative velocity is required. In this prospect,
we shall write a model of the interfacial momentum transfer term and deduce a relation on the
relative velocity. It is a common practice in two-phase flows to close this interfacial term with a

drag force [332]. Neglecting the fluctuations of the drag coefficient and averaging, one can write:
M® = —ayV" (1.94)

where V7 stands for the averaged value of the local relative velocity and, considering monodis-

perse spherical inclusions of diameter d%, the coefficient v writes:

~3Cp|VT|p”

proy (1.95)

where 7 is a hindering coefficient and Cp is a drag coefficient generally expressed as a function

of the dispersed phase Reynolds number:

B ‘VT‘dO‘

o
Re e

(1.96)

More details will be given when applying the model to physical cases in Chapters 3 and 4. The
averaged value of the local relative velocity V" can be expressed as the sum of the relative mean

velocity previously introduced v” and a mean drift velocity V¢ due to the correlation between
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the instant distribution of the dispersed phase and the large scale turbulent fluid motion. In the
limiting case of a null dispersed phase diameter, it can be shown according to Simonin [332] that

this dispersion term takes the form:

vi=_p3’ <Za - Vﬁﬁ) = —D;%ﬁzg (1.97)

with a diffusive coefficient Djaﬁ that we will address below. Ishii [176] suggests to handle with
care such a constitutive law, analogy of Newton’s law of viscosity or Fourier’s law of heat con-
duction. Indeed in those latter cases, they are applied to molecular transport phenomena, hence
microscopic diffusion, whereas in the suggested closure, the diffusion of phases is macroscopic.

The interfacial momentum transfer term then writes:

ap Va

M*® = —ayv" —yDy 5

(1.98)
To get an expression for the relative velocity, we can equate this relation with the derived for-
mulation on this interfacial term given in Appendix E (equation E.26) simplified by the above-
mentioned assumptions:

B _ o«
Mo =ap? P vp_ pva
P

~YPV - [a(p® + pg) (Vo + Vo) ] + YV - [6 (pﬂ + ug) (V’uﬁ +? Vvﬁ)}

— YAV . (2ap°D°) + YOV - (25/1/811))/3) + gaﬁ [(pa - p’8> Vi + (pa + pﬁ) kZﬂ
(1.99)
For the non fluctuating contributions, following [239], we consider that the pressure gradient
contribution is the leading term. Moreover, regarding the fluctuation part, following [46], we
will consider that it can be gathered in the dispersion term with a coefficient of the form 1/7@ /Scr
where Scr is a turbulent Schmidt number taken equal to 1. Simonin [332] suggested that under
a specific set of assumptions, it could indeed be identified by such a form. The resulting relative

velocity writes:
@ pf vhw
o =pl P gp 1 VO (1.100)
7P Scr af

If we add a hydrostatic hypothesis and neglect the turbulent contribution distinguishing p and

P, the relation becomes: 5
a_ B vE v

Pg—rY2 (1.101)
Y Scr af

We shall use this relation as a first approach due to numerical issues that will be underlined in

o = g

Chapter 3. Introducing this closure in the buoyant term of the £ — ¢ model (1.69) and approxi-
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mating the diffusivity of the drift velocity part by the eddy viscosity only, one can write:

B« B
G=""Pr "Typ.va (1.102)
p  Scr

1.3.4 Mixture state equation

For numerical reasons detailed in Chapter 2, a weakly compressible framework is considered. In
this prospect, the divergence free condition (1.85) is relaxed and a conservation equation on the
inverse volume o derived from the study of the deformation of an infinitesimal volume [364] is
written:

Z—Z =—-0V-j (1.103)
To close the system, another constitutive relation, the equation of state, is therefore needed to
compute the pressure field of the medium. The relation of common use in multifluid SPH (1.10)
was previously presented. For two-phase mixtures, Wood [385] derived a formulation of sound

speed valid for gas bubbles in a fluid at thermodynamic equilibrium [344] of the form:

-1
2 a B
PCyp = <p0‘ (ca)2 + pe (05)2) (1.104)

where ¢® and ¢ are the sound speeds in the fluids forming the mixture. Due to strong vol-

ume deformations around the dispersed phase, the sound speed undergoes a severe damping as
displayed on Figure 1.1. Chanteperdrix [75] developed a two-phase mixture model in which he
showed that the sound speed should write:

pcy = ap® (¢*)? + Bp° () (1.105)

to ensure the hyperbolicity of the system. The corresponding sound speed is also plotted on
Figure 1.1 so that one can notice the significant discrepancy between both formulations (com-
puted assuming constant phase densities). Let us underline that under the condition p® (ca)2 =
p° (CB )2 that will appear in Chapter 2 in the case of a unit polytropic index as a practical hy-
pothesis suggested by [86], we find ¢,, = ¢,4. This remark is of importance as in the numerical
implementation, the sound speed is used as a numerical nature as we do not resolve the acoustics,
and therefore becomes a parameter that the user should adequately define, allowing this equality
of sound speeds to be possibly fulfilled. We adapted the state equation to a two-phase mixture
with a unit polytropic index and a sound speed ¢ computed with Chanteperdrix [75] approach as
the significant decrease of sound speed of Wood [385] formula at intermediate volume fractions
triggered numerical instability due to a too high compressibility. The unit poplytropic index,
that amounts to a linearization of the state law, is a common assumption, as in [242] for exam-

ple. Within the mixture framework, it allows for a proper derivation of the mixture state law
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Figure 1.1: Comparison of the sound velocities following [385] and [75].

from phase state laws (1.10) for equal phase sound speeds (this equality being respected in the

applications made in this work). We linked the pressure to a ratio of volumes instead of densities:
o
p = pc? ( — 1) +pB (1.106)

where oy is the reference volume equal to 67—%, §r being the particle discretization length and
d the space dimension. This formula reduces to a one-phase formulation for null or unit volume
fraction: in single-phase SPH, when particle masses are constant, the ratio of densities p/pg
can be identified to the ratio of volumes o /0(. In the following, if not specified, we assume
that the background pressure pp is null (motivations for its choice will be given in Chapter 2)
and sound speeds are chosen so as to ensure that cF > 10max (Vmax, \/gTS) where Vijax is
the maximum mixture velocity and hg is the maximum height of the flow under gravity. As in
classical WCSPH, this ensures the compressibility effect is purely numerical: the Mach number
Ma remains below 0.1, and the relative density fluctuations proportional to Ma? stay within 1%

variations, as explained by Monaghan [262]. The local speed of sound at constant volume fraction

c= ,/@@ (1.107)
po 0o

will be written:

where pg = ap® + Bp°.

1.3.5 Geometry of the interface

Important approximations regarding the topological structure of the interface have been made
when expressing the relative velocity between phases in Section 1.3.3. Two given volumes of the
same size can have the same volume fraction but a completely different interface structure as

highlighted on Figure 1.2. The dispersed phase was assumed to consist in monodisperse spher-
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(a) Highly dispersed flow (b) Dispersed flow (c) Separated flow

Figure 1.2: Two-phase flow configurations with the same volume fraction.

ical bubbles or drops: such a choice highlights that the model cannot be able to capture regime
transition as observed in pipe flows for example. In the cases considered in Chapter 3, we also
considered separation cases for which physically, both phases can be dispersed. We therefore
operate a switch of dispersed phase definition at &« = 0.5, but this is a severe choice, as o does
not provide sufficient information to decide whether a phase is dispersed. In [253], switches be-
tween intermediate and dispersed phase models were made at « = 0.3 and o = 0.7. A useful
quantity has been previously introduced in (1.21) to get further insights into the local topology
of the flow: the interfacial area density. This interfacial area density can be followed with an

additional transport equation as suggested by Ishii [176]:

0A“
ot

+ V - (A%v;) = source term (bubble expansion, collapse, coalescence...) (1.108)

that requires additional closures for the interface velocity v; and the sources terms generated by

the interface deformation, or may be closed through an algebraic relation:
A% = A% (V" p%, u%, o, [Val, 05, 9) (1.109)

For a dispersed flow of spherical bubbles, one can link it to the volume fraction thanks to the

bubble Sauter mean diameter:

_ ba
-

that can be dynamically used for the relative velocity computation (recall A“ has an inverse

Dgp, (1.110)

length dimension). Introducing a factor C; accounting for the shape and size of the dispersed

phase (equal to 1 for uniform droplets or particles), one can write the mean curvature:

A()f

H.=
SCZ'O[

(1.111)

Other approaches, under the assumption of spherical dispersed phase, would be to introduce a
size distribution, and solve an evolution equation on the number density of spheres [114], or

introduce several classes of bubble/drop sizes, and possibly solve Population Balance Equations
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(PBE) to follow the evolution of the radii, due to coalescence, fragmentation... In the framework
of air-water flows, one can refer to the work of Carrasco [50], Luca et al. [229], Vallet et al. [358]
that focus on the atomization of a water jet and used a mixture model complemented by an
equation on the interfacial area density. In the present work, this degree of complexity was not
added and is left for further work.

1.4 Boundary value problem

To close the boundary value problem of the two-phase mixture flow, initial and boundary con-

ditions are needed.

1.4.1 Initial conditions

The imposition of initial conditions is generally quite natural, though it must be carefully made
numerically to avoid perturbing the computations, especially in presence of open boundaries.
We will mostly consider fluid initially at rest, except if the fluid velocity is easily known. For the
pressure field in a separated case, we can impose the hydrostatic profile, phase o being above

phase /3 with respect to the gravity:

p(c*)? (exp [ﬁ(H - z)} - 1) if 2 > hy
p(2) = pp +
pI exp [(cg)Q (hs — z)} + pP(cP)? (exp [(cg)Q (hs — z)} - 1) otherwise
(1.112)

with the pressure at the interface:

pr = p® (c)? (exp [QZ(H - hs)} — 1) (1.113)
(c)

where hg the free surface height and H the container height. However the compressible cor-

rection did not introduce significant discrepancies as the sound speeds are high (as testified by

Figure A.1), so that a linearization is a good approximation of the previous system. We therefore

settle for the incompressible profile:

pYg(H — z) if z > hs
p(2) = pp + (1.114)
p2g(H — hy) 4+ pPg(H — z)  otherwise

where 2 denotes the vertical position of the considered point.
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1.4.2 Boundary conditions

Boundary conditions are of complex prescription in numerical models, especially in the SPH
approach as it will be illustrated in Chapters 2 and 3. A boundary condition corresponds to
the imposition of values of the field (Dirichlet condition), its gradient (Neumann condition) or
a combination of both (Robin condition). Different conditions shall be considered whether we

consider a wall boundary 02, an interface between fluids 0¢2; or an open boundary 0€2,.

1.4.2.1 Fluid-wall interfaces

We will not consider surface tension in this work, so that we do not detail considerations for
contact lines. For an impermeable wall (i.e. no mass transfer), the normal component of the
velocity is continuous:

J Nlgg =0y 1 (1.115)

where v,, denotes the wall velocity. Furthermore, for a viscous fluid, a no-slip condition is applied

due to friction so that the tangential velocity is equal to the tangential velocity of the wall:
(=3 1)y =vw —vuw-n (1.116)
Those conditions combine to give a Dirichlet condition on the fluid velocity:
Flog = Vuw (1.117)

from which one can write an approximate condition on the dynamic pressure at walls following

Violeau [364] through an homogeneous Neumann condition:

d
oWy (1.118)
on |yq

where p¢ =p — pg - 7.

1.4.2.2 Fluid-fluid interfaces

The continuity of the stress across the interface leads to the continuity of pressure and shear

stress:
[Plog, =0 (1.119)

[Ty - n]yg, =0 (1.120)
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where the brackets denotes the jump across the discontinuity. For immiscible viscous fluids, the

kinematic condition states the continuity of velocities across the interface:

[Glog, =0 (1.121)

Let us underline that given the mixture model retained, the interface shall be treated implicitly.

1.4.2.3 Open boundaries

Thorough discussion for open boundaries is made in the corresponding parts in Chapters 2 and
3. One may want to impose a velocity or pressure profile through a Dirichlet condition. In case

of outlets, a Neumann condition on pressure can also be considered.

1.5 Summary

1.5.1 Choice of a mixture model

With appropriate constitutive laws, two-fluid models, as they use two velocities, might give more
precise insights in the study of two-phase flows. Indeed, in the mixture model, further assump-
tions are required to close the relative velocity, by neglecting advective and temporal variations.
The mixture model takes advantage of the ease of its formulation, as an extension of a single-flow
configuration with an additional equation and an algebraic closure that can be adapted depending
on the regime and phases considered, giving it versatility. It also appears as a first step before
getting to more complex two-fluid models. The counterpart of this simplicity is a restrictive
framework of legitimate application, namely dispersed flows with a strong coupling between
phases, in the scope of this work. Moreover, important approximations have been made with
respect to the turbulence modeling. Warning will be made in the following chapters whenever

we would reach the limits of this model.
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1.5.2 Set of equations

One should keep in mind that we refer here to mean fields due to the averaging process. The

system of equations to be solved (we dropped all the averaging signs) reads:

do
9 _ v
a ~ 7V
d
%:—V-(QBUT)
. (1.122)
at 7
dk 1 j
:V.[<M+W>V4+PJ+G—E
dt p Ok
%:lv. + M) we —i—E(C P/ 4 O, G — Ceye)
a.  p a O¢ B K N
with

(o = =’y p _ YL Va

v == VP -0

pzpcz(alo_1>+p3

,u:a,ua-i—ﬂ,wg

MT:CMIZ%

T = p(Vi+ Vi) + V- (a(u —p’) [V (Bv7) +' V (Bv7)]) (1.123)

T} = pr (Vi + V)

+aug (V (Bv") + V (Bv")) — Bug (V (av") + V (av"))
'IFjD =-V . (apv" ®@v")

PI = min (\/Cuks?, v (57)%)

B_ o P
G=2LP2VP Vu
p  Scr

This system reduces to the single-fluid formulation for a null relative velocity with a unit or null
volume fraction. This important property shall also be enforced in the numerical discretization
process that will be detailed in Chapters 2 and 3. In the following, we will denote the pressure

including the turbulent kinetic energy contribution as p instead of P.



Chapter 2

SPH and multiphase flows

Apreés une description introductive du formalisme Smoothed Particle Hydrodynamics
(SPH), ce chapitre se concentre sur la présentation de ’état de I'art de la simulation
des écoulements multiphasiques dans la méthode SPH, tout particuliérement dans le
cas de forts rapports de densités, au regard des systémes d’équations présentés dans le
Chapitre 1. Discrétisations spatiales et temporelles sont abordées. Un accent est mis sur

le traitement des conditions aux limites.
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Continuous media can be described through two main approaches: while, in an Eulerian de-
scription, attention is focused on the properties of the medium at a given point in space as a
function of time, the Lagrangian viewpoint tracks material parts of the considered domain and
monitors their property changes throughout the computations. The mesh-free numerical method
Smoothed Particle Hydrodynamics (SPH) lies within the Lagrangian formalism without the use
of a mesh: the domain of interest is discretized with a set of material points, referred hereafter to
as particles, that correspond to interpolation points that convey all physical properties (volume,
mass, velocity, pressure, etc.). The evolutions of these variables are ruled by a set of discrete
differential equations derived from the continuous governing equations presented in Chapter 1
and solved with a time-marching scheme and space-discretized differential operators. At each
time step, the computed velocity, used to move particles, leads to a new distribution of the in-
terpolation points and convects the physical quantities. In this chapter, a quick overview of the
SPH formalism is done to introduce the notations and tools. Then a special focus is done on the
SPH modeling of multiphase flows and especially mixture models. This state-of-the-art shall give
the appropriate tools and highlight the missing ingredients to develop our SPH mixture model
in Chapter 3.

2.1 Fundamentals of SPH

After a brief description of the genesis of SPH, that sheds light on extant applications of models
of interest in this work, the basics of SPH are quickly addressed following Monaghan [265] and
Violeau [364] to prepare the derivations of the SPH two-phase mixture model adopted in this

thesis.

2.1.1 A brief history of SPH

Let us start with a jump into time. The SPH method was first developed in the 1970’s for astro-
physical applications by Lucy [230] and, independently, by Gingold and Monaghan [146]. The
simulation of non-axisymmetric phenomena took advantage of the assets of SPH: the mesh-free
nature allowed one to model only the material parts in an unbounded domain composed of large
void regions and to deal with highly distorted configurations and large density variations for
which classical Eulerian methods were not adapted. The ease to implement an SPH model with
complex physics made it quite enticing to deal with violent phenomena with non linear behav-
iors. SPH was further applied in solid mechanics for large deformation, impact and fractures of
materials [182, 216]. It was then applied in fluid mechanics, especially for free surface flows [262],
but also to multicomponent flows as it will be further illustrated in Section 2.2 with air-water

flows, sediment-laden flows, etc.
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2.1.2 The SPH interpolation process

The SPH method relies on a double interpolation process detailed hereafter.

2.1.2.1 Double interpolation

Let us consider a scalar field A (equivalent reasoning can be made for vector or tensor fields) in a
domain Q € R? equipped with an orthonormal basis (e, e,, €,) for the space dimension d = 3
(we may also work in dimension d = 2). For the sake of legibility, the temporal dependence is

omitted. The position vector denoted 7 is defined as:
T =1re, +ye, + ze, (2.1)

where (x,y, z) are the coordinates of the position in the space basis. The interpolation process
is two-fold and can be read at the light of Figure 2.1. The starting point consists in writing the

field value at position  as the spatial convolution product with the Dirac ¢ distribution:
A(r) :/ A(r')6(r—7')dr (2.2)
Q

where 6 (1) = §(2)d(y)d(2), the Dirac ¢ distribution being zero everywhere except at the origin,

where it is infinite, and satisfying:

+oo
/ d(z)de =1 (2.3)

—00

Continuous interpolation: the smoothing step. As the Dirac ¢ distribution cannot be esti-
mated numerically, it is generally approximated with a radial bell-shaped interpolation function
w, herein called kernel, with a support of non-null measure: the value of the scalar field is com-
puted with a continuous interpolation involving its values in a d-ball €2, parametrized by the

smoothing length h around the position of interest 7. It reads:
[A].(r) = / A )w (r—r')dr (2.4)

The properties and choice of the kernel function are detailed in Section 2.1.2.2. The number of
particles within the kernel support is conditioned by the ratio of the smoothing length h over

the particle diameter 7.

Discrete interpolation: the sampling step. The continuous medium is sampled into a set F
of material points, hereafter called “particles’, with physical properties of mass, volume, velocity,
pressure, etc. They form interpolation points for the previously-written continuous interpola-

tion. The discrete interpolation resulting from the approximation of the integral (2.4) by a discrete
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0 (0)

(a) Dirac convolution

w

(b) Continuous interpolation

w

(c) Discrete interpolation

w

(d) Wall intersecting particle support

Figure 2.1: SPH interpolation process (case d = 2).
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sum over the neighboring particles b within the support of the particle a at position r, reads:

(Al (ra) = YV (1) A(ry) w (ra —13) (2.5)

beF

where V' (1) is the volume of the particle b. To simplify the notations, from now on, the sub-
scripts a, b will refer to the particles so that for any field A, = A (). With this notation, the

discrete interpolation will finally write:

Aa = Z ‘/I)Abwab (2'6)
beF

where wq, = w (rq — 7). In the present work, SPH particles are initially distributed on a Carte-
sian grid with an inter-particle distance ér over the computational domain and are assigned a
reference volume Vy = 7% (recall d is the space dimension). Due to the weakly-compressible
SPH (WCSPH) framework used in this work, volumes may slightly vary with the compressibil-
ity, so that the actual particle volume can differ from the reference one and can be linked to the

particle mass my, and density py through V3, = my/pp.

2.1.2.2 Kernel function

Let us highlight some of the properties of the kernel:

« Convergence towards the Dirac ¢ distribution in the sense of distributions when the sup-

port size tends to zero;

« First order consistency of the continuous interpolation (2.4), for which two conditions on

zeroth and first moments of the kernel should be verified:

/ w (r — r’) dr’ =1 (2.7)

r

/ w(r—7r") (r—7v)dr'=0 (2.8)

r

« Positive definiteness to satisfy stability conditions (avoid pairing instability) [367]. This

means that the kernel Fourier transform should be positive.

Piecewise compactly-supported polynomials were built to satisfy the above properties. The 5th-
order Wendland C? kernel described in [382] is used in this work. Let us introduce the dimen-

sionless radius:
|- /|

q N (2.9)
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Juw

>/
J W

14

Figure 2.2: Wendland C? kernel and its derivative.

A general kernel expression therefore writes:

w(r —r') = 254, (q)

The 5th-order Wendland kernel is defined as:

q4
(1-9) 1+20) 0=q=2
0 2 <q

fw(q) =

The first derivative writes:

q3
—5q(1—§> 0<qg<?2
0 2<yq

foo (@) =

The normalization constants used to satisfy (2.7) are:

7 21
o = — o = —
w,2 47’[" w,3 167

(2.10)

(2.11)

(2.12)

(2.13)

The kernel and its derivative are displayed on Figure 2.2. Following [128, 213], the ratio h/dr is

taken to 2.0 in 2D and 1.3 in 3D, what corresponds to around 50 and 270 particles respectively.
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2.1.2.3 Accuracy of the interpolation

The double-step process of SPH interpolation introduces errors with respect to the continuous

representation, namely an integration error E,. and a discretization error E,; defined as:
E.=[A].(r) - / A6 (r—7')dr (2.14)
Qr

Eq = [A]l4(r) = [A](7) (2.15)
Dehnen and Aly [104] underlined the interest to consider the kernel standard deviation o:

1
o2 = / 2w (r) dr (2.16)
d R4

to measure the SPH smoothing distance. The integration error was computed for common SPH
first and second order operators by Violeau and Fonty [365] and expanded in terms of o, and
the derivatives of the interpolated field A. The first term of the error expansion is independent
of the considered kernel and is proportional to %O‘? as long as the kernel fulfills the first order
consistency condition (2.8). The discretization error is practically more complex to assess as the
particle arrangement is varying and generally disordered. Violeau [364] computed the error for

particles on a Cartesian grid in an unbounded domain:

20,

or

1 2
Eq=dA(r)F[w] ( ) - §V2A (r) o2F” [w) < §€ﬂ> +0 (0?) (2.17)
r
where F is the Fourier transform. For this particle arrangement, the discrete error therefore
varies as 02 and reaches a lower bound equal to the first term of the right-hand side. Quinlan
et al. [301] and then Amicarelli et al. [9] highlighted that a disordered arrangement of particles

led to a higher numerical error.

2.1.2.4 First order differential operators

The approximation (2.4) can be applied to the gradient of an arbitrary C' field A:

[VA], (r) = VoA ) w(r—7")dr' (2.18)
QNQ..
0A (')

where Vv A (') = 57

. The integration by part yields:
(VA (r) = —/ A ) Vpw (r—7") dr’—?f A(r)w(r—7)n(r)d’ (2.19)
QO 4Ny

where n (7') is the inward unit vector normal to the surface element dI" of the domain boundary

0N2. If the interpolation point r is sufficiently far from the boundaries so that 92N €2, = &, due



44 CHAPTER 2: FUNDAMENTALS OF SPH FOR MULTIPHASE FLOWS

to the compact support property of the kernel, the boundary term disappears. As the kernel is

radial, its gradient is antisymmetric and one finally gets:

[VA], (r) = / A(r')Vew (r—7') dr'’ (2.20)

™

A first attempt of the discrete SPH gradient therefore writes:

Go{A} =) Ve Ay Vg, (2.21)
beF

where the discrete kernel gradient V,. wg, has been denoted Vwy;, for the sake of legibility.
The relation (2.21) is a possible discrete SPH approximation of the continuous gradient, among
others. One can see that the gradient of a constant field is not null. To circumvent this issue, one

can use the following identity:

1

[V (BkA) - AVBk] (2.22)

to get the following symmetric (with respect to the particles indices) expression of the SPH gra-

dient as detailed in Appendix A:
_ 1
G A} = =D Vi (paps)” (Aa — Ay) Vg (2.23)
@ beF
With B = p and k = 1, the latter formula yields:
1
G, A = ——> my (Aa — Ay) Ve (2.29)
“ beF

The zero-order consistency is then guaranteed and hinders spurious kinetic energy production
when applied to the velocity field. However, an important feature for the momentum equation
is to enforce linear momentum conservation. In this prospect, an antisymmetric formulation of

the SPH gradient is required to fulfill the action-reaction principle. Using the relation:

A A
_ nk k
VA= BV <Bk> + BF VB (2.25)

the resulting SPH gradient writes:

GiHA} = v o Ce Tl 2 pZ Vwgy (2.26)
beF (Pap)
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With B = p and k = 1, the latter formula writes:

A, A
G A =pa Y e (2 + 2b> VwWap (2.27)
beF a Py

The total momentum time evolution, in presence of the pressure gradient only and for constant

particle masses, writes:

d dv, A, Ab
& Z MagUq =— Mg W = — Z Z meagmmy <p2 + p2) Vwab =0 (228)
a€F a€F a€F bEF a b

Similarly the total angular momentum is preserved [296]. Using different values of k, one can see
that an infinity of SPH gradient operators can be derived. The choice is driven by the prominent
feature searched, often as a trade-off between accuracy and conservation properties [296]. This
question shall be further investigated in Section 2.2. The same reasoning can be developed for

the divergence operator and one gets the following possible discrete operators:

Do{Ap} =) Vi Ay - Vg (2.29)
beF
1
DA} = ——  my (Aa — Ap) - Ve (2.30)
“ beF
A, A
DI A} = pa > me (2 + ;) - Vwgy, (2.31)
beF a P

An interesting property of the operators G/ and D is their skew-adjointness [364] that yields

energy conservation as long as time is treated as a continuous variable [296].

If a precise first-order consistent operator is needed, an option is to use renormalized operators

[32] by introducing the renormalization matrix:

-1
M, = [t (Z V;)'rab & Vwab)] (2-32)

beF

The resulting modified gradient writes:
GH{A} == Vi (Aa— Ap) My - Vg, (2.33)
beF
2.1.2.5 Second order differential operators

The momentum equation, together with the k and e diffusion terms in the system (1.122), require

SPH forms of the second order derivative operators. Let us first focus on the Laplacian V2. If we
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proceed as in the preceding section, we get:

Lo{Av} =D AV we (2.34)

beF
However, this formula is reported to be really sensitive to the particle disorder [265] and is not
antisymmetric, thus breaking momentum conservation. Cummins and Rudman [94] suggested

to write the Laplacian as:

Lo{A)} = D{Gy{A}} (2.35)

so that it is consistent with the first order formulation of differential operators. However this ap-
proach is both computationally expensive and subject to checker-board instability development
due to the collocated nature of SPH [94]. Let us consider the general expression of a diffusion
term applied to the C? field A with a diffusion coefficient B possibly variable in space C*. Morris
et al. [274] followed the decomposition (2.35) but with a finite difference approximation of the

gradient. The second order operator is made symmetric using the equality:
V. (BVA)=BVA-V1+V.(BVA) (2.36)
The continuous integration writes:

[V - (BVA).(r)= /QQQ [B(r)V,A(r)+ B (r')VuA(r')] - Vew (r — ') dr’

- 7{ [B(r) VoA (r) + B (') VoA ()] -n () w (r — ') dI’
90N,
(2.37)

The finite difference approximation of the gradient writes:
B(r)VA(r) - (r—7)=B(r,r) [A(r) = A(r')] = =B (r') VA(r') - (r —7') (238)
where B stands for a mean diffusion coefficient that can be computed with an arithmetic mean:

B(r,7) == (B(r)+B(r")) (2.39)

N

or a harmonic mean:

B(r,r') = ;B(T)B(r/) (2.40)
(r)+ B(r)

The harmonic mean proved to give better results than the arithmetic mean for shear stress con-

tinuity across interfaces [170] that is particularly important for multifluid flows with different

viscosities. Let us now consider that we are far form boundaries. Substituting (2.38) in (2.37), the

second order operator then writes:

[V - (BVA), (r)= 2/ B(r,r) (r—7) - Vow(r—r)dr' (241)

0N, (r—7)
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The associated discrete SPH second order operator is then:

A -4
La{Byp, Ap} =2 Z %BabTbrab - Vwgyp (2.42)

beF ab

where 7, = 1, — 1y and 74, = |7 4| This operator was reported to be inconsistent near the free
surface [87]. Another approach is developed by Espafiol and Revenga [121] and Violeau [363]
to derive a second operator in case of a non-constant diffusion coefficient, that occurs especially
in multiphase flows, turbulent flows with a RANS model or non-isothermal flows, of the form

V. [B(VA+' VA)]:

La{Bb, Ay} = > ViBap [(d +2) (As — Ap) - €ap) €ap + (Aa — Ap)] Tabriy%b (2.43)

beF ab

where €., = Tap /T ap-

2.1.3 Density

Following Price [296], a pivotal question rises:

How does one compute the density from an arbitrary distribution of point mass

particles?

Once this computation defined, the SPH formulation for the equations of motion can be self-
consistently derived. Let us have a look to the possible computations. Correction terms devel-
oped in the literature to tackle flows in hydrodynamics will be introduced in the Section 2.1.6.

The density can be computed using the SPH interpolation (2.5) of density:

Pa =Y Mytap (2.44)
beF

However this computation is not adapted for free surface flows due to the truncated kernel sup-
port close to the interface. One can also chose to solve directly the continuity equation (1.6)

thanks to an SPH divergence operator:

dpg
dt

= —paDo{up} (2.45)

The latter form is tantamount to (2.44) as long as time is considered as a continuous variable, and
with an appropriate choice of the SPH divergence [360]. However, Ferrand et al. [128] showed
that the interpolation and discretization errors could lead to an inconsistency between the ve-

locity and the density fields. A middle way was offered by Vila [360], differentiating (2.44) and
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deriving it with respect to time:

dpe, d
— = — mpw 2.46
el > mpwe (2.46)

beF
that can be integrated explicitly when particle masses are constant, avoiding integration errors,
to get:
1
Pt = oY e (wiy ! — wiy) (247)
beF

where n denotes the current time step index. The density now depends on the particle positions

only.

2.1.4 Momentum equation

The momentum equation (1.13) is usually discretized with the operators defined in Sections

2.1.2.4 and 2.1.2.5 as:
dv, 1

1
- Gt i + 2.48
dt pa a {pb} pa a{,ubv ’Ua} g ( )

2.1.5 Wall boundary conditions

Imposing the adequate conditions at the limits of the domain within a Lagrangian framework
remains one of the Grand Challenges for the SPH rEsearch and engineeRing International Com-
munity (SPHERIC) [2], especially for open boundaries often required in practical engineering
applications and for coupling with other numerical models. After a short review of the available

approaches in the literature, we will give more details on the retained technique.

2.1.5.1 Classical approaches

Close to the domain boundaries, the SPH kernel happens to be truncated so that the interpolation
becomes inconsistent. The boundary integral of the integration by parts used for differential
operators no longer cancels. Several approaches were developed in the SPH literature. They
consist in modifying the discretization, either by adding interpolation points inside the wall or

by completing the stencil of the particles getting close to the boundaries.

Mirror particle approach In the approach presented by Libersky et al. [217], each fluid parti-
cle has a mirror particle across the boundary. Neumann conditions are easily enforced by giving
the same value to twin particles. However, some linear extrapolations are required to impose

Dirichlet conditions. It proves difficult to extend this approach to complex geometries.
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Repulsive force boundary conditions As described by Monaghan [262] and refined in [267],
the wall frontier is discretized with particles that allow one to impose repulsive forces to the
fluid particles through a Lennard-Jones potential. While being computationally cheap, easy to
implement and ensuring the wall impermeability, this method does not address the consistency
of the SPH operators, which leads to inaccuracies. Spurious particle distributions and pressure
profiles appear near boundaries as highlighted by Ferrand et al. [128]. It is not possible to enforce

explicitly Neumann nor Dirichlet boundary conditions.

Dummy particle approach Many forms of dummy (or fictitious) particle techniques were
developed in the literature. The walls are discretized with several layers of particles outside the
boundary to complete the kernel support of fluid particles approaching the boundary. However,
the main task relies in assigning the correct fields to these boundary particles. In the dynamic
particle approach presented by Dalrymple and Knio [96], the continuity and state equations are
solved for boundary particles while their velocity is set to the wall velocity. The arrangement of
the layers of dummy particles is a challenge which triggers some issues for complex geometries
[4].

None of these approaches allows the user to enforce proper arbitrary boundary conditions for
complex boundary geometries. Ferrand et al. [128] in the WCSPH framework, followed by Leroy
et al. [213] in the Incompressible SPH (ISPH) framework, suggested another option that will be
used in this work: the Unified Semi-Analytical Wall boundary condition framework (USAW),

developed in the next section.

2.1.5.2 The Unified Semi-Analytical Wall boundary conditions

In a bounded domain, kernel support truncation can occur: as suggested by Kulasegaram et al.
[194], to restore the normalizing property of the kernel close to the walls (2.7) and (2.8), a wall

renormalization factor is introduced:
v(r)= / w(r—7')dr (2.49)
QN2
with its spatial derivative:
Vry(r) = j{ w (r — r') n (r’) dr’ (2.50)
00Ny

so that the continuous interpolation (2.5) becomes:

1
v (r)

/ A (r’) w (r — r’) dr’ (2.51)
QN
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The corresponding discrete interpolation writes:

1
[A]} (ra) = — Y VeAywap (2.52)
Yo yer

Kulasegaram et al. [194] and de Leffe et al. [102] developed approximate formulation to compute
~. Feldman and Bonet [127] described the first analytical computation in simple cases. Ferrand
et al. [128] and Violeau et al. [369] proposed an analytical method to compute v in 2D and 3D
respectively. A semi-analytical approach was also described by Monaco et al. [259] with non-
renormalized differential operators. Using a partial Riemann solver as described by Dubois [115],
Marongiu [240], Marongiu et al. [241] (employing boundary terms without ) and de Leffe et al.
[102] carried out a full discretization of the wall into a set of segments interacting with the fluid
particles. This type of boundary conditions is still the object of research and improvements were
done in [81, 82].

As shown by Kulasegaram et al. [194], the SPH differential operators are modified by this newly
defined SPH interpolation. Ferrand et al. [128] proposed a different formulation of these opera-
tors addressing issues of [194]. Considering the new interpolation, the continuous interpolation

of the gradient resulting from an integration by parts now writes:

VAL = -

fy(r)fgﬂmﬂrfl(r’)w(r—r’)n(r’) dr’

— 1/ A (r’) Vrw (r — r’) dr’

(1 ) Jong, (2.53)
The boundary integral terms appearing due to the intersection of the SPH kernel support with
the boundaries of the domain were computed to get consistent operators. To do so, the SPH
boundary is formed of a set of boundary particles called hereafter segments s € S used for the
computation of the boundary integral, and vertex particles v € V), that are fluid particles placed
at the boundary that increase the accuracy of the modified SPH operators, as displayed on Figure

2.1d. Dirichlet conditions are imposed through the vertices and Neumann conditions through the

segments. The discrete counterpart of (2.53) then writes:

1

VaVa beP

Z (VazAa + VE;ZAI)) Vwgy — L %

TIA D —
G(l{ b} ,yavas

(V2Ao +V2AS) Vs (2.54)

where P = F UV denotes the set of all the fluid particles, free to move F or moving at the wall
velocity V and V7, is defined as:

Vs = / w (ra — r’) n (r’) ar’ (2.55)
CiaNalo

with 02 the part of the boundary corresponding to segment s. Let us underline that vertices

are truncated particles, so that their mass m shall be computed consequently, as a fraction 6 of a
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Figure 2.3: 6 values for the different types of SPH particles.

reference mass m. 0 is computed as the ratio of the solid angle between the segments connected
to the vertex and the solid angle of the d-unit ball (i.e. 27 for d = 2 and 47 for d = 3). Hence
0, € ]0;1] as presented in Ghaitanellis [143]. We define 6, = 1 for fluid particles and 6, =
1/2 for segments. An illustration is given on Figure 2.3. Following Ferrand et al. [128], Vs
is computed analytically whereas the wall renormalization ~, is computed with the dynamic

governing equation:
dya
dt

where v,, is the wall velocity and Vv, is computed analytically from:

= VVa : ('Ua - 'Uw) (2'56)

Ve =Y Vas (2.57)

seS

We can make a similar reasoning for the second order operator, taking into account the boundary

term:

[V-(BVA),(r)= ’7(27’) (r) /QmQ B (r,r’) A(T:__:})g‘,) (r — r') -V,w (r — r’) dr’

1

S (r) ]({mm [B(r)V,A(r)+ B (r') Vo A(r)] - n(r)w(r—7+")dl’

(2.58)

The associated discrete SPH second order operator is then:

2 — A, A 1
L;/{Bba Ab} = 7 Z %BabTbrab . Vwab - Z (BaVAa + BSVAS) . V’Yas (2-59)
¢ bep ab ¢ ses

The renormalization also modifies the density computation. From (2.52), the interpolated density

(2.44) now writes:

1
Pa=— Y Myap (2.60)

Ta yep
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The evolution equation of the density (2.46) becomes:

dYapa _ d
= (Z mbwab> (2.61)

So that the exact time integration (2.46) becomes:

%“—7 [%%+§)m Mlu&ﬂ (2.62)
a beP

2.1.5.3 Practical enforcement of boundary conditions

Free surface Near the free surface, if the air phase is not discretized, the truncation of the
kernel support makes the density tend to zero so that the pressure also tends to zero through
the equation of state. The Dirichlet condition of zero pressure at the free surface is therefore
automatically fulfilled. The kinematic condition of a free surface is naturally respected due to the
Lagrangian framework. The absence of neighbors at the free surface also ensures the fulfillment
of the dynamic condition of homogeneous Neumann for the shear stress. Therefore, the other

Neumann conditions on k and € do not require any special treatment.

Wall condition on pressure Following Ferrand et al. [128], the Neumann condition on pres-

sure is computed at segments and vertices through an interpolation of the dynamic pressure:

~ Yber Volpy + (ra — 1) - gl wap

Dy = (2.63)
‘ 2 ver VoWap

Wall condition on velocity The Dirichlet condition on velocities is imposed by giving to
vertices the wall velocity. Care must be taken to write properly the boundary term of the second
order operator (2.59) used for the viscous stresses L2°%"? {1, w,}. As tested by Leroy [212] in
ISPH and Ferrand et al. [128] in WCSPH, the boundary term was approximated as:

2 ov
Lgound{ub,vb}z,yzui( ) 1V (264

on
¢ ses

where ¢ is a fictitious point defined as:

= e (265)

and, under the assumption of linear and tangential velocity, the normal derivative writing:

0v\ (Vg —vs) - tgs
<an>z a OTas bas (2:66)
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with the wall tangential vector:

_ (Wa =) = [(va — vs) - | s
tos = | (v — vs) — [(Vg — Vs) - Mg M| (2.67)

and:

0res = max [(r, — Ts) « Ng, OT] (2.68)

2.1.5.4 Open boundaries

If periodic conditions, as used for plane Poiseuille or Couette flows, cannot handle the desired
problem, open boundaries in SPH are usually modeled thanks to buffer layers. This approach
has been addressed with variations by several authors, sometimes using Riemann invariants
[205, 353] in the WCSPH [8, 149, 283, 340], or in the ISPH framework [163, 167, 196]. Most recent
works can handle inlets and outlets in a unified framework [269, 340]. Buffer layers consist in
the addition of several layers of particles beyond the open boundaries to complete the kernels
of fluid particles getting close to the inlet or outlet. In the buffer zone, physical fields are either
assigned or extrapolated from the fluid domain: at the inlet, the velocity field and water depth
are frequently imposed while the density is extrapolated from the bulk of the fluid domain. A
particle leaving the inlet buffer layer becomes a free particle whose physical fields are left to
evolve according to the governing equations, whereas when a particle enters the outlet buffer
layer, it becomes a buffer particle with prescribed features before it completely exits the numerical

domain.

Many variations were made on the particle feature assignment and the creation/deletion of fluid
particles, especially to tackle the issue of reflecting waves by open boundaries or shocks due
to sudden change of particle nature [13], as in Alvarado-Rodriguez et al. [8] that developed an
outlet condition solving a wave equation for outgoing particles. Following Kunz et al. [196],
Monteleone et al. [269] used mirror particles near open boundaries to set pressure boundary
conditions and applied this model on a multi-domain case of blood vessels to allow different

discretizations depending on the region considered.

The approach retained here follows the work of Ferrand et al. [129] and its generalization of
USAW conditions with the resolution of a 1D Riemann problem at open boundaries. Open bound-
aries are discretized with vertex particles of varying masses and segments. The mass of vertex
particles is left to evolve according to the ingoing/outgoing mass fluxes through the connected
open boundary segments. If this mass exceeds an upper or lower threshold, the correspond-
ing vertex is released in the flow as a new fluid particle, or deleted. At the inlet, the mass of
the vertex increases according to the imposed flux until the critical size is reached as illustrated
on Figure 2.4. At the outlet, the mass of the fluid particles crossing the segments is distributed
over the vertex particles connected to the segment with an adequate weighting. This continu-

ous management of the mass variations within the domain limits the possible perturbations of
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Figure 2.4: Particle creation at an inlet boundary with a parabolic profile.

the numerical resolution within the bulk of the fluid. It also leads to a correct distribution of
particles near boundaries. A correction is needed in the continuity equation resolution to avoid
perturbation of the density field. Though time consuming, this approach allows one to impose
precisely the desired velocity or pressure profiles and deduces the missing quantities through a
rigorous framework inspired from finite volume developments of Blondel et al. [26]. The prac-
tical implementation of open boundaries, adapted to the model developed in this work, will be
further addressed in Section 2.2.3.

2.1.6 Numerical SPH corrections for stability

Numerical operations are often done to smooth the pressure field and get an homogeneous ar-
rangement of the SPH particles, either by introducing additional terms in the continuity and
momentum equation or by acting directly on particle positions. The common corrections used

in Section 2.2 and their motivations are described.

2.1.6.1 Density diffusion

As identified by Ferrari et al. [130], and further studied by Fatehi and Manzari [123], due to the
collocated nature of SPH (i.e. all variables are located at the same position, on SPH particles),
checker-board effects appear as in grid-based methods: zero-energy modes of pressure oscilla-
tions can develop as a numerical (but not physical) solution of the discrete SPH equations and
jeopardize the computations. Ferrari et al. [130] described a diffusion term to add in the conti-
nuity equation. Antuono et al. [11] presented the )—SPH formulation, detailed in 2.1.6.6, which
includes diffusion terms in the continuity and momentum equations. In grid-based methods,
one of the answers was to work with staggered grids to avoid the collocation of variables. It
was tested in SPH by Dyka and Ingel [116] for 1D SPH simulation of elastic bar with stresses
computed at different points than SPH nodes, with an increase in computational time that is

predicted to be important for multidimensional problems. Most of the literature focused on col-
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located solutions. In this work, we used the correction suggested by Brezzi and Pitkaranta [39].
To stabilize the steady incompressible Navier—Stokes equations, a diffusive term was introduced
in the continuity equation at the correction step of a projection method, with some similarity
with the work carried out by Ferrari et al. [130] in a weakly compressible framework. Let us

consider the spatially discretized continuity equation with continuous time:

dpa
dt

= _paDa{'Ub} (2.69)

Following the time integration scheme (2.62), one can then write:

patt — pit 1
s = —PaDafoy ) (2.70)

Neglecting the viscous contribution in the momentum equation (2.48), it can be written as:

ot — o 5t
% = —paDafvy — — Gi{pc} + dtg} (2.71)
Py
Pt — pa ot
S = la <Da{vz’3} = Dal s Gofp}} + DaldtGofg r}}}}) 2.72)
b

We therefore introduce the diffusion term A:

AT = g (La{z,pz} - L(otg 1)) (2.79)
The diffusion only occurs between fluid particles so that no boundary term appears in the SPH
Laplacian. As the Laplacian and the divergence of a gradient are slightly different due to the SPH
discretization, this diffusion term is not exactly equal to the second part of the right-hand side of
(2.72). Let us remark that [308] suggested to exploit this discrepancy between two approxima-
tions of the Laplacian to reduce the pressure oscillations, leading to a finite volume scheme whose
SPH counterpart is close to the —SPH briefly addressed in Section 2.1.6.6. With our choice, the

discrete continuity equation (2.62) is then modified:

T 1 n_n
Pt = Rl AT Z my (Wi —wlh) | + AA" (2.74)
Ta beP

The numerical experiments lead to chose A = 0.1.

2.1.6.2 Density re-initialization

As SPH particles are free to move, the total volume in the support domain of a particle can vary
when solving the above evolution equation for the density, so that an inconsistency can appear

between the mass, density and the region occupied by the particle [261, 274]. The normalization
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of the kernel function is therefore affected and density oscillations can appear (with consequent
pressure instabilities through the state equation). Density re-initialization is therefore periodi-
cally performed by some authors [77, 86] to improve the pressure field with a careful attention

on the interpolation operator used:

Pa = Z mpw,y, (2.75)
beF

where w* is a kernel modified to gain better accuracy, either by a Shepard renormalization as
in Shepard [324] or a Moving Least Square method as in [86]. The Shepard renormalization can
indeed be used to correct the kernel in case of truncation, near boundaries or free surface and

writes:

Lo = Vswap (2.76)
beF

We will not use these methods here.

2.1.6.3 Background pressure

A background pressure is usually added to the equation of state (1.10) to prevent the appearance
of unphysical voids. From the continuous point of view, the pressure is only involved through
its gradient so that it shall not modify the solution. However, numerically, as the gradient of
a constant field is not zero and particles happen to be disordered, it has some effect and helps
stabilizing the computations, fighting against the particle clumping known as tensile instability
[264] and filling the spurious voids that can appear near the walls of a rigid body. This pressure
can be related to ppc3 even though no universal factor has been found from our experience. A
too large value tends to destabilize the computations and decrease the accuracy [367]. In case of
confined flows, the background pressure is usually required to ensure the stability of simulations.
However, it cannot be used for free surface flows since it would break the Dirichlet pressure

condition at the surface.

2.1.6.4 Particle shifting

SPH particles often reorganize in uneven distributions as they stick to streamlines as exemplified
by simulations of Taylor-Green vortices [388] and voids may appear [255]. These distributions
tend to decrease the accuracy of the method [9] and trigger some noise in the pressure field.
Adding a background pressure as described in 2.1.6.3 allows one to prevent the appearance of
voids but is generally not sufficient to get an even arrangement of particles. Shifting algorithms

were developed to circumvent this issue. Monaghan [260] introduced the XSPH correction in the
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equation (1.93) preserving linear and angular momenta conservation:

dr, 2my,
= Vg — Vg — Up) Wep (2.77)
dt ¢ ;7_— Pa + Pb ( “ ) “

In the ISPH formulations (shortly addressed in Section 2.1.7), a shifting algorithm was first in-
troduced by Xu et al. [388] and further improved by Lind et al. [218] to handle free surfaces,
particles being moved from high to low concentration zones by Fick’s law of diffusion to avoid

highly anisotropic distributions:
0rqqy = —0tD. G {Cp} (2.78)

with the index @’ of the particle at the new position, a diffusion coefficient D = 2h|v,| suggested
by Skillen et al. [333] and C' a measure of the concentration of particles. Special treatment is made

at particles identified as free surface particles to limit diffusion in the normal direction:

oC, oC,
O qq = —O0tDS [ 87_“7 + ay, <8n“ — Bn> n} (2.79)
where (o, B,) are tuning parameters. The hydrodynamic variables are then corrected thanks

to a Taylor series expansions:
Ay = Ag + [VA], - 67 + O (672,) (2.80)

but it proved to lead to negligible corrections for velocity and density [255]. However the com-
putational cost is increased by this operation. Similar ideas were then successfully extended to
WCSPH [322] and in particular to the 6—SPH approach presented in Section 2.1.6.6 by Sun et al.
[337]. Variations of the technique were suggested, as Adami et al. [6] that modified the advection
velocity by a background pressure term while introducing a correction term in the resolution of

the momentum equation.

2.1.6.5 Artificial viscosity

Artificial viscosity was introduced in the early SPH simulations [261] with different variations
to stabilize the simulations, avoid nonphysical aggregation (activated when particles are getting

closer) and simulate shocks. It is defined as:

(Vg —vp) - Tap

if vy - o < 0 2.81
12, +0.01h2 e (2.81)

Tab = —Vart
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agh(catcy)
PatpPb
as a force in the momentum equation (2.48):

with v+ = and the oy parameter tuning the intensity of the diffusion. It is inserted

dv,
dt

= — Z MpTah VWep + other terms (2.82)
beF

The choice of the tuning parameter is critical as it may cause too large numerical diffusion and
large errors if it is too high. The main difference between this kind of viscous term and the
physical viscous force appearing in (2.48) is that here the viscosity is purely numerical since it is

decreased when refining the discretization.

2.1.6.6 6-SPH

Molteni and Colagrossi [258] introduced the —-SPH scheme in the WCSPH framework, further
improved to handle free surfaces by Antuono et al. [11] and thoroughly investigated by Marrone
et al. [242] to study violent 2D and 3D dam break flows. In the lineage of density diffusion and
artificial viscosity previously detailed, it consists in the introduction of diffusive terms within the

continuity and momentum equations:

dpq _
CZf = _paGa ’l{vb} + 5sh00 bz;—‘/bwab : Vwab
) , < (2.83)
Va +,0 @
% — _EGG {pb} + g + ashcg i Z Vot Vway
beF
where
Tg —Tp
Yab = 2(pa = ) — 35— (GHpe} + Gii{pe})
ab (2.84)
~ (va—vp) Tap
Tah = 5

Tab
and the parameters are usually chosen as §; = 0.1 and s = 0.02. These diffusive terms decrease
as the numerical accuracy increases so that one recovers the consistency of the discrete equa-
tions. The smoothing of the pressure field is effective. Compared to density diffusion approaches
previously described, this correction is of first order and shall help the computations to stay in a
configuration for which physics can be accurately solved. Sun et al. [338] presented a consistent
shifting, however not momentum-preserving, called 6 *~SPH However, this promising approach

was not retained here.

2.1.6.7 Godunov-SPH and SPH-ALE

The use of Godunov schemes, initially introduced in SPH by [175, 257, 263, 287] to handle shocks

and avoid using artificial viscosity, received increased interest in the past two decades and proved
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to improve the stability and generate less noisy pressure fields. The Euler conservation equations
(i.e. no physical viscosity) are considered so as to write a one-dimensional Riemann problem
between each pair (a,b) of interacting SPH particles: the resolution of this problem gives the
Riemann pressure p;;, and velocity v, that are then injected into the following possible set of

discretized equations:

dpq Vo,
Po 2paq Z ﬁb (v — Va) - Vb

dt beF

(2.85)
dvg 2 s .
dt = _7prabvwab+g

Pa yer

Some details about the Riemann problem resolution can be found in Appendix B where a partial
Riemann problem is solved at a boundary to derive an open boundary formulation. More general
details can be found in [287, 302] for example. Vila [360] followed by Jang et al. [179] and Leduc
et al. [209] proposed an ALE (Arbitrary Lagrangian-Eulerian) framework for SPH making use of

these Riemann solvers:

dr, 0
ar Ve
dVv, 0 0
dt - Va Z ‘/;) (’Ua - Ub) Mab : Vwab
beF
AVpa (2.86)
Al > Viph (vh, — v) My - Ve, =0
beF
dvapava

+2Va Y Vs [phvl @ (vl — vdy) + plh] My - Ve, = Vapag
beF

dt

where v° is the velocity of the moving frame of reference, M, = % (M, + M) is the sym-
metrized renormalization matrix of (2.32) and (paEb, vfb) is the upwind solution of the moving
Riemann problem [209]. This model can benefit from the similarity with the Finite Volumes ap-
proach. To mitigate the strong dissipation introduced by such approach as a well-known effect
of upwind formulations, a second order scheme like the MUSCL (Monotonic Upwind Scheme
for Conservation Laws) scheme [210] including slope limiters can enhance the stability of the
computations and help to handle more easily boundary conditions due to their Eulerian nature.
Total mass is conserved but the masses of particles are no longer constant. As shown in (2.86),
an additional equation is introduced to follow explicitly the geometrical deformation of points

that shall now be considered as moving control volumes.

2.1.7 Weakly Compressible vs. Incompressible SPH

The modeling of incompressible flows is usually done through the weakly compressible approach

in the SPH community [265], pressure being linked to the density through a state equation, usu-
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ally of the form (1.10) and weak compressibility being enforced by a low Mach number. However,
this approach is known to generate some very noisy pressure fields. Asillustrated in Section 2.1.6,

many tools were developed to tackle this issue.

However a change of formulation can help to address this question. Cummins and Rudman
[94] first introduced a projection scheme from Chorin [83] in SPH to handle incompressible
flows, giving birth to Incompressible SPH (ISPH). The pressure becomes a numerical result of
this scheme, generally computed by solving a pressure Poisson equation that is the object of
extensive research. For regular particle distributions, pressure predictions are then accurate and
noise-free [213]. One drawback of the ISPH models is to require the explicit detection of the
free surface to assign the dynamic boundary condition that is naturally fulfilled in the WCSPH

framework.

2.1.8 Turbulence modeling

While DNS remains generally computationally too expensive (Mayrhofer et al. [246] simulated
a 3D turbulent channel for a friction Reynolds number around 200), turbulence modeling can be
practically achieved through Large Eddy Simulations (LES) or Reynolds-Averaged Navier—Stokes
(RANS) approaches as long as wall functions can be imposed with the SPH boundary conditions.
As highlighted in Chapter 1, Neumann conditions are required for the velocity, turbulent kinetic
energy and dissipation rate but were not available in numerous boundary approaches, what did

not prevent the developments of such turbulence models that will be addressed only shortly here.

LES Work has been done to model turbulent flows with an LES approach in SPH. A LES-based
sub particle scale turbulence model using the Smagorinsky eddy viscosity was developed to study
the coherent turbulent structures during the wave breaking in 2D by Lo and Shao [223] and in
2D and 3D by Rogers and Dalrymple [313]. Issa et al. [178] tested a 3D LES model to simulate
non-linear water waves. It was used even for multiphase flows such as water-sediment mixtures
in [327]. However the computations still remain very expensive for practical cases. Moreover,
Mascio et al. [243] proved that the §—SPH variant can be understood as a kind of LES in SPH
resulting in the 6—~LES-SPH model. The parameters (s, d5) were then dynamically computed
for each particle based on the velocity gradients in Meringolo et al. [252].

RANS A wide variety of averaged turbulent models were implemented by Violeau and Issa
[366] and applied to open channel flow and dam break cases. The study gave satisfactory results,
even though the k£ — e model proved to require some improvements to handle free surface flows
correctly. Thanks to the developments of Ferrand et al. [128], Leroy [212], Leroy et al. [213] in the
USAW framework, the £ — e model implemented in SPH provides results with similar accuracy
to grid-based approaches. As highlighted in Chapter 1, this model has limits but it is simple, of

wide use in the industry and gives good results in many configurations. Following Leroy [212],
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the discrete SPH k — € equations including buoyancy effects write:

dk 1
— - Pa Ga — Ca 7La ak 2.87
gt + €q t+ Py {,uk,b b} ( )
deq, € 1
G = i (CaPut OB — Ca) + Ll ) (2.88)

The production term PP, is computed as:
P, = vr,452 (2.89)

where the scalar mean rate of strain is defined as S, = v/2s,, : s, with:

1
Sa= 5 [Go{vp} +' Gof{vp}] (2.90)
and the buoyancy term write:
1 op
Go=— —| MG ATy} - 2.91
o T , 7G{Th} - g (2.91)

where 7' is the temperature, A7 is the turbulent thermal diffusivity and the partial density deriva-

tive is derived at constant pressure.

2.1.9 Time integration

The time-stepping in WCSPH knows different implementations, from modified Euler to fourth
order Runge-Kutta schemes. Together with the question of time integration goes the aspects of

numerical stability that were extensively discussed by Violeau and Leroy [367] for WCSPH.

2.1.9.1 Explicit integration scheme

In this work, time integration is performed with the full explicit symplectic scheme detailed by

Ferrand et al. [128] for conservation motivations:

1. Velocity update by operator splitting of the momentum equation:

+ Potential force step:

1
v, = v, +dt [—pnG{pZ} + g] (2.92)

a

« Viscous force step:

1
A 5tp—nLa{Vb + VF vy (2.93)

a
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2. Particle position update:
L L /i

3. Wall renormalization factor update

AL = 1 4 5t (V)™ (ot — o)
4. Density computation with the continuity equation:
pitt = — [%ﬂh‘FE:W% = wiy) |+ AA”
e beP

5. Pressure computation using state equation:

2 n\ &

Poc P
patt =0 (“) ~1| +p5
£ Po

6. k — € model resolution:

kot — k7 kot
fa Yo __ IP)n + Gn o en a +
5_[/, a a a kg n
6n+1 —n n
W k (CEIPZ 4 CE5Gn Cg Z—i—l

a

leading to the turbulent viscosity:

(kg )’
T

n+1 __
VT a CM

2.1.9.2 Numerical stability

1
ﬁLa{Mﬁ,ba Ky }

1
)+ Ll )

a

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

(2.100)

The maximum step size for numerical stability, studied in detail in Violeau and Leroy [367], is

constrained by several numbers:

 The Courant-Friedrichs-Levy (CFL) defined as:

coot
CcrL =
Oe
« The viscous limitation:
vot
Cvisc - o
o

€

(2.101)

(2.102)

« According to Ferrand et al. [128], the governing equation on «y (2.56) leads to the following
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condition:
Cy = 0tmax (| Vs - Vas) (2.103)
acP

Hence, numerical stability is ensured for:

. Oc o2 1
ot S min CCFLf, Cviscia C,y (2.104)
Co 14 maXgep (|V7as : vas|)

One has typically (Ccrr, Cyisc, Cy) = (0.76,0.45,0.004) in 2D and (0.76, 0.45,0.001) in 3D.

2.2 General multiphase flow modeling in SPH

The aim of this work is to model flows involving several immiscible fluids that we shall refer
to as multiphase flows. Multicomponent flows with high density ratios play a prominent role
in many engineering applications and imply complex strong flow dynamics. The SPH method
therefore appears as a natural way to deal with such cases, due to its ability to model highly
deformed flows without specific interface tracking. If the effect of the air on the water, generally
restricted to its thermodynamic pressure, can be neglected, the air phase does not need to be
modeled and SPH can therefore handle free surface flows easily. However if these effects comes
to be significant (when the air cavity of the dam-break is formed [86], when the water slams
an offshore structure with air cushioning effect [219], even though the aerated water can be
simulated as a single-phase flow with adapted physical parameters as in [321]), each phase is then
modeled with a different set of particles and the interface does not have to be followed, being
between particles belonging to different phases. Multifluid SPH models have been extensively
studied and particular attention was paid to high density ratio cases applied to classical air-
water flows at different scales from mesoscopic flows usually involving surface tension effects
with droplet deformation or bubble rising into different media [5, 150, 170, 171, 192, 268, 306, 341,
396, 400], to 2D or 3D macroscopic cases such as gravity currents, Rayleigh-Taylor instability,
sloshing tanks and dam breaks [78, 86, 150, 255, 268, 400]. Engineering applications were also
considered: Lind et al. [219] studied the air-water wave slamming, Gong et al. [147] made an in-
depth study of a wedge entry in water, Wan et al. [374] focused on the air-water turbulent mixing
in hydraulic jump or over dam spillways. The graphics SPH community also considered air-
water flows [174] but with the objective of realistic simulations without quantitative validation

and some questionable numerical operations.

Accurately modeling multifluid phenomena including mixing with the usual SPH approach in
the air-water case requires choosing a particle discretization of less than the size of an air bubble
or water drop, which leads to prohibitive computational cost at the scale of practical interest for
engineering applications. Another approach, less considered in the SPH literature but getting
stronger interest [90, 149, 297, 305, 327], is to work with the averaged models described in Chap-

ter 1 in which SPH particles carry the different phases with their respective volume fractions.
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Whereas in multifluid SPH the particles have a once and for all assigned phase, the particles
can now exchange the different phases in the mixture model. Due to the averaging process, the
interface between phases may no longer be explicitly tracked when a mixture occurs. These
models are of particular interest for modeling flows with small-scale interfaces (e.g. dispersed
air phase in a water flow) and are usually implemented using the finite volume approach as in
[99]. A prominent point consists in solving the volume fraction evolution properly as underlined
by [316]. Nevertheless, all the methods developed in the SPH literature for multiphase computa-
tions will be of interest for the implementation of such models. In what follows, we will therefore
detail the challenges of the multiphase flow modeling in SPH, give some details about how these
questions are addressed by the multiphase models developed in the literature before focusing on

mixture models and their specific challenges.

2.2.1 Challenges of a multifluid formulation

Multiphase flow modeling in basic SPH consists in using a set of particles for each phase without
any specific treatment at the interface: kernel supports of particles near interfaces therefore
encompass particles of both phases and consequent interpolations imply continuity of pressure
and shear stresses. The set of discretized equations and operators presented in the Section 2.1 are
applied to the different fluids. From low to moderate density ratios, this approach does not trigger
significant issues [368]. However some issues appear at high density ratios: a nonphysical gap is
generated near the interfaces where the pressure field gets very noisy [86]. The main challenge
in the simulation of multiphase flows therefore lies in the treatment of discontinuities across
the interface between fluids. As highlighted in the Section 2.1, the derivations assumed that the
considered fields were C!. As we are no longer in this framework, densities being discontinuous,

some care must be taken with the operators used. Several challenges need to be addressed.

2.2.1.1 The density computation

The approaches described in the Section 2.1.3 lead to inconsistencies due to the use of parti-
cles with significantly different densities in the computation of the interpolation or divergence

operator. The density is therefore smoothed over the interface.

2.2.1.2 Continuous interpolation of the pressure gradient

The pressure gradient is generally discontinuous across the interface. Its discretization is known
to cause numerical instabilities, especially as the density ratio increases as noted by Colagrossi
and Landrini [86]. This issue originates from the SPH continuous interpolation process described

in Section 2.1.2. The continuous interpolation for the pressure force writes:
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For a given particle a in the o phase whose kernel support {2, is shared between Q* (phase «)
and Q7 (phase [3), after splitting the integral between the phases and assuming an incompressible
hydrostatic configuration (i.e. Vp = p®g in the a phase and p®g in the /3 phase), one gets:

p/B

] (r) =g+ Fs_o (r) with Fg_,, (1) = < — 1) g/ , w (r — r’) av’  (2.106)
Q,.NN

RE
p()f

P

One can see that due to the density discontinuity, an additional force Fj3_,, appears. It cancels
out if p* = p? (no density discontinuity) or if 2, N Q® = & (the kernel support of a particle of
one phase does not overlap the other phase). This spurious force is proportional to the density
ratio so that when p” > p®, a large force is generated in the lighter phase and a small one in the
water phase (exchange the superscripts o and /3). This discrepancy leads to a gap configuration
as an equilibrium position - the particles of the lighter phase reduce the overlapping of the kernel
support with the heavier phase - and significant unrest in the lighter phase. Further details on

this issue can be found in Appendix A.

2.2.1.3 Mixtures

The accuracy of the SPH method relies on the existence of a sufficient number of particles within
the kernel support to compute the SPH interpolations. In multiphase configurations, if one does
not consider separated flows, mixing is likely to happen and triggers some isolated particles of
one phase in the other if the discretization is not refined enough. This situation was for example
noticed for the long-time behavior of the Rayleigh-Taylor instability with an incomplete sepa-

ration of phases: the pressure gradient was probably wrongly computed for isolated particles.

2.2.2 Classical multiphase SPH formulations

In case of air-water flows, classical examples include macroscopic cases such as dam break and
sloshing, but also mesoscopic applications of air bubble deformation and rising that may require
surface tension modeling. As we are interested in modeling flow at scales in which surface ten-
sion effects are negligible, we do not focus on this aspect in the following. Let us just underline
that intrinsic surface tension, potentially larger than the physical one, can originate of the nu-

merical implementation [166].

2.2.2.1 The state equation

The Tait equation (1.10) is of wide use for linking the pressure to the density in water. For gases, a
classical link is the ideal gas law involving thermal energy that should therefore be solved thanks
to an energy equation. However, one can think in including physical behavior within the state
equation by adopting a specific writing. Tartakovsky et al. [342] used the Van der Waals equation

of state in function of the inverse of the volume or specific volume ¢ to study bubbly and layered
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flows in channels:

p= — o0 (2.107)

where ky is the Boltzman constant, 7" the temperature (assumed constant in their work) and ¢, are
Van der Waals constants. Combined with the momentum equation, it proves to be a powerful tool
to include multicomponent physics (surface tension, contact line) but requires some calibrations.
Nevertheless, most of the SPH literature on air-water flows considers the same state equation
for both phases and avoid solving an energy equation. Colagrossi and Landrini [86] underline
that, while being classical for ensuring the weak compressibility of the water phase, the choice
of the Tait equation with the polytropic coefficient of 1.4 for the air phase can be seen as an
adiabatic evolution for a truly compressible gas, and this coefficient should be lessened for air-
water mixtures of dispersed small bubbles at 1 for an isothermal evolution. In their work, in
order to keep the interface sharp, the state equation for the lighter fluid was modified by a Van

der Waals cohesive pressure already used in an early work on air bubbles in water in SPH by

Nugent and Posch [282]:
13
p
frd _ — 1
p(p) =po [(p())

where a, = 1.59p€ /pG Le with L. a characteristic length of the problem. This force shall be

+pB — app2 (2.108)

negligible in the bulk of the fluids and act mostly at the interface.

2.2.2.2 The simulation of interfacial flows

Colagrossi and Landrini [86] made pioneering work in the study of air-water flows at realistic
density ratios. Facing the instabilities of the classical SPH method at high density ratios, a panel
of numerical choices and corrections were introduced and their effects were separately inves-
tigated. The set of their discrete equations was derived following Bonet and Lok [32], leading
to differential operators expressed in terms of volume rather than density Gt ’O{pb} in the mo-
mentum equation and D, ’1{’Ub} in the continuity equation treated in a non-conservative way.
Density re-initialization was periodically performed thanks to a first order accurate SPH interpo-
lation of the density with a Moving-Least-Square kernel every 20 time steps. A modified version
of the artificial viscosity of Monaghan [261] was also introduced, now weighted by the factor

% (nq + mp) Where:
) Dafon}]
|Da{vp}| + /Sa : Sa + 107%¢c, /R

A key ingredient, which is also a drawback of the model, is the choice of sound speeds that should

Na (2.109)

follow the following relation:
po (™) pp(e”)?
o= (2.110)
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in order for both fluids to operate in the same pressure range (required by the dynamic condition
at the interface). For air-water flows, it triggers a sound speed ratio around 13 with usual values
of densities and polytropic indices indicated in Chapter 1, which leads to small time steps in the
air phase due to the CFL condition (2.101). Moreover the sound speed is then higher in air than
in water: physics indicate the reverse behavior as the sound speed is around 343 m/s in air and
1481 m/s in water at 20°C' with a 4.3 ratio. Let us however recall that in SPH the numerical
sound speed is seen as a tool to enforce weak compressibility. If one uses unit polytropic indices
in case of a linearized state equation, the ratio between numerical sound speeds becomes 28.5,

decreasing even more the time step.

Coming back to Colagrossi and Landrini’s work, fragmentation of the interface was noticed when
modeling air bubbles. The correction of the state equation detailed in the previous section was
employed. The XSPH correction described in Section 2.1.6.4 was used to prevent particles inter-
penetration and to regularize the computation, without taking into account the influence of the
other medium in the corresponding interpolations. The effects of these corrections are thor-
oughly studied on dam break simulations and the results agree well with Level-Set approach
computations. If they brought some significant improvements in the accuracy, they also trigger

an increase in computational time.

In this prospect Mokos et al. [254] made an in-depth work on GPU acceleration and applied this
model to simulate a 3D dry-bed dam break over an obstacle, showing an improvement compared
to single-phase computations. Mokos et al. [255] however identified some issues at fine resolu-
tions with the occurrence of non physical voids and phase separation on a 2D dam break. The
shifting algorithm developed by Lind et al. [218], Skillen et al. [333], Xu et al. [388] is adapted by
switching off the free surface correction in the air phase to allow its expansion. The correction

is validated on 2D and 3D dam breaks, and a 2D sloshing case.

Colagrossi and Landrini [86] approach was also used by Gong et al. [147] to model sloshing, dam
break and to carry out an in-depth study of a wedge entry with focus on the bubble formation,

showing the interest of the two-phase modeling.

2.2.2.3 The specific volume formulation

The density computation introduced in Section 2.1.3 is suitable as long as masses do not vary
during the computations. However the mixture model further detailed does not preserve the
mass of particles. Moreover, this classical density definition leads to a smoothing at the interfaces
[170]. Another way shall be considered.

Esparfiol and Revenga [121] presented a scheme in which the particle volumes were computed
thanks to an SPH interpolation. Distinct from the geometrical ones, they referred to thermody-
namical volumes. Tartakovsky and Meakin [341] wrote the set of equations for single-phase flow

with varying masses due to a solute concentration with particle number density assimilated to
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the specific volume o, including an expression of the pressure force of the form:

dmava -y (

beF

) Vwgp + other terms (2.111)
b

This was further used by Hu and Adams [170] to develop another multifluid SPH model in view of
mesoscopic and macroscopic flows. They rewrote the SPH equations in terms of particle specific
volume that becomes a main variable of the model and allows one to handle density discontinuity
across interfaces. The neighboring particles indeed no longer contribute through their density
but their specific volume. Instead of interpolating the densities as in the relation (2.44), the

specific volume is interpolated to get:

Pa = MgOq = My Z Wap (2.112)

beF
that allows density discontinuities and exact conservation of the mass. A good computation of
the positions is therefore required to have a good estimation of densities. Written in the USAW

framework, it becomes:

Ya0a = ) Wab (2.113)

beF

Following a reasoning similar to the one developed by Vila [360], the differentiation leads to:

dva0a _ d
e (Z wab> (2.114)

beF

And finally, the temporal explicit integration making this formulation suitable for free surface

flows writes:

ot = n+1 [’yaaa + ) (wit = wy )] (2.115)
Ta beF
Back to Hu and Adams’ work, the pressure gradient now writes:
p Py
Galpp} =04 ) (‘; + 2) VWap (2.116)
ber \%a b

A new viscous term, analogous to Espaiiol and Revenga’s one, is formulated to handle viscosity
discontinuities and guarantees the continuity of shear stress across the interface thanks to a

harmonic mean of the viscosities, but does not preserve angular momentum:

1 2,u 122 1 1 Tab - Vw b
Fyp=—%) /" <2 + 2) [(€ab - Vab) €ab + Vap] ———5—— (2.117)
mg beF Ba + Uy \0G gy, Tab

Some mesoscopic developments regarding surface tension and interface slip are also developed.

Droplet oscillation, three-phase interaction with contact line and mesoscopic flows in channels
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are considered (droplet deformation, moving contact line). Ghaitanellis et al. [145] extended this
formulation to the USAW framework by renormalizing the operators thanks to the coefficient
(2.49). Further details will be given in Chapter 3 as this formulation will be the ground of our
mixture model. Further developments were made in the ISPH framework by Hu and Adams
[171, 172] and are presented in the dedicated Section 2.2.2.6. Their model was recently modified
by Krimi et al. [192] by using the renormalization matrix (2.32) to get first order consistency of
the surface tension model so as to improve the interface stability. To smooth the initial transients
of gravitational flow simulations, a particle redistribution approach smoothing the velocity and
particle distribution was described: the gravity is gradually applied considering that all particles
belong to the heavier phase to handle multiphase flows initialization. The model is then suc-
cessfully applied to droplet deformation, two-phase hydrostatic pressure case up to a 100 density
ratio, Rayleigh-Taylor instability and rising bubbles. These works were nevertheless not appli-

cable for free surface flows.

2.2.2.4 Kernel renormalization and repulsive force

In a formulation with similarities with Hu and Adams [170] by using the specific volumes and
Colagrossi and Landrini [86] with respect to the choices of sound speeds and differential op-
erators, Grenier [149] and Grenier et al. [150] derived from Lagrangian variational principles a
multifluid SPH model that was further applied in Grenier et al. [151] to model viscous and surface
tension effects as in a viscous bubbly flow in an oil-water separator. In particular, free surface
flows can be treated thanks to a kernel renormalization by the Shepard filter (2.76) with conse-
quent modifications of the discrete differential operators. The density is computed thanks to an

interpolation involving particles of the same phase:

1 .
Pa = Ta Zmbwab with I' = Z Vywap (2.118)

@ bea bea

Volume distribution therefore needs to be known to compute the density and is followed thanks
to a continuity equation on volumes. The direct relation between mass, density and volume is

relaxed through this process. The differential operators then writes:

1
Da{vp} = =52 > Vb (va = m) - Vi (2.119)
a
beF
b Y2
Golpp} = — Z Vb <FZ‘ + I“) - Vwgp (2.120)
beF a b
The viscous force is modified:
8taft ( 1 1 > Tap - VWap
Fy=) Vi =l e R 2.121
=2 o re) (2.121)
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The resulting system preserves linear and angular momentum. Surface tension was modeled but
when it happened to be negligible, spurious fragmentation could occur. An empirical repulsive
force bearing some similarities with that of Monaghan [264] was therefore added to the pressure

gradient by summing on particles belonging to the other phase:

FRZQ%Z(

bep

Pa

g

P

—i—F?

) Vwap (2.122)

with €7 between 0.01 and 0.1. This model was successfully applied to an air bubble rising in
water, the Rayleigh-Taylor instability and gravity currents, and the ability of the model to deal

with a free surface was illustrated. However, density ratios considered were lower than 2.

Monaghan and Rafiee [268] detailed an SPH multiphase flow modeling at high density ratios. It
includes a repulsion term between the phases similar to the one of Grenier et al. [150] lower than
8% of the pressure force for high density ratios. The sound speed ratio required is around three
times smaller than the one required from [86] although no general relation is found. Surface

tension effects are neglected. The pressure gradient (2.27) is used. An artificial viscosity similar

VaVp(Patpp)
PaVa+pPbVp

initial damping phase is applied to reduce the potential perturbations, considering if necessary

to (2.81) is employed with a modified vy, = in case of high viscosity ratios. An
the lighter phase as a rigid body. This model is applied to elliptical region deformation, interfacial
waves up to a density ratio of 100, the Rayleigh—Taylor instability and gravity currents with
density ratios from 1.33 to 20. These results prove to be in good agreement with numerical and

experimental data from the literature.

2.2.2.5 Adverse phase ghost particles

Chen et al. 78] described an SPH model for multiphase flow with large density differences. Ar-
tificial viscosity is employed. For a given particle, all the neighbors belonging to another phase
in the support of the kernel are considered as interpolation points of the same phase, i.e. fluid
particles of a different phase are treated as ghost particles for which only information continuous
across the interface is retained. Density re-initialization adapted to this assumption by using the
inverse state equation for particles of the other phase is employed. A cut-off value is given to the
particle density to avoid negative pressures. Pressure gradient was computed as a basic SPH gra-
dient (2.21). Same sound speeds were taken in both fluids, ensuring a weak compressibility of the
water phase, and background pressure was used. This model was tested on the Rayleigh-Taylor
instability, a gravity current and a dam break. The model indeed results in a smooth pressure
field even close to the interface and reasonable agreement with the positions of the developing
flows and the pressure evolution in the dam break problem. The continuity of the pressure force
is however not ensured, which may cause numerical instabilities in the long term. Significant
diffusion is present, with consequent delays in dynamic behaviors, so that further modifications

were performed by Zheng and Chen [400] as described in Section 2.2.2.8.
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Zhou et al. [401] incremented on the model of Chen et al. [78] by introducing a pressure cor-
rection derived from a small interface deformation assumption and tuned by a case-dependent
parameter c, (that depends on the interface deformation). The pressure contributions of the

dense phase in the light phase computation are then computed as:

Pbnew = Pb — Cp ([;()a - Po,b> (Pa — pb) (2.123)
This corrected pressure is used in the density re-initialization step to avoid nonphysical pressure
transfers from the dense to the light fluids. Numerical applications of air-water flows are then
considered. A two-phase hydrostatic pressure case was successfully simulated without instabil-
ities developing. The model was then applied to sloshing and dam break, and got a reasonable
agreement with experimental data with some improvements. Finally a water entry test case was

considered and no significant discrepancy was noticed with the correction.

Following Chen et al. [78], Zhu et al. [402] used the renormalization matrix (2.32) for kernel gra-
dients used in all differential operators. A repulsive interface force is introduced like in Grenier
et al. [150] but with the basic SPH gradient (2.21). A good agreement with the two-phase dam
break time history of the pressure is obtained. The Rayleigh—Taylor instability growth is satis-
factorily reproduced but interface fragmentation occurs. Good results are obtained for the shape

of an air bubble rising in water.

2.2.2.6 Incompressible multifluid SPH

Few works have been performed in ISPH to model multiphase flows: we will focus hereafter on
recent attempts. Hu and Adams [171] developed a multiphase ISPH model ensuring zero varia-
tion of the density through a fractional time-step integration algorithm within the framework of
specific volume formulation presented in the Section 2.2.2.3. To ensure the continuity of the pres-
sure force across the interface, an inter-particle averaged reasoning is introduced and suggests

the following form for the gradient operator:

1 1 1 paps+ pop
Gulp) = —0a Y (5 + — | PP gy, (2.124)
ma beF Ua Ub pa + pb

Chen et al. [78] considered that the inter-particle pressure of Hu and Adams [171] reduces the
interaction of phases to the action of air particles on the water phase and not the reverse way:

for a pair of particles witha € cand b € 3

Bab = PaPb + PbPa - Pb P
¢ Pa + P Pa + P

o~ D (2.125)

This reasoning is approximate and depends on the discretization retained: it indeed considers

that py, is not too large compared to p, which is not true for coarse discretizations. The two-way
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coupling is still present. Taylor-Green flow, capillary waves and Rayleigh-Taylor instability are
considered by Hu and Adams [170] for validation and highlight good agreement with theory and
references in the literature. This work is extended by the same authors [172] with a correction
in the fractional time-step algorithm that allows one to deal with high density ratio flows, again
applied to droplet deformation and Rayleigh-Taylor instability. The specific volume formulation
combined with the above pressure gradient is further applied to 2D and 3D droplet deformations
at high density ratios by Adami et al. [5] with a new surface tension formulation. The viscous

force is modeled through:

1 2 1 1 -V
Fy = — Ha b (2 2) o Tab A Wab (2.126)
Ma 7~ Ha +uy \og 0y oy

Shao [323] presented two ISPH models applied to low density ratio flows: a coupled one applying
standard single-fluid ISPH techniques irrespective of the phases without any interface treatment
and an uncoupled one for which each phase is treated independently before coupling through
pressure and shear stress continuities. These models were tested on a gravitational underflow
in a flume and an horizontal lock exchange flow. The decoupled model performed well on the
whole range of density ratios while the coupled model failed at modeling the highest density
ratios equal to 1.3. Some work was required to handle the resolution of the PPE at high density
ratios. Zainali et al. [396] developed a 2D ISPH model with an improved interface treatment
applied to high density (1000) and viscosity (100) ratios: a different kernel was used for the surface
tension force eliminating the interphase penetration and a renormalized pressure gradient (2.33)
was employed. Transport parameters of constituents across the interface were smoothed when
required in the computations to prevent numerical instabilities. This model was successfully
applied to the simulation of single vortex flow, bubble or droplet deformation and bubble rising,
asavery good agreement is obtained on the shapes of the structures studied with references of the
literature. In the following, Rezavand et al. [306] modeled high density ratio flows with ISPH but
introducing repulsive forces of Monaghan and Rafiee [268] between the phases to maintain the
interface sharpness. Two-phase Poiseuille flow, Rayleigh-Taylor instability, droplet oscillation
and rising bubbles were considered and compared well with the analytical solutions and reference
results of the literature. King and Lind [187] developed a partitioned approach for high density
ratio flows in ISPH by separately modeling liquid and gas and coupling the phases with momenta-
conserving interfacial boundary conditions: the liquid drives the kinematics of the gas phase at
the interface while the gas gives an interfacial stress to the liquid. Contrary to Zainali et al. [396]
and Rezavand et al. [306], the density and viscosity were not smoothed across the interface.
An accurate pressure field was obtained on a two-phase hydrostatic pressure case. Liquid drop
impact was also studied with observations more consistent with experiments than Rezavand
et al.’s results. A smaller quantity of air was however entrained by the impact and these particles
were then disregarded by the model. These results are promising for the use of ISPH solvers for

high density ratio flows, even though the question of dispersed phase remains to be tackled, due
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to the necessity to follow the interface and apply appropriate conditions on it.

2.2.2.7 Incompressible-compressible multifluid SPH

Previous works described in the WCSPH framework required to use nonphysical sound speeds
to handle high density ratios. Lind et al. [220] have developed a two-phase incompressible-
compressible SPH method handling a discontinuous high density ratio at the interface between
air and water: the compressible air phase gave a surface pressure to the incompressible water
phase and reversely the incompressible phase gave a surface velocity to the compressible one.
A Fickian shifting was employed in the water phase to avoid particle clustering due to particle
moving along streamlines and shift particles in a somewhat equispaced distribution. In the air
phase, a conservative uncorrected gradient operator was used for pressure and a linearized state
equation was employed. The density field was regularly filtered by a Shepard filter (2.76) and
artificial viscosity was introduced in the momentum equation for numerical stability. This model
was validated with a two-layer elliptical drop deformation, standing waves, Kelvin—Helmotz
instability and a two-phase dam break. The compressibility of air being of interest for coastal
and offshore engineering (wave breaking, impact and sloshing...), this work was also applied
to air-water wave slam by Lind et al. [219]. Similar conclusions to the previous paragraph can

however be drawn regarding this kind of approach.

2.2.2.8 Multiphase -SPH

Hammani et al. [158] adapted §—SPH to the multifluid framework, replacing the continuity equa-
tion by the volumetric strain rate equation and adapting consequently the diffusion terms of the
model that are computed by summing on particles of the same phase. Density is then computed
thanks to an SPH interpolation. Background pressure is included. This model is successfully ap-
plied to a two-phase hydrostatic test case which proves to be stable in the long-time simulation,
an oscillating drop and a dam break flow for which a smooth pressure field and a good agree-
ment with the single phase flow is obtained until air-cushioning effects of the generated cavity
are involved. Sound speeds are however still chosen according to Colagrossi and Landrini [86]
work, resulting in large sound speeds in the light phase. Zheng and Chen [400] made several
modifications to Chen et al. [78] model to reduce numerical diffusion. Inspired from the §—SPH
approach, a density correction is introduced to replace the density re-initialization. Compared to
0—-SPH, the correction is computed with the density increment (pk — pk ) instead of the density
thanks to the inverse state law, which should be more suitable for multiphase flows. Regard-
ing the artificial viscosity term, a switch function is used to activate viscosity only in regions
with large pressure gradient and velocities based on a threshold value for the quantity VP - v.
The Rayleigh-Taylor instability and a solitary wave propagation along an oil-water interface
were accurately modeled. Then a bubble rising compared well with Level-Set results. Air bubble

oscillations highlighted the lower diffusion of the present model compared to [78]. Dam break
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computations triggered a relatively smooth pressure field but interface fragmentation occurred.

2.2.2.9 Multifluid SPH-ALE and Riemann solvers

Leduc et al. [208] followed by Marongiu et al. [241] and Leduc et al. [209] extended the Riemann
solvers to multiphase SPH and included surface tension. Solving Riemann problem for multi-
phase flows requires special care: the ALE property is used so that the velocity obtained with
the Riemann solver is given to the interface velocity. Sharp interfaces can therefore be preserved
and followed in a fully Lagrangian manner. Moreover high density ratio flows can be modeled in
a stable way. Rafiee et al. [303] used this approach due to its ability to work with physical sound
speeds, which is usually not possible in WCSPH, to model compressible inviscid two-phase flows
such as wave impact on a rigid wall described in [303]. Rezavand et al. [307] extended to two-
phase flows the low-dissipation Riemann solver of Zhang et al. [398] and introduced a transport
velocity formulation in the light phase detailed below to compute violent 2D and 3D air-water
flows (dam break, sloshing). The first point aimed at stabilizing the interface while the second
allowed them to get rid of voids and spurious fragmentations: the heavy phase is then seen as
a moving wall boundary by the light phase while it undergoes a variable free surface pressure.
The same sound speed was used in both phases. No artificial repulsive pressure force nor density
re-initialization scheme were needed. In the light phase, the density is computed thanks to the

SPH interpolation of [170] and transport velocity formulation writes:

- dv, 2
B (t + 0t) = vy (t) + Ot ( T Z;VbVwab> (2.127)

The momentum equation is then computed as:

dv,
dt
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2.2.2.10 An interface pressure gradient correction

Kruisbrink et al. [193] assimilated the spurious upward force between phases near an interface

Fjy_,, (see equation (2.106)) to a buoyancy effect:

Fﬂ—m,a = - (Pm - Pa) Vag (2.129)

where p,, is the density of the surrounding fluid. A quasi-buoyancy (QB) pressure gradient

correction is therefore suggested:

FQB = Z (pb - ,Oa) VaV}) (g - a’b) Wap (2-130)
beQ,-NOB
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where a, = a (r}) is the acceleration of the neighboring particle. A measure of the quasi-
submergence of the considered particle within the other phase is computed to introduce a crite-
rion so that true buoyancy can be taken into account and avoid to be canceled out by the above

correction. The full correction writes:

Fop = Z \/Mmamb (1 — 1> (9 — agp) Wap (2.131)

beQ,N0P Pa . Po

where . .
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beQ,NQB
Z %wab
beQ,-NQB

QS; = (2.133)

This approach allowed them to deal with high density ratio flows and physical sound speed ra-
tios. A stagnant air-water flow in a tank kept stable, contrary to the other approaches tested,
and results on Rayleigh-Taylor instability and rising air bubble were reproduced with satisfac-
tory accuracy. The pressure gradient, if we exclude the above-described correction, is computed

following Colagrossi and Landrini [86].

2.2.3 Multifluid open boundaries in the literature

Few references of the literature addressed the question of multifluid open boundaries. Once
again the challenge is two-fold: have different fluid entering or leaving the domain, possibly in
contact at the inlet/outlet, and deal with high density ratios. Let us first underline that an option
for inlets can be to make separate inlets for each fluid, but this assumes that there is not any
mixture at the entrance. For the outlet it would imply to make sure that the fluid reaches the
boundary without any mixture, for example thanks to a "decantation" reservoir. This approach
requires adaptation to each geometry and is therefore not general. As described in section 2.1.5.4,
the most common approach consists in using buffer layers. Grenier [149] and Grenier et al.
[151], following Oger [283], introduced oil bubbles at the inlet of a water tank thanks to a buffer
layer in which some bubbles are created and advected with an imposed velocity without SPH
interpolation. Both velocity and pressure (compressible hydrostatic profile) are imposed at the
inlet and only velocity at the outlet with a boundary pressure equal to the pressure of nearest

particles. Some instabilities and wave generation issues are pointed out.

In ISPH, Kunz et al. [196], following the idea of Hirschler et al. [163] to use mirrored particles at
open boundaries with a linear projection method to impose true Dirichlet boundary conditions,
wrote an algorithm able to handle inflow and outflow at the same boundary and that proved to

handle back-flowing water at a gas injection nozzle forming bubbles. Douillet-Grellier et al. [110]
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adapted the idea of Tafuni et al. [340] to simulate the variability of two-phase flow regimes in
pipes, from moderate to high density (up to 427) and viscosity (up to 32) ratios, in the multiphase
framework presented by Hu and Adams [170] but had to make a separated flow enter the domain
before seeing the specific pipe regime development. To keep a clean interface, the interface stress
was also computed in the buffer layer. If they succeeded in reproducing different two-phase flow
behaviors with respect to classical flow regime maps, they underlined that their results could be

improved by a more accurate (and more complex) approach such as semi-analytical boundaries.

In the present work, we choose to extend the work of Ferrand et al. [129] to the mixture model
presented before. This model has to be able to handle either separated flows or mixtures and is

presented in Chapter 3.

2.3 Averaged models in SPH

Two-phase averaged models as derived in Section 1.1.4 have received a limited interest in the
SPH literature. The usual averaging process indeed corresponds to an Eulerian point of view, so
that the use in a Lagrangian approach triggers some specific issues, e.g. the loss of the intrinsic
tracking of the interface due to the possible diffuse interface. However, it is not an insuperable
obstacle: zones in which the interfaces are separated can be preserved if the physics and numer-
ical implementation allow it. Moreover, if the considered phases are water and sediments, one
can take advantage of the intrinsic free surface treatment to avoid modeling the air phase and
still follow the deformations of the interface. As detailed further, the few references in the SPH
literature addressed some significantly different kinds of flows with averaged models. Among
the averaged models, mixture models are of particular interest. Thanks to the unique velocity
field for the motion of SPH particles, they are close to the usual single-fluid set of equations and
can therefore be implemented with limited effort. The reduced number of equations to solve
is expected to limit the computations compared to two-fluid approaches with a different set of

particles for each phase.

2.3.1 Overlapping frames of particles

Early work on multiphase flow modeling and first occurrence of volume fraction representation
in SPH were achieved in an astrophysical framework to study gas/dust mixtures by Monaghan
and Kocharyan [266] and Monaghan [263] in view of pyroclastic flows or fluidized beds, further
applied by Maddison [238] and Barriére-Fouchet et al. [18] to dust distribution in protoplanetary
disks, by Xiong et al. [387] to fluidization systems and by Kwon and Monaghan [198, 199] to
sedimentation. The dusty fluid is modeled by two interpenetrating domains with pressure and
drag interactions. Each phase is assigned a set of particles, one frame overlapping the other, and

corresponding continuity, momentum and energy equations are solved: this is a two-velocity
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single-pressure model. The volume fraction is computed as:

1
=1~ Z MpWap (2.134)
p beF

where [ refers to the dust phase. This relation is also used in the further references. Compu-
tations were carried out for high density ratio flows (2400). With a similar idea of two frames
of particles, Rice et al. [310] used massless gas particles interacting with dust particles for astro-

physical applications.

Porous media are a particular application of such approach and received a significant interest.
This approach was applied to water-soil interactions by Wang et al. [377] including the effects
of volume fractions on the mixture dynamics. Bui and Nguyen [43] simulated fluid flow in de-
formable porous media with a two-phase theory and an elastoplastic solid phase, each phase
being discretized by a different set of particles. The pore fluid was modeled as an incompress-
ible fluid, solved with ISPH, while the soil skeleton remained fixed. The solid volume fraction,
considered to be always much less than 1, was solved with an evolution equation and was then
interpolated to deduce the fluid volume fraction through (2.134). It was successfully validated
on seepage flow and failure response of porous medium. Peng et al. [289] developed a WCSPH
mixture model to simulate flows through saturated porous media based on the theory of Drew
[111]. While water is modeled with the WCSPH §—SPH formulation, the solid phase is repre-
sented by fixed particles with porosity. Only the motion of the fluid phase is computed. The
porous medium applies a non linear resistance force R, (basically issued from a Darcy’s law
that can take more complex expressions) in the momentum equation, giving the following set of

evolution equations:

dp p da

- = v — 2= 2.135

- YT L (2.135)
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w _ —=Vp+ —V - (aT)+g—-Ry (2.136)
dt p ap p

Let us underline that the variables are not mixture quantities but refer to the fluid phase, so
that the notion of mixture model given in these papers will differ from the one adopted in this
manuscript. Satisfactory agreement is obtained with analytical and experimental results on seep-
age, water flows in rockfill and wave interaction with porous structures. Similarly to Peng et al.
[289], Khayyer et al. [185] developed an enhanced ISPH two-phase model for application to media
of variable porosity and applied it on a wide array of tests, from flow in U-tube, to seepage flows
and solitary wave attenuation over a porous bed and interaction with a submerged porous struc-
ture that compared satisfactorily with analytical, numerical and experimental results. Shimizu
et al. [330] introduced in this model a former volume increase concept inside the porous medium
to handle unsaturated flows. The volume of fluid particles is then computed through V' = 1}/«
where « is assumed to remain sufficiently close to 1. Such approaches have the cost to model

two different sets of particles, even though this cost is significantly reduced when one of these
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sets remained fixed.

2.3.2 Lagrangian/Lagrangian approach

The SPH framework offers a straightforward coupling with other Lagrangian methods describ-
ing the dispersed phase: the Discrete Element Model (DEM) received attention from the SPH
community, especially to model the solid phase for sedimentation processes as it allows one to
compute the motions and effects of numerous small particles: while the liquid is modeled with
a continuous approach, the dispersed phase is modeled with a set of particles that are followed
independently and interact with the continuous medium. Gao and Herbst [141] introduced a two-
way coupling between SPH and the Discrete Element Model (DEM) modifying the multiphase
model detailed by Monaghan and Kocharyan [266]. Interaction between fluid and solid phase
in view of dense particulate flows in a grinding mill through three contributions are taken into
account through volume fraction, pressure and drag force. Robinson and Ramaioli [312] used
the locally averaged Navier—Stokes equations of Anderson and Jackson [10] and coupled them
with a Discrete Element Model (DEM) model to create a simulation tool for one or two-way cou-
pled fluid-particle systems. They applied this approach to the sedimentation of single or multiple
particles. Breinlinger et al. [37] included additional forces in such models for granular material
transport and powder processes. Solid-liquid flows with free surface were successfully simulated
by Sun et al. [339] with DEM-SPH approach. For bubble flows, Torti and Sibilla [348] described
in their work a Lagrangian approach coupling an SPH representation of the continuous liquid
phase with a direct solution of the Newton’s law for the trajectories of computational particles
standing for sets of gas bubbles. The bubble motions generate a force in the liquid momentum
equation while the bubble trajectories are modified by the force generated by the liquid phase
within a local equilibrium assumption neglecting the transients. They successfully applied this
approach to a bubble column and a gas-liquid jet. Works are still carried out in this field, e.g. He
et al. [160] developed a GPU-based coupled DEM-SPH to study particle-fluid flows including

free surfaces in multiphase chemical processes (agitated tubular reactor, rotating drum).

2.3.3 Two-velocity single-pressure averaged model

Recent developments have been made in the SPH method to implement two-phase models with
two velocities but only one set of particles compared to the methods described in the previous

sections. Obviously, a choice has to be made for the velocity moving the particles.

2.3.3.1 A two-fluid approach

Shi and Yu [326], Shi et al. [327, 328] developed a two-phase SPH model to study solid-liquid
mixtures. The single set of SPH particles is moved with the water velocity. Turbulence effects

are included thanks to LES through a Smagorinsky model with parameters used as tuning values.
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The momentum equations are coupled with a drag force +yav" including an hindering factor
accounting for the surrounding sediment concentration and an interphase momentum transfer
due to subscale turbulence y/Ba/v’ modeled with a gradient transport law following [247] in the
framework of dilute sediment flows. The test cases include free surface, taking advantage of the

feature of SPH to avoid modeling the air phase, and compare well with the experimental values.

2.3.3.2 Miscible flows approaches

Tartakovsky and Meakin [341] modeled miscible flow fluid particles with variable masses de-
pending linearly on the solute concentration. The solute concentration was computed thanks
to an advection-diffusion equation. The model was applied to the Rayleigh-Taylor instability
development of salty water above fresh water and miscible flows in fractures. It focused on
solute-solvent flows with identical solvent. Kwon [197] developed a one-fluid SPH description
to model miscible gaseous mixtures: a momentum equation is solved for each component, these
equations being coupled by a drag force, and particles are moved by the barycentric velocity v.
Volume fractions of SPH particles evolve for each component due to three mechanisms, namely
the Maxwell-Stefan diffusion, the inter-particle advective flux due to the drift velocities and the
particle-transport-related advection linked to the compressibility of the flow. Stratification by
gravity of initially homogeneous mixtures are tackled with good agreement with an Eulerian

two-phase model.

2.3.4 Single-velocity single-pressure averaged model
2.3.4.1 Cueille and Grenier’s formulations

A mixture model with a volume fraction formulation and a diffusion of phases between particles
following a Fick law has been implemented and tested on gravity currents in Cueille [90], extend-
ing to the Lagrangian framework the Eulerian model proposed by Chanteperdrix [75] and derived
from a thermodynamical reasoning. The SPH particle is formed of two components in pressure
equilibrium p® = p®. Solving mass conservation equation on ap® and using the linearized state
equations for partial pressures p* = (¢*)? (p® — pg) where pg is the reference density for the
« phase as the phase densities are left to vary, an equilibrium volume fraction can be computed.
This work highlighted the importance of the choice of solver in the resolution, especially the in-
terest of using Riemann solvers, solving separately the hyperbolic part of the equations, to obtain
good results for gravity currents. Following Cueille [90], a mixture model with a volume frac-
tion formulation without phase exchanges between particles was implemented and compared to
a multifluid formulation by Grenier [149] with an SPH-ALE approach as described in Section
2.1.6.7, especially on shock tubes, wave sloshing and Rayleigh-Taylor instability cases. It high-
lighted the diffusion of the interfaces triggered by the mixture model. To improve the precision,

the MUSCL (Monotonic Upwind Scheme for Conservation Laws) with limiters was introduced
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but required some corrections for the gradient computations for realizability issues. However the
results were adversely affected by this correction. The mixture model results remain generally
satisfying but the multifluid formulation of SPH described in Section 2.2.2.4 proved to perform

better on the cases tested.

2.3.4.2 Mixture models in the graphics community

SPH mixture models were developed recently in the graphics community to simulate multifluid
phenomena that are not adequately simulated with single-fluid approaches such as mixing, dif-
fusion processes, chemical reactions, etc. The aim of these works is to provide simulations of
realistic appearance. No quantitative validation is done. The volume fraction representation was
introduced by Liu et al. [222] for simulating visually realistic mixing phenomena. Mixture mod-
els were implemented to capture a wide range of physical phenomena for liquid mixtures by Ren
et al. [305] further extended to deal with fluid-solid interactions by Yan et al. [391]. This work
included a closure for diffusion velocities. Yang et al. [393] introduced user-adjusted Helmholtz
free energy functions, the fluid evolving from high-energy states to low-energy states, to model
various mixing and unmixing processes. The Cahn-Hilliard equation describing the process of

phase separation was employed.

2.3.4.3 Mixture models in astrophysics

To simulate dust settling in protoplanetary discs, Price and Laibe [297, 298] proposed a mixture
model preserving conservation properties by rewriting the two-phase equations through the
introduction of new variables, combinations of phase variables, to overcome some issues inherent
to the two-fluid approach (overdamping at high drag that requires small temporal and spatial
discretizations, artificial trapping of dust particles below the gas resolution). The original two-
phase system of equations from which the mixture model is derived only include gravity and a
drag coupling +yv" between momentum equations, plus an energy equation. The new set of
variables comprises the total density p; = p® + p”, the dust fraction oy = p® /p, the barycentric
velocity defined as vy = (po"va + pPof ) /pt and the relative velocity v”. A system similar to
the mass fraction formulation described in Section 1.3.1 was obtained. A classical antisymmetric
discretization of the diffusion term of the dust fraction is made. For strong drag, the system was
simplified under the terminal velocity approximation, similarly to what is done in the present

work for the relative velocity equation to get:

pOZ
v~ —Vp (2.137)

Pty
The relative velocity equation become a purely diffusive relation for which a second order oper-
ator of the form (2.42) is used. The results compared well with the analytical model developed in

previous works.
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2.3.4.4 Mixture models for sediments

Bertevas et al. [20, 21], Tran-Duc et al. [349] developed a two-phase mixture model for simu-
lating ocean sediment transport. The sediment concentration is followed though an advection-
diffusion equation including turbulent diffusion with an anisotropic coefficient resulting from a
mixing length turbulence model in its vertical component. Antisymmetric operators are used
for conservation. The settling velocity follows the Stokes law with the hindering coefficient of
Richardson and Zaki [311]. Particles with variable masses are therefore used. A mixture velocity
adapted to particle suspensions is employed. The model is verified on analytical solutions and
then applied to an oceanic case without comparisons to get insights in the sediment transport

and deposition.

2.4 Summary

Among the prominent challenges of multiphase flow numerical modeling, one can refer to the
density and viscosity jumps across the interface, the possibly highly distorted moving inter-
face and the topological transition at these interfaces. While the last two issues are naturally
addressed by the usual WCSPH multifluid formulation, the first proves to be tricky to handle.
Before presenting a summary of the approaches available in SPH literature, let us have a quick

look at how the Eulerian methods tackle those three questions.

2.4.1 A parallel with Eulerian approaches

We do not aim here at discussing extensively the common numerical Eulerian approaches but
rather give a few hints to make the links with what is done in the SPH framework. Furthermore,
these approaches can be used for comparison in the numerical results sections. In the Eule-
rian framework, two main principles with different possible implementations were developed to

compute the interfaces:

« The interface tracking methods. Those methods are used for configurations for which cap-
turing the interface is pivotal, with potential effects of surface tension, adhesion... e.g. bub-
ble formation, nozzles, free-surface problems. In the widely used Volume of Fluid (VoF)
approach as introduced by Hirt and Nichols [165], an advection equation is used to follow
the interface that is diffused over a few cells. The Level-Set method first developed by Os-
her and Sethian [285] and front tracking approach described by Unverdi and Tryggvason
[352] that keeps a sharp interface are other options.

« The interface modeling approach: two-phase and mixtures models as presented in Chapter

1 belong to this category.
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The DNS approaches involving interface tracking methods were for example applied to single
bubble rising at large Reynolds number [48] or to dispersed bubbly flows with a few hundreds
bubbles moving at Reynolds number of a few tens [45] but due to computational cost, the domain
of applications still remains limited. So called Euler—Euler simulations corresponding to the sec-
ond item have a wider range of applicability, but at the price of modeling with regime-specific
closures the interfacial terms arising from the model and given in the literature, see e.g. [113, 177].
Some work was done recently to couple these approaches [98, 99, 291, 351] to take advantage
of their relative assets depending on the scale of the interfaces considered. Another option is to
increase the number of phases in the two-phase approach by introducing dispersed and contin-
uous gas fields and a continuous liquid field, namely a three-field model, as done for example by
Denéfle et al. [107] and Mimouni et al. [253]. In the multifluid SPH approach as described in Sec-
tion 2.2, the interface is not tracked and is defined as the surface in-between particles belonging
to different fluids. This a significant asset for the SPH approach. The introduction of a multiphase
approach as described in Section 2.3 following the second item triggers diffuse interface, so that

this important asset is at least partially lost.

2.4.2 Challenges for the present formulation

Multiphase flows with high density ratios are handled more easily with volume-based SPH for-
mulation of operators and this is the choice made in the following chapter, consistently with
the volume-weighted formulation developed in Chapter 1 and the work of Hu and Adams [170]
and Ghaitanellis et al. [145]. The operators can be derived from a Lagrangian variational prin-
ciple of virtual works as shown by Grenier et al. [150]. The literature displays a wide variety
of two-phase averaged models that rely heavily on the kind of flows considered, going from an
SPH-DEM approach for a dispersed flow of bubbles to a full rewriting of the equations for gas-
dust astronomical flows. Numerical ingredients of varying complexity — missing sometimes of
physical grounds — were introduced in the density and momentum equations with their share
of advantages and drawbacks, at the core of which is a too strong diffusion, however required
to stabilize the computations (Riemann solvers, density re-initialization, artificial viscosity). Few
works really addressed the intrinsic issue relative to the continuous interpolations step leading
to a wrong interfacial pressure force at high density ratios. Large speeds of sound are of common
use but result in long computational times. Repulsive forces, though artificial, appeared to be nec-
essary to avoid fragmentation of the interfaces. As far as mixture models are concerned, main
assets are their versatility and simplicity for a first implementation of averaged equations. This
literature review highlights that some challenges should be tackled with respect to the precision,
the handling of high density ratios and some partially missing features such as open boundaries
or turbulence modeling. While ISPH can be enticing to enforce the divergence-free volumetric
flux condition, the difficulties linked to the interface management prevent a safe application to

the mixture model with diffuse interface. A change of formulation by implementing the )—-SPH
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approach or Riemann solvers in an SPH-ALE framework, while enticing and promising for the
mixture model formulation (some similarities can arise due to the split of the phase velocities

into the mixture velocity and relative velocity contribution parts), will be left to further work.
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Chapter 3

The SPH two-component mixture

model

On s’emploie ici a la description du modéle de mélange développé dans le cadre de
cette thése et a sa validation sur des cas bidimensionnels de complexité croissante. Un
accent tout particulier est mis sur la résolution de I’équation régissant I’évolution des
volumes de chaque phase avec de bonnes propriétés numériques. On décrit le schéma de
diffusion de volume pour empécher le développement d’ondes de pression artificielles.
On détaille également Uextension du formalisme des conditions d’entrées/sorties SPH au
modele de mélange. Les limites du formalisme retenu, notamment pour I’écriture du
gradient de pression, sont soulignées. Au terme de ce chapitre, nous sommes équipés du
schéma numérique discret pour résoudre les équations du premier chapitre. On vérifie le
respect des bonnes propriétés numériques du schéma proposé. Lorsque cela est possible

on compare le modéle a d’autres modéles SPH, volumes finis ou Volume of Fluid.
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(a) Schematic view (b) Velocities

Figure 3.1: Control volume in a two-component flow (gas phase in red, liquid phase in blue), the
corresponding volume fractions and velocity fields.

Chapter 1 has provided the continuous framework of the two-phase model and Chapter 2 de-
scribed the state of the art of the tools in the SPH literature available to discretize this set of
equations. The aim of this chapter is to present the specific SPH two-component model devel-
oped in this work, supported by those tools, but also introducing original ones. Two main con-
tributions will be stressed: the derivation of an SPH upwind numerical scheme to follow phase
volumes with good properties [135, 136] and the construction of SPH open boundaries for mix-
tures [138]. Analogies with the Finite Volumes (FV) approaches will be central in this prospect.
In order to make the following developments as general as possible, we consider, in addition to

air/water mixtures, the case of water/sediment mixtures.

3.1 Notations

Let us consider a two-phase flow (e.g. air bubbles rising or sediments falling within water). This
section aims at detailing the notations and the mixture equations adopted to model such a flow.
We consider the control volume' presented in Figure 3.1a. The presence of phases is taken into
account through volume fractions, as schematically illustrated in Figure 3.1b. The two phases

are denoted by « and S.

For the sake of clarity, the phase quantities are listed in Table 3.1. They are used to compute the
mixture quantities presented in Table 3.2. Several choices are possible for the phase quantities
to be considered: in view of achieving the conservation of phase quantities at high density ra-

tios, a volume formulation has been retained here for the phase description (volume fraction?)

The control volume models an SPH particle that will be introduced in the next section.
*We denote o and 3 the volume fractions as well as the phase names, without any risk of confusion.
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Table 3.1: Phase quantities (k = a or ().

Volume %

Mass mk

Density ok =mk/VvE
Kinematic viscosity | v/*

Dynamic viscosity | p”

Velocity Ok

Pressure pk

Table 3.2: Mixture quantities.

Volume V=Ve4qVh
Mass m =m®+mP?
Density p=m/V = ap® + Bp°

Volume fractions
Mass fractions
Mixture velocity w.r.t. the volume center

Mixture velocity w.r.t. the mass center

a=V*Vand g =V3/V
Y =ap®/pand Y = Bp/p
j = av® + Bo’

u = Y% 4 YhP

Relative velocity v
Drift velocity

Diffusion velocity

Mixture pressure p

and mixture velocity. The mixture velocity is indeed defined here with respect to the volume
center, and is also called volumetric flux, due to weighting by volume fractions. A weighting by
mass fractions would correspond to a definition with respect to the mass center. A mass for-
mulation using mass fractions would lead to a simpler set of mixture equations but has proved
during our investigations to trigger numerical issues for high density ratio flows: as indicated in
Section 1.3.1, the mass fraction equation, due to its weighting be mixture density, could not be
discretized in a conservative way with respect to the relative velocity contribution. To preserve
the symmetry of the system necessary to ensure conservation, we choose to work with relative

velocities instead of drift/diffusion velocities.
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Figure 3.2: Voronoi diagram.

3.2 Numerical implementation of phase exchanges

The usual SPH discretization with a symmetric or antisymmetric divergence for the right-hand
side of the volume fraction equation (1.86) triggers conservation and realizability issues (i.e. vol-
ume fractions may take non-physical values). We intend to derive a realizable phase volume
equation, conservative with respect to the relative velocity contribution, through a FV-like ap-
proach. In this prospect, we will consider a Voronoi tessellation that discretizes the fluid, as
illustrated in Figure 3.2. The cells in this figure are a schematic representation of the SPH par-
ticles °, used to derive the subsequent equations. During a simulation, the exact shape of the
particles is never actually known (nor used). a|b stands for the interface” index between the cells
a and b, the outwards-oriented surface vector associated to this interface being denoted S, For
the sake of clarity, we first apply this approach to a single phase medium to see how one can

recover the WCSPH volume conservation equation:

- VV-1 3.1
7 J (3.1)

After this, a similar reasoning will be applied to the two-phase case. To start with, we only

consider particles that do not interact with the boundaries of the domain.

*This is done in analogy with FV, though a partition of unity is not reached in classical SPH.
“In SPH, contrary to FV, two particles may have a common "interface" even if they are not connected through a
line segment like in Figure 3.2.
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Figure 3.3: Mixture velocity field 7. j, is the mixture velocity of the particle a, constant within

the volume of the particle.

3.2.1 Integral balance for a single-phase flow

3.2.1.1 Leibniz’s rule

Let us apply the Leibniz’s rule 1.1.1 for a scalar field A on a particle a seen as a material volume

), moved and deformed by the fluid velocity j:

4 Ade/ aAdv+/ Aj-dS
dt Jo, Q.(t) O 994(t)

For A = 1, equation (3.2) gives:
dVe

dt 04 (1)

j-ds

We therefore recognize an integral form of equation (3.1). For a closed surface:

/ s =0
8 (t)

Subtracting j, - (3.4), one gets:

dvy / ..
= J—Ja)-dS
dt 00 (1) ( )

(3.2)

(3.5)

In the above equation, j is the velocity at the continuous level, while j, is the velocity of the

particle a, which is a discrete field, constant over the support of the particle (see Figure 3.3).
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3.2.1.2 Discrete SPH approximation

Let us proceed with a finite volume formulation of the integrals in equation (3.5). For each

neighboring cell, one has:

/ | dS = S, (3.6)
alb

/ A8 =y S (3.7)

Equation (3.6) is exact while equation (3.7) should be understood as a definition of the interface

mixture velocity j, ;. By summing over all neighbors (i.e. all the a|b interfaces), one gets:

vy . .
o =D (Jaip = Ja) " Sapp (3.8)

alb

The similarity between SPH-ALE and Finite Volume (FV) approaches has been underlined in

[278], among others. In the SPH formalism, this analogy is based on the following relation:
Sa\b = 2VaVaVwgp (3.9)

to determine the virtual surface vector of the interface between particles. As highlighted by
Neuhauser [278], an important difference between FV and SPH, is the definition of a neighbor in
each method: only cells that share (part of) a face with the considered cell in FV are considered as
neighbors, whereas all SPH particles within the kernel support are considered as neighbors (their
number thus depends on the ratio smoothing length/particle size). This difference of neighbor
definition requires an adequate handling of the weighting of the neighboring SPH particle con-
tribution, which is done through the presence of the kernel gradient in equation (3.9). A limit
of this approach is that the property > alp Sajp = 0, that is true in FV, does not hold in SPH (as
zeroth consistency is not fulfilled, which is equivalent to the lack of partition of unity). Choosing

a centered value to approximate j, 3, (3.8) becomes:

dV,
dt

= Vo> Vi (da—db) - Vwa (3.10)
beF

We recognize a discrete SPH approximation of (3.1), the right-hand side being an SPH discrete

divergence operator as described in [364].

3.2.2 Integral balance for a two-phase flow

One can now make a similar reasoning in the case of a two-phase flow. Due to the mixture model
we have adopted, we can consider that we have a single fluid, but whose characteristics will vary

depending on the local volume fraction «.
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3.2.2.1 Leibniz’s rule

For A = «, equation (3.2) becomes:

d oo
@ adV—/ dV+/ aj - ds (3.11)
dt Ja. ) Qa(t) Ot 094 (1)

Using (1.86) to compute the right-hand side volume integral and using Gauss’ theorem, one gets:

ave
dt

/ AV - j— V- (afo")]dV (3.12)
(1)

Expanding « at the zeroth order, we make the following approximation:

/ aV-jdV:aa/ V. jdv (3.13)
Qa(t) Qa(t)

Subtracting o, J, - (3.4) leads to:

ave
dt

aa/ (J —Ja)-dS — afv” -dS (3.14)
8 (t) 094 (1)

3.2.2.2 Discrete SPH approximation

The FV-like approximation of the integrals in (3.14) leads to:

ave
dt

= Qg Z (ja|b - ja) ) Sa\b - Z (aﬂvr)auy ’ Sa|b (3.15)

alb alb

where we identify two contributions: the first term corresponds to a divergence of the mixture
velocity field @V - j and the second to a contribution from the relative displacements of phases

V- (apv").

Numerical properties The interface a|b quantities still need to be defined in equation (3.15).

Four principles guide our choice in this prospect:

« Conservation: the fluxes must be symmetrical with respect to the particle labels (a, b);
« Realizability: phase volumes V' and V? should remain positive;

« Reduction to single phase model: for « = 1 and v" = 0, we want to recover single-fluid
WCSPH equations;

« Symmetry with respect to phases: we can interchange o and § without modifying the

equations.
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A classical choice is to consider a centered approach for the interface quantities:

(Go+3s) and (afv’),, = % (a0l + o Byv) (3.16)

N | —

ja\b =
that leads to the phase volume equation:

awve 1 o 1 , ,
= 30> Ua=30) S = 5> (aaBavy + arfyef) - Sup (3.17)
beF beF

One can recognize the first term of the right-hand side using (3.10). However, in our numerical
tests, this formulation did not allow us to enforce the realizability property. In analogy with the

FV approach, we therefore write:

+ —

(8" = b |00y San|  + B [v], * Sa] (3.18)
where [2]T = max (z,0), [z]~ = min (z, 0) and a centered approach is retained for the relative
velocity:

1
Valp = 5 (Vo +0p) (3.19)

We finally have the following relation on the phase volume:

d(‘;?a _ aa% — 2VaZVb (Otaﬁb ['UZ“) . Vwab} + + oufs [U:;'b . Vwab} _> (3.20)
beF

The equation for the other phase volume can be obtained from (3.20) by changing « into §3, since
these relations are symmetric (this switch changes the sign of the relative velocity), or by using

the mixture volume definition together with the mixture continuity equation (3.10):

avp

7 ﬂa% + 2VaZV}, (aaﬁb [’UZ“) . Vwab} * + apfa {vglb . Vwab} _> (3.21)

beF

Highlights on the choices made Let us detail the important choices for the derivation of

equation (3.20) from equation (3.15):

« The first term of the right-hand side of equation (3.15) can be identified as the first term
of equation (3.20) using the relation (3.8). The computation of the temporal derivative of
the total volume relies on the use of an exact time integration scheme, following what is
suggested by Ferrand et al. [128], applied to the relation (1.103). It proves to be better at
simulating the mixture at rest (the usual continuity equation resolution with antisymmetric

divergence led to spurious convection cells which appeared to be linked to the accumula-
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tion of numerical errors). Starting from the SPH volume interpolation:

Ja _

v ; Opwap (3.22)

be(FUV)

one can update the total volume through:

1
anJrl Vn - b ab b “ab .

@ be(FUV)

« The second term of the right-hand side of equation (3.15) is computed through an upwind
formulation, symmetric with respect to phases, that ensures the realizability of the scheme
(under a condition detailed in Section 3.2.6). The flux ’Ug| p - Salp at the midpoint of the pair
of particles (a, b) is split into its positive and negative parts. The factor a3 then takes a
different form depending on the sign of the flux: in o, fp, o is upwinded with respect to
v" and ( is convected by (—v"). The choice of alternate indices a and b for the volume
fractions ensures the symmetry with respect to the phases and the conservation of the

total quantity of each phase.

Similar formulations A similar formulation was written by Shi et al. [327] that details a
two-phase model for sediment laden flows with an asymmetric treatment of the liquid and solid
phases. The volume fraction of sediment is updated with an equation looking like (3.20) but
with § taken to 1 and a usual SPH divergence of the fluid velocity field to compute the total
volume variation. Instead of a 3 equation, an equation on (p® is solved. Our approach has the
advantage to keep a symmetrical treatment of both phases and to be conservative with respect
to the relative velocity contribution. The model can therefore handle only water or air phase
within a particle when the approach detailed in [327] assumes constant water mass in particles,
as classically done in two-phase models for sediments [330], which may trigger some significant
volume variations. Besides, we are only solving three equations instead of four, which decreases
the computational cost of the approach. On the other hand, a mixed upwind/downwind operator
in a finite volume framework is proposed by Larreteguy et al. [204] to solve a volume fraction
equation with drift velocities and a mass-weighted mixture velocity (« is upwinded whereas
the drift velocity encompassing 8 and v" is downwinded). Such a distinction between upwind
and downwind, due to a stencil limited to a pair of particles in SPH, does not seem possible
to implement if we restrict ourselves to the given set of SPH particles. Some approaches were
developed to deal with higher order schemes for SPH by building larger stencils, for example in
[15, 359].

Conservation The total volume is not conserved due to the weak compressibility of the for-

mulation (like in the traditional, one-phase WCSPH approach). However, the antisymmetry of
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the discrete terms concerning the relative velocity ensures that the relative phase motion does
not affect the total volume. Introducing the wall renormalization factor v of equation (2.49), the

phase volume equation (3.20) becomes:

d:l/;o‘ = q, d;;a — Q?Z% <Oéa,8b ["’Z|b . Vwab} + —+ Oéb,ﬁa [’U(ZH) . Vwab} ) (3.24)
YbeF

the temporal variation of V, being computed from (3.23). The symmetry of the relative velocity
term is somewhat broken by this factor « near the boundaries, as always with the USAW tech-
nique, but it did not prove to introduce significant discrepancies. Regarding a boundary term for
this operator, we first tried to derive a term consistent with the relative velocity closure that may
comprise an advection and a diffusion term as it will be shown in Section 3.2.5. By considering a
no-flux condition it was then possible to compute the Laplacian boundary term arising from the
diffusion term of the relative velocity by replacing the normal derivative by its value for a null
relative velocity. However, it proved not to be conservative on a two-phase mixture Poiseuille
flow similar to the case presented in Section 3.5.2. The final solution was to consider no boundary
term nor vertices contribution so as to ensure a no-flux condition at the boundaries. Moreover, in
the numerical implementation, phase volumes have been nondimensionalized by the reference
volume V} to avoid the accumulation of numerical errors that triggered some spurious pressure
profiles (due to the values of the numerical sound speed, small errors in the volumes resulted in

large errors in the pressure field).

Realizability The respect of physical boundaries was enforced by the construction of the sin-
gle numerical scheme for phase volumes. However, in the literature, Rusche [316] and Gastaldo
et al. [142] indicate that this realizability property should be ensured by the discretization of the
system of equations as a whole (i.e. continuity, volume fraction and momentum equations). Let
us underline that for sediment flows, as studied in Section 3.5.4, the volume fraction can have an
upper limit lower than 1 due to the maximum packing c,,. This limit cannot be ensured by the
present model and shall be respected in the resolution of the whole system. If not, a change in
the relative velocity closure or in the numerical discretization of the model should be considered.

A different approach could allow to write an appropriate scheme:
V [apv"] =V - |a(amp —a) v+ (1 — amp) V - (") (3.25)

By replacing 8 = 1 — a by (au,p — @) in the numerical scheme, it is expected that the bound-
aries o € [0, auyp] will be respected. However, such a choice corresponds to neglecting the last
term of the right-hand side of (3.25). Such an approach was not needed in the application cases
considered in the present work but might be addressed in other cases. Indeed, the risk with a
non-realizable scheme is to make the time step tend to zero as the viscosities for sediment flows

are usually getting higher and higher when « gets closer to its maximum packing value.
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3.2.3 Volume diffusion

Checker-board effects appear in simulations as a consequence of the collocated nature of SPH.
Analogously to the density diffusion presented in the Section 2.1.6.1, a possible way to circumvent
this issue is to introduce volume diffusion when phase volumes are updated. The derivation of

this additional term is detailed in Appendix C.1 and takes the form:

ot
Vot — yax 4 Ao D (3.26)

a
where V" is the phase volume before its modification by the diffusion term that writes:

1

Dn = 2Va5tZVbT
ab

beF

2
<p+m@MWH—9%QV%b (3.27)

The weighting coefficient A of this volume diffusion is equal to 0.1 unless otherwise specified.
One can note that the diffusion term is the density diffusion term dimensionalized to become a
volume diffusion term. Volume diffusion has also been addressed in a similar manner, by using
the density diffusion term, in multifluid 6—SPH by Hammani et al. [158], the diffusion being made
on particles belonging to the same phase. It was noted that an "intuitive" way to develop volume
diffusion may consist in switching from density to volume variable in the diffusion term. It was
also argued that the volume spatial distribution did not have a linear hydrostatic component.
However such an approach proved to be unsuccessful. As shown in the appendix, the writing
of the diffusion term arises from the momentum discretization that involves densities and not
volumes: that could be the origin of this issue. Moreover in our approach the volume does have a

hydrostatic component, due to the computation of the particle characteristics detailed hereafter.

3.2.4 Particle characteristics

Once phase volumes are computed, one can assess the other particle quantities according to their

definitions (particle labels a are dropped in this subsection for the sake of simplicity):

m = (ap® + Bp° )V (3.28)
p= % (3.29)
a:%; (3.30)

where pg is the density accounting for the volume fraction variations but not the compressibility:

po = ap® + Bp° (3.31)
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Special attention shall be paid to the particle mass computation. Particle masses are usually con-
stant in single-fluid SPH, if we except ALE approaches such as in [360] and the two-phase models
described in Chapter 3, so that they do not vary due to compressibility effects; only the density
and volume do. To recover this behaviour, we introduce the reference volume Vj to compute
particle masses, so that they only vary due the volume fraction variations. With this choice, we
indeed have a varying density due to the fluid (weak) compressibility. This way of calculating the
particle quantities constitutes a discrete approximation of the continuous equations (E.10) and
(1.86). To check that, one can deduce from (3.20) the discrete governing equations of the mixture

density and volume fraction:

% _ _% d;;a _ (pa — pﬁ) “//C(L)sz: (aaﬂb {vg\b : Sa\b}+ + apfa {”Z\b . Sa‘b] _> (3.32)

R (aaﬁb [ Sup] "+ b [or sa|b}) (333)

dt Va .
The sum on the right-hand side of those equations is an SPH approximation of V - (afv"), as
previously explained. From these definitions, we can write a useful relation. As mass in (3.28)
varies only due to volume fraction variations under the constant phase density hypothesis, one
gets, from (3.29) and (3.31) (recall 0 = 1/V):

_Po (3.34)

And therefore:
2= (3.35)

3.2.5 Closure law for the relative velocity

The closure law for the relative velocity is flow-dependent and one can refer to the extensive
literature, for example [177], to find adequate closures depending on the two-phase flow regime.
The relations used in this work assume constant size of bubbles or sediment grains d“. As detailed
in Section 1.3.5, more complex models solving transport equations for bubbles/grains diameters
exist but we will focus on the simple closures described hereafter in view of the validation cases
of the SPH two-phase mixture model. Specific closure for air-water cases will be addressed in
Section 4.3.2.2. Let us note vy the terminal rising/settling velocity of a single, small spherical
bubble/grain of diameter d* within an infinite viscous medium at rest under gravity. According
to Stokes’ law, for very small Reynolds numbers Re® = d®|V'"| /%, the balance between weight,
buoyancy and drag gives:
(p* = p7) (a*)?

= 3.36
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According to [239], under the assumption that a local equilibrium can be reached over a short
spatial length scale, one can write an algebraic expression of the relative velocity. Several cases

are presented in this chapter:

+ A constant relative velocity:
v =g (3.37)

+ In the mixture model developed by Brethour and Hirt [38], the relative velocity is variable

and linked to the pressure gradient through:

a _ o8
o VEB (" = p)

= v 3.38
r ; p (3.38)
where the coefficient K, is computed as:
1 24
KP = _APpPlo"| ( Cp + — 3.39
5 P|v|<D+Rea) (339)
with AP = In (d*)* and VP = im (d*)® the cross sections and volumes of the bub-

bles/grains. One can note that this formulation gives the Stokes’ formula when setting the
turbulent drag coefficient Cp to zero and when the pressure gradient is in equilibrium with
pg. The default value of the turbulent drag coefficient is set to Cp = 0.7 (Grégory Guyot
personal communication). To account for the particle-particle interactions (hindered ris-
ing/settling), the Richardson and Zaki’s correlation [311] can be employed to compute the
effective relative velocity °:

vlg = Boo” (3.40)

where ( is computed using the Reynolds number as:

)
Re® < 1 ¢ =4.35/ (Re®)"?
1 <Re® <500 (=4.45/(Re®)"! (3.41)
500 < Re® ¢ =2.39

To close (3.38), we use here Vp = pg in the separation case 3.5.1.1, assuming hydrostatic
equilibrium. A variant of this model appropriate to air-water mixtures will be presented

in Section 4.3.2.2.

« Finally, we propose a formulation for the relative velocity including a volume fraction

gradient:

v
o = vy — K2 (3.42)
(0%

3Brethour and Hirt [38] referred wrongly to it as the dispersed volume fraction factor.
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where the coefficient X > 0 accounts for turbulent-like diffusion effects. This form can be
related to the expression (1.101) assuming « is small enough to take 8 = 1 and considering
a constant turbulent diffusion coefficient. The presence of a gradient requires some numer-
ical precautions: to avoid double summation that can lead to instabilities as discussed in
Section 2.1.2.5, a second order SPH operator using a single sum is used. Substituting (3.42)
in (3.15), one gets:

avy dv,

=t = > (aBvo) gy - Sapp + KD (BVA) ;- Sapp (3.43)
beF beF

The relative velocity contribution in the phase volume equation is divided in two parts:
the vg part is treated as in (3.20) whereas the diffusion term in K is discretized separately
as a usual SPH Laplacian of the form (2.59) introduced by Morris et al. [274]:

e dVa
. dt

- Z (O‘aﬁb [UO,a\b ’ Sa\b] - + apfa [UO,a|b : Sab] _)

beF
© (3.44)

+Kzﬁa + ﬁb Oq — oy Tab - Sa|b
beF 2 Tab Tab

3.2.5.1 Required modeling of the lighter phase

Modeling explicitly the light phase in this framework, at least with several particle layers so
that kernels of the heavy phase are not truncated in case of free surface flows, appeared to be
necessary to preserve the quantities of each phase, so that particles can effectively exchange vol-
umes of each phase. In the case of air/water mixtures, for example, this means that a sufficiently
thick air layer should be initially set above the water surface. This is an issue for the model as
it is numerically more expensive. However, no satisfying solution has been found yet to address
this problem. One could think about modeling only the water phase and, given an entrainment
criterion, incorporate air within particles near the free surface: that would however trigger an
increase in the volume of the surface particles. One should then consider splitting too large par-
ticles. As long as compressibility effects of the air phase are not involved, one should consider to
avoid modeling too many air particles by putting only a few air particle layers or reducing the

domain size.

3.2.6 Phase volume positivity condition

The resolution of the phase volume equation (3.20) introduces a condition on the time step for
positivity of the phase volume (i.e. realizability of the numerical scheme). Let us consider the

relative velocity of general form (3.42). It is associated to the numerical Péclet number

Vomax0Oe

K

Pe, = (3.45)
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Figure 3.4: Advection-diffusion: limit of stability of the volume fraction profile (stability region
below the curve).

where vgmax = max.cr (|vo,a]) and o, is the kernel standard deviation described in [367].
Appendix C.2 details the derivation of the sufficient condition that guarantees the positivity of

V2" given the positivity of V", v

V0 max0t 1\ !
Coq = 2T < &4 (na + Pe) (3.46)

The non-positivity of VV* can trigger some instabilities so that this sufficient condition of pos-
itivity is interpreted as a condition of numerical stability. For an advection-diffusion of the
volume fraction « along the vertical axis, we got numerically &, ~ 1.1 and n, ~ 0.8 for
Pe, € [0.0012,0.12] (optimized with respect to the £ norm of the relative error). The fit-
ting curve is displayed in Figure 3.4. In the numerical implementation, we solve an equation for
V@ and an equation for V' so that V7 is then deduced from and therefore does not introduce
an additional constraint. We multiplied C, by a factor of 0.5 to avoid to be at the limit of the

condition for positiveness.

3.3 Discretization of the whole system

We now address the spatial and temporal discretization of the whole system, supported by the
literature review of the Chapter 2 and the previous developments of the present chapter.
3.3.1 Mixture momentum equation

Compared to the single-fluid formulation, the mixture momentum equation requires to take into

account its specificity as mixture variables are employed and additional terms linked to the rel-
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ative velocity appear.

3.3.1.1 Pressure gradient operator

As underlined in Section 2.2.1.2, the discontinuity of the pressure gradient across the interface
can cause numerical instabilities. Colagrossi and Landrini [86] suggested to chose sound speeds
following the relation (2.110): with the state equation (1.10) and the air-water characteristics
detailed below it, the ratio of numerical sound speeds is equal to 13. Here, we work with the lin-
earized state equation (1.106) so that we have to take £* = &% = 1 in (2.110): the ratio of sound
speeds then reaches 28.5. It leads to prohibitively expensive computational times. Moreover it is
a nonphysical sound speed ratio: Kruisbrink et al. [193] highlighted the instabilities developing
for air water flows using the models of Colagrossi and Landrini [86] or Hu and Adams [171] in
case of physical sound speed ratio. Thus, it appeared necessary to investigate a possible different
formulation of the pressure gradient as done for single and two-phase flows in Appendix A. The
multiple tests made with different formulations suggested in the literature [170, 171, 193] did not
allow us to identify a completely satisfactory discrete expression. The specific volume formu-
lation presented in Section 2.2.2.3 following [170] and used in the beginning of this chapter is
known to improve the behaviour. However for high density ratio flows, it does not appear to
be sufficient. Ghaitanellis et al. [144] employed this formulation and applied it to a dam break,
modeling both the air and water phases: a background pressure was introduced to prevent the
development of a too large nonphysical gap between the phases. Air-water interface destabiliza-
tion still appeared in our implementation of the operators suggested by [171, 193]. We finally
retained the multifluid operator of Ghaitanellis et al. [145], that originates from the specific vol-
ume formulation of [170], together with a small background pressure that shall remain limited
to avoid decreasing the accuracy: the background pressure introduced is generally large with
respect to the air phase and triggers some spurious motion (for a box at rest with an air phase
above the water phase with periodic lateral conditions, significant motion of the air phase was
observed). We generally used the same sound speeds in both fluids. The present model proved
not to be robust, especially near walls or open boundaries, due to the unrest of particles near the
interface. Riemann solvers as recently used for air-water flow computations by Rezavand et al.

[307] might be helpful to handle high density ratio flows.

3.3.1.2 Viscous stress operator

As afirst step, to avoid increasing the complexity of our numerical model, we chose to neglect the
additional viscous stress tensors depending on the relative velocity in (1.87). In the framework of
the mixture model, the viscosity v varies in space due to its dependence on the volume fraction.
We used in the second operator of Morris et al. [274] presented in the relation (2.42). However,
while it allows to take variable viscosity effects into account, it misses the transpose part of the

viscous stresses. Espafiol and Revenga [121] and Violeau [363] detailed the operator (2.43) taking
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this part into account.

3.3.1.3 Convective transfer term

With respect to the single-phase formulation, one can note two main differences with the mixture
model: mixture quantities are used for the variables and an additional term linked to the relative
velocity appears in (1.87) as particles are moved with the mixture velocity. It corresponds to
the third term of (1.88). In view of momentum conservation, an antisymmetric formulation is

retained without boundary term:

D{apBpvy @ vy} =

1
. > [ViaaBav), (v - Vway) + Vi awByvh (v - Vwa)]  (3.47)
e T peF

This term proved to generate spurious behaviors along the air-water interface, generating arti-
ficial mixing, so that, if not specified, it was neglected in the application cases detailed hereafter.
Similarly to the treatment of the term V - (aSv") in the phase volume equation (3.20), one could
consider an upwind formulation of this convective transfer term: this is left for future investiga-

tions.

3.3.1.4 Summary

Using the relations (2.54), (2.59) and (3.47), the momentum equation solved writes:

dj. 1 1 . R
% == Galm} + -Li{w Go} + 9 = Difanfyvf @ vp} (3.48)

the last term being considered only when specified.

3.3.2 Time marching scheme

The detailed resolution of our system is as follows (particle labels are dropped here and the

notation f;,i € {1,4} indicates the dependence on the model variables):

1. Relative velocity update using a closure of Sections 3.2.5 or 4.3.2.2:
v = fi (p", a") (3.49)

2. Operator splitting for the momentum equation: velocity update

« Potential force step:

1
Jjr=g"+ot [anpn + g] (3.50)
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« Convective transfer step (if taken into account):
JF =370tV - (a"p" ) @) (3.51)

+ k — € update with (1.70) and (1.71) to compute the turbulent viscosity (if taken into
account):
vi = o (K, ") (3:52)

« Viscous force step:
1
Py R [pnv . ’JI‘*] with T = p" (4" + v3) (V5™ + V5™)  (3.53)

3. Particle position update:
R 7 L (3.54)

4. Total volume update using (3.23):
Vit = fa(Vr et et (3.55)
5. Phase volume computations with (3.20):
verth —yen 4ot (Vi — v — 6tVIV - (o™ (3.56)
6. Computation of other flow features using the expressions of the Section 3.2.4:

mn-l—l’ pn—i—l’ O/’L—i—l (3.57)

7. Pressure computation using state equation (1.10):
pn+1 — f4 (Oén+1,pn+1) (358)

To comply with the saturation condition (1.20), we deduce 5 = 1 — o when needed in the

implementation.

3.3.3 Numerical stability

The conditions detailed in the Section 2.1.9.2 are used, complemented by the condition for posi-
tiveness of phase volumes (3.46). The convective transfer term (3.47) comprises an advective and
a diffusion components and therefore requires a condition too. Nevertheless, as it was not in-
cluded in most of the applications further detailed, we have not made the appropriate derivation.
As long as the relative velocity stays small compared to the maximum velocity of the flow and
the diffusion coeflicient remains of the order of the (possibly turbulent) viscosity of the fluid, it

seems reasonable to consider that this term will not introduce an additional stability condition.
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3.4 Boundary conditions

3.4.1 Wall boundary conditions

The USAW boundary conditions presented in Section 2.1.5.2, with a safety factor of 0.5 to 0.75 in
front of the Ccpp coefficient, together with the tools defined in Section 2.1.5.3 are used. A slight
modification compared to previous works is that the density, instead of being interpolated from
the values in the bulk of the fluid, is now computed through the inverse state law applied to
the interpolated pressure. This allows to have consistent fields at the boundaries and take into

account the pressure increment due to gravity.

Let us address the boundary conditions for volume fractions introduced in this chapter.

Neumann boundary condition In what follows, except in Section 3.5.2, the volume fractions

at boundaries are computed with a Neumann condition using the following approximation:

ap = Z Ve wap (3.59)
beF

This value of the volume fraction of vertex particles (and segments) is employed in the inverse
state law to compute the density and mass of vertex particles from the interpolated pressure:
indeed, densities and masses are used to compute the volumes involved in the boundary term of
the SPH pressure gradient (2.54).

Robin boundary condition In the Section 3.5.2, a Robin boundary condition is needed. Sev-
eral formulations were developed to model Robin boundary conditions in SPH. A possible ap-
proach is described by Mayrhofer et al. [245]. Sikarudi and Nikseresht [331] claim an improved
accuracy in two dimensions with a method less sensitive to particle disorder. An alternative
way is to modify the governing equations. Pan et al. [286] used the Continuous Boundary Force
(CBF) method: a homogeneous Neumann boundary condition and a volumetric force term added
to the momentum conservation equation replace the Robin boundary condition. Ryan et al. [317]
employed the Continuum Surface Reaction (CSR) model: the interface is then considered as as
a diffuse region over which the flux boundary condition is applied. The approach of Mayrhofer
et al. [245] is considered here and detailed in the Section 3.5.2.

3.4.2 Open boundaries

The mixture open boundaries developed in this work lie within the framework of Ferrand et al.
[129] and its generalization of USAW conditions with the resolution of a one-dimensional Rie-
mann problem at open boundaries. Though time consuming, it allows one to impose precisely

the desired velocity or pressure profiles and deduce the missing quantities through a rigorous
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framework inspired from finite volume developments. The extension to the mixture model de-
tailed here requires taking into account the additional volume fraction equation and the possible
presence of mixtures at open boundaries. In the derivation, we will consider that there is no
relative velocity at the boundary: the resolution of the consequent homogeneous system, where
the volume (or mass) fraction is a transported quantity, was already studied in the finite vol-
ume approach, see for example Blondel et al. [26]. Compared to those studies, we work here in
a simplified framework of barotropic and subsonic flow: fewer configurations of the Riemann
problem have to be considered. For the sake of legibility, the theoretical developments made are
presented in Appendix B where the method is first recalled for the single-fluid framework in Ap-
pendix B.2 and then extended to the mixture model in Appendix B.3. The prominent features of
this extension of the formulation of Ferrand et al. [129] to the mixture model are the switch from
density to specific volume as main variable and the inclusion of the volume fraction equation
in the Riemann problem resolution. This formulation allows one to treat indifferently inlets and

outlets, even on the same boundary, in a way variable in space and time.

Correction in the single-fluid formulation In Appendix B.2, a correction of the formalism
was made compared to the method presented in [129]: indeed, in this work, for a shock wave,
the relations were derived as if the shock wave velocity was null. We derive here the relations
without any approximation on the shock speed. Moreover it was considered that the equality of
left and right states of the tangential velocity was an assumption. It is shown here that it is a
consequence of the Riemann formulation. The test cases developed in [129] were run with these
improvements and compared to the original formulation, namely the non-orthogonal flux on
inlet/outlet in a square, a rapidly expanding pipe, 2D periodic free-surface water wave and a 2D
solitary wave. Similar behaviors as in Ferrand et al. [129] were obtained: the computed solutions
of the Riemann problems at boundaries in case of shock wave (the only different configuration)
are close. Nevertheless, it is an improvement as seen on the 2D periodic free-surface water wave

test case for which we get more regular fields near the open boundaries.

Time integration of the continuity equation The open boundaries modify the resolution
of the continuity equation (3.23). Some terms are added to avoid spurious density variations close
to the open boundaries. This formulation now relying on specific volumes instead of densities is

detailed in Appendix B.1.

Update of vertex particles features Vertices have variable masses and volumes. Masses are
computed similarly to Ferrand et al. [129] except that the mass flux on a vertex v surrounded by

segments s is now assessed using:

1 P v p .
My = *Zmp S (Js - .75) "M (3-60)

2 b asp® + Bep® 77
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where S; is the segment surface and where a factor, function of volume fractions, has been
added in the sum to prevent one fluid to disrupt the mass flux computation of the other near
the interface. Here J denotes the Eulerian velocity field while j is the Lagrangian velocity field,

these fields being distinct only at open boundaries.

Pressure and velocity at open boundaries A one-dimensional Riemann problem is solved
at open boundaries to compute compatible pressure and velocity fields (i.e. deduce a velocity
field from an imposed pressure profile, or conversely). Characteristic waves allow one to make
the link between the exterior state (the boundary condition we impose) and the interior state
(interpolated from the fluid values) and finally deduce the state at the boundary. Notations and
derivations are presented in Appendix B.3. The relation between pressure and velocity fields will
depend on the type of discontinuity — expansion or shock — of the characteristic wave propa-
gating in the domain. Due to the linearized state equation used, the case distinction between
expansion and shock waves was simplified to a comparison between interior and exterior states
for velocities or pressures respectively, depending on whether the velocity or pressure is imposed

by the user.

Disclaimer An error was only lately identified in the open boundary framework: the term
denoted ¢, in the Appendix B.3 was not considered in the computations exposed here. It can
normally only be neglected under the Colagrossi and Landrini’s choice of sound speeds (2.110)
but it was not the choice of parameters retained in the considered cases. One will see that the
inlets and outlets of mixed flows work properly on a simple test case without gravity. It was
checked on the more complex cases including gravity of Chapter 4 that the flow enters and leaves
the domain correctly, without disturbances for the region of interest for the study. The choice
of working with equal phase sound speeds with a formulation that reduces to the single-fluid
formulation in absence of ¢, may explain the correct behaviour obtained for the air entrainment

test cases.

3.5 Numerical verification and validation

Verification and validation ¢ are now carried out. All the verification/validation cases are two-
dimensional with particles initially arranged on a Cartesian lattice.
3.5.1 Separation

The separation of liquid dispersions or the sedimentation in a settling tank are common in-

dustrial separation problems. In this section, we investigate two applications of this separation

8"Solving the equations right" vs. "solving the right equations" following Blottner [27].
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Figure 3.5: Separation case: initial and final states.

phenomenon illustrated in Figure 3.5. This validation test case is of particular interest to check

the realizability and conservativity of the numerical scheme.

3.5.1.1 Separation of an oil-water dispersion

Description A vertical rectangular column of dimensions L x H contains a mixture of oil and
demineralized water, with an initial uniform volume fraction of oil ap = 0.3. The physical and

numerical parameters are detailed in Table 3.3. A relatively fine discretization (183 particles over

the fluid column) is used to track the interface position accurately.

Table 3.3: Parameters for the separation of an oil-water dispersion.

L 024 m H 0915 m
P~ 837 kg/m? PP | 996 kg/md
v* | 1.5107% m%s v | 1076 m?%s
c® 45 m/s c? 45 m/s
d” 1.2 mm d? 1.2 mm
or 5 mm DB 0 Pa

In the momentum equation, in order to stabilize the flow and as our focus is on the volume
fraction resolution, we used higher viscosities, equal for both fluids v = VP = 0.03 m?%/s. As
the mixture is assumed to remain in hydrostatic equilibrium, this should not influence the result

very much: particles have negligible motions and the separation is driven by the phase volume

equation that triggers phase exchanges between particles.

H\L
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Figure 3.6: Separation of an oil-water dispersion: density evolution through the decantation pro-
cess.

Reference data Experimental and numerical validation (FLOW-3D® software) are provided
in Jeelani and Hartland [180] and Brethour and Hirt [38], respectively. FLOW-3D® is a finite
difference code based on structured meshes as described in [139]. It uses a semi-implicit res-
olution of the continuity/momentum equation with a first order convergence. For dispersed
two-phase flow, it provides a mixture model similar to the one exhibited in the present work
with a volume-based formulation using a volume-weighted mixture velocity (to automatically
enforce incompressibility). This model is described in [38] and the relative velocity closure is as
in (3.38). A switch of the definition of the dispersed phase is done at the threshold o« = 0.5, so

that continuous and dispersed phase are exchanged in the relative velocity definition.

Results The temporal evolution of the separation is displayed in Figure 3.6. We can observe the
generation and motion of two clear interfaces until complete separation of oil and water phases.
Figure 3.7 shows the evolution of the positions of these interfaces through the separation process,
and shows good agreement with FLOW-3D® and experimental results. Convergence in time is
illustrated by the final interface position, located at 30% to the top wall (which confirms that
phase conservation is fulfilled). The slowdown of the interface progression velocity around 50 s
is reproduced, and appeared to be linked to the switch of definitions of dispersed and continuous
phases made at v = 0.5 for the computation of the relative velocity. Let us recall that d* and d”

are the only calibration parameters of this model.

3.5.1.2 Separation of an air-water mixture

Description A vertical rectangular column of dimensions L x H contains a mixture of air and
water with an initial volume fraction of air cvg = 0.5. The physical and numerical parameters are
presented in Table 3.4. As a first step, high kinematic viscosities are taken. The constant relative
velocity used is equal to 0.45 m/s. Compared to the previous one, this validation case aims at

challenging conservation for high density ratios; we are mainly interested in the final state.
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Figure 3.7: Separation of an oil-water dispersion: evolution of the upper and lower interface posi-
tions. Comparison of experimental data of [180] and numerical results of the present
model and [38].

Table 3.4: Parameters for the separation of an air-water mixture.

L 1 m H 2 m

p® | 1.23  kg/m? PP | 1000 kg/m?

v | 0.03 m/s v? | 0.03 m/s?
c 45 m/s c? 45 m/s

d” 1.2 mm d? 1.2 mm

or 10 mm PB 0 Pa

Results Figure 3.8a shows that at convergence, both fluids are separated, and volume is con-
served (the interface appears in the middle of the domain). Note that the upwind integration
scheme (3.20) that we introduced was essential to obtain such a result. Once the separation is
established, we observe some instabilities developing near the interface, due to the pressure gra-
dient computation, as highlighted in Figure 3.8b. The pressure gradient discontinuity is however
well computed at convergence, as shown in Figure 3.9a. One can see in Figure 3.9b that there is
a non negligible error at the interface, but also near the upper boundary as pressure values are
quite small (for the relative error computation, the minimum pressure in the domain has been
subtracted, as a constant pressure offset was present throughout the domain). In the bulk of the

fluid domain, the error is close to 1%, as expected in WCSPH.
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(a) Global view. (b) Focus on the interface.

Figure 3.8: Separation of an air-water mixture: separated state.
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Figure 3.9: Separation of an air-water mixture: pressure field of the separated state.
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Figure 3.10: Two-phase mixture Poiseuille flow: initial and final states.

3.5.2 Two-phase mixture Poiseuille flow

Description In this verification case, the computational domain is a rectangle of dimensions
e X 2e periodic along the x direction as illustrated in Figure 3.10. The fluid is submitted to a
longitudinal force pF mimicking a pressure gradient as in a pipe Poiseuille flow. However, no
gravity is introduced as it proved to trigger some small instabilities in the velocities and pressure
profiles (the gravity effect is all included in the closure of the relative velocity). Starting from a
homogeneous mixture oy = 0.05 at rest, the flow should converge towards the analytical dimen-
sionless steady state detailed in Appendix D, obtained with a relative velocity given by (3.42) at
constant mixture kinematic viscosity #® = v and under an incompressibility hypothesis. Note
that our first model developed and presented in [136] used a mixture kinematic viscosity instead
of a dynamic viscosity. The convergence studies are therefore carried out with a mixture kine-
matic viscosity. We checked when we switched to mixture dynamic viscosity that the solution
still got to the corresponding analytical solution also derived in Appendix D. The values of bub-
ble diameter and diffusivity are chosen arbitrarily to exhibit a steep volume fraction gradient.

The corresponding Péclet number equals Pe = 7.26.

This flow is analogous to a Rouse flow described in Rouse [314] but with a rising instead of settling
velocity and constant turbulent coefficient K. More complex semi-analytical approaches have
been developed, including variable turbulence, for sediment flows as done by Hsu et al. [169].
A background pressure is set to avoid particle disorder near boundaries that usually appears in

WCSPH Poiseuille flows. The physical and numerical parameters are presented in Table 3.5.

Robin boundary condition The volume fraction at vertices v of normal n, is computed
thanks to a second order approximation method for Robin boundary condition as detailed in
Mayrhofer et al. [245]. The no-flux condition at the boundary:

Oa

v'=0 «— oz('vo~n)—Ka—n:0 (3.61)
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(a) Volume fraction profile

Table 3.5: Parameters for the two-phase mixture Poiseuille flow.

e 1 m K | 0.02 m?%s
p® | 1.23  kg/m? p? 11000 kg/m?
v® | 0.03 m?/s v 0.03 m?/s
c® 1 m/s P 1 m/s
d® | 200 mm d? | 200 mm
or 10 mm pp | 250 Pa
|F| | 0.02 m/s? g 0 m/s?
1
0.51
N 01
-0.51
« « Numerical }'.}‘ : .
—— Analytical gl el . . ‘
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 -2 -1.5 -1 0.5 0
« (Otth - a)/am

(b) Relative error

Figure 3.11: Two-phase mixture Poiseuille flow with constant kinematic viscosity: volume frac-
tion at steady-state.

where 7 is the normal to the wall is approximated using:

Qy

v
D5

beF

(Yv (1 - (UO : nv) (Tvb : nv) /K) — 2y (Tvb : nv)2) Wyb (3-62)

X,Y, — 72
D V(1= (00 1) (rop - 1) JK)? wip

beF

Z‘/b (rvb : 'n'v)4 Wyp

beF

Z% (1 - ('UO : nv) (rvb : nv) /K) ('rvb : nv)z Wb

beF

(3.63)
(3.64)

(3.65)

(3.66)

Results The resulting volume fraction and longitudinal velocity profiles at convergence are

displayed in Figures 3.11 and 3.12. There is a very good agreement between analytical and nu-

merical solutions. Let us underline that the highest relative errors are obtained in zones where

the volume fraction or the mixture velocity are very small.
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Figure 3.12: Two-phase mixture Poiseuille flow with constant kinematic viscosity: longitudinal
velocity at steady-state. Note that the theoretical solution (see Appendix D) is not a
parabola.
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Figure 3.13: Two-phase mixture Poiseuille flow: convergence studies.

Convergence curves are displayed for the volume fraction and longitudinal velocity profiles in
Figures 3.13a and 3.13b respectively, plotting the instantaneous £? relative error for the steady-
state field as a function of the dimensionless particle size 6r/e. This relative error for a field A

compared to the analytical profile Ay, is computed as:

Z (A — Au (2))?

|| A — A2 _|ber (3.67)

|[Asnll2 > A ()

beF

The convergence slope is approximately of order 1/2 for the volume fraction and 1 for the longi-
tudinal velocity. The upwind low-order formulation of the phase volume equation might explain

this weak order of convergence for the volume fraction.
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Figure 3.14: Two-phase mixture Poiseuille flow with varying kinematic viscosity: longitudinal
velocity profile at steady-state.

As a second step, one can consider a case with a varying mixture kinematic viscosity. Only the
longitudinal velocity profile is modified: its expression is detailed in Appendix D. All parameters
remain unchanged compared to previous configuration, except the viscosity % = 0.001 m?/s.
We get, after convergence, the longitudinal velocity profile displayed in Figure 3.14 (the volume
fraction profile is unchanged). Again, analytical and numerical solutions agree very well, even
though, due to slight discrepancies on the volume fraction profiles, one can notice that the ve-
locities are a bit smaller than expected in the upper part of the flow (the kinematic viscosity also
varies with the volume fraction in this case, and the largest absolute errors on the volume fraction
are made in the upper part of the flow, therefore influencing the shear stress, and consequently

the quality of the velocity profile).

Switch of dispersed in the relative velocity A similar study was carried out in the case we
use a relative velocity with a switch of dispersed phase as further detailed in Section 4.3.2.2 and
adequate parameters that allow for the derivation of an analytical solution. One can refer to
Fonty et al. [138] for further details.

3.5.3 Rayleigh-Taylor instability

Description The computational domain of this validation case is a rectangle of dimensions
e X 2e bounded by walls. As illustrated in Figure 3.15, the fluid domain initially consists of a
heavy phase over a light phase with an interface defined by z = 1 — 0.15sin (27z). The homo-
geneous model is solved, i.e. without relative velocities. The physical and numerical parameters

are presented in Table 3.6 and chosen to be consistent with Grenier et al. [150].
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Table 3.6: Parameters for the Rayleigh-Taylor instability.

e 1 m g 1 m/s?
p° 1000  kg/m? o 1800 kg/m?
v® | 23811072 m?/s B 123811073 m?%/s
c® 14 m/s b 10 m/s
¢ 7 PB 3.6 Pa
Zu zﬂ
e e
p’ P
5. < . T (R e
P~ o°
—e —e

Figure 3.15: Rayleigh-Taylor instability: initial and final states.

Pressure To compare with the results from [150], the state equation takes the form:

b= +p5 (3.68)

(ap®(c¢*)* + 8p°(¢)?) P\
3 (ap“ + Bpﬁ) !

Sound speeds are chosen following (2.110). As spurious fragmentation occurs at the interface
between fluids, a small repulsive force was added in the pressure gradient, following [150]. This
force consists of an additional term in the pressure gradient when the neighboring particle be-

longs to another phase. Its expression was extended to the mixture model (without boundary

term):
Gi{pm} = v Z (Vi2pa + Vi'pe) Vwa
YaVa oz
(3.69)
+617 Z (aaBp + awBa) (V2P| + Vi pol) Vwas

beF

where the factor (o, + ap/3,) is equal to 1 when a and b belong to distinct phases, and 0 other-
wise as long as phases remain separated, as in this Rayleigh-Taylor case without relative velocity.
The relevance of this term for intermediate volume fractions is questionable. As suggested by
[150], € is taken equal to 0.01.
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Figure 3.16: Rayleigh-Taylor instability: time variation of the vertical position of the high-
est point of the low-density fluid for the three discretizations considered with the
Layzer’s theory (though obtained for a periodic domain) as simplified by Dalziel
[97].

Results This test case aims at checking the numerical behaviour for separated phases: the mul-
tifluid behaviour should be recovered. Figure 3.17 shows the temporal evolution of the phases
with the finest resolution (300 particles per unit length). Figure 3.18a displays a convergence
study of the shape of the interface at the dimensionless time ¢, = t\/g% = 5 in which one
can see the convergence of the interface shape. Figure 3.18b compares the finest discretization
interface with the one obtained in [150] with SPH and a Level-Set model at equivalent discretiza-
tions, showing a good agreement. Some discrepancies can be observed in the curling-up region
of the mushroom-shaped heads. We compare on Figure 3.16, the time variation of the vertical
position of the highest point of the low-density fluid for the three discretizations considered with
the Layzer’s theory (though obtained for a periodic domain) as simplified by Dalziel [97]. One

can observe that the three numerical curves are superimposed and agree well with the theory.

Introducing a constant relative velocity (3.37) chosen arbitrarily with d* = 0.07 m, phases first
diffuse and rapidly converge towards a separated state as in section 3.5.1. Simulations without
and with relative velocity are displayed in Figure 3.19. One can see that without relative velocity
(i.e. configuration equivalent to the multifluid model), phases are not fully separated as some
drops remain in both phases and are under-resolved because of the size of SPH particles (a steady
state is not reached even at t, = 500 even though phases are then more clearly separated).
An inaccurate pressure gradient computation for those small size structures might explain this

behavior, making our mixture approach useful in such circumstances.
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Figure 3.17: Rayleigh-Taylor instability: light (blue) and heavy (red) phases evolution for a dis-
cretization of 300 particles per unit length.
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Figure 3.18: Comparison of the interfaces for the Rayleigh-Taylor instability case at t, = 5. On
the left, a convergence study is displayed for 75 (red line), 150 (blue line) and 300
(black line) particles per unit length. On the right, a comparison is made between
Level-Set (red line) and SPH (blue line) results of [150] and the present SPH model
(black line) for the same resolution.
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Figure 3.19: Rayleigh-Taylor instability: evolution of the volume fractions with ¢, from the light
(blue) to heavy (red) phases without (upper series) and with (lower series) relative
velocity for a discretization of 300 particles per unit length.

3.5.4 Limits of the mixture model: a sand dumping case

In this section, the performances of the presented mixture model are assessed on a case of sand
dumping described by Shi et al. [327]. Shi et al.’s two-velocity model was described in Section
2.3.3.1. Several test cases were considered in their work: among them, the settling of natural sand
in still water (corresponding to the advection of a cosine function of volume fraction) and the
sand dumping case. We quickly addressed the former and saw that our numerical scheme proved
to be more diffusive for the volume fractions, the maximum volume fraction decreasing faster.
We focus in the following on the latter case. It implies enriched physics compared to the previous
cases described in the present chapter, with the presence of a free surface and a physically-based

relative velocity closure. « denotes the sediment phase and [ the water phase.

Description The configuration of this validation case is a square water tank of dimension
L with a free surface as described in Figure 3.20. In the middle of the domain, just under the
free surface, a sand block is initially released with a volume fraction o equal to the maximum
sediment packing ;. Many different configurations were considered in [327] but we will focus
on the tests for which experimental results are available. The sand cloud is initially Wy = 2 or
4 cm wide and Hy = 2.5 cm high. The three sizes of sediment d* considered are 0.8 mm, 1.3
mm and 5 mm that correspond to settling velocities of 12.60 cm/s, 19.61 cm/s and 49.52 cm/s,

respectively. The physical and numerical parameters are detailed in Table 3.7.
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Table 3.7: Parameters for the sand dumping case.

L 1 m g | 9.81 m/s?
p | 2650 kg/m?3 PP | 1000 kg/m?
v varies 811076 m?/s
c® 32 m/s & 32 m/s
or 5 mm DB 0 Pa
Hor - _____ _
>

Figure 3.20: Sand dumping: sand cloud features.

Modeling choices In order to have a fair comparison with the two-fluid approach developed

in [327], several changes were introduced to deal with the complete physics of this case:

« Computation of the sediment phase viscosity following Alihan and Sleath’s formula [7]:

P [romp\5 17
v =125 [(mp) - 1] VP (3.70)
p* e
where the maximum sediment volumetric concentration c,;, was set to 0.607 in our com-
putations (instead of 0.606 in [327]) to avoid singularity of the viscosity at the initialization

(indeed the sediment cloud starts with this concentration).

« Computation of a turbulent viscosity, added to the physical one, following a Smagorinsky

model’:

vr = (Cyor)? S <1 - 0‘>ns (3.71)

Qmp
where Cs = 0.1 and ngy = 5. Please note that we are using here the mixture rate-of-strain

tensor defined by (1.73) that differs from the phase rate-of-strain tensors used for distinct

’Some prefer using the smoothing length h in place of 7. It is a matter of convenience about the definition of Cs.
However, we emphasize that, following Dehnen and Aly [104], h is meaningless and should be replaced by the kernel
standard deviation.
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phase turbulent viscosities computations in [327]. Moreover, a sensitivity analysis has
been conducted in [327] to optimize the results with adequate choice of the Smagorinsky
coeflicients and power law, choices that might not be optimal in the framework of our

mixture model.

« A relative velocity closure is deduced from [327] continuous equations. It includes the
drag effect, an hindering factor computed with Richardson and Zaki’s formula [311] and a

turbulent diffusion of volume fraction based on a gradient transport law:

v7'_%’82'65(pa_pﬁ)daﬁfyly (372)
3 pPCplvT| p  Scr af '
where the drag coefficient is computed according to the Reynolds number following the

Schiller and Naumann’s formula [85, 320]:

2 (14015 (Re”) ™) if Re® < 1000

Cp = (3.73)

0.44 if Re® > 1000

Iterations are made to converge to a well-defined value of the relative velocity, due to the
implicit relation implied by the drag. The turbulent Schmidt number Scr is taken equal to
1.

« The convective transfer V - (afv" ® v") term was included in the momentum equations
and proved to be necessary to reproduce the topology of the cloud, as a consequence of the
dynamics of the flow. A correction has been made in the pressure gradient factor compared
to the formulation detailed in Fonty et al. [136] as the interfacial momentum transfer term
was not closed correctly compared to what is done in Chapter 1. The second order operator

(2.43) is considered. Negligible difference was obtained with (2.42) on this test case.

A different state equation is used in [327] but the tests made did not highlight any significant
modification of the following results. One can follow temporally the evolution of the cloud,
defined as the particles with a sediment volume fraction « equal to at least 5% of the maximum
value in the domain at the considered instant, through its vertical position Z, its width W and
its frontal velocity w.. Moreover, one can follow the free surface fluctuations at the release point
Zyw: this must be handled with care however, as the fluctuations after the initial jump are of the

order of the particle size. The nondimensionalization coefficients used in the graphs are:

«a 1— 8
Lo=+/WyHy and wug= \/Oéop + ( 3 ao) p gLg (3.74)
p

Results Computations used 40000 particles and last for one hour for 6 seconds of physical

time. These computational times are comparable with the one of [327] that has an additional
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equation to solve but the code used here as not been optimized yet. Numerical results of the mix-
ture model are compared with SPH results of Shi et al. [327] and experimental results of Nakasuji
et al. [276] for the frontal velocity of the cloud in Figures 3.21a and 3.21b, for the vertical position
of the cloud in 3.22 and for the cloud width in Figures 3.23a and 3.23b. The frontal velocity is
overestimated in the late time of the simulation, once the initial transient is passed, even though
there is an overall good trend. The cloud falls more rapidly than in [327], especially for large
sediments (i.e. large relative velocities). According to Biihler and Papantoniou [42], the fall can
be separated in two regimes, the distinction being made when the frontal velocity of the cloud
goes down to the terminal velocity of the sediments: the thermal stage during which the fluid
moves together with the sediments and a swarm stage for which sediments fall within a fluid
nearly at rest. Figure 3.22 highlights that we reproduce correctly the first phase but miss the
change of regime occurring, the cloud falling faster than expected, consistently with the frontal
velocity computations. According to Nguyen et al. [279], vorticity is largely underestimated with
a single-velocity model: the absence of recirculations slowing down the fall within the lower part
of the cloud could explain that the cloud falls more rapidly with the mixture model. However it
corresponds to the swarm state in which the fluid should remain close to rest. The cloud width
is correctly reproduced for small sediments in the first moments of the fall, until Z = 4L, then
the model fails at reproducing the change of slope with an increase of the cloud width growth.
Figure 3.24 shows the good reproduction of the free surface fluctuations. Regarding the cloud
distribution, the two-phase model of [327] predicts a double-peak turbidity distribution (two
symmetrical cores) of the sediment cloud (no experimental evidence found). The mixture model
fails at reproducing this topology if the convective transfer is not included in the model: only
one turbidity core is detected, at least at low resolution, as shown on Figure 3.25, the double-
peak configuration appearing if one refines the discretization. However the introduction of the
convective transfer term modifies the dynamics and allows one to get this configuration. A com-
parison of the resulting sediment cloud is displayed in Figure 3.26. If following Nguyen et al.
[279], vorticity is underestimated, it can explain the discrepancy in the distribution of volume
fraction as [327] underlined the importance of this field in the modification of the cloud. The
peaks of volume fractions are indeed underestimated. Refining the discretization leads to a sig-
nificant loss of symmetry of the sediment cloud as shown on Figure 3.27 and a modification of its
topology due to its initial agitation when it is close to the free surface during the first iterations.
In Shi et al. [327], change of discretization were not performed and the absence of experimental

evidence prevents a proper quantitative comparison of the cloud topology.

3.5.5 Open boundaries

In this section, we aim at validating the open boundary formulation for mixtures. To this end we

consider two-phase separated and mixture Poiseuille flows.
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Figure 3.21: Comparison of the cloud frontal velocity for the present mixture model, Shi et al.’s
numerical results and Nakasuji et al.’s experimental results.
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Figure 3.22: Comparison of the frontal position of the cloud for the present mixture model, nu-
merical results and scale law in [327].
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Figure 3.23: Comparison of the cloud width for the present mixture model, Shi et al.’s numerical
results and Nakasuji et al.’s experimental results for d* = 0.8 mm and Wy = 2 cm.
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Figure 3.24: Comparison of the fluctuations of the free surface for the present mixture model and
Shi et al.’s numerical results for d* = 0.8 mm and Wy = 2 cm.
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Figure 3.25: Sediment cloud at ¢ = 1 s in the region = € [0.3;0.7] and z € [0.6; 1.0] for d* = 0.8
mm and Wy = 2 cm without convective transfer term.
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Figure 3.26: Comparison of the sediment clouds at £ = 1 s with convective transfer term for

d* = 0.8 mm and Wy = 2 cm in the region = € [0.3;0.7] and z € [0.6; 1.0]. Left:
present mixture model. Right: Shi et al.’s two-velocity SPH model.
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Figure 3.27: Sediment cloud at ¢ = 1 s with the present mixture model in the region x € [0.3;0.7]
and z € [0.6;1.0] for d* = 0.8 mm and Wy = 2 cm with a discretization divided by
two.
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Figure 3.28: Two-phase separated Poiseuille flow with open boundaries: geometry.

3.5.5.1 Two-phase separated Poiseuille flow

Description The computational domain of this verification case is a rectangle of dimensions
L x 2e bounded by walls. The lower part is filled with a fluid denoted  while the upper part is
filled with a lighter fluid denoted « as illustrated on Figure 3.28. At the inlet, a velocity profile
is imposed following the work of Ghaitanellis et al. [144]. At the outlet, a hydrostatic pressure
profile is imposed. The Reynolds number is Re = 20. A longitudinal force pF of 4.10~" N
maintains the flow within the domain (in absence of this force compatible with the two-phase
Poiseuille velocity profile imposed at the inlet, some instabilities develop within the domain): this
point requires further investigation on the inlet/outlet formalism as with the chosen conditions
at open boundaries, this force should not be used. The physical and numerical parameters are
listed in Table 3.8.

Table 3.8: Parameters for the two-phase separated Poiseuille flow with inlet/outlet with low and

high density ratios.
L 10 m e 1 m
p® | 1000 or 10 kg/m? p% | 4000 or 1000 kg/m?®
Ve 0.0001 m?/s VP 0.0004 m?/s
c® 0.02 m/s c? 0.02 m/s
or 25 mm PB 0.0001 Pa

Results Without gravity, and considering low to high density ratios, the flow exhibits the ex-
pected behaviour as testified by the preserved volume fraction and longitudinal dimensionless
velocity fields (nondimensionalized by | F|e?/(2v%)) plotted on Figures 3.30 for a density ratio of
4 and 3.32 for a density ratio of 100. However, for the highest density ratio, one can notice some
peak pressures near the interface crossing the inlet, and a slow flapping of the velocity profile
near the outlet. When reaching the air-water density ratio, these instabilities tend to increase and

destabilize the computations. Two remedies can be considered: increasing the volume diffusion
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(a) Inlet. (b) Outlet.

Figure 3.29: Two-phase separated Poiseuille flow with open boundaries: focus on the volume
fraction field at inlet and outlet at ¢ = 3000 s for a density ratio of 4.
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Figure 3.30: Two-phase separated Poiseuille flow with open boundaries: longitudinal velocity
field at ¢ = 3000 s for a density ratio of 4.

tends to smooth the pressure peaks while introducing one or several layers of intermediate vol-
ume fraction at the interface stabilizes the computations. In the very long term, some instabilities
develop near the walls but do not appear to be directly linked to the inlet or outlet. Introducing

a vertical body force analogous to gravity also tends to destabilize the computations.

3.5.5.2 Two-phase mixture Poiseuille flow

Description We consider the same geometry as in the previous section. The physical and
numerical parameters are listed in Table 3.9. Following the solution described in Appendix D,
a two-phase mixture is imposed with the analytical profile at the inlet while the background
pressure is imposed at the outlet. The volume fraction is imposed at both open boundaries and

the variables are initialized with the analytical solution within the domain. There is no body
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(a) Inlet. (b) Outlet.

Figure 3.31: Two-phase separated Poiseuille flow with open boundaries: focus on the volume
fraction field at inlet and outlet at ¢ = 2800 s for a density ratio of 100.
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Figure 3.32: Two-phase separated Poiseuille flow with open boundaries: longitudinal velocity
field at ¢t = 480 s for a density ratio of 100.
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Figure 3.33: Two-phase mixture Poiseuille flow with open boundaries: longitudinal velocity field
att =50s.

force, but the gravity is used to compute the relative velocity.

Table 3.9: Parameters for the two-phase mixture Poiseuille flow with inlet/outlet.

L 10 m e 1 m
p* | 1.23 kg/m? p? | 1000 kg/m?
v® [ 0.03 m%s V81 0.03 m?s
c® 3.3 m/s P 3.3 m/s
d*| 02 m K| 01 m?s
or | 0.01 mm PB 1 Pa

Results While the previous test case showed the ability of the model to handle separated flows
entering the domain, this test case highlighted the capability to do the same with mixtures. Figure
3.33 highlights a smooth velocity field that is not altered near the open boundaries. One can
check on Figures 3.34a and 3.34b that the volume fraction and velocity profiles fit well with the

analytical solutions.

3.6 Summary

3.6.1 Model and limits

We have developed in this chapter an SPH two-phase mixture model for high density ratio flows:
we have focused on a convenient spatial and temporal SPH discretization of the continuous model
derived in the first chapter to have good numerical properties, namely the respect of physical
boundaries on volume fractions, the conservation of the overall mass of each phase and the re-

duction to single-fluid formulation in absence of relative velocity. A mixture open boundary
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Figure 3.34: Two-phase mixture Poiseuille flow with open boundaries: comparison of the analyt-
ical and numerical profiles at ¢ = 50 s at a section in the middle of the domain.

formalism was also developed but still require further investigations. The correct implementa-
tion of the mixture model has been checked on several test cases. Some limits have been stressed
regarding the pressure gradient computation at high density ratios and the order of accuracy of
the volume fraction resolution. A validation case of sediment-water mixture highlighted some
limits in the reproduction of the dynamics of two-phase flows, but also illustrated the ability to
handle a two-phase flow in presence of a free surface. The model can now be applied, with ad-
equate relative velocity closure, to the air entrainment modeling. One could ask for the interest
of having developed such a two-phase model in the SPH framework while they have been thor-
oughly developed within the finite volume approach: while no particular gain was expected from
changing the numerical framework regarding the modeling of multiphase flows, the motivation
was mainly to meet industrial needs for such models within a Lagrangian approach that is usu-
ally well-suited to model free surface flows as shown in Chapter 2, to deal either with air-water

or sediment-water flows.

3.6.2 Further insights

The Lagrangian framework gives an interesting property to this model: for a separated flow, as
long as the diffusion in the relative velocity remains null, no phase exchange occurs and the in-
terface stays sharp without numerical diffusion. A diffuse interface appears only when diffusion
effects are activated by the user or the physics. In this prospect, if the relative velocity expression
is physically grounded (with respect to the flow considered, to the choice of spatial discretiza-
tion compared to the dispersed phase diameter, etc.) and boundary conditions are appropriately
chosen, one can reproduce the regions where phases remain separated or mixed. However, we

will see in the following chapter that these conditions are not always fulfilled.

In recent works, Damian [98] and Damian and Nigro [99] coupled a mixture model and the
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Volume of Fluid method (that they derived from the mixture model) to handle flows with small
and long interfaces in the finite volume method. A switching criterion depending on the local
topology of the flow allowed them to alternate between a mixture model similar to developments
of Chapter 1 and the VoF approach where the relative velocity became an interface-compression
term and relative velocity terms disappeared in the momentum equation, replaced by a surface

tension term.

To some extent, with the artificial surface tension generated by SPH operators at high density
ratio (as highlighted in Section 2.2.1.2) and in the absence of numerical diffusion of phases, the
mixture model developed in the present work has intrinsically a similar feature with the advan-
tage of keeping a sharp interface without special treatment. Let us underline at once that in
partially mixed zone this similarity is not that clear. A surface tension term was introduced dur-
ing this work but still requires investigations so that it is not presented in this manuscript. By
introducing a criterion as suggested in Damian and Nigro [99] following Cerne et al. [351], one

could activate this surface tension term only when large interfaces are detected.
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Chapter 4

Air entrainment modeling in the SPH
method

On s’emploie dans ce chapitre a décrire la physique de I’entrainement d’air, a pro-
poser en conséquence les lois de fermeture adéquates et a utiliser le modeéle de mélange
développé dans le Chapitre 3 sur des cas schématiques communs d’entrainement d’air
dans les structures hydrauliques : le déversoir en escalier et le jet plongeant. Les ré-
sultats numériques sont confrontés a des expériences physiques. Le modéle est enfin
appliqué a un cas industriel tridimensionnel de jets plongeants multiples générant un

nuage du bulles modifiant significativement la dynamique dans le bassin de réception.
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“La schiuma dell’acqua si dimostrera di minor bianchezza,
la quale sara piu remota dalla superficie dell’acqua.”

— Leonardo Da Vinci, Trattato della Pittura

The air entrainment is defined by Chanson [59] as

“the entrainment or entrapment of un-dissolved air bubbles and air pockets that are
carried away within the flowing fluid. The resulting air-water mixture consists of
both air packets within water and water droplets surrounded by air. It includes also

spray, foam and complex air-water structures.”

Air entrainment generates a two-phase flow of complex topology appearing visually as white
waters — the bianchezza of the above-mentioned epigraph [361] — one can experience in daily
life in the swirls of a torrent, the breaking of a wave, the flow of a waterfall, the bubble swarm in
a sink. They also appear on many hydraulic structures as early described by Leonardo Da Vinci
[362]... even though white waters can occur without air entrainment. The reason lies within
our perception of the phenomenon. When air bubbles are entrained, their large amount triggers
numerous reflections of the light that the eye is not able to respond to in sufficiently short a
time: the flow turns into a blurred field, as testified by high speed cameras. A rough water

surface flowing at high velocity can also have this white feature without entrained air [122].

In this chapter, we detail the stakes of air entrainment for hydraulic structures, then describe
its phenomenology before introducing an appropriate modeling in the volume-weighted SPH
mixture model presented in the Chapter 3. We apply it to schematic air entrainment test cases:
the stepped spillway and the plunging jet. Finally, results for a three-dimensional industrial
test case are presented. While general remarks will be drawn in the sections dedicated to the
phenomenology description of the air entrainment, case-specific information will be detailed in

the application parts.

4.1 Hydraulic structures at stake

Air entrainment modeling is a strategic challenge for the dimensioning, performance and safe
operation of hydraulic works (dams and adjacent structures) as illustrated by Falvey [122] and
Kobus [189] for free surface as well as confined flows. This last distinction between open and
confined waters is of importance as the controlling conditions for local air entrainment, detailed
in the next sections, may change between those configurations. Air-water interactions involve
a wide range of temporal and space scales. Spatially it ranges from the prototype scale (e.g. typ-
ically several meters) to the scale of bubble coalescence (down to 0.01 um for film break-up
process) [53]. Temporally, it goes from the fastest processes (e.g. film break-up in 20 ms for bub-
bles of 4 mm in [309], fragmentation of bubbles in tens of milliseconds in [211]) to long term

mechanisms for oceanic applications (tides, oceanic mass transfers) [62]. Due to the two-phase
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nature of the flow, bulk properties of the mixture can differ significantly from the fluid features
in terms of density, viscosity and compressibility. The air bubbles modify the turbulence and
the vertical momentum introduced by the buoyancy can strongly alter the flow dynamics. Air
entrainment occurrence can therefore be beneficial or detrimental depending on the case consid-
ered among the wide variety of existing hydraulic structures (channels, spillways, weirs, gates,

shafts, siphons...):

« Fast flowing waters in open channels can entrain large amounts of air bubbles that lead to
an increase of the water depth known as flow bulking [28]. Structures such as ski jumps
[273], morning-glory or stepped spillways shall therefore be able to convey the design
flood and the entrained air that enhances dissipation, mitigates cavitation (around 8% of

air is sufficient to prevent damage [293]) and may trigger drag reduction [61];

+ Adequate ventilation is often needed to read correctly measuring weirs and prevent cavi-

tation hazards so that aerators are sometimes introduced in the structures [54, 122, 214];

« Free surface vortices at intake regions [256] or plunging jets in reservoirs [190] can gen-
erate air entrainment, propagating bubbles in the pipes that can hinder proper work of
hydraulic machinery: pumps in hydraulic structures can experience water hammer effects

and a loss of priming that will decrease their efficiency [152, 256];

« Long pipelines require air release zones as some air pockets can appear and result in
stationary effects such as hydraulic capacity reduction or increased corrosion of ferrous
pipelines and in unsteady flow behaviors like pressure fluctuations and flow instabilities
such as blow-out or blow-back [152, 256];

« Pressure waves associated to hydraulic transient can be damped thanks to the increased

compressibility of the mixture [122];

« Aeration of falling liquid jets results in their atomization, with a reduction of their break-
up length, and significant changes at jet impact on a structure or in a plunge pool: while
the mean pressure tends to decrease, one can notice higher fluctuations compared to a
non-aerated falling jet [120, 244, 292];

 Entrainment by plunging solid, liquid or gaseous jets through a free liquid surface is com-
monplace in hydraulic structures as in drop structures along waterways, power plant cool-

ing system, plunging breaker, waterfall [91];

« Water jets as described by Carrasco [50] in view of agriculture applications are also of use

for fire-fighting (for which air entrained shall be prevented) or industrial jet cutting;

« Weirs and stepped spillways are very effective in air-water mass transfers of atmospheric

gases, such as oxygen (or degassing methane resulting from vegetation decomposition) and
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therefore in improving poor quality water that impacts the downstream river life [119, 347].
However, a strong air-water mixing can trigger supersaturation of gas like nitrogen in the

flow, leading to stress or mortality of affected fishes [295, 315].

We mainly focused here on aerated flows on hydraulic structures, but they are also at the core of
many other industrial applications, from chemical reactors [14] to wastewater treatment [25, 390]
or naval propulsion [53, 195, 271]. Let us also underline that bubble entrainment also occurs for
other gas/liquid systems as impurities captured during metal processes [399] or gas entrained in

liquid sodium in fast breeder reactors [237, 288].

4.2 The air entrainment phenomenon

The air entrainment process can be split into three stages: an air volume is first entrapped at
the surface, it then breaks up in a set of bubbles that are finally carried away by the flow. This
entrapment happens through different possible processes: capture by a low pressure region such
as in a vortex core or a trailing edge, collapse of a cavity formed by an air film, a plunging breaker
or a falling drop [53, 284]. Many physical phenomena are at stake and act at different scales:
turbulence, shear, buoyancy and surface tension govern bubble interactions, involving break-up
and coalescence that lead to a generally wide bubble size distribution comprised between the
Kolmogorov microscale and the turbulent macroscale [59], with sizes ranging from 20 ym to
1 cm. The air entrainment is an illustration of the significant influence of small-scale processes

over large-scale phenomena [159]. The aim of this section is to describe those important features.

4.2.1 Dimensional analysis and similarity

Experiments are usually carried out at reduced scale. Scale effects are likely to appear, as the
change of dimension can trigger some significant discrepancies in the physical mechanisms at

stake, and increase with the scale factor [161]:

_Lp

A =
Ly

(4.1)

where L p is a characteristic length of the real-world prototype and L, the corresponding model
length. The reduced scale will be denoted 1 : A. The mechanical similarity between the two

configurations relies on three criteria [161]:

« The geometric similarity: all spatial dimensions are A times shorter in the model.

+ The kinematic similarity: it encompasses the geometric similarity and adds the similarity

of motions, keeping the ratios of time, velocity, acceleration and discharge constant.

+ The dynamic similarity: all force ratios are identical.
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Identifying the important parameters of the system is pivotal to preserve the consistency be-
tween the physical model and its corresponding full scale one. Several approaches exist for
model-prototype similitude as described by Heller [161]: among them, the dimensional anal-

ysis is detailed hereafter.

4.2.1.1 7 theorem

The Vaschy-Buckingham 7 theorem [41] is an essential tool in this prospect. Kobus [188] con-
sidered a configuration described by a reference length L of the geometry, a reference velocity
U and a turbulent intensity Tu of the approaching flow and a pressure difference AP of the air
supply system. With the fluid characteristics and gravity, one can then define and relate the

dimensionless parameters:

f (geom. ratios, Tu, Cp = 1;];2 ,Fr = VZT’ Re = %,We _ ﬂiU:L> —0 (4.2)

2
Let us recall that og is the surface tension. Following Chanson [63], air density and viscosity are
ignored as the air-water mixture features can be expressed with water properties and air concen-
tration only. One can refer to Chanson [62] for dimensional analysis of classical air entrainment
configurations. Some are detailed for the present work application in the Section 4.4. Another

number of practical use for bubbles is the E6tvos or Bond number that reads:

g (p? = p®) (dv)?

Eo = (4.3)
gs
The Weber number We might be replaced by the Morton number Mo defined as:
BY (B — po
Mo = 90) (07— 7") (4.4)

2
()" %

that depends only on the gas and liquid characteristics. The quality of the water, with a possible
presence of surfactants or bio-chemicals, can affect the air entrainment and was not included in
the above analysis. Chanson et al. [74] discussed this question for breaking wave and plunging
jets with fresh water, seawater and artificial salt water and highlighted less entrained air and

finer bubbles in the two latter cases.

4.2.1.2 Application to the bubble slip velocity

Let us consider the classical behavior of a spherical single bubble of small diameter d* rising in

stagnant water. The previous dimensional analysis leads to the following dependence for the
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drag coefficient:
dOé
CD = f <Rea = UT, E0> (45)
v

Figure 4.1 displays the dependence on the Reynolds number. The value of the terminal velocity
of air bubbles depending on their volume equivalent diameter is plotted on Figure 4.2. As bubbles
get larger, they deform and the volume equivalent diameter is the diameter of the sphere with
the same volume than the considered bubble. One can note the significant effect of surfactants
for intermediate Reynolds, as the interfaces are rapidly saturated by contaminants [316], even
though Tomiyama et al. [346] pointed the initial shape deformation as the primal origin of the

observed scatter, surfactants damping the oscillations.

The conventional approach for drag coefficient relations is to distinguish different regimes with
an associated experimental fit when the theoretical developments are not possible. For a liquid
sphere free of contaminants in the Stokes regime, Hadamard [157] and Rybczynski [318] derived

the drag coeflicient:
24 2+ 3R

~ Re®3+ 3R

D (4.6)

where R = u®/u® ~ 0.020 for air-water. Therefore, for a small air bubble in water within
the Stokes regime, one has Cp = 16/Re®. For intermediate Reynolds numbers, other analyti-
cal developments have been made [270]. However, when bubbles get larger, the inertial effects
become significant, the shape tends to be an ellipsoid, the motion of the bubble gets deeply af-
fected and empirical relations are then computed [85, 189]. Very large bubbles take a spherical
cap shape following a straight rising: consistently with Davies and Taylor [101], Joseph [183]
found a constant value of Cp = 6 based on the sphere diameter of the cap and made the link
with the volume equivalent diameter for which Cp = 2.67 as on Figure 4.1. At large Reynolds
numbers, the surface tension becomes prominent and the dependence is ensured by the E6tvos
number. Tomiyama et al. [345] gathered different correlations and compared successfully their

relation for a large data set:

. 24 0.687 72 8 Eo
CD = Imax <m1n (Reo‘ (1 + 015 (Reo‘) ) 5 @ 5 g E() + 4 (47)

where it has been assumed that the dispersed phase could take non-spherical shapes and the
water was slightly contaminated. For contaminated systems, the second term of the minimum
function is removed. For more details, one can refer to the detailed review made by Clift et al. [85],

Rusche [316], Tomiyama et al. [345] for drag computations for particles, droplets and bubbles.

The above results focused on a single bubble in stagnant water. However, in practice, the bubble
is surrounded by other bubbles that can interact in a turbulent environment. Rusche [316] made
areview of the modifications of the drag coefficient at high phase fractions, sometimes combined

with the definition of a mixture viscosity appearing in the Reynolds number. The general idea is
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Figure 4.1: Drag coefficient of an air bubble in filtered water depending on the Reynolds number
based on the volume equivalent diameter. Blue line refers to filtered water and red
line to tap water. The darker region in-between corresponds to partially contaminated
water. Data extracted from [156].
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Figure 4.2: Terminal bubble rise velocity of a single air bubble in an extended body of water at
rest. Blue line refers to filtered water and red line to tap water. The darker region
in-between corresponds to partially contaminated water. Data extracted from [156].
Associated regimes for the bubble shapes [189].
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to introduce a hindering term of the form:

CD,eff = fc (a) Cp (4~8)

The function f, usually takes the form f. (o) = (1 — a)* 2"

Rusche [316] reported values between 1.5 and 2 depending on the regimes but no value is avail-

where 7 is a hindering coefficient,

able for the most critical regime in our study. Rusche [316] suggested an empirical form adapted

for some data set:
fe(a) =exp (Kfa) + ol (4.9)

with K§ = 3.64 and K¢ = 0.864 for bubbles. The scatter of the bubble data, larger than for
solid particles or droplets, uncertainties being especially related to turbulence effects, requires to

take these closures with caution.

Other elements can significantly affect the previously presented dependencies. The pressure
gradient, if not hydrostatic, can modify the bubble motion as underlined by Kobus [189] (e.g. sub-
atmospheric pressure below a falling nappe over a stepped spillway). The turbulence, either
carried by the flow (from wall or free shear layer) or generated by the bubble motions (bubble-
induced turbulence) can also have a prominent action on break-up, coalescence and transport
of bubbles Kobus [189]: if water flow turbulence is the leading contribution in high-speed flows
(flow speed vs. rising bubble speed), the bubble-induced turbulence can be significant in slowly
moving or stagnant water due to the buoyancy force of the bubbles, as exemplified by a bubble

swarm rising from the injection at the bottom of a tank initially at rest.

4.2.1.3 Similarity

As highlighted in the relation (4.2), the local air-water turbulent flow properties are therefore
dependent on the geometrical ratios, the Froude and the Reynolds numbers and the upcoming
turbulent intensity. A true dynamic similarity is achieved if each dimensionless number is pre-
served from prototype to model. However, in a geometrically scaled model, despite the impor-
tance of gravity and viscous effects in air-water flows, full dynamic similarity cannot be achieved
[62, 188]. The most relevant force ratio shall be preserved and care must be taken for the scale
effects resulting for the discrepancies on the other ratios to be negligible [161]. Let us underline

that the instrumentation is not scaled in most works of the literature.

Similitudes Air and water are generally used in the physical model so that the Morton num-
ber is an invariant. In free surface flows, the Froude similarity is generally retained by tuning the
approach velocity, leading to smaller Reynolds numbers [62]: scale effects can therefore occur.
Let us underline that the geometric (bubble size) and dynamic (bubble rising velocity) similari-
ties for air bubbles may be violated at the scale model [188], so that some experimental works

are directly performed at (nearly) prototype scale depending on the quantities of interest (for
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example for mass transfer studies as in Chanson et al. [72], Erpicum et al. [119], Toombes and
Chanson [347]). Kobus [189] argued that a large enough Reynolds number is a requirement for
a scale model as the turbulence features become independent of this number for fully turbulent
flows. Boes and Hager [28] suggested Re > 10° and We > 102 to avoid scale effects on stepped

spillways together with a scale factor below 15 for the considered geometry.

Felder and Chanson [125] made a comparative study on stepped spillways for the Froude and
Reynolds similitudes. The Froude similitude did not prove to be satisfied at a 1:2 geometric
scaling, fewer bubbles with larger sizes being entrained at reduced scale. Turbulence was also
lower so that energy dissipation may be underestimated. The Reynolds similitude proved to be
invalid for such flow. Chanson and Carosi [67] made a comparative study at Froude similitude
on a hydraulic jump case and highlighted also significant scale effects. Chanson [62] summed up
by underlining the underestimation of turbulence levels, entrained bubble sizes, interfacial areas

and mass transfer rates according to the Froude similitude, even for large models.

For impact of water waves, Peregrine and Thais [290] recalled a common issue of scaling ex-
perimental data from laboratory to prototype scales. The Froude similarity is usually retained
for surface gravity waves but leads to nonphysical large prototype forces. The compressibility
is indeed a key parameter due to the high pressures, the short elapsed time for the phenomenon

and the air-water mixing.

Self-similarity An important tool in fluid mechanics to study turbulence and air-water flows
is self-similarity. Chanson [59, 62], Chanson and Carosi [67] highlighted relations with scal-
ing symmetry for the air concentration and velocity profiles for common air entrainment ap-
plications such as stepped spillways, plunging jets and hydraulic jumps at a macroscopic level.
Self-similar behaviors were also described at the microscopic level for the distribution of bubble
chords. Such results can therefore be used on prototype structures. They will be detailed for the

application cases of the Section 4.4.

4.2.2 Controlling parameters

The air entrainment phenomenon is driven by different controlling conditions sorted out by
Kobus [188]. They will be described in the four coming sections as a gateway to understand
air entrainment, highlighting the different physical processes at stake and the wide variety of

criteria that were developed.

4.2.2.1 Entrainment limit

Air entrainment occurs at a discontinuity of the flow: the approaching flow shall give the condi-
tions for the generation of this discontinuity. The Froude number is the prominent parameter in

this prospect: an hydraulic jump requires a super-critical flow determined by Fr > 1 to appear,



140 CHAPTER 4: AIR ENTRAINMENT MODELING IN THE SPH METHOD

the flow regime of a stepped spillway — and therefore the air entrainment process — is also depen-
dent on the Froude number. Chanson [59] distinguished two kinds of air entrainment depending

on the nature of the discontinuity:

o Local aeration occurs at a flow singularity: the impingement point or line forms a source of
bubbles and vorticity at the toe of the surface of the roller of a hydraulic jump as in Figure
4.3a, at the intersection of the plunging jets and the water surface of the pool as in Figure
4.3b;

« Interfacial or self aeration happens along the whole air-water interface as in an open chan-
nel as for a stepped spillway displayed on Figure 4.3c, along a chute or a developed water

jet as in Figure 4.3d.

Both regimes can occur in some flow configurations as for the hydraulic jump where air can also

be entrained at the interface of the surface roller.

4.2.2.2 Inception limit

Once the discontinuity is generated, air bubbles can be entrapped and turbulent stresses appear
as the main factor of mixing: the turbulent shear stresses overcome the resisting forces formed
by the buoyancy and the surface tension. Once this general statement made, the wide variety
of physical processes at stake requires to further specify the considered problem. A breaking
wave can entrap an air cavity that is then broken up into a set of bubbles [103, 108], falling drops
can capture air bubbles when impinging a free surface [299, 304], free surface deformations due
to turbulence can entrap air [40]... To get a general — though probably not comprehensive —
overview, we now go back to the distinction between local and interfacial aeration introduced in

the previous section.

Interfacial aeration The interactions between turbulence and free surface have been the sub-
ject of in-depths studies. Using the idea of turbulent stresses exceeding the stabilizing forces of
gravity and surface tension, Brocchini and Peregrine [40] estimated critical values of Froude and
Weber numbers based on an energetic reasoning. Considering L7 a typical length scale, a rea-
sonable choice being the most energetic turbulent scale, and g a turbulent velocity linked to the
turbulent kinetic energy density through k = ¢2./2, they estimated an equation for a transition

zone in a (L7, g7 )-plane between non-aerated and aerated regions:

gs

2 q q
= ClqgLr + C.
qr 19LT QpBLT

(4.10)

where the coefficients C{ depend on the assumptions regarding the free surface deformation ge-
ometry. Four regions were identified as displayed on Figure 4.4 and allow one to distinguish the

different free surface behaviors depending on the turbulence features. Air entrainment mainly
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Figure 4.3: Classical air entrainment configurations (adapted from [62]).
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Figure 4.4: Water (L7, qr)-plane described by Brocchini and Peregrine [40]. Dotted lines cor-
respond to critical Froude and Weber numbers defined through q% = 2Fr.gL7 and
g% = 2We.05/(p” L) and taken arbitrarily in the derived bounds Fr. = 0.025 and
We. = 0.5. The shaded area is a transitional zone between non-aerated (below) and
aerated (above) flows and is related to the variety of free surface deformation assump-
tions used in the energetic reasoning.
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occurs in the Region III where neither the surface tension nor the gravity can maintain the co-
hesion of the free surface due to strong turbulence. This plane can be seen as a practical tool
to study flows: their evolution can be understood as a trajectory from one region to another,

depending on the evolution of the turbulent structures in the flow.

Interactions between turbulence and free surfaces are complex and some literature was devoted
to their study, generally in simplified cases. Hunt and Graham [173] focused on the modification
of the turbulent features close to a moving boundary. Their work was extended to flat free
surfaces by Teixera and Belcher [343] and checked numerically with DNS computations by Flores
etal. [131]. A two-layer region was described. The source layer, related to the kinematic blocking
effect of the interface boundary, brings the normal component of the fluid velocity to zero at the
interface while the thin viscous layer along the interface allows for the tangential fluctuations to
adjust to the shear-free boundary condition. Normal velocity fluctuations are constrained near
the free surface and the energy spreads in the tangential components. However, when turbulence
effects are strong enough in the sense explained previously following Brocchini and Peregrine
[40], the free surface will deform [356].

Spillways form a particular and extensively studied case of interfacial aeration. Early stud-
ies related the inception of air entrainment to time-averaged velocities: Ehrenberger [117] is
usually referred to as giving the first explanation for air entrainment on spillways, as a direct
consequence of the high velocity of the flow. Such criterion disregards the complex two-phase
anisotropic turbulent features of the flow. Further works considered the self-aeration over hy-
draulic structures as a consequence of the boundary layer developing from the wall reaching
the free surface [203] and this criterion was generally adopted in the hydraulic community [59]
even though it was highlighted that entrainment could occur earlier: Valero and Bung [355] in-
dicated that several references in the literature locate air entrainment at the position where the
boundary layer thickness is approximately 80% of the mean free surface level. A characteristic
roughening, wavy flow is noticed before the inception. The inception point determination have
been the object of many further works in the literature, trying to identify a convenient criterion
as done by Meireles et al. [248], as its position is likely to vary due to the unsteadiness of tur-
bulence of the free surface and the boundary layer. Some considered a mean air concentration
of 20% as a criterion [44]. Others referred to the bottom inception point with a concentration
above 1% [294]. The distinction was sometimes made between the entrapment of air, between
wave crests, and the entrainment of these bubbles, captured and carried by the flow. Assuming
a thin viscous layer and a blockage/source layer of Hunt and Graham [173] of the size of the
eddies that induces disturbances of the free surface with the same size, Valero and Bung [356]
studied free surface perturbation dynamics and derived a break-up criterion for the free surface

disturbance steepness before entrainment. Most unstable length scale were found to relate to the
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Taylor length scale derived from the inviscid Kelvin—Helmoltz instability:

gs
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~ 1.7 cm for air-water (4.11)
In the case of a viscous formulation as studied by Funada and Joseph [140], values can decrease
around 1.5 cm. For wavelength sufficiently larger, surface tension can be neglected. The normal
fluctuations do not vanish outside the boundary layer thickness: combined with the air drag
effect, it can explain the occurrence of aeration before the intersection of the boundary layer
with the free surface. Characteristic free surface roughness observable upstream of the inception
point were described by this model, with a wide range of wavelengths that can explain the range

of scales observed after the entrainment inception.

Regarding the importance of turbulence in self-aerating flows, a characteristic level of normal
Reynolds stresses became a classical criterion in the literature. In the following, x is aligned with
the flow and y refers to the normal component to the mean free surface. Studying falling jets,
Ervine and Falvey [120] suggested that the lateral kinetic energy should exceed the restraining
surface tension pressure, leading to the criterion:
4og
/
D N (4.12)
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where R, is the radius of curvature of the surface disturbance. Under further assumptions on

the turbulence and dissipation, it was converted in a jet velocity at the onset of aeration:

~0.275
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In the case of chutes, an additional condition was introduced by Boes and Hager [29] and Chanson
[56] to the inequality (4.12) to ensure that the normal fluctuation is larger than the bubble rise
velocity:

v, > |v"| cos (65) (4.14)

where 6 is the slope of the chute. The disturbance radius Rs is moreover taken to the bubble
diameter d*. For Chanson [62, 65], self-aeration occurs when the shear stresses are larger than

the surface tension force per unit area, leading to the criterion:

Py
>og-L (4.15)
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where P, and S, are respectively the perimeter and the surface area of the disturbance. Noting
that while the Reynolds stresses nearly vanish close to the fully developed free surface, an air
super-layer does exist with a growing free surface roughness generating a velocity difference,
this criterion was modified by Valero and Bung [355] to include contributions of this shear region

due to the developing air flow that could explain early aeration (before the intersection of the
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boundary layer with the free surface):
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As the ejected drops falling and capturing air bubbles when reaching surface were not a sufficient
explanation for air entrainment in open channels, Wei et al. [381] made an energetic reasoning
(when the kinetic energy of a turbulent eddy overcomes the surface tension energy) to derive

a critical radius of deformation leading to air entrainment when exceeding the acceptable free
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where Ly is the characteristic size of the turbulent eddy. The critical condition depends on the

surface deformation:

flow mean velocity and water depth through the closure of the fluctuation velocity. This 2D

reasoning got good agreement with experimental results.

Hirt [164] and Souders and Hirt [336] gave few details about the air entrainment model imple-

mented in the commercial software FLOW-3D®. The characteristic size of turbulent eddies:

3 k3/2
LT - CM\/ge (418)

is used to describe the surface disturbances. An energetic reasoning similar to the one previously
presented by Brocchini and Peregrine [40] is made. The volumic turbulent kinetic energy Pr =
pk and the volumic disturbance kinetic energy Pp associated with a fluid element raised to a

height Lt with surface tension energy based on a curvature of Ly:
Pp =pg-nLy+ Kpos/Lp (4.19)

are computed with K;, = 1 (used as a calibration parameter in other studies). Turbulent dis-
turbances shall be strong enough to overcome the stabilizing forces. If so, the volume of air

entrained per unit time is computed as:

| Pr—P
SV = Clir As 2% (4.20)

where Aj is the surface area and Cy;, quantifies the portion of the raised disturbance volume
occupied by air (less that unity, taken to 0.5 so that on average air will be trapped over about half

the surface area).

Meireles et al. [249] tested the models (4.12), (4.14), (4.15) and (4.20) with experimental and nu-
merical data for a smooth spillway and concluded that they predicted well the inception point,
except for (4.15) (without the normal derivative) that predicted it too far, allegedly due to the

lack of accuracy of the turbulence model employed. These criteria are physically related so that
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it can explain their good agreement, as the bubble diameter considered for the disturbance (from

experiments) gives more importance to the surface tension contribution.

Local aeration The mechanisms of air entrainment for local aeration are also complex and not
completely understood today, as exemplified by the plunging jets that give a quite general view
of local aeration (analogies can be made for hydraulic jumps [62]). The criterion for inception
is not obvious for plunging jets, as it depends on the period of observation considered [93]. A
primary event of entrainment in a clean pool can be used as a definition. Two main processes
are at stake: the interaction of jet surface disturbances with the receiving pool as studied for
individual bumps by Zhu et al. [403] and the generation of an elongated cavity between the jet
and the receiving pool, breaking up into air pockets and bubbles. Bin [24] indicated that the
entrainment depends upon several parameters: the jet velocity at impact, the physical properties
of fluid, the jet nozzle design, the length of free-falling jet and the jet turbulence. A classical
empirical correlation between the onset velocity and turbulence intensity for planar and circular

jets suggested by Chanson [62] indeed writes:

1PVe
os

= 0.0109 [1 + 3.502 exp (—79.62Tu)] (4.21)

In a schematic sketch of values found in the literature, with nevertheless some significant scatter,
air entrainment appears for impact velocities around V, ~ 1 m/s [59]. For velocities close to the
onset velocity V,, < 2 m/s, individual bubbles or packets are entrained. Bin [24] reported visual
observations of air pockets generated by disturbances of the impinging jet the receiving pool
could not adapt to. For higher velocities V,, > 3 to 8 m/s, a thin layer of air is generated below an
induction trumpet between the impinging jet and the receiving pool and behaves as a ventilated

cavity: the cavity pinches off and gusts are released intermittently due to a re-entrant jet [24].

The previously detailed model of Hirt [164] and Souders and Hirt [336] was also used for local
aeration but required some adjustments. Due to discrepancies on plunging jet computations spe-
cial treatment with restricted details is done: when there is an intersection of two fluid surfaces
moving orthogonally, the surface turbulence level is increased and the turbulence length scale is

modified by a length characteristic of the local entrainment.

Towards a generic criterion It appears that, to date, there is not an agreement for a generic
air entrainment criterion for free surface water flows. The reason lies within the large range of
processes occurring in interfacial and local aeration: propagation of different kinds of waves that
may break, interaction of the turbulence with the free surface... The definition of the inception
is not easy and some physical phenomena remain partly unexplained. A wide variety of criteria
exist in the literature, many of them being therefore case-dependent. Some of them are intrinsi-
cally linked to the numerical resolution and will be detailed in Section 4.2.3. The model of Hirt

[164] is quite generic and of practical use in CFD compared to the geometric criteria that require
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a measure of the disturbance, either by the size of the eddies or the bubble diameter, but remains

of limited validation for local aeration with adjustments related to the cases considered.

4.2.2.3 Air supply limit

While the air supply is unlimited for free surface flows, it can be restricted for confined flows

and mitigate the air entrainment depending on the loss coefficient.

4.2.2.4 Transport capacity

Once entrained in the flowing water, the configuration becomes the one of a dispersed two-phase

flow: flow velocity, depth and turbulence are considerably modified.

Bubble break-up The differential pressure force exerted by the tangential shear stresses, if
strong enough compared to the capillary force, triggers the break-up of the captured air pockets
[103]. The important parameter is therefore the Weber number. Chanson [62] suggested that
bubbles are broken up by eddies of length scale similar to the bubble size: larger ones advect
bubbles while smaller ones are not energetic enough to overcome the surface tension. One can
find a review of the break-up mechanismsin [215]. As described by Hinze [162], in an equilibrium
configuration, there exists a scale d, called the Hinze scale, at which turbulent fragmentation

ceases. Following Deane and Stokes [103], it can be computed by:
3/5
We
dy = e 2/5 [ I52%e 4.22
where the critical Weber number We,. is taken to 4.7 (other values from the literature, closer to
unity, are summarized in [59]). Chanson [59] proposed a different approach:
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If such formulation proved to work reasonably well for gradually-varied flow, it is not valid

for rapidly-varied flows as underlined by Chanson [59] due to the equilibrium assumption. Let
us note that this could be used in computations as a time evolving bubble size, even though
this diameter cannot be seen as a measure of mean diameter. The break-up of the air pockets
generates a dispersed flow that encompasses therefore a wide range of bubble sizes as highlighted
by Cummings and Chanson [91] for plunging jets or by Chanson and Toombes [70] for stepped

spillways (three orders of magnitude).
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Bubble transport The interfacial aeration results in droplets and bubbles spreading differ-
ently. Drops are projected at a distance depending mainly on their initial velocity. If the air flow
is not too violent, gravity and drag limit the travel of drops. On the other hand, bubbles, due to
their low inertia and limited rise velocity, are therefore drawn by the turbulent structure [40].
The transport capacity of the flow increases with turbulence intensity and velocity but decreases
with air concentration. For high speed flows in open channels, it results of an equilibrium be-
tween the rising motion (due to buoyancy) and mixing (resulting for turbulent fluctuations). For
confined flows, the orientation of the flow with respect to the gravity is an additional important
parameter. When the transport capacity is exceeded, air detrainment occurs and leads to the
formation of air pockets in the case of confined flow, possibly generating instabilities [188]. The
dispersed phase advected by the flow can coalesce due to collisions. This process may not be
significant in high velocity free surface flows, as long as the bubbles have not reached a region
of lower shear stresses [59]. It counts three steps: the bubbles collide, the film between them is
drained and finally is broken, generating a larger bubble. The Weber number is critical for this

phase. Further details on the coalescence process can be found in [80].

A diffusion process According to Chanson [59] that performed considerable series of experi-
ments and modeling of air-water flows, high-velocity shear flows mixing air and water behave as
homogeneous mixtures. An advective diffusion process is well-suited to describe the evolution
of the bubble swarm and analytical developments from the integration of the diffusion equation
can lead to proper description of the volume fraction profiles, with little effect of the shear layer.
The consequent air bubble diffusivity K is of the same order than the eddy viscosity, but gen-
erally larger. In the relation (1.101), Kp = é so that the previous remark would correspond
to a turbulent Schmidt number smaller than one. The mean air-water velocity profiles resem-
ble the single-phase ones while the air-water velocity distribution is only slightly modified by
the interactions of bubbles with turbulence. Chanson and Toombes [69] considered the quasi-
homogeneous air-water mixture with o < 90% in a uniform equilibrium flow region to derive
analytical expressions for the air concentration. In a steady quasi one-dimensional flow, for a

small control volume, the air continuity equation writes:
V. (av)=V" (KTVa — O['Uo’eff) (4.24)

This relation is similar to (1.86) but in steady state and written with a mass-weighted mixture
velocity. As one will see in Section 4.4.1.3, v ¢ corresponds to (3.36) but with a possible cor-
rection arising from the two-phase nature of the medium. Analytical resolutions by imposing a
diffusivity profile are described by Chanson [65] in the four applications detailed on Figure 4.3:
some of them are detailed in the Section 4.4. The assumption is generally a constant diffusivity,
but more complex models are developed for the documented cases of the skimming flow over a

stepped spillway and the flow downstream of a nappe impact. The fact that such an equation
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can describe the mean air bubble behavior in the considered flows encourages to try the mixture
model on such applications, even though one should note that the void fraction ranges from 0 to

100% so that the dynamics might be wrongly computed.

4.2.3 Numerical modeling

During the last two decades, noticeable efforts have been made in developing air entrainment
models towards a generic free surface flow model. Let us underline that the complexity of the
modeling is two-fold: one should be able to describe the entrainment phenomenon but also the
transport and diffusion of the entrained air bubbles. A wide variety of numerical approaches
have been developed in an Eulerian or Lagrangian (or coupled) framework, using the full set of
equations or averaged formulations, resolving all scales or employing subgrid models for turbu-
lence and/or air entrainment, in a one-way or two-way coupling (taking into account the action
of the liquid phase on the gas phase only or including the gas phase effect on the liquid phase).
One of the difficulties arises from the coexistence of separated and dispersed regimes in many of
the air-water flows of interest for hydraulic applications. In the following, we shall not make a
comprehensive review but rather try to highlight with some examples the prominent approaches

and their features. The SPH literature related to air entrainment is addressed in the Section 4.3.1.

4.2.3.1 Costly DNS

The wide range of temporal and spatial scales involved for air entrainment prevents any resolu-
tion of the full set of Navier-Stokes equations at prototype scales, by several orders of compu-
tational capability [53]. A spherical droplet typically requires around 10 grid points for proper
dynamic resolution [221]. If we consider schematic values with a dispersed phase size of 1 mm
in a prototype domain of 10% m3, one needs 10'® grid points (around five orders of magnitude
higher than what can be handled today, and one should note that it is probably underestimated
as the Kolmogorov scale can be smaller than the smallest bubbles). One has then to consider the
time stepping restricted by a CFL condition: for a flow of 10 m/s with a physical time of 10 s,
that would lead to at least a million steps. To give an idea of the computational cost of recent
simulations for free surface air-water flows, DNS of air entrainment through vortical filament
structures in a breaking wave was for example performed by Lubin and Glockner [227] using
a VoF approach with 10® grid points allowing to catch bubbles down to 1 mm (bubbles larger
than 1 mm are though subject to fragmentation according to [103]) in a periodic domain one-
wavelength long (10 cm). One day of computations was required for 0.88 s of physical time. Wang
et al. [378] focused on the small-scale interface structures of a breaking wave in air entrainment
and spray formation processes with 10! grid points using a minimum grid spacing of 0.065 mm
and considering a wavelength of 27 cm. Mortazavi et al. [275] performed a DNS of an hydraulic
jump with around eighty millions mesh points with reasonable agreement with experiments. It

allowed to get further insights into the physics of the air entrainment, with identified periodicity
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of the patches of bubbles entrained. Chanson [64] considered that a DNS would require 10'° grid
points for a small plunging jet and 10'7 for a large spillway flow. Adaptive mesh refinement or
hybrid approaches (modeling part of the subscale physics) can be used to decrease the compu-
tational time but it appears unavoidable to model (or neglect) small-scale behaviors to allow for
larger discretizations for a large scale computation. Regarding turbulence, a mid-way relies on
LES: Lubin et al. [228] applied an Eulerian formulation with LES to the simulation of plunging
breaking waves with a subgrid scale model less dissipative than the Smagorinsky approach. Still,
this approach is expensive for industrial applications. DNS will probably remain restricted to
study local phenomena related to air entrainment, providing some information to develop sub-
grid models [272]: for example Yu et al. [395] studied the air entrainment induced by a pair of

horizontal vortex tubes and a vortex ring impinging the free surface.

4.2.3.2 Air entrainment as a source term

Facing the difficulty to model finely the air entrainment phenomenon with the available com-
putational resources, a subgrid model for air entrainment appears as an enticing solution. As
described by Moraga et al. [272], one can either impose a boundary condition (but the interfa-
cial scales will not be solved) or set a volumetric source. The following references illustrate the
wide variety of possible models available in the literature in view of the same applications, with
fast-evolving formulations. The guiding idea is to get a model with few user inputs or calibration
parameters regarding the air entrainment, able to compute automatically the quantity of air en-
trained, its location or even its distribution. These models generally still require case-dependent

calibration and do not take into account the possibly limited resources of air.

Hirt’s approach Hirt [164] and Souders and Hirt [336] model air entrainment through the
introduction of a source term with the relations (4.19) and (4.20). A passive scalar approach
can be used for small volume fractions. For stronger mixing, a RNG ! turbulence model is used
in a variable density single-fluid formulation. The mixture density allows for buoyancy effects
and is used to compute the volume fraction through relation (E.1). The model was tested on 2D
simulations of 3D cases with limited validation: on a plunging jet, a drop shaft, a hydraulic jump
in a pipe and a smooth spillway. Validation is made by comparing with data available for the last
three cases on the volume flow rate of air entrained with good precision for the drop shaft and

the hydraulic jump, and with volume fraction values for the spillway.

Bombardelli et al. [31] makes a combined experimental-numerical study on stepped spillways
with a focus on the non-aerated part. The numerical model relies on dilute mixture equations
following [47] with a pseudo single phase flow model where the air is followed by a transport

equation. The density in the momentum equation is a reference density that does not depend

'The Re-Normalization Group approach is a turbulence model similar to the k — ¢ model. The procedure described
by Yakhot and Orszag [389] allows for the explicit computations of all the constants of the model.
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on the air concentration. The air entrainment is introduced via Hirt’s approach. Similar results
are obtained for the RNG and standard k£ — € approaches. A reasonable agreement is obtained
for the fluid velocities, with often an underestimation of the velocities near the free surface, and

boundary layer growth is well reproduced.

Hirt’s model was tested and calibrated by Valero and Garcia-Bartual [357] for a smooth spillway
configuration with two parameters used as calibration, Cg;, and K}, of the relation (4.19), the ref-
erences used for calibrating being the mean air concentration and the inception point location.
The mixture model described in [38] together with a RNG model were employed. Limited agree-
ment was obtained on the volume fraction profiles. The mean concentration values depending
on the slope of the spillway fell within a 20% error and the results proved to be dependent on the
cell size, allegedly due to the low convergence rate of the turbulent kinetic energy. It was also
applied in a combined experimental-numerical study by Valero and Bung [354] on a 3D stepped
chute spillway with a RANS model using VoF, observing a bending of the free surface before the
inception exhibiting lateral steady waves that a 2D model cannot capture. The entrainment in-
ception was not evenly distributed on the transverse direction, one or two steps distances being
needed for an homogeneous distribution. Good agreement was obtained for the inception point
position but too much air was entrained and discrepancies were noticed for the volume fraction

and velocity profiles.

Moraga et al. and Ma et al.’s approach The air entrainment is critical for surface ships (drag
reduction, stealth capability and design purposes [271]) with volume fractions exceeding 10%
and a part of the air entrainment literature was therefore devoted to the numerical modeling of
this phenomenon. A wide range of bubble sizes is usually observed so that Population Balance
Equations (PBE) coupled to single or two-fluid models were frequently considered. Let us un-
derline that PBEs introduce an additional order of magnitude of variables (number density and
associated velocity resulting from a momentum balance for each class of bubbles). Air entrain-
ment generally appears as a source term in those equations. Early models considered bubbles
as only passive scalars. However, it was noted that the wave breaking involves strong two-way
interactions between phases that need to be modeled. In the following references, the interfacial
transfers account for mean pressure force on the mean bubble while the fluctuating interfacial

term accounts for the drag, turbulent dispersion, virtual mass, lift and wall effects.

Carrica et al. [51] first developed a two-phase flow model with volume fraction and bubble num-
ber density equations under a monodisperse assumption. A focus was made on the RANS for-
mulation including bubble effects on turbulence. The need to consider different sizes of bubbles
drove those authors to then build a polydisperse model in [52] where entrained air was given as

a boundary condition.

Moraga et al. [271, 272] then developed a physically-based subgrid model to detect the location

in which air entrainment occurs to introduce bubbles as a volumetric term: a coarser resolution
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than the one required to detail the interfacial process of entrainment can be used to capture the
high void fraction region resulting from air entrainment. A two-fluid model handling polydis-
perse bubbles, two-way coupling and turbulence-induced bubble break-up near the free surface
is then used for the transport of bubbles. Bubble size distribution following [103] and source in-
tensity have to be prescribed (the latter being used to match the experimental data). They applied
this model to surface ships at laboratory scales and obtained good agreement with experimental
results. The location of air entrainment follows the criteria based on the averaged liquid velocity

rather than turbulent quantities that could be more expensive and complex to compute:

vl g > Ventg and V0 n > vy and 0<d; < deny (4.25)

where d; is the distance to the interface, d.,; is the layer thickness over which the volume source
is distributed and vy is the entrainment velocity limit fixed to 0.22 m/s as deduced from Figure
4.2. This choice is driven by a reasoning of Clanet and Lasheras [84]: the terminal velocity of
bubbles displayed in Figure 4.2 is not a monotonic function of the bubble diameter and has a
local minimum of vep; = 0.22 m/s independently of the Morton number. If one considers a
plunging jet, the bubbles will not be sorted by their diameter: still referring to Figure 4.2 and
considering partially contaminated water, when the velocity of the bubbly plume decreases to
this terminal velocity veny, all bubbles with a diameter higher than 1 mm will finally rise while
smaller bubbles can still be entrained at further depths. One can see that bubbles with diameters
of 1 mm and larger bubbles of 3 mm could reach this terminal depth. This induce an abrupt
change in the volume fraction profile with depth. This behavior is therefore employed in [272]
to locate the region of high volume fractions and define it as the source of bubbles in the transport
equations. Turbulence is modeled through a blended £ — w model adapted for bubbly flows. A
single-phase Level-Set method is used so that the equations are not solved in the air, as the flow
is dominated by inertia. It provides an increased stability for high density ratio flow. The missing

scales relevant for air entrainment are given by the subgrid model.

Shi et al. [325] used the double-averaged (ensemble average at bubble-to-bubble spacing and
Reynolds average for turbulence scales larger than the inter-bubble distance) set of equations for
dilute air-water mixtures of Buscaglia et al. [47]. This is therefore a single velocity model. Bubble
population is computed with an advection-diffusion equation for different groups in which source
terms are introduced to model air entrainment by relating the shear production at the air-water
interface to the bubble number intensity through the bubble distribution described by Deane
and Stokes [103] as references indicate a link between turbulence intensity and entrainment
[17]. While good trends were obtained in wave breaking events, some discrepancies appear
in quantitative comparisons, attributed to the single-phase approach and the air entrainment

formulation.

Ma et al. [231] proposed a one-way coupled monodisperse RANS two-fluid model to simulate

plunging jets. A PBE is used with a source term depending on a volumetric rate of air entrain-
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ment derived with a phenomenological model (at low velocities, the air is entrained due to the
roughness of the jet and the entrainment rate scales as V;® while at higher velocities, an air cavity
forms and breaks near the impact point and the rate scales with V;'®, V; being the jet velocity at
impact). Location of air entrainment follows [272] with ve,; = 1 m/s that is the entrainment ve-
locity generally observed for turbulent jets. The numerical results matched closely experimental

measurements.

In their RANS monodisperse one-way coupled two-fluid approach, Ma et al. [233] made a rea-
soning to approximate the quantity of air entrained at a disturbed surface. Using a disturbance

amplitude of the form

a=cst-— (4.26)

they deduced the rate of entrainment which is per unit volume-time:

. Cent k Ovp,

where C¢,; is a calibration coefficient for air entrainment and v,, is the inward component of
the average liquid velocity on the interface. This gradient formulation prevents entrainment
if the bubbles and the interface move with the same downwards velocity compared to [272]
model. The constants of the model are however case-dependent. It is tested on a plunging jet for
which reasonable agreement is obtained and a hydraulic jump with non-negligible discrepancies
compared to experimental data in the roller region attributed to the RANS approach. This origin
is confirmed by Ma et al. [232, 234] in which two turbulence models were tested on the hydraulic
jump with the same model: the DES # proved to perform better than the RANS approach, as the
latter failed at reproducing the entrainment in the upper roller region while both reproduced

well the entrainment at the toe of the hydraulic jump.

Ma et al. [235] developed an Eulerian-Eulerian polydisperse two-fluid model with an entrainment
model based on the turbulent dissipation rate at the interface exceeding a threshold. It follows
from Baldy [17] that introduces the self-similarity of bubble entrainment related to small scale
disturbances and therefore justifies its dependence on the turbulent dissipation rate. Two pa-
rameters are required: the entrainment efficiency (number of bubbles entrained) and the critical
turbulence dissipation rate. Derakhti and Kirby [108] then extended the model of [235] to the LES
framework with a dynamic Smagorinsky subgrid formulation, the dissipation being replaced by
the shear-induced production rate of subgrid-scale kinetic energy. These works highlighted that
the high void fractions occurring in these flows could lead to mitigate significantly the turbulence

of breaking waves.

Ma et al. [236] further applied the model developed in the previous works to a two-way coupled
simulation of a 3D plunging liquid jet. The polydisperse model is based on the distribution of

*The Detached Eddy Simulation is a hybrid turbulence model switching from RANS to LES in regions where large
scale turbulence can be solved.
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bubble sizes observed experimentally. A satisfactory agreement is obtained with volume fraction
and bubble count rate profiles. The two-way coupling did not require to introduce turbulent
dispersion, contrary to the one-way approach. A calibration was required for the model constant
Cent- The air entrainment location is consistently located within the free surface cusp around
the plunging jet. It is underlined that models in which the volumetric source only depends on the
dissipation rate are well-suited for configurations where turbulence is generated from two-phase
interactions near the interface but will predict spurious entrainment in the presence of boundary

layers near a solid boundary such as the hull of a ship.

Such air entrainment modeling is not restricted to PBEs: Lopes et al. [224, 225] introduced a vol-
umetric source term for air entrainment similar to [233]. Variations of the surface disturbance
estimation were made with expressions similar to (4.19). A VoF interface capturing model formu-
lation was employed, but in [225] the dispersed air phase was followed with an extra advection-
diffusion equation in the bulk of the fluid and an appropriate free surface detection formula was
introduced. Lopes et al. [224] considered a 2D dam break and a 3D plunging jet while a stepped
spillway structure was studied in [225] with a comprehensive testing of the parameters of the
model: with an appropriate choice of these parameters, a good agreement with experimental
results was obtained with satisfactory flow depths, air concentration profiles and velocity pro-
files only slightly modified by the presence of air for the stepped spillway. The above-described
criteria of [272] were used for the location of the air entrainment region with vey,: = 0.8 m/s,
with a threshold on turbulent kinetic energy adapted to stepped spillway cases to get an accurate

transition between the non-aerated and aerated regions.

Hsiao et al. [168] presented a combined experimental-numerical approach in which they devel-
oped a one-way coupled Eulerian/Lagrangian approach using and extending the air entrainment
subgrid model of [233] to model plunging jets. Once entrained, the bubbles are followed dis-
cretely in a Lagrangian way and can still be broken up by shear forces. Reasonable agreement was

obtained on the frequency of flow structures but the stream-wise velocity was over-predicted.

Castro et al.’sapproach Castro etal. [53] detailed a polydisperse two-fluid model and made an
in-depth focus on the development of a closed air entrainment model splitting the phenomenon
into separate fundamental processes and modeling them individually. A single air entrainment
volumetric source is introduced in a number density equation and is deduced from the proba-
bilities of occurrence of the different steps of air entrainment: bubble inception, drag within the
fluid, interaction with vortices or other bubbles and pull by buoyancy. Entrainment size distri-
bution is imposed as some physical processes might be missed for the smallest bubbles. RANS
models neglecting free surface effects are pointed out by the authors: they proved to be impor-
tant for breaking wave simulations. At the plunging point, high levels of turbulence are noticed
but the blended k¥ — w/k — € failed at reproducing them due to the short time scales involved.
A mixing length model is introduced and appears as a production term near the free surface.

Promising results are obtained.
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4.2.3.3 VOF, averaged two-phase models and coupling

A certain number of computations were performed with interface tracking, two-fluid or mixture
models without going down to the discretizations required by the DNS. Regarding the averaged
two-phase models, the entrainment occurrence relies on the fact that the interfacial momentum
closure (that provides the relative velocity closure for the mixture model as shown in Chapter 1)
gives the appropriate stresses at the interface to generate entrainment. To illustrate the diversity
of these approaches and the resulting discrepancies in the results, we give a few references on

different air entrainment cases.

In a combined experimental-numerical study, Qu et al. [300] employed a mixture model and a
Level-Set approach combined with a k¥ — € model to simulate 2D axisymmetric plunging jets. In

the notations of the present work, the relative velocity reads:

v = po"yp ( — dv) (4.28)

with the hindering power n = 1 in y defined by (1.95). Compared to (1.101), there is no turbulent
diffusion term but the acceleration is deducted from the gravity (for the set of Euler equations,
that would give the pressure gradient). The Schiller and Naumann’s expression as written by [85]
is used. If both models give the appropriate order of penetration depth, the Level-Set approach

gives better details on the flows at a more expensive computational cost.

Stepped spillways were studied extensively in numerous references. Cheng et al. [79] simulates
flows over step-pool spillways using a mixture model with the RNG £ — € model. A very good
quantitative agreement is obtained for the velocity and pressure profiles, while only a visual
comparison is made for the volume fraction with good correspondence. Nikseresht et al. [281]
performed such simulations with VoF and mixture models, and compared different turbulence
models. In their case, a Reynolds stress model and the RNG k — ¢ model provided the best
agreement with experimental results. The relative velocity followed an expression suggested
by Manninen and Taivassalo [239]. Zhan et al. [397] applied and compared the results of three
models, namely a VoF model, a mixture model and an Eulerian model, to a skimming flow over
a stepped spillway with turbulence simulated by either LES or a RNG k — € model. The mixture
and VoF models combined with LES proved to give satisfactory results, while the Eulerian RANS
approach failed at giving appropriate features of the flow. To assess different stepped spillway
geometries, Li et al. [214] compared numerically the different configurations in terms of air con-
centration, interfacial velocities and dissipation using a mixture model and a realizable k — ¢
model °. The relative velocity followed (4.28) with an effective mixture viscosity and a modified
expression of the drag coeflicient for high Reynolds. Wan et al. [376] used the VoF approach with

arealizable k — e model to investigate the effect of the height of the steps over the inception point

*Variant of k£ — e model built by Shih et al. [329] from the Explicit Algebraic Reynolds Stress Model (EARSM) such
that it satisfies mathematical conditions on the Reynolds tensor of Cauchy-Schwarz type.
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location for different step-pool spillways.

The realizable k£ — € model was also used in the VoF approach by Witt et al. [384] to study the
air entrainment in an hydraulic jump without subgrid air entrainment model. The 3D appli-
cation proved to improve the prediction of entrained air and bubble size compared to the 2D

computations.

One can see that these approaches are taken to their limits as separated or dispersed regimes can
coexist for flows over hydraulic structures. As presented in Section 2.4.1, approaches coupling
different formulations depending on the local configuration of the flow were developed. Re-
garding air entrainment applications, in the following of previous works as [351], Pereira [291]
recently coupled VoF and two-fluid model approaches to model air entrainment over hydraulic
structures such as a drop shaft or a stepped spillway. The transition between models relies on
the volume fraction gradient. RANS formulations, DES and Very large eddy simulations (VLES),
i.e. LES with an insufficient spatial resolution, were employed. The interest is two-fold compared
to the source term approach of the last paragraph: conservation properties can be achieved as no
artificial volume of air needs to be introduced and the associated calibration parameters can be
avoided. However a fine resolution of the turbulent structures would theoretically be required to
model accurately the entrainment. It was nevertheless noted that aeration could proceed from
the numerical discretization in the case of local aeration while for self-aeration, sufficient nu-
merical resolution was required to allow for the development of the air-entraining eddies. The
approach is not free of parameters as the two-fluid model requires a bubble diameter that de-
pends on the considered flow and the mesh (bubbles smaller that the ones resolved by the mesh)

and can affect significantly the computations.

4.2.3.4 Validation

In the absence of prototype data, experimental data is pivotal for the calibration and validation of
the numerical models: air concentration, velocity, turbulent intensity, distribution of bubble sizes
[63] but also distribution of the turbulent integral length and time scales and microscopic config-
urations of clusters. Those data have intrinsic uncertainties, due to the complexity of metrology
in those kinds of two-phase flows and the accuracy of the post-processing. One can find further
details on the metrology in [59, 64, 73]. Once calibrated and validated, the numerical simulations
can give further insights into the fields of the flow considered, and allow one to assess the impact
of variations of flow conditions, help for the optimization of the design, etc. Using a combina-
tion of CFD and physical modeling appears as a powerful tool for studying multiphase flows
[31, 300, 354]. The lack of validation and verification was however pointed out [64, 68].

4.2.3.5 Summary

Lopes et al. [224] sums up the stakes of the numerical air entrainment modeling as follows:
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“The accurate prediction of the air-entrainment process in a wide variety of air-water
turbulent flows is a computationally challenging problem under current investiga-
tion. An ideal numerical model needs to be accurate and fast in the definition of a
macroscopic interface and simultaneously precise enough to take into account the
formation of bubbles through the free surface, their transport and their natural in-

teractions: bubble-bubble and bubble-fluid."

One needs to define what are the quantities of interest for the engineering applications consid-

ered and design the consequent appropriate model.

We have underlined that turbulence is at the core of the air entrainment but only addressed
its modeling transversely, as chosen models vary from one reference to another. Due to their
computational efficiency, RANS models are of wide use. Viti et al. [372] made a state-of-the-art
of the numerical simulation of hydraulic jumps, with Eulerian and Lagrangian approaches and
the different existing turbulence models. They highlighted the satisfying accuracy of the RANS
approaches for mean flow variables estimation, but the insights in aeration remain mostly limited
to air concentration. However Ma et al. [234] highlighted the need of more complex turbulence
models such as DES to get proper resolution of such flows. If one wants to focus on transient
behaviors and the mechanisms of the air entrainment generation due to turbulent fluctuations,
a larger resolution together with turbulence models more expensive computationally as DES or
LES are required [291].

When the phases are not fully resolved, the quality of the air entrainment subgrid model is also
critical. We have highlighted the wide variety of approaches developed in the literature, either
by modeling the small-scale interfaces or introducing a source term. Mixture models appear
as an efficient and simple way of simulating mean flow variables for stepped spillways while
some discrepancies were noted on plunging jets. Coupling an interface tracking approach with

a two-fluid formulation seems a promising approach.

The few attempts of air entrainment modeling in SPH, together with the model developed in the

present work, are addressed in the following section.

4.3 Air entrainment modeling in SPH

Air entrainment was only recently addressed by the SPH community and only within the mul-
tifluid SPH framework. Several obstacles can indeed be identified: the difficulty to handle high
density ratio two-phase flows, the computational resources required to handle discretizations
able to reproduce accurately the air bubble entrainment and the turbulence modeling within the
method. After a review of the SPH literature about air entrainment, the model developed in the

present work is presented and application cases are considered.
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4.3.1 Review of the literature

Recent work were performed for the simulation of air entrainment on hydraulic structures with
SPH. We present here a review of the few references found in the literature. Let us underline that

all these works were performed with multifluid SPH, i.e. without mixture model.

Dao et al. [100] aimed at simulating rogue waves following the model of Colagrossi and Landrini
[86]. Qualitative agreement with experimental results underlined the interest of integrating the
air phase in a nested domain near the breaking zone. They could observe the fragmentation of
the entrapped air pockets that modified the dynamics of the breaking, what was not captured by

single-phase simulations.

Meister and Rauch [250] implemented a multifluid model similar to Monaghan and Rafiee [268]
with a small decrease of the repulsion force between phases in order to handle air entrainment
cases. Sound speeds are computed following Colagrossi and Landrini [86] and the viscous force
follows Adami et al. [4]. Kernel renormalization is employed. After validating the model on a
2D dam break and bubble rising, a two-dimensional homogeneous bubbly flow in water columns
was computed based on the detailed multifluid simulation of the single bubble case and some
experimental data (35 bubbles modeled as solid air particles with an assigned velocity from the
experiment), in order to reach practical engineering configurations and focus on the air-induced
mixing. As decribed in Section 2.3.2, bubble columns were also studied with the DEM-SPH ap-
proach by Torti and Sibilla [348].

Nakayama et al. [277] studied a dam break over an obstacle and the flow over one step of a

stepped spillway under periodic conditions but without quantitative validation.

Wan et al. [374] used the model of Colagrossi and Landrini [86] (artificial viscosity, cohesive force,
XSPH). An advection-diffusion equation on the dissolved oxygen is introduced with a source term
depending on the specific surface area of bubbles computed thanks to the number of air particles
in the kernel support. A reasonable agreement was obtained for the velocity profiles, except near

the inception point, and the dissolved oxygen concentration was well reproduced.

Wan et al. [375] went further in the study of air entrainment. They included in the model of
Colagrossi and Landrini [86] a drag force accounting for air-water interactions and used realistic
viscosities by combining a molecular viscosity model with a sub-particle-scale turbulence model
similarly to Lo and Shao [223] for the water phase and artificial viscosity for the air phase. Particle
shifting with the correction of Mokos et al. [255] was used and as in [86] a cohesive force was
set in the air phase. The drag force was written similarly to the closure (1.94) but with the
drag coefficient computed following Tomiyama et al. [345]. The total drag force is computed
as a sum over the neighboring particles. A cohesive force as in Colagrossi and Landrini [86] is
applied. The air concentration is computed as the ratio of the volume of the air phase over the
total volume within the support of the kernel of the current particle. The air concentration is

therefore a consequence of the space arrangement of the air and water particles. The stepped
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spillway of Chanson and Toombes [70] is tested and a satisfactory agreement is obtained for the
concentration profiles at the different steps, except near the inception point. An hydraulic jump
from Gualtieri and Chanson [153] is also considered with a good agreement of the concentration

profiles at different distances from the impingement point.

Yang et al. [392] employed a mixed model with the §—SPH continuity equation and an artifi-
cial viscosity in the momentum equation, complemented by a cohesive pressure term in the gas
phase and XSPH shifting following Colagrossi and Landrini [86] to simulate air-water flows. The
results obtained on a dam break and an hydraulic jump legitimated the use of a multifluid model
compared to a single-fluid model to get results in quantitative agreement with the experimental
data.

4.3.2 Present SPH air-water mixture model

We use the mixture model detailed in Chapter 3. The fluid features and relative velocity shall
be specified. The previous section has shown that air-water flows are usually modeled in SPH
with multifluid approaches where the SPH particles belong to assigned phases. To the author’s
knowledge, the present work is the first to use a mixture model within the SPH approach to

model air-water flows.

4.3.2.1 Air and water characteristics

The air and water characteristics are detailed in Table 4.1 .

Table 4.1: Parameters for the air-water cases.

P~ 1.23  kg/m? PP | 1000 kg/m?

v® | 1.56 107> m?/s 811076 m?/s

4.3.2.2 Air-water relative velocity

Drag coefficient In this work, we have made the assumption that the dispersed phase consists
of monodisperse spherical bubbles or drops. Clift et al. [85] following Schiller and Naumann [320]

suggested to write the drag coefficient as:

24
= <1 +0.15 (Re“)0‘687> if Re® < 1000

Cp=1{ Re (4.29)
0.44 if Re® > 1000

Tomiyama et al. [345] suggested to include effects of non-spherical air bubbles through the form
of equation (4.7), with additional limits if the Reynolds number becomes too high in slightly
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contaminated water and the shape is non-spherical, depending on the E6tvos number. However,
on the considered cases regarding the assumptions made on the bubble diameter, this regime

shall not be considered. The hindering coefficient was kept to n = 1.

Hydrostatic approximation Due to the very noisy nature of the pressure field in the SPH
approach retained, despite of the volume diffusion and due to the strong density ratio, it did
not appear numerically stable to use directly the pressure gradient in the relative velocity com-
putation. An additional approximation was therefore made to use the hydrostatic value of the
pressure gradient pg. The dependence only on the gravity decouples the phase evolution from
the dynamics generated by the momentum equation. In absence of diffusion, the only possible
transfers occur in the gravity direction. It does not allow one to reproduce effects generated by a
non-hydrostatic pressure gradient as described by [188]. It is expected that once the pressure field
will be stabilized by either using a Riemann solver or implementing the multiphase §—SPH ap-
proach, it will be possible to use the pressure gradient in the relative velocity computation and

get better physically-based results.

Practical computation Because of the presence of V" in the Reynolds number, the relative
velocity definition is implicit and it would require some iterations to converge. To limit the
computations, we make the following reasoning. Noting R, = (pa —p° ) /p®, we first define

the Reynolds number function fr:

d®)3 gn
fr(Re®) = Re® (1 +0.15 (Rea)0'687> = %\Rpgl (4.30)
18 (vP)
An approximation of fél over Re® € [0;1000] is:
1
Re* =cr | 1-— (4.31)
fr(Re®) ) *F
1+ (RT)

where the coefficients ap = 0.6301226, bp = 2124552 and cg = 21037.87 computed numeri-
cally. We propose the following scheme:

« Compute fr(Re®) using (4.30)
+ Deduce Re® through (4.31)
+ Then

— If Re® < 1000, we compute a first guess as

P A@)tpr
~ 3vPCp (Re®) Re®

R,g (4.32)
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- Else Cp (Re®) = 0.44 and the relative velocity is written explicitly

4daﬁn
Vi=,/——R 4.33
\/ 3Cor[R,g] o9 (433)

If Re™ < 1000, the first guess is already a good estimate generally. In the other case, the compu-

tation is explicit.

Modification of the diffusion term in the phase volume equation In the diffusion term of
the new relative velocity closure, compared to the closure (3.42), the eddy viscosity now varies
and Va is divided by «f. The diffusion term detailed in (3.44) in the phase volume equation

therefore requires an adaptation:

Ve e
" dt

- Z <aaﬁb ['UO,a|b : Sa|b]+ + O‘bﬁa ['U(],a|b : Sab] _>

beF
© (4.34)

+Z”T7“ + V1 0t — o Tab - Sajp
2Sc T T
beF T ab ab

The condition for positiveness detailed in Section 3.2.6 is changed with a different relative veloc-
ity closure. One can find a derivation of an upper bound in Section C.2: a coarse limit amounts
to replace K by 7 max/Scr. To avoid a too strong limitation, we however made an approxima-
tion in (C.23), approximating the b neighboring values by the considered particle value a for the

terminal velocity vy and the turbulent viscosity v, what led to the approximate condition:

dt max (na Y0.a + VTa) <& (4.35)

oe  Scro?

for which we used the same values of (£,,7,) as in Section 3.2.6 due to the proximity of the
formulations and a safety factor of 0.5 was set in front of this condition. Let us underline that
in the turbulent flows considered in the following and consistently with the assumptions of the
mixture model, the norm of the relative velocity is small compared to the flow velocity so that

this condition will not be the strongest constraint on the time step.

Switch of dispersed phase We have assumed in the above-mentioned expressions that o
was the dispersed phase. However, regarding the expected applications of this model, such as
separation of two phases, both « and 8 can happen to be dispersed (i.e. bubbles of air in water
or water droplets in air). When specified in the application cases, we try a switch of definition
of dispersed quantity when « exceeds the threshold 0.5. Let us underline that physically the
transition between dispersed and continuous configurations can coexist at such volume fraction.
It is therefore an additional approximation of this model. Denoting the relative velocities where

a or B is dispersed by respectively v™ and v™?, the smooth transition is done through the
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Figure 4.5: Relative velocity with a switch depending on the volume fraction for d* = d” = 1 mm
in the air-water case.

weighting:

N | =

wy () =

m(aet)))

v = (1 —w (@) o™ + w; (o) 0™ (4.37)

so that the relative velocity writes:

The corresponding function is displayed on Figure 4.5.

4.3.2.3 Precaution at initialization and at open boundaries

At initialization and at open boundaries, the interface is diffused over a few particles using a
hyperbolic tangent: this prevents the initial rearrangement of the particles, perturbed by the
high density ratio, to lead to a crash of the simulations. The phases of particles of the bulk of the
fluid are then separated progressively. One layer of particles of intermediate volume fraction can
persist as the discretization may not allow phases to be perfectly separated with the available

volumes.

4.4 Schematic two-dimensional air entrainment cases

In the light of Section 4.2.2.1, we considered two classical configurations of air entrainment: the
interfacial aeration over a stepped spillway and the local aeration of a plunging jet. Regarding
the complexity of those types of flows, we will focus on a steady state behavior. In the follow-

ing 2D cases, the x variable will correspond to the longitudinal direction of the flow and the y
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variable will refer to the orthogonal direction, along which the shear layer develops. The present
SPH mixture model will give us insights into the void fraction «, the longitudinal air-water in-
terfacial velocity V, and the characteristic turbulent velocity v’. Additional schematic tests will

be displayed in Section 4.4.3.

4.4.1 Stepped spillway

Spillways form a classical structure of hydraulic works and provide a controlled release of flows
from dams. Several geometries can be considered from small-slope to steep chutes, from smooth
to step-pool spillways. Self-aeration is a common process in such structures and leads to several
effects, namely flow bulking, drag reduction, cavitation mitigation and air-water mass transfers
[59]. While on steep chutes, it is generally admitted that the air entrainment occurs at the in-
tersection of the free surface with the boundary layer developing from the bottom, experimental
evidence has shown that the inception of air entrainment could happen before due to free sur-
face instabilities, especially for small-slope structures. The ability of the mixture model to capture
the air entrainment will then depend on its capacity to reproduce these instabilities while air en-
trainment will intrinsically be active when the boundary layer reaches the free surface due to
the turbulent diffusion term of the relative velocity closure. Physical models of spillways are
well-documented in the literature. In the following we focus on a stepped spillway described in
Chanson [60] and Chanson and Toombes [69, 70].

4.4.1.1 Description

The stepped spillway has a simple design and is easy to build thanks to recent advances in the
construction materials [28]. The interest of a staircase shape is two-fold: the high level of turbu-
lence generated enhances the energy dissipation avoiding the need for a large basin downstream
of the structure and the fast-growing boundary layer leads to an early aeration compared to a
smooth spillway, mitigating cavitation hazards [59]. One can distinguish three regimes, depend-

ing on the incoming volume flow rate, ranked according to increasing values:

+ A nappe flow: the flow takes the form of a succession of plunging jets and hydraulic jumps
on each step [59, 126].

« A transition flow: this regime exhibits chaotic flow patterns as underlined by [60] that
reported strong splashing and droplet ejection after the inception point and irregular gen-

eration of air cavities of variable sizes [60].

+ A skimming regime: a coherent water stream flows over a pseudo-bottom formed by the
edges of steps with in-between maintained recirculating vortices submitted to the shear
forces of the main flow [59]. These step-induced macro-roughness causes a decrease of

flow velocity involving a higher flow resistance and energy dissipation [44]. A turbulent
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boundary layer develops from the first steps and it has been long considered that air en-

trainment occurs when it reaches the free surface [59].

In the last two regimes, the non-aerated region exhibits free surface oscillations in phase with
the stepped profile. Free surface instabilities were also reported there and may play a role in
the aeration. Valero and Bung [355] described different kinds of waves: while vanishing waves
were generated by the inlet condition, others can develop all along the spillway such as capillary
waves and the viscous Kelvin—Helmoltz instability with a decreased triggering velocity resulting
from the viscosity ratio between air and water [140]. Downstream of the inception point, it
becomes difficult to have a clear definition of the free surface. It is therefore defined as the iso-air
concentration line o = 0.9 (we will keep this definition in the aerated region from the numerical
viewpoint following Lopes et al. [226]). According to [59], most of the mass and momentum
fluxes occurs below the corresponding height Yy and the air-water flow behaves as a quasi-
homogeneous mixture where phases travel with an almost identical velocity. This experimental
feedback supports the use of the model developed in this work for the application to such flows.

The flow counts distinct regions:

« A bubbly flow for small air volume fractions (o < 0.3/0.4) formed of single and clusters

of irregular air bubbles and air packets;

« A highly aerated flow for intermediate air volume fractions (0.3/0.4 < a < 0.9) formed

by foam and air-water projections;

« Carosi and Chanson [49] distinguished a spray region for ac > 0.7.

Transition and skimming flow regimes are well-documented in the experimental results so that
we will focus on those configurations. Moreover the nappe flow with its succession of plunging
jets would require a fine resolution for a proper resolution step by step. In the skimming regime,
three regions may be identified, depending on the size of the spillway and the flow conditions
[386]:

« A non-aerated region of boundary layer growth
+ A gradually-varied zone

+ A uniform flow region

Those regions have been studied altogether, or sometimes individually in the literature. Strong
levels of turbulence, higher than in single-phase flows [71], are reached in the skimming flows,
in the region 0.3 < a < 0.7, sustained by the complexity of the two-phase flow in this region
with strong deformations of the interfaces [49, 60]. According to the integral length and time
scales, the energy is dissipated by large vortices and the turbulence is intensely generated in

the stepped cavities [49]. A strong correlation is suggested between the turbulence intensity
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and the interfacial area. Particle collisions and particle-turbulence interactions are allegedly the
prominent features of this region [71]. Aslong as bubble chord distributions are concerned, in the
bubbly flow region, Carosi and Chanson [49] found a log-normal law with a peak size between
0.5 and 1 mm. On the contrary the distribution of the droplet chord size in the spray region

a > 0.7 is flat. In both cases, a wide range of sizes from 0.3 to more than 15 mm was detected.

4.4.1.2 Dimensional analysis and quantities of interest

Let us consider a two-dimensional stepped spillway of invert slope 5 with a step height hy and
an equivalent roughness height k, with flowing water of discharge per unit width ¢®. Following

Chanson [64], one can perform a simplified dimensional analysis of this test case:

3
Ve v x y hs ks dy\ 2 \/ﬁ
(Y N Es oy e () 7 pe c M 438

where the critical (Fr. = 1) flow depth d. and associated velocity V. for a rectangular channel

write:
32
de= ¢ u and V.= vgq° (4.39)
g

dy, is the equivalent clear-water depth defined as:
Yoo
dw = Bly)dy (4.40)
0

Vi is the interfacial velocity at the height Ygo. We define Uy the clear-water flow velocity:

= &
= — 4.41
W= (4.41)
And Ciean the depth-averaged void fraction:
1 Yoo
C’mean = 3 / Oé(y)dy (4-42)
Y90 Jo

Hence dy, = Y90 (1 — Cinean)- Some of these quantities are illustrated on Figure 4.6.

4.4.1.3 Semi-analytical model

The relation (4.24) projected along the normal to the flow writes:

0 3} 0
ay <KT£> = (e4 - €y) y (aﬁfvo . ey> (4.43)
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v/ Yoo

Figure 4.6: Quantities of interest to characterize air entrainment.

where K7 is the turbulent diffusivity of air bubbles, e, is the unit vector directed along gravity
and where the coefficient 1/} in front of the bubble rising velocity vy stems from the two-phase
nature of the medium of density 3p” following Chanson [57]. One can recover this relation using
the volume fraction equation (1.86) for a steady configuration with the relative velocity (1.101),
considering a unit turbulent Schmidt number and taking a hindering factor equal to —%. With

the dimensionless position y, = y/ Y9, the first integration leads to:

Oa
I Pe ar/3 (4.44)

where the Péclet number is defined as Pe = (v - e,) (e4 - €y) Yoo/ K7. In case of homogeneous

turbulence, i.e. constant K, a second integration leads to:

—1—t h2<K—y*) 4.45
oY an 1~ 5pg (4.45)
where K1 = K, + 1/ (2Pe) with K, = argtanh (1/0.1). Pe can be deduced from the mean air

concentration Ciean through:

1
Cmean = 2Pe (tanh (K* + 2P) — tanh (K;)) (446)
e

Different closures for the diffusivity can be considered, resulting in different formulations that are
listed in Chanson and Toombes [69]. In applications, this formula is also used in the gradually-
varied region, using local instead of uniform values [57]. The turbulent diffusivity K is of
the same order of magnitude as the eddy viscosity v7. However, their ratio K7 /v seemed to be

larger in model experiments than in prototype data [57]. The characteristic transverse dimension
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is Ygo. For transition flows, assuming a Péclet number of the form:
ayvpB
Pe = ——F— 4.47
Kg (K2 — Oé) ( )
with
0.9
Ky= ——F——
1 —exp(—K.
xp (—K3) (4.48)
0.9
Crmean = K2 — E
Chanson [60] suggested the model:
o = Ky [1 — exp (—Ksy,)] (4.49)
For skimming and smooth-chute flows, assuming a Péclet number of the form:
P
Pe = - (4.50)
=2 (y* 3)
The concentration profile reads:
1\3
Yx (% — 3)
=1—tanh | K4 — 4.51
“ o ( 17 9peg T 3Peg ) (451
with
1 8
N T
€0 €0 (4.52)
Cinean = 0.7622 (1.0434 — exp (—3.614Pey))
For the velocity profile:
a1
ve =y’ f0<y <1
(4.53)

ve=1  ifl<y, <25

where v, = V,/Vyo. The n, power is variable in the references, depending on the slope of the

spillway [294, 354].

4.4.1.4 Numerical model

We considered for the numerical application the experiments of [69]. The geometry is described

in Figure 4.7. The physical and numerical parameters are detailed in Table 4.2. The slope is equal

to §; = 21.8°. If not specified, the air phase is always considered as dispersed for the relative

velocity computation. A volume diffusion coefficient A = 0.3 was used to smooth the pressure

field (instabilities developed at the interface for smaller values). The £ — € model is employed
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to model turbulence: it provides turbulent diffusion in the relative velocity expression. It is a

high-speed flow so that the expected prominent turbulent contribution should come from water

turbulence. The initial block of water reaches the level h; = 1.1 m and falls down the steps

before reaching the outlet boundary as a mixture.

Table 4.2: Parameters for the stepped spillway case.

P~ 1.23  kg/m3 p% | 1000 kg/m?
v | 1.56 107° m?/s V811076 m?s
™ 45 m/s P 45 m/s
d® 1 mm dP 1 mm
or 5 mm pg | 500 Pa

Focus on open boundaries The chosen open boundary formulation results from many tests

on this stepped spillway test case. The target is an open boundary configuration allowing to

impose a given flow rate at the inlet, letting the air-water mixture escape the domain after the

steps and introducing the quantity of air needed to breed the air entrainment.

« Water inlet: as underlined in Section 3.5.5, some instabilities can develop near separated

flow open boundaries probably due to the high density ratio between phases. To avoid
issues at the inlet, the volume fraction profile imposed is smoothed over a few particles
around the interface through an hyperbolic tangent function. Once introduced in the do-
main, the phases can be quickly separated by the relative velocity. Moreover only water
is allowed to enter domain, through an imposed longitudinal velocity profile for a given

volume flow rate computed as:

. 1 2U
Jo = Usx [ log ( ﬁ*) + CV} (4.54)
K v
where the friction velocity is deduced from iterations on the relation:

e — kq” [ hup
* 7 log [exp (kCy — 1) hypuy /VP]

(4.55)

with h,, the upstream water level left to vary and computed on the fly. This velocity
is multiplied by min(1,¢) to have an initial ramp to reach the desired volume flow rate
without destabilizing strongly the domain during the first iterations. A configuration using
an air inlet with an imposed pressure above the water region was also tested but sometimes
resulted in some spurious behaviors of the air particles close to water. No turbulence is

introduced at the inlet. When we imposed a profile for the turbulent kinetic energy and
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the dissipation linked to a channel formulation, those quantities propagated until the steps

and generated air entrainment since the very first steps.

« Pressure conditions: the background pressure is imposed for air all over the upper limit
of the domain (to decrease the computational time, we had also considered an upper limit
following the slope of the steps to avoid to have too many air particles but the imposition
of the pressure condition on a piece-wise wall was problematic). The outlet condition
required some work. First an hydrostatic pressure for an air column was considered, what
should bear some similarities with the classical null pressure condition of the single-fluid
formulation that allows the fluid to leave the domain (here, we want to maintain the air
layer so that we cannot let the associated particles escape). However, it led to a bulking of
a fluid and some spurious back-flow gusts in the domain. It might be linked to the mixture
pressure gradient in the bulk of the fluid trying to adapt to the weak pressure gradient
of the air. Putting the outlet boundary further did not modify this issue. We then tried
to impose a homogeneous Neumann condition on the pressure as usually done on outlets
but it also resulted in unstable computations. To circumvent this issue, we impose the

hydrostatic pressure of the incoming mixture following:

Hy
p(z) =pB — / p(z)gdz (4.56)

where the mixture density p(z) is computed thanks to an SPH interpolation on the neigh-
bors of the boundary particle and where at = = H,; the top height of the outlet, one has
p(Hg) = pp. This condition is only approximately enforced: to avoid too heavy com-
putations and due to the complexity of identifying in this Lagrangian framework which
particles form the column above a given boundary particle, an additional table was intro-
duced storing the value of the integral of (4.56) for all the column of particles above. It is
initialized with the value for the hydrostatic pressure of an air column. It needs some iter-
ations to adapt if abrupt changes occur. However, this formulation should be convenient
for the progressive arrival and growth of an air-water mixture layer. Such an approach im-
proved the behavior near the outlet. Still, air penetrates through the right wall contrary to
what we expect, i.e. air penetrating from the upper wall and being entrained by the flow.
This work illustrates the complexity of imposing quantities at open boundaries: the ex-
act solution we impose might not correspond exactly or even differ significantly from the
behavior in the bulk of the fluid and trigger the development of instabilities, the computa-
tions trying to make the continuity between the upcoming and imposed quantities. When
the pressure is imposed, the turbulent kinetic energy and dissipation are interpolated. A
test made of imposing 10~ for these quantities on pressure condition boundaries did not

trigger significant discrepancies.

« Modification of the k — e closure: an important issue we had is that turbulent kinetic tended
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Figure 4.7: Stepped spillway: geometry (distances in m).

to accumulate and go back within the domain from the outlet boundary due to the shear
between the out-going mixture and the in-going air. It was problematic as it triggered
significant diffusion of air within water due to the relative velocity closure and prevented
to reach a converged state. Hence, a correction was made in the turbulence model to
prevent the production of turbulent kinetic energy in the air phase: the production term
was multiplied by the volume fraction of water § in both the turbulent kinetic energy and
dissipation equations:
ok

+j-Vk:1V-[(quMT)Vk}jLB]P’jJrG—e (4.57)
ot P Ok

1 .

Let us note that the correction also impacted the mixture regions as the factor 3 then takes

intermediate values.

4.4.1.5 Results

Computations were performed with 400 000 particles during around 14 hours of computational

time on one graphic card GeForce GTX Titan Black for 10 s of physical time*. To post-process the

profiles along the y direction, a set of points spaced by dr were introduced along the normal to

the slope starting at the edge. The variables of the nearest SPH particle were attributed to each of

these points. In order to get smooth profiles for comparison with the time-averaged experimental

results, we proceed to an average of the variables over ten equally-spaced time steps between 8

and 10 s to get the following results. This average is especially useful for transitional flows that

exhibit variability.

“The code, still in development, is not optimized.
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Basic configuration In our formulation, the transient of the flow going down the steps might
not be accurate due to the assumptions of the formulation. We are more interested in the steady
state obtained after a few seconds of physical time when the volume fraction and velocity profiles
does not vary significantly anymore. We considered three volume flow rates tested by Chanson
and Toombes [69] (the width of the spillway is Wy = 1 m so that the total volume flow rate
has the same value as the one per unit length as Q° = ¢°W,): two correspond to a skimming
regime while the smaller one falls within the transitional regime. It is expected that the model
performs better in the skimming regime where the variations of topology of the flow are confined
to a smaller region. Figure 4.8 illustrates the steady states reached for the three configurations,
plus a nappe flow regime computed to check the behavior of the model in this situation. These
pictures allow one to identify the position of the inception point. We will address these different

configurations in the following. The initial transient is presented in Figure 4.9.

For ¢® = 0.1819 m?/s, Figure 4.8d displays the volume fraction field over the steps: one can
observe that air entrainment occurs just after the sixth step while it has started at this step in the
experiments. One can check on Figure 4.10 that it corresponds to the region where the boundary
layer is reaching the free surface (for the recall, it is defined here as the isoline o« = 0.9), activating
the turbulent diffusion term in the relative velocity closure. The following graphs originate of
a simulation with a more refined discretization of r = 2.5 mm but are representative of the
phenomena happening at the reference discretization of Table 4.2. The velocity field is plotted
on Figures 4.11a and 4.11b. One can note a peak near the free surface. An air layer is entrained
with the flow. An air back-flow enters the domain above the mixture as testified by Figure 4.12
where particles with o < 0.9999 are displayed. The pressure field is plotted on Figure 4.13a. For
the sake of legibility, the maximum values plotted have been diminished. One can indeed notice
some peak positive and negative values near the step edges on Figure 4.13b. The pressure field
is noisy with pressure waves developing from the step edges and some little voids forming after
them in the low pressure region usually prone to cavitation in the absence of air. It is expected
that the implementation of the —SPH approach might help to mitigate such behaviors. The

background pressure does not appear to be sufficient to prevent the occurrence of those voids.

Recirculations can be observed at the steps, consistently with the patterns observed during ex-
periments (please note that the experimental photographs were obtained for a different geometry
and volume flow rate: aeration is indeed significant in these configurations so that bubbles are
entrained in this region between steps and give a visualization of the recirculations), as shown
on Figure 4.14. The velocity of the flow above the apparent bottom is far larger than the recir-
culation velocity, so that we focus on the space between the steps in Figure 4.14b to give further

insights into the recirculation velocity field pattern.

Finally, the double refined simulation allows us to have an additional insight into the entrainment
phenomenon as one can identify on Figure 4.15 small waves developing just before the boundary
layer reaching the free surface. A rough assessment of the size of these waves is around 2.5 cm.

It is in relative agreement with observations and computations of Valero and Bung [355] and the
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(a) Nappe regime - ¢° = 0.0020 m?%/s.

(b) Transition regime - ¢° = 0.0580 m?%/s.

¢) Skimming regime — ¢° = 0.1142 m?/s.
g reg

(d) Skimming regime - ¢® =0.1819 m?/s.

Figure 4.8: Stepped spillway: volume fraction field at steady state.
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(a) Initial state.

(b) t=1s

(c)t=2s

d)t=3s

(e)t=4s

Figure 4.9: Stepped spillway - ¢” = 0.1819 m?/s: volume fraction field during the initial tran-
sient.
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Figure 4.10: Stepped spillway — ¢° = 0.1819 m?/s: turbulent intensity Tu below the free surface.
It is computed as Tu = /2k/3/Vinax Where Vipay is the maximum mixture velocity
magnitude.

Taylor lengthscale of (4.11) (obtained in an inviscid framework though). Those waves do not
break as the interface is rapidly blurred by the diffusion of the phases due to the boundary layer

reaching the free surface and activating the relative velocity diffusion term.

After this description of the flow, let us have quantitative insights into the reproduction of the
skimming flow. The dispersion of the variables around the averaged values is limited as testified
by Figure 4.17, except near the bottom and in the highly-aerated region. Volume fraction and
interfacial air-water velocity profiles at the step edges are displayed on Figures 4.18 and 4.19. In

the numerical model, this interfacial velocity is computed as:

Ve =wv; e, where v;= ,Ua;_vﬂ =7+ <; — a> v" (4.59)
The correction linked to the relative velocity proved to be small compared to the mixture velocity.
There are discrepancies of these profiles even though the good trends are reproduced. The mixing
appears to occur too late and the velocities are overpredicted. Profiles are plotted along the
direction perpendicular to the slope (coordinate named y), starting from the edge of each step as
indicated on Figure 4.16. The uncertainties on the experimental measurements are not detailed
for this experimental campaign, but the tools used correspond to the same instruments employed
for the measurements of the planar plunging jet presented in the following section and for which
they are detailed [23]:

Ba o 0005 for o < 0.05 &% < 0.1for 0.01 < o < 0.05

A2 .04 for 0.05 < o < 0.95 and AVa 0,05 for0.05 < < 0.95  (4.:60)

22 < 092 for 0.95 < ¥ < 0.1for 0.95 < o < 0.99
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(a) Velocity magnitude below the free surface in m/s.
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(b) Velocity magnitude in the whole domain in m/s.

Figure 4.11: Stepped spillway - ¢ = 0.1819 m?/s: velocity in m/s.
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Figure 4.12: Stepped spillway — ¢” = 0.1819 m?/s: an air backflow.

Let us underline that these uncertainties might be case-dependent. ~Characteristic air entrain-
ment quantities are displayed on Figure 4.20. Experimental results were obtained with single (SP)
and double tip (DP) probes and one can note some discrepancies between the resulting values,
highlighting the dispersion resulting from the unsteadiness and complex topology of the flow.
There is a slight underestimation of Yyg and Ciean and a slight overestimation of the charac-
teristic velocities. An interesting point is that it seems to have a one step delay in the profiles
and characteristic values, what may point to an inception point appearing too late. Two main
actions seem possible to improve the results: modify the size of the dispersed phase or introduce

a roughness of the structure. These tests are addressed below.

For ¢° = 0.1142 m?/s, we are in the skimming flow regime. Characteristic air entrainment
quantities are displayed on Figure 4.21. As in the experiment, the inception point is predicted

around the fifth step. A reasonable agreement is obtained with the experimental values.

For ¢” = 0.058 m?/s, we are in the transition flow regime. Characteristic air entrainment quan-
tities are displayed on Figure 4.22. We do not reproduce this regime in its transitional pattern,
i.e. the distinct behavior at the sixth step in the experiments related to the appearance of a de-
flected nappe, as if the flow bypassed one step to reattach at the next downstream step [69].
The model with the chosen relative velocity closure generates a strong mixing that prevents the
reappearance of mostly separated patterns. There are therefore big discrepancies for most of
the characteristic values. The underestimated Ygg and overestimated Ciean trigger very large
discrepancies on Uyy. The volume fraction profile does not fit the semi-analytical profile derived

for transition flows in Section 4.4.1.3 but still suits the one derived for skimming flows.

For ¢® = 0.002 m?/s, we are in the nappe flow regime. There is no comparison data on this test
case. However in this regime one should observe a succession of falling nappes at each step. On

the other hand, due to the strong mixing with the relative velocity closure, we have a continuous
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(b) Zoom on steps 6 and 7.

Figure 4.13: Stepped spillway — ¢® = 0.1819 m?/s: pressure field in Pa.
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(b) Numerical model - ¢° = 0.1819 m?/s: velocity vector field between the steps nondimensionalized
by the maximum velocity in the whole flow.

(c) Experiment. (d) Experiment.

Figure 4.14: Stepped spillway: focus on recirculations at the steps. The experimental pho-
tographs are HECE-ULiege property. A different geometry is used.
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Figure 4.15: Stepped spillway - ¢” = 0.1819 m?/s: focus on the wavy free surface before en-
trainment.
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(a) Volume fraction. (b) Longitudinal velocity.

Figure 4.17: Stepped spillway — ¢° = 0.1819 m?/s: variability of the profiles. Symbols: SPH
particles used for the computations. Continuous line: resulting time-averaged value.
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Figure 4.18: Stepped spillway — ¢° = 0.1819 m?/s: vertical distribution of the air volume fraction
above the last three steps (steps 6, 7 and 8 in red, blue and black respectively). Sym-
bols: experimental data by [60]. Continuous lines: present SPH simulation. Dashed
lines: equation (4.51) based on Cean values of [69]. The two snapshots show two

different nondimensionalizations.

V./V.

(a) Using critical values.

0.4 0.6 0.8 1 1.2
Vie/Vao
(b) Using 90% values.

Figure 4.19: Stepped spillway: vertical distribution of the longitudinal velocity for ¢® = 0.1819
m?/s above the last three steps (steps 6, 7 and 8 in red, blue and black respectively).
Symbols: experimental data by [60]. Continuous lines: present SPH simulation.
Dashed line: equation (4.53) (superimposed for the three steps, computed with the
power n, = 5.1 following [69]). The two snapshots show two different nondimen-

sionalizations.
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Yoo/de Uw /[ Ve
0.44 2.64
Step 6 0.51 2.55
0.44 2.47
0.52 2.55
Step 7 0.47 2.77
0.44 2.57
0.51 2.71
Step 8 0.59 2.75
0.48 2.62
C'mtean V})O/ch
0.15
Step 6 0.23 2.63
0.08 2.91
0.24
Step 7 0.23 2.79
0.12 3.13
0.28
Step 8 0.38 2.85

0.20 3.23

Figure 4.20: Stepped Spillway - ¢® = 0.1819 m?/s — Characteristic quantities. Present model
results in green. Experimental results of Chanson and Toombes [69] with single tip
probe in red and double tip probe in blue.

mixed flow with intermediate densities that streams over the steps after the first step.

Convergence We performed the simulation ¢° = 0.1819 m?/s with different particle dis-
cretizations, by multiplying and dividing by two the reference discretization. Averages were
performed here between 7 and 9 s. The characteristic features of air entrainment are displayed
for the different discretizations in Table 4.3. The computations of the characteristic features were
performed on a grid relying on the coarser discretization, that does not allow for the most accu-
rate assessment of the quantities for the refined computations. The variations between the two

finest discretization remain limited.

Table 4.3: Stepped Spillway - ¢° = 0.1819 m?/s — Convergence of the characteristic quantities.

YQO/dc Cmean UW/VC VS)O/V::
20r | Or | Or/2 | 26r | Or | Or/2 | 20r | Or | Or/2 | 20r | Or | dr/2

Step

6 0.50 | 0.43 | 0.43 | 0.13 | 0.07 | 0.08 | 2.31 | 251 | 2.54 | 2.64 | 2.98 | 2.78

7 055|044 | 043 | 0.25 | 0.12 | 0.09 | 2.40 | 2.58 | 2.57 | 2.84 | 3.12 | 2.90

8 0.57 | 0.48 | 0.46 | 0.27 | 0.23 | 0.19 | 2.43 | 2.67 | 2.70 | 3.01 | 3.20 | 3.23
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Yoo/d. Uw/Ve

I o.46 T 2.76

Step 5 e 0.45 T 2.98
I 0.50 T 251
I 0.56 T 2.79

Step 6 T 0.65 T 3.05
T 0.55 T 2.65
T 076 ——— 2.31

Step 7 I 059 T 2.96
T .57 T 2.80
. 0.63 . 247

Step 8 T 0.54 T 3.23
T .61 T 2.84

Cmean .‘/QO/IV.C

I 0.22

Step 5 [ 0.26 T 2.84
[ o.21 T 3.02
[ 0.36

Step 6 T 050 T 2.86
T 0.32 T 3.27
. 0.43

Step 7 T 0.43 T 3.00
T 0.37 T 348
I .36

Step 8 I 0.43 T 2.99
T 0.43 T 3257

Figure 4.21: Stepped Spillway - ¢® = 0.1142 m?/s — Characteristic quantities. Present model
results in green. Experimental results of Chanson and Toombes [69] with single tip
probe in red and double tip probe in blue.
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}/QO/dc UW/Vc

[ 051 I 258

Step3 I 0.4 I .73
[ 0.34 — .07
[— .88 I 2.86

Stepd I 055 I 517
[ 036 105
[ 0.82 I 255

Step5 [T 078 I .91
[ 0.35 A 107
[ .62 — 279

Step6 [ 124 I .50
[ 0.39 I 3.9
—— .81 I 2.48

Step7 I 079 I3
[ 0.39 15
— .73 B 2.62

Steps I 066 R .19
[ 0.40 — .02

Cmean ‘/QO/IV.C

[ .24

Step3 N 020 I 5
— .67 I 199
—— 0.60

Stepd [ 0,63 I 274
—— .74 I 2.34
— o.52

StepS I 056 I .30
L I .32
.78

Step6 I 076 I 275
A 0.72 I 2.65
[ o.24

Step7 [ 051 R .45
I 053 — 286
[ 0.28

Steps [ 045 I ;05
I —— .72 I .06

Figure 4.22: Stepped Spillway - ¢” = 0.058 m?/s — Characteristic quantities. Present model
results in green. Experimental results of Chanson and Toombes [69] with single tip
probe in red and double tip probe in blue.
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Sensitivity to the dispersed phase diameter We performed the simulation ¢° = 0.1819
m?/s with different sizes of dispersed phase diameters. The characteristic features of air entrain-
ment are displayed for those different sizes in Table 4.4. The influence of the dispersed phase
diameter appears to be really limited and does not allow for a significant improvement of the

results.

Table 4.4: Stepped Spillway - ¢° = 0.1819 m?/s — Sensitivity to dispersed phase diameter in mm.

Yoo/d. Crean
Step d”mm) | L os o1 | 2 | 1 |os | o
6 0.44 | 0.43 | 0.44 | 0.44 | 0.08 | 0.07 | 0.07 | 0.08
7 0.44 | 0.44 | 0.45 | 045 | 0.12 | 0.13 | 0.13 | 0.13
8 0.48 | 0.48 | 0.48 | 0.48 | 0.19 | 0.20 | 0.21 | 0.21
Uw [ Ve Vao/ Ve
Step d”@mm) |y T os o1 | 2 | 1 | 05 | o
6 246 | 2.49 | 2.43 | 2.46 | 2.87 | 2.96 | 2.84 | 2.89
7 2.58 | 2.60 | 2.57 | 2.58 | 3.13 | 3.12 | 3.05 | 3.07
8 2.59 | 2.61 | 2.64 | 2.63 | 3.23 | 3.23 | 3.23 | 3.23

Including the convective transfers The convective transfer term was lately introduced into
the set of equations as it triggers some instabilities of the free surface. One should take with care
the following results: indeed, if they are close to the experimental measurements and correspond
to a more rigorous model, one should bear in mind that the agitation partly results from the
numerics. In this test case, the flow should be initially perfectly separated, which is not the
case because of the slight diffusion of the interface imposed at the initialization and at the open
boundaries. For a perfectly separated state, the quantity afv" is null, so that there should not be
any contribution of this term in the momentum equation. However, in the simulation, one can
see that the interface is quickly agitated before the entrainment occurs as shown on Figure 4.23:
this enhances the entrainment phenomenon and triggers also an apparent diffusion for time-
averaged value as the separated free surface is moving (this last point can however also happen
in the experiments). The characteristic features of air entrainment are displayed in Figure 4.24.
One can note that the unrest close to the free surface generates higher velocities in this region

when the mixture layer is thin.

Rugosity The previous computations were made assuming smooth walls in the computations

of the wall shear stresses. A roughness ks = 0.1 mm seems reasonable according to the table of
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Figure 4.23: Stepped spillway - ¢° = 0.1819 m?/s: volume fraction field using the convective
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Figure 4.24: Stepped Spillway - ¢ = 0.1819 m?/s — Characteristic quantities. Present model
results including convective transfers in dark green or using a relative velocity de-
pending on the pressure gradient in light green. Experimental results of Chanson
and Toombes [69] with single tip probe in red and double tip probe in blue.
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Figure 4.25: Stepped spillway - ¢° = 0.1819 m%/s: including the convective transfers term, ver-
tical distribution above the last three steps (steps 6, 7 and 8 in red, blue and black
respectively). Symbols: experimental data by [60]. Continuous lines: present SPH
simulation.

[55]. Following [371], the friction velocity is deduced from the relation:

o
o _ <y> +85 (4.61)
Uy K ks

It modifies the turbulent wall shear stresses and should generate more turbulence, driving up-
stream the inception point. However, the two tested roughness heights, ks, = 0.1 mm and

ks = 0.5 mm, barely modified the profiles and the characteristic quantities.

Switch of dispersed phase We tested the model with a switch of dispersed phase definition in
order to reproduce correctly both the limiting behaviors of droplets and bubbles. Indeed, due to
the factor 3 in the relative velocity without switch, the relative velocity becomes arbitrarily small
when  gets closer to 0, preventing complete separation. Following the formulation described in
Section 4.3.2.2, we get the flow plotted on Figure 4.26. Ygg and Uyy are only slightly altered while
Cinean 1s decreased and Vg is increased. These evolutions therefore do not improve the results
with respect to experimental data. The only positive evolution is that the separation between

fluids is made clearer as droplets quickly fall back into the fluid.

Pressure gradient in the relative velocity We tested a relative velocity closure using the
pressure gradient following (1.100) instead of the approximation by its hydrostatic value. This
is a more physically-based expression that couples completely the system of equations. How-
ever, it is complex to handle due to the noisy pressure field encountered. We divided the safety
factor of the CFL coefficient by ten to run this simulation as some instabilities developed since

the first iterations with the usual criterion (the numerical stability of the formulation integrating
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Figure 4.26: Stepped spillway - ¢ = 0.1819 m?/s: volume fraction field using a relative velocity
with switch.

Figure 4.27: Stepped spillway - ¢” = 0.1819 m?/s: volume fraction field at ¢ = 6 s using a
relative velocity with switch.

the pressure gradient shall require further investigation). The characteristic features of air en-
trainment are displayed on Figure 4.24 and highlight a decrease of maximum velocities, getting
closer to the experiments. While Yg is accurately computed, the mean concentrations tend to
be underestimated. One can notice on Figure 4.27 that the interface is always diffused over a
few particles due to some pressure waves propagating along the interface as noted on the previ-
ous cases. Therefore it does not allow to identify an inception point. One can see a satisfactory
agreement with the volume fraction, especially in the dispersed region close to the bottom, and
longitudinal velocity profiles on Figure 4.28 highlighting that one should go towards that kind of
closure once the pressure issues are solved. For an unknown reason the computations stopped

so that these profiles might not be fully converged (profiles averaged between 5 and 6 s).

Buoyancy term in the £ — ¢ model We tried to include the buoyancy term (1.102) into the
turbulence model (the pressure gradient being approximated by its hydrostatic value) with the
discrete form:

P’ — " vra

G =
¢ p  Scr

G, {w}-g (4.62)
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(a) Volume fraction. (b) Longitudinal velocity.

Figure 4.28: Stepped spillway - ¢° = 0.1819 m?/s: with a relative velocity depending on the
pressure gradient, vertical distribution above the last three steps (steps 6, 7 and 8 in
red, blue and black respectively). Symbols: experimental data by [60]. Continuous
lines: present SPH simulation.

Figure 4.29: Stepped spillway - ¢° = 0.1819 m?/s: volume fraction field at t = 2 s with the
buoyancy term introduced into the k¥ — € model.

The computation of this term is made semi-implicit by computing v7. , either as C, (k”)2 /€
if Go ’1{a2} g > 0or C,k"k™ 1 /"1 otherwise. One can see that the transient behavior is
modified on Figure 4.29. However, at the outlet, some air enters the domain and generates big
viscosities that block computations. This point will therefore require further investigations, on

both the open boundary formulation and the buoyancy closure.

4.4.2 Planar plunging jet

Plunging jets are rapid flows impinging a slower liquid, as exemplified by vertical/supported
plunging jets, hydraulic jumps or free jets impinging an inclined wall. Such flows fall within
the local aeration framework, air being entrained at the intersection between the impinging flow

and receiving waters under certain conditions to identify. A review of the literature and basic
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processes of gas entrainment by plunging jets can be found in Bin [24], Chanson [59], Kiger and
Duncan [186]. In the following, focus is made on planar plunging jets of water entraining air

(i.e. low-viscosity jets). We chose to work here on the case documented in [23, 35, 36, 57, 59, 66].

4.4.2.1 Description

We consider a planar plunging jet as described on Figure 4.30a with a zoom on the jet and its
support slightly inclined with respect to the vertical on Figure 4.30b. This jet comes from a
rectangular nozzle and discharges downwards into a receiving tank. Bertola et al. [23] presented
a comprehensive view of this test case with focuses on the free falling jet, the pre-entrainment,
the entrainment in the receiving pool, the mechanisms of break-up and coalescence, displaying
concentrations, velocities, turbulent intensities, bubble count rates and chord lengths in many

sections of the domain. Four mechanisms of air entrainment were described:

+ Pre-entrainment in the supported free-falling jet at low velocities;

+ Entrainment of individual bubbles and packets. This is the dominant mechanism at veloc-

ities close to the inception velocity;

« Formation of an elongated air cavity starting by an induction trumpet between the im-
pinging jet and the receiving fluid of the tank. This cavity is stretched by turbulent shear
and its lower tip breaks in air packets then broken up in smaller bubbles [73]. This is the

dominant mechanism for higher velocities;

« Re-entrainment of bubbles that rose to the surface.

The inflow conditions are of prominent importance: as suggested by the relation (4.21), partially
or fully developed conditions and consequent turbulence intensity together with possible pre-
entrainment before impinging the receiving pool will affect the entrainment process [59]. Below
the impingement point, Chanson [58] underlines that the dispersion of entrained bubbles gives

birth to two regions:

« A diffusion cone: with significant entrainment, a bubble plume clearly appears visually
testifying of a diffusion process [73]. The downwards flow generated by the plunging jet
is characterized by a developing shear layer that triggers momentum transfers from the
high-velocity jet core to the pool of water and a distinct air diffusion layer [92]. Indeed,
for developing two-dimensional shear layers, the air bubble diffusion layer does not co-
incide with the momentum shear layer [59], with an air-bubble diffusivity higher than
the eddy viscosity. It may suggest that the chosen closure for the relative velocity might
not reproduce accurately the experimental results. However Cummings and Chanson [91]
suggested that these layers interact: the momentum transfer between the core and sur-

rounding fluid is modified and shifts away the shear layer from the support while the large
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shear stresses trigger bubbles break-ups according to three different processes (explosion,

stretching or small dejection mechanisms) described by Bertola et al. [23].

« A swarm of rising bubbles driven by buoyancy surrounding the cone: entrained bubbles
undergo coalescence and break-up mechanisms but lose progressively momentum. Ac-
cording to Clanet and Lasheras [84], when their downwards velocity equals their terminal
rising velocity, i.e. when the viscous drag of the downward entraining jet is exceeded by
the buoyancy, they start to rise roughly vertically and reach nearly their terminal rising

velocity [58].

Bertola et al. [23] described a wide range of bubble chord sizes from less than 0.5 mm to more
than 20 mm. The distribution peaked for small bubbles between 0.5 and 1.5 mm, the largest

bubbles disappearing at increasing depths due to detrainment and break-ups.

4.4.2.2 Dimensional analysis and quantities of interest

Let us consider a vertical two-dimensional plunging jet. Its characteristics at impingement, de-
noted by the index 1 are the distance to the nozzle x1, the jet thickness d; at the impact, the jet
impact velocity V; and the characteristic jet turbulent velocity v]. Following Chanson [64], one

can perform a simplified dimensional analysis of this test case:

Ve v T — T Yy T % Vidy V)
aa ‘/17 ‘/1 f <$* dl 7y* d17 d17 r \/9717 € l/fB , 14 ‘/1’ o ( )

According to Chanson [59], the onset velocity V% is a function the Morton number (i.e. the fluid
characteristics) and the impinging turbulent features. For turbulent intensities larger than 3%,

the inception velocity is reported to be constant around 0.8-1 m/s.

4.4.2.3 Semi-analytical approach

In the case of a planar supported jet, Cummings and Chanson [92] and Chanson [65] formulated
simplifying assumptions for an analytical development: a uniform velocity distribution; a diffu-
sion coefficient independent of the transverse location; a small control volume; a bubble rise term
negligible compared to the jet velocity. The air entrainment can then be described by a diffusion

process:
da A%«

= Pe—

oz, oy?

(4.64)
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where Pe = K17/(V1d;). Considering a constant diffusivity K, the analytical solution detailed

below reproduces correctly the void fraction observed experimentally’:

¢ 1 1 (g— 17 L (g +1)°
= T T 4.65
@ q° \/4rPer, [exp ( 4Pe x4 +exp 4Pe x4 (4.65)

According to Cummings and Chanson [92], the diffusivity averages the effects of turbulent dis-
persion and streamwise velocity gradient, missing the nature of the turbulent shear layer and the
vortical structures. The good agreement with experimental results suggests that the air bubble
diffusion process is little affected by the turbulent shear flow. Velocity profiles get a shape similar

to the analytical solution of monophase flows °:

Vo _1 [1 —erf <Kvy*_YV50M1>] (4.66)

V2 max 2 Lx

where Y5 is the location for which V,, = V. hax/2 and the error function is defined as:

erf () \3% /Ox exp (—u2) du (4.67)

The coefficient Ky is derived with an assumption of constant eddy viscosity and computed in

the experiments of [23].

4.4.2.4 Numerical model

We considered for the numerical application the experiments of Bertola et al. [23] that are com-
prehensively documented. The geometry is described in Figure 4.30a with a zoom on the support
structure in Figure 4.30b. One can notice a small angle of the support to the jet chosen to prevent
jet detachment. The computational limits drove us to consider only the shaded region of Figure
4.30a. Walls have been placed on the lateral side with an outlet at the bottom of the right side
to remove a volume of water equivalent to the one entering the domain at the nozzle inlet. The
flow in the nozzle has not been modeled: a uniform velocity profile is directly imposed on the
boundary of the domain to be consistent with the experimental measurements of Bertola et al.
[23]. The shorter domain without the weir that allows the water (and potentially waves) to quit
the domain will therefore cause some perturbations of the entrainment as the reflected waves
can interact with the plunging jet. Measurements of air concentration, velocity and turbulence
have been made near the support. The parameters of the model are detailed in Table 4.5. The

computations were made without background pressure. When we introduced the same value as

*We used the measurements of [23] of Pe and ¢/ ¢” to compare with our numerical results. However one should
note that in their work the distance for nondimensionalization of the coordinates and Pe is the location of the maxi-
mum concentration at a given section instead of d; used in [92].

®We used the measurements of [23] of Ky, Y50 and Vipax to compare with our numerical results. The sign in
front of the error function was changed compared to [23].
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Figure 4.30: Planar plunging jet: geometry (distances in m). The shaded region corresponds to
the numerical domain considered for the computations. The rectangular nozzle from
which the jet is issued has the dimensions 0.269 m by 0.012 m.

in the stepped spillway case, i.e. pp = 500 Pa, it did not allow one to prevent jet detachment nor
to mitigate the appearance of voids within the flow. A volume diffusion coefficient A = 0.1 was

used. The convective transfer term was not taken into account in the momentum equation.

Table 4.5: Parameters for the planar plunging jet case.

P> 1.23  kg/m? p? | 1000 kg/m?
v® | 156 1075 m?%/s VP 11076 m?s
c 45 m/s ? 45 m/s
d* 1 mm d? 1 mm
or 1 mm PB 0 Pa

4.4.2.5 Results

Computations were performed with 700 000 particles during around 2 days of computational
time on one graphic card GeForce GTX Titan Black for 12 s of physical time. To compute the
profiles along the y direction, a set of points spaced by dr were introduced along the horizontal
direction starting at the jet support at the sections displayed on Figure 4.31. The variables of
the nearest SPH particle were attributed to each of these points. In order to get smooth profiles
for comparison with the time-averaged experimental results, we proceed to an average of the
variables over ten equally-spaced time steps between 5 and 7 s to get the following results. Let

us underline that due to the limited domain and strong mixing, together with the initial ramp
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Figure 4.31: Planar plunging jet: zoom on the positions of the sections at which profiles are com-
puted.

given to the velocity at the inlet, it is hard to identify a permanent regime. Further work will be

required on this test case for proper treatment.

We tested the lowest value of volume flow rate ¢° = 0.0254 m?/s (corresponding to the value
Q° = ¢°W, = 0.00683 m?/s with a width of the jet W, = 0.269 m). We investigate in the

following the numerical results and compare them to experimental data of Bertola et al. [23].

Global description The volume fraction field is plotted on Figure 4.32 and the velocity field
on Figure 4.33. One can see that the interface close to the plunging jet is highly agitated. This
unrest that certainly affects the air entrainment originates form two sources: the pre-entrainment
occurring along the plunging jet that diffuses the interface and increases the region of impact of
the jet and the reflected waves resulting from the shorter domain compared to the experiments. It
is also expected that the two-dimensional framework may prevent some energy dissipation. Such
observations were also made by Denéfle [106] on this test case using a finite volume approach
with the NEPTUNE_CFD code. This unrest contributes to significant turbulent kinetic energy
production and therefore diffusion of the interface when the & — € model is used (without the
corrective factor § in front of the production term as done for the stepped spillway in (4.57)
and (4.58)). The bubble plume is smoothed and reaches a significantly shallower depth. One can
also see that the level of particles has diminished compared to the initially filled domain: due to
the high constraints exerted at high density ratios against the walls, some particles exited the
domain. The velocity field in absence of turbulence model highlights some gusts of air packets
within the tank with vortical structures. This behavior is smoothed out with the £ — € model
with a distinct plunging region along the support and an upward flow region further from the

support.
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(a) No turbulence modeling. (b) k — €.

Figure 4.32: Planar plunging jet: volume fraction field at ¢ = 9s.
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Figure 4.33: Planar plunging jet: velocity magnitude field at £ = 9 s nondimensionalized by
impact velocity of the experiment V; = 2.49 m/s.
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Bubble plume The void fraction profiles are compared to experimental results at the distances
2, 10 and 24 cm from the free surface along the support on Figure 4.34. The velocity profiles are
displayed on Figure 4.35. Integrated and punctual quantities can also be computed and compared
as displayed in Table 4.6. Without the turbulence model, while one can note a similar decrease
in amplitude of the maximum concentration, the values predicted by the numerical model keeps
higher than the experimental values. Moreover, far from the support, these values do not go
below 0.06 while in the experiment they can decrease to zero. The displacement of the maximum
volume fraction, as exemplified in Table 4.6, is missed by the model. The velocity profiles are quite
different, with a lower decrease of the numerical interfacial velocity and stronger variations while
getting further from the core compared to experimental results. It seems to point to an insufficient
diffusion of the shear layer. With the k — € model, due to a too strong diffusion of the phases
resulting from the unrest of the interface in the restricted domain, the simulation of the k — €
model triggers a too strong mixing of phases so that the volume fraction profiles are shifted and
altered. However the decrease in maximum velocity is captured, highlighting the influence of the
turbulent viscosity in the momentum equation. One should however qualify this remark as the
high volume fractions might also explain this change in the dynamics. To get a clearer insight,
a simulation was computed without turbulence model, multiplying artificially by ten the water
viscosity: the results shown on Figure 4.36 for the volume fraction profile now exhibit the drift of
the maximum air concentration and the decrease in maximum velocity is also captured. One can
see the significant improvement of the characteristics values on Table 4.7. The correct modeling

of turbulence seems therefore critical.

Table 4.6: Planar plunging jet without turbulence model — Characteristic quantities. ovyax is the
maximum concentration, Y, its associated distance from the support, Vymax is the
maximum longitudinal interfacial velocity and Yy 59 the distance from the support at
which V; = Vinax /2.

Ofmax Yoe (mm) | Vimax (m/s) | Y50 (mm)
y (cm)
Exp | Num | Exp | Num | Exp | Num | Exp | Num
2 0.32 | 0.36 15 13 2.26 | 2.36 28 13
3 0.25 | 0.36 14 14 2.09 | 2.39 X 13
5 0.17 | 0.31 16 14 2.16 | 2.44 31 13
7 0.17 | 0.25 19 14 2.03 | 232 X 14
10 0.16 | 0.23 21 15 1.87 | 2.31 41 14
13 0.15 | 0.20 22 17 1.68 | 2.24 X 15
16 0.12 | 0.18 24 16 1.50 | 2.20 39 16
24 0.08 | 0.15 23 14 1.30 | 2.10 45 17
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Figure 4.34: Planar plunging jet — bubble plume: volume fraction profiles at distances from the
free surfacex — 21 = 2cminred, t — ;1 = 10 cminblueand £ — 1 = 24 cm in
black. Symbols: experimental values of [23]. Lines: numerical results. Dashed lines:
equation (4.65) based on values of [23].
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Figure 4.35: Planar plunging jet — bubble plume: interfacial velocity profiles at distances from
the free surface x — 1 = 2 cminred, z — 1 = 10 cm in blue and z — 1 = 24 cm
in black. Symbols: experimental values of [23]. Continuous lines: numerical results.
Dashed lines: equation (4.66).
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Figure 4.36: Planar plunging jet — bubble plume: without turbulence model and with a water
viscosity multiplied by ten, profiles at distances from the free surface x —z; = 2 cm
inred, z —z; = 10 cm in blue and « — ;7 = 24 cm in black. Symbols: experimental
values of [23]. Lines: numerical results. Dashed lines: equations (4.65) and (4.66).
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Table 4.7: Planar plunging jet with the water viscosity multiplied by ten — Characteristic quan-

tities.
Ofmax Yoy (mm) | Vinax (m/s) | Yyso (mm)
y (cm)
Exp | Num | Exp | Num | Exp | Num | Exp | Num
2 032 | 033 | 15 13 | 226 | 239 | 28 13
3 025 | 027 | 14 16 | 2.09 | 2.42 X 13
5 0.17 | 0.29 | 16 14 | 216 | 248 | 31 13
7 0.17 | 0.26 | 19 14 | 2.03 | 2.33 X 14
10 0.16 | 0.18 | 21 16 | 1.87 | 2.08 | 41 17
13 0.15 | 0.17 | 22 27 | 1.68 | 1.99 X 18
16 0.12 | 0.16 | 24 30 | 1.50 | 1.67 | 39 22
24 0.08 | 0.12 | 23 28 | 130 | 145 | 45 43

Free-falling jet We can also investigate the reproduction of the free-falling jet that is pivotal
to reproduce the conditions at the impact point. Void fraction profiles at 3 and 10 cm (impact
zone) from the nozzle are displayed on Figure 4.37 while velocity profiles are shown on Figure
4.38. One can see that because of the waves, the volume fraction are no longer zero far from
the support. Pre-entrainment can be noted also in the experiment. Moreover the increase in
velocity is missed. These perturbations can therefore significantly affect the air entrainment.
The presence of the k£ — € model allows one to better capture the void fraction in the core of the

jet.

Numerical pre-entrainment This test case highlights one limit of the resolution for volume
fractions. Pre-entrainment is occurring in the free-falling jet. Though it is observed experimen-
tally, we shall underline that the one observed in the computations results from the numerical
discretization of the operators in the phase volume equation (3.20). Indeed, near the interface, the
factor (B + ap34) is never null: as the relative velocity is aligned with gravity, for a Cartesian
arrangement of the particles, one could expect vertical contributions in the operator to cancel
out. However, particles are disordered and the small errors accumulate and trigger the diffu-
sion of the interface. One could note that a symmetric formulation of the form (a8, + )
would not trigger diffusion: further investigations on a scheme inspired from slope limiters in
the FV approach are therefore required. For our scheme, the idea could be to build a non linear

convection scheme based on the ratio r,;, of local gradients of the volume fraction field:

Valy (ra) v,

Talb = o
b Valy(m) oy,

(4.68)
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Figure 4.37: Planar plunging jet — free-falling jet: volume fraction profiles at distances from the
nozzle x = 3 cm in grey and « = 10 cm in green. Symbols: experimental values of
[23]. Continuous lines: numerical results.
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Figure 4.38: Planar plunging jet — free-falling jet: interfacial velocity profiles at distances from
the nozzle x = 3 cm in grey and x = 10 cm in green. Symbols: experimental values
of [23]. Continuous lines: numerical results.
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The upwind and centered fluxes would write:

falp = @alBp [vg‘b : Sa\b:|+ + B, [”Z\b : Sa\b} and fo, = (aaBa + ) (Ugu, : Sa|b>
(4.69)

The flux weighted by a limiter function ¢' would be:

fap = £y + 6" (ras) (S = St (4.70)

with the limiters Minmod max (0, min (1, r)) or Superbee max (0, min (2r,1) , min (7, 2)). It is
of particular interest to see the behavior of that kind of approach in the SPH framework. Another
idea is to introduce directly a limiter in the scheme, switching from a centered to an upwind

approach, and compute an appropriate value to ensure the respect of physical boundaries.

OWL =>V [¢Z\bf§\b + (1 - ¢fl|b> f;ﬁb} (4.71)
beF

In the planar plunging jet test case, the importance of the inflow has been underlined experi-

mentally so that one can expect a non-negligible influence on the results.

Larger domain To assess the influence of the reduced geometry, we considered a configura-
tion with the full length of the domain on the right side, modeling also the weir allowing one to
maintain the water level. The left-hand side of the domain behind the support remains shorter
than in the experiment. To avoid too heavy computational times and remain below the maxi-
mum number of particles that can be handled, the height of the domain between the bottom and
the nozzle has been divided by two, what may alter the bubble plume. 1.7 million SPH particles
are used. This simulation was carried out without turbulence model. One can see on Figure 4.39
that the bubble plume, no longer restrained by lateral walls, can extend further in the domain.
The unrest of the free surface is more limited but still apparent, as part of the waves escape the
domain through the weir. One can see on Figure 4.40 an improved behavior, especially far from
the support, compared to Figures 4.34a and 4.35a. These profiles were averaged on a larger pe-
riod - from 5 to 11 s — compared to the previous cases as fewer numerical outputs were made
due to the size of the files. A sufficiently large period was necessary to decrease the scatter of

the resulting averaged profiles.

4.4.3 A wider variety of air-water flows

Air-water mixtures are encountered in a wide range of applications, many of them of interest for
hydraulics such as hydraulic jumps, breaking waves... but also for chemical reactors, etc. The
limited time did not allow us to apply our model to these other cases of interest. However, in
order to highlight the variety of phenomena that this model can handle, we present here two

examples of simulations without in-depth validation: the Boycott effect and the emptying of a
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Figure 4.39: Planar plunging jet without turbulence model: volume fraction field in larger domain
att =4s.

bottle.

4.4.3.1 The Boycott effect

Named after Boycott [34] who studied red cells in blood and noticed their fast sedimentation near
inclined walls, the Boycott effect also appears in aerated flows near an inclined wall when a dense
clear-fluid film falls along the wall while the bubble-rich bulk rises, as described by Watamura
etal. [379] for beer glasses. To proceed to a controlled series of experiments, a particle suspension
of spherical glasses within tap water was used. Parameters used for the simulation are detailed
in Table 4.8 with an artificial value of viscosity for the dispersed phase as its solid nature is not
taken into account here. L is the bottom size and H the height of the initially filled glass. An
initial volume g = 0.08 is set in the whole domain. The standard k — € model is employed. The
volume fraction and velocity magnitude are plotted in Figures 4.41 and 4.42 respectively. One
can indeed note high volume fractions along the walls of the glass and a downward motion of

the fluid in this region with some instabilities resembling the roll waves described in [379].

4.4.3.2 An emptying bottle

This application case reproduces in 2D the 3D case performed by Mer et al. [251] using a three-
field numerical model. Numerical parameters are detailed in Table 4.9. Water is alternately re-
leased while gusts of air penetrate the bottle. The volume fraction evolution is displayed on
Figure 4.43. The bottle diameter is denoted D and its height is H. The neck of the bottle has a di-
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Figure 4.40: Planar plunging jet — bubble plume: without turbulence model, profiles at distances
from the free surface x —x1 = 2cminred, x —x1 = 10 cminblueand x — x1 = 24
cm in black. Symbols: experimental values of [23]. Continuous lines: numerical
results. Dashed lines: equations (4.65) and (4.66).
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Table 4.8: Parameters for the Boycott effect computation.

L 60 mm H 130 mm
P~ 140  kg/m3 p% | 1006 kg/m?
v® | 1.56 107° m?/s v? 191077 m?s
c® 11.3 m/s & 11.3 m/s
d® 47  pm d? 47  pm
or 0.5 mm DB 0 Pa
0s (b)t=20s (©t=40s dt=60s ()t=80s  (f)t=100s

Figure 4.41: Boycott effect: volume fraction evolution for particles with o € [0;0.1].

ameter d,, and a height d,. The bottle is filled at 75% of its height by water. No turbulence model
is used. One can notice Rayleigh-Taylor instabilities developing in the first moments of the com-
putations. Some issues happen near the lower open boundary (imposed background pressure):
the open boundary framework was not operational yet when this simulation was conducted.
The air phase is probably not going up sufficiently fast, due to the mixture model approach that
assumes a constant bubble diameter and maybe the terms neglected in the momentum equation.
The mean pressure evolution within the upper air volume of the bottle is plotted on Figure 4.44
with a comparison with the numerical results of the compressible model and the experimental
measurements of [251]. The pressure oscillations are going faster in the SPH model. Compress-
ibility effects are at stake but were not the main points of this work. The values of the pressure

peaks are however in reasonable agreement with the experimental results.
elocity

0 u.sa
0.06
—o 04
7 —o 02

(@t=0s (b)t=20s (c)t=40s (dt=060s (e)t=80s (f)t =100s

Figure 4.42: Boycott effect: velocity magnitude evolution for particles with « € [0;0.1].
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(@t=0.1s (b)t=0.2s (©)t=03s dt=04s (e)t=0.5s
i
fHt=0.6s (g)t=0.7s (h)t=0.8s @Ht=0.9s j)t=1.0s

Figure 4.43: Emptying bottle: volume fraction evolution with air in white (o« = 1) and water in
blue (o = 0).
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Table 4.9: Parameters for the emptying bottle computation.

D 114 mm H 800 mm
dn 35 mm dp, 5 mm
p® | 1.23 kg/m? p® | 1000 kg/m3
v | 107° m?/s VP 1076 m?/s
¢ | 340 m/s | 340 m/s
d* 0.5 mm d? 0.5 mm
or 1 mm pp | 10000 Pa

4.5 A three-dimensional industrial application

We now aim at applying the SPH air-water mixture developed to a three-dimensional industrial
test case: a hydraulic discharge-control structure. Single-fluid approach proved to fail at repro-
ducing the dynamics of the flow. A two-phase approach appeared to be necessary. We aim at
simulating the behaviour of the flow of the 1:8.33 scaled model described by Guyot and Rodriguez
[155].

4.5.1 Description of the physics

As presented on the 3D geometry and a 2D projection on Figures 4.46 and 4.45, and described
in [155], the structure consists of a drop region where half of the volume flow rate of water
falls in the reception tank with vertical plunging jets and the other half flows along the cylinder
surrounding this drop region. At the bottom end of this tank, the water exits through a pipe. A
critical feature for the design of this structure is the air entrainment and then detrainment within
the reception tank to avoid the propagation of air bubbles within the pipe. Such structures have
already been studied in the literature as done by Kobus and Westrich [190] and illustrate the
significant influence that the buoyancy of the entrained air can have on the flow field. The target
is two-fold: dissipate a lot of energy thanks to maximized air entrainment in the drop section and
remove the maximum of air before entering the pipeline in the detrainment section. Indeed, the
formation of air packets within the pipeline could trigger some issues in pumps further down.
As shown on Figure 4.46, depending on the water level in the tank (and therefore the amount of

aeration due to the plunging jet), the flow can:

« Go directly to the bottom and reach the pipe without recirculating;

« Rise after the plunging region due to the vertical momentum given by the bubble swarm
generated by a strong aeration, and flow along the surface with significant deaeration.

Then, getting closer to the pipe outlet, it goes down again, hopefully with little or no
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Figure 4.44: Emptying bottle: mean pressure evolution in the upper air volume in the bottle ob-
tained with the present model in continuous black line and comparison with numer-

ical and experimental results of [251] (time in s and pressure in Pa) in red and blue
respectively.

aeration. As we will see, a single-phase simulation of this case would generate a flow
without significant recirculations, looking like the first case.

An experimental campaign was carried out on this geometry by the Hydraulic Engineering Cen-

ter of EDF so that some results are available to compare air concentration and velocity profiles.

4.5.2 Numerical model

The 3D .stl geometry displayed on Figure 4.45 was created by Agnés Leroy and we will com-
pare our results to her single-fluid formulation computations in the following. The physical and
numerical parameters are detailed in Table 4.10. The simulation counts around 2.76 million par-
ticles. One month of computation was required on one graphic card GeForce GTX Titan Black
for 6.5 s of physical time. Let us recall that the code, still in development, is not optimized and
such a case would gain to be run on multi-GPU. The air-water relative velocity closure devel-

oped in Chapter 4 is used without switch (the use of the switch did not improve the results on
the stepped spillway test case). The &k — € model is used without buoyancy term (the buoyancy
still requires further work as it triggered some peak viscosities that stopped the advances in the

computations). The convective transfer term was not considered in the momentum equation due
to numerical instabilities in its current implementation.
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Figure 4.45: Discharge-control structure: geometry of the scaled model (distances in m). h is the
free surface height relative to the bottom of the domain at the start of the exiting
pipe and 6 is the angle of the slope of the reservoir.

(a) Low tailwater level.

(b) High tailwater level.

Figure 4.46: Discharge-control structure: expected flow patterns.
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Table 4.10: Parameters for the discharge-control structure.

P~ 1.23  kg/m?3 p% | 1000 kg/m?
v | 1.56 1075 m?/s VA1 1076 m?s
c® 40 m/s P 40 m/s
d® 2 mm dP 2 mm
g 9.81 m/s? PR 0 Pa

Initialization The domain is initially at rest, with the tank filled of water at the desired free
surface height with an hydrostatic pressure profile. An air layer is put above, with a smooth
transition in volume fractions with an hyperbolic tangent function. This air layer does not fill
the whole domain due to the construction of the geometry that did not consider the potential

presence of air around the inlet nozzles (absence of separating walls).

Open boundaries Only water is used at open boundaries and enters the domain at the inlet
at the first iterations. Velocities are imposed with Poiseuille profiles at the inlet pipes visible on

Figure 4.48. For the turbulent quantities, the initialization is done with:

2
*

* W

u and €= 2* (4.72)

VCu KT

where r is the distance to the center of the pipe. An outlet pipe, further after the exit pipe one can

k=

observe on the right bottom corner of the Figure 4.48 allows for the flow to exit at the volume flow
rate imposed at the inlet. A logarithmic velocity profile is imposed at the outlet with turbulent

quantities but we do not go into further details as it is far from the domain of interest.

4.5.3 Results

The numerical results are plotted at t=6.5 s (actual time when this document was written; an
update was introduced only for the comparisons of velocity profiles) for half the domain. This
shall not be seen as a steady state. Velocity is nondimensionalized by its maximum value, that also
serves for the normalization of the turbulent intensity: Tu = \/m /Vimaz- For the pressure,
we use the maximum hydrostatic component. One can observe the bubble plume on Figure 4.47.
Only small volume fractions reach the bottom. A region of intense mixing surrounds the inlet
jets. Then a bubble swarm propagates with a wavy pattern towards the downstream wall of
the tank. No air bubbles were found to be entrained deep enough to reach the outlet pipe at
the time considered. Figures 4.48 and 4.49 highlight the velocity field: one can see that after the
initial plunging region, the bubble cloud goes up and entrains water generating a general upward

motion of the flow that then goes parallel to the free surface before plunging towards the outlet.
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Figure 4.47: Discharge-control structure: volume fraction field.

A swirling behavior can be noticed in the drop region. The pressure profile in the tank is slightly
altered compared to its initial hydrostatic pattern as shown on Figure 4.50. Peak pressures are
punctually reached near the inlets. The turbulent intensity field plotted on Figure 4.51 shows the
intense turbulent mixing in the plunging jet region and the propagation of the eddies in the rest

of the domain, with a progressive dissipation.

A visual comparison of the bubble swarm indicates a satisfactory reproduction of its position
and evolution in the basin, with a progressive reduction towards the downstream wall and some
waves propagating along the blurred free surface. Figure 4.52b displays particles with a volume
fraction smaller than 90%: above the free surface there is still some mixing due to the relative

velocity closure that does not allow a complete separation of phases.

We compare in Figure 4.53 the longitudinal velocity profiles on two different planes detailed in
Figure 4.53a. According to the numerical computations, these velocity profiles are computed
in a poorly aerated region. One can see that we significantly underestimate the maximum val-
ues. However, the steady state is not reached and comparison with respect to former time steps
shows a significant increase in velocities. The trend of maximum values at the top of the profiles
is reproduced. One can note a significant improvement compared to the single-fluid simulations
displayed on Figure 4.54. However, we miss the recirculation that is formed before the exit pipe
and a longer simulation does not allow show any recirculation apperance. However, the sig-

nificant turbulent kinetic energy in the domain might damp recirculations due to the increased
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Figure 4.48: Discharge-control structure: dimensionless velocity magnitude field.
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Figure 4.49: Discharge-control structure: direction of the velocity vector colored by c.
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Figure 4.50: Discharge-control structure: dimensionless pressure field.
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Figure 4.51: Discharge-control structure: turbulent intensity field.
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(a) Experiment performed by the Hydraulic Engineering Center (CIH, internal report).

(b) Simulation colored by volume fraction (clip a < 0.9).

Figure 4.52: Discharge-control structure: comparison of the bubble swarms.
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viscosity. Computations without turbulence model 7 performed for the PhD defense confirmed
it: the recirculation going upstream along the bottom of the structure appears, while the flow
along the free surface is stronger and plunges more abruptly downwards when reaching the
downstream wall. Some very small concentrations of bubbles (alpha = 0.0001) are entrained in
the exiting pipe. The velocity profiles at the previously-considered sections averaged on 3 s are
displayed on Figure 4.55 and highlight a better reproduction of the dynamics of the flow. Please
note that these results cannot be considered as stationary as a longer simulation is required (and

still running while writing this document).

We compare the velocity magnitude field obtained with our mixture model to the single-fluid for-
mulation on Figure 4.56. With the mixture model, the jet is flapping a little while it falls straight
with the single-fluid approach. The rising motion after the jet generated by the bubble swarm
that was not caught by the single-fluid formulation is now modeled. One can see that without
turbulence model, the dynamics are reproduced better, with the appearance of the recirculations

in the reservoir.

4.6 Summary

4.6.1 A complex physical and numerical modeling

As illustrated in this chapter and recalled by Kiger and Duncan [186], air entrainment within
water lies within a wide parametric space that led to a large range of empirical correlations
and criterion definitions without reaching a comprehensive general formulation. The physical
mechanisms overcoming the stabilizing forces of surface tension and/or gravity are varied. The
scale of the physical system considered requires particular care in the modeling and gives rise
to unavoidable scale effects. Turbulence together with the two-phase behavior of the entrained
gas phase make air entrainment a full multi-scale problem. However, in view of high velocity
shear flows of practical application for hydraulic works, common features have been identified

and support the macroscopic view developed in this work.

4.6.2 Achievements and limits of the present approach

The present mixture model allowed for the simulation of air entrainment in schematic hydraulic
structures. A reasonable agreement was obtained for the volume fraction profiles. However, the
free surface hydraulic test cases drive the mixture model to is limits as some parts of the flow are

highly mixed, so that the dispersed assumption is no longer verified.

Some discrepancies were found on the dynamics, that can be related to missing terms in the

momentum equation to a certain extent (viscous terms generally disregarded and convective

"The planar plunging jet test case suggested that one could get better results for that kind of configuration without
the turbulence model considered in this work for local aeration
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(a) Position of the sections for velocity profiles (the col-
ored volume region corresponds to 0.1 < a < 0.9).
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(d) Downstream section: simula- (e) Downstream section: experiment.
tion.

Figure 4.53: Discharge-control structure: comparison of the longitudinal velocity profiles at two
sections at ¢ =~ 13 s. Experiments carried out by the CIH (internal report).
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Figure 4.54: Discharge-control structure: comparison of the longitudinal velocity profiles in m/s
at two sections below the single-fluid formulation free surface height (the mixture
velocity of the present model is compared to the water velocity with the single-fluid
formulation). The arrows stand for the velocity field in the plane of the section.
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(c) Downstream section: simulation. (d) Downstream section: experiment.

Figure 4.55: Discharge-control structure: comparison of the avergared longitudinal velocity pro-
files at two sections at ¢ ~ 5 s for the computation without turbulence model. Ex-
periments carried out by the CIH (internal report).
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(a) Single-fluid formulation (Agnés Leroy).

(b) Mixture model formulation (clip a < 0.9).

(c) Mixture model formulation with the k — € turbulence model (clip o < 0.9): velocity vector field colored
by .

T

(d) Mixture model formulation without turbulence model (clip o < 0.9): velocity vector field colored by «
(instantaneous view).

Figure 4.56: Discharge-control structure: comparison of the velocity magnitude fields (the abso-
lute velocities might be not comparable).
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transfers), even though the two-phase nature influence was indicated to be limited according to
experimental works. The inclusion of the convective transfer term still requires further work to
limit the numerical effects and to highlight its contribution to the dynamics. The partial coupling
between the volume fraction and the momentum equations can also explain some discrepancies
through the relative velocity closure, as testified by the computations run with the pressure
gradient replacing its hydrostatic approximation in the relative velocity closure that highlighted
some improvements in the volume fraction and longitudinal velocity profiles. The robustness
of the numerical model is at stake as the proper introduction of the convective transfers in the
momentum equation and pressure gradient in the relative velocity closure will be possible only

with a robust handling of high density ratio flows both within the domain and at boundaries.

The choice of a RANS mixture model does not allow for insights into the mesoscopic nature
of those flows, regarding the bubble size distribution and fine representation of the turbulent
structures that play a prominent role in the entrainment. Giving a fixed size to the dispersed
phase can be an issue regarding the polydisperse nature of many environmental flows and be
critical in some cases [103]. The results exhibited a small sensitivity to the variations of the size
of the dispersed phase so that the choice was driven by the peak values observed in the experi-
mental results. Computations were performed on two-dimensional cases but the integration in
an optimized multi-GPU code is expected to improve the computational times and to allow for

three-dimensional simulations in reasonable times.
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Conclusions and prospects

Dans cette thése, on propose un nouveau modele de mélange diphasique SPH faiblement
compressible adapté a de forts rapports de densité et incluant une vitesse relative entre
les phases. Une attention particuliére est portée da ses bonnes propriétés numériques en
termes de respect des bornes physiques et de conservation. La simplicité et la polyva-
lence du modéle, permises par la fermeture de la vitesse relative par une relation dépen-
dant de la physique considérée, va de pair avec les limitations du champ d’application
du modéle : une phase est supposée dispersée et son comportement est fortement couplé
d celui de la phase continue. La turbulence, centrale pour le phénoméne d’entrainement
d’air, est simulée via un modéle k — e classique pouvant inclure un terme de flottabilité.
Un formalisme SPH de frontiéres ouvertes pour un mélange est également développé en
vue du cadre applicatif. Ce modéle est appliqué avec succés sur des cas simples de val-
idation diphasiques. La phénoménologie de l'entrainement d’air permet de formuler
une loi de fermeture de la vitesse relative incluant un terme de trainée et un terme de
diffusion turbulente. Ce modéle conduit a de bons résultats de concentration en air sur
un cas de coursier en escalier. La dynamique n’est toutefois pas précisément reproduite,
de sorte qu’un travail sur Iinclusion de termes négligés dans I’équation de quantité de
mouvement s’avére nécessaire. Par ailleurs, une amélioration de la formulation SPH
semble requise pour obtenir un code robuste @ méme de représenter des écoulements da
forts rapports de densité. Un cas de jet plongeant bidimensionnel est également con-
sidéré et présente des résultats prometteurs. Enfin, des résultats préliminaires sur une
géométrie 3D industrielle sont présentés et illustre ’applicabilité de ce modeéle a des cas
d’entrainement d’air complexes. Parmi les perspectives de ce travail, on peut envisager
Pextension du champ de validité du modeéle par couplage avec d’autres approches ou
Pinclusion d’un suivi plus précis des caractéristiques de la phase dispersée. Profitant de
la versatilité du modéle, une multitude de cas d’application impliquant des physiques
distinctes de celle de I'entrainement d’air peut étre envisagée. Le modéle gagnerait en ce
sens a étre importé dans le logiciel GPUSPH afin de bénéficier de sa structure optimisée

multi-GPU et de la possibilité de représenter des sédiments et des corps rigides mobiles.
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Achievements of this work

The complexity of air entrainment numerical modeling is two-fold as one shall accurately model
both the entrapment of the air bubbles and their transport by the turbulent flowing waters. It

therefore structures the work in two main parts.

A new volume-weighted two-phase Weakly Compressible Smoothed Particle Hydrodynamics
(WCSPH) mixture model suited to high density ratios and including a slip velocity between ve-
locities is proposed. A careful derivation of the model from the general two-phase formulation
allows us to draw the framework of application of this model: dispersed two-phase flow with
strong coupling between phases. Due to the average approach retained, the interface between
phases is no longer explicitly tracked when mixing occurs. Thanks to a finite volume-like reason-
ing, a realizable numerical scheme, conservative with respect to the relative velocity contribu-
tion, is derived to follow the phase exchanges between particles. The model relying on a specific
volume formulation reduces to single-phase formulation for unit volume fraction. Turbulence is
included through a £ — € model. This mixture model is first successfully validated on academic
cases: a phase separation in a tank is considered to check that conservation and realizability
are achieved, while the accuracy of the model is investigated with a two-phase mixture laminar
Rouse flow for which an analytical solution was derived. A Rayleigh—Taylor instability case is
also tested to check the reduction to single-fluid behavior. Open boundaries for mixtures are
developed and tested on separated and mixed two-phase laminar Poiseuille case, but still require

further investigations.

The phenomenology of air entrainment is then detailed and a specific closure including a drag
and a turbulent diffusion terms is applied to the relative velocity to handle air-water cases. The
only calibration parameter of this model is the size of the dispersed phase. Two schematic air
entrainment cases were considered: the stepped spillway and the plunging jet. Then preliminary
results on the three-dimensional industrial test case of a hydraulic discharge-control structure
were presented. Looking back at the original questions we had in the introduction, one can see
that the model:

« Gives reasonable results regarding the global and local quantities of entrained air as the
volume fraction profiles in the high velocity turbulent flow considered generally result

from an advection-diffusion process of bubbles.

« Provides partial information about the relative velocity behavior (that is algebraically closed
compared to a two-fluid model) and accounts for the modification of the flow dynamics due
to air presence. However this point still requires further investigation as some discrepan-
cies were noticed on the test cases. Missing dissipative terms in the momentum equation,
lack of coupling between volume fraction and momentum equations due to a simplified
relative velocity closure together with an invalid dispersed assumption in some regions

of the flow are possible explanations. Moreover, some instabilities due to the high den-
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sity ratio still trigger a lack of robustness of this model. Finally, the turbulence modeling

including buoyancy requires further work.

Other questions are left for further developments, regarding the bubble size distribution or the

alteration of the water quality.

Publications
Oral communications and articles about the present work have been presented in conferences:

 "An upwind scheme for conservative, realizable two-phase mixture SPH model with high den-
sity ratios" presented during the 13th international SPHERIC workshop in Galway, Ireland
and awarded the student Libersky Prize 2018 for the best presentation and article [135].
Consequent contribution in the 26th issue of the SPHERIC newsletter.

« "A Lagrangian accurate numerical model for high-density ratio two-phase mixtures" pre-
sented at the Dispersed Two-Phase Flows (DTPF) 2018 conference in Toulouse, France (no

article).

 "Air entrainment modelling using a Lagrangian accurate numerical model for high-density
ratio two-phase mixtures" presented at the 10th International Conference on Multiphase

Flow (ICMF) 2019 in Rio de Janeiro, Brazil [137].

« "A first air entrainment SPH model using a two-phase mixture formulation" presented dur-
ing the 14th international SPHERIC workshop in Exeter, United Kingdom and awarded
the student Libersky Prize 2019 for the best presentation and article [138]. Consequent
contribution in the 28th issue of the SPHERIC newsletter.

This work is described in two journal papers:

« "Mixture model for two-phase flows with high density ratios: A conservative and realizable
SPH formulation" published in the International Journal of Multiphase Flow in February
2019 [136].

« "Air entrainment modeling in the SPH method: a two-phase mixture formulation with open
boundaries" (to be submitted, selected in ICMF2019 for a special issue of Flow, Turbulence

and Combustion)
Aside from the main topic of the PhD, the author made the following two contributions:

+ The oral communication and article "Numerical Modelling of the Undersluices of the Rance

Tidal Power Station with SPH" presented during the 12th international SPHERIC workshop
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in Orense, Spain [134] describing the internship work of J. M. Lopez Asiain in the following
of the author’s work on numerical simulations with FLOW-3D® and SPH of the Rance tidal

power station.

« The numerical validation of the paper "Calculating the smoothing error in SPH" published
in Computer & Fluids in September 2019 [365].

Science popularization described in Appendix F was performed through the following competi-

tions:

« "Les bulles font leur cinéma" in the competition "Ma thése en 180 secondes 2019" [133] in

Paris-Est University and "Pitch ta thése 2019" in EDF R&D (two awards).

+ "3 ans en 3 minutes ou comment parler a tous de l'expérience de doctorat” retained in the

official selection of the competition "Je filme ma formation 2019" [132] in Paris.

Perspectives

Possible further developments and applications are now presented in order to improve the model,

see how it performs on other test cases and extend its range of application.

Towards a broader validity for two-phase regimes

Two-fluid model and coupling The air-water flows can involve a wide range of regimes
with possible transitions between them that are complex to model numerically. The disperse
flow assumption of the mixture model developed is not always legitimate depending on the zone
of the flow considered. It appeared as a necessary first step of development before going to a two-
fluid model or more complex approaches able to deal with regime transition. Several numerical
approaches are the object of active research in order to build model distinguishing short and
long scale interfaces and adapting consequently the resolution. Three-field approaches with a
continuous liquid phase and dispersed and continuous gas field were developed by Denéfle et al.
[107], Mimouni et al. [253] and successfully applied to regime transition. An extended mixture
model was developed by Damian [98], Damian and Nigro [99] to couple Volume of Fluid (VoF)
and algebraic slip mixture models: the momentum equation includes surface tension effects in
VoF while it uses drift stresses in the slip model. Whereas the relative velocity has a physical
meaning for the mixture model, it can be used as an interface compression velocity for the VoF
model. Such a model could be implemented in SPH by extending the writing of the geometrical or
gradient criteria of the method to the SPH framework and would allow one to activate the mixture
model only when needed, keeping the multifluid approach elsewhere (in order to preserve the
interfaces). Another possible idea is to couple VoF and two-phase approach, as done and applied

to air entrainment by Pereira [291].
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A more complex description of the dispersed phase The model developed in this work is
unable to give information about the bubble size distribution due to the monodisperse assumption
and the absence of interfacial area density computation. These distributions are however of
interest and can influence the dynamics. They are furthermore well documented on aerated
flows. A possible evolution of the model can be to include population balance [79] or interfacial
area density [114] equations to have a more precise idea of the topology and adapt consequently

the computations.

Relative velocity expression The physics modeled could be enriched by including in the
relative velocity more effects that has been neglected here, namely the added-mass and shear-

induced lift forces acting on individual bubbles and wall effects.

Turbulence modeling A very simple model has been assumed for turbulence. Keeping a
RANS approach, k£ — € turbulence model for two-phase flows were developed [118] and could
be tried. In the literature, realizable k — € model is allegedly better to model flows over stepped
spillways. As we are working with a macroscopic approach, using refined models requiring small
discretizations seems to be out of scope. Indeed we are not reproducing the real deformation of

the interface but model the entrainment through the relative velocity expression.

Applications

Other air entrainment test cases We have presented in this work two prominent air en-
trainment cases: the stepped spillway and the plunging jet. Further insights could be made by
investigating three dimensional version of theses situations. Moreover, the air entrainment liter-
ature is rich of other schematic or industrial air entrainment configurations: the breaking wave
that involves a large range of air packets and bubbles [53, 103, 233, 271], the wave slamming
for which the entrained air modifies the impact phenomenology [109, 290], the hydraulic jump
[63, 67, 232, 372], the drop shaft as studied in [291], the Piano Key Weir... It could improve
the modeling of hydraulic structures such as ski jumps that were studied in the SPH method
[148, 273] as the water depth were found to be smaller than expected, allegedly due to the air

modeling missing in [273].

Enrich the model to follow other quantities of interest To assess the water quality or
follow some chemical substances, which are common interests in engineering applications, this
model could be enriched by an additional transport equation following the evolution of a scalar

quantity that does not modify the dynamics.

Versatility By adapting the relative velocity closure (and possibly the viscous stress tensors),

one can handle different types of flows as illustrated in this work with air-water and sediment-
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water cases. Other physics could be considered: gas bubbles in oil of common occurrence in
gearboxes [181], seepage in soils [43, 95, 185, 289] using Darcy’s law, dispersion of contaminants
in fractured media [341], fluidized bed reactors [387], but also problems of deposition, corrosion,

combustion...

Deal with more than two phases Air-water-sediment cases happen in hydraulic and coastal
engineering: introducing additional fields to handle several phases could allow one to model the

sediments motion in the plunge pool described in the last chapter.

SPH formulation

A noisy pressure field A common issue in SPH is the noisy pressure field, that triggered
problems in this work to compute a relative velocity depending directly on the pressure gradi-
ent, which is more physical and couples the momentum and volume fraction equations. Some
approaches suggested in the literature could help in this prospect. Riemann solvers of now com-
mon use in SPH [82, 150] with SPH-ALE proved to give good results for violent air-water flows
as shown by Rezavand et al. [307]. In this work, we solved Riemann problems only at the open
boundaries but we might reach a consistent model by making a full Riemann resolution. The
0—-SPH approach recently extended to the multifluid framework is also of interest to improve the

pressure computations.

Accuracy of the volume fraction resolution The weak order of convergence of the volume
fraction scheme together with the diffusion of the interface in situations where the physics should
maintain a strict separation require to give a look at an evolution of the volume fraction scheme.
The introduction of flux limiters of common use in the finite volume community as extensively

classified by Waterson and Deconinck [380] could be an option.

Incompressible SPH (ISPH) The volume-weighted equations of the mixture model are gen-
erally chosen to take advantage of the divergence free condition for the volumetric flux [99]: it

could be of interest to test this model within the ISPH framework.

Multi-GPU The developments described in this work were implemented in the in-house code
Sphynx. However, they would gain to be included in the open-source code GPUSPH so as to run
3D simulations on multiple GPUs and benefit from its optimized structure. It would allow to meet
the needs of the EDF Hydraulic Engineering Center for industrial applications such as hydraulic
jumps and spillways. This would allow one to take advantage of the modules for interactions
with moving bodies (one can imagine floating offshore structures submitted to breaking waves
with the inclusion of air effects) and for work with sediments developed by Ghaitanellis et al.
[145].
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Differential operators

A.1 Derivations of the multifluid operators

In this section, we will describe a possible derivation of the multifluid operators of Hu and Adams
[170] adapted to the USAW boundary conditions in [145]. Let A be a scalar or vectorial field.

Divergence operator The continuous SPH interpolation of its divergence writes:

V- Al (r) = {v’fv- (;) _VEA. vvlk}c(r)

~ V(1) [V - <“/4k>] (r) = V*A(r). [VVI’C]C (r)
~ (1r) /Q N [vk (1) Vo (;) (1) = VEA () Voo (r')] w (r — ') dV’

6 /m [Vk (r) g (') = VFA (@) V! (r’)] Vo (v — 77) AV

N g (17“) /amﬂ,,. [Vk (r) 1

(r') = VA (r) vE (r')] cw (r—r")n(r')ds’

EFSETES

~ ’Vl'r) /Qrm [Vk (T) % (’l“’) - VkA (T) ik, (7“/):| . V,,.w (T _ T’) dV’
Y <1r> Jve [V'“ () g () = VFA () (r')] w0 (e — ) m () dS”

where n (7’) is the unit vector normal to 92, at point 7’ and directed towards the outside (this
will trigger a minus sign in the following for the boundary term, due to the definition of v with

an inward normal). One can then write the discrete approximation (let us underline that the
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volume at stake are the reference volumes V' except for the interpolation'):

V-Al,(r) ~ Z%[VkaA Vk] - Vg,

@ bep
1 [kAs L1 ]
— = |V = VA= | Vs
a k a k
Ta seS ‘/:9 V;
vk 1 vk 1
~ _izwfk(Aa_Ab)'Vwab'i_iasz(Aa_As)’V’Yas
Yo hep Vs Ta seSV

Let us write V, = 6,V}, where 6, = 1 if the particle b is in the fluid. The previous equation

becomes:
1 0y
(V-Al,(r) =~ - ;va’f <0> (Aq — Ap) - Vg
N (A1)
v, 1 0,
- Ik n Aa - As : as
o () -

For k = 1, one gets:

Vi 0 Va0, 1
[V-Al ()~ =23 2 (A, - Ay) - Vwab+—ZQ—V(A —Ay) Vs (A2)
Ta jep Va Ta esVa Vs

Gradient operator The continuous SPH interpolation of its gradient writes:
1 k k
VAL (r) = | 7V (VFA) +vhav vk (r)
~ o (1) [V (VEA)] (1) + VEA(r) [V k] (r)

: /Qrm [1 (1) Ve (VEA) () + VEA () Vrfvlk(r’)]w(r_r') qv’

v (r)
N 7(17") /Qmm [Y}k( JVEA(r )+ka4(’“>‘/1;€(7“')] Vow (r— 1) dV’
7 oy, [ OIVEAG VG 5 01 =) ) a5
7(1r / { () VEA(r )+V’“A(r)vlk(r’)} V,w (r— ') dV’
H(r) /am {Vh JVEA(r") +VEA <r>1,€(r')] w (r— ') n (') dS’

To convince yourself, consider the inteprolation of the volume [\7%] . = Zb 13 Vibwab = Zb Opwap
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One can then write the discrete approximation:
1 1 . |
[VA]d (T) ~ Z W W% Ab + Va Aaw Vwaep
Yo pep a b
1 1 g 1
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The previous equation becomes:
1 VAF 70,0\ F v\F 70,\"
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And for k = 1, one gets:
1 Va Hb ‘/b 9(1
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- 37 Aa 7As as
v o (g v v

seS

A.2 Hydrostatic test case

The aim of this section is to understand the behavior of the classical SPH formulation at high

density ratios without considering mixtures.

Numerical issues Numerical issues encountered with the pressure gradient computations will

be exemplified on the hydrostatic test case:
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« Pressure oscillations usually take place in the beginning of simulations and take a long time
to damp, especially for small viscosities. Periodic conditions allow for this phenomenon to

last longer due to the absence of the side wall effects.

« For single fluid computations, spurious motions of the water phase along the lateral walls
have been noted starting from a fluid at rest. It appears to be linked to the choice of gradient
operator (the antisymmetric operator is not zeroth order consistent), together with the
boundary condition (the antisymmetry property should not lead to momentum generation
from a fluid at rest, so that the only possible defect in the antisymmetry property is on
wall particles). The only mean that was found to keep a fluid quasi perfectly at rest was to
consider a renormalized symmetric gradient (2.33) in a closed box. However it increases the
computational time, cannot handle a free surface without correction and does not enforce

momentum conservation so that this solution is not retained.

« Spurious behavior was observed near the air-water interface at high density ratios when
considering two-phase computations, due to issues related to the discontinuity of the pres-
sure gradient as explained in Sections 2.2.1.2 and 3.3.1.1. Pressure waves propagating along

the interface have been noted.

Description of the case The computational domain is a rectangle of dimensions L x H. The
free surface is at half the height of the domain h; = 1 m, separating the water phase from the air
phase that can be modeled or not. Periodic conditions along the z axis are employed if specified.
The fluid starts at rest. The numerical and physical parameters used for the single and two-phase

computations of the hydrostatic case are detailed in Table A.1.

Table A.1: Parameters for the single and two-phase hydrostatic cases.

L 1 m H 2 m

p* 1.23  kg/m? PP | 1000 kg/m?
ve | 1.56 107° m?/s VP 11076 m?/s
c 32 m/s s 32 m/s
£ 1.4 &8 7

d* 1 mm d? 1 mm
or 20 mm pe | 500 Pa

In single-fluid computations, the density-based SPH formulation is employed. For the two-phase
cases, the multifluid formulation of Ghaitanellis et al. [145] is employed. The state equation
used is (1.10). Density diffusion with A = 1 is employed. Dimensionless variables used are the
coordinates z, = x/L and 2, = z/hs, the time t, = t\/g/hs, the pressure p, = p/(pghs) and
the velocity magnitude v, = |v|/\/ghs.
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A.2.1 Single-fluid case

We aim at understanding the single-fluid behavior before addressing the two-fluid computations.

Pressure oscillations We first consider a box domain. If one starts a simulation without ini-
tializing the pressure field, significant oscillations of this field can be observed. The time for their
damping depends on the viscosity: with 0.03 m?/s, the flow is stabilized in 5 s. With physical
viscosities, observations are still observed after 20 s when Figure A.2a is displayed. The pressure
field is therefore generally initialized with the incompressible linear hydrostatic profile. However
oscillations can still be observed: with physical viscosities, the pressure field is still not stabilized

after 500 s of physical time.

Checkerboard effects Without volume diffusion, stationary oscillations of the pressure field
appear near the boundaries as shown on Figure A.2b for a viscosity of 0.03 m?/s. For physical

viscosities, instabilities develop and prevent convergence.

Weakly compressible vs. incompressible profiles Following Grenier [149], the pressure
oscillations could result from the inconsistency between the incompressible pressure profile im-
posed and the weakly compressible solution of the resolved equations. For £ # 1, the pressure

profile can be computed by applying the state equation to the density solution:

(1—€)g(h5—2)>f‘1 (A.6)

PG = (1+ 2
U

One can compare this solution to the linear solution in Figures A.la and A.1b for respective

sound speeds of 3 m/s and 32 m/s (the higher value being then considered in the following).

Discrepancies are only visible for small sound speeds. For 32 m/s, the maximal discrepancy is

below 0.5 % so that the incompressible pressure profile can be imposed. No difference was noted

in the numerical tests.

Particle rearrangement During the first iterations, one can observe a settlement of the set
of particles due to the compressibility: this rearrangement generates particle motions, density
variations and therefore pressure oscillations. One can also always observe a reorganization of
the first layers below the free surface, with a free surface denser in particles. They have a pressure
of order pggdr (variations around 10-15% around this value). Near the walls, a small meniscus

appear.

Let us consider a converged state and focus on the central column. Figure A.3a displays the
vertical displacement of the particles with respect to their initial position. It varies continuously
along the column with a maximum around z, = 0.7 and a noisy behavior close to the bottom

and the free surface, highlighting the influence of boundary conditions. With periodic conditions
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Figure A.1: Single-fluid hydrostatic case: dimensionless analytical pressure profile.
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Figure A.2: Single-fluid hydrostatic case: dimensionless pressure at ¢, = 62.6.
1 - 1 .
L. o o Weakly-compressible
0.8 R o 0.84 }.; Incompressible
B A
|4
0.6 0.64 Lh,
d ... . 3,
0.41 S A 3,
.. 0.4
0.21 R
.. 0.21 A >
0 ‘ ‘ ‘ - BT
-0.5 -0.4 -0.3 -0.2 -0.1 0 o ‘ ‘ e .
Az, -0.01 0 0.01 0.02
or Ap,

(a) Vertical displacement of the particles with respect to(b) Pressure profile discrepancy depending on the initial-
their initial position ization with the weakly-compressible or incompress-
ible profile.

Figure A.3: Single-fluid hydrostatic case: particle rearrangement and pressure variations at ¢, =
62.6.
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and an initialization with the analytical pressure profile, the oscillations last longer so that one
should take a viscosity of 0.3 m?/s to stabilize the flow in a few seconds. They are no longer
damped by the presence of the walls. Fields are nevertheless more regular near the free surface
and so does the vertical displacement of particles. Some instabilities were also noticed in long
time simulation (100 s) with a rearrangement of particles, peak pressures, global motion and
settlement of the free surface. Increasing the sound speed leads to a longer time for stabilization

of the pressure field.

A.2.2 Two-fluid case

We now consider the two-phase version of the hydrostatic test case.

Analytical solution The analytical pressure profile can be deduced through the state equation

applied to the density:
P = pg[(iaf(lc);)(QHfz)_'_l} €T
50{
5 — 0| )elhems) [ €0pp(ch) <<sa—1>g<H—hs> 1)5‘**-1 ~1
P Po @r ey (c5)? * (A.7)
1] P
a _ B ¢
3 ﬁz(pB_pB>+1
0 (o)

where it has been assumed that the polytropic indices were different from unity.

Issues The specific volume formulation [170] is indicated to be convenient for high density
ratio flows. However it was noted that instabilities near the interface develop. An option can be
to introduce a background pressure to decrease the gap appearing between the phases. However,
background pressure shall remain small with respect to poc3. In presence of a high density ratio
flow, this condition is complex to fulfill in the lighter phase, so that this phase becomes agitated
and significant motions can develop in case of periodic lateral conditions until a crash of the
simulations. As we use sufficiently high sound speeds, we initialize the pressure field with the

linear incompressible profile.

With a viscosity of 0.03 m?/s and periodic conditions, one obtains the results displayed on Figure
A.4a. Compared to the single-phase case, oscillations seem to be damped more rapidly, probably
thanks to the presence of the air phase. In this phase, a layer of particles separates from the others
and gets denser in particles. The hydrostatic profile is respected in both phases. We obtain the
same behavior in a box domain as displayed on Figure A.4b with no real influence of the walls,
except at the first iterations. Looking closer to the first iterations of the computations, one can

see that particles near the interface in the air phase get by pair as shown on Figure A.5.
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Figure A.4: Air-water hydrostatic case: dimensionless pressure at t, = 62.6.

Figure A.5: Air-water hydrostatic case: focus on the air-water interface.
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Figure A.6: Air-water hydrostatic case: dimensionless pressure at ¢, = 62.6 using physical vis-
cosities.

With physical viscosities, the flow is more agitated in the air phase, with motions close to the
interface (velocities of order v, = 0.1 — 0.2 diminishing progressively). The pressure field oscil-
lations decrease with the time but maintain over the 20 s of physical time considered. A layer of
water particles also separates as displayed on Figure A.6. By dividing by two the discretization,
the gap is also divided by two: the gap has a size of around 3dr. The clustering almost disappear
as testified by Figure A.7.

Sound speeds Following the idea of Colagrossi and Landrini [86], we tried to modify the sound
speed. With ¢® = 32 m/s and ¢” = 128 m/s, the water phase gets agitated and the gap does not
seem to be altered. The same can be told by exchanging ¢® and ¢®. However, we have not
considered there a sound speed ratio of 13.5 as suggested by Colagrossi and Landrini [86]. Tests
made on the case of stepped spillway detailed in Chapter 4 highlighted that the relation between
sound speeds suggested by Colagrossi and Landrini in (2.110) cannot be the only answer in itself

as spurious behaviors kept appearing.

Background pressure Introducing a background pressure (one need to close the domain in
that case) allows for a reduction of the gap between phases as shown on Figure A.8 using p% =
p’% = 500 Pa. Moreover, the clustering disappears for the water phase and fewer air particles
form cluster. However, significant velocities are generated in the air phase, of order v/ghs, while

working with physical viscosities as displayed on Figure A.9.
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Figure A.7: Air-water hydrostatic case: focus on the air-water interface.
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Figure A.8: Air-water hydrostatic case: dimensionless pressure at ¢, = 62.6 with background
pressure.
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Figure A.9: Air-water hydrostatic case: flow at at t, = 62.6 with background pressure and phys-
ical viscosities.

A.2.3 Attempts of pressure gradient modifications

The pressure gradient computation is at the core of the nonphysical gap appearing at the air-
water interface. We tried to test or develop some alternate formulations to improve this behavior.

These attempts proved to be unsuccessful, but we detail here the main ideas.

Consistently with the derivation made in Section 2.2.1.2, numerical computations highlighted
that the error on the pressure gradient close to the interface was effectively of the order of | Fj3_, |
This reasoning suggests a correction to apply to the pressure gradient to recover the expected
pressure gradient in the hydrostatic case: Fj3_,, should be subtracted to the discrete pressure
gradient. However, this correction led to significant nonphysical motion of the particles close to

the interface and may not apply in non-hydrostatic cases.

To assess the behavior at the interface of alternate formulations, we follow the approach de-
veloped in Section 2.2.1.2 when possible to write explicitly the force generated by the contin-
uous SPH interpolation of the pressure gradient at the interface, assuming an incompressible
hydrostatic solution (compressibility effects might alter some conclusions at high density ratios).
However, instead of replacing directly the pressure gradient by its analytical expression as in
Section 2.2.1.2, we will work with the form obtained after the integration by parts (except for the
approach computing the pressure gradient only on the associated phase) so that the derivative

is applied to the kernel (pressure will be replaced by its linear incompressible solution profile).
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This process makes appear a new variable linked to the position of the interface:
p/B
Fg o (r) = <1 — > / ()\ (r, r’) — 1) [(7‘ — r') -g] V,w (r — 1“’) dv’ (A.8)
) Jannes

where A (7, 7’) is the ratio of the distance from 7 to the interface in the direction (r — ') to the

distance |r — 7’|, defined only if there is indeed an interface between r and r’. Due to this new

variable, it is harder to read the content of the integral but one can still see that the density ratio
plays a prominent role and generates a strong force in the air phase. For the recall, in the ideal

case, this force Fjg_,, should be null.

A.2.3.1 Developed models

Include the gravity term in the pressure gradient One can integrate directly the compu-

tation of the gravity within the pressure gradient:

—Vp+g = —5(Vp—pg)
= —2(Vp—pgV-r)
= —(Vp—Vipg-7]+[g-7]Vp)

= —IVp—pg-r]-lg-r| L2

To compute a local effect of the gravity on particle at position r,, one can subtract and add on

the right-hand side the term %V [pg - 4] and one gets finally:

1 1 A%
~Vptg=— V= pg-(r—ra)] =g (o) = (A9)
The discrete SPH counterpart of this relation is at position r,:
1 1
—,Vptg| = —;[V (p—rg - (x—xza))l, (A.10)

However the simplification of the last term might not be legitimate in case of two-phase flow due
to the indeterminacy of the term [g - (z — ;)] % at the interface. In the multifluid formalism,

it leads to the antisymmetric operator:

1 1
|:—Vp + g:| = Z (paVa2 + (pb + g - "'ab) Vb2) Vwgp (A-ll)
P a Maa beF
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The force generated by the continuous SPH interpolation in the air phase close to the interface

writes:

B
Fya (1) = /ﬂmm {(1 A ) A ) 2 g (= )] V(= o) v
(A12)

One can see that there is still a dependence on the density ratio.

Compute the pressure gradient only on the associated phase The idea is to include con-
tributions to the SPH gradient only from particles of the same phase, and to renormalize the
result due to the missing support. In the air water hydrostatic case, we would recover approxi-
mately the same acceleration for both phases at the interface. This approach may lack of physical
background, as the pressure of the other phase does not influence directly the one the phase con-
sidered. The force generated by the continuous SPH interpolation in the air phase close to the

interface writes:

Fg .o (r) = —g/ w(r—r')adv’ (A.13)
QrNQe

For a perfectly plane interface, particles have the same acceleration at both sides, but the force,

which no longer depends on the density ratio, is not null.

FV-like derivation In FV formulations, a common approach is to split the pressure between

its hydrostatic and dynamical parts:

h
Palb = Py + p;|b (A.14)

Let us write d,; the vector directed along 7., whose norm equals the distance from « to the
interface in the direction r,,. We will write d,p; = AgpTap (Agp is the discrete version of the
function A introduced before). We then have two ways of writing the hydrostatic pressure at the
interface alb:

pg‘b = pZ + (ra|b — 'ra) . Vaph = pg —dgp - Vaph (A.15)

pZU, =pp + (rapp = 75) - Vi = pif + (rap — dap) - V" (A.16)

Using A.p, these expressions write:
Py = P = AavTap - Vap" (A.17)

pZ\b = + (1= Aap) Tap - Vp" (A.18)

Let us now write the dynamic part in an approximate way:

d h
DPajy = Palb — Pqp (A.19)
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We use a weighting coefficient ¢, to approximate in the same manner both terms of the right-

hand side:
pg\b = (1 - Cab)pa + CapPp — (]— - Cab)pg - cabpg (A-ZO)

Finally we compute the pressure at the interface, discretizing in two different ways the hydro-
static part:
Pajo = Pl + Py = (1= can)ply + Cavblyy + Pl (A21)
Paip = (1 — cap) (P! = AavTap - Vap™) + cap (0 + (1 = Aap) Ta - Vip™)
(A.22)
+(1 = Cap)Pa + cavPy — (1 — cap)p? — carp}!

Simplifying:
Papp = —(1 = cap)AapTap - Vap" + cap (1 = Aap) Tap - Vp" + (1 = cap)pa + cappp (A.23)

We now use the information we have on the hydrostatic pressure:

V" = pag (A.24)
To write the previous equation:
Palp = [Cab (1 = Aab) po — (1 = cap) Aabpal (Tab - g) + (1 — Cap)Pa + CabPo (A.25)
Taking cup = Agp:
Palp = (1 = Aab)Pa + AabPb — Aab (1 = Aap) (Pa — pb) (Tab - 9) (A.26)

Finally, using the FV-SPH transformation as detailed in Section 3.2.1.2:

VoGa{ps} = > papSap  with Sy = 2VaVy Vg, (A.27)
b

We finally get:

Gafp} =2 Vi [(1 = Aap)pa + Aavps — Aab (1 = Aab) (pa — o) (Tap - 9)] Vway, (A28
beF

This approach suffers however a main drawback: one has to compute the distance to the interface,
that needs to be well-defined. In absence of interface for the particle pair (a, b), one should take
A = 1/2. This issue does not appear in the FV framework as the cells are interacting only with
their direct neighbors. It seems that this approach cannot therefore be of practical use in SPH.

The force generated by the continuous SPH interpolation in the air phase close to the interface
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writes:

Fp o (r) = /Q . A (r,r")=1) [g- (r—7")] Vow (r —7") aV’ (A.29)

One can see that for A = 1/2, this term cancels out. However it happens only for particles
at symmetrical position with respect to the interface so that we are still applying a force. The

significant benefit is that this force does not depend on the density ratio.

A.2.3.2 Models of the literature

Several expressions of the pressure gradient have been used in the literature as shown in Chapter
2. The basic expressions usually fall within the reasoning presented in Section 2.2.1.2. We detail

below two different approaches.

Adverse phase ghost particles As presented in Section 2.2.2.5, Zhou et al. [401] suggested
to make a correction on neighboring pressures when evaluating the pressure gradient for air
particles following (2.123) with a case dependent parameter ¢, between 0 and 1 (depends on the
deformation of the interface and the compressibility). For the hydrostatic case they used 0.995
but when we tested the approach it seemed better to take ¢, = 1 as illustrated on Figure A.10 to
avoid any instability development. In this case one can see by detailing the numerical operator
that it roughly amounts to replace the the pressure of the particles of the adverse phase by p,. No
gap appeared between phases and the fluid remains at rest after the damping of small oscillations
of the velocity field within the whole domain. However, taking ¢, = 1 decouples the pressures

of each phase.

Inter-particle pressure Hu and Adams [171] described an operator relying on the inter-
particle pressure as shown in Section 2.2.2.6. One cannot perform the continuous SPH analysis
made for the other cases, but the discrete SPH interpolation can be studied. The force generated
in the air phase close to the interface writes approximately (volumes have been replaced by the

reference volume to simplify the computations):

2p
FB—)a (ra) = Ta Z ‘/va(zb — g — Z ‘/Og : rabvwab
P beF beF

+A D Vo 2ra — 1) (g Tawp) Ve

beFNQP
pP—p*
p+p”
right-hand side of the first line cancels out and only the second line remains. The force is different

where A =

is the Atwood number. From a continuous interpolation point of view, the

depending on the phase considered but the influence of the high density ratio is mitigated thanks

to the presence of the Atwood number.
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Figure A.10: Air-water hydrostatic pressure: simulation after 30 s with Zhou et al.’s approach.

A.2.4 Summary

We have highlighted in this section the numerical issues encountered due to the pressure gradient
computations, in single-fluid and multifluid simulations involving a high density ratio between
the phases. No completely satisfactory solution has been found in the literature nor in our devel-
opments. In order to limit the use of tuning parameters and keep antisymmetric forms in view of
momentum conservation, we chose to use in the present work the specific volume formulation
of Hu and Adams [170] followed by Ghaitanellis et al. [145]. It generally requires to introduce a
limited background pressure found by iterations: it should not destabilize too much the lighter
phase while maintaining a reduced gap between the phases. We have to keep in mind that the
solution for the pressure field is not free of noise nor oscillations. Considering different frame-
work like 6—SPH as in Section 2.2.2.8 or Riemann solvers as in Section 2.2.2.9 might be an answer

to the issues detailed here and will require further investigations.



Appendix B

The Riemann problem for open

boundaries

In this appendix, we aim at writing a proper numerical framework for open boundaries adapted

to the mixture model presented. Following the reasoning of Ferrand et al. [129], it consists in:

« Introducing additional terms in the continuity equation B.15 to avoid spurious density

variations and nonphysical behavior near open boundaries;

« Deriving a numerical scheme to get compatible velocity and pressure fields at open bound-
aries through the resolution of a partial one-dimensional Riemann problem, as done in the
SPH-ALE framework by [179].

We first focus on the single-fluid approach, remedying some approximations, and then extend it
to the mixture model formulation.

B.1 Continuity equation and open boundaries

The following derivation follows faithfully [129], but replacing the density p by the inverse of

the volume noted o, making some adjustments when needed. The volume update relies on the

interpolation of the inverse of the volume (2.113). From the continuity equation (B.15), one has:

dog, .
= —og,D7 B.1
i oaD{j} (B.1)
with:
Dg{j} = - E ‘912 (ja - Jb) Y Wap + E Os (ja - .75) -V Yas (BZ)

YaO

YaOa

@ be(FuV) seS
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Let us make the distinction between the Eulerian fluid velocity Jj, and the Lagrangian particle

velocity jp. Additional terms then appear in the divergence operator computation and lead to:

dO'a /0 . /0
= Z 9b .7b Vwab - 60 o — Z Us Ja .78) : V’Yas 75’7 / (B3)
bE FUV)

With the definitions:

So/o = Z 0, ( - Vway (B.4)
a veyl/o
Og .
571/0 = Z —_ (Js - Js) Vs (B.5)
s€81/0 “

where VI/9 and ST/© are respectively the sets of vertex particles and segments belonging to the

open boundaries. In a Lagrangian frame, (1.93) leads to:

dwab

dt = (ja —Jb) - Vwgp (B.6)
d . .
;;a = Z (Ja = Js) - Vas (B.7)
seS
If one makes the approximation:
d’}/a Os ,. .
dt ~ ;S ;a (Ja - .75) * Vs (B.8)
S

as volume variations remain limited, (B.3) now writes:

do 1d - g d, Oa « ;

@ _ -2 Opwyy | — doi/0 — Ze21e 4 Zasaifo B.9

G o di > " Opwap %a T +% Ya (B.9)
be(FUV)

Hence:

dog d% d i/o i/o
+ 0 = Z Opwap | — Va0 + 0407, (B.10)

dt o dt
be(FUV)

d
@ (’Yaaa) = Ya

The temporal integration of the continuity equation between ¢" and t"*! leads to:

tn+l tn+1

%502/0—}—/ 0407/° (B.11)
t

n

('Yaaa)n+1_('7aaa)n: Z (6n+1 lerl_ebwab) /t

be(FUV) "
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With the virtual displacement 57“2/ ? = §t (J — j"), the virtual variations terms write:

tn+1

/tn Yaboy/® = Ug;/o 02 (w (ri + ori/°) = w (722 (B.12)
/t:nJrl ga572/0 — % Z oy (V’)’as (TZS + 5rr§/0) Vs (7’25)> ) 5f,a§/o (B.13)

seS1/o

where 0rY/° = 5t (JI—47) and sri° = 6t (J' — 3. In the present work, the factor o was
approximated by o], consistently with the approximation (B.8). For an analytical computation

of vg:

tn+1

/tn a0 = Z ol (vas <r25 + 5r;'/0) — Yas (rZs)) (B.14)

seS1/0

B.2 Single-fluid approach

Compared to the usual framework in which such a derivation is made in finite volumes, e.g. [26],
the WCSPH framework introduces two assumptions that simplify the resolution of the Riemann
problem at boundaries. As discussed in 1.3.4, the flow is barotropic, hence pressure and den-
sity/volume are directly linked (i.e. an equality of pressures is tantamount to an equality of den-
sities in the single-fluid configuration). Moreover, the flow is assumed to be subsonic, as the
sound speed is chosen to be ten times the maximum velocity reached in the domain. However,
it may punctually happen that particles get some spurious behaviors that put the simulation out

of this theoretical framework.

B.2.1 Governing equations

In the bulk of the fluid, the following equations, written in non conservative form, are solved:

)
l+u-Vp:—pV'u (B.15)
ot
) 1 1
T Vu=—-Vp—-V-(uVu)+g (B.16)
ot P P

From (1.106) and (1.11), one gets:
Vp=cVp (B.17)
dp o 5 . .
where ¢ = ap = ¢ <%) . For the resolution at the open boundary, we will neglect the
viscous effects and the gravity to work with the hyperbolic system of Euler equations for which
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theoretical results are available [335]. The system writes:

@+U-Vp:—pv-u (B.18)
ot

2
% vu=—-Sv, (B.19)
ot P

B.2.2 1D Riemann problem formulation

We now project the governing equations (B.18) and (B.19) along the normal to the boundary
oriented towards the domain (n denotes the normal component and 7 the tangential component;

un, = u-n and ur = u - 7) and neglect all the tangential derivatives:

— + unfn + P = 0 (B.ZO)

ouy, Ou, ¢ 0p
Oou, Our

We can now put the non conservative system under the form:

0 ow
—W+B(W)— =0 B.23
ot + B )8n ( )
where:
p tup p 0
2
W=| 4y |andBW)=| < wu, 0 (B.24)
p
Ur 0 0 wu,

B.2.2.1 Eigenvalue problem

The matrix B has three distinct eigenvalues: A_; = u,, — ¢, A\g = u,, and Ay1 = uy, + ¢. The

corresponding right eigenvectors are:

—p 0 p

1= c andro=| o | andry1 =] ¢ (B.25)
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B.2.2.2 Riemann invariants

Following Smoller [335], we consider the system of n, equations:

)4
S TV £ (W) =0 (B.26)

In our case W = (p,up,u,). Let us consider N a neighborhood in R™" in which f,(W) is

smooth.

Definition B.2.1 Riemann invariant. A k-Riemann invariant is a smooth function w, : N — R
such that if W € N,
re(W)-Vw, (W) =0 (B.27)

Proposition B.2.1 There are (n — 1) k-Riemann invariants whose gradients are linearly indepen-
dent in N.

According to this proposition, we shall find two k-Riemann invariants for each of our three
eigenvalues k.
ow, ow,

+c
P Oup,

=0

« For A_j, the -1-Riemann invariants must satisfy —p

7':0

Ur

« For )\, the 0-Riemann invariants must satisfy

ow, n C@wr

op Ouy, =0

« For A1, the 1-Riemann invariants must satisfy p

Those k-Riemann invariants will be conserved as one crosses the associated eigenvalue. We aim

at finding linearly independent k-Riemann invariants.

Derivation of k-Riemann invariants We have initially the system:

oW

gW + B (W) B = 0 (B.28)

ot

The previous reasoning gave us the eigenvalues and eigenvectors that allow one to write:
B=PDP! (B.29)

We can then write:

P‘lgW + DP_la—W =

B.
oL an Y (B.30)

If we solve:

P l'dW =dZ «— Z = /P—1 (W) dWw (B.31)
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We can finally write:

0Z 0z 0
ot on
Here we have:
p Ao 0O —p p O
W=1 u, D = 0 A1 O P = c ¢ 0
Ur 0 0 Xo 0 01
Let us compute the inverse of P:
det (P) = —2pc
—p ¢ 0 c —p 0
'P= p ¢ 0 %adj(tp): — —p 0
0 01 0 0 —2pc
Hence:
—c p 0
1 1
-1 t
= P -
det (P) i(P) 2pc ¢c p 0
0 0 2pc
—c p 0 dp
plaw =L - Lz
- 2pc c p 0 duin 2c
0 0 2pc du,
The corresponding system is:
—cdp+ pdu, = pdz —%dp—l—dun =dz

cdp+pdu, =pdze %dp—l—dun:dzg

2pc dur = p dzs dur = i dzs

(B.32)

(B.33)

(B.34)

(B.35)

(B.36)

(B.37)

(B.38)
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Table B.1: k-Riemann invariants for the single-fluid formulation.

A A1 Ao
Ur v v X
U+ (p) X/
un —tr(p) X

If we work differently on each equation (dz; remains unchanged for the first two equations, the

third one is multiplied by 2c¢), one gets:

dz1 = —%dp + duy,
dzp = £dp + duy, (B.39)

dz3 = du

We can now integrate these relations and assign the resulting invariants to their respective eigen-

values in Table B.1 where 1, is defined through its differential:
dip, = md,o (B.40)
P
Depending on the polytropic index, it therefore writes:

£—1
260

¥r (p) = ( i )2 if € > 1and ¢, (p) = coIn (/i)) ife=1 (B.41)

£€—1\po

As expected, one has two invariants for each eigenvalue.

B.2.2.3 Rankine Hugoniot relations

Using the system in conservative form (B.43) and (B.44), one can identify a set of conservative

variables:

Y= pu, (B.42)

pur
The conservative form of the set of equations used to find the Rankine-Hugoniot relations writes:

ap B
5+ V- (pu) =0 (B.43)

ag%JrV-(prLpu@u):O (B.44)
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A1
/@r state
(a) Inlet (b) Outlet

Figure B.1: Riemann problems configurations [129].

In presence of a shock wave, one has therefore the jump conditions between left ¢ and right r
sides of the shock:

Se (pf - pr) = PelUnyg — Prin,yr (B.45)
Sc (pfun,f - prun,r) =pe+ Péui,z —Pr — pru%,r (B'46)
Se (pZUT,E - pTUT,’I’) = PeUnpUr e — PrUnrUryr (B.47)

where S, is the speed of the shock that is now taken into account compared to [129]. If py # p,,

one can write this system differently as:

__ petnyg — Prlnyr

Se (B.438)
Pe — Pr
pepr (Une — unz)* = (pe = pr) (pe — pr) (B.49)
If up, ¢ # Up,r, (B.47) can be simplified using (B.45) to get:
Ur e = Ury (B'SO)

B.2.3 1D Riemann problem resolution

We are now equipped with all the tools to solve the 1D Riemann problem we are studying at the
boundary and therefore define compatible pressure and velocity fields. We have shown that three
characteristic waves (A_1, Ao, A+1) model discontinuities between the exterior state (boundary
condition to impose) and the interior state (deduced from bulk fields, by an SPH interpolation in
our numerical framework) as illustrated on Figure B.1. Let us have a closer look at each of the

characteristic waves:

« As the flow is subsonic, A_; < 0 so that the associated wave is outside the domain. We
will consider it as a ghost wave so that the data of the exterior state W, are assumed

equal to the data W7 of state 1.
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+ )\ is a contact discontinuity. From the associated Riemann invariants u,, +1, and u,, — ¥,
we deduce that u,1 = up2 and p1 = p2 (equivalently p; = pa due to the barotropic

assumption). There might be a jump of u.

+ As the flow is subsonic Ay; > 0. This characteristic wave can belong to two kinds of

discontinuity:

— Expansion wave: characteristics are diverging, the states are connected through a

smooth transition and the Riemann invariant holds across the characteristic wave:
Up,2 + C (p2) < Up,int +C (pznt) (B.51)

Un,2 — (o (PQ) = Un,int — Py (pznt) (B.52)

— Shock wave: characteristics are converging and the Rankine Hugoniot relations (B.48)
and (B.49) apply:
Un,2 +c (/?2) > un,int +c (pmt) (B'53)

P2Pint (Un,2 - un7int)2 = (p2 - pint) (PQ - Pmt) (B.54)

For the three types of discontinuity, we have u, 2 = ur ;,+ according to the previous devel-
opments (Riemann invariant for contact discontinuity or expansion wave, Rankine Hugo-
niot relation (B.50) for shock).

Depending on the sign of Ay, positive or negative, the state at the boundary will be respectively
state 1 or state 2 as shown on Figures B.1a and B.1b. However, under our set of assumptions, if we
except the tangential discontinuity addressed further, the data of these two states are equivalent
so that no distinction needs to be made. Moreover, we saw that considering A\_; as a ghost wave,
data of the states 1 and exterior are equal. Hence values at state 2 can be considered as values of
the exterior state. In a nutshell, the interior state is known from SPH interpolation of the fields
in the bulk of the fluid. According to what the user wants to impose at the boundary, either the
external pressure/density or velocity is known and the above relations allow one to deduce the
unknown quantity, velocity or pressure/density respectively. The choice of relation will depend
on which of the relations (B.51) or (B.53) is fulfilled. For the tangential velocities, in the case of
an inlet, they need to be defined by the user. In the case of an outlet, the tangential velocity is

determined by the interior state.

B.2.4 Numerical resolution

For the shock case, according to (B.49), one can see that the velocity can easily be deduced from

the imposed density (we recall that exterior states and state 2 are equal, except for the tangential
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velocities) through:

U ext = Un int + \/(peact - pint) (peact — Pmt) (B.55)
PextPint

However, if the velocity is imposed, the relation on the unknown density is implicit and would
require iterations to solve. We assume here that the density variation remains small (consistent
with the weakly compressible framework in which we work) so that we linearize the relation
through a small variation of the density around py and deduce the corresponding density (let us

recall that density and pressure are linked through the state law).

Derivation of a first guess Noting 7ezt = Pest/po and rine = pint/po, the Rankine Hugoniot

relation becomes:

TintText PO (Un,emt - Un,int)2 = (react - Tz'nt) (peact - pint) (B.56)
pocs ( ¢
pezt - é. (rext - 1) +pB (B57)

As pint is deduced from p;y; through the inverse state law, we can also write:

Poc (¢
Pint = ¢ (Tint - 1) +pB (B.58)

Hence, noting By, = (un ezt — Un,int)2 /Cg:
57“mt7“Bu = (re:ct - rint) (Tgxt - Tfm) (B'59)
Noting X = 7ept/Tint = pe:pt/ Pint:
1-€y _ _ §_
EByr; ;X =(X—-1)(X* -1 (B.60)

1—,
int

Let us approximate X = 1 + € with ¢ < 1 and write K, = B,r

e —Ke—K,.=0 (B.61)
K, +/K?+ 4K,
€= 5 (B.62)
Hence pert = (1 + %M)pmt. This solution is exact if £ = 1.

Iterative approach The numerical tests showed that the first guess described above was al-

ready near the solution. One can iterate to get closer to the solution with the bisection or New-
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ton’s method. Let us define the function f; such that:

F(X) = (X — 1) <X5 - 1) KX (B.63)
HX)=(E+D) X —eX5 —¢K, —1 (B.64)
J(X) =X E+ ) X - €+ 1] (B.65)

In the shock case, X > 1. f/(X) > 0 for X € [1,00[. Hence f’ is monotonically increasing

for X > 1. f/(1) = —£K, < 0 in the shock case. Hence f/ is changing sign on the domain of

interest: f is decreasing and then increasing. f;(1) = —{K, < 0 and f;(X) vy +o00. Hence
—+o00

fi(X) has one solution in [1, oo[.

B.2.4.1 Imposed pressure

if pegt < pint then

Expansion wave

Un,ext = Un,int + Vr (Pext) — Ur (Pint)
else

Shock wave

Un,ext = Un,int + \/(peact - pint) (peact - ,Oint) / (,Oea:tpint)
end if

B.2.4.2 Imposed velocity

if Uy ext < Upint then

Expansion wave

Uy (Peat) = Ur (Pint) + Un,eat — Un,int — Peat
else

Shock wave

Tint = Pint/Po

B, = (Un,e:(;t - Un,mt)2 /C%

K, = By},

peat = (1 n (KT +JEZ T 4Kr) /2> pim

end if
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B.3 Mixture model approach

B.3.1 Governing equations

The numerical implementation described in Chapter 3 is tantamount to solving the following

system, once gravity and viscosity effects are neglected:

Jdo . .
Oa
s +7-Va=-V-(apv") (B.67)
a3 . . 1 oo T
EjLJ.VJ:_;Vp—V(an ®v") (B.68)

We chose to work here with « that is the quantity we want to impose in practice (and that appears
in the other equations, e.g. in the state equation), and not V. For the pressure gradient, we use

the state equation (1.106) combined with the sound speed written following (1.105):

a( ~0)2 B(~8)2
oo e () + ﬁPB(C ) (B.69)
ap® + Bp
Without restriction on the phase sound speeds’, the gradient of pressure writes:
o (a2 B(.B)\2
Vp = ap (C ) +5P (C ) Vo + <pa (ca)Q _pﬁ(cﬁ)2> <U _ 1) Vo (B.73)
oo g0

With the definition of the local sound speed (1.107) and using the link between o and p (3.35),

the pressure force writes:

2

ll)Vp = %VJ + ; (po‘ (c™)? — pﬁ(cB)Q) < - 1) Va (B.74)

'Let us underline that for multifluid computations, Colagrossi and Landrini [86] suggested to chose the sound
speeds following:

p® (c)? = p7()? (B.70)
Under this assumption, the equation of state simplifies (no more dependence on the volume fraction):
p=p" () (i - 1) (B.71)
o0

Colagrossi’s assumption deletes the dependence of the pressure with a.. Under the constant speed of sound hypothesis,
we rather get:

0o

p=po(c*)’ (i - 1> (B.72)
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B.3.2 1D Riemann problem formulation

We now project the governing equations (B.18) and (B.19) along the normal to the boundary
oriented towards the domain (n denotes the normal component and 7 the tangential component;

jn=7-mnandj, =j -T;v, =v" -nandv] = v" - T) and neglect all the tangential derivatives:

Oo . Oo %

Ja . Oa 0 ,
m —I-]n% =% (afv") (B.76)

Ojn . Ojn <00 L[ o a2 g\ (T _\Ox__9 oy

ot +‘7n8n+08n+p<p () P (C)><00 1> on Gn(aﬁvnv”) (B.77)
9 O _ D, .
ot I an = " ap (@Pvvr) (B.78)

We can now put the non conservative system under the form:

0 oW
~W+B(W)—-—=0 B.79
W +BW) - (B.79)
where:
o In 0 o 0
o 0 jnt+A- 0 0
W = and B (W) = (B.80)
n S Bt Dy Gu O
Jr 0 E, 0 Jn
where:
a, = 2000) g 00PN g O (g
@ @ @ (B.81)
_1( ar.aN2 _ B(.B)\2 o _
Dy =1 () = 2 (2) (& -1)
B.3.2.1 Eigenvalue problem
Let us search for the eigenvalues of this matrix.
Jn — Ak 0 o 0
0 Jn +Ar — Mg 0 0
|1B(W) — Apl| = (B.82)
¢ B,+D, jn—X 0
0 ET 0 In — )\k




258 APPENDIX B: THE RIEMANN PROBLEM FOR OPEN BOUNDARIES

This determinant writes:
’B (W) - /\kI| = (]n - Ak) (Jn + Ar - )‘k) (]n — g+ C) (]n — Ak — C) (B~83)

The eigenvalues are therefore j,, j, £ ¢ and j, + A,. We will from now on focus on the ho-

mogeneous problem (i.e. without relative velocities: A, = B, = E, = 0). The eigen problem

becomes:
Jn — Ak 0 o 0
0 In — Ak 0 0
B(W) -\ = (B.84)
¢ Dr jon—X. 0
0 0 0 Jn — Ak

There are three eigenvalues: A\g = j,, (of multiplicity 2) and A11 = j,, =c. Two right eigenvectors

are then associated to Ag:

0 —oD,
0 c?
0,1 = and 02 = (B.85)
0 0
1 0

The right eigenvectors associated to A4 are:

o —0
0 0
ry1 = and rT—1= (B.86)
c c
0 0

B.3.2.2 Riemann invariants

Following [335], we shall find three k-Riemann invariants for each of the four eigenvalues k.

ow ow
« For \_y, the -1-Riemann invariants must satisfy —o—— + c—— = 0
do Ojn
. . . . Wy ow,
« For )\g, the 0-Riemann invariants must satisfy —— = 0 and =0
0jr da
ow, ow,

—0
o0 i,

« For A1, the 1-Riemann invariants must satisfy o
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We aim at finding linearly independent Riemann invariants.
Derivation of Riemann invariants We have:
o A1 O 0O O —0 o —oD,
a 0 A1 O O 0 0 ¢
W = D = P = (B.87)
In 0 0 X O c c 0
Jr 0 0 0 Xo 0 0 0
Let us compute the inverse of P:
det (P) = 20¢? (B.88)
—0 0 ¢ O - —ocD, oc? 0
o 0 ¢ O 3 ocD,  oc? 0
tp = — adj ("P) = (B.89)
—oD, ¢ 0 0 0 20¢c 0 O
0 0 01 0 0 0 20c
-2 —oD, oc 0
2
1 1 c oD, oc O
-1 t
= j ( P) = (B.90)
P 20c2
det (P) oc 0 95 0 0
0 0 0 20
—* —oD, oc 0 do
1 2 oD, oc 0 do 1
P lqw = =—dZ (B.91)
20c? ‘ 2¢
0 20 0 0 djn,
0 0 0 20c? djs
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The corresponding system is:

fcdaf"?r do+ o djy, = o dz; fﬁdaf%da+djn:dzl
cd0+a—?’"da+adjn:ad22 §do+%da+djn:d22
— (B.92)
2% da = o dzz da = § dz3
\ 20cdjr = 0 dzy djr = i dzy

If we work differently on each equation (dz; remains unchanged for the first two equations, the

third and the fourth one are multiplied by 2c), one gets:

dz1 = —£do — 2= da + djy,
dzo = £do + 2= da + dj,

(B.93)
dzg = do

dzy = dj;

We can now integrate these relations and assign the resulting invariants to their respective eigen-
values in Table B.2. As expected, one has three invariants 