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Introduction

The interaction between light and a collection of particles (atoms or molecules) forming
the matter has been, and still is, an attractive field in research. The concept of refractive
index for instance, a bulk property of dieletrics, can be tracked back to the 11th
century [Rashed, 1990]. A variety of everyday life scenarios can be explained by the
scattering of light from polarizable object: from the color of the sky to the opacity
of the milk. The advent of quantum theory in the 20th century, and more precisely
the discovery of the internal structure of atoms [Foot, 2005], has induced a renewed
of interest for the study of light-matter interactions. The theoretical description of
single atom and dilute samples of atoms achieved an absolutely remarkable accuracy
[Huntemann et al., 2016]. However, increasing the number of atoms in a given volume
add a new ingredient to the behavior of the system [Anderson, 1972]. The emitters can
start interacting with each others via dipole-dipole interactions and then they respond
collectively rather than just individually. In its full generality, the problem of near
resonant light interacting with atoms has all the complexity of a many body problem,
the system being quantum, open, and driven by light. In this introduction, we try to
explain why the study of dipole-dipole interactions in dense ensemble may be important
for a wide variety of technological applications in a not so distant future, and also that
if properly tailored, these interactions can be a key to some interesting light-matter
interfaces devices. Then, we briefly summarize the work performed at the Institut
d’Optique, in the group of Antoine Browaeys, related to dipole-dipole interactions.

Light-matter interactions: motivations

The accurate description of the behavior of dense sample is not only interesting from the
fundamental aspect but also for a wide range of technological applications. In nanopho-
tonics, the light interacts with emitters that are confined in volume of the order of λ3,
hence an accurate comprehension of the system response with density may be of crucial
importance in order to circumvent a possible departure from their expected behavior.
In fact, it has been shown that the emissivity of a system composed of many antennas
placed in a small volume can be altered by dipole-dipole interactions [Huang et al., 2010].

Another field that might soon benefit from a fine understanding of the interaction
between light and a dense sample is the one of atomic clocks, the new generation of
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Introduction

which being optical. Initially, with the consideration of black body radiation, special and
general relativity, standard atomic clocks achieved an uncertainty as low as 1× 10−16.
Their successive development, making them all optical, enable them to achieve nowadays
an absolute frequency uncertainty of 2.5× 10−19 [Marti et al., 2018], which means the
clock will deviates by less than one second in 15 billion years, more than the age of
the universe. With such a high resolution, the clock has potential applications that are
beyond simply marking time. Using light to probe the resonance of the atoms, the clock
could therefore be used as an altimeter by detecting slight changes in the gravity, or
explore quantum correlations between atoms, and constantly pushing back the validity
boundary of the equivalence principle of Einstein’s general relativity theory.

It has been recognized recently that light scattering from atom-based sensors can
introduce unwanted energy level shifts ([Chang et al., 2004],[Campbell et al., 2017]).
These shifts can generate biases in the reference frequency frame of the clock that
reach the same order of magnitude than their actual relative precision. Not under-
standing quantitatively the way light interacts with matter in dense regime might be
one of the limitations that would prevent us from further improving optical atomic clocks.

Not only being a limitation, the dipole-dipole interactions can be an asset if manipu-
lated correctly. Several works suggest ways to use these interactions to create light-matter
interfaces: [Bettles et al., 2015a], [Shahmoon et al., 2017a], [Perczel et al., 2017]. By
placing the atoms in specific lattice configurations, the field radiated by all the emitters
can interact destructively, leading to absolutely no transmission of light for instance.
We would therefore create a perfect mirror made of a single 2D layer of atoms.

Dipole-dipole interactions at
Laboratoire Charles Fabry: a brief
history

The study of light interacting with dense laser cooled sample of atoms has been initi-
ated around 2012 in the Quantum Optics group at Laboratoire Charles Fabry. To
study atom-light interaction in a pristine setting, two requirements are necessary.
First, to isolate the effect of the interactions from other environments effects and,
second, to be able to change the amount of matter into a constant size volume.
Cold atoms fulfilled both requirements and thus provides an ideal platform to tackle
light-matter interactions problems. In fact, they have already shown their outstand-
ing performance in many experiments related to this field (a none exhaustive list
of works includes [Chalony et al., 2011], [Kwong et al., 2014], [Bourgain et al., 2013],
[Bender et al., 2010], [Bienaimé et al., 2010], [Chabé et al., 2014], [Aljunid et al., 2009]).
For the dipole-dipole interactions to start modifying the response of the system with

2



respect to the non interacting case, one possibility is to reach n/k3 ≈ 1, with k = 2π/λ
the wavevector, or similarly the average distance between atoms in the trap to be
on the order of λ, the wavelength associated with the addressed transition. Given
the typical temperature of our atoms, the trap characteristics and the fact that we
probe the D2 line of 87Rb, λ = 780 nm, the density associated with a mean distance
between atoms of λ is ∼ 1014 cm−3. They have designed a system where atoms are
trapped in free space thanks to high numerical aperture aspheric lens inside a vacuum
chamber. The aspheric lens is tightly focusing a far-off resonance, red-detuned laser
beam which forms a conservative potential in which atoms with a thermal energy lower
than the potential barrier can be trapped. This apparatus is both suitable for single
atom manipulation [Sortais et al., 2007] and for cloud containing ∼100 atoms. Once
the atoms are trapped, the basic idea consists in shining onto the cloud near resonant
light and measure the amount of scattered light in a given direction.

It must be pointed out that the approach chosen in our group, small and dense cloud
of atoms, is different from other group studying the effect of the density on the way a
sample of atoms scatters light.

• For instance, the groups of Havey [Roof et al., 2016], Kaiser [Araújo et al., 2016]
and Wilkowski [Kwong et al., 2015] also use cold atoms but with dilute samples.
The low density n/k3 � 1 is compensated by a large optical thickness OD, the
transmission T being related to it through the relation T = e−OD. In such a case,
the optical thickness is shown to govern most properties of the system.

• Another approach, used in the group of Charles Adams [Keaveney et al., 2012],
consists in studying hot gaseous vapours with very large densities n/k3 � 1 but
low optical thickness. This approach has been fruitful recently with a collabo-
ration between our group and the one of Charles Adams: [Peyrot et al., 2018],
[Peyrot et al., 2019a], [Peyrot et al., 2019b], [Peyrot et al., 2019c].

The theoretical description available to model our systems are based on two different
point of view. The first one is a macroscopic approach describing the full sample
by a single quantity, the refractive index. It is the approach used in the group of
Charles Adams in [Keaveney et al., 2012] where they measured a strong shift of the
resonance when density is increased, compatible with the so-called Lorentz-Lorenz
formula found in various textbook theory of refractive indices as [Feynman et al., 1965].
The second description is a microscopic view in which all characteristics of the sample
constituents, including their interactions, have to be known. In our case, assuming frozen
distribution, this reduces to the individual position of each atoms. Our group have
measured the scattered light emitted by the cloud at 90◦ from the propagation direction
of the probe [Pellegrino et al., 2014], but the measured shifts were not significant in
comparison with the ones measured in the group of Charles Adams. In order to
understand this puzzling fact, they also measured the emitted light in the propagation

3



Introduction

axis of the probe [Jennewein et al., 2016]. For this second measurement, they tried a
macroscopic and a microscopic approach to try to better understand the results but
they only obtained qualitative agreements. To reconcile theory with experimental data,
they wanted to address the validity of the underlying hypothesis of the theoretical
descriptions. This was the status when I arrived in the group in 2016.

Outline of the thesis

The manuscript presented here is organized as follows:

• The first chapter 1 is a brief overview of some general light-matter interactions
backgrounds. It is the opportunity to introduce the experimental measurement of
some basic quantities relevant for the study of dipole-dipole interactions.

• In chapter 2, I will remind the previous results of our group concerning the
measurement of scattered light by a cigar shaped cloud of cold 87Rb atoms probed
near resonance. Then I will present the latest result obtained at the very beginning
of my PhD: the coherent transmission of light through a cold sample of two-level
atoms. The goal of this measurement was to get rid of the complex internal
structure of the atoms and see if a better agreement with theory can be achieved in
this situation. The slight improvement obtained motivates us to investigate others
hypothesis, as for instance the role of the atomic motion in the way the cloud
scatters light. The end of the chapter is dedicated to the introduction of a new
model, based on optical Bloch equations, to study dipole-dipole interactions but
not restricted to the weak driving limit, opening the road for a future experiment
in this regime.

• After these conclusions, our group has decided to modify the experimental appara-
tus, both to solve some experimental problems that were present in the previous
version and to add a new rather unique ingredient: a second high resolution
optical axis. The second axis, not only being able to measure directly parameters
of the cloud that were so far deduce from other quantities, will provide us the
possibility to explore new regime of densities and new geometries. In chapter 3,
I will present the challenging alignment of two confocal axes composed of high
numerical aperture aspheric lenses. I will also present the characterization tests
that have been performed and we will try to understand them. At the end of the
chapter, I will show the new tools that are, or will soon be, implemented on the
apparatus.

• The last chapter 4 starts with the theoretical investigation of the propagation of
an excitation along a 1D chain of atoms. As our system is able to produce and
observe 1D chain thanks to the second axis of aspheric lenses, we want to make
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sure that the effect presented in [Sutherland and Robicheaux, 2016], namely the
enhancement of dipole-dipole interactions through the constructive interference
of the fields radiated by the atoms in a one dimensional structure, is robust with
respect to experimental imperfections before demonstrating it experimentally. This
study is followed by a second one where I have tried to implement an algorithm that
would infer the position of the atoms along the chain based on their fluorescence
image. Even though the approach is not new, the idea was to investigate the
feasibility of such a task given our experimental parameters.

In conclusion, I summarize the whole thesis and try to give a taste of the possible future
experiments.
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cold atoms
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In this chapter, after a brief overview of the main theoretical backgrounds on light-
matter interaction, I will present how we prepare a dense cloud of cold atoms and how
we experimentally measure the relevant quantities that we need to describe it.
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Chapter 1. Production of a dense cloud of cold atoms

1.1 General background on atom-light
interactions

We start this section by recalling the expression of some of the standard physical
quantities used when dealing with light-matter interaction. All the results of this
subsection are standard textbook results. The references that have been particularly
used here are: [Dalibard, 2013] and [Grynberg et al., 2010]. Then, I will present how we
experimentally prepare a dense cloud of cold Rubidium 87 atoms in a tightly focused
optical dipole trap from a Magneto-Optical Trap (MOT). Finally, the experimental
measurement of the relevant physical quantities used to characterize our system will be
detailed.

1.1.1 Trapping potential

|g〉

Γ |e〉

ωL

∆

ω0

Let us consider a two-level system, with the two states denoted
respectively |g〉 for ground and |e〉 for excited state. The energy
of the excited state is ~ω0 (we have chosen the energy of the
ground state to be 0) and we note Γ its natural linewidth. The
interaction of this system with an electromagnetic field, in the
dipolar approximation, is described by the Hamiltonian

HI = −D · EL,

where D = d |e〉 〈g|+ d |g〉 〈e| is the dipole operator, d is the
dipole moment of the atom, assumed to be real here, and EL

is the laser field expressed by

EL = E0 cos(ωLt+ k · r)êL.

The detuning of the laser with respect to the atomic transition is denoted ∆ = ωL − ω0.
The interaction of a polarizable system with an electromagnetic field is composed of
two parts: a radiative pressure force, responsible for the cooling of the atom, and a
trapping force. This force derives from a potential Udip which, under the rotating wave
approximation which implies that the frequency of the electromagnetic wave is tuned
close to an atomic resonance, ∆� ω0, and considering that the spontaneous emission is
the only relaxation process in the system, is expressed as

Udip =
~∆

2
ln(1 + s), (1.1)

where we have introduced the saturation parameter s defined by

s =
Ω2/2

∆2 + Γ2/4
,
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1.1. General background on atom-light interactions

and the Rabi frequency

Ω = −(d · êL)E0

~
.

In the limit of low saturation s� 1, we expand the logarithm and get

Udip ≈
~∆

2
s =

~∆

2

Ω2/2

∆2 + Γ2/4
. (1.2)

If we suppose that the linewidth is small compared to the detuning, which is the case in
our experiment because Γ = 2π × 6 MHz for 87Rb and ∆ = 2π × 65 THz for a trapping
wavelength around 940 nm, we obtain

Udip =
~Ω2

4∆
. (1.3)

Resonant approximation - Case of 87Rb

In the previous section, we have recalled the expression of the trapping potential
in the case of a two-level system under several assumptions. Here, we will give the
same expression but considering the multi-level structure of Rubidium, restraining our
analysis to the D1 and D2 lines.

Let us consider an atomic structure with one ground state |g〉 and Ne excited states
denoted |e1〉 , |e2〉 , · · · , |ej〉 , · · · , |eNe〉. The expression of the trapping potential in this
multi-level atomic structure is simply a sum over each one of these excited states

Udip =

Ne∑

j=1

~Ω2
gej

4∆gej

. (1.4)

where ∆gej = ωL − ωgej is the detuning of the laser with respect to the transition
|g〉 → |ej〉. Using the Wigner-Eckart theorem and the relation between dgej and
ΓJJ ′ , (1.4) becomes

Udip =

Ne∑

j={J ′,F ′,mF ′}

~Γ2
JJ ′

8

I

IJJ
′

sat

2J ′ + 1

2J + 1

∣∣∣CJ,J ′

F,mF ,F ′,mF ′

∣∣∣
2

∆gej

, (1.5)

where CJ,J ′

F,mF ,F ′,mF ′
is the Clebsh-Gordan coefficient associated with the transition

|J, F,mF 〉 → |J ′, F ′,mF ′〉 and IJJ
′

sat = 2π2~cΓ
3λ3
JJ′

is the saturation intensity. We are only
summing over J ′,F ′ and mF ′ as we are considering the case of a single ground state |g〉,
so J ,F and mF are fixed.
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Chapter 1. Production of a dense cloud of cold atoms

Let us now focus on the 87Rb case. We are considering only the D1 and D2 lines
contributions. For that matter, we split the sum into two components: the one corre-
sponding to transitions on the D1 line and the second for the D2 line. We take the
approximation a step further noticing that for 87Rb, ΓD1 = 2π × 5.7 MHz is close to
ΓD2 = 2π × 6.0 MHz. It is also true for ID1

sat and ID2
sat . Moreover, the detuning between

the laser and one of the hyperfine excited state is similar to the one between the laser
and the fine structure of this state (because the hyperfine splitting of the D1 and D2
lines is small compared to the fine splitting). We then rename ∆gej = ∆1 for all the
excited states in 5P1/2 and ∆gek = ∆2 for all the excited states in 5P3/2.

For a π polarized laser electric field, the Clebsch Gordan coefficients associated
with the transition

∣∣5S1/2, F = 2,mF

〉
to (5P1/2) or (5P3/2) are listed in Appendix B.

Replacing those coefficients in (1.5) gives the trap depth seen by a 87Rb in state |g〉 =∣∣5S1/2, F = 2,mF

〉
when a π polarized laser beam is shinned onto it (1.6). Remarkably,

the light-shift is independent of the mF state when the trapping beam is π polarized.
That is the reason why we have used a π polarized laser beam for the trapping potential
in our experiment.

Udip =
~Γ2

8

I

Isat

(
1

3∆1

+
2

3∆2

)
. (1.6)

For a more detailed investigation of the light shift experienced by a 87Rb atom considering
all the possible polarizations of the trapping light, see [Darquié, 2005].

Full expression - Case of 87Rb

Expression (1.6) has been obtained under the rotating wave approximation. Indeed,
it is derived from the stationary solutions of the optical Bloch equations that has been
obtained within this approximation. The expression of the trapping potential in presence
of anti-resonant terms is

Udip =

Ne∑

j=1

~Ω2
gej

4∆−gej
−

Ne∑

j=1

~Ω2
gej

4∆+
gej

, (1.7)

which, for 87Rb is specifically

Udip =
~Γ2

8

I

Isat

(
1

3∆−1
− 1

3∆+
1

+
2

3∆−2
− 2

3∆+
2

)
. (1.8)

In expression (1.8), ∆−1 = ωL−ω1 is the resonant detuning between the laser and the D1
transition, whereas ∆+

1 = ωL + ω1 is its anti-resonant counterpart. The same definitions
hold for ∆−2 and ∆+

2 on the D2 line. This precision may seem of minor importance, and in
practice it is for most applications, but it worth mentioning it because the anti-resonant
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1.1. General background on atom-light interactions

terms are of non negligible importance for our system. In fact, for a trapping wavelength
of 940 nm and a transition wavelength of 780 nm, the anti-resonant terms represent a
correction close to 10% with respect to the result provided by the expression without
anti-resonant terms. It is the expression that we will consider throughout the manuscript
to compute the trap depth seen by the atoms, either experimentally or theoretically.

1.1.2 Scattering rate

Another useful quantity when dealing with atoms inside a dipole trap is the scattering
rate. It corresponds to the number of photons that the atom is emitting per second due
to the absorption of the ones of the trapping light. The scattering rate induced by the
trapping light R, applied to the structure of 87Rb, is

R =
Γ3

8

I

Isat

∣∣∣∣
1

3∆2
1

+
2

3∆2
2

∣∣∣∣. (1.9)

Once again, (1.9) is valid for an atom in any mF state of (5S1/2, F = 2) manifold and
for a π polarized trapping light. The expression only accounts for resonant terms and
assumes the detuning to be large compared to the natural linewidth Γ and ∆

Γ
� I

Isat
.

Rayleigh scattering and Raman scattering

0−1−2 +1 +2

5P1/2

5P3/2

5S1/2

mF

∆1

∆2

Figure 1.1.: Raman and Rayleigh scatter-
ing examples for, respectively, an atom ini-
tially in

∣∣5S1/2, F = 1,mF = −1
〉
(red) and in∣∣5S1/2, F = 1,mF = +1

〉
(blue).

The scattering rate is the sum of two
contributions: the Rayleigh scattering,
denoted RRayleigh, for which an atom
does not change its internal state, and
the Raman scattering, denoted RRaman,
for which the atom will change its
internal state, as represented in Fig-
ure 1.1. One can derive the expres-
sion of those two contributions and will
get [Ozeri et al., 2005]

RRayleigh =
Γ3I

8Isat
× 1

9

∣∣∣∣
∆2 + 2∆1

∆1∆2

∣∣∣∣
2

,

and

RRaman =
Γ3I

8Isat
× 2

9

∣∣∣∣
∆2 −∆1

∆1∆2

∣∣∣∣
2

.

This two expressions sum to the total
scattering rate (1.9)

R = RRayleigh +RRaman.
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Chapter 1. Production of a dense cloud of cold atoms

Our trapping wavelength, initially at 850 nm, has been changed to 940 nm in order
to minimize Raman scattering. In fact, if we want to prepare our sample in a specific
mF state of the (5S1/2) with optical pumping, we do not want the Raman scattering
induced by the dipole trap to destroy our preparation. A numerical application shows
that the ratio of the Raman scattering between 850 and 940 nm is

RRaman(λ = 850 nm)

RRaman(λ = 940 nm)
≈ 24,

thus killing drastically Raman scattering. In principle, one could minimize scattering
processes even more but would need a lot of laser power to trap an atom as the trap
depth scale as I/∆. For a waist of the trap beam around 1.2 µm and a power of 12 mW,
at 940 nm, the Raman scattering rate is around 4.5× 10−2 ph.s−1, which is sufficiently
low to be neglected. As a comparison, for the same trap depth at 850 nm, U = 1.0 mK,
P = 5.2 mW, the Raman scattering rate is 4.7× 10−1 ph.s−1, more than 10 times bigger.

1.1.3 Cloud extensions and oscillation frequencies

√
2w0 w0

w(z)

z

zR

In this work, we describe the trapping
beam and the probing beam, respectively
at 940 nm and 780 nm, by Gaussian beams.
The Gaussian beam is a transverse electric
mode (TEM) whose electric field ampli-
tude is a solution of the paraxial Helmholtz
equation. Assuming a polarization in the
x -direction and a propagation along the z -
direction, the expression of the field, under

the paraxial approximation, is

E(r, z) = E0
w0

w(z)
exp

( −r2

w(z)2

)
exp

(
−ikz − ik r2

2R(z)
+ iψ(z)

)
êx, (1.10)

where r is the radial distance from the center axis of the beam, z is the axial distance
from the beam’s focus, k = 2π/λ, E0 is the electric field amplitude at the origin. The
waist w, the wavefront radius of curvature R and the Gouy phase ψ are respectively
defined by

w(z) = w0

√
1 +

(
z

zR

)2

, R(z) = z

[
1 +

(zR
z

)2
]
, ψ(z) = arctan

(
z

zR

)
,

where w0 is the radius of the beam at the origin, zR = πw2
0/λ is called the Rayleigh

range and corresponds to the distance from the focus point where the beam is
√

2 larger
than at the focus.
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1.2. Preparation of a dense cloud of cold atoms

Using the Gaussian expression for the trapping beam enables us to easily extract a
confinement potential of the light on the atoms, used in the coupled-dipoles simulations
to draw a random initial configuration of the atoms in the cloud. Indeed, by expanding
the Gaussian beam intensity up to second order in coordinates variables, one extracts
the oscillations frequencies of the atoms inside the trapping potential. First, let us
compute the intensity of the Gaussian beam

I(r, z) =
I0

1 + (z/zR )2 exp

(
− 2r2

w(z)2

)
, (1.11)

where we have used the relations (1.10), I0 = 1
2
ε0c|E|2 and ε0µ0c

2 = 1. The quantity I0

is related to the power of the beam P through the expression I0 = 2P
πw2

0
. The trapping

potential U follows the distribution of intensity

U(r, z) = − U0

1 + (z/zR )2 exp

(
− 2r2

w(z)2

)
, (1.12)

where we choose U0 > 0. Expanding (1.12) to second order in coordinates and identifying
terms with the ones in the expression of the harmonic potential, we obtain the expressions
of the transverse and longitudinal oscillations frequencies of a particle of mass m in the
trap

ωr =

√
4U0

mw2
0

ωz =

√
2U0

mz2
R
. (1.13)

Once the oscillations frequencies obtained, the equipartition theorem enables to link the
spatial extension of the cloud in the trap with the temperature. Finally, one gets

σr =

√
kBT

mω2
r

σz =

√
kBT

mω2
z

,

and then, with (1.13)

σr = w0

√
kBT

4U0

σz = zR

√
kBT

2U0

. (1.14)

1.2 Preparation of a dense cloud of
cold atoms

The experimental apparatus has already been presented in Stephan Jennewein’s PHD
thesis [Jennewein, 2017] and, in a very detailed way, in the one of Andreas Fuhrmanek
[Fuhrmanek, 2011]. The goal here is to sum up the most important parts of the experi-
mental setup.
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Chapter 1. Production of a dense cloud of cold atoms

Figure 1.2.: Sketch of the experimental setup extracted from [Fuhrmanek, 2011]. A vapor of
87Rb atoms, initially in solid form in the oven, are slowed down from ∼ 300 m.s−1 to ∼ 16 m.s−1

in a Zeeman slower. The atoms are further cooled to ∼ 0.1 m.s−1 in a magneto-optical trap
(MOT). Two red-detuned, far-off resonance from the D2 line of Rubidium 87, laser beams are
focused by an aspheric lens into the atomic cloud. The same aspheric lens is used to collect
the fluorescence emitted by the atoms that is imaged onto an intensified CCD camera and an
avalanche photodiode (APD).

0 200 400 600 800 1000

v [m.s−1]

0

1

2

3

P
[1

0−
3
]

Figure 1.4.: Velocity distribution of
an atomic beam with Toven = 400 K.

In order to be able to study the influence of dipole-
dipole interactions, we need to create atomic sam-
ples with a high density. The solution that has been
implemented here is to use tightly focused optical
dipole traps and try to load as much atoms as pos-
sible inside it. In our experiment, we use standard
cooling and trapping mechanisms to load a magneto-
optical-trap (MOT) of 87Rb from a solid piece of
Rubidium placed in an oven. Depending on the
temperature of the oven Toven, a certain quantity
of Rubidium evaporates and fills the first chamber
through a small tube. This first chamber is con-
nected to an ion pump to keep the residual pressure
at typically 10−10 mbar. Additionally, a finger with a copper surface, cooled down via
thermal contact with a reservoir of liquid nitrogen at 77 K, is placed inside this chamber.
It absorbs some of the Rubidium atoms in the vapor and probably helps to avoid a
rapid saturation of the ion pump. The first part is separated from the main science
chamber by a Zeeman tube of length ∼ 70 cm and diameter of 15 mm. The velocity
distribution of the atomic beam after the oven is given by

f(v) =
m2

2(kBToven)2
v3 exp

(
− mv2

2kBToven

)
.
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Figure 1.3.: Sketch of the micro-trap loading. (a): Trap-depth profile of both the macro-trap
and the micro-trap (red solid line). The profile of the macro-trap alone is represented in dark
dashed line. This macro-trap enables to increase the capture volume of the micro-trap, as
its waist at 1/e2 is about 4 µm, compared to the waist of the micro-trap which is only 1.2
µm. The cooling processes induced by the MOT beams trap the atoms at the bottom of this
intensity profile. (b): Micro-trap intensity profile alone, filled with atoms.

For a typical temperature of the oven Toven ≈ 400 K, the average velocity of the atoms
in the beam is 368 m.s−1. Because the capture range of standard MOT is around 1 K,
≈ 17m.s−1, only a tiny fraction of the original distribution will be captured (∼ 10−5). To
increase the number of captured atoms, a Zeeman slower ([Phillips and Metcalf, 1982])
is used. It has been designed to slow down atoms with a typical speed of 300 m.s−1 to
5m.s−1. Doing so, 33% of the initial velocity can now be captured by the MOT.

In the second vacuum chamber, the science chamber, the background pressure is
very low (∼ 10−11 mbar) thanks to the Zeeman tube. In this second chamber, two
high numerical aperture (NA = 0.5) aspherical lenses are used to both trap the atoms
and collect their fluorescence light [Sortais et al., 2007]. Two almost collimated laser
beams are focused by the aspherical lens. One of them has a waist at 1/ e2 of 4 µm,
called macro-trap, while the other one has a waist at 1/ e2 of 1.2 µm, which we will call
micro-trap. We manage to load around 2000 atoms in the macro-trap. The micro-trap
is filled with atoms originally trapped in the macro-trap and we manage to put up
to 200 atoms (∼ 10% of the number of atoms in the macro-trap), which corresponds
to a peak density of approximately 1014 at.cm−3 (see Figure 1.3). The two trapping
beams are red-detuned from the D2 line of Rubidium in order to trap atoms in region
where the intensity is maximum. Moreover, the traps are orthogonaly polarized to avoid
any interference effects. They are operated with approximately the same trap depth
U0 ≈ kB × 1 mK ≈ h× 21 MHz.

Finally, once the atoms are loaded in the micro-trap, we start the experiment and we
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Chapter 1. Production of a dense cloud of cold atoms

collect the light emitted through the aspherical lens onto a CCD camera combined with
a intensifier. Due to the fact that the system is diffraction limited, we have access to
the smallest resolution possible, ∼ 1 µm, in the plane of the atoms [Sortais et al., 2007].
The light emitted by the atoms and collected by the aspherical lens is also coupled to a
single-mode fiber connected to an avalanche photodiode in single photon counting mode,
followed by a counting card. This second path is time-resolved and thus gives access
to the dynamic of the optical response of the cloud. For any particular detail on the
experimental setup, see Andreas Fuhrmanek’s PHD thesis [Fuhrmanek, 2011].

1.3 Experimental measurements of
relevant quantities

In order to understand our measurements and to be able to compare them with theoretical
models, we need to experimentally measure some parameters. In fact, we have to know
as precisely as possible the volume of the cloud, i.e the trapping volume of our beam,
how many atoms it contains and what is their temperature. The following sections
describe experimental measurement of these relevant quantities.

1.3.1 The oscillation frequencies

r0 rmax

(a) (b)

Etot = EpotEtot = Ekin

∆t =
(
n+ 1

4

)
tosc ∆t =

(
n+ 1

2

)
tosc

Figure 1.5.: (a): The atom is at the bottom of the potential, all its energy is in form of kinetic
energy. It happens one forth of oscillation period tosc from its highest point in the trapping
potential. (b): The atom’s total energy is in form of potential energy.

The measurement of oscillations frequencies of a single atom in an optical dipole trap
gives estimations of the waist w and the Rayleigh range zR of the focused Gaussian
beam. In other terms, we use the atom to probe the curvature of the trapping potential
at its center. Several techniques enable to extract this information. The first technique
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used consists in switching off the trap at specific times and measuring the recapture
probability of the atom. This idea [Engler et al., 2000] is illustrated in Figure 1.5. In
the classical picture, we understand this procedure by considering an atom as a classical
particle that oscillates at the bottom of the harmonic potential. When the atom is at the
bottom of the potential r0, all its energy is in the form of kinetic energy. Therefore, if we
switch off the trap at this time ∆t =

(
n+ 1

4

)
tosc or ∆t =

(
n+ 3

4

)
tosc, with n = 0, 1, 2, ...,

the probability to recapture the atom is small because it will fly away from this position
with its highest velocity. On the contrary, when the atom reaches its highest point
in the trap ±rmax, all its kinetic energy is converted into potential one. In this case,
if we switch off the trap at ∆t = ntosc (atom at −rmax) or ∆t =

(
n+ 1

2

)
tosc (atom

at +rmax), it is very likely for the atom to be recaptured as its velocity is zero. The
recapture probability as a function of the switching time should be an oscillation at a
frequency f , related to the trapping frequency through the relation ωr = 2π × (f/2).
This first method is not appropriate for the measurement of the axial frequency ωz due
to dephasing and atom loss at longer times.

The second technique that we used is called parametric heating. In this one, the trap
is not switched off but modulated in amplitude. If the trap amplitude is modulated
at twice the oscillation frequency of the atom, the breathing mode, it will gain energy.
Above this frequency, the atom will not respond. Classically, we draw an analogy by
considering the atom as a particle sitting on a swing and oscillating at its specific
frequency. If ones gives a kick to the atom when its reaches its highest position on the
trajectory, the atom and the swing will get a higher position at the next oscillation.
Repeating this kick twice per oscillation, the atom will gain enough energy to finally
leave the trapping potential. Thus, measuring the survival probability of the atom in the
trap as a function of the modulation frequency of the trap will give the same information
as the first technique. This second one has also the advantage to allow observing both
the radial and the axial oscillation frequencies.

We will see examples of both methods in chapter 3 where we characterize the optical
performances of the aspheric lenses with a single atom in an optical dipole trap.

1.3.2 The temperature

The temperature of the cloud can be extracted by time-of-flight imaging as it provides a
direct measurement of the momentum distribution of the atoms ([Lett et al., 1988]).

Time-of-flight measurement principle

The principle is to measure the position of the atoms after a period of free expansion.
The positions of the atoms are obtained by sending a resonant laser beam and collecting
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Figure 1.6.: (a): Typical fluorescence image of the cloud obtained on the intensified CCD
camera after a time of flight of 70 µs (100 repetitions). (b): Measurement of the cloud extension
σ as a function of the time of flight ttof. The black solid line is a fit from which we extract
the initial cloud size, 2.3± 0.5 µm, and the extension speed, equals to 0.10 m.s−1. The later
corresponds to a temperature of the cloud of T = 100 µK. The dashed line is a linear fit of the
same data, accurate only for long times-of-flight.

their fluorescence on a CCD camera. We measure the size of the cloud σ based on the
size of its fluorescence image on the camera (Figure 1.6 (a)) for various released time ttof.
When the trap light is turned off, the atoms fly apart from each other with a typical
speed σv that is directly related to their temperature T through the relation

σv =

√
kBT

m
,

with m the atomic mass of Rubidium. σ0 being the initial size of the cloud, the size of
the cloud σ after a time-of-flight of ttof is given by

σ2(ttof) = σ2
0 + σ2

vt
2
tof.

When the time-of-flight duration is sufficient to neglect the initial size of the cloud,
σ2
vt

2
tof � σ2

0, we extract the temperature with the relation

σ(ttof) =

√
kBT

m
ttof.

The temperature of the cloud is thus related to the slope of the asymptote of the
curve σ(t) at infinitely long time. To derive these relations, one must assume that the
cloud density follows a Gaussian distribution and that interactions between atoms are
negligible. These assumptions are verified in our experiments.
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Comments on the time-of-flight imaging

In this section, we will comment on a particular requirement concerning the probe
duration when using time-of-flight imaging technique. We also take the opportunity to
have a critical look at the initial cloud size value σ0 extracted from the fitting procedure.

Probe duration Because we want to measure the position of the atoms, the later has
to changed by less than the resolution of our imaging system during the light pulse. This
gives an upper limit on the duration of our probe pulse. Assuming that the resolution
of our optical system is around 1 µm and that the temperature of the Rubidium
atoms is given by the Doppler temperature TDoppler ≈ 150 µK which corresponds to
an average speed of the atoms of 0.19 m.s−1, the probe pulse needs to be as short as
8 µs. Given the collection efficiency of our imaging system, ∼ 1%, and a scattering
rate R ≈ Γ/2 ≈ 2× 107 s−1, the number of detected photons per pixels is around 1.5
in single shot, which is less than the read out noise of our CCD camera (around 3.6
e−/pixel). The issue has been overcome by inserting an intensifier in front of the CCD
camera. For more information about the light-intensified imaging system, see Andreas
Fuhrmanek’s PHD thesis [Fuhrmanek, 2011].

The initial cloud size The value of the initial cloud size given by the fit (Figure 1.6
(b)) is an order of magnitude higher than the expected radial size of a cloud of non
interacting atoms in equilibrium and trapped in an harmonic potential. Indeed, for a
trap depth of 1 mK, a transverse size of the beam of 1.2 µm and a temperature of the
cloud of 100 µK, the radial extension is given by (1.14): 0.2 µm. This value is below the
diffraction limit of our optical system (0.5 µm), thus one would expect a convolution of
those two values and an initial size around 0.6 µm. It is nonetheless below the extracted
value by a factor ∼3-4. The reason is that various elements spread the response of each
single atom on our CCD camera, the first one being the intensifier. Others experimental
imperfections can play a role, like the depth of focus for instance. By convolution, all
those different elements leads to a highly overestimated initial size of our cloud.

Conclusion The estimation of the temperature remains nonetheless accurate as one
mainly looks at long time-of-flights, where the relation between the size of the cloud
and the temperature of the atoms is independent of the initial cloud size.

1.3.3 The number of atoms

Another important quantity that we measure is the number of atoms in the trap. This
quantity is of crucial importance when one wants to determine the density of the cloud.
The estimation of the number of atoms is based on a calibration measurement with a
single atom. When the loss rate compensates the loading rate in the dipole trap, we
enter the single atom regime. In this regime, there exists an effect called the collisional
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Figure 1.7.: Measurement of the fluorescence light scattered by the trapped atoms. The
scattered light is collected into an avalanche photodiode connected to a photon counting module.
At t = 0 s, the atomic density in the MOT is such that the loading rate R is bigger than the
two-body loss rate: it is the multi-atom regime. At t = 7.5 s, the current in the MOT coils is
ramped down. The atomic density in the MOT starts to decrease. Less and less atoms are
trapped in the optical tweezer, then the fluorescence signal decreases as well. At t = 19 s, the
signal is alternating between two discrete values: low when no atoms are present, high when a
single atom is trapped in the optical tweezer. This signal is an experimental signature that the
single atom regime has been reached. Figure extracted from [Béguin, 2013].

blockade [Schlosser et al., 2002] that prevents a second atom to enter the trap. If such
an event occurs, both atoms, the one initially present in the trap and the incoming
one, are expelled from the trap. Therefore, we only have one or zero atom in the
trap. Experimentally, we have a signature of this regime by measuring the temporal
fluorescence signal that will display a step-signal alternating between two values, low for
no atom and high when one is present (see Figure 1.7), or, equivalently, by measuring
the counting events histogram on the CCD camera. When no atom is in the trap, we
only collect background events on the CCD chip. When an atom is present, it scatters
photons due to the MOT beams and thus the mean value of the distribution on the
camera increases. The distribution of detected events when an atom is in the trap is a
Poisson distribution. We then extract a mean number of photons scattered by a single
atom when a resonant probe of duration ∆t is shinned onto it. This calibrated value is
then used when the averaged number of atoms is unknown.

When several atoms are in the trap, we switched off the trap to let the cloud expand
and then we send the probe beam of duration ∆t and we collect the scattered photons on
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the CCD camera. The time-of-flight introduced before the probe beam is to ensure that
no interaction is present between the atoms, that would modify their fluorescence rate,
thus that we can sum their individual fluorescence. Assuring ourselves of the linearity of
the counting device, we measure directly the number of atoms in the trap by computing
the ratio of the number of collected photons in this measurement with the one collected
when only a single atom was present in the trap.

1.3.4 Conclusion

We have presented here some basic techniques that we will use and illustrate by examples
from the experiment in the rest of the manuscript.
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In this second chapter, I will present several measurements performed in our group and
related to the diffusion of light by a cigar-shaped cloud of cold Rubidium atoms. Then,
I will present the latest results we obtained: the transmission of light through a dense
cloud of cold two-level atoms. The end of the chapter is dedicated to simulations. It will
be the opportunity to present an attempt to understand the remaining discrepancies
between the coupled-dipoles theory and our experimental results by addressing the role
of the atomic motion, and to introduce a new model, developed by Pierre Pillet, to
describe dipole-dipole interactions but not restricted to the weak driving limit. The goal
of the chapter is to point out the difficulty to understand quantitatively the behavior
of an apparently as simple system as the one we are studying in our experiment, even
though we carefully prepared it in its closest form to the theoretical description.

2.1 Light scattering

Before presenting our previous and our latest results, we have to define some concepts
concerning light scattering by an ensemble of atoms.
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2.1. Light scattering

2.1.1 Interaction between light and an ensemble of atoms

One atom First of all, what happens when we shine light onto one atom? A very
fruitful description of the atom as a classical damped harmonic oscillator enables to
determine how light is scattered. We consider an atom of mass m as a system composed
of a nucleus and a single electron of charge q, the electron being attached to the nucleus
with an harmonic potential. If we shine an electromagnetic field E(r, ωL) onto it, the
equation of motion of the electron in the referential frame of the nucleus is

mẍ = qE(r, ωL)−mΓẋ−mω2
0x,

where x denotes the relative distance between the electron and the nucleus, Γ is a
dissipation term responsible for the damping and ω0 is the resonant frequency of the
system. In the near resonant limit, ωL ∼ ω0, the dipole moment d(t) = qx(t) has a
stationary expression given by

dst = −i qE0

2mω0

1

i∆− Γ/2
,

where ∆ = ωL − ω0. This expression can be derived quantum mechanically and we
would have obtained

dst = ε0α(ω)E0,

with the atomic polarizability α given by

α(ω) =
6πi

k3

1

1− 2i∆
Γ

. (2.1)

This expression, valid in the weak-driving limit, is telling us that the induced dipole is
proportional to the driving field, its response having a Lorentzian shape centered on
ω0 with a width Γ. Note that a two-level atom has a classical equivalent: it can be
described by the relation

d = ε0[α]E,

with an anisotropic polarization tensor [α] given by

[α] =



α(ω) 0 0

0 0 0
0 0 0


.

Two atoms Now consider two atoms. The previous classical picture can still be
applied if we consider these two atoms as two coupled harmonic oscillators. The
interaction between the induced dipoles is called the dipole-dipole interaction. To
be more precise, we consider here the resonant dipole-dipole interaction where the
interaction between atoms is mediated by the dipole field. We do not consider here the
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non-resonant dipole-dipole interaction, also called the van der Waals interaction, where
two atoms in the same state can interact. The description of the later usually introduce
the exchange of virtual photons with the vacuum field and does not have a classical
analog ([Cohen-Tannoudji et al., 2018]). If we consider a dipole d1 = d1ê located in r1,
it will emit a field at position r = |r| given by [Jackson, 1999]

E1(r) =
k3d1

4πε0

eikR

(kR)3
[(3(û · ê)û− ê)(1− ikR) + (û× ê)× û(kR)2], (2.2)

where û is the unit vector in the direction of r− r1, ê is the polarization vector of the
dipole and R = |r− r1|. A detailed derivation of (2.2) can be found in Appendix A.
Another dipole d2 located at r2 will feel the sum of the external field EL and the
field radiated by the first dipole E1(r2). The two dipoles being coupled together, their
resonant frequencies and decay rates are modified. In the weak driving limit and in the
rotating wave approximation, the coupled system governing the two dipoles is





ḋ1 = (i∆− Γ/2)d1 + i
3πε0Γ

k3
[EL(r1) + E2(r1)],

ḋ2 = (i∆− Γ/2)d2 + i
3πε0Γ

k3
[EL(r2) + E1(r2)].

By projecting this set of coupled equations onto the complex conjugate of the polarization
vector of the dipoles ê∗ we obtain





ḋ1 = (i∆− Γ/2)d1 + i
3πε0Γ

k3
EL(r1) · ê∗ − i

~
V21d2,

ḋ2 = (i∆− Γ/2)d2 + i
3πε0Γ

k3
EL(r2) · ê∗ − i

~
V12d1,

with V12 = V21 = V the dipole-dipole interaction term between the two atoms. Its
expression, in this particular case, is given by

V = −3

4

~Γ

(kR12)3

[
(3|̂r12 · ê|2 − 1)(1− ikR12) + (1− |̂r12 · ê|2)(kR12)2

]
exp(ikR12),

(2.3)
where r̂12 is the unit vector in the direction of r2 − r1 and R12 its norm. We solve the
set of these two coupled equations in the coupling basis d± = (d1 ± d2)/

√
2. Summing

the two previous equations, one obtains

ḋ± = (i∆− Γ/2)d± + i
3πε0Γ

k3

[EL(r1)± EL(r2)] · ê∗√
2

∓ i

~
V d±.

Finally, splitting the real part and the imaginary part of the interaction potential, one
gets

ḋ± =

[
i(∆− ω±)−

(
Γ

2
− Γ±

)]
d± + i

3πε0Γ

k3

[EL(r1)± EL(r2)] · ê∗√
2

,
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Figure 2.1.: Calculation of the frequency shift ω+ (red solid line) and the decay rate modifica-
tion Γ+ (green dotted line) in unit of Γ for two atoms, linearly polarized along the quantization
axis with θ = 20◦ (arbitrary case).

where

ω± = ±Re{V }
~

,

Γ± = ±Im{V }
~

.

We show that the coupled dipoles solutions d± resonant frequencies are shifted by a
quantity ω± and their decay rates are modified by a quantity Γ± (see Figure 2.1 for
instance) that depends respectively on the strength of the real and imaginary parts
of the dipole-dipole interaction potential. d± are called the eigenstates of the system,
characterized by their eigenvalues, the resonant frequency and the decay rate.

Ensemble of atoms The study can be extended to an ensemble of atoms. Considering
the system as an ensemble of coupled radiators ([Javanainen et al., 1999]), this approach
gives a set of closed equations describing the total external field driving each atom.
Basically, each dipole dj located at rj, feels the external driving field EL and the sum
of all the fields emitted by all the others dipoles

∑
l 6=j El(rj)

E(rj) = EL(rj) +
∑

l 6=j
El(rj),

with El(rj) given by (2.2). In the following, we will note El→j the field emitted by dipole
l at the location of dipole j. We then compute the amplitude of each dipole j which in
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steady-state is equal to

dj = ε0α(ω)


EL +

∑

l 6=j
El→j


 , (2.4)

where we have assigned a polarizability α(ω) to each atom (cf. (2.1)).

The complex amplitude dj = |dj| = dj · ê∗ of the dipoles, with ê∗ the complex
conjugate of the polarization vector e, are solutions of the following set of coupled
equations, obtained by inserting (2.1) into (2.4)

(
i∆− Γ

2

)
dj = −i3πε0Γ

k3
EL · ê∗ + i

N∑

l 6=j

Vjl
~
dl, (2.5)

with Vjl the dipole-dipole interaction term. Its expression depends on the polarization
of the dipoles and is given by (2.3), replacing 1 and 2 by j and l. The coupled system
can be solved numerically, that is what we called the coupled-dipoles simulations. The
result gives access to the field everywhere in space thanks to the superposition principle

E(r) = EL(r) +
∑

j

Ej(r) = EL(r) + Esc(r).

In practice, in our experiment, we consider the scattered field Esc in the plane of the
aspheric lens, used to both trap and image the atoms. The focal length of our aspherical
lens being 8 mm (working distance of ∼5.7 mm), the distance between the cloud and
the lens is 10000 times bigger than the transition wavelength of the D2 line of 877Rb.
Therefore, the scattered field is calculated in the far-field

Esc ≈
k2

4πε0

N∑

j=1

[(ûj × ê)× ûj]
dj
Rj

eikRj , (2.6)

where Rj = Rjûj is the vector between atom j and the position of observation in the
plane of the aspheric lens.

2.1.2 The Incoherent and Coherent fields

In our experiment, the total field emitted by the cloud is focused by our high-NA
aspheric lens onto a single-mode fiber connected to an avalanche photodiode. Therefore,
the quantity that we measure is the overlap of the total field E with the mode of the
fiber g, integrated over the lens area (the lens only capture a fraction of the total solid
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angle). Depending on whether the driving field is collected by our aspherical lens or
not, we have access to two different parts of the scattered field: the incoherent or the
coherent scattering.

When the cloud is defined as a homogeneous medium described by a susceptibility χ,
the scattered field can be decomposed into two parts:

• the coherent part, denoted 〈Esc〉, is governed by macroscopic Maxwell’s equations
and corresponds to the value of the scattered field averaged over many spatial
configurations of the atoms in the cloud,

• the incoherent part, δEsc, corresponds to fluctuations of the scattered field around
its mean value. This quantity is not governed by macroscopic Maxwell’s equa-
tions [Durant et al., 2007] and could therefore not be compared to mean field
predictions.

Let us first focus on the measurement of the coherent part of the scattered field.

Experimental quantities measured

In order to be able to measure the coherent part of the scattered field, we measure
the interference of the laser field and the field scattered by the cloud in the direction of
propagation of the excitation laser

E = EL + Esc

= EL + 〈Esc〉+ δEsc. (2.7)

To be more precise, the actual field measured is the overlap of the field E with the
mode g of the single-mode fiber into which the light is coupled. We note this quantity
E defined as

E(ω) =

∫
E(r, ω) · g∗(r) dS , (2.8)

where dS is a differential area surface orthogonal to the optical axis, the propagation
axis of the laser beam. The mode of the single-mode fiber is a TEM00 and we make the
incoming beam EL mode matched the one of the fiber so that the quantity E can be
written as

E(ω) =

∫
E(r, ω) · E∗L(r) dS . (2.9)

We now insert (2.7) into (2.9) to obtain

E(ω) =

∫
(EL + 〈Esc〉) · E∗L dS +

∫
δEsc · E∗L dS . (2.10)
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The experimental quantity is a configuration average of the modulus square of (2.10)

〈
|E(ω)|2

〉
∝
〈∣∣∣∣
∫

(EL + 〈Esc〉) · E∗L dS

∣∣∣∣
2
〉

+

〈∣∣∣∣
∫
δEsc · E∗L dS

∣∣∣∣
2
〉

+

〈∫
(EL + 〈Esc〉)∗ · EL dS

∫
δEsc · E∗L dS

〉

+

〈∫
(EL + 〈Esc〉) · E∗L dS

∫
δE∗sc · EL dS

〉
. (2.11)

In (2.11) the first term of the right-hand-side (RHS) does not depend on the spatial
configuration of the atoms in the cloud, therefore the 〈·〉 can be omitted. In the same
way, the third and fourth term (which is only the complex conjugate of the third one)
can be simplified since the first integral is independent of the spatial configuration. For
instance, with the third term, it gives

〈∫
(EL + 〈Esc〉)∗ · EL dS

∫
δEsc · E∗L dS

〉
,

=

∫
(EL + 〈Esc〉)∗ · EL dS

〈∫
δEsc · E∗L dS

〉

=

∫
(EL + 〈Esc〉)∗ · EL dS

∫
〈δEsc · E∗L〉 dS ,

and since δEsc and E∗L are independent and 〈δEsc〉 = 0 by definition,

=

∫
(EL + 〈Esc〉)∗ · EL dS

∫
〈δEsc〉 · 〈E∗L〉 dS ,

= 0.

Therefore (2.11) simplifies to

〈
|E(ω)|2

〉
∝
∣∣∣∣
∫

(EL + 〈Esc〉) · E∗L dS

∣∣∣∣
2

︸ ︷︷ ︸
|Ecoh(ω)|2

+

〈∣∣∣∣
∫
δEsc · E∗L dS

∣∣∣∣
2
〉

︸ ︷︷ ︸
〈|Eincoh(ω)|2〉

(2.12)

As mentionned in (2.12), we denote the coherent intensity |Ecoh(ω)|2 and the incoherent
intensity (configuration averaged)

〈
|Eincoh(ω)|2

〉
.

Now we will focus on how we can measure each part of the
〈
|E(ω)|2

〉
quantity. For

our particular system, it turns out that |Ecoh(ω)|2 �
〈
|Eincoh(ω)|2

〉
in the direction of

propagation of the laser (see the numerical simulations presented in Figure 2.2). To
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Figure 2.2.: Numerical simulations of the coherent (in blue) and incoherent intensity (in
orange) emission pattern in polar coordinates. The simulations are performed with a cloud of
180 atoms, at 100 µK, in a Gaussian trap of waist 1.6 µm and 1.0 mK trap depth. They are
repeated 200 times to average the atomic distribution. As explained in the text, the coherent
response dominates in the forward direction (a). (b): zoom (×6) on the pattern emission (a).
(c): zoom (×10) on the pattern emission (b).

understand this result we introduce the form factor F of the cloud which characterizes
the coherent response. It is defined by

F (q) =
1

N

∫

V
n(r′) exp(−iq · r′) d3r′ , (2.13)

where N is the number of atoms, q = k − kL with k the wavevector of emission and
kL the wavevector of the laser beam, and n the density of the cloud, the integration
being performed on the cloud volume V. Using cylindrical coordinates and assuming
that the cloud density follows a Gaussian distribution with a transverse width σ⊥ and a
longitudinal width σz, the integral (2.13) is equal to

F (Ψ) = exp

(
−1

2
σ2
⊥k

2 sin2 Ψ

)
× exp

(
−1

2
σ2
zk

2(cos Ψ− 1)2

)
, (2.14)

where we have introduced Ψ, the angle between the direction of emission of the light
with respect to the direction of propagation of the laser beam, and used ‖kL‖ = ‖k‖ = k.
For a typical temperature of our atoms around 150 µK, (1.14) gives σ⊥ ≈ 0.3λ and
σz ≈ 1.7λ. As σz is almost a factor 6 bigger than σ⊥, (2.14) is telling us that F , and
thus the coherent response, is peaked in the direction where (cos Ψ− 1)2 = 0, which is
Ψ = 0, the direction of propagation of the laser. Contrarily, the incoherent response
would be scattered isotropically. Therefore, |Ecoh(ω)|2/

〈
|Eincoh(ω)|2

〉
� 1 in the forward

direction.
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Coherent transfer function

The total transfer function, denoted Stot(ω), is defined as the ratio between E(ω) in
presence of atoms with the same quantity without atoms. In absence of atoms, the total
field E is simply the laser field EL and we note this quantity EL. Explicitly, the total
transfer function is equal to

Stot =
E(ω)

EL
=

∫
E(r, ω) · E∗L(r) dS∫
|EL(r)|2 dS

. (2.15)

We also introduce the coherent transfer function S(ω), given by the average of Stot(ω)
over many realizations of the spatial configuration of the atoms in the cloud

S(ω) =
〈E(ω)〉
EL

=

∫
(EL + 〈Esc〉) · E∗L dS∫

|EL|2 dS
= 1 +

∫
〈Esc〉 · E∗L dS∫
|EL|2 dS

, (2.16)

where we have omitted the dependence in r and ω for clarity. This quantity is called
the coherent transfer function because |S(ω)|2 ∝ |Ecoh(ω)|2, as defined in (2.12).

Difference between the coherent transfer function and the usual transmission
Here, we would like to point out a subtle difference between the quantity that we have
defined, the coherent optical transfer function S(ω), and the transmission, denoted T (ω)
in this section. Generally speaking, the transmission of the cloud is defined as

T (ω) =

〈∫
|E(r, ω)|2 dS

〉
∫
|EL(r)|2 dS

. (2.17)

If the solid angle of collection of the lens is very small, the transmission T (ω) coincide
with |Stot|2. Otherwise, you can link T (ω) with the coherent transfer function by
decomposing the total field E = EL + 〈Esc〉+ δEsc and you will get

T (ω) = |S(ω)|2 −
∣∣∣∣∣

∫
〈Esc〉 · E∗L dS∫
|EL|2 dS

∣∣∣∣∣

2

+

∫
|〈Esc〉|2 dS∫
|EL|2 dS

+

∫ 〈
|δEsc|2

〉
dS∫

|EL|2 dS
.

Using Cauchy-Schwarz inequality
∣∣∣∣
∫
〈Esc〉 · E∗L dS

∣∣∣∣
2

≤
∫
|〈Esc〉|2 dS

∫
|EL|2 dS ,

it yields to
|S(ω)|2 ≤ T (ω).

The coherent transfer function is the quantity that our group has measured and which
is used in subsection 2.2.2 and subsection 2.3.3.
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Incoherent transfer function

Now, if we are not measuring directly in the direction of propagation of the laser but
orthogonality to its wavevector direction, then the coherent part |Ecoh(ω)|2 is no longer
dominant and we are mainly sensitive to the incoherent part

〈
|Eincoh(ω|2

〉
(see (2.12). No

normalization is needed since that in the absence of atoms, no light should be collected
by the aspherical lens. The incoherent scattering of a dense cloud of cold atoms has
been measured by our group and is discussed in subsection 2.2.1. Although, it has been
measured not through the overlap of the scattered field with the mode of a single-mode
fiber but by collection on a intensified CCD-camera, i.e., without being able to resolve
the dynamics of the optical response.

2.2 Previous results

The experimental study of dipole-dipole interactions in dense ensemble of cold atoms
started a few years ago in our group. It was known theoretically that when a collection
of emitters are confined inside a volume smaller than λ̄3 = (λ/2π)3, with λ the transition
wavelength, they are coupled via dipole-dipole interaction and their response to a near-
resonant light is collective ([Dicke, 1954], [Li et al., 2013], [Scully, 2009]). This effect
originates from the excitation of collectives eigenstates of the system. Thus, the response
of the system differs from the case of non-interacting emitters. Our group decided to
show experimentally the influence of these interactions on the optical response of a cloud
of cold atoms. However, no quantitative agreement between theory and experiment has
been observed yet in the dense regime. The purpose of this section is to remind the
experimental results obtained previously in our group as well as the theoretical models
that have been used to try to explain them.

2.2.1 Incoherent scattering

The information of this section can be found in [Pellegrino et al., 2014]. Let us first
remind quickly the experimental procedure. Starting from a MOT, we loaded between 1
and ∼450 cold 87Rb atoms in an single-beam optical dipole trap of waist 1.6 µm, wave-
length 957 nm and trap depth equals to 1 mK. Initially prepared in the (5S1/2, F = 2)
manifold, the trap is switched off and a low-intensity (I/Isat = 0.1), near-resonant with
the D2 line transition, σ+-polarized excitation laser is sent orthogonally to the trapping
axis. We alternate excitation pulses of 125 ns with recapture periods in the dipole trap
of 1 µs. This sequence is repeated 200 times with the same cloud, and averaged over
100 different cloud configurations. The temperature of the cloud (initially ∼100 µK)
remained unchanged within 5% over the entire procedure. Moreover, less than 5% of
the atoms initially in the trap were depumped in the (5S1/2, F = 1) hyperfine level
during the excitation. The last two points are important as they could have resulted in
a decrease of the density. Finally, the photons scattered by the cloud are collected by
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Figure 2.3.: (a): Experimental setup. The atoms are initially confined inside an optical dipole
trap (not shown) of waist 1.6 µm (λ = 957 nm, trap-depth 1 mK). The excitation laser EL
propagates along the quantization axis x defined by a small magnetic field B ∼ 1 G. The
scattered light emitted along the z axis is collected by a high-NA aspheric lens L before being
recorded on an intensified CCD camera (I-CCD). (b): Scattered light detected nz(N,∆) versus
detuning ∆ of the excitation light for various numbers of atoms N = 1, 5, 20, 50, 325, 450 (from
bottom to top). The amplitudes of the curves are normalized to the amount of light detected at
resonance for the single atom case nz(N = 1,∆ = 0). The solid lines are Lorentzian fit of the
data. Typical uncertainties are 10% vertically and 20% horizontally. The figure is extracted
from [Pellegrino et al., 2014].

the aspherical lens (NA= 0.5) that has been used to focused to optical dipole trap and
are measured by an intensified CCD camera.

Starting from a single atom case, we observe a broadening of the line when the number
of atoms increases, as well as a small red shift with respect to the non-interacting case.
The broadening of the line can be understood qualitatively by considering that the more
atoms there are in the dipole trap, the smaller the distance between them, thus the
stronger the dipole-dipole interactions. We also notice on Figure 2.3 that the amount
of scattered light does not scale linearly with the number of atoms, as it would be
expected for a non-interacting sample of atoms. These observations can be reproduced
by a simple functional form

nz(N,∆) ∝ N

Γc(N)2 + 4[∆− δωc(N)]2
.

This Lorentzian function, with Γc the FWHM and δωc the shift of resonance, reproduces
very well the experimental data.

34



2.2. Previous results

Numerical simulations has been performed in order to understand this set of data
(see [Pellegrino et al., 2014]). The simulations were based on coupled-dipoles model,
assuming a frozen distribution of the atoms and taking into account the Zeeman level
structure of 87Rb. Simulations predict that the spectra nz(N,∆) should present an
increasing broadening, and asymmetry, a negligible shift, as well as a saturation of the
scattered light when the number of atoms increases. This features are reproduced in
this experiment when the number of atoms is below ∼100. For N > 100, the agreement
tends to be only qualitative as the effects are found to be less pronounced experimentally.
Two possible explanations can be considered.

• A first possible explanation could be that forces induced by dipole-dipole interac-
tions may expel atom pairs with shortest interatomic distances. This would break
down the assumption considering the frozen positions of the atoms during the exci-
tation pulse and would also decreases the density as the average distance between
atoms would increase. Unfortunately, this point is hard to check experimentally
as the sample has a size smaller than our diffraction limit.

• Another explanation could be related to the initial Zeeman state population
distribution taken in the model. In fact, for large numbers of atoms, the optical
pumping during the excitation pulse could change dramatically the distribution of
atoms in each Zeeman level, a process not taken into account in the model.

Despite of the lack of quantitative agreement between our simulations and the experi-
mental measurements, our group has shown that dipole-dipole interactions do impact
the optical response of the cloud to a near resonant light. It was a motivation to further
investigate the influence of these interactions in various scenarios, one of them being
discussed in the next section.

2.2.2 Coherent scattering

In contrast with the last section where we measured the incoherent scattering, this section
is dedicated to the measurement of the coherent scattering of a dense cloud of cold atoms
(cf. subsection 2.1.2). The results of this section can be found in [Jennewein et al., 2016].

To measure |S(ω)|2 in steady-state, the experimental procedure is quite similar to the
one described in subsection 2.2.1. After preparing the atoms in (5S1/2, F = 2), we switch
off the dipole trap light during 500 ns and send a 300 ns probe pulse with a temporal
top hat profile (rise time of 2 ns). We then recapture the cloud in the trap for 500 ns
and repeat this release-probe-recapture 1000 times using the same atomic cloud. This
procedure is repeated with 200 different clouds to average the spatial configurations of
the atoms. The signal measured (see Figure 2.4 (b)) reaches a steady-state after ∼26 ns,
close to the lifetime 1/Γ of the excited state, during which the sample gets polarized.
We average the signal over a time interval of 120 ns and we normalize it with respect to
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Figure 2.4.: (a): Sketch of the experimental setup. A probe laser EL is shinned onto the first
aspherical lens and focused on the cloud of cold atoms. The probe laser and the light scattered
by the cloud are collected by the second aspherical lens before being coupled into a single-mode
fiber connected to an avalanche photodiode (APD). (b): Typical temporal signal recorded by
the APD. The blue solid line represents the signal in absence of atoms, the green solid one with
atoms. The ratio of the two signals in a region we choose to define the steady-state regime
gives one data point in (c) (a specific number of atoms and a specific detuning). (c): Measured
transfer function of the cloud of atoms versus detuning ∆ for N = (10, 83, 180) (green circles,
red triangles and blue squares respectively). Error bars are fixed to the maximal standard
deviation obtained for this set of data. The solid lines represent Lorentzian fit of the data.
The dotted lines correspond to coupled-dipoles simulation including the 12-level structure
of the (5S1/2, F = 2) to (5P3/2, F

′ = 3) transition. The data presented here are extracted
from [Jennewein et al., 2016].

the case without atoms. The experiment is performed for various probe detuning ∆ and
for various atom number N (see Figure 2.4 (c)).

Similarly to the incoherent scattering measurement, we understand qualitatively the
coherent scattering. We observe a broadening of the line, a red-shift, and a suppression
of the measured light in the forward direction when the number of atoms increases. The
fact that light can be almost completely suppressed by an atom or a cloud of atoms whose
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size is smaller than the waist of the incoming beam can be explained by the expression
of the on resonance scattering cross section of a single two-level atom [Steck, 2015]

σ0 =
~ωΓ

2Isat
=

3λ2

2π
.

For a single 87Rb atom, σ0 = 0.29 µm2 which is, although smaller, not negligible compared
to the probe beam cross section given by ∼ πw2/2 = 2.3 µm2. The experimental features
are reproduced by the coupled-dipoles simulations, assuming a frozen distribution of the
atoms during the excitation pulse and taking into account the multi-level structure of
the atoms, but are less pronounced than the theory.

Derivation of a functionnal form The derivation of a functionnal form of the
|S(ω)|2 measured quantity is difficult for a dense cloud of atoms. However, we proposed,
as an ansatz, such a form assuming that our cloud behaves as a small dielectric sphere
of polarizability αc with a size small compared to 1/k. To derive such an expression,
we will follow the work presented in [Aljunid et al., 2009] and, in a very detailed way
in [Tey et al., 2009]. For that matter, we need first to derive some expressions listed
below:

• the expression of the Gaussian field at the focus of the first lens, in the strong
focusing regime,

• the expression of the field scattered by the dielectric particle acting as a dipole
induced by the excitation beam,

• the laser field at the position of the second lens,

• the overlap between the scattered field and the mode of the fiber taken equal to
the one of the laser field, at the position of the second lens.

Gaussian field in the strong focusing regime Let us first derive the expression
of the electric field at the position of the atoms z = 0, i.e., in the focal plane of L1.
Considering a Gaussian beam of waist wL and polarized along the x axis, the expression
of the field just before the lens is

Ein(ρ, z = −f) = E0 exp

(
− ρ

2

w2
L

)
êx, (2.18)

with ρ the distance from the optical axis. An ideal converging lens transforms a beam
with a plane wavefront into one with a spherical wavefront which converges towards
the focal point (ρ = 0, z = 0). It can then be modeled as a phase plate introducing a
radially dependent phase factor t(ρ) which expression is

t(ρ) = exp
(
−ik

√
ρ2 + f 2

)
, (2.19)
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Figure 2.5.: Sketch of the
ideal lens focusing a spherical
wavefront.

with f the focal length of lens L1. Note that we do
not consider here a parabolic wavefront exp(−ikρ2/2f), a
convenient approximation that is often used, and only valid
in paraxial optics. Moreover, simply multiplying the phase
introduced by the lens with the input field would give a
field incompatible with Maxwell’s equations. To make the
field compatible with them, we have to modify the local
polarization vector keeping in mind three requirements:

1. a lens with rotational symmetry keeps the local
azimuthal component unchanged but tilts the local
radial component towards the axis,

2. the local polarization vector is orthogonal to the
local wavevector,

3. the power before and after any arbitrary small area
of the thin ideal lens should be equal.

In the cylindrical basis (êρ, êϕ), in the plane of L1, we have

êx = cosϕ êρ − sinϕ êϕ. (2.20)

Then, to fulfill requirements 1 and 2, the local polarization vector ê1 just after the first
lens is given by

ê1 = (cos ξ cosϕ êρ + sin ξ cosϕ êz)− sinϕ êϕ, (2.21)

with ξ = arctan(ρ/f). (2.21) can be expressed in the (êx, êy, êz) stationary basis and
one would get

ê1 =




cos ξ + (1− cos ξ) sin2 ϕ
(cos ξ − 1) cosϕ sinϕ

sin ξ cosϕ


. (2.22)

The expression of the laser field, compatible with Maxwell’s equations, just after the
lens is then given by

EL(ρ, ϕ, z = −f) =
E0√
cos ξ

exp
(
−ik

√
ρ2 + f 2

)
exp
(
−ρ2/w2

L

)
ê1, (2.23)

where the 1/
√

cos ξ is introduced to meet requirement 3.

Then, various methods exist to propagate this field from lens L1 to the focus. Here,
we will use Green theorem that states

E(r) =

∮

S′
{ikc[n̂′ ×B(r′)]G(r, r′)

+[n̂′ × E(r′)]×∇′G(r, r′) + [n̂′ · E(r′)]∇′G(r, r′)} dS ′ , (2.24)
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where S ′ being a closed surface around r, n̂′ a normal unit vector pointing inside S ′ and
G(r, r′) the Green tensor given by

G(r, r′) =
exp(ik|r− r′|)

4π|r− r′| . (2.25)

We are interested in the field near the focus r ≈ rfocus. In the far field limit |r− r′| � λ,
the expression of B and ∇′G can be simplified to

B(r′) ≈ k′

ck
× E(r′) (2.26a) ∇′G ≈ −ik′G before the focus

∇′G ≈ +ik′G after the focus
(2.26b)

By splitting S ′ into two half-spheres, S ′bf before the focus and S ′af after the focus, the
field expression near the focus and in the far-field limit reduces to

E(r ≈ rfocus) = −2i

∫

S′bf

[n̂′ ·k′]E(r′)G(r, r′) dS ′+2i

∫

S′af

[n̂′ ·E(r′)]k′G(r, r′) dS ′ . (2.27)

The second term in (2.27) is equal to zero when we choose S ′af to be an infinitely large
half sphere centered at rfocus because then n̂′ is orthogonal to E(r′) at all positions r′.
For S ′bf, we choose an infinitely large sphere that coincides with the first ideal lens. In
this case, n̂′ = êz and n̂′ · k′ = k cos ξ. With these choices, using (2.23), (2.25) and the
cylindrical basis in the plane of lens L1, (2.27) becomes

EL(z = 0) = −ikE0

2π

∫∫
ρ dρ dϕ exp

(
− ρ

2

w2
L

)
f 1/2

(ρ2 + f 2)3/4
ê1. (2.28)

The integrals
∫

dϕ along the êy and êz components of ê1 (see (2.22)) give zero, as
expected from symmetry argument: the polarization at the focus is the same as the one
of the input field. The integral

∫
dϕ along this component gives π(1 + cos ξ). Using the

change of variable t = ρ2/w2
L + 1/u2 with u = wL/f , called the focusing strength, the

expression of the field at the focus is

EL(z = 0) = −ikwLE0

2
h(u)êx, (2.29)

where h(u) is a function whose expression is

h(u) =
1

2u
e1/u2

[√
uΓ

(
1

4
;

1

u2

)
+

1√
u

Γ

(
−1

4
;

1

u2

)]
, (2.30)

and where Γ(a; b) is the incomplete Gamma function given by

Γ(a; b) =

∫ ∞

b

e−t ta−1 dt .

Equation (2.29) and the derivation steps presented here are extracted from [Tey et al., 2009].
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Field scattered by the dielectric sphere We have calculated the expression of
the field, in the strong focusing regime, at the position of our small dielectric sphere.
This field induces a dipole d proportional to the excitation field d = ε0αc(ω)EL(z = 0)
that in turns emits a field which expression, in the far field limit, is given by

Esc(r, ω) ≈ − k2

4πε0

eikr

r
û× (û× d). (2.31)

With our notations, the field scattered by the small dielectric particle is explicitly

Esc(r, ω) =
k2

4π
αc(ω)EL(z = 0)

eikr

r
(êx − cos θ û), (2.32)

where θ is the angle between the x axis and the direction of radiation.

y
z

x

φ

Ψ

θ ϕ
ρ

r

Figure 2.6.: 3D coordinate system and
angles definitions. The dielectric particle
is located at the origin.

Laser field expression at the position
of the second lens Keep in mind that we
want to derive a functional form for the transfer
function of our small dielectric particle. To do
so, we have to integrate the overlap of the
total field (the scattered field with the laser
field) with the mode of the single mode fiber.
The optical system is designed such that the
mode of the single mode fiber matches the laser
field expression at the position of the lens L2.
Before being able to derive the expression for
S(ω), we just need the expression of the laser
field at the position of lens L2. This expression
can be obtained in the same way the one of
the laser field at the position of lens L1 (2.23)
has been obtained. Taking into account the
phase shift through the focus, the laser field
expression at the position of lens L2 is given

by

EL(ρ, ϕ, z = +f) = −i E0√
cos Ψ

exp
(

+ik
√
ρ2 + f 2

)
exp
(
−ρ2/w2

L

)
ê2, (2.33)

where Ψ denotes the angle between the z axis and a point in the plane of the second lens.
It is then equal to the angle ξ introduced in (2.21). Nonetheless, the local polarization
vector ê2 is not perfectly equal to ê1 because the field after the focus is diverging and
not converging. Therefore, the expression of ê2 is

ê2 = (cos Ψ cosϕ êρ − sin Ψ cosϕ êz)− sinϕ êϕ. (2.34)
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Overlap between the scattered field and the laser field Now we have all
the required quantities to derive a functional form for our transfer function. With the
notations of this section, (2.16) is

S(ω) = 1 +

∫
L2

Esc(ρ, ϕ, ω) · E∗L(ρ, ϕ, z = +f) cos Ψρ dρ dϕ∫
L2
|EL(ρ, ϕ, z = +f)|2 cos Ψρ dρ dϕ

, (2.35)

where cos Ψ accounts for the projection of the fiber mode onto the integration plane
L2. Let us consider the numerator of the second term in the right hand side of
equation (2.35) and denote this integral I. Because the local polarization vector ê2 is
orthogonal to the direction of radiation r, only its component along êx, which is equal
to cos Ψ cos2 ϕ+ sin2 ϕ, is integrated. Choosing a phase convention such that the laser
field at the position z = 0 is real, integral I can be written as

I = i
k3αc(ω)

4π

wL

2
E2

0h(u)

{∫

L2

ρ dρ dϕ
f 3/2

(ρ2 + f 2)5/4
exp

(
− ρ

2

w2
L

)
cos2 ϕ

+

∫

L2

ρ dρ dϕ
f 1/2

(ρ2 + f 2)3/4
exp

(
− ρ

2

w2
L

)
sin2 ϕ

}
. (2.36)

We find in the curly brackets of expression (2.36) the same integral encountered in (2.28).
Therefore, it is equal to πwLh(u) and I is equal to

I = i
k3αc(ω)

4π

πw2
L

2
E2

0h
2(u). (2.37)

Coherent transfer functional form The denominator in (2.35) being equal to
1
2
πw2

LE
2
0 , the transfer function of our dielectric sphere is given by

S(ω) = 1 + i
k3αc(ω)

4π
h2(u). (2.38)

Finally, by replacing the expression of the polarizability of our small dielectric particle
with the one of a dipole resonant at ωc with a width Γc (see (2.1)), the coherent transfer
function can be cast into a Lorentzian form

S(ω) = 1− A

1− 2iω−ωc
Γc

, (2.39)

where A = 3
2
h2(u). The coefficient A is related to the scattering ratio Rsc introduced

in [Tey et al., 2009] through the relation Rsc(u) = 3h2(u).

Comments on the functional form As with the incoherent field measured in sub-
section 2.2.1, the experimental data are well reproduced by Lorentzian functions. This
observation seems to gives confidence about the functional form derived in the previous
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Figure 2.7.: Simulation of the scattering ratio for both an infinite lens R∞sc (red solid line) and
a finite size lens Rr0sc with v = 0.56 (black solid line). The dashed gray vertical line corresponds
to the focusing strength value in our experiment u = 0.5. In this case, R∞sc ≈ 0.52 but Rr0sc is
only 0.31 (42% relative difference).

paragraph, although the assumption on the cloud size is not fulfilled. However, the
values given by our functional expression does not provide the same feeling. For instance,
let us consider the simple case of a single atom located at the focus of the first lens. In
our experiment, the input waist of our probe beam wL is almost equal to the radius of
the aspheric lens (with f = 8 mm and NA = 0.5). Then the focusing strength is equal
to u = 0.5, which gives a transmission at resonance (see Figure 2.7)

|S(ω)|2 = |1− A|2 =

∣∣∣∣1−
Rsc

2

∣∣∣∣
2

≈ 0.56.

The obtained value is well below the actual transmission measured (see Figure 2.4). A
better estimation of the transfer function value at resonance can be provided considering
the finite size of our lens. The truncated scattering ration Rr0

sc , with r0 = 4.5 mm the
radius of our lens, is given by the formula

Rr0
sc =

3

4u3
e2/u2

{[
uΓ

(
1

4
;

1

u2

)
+ Γ

(
−1

4
;

1

u2

)]

−
[
uΓ

(
1

4
;
1 + v2

u2

)
+ Γ

(
−1

4
;
1 + v2

u2

)]}2

, (2.40)

with v = r0/f the truncation ratio. (2.40) is simply a reformulation of equation (45)
from [Tey et al., 2009]. Figure 2.7 represents both the scattering ratio Rsc = Rr0=∞

sc and
the truncated scattering ration Rr0

sc versus the focusing strength. As one can notice, the
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two functions behave similarly when the focusing strength is below ∼ 0.25. However,
the difference is not negligible for focusing strength above this value. In our present
case, u = 0.5, the value of the coherent transfer function at resonance is given by

|S(ω)|2 =

∣∣∣∣1−
Rr0

sc

2

∣∣∣∣
2

≈ 0.71. (2.41)

Although the last estimation is closer to experimental measurement, it is still unable to
reproduce quantitatively our data, even in the single atom case.

Others approaches Several theoretical models have been tested in order to explain
the experimental data. The first one is the Friedberg, Hartmann and Manassah (FHM)
perturbative theory ([Friedberg et al., 1973], [Manassah, 2012]). Their theory derives
expressions for a collective decay rate and a collective shift for various geometries of
an atomic ensemble of two-level atoms. Similarly to the simple case of two atoms
in interaction presented in section 2.1, the collective shift and rate are the real and
imaginary parts of the average dipole-dipole interactions. For the case of an ellipsoidal
cloud with Gaussian density distribution matching the one in the experiment, the
predictions differs significantly from the measured values (see [Jennewein et al., 2016]),
even though the group included the Rubidium internal structure. To do so, they only
considered the π transitions from (5S1/2, F = 2) to (5P3/2, F

′ = 3) and assumed equally
populated Zeeman ground states. Under these assumptions, the only effect of the
internal structure on the atom is to multiply the polarizability by a factor given by

1

5

∑

mF

|CF=2,mF→F ′=3,mF |2 =
1

5

(
1

3
+

8

15
+

3

5
+

8

15
+

1

3

)
=

7

15
,

where CF=2,mF→F ′=3,mF are the Clebsh-Gordan coefficient associated with the transitions
of interest and are listed in Figure 2.8. The lack of agreement seems to indicate that
the perturbative approach is not appropriate for a dense atomic system.

Then, to go beyond the FHM perturbative treatment, the Lorentz local field theory
has been applied, adapted for a dense cigar-shaped cloud. In this approach, replacing
the cloud by a Gaussian continuous density distribution n, the local susceptibility is
calculated using the Lorentz-Lorenz formula [Jackson, 1999]

χ =
nα(ω)

1− nα(ω)
3

,

with α(ω) the polarizability of a single atom, which includes the internal atomic structure
of Rubidium as described before

α(ω) =
7

15
×

6iπ
k3

1− 2i∆
Γ

. (2.42)
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Figure 2.8.: Clebsh Gordan coefficients associated with π transition from (5S1/2, F = 2)
manifold to (5P3/2, F

′ = 3) manifold. Note that the coefficients displayed here differ from the
one in Appendix B. The different normalization condition has been taken into account in the
simulations.

After defining a local permittivity ε = 1 + χ, Mondher Besbes, research engineer at
Laboratoire Charles Fabry, used a finite element program to calculate the electric field
scattered in the far field by the cloud and finally to compute the transfer function S(ω).
The mean-field response predicted by the Lorentz-Lorenz formula deviates from the
data as the number of atoms increases, featuring in particular a double structure as well
as a large asymmetry.

The last model that has been used to describe the data is a microscopic model where
the atoms are considered as pointlike dipoles, their polarizability being given by (2.42),
randomly positioned according to the Gaussian spatial distribution of the cloud. In
this model, each atom is driven by the Gaussian probe beam and the field scattered by
all the other atoms, leading to a set of coupled dipoles equation. The model has been
described in section 2.1. The results of these simulations is depicted in Figure 2.4. As
one can see, the agreement is only qualitative and tends to become inappropriate as the
number of atoms increases.

2.2.3 Conclusion

The previous experimental results obtained in the group and summarized above, mea-
suring either the incoherent scattering or the coherent scattering, have not lead to a
quantitative agreement with theory. The coherent scattering measurement has been
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2.3. Transmission through a dense cloud of cold two-levels atoms

compared to various models and none of them were satisfactory, not even the coupled-
dipoles model which is a discrete description of the system. The possible explanations
could be that one, or several, of the assumptions used to described the system are wrong.
The first two possible candidates to explain the discrepancy are:

1. the internal structure of the atoms that is not accurately taken into account.
Indeed, the polarizability has simply been changed to (2.42) but it does not
include optical pumping nor Raman processes. Not only that but we also assumed
equal populations in each Zeeman ground levels, which may be inaccurate.

2. the residual motion of the atoms in the cloud. In all the simulations that were
performed, the atomic distribution has been assumed to be frozen. However, the
sample temperature being on the order of ∼100 µK, the atoms are moving. This
residual motion could introduce a dephasing that would minimize the dipole-dipole
interactions effects, thus explaining why we always measure smaller effects than
the one that theories predict.

This two points will be addressed with a new experiment that we performed at the very
beginning of my thesis. They are described in more details in the next sections of this
chapter.

2.3 Transmission through a dense cloud
of cold two-levels atoms

In this section, we describe the solution we implemented on the experiment to address the
first issue mentioned at the end of the previous section. We explain how we reduced the
complex internal structure of the atoms to just two levels and present the experimental
results obtained in this configuration.

2.3.1 Polarization of the sample: towards two-level atoms

In direct connection with the previous works of the group, either experimentally or
theoretically ([Pellegrino et al., 2014], [Jennewein et al., 2016], [Jenkins et al., 2016]),
the biggest step made in order to address the remaining discrepancies between the
experimental data and the theory of the coupled-dipoles model has been to polarize the
sample to get rid of the internal structure of Rubidium. The atoms in the trap being
initially prepared in a statistical mixture of Zeeman states mF = 0,±1 of the F = 1
hyperfine ground state manifold, the sample is polarized in |g〉 =

∣∣5S1/2, F = 2,mF = 2
〉

by sending a combination of pumping and repumping light, both σ+ polarized with
respect to the quantization axis set by a magnetic field of ≈ 5 G (see Figure 2.9). We
then lift the degeneracy of the Zeeman structure even more by increasing the magnetic
field to 314 G within 10 ms.
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Figure 2.9.: Hyperfine level structure of the D2 line of 87Rb. The σ+ pumping and repumping
beams are driving transitions represented in red and blue respectively.

Choice of the value of B field

The specific value of the B field at which we operate the experiment is not of
crucial importance per se, but is governed by two considerations that are listed below.

y

z

x

Oσ+

σ+

σ+

M

Figure 2.10.: Radiation from a σ+

rotating dipole located at the ori-
gin. The light emitted along x is σ+

polarized; it is linearly polarized in
the yOz plane and elliptically po-
larized in any other direction. The
figure is a reproduction of (2A.3)
from [Grynberg et al., 2010].

• The first consideration concerns the probe light
that is sent toward the sample. As we want
a two level structure, we send a probe light
that address the closed transition |g〉 → |e〉 =∣∣5P3/2, F

′ = 3,mF ′ = 3
〉
. We do not want to

drive any other transition, therefore the clos-
est σ+ transition has to be detuned by several
linewidth Γ = 2π × 6 MHz. Doing so, the pop-
ulations remaining in other mF states are spec-
tators.

• The second consideration comes from the dipole-
dipole interactions itself. We do not want the
field scattered by an atom of the sample at
any position, thus of any polarization (see Fig-
ure 2.10), to be able to drive another transition
than the one from |g〉 to |e〉.
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Interaction with a static magnetic field
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Figure 2.11.: Energy shift in units of the natural linewidth Γ of the σ+ transitions of the
D2-line of 87Rb versus B field. The upper solid lines represent transitions from (5S1/2, F = 2) to
(5P3/2, F

′ = 3), the middle dashed lines represent the ones from (5S1/2, F = 2) to (5P3/2, F =′

2), and the bottom dotted lines the (5S1/2, F = 2) to (5P3/2, F
′ = 1) transitions. The transition

highlighted in red is the one from
∣∣5S1/2, F = 2,mF = 2

〉
to
∣∣5P3/2, F

′ = 3,mF = 3
〉
.

In the absence of magnetic field, the sublevels of each hyperfine level F are degenerate.
However, when a magnetic field is applied, this degeneracy is lifted, according to the
Hamiltonian

HB =
µB
~

(gSSz + gLLz + gIIz)Bz, (2.43)

if we choose the quantization axis z along the direction of the B field. Here, gS, gL and
gI are the electron spin, electron orbital and nuclear g-factors that account for various
modifications to the corresponding magnetic dipole moments [Steck, 2015].

The hyperfine structure Hamiltonian, up to the electric quadrupole term, has the
following form [Steck, 2015]

Hhfs = AhfsI · J +Bhfs
3(I · J)2 + 3

2
(I · J)− I(I + 1)J(J + 1)

2I(2I − 1)J(2J − 1)
, (2.44)

where J is the total electron angular momentum, sum of the orbital angular momentum
L and the spin angular momentum S, and I is the total nuclear angular momentum.
Ahfs is the magnetic dipole constant and Bhfs is the electric quadrupole constant.

The full Hamiltonian that we want to compute the eigenvalues from is the sum
of (2.43) and (2.44). We have then computed the energy shift of all the σ+ transitions
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Figure 2.12.: Energy shift in units of the natural linewidth Γ of the σ+ transitions of the
D2-line of 87Rb versus B field. The transitions displayed are the ones from the (5S1/2, F = 2)
manifold to the (5P3/2, F

′ = 3) manifold. The vertical dashed line corresponds to the B field
value applied in our experiment. The closest transition from the closed one addressed in our
experiment (red line) is the one from

∣∣5S1/2, F = 2,mF = −2
〉
to
∣∣5P3/2, F

′ = 3,mF = −1
〉

(dashed line) and is detuned by more than 12 Γ.

on the D2-line of Rubidium 87, as depicted on Figure 2.11, because to address the 2-level
sample one has to use a closed transition to avoid any depolarization of the sample during
the experiment. Here, we chose the σ+ transition from |g〉 =

∣∣5S1/2, F = 2,mF = 2
〉
to

|e〉 =
∣∣5P3/2, F

′ = 3,mF ′ = 3
〉
. Note that one can also decide to use the σ− transition

from
∣∣5S1/2, F = 2,mF = −2

〉
to
∣∣5P3/2, F

′ = 3,mF ′ = −3
〉
.

If we zoom onto the specific value of our B field, see Figure 2.12, one notices that the
closest σ+ transition from the one we are interested in is detuned by more than 12 Γ,
thus fulfilling the first criterion that our probe light will not address any other transition
than the closed one. To convince ourselves with this fact, one can compute the Rabi
frequency Ω of an atom in the cloud illuminated by the field scattered by another one.
The dipole field scattered in the far-field limit and at resonance can be approximated by

Esc ≈
k3

4π
α(ω = ω0)EL

eikr

kr
=

3i

2
EL

eikr

kr
.

Assuming kr ∼ 1, which corresponds to a density n ∼ 5 · 1014 at.cm−3, and introducing
the saturation intensity Isat = cε0~2Γ2

4d2
, we get

|Ω|2 =
d2|Esc|2

~2
=

9

8

I

Isat
Γ2,
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and finally, for I/Isat ∼ 0.01

Ω ∼ Γ

10
� 12Γ.

The Rabi frequency between two atoms in the cloud separated by a typical distance of
λ/2π is thus unable to drive another transition than the closed one.

We have also computed the frequency shifts of all the other transitions, whatever the
polarization, to find that the dipole-dipole interactions would have to shift the energy
by about 36 Γ for an atom in

∣∣5S1/2, F = 2,mF = 2
〉
to be able to address another

transition than the closed one. Finally, with our value of B-field, the two previous
criteria are satisfied.

2.3.2 Experimental sequence

The experiment sequence is very similar to the one presented in subsection 2.2.2. We
recall it here for clarity and to emphasize the differences. Once the sample is loaded
from the MOT, it is polarized with the combination of pumping and repumping beams
both σ+ polarized with respect to the quantization axis set by the B-field. Starting
from randomly populated Zeeman ground states, the pumping was able to load as much
as 80% of the atoms in the state |g〉 =

∣∣5S1/2, F = 2,mF = 2
〉
while the temperature

remained almost unaffected. To probe our sample, we are sending a laser beam focused
by the second aspherical lens, in confocal configuration with respect to the one that has
been used to focus the dipole trap beam. The probe at the position of the atoms as a
waist at 1/e2 of 1.20± 0.05 µm. The probe is linearly polarized, perpendicular to the
magnetic field, thus only the σ+ component of the probe light is driving the transition
from |g〉 to |e〉 =

∣∣5P3/2, F
′ = 3,mF ′ = 3

〉
, and its intensity is kept low, around 0.01 Isat

where Isat = 1.65 mW.cm−2 is the saturation intensity. The transmitted part of the
probe field as well as the field scattered by the atom is collected by the aspherical lens
and coupled to a single-mode fiber connected to an avalanche photodiode (APD). Doing
so, we measure the overlap of the transmitted field E(r, t) with the mode of the fiber.
The detection being time-resolved, we have access to the dynamic of the scattering.
When the trapping beam is off, we send a square pulse of 300 ns to probe the cloud, then
we switch on the trapping beam again to recapture the atoms. This probe-and-recapture
sequence is repeated 1000 times with the same cloud. The experiment is repeated with
200 different samples.

As explained before, the field scattered by the atoms in the forward direction, the
one corresponding to the propagation of the probe light, is dominated by its coherent
part at low intensity. Then the field that we measure is the integration over the lens
area of the overlap of the coherent field emitted by the cloud with the mode of the
fiber. Defining a steady-state regime in the optical response gives access to the |S(ω)|2
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quantity presented in section 2.1.2. Typical temporal signal recorded by the APD are
presented in Figure 2.13 (a), (b) and (c).

2.3.3 Experimental results

The details on the experimental sequence in the previous section as the results presented
in this section are extracted from [Jennewein et al., 2018].

Temporal measurement
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Figure 2.13.: Examples of temporal responses of the cloud measured by the APD. The solid
black lines correspond to the signal obtained in the absence of atoms, the blue solid ones in
the presence of atoms. The red lines are fits from (2.45). (a): N = 100, ∆ = −0.14Γ, (b):
N = 100, ∆ = −1.15Γ, (c): N = 20, ∆ = −0.12Γ. The time bin of the detection is 1.5 ns. The
gray shaded region corresponds to our definition of the steady-state regime. (d): Decay rate Γc
deduced from the fit of the temporal responses, as a function of the detuning ∆ for various
atom numbers. Errors bars are given by the fitting procedure.
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Here, we are reproducing the coherent scattering measurement but this time having a
sample of cold two-level atoms. A minor difference being that previously the dipoles were
linearly polarized whereas here, due to the direction of the B field and the polarization
direction of the probe laser, the atomic dipoles are circularly polarized. This difference
will be taken into account in the simulations of the next section.

Figure 2.13 (a), (b), and (c) show typical temporal signals recorded by our APD. The
blue and black solid lines correspond respectively to the signal obtained with and without
atoms, the later being used for normalization purpose. Each signal is the accumulation
of 1000 release-probe-recapture using the same atomic cloud and repeated with typically
200 different clouds. The temporal signal obtained in presence of atoms are first fitted
with a phenomenological function

|S(t)|2 = A

∣∣∣∣∣1−
B

1 + 2i∆−∆c
Γc

(
1− exp

(
−i(∆−∆c)t−

Γc

2
t

))∣∣∣∣∣

2

, (2.45)

with A, B, ∆c and Γc as free parameters. This phenomenological fitting function
contains the functional form (2.39) derived in subsection 2.2.2 but also includes the
temporal part which corresponds to the transient regime of the system. Note that (2.45)
implicitly assumes that the laser excites only one eigenmode of the system, defined by
∆c and Γc. The goal here is to emphasize any collective effect that can occur in the
cloud and that would modify the typical response time 1/Γc of the system. Figure 2.13
(d) gives the results of this fitting procedure: we are plotting the collective radiative
decay rate Γc as a function of the detuning ∆ of the probe laser, for three different
atoms numbers. Γc increases with the number of atoms N and is notably above Γ, the
radiative decay rate of a single atom, when N > 20. We thus have a clear signature
of the presence of collective effects in the cloud. More precisely, as Γc > Γ, it seems
that the laser field mainly couples to super-radiant states involving a few atoms only
(see [Schilder et al., 2016]). The temporal fitting enables also to define the steady-state
regime, represented as a gray area in Figure 2.13.

Steady-state regime

Figure 2.14 presents the experimental data corresponding to the measurement of the
coherent transfer function of a cloud of cold two-level Rubidium atoms in the steady-state
regime. The values obtained for each detuning and atom number corresponds to the
ratio of the temporal signal in presence of atoms and in absence of atoms (gray filled
area of Figure 2.13).

In order to compare this set of data with the multi-level case of unpolarized samples
presented in subsection 2.2.2, we fit the data by a Lorentzian profile. This approach,
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Figure 2.14.: Experimental measurement of the coherent transfer function of a cloud of
two-level atoms and comparison with the fitting parameters obtained in the multi-level case.
(a): Fitting parameters (A: amplitude, ∆c: shift, Γc: width) extracted from the Lorentzian fits
of the coherent transfer function for various atoms numbers. The yellow points correspond to
the two-level case described in this section. The purple points correspond to the multi-level case
described in subsection 2.2.2 and are shown for comparison. (b): Experimental measurement
of |S(ω)|2 as a function of detuning for different atoms numbers: 10 (green circles), 20 (dark
triangles), 60 (red squares) and 100 (blue circles). Horizontal error bars are set to 0.5 MHz,
which is approximately Γ/10 and corresponds to the lock precision of our probe. Vertical error
bars are set equal to twice the biggest standard deviation uncertainty obtained. The solid lines
are Lorentzian fits (functional form of |S(ω)|2 derived in subsection 2.2.2).

although phenomenological, allow us to extract a line shift, a line width and an amplitude.
The extracted parameters feature the same behavior with the atom number as in the
multilevel case, i.e., a shift and a broadening of the line that increase with N , and a
saturation of the amplitude (see Figure 2.14 (a)). Interestingly, the slope of the shift is
about two times larger for the two-level atom case and the saturation of the amplitude
occurs at lower N, thus suggesting that the internal atomic structure plays a role in the
scattering.

Conclusion

The measurement of the coherent optical response of a cloud of dense cold two-level
atoms is the first measurement performed in a dense regime with such a clean system
configuration. This measurement, and the comparison with the one performed onto an
unpolarized sample, validate that the internal structure of the atoms plays a role in the
scattering of light. Proofs are provided by the shift ∆c that increases more rapidly with
two-level atoms than with multi-level ones and by the saturation of amplitude A that
occurs at lower atom number N . The experimental spectra are, as in the multi-level
case, well reproduced by Lorentzian function. We will now compare these data with
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theory, to see if a better agreement with coupled-dipoles simulations is obtained.

2.4 Comparison between theory and
experiment

2.4.1 The coupled-dipoles model

The coupled-dipoles equations have already been presented. This section only purpose
is to adapt the general equations derived in section 2.1 to our experimental condi-
tions: an ensemble of N σ+-polarized, two-level atoms driven by a Gaussian laser field
with a linear polarization perpendicular to the quantization axis set by the magnetic field.

The σ+-polarized dipole dj of atoms j is given by dj = dj ê+, with ê+ = −(êy+iêz)/
√

2.
êx is the unit vector along the quantization axis. The laser field used to probe the atoms
is polarized along the y axis. Therefore, we have EL · ê∗+ = −EL/

√
2. Consequently,

(2.5) becomes
(
i∆− Γ

2

)
dj = +i

3πε0Γ

k3

EL√
2

+ i

N∑

l 6=j

Vjl
~
dl, (2.46)

where the dipole-dipole interaction term Vjl, which general expression is given by (2.3),
in the particular case of σ+-polarized dipoles becomes

Vjl = −3

8

~Γ

(kRjl)3
eikRjl [(1− 3 cos2 θjl)(1− ikRjl) + (1 + cos2 θjl)(kRjl)

2], (2.47)

θjl being the angle between Rjl and the quantization axis êx.

The simulations that are performed in this chapter follow a stochastic approach. The
set of coupled equations is first solved for a given realization of the spatial distribution of
the atoms in the cloud, then the scattered electric field Esc is calculated in the far-field.
We then can calculate the overlap between the scattered field and the excitation beam
in the plane of the aspherical lens, used to both trap and image the atoms in our
experiment, to form the coherent optical response.

The purpose of the following sections is to investigate the modification of the coherent
response of the cloud, using the coupled-dipoles model, to assess whether the remaining
discrepancy could be explained by

1. a wrong estimation of the number of atoms in the cloud,

2. a bias in our measurement of the temperature of the cloud,

3. a bias in our estimation of the volume occupied by the atoms of the cloud.
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As a function of the number of atoms
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Figure 2.15.: Simulation of |S(ω)|2 as a function of the number of atoms N in the trap (solid
lines). Trap waist is 1.2 µm, trap depth is 1.0 mK, saturation parameter of the probe is set to
0.01 and temperature of the cloud is set to 150 µK. The points corresponds to the experimental
measurements, with the same error bars as in Figure 2.14.

The relevant parameters of the coupled-dipoles model are the number of atoms N
in the cloud and the density n, or more precisely the quantity nλ̄3 where λ̄ = λ/2π is
the reduced wavelength of the atomic transition. When this last quantity is close to
1, the strength of the dipole-dipole interaction becomes comparable to the strength of
the coupling with the electromagnetic vacuum modes: an atom will as likely couple
to the vacuum mode of the electromagnetic field as to a neighboring atom through a
dipole-dipole interaction. Figure 2.15 represents the quantity |S(ω)|2 as a function of
the number of atoms in the cloud. I performed the simulation for a temperature of
the cloud of 150 µK, a trap depth of 1.0 mK (trapping beam assumed to be Gaussian
with a waist equal to 1.2 µm) and a saturation parameter of the probe light s = 0.01
(probing beam assumed to be Gaussian with the same waist as the trapping beam).
As one can see, when the number of atom increases, the line shifts towards the red of
the transition (∆ < 0), the width increases and the amplitude saturates. For a very
large number of atoms, N > 100, a double peak structure begins to appear. In our
experiment, we manage to measure the quantity up to 100 atoms. This corresponds
to nλ̄3 ≈ 0.17. The data points reproduce the general features qualitatively but not
quantitatively for high atom numbers. The estimation of the number of atoms in our
experiment is extracted from the fluorescence signal obtained after a time of flight to
ensure an independent response of the atoms. The precision of this estimation is limited
by the shot noise on the camera used to collect the fluorescence of the atoms in the
cloud. The number of atoms is then equal to N ±

√
N . Based on this argument, a
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wrong estimation of the number of atoms in the cloud cannot explained the difference
between the experimental points and the theoretical curves. Moreover, because our data
coincide with the simulations at low atom number, a bias in the estimation of N would
therefore minimize the agreement at these small numbers of atoms.

As a function of the temperature of the cloud
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Figure 2.16.: Simulation of |S(ω)|2 as a function of temperature for N = 100 atoms. The
trap waist and trap depth are fixed here to 1.2 µm and 1 mK respectively. Experimental data
points (blue circles) are displayed for comparison.

In our desire to address the remaining discrepancies between the coupled-dipoles
theory and the measurements, let us consider the same simulation as before, restricted
ourselves to the case of N = 100 atoms, and changing the temperature of the atoms in the
cloud. We have decided to run the simulations with N = 100 because the vicious effect
that could have been omitted would be more pronounced when the number of atoms is
high. The results are depicted in Figure 2.16. The conclusion is quite obvious: as the
temperature increases, the volume occupied by the atoms increases and thus minimizes
the density. As the density is decreasing, the dipole-dipole interactions strength also
decreases and consequently the symmetry of the line-shaped is restored. The red-side
of the line is removed and added to the blue part. The minimum of the line is shifted
towards the right. All the features of the dipole-dipole interactions are minimized by an
increase of temperature, because the effective density is reduced. The precision on the
temperature estimation of the cloud is around 15%. Therefore, a temperature that will
be off by this uncertainty will still not explained the discrepancies between experimental
data and theory.
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As a function of the trap volume
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Figure 2.17.: Simulation of |S(ω)|2 as a function of the waist of the trapping beam for
N = 100 atoms. The trap depth is fixed to 1 mK and temperature to 150 µK. Data points
(blue circles) are shown for comparison.

The investigation of the influence of the trap volume in the line shaped of the |S(ω)|2
quantity leads to the same conclusion as the one of the influence of the temperature.
As in Figure 2.16, Figure 2.17 displays a reduction in the red side of the line that is
added to the blue side. The reason behind it is that a bigger trap volume reduces the
effective density of the cloud the same way an increase of temperature would do. The
difference between this two phenomenon relies in the dynamic of the interaction because
atoms with a higher temperature moves faster. The dynamic of the interaction is not
taken into account in the simulations as we compute only the steady state of a given
atomic distribution. From the steady-state point of view, the two parameters seem
identical. The agreement with experimental measurements gets better when the waist of
the trapping beam gets close to 2.0 µm. Nonetheless, according to [Sortais et al., 2007],
our trapping beam waist is equal to 1.20± 0.05 µm. The uncertainty on this value has
been estimated from the measurement of the oscillation frequency of a single atom in
the dipole trap. Differences cannot be attributed to an underestimated value of the
trapping beam waist as the relative precision of this measurement is not compatible
with a waist of 2.0 µm. Besides, it would not explain the agreement at low atom numbers.

In principle, the temperature T of the cloud and the volume occupied by the atoms
are related in thermal equilibrium. However, it could be that thermal equilibrium is
not fulfilled when the number of atoms increases. Note that because coupled-dipoles
simulations agree with the experimental data at low atom number, we are looking for
an effect that would vary with the number of atoms.
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Conclusion

Other simulations have been performed in order to understand the only qualitative
agreement between theory and experiment, notably studying the effect of a misalignment
of the probe beam with respect to the cloud, both transversally and longitudinally
(see [Jennewein, 2017]). A longitudinal displacement of the focus of the probe with
respect to the cloud location would introduce an asymmetry in the line shape. However,
this asymmetry would be independent on the number of atoms and would be unable
to explain the remaining discrepancies. The same conclusion arises for a transverse
displacement of the probe which would only introduce a reduction of contrast.

To conclude, the internal structure of the atoms is not able, by itself, to reconcile
experiment with the couple-dipoles theory. In this section, we investigated the influence
of various parameters on the prediction of the coupled-dipoles model to determine
whether it could be compatible with our measurement. So far, none of the numerical
studies has been able to explain the discrepancies. Even if the modification of the
parameters could restore an agreement with theory when the number of atoms, thus the
density, is high, it degrades the agreement at low atom number.

2.4.2 Coupled-dipoles model with atomic motion

In a last attempt to address the remaining discrepancies between the theoretical models
and the experimental data, we investigated the influence of motion of the atoms on the
optical response of the cloud.

Including motion into the coupled-dipoles model

We have simulated the coupled-dipoles model (see (2.5) from subsection 2.4.1), keeping
the time derivative of the atomic coherences. We assigned a position rj to each atom
j according to a Gaussian distribution with widths given by the characteristics of the
Gaussian trapping beam and the temperature of the cloud (c.f. (1.14)). We also assigned
to each atom an initial velocity vj according to Maxwell-Boltzmann distribution given
by

f(v) =

(
m

2πkBT

)1/2

exp

(
− mv2

2kBT

)
,

where m is the mass of Rubidium, kB is the Boltzmann constant, T the temperature of
the cloud and v the speed of the atom along any of the three directions of the Cartesian
space. The simulation is then performed during t = 300 ns and for each time step dt,
the new positions of the atoms is calculated using ballistic motion

rj(t+ dt) = rj(t) + vjdt.
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ti ti + dt

Figure 2.18.: Sketch of principle to explain simulations. At each time step ti, each atom j
has a specific position rj(ti). The interference between the laser field and the field scattered by
each atom is computed knowing the interaction matrix Vjl(rj(ti), rl(ti)) between atom j and
atom l. In the next time step, the positions of each atom are modified based on their previous
positions and their respective velocities: rj(ti + dt) = rj(ti) + vj dt. The velocity of each atom
is assigned according to Maxwell-Boltzmann distribution and is assumed to be constant during
the experiment. Doing so, we neglect the forces between atoms.

At each time step, the interaction between atoms is computed as if the atoms where
frozen in that specific configuration. Let us write explicitly the time-dependent coupled-
dipoles model starting from the equation on the atomic coherence ρeg (complex conjugate
of (C.8))

dρjeg
dt

= + i
Ω∗L
2

exp(+ikzj(t))−
(

Γ

2
− i∆

)
ρjeg(t)

+
3

8
iΓ
∑

l 6=j

ρleg(t)f
∗(Rjl(t), θjl(t)) exp(+ikRjl(t)) (2.48)

where the ∗ sign denotes the complex conjugate and where we have omitted the retarded
times, thus considering instantaneous interactions.Rjl(t) = |rj(t)− rl(t)| is the distance
between atom j and atom l at time t, and θjl(t) is the angle between Rjl(t) and the
quantization axis. Both quantity depend on t, as explicitly written in the previous
equation, but we will omit this dependence in the following for clarity. The f ∗ function
is defined by

f ∗(R, θ) =
1 + cos2 θ

kR
+ (1− 3 cos2 θ)

1− ikR
(kR)3

, (2.49)

and the Rabi frequency Ω∗L by

Ω∗L =
d(EL · ê∗+) exp(−ikz)

~
= −d

~
EL√

2
exp(−ikz). (2.50)

Using the fact that the classical dipole amplitude dj of atom j is related to the atomic
coherence ρjeg by the relation dj = 2dρjeg, where d is the dipole matrix element, one can
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obtain the following equation

ḋj(t) =−
(

Γ

2
− i∆

)
dj(t)− i

d2

~
EL(Rj)√

2

+ i
∑

l 6=j

dl(t)×
3

8
Γf ∗(Rjl, θjl) exp(ikRjl), (2.51)

where the upper dot denotes the temporal derivative. Using the relation ~Γ = d2k3

3πε0
, the

previous equation can be rewritten as

ḋj(t) = −
(

Γ

2
− i∆

)
dj(t)− i

3πε0Γ

k3

EL(Rj)√
2
− i
∑

l 6=j

Vjl(t)

~
dl(t), (2.52)

where Vjl is the dipole-dipole interaction potential given by (2.47). Note that because
the positions of the dipoles now depend on time, so does Vjl. Equation (2.52) is just an
ordinary first order differential equation. Associated with the initial condition that all
dipoles amplitudes are null at t = 0, it becomes an initial value problem that can be
solved numerically.

Simulation procedure

We remind here the several steps of the simulations performed in this section.

1. assigning to each atom an initial position and a velocity, constant throughout the
simulation procedure,

2. displacement of all the atoms based on their respective positions and velocities
(balistic motion, no forces between atoms),

3. compute the atomic dipoles and store them,

4. steps 2 and 3 are repeated until the final time defined by the user is reached.

The result of the simulation gives the amplitude of each dipole at each time step.
We then calculated the total field emitted by the cloud, the interference between the
excitation beam and the field scattered by all the dipoles in the far-field, that we are
summing for a duration that we define as the steady-state regime. The procedure is
completely similar to the one described in subsection 2.4.1 besides the fact that the
simulations are now time-resolved and take into account the motion of the atoms. To
be more precise, the motion of the atoms is consider here in a stochastic manner. Each
atom is moving in straight lines from its initial position, according to its random initial
and constant velocity. No force between atoms nor collisions is included in this model.
A quick numerical application can convince ourselves that motion will not likely lead

59



Chapter 2. Near-resonant light transmission through a dense cloud of two-level atoms

to collisions in the cloud. Taking the highest density that we measure in our cloud,
n ≈ 1014 at.cm−3, the mean distance between atoms is of the order of 1/n

1
3 ∼ 200 nm.

For a typical temperature of the cloud of 150 µK, the mean velocity of the atoms from
a Maxwell-Boltzmann distribution is around 12 cm.s−1. Then, during the 300 ns probe
pulse duration, the displacement of the atoms is, on average, around 36 nm, which is
small compared to the average distance between dipoles.

Simulations results

The results of our simulations indicates that, for our temperatures, the motion of
the atoms is completely negligible. In fact, if we take λ, the transition wavelength,
as the unit of distance, and 1/Γ as the unit of time, Γ being the natural linewidth of
Rubidium, the velocity of our atoms is on the order of v = 0.004 λΓ for T = 150 µK.
The output of the simulations for this velocity is superimposed with the one obtained at
0 speed, which is the same as the one obtained in Figure 2.15 where we have removed
the time-derivative and set the atoms at a fixed location. In order to see the impact
of the motion, we have artificially increased the velocity of the atoms by a factor 10,
v = 0.04 λΓ, while keeping the Gaussian widths spatial distribution consistent with a
temperature of T = 150 µK. The result of this simulation is depicted in Figure 2.19. The
motion of the atoms reduces the red part of the spectrum to put it back into the blue
side, thus restoring partially the symmetry of the line. However, the effect is seen for
typical velocity of the atoms that are inconsistent with experimental measurement of the
temperature of the cloud. In fact, an increase by a factor 10 on the velocity corresponds
to an increase of a factor 100 on the temperature, which will be then equal to 15 mK,
incompatible with our experimental conditions. Although the effect of motion seems to
bring the theoretical line shape closer to experimental data points, it cannot explain the
discrepancies between our measurements and the theory for our experimental parameters.

As pointed out in [Weiss et al., 2019], collective effects in atomic clouds seem to be
robust against thermal decoherence. In [Kuraptsev and Sokolov, 2019], they claim that
the displacement of the atoms results in the suppression of the impact of sub-radiant
collective states, that would lead to a modification in the way the cloud of atoms scatters
light. However, they also stated that the velocity of the atoms has practically no effect
on the dynamics of the system at small times, the sub-radiant modes being long-lived
states.

Conclusion

As a conclusion, we still cannot reproduce the experimental measurement when
including the motion of the atoms in the cloud. Another(s) ingredient(s) is still underes-
timated in its ability to modify the coherent response of our cloud. However, we want
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Figure 2.19.: Influence of motion in the optical response of a cloud of N = {10, 20, 60, 100}
atoms. The solid line corresponds to simulation with a mean velocity of 0.004 λΓ, consistent
with a Maxwell-Boltzmann distribution with a temperature of T = 150 µK. The dashed line
corresponds to the same simulation where the velocity of the atoms has been increased to
0.04 λΓ. The blue circles correspond to experimental data obtained with N = 100 and are
shown for comparison.

to emphasize once again that the measurement presented here is the first one that has
been able to determine that the internal structure of the atoms is not enough to explain
the discrepancy between our data and the theory.

2.4.3 A new model to tackle the high intensity regime

We will take the opportunity of this section to present the main derivation steps of the
multi-mode Maxwell-Bloch model that has been developed by our collaborators in order
to address the high intensity regime of the driving field. Although our data lie under the
low intensity approximation, we show here that the Maxwell-Bloch equations coincide
with the coupled-dipole model at low intensity, but have the potentiality to be compared
with experiment when the low intensity assumption is no longer valid. We will derive
the model in the low intensity case, showing that it reproduce the coupled-dipole model.
The high-intensity regime, where the coupled-dipoles model is expected to fail, is left to
a possible future experiment in this regime.

Maxwell-Bloch equations in the low intensity regime

The model presented here has been developed by our collaborator Pierre Pillet. It
is a generalization of the Maxwell-Bloch treatment of the propagation of light in a
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medium consisting of N two-level atoms to the multimode case to account for the
diffraction by the microscopic cloud. The derivations of the equations, starting from
the master equation ruling the time-dependent density operator ρ(t) of the atomic
ensemble are detailed in Appendix C. Here, we will just remind the main assumptions
as the final equations of this model that govern the evolution of the atomic coherences
and populations of each atom in the presence of a driving field and of dipole-dipole
interactions.

1. The first assumption consists in performing a continuous medium approximation:
the average coherence ρge(r, t), population ρee(r, t), and the slowly varying coherent
field amplitude Ω+(r, t) = d 〈E∗(r, t) · ê+〉 exp(ikz)/~ propagating through the
atomic sample are introduced (d being the transition dipole and the unit vector
ê+ defines the σ+ polarization.

2. The second assumption is considering the quasi-one dimensional shape of our
cloud. This last assumption enables to demonstrate that Ω+(r, t) fulfills a paraxial
equation.

3. Finally, diffraction is included by decomposing the coherent field onto the Laguerre-
Gauss basis.

In the low intensity regime, we obtain a set of equations coupling the slowly varying
averaged coherence ρ̃ge(z, t) = ρge(z, t) exp(ikz) and the Ω

(q)
+ (z, t) component of the

coherent field



∂ρ̃ge
∂t

= −
(

Γ

2
+ i∆

)
ρ̃ge(z, t)−

i

2

√
πw2

2

1

2πσ2
r

∞∑

p=0

fp(z)Ω
(p)
+ (z, t),

∂Ω
(q)
+

∂z
+

1

c

∂Ω
(q)
+

∂t
= −i

√
2

πw2

3π

2k2
Γnf ∗q (z) exp

(
− z2

2σ2
z

)
ρ̃ge(z, t),

(2.53)

with the initial conditions Ω+(r, z = −∞, t) = ΩL(r, z = −∞, t), ΩL denoting the laser
field. We have introduced the function fp(z) which are overlap integrals defined as

fp(z) =

∫ ∞

0

exp

(
− r2

2σ2
r

)
LGp(r, z)2πr dr , (2.54)

with LGp the Laguerre-Gauss mode of order p.

Connection with the experimental measurement

We link the set of coupled equations valid in the low intensity regime to the measured
quantity on the experiment by noticing that the fibered avalanche photodiode measures
the projection of the total field Ω+(r, z, t) at the position of the lens onto the Gaussian

mode of the single-mode fiber. The avalanche photodiode therefore measures
∣∣∣Ω(0)

+ (z, t)
∣∣∣
2

,
with z a distance that we take in practice equal to 10σz.
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Steady-state solution
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Figure 2.20.: Comparison of Maxwell-Bloch simulations described in this section (dashed
lines) with the coupled-dipoles model (solid lines) for different atoms number N from 10 to 100.
The steady-state solutions of Maxwell-Bloch equations have been obtained by decomposing the
coherent field onto the 10 first Laguerre-Gauss modes. For both models, the size of the cloud
is the one estimated from thermal equilibrium: Gaussian trap of 1.2 µm waist, trap depth
of 1.0 mK at λtrap = 940 nm; temperature of the atoms equal to 150 µK. The waist of the
near-resonant probe beam addressing the D2 line closed transition is set to 1.2 µm.

Finally, the steady-state response is solution of the following equation, obtained by
setting the time derivative in (2.53) equal to 0

dΩ
(q)
+

dz
= − 3Γn

4(kσr)2

f ∗q (z)

Γ + 2i∆
exp

(
− z2

2σ2
z

) ∞∑

p=0

fp(z)Ω
(p)
+ (z). (2.55)

Equation (2.55) is therefore a continuous version of the coupled-dipole equations. Fig-
ure 2.20 displays the results of the simulations obtained with the procedure described
here and the standard coupled-dipoles model. The results of the Maxwell-Bloch simula-
tions feature the same behaviors as the ones of the coupled-dipoles simulations, at least
up to 100 atoms, the two being even superimposed for low atom numbers indicating
that the Maxwell-Bloch treatment seems legitimate here. With this new approach, the
number of equations to solve does not depend on the number of atoms N but only on
the number of Laguerre-Gauss modes involved. In practice, it seems that 5 to 10 modes
are enough. This framework, beyond having the capability to be extended to the case
of strong driving regime (see next section), is less demanding computationally than
microscopic models when the number of atoms increases.
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Maxwell-Bloch equations in the high intensity regime

For the sake of completeness, we give here without derivation the set of equations of
the model in the strong driving limit





∂ρge
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)
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2
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(2.56)
with

¯
Ω(z, t) the Rabi frequency defined by

¯
Ω(z, t) =

√
πw2

2

1

2πσ2
r

∞∑

p=0

fp(z)Ω
(p)
+ (z, t). (2.57)

Note that the equation for the field is identical to the one in the low intensity case.

The same approximations as for the low intensity regime are performed. We empha-
size nonetheless that, in contrast with the low intensity regime, while performing the
continuous approximation, correlations between the coherences and the populations of
different atoms have to be neglected:

〈
ρlgeρ

j
ge

〉
≈
〈
ρlge
〉 〈
ρjge
〉
, and

〈
ρlgeρ

j
ee

〉
≈
〈
ρlge
〉
〈ρjee〉,

with 〈·〉 the configuration average resulting from the continuous approximation.

The steady-state regime in the strong intensity case is governed by the following
equation

dΩ
(q)
+

dz
= − 3Γn

4(kσr)2

f ∗q (z)

Γ + 2i∆
exp

(
− z2

2σ2
z

) ∞∑

p=0

fp(z)Ω
(p)
+ (z)

Γ2 + 4∆2

Γ2 + 4∆2 + 2|
¯
Ω(z, t)|2

.

(2.58)
One can recover (2.55) from (2.58) when the driving intensity is small (Ω0 � Γ hence
|
¯
Ω(z, t| � Γ). Solutions of this equation, with N equal to 100 atoms and for various
saturation parameters, are displayed in Figure 2.21. We note that as s gets above unity,
the amplitude and the shift of the line are drastically suppressed. It would be interesting
to measure the coherent response of cold two-level atoms in the strong intensity regime
to compare with the predictions of the Maxwell-Bloch model presented here. The
comparison should not be too hard as the signature of the strong intensity regime is
strongly visible when s is above a few units.
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Figure 2.21.: Maxwell-Bloch simulations in steady-state regime. The curves represented
here are the solutions of (2.58) with N = 100 atoms and for various saturation parameters
s = [0.01, 1, 5, 10]. The equation being able to handle to high intensity regime, we are not
restricted to small values of s.

2.5 Conclusion

In this chapter, after having presented the latest experimental results obtained in our
experiment, explicitly the coherent transfer function of a dense cloud of N two-level
atoms probed close to resonance, we have simulated the theoretical response using a
discrete coupled-dipoles models. We have tried to explain the remaining discrepancies
by changing the experimental parameters on the simulations, and we have even tried to
include motion, in an empirical manner, in order to obtain a better agreement. Despite
all these efforts, no quantitative agreement between theory and experiment has been
obtained. The two possible guilty candidates introduced at the end of section 2.3, which
were the internal structure of Rubidium and the residual motion of the atoms in the
cloud, do not seem to explain the discrepancies between theory and our experimental
measurements.

We have to question others assumptions in our experimental approach that could be
inappropriate. One possible explanation is a wrong estimation of our density. Indeed,
the cloud size being smaller than the diffraction limit, we only have an undirect access
to the volume occupied by the atoms in the cloud, and it is given under the assumption
that the volume is an independent quantity. The volume calculation being related to the
temperature of the cloud, we have checked experimentally that the temperature does
not depend on the number of atoms in the cloud, at least over our range of atoms (from
1 to ∼200). But, it could be that our estimation of the volume is nonetheless wrong.
An over-estimation of the density would have important impacts on the predictions of
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our theoretical models: a smaller density leads to a more symmetrical coherent transfer
function, featuring a smaller shift and a smaller broadening. Because we always measured
less pronounced effects on our measurements compared to theoretical predictions, this
point would have to be investigated for completion of our works.

This chapter has also been the opportunity to introduce and derive a new model
developed by our collaborators in order to address the high intensity regime. Based
on Maxwell-Bloch equations and using a continuous medium approximation, we have
checked that it was consistent with the coupled-dipoles regime for weak-driving field.
Although no reliable measurement has been performed in the high-intensity regime, we
have now a theoretical model for a regime where the coupled-dipoles is expected to fail
and that is less computational demanding compared to a discrete model.
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Being unable to obtain a satisfactory agreement between theoretical models and our
experimental measurements, and in order to keep investigating the influence of dipole
interactions induced by resonant light in cold atomic ensembles, we have decided to
upgrade the experiment to add new functionalities. The new experiment was designed
with two main criteria in mind:

• allowing more flexibility on the shaping and the observation of our dense cloud of
atoms. For that matter, we decided to include a second high resolution optical axis,
at 90◦ from the previous one. The two axes, together, allow for the simultaneous
observation of the fluorescence light emitted by the atoms (incoherent response)
and the transmission through the cloud (coherent part). They also enables the
shaping of the cloud into a slab for instance.

• solving experimental problems present, at different level, on all the setups of the
group using high numerical aperture (NA) lenses. Two of those experimental
problems being:

– a painful alignment of the MOT. The MOT beams being small and some
beams being not orthogonal to some others, owing to the small working
distance∼5.7 mm of the previous high NA aspheric lens, the displacement of
the MOT to overlap with the dipole trap was not an easy task (too many
coupled parameters).

– lots of scattered light inside the chamber. This stray light, mainly due to the
scattering of MOT beams onto the aspheric lens holder, is collecting by the
imaging system and makes it harder to find atomic signal for instance.

We have thus decided that the new apparatus will be based on new high NA
lens with larger working distance. The larger working distance will increase the
available space between the two lenses of the same axis, hence limiting the scattered
light on the lens holder and enabling larger MOT beams at 90◦ from each others.
These high NA lenses with larger working distances did not exist when the previous
setup was mounted in 2005-2006. Beyond solving the two mentioned experimental
problems, the new lenses would also enable to address the question of dipole-dipole
interactions in new configurations.

This chapter is organized in five parts. The first one is dedicated to the design of the
new apparatus. The second part concerns the details of the challenging alignment of
two crossed high resolution axes of aspheric lenses. To our knowledge, this alignment
has been done only in one other group, with a different alignment procedure, almost
simultaneously ([Bruno et al., 2019]). The third part of the chapter is devoted to the
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characterization of the optical performance of the new apparatus. The limitations are
discussed in the fourth part. Finally, the last part is an overview of the future tools that
are currently implemented or will be implemented.

3.1 Design of the new apparatus

The implementation of two high resolution axes, composed of high numerical aperture
aspheric lenses in an almost confocal configuration, implied a modification of the vacuum
chamber to provide all the optical access needed for our experiment. Beside the lens
holder that has to be put in vacuum, we have also included the MOT coils and a
microwave antenna inside the vacuum chamber, in contrast with the previous version of
the experiment.

3.1.1 New vacuum chamber

(b)(a)

Figure 3.1.: (a): Picture of the vacuum chamber from the top. The lens holder is visible in
the middle of the MOT coils that are fixed on the bottom part of the vacuum chamber. (b):
Solidworks drawing of the vacuum chamber. We see the lens holder in the middle of the MOT
coils. The MOT beams, the Zeeman beam and the two high resolution axes beams are also
materialized.

The vacuum chamber is manufactured by Kimball physics (diameter 20.2 cm, CF160).
The arrangement of the lens holder, the MOT coils and the microwave antenna has been
designed by Florence Nogrette, research engineer at Laboratoire Charles Fabry. The
main characteristic of this chamber is the second axis of aspheric lenses, whose direction
is out of the plane parallel to the optical table. Indeed, because of space constraint (6
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MOT beams, a Zeeman beam to slow down the atoms and one axis of two confocal
aspheric lenses), all the standard optical accesses were used. The solution that has been
implemented to enable another optical access for our second axis of aspheric lenses was
to bring it out of the plane parallel to the optical table. It is materialized by the beam
at 45◦ from the plane parallel to the optical table in Figure 3.1 (b). The optical access
to this second high resolution axis is enabled by a tube that pops out of the vacuum
chamber and which has motivated the name of this second generation of the experiment,
Cyclopix, as it kind of remind the only eye of the cyclops.

3.1.2 MOT coils
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Figure 3.2.: Simulated B field produced by the MOT coils at the middle of the chamber
(position of the cloud) versus current applied. Inset shows the field produced along the z
direction for a current of 160 A. In green, the field produced by each coil; in red the sum of
these two fields, with a maximum around 380 G.

The MOT coils have been designed such that they would be able to create an ho-
mogeneous magnetic field of approximately 500 Gauss with 200 A (see Figure 3.2).
This homogeneous field is required if one wants to isolate a two-level structure inside
the Rubidium atomic hyperfine states as the one presented in section 2.3 (the closed
transition being separated from any other transition by 12Γ). Running such a current
through the coils, even in pulsed mode, would induce some heating of the coils. Here,
we address the question of the heating of the coils. By how much do the MOT coils
temperature increases for a given current? And, more importantly, because of the
black body radiation of the MOT coils, by how much does the lens holder temperature
increases? This last question is of crucial importance as a heating will induce a dilatation
of the materials and consequently a defocusing of the aspheric lenses.
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Figure 3.3.: Measurement of the heating of the MOT coils versus time for an applied current
I = 12 A. The black dashed line is an exponential fit of the data.

The MOT coils are made of 12 turns (4 layers of 3 concentric circles) of copper
wire. To minimize as much as possible the resistance of the coils (but considering space
constraints inside the chamber), we have chosen a wire of diameter 2a = 4 mm. Doing so,
the resistance of each coils is R = 5.5 mΩ. We applied a steady state current I = 12 A,
which corresponds to a power dissipated by the coil below 1 W, and measured the
increase of voltage over the coil. Indeed, as the temperature increases, the resistance
increases and so does the voltage, which are related through the relation

∆V

V
=

∆R

R
= α∆T, (3.1)

where α is known as the temperature coefficient of resistance and is equal to 0.0038 K−1

for copper around 20◦C. The measurement of the increase of temperature of the coil
versus time is shown in Figure 3.3.

We have fitted the data with the function f(t) = ∆T∞(1− exp(−t/τ)) and extracted
the increase of temperature at infinite times ∆T∞ = 22.3 K and a time constant
τ = 4621 s (1 hour and 17 minutes). We understand and exploit those values with
a simple model based on Stefan-Boltzmann law considering the coils behave as black
bodies. In the stationary regime, the electrical power per unit of surface Psurface is
dissipated as thermal radiation, hence related to the temperature increase through the
following relation

Psurface =
RI2

Slateral
= εσ[(T0 + ∆T∞)4 − T 4

0 ], (3.2)

withR the resistance of the copper, ε the emissivity of our coils, σ = 5.67 10−8 W.m−2.K−4

the Stefan-Boltzmann constant and T0 the initial temperature of the coils assumed to
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be the one of the surrounding. We neglect here the thermal contact with the coils flange
holder. One can simplify (3.2) considering that ∆T∞ � T0 (which is the case here
because ∆T∞ ∼ 20 K and T0 = 300 K)

RI2 = εσSlateral × 4T 3
0 ∆T∞, (3.3)

where Slateral = 2πaL is the lateral surface of the coil, L being the length of the wire.
Finally, using the fact that R = ρ L

S⊥
, with ρ = 1.68 10−8 Ω.m the resistivity of copper

at room temperature and S⊥ = πa2 the transverse section of the wire, one can obtain

∆T∞ =
ρI2

8π2a3εσT 3
0

. (3.4)

Plugging the value of ∆T∞ inside the previous, we get an estimation of the emissivity of
our coil: ε ≈ 0.11.

The emissivity value can be confirmed using the transient regime of the curve. As-
suming that the time constant τ follows the relation

RI2τ = mCm∆T∞, (3.5)

with m the mass of the coil and Cm the heat capacity which is equal to 385 J.kg−1.K−1

for copper. Replacing (3.4) into (3.5), and using m = ρmπa
2L with ρm = 8.96 g.cm−3

the volumetric mass density of copper, one can get

τ =
ρmCma

8εσT 3
0

. (3.6)

When using the value of τ extracted from the fit, we calculated the value of emissivity
and obtain ε ≈ 0.12, very close to the one obtained with (3.4).

We now have at our disposal a relation to predict the temperature of the coils versus
time for any current I

Tcoils = T0 + ∆T∞(1− exp(−t/τ)), (3.7)

with ∆T∞ and τ respectively given by (3.4) and (3.6). Concerned about the heating
of the lens holder placed in the middle of the coils, because it could induce a variation
of the relative distance between the aspheric lenses hence defocusing our image in the
camera, we have measured its increase of temperature (see Figure 3.4). Note that to
measure directly the temperature of the lens holder, the measurement has not been
performed in vacuum. We have found an increase of temperature of ∼ 5 K in ∼ 7 hours.
Similarly to the previous study, we have reproduced the data using a simple model.
Assuming that the lens holder, with a heat capacity C and emissivity εh, is heated up
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Figure 3.4.: Measurement of the heating of the lens holder versus time for an applied current in
the coils of I = 20 A. The black dashed line is a numerical simulation of the temperature when
solving (3.8) with R = 8.5 K.W−1 and εholder = 0.14. Inset shows the simulated temperature
of the coils versus time for I = 20 A according to (3.7).

by the coils and is connected to the vacuum chamber at T0 through a thermal resistance
R, its temperature Th is a solution to the following equation

C
dTh
dt

= − 1

R
(Th − T0) + εhσSlat[T

4
coils − T 4

h ], (3.8)

with Slat = 9 ·103 mm2 the lateral surface of the lens holder. The value of the heat capac-
ity is given by mh×Cm ≈ 520 J.K−1 (mh ≈ 1.35 kg). Solving (3.8) with R = 8.5 K.W−1

and εh = 0.14 reproduces the data very well (see black dashed line in Figure 3.4). Note
that to solve this equation, we have simplified T 4

h ∼ T 4
0 in the black body radiation

term in (3.8). However, we did not perform the approximation ∆T∞ � T0. ∆T∞ being
∼ 60 K (see inset of Figure 3.4), the approximation T 4

coils ∼ T 4
0 + 4T 3

0 ∆T∞ would have
resulted in an error of 13% when t→∞, and consequently an overestimation of R and
εh of the same amount.

In conclusion, the lens holder is heating up by the MOT coils. If we consider the
linear thermal expansion coefficient of stainless steel αL ≈ 14 · 10−6 K−1, an increase of 5
K would introduce a shift of the position of the lens of 7 µm. Such a defocus can be not
too hardly compensating on the experiment but it would require first to reach a steady
state and according to the measurement, this can take as long as 7 hours. Note that
the final temperature of the lens holder, and then defocus introduced on the camera,
depend on the current applied in the coils. However, the power dissipated by the coils
being related to the RMS value of I, running the coils at 200 A with a duty cycle of 1%
would induce the same heating.

73



Chapter 3. A new apparatus to study dipole-dipole interactions

In order to not induce a defocusing of our imaging system, we have built a new pair
of coils that are placed outside of the vacuum chamber and which purpose is to generate
the homogeneous B field. These coils, 20.5 cm of mean diameter, are made with 19
spires of a 4 mm side square wire. The wire benefits from an empty inner part, a 2 mm
diameter hole, that enables to cool down the coils by making water flow through it.

3.1.3 Microwave antenna

The new vacuum chamber benefits also from a microwave antenna. This antenna is
made of a single coaxial wire (part number:380-SMA-MX-500, sold by allectraR©) with
a connector at only one of its ends. The SMA male connector enables to connect it
from the outside of the vacuum chamber (feedthrough), while the other end (without
connector) is placed inside the lens holder to serve as an antenna. Note, however, that
no attempt has been made to adapt its impedance. The company guarantees that the
cable is compatible with ultra-high vacuum below the 10−10 mbar level. The idea behind
using this cable is to be able to address the ground state hyperfine splitting of the atoms
with less power than a microwave antenna would require if placed outside the vacuum
chamber.

3.1.4 Vacuum

In contrast with the previous version of the apparatus, there are now many parts inside
vacuum: the MOT coils, the lens holder, the four aspheric lenses, a microwave antenna
and all the screws and connectors needed to maintain everything. This was a source
of concern for the quality of the vacuum that we could reach, because of outgassing.
Nonetheless, we have decided to keep the same ion pump. After several baking procedure
and the use of a titanium sublimation pump, we reached a pressure of 5× 10−11 mbar,
measured at the gauge. The level of pressure is comparable to the one that the group
had with the previous version of the apparatus. A more precise measurement of the
vacuum pressure will be established with a single atom in subsection 3.3.3.

3.1.5 Other modifications

Computer Control

The computer control of the experiment has also been entirely modified. With respect
to the previous one described in [Jennewein, 2017], the three National Instruments cards
(the digital card NI-6534, the analog card NI-6713 and the counting card NI-6601) used
in our experiment are now implemented in the same computer and a unique Python
software, whose graphical interface has been designed by our co-worker from the other
project in the group, Vincent Lienhard, and which has been adapted to the need of
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Digital Panel

Analog Panel

Loop Counter

Running PanelInformation Console

Figure 3.5.: Screenshot of the Python program used to control the experiment. The Digital
and Analog panels set the sequence that will be written on the NI cards. The Loop counter
keeps track of the number of repetition of the experiment (loops) as well as on the modification
of experimental parameters (super-loops). The Running panel starts and stops the sequence, if
needed. The Information Console is displaying information that may be useful for the user.

our experiment, controls these three cards. The principle of operation is similar to
the one implemented and described in [Jennewein, 2017]. The only difference, besides
the programming language, is that no communication protocol is needed. Before, the
various cards were installed in different computers. The implementation of the sequence
was done in each computer to specify to each card, with their associated software, what
they were supposed to do and a communication, through local network to which all
computers were connected, was needed to make the cards work together on the same
sequence. Now, the cards being inside the same computer, the synchronization between
the tasks implemented in each card is automatic. No need to set up a synchronization
link between the different computers that hold the cards as before. The computer
is sufficiently powerful to hold the three cards and run a unique 3-in-1 software to
control the experiment. Another Python software, previously used by our co-workers
and adapted to our needs, on a second computer, is controlling the camera. A third
computer is used to analyze the data.

New CCD camera

With respect to the previous setup, this new version benefits also from a new electron-
multiplying CCD camera (EMCCD), an Andor iXonR©. This camera can work in
amplification mode to be sensible to the single photon level and has a quantum efficiency
close to 80% at our wavelength of interest. Thus, we will manage to obtain the same
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signal to noise ratio as with the previous imaging system but with less repetitions.
The previous imaging system was composed of a intensifier in front of the camera that
enabled to have a high sensitivity but was also responsible of a drop of the quantum
efficiency to the 10% level.

3.2 Alignment of the aspheric lenses

As for the previous apparatus that has been partially described in section 1.2 and
entirely presented in [Fuhrmanek, 2011], the new apparatus is composed of aspheric
lenses to highly focus the trapping beam and create small dipole traps. The major
difference is that this new device is not composed of only one axis of two aspheric lenses
in an almost confocal configuration but of two axes of aspheric lenses orthogonal to
each other. The second axis will allow to have a direct access to the measurement of
the longitudinal dimension of the cloud, that was so far deduced from its transverse
dimension. As will be detailed later, it will also allow to compress the cloud with laser
beams [Ville et al., 2017] and thus increase its density. The first part of this section
is dedicated to the definition of some relevant optical quantities. The second part is
dedicated to the procedure we have used to perform the challenging alignment of our
four aspheric lenses.

3.2.1 Relevant optical quantities

Before going into the details of the alignment procedure for the aspheric lenses, it could
be useful to remind some of the optical quantities that will be used in the following
sections.
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Figure 3.6.: Simulated intensity profile at
the focus of a lens: with 0.07λ of third order
spherical aberration (red) and without aber-
ration (black). The inset shows the profile in
the wings.

Spherical aberrations can be seen, in the
case of a lens, as a modification of the focal
length depending on the distance of the in-
cident ray with respect to the optical axis.
In other terms, all the incident rays of light
will not cross the optical axis at the same
point after being focused by the lens. This
results in a spread of the focus, therefore
a smaller peak intensity at the focal point.
From the atomic physics point of view, one
will thus need more laser power to achieve
the same trap depth and the same oscilla-
tions frequencies of the atoms in the trap.
Aspheric lenses have been designed to over-
come spherical aberrations. Beyond being
vacuum compatible, they are also easier to
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align and less expensive than microscope objectives. Aberrations have to be considered
as soon as one wants to use an optical system out of axis and/or on axis but on large
fraction of its aperture. In this respect, the relevant parameter is the numerical aperture,
NA, defined as

NA = n sinα′,

where n is the index of refraction of the medium in which the lens is working and α′ is
the half-angle of the cone of light entering the lens. We will consider in the following
that n = 1, unless stated differently. Another useful quantity is the working f-number
N , defined as

N =
f ′

φ
,

where f ′ is the focal length of the lens and φ the diameter of its entrance pupil. If the
aplanetic lens is working in an infinite-to-focus conjugation, we link the two previously
defined parameters with the relation NA = 1/2N . An optical system, even if composed
of only one element, is said to be aberration-free if its point spread function (PSF)
corresponds to an Airy disk. The Airy disk is also the diffraction pattern obtained when
a plane wave is going through a circular aperture. The intensity distribution, at the
focal plane of the lens, is given by

Istig(r) = I0

(
2J1( πr

λN
)

πr
λN

)2

, (3.9)

where J1 is the Bessel function of the first kind of first order, r is the radial distance from
the optical axis and λ is the wavelength of the light. In the presence of aberrations, the
point spread function of the lens is modified. When aberrations are not too important,
the distribution of intensity looks like an Airy disk but the maximum of intensity is
reduced, the lost intensity being redistributed in the wings of the profile, as depicted
in Figure 3.6. The ratio between the maximum intensity at the focus point of the lens
Iaberr and the maximum theoretical intensity Istig which would be obtained if the lens
were perfectly stigmatic (i.e., free of aberrations) is a first manner to define the optical
performance of the system: it is called the Strehl Ratio and is denoted S. This ratio is
related to the deformation of the wavefront [Born and Wolf, 2003]

S(λ) =
Iaberr
Istig

≈ 1− 4π2σ2
∆

λ2
. (3.10)

Here, σ∆ denotes the root-mean-square standard deviation of the actual wavefront with
respect to the ideal one, and λ is the wavelength of the light. A criterion, often used by
opticians to estimate the quality of an optical system, is S > 0.80, which turns out to
be equivalent to σ∆ 6 λ/14 (Marechal criterion).

A second quantity which is used to define the quality of an optical system is the
Modulation Transfer Function, MTF, defined as the module of the Fourier Transform of
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the PSF. This quantity indicates how much of the object’s contrast is reproduced in the
image as a function of the spatial frequency f . Using Fourier Transform properties, the
MTF can be expressed as the auto-correlation of the entrance pupil. In the case of an
aberration-free optical system with circular and homogeneous aperture, the MTF has
an analytic expression given by

MTF(f) =
2

π


acos

(
f

fc

)
− f

fc

√
1−

(
f

fc

)2

 , (3.11)

where fc = 1
λN

is the cut-off frequency. This quantity can also be used to estimate
the Strehl Ratio of an optical system. It is the ratio of the integral of the MTFaberr in
presence of aberrations to the integral of the MTF of an ideal optical system

S =

∫∫
MTFaberr(f) d2f∫∫
MTF(f) d2f

. (3.12)

(3.12) is the quantity that we have used when we were trying to determine the best
alignment for each aspheric lens.

3.2.2 The aspheric lenses

The aspheric lenses chosen for the new version of the apparatus are designed and
manufactured by AsphericonR©. The part number of those lenses is AHL25-20-S-U. Their
diameter φ is 25.0 mm (reduced to 20.0 mm to fit in the lens holder apertures) and
their effective focal length f ′ is equal to 20.0 mm. They are diffraction limited up to a
numerical aperture of 0.54 (0.45 after reduction of their diameter). Those lenses have
a bigger diameter than the previous ones because of space constraints: the four lenses
needed to look at the same point of space, not touching each other, and allowing the
MOT beams to intersect at this particular point. To enable bigger MOT beams with
respect to the previous experiment, the aspheric lenses have been cut on the edges.
Although they have a bigger diameter compared to previous ones, they have the same
numerical aperture (NA), thus enabling to obtain the same spot size at the focus of the
lens as before. Those lenses are made of S-LAH64 material which has a refractive index
n close to 1.78 for our relevant wavelengths.

Choice of a given conjugation

We have performed simulations using an optical design software, OSLO, to obtain
the best focus positions for our two wavelengths of interest: λ = 780 nm, the D2
line transition wavelength of Rubidium 87, and λtrap = 940 nm, the trapping beam
wavelength used in our experiment. Because of the high refractive index of the lens, the
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Figure 3.7.: Numerical simulation of the Strehl ratio at 940 nm (red circles) and 780 nm (blue
squares) performed with OSLO. The best focus position is given with respect to a position
that is 15.714 mm from the last surface of the lens. The Strehl Ratio at 940 nm is given in the
best focus of the lens where the atoms will be trapped and the Strehl Ratio at 780 nm is given
at the best position of the camera that will image the atoms trapped.

best performance for the trapping beam at λtrap, in a collimated configuration, did not
corresponds to the best performance for the imaging at λ. We have then decided to
choose a trade-off configuration where the optical performance of the aspheric lens is
similar for the two wavelengths. The criterion that we have chosen to determine the
best configuration of our lenses is the Strehl ratio S and, as it can be seen in (3.10),
it depends on λ. The result of this simulation is depicted in Figure 3.7. To be more
specific, the simulation is performed as follows:

• find the best focus at 940 nm for different conjugation, i.e., for different positions
of a fictitious point source emitting a spherical wave at 940 nm that will be focused
by the aspheric lens (the atoms will be trapped where the intensity is maximum,
i.e., where the Strehl ratio is maximum);

• knowing the position of the atoms, find the best position of the camera to image
their fluorescence emission.

Doing so we have, for a given position of the atoms, the Strehl Ratio at this location
for the 940 nm trapping beam and the Strehl ratio at the best position of the camera
to image them at 780 nm. We found that for a position of 0.315 mm, the Strehl Ratio
seen by the atoms at 940 nm and the one corresponding to the fluorescence image at
780 nm on the camera is the same, about 0.93 (see Figure 3.7). This position of the
atoms dictates the position of the fictitious 940 nm point source d0,940 and the position
of the camera d0,780 with respect to the first surface of the lens that, in vacuum, are the
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(a)

(b)

(c) (d)

(e)

Figure 3.8.: Solidworks drawings of the element used for the alignment procedure of the
aspheric lenses. This work has been performed by F. Nogrette. (a): Lens holder. The barrels
(b) that hold the aspheric lenses are inserted inside the lens holder and separated from it with
spacers made of glass (c). (d): Drawing of the apparatus used to align the aspheric lenses. The
lens holder is tilted such that both high resolution axes are contained in a plane parallel to the
optical table. Below it, a XYZ translation stage can displace a pinhole placed at the top of rod
and that have been inserted inside the lens holder through one of its aperture (e).

following

d0,940 = 2127 mm,
d0,780 = 1264 mm.

Because the alignment procedure will be performed in air and not in vacuum, we have
performed the same simulations but taking into account the modification of the index of
refraction of air nair ≈ 1.0003 compared to the one of vacuum. We found that the best
focus is now at 0.369 mm. This position corresponds to the following distances in air

d940 = 1747 mm,
d780 = 1119 mm.

This conjugation is our target. We will explain in the next section how we tried to
obtain this configuration for each one of the four lenses.
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Alignment procedure

Laser
C

D

B
CCD

d780

A

Figure 3.9.: Sketch of the alignment setup. A CCD camera is placed at a fixed position d780

while we shine a 780 nm laser beam onto a pinhole that acts like a point source for the aspheric
lens A. By moving the pinhole with respect to lens A, we optimize the Strehl Ratio on the
camera and we have access to the best focus of this lens.

Once the conjugation has been chosen, we have to align the four lenses. This is
an experimental challenge. Indeed, we need to intersect two optical axis in space
with a precision better than 10 µm (a precision better than the field of view of our
aspheric lenses). For that purpose, we have elaborated a procedure that we now describe.

Our four lenses are held in a piece of metal where two axes have been defined by the
most accurate mechanical precision achievable. The general tolerances requirements,
for all the parts in the vacuum chamber, were ±0.1 mm for position and ±0.1◦ for
angle. Some parts benefit from better precision. Then, the only degree of freedom
that we have to get a confocal configuration is the distance between the lenses of the
same axis. To do so, we change the thickness of a piece of glass (Figure 3.8 (c)) that
is placed between the piece of metal (Figure 3.8 (a)) and the barrel (Figure 3.8 (b))
that holds the lens: it acts as a spacer. We have a precision of 1 µm on the thickness
of the piece of glass. To perform the alignment of the four lenses (denoted A,B,C and
D as in Figure 3.9), we put a pinhole of diameter 1 ± 0.5 µm inside the lens holder
(Figure 3.8 (e)). This pinhole, mounted on a rotational stage as well as on a XYZ differ-
ential translation stage (Figure 3.8 (d)), is used to simulate the fluorescence of the atoms.

By sending 780 nm light on the pinhole from the back, it will act as a point source.
The asphere will focus the light emitted by the pinhole that is recorded on a camera
(PCO Pixelfly 12bit resolution). The camera is set at a distance d780 from the aspheric
lens (see Figure 3.9). We first have to check that the spherical wave that it emits will
cover the full aperture of the lens. To do so, an iris diaphragm has been placed just
after the lens and we have measured the size of the Point Spread Function (PSF) on the
camera with respect to the aperture diameter of the iris. In practice, we fit the image
obtained on the camera by an Airy function and we extract its radius. We know that
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Figure 3.10.: (a): Size of the Airy radius fitting the Point Spread Function on the CCD
camera versus the inverse of the aperture diameter. (b): Transmitted power through the iris
with respect to its aperture. The power is computed by integrating the signal on the CCD
camera, the background signal being removed. The transmitted flux is supposed to scale
linearly with the surface of the aperture. Here, we obtain a correlation coefficient of 0.948,
mainly due to the fact that the measurement of the aperture of the iris is not very accurate
(uncertainty of the order of 0.05 mm).

the Airy pattern radius on the camera is given by the relation

φAiry =
2.44λd780

D
, (3.13)

where D is the diameter of the iris placed close to the lens. The results of this study are
depicted in Figure 3.10 (a). We fit the data with a linear function and we extract the
slope α of the fit. We obtained α = 988± 49 µm.mm which is in very good agreement
with the theoretical slope αtheo = 1.22λd780 = 1024 µm.mm. The conclusion is that on
the full range of aperture (from 10 mm to 19.2 mm) the Airy pattern radius follows
the law in one over the diameter of the aperture, so the pinhole diffraction pattern
effectively covers the full aperture of the lens. To be more specific, the distance that
we have taken into account to compute the theoretical slope is the distance between
the camera and the iris, which is not perfectly superimposed with the lens. Another
test that we performed, which is complementary to the previous one, is to measure
the power P transmitted through the iris as a function of its aperture. As one can see
in Figure 3.10 (b), the transmitted power scales linearly over the full range of the iris
aperture, showing once again that the pinhole diffraction pattern cover the full lens
aperture.

When we have the pinhole at a distance so that the size of the PSF on the camera
is minimum, we know that we are in the targeted configuration. We then displace the
pinhole in the transverse plane of this position to minimize the coma on the camera.
Doing so, the pinhole is on the optical axis of the lens, at the proper distance from its
first surface. The position of the pinhole for our first lens is our reference point. By
keeping track of this position we have access to the best focus of each lens with respect
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Figure 3.11.: Estimation of the eccentricity of the pinhole. Assuming that the pinhole image
through lens A appears on the camera, and denoting l its radial distance from the axis of
rotation, ϕ its angle with respect to the axis defined by lens D and C (a). We perform a
rotation of 180◦ (b). The pinhole does not appear anymore on the camera. To recover its image
on the camera, we have put it back to its original position, thus translating it by 2l sinϕ long
axis (AB) and by 2l cosϕ along axis (CD) (c).

to this first position. But one needs to be able to replace the pinhole exactly at the
same position after a rotation of the whole structure. This is achievable by knowing
precisely the eccentricity of the pinhole with respect to the rotation axis. To measure
this quantity, we have performed a simple test: we locate the position of the image
of the pinhole on the camera, then we rotate the pinhole by 180◦ and we measure the
displacement that we have to perform to obtain the position of the image of the pinhole
back to its initial position. The result of this study is

{
l = 103.5± 4.4µm
ϕ = 19.2◦ ± 1.4◦

(3.14)

where l is the eccentricity of the pinhole position with respect to the rotation axis and
ϕ is the phase which is given with respect to the plane orthogonal to the AB axis and
that contains the rotation axis (see Figure 3.11). The uncertainties are given with one
standard deviation.

To summarize, the alignment procedure, although it has to be performed with a lot
of caution, is quite simple. We start with lens A. The pinhole is placed in the conjugate
plane of the camera, which is fixed. Then we translate the pinhole in this plane to bring
it on the optical axis of the lens (i.e., we maximize the Strehl Ratio). We note this
position and we study another lens. We rotate the pinhole so that it faces another lens
and, knowing precisely its eccentricity, we translate it to bring it back to its initial posi-
tion. We performed this procedure with each lens and, by keeping track of the pinhole
position, we obtained a mapping of the best focus of each lens with respect to each
other. For instance, Figure 3.12 shows the PSF obtained on the camera for lens C for dif-
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Figure 3.12.: PSF obtained on the camera for different position of the pinhole along the AB
axis. The displacement are given with respect to the best position which is defined as the one
with the highest Strehl Ratio, i.e., the one minimizing aberrations.

ferent position of the pinhole along the AB direction in the conjugate plane of the camera.

Now that we have a complete mapping of all the best focus for each lens, we know
the thickness of the piece of glass we have to choose to bring all these best foci closer.
Of course, if the optical axes of the lenses of the same axis (A and B or C and D) were
the same, then this procedure would have perfect solution. Because the optical axes are
not perfectly superimposed, after this procedure there remains a residual offset between
all these best positions. That is due to the fact that the only degree of freedom that we
have is the longitudinal translation of the lens along the axis defined by the mechanical
construction of the lens holder. After this alignment procedure, and the modification of
the thickness of the piece of glass taken into account, we obtain a configuration where
all the best positions of each lens are as close as we can get them. Finally, we rely on
the study mentioned in section 3.2.2 to obtain the same configuration with the lens
holder in vacuum: the thickness of each piece of glass is reduced by 54 µm.

Understanding the distribution of intensity

In this section, we discuss the criterion used to determine what was the best position
of the pinhole in the conjugate plane of the camera for each lens. To remind briefly
what was said in the previous section, we shone 780 nm light, through the first lens,
on a pinhole that acts like a point source for the second lens. We imaged the light
that is focused by the second lens on the camera and then computed the Strehl Ratio
associated with this picture (based on the definition given by (3.12)). The position of
the pinhole that leads to the best Strehl Ratio on the camera is defined as the best
focus of the lens. Whatever the definition used to compute the Strehl Ratio, we need to
compare it to the expression of an ideal, aberration-free, optical system. The analytic
expression of the relevant quantities are given for a circular aperture illuminated by
a point source. However, we used a Thorlabs pinhole of diameter φ = 1.0 ± 0.5 µm,
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3.2. Alignment of the aspheric lenses

which is of the same order of magnitude as the wavelength of the light used for the
alignment. It means that diffraction theory is not necessarily valid in this configuration
and a precise description would require full electromagnetic field calculation. Here, we
will investigate the modification of the intensity distribution, using diffraction theory,
when the pinhole size is not small compared to the wavelength of interest. Comparing
these simulations with the experimental spot sizes obtained on the camera, we will see
if we find a size of the pinhole compatible with the specifications of the manufacturer.

Let us consider a point source located at A, on axis and at a distance z from a lens free
of aberration, which is spatially limited by a circular aperture pupil p. Using Fraunhofer
diffraction theory, the incoherent point spread function PSFincoh in the conjugated plane
of A, on axis and at a distance z′ from the lens, is proportional to the modulus square
of the Fourier Transform of the pupil

PSFincoh(x′, y′) ∝ |FT [p]|2( x′
λz′ ,

y′
λz′

), (3.15)

where x′ and y′ are the Cartesian coordinates in the conjugated plane of the object, and
λ is the wavelength of the light. Using polar coordinates, the Fourier Transform is a
Bessel function of first kind of first order J1

PSFincoh ∝
(

2J1

(
πrφPE
λz′

)
πrφPE
λz′

)2

, (3.16)

where r is the radial coordinate in the conjugated plane of object A and φPE is the
aperture diameter. In the incoherent framework, the distribution of intensity in the
image plane of the lens is given by the following convolution product

Iincoh(x′, y′) =

∫∫
Iimage(x

′
0, y
′
0)PSFincoh(x′ − x′0, y′ − y′0) dx′0 dy′0 , (3.17)

where PSFincoh is given, for a circular aperture, by (3.16), and Iimage is the perfect
distribution of intensity of the geometric image of the object, i.e., when no diffraction or
aberration effects are considered. This distribution of intensity is related to the one of
the object Iobject through the magnification of the lens γ. Then, (3.17) can be rewritten

Iincoh(x′, y′) =

∫∫
Iobject

(
x′0
γ
,
y′0
γ

)
PSFincoh(x′ − x′0, y′ − y′0) dx′0 dy′0 , (3.18)

Here, we consider the distribution of intensity in the image plane when the size of the
object, the pinhole with a diameter φ, is not small compared to the wavelength. In fact,
let us recall that the manufacturer is providing a diameter φ = 1.0± 0.5 µm and the
wavelength used for this procedure is λ = 780 nm. We have computed (3.18) for our
system with different sizes of the pinhole. The results of this simulation is depicted
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Figure 3.13.: Normalized distribution of intensity in the image plane of our aspheric lens
when a pinhole of diameter φ is used as the object. Calculations have been performed for three
different sizes of the pinhole. The incoherent PSF (dashed dark line) is displayed for comparison.
The gray dots are associated with the inset picture, obtained for the best configuration of lens
C.

in Figure 3.13. One can see that when the pinhole size is smaller than the wavelength
used, the distribution of intensity can be assumed to be equal to the Point Spread
Function. As soon as this condition is no longer fulfilled, the convolution results in a
spread of the distribution of intensity and an apodization of the secondary ring of the
Airy pattern. Although the incoherent framework used here is questionable since we
used a coherent source, our measured spot size on the CCD camera, see Figure 3.13, is
in very good agreement with the simulated incoherent response obtained with a pinhole
of size φ = 1.0 µm.

3.3 Characterization of performance

Before trying to reproduce previous results, such as the coherent transmission of resonant
light through a dense cloud of two-level atoms, we have to characterize the performance
of our new optical system. Knowing precisely its performances would result in a better
confidence on our experimental results and can give a better intuition on what could pos-
sibly explain a potential disparity with theoretical predictions. An atom in a single dipole
trap is a good probe to characterize our experimental setup. The single atom loading as
been first shown in 2002 ([Schlosser et al., 2001]). Their fluorescence imaging is widely
used in experiments ([Kuhr et al., 2001], [Nelson et al., 2007], [Bücker et al., 2009a]). It
can be used to extract information about the residual background pressure in the vacuum
chamber, or to measure the trapping frequencies to infer the trap characteristics lengths
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for instance. In this section, we will summarize the characterization tests performed on
the new apparatus.

3.3.1 Single atom regime

0 50 100 150 200
400

500

600

700

Time [arb.units]

Si
gn

al
[a
rb
.u
ni
ts
]

(a) (b)
10 µm

Figure 3.14.: (a): Temporal signal recorded by the camera. The signal is characteristic of
the single atom regime: the fluorescence level of the pixel of interest is alternating between
two values, the upper one corresponding to exactly 1 atom in the trap, and the lower one
corresponding to no atom in the trap (dashed blue lines). The red dashed line is our threshold
value to determine if an atom is present in the trap or not. (b): Picture taken by the camera.
The exposure time is 50 ms. A background subtraction has been operated. We see a single
pixel illuminated at the center of the image corresponding to the scattered light emitted by
an atom in the dipole trap and collected by the imaging system. Each pixel (16 × 16 µm2)
corresponds to ∼ 1 µm in the plane of the atoms.

An optical dipole trap can be filled with many atoms. The number of atoms in the
trap is determined by the waist of the trapping beam, its power, as well as by various
loading and collisions processes. Indeed, the interaction of light with the atoms that is
responsible for the trapping being a conservative force, we only capture atoms with an
energy smaller than the trap depth Udip. Thanks to the MOT beams, a dissipative force
is applied to the atoms that will lose their energy and will eventually stay trapped. In
the trap, collisions can occur. First between atoms and residual background gases in the
vacuum chamber. Second, between atoms themselves, mediated by the cooling light or
not. These collisions processes are limiting the number of atoms in the trap. In order to
obtain the maximum number of atoms in the trap, the experimentalist has to play with
all the possible experimental parameters, as the MOT beams detuning for instance.

The single atom regime is a particular regime where the loading rate is almost
compensated by the light-assisted collision in the trap. As soon as a second atom enters
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the trap, they form a molecule. The absorption of quasi-resonant light is expelling
both atoms from the trap, thus resulting in either 1 or 0 atom in the trap. This
regime is characterized by a step-signal alternating between two values as depicted
in Figure 3.14 (a). All the characterization tests summarized here have been performed
in this regime.

3.3.2 Trapping frequencies

This section is divided into two parts. The first part concerns the trapping frequencies
measurement of the aspheric lens A (one of the two aspheric lens of the main high
resolution axis). For this lens, we have estimated the waist of our trapping beam with
two independent methods. The obtained values were not consistent with the theoretical
predictions. We have then decided to measured the trapping frequencies with another
aspheric lens (B). The second part of this section is dedicated to it.

Aspheric lens A

There exists several standard protocols to determine the oscillations frequencies of
an atom in the optical dipole trap, some of them are partially explained in subsec-
tion 1.3.1. More detailed explanation can be found in [Bourgain, 2014], [Béguin, 2013]
or [Fuhrmanek, 2011] for instance. To measure the oscillation frequencies of a single
atom in the optical dipole trap, we have used two independent techniques described
in chapter 1: the parametric heating and the trap depth measurement.

Parametric heating By modulating the trap power at twice the oscillation frequency
of the atom, in a given direction, we will transfer some energy to the atom so that, after
some time, it will have enough energy to leave the trap. If we modulate at a frequency
that is not resonant with an oscillation mode, the atom energy remains unperturbed
and the atom stays in the trap. Measuring the survival probability as a function of
the modulation frequency enables us to have access to both the longitudinal, or axial,
frequency ωa, and the transverse, or radial, one ωr. The results of this measurement are
depicted in Figure 3.15. In principle, one also has to measure the trap depth seen by
an atom to be able to compute the oscillation frequency. Here, assuming that the trap
distribution follows perfectly the one of a Gaussian beam, we get rid of the trap depth
parameter by forming the ratio of the two oscillations frequencies

(
ωr
ωa

)2

= 2

(
zR
w0

)2

=
2π2w2

0

λ2
, (3.19)

where we have used the definition zR = πw2
0/λ. For a trap wavelength of 940 nm, this

measurement gives a waist of the trapping potential equal to w0 = 2.06± 0.08 µm. This
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Figure 3.15.: Parametric heating measurement for aspheric lens A. Data points are fitted
by Gaussian curve to extract the resonant frequencies for both the longitudinal and radial
directions. For the axial direction, the fit gives a frequency 2ωa = 6.0± 0.2 kHz; for the radial
direction, the fit gives 2ωr = 58± 0.8 kHz. The axial resonance being narrower, the trap power
is modulated for longer times, typically ∼100 ms (compared to a few milliseconds for the radial
one).

value of the waist is puzzling because it is inconsistent with the theoretical value of
w0,theo = 1.2 µm at the wavelength of the trap.

Monopole excitation To confirm the previous estimation of the waist, we have also
measured the radial oscillation frequency using a different technique: the monopole
excitation (technique based on [Engler et al., 2000] and explained in subsection 1.3.1).
A typical experimental sequence is the following (see Figure 3.16 (a)):

1. start the experiment when a single atom enter the trap,

2. lower the trap depth and switch it off for typically 5 µs. The goal of this first
off-time is to synchronize the position of the different atoms in the trap. The
experiment being repeated with different atoms to build a survival probability, we
want each of them to start at the same position in the trap. The switch off time
is chosen such that an atom at the bottom of the trap, hence with the highest
velocity, will be at the edge of the trap after this time. An atom initially at the
edge of the trap will stay there during the off-time as its velocity is almost zero.

3. switch on the trap for a time ∆tosc. During this time the atom will oscillate freely
in the trap.

4. the trap light is switched off again, for typically 10 µs. The atom can be at different
position at the beginning of this last step, depending on the value of ∆tosc.
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Figure 3.16.: (a): Chronogram of the experimental sequence. (b): Monopole excitation
measurement for aspheric lens A. The black dashed line is a fit of the data with a damped sine
function. From the fit, we extract 2ωr = 65.6± 3.2 kHz.

5. finally, at the end of the 10 µs, the trap is switch on again and we checked if the
atom has been recaptured or not.

The sequence enables to reconstruct the recapture probability as a function of ∆tosc
which should oscillates at twice the radial oscillation frequency of the trap. Because
the atom is not exactly at the same position at the beginning of each sequence, the
sine behavior is damped. The result of this measurement is depicted in Figure 3.16 (b).
We have fitted the data with the function B +A exp(−t/τ) sin(2ωrt+ φ) and extracted
the radial oscillation frequency 2ωr = 65.6 ± 3.2 kHz. This value has been obtained
with the same trap depth as the one for the parametric heating measurement. This
two measurements, performed in the same experimental conditions, provides almost the
same values which gives us some confidence about our measurement.

Trap depth measurement The second measurement performed to confirm the
waist value obtained with the parametric heating was a trap depth measurement.
For this, we measure the detuning that we need to apply to a near resonant, σ+-
polarized probe beam addressing the transition from |g〉 =

∣∣5S1/2, F = 2,mF = +2
〉

to |e〉 =
∣∣5P3/2, F = 3,mF = +3

〉
for expelling an atom from the dipole trap. More

precisely, for each trap depth Udip, or equivalently each power of the trap beam Ptrap, we
measured a survival probability spectrum, as for instance the one shown in Figure 3.17 (a).
The minimum of this spectrum corresponds to the probe frequency which is resonant
with the atom. Comparing this frequency with the natural resonant frequency of the
atom (in free-space, no trap), we have access to the trap depth seen by the atom with
this specific power of the trapping beam. Note that this is only true because our probe
will address the specific transition from |g〉 to |e〉 and because our trap has a polarization
π. Doing so, state |e〉 is not shifted and |g〉 is shifted by exactly Udip. For another trap
polarization, the exact shift of the two level involved has to be considered. For Gaussian
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Figure 3.17.: (a): Survival probability spectrum as a function of the probe frequency. The
spectrum has been taken for a particular trap depth. The frequency of the probe is displayed
with respect to the resonant frequency f0 in this particular configuration. (b): Trap depth as a
function of the power in the trap. Each data point corresponds to a specific spectrum as the
one shown in (a). The black dashed line is a linear regression of the data and provides a slope
of 1.65± 0.02 MHz.mW−1.

beams, the trap depth Udip is related to the power of the beam P through the relation
(c.f. (1.8))

Udip =
~Γ2

8

2P

πw2Isat

(
1

3∆−1
− 1

3∆+
1

+
2

3∆−2
− 2

3∆+
2

)
= αP, (3.20)

with α a proportionnality constant. Figure 3.17 (b) corresponds to this calibration mea-
surement. The linear fit of the data gives a slope equal to 1.65±0.02 MHz.mW−1. For the
parametric heating measurement as for the excitation of the monopole, the power of the
trapping beam was 5.6 mW. This power corresponds to Udip ' h×9.2 MHz ' kB×440 µK.
Using (1.13) and the value of the radial oscillation frequency measured with parametric
heating (monopole excitation), we estimated a waist of the beam equal to w0 = 2.2 µm
(2.0 µm).

However, we found a surprising fact. The theoretical slope can be calculated for
every waist of the the trapping beam (see (3.20)). Reversing the relation and using
our measured value of the slope, we obtained a corresponding waist of 1.24 µm. This
value is really close to the theoretical prediction but inconsistent with the two previous
estimations of the waist. It could be because of the failure of the Gaussian description of
the beam, or maybe something went wrong when measuring the oscillations frequencies.
If we consider a waist of 2.0 µm, assuming that the Gaussian beam description is
accurate, the slope should be equal to 0.63 MHz.mW−1 instead of 1.65 MHz.mW−1,
which is not compatible with the measurement uncertainty.

Conclusion The estimated value of the waist are almost similar with two independent
methods and is not compatible with the theoretical prediction of a diffraction limited
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optical system. The trap depth slope alone seems to indicate a compatible waist with
the optimal one but is inconsistent with the two others estimation. Something is still not
fully understood for our system. After some investigation, we found that the dichroic
mirror used to separate the fluorescence light emitted by the atoms and the trap light
was introducing some astigmatism. However, changing its position on the optical setup
(where the trap beam was smaller and then less aberrations were introduced) did not
improved the estimated value of the waist. At this stage, two options were available:

1. buying a higher quality dichroïc mirror,

2. using the opposite aspheric lens B to send the trapping beam. The fluorescence
light will be collected by aspheric lens A and separated from the trap with the
same dichroïc mirror but at least the trap light seen by the atoms will not be
distorded by the dichroïc mirror.

We have opted for the second option, and the associated measurement is presented in
the next section.

Aspheric lens B
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Figure 3.18.: Parametric heating measurement. Data points are fitted by Gaussian curve to
extract the resonant frequencies for both the longitudinal and radial directions. For the axial
direction, the fit gives a frequency 2ωa = 6.3± 0.2 kHz; for the radial direction, the fit gives
2ωr = 49± 2 kHz.

Parametric heating The same measurement has been performed with aspheric lens
B and it has resulted in an estimated value of the waist of w0 = 1.64 ± 0.05 µm.
Once again this measurement has been confirmed with a trap depth measurement (not
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presented here). Although the difference with the theoretical value is smaller for this
lens, the result is still incompatible with the optimal performance.

Conclusion Whether the dichroic mirror was introducing aberrations is debatable.
However, both aspheric lenses from the main high resolution optical axis seems to have
degraded performances. The difference between the estimated values of the waist and
the theoretical one can be attributed to two different factors, if one assumes that both
aspheric lenses are diffraction limited.

1. The first one is the failure of the Gaussian beam approach. Indeed, a clipped
Gaussian beam is not perfectly a Gaussian beam. However, the previous experi-
mental setup, similar in its features to this new one, provided a value of the waist
that was consistent with the theoretical one.

2. The second factor is aberrations. After a long investigation, the remaining optical
element that has not been tested was the viewport. In fact, if our trapping beam
before the chamber is aberration-free, sent on the axis of the aspheric lens that is
supposed to be diffraction limited, then the only optical element in between is the
viewport of the vacuum chamber. Being present with both lens, it could introduce
some spherical aberrations that have degraded our beam, whatever our effort to
prevent that. This last point is addressed in section 3.4.

3.3.3 Lifetime measurement

The lifetime of an atom in the trap is an important quantity. The longer an atom can
stay in trap, in absence of resonant light, the longer the experimental sequence can
be. Several loss mechanisms can induced a loss of an atom in the trap, in order of
importance: trap power and frequencies fluctuations, trap laser light absorption and
background collisions. The first cited mechanism can be neglected as the trap power
fluctuation is kept very low (a few percent), with no frequencies components oscillating
at any multiple of the trapping frequencies. Concerning the second mechanism, we
estimated the scattering rate R of an atom in the dipole trap, which is given by

R =
Γ3Itrap
8Isat

∣∣∣∣
1

3∆2
1

+
2

3∆2
2

∣∣∣∣, (3.21)

where ∆1 and ∆2 are respectively the detunings of the trap laser frequency with respect
to the D1 and D2 line of 87Rb, and Itrap = 2P

πw2 is the trap intensity, assumed to be
Gaussian, at the position of the atoms, with P the power of the trap light and w its waist.
Assuming a waist of w = 1.6 µm, a power P = 30 mW and a trapping wavelength of
940 nm, we obtain a theoretical value of R ≈ 20 photons/s. If we further assume that a
photon absorption and emission process leads to a heating of 2Er, with Er = 362 nK the
recoil energy of a photon, the associated heating rate is α = 2ErR ≈ 14 µK/s. Because

93



Chapter 3. A new apparatus to study dipole-dipole interactions

0 5 10 15 20 25 30
thold [s]

0.0

0.2

0.4

0.6

0.8

1.0

P
(t

)

Figure 3.19.: Lifetime measurement. The data points correspond to the probability that an
atom is still in the trap after a time thold. The black dashed line is an exponential fit that gives
a lifetime of 19.6± 1.3 s.

the trap depth is of the order of U/kB ≈ 1.6 mK for this particular measurement, the
associated lifetime would be on the order of U/α ≈ 114 s. Therefore, losses due to
heating can be confidently neglected.

To measure the lifetime of the atom in the trap, the experimental sequence is quite
simple. Starting from a molasses, when an atom enters the dipole trap, we switch off the
cooling beams but the dipole trap is still on. After a time thold, we switch on again the
cooling beams to see if the atoms is still in the trap or not. Repeating the experiment
for various holding times gives access to the lifetime probability. The experimental
results of this measurement is depicted in Figure 3.19. An exponential decay fit of the
data provides a lifetime τ = 19.6± 1.3 s. The inverse of the lifetime gives the loss rate
γexp = 51± 8 · 10−3s−1.

To confirm that the lifetime obtained is compatible with the measured pressure, we
computed the background gas density of H2 associated with our experimental loss rate.
Indeed, at this low pressure, we assume that the background gas is mainly H2. Knowing
the scattering cross section between Rb and H2, σ = 295 Å2 ([Bali et al., 1999]), one
can calculate a theoretical loss rate γ/nH2 = 4.9 · 10−9 cm3.s−1 where nH2 is the density
of the H2 background gas. Relating the experimental measurement with the theoretical
value enables us, by using ideal gas law at room temperature T = 300 K, to estimate
the background gas pressure Pbackground = 4.3 · 10−10 mbar. This value is a factor 10
higher the value displayed by the vacuum gauge. The considerable difference can be
attributed to several factors.
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1. First of all, the gauge (Pfeiffer Vacuum Cold Cathode Gauge) is not really precise
at pressure below 10−10 mbar.

2. Second, we have neglected losses due to collisions with other Rubidium atoms that
can be present in the vacuum chamber or can come from the atomic beam that
we used to load the MOT.

However, a typical lifetime of 20 s is enough for our type of measurement, where the
typical sequence duration is on the order of 1 s.

3.4 Limitation of the performance - The
viewports and the spherical
aberration

The optical characterization of this new apparatus was not entirely satisfying as the
waist of the trapping beam, w = 1.64 µm using aspheric lens B, inferred from the
measurement of the oscillation frequencies in the trap, is bigger than the predicted value
wtheo = 1.2 µm. As stated at the end of subsection 3.3.2, the introduction of spherical
aberrations by the viewports could be the reason of this mismatch. It is important to
be able to determine if this candidate is the real culprit because spherical aberration
can considerably modify the intensity distribution of the trap. Thus, the assumption
that the trapping beam behaves as a Gaussian one may be inaccurate. The comparison
with theory may also be impacted as the initial spatial distribution of the atoms in the
cloud may not be the one expected from a perfect Gaussian beam. Moreover, if the trap
beam is less focused than expected, the maximum density achievable in the cloud can
be lower than what we expect.

The optical quality of our viewports are not the highest one of the market. If it was
not a problem previously when using beams of diameter equals to 9.0 mm, the new
apparatus is now using beams of diameter equals to 19.2 mm. The goal of this section
is to estimate, with simulation, the amount of spherical aberration that the viewport
would have to introduce in order to be able to reproduce the experimental measurement
presented in subsection 3.3.2.

As the beam goes through optical elements, it can accumulate optical aberrations that
will modify its intensity distribution. Because our aspheric lenses are diffraction limited
up to NA=0.45, and all the others optical elements of the trapping setup are mirrors
and lenses used near their optical axis with small angles and a small beam diameter,
thus minimizing aberrations, the last element that can induce strong modifications of
the intensity distribution of our trapping beam is the viewport on the vacuum chamber.
Assuming the alignment is done carefully, the most obvious kind of aberrations that
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Figure 3.20.: Intensity distribution at the focus of the aspheric lens. (a): Axial intensity
distribution of a clipped and focused Gaussian beam. The simulation is performed in absence
of primary spherical aberration (dashed black line) and with spherical aberration kS1 = −11.7
(red solid line). (b): Radial intensity distribution of a clipped and focused Gaussian beam at
the position where the axial intensity is maximum. Once again, the simulation is performed
with (red solid line) and without (dashed black line) spherical aberration.

the viewport can introduce is a spherical aberration. Spherical aberrations are found in
optical systems manufactured with spherical surfaces. Light rays at the edges of this
surface are more (or less) refracted/reflected than light rays close to the optical axis,
thus limiting the maximum resolution achievable. Here, following [Pu and Zhang, 1998],
we consider the propagation of a Gaussian beam with spherical aberrations after it has
been focused by the high numerical aperture aspheric lens. The spherical aberration is
not introduced by the lens in our analysis but by the viewport. However it is a phase
factor that arises as if it was introduced by the lens. The spherical aberration at the
position of the lens is expressed as

φSA = Sr4, (3.22)

where r is the radial coordinate and S the amplitude coefficient of the spherical aberration.
To use the same notations as in [Pu and Zhang, 1998], we introduce the dimensionless
variable t = r/a where a is the radius of the aperture limiting the aspheric lens. We also
define a new spherical aberration coefficient S1 = Sw4 such that the aberration function
becomes

φSA = S1
a4

w4
t4. (3.23)
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The field at the focal plane of the lens is then given by

U(u′, v′) = −2πia2A0

λf ′

(
1− u′

2Na

)

×
∫ 1

0

J0(v′t) exp

[
−
( a
w

)2

t2 + ikS1

( a
w

)4

t4 − iu′t2

2

]
t dt , (3.24)

where Na = a2/λf ′ is the Fresnel number of the lens viewed from the geometrical focus,
J0 is a Bessel function of first kind and zero order and A0 is the amplitude of the Gaussian
field expressed by E0 = A0 exp(−r2/w2). The dimensionless optical parameters u′ and
v′ are given by

u′ = 2πNa
z − f ′
z

, v′ = 2πNa
r

a

f ′

z
. (3.25)

(a)

(b)

Figure 3.21.: Simulated Gaussian beam
propagation near the focus of the aspheric
lens. (a): with spherical aberration (kS1 =
−8); (b): without spherical aberration.

The intensity is the modulus squared of (3.24)
and can be evaluated at any position near
the focus. In Figure 3.20, we simulate the
distribution of intensity of a Gaussian beam
focused by our aspheric lens without spherical
aberration (kS1 = 0, black dashed lines) and
with spherical aberration (kS1 = −11.7, red
solid line). The waist of the incoming beam
is set equals to the aperture radius of our as-
pheric lens. As one can see, besides the fact
that spherical aberrations reduce the maxi-
mum intensity at the focus of the lens, it does
not change drastically the radial distribution
of intensity (Figure 3.20 (b)): rings appears
around the central peak but the width of the
central peak remains almost equal to the one
in absence of spherical aberration. However,
the axial distribution of intensity is heavily
modified (Figure 3.20 (a)). The focus spot
is shifted towards the lens and the distribu-
tion of intensity is no longer symmetric with
respect to the maximum. This is the main
difference that we wanted to point out. The
radial distribution of the field may remain
nearly Gaussian in presence of spherical aber-

ration, but this is absolutely not the case of its axial distribution. Thus, assuming a
perfect Gaussian beam distribution and computing the ratio of the oscillations frequen-
cies of the atom in the trap may give a bigger waist than the theoretical one. In the
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present case, we have fitted the intensity distribution in both cases with an harmonic
function to extract the oscillations frequencies that an atom should see in the trap.
Then, we have computed the ratio of these quantities to obtain the corresponding waist,
as if no spherical aberration were present. The ratio of the oscillations frequencies is
given by the square root of (3.19)

ωr
ωa

=
√

2
πw0

λ
. (3.26)

The simulation, performed with kS1 = −11.7 (SA) and kS1 = 0 (noSA), gives
(
ωr
ωa

)

SA
≈ 7.70,

(
ωr
ωa

)

noSA
≈ 5.67 .

We have thus a 36% modification of the ratio of the oscillations frequencies in presence
of this amplitude of spherical aberration. Given that the theoretical waist at the focus
of the lens that one should obtain, for an input waist equal to the radius of the aspheric
lens, is wnoSA = 1.20 µm, the corresponding waist wSA obtained with this amount of
spherical aberration is

wSA = 1.63 µm. (3.27)

The value obtained with this simulation is really close to the one measured w = 1.64 µm.
This study indicates the amount of spherical aberrations that the viewport needs to
introduce to explain the discrepancy between the theoretical waist and the measured
one. However, other tests have to be performed in order to confirm that the viewport is
the only culprit. No interferometric measurement has been performed on the viewports
themselves because they were already placed on the vacuum chamber and we would have
to break the vacuum in order to do them. Without this complementary test, nothing
confirms that the amount of spherical aberration set in this simulation is consistent
with the one introduced by the viewport. It seems that it corresponds to an extreme
spherical aberration as the trap depth drops by a factor 2 (see Figure 3.20). It can also
be that the viewport introduce some spherical aberration that distorts the distribution
of intensity of the beam but another(s) element(s) on our optical setup is responsible for
the rest of the modification, by introducing some spherical aberration and/or another
kind of aberration. Although we carefully checked every step of our optical setup and
the good behavior of each one of the optical elements used, no other possible explanation
has been found.

3.5 The future tools

In this last section, we will give an overview of the tools that have been implemented,
or have been planned to be implemented in our new apparatus.
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3.5.1 Optical tweezer of variable size

Telescope × 1/3

Optotune 1Optotune 2

Telescope × 4

Aspheric lens B

Trap laser

λ/2

Figure 3.22.: Sketch of the optical setup implementing an optical tweezer of variable size. A
940 nm laser beam linearly polarized goes first through a ×1/3 telescope to reduce its size and
limit the amount of aberrations eventually introduced by the Optotunes. Then, the beam goes
from the telescope of variable magnification ratio depending on the current applied to each one
of the tunable lens. Their relative distance on the experiment as their limiting currents enable
to choose the magnification ratio between 1.1 and ∼3.4. After that, the beam goes through
a ×4 telescope in order to be able to cover the full aperture of the aspheric lens when the
magnification ratio of the opto-telescope is at its maximum value.

The first tool that has been implemented is an optical tweezer of variable size. This
could be a very powerful tool for the loading of atoms. Previously, we were loading a
micro-trap of waist 1.2 µm from a bigger trap, called macro-trap, with a waist of 4 µm.
Approximately 10% of the atoms in the macro-trap were transferred, resulting in about
200 atoms in the micro-trap. Using a single trap, initially big, and then adiabatically
compressing it could lead to a large increase in the number of atoms ultimately loaded
in the trap, thus increasing the density and allowing us to observe stronger dipole-dipole
interactions. For that purpose, we used tunable focal length lenses manufactured by
Optotune. Those tunable lenses are polymer lenses whose shape is adjusted by applying a
current. The focal length is accordingly modified to the desired value within milliseconds.
Using two of these lenses (EL-10-30 Series) in an afocal telescope configuration, we can
vary the size of the output beam, that in turn modifies the size of the beam at the focus
of the aspheric lens (see Figure 3.22).
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Figure 3.23.: Waist seen by the atoms as a function of the clipping ratio γ of the input
beam. The waist of the input beam at the position of the aspheric lens wa is modified by the
magnification ratio of the telescope formed by two Optotune lenses. The dashed green line
corresponds to theoretical simulations of the minimum waist obtained for a focused Gaussian
beam which is clipped by an aperture. The dark solid line corresponds to the minimum waist
achievable given the size of the lens. It is obtained when wa →∞.

Figure 3.23 displays the waist seen by the atoms at the focal point after the aspheric
lens versus the clipping ratio of the input beam γ defined as

γ =
wa

Ra
,

where wa is the waist of the input beam at the position of the aspheric lens and
Ra = 9.6 mm is the radius of the aperture, i.e., the radius of the lens holder clipping
the beam. To perform this measurement, we send a ≈ 1 mm waist beam onto a ×1/3
standard telescope to limit the aberrations introduced by the Optotune lenses. The
beam goes through the telescope formed by the Optotune lenses. Due to their relative
distance and their maximum voltage specifications, the modification of the magnification
of this telescope is bounded between 1 and 3.5 approximately. Then the beam goes
through another standard telescope of magnification 4 in order to be able to cover the
full aperture of the lens, which is 19.2 mm. The waist of the beam wa at the position
of the aspheric lens inside the chamber is estimated from its waist at a given position
before the chamber. To determine the waist at the focus of the aspheric lens, the trap
depth seen by the atoms for various power of the beam is measured. Assuming that the
input beam follows a Gaussian distribution, we rewrite the expression of the trap depth
as

Udip =
α

w2
× P,
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where w is the waist of the beam, P = 1
2
πw2I its power and α a constant factor that

can be computed. The trap depth is linear with the power of the beam. By measuring
it for various powers, as was done in subsection 3.3.2, we extract a slope which is related
to the waist of the beam.

In Figure 3.23, the theoretical waist that we should obtain at the focus of the lens
is also represented. The theory is extracted from [Gillen et al., 2010]. In fact, when
the Gaussian distribution is clipped by an aperture, the distribution of the beam is
no longer Gaussian. When the waist of the input beam is large with respect to the
aperture, γ � 1, we consider the distribution of intensity at the aperture as uniform
and we recover the maximum optical resolution of our optical system. This limit is
represented by the horizontal dark line in Figure 3.23: it is the size at 1/e2 of the Airy
pattern which is close to 800 nm. In contrario, when γ � 1, the distribution of the beam
is almost purely Gaussian. One can see that for γ = 0.33, the waist measured is equal
to the one predicted, but as soon as γ is above 0.4, the measured value is always bigger
than the one predicted. Once again, different kind of aberrations can be responsible for
this difference. The tool is nonetheless promising as it could be used to increase the
density of the cloud and maybe to perform evaporation in the trap.

3.5.2 Accordion lattice

A future tool that we would like to implement on the experiment is an accordion lattice.
The name as well as the principle are extracted from [Ville et al., 2017]. Using two
small beams with adjustable distance between them, incident on one of the aspheric
lenses of the second axis (the one at 45◦), would result in interference fringes. As shown
in Figure 3.24, the two beams that overlap after the aspheric lens are created by two
polarization beamsplitter cubes (PBS). The distance between them is directly related to
the distance of the incoming beam with respect to the edge of the PBS. This distance is
adjusted thanks to an acousto-optic deflector combined with a telescope that translates
the deflection angle into a transverse displacement. The interfringe i at the focus of the
lens is given by the relation

i =
λ

2 sin(θ/2)
, (3.28)

where λ is the wavelength of the trap laser. (3.28) can be written in terms of the distance
between the beams and the focal length f ′ of the aspheric lens

i =
λ

2d

√
f ′2 + d2. (3.29)

If we initially set the distance between the two beams such that the full cloud is located
inside a single fringe, we can increase the distance between the beams such that the
cloud stays inside the single fringe but get compressed. This tool could be useful to
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Telescope × 1/3

Telescope × 4
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Trap laser

λ/2

λ/4
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Figure 3.24.: Sketch of principle of the accordion setup. The beam diameter of the trap laser
is first reduced before going into an acousto-optic deflector (AOD). The deflection of the beam
is converted in a transverse displacement thanks to a second telescope. After that, the beam is
divided in two thanks to two polarization beamsplitter cubes (PBS). We adjust the polarization
of the incoming beam with the half-wave plate just after the laser such that half the power
is reflected by the first PBS. The part transmitted by the first cube is also transmitted by
the second. After being reflected by a mirror, hence passing twice into a quarter-wave plate,
the beam is totally reflected by the second PBS. The two beams, transversally separated by a
distance 2d, are focused by the aspheric lens. Their overlap gives rise to fringes into which the
atoms can be loaded.

increase the density in the cloud, as well as to modify the aspect ratio of the cloud to
see if it has an influence on the way it scatters light.
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We have seen that, even though dipole-dipole interactions in atomic ensemble seem to
be known theoretically, it is very hard to obtain a satisfying agreement with experimental
data in the dense regime. The explanation for this lack of agreement could come from
some of the hypothesis of the theoretical framework that are not fulfilled in experiments,
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as for instance thermal equilibrium. This would imply a wrong estimation of the volume
occupied by the atoms in the trap and consequently a wrong estimation of the strength
of the dipole-dipole interactions. The cloud size being smaller than our optical resolution,
this point is hard to verify.

In order to keep investigating the dipole-dipole interactions in dense ensembles, I have
devoting part of my PhD work to the construction of the new version of the apparatus
(see chapter 3). The new version has been designed to solve some experimental problems,
for instance having the molasses beams at 90◦ from each others in order to facilitate the
alignment of the MOT, but mostly to integrate a second axis of high optical resolution,
orthogonal to the first one. The combination of these two axes opens the field of study
of the dipole-dipole interactions in new kind of geometries, for instance 1D and 2D
systems. Moreover, structuring the atomic distribution could help, the effect of the
interactions being enhanced by interference between the scattered field as presented
in [Bettles et al., 2016b], [Shahmoon et al., 2017b]. Here, we take a first step in this
direction to look at new opportunities offered by this structuration.

The first part of this chapter is dedicated to the study of the influence of dipole-
dipole interactions in 1D systems. More specifically, we will study theoretically the
scattering of light along a 1D chain of atoms and its robustness towards experimental
imperfections. Based on the work of [Sutherland and Robicheaux, 2016], we show that
the propagation of an excitation along a 1D chain of interacted atoms is maintained in
presence of disorder and defects in the system. A nonexhaustive list of works related to
this subject is: [Munro et al., 2018], [Iakoupov et al., 2016], [Bettles et al., 2015b] and
[Bettles et al., 2016a]. Using one of our high resolution optical axis to create the 1D
chain, by reflecting the trap light, we used the second axis to observe the position of
the excited atoms. We would therefore be able to compare theoretical predictions of
the dipole-dipole interactions with experimental data in a different configuration: an
ordered 1D chain randomly filled with atoms.

The second part of the chapter, in direct connection with the first part, concerns the
development of an algorithm that tries to recover the positions of the atoms in the 1D
chain based on their fluorescence image taken at 90◦ from the trapping axis. The idea
was to see in which range of parameters it would have been possible to extract, with a
high fidelity, the initial configuration of atoms in the 1D chain and comparing that to
our experimental parameters.

4.1 Light scattering in a 1D chain

The Cyclopix experiment has the ability to trap the atoms along one direction and to
observe the system with a high NA lens placed under vacuum at 90◦ from the trapping
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Figure 4.1.: (a): Experimental observation of a 1D chain of ∼100 atoms observed with the
aspheric lens at 90◦ from the trapping axis. Exposure time of the camera is set to 50 ms and
the signal to noise ratio (SNR) is ∼1.5. The fluorescence of the atoms is induced by the MOT
beams. The background has been subtracted. (b): Trace orthogonal to the trapping axis.

axis. We can then excite the system along the trapping axis and collect the fluorescence
of each atoms along the other axis to be able to determine where the excited atoms are
located. But the side fluorescence is strongly suppressed in comparison with the forward
scattering. However, our system has been able to image such a system: Figure 4.1 (a) is
an example of a picture of the 1D chain taken from the side. The fluorescence of the
atoms has been induced by the MOT beams and has been collected on our CCD camera
during 50 ms. A background subtraction has been applied. Figure 4.1 (b) is a trace
of the picture orthogonal to the trapping axis of the chain (z axis). We have then the
opportunity to measure experimentally collective effects in 1D chain of atoms. Let us
first derive the expression of these collectives effects and then see if they survive the
experimental imperfections.

The physical system studied here is a 1D chain of atoms aligned along the z axis,
each atom being separated from another by a constant lattice spacing a (see Figure 4.2).
We consider the steady state of such a system when illuminating by a plane wave shined
along the axis of the chain and polarized along the x axis. One can show that for values
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of the lattice spacing not equal to a multiple of half the wavelength of the transition, the
probability of excitation along the chain increases or decreases depending on the sign of
the detuning of the laser field. In contrast, when the lattice spacing a = j λ

2
, where j is

an integer, the probability of excitation is symmetrical with respect to the middle of the
chain.

a a a

1 2 3

. . .

i

. . .

N − 1 NE0e
ikzex

Figure 4.2.: Sketch of the physical system under study. Atoms are represented by red balls,
located on an array of lattice constant a, and illuminated from the left by a monochromatic,
linearly-polarized laser field.

4.1.1 Growth of the excitation probability along the chain

For a weak laser, a collection of two-level atoms polarized in the x direction can be
treated as coupled damped harmonic oscillators. Following the notation of the authors
in [Sutherland and Robicheaux, 2016]

ḃn(t) =

(
i∆− Γ

2

)
bn(t)− id

~
EL(rn)− Γ

2

∑

m6=n

G(rm − rn)bm(t), (4.1)

where bn = dn/d, with dn is the notation used in chapter 2, represents the normalized
polarization amplitude of atom n, d is the electric dipole matrix element, EL(rn) =
E0e

ikrn is the laser field at atom n, ∆ is the detuning, Γ is the single atom decay rate,
and G(r) is the field propagator

G(r) =
3eikr

2i

{
[3|̂r · êx|2 − 1]

[
1

(kr)3
− i

(kr)2

]
+ [1− |̂r · êx|2]

1

kr

}
. (4.2)

In our system, because r̂ = êz, the expression of the field propagator (4.2) simplifies to

G(r) =
3eikr

2i

[
1

kr
+

i

(kr)2
− 1

(kr)3

]
. (4.3)

With our apparatus, we retroreflect the optical tweezer to create a 1D array of traps
separated by a distance λtrap/2. Depending on the wavelength of the trap laser λtrap,
two different cases are considered.
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General case: a 6= j λ
2
, j ∈ N

We first consider the case a 6= j λ
2
, where j is an integer and λ is the transition

wavelength. To try to understand the increase or the decrease of the excitation probability
along the chain, the main hypothesis made by the authors is to consider that the forward
scattering is the main contribution of the dipole-dipole interaction. Doing so, the atom n
will see the contribution of the laser field and the field emitted by the n− 1 atoms before
him (in the −k direction). To confirm this fact, let us rewrite (4.1) in steady-state with
the change of variable bn = 2id

~Γ
En

0 = (2iδ − 1)En − EL(rn)−
∑

m6=n

G(rm − rn)Em. (4.4)

In this equation, δ = ∆/Γ is the reduced detuning and En the field scattered by atom n.
It is related to the normalized dipole amplitude bn through the relation bn = ε0α

En
d
, with

α = 6iπ
k3

the on resonance polarizability of the atoms, hence the change of variable. Using
the fact that the atoms are located at specific values rn = na, the field propagator (4.3)
is

G(rm − rn) =
3eika|m−n|

2ika|m− n|

[
1 +

i

ka|m− n| −
1

(ka|m− n|)2

]
=

3eika|m−n|

2ika|m− n|fm−n,
(4.5)

and (4.4) becomes

(2iδ − 1)En −
∑

m 6=n

3eika|m−n|

2ika|m− n|fm−nEm = E0e
ikna. (4.6)

Assuming that ka� 1, one can solve perturbatively in the interaction and would get
the zeroth order scattered field

E(0)
n =

E0e
ikna

2iδ − 1
, (4.7)

and the first order

E(1)
n =

E0e
ikna

2iδ − 1
+
∑

m 6=n

3eika|m−n|

2ika|m− n|fm−n
E0e

ikma

2iδ − 1
. (4.8)

Factorizing a global eikna factor and splitting the sum into two parts finally leads to

E(1)
n =

E0e
ikna

2iδ − 1





1 +
3

2i(2iδ − 1)




∑

m<n

fm−n
ka(n−m)

︸ ︷︷ ︸
forward scattering

+
∑

m>n

fm−n
ka(m− n)

e2ika(m−n)

︸ ︷︷ ︸
backward scattering







.

(4.9)
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With equation (4.9), we see that the forward scattering, which means the field radiated by
the previous atoms, has no varying phase factor. So the various field add constructively,
even at long range. This somehow lifts the condition 1/kl > 1 to see collective effects. On
the other hand, the backward scattering is suppressed at long range because of the phase
factor, hence the assumption made by the authors in [Sutherland and Robicheaux, 2016].

To obtain an intuition of how the excitation probability of atom n varies with the
detuning, we start again from (4.9), forgetting backward scattering contribution

E(1)
n ≈

E0e
ikna

2iδ − 1

{
1 +

3

2i(2iδ − 1)

∑

m<n

fm−n
ka(n−m)

}
. (4.10)

The probability of excitation corresponds to the modulus square of the dipole amplitude
bn, which is itself proportional to the modulus square of the emitted field. There, one
gets, assuming fm−n = 1 for simplicity

∣∣E(1)
n

∣∣2 =
|E0|2

1 + 4δ2

∣∣∣∣∣1 +
3

2i(2iδ − 1)

∑

m<n

1

ka(n−m)

∣∣∣∣∣

2

,

=
|E0|2

1 + 4δ2





(
1− 3

2

2δ

1 + 4δ2

∑

m<n

1

ka(n−m)

)2

+

(
3

2

1

1 + 4δ2

∑

m<n

1

ka(n−m)

)2


 ,

which gives, to lowest order in 1
ka
,

≈ |E0|2
1 + 4δ2

{
1− 6δ

1 + 4δ2

∑

m<n

1

ka(n−m)

}
.

Finally, using the relation |bn|2 = 4d2

~2Γ2 |En|2 and the notation p = m− n, the probability
of excitation of atom n is

Pn =
(dE0/~)2

∆2 + Γ2/4

{
1− 3Γ∆

2ka(∆2 + Γ2/4)

n−1∑

p=1

1

p

}
. (4.11)

Equation (4.11) is the same as (15) from [Sutherland and Robicheaux, 2016]. In the
article, the authors gave the main features of the phenomenon:

• the probability increases along the chain when ∆ < 0, while it decreases when
∆ > 0;

• Although this expression is only accurate in the limit ka� 1, the behavior is still
qualitatively reproduced in the regime ka ∼ 1;
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• one should be careful when entering the regime a < λ/2 as the behavior of the
system is dominated by subradiant modes for some values of ∆. But outside of a
given range of detunings, the distribution is still logarithmic;

• when a = j λ
2
, the previous expression is not appropriate (see next section).

Special case: a = j λ
2
, j ∈ N

In this section we consider the case where the lattice spacing is equal to a multiple of
half the wavelength of the atomic transition. In that case, it seems that the contribution
of the atoms being placed in the k direction cannot be neglected anymore. In order to
convince ourselves, let us start over from (4.9), whith p = |m− n| and fm−n = 1 for
simplicity

E(1)
n =

E0e
ikna

2iδ − 1

{
1 +

3

2i(2iδ − 1)

1

ka

[
n−1∑

p=1

1

p
+

N−n∑

p=1

1

p
e2ipka

]}
. (4.12)

In the previous case, a 6= j λ
2
, we neglected the backward scattering because of the phase

factor that destroyed the field at long range. However, here, the phase factor of the
backward scattering is also equal to 1: e2ip× 2π

λ
×j λ

2 = e2iπ×jp = 1. Therefore, backward
scattering cannot be neglected anymore. The probability of excitation of atom n is then
given by, to first order in 1/ka

Pn =
(dE0/~)2

∆2 + Γ2/4

{
1− 3Γ∆

2jπ(∆2 + Γ2/4)

[
n−1∑

p=1

1

p
+

N−n∑

p=1

1

p

]}
. (4.13)

To know which atom has the highest excitation probability, for ∆ < 0, we consider the
following factor

An =
n−1∑

p=1

1

p
+

N−n∑

p=1

1

p
. (4.14)

We are looking for which n, An is maximum. Considering the case n− 1 < N − n (atom
n is located in the first half of the 1D chain), An becomes

An = 2
n−1∑

p=1

1

p
+

N−n∑

p=n

1

p
. (4.15)

In (4.15), the first sum is associated with small values of p, which are the ones with the
largest contribution. We thus understand that the second sum, the one associated with
the highest values of p, hence the smallest contribution, has to be canceled to maximize
An. Indeed, the number of elements in An is constant (N atoms, thus N − 1 terms).
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The ones that are removed from the second sum are then put back into the first one,
increasing the value of An. From this we deduced that

dAn
dn

= 0 ⇐⇒
N−n∑

p=n

1

p
= 0,

⇐⇒





n =
N

2
if N is even,

n =
N

2
± 1 if N is odd.

The probability of excitation is then maximum (minimum) for negative (positive)
detuning at the middle of the chain. One can also show that the amplitude of dipoles
are symmetric with respect to the middle of the 1D chain, hence the relation

b1 = bN , b2 = bN−1 , · · ·

This results is consistent with the one presented in [Sutherland and Robicheaux, 2016].

4.1.2 Robustness of the system with experimental
imperfections

In this section, we address questions related to the experimental demonstration of
the previous phenomenon. In fact, (4.10) encourages us to think that the increase of
scattered field along the chain (general case) is robust again both a random loading of
the 1D chain and a position noise of the atoms present in the chain.

Random loading Assuming fp = 1 for simplicity, the random loading of each lattice
site p in the 1D chain is described by a random variable εp, which is either 1 or 0.
Averaged over many realizations, the sum in (4.10) becomes

〈∑

p

εp
pka

〉
=
∑

p

〈εp〉
pka

=
1

2

∑

p

1

pka
. (4.16)

The random loading of the chain does not change the behavior of the system, it only
reduces the interactions by a factor 2.

On-axis disorder To consider the noise in the atoms positions along the chain axis,
we introduce a random centered variable δzp so that the position of atom p is given by
pa+ δzp. In this case, still assuming fp = 1 and δzp � a, the sum in (4.10) becomes

〈∑

p

1

pka+ kδzp

〉
≈
∑

p

1

pka
−
∑

p

1

pka

〈δzp〉
pa

=
∑

p

1

pka
. (4.17)
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Figure 4.3.: Total fluorescence emitted by a 1D chain of 100 atoms (50% filling fraction is
considered here). The blue solid line is the spectrum obtained from the general solution of (4.6),
the orange solid line is the one associated with the perturbative treatment (see equations (4.7)
and (4.9)).

The increase of scattered field amplitude along the chain is then robust to on-axis
position noise.

Everything seems to indicate that the physical system under study here is robust
against physical imperfections. Note however that these conclusions are based on the
derivation of (4.10) that relies on various assumptions. If it gives a picture of what is
going on, it can fails to reproduce the exact behavior of the system. For instance, it
fails quite badly to reproduce the fluorescence spectrum of atoms for small detunings as
depicted in Figure 4.3. Therefore, we decided to perform simulations to confirm that
the collective effects survives the experimental imperfections. We will first consider a
1D chain of 8 lattice sites, randomly filled with 0 or 1 atoms. Then we will consider
the same physical system but add some noise in the transverse and in the longitudinal
positions of each atoms, to take into account the non zero temperature of the atoms on
a real experiment.

To simulate the behavior of the system, we choose to run Monte-Carlo Wave simula-
tions [Mølmer et al., 1993], restricting ourselves to the single excitation basis. Doing
so, the results should not differ from the regular steady-state solution of the system
when this steady-state behavior is rapidly reached. However, some steady-state solutions
requires a long transient time, an important information that is not provided by the
regular calculation. Monte-Carlo Wave simulations being time resolved, we have access
to the actual behavior of the system for the specific times during which we simulate
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our experiment. For very long transient time, the behavior of the system can be very
different from the steady-state one and we would then know that we are in such a case.

In all this section

• the lattice spacing a is taken equal to half the wavelength of the trapping laser:
a = 940/2 = 470 nm = 0.6λ with λ the transition wavelength of the D2 line of
87Rb;

• the Monte-Carlo Wave Function simulation, based on a Python package provided
by Nikola Šibalić1, has been run for 12× 1

Γ
≈ 312 ns and is repeated typically 120

times;

• the probabilities of excitation are all normalized, if not specified, to the single
atom excitation probability case.

Perfect system
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Figure 4.4.: Probability of excitation P of each atom of the 1D chain versus detuning ∆, in
units of the natural linewidth Γ. The simulation is repeated 20 times here.

First, let’s see how much difference in the excitation probability one should expect
between the beginning and the end of a perfect (fully filled, no noise) 1D chain of 8
atoms. For a perfect system, the growth of the excitation along the chain is clearly
visible, even for a small chain of only 8 atoms. For instance, if you consider a detuning

1Nikola Šibalić, DoDo: A Python library for calculating dynamics and optical response of Dense
Optical Dipoles, to be published.
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4.1. Light scattering in a 1D chain

of the probe laser of −1Γ, you see that the probability of excitation of the last atoms is
almost 3 times bigger than the one of the first atom (see Figure 4.4). The excitation
probabilities of atoms located in the middle of the chain (atom 3 to 6) are very similar
and then difficult to distinguish. Determining if the excitation is at the beginning of the
chain (atom 1 and 2) or at the end (atom 7 and 8) is completely feasible, as those are
spatially separated by typically 3λ, which is bigger than the optical resolution of our
imaging system.

With defects
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Figure 4.5.: Probability of excitation of each atom of the 1D chain versus detuning with 50%
filling probability. The simulation is repeated 100 times for each detunings.

In this section, we consider the case of the 1D chain previously introduced with each
site having 50% probability to be filled with an atom. The idea is to reproduce the
behavior of the system on our experiment: each lattice site is either filled with an atom
or empty. Moreover, the loading is not deterministic. The simulation is then repeated
to average on the atomic configurations. For the moment, no disorder is introduced in
the position of the atoms. Once again, the excitation is localized at the end of the chain
for negative detunings and at the beginning of the chain for positive detunings but it
is less contrasted. For instance, if we consider the −1Γ detuning case, we see that the
last atom is 1.6 times more likely to be excited than the first one (see Figure 4.5). It is
almost two times less than the perfect 1D chain but it is still visible experimentally.
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With disorder

To observe the effect of disorder only, and not a combination of several effects, we took
a 1D chain of 8 atoms perfectly loaded, but introducing a bit of noise in the position of
each atom. The simulation is repeated 100 times to average on the relative distances
between atoms.
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Figure 4.6.: Probability of excitation of each atom of the 1D chain versus detuning with
0.06λ disorder in the z-direction. No defect in the filling of the 1D chain is included here. The
simulation is repeated 100 times for each detuning.

Longitudinal disorder We proceed step by step to be able to point out the main
experimental limitation that could eventually destroy the observation of the phenomenon
that we want to demonstrate. Let us consider first the noise in the longitudinal direction
(the one of the 1D chain). The 1D array is creating by the interference of two contra-
propagative Gaussian beams. Assuming that each beam is accurately represented by a
plane wave and has the same intensity, the intensity along the z-direction is given by

I(z) = 4I0 sin2

(
2πz

λtrap

)
, (4.18)

where λtrap is the wavelength of the laser used to create the traps. To get the spatial
extension of the harmonic oscillator along the z-direction, we are developing the intensity
profile around one of its maxima

I(z) ∼ 4I0

(
2πz

λtrap

)2

. (4.19)
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Figure 4.7.: Probability of excitation of each atom of the 1D chain versus detuning with 0.06λ
disorder in the z-direction and 0.3λ disorder in the transverse direction. No defect in the filling
of the 1D chain is included here. The simulation is repeated 100 times for each detunings.

The trapping potential follows the distribution of intensity given by (4.19), then

1

2
mω2

zz
2 =

16π2U0

λ2
trap

z2, (4.20)

with ωz the longitudinal frequency of the harmonic oscillator, U0 the trapping potential,
m the mass of 87Rb. The spatial extension of the wave-function of an harmonic oscillator
in its ground state is given by

1

2
mω2

z∆z
2 =

1

2
kBT, (4.21)

with ∆z the width of the wave-function, kB the Boltzmann constant and T the temper-
ature. Replacing (4.20) in (4.21), one can gets an estimation of the position noise in the
longitudinal direction

∆z =
λtrap
4π

√
kBT

2U0

. (4.22)

For a trap depth U0 of 1 mK and a temperature of the atoms around 100 µK, the
longitudinal noise is ∆z ≈ 0.02λ. We have run the simulation with a disorder in the
z-direction of three times this value, 0.06λ, to take into account a possible heating of
the atoms during the probe time (see Figure 4.6). This is not completely negligible as
the separation between two atoms in our case is a = 0.6λ, so it represents 10% of a.

Transverse and longitudinal disorder Because the longitudinal disorder does not
seem to prevent us from seeing the phenomenon on the experiment, we will keep it equal
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to 0.06λ and we will add the transverse disorder on a fully loaded 1D chain of 8 atoms.
To estimate the transverse disorder on our system, we will consider that the transverse
trapping in each lattice site is the one given by a Gaussian beam of waist at 1/e2 equal
to w0. Using the same kind of procedure as the one used for longitudinal disorder, one
gets

∆r =
w0

2

√
kBT

U0

. (4.23)

For a waist of 1.6 µm, a trap depth of 1 mK and a typical temperature of the atoms of
100 µK, the transverse extension is ∆r ≈ 0.30λ. This is roughly half the lattice spacing
a that can increase the distance between two following atoms by up to 40%.

In contrast with Figure 4.6, Figure 4.7 shows that the transverse disorder is reducing
the growth of excitation along the 1D chain. This can be attributed to the fact that the
transverse disorder introduces a phase factor in the forward scattering field that will
minimizes the constructive interference. Even if the angle between the propagation of
the field between two atoms and the trapping axis remains small, the confinement being
less tight in the transverse direction compared to the on-axis one could explain why the
reduce of the collective effects seems more pronounced for transverse disorder.

With disorder and defects
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Figure 4.8.: (a): Probability of excitation of each atom of the 1D chain versus detuning
with 0.06λ disorder in the z-direction and 0.3λ disorder in the transverse direction. 50%
filling fraction is included here. The simulation is repeated 50 times for each detunings. (b):
Probability of excitation of each atom along a 1D chain of 100 atoms with ∆ = −1.0 Γ. Same
filling fraction and disorder as in (a). The simulations performed here are solutions of (4.6),
averaged over 1000 different configurations.

Now we consider the most imperfect system: a 1D chain of 8 atoms with disorder
in their respective positions and with a filling fraction of 50% of each lattice site.
Figure 4.8 (a) is very similar to Figure 4.7. Doing more repetition is enough to forget
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about the defects in the filling of the 1D chain. In Figure 4.8 (b), we simulated the
probability of excitation along a 1D chain of 100 lattice sites for a detuning of −1.0 Γ.
The simulation corresponds to the solution of the set of coupled equations (4.4) and
repeated 1000 times. The results are in very good agreement with the one presented
in [Sutherland and Robicheaux, 2016], although we included here the filling fraction of
50% and disorder on the position of the atoms due to their temperature.

4.1.3 Investigation of the effect of the temperature

In this section, we consider a chain of 15 atoms with 50% filling fraction and disorder
along all directions calculated from various temperature of the atoms. We simulated
the response system for various detunings of interest, thus representing the spatial
localization of the excitation along the chain. Seeing that the last atom, or more
specifically the few last atoms, are more likely to be excited for negative detuning is
feasible, even for a decent range of atom temperatures (see Figure 4.9).
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Figure 4.9.: Excitation probability of a 1D chain of 15 atoms with 50% filling fraction and
in presence of disorder estimated from temperature for various detunings: ∆ = −2.5Γ (a),
∆ = −1.0Γ (b) and ∆ = −0.5Γ (c).

4.1.4 Investigation of the effect of a Gaussian beam in the
excitation probability

Considering the fact that the transverse disorder is the main effect that tends to destroy
the growth of excitation along the chain, one might be concerned about the fact that
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Figure 4.10.: Probability of excitation along a 1D chain of 15 atoms, for a detuning of -1.0Γ,
a temperature of 100 µK and a Gaussian excitation beam of waist w.

a Gaussian beam, with a none-infinite radius of curvature, can destroy the effect even
more. Indeed, an atom slightly outside of the center of the beam will not see exactly the
same phase as one located on its axis. Let us check to which point a Gaussian profile
of the excitation beam can decrease the excitation probability along the chain. To do
that, we will consider a 1D chain of 15 atoms, with a temperature of 100 µK, and a
detuning ∆ = −1.0Γ. We simulated the response of the system for various waists of the
excitation beam, having in mind that when the waist tend to infinity, we should recover
the results obtained with the plane wave as the excitation beam. For a waist of the
excitation beam above 2.5 µm, the effect of the Gaussian beam can be neglected and the
results obtained in the case of the plane wave are still valid. But we can experimentally
demonstrate that for a tightly focused Gaussian beam (with a waist below 2.5 µm), in
presence of disorder, the growth of excitation is destroyed. More surprisingly, it seems
that the effect discussed here is reversed.

4.1.5 Conclusion

The localization of the excitation, which seems to survive the imperfections of the
physical system, is still subjected to the fact that the imaging system has a sufficient
resolution to define if it is the beginning or the end of the 1D chain which is excited,
and to the fact that the atoms emit enough photons to be detected. There is no need to
adjudicate on the second point, as we managed to observe the fluorescence emitted by
the atoms of the 1D chain (see Figure 4.1 (a)). As for first point, it can be easily solved
by creating a longer 1D chain, as the one presented in Figure 4.1 (a).
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4.2 Super Imaging of the 1D chain of
atoms

After having confirm with simulations that the growth of an excitation along a 1D
chain of atoms is robust against both filling defects and disorder, we wanted to address
the imaging of the chain of atoms in our experiment. As explained, our apparatus
will allow us to create a 1D chain and trap around 100 atoms (' 200 lattice sites)
using the first axis. The second high resolution optical axis can collect the fluorescence
image of this chain. But because the lattice spacing between two neighbor atoms
(a = λtrap/2 = 470 nm) is smaller than our resolution (around 1.5 µm), we cannot know,
with direct measurement, the position of each atoms. It would be useful, nonetheless, to
be able to know as precisely as possible the configuration of atoms in the chain for each
experiment. We would therefore be able, ideally with a single shot, to post process our
data for particular configuration for instance.

People have reported sub-diffraction imaging reconstruction in various fields: in biology
([Lubeck and Long, 2012], [Eng et al., 2019]) and in atomic physics ([Bücker et al., 2009b],
[Sherson et al., 2010]) for instance; and with various methods, including the use of ma-
chine learning and neural networks ([Zhu et al., 2018], [Floyd, 1991]). Image analysis is
powerful and can allow sub-diffraction imaging if the signal to noise ratio (SNR) is high
enough. To investigate the possibility to implement such a tool on our experiment, we
simulated typical pictures that can be obtained on our EMCCD (knowing the initial
random configuration of atoms in the chain). Then, we studied the success rate of an
algorithm in reconstructing the initial atomic configuration from the given picture and
for various SNR.

4.2.1 Creation of the picture

The creation of the picture has to reproduce an experimental one with the highest
fidelity possible to be able to have a good estimation of the performance of the algorithm
in recovering the initial atomic distribution on real images. Here, based on the detailed
work presented in [Alberti et al., 2016], we present the several steps to simulate the
images.

1. Creation of the perfect picture (Figure 4.11 (a))

• We start from a randomly filled 1D array, each site of the chain having a
probability 1/2 to be filled by an atom.

• We also consider the finite temperature of the atoms (' 40 µK) and the
trapping potential characteristics to introduce some noise in their position
with respect to the absolute location of the lattice site.
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(a) (b) (c) (d)

Figure 4.11.: Presentation of the picture at different stage of its creation. (a): Perfect image
with 18 atoms (37 lattice sites). (b): Binned picture. Pixel size corresponds to 1 µm. (c):
Binned picture with shot noise. (d): Final picture. The read-out-noise of the camera is added
to the previous picture.

• Then, we convolve this almost 1D atomic distribution with the PSF of our
imaging system. For simplicity here, the PSF of a single atom is considered
to be a 2D Gaussian function with a waist of 1.6 µm.

2. The next step is a binning of the previous perfect image to simulate the integration
of the fluorescence signal on our CCD camera (Figure 4.11 (b)). The pixel size is
chosen equal to 1 µm, as in our experiment. To be accurate, the perfect image
being created by a computer, it is discretized by nature. But it corresponds to
a pixel size of typically ∼ 100 nm, sufficiently small compared to the size of the
pixel use in the binning procedure to be considered as perfect.

3. Then we are adding shot noise on the obtained picture (Figure 4.11 (c)). Each
pixel value is modified by an amount randomly chosen from a Poisson distribution
with a parameter that depends on the initial value of that pixel. For example, if
the pixel value was N (photons, counts,...), we replace this value by another one
randomly chosen from the probability distribution

P (X = k) =
λk exp(−λ)

k!
, (4.24)

with λ = N .

4. Finally, we are adding the read-out-noise of the camera and some background
noise to reproduce the experimental pictures (Figure 4.11 (d)). This value depends
on the parameters of the camera, but seems to be equal to a few photons per pixel
for a large range of working parameters.

For each picture we created, we save the initial atomic distribution. This initial
distribution will be compared to the one obtained by the algorithm to evaluate its
performances.
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4.2.2 Algorithm
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Figure 4.12.: Output of the fitting algorithm. (a): Initial picture with 18 atoms (37 lattice
sites). (b): Trace of the picture along the direction of the chain z. The green stripes delimits
the ROI into which the algorithm is performing the fitting procedure. The result of the fit is
represented with the continuous blue line. It correspond to the optimal reproduction of the
signal associated with the reconstructed position of the atoms in the chain.

The fitting procedure is done in several steps that are described in this section.

First of all, the algorithm subtracts the background. The subtracted value is defined
by averaging the pixels values in region of the picture where no atoms are present.

After the background subtraction, the algorithm is defining a region of interest (ROI)
within which the atoms are located. Because the chain is a 1D system and fitting a 1D
function would require less computational time, the algorithm is also tracing along the
direction of the chain.

Then, the algorithm tries to determine the number of atoms present in the chains
by summing the contribution of each pixel within the ROI. To estimate the number of
atoms, the algorithm needs that the user provides some single atom pictures under the
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same experimental conditions. The more pictures are provided, the better the algorithm
will be able to determine the number of atoms in others pictures. This step is crucial as
if the estimation is wrong, he won’t be able to reproduce the initial atomic configuration.
Note that we have included a feature that requests the algorithm to perform the fitting
procedure with two different atom numbers if it is difficult to choose between n and
n+ 1. For instance, let us say that the ratio of the counts of the pixels in the picture
and the counts obtained with a single atom is giving n+ ε, where n is an integer and ε
a real number corresponding to the fractional part of the ratio. If ε� 1 (ε ' 1) then
the algorithm will fit the picture with n (n+ 1) atoms. But if ε ' 1/2, the algorithm
will first try to fit the picture with n atoms, then with n+ 1 atoms. For both cases, it
will estimate the error between its fit and the picture and will choose which value is
more appropriate.

After these steps, the fitting procedure occurs. The algorithm that we used is
a basin-hopping algorithm: it is a stochastic algorithm which attempts to find the
global minimum of a smooth scalar function of one or several variables ([Wales, 2003],
[Wales and Doye, 1997], [Wales and Scheraga, 1999]). The algorithm is iterative, each
cycle being composed of three steps:

1. random perturbation of the coordinates,

2. local minimization,

3. accept or reject the new coordinates based on the function value.

This type of algorithm has been designed to reproduce the natural process of energy
minimization of clusters of atoms and is thus perfectly appropriate for our problem.
Note that, once again, the fitting procedure relies on the single atom pictures provided
by the user. Indeed, from the fit of each single atom picture, the algorithm has extracted
an average signal per atom in order to determine the number of atoms in other pictures,
but it has also estimated the width and the amplitude of the fluorescence PSF of a
single atom. Knowing precisely those parameters is highly related to the success rate of
the algorithm as it will try to reproduce the picture by summing single atom response.
The algorithm is allowed to slightly vary the amplitude of the fluorescence image of each
atom to tackle the shot noise still present in the trace of the picture.

At this stage, the algorithm provides the positions of the atom it has found that best
reproduce the signal, as represented in Figure 4.12 (b). However, the location of the
atoms are not always exactly at the lattice sites locations. Even though a condition
implemented in the basinhopping algorithm prevent it from choosing the position of
two atoms closer than a fraction of the lattice spacing a/2, we still have to assign each
position variable to a real lattice site location. To do so, we perform an assignment
procedure which is the following:
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Figure 4.13.: Success rate obtained on the same set of pictures by the algorithm with the
correction procedure presented in the text (purple bars) and without this correction procedure
(red bars).

• the assignment of an atom in a given lattice site is based on proximity.

• if another atom would have been assigned to this lattice site in absence of the first
one, then this atom is assign to the second closest available lattice site.

Finally, we run a last basic optimization. From the reconstructed positions of atoms,
we are modifying the position of each atom, one at a time, by one lattice site. We
compute the error between this new configuration and the initial picture. If the computed
error is smaller than the previous one, the configuration is updated to this new one.
This optimization runs until all the atoms have been moved. This last optimization
step has been the result of our investigation in order to improve the performance of
the algorithm. This correction part definitely increases the success rate of the fitting
procedure, up to 20% in the best cases as depicted in Figure 4.13.

4.2.3 Performance evaluation of the algorithm

To evaluate the performance of the algorithm, we provide a set of pictures (typically
100 different pictures) for which we now the lattice sites filled with an atom. The
algorithm tries to reconstruct the atomic distribution. The output of the algorithm is
compared with the initial configuration for all the picture, giving us an estimation of
the performance of the algorithm.

The success rate of the algorithm, for a pixel resolution of 1.0 µm, is represented
in Figure 4.14 as a function of the exposure time. As one can see, the success rate of
the algorithm increases with the exposure time. Indeed, the higher the exposure time,
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Figure 4.14.: Success rate obtained with our algorithm for a pixel resolution of 1.0 µm. As
the exposure time increases, the signal to noise ratio does the same and the fitting procedure
becomes more successful.

the higher the SNR. It is then easier for the algorithm to find precisely the location of
atoms in the lattice site. One can understand this fact thinking about the opposite case:
as the exposure time decreases, the signal is smaller and smaller so that at some point
it gets hidden in the various sources of noise of the picture.

We have also tested the algorithm with a different value of the pixel resolution, for
instance with 0.5 µm. Needless to explain that as the fluorescence signal of each atoms
is spread over more pixels, a higher exposure time is required to reach the same SNR
value as the one with a pixel resolution of 1 µm. However, it seems that the algorithm
does not reach a better performance than the one obtained with the pixel resolution set
to 1 µm.

4.2.4 Conclusion

The general feeling about this study is that it is very difficult to obtain a high success rate
(above 90%) when the pixel resolution is above or of the same magnitude as the width
of PSF of our imaging system. In principle, as demonstrated in [Alberti et al., 2016],
[Bücker et al., 2009b] or [Sherson et al., 2010], a higher success rate can be obtained
by increasing the magnification ratio of our imaging system. However, this approach
would require a longer exposure time to collect more signal, consequently increasing
the possibility to loose atoms and/or add new ones in the initial configuration, thus
rendering any post processing of data useless as the initial picture would not corresponds
to the configuration of atoms during the experimental sequence.
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4.2. Super Imaging of the 1D chain of atoms

The tool is available for further analysis and can be upgraded easily. We also would
like to point out that new ways of solving this type of problem, super-resolution imaging,
are available todays. In fact, huge progress have been made in the field of neural
networks, particularly in the field of image reconstruction, mostly in biology and medical
research. But those tools are definitely relevant for our approach of the problem. Neural
networks can be trained with a lots of experimental pictures and then we would rely
on its learning to determine the atomic configuration on any other pictures for which
the atomic distribution is unknown. It could be interesting for example to compare the
performance of a neural network based approach with the one of our standard fitting
algorithm.
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Conclusion

In this thesis, we have summarized the results obtained in our group concerning
the scattering of light by a dense sample of cold atoms. The incoherent part of
the scattering [Pellegrino et al., 2014] has first been measured, leading to the ob-
servation that the results were different from the ones obtained in the case of hot
vapours [Keaveney et al., 2012]. This surprising difference motivated the measurement
of the coherent part of the scattering [Jennewein et al., 2016], to perform a direct com-
parison with mean-field models that were used in the group of Charles Adams and only
relevant for the coherent part of the scattered field. This measurement did not lead to a
quantitative agreement nonetheless. To confirm this result, a microscopic theoretical
description has also been applied but it did not provide a better agreement. At this
stage, many questions remained unanswered. As the theoretical description is always
an idealization of physical systems plagued with technical imperfections, we wanted to
address them in order to better understand our results and maybe to recover a more
satisfying agreement with theory.

The first one that we wanted to remove is the internal structure of atoms. Even if they
were supposed to be taken into account in the models used to compare our data with,
forgotten and eventually unknown effects can still occur. We thus created a sample of
cold two-level atoms by applying a large homogeneous magnetic field to lift the degener-
acy of the Zeeman internal structure of the atoms. The measurement performed in this
regime [Jennewein et al., 2018] yielded a satisfying agreement with theory at least at low
atom number but not at high atom number. We concluded that the internal structure of
atoms does in fact play a role in the way atoms scatter light, but it is not, alone, enough
to explain the discrepancies observed between our measurements and the theoretical
predictions. We have then investigated the influence of a variation of several quantities
relevant for the dipole-dipole interactions, such as the number of atoms in the trap,
the temperature of the atoms or the volume they occupy. Indeed, the cloud size being
smaller than our optical resolution, we have to rely on the thermodynamic equilibrium
hypothesis to infer it from the measurement of the temperature. This hypothesis is hard
to check experimentally, but we have shown that it would have to be drastically modified
in order to explain the remaining discrepancies. We have also address the role of atomic
motion in the cloud. All the simulations performed so far were assuming a frozen atomic
distribution. However, due to their temperature, atoms are moving during the probe
time. Typically, for temperature on the order of 100 µK, they move by 30 nm during the
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300 ns of probe duration, even though it is small compared to the mean inter-particle
distance, which for our highest measured density is around 200 nm. We have shown that
atomic motion does play a role on the coherent scattering line shaped but for velocities at
least a factor 10 above the one estimated. The motion was introduced empirically in the
simulation, each atoms having a ballistic motion with a specific direction and a specific
velocity according to Maxwell-Boltzmann distribution. Doing so, the motion is taken
into account classically and no force induced by dipole-dipole interaction is considered
between atoms. Nonetheless, these results coincide with the works of [Weiss et al., 2019]
and [Kuraptsev and Sokolov, 2019] which state that the collective emission of light by
a dense ensemble of cold atoms is robust against thermal decoherence, at least for our
probe duration. We have also presented a new model, derived by Pierre Pillet. This
model, based on optical Bloch equations, reproduces the coupled-dipoles simulations at
low saturation intensity, but has the advantage to not be limited to the weak driving
limit. A first measurement of the coherent transmission through a dense cloud of cold
two-level atoms has been performed with s ≈ 1 and s ≈ 8 (see [Jennewein, 2017], ap-
pendix E), but further tests are needed in order to allow for a comparison with this model.

The major part of my PhD work was dedicated to the modification and character-
ization of the new generation of the experimental apparatus. The goal was to solve
some experimental imperfections of the previous version and, mostly, open the road
for new kind of measurements configurations. The new generation, with the one built
at ICFO in the group of M. W. Mitchell and presented in [Bruno et al., 2019], are
the only ones that are endowed with two crossed high resolution optical axes. We
elaborated an alignment procedure, detailed in chapter 3. Then, I have characterized
the performance of the aspheric lenses using a single atom at the bottom of an opti-
cal dipole trap. Although the results obtained did not match perfectly the optimal
performance expected, we have tried to understand them in terms of the spherical
aberration that could be introduced by the viewports. The simulations I have per-
formed seemed to indicate that the viewports introduce a large amount of spherical
aberration in order to degrade the optical performance of our lenses to the measured
values. Although it is not impossible, it does not seem totally convincing. Further tests
have to be done, on the viewports directly for instance, in order to understand why
our optical performance are degraded. Nonetheless, the apparatus has been able to
trap atoms on one axis and observe them with the second axis, which is already a success.

Finally, the last chapter of this manuscript investigates the robustness of the propaga-
tion of an excitation along a 1D chain of atoms with respect to physical imperfections.
To do so, we have added physical imperfections to a 1D chain of atoms to determine if
the results presented in the work of [Sutherland and Robicheaux, 2016] were still valid
in a real experiment. We added noise in the positions of the atoms and the random
filling of each lattice site. We have shown that within our experimental parameters,
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the propagation of excitation survives the physical imperfections. It logically calls for
a future experiment to demonstrate this effect. In a very last study, I have tried to
elaborate an algorithm to extract the positions of the atoms along the 1D chain based
on their fluorescence image. In direct connection with the previous work of this chapter,
the tool, if successful, would have enabled to post process our data for every given
atomic configuration in the 1D chain. With our experimental parameters, the tools is
not successful enough. However, it can be upgraded using more sophisticated techniques
and maybe integrated on the experiment.

The influence of dipole-dipole interactions in dense samples has still some remaining
features that are not fully understood. In this manuscript, we have tried to gather as
much as possible the different measurements, theories and interpretations performed
in our group to draw the clearest picture obtained so far. Not having solved all the
problems related to the questions, we have nonetheless dig deeper into the field and try
to see where is (are) the critical point(s) that prevent us from obtaining a satisfactory
agreement between theory and data. We have not found it yet, but the list gets shorter.
New experiments have to be performed in order to find the underlying assumption
that is apparently not fulfilled in our experiments, and in others, that would restore a
good agreement between dipole-dipole interactions predictions in dense ensembles and
our results. The group wants also to investigate effects of dipole-dipole interactions in
ordered samples. We have seen, theoretically, one of this effect on a 1D chain of atoms.
The new apparatus has the potentiality to measure the collective effects on these types
of systems. It could also, in a near future, investigate the effects of these interactions
on 2D systems. Theoreticals works have demonstrated that, depending on the lattice
spacing, 2D arrays of atoms can interact strongly with light and eventually reflects
totally the incoming beam ([Bettles et al., 2016b], [Shahmoon et al., 2017b]). It could
be an experimental demonstration of the construction of light-matter interface based
on dipole-dipole interactions which our apparatus would be able to achieve. Finally, it
would also be interesting to investigate quantum correlations in these type of systems.

In a nutshell, having a proper understanding of dipole-dipole interactions in dense
regime would be a huge success. It would allow to further investigate the influence
of dipole-dipole interactions in the quantum regime with confidence. The apparatus
presented in this manuscript is waiting to perform new experiments and I truly hope
that it will be associated with wonderful results in the future.
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Appendix A
Electric field produced by a dipole

This appendix gives a detailed derivation of the electric field produced by a dipole. Its
expression is introduced in chapter 2 and used in all the numerical simulations of the
chapter. The derivation done here will start from Maxwell’s equations

∇ · E = ρ/ε0 (A.1)

∇× E = −∂B
∂t

(A.2)

∇ ·B = 0 (A.3)

∇×B = µ0j +
1

c2

∂E

∂t
(A.4)

Applying the rotational operator to (A.2) and substituing the temporal derivative of
(A.4) into it, one gets an equation which relates the electric field to its sources

∇× (∇× E) =∇(∇ · E)−∇2E

= − ∂

∂t
(∇×B)

= −µ0
∂j

∂t
− 1

c2

∂2E

∂t2

and finally
(
∇2 − 1

c2

∂2

∂t2

)
E =

1

ε0
∇ρ+ µ0

∂j

∂t
. (A.5)

The exact same procedure can be applied to the magnetic field, leading to
(
∇2 − 1

c2

∂2

∂t2

)
B = −µ0∇× j. (A.6)

At this point, in most textbooks, authors usually introduce the vector potential A
and the scalar potential ϕ. These variables lead to two new equations, one of them
having the advantage to be a scalar equation. In fact, (A.3) is telling us that the B is
equal to a purely rotational field, up to a gradient of some function, that we call A

B =∇×A. (A.7)
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By inserting (A.7) into (A.2), we get

∇×
(
E +

∂A

∂t

)
= 0.

This non-rotational field is then of the form of a gradient of a function, that we call the
scalar potential ϕ

E = −∇ϕ− ∂A

∂t
, (A.8)

the negative sign in front of the gradient being a convention.

The electric field and magnetic field are completely defined by Maxwell’s equations,
but the scalar and vector potential, through the definition that have been made, are
not uniquely defined. We can still defined the divergence of the vector potential to be
whatever we want: this is called a gauge choice. Here we will use the Lorenz gauge

∇ ·AL +
1

c2

∂ϕL

∂t
= 0, (A.9)

the capital letter L being here to remind the reader that the Lorenz gauge choice has
been made. Within this gauge condition, the equation on the vector potential AL is
obtained by replacing (A.8) and (A.7) into (A.4)

(
∇2 − 1

c2

∂2

∂t2

)
AL = −µ0j. (A.10)

Similarly, we can derive the equation for the scalar potential ϕL by replacing (A.8) into
(A.1) (

∇2 − 1

c2

∂2

∂t2

)
ϕL = − ρ

ε0
. (A.11)

The solution of either (A.10) or (A.11) can be determined in solving the Green function
G(r, t) of the following equation

(
∇2 − 1

c2

∂2

∂t2

)
G(r, t) = −δ(r)δ(t), (A.12)

and then convolving this general solution to the source term in (A.10) or (A.11). The
resolution of (A.12) done here will use distribution theory. First of all, we rewrite (A.12)
in the Fourier domain

(−k2 + k2
0)G(k, ω) = −1, (A.13)

with k0 = ω/c and G(k, ω) the Fourier transform of G(r, t) defined by

G(k, ω) =

∫ +∞

−∞
G(r, ω) e−ik·r d3r =

∫ +∞

−∞

∫ +∞

−∞
G(r, t) e−i(k·r+ωt) d3r dt .
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According to distribution theory, the solution of (A.13) is

G(k, ω) = P.V.

[
1

k2 − k2
0

]
+ Cδ(k − k0) + C ′δ(k + k0), (A.14)

where C and C ′ are integration constant and P.V.f denotes the principal value of f
defined. Assuming f has only one discontinuity in a, the principal value is defined, for
every test function φ, by

P.V.f = P.V.

∫
f(x)φ(x) dx = lim

ε→a

[∫ ε−

−∞
f(x)φ(x) dx+

∫ +∞

ε+
f(x)φ(x) dx

]
.

Taking the inverse Fourier transform of (A.14) with respect to the wavevector components
and assuming that the Green function only depends on the modulus of k, we get

G(r, ω) =
1

2πr
Im


P.V.

∫ +∞

0

k

k2 − k2
0

eikr dk

︸ ︷︷ ︸
I1

+C

∫ +∞

0

kδ(k − k0) eikr dk

︸ ︷︷ ︸
I2

+C ′
∫ +∞

0

kδ(k + k0) eikr dk

︸ ︷︷ ︸
I3


 . (A.15)

We can evaluate the contribution of the first integral, denoted I1 in (A.15), in the
complex plane. Choosing a closed half-circle in the upper-half of the complex plane, the
Residue theorem enables to write

I1 =
1

2
× P.V.

∫ +∞

−∞

k

k2 − k2
0

eikr dk

=
1

2
×
(
iπ
k0 eik0r

2k0

+ iπ
k0 e−ik0r

2k0

)

=
iπ

2
cos(k0r). (A.16)

The two others integrals are straightforward

I2 = k0 eik0r, (A.17)

and I3 = 0 because −k0 does not belong to the domain of integration. Finally, using
(A.16), (A.17) into (A.15), one gets

G(r, ω) =
1

4πr
cos(k0r) +

Ck0

2π2r
sin(k0r).. (A.18)
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(A.18) can be recast into the form

G(r, ω) = A
eik0r

r
+B

e−ik0r

r
, (A.19)

with

A =
1

8π
+
Ck0

4iπ2

B =
1

8π
− Ck0

4iπ2
.

Sommerfeld radiation condition dictates that B = 0, therefore C = iπ/2k0 and

G(r, ω) =
eik0r

4πr
. (A.20)

The final step consists in taking the inverse Fourier transform of (A.20) with respect to
the pulsation components and one would obtain

G(r, t) =
1

4πr
δ
(
t− r

c

)
. (A.21)

Now that we have the expression of the Green tensor, we can write the expression of
the scalar potential and the vectorial potential by convolving it with the source terms

ϕL =
1

4πε0

∫ ρ
(
r′, t− |r−r′|

c

)

|r− r′| d3r′ , (A.22)

AL =
µ0

4π

∫ j
(
r′, t− |r−r′|

c

)

|r− r′| d3r′ . (A.23)

(A.22) and (A.23) are general expressions of the scalar potential and vector potential
associated with Maxwell’s equations in the Lorenz gauge. In the following, we will derive
the expression of these two quantities for a single dipole located at the origin.

The charge density ρ associated with a dipole can be written as

ρ(r, t) = −p(t) · ∇δ(r),
= −∇ · (p(t)δ(r)), (A.24)

with p(t) the dipole moment. To go from the first line to the second one, we have used
the vectorial relation ∇ · (fU) = f∇ ·U + U · ∇f . Using the charge conservation
associated with (A.24), we obtain the current density of a dipole

j(r, t) = ṗ(t)δ(r). (A.25)
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Replacing (A.25) into (A.23) gives

AL(r, t) =
µ0

4π

ṗ(t− r/c)
r

. (A.26)

Replacing (A.26) into (A.7) gives the magnetic field produced by a single dipole

B(r, t) = −µ0

4π
r×

[
p̈(t− r/c)

cr2
+

ṗ(t− r/c)
r3

]
, (A.27)

where we have used the relation ∇× (fU) = f∇× U +∇f × U. To obtain the
expression of the electric field produced by a dipole, we also need the expression of the
scalar potential ϕL, which is explicitly

ϕL(r, t) = − 1

4πε0

∫ +∞

−∞
d3r′

p
(
t− |r−r′|

c

)

|r− r′| · ∇r′ δ(r
′). (A.28)

(A.28) can be integrated by parts and it would leads to

ϕL(r, t) =
1

4πε0

∫ +∞

−∞
d3r′∇r′ ·



p
(
t− |r−r′|

c

)

|r− r′|


 δ(r′)

=
1

4πε0
∇r′ ·



p
(
t− |r−r′|

c

)

|r− r′|




r′=0

=
1

4πε0

[
1

|r− r′|∇r′ · p
(
t− |r− r′|

c

)
+ p

(
t− |r− r′|

c

)
· ∇r′

1

|r− r′|

]

r′=0

=
1

4πε0

[
1

|r− r′| ṗ
(
t− |r− r′|

c

)
· 1

c

r− r′

|r− r′| + p

(
t− |r− r′|

c

)
· r− r′

|r− r′|3
]

r′=0

=
1

4πε0

[
ṗ(t− r/c) · r

cr2
+

p(t− r/c) · r
r3

]
(A.29)

To obtain the expression of the electric field produced by the dipole, we have to insert
(A.29) and (A.26) into (A.8)

E(r, t) = − 1

4πε0

[
1

cr2
∇(ṗ(t− r/c) · r) +

ṗ(t− r/c) · r
c

∇
(

1

r2

)
+

1

r3
∇(p(t− r/c) · r)

+p(t− r/c) · r∇
(

1

r3

)]
− µ0

4π

p̈(t− r/c)
r

.

In the next steps, we will omit the dependency in t− r/c for clarity.

E(r, t) = − 1

4πε0

[
ṗ

cr2
− (r · p̈)r

c2r3
− 2(r · ṗ)r

cr4
+

p

r3
− (r · ṗ)r

cr4
− 3(r · p)r

r5

]
− µ0

4π

p̈

r
,
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and using the relation ε0µ0c
2 = 1, we get

= − 1

4πε0

[
ṗ

cr2
− (r · p̈)r

c2r3
− 3(r · ṗ)r

cr4
+

p

r3
− 3(r · p)r

r5
+

p̈

r

]
.

If we note r = rû and p(t − r/c) = p e−iω(t−r/c) ê, then the expression of the electric
field becomes

E(r, t) = −p e−iω(t−r/c)

4πε0

{
− iω
cr2

ê +
ω2

c2r
(û · ê)û +

3iω

cr2
(û · ê)û +

1

r3
ê− 3

r3
(û · ê)û− ω2

c2r
ê

}

=
p e−iω(t−r/c)

4πε0r3

{
[3(û · ê)û− ê](1− ikr) + [ê− (û · ê)û](kr)2

}
(A.30)

Using the vector triple product, (A.30) is sometimes written under the following form

E(r, t) =
p e−iω(t−r/c)

4πε0r3

{
[3(û · ê)û− ê](1− ikr) + [(û× ê)× û](kr)2

}
. (A.31)
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Appendix B
Clebsh-Gordan coefficients of 87Rb
D1 & D2 line - π transitions

Clebsh-Gordan coefficients associated with π transitions on the D1 and D2 line of 87Rb
and used in the derivation of the light shift induced by a laser beam on the ground
states levels (section 1.1.1). The coefficients are given with the normalization convention
chosen in [Steck, 2015].
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Figure B.1.: Clebsh-Gordan coefficients for π transition on the D1 line. The bottom hyperfine
states correspond to the (5S1/2, F = 2) manifold, and the upper states represent the (5P1/2,
F ′ = 1) and (5P1/2, F ′ = 2) manifolds.
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Figure B.2.: Clebsh-Gordan coefficients for π transition on the D2 line. The bottom hyperfine
states correspond to the (5S1/2, F = 2) manifold, and the upper hyperfine states represent
the (5P3/2, F ′ = 0), (5P3/2, F ′ = 1), (5P3/2, F ′ = 2) and (5P3/2, F ′ = 3) (from bottom to top)
manifolds.
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Appendix C
Maxwell-Bloch equations for
coherent light scattering

Here, we derived the model developed by P. Pillet to explain the coherent light scattering
by a cloud of two-level atoms. The model is compared with experimental data, in the
low saturation limit, in chapter 2.

The model starts from the master equation ruling the density operator ρ(t) describing
a collection of N two-level atoms with ground and excited states |g〉 and |e〉 respectively
(transition frequency ω0) in interaction with the modes of the vacuum field. In interaction
representation this equation reads, in the absence of driving field

dρ(t)

dt
=− Γ

2

N∑

j=1

{r+
j r
−
j , ρ(t)} − 2r−j ρ(t)r+

j

− 3Γ

8

∑

l 6=j

(
r+
j r
−
j ρ(t− Rjl

c
)− r−l ρ(t− Rjl

c
)r+
j

)

×
(
−i1 + cos2 θjl

kRjl

− (1− 3 cos2 θjl)
kRjl + i

(kRjl)3

)
exp(ikRjl)

+
3Γ

8

∑

l 6=j

(
r−j r

+
j ρ(t− Rjl

c
)− r+

l ρ(t− Rjl

c
)r−j

)

×
(
i
1 + cos2 θjl

kRjl

− (1− 3 cos2 θjl)
kRjl − i
(kRjl)3

)
exp(−ikRjl). (C.1)

Here, {., .} is the anticommutator of two operators, Γ is the decay rate of state |e〉
and k = ω0/c. The atoms j and l are located at positions Rj and Rl respectively, the
inter-particle distance being Rjl = |Rjl| = |Rj −Rl|, and θjl is the angle between vector
Rjl and the quantization axis êx. The atomic dipoles are circularly polarized in the yz
plane. Finally, the raising and lowering operators r±j for atom j are defined as

r+
j = |e〉j 〈g|j r−j = |g〉j 〈e|j
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The equations are established by choosing the quantization axis along the direction of the
applied magnetic field. When deriving (C.1), the Born approximation has been made:
only one spontaneous emission event is supposed to occur during the characteristic
evolution time of the system ≈ 1/(NΓ). However, the usual Markov approximation as
not been made, thus the presence of the retarded time t−Rjl/c in the equation. One
may think this point is not crucial but it will lead to a simpler form of the final equation.

The density operator of atom j is obtained by tracing over the l 6= j atoms. Using
the notation ρj(t) = Trl 6=j[ρ(t)], we obtain

dρj(t)

dt
=− Γ

2
([r+

j r
−
j , ρ

j(t)]− 2r−j ρ
j(t)r+

j )

+ i
3Γ

8

∑

l 6=j

[
ρleg(t−

Rjl

c
)r+
j , ρ

j(t− Rjl

c
)

]

×
(

1 + cos2 θjl
kRjl

+ (1− 3 cos2 θjl)
1− ikRjl

(kRjl)3

)
exp(ikRjl)

+ i
3Γ

8

∑

l 6=j

[
ρlge(t−

Rjl

c
)r−j , ρ

j(t− Rjl

c
)

]

×
(

1 + cos2 θjl
kRjl

− (1− 3 cos2 θjl)
1 + ikRjl

(kRjl)3

)
exp(−ikRjl), (C.2)

where [., .] the commutator of two operators.

We now add the laser driving field EL = EL(r)êy propagating in the direction êz with
vector kL = 2π/λ. One should keep in mind that kL is different from k = ω0/c, but as
we operate close to an atomic transition, we will use in the following kL = k. The laser
beam is described here with a Gaussian spatial profile,

EL(r, z) = E0
w0

w(z)
exp

( −r2

w(z)2

)
exp

(
ikz + ik

r2

2R(z)
− i arctan(z/zR)

)
. (C.3)

Here, we have chosen the opposite phase convention compared to (1.10). Equation (C.3)
can be rewritten as follows

EL = E0
1

1 + iz/zR
exp

(
i

2

kr2

z − izR

)
exp(ikz). (C.4)

We also defined the Rabi frequency associated to the slow-varying envelope of the laser
amplitude by Ω∗L = d(EL · ê∗+) exp(−ikz)/~

ΩL = Ω0
izR

z + izR
exp

(
− i

2

kr2

z + izR

)
, (C.5)
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with ê+ = −(êy + iêz)/
√

2 and Ω0 = −dE0/~. We then obtain the equation relating
the coherence ρjge of atom j and the ground and excited populations, ρjgg(t) and ρjee(t)

dρjge(t)

dt
=−

(
Γ

2
+ i∆

)
ρjge(t) + i

ΩL(rj, zj)

2
e−ikzj

(
ρjee(t−

Rjl

c
)− ρjgg(t−

Rjl

c
)

)

+
3

8
iΓ
∑

l 6=j

ρlge(t−
Rjl

c
)

[
ρjee(t−

Rjl

c
)− ρlgg(t−

Rjl

c
)

]

×
[

1 + cos2 θjl
kRjl

+ (1− 3 cos2 θjl)
1 + ikRjl

(kRjl)3

]
exp(−ikRjl). (C.6)

Similarly, the equation on the excited state population is

dρjee(t)

dt
=− Γρjee(t) +

3Γ

8
iΓ
∑

l 6=j

ρleg(t−
Rjl

c
)ρjge(t−

Rjl

c
)

×
[

1 + cos2 θjl
kRjl

+ (1− 3 cos2 θjl)
1− ikRjl

(kRjl)3

]
exp(ikRjl)

− 3

8
iΓ
∑

l 6=j

ρlge(t−
Rjl

c
)ρjeg(t−

Rjl

c
)

×
[

1 + cos2 θjl
kRjl

+ (1− 3 cos2 θjl)
1 + ikRjl

(kRjl)3

]
exp(−ikRjl)

+ i
Ω∗L(rj, z, j)

2
exp(ikzj)ρ

j
ge(t)− i

ΩL(rj, zj)

2
exp(−ikzj)ρjeg(t). (C.7)

Let’s now restrict ourselves to the weak driving field limit, hence assuming ρjee ≈ 0
and ρjgg ≈ 1. The model derived here remains valid in the high intensity regime if the
evolution of the atomic population is considered. Our goal here is to derive a simple form
of the previous equations in order to validate its results by comparing them with the
coupled-dipole model, only valid in the weak driving limit. Under this assumption, (C.6)
becomes

dρjge(t)

dt
=− iΩL(rj, zj)

2
exp(−ikzj)−

(
Γ

2
+ i∆

)
ρjge(t)

− 3

8
iΓ
∑

l 6=j

ρlge(t−
Rjl

c
)f(Rjl, θjl) exp(−ikRjl), (C.8)

where we have introduced the function

f(R, θ) =
1 + cos2 θ

kR
+ (1− 3 cos2 θ)

1 + ikR

(kR)3
. (C.9)

The coherence ρjeg(t) being related to the complex amplitude of the atomic dipole j, (C.8)
in steady-state is identical to the coupled-dipole one derived from classical electrody-
namics (see Figure 2.20). Let us now introduced the equations for the electromagnetic
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field. The total field at the location of atom j is the superposition of the laser field and
the field emitted by all the other atoms. Expressed in terms of the slow-varying Rabi
frequency defined by Ω∗ = d(E · ê∗+) exp(−ikz)/~, the field driving the σ+-polarized
dipoles is given by

Ω(Rj, t) = ΩL(rj, zj) +
3Γ

8
exp(ikzj)

∑

l 6=j

ρlge(t−
Rjl

c
) exp(−ikRjl)f(Rjl, θjl). (C.10)

This expression, valid for any amplitude of the laser field, can be decomposed into its
propagating (Ω+, direction kL) and counter-propagating (Ω−, direction −kL) parts

Ω+(Rj, t) = ΩL(rj, zj) +
3Γ

4
exp(ikzj)

∑

l<j

ρlge(t−
Rjl

c
) exp(−ikRjl)f(Rjl, θjl), (C.11)

Ω−(Rj, t) =
3Γ

4
exp(ikzj)

∑

l>j

ρlge(t−
Rjl

c
) exp(−ikRjl)f(Rjl, θjl). (C.12)

With these notations, (C.8) becomes

dρjge(t)

dt
= −

(
Γ

2
+ i∆

)
ρjge(t)−

i

2
(Ω+(rj, zj, t) + Ω−(rj, zj, t)) exp(−ikzj). (C.13)

We have checked numerically that for our experimental parameters, the counter-
propagating part of the filed is negligible, therefore we will use, in the following,
Ω(Rj, t) ≈ Ω+(Rj, t).

The next step, in the derivation of this model, consists in a continuous media approxi-
mation, i.e. we calculate the configuration average of both ρjge and Ω+(Rj, t). In other
terms, we calculate the coherent part of the electromagnetic field

〈
Ω∗+(Rj, t)

〉
= d

〈
(E(Rj, t) · ê∗+) exp(−ikzj)

〉
/~. (C.14)

This approximation is consistent with the fact that in our experiment we measure
the field propagating in the forward direction, dominated by the coherent part in the
low-intensity limit. Doing so, we neglect the fluctuations of the electromagnetic field
around its mean value. In order to keep the notations and the equations simple, we will
forget in the following the brackets of the configuration average, and we will replace the
coherence ρjge operator by a continuous function ρge(r, z, t). We will also assume, based
on the parameters of our experiments, that the coherence function does not depend
on the radial coordinate: ρge(r, z, t) ≈ ρge(z, t). This is equivalent of considering that
our system is one-dimensional. This assumption is needed in order to show that the
coherent field Ω+(r, z, t) fulfills a paraxial equation. It can be derived following several
steps. First, we introduce the radial average Ω̄+(z, t) of the coherent field

Ω̄+(z, t) =
1

2πσ2
r

∫ ∞

0

Ω+(r, z, t) exp

(
− r2

2σ2
r

)
2πr dr . (C.15)
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We then replace the sums by integrals involving the spatial distribution of the cloud
(with peak density n), which is assumed to be Gaussian with σr and σz the widths at
1/e2 in the radial and longitudinal directions respectively,

Ω̄+(z, t) =
1

2πσ2
r

∫ ∞

0

ΩL(r, z) exp

(
− r2

2σ2
r

)
2πr dr

+
n

2πσ2
r

3Γ

4
exp(ikz)

∫
dx dy exp

(
− r2

2σ2
r

)

×
∫ z

−∞
dz′
∫

dx′ dy′ f(R′, θ′)ρge(z
′, t− R′

c
)

× exp(−ikR′) exp

(
−x

′2 + y′2

2σ2
r

− z′2

2σ2
z

)
. (C.16)

Here, r =
√
x2 + y2 and R′ =

√
(x− x′)2 + (y − y′)2 + (z − z′)2. Introducing the

relative coordinates X = x− x′, Y = y − y′ and Z = z − z′, and using expression (C.5),
we obtain

Ω̄+(z, t) =
zR

zR − iz + kσ2
r

Ω0

+
3Γn

8
exp(ikz)

∫ z

−∞
dz′ ρge(z

′, t− Z

c
)J(Z) exp

(
− z′2

2σ2
r

)
, (C.17)

with J(Z) a kernel function

J(Z) =

∫
dX dY f(R′, θ′) exp

(
−X

2 + Y 2

4σ2
r

− ikR′
)
, (C.18)

where R′ =
√
X2 + Y 2 + Z2. One can find, after some calculation, an analytic expression

for this function

J(z) =
J1(z)

2

(
3 +

1

2k2σ2
r

+
k2z2

4k4σ4
r

)
+
iπ

k2

(
1 + i

z

2kσ2
r

)
exp(−ikz), (C.19)

where

J1(z) =

∫ ∞

0

exp

(
− r2

4σ2
r

)
exp
(
−ik
√
r2 + z2

)

k
√
r2 + z2

2πr dr

=
2π
√
π

k
σr exp

(
−k2σ2

r

)
Erfc

( |z|
2σr

+ ikσr

)
exp

(
z2

4σ2
r

)
, (C.20)

and Erfc is the complementary error function defined by

Erfc(x) = 1− Erf(x) =
2√
π

∫ ∞

x

e−t
2

dt . (C.21)
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Using the asymptotic expression Erfc(x) ≈ 1
x
√
π

exp(−x2) for |x| � 1, we get

J(z) ≈ −2iπ

k2

b

b− iz exp(−ikz), (C.22)

with b = 2kσ2
r . The previous approximation is valid for our experimental parameters, as

1/kb ≤ 0.1. The above calculation shows that the field Ω̄+(z, t) is the radial average of
the field

Ω+(r, z, t) =ΩL(r, z)− i3πΓn

4k2

∫ z

−∞
dz′ ρge(z

′, t− z − z′
c

)

× 2b

b− 2i(z − z′) exp

(
− kr2

b− 2i(z − z′)

)
exp

(
− z′2

2σ2
z

)
exp(ikz′). (C.23)

With this form, one can check that the coherent field Ω+(r, z, t) is solution of a paraxial
equation

∂Ω+(r, z, t)

∂z
+

1

c

∂Ω+(r, z, t)

∂t
− 1

2ikr

∂

∂r

(
r
∂Ω+(r, z, t)

∂r

)

= −i 3π

2k2
Γnρge(z, t) exp

(
−kr

2

b
− z2

2σ2
z

)
exp(ikz). (C.24)

Equation (C.24) is still valid in the strong driving regime. Note that to obtain this form
of the equation, the retarded times have to be kept, otherwise extra terms would have
appeared. The paraxial equation for the field (C.24) is coupled to the equation on the
coherence

∂ρge(z, t)

∂t
= −

(
Γ

2
+ i∆

)
ρge(z, t)− i

Ω+(r, z, t)

2
exp(−ikz), (C.25)

with the initial conditions Ω+(r, z = −∞, t) = ΩL(r, z = −∞, t) and ρge(z, t = 0) = 0.
We then consider the diffraction of the light by the cloud. The diffraction transfers
part of the laser light with Gaussian spatial profile to higher order Gaussian modes.
Mathematically, we thus decompose the field Ω+(r, z, t) onto the Laguerre-Gauss modes
propagating in the direction kL

Ω+(r, z, t) =

√
πzR
k

∞∑

q=0

Ω
(q)
+ (z, t)LGq(r, z). (C.26)

The expression of the Laguerre-Gauss modes are

LGq(r, z) =

√
k

πzR

(
1 + iz/zR
1− iz/zR

)q (
1

1− iz/zR

)

× Lq
(
kzRr

2

z2 + z2
R

)
exp

(
− i

2

kr2

z + izR

)
, (C.27)
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with Lq(r) the Laguerre polynomial of order q. It is solution of the following second-order
linear differential equation

xy′′ + (1− x)y′ + qy = 0. (C.28)

A closed form for this polynomial is given by

Lq(x) =
n∑

k=0

(
n

k

)
(−1)k

k!
xk. (C.29)

The mode q = 0 describes the Gaussian mode (TEMqm = TEM00) of the probe field.
The cylindrical symmetry of our system allows us to restrict the solutions to the modes
with m = 0 only. The Laguerre polynomials satisfy the orthogonality conditions

∫ ∞

0

LGq(r, z)LG∗p(r, z)2πr dr = δp,q. (C.30)

As a last step, a radial average is performed to reach a set of coupled equations that
are now easy to solve numerically





∂ρ̃ge
∂t

= −
(

Γ

2
+ i∆

)
ρ̃ge(z, t)− i ¯

Ω(z, t)

2
,

∂Ω
(q)
+

∂z
+

1

c

∂Ω
(q)
+

∂t
= −i

√
2

πw2

3π

2k2
Γnf ∗q (z) exp

(
− z2

2σ2
z

)
ρ̃ge(z, t),

(C.31)

with ρ̃ge(z, t) = ρge(z, t) exp(ikz) the slow-varying coherence and
¯
Ω(z, t) the Rabi

frequency defined by

¯
Ω(z, t) =

√
πw2

2

1

2πσ2
r

∞∑

p=0

fp(z)Ω
(p)
+ (z, t), (C.32)

and where we have introduced the function fp(z) defined as

fp(z) =

∫ ∞

0

exp

(
− r2

2σ2
r

)
LGp(r, z)2πr dr . (C.33)
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Résumé

Introduction

Bien que le problème de l’interaction entre la lumière et la matière soit étudié depuis très
longtemps et que les théories qui lui sont associées permettent d’expliquer bon nombre
de phénomènes physiques, celui de l’interaction dipolaire en régime dense et proche de
résonance ne semble toujours pas parfaitement compris. Le nuage électronique entourant
l’atome, lorsque celui-ci est soumis à une onde électromagnétique, se polarise et un
dipôle apparaît. Lorsqu’un deuxième dipôle induit se trouve à proximité du premier,
ils peuvent se mettre à interagir: c’est l’interaction dipolaire. Cette intéraction est
d’autant plus forte que les dipôles sont proches et que la longueur d’onde du champ
électromagnétique est proche d’une transition atomique.

Chapitre 1

Dans le premier chapitre, après un rapide rappel des concepts théoriques en lien avec
l’interaction lumière-matière, je présente la manière avec laquelle nous préparons expéri-
mentallement des nuages désordonnés consitutés d’atomes froids de Rubidium 87 au
foyer de lentilles asphériques de forte ouverture numérique placées sous vide. Ce premier
chapitre est également l’occasion d’expliquer comment nous mesurons les différentes
quantités physiques qui caractérisent ces nuages et qui seront utilisées dans le reste du
manuscrit.

Chapitre 2

Dans ce second chapitre, je rappelle les différentes mesures qui ont été réalisées dans
le groupe d’Antoine Browaeys, au Laboratoire Charles Fabry, en lien avec la diffusion
de lumière par des nuages denses d’atomes froids. Je présente ensuite la dernière
mesure réalisée et à laquelle j’ai participé: la diffusion cohérente de lumière par un
ensemble d’atomes à deux niveaux. On comparera les résultats obtenus aux résultats
des simulations qui sont basées sur le modèle des dipôles couplés. Le modèle des dipôles
couplés est un modèle microscopique dans lequel chaque atome du nuage est soumis
au champ laser d’excitation et à la somme des champs rayonnés par les autres dipôles
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du nuage, de sorte que tous les atomes du nuage sont couplés. Bien que l’accord entre
résultats expérimentaux et théorie soit restauré lorsque le nombre d’atomes constituant
le nuage est faible, le désaccord persiste lorsque celui-ci augmente. Les simulations
présentées tentent donc d’expliquer ce désaccord en s’attaquant à plusieurs des hypothèses
du modèle, notamment celle qui concerne l’absence de mouvement des atomes. À la fin
du chapitre, on présente un nouveau modèle développé par l’un de nos collaborateurs et
qui permet d’étudier de tels systèmes au-delà de la limite de faible excitation, hypothèse
qui considère que les dipôles réagissent linéairement au champ d’excitation.

Chapitre 3

À défaut d’obtenir un accord satisfaisant entre la théorie et l’expérience concernant les
mesures expérimentales discutées au chapitre précédent, il a été décidé de modifier le
dispositif expérimental. Ce troisième chapitre présente les modifications que j’ai réalisées
sur l’expérience, notamment concernant l’implémentation de deux axes optiques haute
résolution en configuration confocale et à 90◦ l’un de l’autre. J’insisterai sur la procédure
d’alignement que nous avons mise au point ainsi que sur la caractérisation, réalisée à l’aide
d’atomes uniques, des performances optiques du système. Je tente également d’expliquer
pourquoi les performances optiques semblent dégradées par rapport aux performances
théoriques attendues en considérant les aberrations possiblement introduites par les
hublots de la chambre à vide. Pour terminer le chapitre, je présente rapidement les
futurs outils prometteurs qui sont ou seront prochainement mis en place sur l’expérience
afin d’avoir un plus grand contrôle sur la préparation de nos systèmes d’atomes froids.

Chapitre 4

Le dernier chapitre commence par une étude théorique de la diffusion de la lumière
par une chaîne d’atomes froids. Le nouveau dispositif possédant la capacité de piéger
les atomes selon une direction, en réfléchissant le laser de piègeage pour former une
onde stationnaire, et de collecter la lumière émise par les atomes avec le second axe, on
a cherché à observer les effets des interactions dipolaires dans des sytèmes ordonnés.
En se basant sur [Sutherland et Robicheaux, 2016] dans lesquels les auteurs prédisent
l’augmentation de la quantité de la lumière diffusée par les atomes le long de la chaîne
pour des désaccords négatifs de la sonde, j’ai cherché ici à vérifier que cet effet était
robuste aux imperfections expérimentales, qu’il s’agisse du chargement aléatoire des
différents sites du réseau ou bien du mouvement résiduel des atomes lié à leur température
non nulle. Cetté étude confirme que l’effet est observable. La deuxième partie de ce
chapitre est consacrée à déterminer s’il est possible, à partir d’une image de la chaîne
prise par notre expérience, de reconstruire la distribution atomique, la distance entre
deux sites voisins étant inférieure à la résolution du système d’imagerie. Cette étude
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préliminaire ne permet pas de l’affirmer, compte tenu du RSB (Rapport Signal à Bruit)
des images. L’algorithme pourra néanmoins être amélioré avec l’implementation de
différentes techniques de reconstruction d’images.

Conclusion

Pour conclure, malgré nos efforts pour comprendre la réponse optique d’un nuage dense
et désordonné d’atomes froids sondé proche de résonance, le désaccord entre les résultats
expérimentaux et ceux des simulations persiste. Le nouveau dispositif expérimental que
j’ai construit devrait permettre d’approfondir ces études mais également de les étendre,
notamment en étudiant les effets des interactions dipolaires dans les sytèmes ordonnés.
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Titre : Étude des interactions dipolaires induites par la lumière dans des ensembles d'atomes froids 

Mots clés : atomes froids, interactions dipôle-dipôle, diffusion de la lumière, effets collectifs, super-radiance 

Résumé : Notre équipe étudie le comportement collectif 

d’un gaz d’atomes en présence d’interactions de type 

dipôle-dipôle. Ces interactions apparaissent lorsqu'on 

illumine les atomes avec un laser de longueur d’onde 

quasi-résonant avec une transition atomique : les atomes 

se polarisent sous l’effet du champ laser, et les dipôles 

induits interagissent entre eux via le champ qu’ils 

rayonnent. Cette interaction est d’autant plus forte que 

les atomes sont proches les uns des autres, et peut 

perturber considérablement le comportement radiatif de 

l’ensemble atomique, voire empêcher l’excitation de 

plusieurs atomes à la fois. Par exemple, un nuage 

d’atomes dense peut se comporter comme une cavité 

sans miroirs : le laser peut exciter certains modes de 

rayonnement particuliers, qui rayonnent chacun avec sa 

fréquence et son taux de relaxation propres, différents de 

ceux d’un atome individuel. Certains de ces modes 

collectifs sont super-radiants (le nuage réémet l’excitation 

emmagasinée plus rapidement que ne le ferait un atome 

individuel), d’autres sont au contraire sub-radiants. Afin 

d’étudier ces phénomènes, notre équipe a construit une  
 

expérience qui permet de piéger entre 1 et ~500 

atomes froids de rubidium dans un piège laser de 

dimensions ~1µm3. Nous excitons les atomes près de 

la transition à 780 nm. La taille du nuage, de l’ordre de 

100 nm, est proche de la longueur d'onde réduite. Enfin, 

l’élargissement Doppler des transitions atomiques est 

négligeable (atomes froids). La situation est donc quasi-

idéale pour l’observation de modes de rayonnement 

collectifs. Nous avons observé expérimentalement les 

effets de ces interactions, mais l'accord avec la théorie 

ne semble être, jusqu'à présent, que qualitatif (malgré 

nos efforts pour nous soustraire de la structure interne 

des atomes). Nous avons donc décidé de construire une 

deuxième version du dispositif expérimental. Cette 

ambitieuse deuxième version dispose à présent de deux 

axes optiques haute résolution. En plus de résoudre 

certains problèmes expérimentaux présent dans la 

précédente version, elle ouvre la voie à de nouvelles 

expériences pour étudier les interactions dipolaires : 

nouveaux régimes de densité et nouvelles 

configurations atomiques comme les chaînes d'atomes. 
 

 

Title : Study of light-induced dipolar interactions in cold atoms assemblies  

Keywords : cold atoms, dipole-dipole interactions, light scattering, collective effects, superradiance 

Abstract : Our team studies the collective behaviour of an 

atomic gas in the presence of dipole-dipole interactions. 

These interactions appear when the atoms are illuminated 

by a laser of wavelength lambda that is nearly resonant 

with an atomic transition : the atoms are polarized by the 

laser field, and the induced dipoles interact with each 

other through the field they radiate. This interaction 

becomes stronger when the atoms are closer to each 

other, and can considerably perturb the radiative 

behaviour of the atomic ensemble, or even prevent the 

simultaneous excitation of several atoms. For instance, a 

dense atomic cloud can behave like an optical cavity 

without any mirrors : the laser can excite certain radiation 

modes, each with its own frequency and life time, which 

are different from those of an individual atom. Some of 

these collective modes are super-radiant (the atomic 

cloud re-emits the stored excitation faster than an 

individual atom), others are sub-radiant. To study these 

phenomena, our team has built an experiment that allows 

the trapping of 1 up to ~500 cold rubidium atoms in a 

laser trap of ~1 µm3 in size. We excite the atoms close 

to the transition at 780nm. The size of the atomic 

cloud, on the order of 100 nm, is close to the reduced 

wavelength. Also, the Doppler broadening of the 

atomic transition is negligible (cold atoms). The 

situation is therefore nearly ideal for the observation 

of the collective radiation modes. We observed the 

effects of these interactions, but no quantitative 

agreement with theory has been obtained so far 

(despite our efforts to simplify the internal atomic 

structure). We have thus decided to build a second 

version of the experimental apparatus. This 

challenging second version now possesses two high 

resolution optical axes. Not only solving some 

experimental problems of the previous version, it 

opens the road to new kind of experiments to study 

dipolar interactions: new regime of densities and new 

kind of geometries, as 1D chain of atoms for instance. 
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