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In this general introduction, the use of crossbred animals in meat production is first introduced. It is well 

known that crossbred animals perform better than purebred animals due to the heterosis and complementarity. 

The genetic background of heterosis and researches on heterosis and dominance effects are then reviewed. 

Genomic selection in pigs, especially for crossbred performance is described in the next paragraph. Among 

approaches for genomic selection, the single-step method can overcome the issue that not all the involved 

animals are genotyped. The current development of single-step method is then described. Next, a new 

concept of metafounder is introduced. With this new concept, single-step method can be executed in another 

way for crossbred performance. Then studies about genotype imputation and the trait of total number of 

piglets born are introduced. Finally, the general goals of this thesis are presented.            

Crossbred animals 

Crossbreeding is used for producing final production animals whose sires and dams originate from different 

breeds or lines (Falconer and Mackay, 1996). Crossbreeding is used in almost all species of livestock, 

especially intensively for pig and chicken (Wei, 1992). In the pig industry, usually, breeding companies 

manage the pure breeds and run the selection program. Purebred animals are bred in nucleus herds, where the 

environment is controlled in high hygienic status and performance recording systems are standardized 

(Dufrasne, 2015). Two-way crossbred sows (F1 sows) are produced and fed in the multiplier herds, where 

environment is controlled at a medium hygienic status, and sold to the sow farmers. Then sow farmers 

produce the three-way crossbred pigs by using F1 sows and boars that are from a third breed. Three-way 

crossbred pigs in fattening farms are sold to the slaughterhouses and finally, pork enters the market (Van 

Arendonk et al., 2010). In Denmark, Danish Landrace (L) and Yorkshire (Y) are used as dam lines to 

reproduce the F1 sows (either LY or YL) while the Danish Duroc (D) is used as boar line in the three-way 

crossbreeding programs (Sørensen, 2003). This thesis will concentrate on the two-way crossbreeding system. 

The increased performance of crossbred animals compared to purebred animals is attributable to heterosis 

effects and complementarity between breeds (Wei and van der Werf, 1994). In crossbreeding, heterosis is a 

specific combining ability of two breeds, instead of two individuals, that lead to the crossbred offspring 

performs better than the average of the purebred parental breeds (Falconer and Mackay, 1996). Another 

advantage of using crossbreeding is to utilize breed complementarity. For instance, F1 sows have good 

maternal abilities whereas purebred boars have good meat production traits that are transmitted to the 

terminal pig. Crossbreeding can be optimized because it benefits from mating individuals from different 

breeds to maximize their strengths and minimize their weaknesses (Falconer and Mackay, 1996). In pig 

industry, pork producers widely use crossbred animals to improve commercial production traits (Hidalgo, 

2015). However, the superiorities from the hybrids cannot be retained across generations. Thus, genetic 

selection programs mostly focus on pursuing genetic process in pure breeds, with the hope that this genetic 
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progress is also expressed at the crossbred performance level. Programs that select explicitly to improve the 

crossbred performance rather than purebred performance have always been proposed (Comstock et al., 1949; 

Hartmann, 1992), but their use is limited due to practical constraints (Wei and van der Werf, 1994).  

Heterosis, dominance and inbreeding depression  

There are two types of heterosis: individual and maternal heterosis (Falconer and Mackay, 1996). Individual 

and maternal heterosis originates from the genes of the individual itself and its dam, respectively. The 

maternal heterosis may influence the offspring through providing an environment related to dams. A typical 

example is that crossbred sows perform better in mother-care than purebred sows, and their offspring also 

show better performance than offspring of purebred sows (Van Arendonk et al., 2010). This is one of the 

reasons why fattening pigs usually have a crossbred mother. 

In livestock and plant breeding, dominance has been widely considered as one of the main genetic basis for 

heterosis (Davenport, 1908; Bruce, 1910; Falconer and Mackay, 1996; Visscher et al., 2000). Dominance is a 

form of phenotypic robustness to mutations and a consequence of the behavior of the multi-enzyme systems 

(Bagheri and Wagner, 2004). In terms of gene action, interactions between alleles at the same QTL cause 

dominance (Su et al., 2012a). Through suppressing expression of the recessive deleterious alleles inherited 

from one parent and increasing expression of the dominant alleles inherited from another parent in the 

heterozygous loci, dominance contributes to the phenomenon of heterosis (Bruce, 1910; Jones, 1917). More 

specific, Falconer and Mackay (1996) formulated that, when parental populations are in Hardy-Weinberg 

equilibrium and random mating holds between the sires and dams, the heterosis in one locus in the F1 

crossbred animals is equal to the dominance effect multiplied by the square of the differences of allele 

frequencies between the parental populations. Data analysis demonstrated that heterosis is mostly positive 

(Anous and Mourad, 1993; Mavrogenis, 1996; Shikano and Taniguchi, 2002). However, if the dominance 

effect in the heterozygous loci is negative, heterosis may be negative. Negative heterosis means the 

performance of the heterozygotes is lower than the average of both homozygotes (Hedgecock et al., 1995). 

With many loci, the overall heterosis is the effect summed over all the interactions between alleles, both due 

to dominance and epistasis (Falconer and Mackay, 1996). However, epistasis is commonly considered as 

playing a secondary or minor role in heterosis (Luo et al., 2001; Li et al., 2008) and the epistasis effects are 

ignored in this thesis.  

According to studies, accuracies of estimated breeding values increase if dominance effects are included in 

the animal breeding genetic evaluation models (De Boer and Hoeschele, 1993; Zeng et al., 2013; Moghaddar 

et al., 2014; Sun et al., 2014). Theoretically, estimating dominance genetic effects accurately is beneficial for 

estimating allele substitution effects and improving the accuracies of estimated breeding values in genomic 

prediction (Toro and Varona, 2010). Compared with additive genetic variances, although dominance 
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variations are smaller, they are non-negligible (Misztal, 1997; Esfandyari, 2016). For purebred populations, 

dominance variation is expected to account for around 10% of total genetic variation (Toro and Varona, 

2010), although it varies dramatically depending on the traits and species. In crossbred animals, dominance 

variation is expected to be larger than that in purebred animals (Su et al., 2012a) and the inclusion of 

dominance effects in the model is expected to yield higher accuracies in genetic evaluation for crossbred 

performance than for purebred performance (Lo et al., 1997; Su et al., 2012a). However, dominance effects 

haven’t been frequently used in traditional animal breeding models because it is very difficult to estimate 

dominant genetic parameters and effects accurately and the computational complexity for the inverse matrix 

of dominance relationships is high (Henderson, 1985). To estimate the dominance effects, usually, a large 

amount of dataset including a large ratio of full sibs is required (Misztal et al., 1998), but this is rarely the 

case.  

With the continuously declining costs of genotyping, SNP markers are available for many specials. Estimates 

of dominant variations and dominance effects become feasible through using SNP markers. Recently, some 

studies were carried out on dominance effects, but mainly for purebred performances (Su et al., 2012a; Zeng 

et al., 2013; Ertl et al., 2014; Lopes et al., 2015). Limited number of studies tried to extend it to crossbred 

performance (Hidalgo, 2015; Esfandyari et al., 2016; Vitezica et al., 2016). For the crossbred performance, 

they used univariate genomic models, with variance components estimated based on either purebred genomic 

information or crossbred animals only. However, their conclusions on the needs of including dominance 

effects explicitly in the model are not consistent. More studies are needed to investigate the role of 

dominance in crossbred performance. 

For modern animal breeding systems, because the earliest known ancestors arose from a common base 

population (VanRaden, 1992) and high intensity of long-term selection are kept processing (Rauw et al., 

1998), all animals within a population are related and inbred to some extent. Inbreeding can be described as 

deviation of genotypic frequencies towards lower heterozygosity from expected proportions under Hardy-

Weinberg. Genealogical inbreeding is due to mating of related individuals. The effect of inbreeding is to 

increase the number of homozygous loci per animal and increase the frequency of homozygote genotypes in 

an inbred population (Keller and Waller, 2002). The increased homozygotes lead to higher chances of 

deleterious alleles becoming homozygous and expressing themselves and the performance of associated 

traits decreased. This is known as the inbreeding depression (Charlesworth and Charlesworth, 1987). 

Inbreeding coefficient of an individual is the probability that at a random locus, both alleles are identical by 

descent (Falconer and Mackay, 1996). Several algorithms exist for calculating pedigree-based inbreeding 

coefficients (Tier, 1990; Meuwissen and Luo, 1992). With the availability of SNP markers, inbreeding 

coefficient of an individual can be easily calculated, directly from the genotypes, as the fraction of 

homozygous markers; for a general overview, see Silio et al. (2014). To distinguish such inbreeding 
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coefficient from the pedigree based one, SNP-based inbreeding coefficient is termed as “genomic inbreeding 

coefficient” (Leutenegger et al., 2006).  

Genomic selection in (crossbred) pigs 

Genomic selection was initially put forward by Meuwissen et al. (2001) and became feasible for the pig 

industry after the release of the commercial 60K SNP chip in 2009 (Knol et al., 2016). In genomic selection, 

genome wide distributed SNPs are used to capture the genetic variances for traits and the QTLs are assumed 

to be in LD with at least one of these SNP markers (Meuwissen et al., 2001). Factors that potentially affect 

the accuracy of genomic selection are: the density of SNP markers (Calus et al., 2008; Solberg et al., 2008), 

the LD between SNP and QTLs (Meuwissen et al., 2001; Wientjes et al., 2013), relationships between 

animals in the reference population and validation population (Habier et al., 2007; Hayes et al., 2009), the 

size of reference population (Goddard and Hayes, 2007; VanRaden et al., 2009), etc. It has been proved that 

the reliability in genomic prediction is higher than the pedigree-based prediction (BLUP), but the advantages 

vary according to the traits and species (Hayes et al., 2009; Tusell et al., 2013).  

Genomic selection has been successfully applied in purebred performance (Hayes et al., 2009; Lillehammer 

et al., 2011), but has been rarely investigated in crossbred performance. Due to the genotype-by-environment 

interactions, the presence of non-additive genetic effects and the allele frequencies are dissimilar in different 

breeds (Wei and Steen, 1991; Dekkers, 2007), the genetic correlation of breeding values between purebred 

and crossbred performances (𝑟𝑝𝑐) is usually lower than 1 (Wei and van der Werf, 1994; Lutaaya et al., 2001). 

The performance of purebred parents cannot be used to predict the performance of their crossbred offspring 

accurately when the 𝑟𝑝𝑐  is considerably lower than 1 (Dekkers, 2007). Ideally, to implement genetic 

evaluation for crossbred performance, collecting data from both purebred and crossbred animals is required 

(Wei and van der Werf, 1994). However, due to the complexities of collecting pedigree information and high 

costs of collecting phenotypes from crossbred animals, it is rare to have access to both purebred and 

crossbred information.  

Several studies have been carried out on crossbred performance by using genomic selection. Dekker (2007) 

found crossbred selection resulted higher genetic gains in crossbred performance and lower rates of 

inbreeding than purebred selection or combined purebred and crossbred selection. They concluded that 

estimates of marker effects on crossbred performance enable an effective genomic selection for crossbred 

performance.  

Ibáñez-Escriche et al. (2009) investigated crossbred performance by using phenotypes and SNP genotypes 

from crossbred animals and then applied the estimated SNP effects to genotypes obtained from purebred 

animals to predict their crossbred breeding values. Additionally, because effects of SNP markers may be 
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breed specific, they applied a model with breed-specific SNP effects to fit crossbred phenotypes. However, 

they concluded that when the marker density was high and purebred lines were closely related, a model that 

fit breed-specific SNP effects did not perform better than a model that fit across-breed SNP effects.  

These conclusions were further confirmed in real dataset by Lopes (2016). He found accuracies of estimated 

breeding values from a model with breed-specific effects were equal to or only slightly higher than those 

from a model with across-breed effects, but prediction of crossbred sows was more accurate when training 

population consisted of crossbred animals rather than purebred animals.  

The above mentioned approaches require collecting genotypes and phenotypes from crossbred animals, 

which is costly. Esfandyari et al. (2015) explored the possibilities of improving crossbred performance by 

using reference population consisted of only purebred animals. They compared the accuracy to that obtained 

by using a reference population consisting of only crossbred animals. However, results showed that to 

optimize the genomic selection on purebred animals for their crossbred performance, marker effects were 

better estimated based on crossbred data than on purebred data. 

Hidalgo et al. (2016) also compared accuracies of genomic selection for crossbred performance by using 

reference populations consisting of either only crossbred or only purebred animals. They found that it is 

possible to predict crossbred performance by using crossbred training data alone, but the accuracies were 

lower than those from purebred training data, which were opposite to the above mentioned results. 

Nevertheless, Hidalgo et al. (2016) attributed their results to the data structure that (1) the reference size of 

crossbred population was small; (2) the low relationships between purebred and crossbred animals; (3) the 

high 𝑟𝑝𝑐(>0.90) lead to favor the purebred training population; and thus they announced that the results were 

not general.  

All of the studies above commonly indicate that genomic selection offers opportunities for selecting 

purebreds for crossbred performance in pigs. All these studies used genomic models that assume that all 

animals belong to a single population, and variance components were only estimated based on either the 

genotyped purebred or crossbred animals. Wei and Van der Werf (1994) multiple-trait model was more 

sophisticated than these single-trait models, because not all the phenotypic records were used in these single-

trait models and the potential genotype by environment or genotype by genotype interactions cannot be 

accounted as well in the single-trait models as in the multiple-trait model. Therefore, on the basis of the Wei 

and Van der Werf model, Christensen et al. (2014) incorporated genomic information to the model and 

extended the marker-based relationship matrices to the non-genotyped animals. This model can evaluate both 

purebred and crossbred performances simultaneously and integrate all the genomic and phenotypic 

information, which is a breakthrough. This method is an extension of a single-step BLUP method (Legarra et 

al., 2009; Christensen and Lund, 2010) from purebred performance to combined purebred and crossbred 
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performances. This method had not been evaluated in real dataset before this thesis, although Tusell et al. 

(2016) successfully applied a simplified Christensen model, which is also an extension of Wei and Van der 

Werf model, but only including purebred genotypes, in crossbred performance.  

Single-step GBLUP method 

Approaches of genomic selection generally require that all the involved individuals are genotyped 

(Meuwissen et al., 2001; VanRaden, 2008), which is currently unfeasible due to the restriction of high cost 

and practical constraints (Legarra et al., 2009). There is often no phenotype for the genotyped individual and 

vice versa. Legarra et al. (2009) and Christensen and Lund (2010) in parallel proposed a genomic evaluation 

method - “single-step genomic BLUP”, which can handle the situation where only parts of animals are 

genotyped. The method applies an integrated relationship matrix (𝐇 matrix) for all animals by blending the 

information of pedigree and genomic markers: 

𝐇 = [
𝐀11 + 𝐀12𝐀22

−1(𝐆 − 𝐀22)𝐀22
−1𝐀21 𝐀12𝐀22

−1𝐆

𝐆𝐀22
−1𝐀21 𝐆

], 

where 𝐀  is the pedigree-based numerator relationship matrix, and matrices 𝐀11 ,  𝐀12 ,  𝐀21 ,  𝐀22  are 

submatrices of 𝐀 matrix; subscript 1 and 2 indicated non-genotyped and genotyped individuals, respectively.  

 

In the traditional BLUP method, pedigree-based numerator relationship matrix (𝐀 matrix) accounts for the 

family relationships, while in the classical GBLUP method, marker-based genomic relationship matrix (𝐆 

matrix) accounts for relationships among all the genotyped individuals. GBLUP method performs better than 

traditional BLUP because the 𝐆 matrix is an improved estimator of true relationships among the genotyped 

individuals compared to the 𝐀 matrix (VanRaden, 2008). If all the involved animals are genotyped, the 

single-step method is the same as GBLUP method; if none of animals are genotyped, the single-step method 

becomes the traditional BLUP method. This method is termed as “single-step” method because it can handle 

both genotyped and non-genotyped animals at once. The influence of marker genotypes from genotyped 

animals on the non-genotyped animals is via the numerator relationships (Legarra et al., 2014). Alternatively, 

in a multiple-step genomic evaluation, usually, traditional genetic evaluation is processed as the first step and 

the estimated breeding values are used to create pseudo phenotypes (e.g: deregressed proofs) for the genomic 

evaluation step (Mäntysaari et al., 2011). Such multiple-step method could cause loss of information and 

lead to inaccuracies and biases (Legarra et al., 2014), which can be avoided by using single-step method 

(Aguilar et al., 2010; Forni et al., 2011).  

Single-step method was shown to have the power of producing at least the same accuracies of GEBVs as 

GBLUP for genotyped pigs, but higher accuracies for estimating the EBVs in non-genotyped pigs than 

pedigree-based method (Christensen et al., 2012; Guo et al., 2014). Therefore, pig breeding companies 

Topigs Norsvin and PIC nowadays use single-step method as the standard tool for routine genetic evaluation. 
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Also, since October 2011, a routine single-step genomic evaluation system has been set up in DanAvl in 

Denmark. Single-step genomic evaluation was also tested in other species, such as dairy cattle (Gao et al., 

2012), dairy sheep (Baloche et al., 2014) and broiler chicken (Simeone et al., 2012). However, all of these 

studies were carried out on purebred performance. 

 

As mentioned above, crossbred performance is vital in pig industry, but the existing genomic selection 

methods for crossbred performance commonly require genotyping all the pigs. Therefore, Christensen et al. 

(2014) developed a single-step method for genomic evaluation of both purebred and crossbred performance 

in a two-way crossbreeding system. In this novel approach, two breed-specific partial relationship matrices 

(García-Cortés and Toro, 2006) across purebred animals and crossbred gametes were used. This approach 

was later termed as “partial genetic approach” by Christensen et al. (2015). Later, Christensen et al. (2015) 

further developed single-step method for three-way crossbred animals. Genomic evaluation for the three-way 

crossbred animals used either partial genetic approach or a “common genetic approach”, which was 

developed based on a new concept of metafounder (Legarra et al. 2015). Overall, single-step genomic 

method is theoretically available for both purebred and crossbred performance.  

Metafounder 

Christensen (2012) summarized two issues raised by the single-step genomic evaluation method. First, how 

to choose the allelic frequencies used in the genomic relationship matrix 𝐆. Theoretically, matrix 𝐆 depends 

crucially on the assumed base allelic frequencies (Toro et al., 2011). The allelic frequencies in the base 

population of the pedigree should be used (VanRaden, 2008), but these frequencies are rarely available 

(Christensen, 2012). The assumed base allelic frequencies change as the start of pedigree changes arbitrarily 

(Legarra et al., 2014). Second, single-step GBLUP requires that both genomic and pedigree-based 

relationship matrices (𝐆 and 𝐀 respectively) refer to the same (base) population so that the average of 

breeding values and genetic variances of base populations are comparable across the different measures of 

relationships (Legarra, 2016), but this is difficult in practice (Legarra et al., 2015). Thus, the second problem 

is how to achieve the compatibility between genomic relationships and pedigree-based relationships.  

To overcome these two issues, Christensen (2012) modelled the likelihood of genotypes given the pedigree 

as a quantitative trait and then he marginalized (integrated out) the allelic frequencies from this likelihood. 

This resulted in an arbitrary reference for genomic relationship matrix with the allelic frequency fixed at 0.5 

and referring the pedigree-based relationships to this base population. As a byproduct, the founders of base 

population become related, described by a parameter 𝛾 that determines the relationship and inbreeding of 

individuals in the base population. The assumption that founders of base populations are related is in 

accordance with the observed relatedness across base individuals based on the marker information from 
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genotyped animals (Ter Braak et al., 2010; VanRaden et al., 2011), although this assumption is contradictory 

to the usual assumption that base animals are unrelated. Then, instead of inferring the base allelic frequencies, 

ssGBLUP was altered to infer γ and another scaling parameter 𝑠, which can be interpreted as a counterpart of 

the heterozygosity of the markers in the base population (García-Baccino et al.,2017), that makes pedigree-

based and genomic relationship matrices compatible (Christensen, 2012). García-Baccino et al. (2017) 

concluded that in a single population, methods of generalized least squares and maximum likelihood can 

efficiently estimate an unbiased γ in single-step approach with one metafounder. Overall, contrary to the 

usual adjustment of genomic relationships to be compatible with pedigree-based relationships (Vitezica et al., 

2011; Christensen et al., 2012), the pedigree-based relationship matrix needs to be adjusted to be compatible 

with marker-based matrix.  

On the basis of Christensen (2012), Legarra et al. (2015) showed an equivalent idea about relationships 

within and across base populations as Christensen (2012) and developed a new concept of metafounders. A 

metafounder is a generalization of unknown parent groups (Kennedy, 1991) and can be understood as a 

finite-size pool of gametes, from which the founders of pedigree are drawn. The advantages of using the 

concept of metafounder over Christensen’s idea (2012) are (1) With metafounders added to the pedigree, 

regular methods to build and invert pedigree relationships in the new matrix 𝐀(γ) can be used with only 

minor modifications, and 𝐀(γ) is still a very sparse matrix; (2) genomic relationships and pedigree-based 

relationships are automatically compatible by construction if γ  is estimated from marker genotypes 

(Christensen, 2012); (3) when analyzing multiple populations simultaneously, the concepts of metafounders 

can be easily extended from one to multiple base populations with relationships 𝚪 (a matrix instead of a 

scalar) across base populations. In short, the two mentioned issues in ssGBLUP can be resolved conveniently 

by the use of 0.5 allelic frequencies and metafounders.  

Simulation studies on purebred performance showed that ssGBLUP with metafounders performed more 

accurate and less biased than the regular ssGBLUP method (Christensen, 2012; García-Baccino et al., 2017), 

but how genomic evaluation with metafounders perform in real data and for several populations and crosses 

was unknown before the thesis. 

Genotype imputation 

Genotype imputation is defined as the prediction of genotypes that are not genotyped (Marchini and Howie, 

2010). Although the development of genotyping technologies has made it feasible to genotype animals in 

large scale, genotyping is still costly. Thus, to reduce the cost of genotyping, a possible way is to genotype a 

large number of animals by low-density SNP chips, while a limited number of individuals are genotyped 

with a high-density chip and regarded as a reference population for imputation. Then imputation is processed 

from low density to high density (Habier et al., 2009).  
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Imputation is generally considered as an initial step for genomic selection. As mentioned above, accuracies 

of genomic selection are affected by marker density and reference population size. Imputation can improve 

the call rate for SNP markers and individuals and thus it improves accuracies of genomic selection (Su et al., 

2012b). Moreover, imputing missing genotypes that are not called by genotyping techniques is also required 

prior to genomic selection (Hickey et al., 2012a). For crossbred performance, genotypes come from multiple 

breeds and populations and sometimes are obtained from different chips. To combine different datasets, 

imputation should be used to infer those missing genotypes and it is essential to get same amount of markers 

for animals in different populations (Ma, 2013). 

Several kinds of software have been developed for genotype imputation. Among them, some methods are 

based on the construction of a library of inferred haplotypes in the reference populations, and then the 

missing markers in the imputed animals are filled in according to the existing markers aligning to the 

inferred haplotypes (Ma et al., 2013). These methods depend crucially on local LD pattern across markers. 

Software based on such algorithms are e.g: Beagle (Browning and Browning, 2009), IMPUTE2 (Howie et al., 

2009) and fastPHASE (Scheet and Stephens, 2006). Other imputation software rely on the combination of 

these libraries with the use of pedigree information, such as AlphaImpute (Hickey et al., 2012b) or FImpute 

(Sargolzaei et al., 2011). Ma et al. (2013) compared those software in imputing genotypes in dairy cattle and 

concluded that Beagle and IMPUTE2 are most accurate and robust for imputing genotypes from low density 

panel (3K) to moderate density panel (54K).  

To measure the accuracies of imputation, most studies used correct rates between imputed and true 

genotypes, which is defined as the proportion of correctly imputed alleles (Zhang and Druet, 2010; Brøndum 

et al., 2012). However, this accuracy is allele-frequency dependent and favors markers with low minor allele 

frequencies. Therefore, correlation coefficients between true genotypes and imputed ones, which do not 

suffer these problems, are considered as a better way of measuring imputation accuracies (Hickey et al., 

2012a).    

It is rare to genotype crossbred animals, especially with moderate or high density chips. In this thesis, 8K 

SNP marker genotypes in crossbred pigs and 60K SNP marker genotypes in purebred pigs were provided by 

Danish Pig Research Centre. To implement genomic prediction for crossbred performance, imputation from 

low density (8K) to moderate density (60K) in crossbred animals is needed. However, the extent of LD 

between SNP markers and QTL may differ between crossbred and purebred populations (Dekkers, 2007). 

Thus, when using an imputation method based on local phasing haplotypes (e.g: Beagle), the performance of 

genotype imputation may be different in crossbred and purebred populations. For instance, Ventura et al. 

(2014) reported that in taurine beef cattle, accuracies of imputation for purebreds was much higher than those 

for crossbreds, but this has not been evaluated in crossbred pigs before this thesis. 
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The trait: Total Number of Piglets Born 

Litter size is considered as a vital reproduction trait in pig production (Guo et al., 2014). It depends on both 

the ovulation rate of the dam and the embryonic survival of the offspring (Johnson et al., 1999). Lund et al. 

(2002) stated that litter size at weaning is the most important reproduction trait in pig production because of 

its high economic importance. However, due to cross fostering in pig farms, it is difficult to measure litter 

size at weaning. Instead, litter size at birth or the total number of piglets born (TNB), has been used as an 

alternative (Lund et al., 2002). The TNB in the first parity is considered as a different trait from later parities, 

because the genetic correlations between first and later parities are significantly lower than 1 (Irgang et al., 

1994; Hanenberg et al., 2001). The trait of TNB is well known as a lowly heritable trait. Rothschild et al. 

(1998) reviewed that the average heritabilities were about 0.11 for TNB in both Landrace and Yorkshire 

populations, in line with results from Nielsen et al. (2013). Guo et al. (2014) also reported heritability of 0.11 

for Landrace, but 0.09 for Yorkshire. Su et al. (2007) reported even lower heritablities for Landrace (0.07) 

and Yorkshire (0.05). For traits with low heritability, conventional selection cannot efficiently increase the 

genetic gain, which leaves room for the application of genomic selection. Genomic selection increases the 

genetic gain by increasing the accuracies of EBVs in pigs. The genetic gain in purebred populations was 

reported to increase up to 55% when compared to the conventional selection (Lopes, 2016). 

Outline of this PhD thesis 

This thesis aims at investigating genomic evaluation in pigs for crossbred performance for TNB. More 

specifically, the aims of this PhD project are:  

 First, apply single-step genomic evaluation method for crossbred performance in different scenarios 

with data recordings and genotypes in Danish Landrace, Yorkshire and F1 crossbred pig populations;  

 Second, investigate the impact of non-additive genetic effects on improvement of genomic 

evaluation for crossbred performance.  

In chapter 2, performance of genotype imputation in low density panels were compared using different 

imputation strategies in both purebred and crossbred populations. Based on the optimal strategy, imputation  

from low density to moderate density panels was then investigated by a pedigree-based simulated dataset. 

This chapter demonstrated that imputation for crossbreds work as well as for purebreds. After these steps, 

genotypes were available at the same density for all the three populations, and for the further genomic 

selection.  

In chapters 3 and 4, the single-step GBLUP method was applied in both purebred and crossbred datasets, 

focusing on evaluating genetic ability for crossbred performance. In chapter 3, a three-trait animal model that 
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can incorporate marker genotypes was applied to investigate both purebred and crossbred performances in 

different scenarios. Additive genetic effects in crossbred animals were split into two breed-specific gametic 

effects. Two breed-specific partial relationship matrices were used to account for the family relationships 

across purebred breed animals and breed-specific purebred gametes in crossbred animals. This method 

required estimating the breed origin of crossbred alleles, a difficult task. Therefore, the same dataset was 

revisited in chapter 4 by using a similar animal model, but on the contrary, instead of using two relationship 

matrices, one relationship matrix with metafounders was used to relate all the involved animals in the three 

populations. This method did not need the tracing of crossbred alleles for the breed origins.  

Non-additive genetic effects play an important role in crossbred animals, but they cannot be implemented by 

single-step GBLUP approaches yet. In chapter 5, joint genomic evaluation of purebreds and crossbreds with 

GBLUP including additive genetic effects, dominance genetic effects and inbreeding depression was 

investigated on genotyped animals using precorrected data.  

Finally, in chapter 6, a general discussion on the findings in a broad context was presented. Perspectives of 

shortages of this thesis and possible future improvements were also discussed. 
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Abstract 

Background 

Genotype imputation is commonly used as an initial step in genomic selection since the accuracy of genomic 

selection does not decline if accurately imputed genotypes are used instead of actual genotypes but for a 

lower cost. Performance of imputation has rarely been investigated in crossbred animals and, in particular, in 

pigs. The extent and pattern of linkage disequilibrium differ in crossbred versus purebred animals, which 

may impact the performance of imputation. In this study, first we compared different scenarios of imputation 

from 5K to 8K single nucleotide polymorphisms (SNPs) in genotyped Danish Landrace and Yorkshire and 

crossbred Landrace-Yorkshire datasets and, second, we compared imputation from 8K to 60K SNPs in 

genotyped purebred and simulated crossbred datasets. All imputations were done using software Beagle 

version 3.3.2. Then, we investigated the reasons that could explain the differences observed. 

Results 

Genotype imputation performs as well in crossbred animals as in purebred animals when both parental 

breeds are included in the reference population. When the size of the reference population is very large, it is 

not necessary to use a reference population that combines the two breeds to impute the genotypes of 

purebred animals because a within-breed reference population can provide a very high level of imputation 

accuracy (correct rate ≥ 0.99, correlation ≥ 0.95). However, to ensure that similar imputation accuracies are 

obtained for crossbred animals, a reference population that combines both parental purebred animals is 

required. Imputation accuracies are higher when a larger proportion of haplotypes are shared between the 

reference population and the validation (imputed) populations. 

Conclusions 

The results from both real data and pedigree-based simulated data demonstrate that genotype imputation 

from low-density panels to medium-density panels is highly accurate in both purebred and crossbred pigs. In 

crossbred pigs, combining the parental purebred animals in the reference population is necessary to obtain 

high imputation accuracy. 
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Background 

Implementation of genomic selection (GS) [1] in breeding programs requires dense molecular marker 

genotypes since increasing marker density increases the probability that a marker is in strong linkage 

disequilibrium (LD) with a quantitative trait locus (QTL) [2]. However, the high costs of genotyping are a 

key constraint to efficient implementation of GS [3]. To partly overcome this problem, it has become current 

practice to genotype candidates for selection using low-density single nucleotide polymorphism (SNP) chips 

(up to 10 000 SNPs), while a limited number of individuals chosen as reference animals are genotyped with a 

high-density chip (50 000 SNPs or more). Imputation is then carried out from low density to high density 

[4,5]. Studies on US Jersey cattle have confirmed that the accuracy of GS does not decline when using 

imputed genotypes if the low-density panel includes more than 3000 evenly distributed SNPs [4]. 

Furthermore, missing genotypes that are not called by some of the standard genotyping methods must be 

imputed prior to inclusion in models for GS [6]. Overall, genotype imputation is generally considered as an 

initial step for GS. 

Genomic selection has been successfully applied for purebred populations [7,8], but it is also possible to 

select purebred animals for crossbred performance by combining information from crossbred animals with 

genomic information from purebred animals [9]. Crossbreeding is very common in pigs bred for meat 

production because of the increased performance of crossbred compared to purebred individuals [10]. Due to 

the difficulty and high cost of collecting phenotypic and pedigree data on crossbred animals [11] and 

genotyping costs, data on both purebred and crossbred animals are rarely available. Performances of GS in 

crossbred and purebred pigs may differ because of dominance effects in combination with different allele 

frequencies in the two pure breeds, and because the extent of LD between SNPs and QTL may differ 

between crossbred and purebred populations. Thus, the effects of SNPs may be breed-specific [9]. 

Algorithms for genotype imputation (such as that implemented in Beagle [12]) depend crucially on LD 

patterns across markers [13], which may be breed-specific. Therefore, the performance of genotype 

imputation might differ between crossbreds and purebreds. Since genotypes are rarely available for crossbred 

individuals in livestock, most studies that have investigated the critical factors that affect the performance of 

imputation have been based on purebred plant [14] and livestock populations [15-18]. Recently, an analysis 

of imputation from 6K to 50K SNP chip genotypes in crossbred taurine beef cattle was reported [19], but, to 

our knowledge, this has not been evaluated in crossbred pigs. 

In this study, different scenarios of imputation from lower density (5K) to higher density (8K) SNP chips 

were compared using two Danish pig breeds, Landrace and Yorkshire, and a two-way crossbred Landrace-

Yorkshire population. Differences in imputation accuracies between purebred and crossbred animals were 
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investigated to set up an optimal strategy for imputation from a low-density (8K) to a medium-density (60K) 

SNP chip in crossbred pigs and results were validated using a simulated dataset of crossbred medium-density 

(60K) genotypes. Previous studies indicated that the relationship between imputed and reference individuals 

is one of the major factors that affects performance of imputation [3,6,20]; Hayes et al. [3] reported that it 

could account for up to 64% of the variation in accuracy of imputation in sheep. Thus, to better understand 

the results in the current study, we tried to quantify relationships between animals within and across datasets, 

using genomic relationships and indexes of haplotype similarities. 

Methods 

Animals and genotypes 

All data were provided by the Danish Pig Research Centre. The numbers of genotyped purebred Danish 

Landrace (LL), Danish Yorkshire (YY) and two-way crossbred Danish Landrace-Yorkshire pigs were 9328, 

9393 and 5639, respectively. Crossbred animals that had a Landrace sire and a Yorkshire dam were referred 

to as ‘Landrace_Yorkshire’, while those that had a Yorkshire sire and a Landrace dam were referred to as 

‘Yorkshire_Landrace’. Crossbred animals consisted of 4432 Landrace_Yorkshire (LY) and 1207 

Yorkshire_Landrace (YL) pigs. Purebred and crossbred animals were born between 1998 and 2013, and 

between 2009 and 2012, respectively. All crossbred pigs were results of matings between the two pure 

breeds. Pedigrees of both purebred and crossbred pigs were available and all crossbred animals could be 

traced back to their purebred ancestors. Among the 5639 crossbred pigs, 4956 had genotyped sires (n = 1580) 

but only nine pigs had genotyped dams (n = 4). In addition, 1441 maternal grandsires of the crossbreds were 

genotyped. Crossbred animals were divided into two subsets: those that had a genotyped sire (4956) and 

those that did not (683). 

Both pure breeds were genotyped with the Illumina PorcineSNP60 Genotyping BeadChip [21]. Two 

different versions of the 60K SNP chip (Illumina PorcineSNP60 v1 and PorcineSNP60 v2) were used to 

genotype purebred animals, i.e. about 50% animals with each version. About 2% of the SNPs worked in one 

version but not in the other version and vice versa. The two different chip versions should be taken into 

account when applying a quality filter on SNPs. Previous unpublished analyses (Tage Ostersen, Danish Pig 

Research Centre, personal communication) on purebred pigs showed that when applying a quality filter on 

SNPs, varying the minimum call rate for individuals from 70 to 90% did not affect the accuracy of genomic 

predictions significantly. This combined with the fact that very few animals had a call rate between 80% and 

90%, we chose to set the minimum call rate of individuals to 80%. SNP quality controls were applied for the 

dataset that consisted of both pure breeds combined as follows: SNPs with a call rate less than 90% were 
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removed; SNPs with a minor allele frequency lower than 0.01 across both purebred populations were 

removed; SNPs that showed a strong deviation from Hardy Weinberg equilibrium within breeds (p < 10
-7

) 

were also excluded. After filtering, a common set of 42 483 SNPs was retained for the two purebred 

populations (these are referred to as 60K). Crossbred individuals were genotyped with a 8.5K GGP-Porcine 

Low Density Illumina Bead SNP chip [22] and very few animals had a call rate between 80% and 90%. 

Using the same quality controls for the crossbred animals as for purebred animals (except for Hardy-

Weinberg equilibrium, which does not hold for crossbred animals), 7940 markers were retained, which 

represents a subset of the 42 483 SNPs retained for the purebred animals. SNPs were mapped to pig 

chromosomes using the pig genome build 10.2 [23]. 

Imputation scenarios 

To mimic an imputation strategy similar to what is routinely applied in real genetic evaluations, 5162 LL and 

5130 YY pigs that were born in 2012 and 2013 were used as validation animals. The remaining 4166 LL and 

4263 YY pigs that were born before 2012 were used as reference animals for imputation. All 5639 crossbred 

pigs were treated as validation animals. Based on pedigree information, the parents of the crossbred animals 

were all born before 2012. Thus, if the parental genotypes of the crossbred individuals were known, they 

were included in the reference population. 

To compare the performance of imputation between purebred and crossbred animals, first imputation from 

5K to 8K was evaluated, which was applied to the common set of 7940 SNPs. SNPs were sorted by map 

position and then, one of every three SNPs was masked (i.e. 2647 SNPs were masked) and the remaining 

SNPs were retained to represent the lower density panel (5K). To ensure consistency of imputation results, 

this was repeated three times by shifting the masked SNPs by one position each time. For the purebred 

populations, imputations were first done by using one of the pure breeds as reference population, which 

consisted of individuals that were either from their own breed (within-breed scenario) or the other pure breed 

(external-breed scenario), i.e., we imputed Landrace animals using Yorkshire animals as the reference 

population and vice versa. Then, each breed was imputed by a combined Landrace and Yorkshire population 

(combined-breed scenario). Finally, for the crossbred population, imputation was done by using either a 

single purebred reference population (one of the two pure breeds) or a combined Landrace and Yorkshire 

population (4166 LL + 4263 YY). In order to eliminate the effect of population size of the reference panel, 

its size was fixed to 8429 animals for all scenarios of imputation of crossbred animals. Thus, when only one 

purebred reference population was used, it had to also contain animals that were born after 2011 in order to 

constitute such a large population of genotyped single purebred animals. 
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A second strategy of imputation from 8K to 60K was implemented in purebred animals by using a combined 

reference population. In the validation dataset, SNPs that were not present on the low-density chip were 

masked and subsequently imputed. However, results of imputation from 5K to 8K for both purebred and 

crossbred animals, and those of imputation from 8K to 60K for purebred animals could not completely 

describe how imputation worked from 8K to 60K for crossbred animals. Therefore, the quality of imputation 

from 8K to 60K for crossbred animals was validated using simulated data from the 60K SNP chip for 

crossbred animals. Genotypes of crossbred animals were simulated according to the genotypes of their 

ancestors based on frequencies of recombination according to Haldane’s mapping function [38]. Additional 

file 1 [see Additional file 1] describes in more detail the steps used to simulate the 60K genotypes for 5639 

crossbred animals. All imputations were done using the software Beagle version 3.3.2 [12]. 

Evaluation of imputation accuracies 

Accuracies of imputation for each strategy are presented by mean correct rates and mean correlation 

coefficients between imputed genotypes and real genotypes. Mean correct rates were calculated per SNP 

(across individuals) as the proportion of correctly imputed genotypes, and then averaged over all imputed 

SNPs (for details, see [24]). Correlation coefficients were calculated per SNP across all imputed individuals 

and then averaged over SNPs, following [25]. 

Genomic relationships across breeds 

Genomic relationships among individuals were estimated based on 8K real genotypes using VanRaden’s 

method [26] as 𝐆 =  
𝐙𝐙′

2∑𝑝(1−𝑝)
 , where Z is a matrix of genotypes coded as {-1, 0, 1}, and p was set to 0.5, so 

that a unique reference point was chosen and results could be compared within and across breeds. Compared 

to pedigree-based relationships, all estimated genomic relationships will be biased upwards, but bias will be 

the same across breeds and subgroups of animals. The genomic relationships are thereby comparable both 

across and within breeds, which is the objective of our study. For each individual in the validation population, 

the average genomic relationship to individuals in the reference population was computed by averaging 

coefficients from the appropriate section of the genomic relationship matrix. Furthermore, for each crossbred 

individual in the validation population, the average of the top10 relationships between this individual and 

individuals in the reference population [27] was also computed. To visualize the distribution of relationships, 

density curves of genomic relationships were drawn. In addition, as suggested by [28], a principal 

components analysis (PCA) of the matrix of genomic relationships was conducted for a preliminary analysis 

of the genotypes, since PCA can help to investigate ethnic background of individuals [29]. 
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Proportion of shared haplotypes between reference and validation populations 

Following imputation by Beagle, 8K phased genotypes were available for all animals in the reference and 

validation populations. It was assumed that a haplotype consisted of a specific number of consecutive SNP 

alleles in the same phase. Lengths of haplotypes were set to 10, 20, 30, 50 and 100 SNPs. If a haplotype in 

the validation population could exactly match at least one haplotype at the same position in the reference 

population, this haplotype was considered to be shared between the reference and validation populations. 

The number of shared haplotypes was counted and then divided by the total number of haplotypes in the 

validation population, and this was referred to as the proportion of shared haplotypes (PSH). In addition, the 

number of unique haplotypes (NUH) in the reference populations was counted to represent the number of 

different patterns for a specific haplotype length across all individuals in the reference population. Values for 

PSH and NUH were averaged over non-overlapping windows of a specific size. 

Results 

Imputation strategy ‘5K to 8K’ 

Performance of purebred imputation 

Figure 1 shows imputation accuracies from 5K to 8K across the 18 autosomes for the purebred Landrace and 

Yorkshire pigs when using a within-breed reference population. On the whole, accuracies did not vary much 

between chromosomes. Correct rates were larger than or equal to 0.99, except for chromosomes 3, 10, 12 

and 18 for both breeds. No differences in mean correct rate were observed between the two purebreds. 

Correlation coefficients between imputed and true genotypes ranged from 0.90 (chromosome 10) to 0.97 

(chromosome 13) for the Yorkshire breed and from 0.93 (chromosome 3) to 0.98 (chromosome 16) for the 

Landrace breed. Slight differences in mean correlation coefficients (0.012) were observed between the two 

breeds. Overall, the Landrace breed performed slightly better than the Yorkshire breed, especially in terms of 

the correlation coefficients. Variations of correlation coefficients were generally consistent with those of 

correct rates across the whole genome. 
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Figure 1 Variation in imputation accuracy for the scenario from 5 k to 8 k across different chromosomes using 

within-breed reference populations. Within-breed reference means Landrace pigs were imputed using a reference 

population that consisted of Landrace pigs only and Yorkshire pigs were imputed using a reference population 

that consisted of Yorkshire pigs only. 

Comparison of imputation accuracies that were obtained in the different imputation scenarios from 5K to 8K 

for purebred animals is in Figure 2. Correct rates for purebred animals were identical for the within-breed 

and combined-breed scenarios for both breeds, but correlation coefficients increased slightly (around 0.01) in 

the combined-breed scenario. However, in the external-breed scenario, both correct rates and correlation 

coefficients decreased sharply for both breeds compared with the within-breed scenario. Landrace animals 

had marked lower imputation accuracies than Yorkshire animals in the external-breed scenario, whereas 

imputation accuracies were similar between the two breeds in the within-breed and combined-breed 

scenarios, both in terms of correct rates and correlation coefficients. 
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Figure 2 Comparison of imputation accuracies obtained by different imputation scenarios in Landrace and 

Yorkshire breeds. 1 indicates that the reference population consisted of either 4166 LL or 4263 YY, depending on 

the respective breed (within-breed scenario); 2 indicates that the reference population consisted of 8429 combined 

LL and YY (combined-breed scenario) and 3 indicates that the reference population consisted of animals that 

belonged to another purebred breed (external-breed scenario), which means that Landrace animals were imputed 

using a reference population that contained Yorkshire pigs only and Yorkshire animals were imputed using a 

reference population that contained Landrace pigs only. Error bars are standard deviations. 

Performance of imputation for crossbred animals and comparison with that of purebred animals 

Table 1 summarizes the performance of imputation from 5K to 8K for purebred and crossbred animals when 

the size of the reference populations was fixed to 8249. When a combined reference population was used, 

imputation was better for purebred animals than for crossbred animals in terms of correct rate, although the 

improvement was very small (around 0.006). However, in terms of correlation coefficient, imputation 

accuracy was slightly greater for crossbred animals than for Yorkshire pigs, but slightly lower for crossbred 

animals than for Landrace pigs. However, if the reference population used for imputation of crossbred 

animals was replaced by a pure breed population, both correct rate and correlation coefficient decreased 

dramatically by about 0.10 and 0.25, respectively. Imputation of crossbred animals using a reference 
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population that included only Yorkshire pigs resulted in a larger decline in accuracies than using a reference 

population that included Landrace pigs only. Table 2 presents imputation accuracies (correlation coefficients) 

for the subsets of crossbreds with a genotyped sire and those with a non-genotyped sire. Regardless of the 

reference population used, the differences were small, although the subset of crossbreds with a genotyped 

sire always had slightly higher accuracies than the subset of crossbreds with a non-genotyped sire. 

Table 1 Accuracy of imputation from 5K to 8K for Landrace (LL), Yorkshire (YY) and crossbred animals 

Imputed Reference Correct rate Correlation 

LL LL+YY 0.9910 0.9606 

YY LL+YY 0.9907 0.9477 

Crossbred LL+YY 0.9849 0.9566 

Crossbred LL 0.9034 0.7595 

Crossbred YY 0.8667 0.6871 

Table 2 Imputation accuracy (correlation coefficients) from 5K to 8K for crossbred animals with genotyped and 

non-genotyped sires 

Reference Sire non-genotyped Sire genotyped 

LL+YY 0.9529 0.9576 

LL 0.7596 0.7603 

YY 0.6883 0.6911 

The first row indicates the components of the reference population whether it consists of a purebred Landrace 

(LL), Yorkshire (YY) or a combined population (LL + YY). There are 4956 crossbred animals with genotyped 

sires and 683 with non-genotyped sires in each subset, respectively. 

Genomic relationships across breeds 

The two main principal components on the matrix of genomic relationships of each individual across 

Landrace, Yorkshire and crossbred Landrace-Yorkshire animals are in Figure 3. The first two components 

explained 22.8 and 0.9% of variability across individuals, respectively. The first principal component (x-axis) 

separated the three populations, whereas the second component (y-axis) could not distinguish between 

breeds. There was hardly any connection between the two clouds of points representing the Landrace and 

Yorkshire breeds, whereas the cloud of points representing the crossbred Landrace-Yorkshire population was 

generally in between. Connections between Landrace and crossbred pigs seemed to be slightly tighter than 

those between Yorkshire and crossbred pigs, since there are many more points distributed in the interval 

between Landrace and crossbred pigs than between Yorkshire and crossbred pigs. Overall, connections 

between crossbred and purebred animals were not strong. 
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Figure 3 Principal components analysis on the matrix of genomic relationships within breeds. The first two main 

principal components are presented on the x-axis and y-axis, respectively. The proportions of variability across 

individuals explained by PC1 and PC2 were 22.92 % and 0.88 %, respectively. 

Table 3 provides averaged genomic relationships between individuals in the reference and validation 

populations that correspond to the different imputation scenarios evaluated. The results in Table 3 show that 

the mean relationship within breeds was always the largest for all scenarios. When a breed was imputed 

using a reference population that comprised individuals of the other pure breed (external-breed scenario), the 

mean relationship decreased to approximately one fifth of that obtained with the within-breed scenario. 

When a combined reference population was implemented to impute purebred animals, logically, mean 

relationships were intermediate to the values found with the within-breed and external-breed scenarios. In 

addition, regardless of which reference population was used to impute crossbred animals, mean relationships 
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were similar. Distributions of genomic relationships between reference and validation populations obtained 

with different scenarios of imputation are represented by density curves in Figure 4. In general, for the 

Landrace and Yorkshire purebred pigs, the distributions of relationships were similar regardless of which 

reference population was used (as shown in Figures 4a, 4b and 4c). For the crossbred animals, density curves 

were highly consistent whether the reference population consisted of animals from one breed or from 

different populations (Figure 4d). The density curves of the top10 mean genomic relationships between 

crossbred animals and animals from the three different reference populations are in Figure 5. Landrace pigs 

had closer top 10 mean genomic relationships with crossbred animals than Yorkshire pigs, and by 

construction, animals of the combined-breed population had higher top10 mean genomic relationships with 

crossbred animals than either of the populations that consisted of a pure breed. 

 

Figure 4 Density curves of genomic relationships between reference and validation populations for different 

imputation scenarios.(a) within-breed scenario for purebred Landrace and Yorkshire; (b) imputation of purebreds 

by using a combined Landrace and Yorkshire population; (c) the external-breed scenario for purebred Landrace 

(LLbyYY) and Yorkshire (YYbyLL) and (d) imputation of crossbreds by using either one purebred reference 

population (LYbyYY and LYbyLL) or a combined Landrace and Yorkshire population (LYbyLL + YY). All 

scenarios were under the imputation strategy of ‘5 K to 8 K’. 
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Table 3 Average genomic relationship between reference and validation populations 

     Reference 

Validation 

LL YY LL + YY 

LL 0.6398 0.1388 0.3874 

YY 0.1343 0.6442 0.3932 

Crossbred 0.3869 0.3943 0.3875 

The first row indicates the components of the reference populations, whether it consists of a purebred breed 

Landrace (LL), Yorkshire (YY) or a combined population (LL + YY). 

 

 
Figure 5 Density curves of the top10 mean genomic relationships between crossbred animals and three different 

reference populations. The reference population consisted either of a single purebred reference (LYbyLL and 

LYbyYY) or a combined Landrace and Yorkshire population (LYbyLL + YY). 

Proportions of shared haplotypes (PSH) 

Proportions of haplotypes that were shared between reference and validation populations for different 

imputation scenarios are in Table 4. The results show that PSH decreased as the length of haplotypes 

increased. For purebred animals, PSH was always very similar between Landrace and Yorkshire breeds 

when a within-breed or a combined population was used as reference population, regardless of the length of 
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the haplotypes. However, PSH decreased dramatically when the reference population consisted of only of the 

other breeds (external-breed). Differences in PSH existed between Landrace and Yorkshire breeds in 

different scenarios: for the within-breed scenario, LL had slightly higher PSH than YY when haplotypes 

were longer than 30 markers, but slightly lower PSH for shorter haplotypes; for the external-breed scenario, 

PSH was consistently lower for LL than for YY. Among the scenarios for imputation of crossbred animals, 

PSH was highest when a combined population was used as reference population. PSH declined when the 

reference population was changed from a combined population to a pure breed population. In particular, PSH 

was lowest when the reference population consisted of only the Yorkshire breed. The number of unique 

haplotypes (NUH) that existed in the reference population for different imputation scenarios is in Table 5, 

which shows that if only one breed was used as a reference population, Landrace animals always provided 

more haplotypes than Yorkshire animals. Furthermore, if the reference population consisted of a combined 

population, it always had a much larger NUH than if it consisted of only one breed. However, the NUH in 

the combined population was not equal to the sum of the NUH in each breed and was in fact smaller than this 

sum. In other words, some haplotypes were shared by the two breeds.  

 

Table 4 Proportions of shared haplotypes between the reference and validation populations for different 

imputation scenarios 

*Number of consecutive SNP alleles assumed for each haplotype. LL stands for Landrace; YY stands for 

Yorkshire. All the scenarios were under the imputation strategy of ‘5K to 8K’. 

 

 

 

Table 5 Numbers of unique haplotypes that existed in the reference populations for different imputation scenarios 

Validation Reference Size of reference 10* 20* 30* 50* 100* 

Purebreds LL 4166 63 223 441 956 2297 

Purebreds YY 4263 58 216 445 966 2298 

Purebreds LL+YY 8429 109 432 880 1916 4585 

Crossbreds LL 8429 79 314 669 1579 4170 

Crossbreds YY 8429 74 300 665 1571 4101 

Crossbreds LL+YY 8429 109 432 880 1916 4585 

*Number of consecutive SNP alleles assumed for each haplotype. LL stands for Landrace; YY stands for 

Yorkshire. All the scenarios were under the imputation strategy of ‘5K to 8K’. Numbers in the table are averages 

over non-overlapping windows of a specific size. 

Validation Reference 10* 20* 30* 50* 100* 

LL LL 0.9965 0.9814 0.9549 0.8838 0.6417 

LL YY 0.5043 0.1836 0.0877 0.0463 0.0141 

LL LL+YY 0.9972 0.9832 0.9556 0.8847 0.6606 

YY YY 0.9967 0.9817 0.9545 0.8825 0.6295 

YY LL 0.6806 0.3419 0.2232 0.1267 0.0364 

YY LL+YY 0.9971 0.9829 0.9589 0.8843 0.6579 

Crossbred LL 0.8579 0.6758 0.5947 0.5016 0.3280 

Crossbred YY 0.8108 0.6132 0.5125 0.4004 0.2765 

Crossbred LL+YY 0.9902 0.9606 0.9135 0.8092 0.5357 
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Imputation strategy ‘8K to 60K’ 

Figure 6 shows the comparison between imputation accuracies from 8K to 60K across breeds. The 60K 

datasets comprised real genotypes for purebred animals and simulated genotypes for crossbred animals. 

According to Figure 6, in terms of correct rate, performance of imputation for crossbred animals was almost 

as good as that for purebred animals. Figure 6 also shows that crossbred animals performed even better than 

purebred animals in terms of correlation coefficients. Comparison of the results with the corresponding 

imputation scenarios in strategy ‘5K to 8K’ (first three lines in Table 1) clearly indicates that both correct 

rates and correlation coefficients are larger for the ‘8K to 60K’ strategy. For instance, accuracies of 

imputation from 8K to 60K for Landrace and Yorkshire pigs were about 0.005 and 0.015 larger than those 

from 5K to 8K for the correct rate and correlation coefficient, respectively. Before performing imputation 

from 8K to 60K in the simulated crossbred datasets, first we investigated the imputation from 5K to 8K in 

both the simulated and the real genotyped crossbred datasets. Results (not shown) showed that the 

performance of the simulated crossbred dataset was very close to that of the real crossbred dataset (0.004 

greater correct rates). 

 

Figure 6 Comparison of imputation accuracies from 8 K to 60 K across breeds. Real genotypes were used for 

purebred Landrace and Yorkshire animals but simulated genotypes were used for crossbreds. Error bars are 

standard deviations. 
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Discussion 

Our aim was to verify the performance of imputation in Danish purebred and crossbred pigs using different 

scenarios. First, we studied imputation from 5K to 8K in genotyped purebred and crossbred datasets; the 

performance of imputation for each autosome of the purebred animals was evaluated only in the within-breed 

scenario; then imputations in purebred and crossbred animals were compared in within-breed, external-breed 

and combined-breed scenarios. Second, imputation from 8K to 60K was evaluated using genotyped purebred 

and simulated crossbred data. Overall, across all imputation scenarios, correct rates and correlation 

coefficients were consistent with each other, i.e. higher correct rates were associated with higher correlation 

coefficients. 

The performance of imputation for purebred animals was high and consistent across the whole genome, 

which indicated that the strategy performed well for all pig autosomes. Among the 18 pig autosomes, 

imputation was, however, slightly worse on chromosomes 3, 10, 12 and 18, which is consistent with the 

results of a study on the average LD on pig autosomes using a similar dataset [30]. Among the pig autosomes, 

autosomes 10 and 12 had a relatively low average LD, which tends to decrease the length of shared 

haplotypes and therefore decreases imputation accuracy, since Beagle relies crucially on local LD structure 

[12]. Moreover, specific SNPs on a chromosome with an extremely low minor allele frequency (MAF) 

reduce the average correlation coefficient for the chromosome. For instance, three SNPs on chromosome 10 

had an extremely low MAF (0.000097, 0.00039 and 0.00029, respectively) in the Yorkshire dataset. Correct 

rates for these three SNPs were 0.994, 0.997 and 0.998, but correlations coefficients were -0.0017, 0.00045 

and -0.000027, respectively. When these three SNPs were removed, the correlation coefficient for 

chromosome 10 increased from 0.90 to 0.93. However, in the Landrace dataset, these SNPs had a MAF of 

0.497, 0.185 and 0.499, respectively, and therefore they were retained in the analysis. 

Based on Figure 2, we concluded that pooling two purebred populations did not improve imputation 

accuracy compared to using a purebred reference population within a breed. This is in agreement with some 

previous studies in ruminants, which showed that combining reference populations from different breeds did 

not improve within-breed imputation [3,20]. A possible explanation is that haplotypes on which imputation 

relies are less conserved across pig breeds compared to within breeds and those that were conserved were 

already present in the within-breed reference population. The sharp decrease in imputation accuracies when 

an external breed was used as reference population also supports that haplotypes are less conserved across 

breeds. However, several other studies [31,32] showed that multi-breed reference populations enhance 

imputation accuracies compared to a single-breed reference population, but it should be noted that, in these 

studies, the within-breed reference population was small and imputation was done from high-density 
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genotyping data to sequence data, which was not the case in our study. Therefore, to impute genotypes in 

purebred pigs, the reference population should include at least some individuals from the breed itself or a 

closely related population. 

Based on Table 1, imputation in crossbred animals with a reference population that combined the two 

purebred populations performed almost as well as imputation in purebred animals, especially in terms of 

correlation coefficients. One possible explanation for crossbred animals having slightly greater correlation 

coefficients but lower correct rates compared to purebred animals may be due to the quality control criterion 

used (MAF > 0.01) across both purebred populations. The distribution of MAF of the masked SNPs in the 

imputation strategy ‘5K to 8K’ for Landrace (LL), Yorkshire (YY) and crossbred animals is in Figure 7. This 

figure shows that some SNPs had a MAF equal to 0 within a breed but not in crossbred animals. Crossbred 

animals tended to have higher MAF and SNPs with a very low MAF were more likely to occur for purebred 

animals, which decreases the correlation and increases the correct rate [6]. Imputation accuracies of 

crossbred animals significantly decreased when the reference population consisted of animals from only one 

breed. A previous study [3] suggested that imputation accuracies are expected to improve if sires and other 

ancestors were in the reference data, because relatives share common and longer stretches of haplotypes than 

distantly related animals [33]. In this study, up to 88% of the sires of crossbred animals were present in the 

combined purebred reference population. Haplotypes of crossbred animals can be accurately identified and 

imputed based on the haplotypes of their relatives. Logically, crossbred animals that were imputed using a 

single breed reference population had much lower imputation accuracy. One explanation is that some 

haplotypes of the breed that is not in the reference population are not “detected” by the imputation software 

which, therefore, tries to impute them based on the other breed, which has a different LD pattern. In other 

words, by removing one breed from the reference population, all information from one parent and its 

ancestors is removed. This effect is visualized in Figure 3, which shows that there were no connections 

between the two purebred populations for the first principal component (x-axis), and both breeds appeared to 

have almost equally weak connections with crossbred animals. Thus, both contributing pure breeds should be 

included in the reference population when imputing crossbreds to avoid inaccurately estimated haplotype 

blocks due to breed composition. In general, when imputing crossbred animals, it is desirable to include as 

many individuals of their purebred parental breeds in the reference population as possible.  
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Figure 7 Density curves of minor allele frequency of the 2647 masked SNPs in the 8 K SNP chips. LL and YY 

represent Landrace and Yorkshire breeds, respectively. Allele frequency was calculated for each SNP across all 

individuals within the validation population. 

Interestingly, Figure 2 and Table 1 show that Landrace pigs had higher imputation accuracies than Yorkshire 

pigs when a reference population that consisted of a within-breed or a combined population was used, 

whereas Landrace pigs performed less well than Yorkshire pigs when the reference population consisted of 

an external breed. Among the factors that can affect imputation accuracies and were put forward by Iwata 

and Jannink [14], (genomic) relationships between the validation and reference populations constitute a 

major factor. In this study, the two pure breeds had similar family structures, which resulted in the 

distribution of genomic relationships between validation and reference populations being similar for the two 

breeds. As shown in Figures 4a, 4b and 4c, there was no obvious difference in the density curves of 

relationship coefficients for Landrace and Yorkshire animals across different imputation scenarios. Thus, 

average genomic relationships between the validation and reference populations were similar for Landrace 

and Yorkshire pigs, as shown in the first two rows of Table 3. However, based on Table 3, it was not obvious 

that higher genomic relationships between the validation and reference populations would lead to higher 
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imputation accuracies, as was proposed in many other studies, such as [3,24]. Similarly, imputation 

accuracies for crossbred animals were also higher when imputation was done using a reference population of 

Landrace pigs only compared to Yorkshire pigs only, although the average genomic relationship between the 

crossbred validation population and the Landrace reference population was smaller than that between the 

crossbred validation population and the Yorkshire reference population, as shown in the last row of Table 3. 

All of these unexpected results indicate that the average genomic relationship is not sufficient to completely 

characterize the performance of imputation. 

A possible explanation why imputation accuracies for crossbred animals were higher when imputation was 

done using a reference population of Landrace pigs only compared to Yorkshire pigs only is that close 

relationships play a much greater role in imputation accuracies than distant relationships [34]. According to 

Figure 5, the density curves of the top10 mean genomic relationships suggested that crossbreds had a closer 

relatedness with Landrace pigs than with Yorkshire pigs. One fact is that the number of Landrace_Yorkshire 

crossbreds (4432) in the crossbred dataset was much larger than the number of Yorkshire_Landrace (1207) 

and most of the purebred sires were genotyped and included in the reference population. This fact may lead 

to improved performance of imputation of crossbred animals, which is consistent with the result that subsets 

with genotyped sires had slightly higher imputation accuracies than subsets with non-genotyped sires (Table 

2). However, a closer examination of the results in Table 2 shows that the subset of non-genotyped sires 

resulted in a higher accuracy when imputation used a reference population that consisted of Landrace pigs 

only compared to Yorkshire pigs only and that it also resulted in a higher accuracy than the subset of 

genotyped sires when imputation used a reference population that consisted of Yorkshire pigs only. Thus, we 

conclude that having a genotyped sire is not the main cause of the differences in imputation accuracies for 

crossbred animals when imputation used a reference population that consisted of Landrace pigs only 

compared to Yorkshire pigs only. Another possible interpretation of why imputation accuracies for crossbred 

animals were higher when imputation used a reference population that consisted of Landrace pigs only 

compared to Yorkshire pigs only is that the Landrace breed contains Yorkshire haplotypes. The present 

Danish Landrace population is based on the old Danish Landrace breed, with some known imports from 

other European Landrace breeds in the 1970s. It is also known that imported Yorkshire animals were crossed 

with the original Danish Landrace stock in the 1890s, but it was later attempted to weed out these Yorkshire 

crosses again [39]. Thus, it is possible that the current Danish Landrace breed contains some Yorkshire 

haplotypes, but not vice versa. Finally, one remarkable difference between this study and other studies is that 

the size of the reference populations was much larger (10 to 20 times) in our study. A large number of 

reference animals can provide a large number of haplotype blocks and increase the possibility that specific 

haplotypes in the validation population match those in the reference population. When the reference 

population is very large, even a small proportion of close relationships can provide many shared haplotypes 

between reference and validation populations and thereby improve imputation accuracies. 
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The proportion of shared haplotypes can explain differences in performance of imputation among scenarios 

across breeds. A higher PSH indicates that a larger proportion of the haplotypes in the validation population, 

which need to be imputed, can be matched to corresponding haplotypes in the reference population and 

thereby be more accurately imputed. In general, our results agree with this hypothesis, as shown in Table 4. 

This could be one reason why imputation of a purebred or crossbred population by using a reference 

population that consists of Landrace animals only, always performed better than by using a Yorkshire 

reference population, although all other important factors (such as relationships, LD and MAF) were very 

similar in the two pure breeds. The fact that LL had slightly smaller PSH than YY, when the haplotypes were 

short (haplotype consisted of < 30 markers), but larger PSH when the haplotypes were long, indicates 

different patterns of sharing: long haplotypes are from recent ancestors and short haplotypes are from old 

ancestors, and there were more genotyped Landrace sires than genotyped Yorkshire sires. Table 5 

quantitatively shows that although the combined-breed scenario provides more diverse haplotypes in the 

reference population than the single-breed scenario, these non-conserved haplotypes would not contribute to 

improve imputation of purebred animals. Clearly, the corresponding PSH in Table 4 did not increase as the 

reference population was changed from a within-breed to a combined population. Likewise, the simultaneous 

increase in PSH and NUH illustrates quantitatively the importance of using a reference population that 

consists of a combined population for the imputation of crossbred animals. 

The higher accuracies of imputation obtained from 8K to 60K than from 5K to 8K for purebred animals 

confirmed previous studies [6], which showed that increasing the number of SNPs in low-density chips can 

improve the performance of imputation, because with denser SNPs local LD across markers becomes 

stronger. Therefore, it can be inferred that the performance of imputation for crossbred animals would also 

be marginally improved in the 8K to 60K scenario. Accuracies of imputation from 8K to 60K for purebred 

animals and simulated 60K crossbreds were promising. To check that the simulation gave realistic results, 

the performance of imputation from 5K to 8K with a simulated crossbred dataset was compared with the 

performance of imputation from 5K to 8K with the real crossbred dataset (results not shown). The 

performance of imputation with the simulated 8K dataset was slightly better than with the real 8K dataset. 

The slight increase in accuracy was due to the simulation using haplotypes phased by Beagle. Thus, Beagle 

performed imputation based on data that had been generated under its own underlying model. Our results 

show that the improvement is negligible. Therefore, results from the simulated crossbred dataset can be 

trusted. It should be noted that there was an upper limit to the accuracy of phasing if the SNPs were 

sufficiently dense to be in high LD [12]. From an economic point of view, 8K markers in a low-density panel 

seem sufficiently dense for imputation to medium-density (60K) panels. 

In pig breeding, imputation for purebred animals has also been done from very low densities (384 SNPs) to 

60K densities [35-37]. Consequently, we also evaluated the imputation accuracy from very low density (425 
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SNPs, 1% of total SNPs retained) to 8K in a crossbred dataset with a reference population that combined 

animals from both pure breeds. However, the accuracies were very low, around 0.7 and 0.5 for correct rates 

and correlation coefficients, respectively, which seems inadequate to implement genomic evaluation for 

crossbred performance in pigs. 

Our goal was to compare the imputation performance between purebred and crossbred animals. We used the 

Beagle software. Although many other software programs have been developed for imputation, their 

comparison was beyond the scope of our study. All the imputation scenarios were executed on a Linux 

server with an Intel(R) Xeon(R) E5450@3.00 GHz CPU. The system is configured to allow computation 

with a maximum of four cores and a total of 32 GB RAM. Running time for imputing chromosome 1 of 

purebred animals in the within-breed and external-breed scenarios and strategy “5K to 8K” was 4 h ± 10 min, 

while the running time for imputing chromosome 1 of purebred animals in the combined-breed scenarios was 

around 6.5 h. The running time for imputing chromosome 1 of crossbred animals was about 6.5 h ± 15 min 

when different reference populations were used. For strategy “8K to 60K”, only the combined-breed scenario 

was implemented in purebred and crossbred animals and the running time for imputing chromosome 1 of 

crossbred animals was 67 h ± 30 min. 

Conclusions 

Using the software Beagle, imputation performs very well and consistently across the whole genome and, as 

well, in crossbreds as in purebred animals, when the reference population combines animals from both 

parental breeds. For purebred animals, a reference population of within-breed animals ensures a good 

performance of imputation, especially when the size of the reference population is large. A combined 

reference population does not increase imputation accuracy for purebred animals compared to a within-breed 

reference population. A reference population that consists of an external breed only results in very poor 

imputation accuracy. For crossbred animals, a highly accurate imputed 60K crossbred dataset can be 

achieved from 8K by using a reference population that combines both parental breeds. The best method for 

imputation of crossbred animals is to include all purebred parental breeds in the reference population. 

Relationships can account for differences in imputation accuracy, but its effect will be limited by the size of 

the reference population. The proportion of shared haplotypes between the reference and validation 

populations gives an appropriate interpretation for the performance of imputation in both purebred and 

crossbred pigs. 
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Additional file: Pedigree-based simulation 

Description: The process to simulate a medium density (60 K) crossbred chip is described in which 

simulation uses real genotypes of purebred ancestors to simulate genotypes of their crossbred offspring. 

In this additional file, we present the pedigree-based simulation process of creating a medium density (60K) 

crossbred chip data. Simulation used real genotypes of purebred ancestors to simulate genotypes of their 

crossbred offspring, as follows. 

Landrace and Yorkshire can either be sires or dams of those crossbred pigs. To mimic the real data structure, 

the crossbred pigs were split into three main categories (see Table 6 and Table 7).  

Category one was the situation when the parental genotypes of crossbreds were known, so that the crossbred 

progenies could be formed directly through a simulation algorithm. The simulation algorithm is an imitated 

meiosis process on the basis of a premise that SNPs were sorted by their physical positions on each 

chromosome already: according to Haldane's map function [38], the number of crossovers between two 

phases within one chromosome follow a Poisson distribution, with parameter equal to the genetic distance of 

the chromosome in Morgan; the genetic distance was assumed such that markers separated by 10 kb of DNA 

had an expected rate of chromosomal crossovers of 0.01 per generation; it was assumed that the places where 

crossovers happened follow a uniform distribution along each chromosome; a ‘gamete’ of one individual 

would then be obtained through the meiosis process; each progeny would consist of such two dropped 

gametes, one  from each parent. One crucial premise of this algorithm is awareness of the two phases of the 

parents. Software Beagle was used to phase genotypes in purebreds before we implemented the simulation 

meiosis process.  

Category two was that sires of crossbreds were genotyped, but dams of crossbreds were not. Most crossbred 

individuals in the real dataset belonged to this category. In order to generate the genotypes of those dams, we 

simulated their genotypes from one generation earlier (maternal grandparents of crossbreds). If one of the 

grandparents’ genotypes were unknown, it would then be traced back to the previous generation (categories 

II-2 and II-3 in Table 6), and simulated in the same manner. This procedure would be processed until four 

generations back from crossbreds (category II-3 in Table 6). However, genotypes of some individuals in F-4 

generation were still lacking (not included in reference panels). To keep the structure of dataset as analogous 

as a real dataset, we artificially created the genotypes of those individuals as follows: each chromosome for 

one individual was randomly sampled from that chromosome of another individual that was not included in 

its reference panel. These created individuals are shown within square brackets in Table 6 and Table 7.  
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Category three was a situation where neither sires nor dams of crossbreds were genotyped (Table 7). 

Simulation was done on those crossbreds’ paternal families as well as maternal families. For all the three 

main categories, progenies were generated based on the original mating order that was recorded in pedigree 

information, if the true genotypes of those purebreds were known. When the artificially created purebred 

individuals were involved in simulation process, we used random mating to generate progenies. Finally, 

5,639 crossbreds, which consisted of 4,432 LY and 1,207 YL, were generated by the simulation algorithm.  

For example, one crossbred YL (F0) from Category II-3 in Table 6. Its sire (F-1_sire) was genotyped, but not 

the dam (F-1_dam). One earlier generation (F-2) was traced back according to the pedigree information, which 

means we looked at the maternal grandfather (F-2_Mgf) and maternal grandmother (F-2_Mgm) of the 

crossbred YL. Animal F-2_Mgf was genotyped, but not F-2_Mgm. Another earlier generation (F-3) was 

needed to be traced back. Likewise, the great grandfather (F-3_Ggf) of crossbred YL was genotyped, but not 

the great grandmother (F-3_Ggm). Thus, one more previous generation (F-4) had to be traced backward. Only 

the father of great grandmother (F-4_Fa_ggm) was genotyped, but not the mother of great grandmother (F-

4_Mo_ggm). The tracing was stopped at the F-4 generation, thus, we had to artificially create the genotypes of 

F-4_Mo_ggm. For the created F-4 female Landrace, the first chromosome would be randomly selected from 

another Landrace individual’s chromosome one; then chromosome two was sampled from chromosome two 

of a third individual and so on until chromosome eighteen had been sampled.  Then, based on the simulated 

meiosis algorithm, F-4 generation would produce the genotypes of F-3_Ggm; F-3_Ggm mated with F-3_Ggf 

and they reproduced the F-2_Mgm; alike, F-2_Mgm mated with F-2_Mgf and they reproduced the F-1_dam; 

finally, F-1_dam mated with F-1_sire and the crossbred YL was obtained. 
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ABSTRACT 

Crossbreeding is predominant and intensively used in commercial meat production systems, especially in 

poultry and swine. Genomic evaluation has been successfully applied for breeding within purebreds, but also 

offers opportunities of selecting purebreds for crossbred performance by combining information from 

purebreds with information from crossbreds. However, it generally requires that all relevant animals are 

genotyped, which is costly and presently does not seem to be feasible in practice. Recently, a novel single-

step BLUP method for genomic evaluation of both purebred and crossbred performance has been developed, 

which can incorporate marker genotypes into a traditional animal model. This new method has not been 

validated in real datasets. In this study, we applied this single-step method to analyze data for the maternal 

trait of total number of piglets born in Danish Landrace, Yorkshire and two-way crossbred pigs in different 

scenarios. The genetic correlation between purebred and crossbred performances was investigated firstly, 

and then the impact of (crossbred) genomic information on prediction reliability for crossbred performance 

was explored. The results confirm the existence of a moderate genetic correlation, and it was seen that the 

standard errors on the estimates were reduced when including genomic information. Models with marker 

information, especially crossbred genomic information, improve model-based reliabilities for crossbred 

performance of purebred boars, and also improve the predictive ability for crossbred animals and to some 

extent reduce the bias of prediction. We conclude that the new single-step BLUP method is a good tool in the 

genetic evaluation for crossbred performance in purebred animals. 

 

Key words: single-step method, crossbred performance, genomic evaluation, reliability, genetic correlation, 

pig   
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INTRODUCTION 

Crossbreeding is predominant and intensively used in meat production systems (Wei, 1992), especially in 

swine and chicken. In two-way crossbreeding schemes, selection of purebreds for their crossbred 

performance is the ultimate goal (Wei, 1992; Bijma and Bastiaansen, 2014). Since there exist genetic 

differences between breeds and genotype-by-environment interaction effects, additive genetic effects 

estimated based on purebred performance cannot be used to predict the crossbred performance perfectly (Lo 

et al., 1997). Ideally, combined purebred and crossbred information is required to implement the genetic 

evaluation for crossbred performance (Wei and van der Werf, 1994). However, due to the difficulty and high 

cost of collection of data from crossbred animals (Dekkers, 2007), it is not common to have access to 

crossbred data.  

Genomic selection has been successfully applied in purebreds based on data from purebred animals (Loberg 

and Dürr, 2009; Fulton, 2012), but it also offers opportunities of selecting purebreds for crossbred 

performance by using combined information from purebreds and crossbreds (Ibáñez-Escriche et al., 2009; 

Zeng et al., 2013) or by using purebred data only (Esfandyari et al., 2015). However, it generally requires 

that all relevant animals are genotyped. Recently, a novel single-step BLUP method (Christensen et al., 2014) 

for genomic evaluation of both purebred and crossbred performance in a two-way crossbreeding system was 

developed, which is an extension of single-step BLUP method (Legarra et al., 2009; Christensen and Lund, 

2010) from purebred performance to combined purebred and crossbred performances.  

The aim of this study is to implement the new single-step BLUP method by using both purebred and 

crossbred data of total number of piglets born (TNB) in different scenarios, estimating the genetic correlation 

between purebred and crossbred performance and then explore the impact of (crossbred) genomic 

information on prediction reliability for crossbred performance.    

MATERIALS AND METHODS 

Data 

For this study, all datasets were provided by Danish Pig Research Centre. Three populations were analyzed 

simultaneously: Danish Landrace (LL), Danish Yorkshire (YY) and two-way crossbred Danish Landrace-

Yorkshire. Crossbred animals that had Landrace sire and Yorkshire dam were termed ‘Landrace_Yorkshire 

(LY)’, while ‘Yorkshire_Landrace (YL)’ represented crossbreds with Yorkshire sires and Landrace dams. 

The TNB data in this study comprised the records of the first parity in all the three populations. Totally, TNB 

was recorded in 293,339 LL, 180,112 YY and 10,974 crossbred animals. This dataset is termed “full 

population” throughout the whole paper.  
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Among the crossbreds, 7,407 were LY and 3,567 were YL. All of the purebred animals had first farrowing 

dates between 2003 and 2013, while the crossbred animals first farrowed between 2010 and 2013. The 

pedigree for both purebred and crossbred animals was available and all the crossbreds were traced back to  

their purebred ancestors until 1994 by the DMU Trace program (Madsen, 2012). Consequently, 332,929 LL, 

210,554 YY and 10,974 crossbreds were in the pedigree. Among those animals, 7,723 LL and 7,785 YY 

were genotyped with Illumina PorcineSNP60 Genotyping BeadChip (Ramos et al., 2009). Two thirds of 

purebred genotyped animals were boars. For the crossbreds, 5,203 animals (4,077 LY and 1,126 YL) were 

genotyped with a 8.5K GGP-Porcine Low Density Illumina Bead SNP Chip (GeneSeek, 2012). SNP quality 

controls were applied on the same dataset in a previous study (Xiang et al., 2015), where more details can be 

found. Finally, 41,009 SNPs and 7,916 SNPs in autosome chromosomes were accessible in purebreds and 

crossbreds, respectively. Imputation was implemented in crossbreds from 7,916 SNPs to 41,009 SNPs with 

software Beagle (Browning, 2008), which outputs phased SNPs for both reference and imputed population, 

by using a joint reference panel of the two  pure breeds (Xiang et al., 2015). As a result, phased 41,009 

genotyped SNPs were available for the genotyped animals in both purebreds and crossbreds for the current 

study. 

Single-step BLUP model for purebred and crossbred performances 

The new single-step BLUP method of evaluating both purebred and crossbred performance was developed 

by Christensen et al. (2014). The model reformulates the “full” Wei and van der Werf (1994) A1 model and 

incorporates genomic information by using two breed-specific combined relationship matrices, which extend 

the marker-based relationship matrices to the non-genotyped animals.  

The Wei and van der Werf model is a trivariate model, 

𝒚𝐿 = 𝑿𝐿𝜷𝐿 + 𝒁𝐿𝒂𝐿 + 𝒆𝐿 , 

𝒚𝑌 = 𝑿𝑌𝜷𝑌 + 𝒁𝑌𝒂𝑌 + 𝒆𝑌, 

𝒚𝐿𝑌 = 𝑿𝐿𝑌𝜷𝐿𝑌 + 𝒁𝐿𝑌𝒄𝐿𝑌 + 𝒆𝐿𝑌, 

where 𝒚𝐿 ,  𝒚𝑌 and 𝒚𝐿𝑌  contain phenotypes for purebred LL, purebred YY and F1 crossbred animals, 

respectively; 𝑿𝐿𝜷𝐿, 𝑿𝑌𝜷𝑌 and 𝑿𝐿𝑌𝜷𝐿𝑌 represent fixed effects; 𝒆𝐿, 𝒆𝑌 and 𝒆𝐿𝑌were overall random residual 

effects, assumed to be independently normally distributed with mean 0 and variance 𝐈σ𝑒𝐿
2 , 𝐈σ𝑒𝑌

2  and 𝐈σe𝐿𝑌
2 , 

respectively; 𝒂𝐿 and 𝒂𝑌 contain breeding values for breed LL and breed YY for their purebred performance 

(mating within each own breed), 𝒄𝐿𝑌  stands for the additive genetic effects of F1 crossbred animals, and 𝒁𝐿 , 

𝒁𝑌  and 𝒁𝐿𝑌  are the respective incidence matrices. Note that the 𝒄𝐿𝑌  animal additive genetic effects are 
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actually formed as the sum of two additive gametic effects, one from LL and another from YY. In other 

words, a crossbred diploid genome decomposes into two purebred haploid genomes.  

The Christensen et al. (2014) method, first, assumes that effects of markers across the different origins 

(Yorkshire and Landrace, in this case) are unrelated. Under this assumption, the additive effect of the 

genome of an F1 crossbred animal can be split into the sum of two additive gametic effects, one gamete from 

each breed, where the two gametic effects are uncorrelated by assumption of the model. Therefore, separate 

matrices of pedigree-based or genomic-based relationships can be set up within each breed, and then be 

combined according to purebred theory for the single-step (Legarra et al., 2009; Christensen and Lund, 2010). 

The analysis proceeds by estimating solutions to two different breed-specific random effects. The key to 

disentangle the breeds of origin for the genetic effect of the F1 individuals is the ability to construct 

pedigree-based partial relationship matrices (García-Cortés and Toro, 2006) or separate (by origin) genomic 

matrices, which in turn requires ascertainment of breed origin of the marker genotypes.  More specifically, 

there are three steps:  

Step 1). Reformulate the Wei and van der Werf model by splitting additive genetic effects for crossbred 

animals (LY) into breed of origin specific genetic effects, i.e, split the additive genetic value of the i-th F1 

crossbred in two additive genetic values, one from each origin (LL or YY): 𝑐𝐿𝑌𝑖 = 𝑐𝐿𝑌𝑖
𝐿 + 𝑐𝐿𝑌𝑖

𝑌 . It has to be 

understood that neither of these is a breeding value strictu sensu, instead, they are additive effects in the 

statistical sense as “regression of value on gene dosage”  as explained by Falconer et al. (1985), who clarifies 

the various definitions of average effect of genes in absence of random mating. Note that the new single-step 

model (Christensen et al. 2014) is not the animal model used by Lo et al. (1997) and Lutaaya et al. (2001). 

Actually, the new single-step model is a reformulation of the full model from Wei and van der Werf (1994, 

equation A1), whereas Lo et al. (1997) and Lutaaya et al. (2001) refer to the reduced animal model from Wei 

and van der Werf (1994, equation A2). In presence of pedigree information only, the full and the reduced 

animal model are equivalent, but in presence of crossbred genomic information this is no longer the case. In 

the papers of Lo et al. (1997) and Lutaaya et al. (2001), the additive genetic value of the i-th F1 crossbred is 

𝑢𝐿𝑌𝑖 = (𝑢𝐿𝑌𝑝(𝑖,𝐿)
𝐿 + 𝛷𝐿𝑖) + (𝑢𝐿𝑌𝑝(𝑖,𝑌)

𝑌 + 𝛷𝑌𝑖). Here 𝑢𝐿𝑌𝑝(𝑖,𝐿)
𝐿 and 𝑢𝐿𝑌𝑝(𝑖,𝑌)

𝑌  are half the additive genetic values 

of the purebred parents 𝑝(𝑖, 𝐿) and 𝑝(𝑖, 𝑌), which are common to all the offspring of the same sire or dam, 

and 𝛷𝐿𝑖 and 𝛷𝑌𝑖  are the respective Mendelian samplings, which are different for each offspring. In the 

reduced animal model, both Mendelian sampling terms are included in the residual effect of the crossbred 

animals, and only 𝑢𝐿𝑌𝑝(𝑖,𝐿)
𝐿

 and 𝑢𝐿𝑌𝑝(𝑖,𝑌)
𝑌

 are estimated. This is for two reasons: first, with pedigree 

information only, this term cannot be estimated; second, setting up matrices of additive relationships (and 

their inverse) for crossbred animals at the animal model is not straightforward (Lo et al. 1993; García-Cortés 

and Toro, 2006). Therefore, in the works of Lo et al. (1997) and Lutaaya et al. (2001), the additive genetic 

value of the i-th F1 crossbred 𝑢𝐿𝑌𝑖 is replaced by 𝑢𝐿𝑌𝑝(𝑖,𝐿)
𝐿 + 𝑢𝐿𝑌𝑝(𝑖,𝑌)

𝑌 . With genomic relationships and in the 
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model of Christensen et al. (2014), these Mendelian sampling terms are embedded into a genomic 

relationship matrix (relationships across animals for purebreds and gametes for crossbreds) and they are no 

longer uncorrelated. Thus, the absorption of this term into the residual error term is not suitable. In the 

current study, 𝑐𝐿𝑌𝑖
𝐿 = 𝑢𝐿𝑌𝑝(𝑖,𝐿)

𝐿 + 𝛷𝐿𝑌𝑖
𝐿  and 𝑐𝐿𝑌𝑖

𝑌 = 𝑢𝐿𝑌𝑝(𝑖,𝑌)
𝑌 + 𝛷𝐿𝑌𝑖

𝑌 . Additive genetic value of the i-th F1 

crossbred 𝑐𝐿𝑌𝑖 is not identical to 𝑢𝐿𝑌𝑝(𝑖,𝐿)
𝐿 + 𝑢𝐿𝑌𝑝(𝑖,𝑌)

𝑌  in Lo et al. (1997) and Lutaaya et al. (2001). Thus, our 

model (which is a gametic model at the level of crossbreds) is not a single-step model equivalent of Lo et al. 

(1997) and Lutaaya et al. (2001), which, at the level of crossbreds, are reduced animal models. 

Step 2). Construct breed-specific partial relationship matrices for each breed of origin genetic effects. 

Considering pedigree relationships, the variance and covariance between additive genetic purebred (𝒂) and 

crossbred (𝒄) effects of breed LL is described as  

𝑉𝑎𝑟 [
𝒂
𝒄
] = [

𝜎𝑎𝐿
2  𝜎𝑎𝐿,𝑐𝐿

𝜎𝑐𝐿,𝑎𝐿
𝜎𝑐𝐿

2  
]⨂𝐇(𝐿) 

This is a two-trait representation. For better understanding, the genetic effects can be split into animal effects 

belonging to purebred animals (𝒂𝐿, 𝒄𝐿) and gametic effects belonging to crossbred animals (𝒂𝐿𝑌
(𝐿)

, 𝒄𝐿𝑌
(𝐿)

): 

𝑉𝑎𝑟 

[
 
 
 
 
𝒂𝐿

𝒂𝐿𝑌
(𝐿)

𝒄𝐿

𝒄𝐿𝑌
(𝐿)

]
 
 
 
 

 =  [
𝜎𝑎𝐿

2  𝜎𝑎𝐿,𝑐𝐿

𝜎𝑐𝐿 ,𝑎𝐿
𝜎𝑐𝐿

2  
]⨂𝐇(𝐿) = [

𝜎𝑎𝐿
2  𝜎𝑎𝐿,𝑐𝐿

𝜎𝑐𝐿 ,𝑎𝐿
𝜎𝑐𝐿

2  
]⨂ [

𝐇L,L 𝐇L,LY
(L)

𝐇LY,L
(L)

𝐇LY,LY
(L)

], 

where matrix 𝐇(L) is a matrix of partial relationships which contains four blocks, one for within purebred 

animals (𝐇L,L), two for purebred with crossbred animals (𝐇L,LY
(L)

) and vice versa (𝐇LY,L
(L)

), and one for within 

crossbred animals 𝐇LY,LY
(L)

. If there are 𝑛𝐿 pure Landrace animals and 𝑛𝐿𝑌 crossbred animals the size of 𝐇(𝐿) 

is (𝑛𝐿 + 𝑛𝐿𝑌) × (𝑛𝐿 + 𝑛𝐿𝑌). The 𝑛𝐿 purebred animals have additive effects, which are breeding values, 

𝒂𝐿 (when mated within breed) and 𝐜L  (when mated to the other breed). The 𝑛𝐿𝑌 purebred gametes of 

crossbred animals have additive effects 𝐜LY
(L)

 (within the cross itself). The covariance structure includes, for 

ease of representation, 𝒂𝐿𝑌
(𝐿)

, which are effects of crossbred gametes in purebred performance; these effects 

are merely conceptual but they simplify the representation and computation. The covariance structure for 

breed YY is similar: 

𝑉𝑎𝑟 

[
 
 
 
 
𝒂𝑌

𝒂𝐿𝑌
(𝑌)

𝒄𝑌

𝒄𝐿𝑌
(𝑌)

]
 
 
 
 

 =  [
𝜎𝑎𝑌

2  𝜎𝑎𝑌,𝑐𝑌

𝜎𝑐𝑌 ,𝑎𝑌
𝜎𝑐𝑌

2  
]⨂𝐇(𝑌) = [

𝜎𝑎𝑌
2  𝜎𝑎𝑌,𝑐𝑌

𝜎𝑐𝑌,𝑎𝑌
𝜎𝑐𝑌

2  
]⨂ [

𝐇Y,Y 𝐇Y,LY
(Y)

𝐇LY,Y
(Y)

𝐇LY,LY
(Y)

] 
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with size of 𝐇(𝑌)equal to (𝑛𝑌 + 𝑛𝐿𝑌) × (𝑛𝑌 + 𝑛𝐿𝑌), and both structures are assumed independent, i.e., 

there is no covariance between LL effects and YY effects. As in Wei and Van der Werf (1994), there are six 

genetic (co)variance components, three for each breed.  

Matrix 𝐇(L) can be constructed based on available information (pedigree, markers) as follows. The pedigree-

based and marker-based breed LL partial relationship matrices are  𝐀(L) = [
𝐀L,L 𝐀L,LY

(L)

𝐀LY,L
(L)

𝐀LY,LY
(L)

] and  𝐆(L) =

[
𝐆L,L 𝐆L,LY

(L)

𝐆LY,L
(L)

𝐆LY,LY
(L)

] , respectively, where the partition divides purebred animals from purebred gametes in 

crossbred animal. Because of the split into breed-specific gametes, the pedigree-based partial relationship 

matrices 𝐀(L) and 𝐀(Y) must be computed as in García-Cortés and Toro (2006).  

Construction of the breed-specific marker-based relationship matrices assumes that the breed of origin of 

phased alleles in crossbred animals is known. In other words, it is known which phased allele in a crossbred 

animal LY is from breed LL and which one is from breed YY. Then, the marker-based partial relationship 

matrix contains cross-products of centered genotypes:  

𝐆L,L = (𝐦L –  2𝐩L𝟏′)(𝐦L –  2𝐩L𝟏′)
′
  

𝐆L,LY
(L)

= (𝐦L–  2𝐩L𝟏′)(𝐪LY– 𝐩L𝟏′)
′
 

𝐆LY,LY
(L)

= (𝐪LY– 𝐩L𝟏′)(𝐪LY– 𝐩L𝟏′)
′

 

where m
L
 and q

LY
 contain breed-specific allele contents of the second allele for purebred LL (coded as 0, 1, 

2) and crossbred animals (coded as 0, 1), respectively; vector p
L
 are breed LL specific allele frequencies 

based on marker genotypes for purebred and crossbred animals.  

Later, matrix 𝐆(L) is adjusted to be compatible with 𝐀(L): 𝐆a
(L)

= 𝐆(L)β + 𝐊α, where 𝐊 = [
𝐉 𝐉/2

𝐉/2 𝐉/4
], and J 

denotes a matrix of ones partitioned as 𝐆(L). Scalars α and β are estimated through solving the two following 

equations: 

 22

(𝐿)

=
(𝐿)

β + α,  

22

(𝐿)

=
(𝐿)

β + α,  

A G K

dA dG dK
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e.g., equating the averages of the full matrices and equating the averages of the diagonals of pedigree and 

genomic relationships for genotyped individuals (Christensen et al., 2012). Matrix 𝐀22
(𝐿)

 contains pedigree 

relationships for genotyped LL individuals. Procedure is identical for breed YY. 

Step 3). Combine the pedigree-based and adjusted marker-based partial relationship matrices to a combined 

partial relationship matrix 𝐇(L), which is similar to 𝐇 matrix used in single-step method for purebred animals 

(Legarra et al., 2009; Christensen and Lund, 2010). The inverse of 𝐇(L) is 

(𝐇(L))
−1

= [
𝟎 𝟎

𝟎 (𝐆ω
(L)

)
−1

− (𝐀22
(L)

)
−1] + (𝐀(L))

−1
, 

where 
1𝐆ω

(L)
= (1 − ω)𝐆a

(L)
+ ω𝐀22

(L)
. Parameter ω is the relative weight on the residual polygenic effect. 

Many other studies have investigated the weighting factors between the pedigree-based and marker-based 

relationship matrices (Christensen and Lund, 2010; Christensen et al., 2012; Gao et al. 2012; Su et al., 2012; 

Guo et al., 2015) and commonly they put forward that the weighting factors should be determined by the 

specific trait and the dataset analyzed. We investigated weighting factors from 0.1 to 0.5. Preliminary 

analysis (results not shown) for different weighing factors showed that ω = 0.4 was appropriate, in terms of 

balance between predictive abilities and biases for crossbred animals. Procedure is identical for breed YY. 

The sparse inverse partial relationship matrices (𝐇(L))
−1

and (𝐇(Y))
−1

are used as input to solve the mixed 

model equations of the model.  

Step 4) Thus, the complete representation of the final model for genetic evaluation is: 

𝒚𝐿 = 𝑿𝐿𝜷𝐿 + 𝒁𝐿𝒂𝐿 + 𝒆𝐿 , 

𝒚𝑌 = 𝑿𝑌𝜷𝑌  + 𝒁𝑌𝒂𝑌  +  𝒆𝑌, 

𝒚𝐿𝑌  =  𝑿𝐿𝑌𝜷𝐿𝑌  + 𝒄𝐿𝑌
(𝐿)

 +  𝒄𝐿𝑌
(𝑌)

 +  𝒆𝐿𝑌, 

𝑉𝑎𝑟 

[
 
 
 
 
𝒂𝐿

𝒂𝐿𝑌
(𝐿)

𝒄𝐿

𝒄𝐿𝑌
(𝐿)

]
 
 
 
 

 =  [
𝜎𝑎𝐿

2  𝜎𝑎𝐿,𝑐𝐿

𝜎𝑐𝐿,𝑎𝐿
𝜎𝑐𝐿

2  
]⨂𝐇(L) 

𝑉𝑎𝑟 

[
 
 
 
 
𝒂𝑌

𝒂𝐿𝑌
(𝑌)

𝒄𝑌

𝒄𝐿𝑌
(𝑌)

]
 
 
 
 

 =  [
𝜎𝑎𝑌

2  𝜎𝑎𝑌,𝑐𝑌

𝜎𝑐𝑌,𝑎𝑌
𝜎𝑐𝑌

2  
]⨂𝐇(Y) 

                                                           
1
 There is a typographical error in the page 939 (right column) of the online published paper. 
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𝑉𝑎𝑟(𝒆𝐿) = 𝑰𝜎𝐿
2;  𝑉𝑎𝑟(𝒆𝑌) = 𝑰𝜎𝑌

2;  𝑉𝑎𝑟(𝒆𝐿𝑌) = 𝑰𝜎𝐿𝑌
2  

This is a three observed trait model (performance in LL, YY and F1) but with two genetic effects (LL and 

YY), each with two genetic traits: purebred and crossbred performance. Estimation of genetic parameters by 

REML and BLUP predictions were done using the DMU software (Madsen and Jensen, 2013). 

Crossbred allele tracing 

Software Beagle, which was used to impute and phase genotypes in crossbred animals, does not give breed 

allele origins as an output. Thus, to infer the allele origins in crossbred animals, we proceeded as follows.  

The allele tracing was processed separately on each chromosome per individual. 

Among the 5,203 genotyped crossbred animals, sires of 4,520 crossbreds were genotyped, while neither 

parent of the other 683 crossbreds was genotyped. When the sire was genotyped, total differences between 

the two sets of phased imputed alleles of a crossed animal and two sets of phased alleles of its corresponding 

purebred sire were compared. Comparisons between crossbred and purebred phased alleles were made on 

each SNP along the chromosome. For a specific comparison, if a crossbred allele was different from the 

corresponding purebred allele, that SNP was counted as one difference. Along the chromosome, if the sum of 

differences between one set of crossbred phased alleles and one set of specific purebred phased alleles was 

lowest among the four comparisons, then this set of specific crossbred phased alleles was considered as 

originating from the breed of the sire. Logically, the other set of crossbred phased alleles was assigned to the 

other breed.  

When neither parent was genotyped, one of the two sets of phased imputed crossbred alleles was studied 

segment-by-segment. Each crossbred phased chromosome was split into several small segments, which 

consisted of 50 consecutive SNP markers. These were compared with the corresponding collection of 

segments from phased chromosomes of two purebred reference populations LL and YY, which were used for 

imputing crossbred genotypes. Each small segment in the crossbred animals should exactly match at least 

one segment in the reference panel since each crossbred segment was imputed by the purebred reference 

population. Copies of that specific segment being detected in the reference population of LL and YY were 

counted separately and were divided by total number of segments in the same position in the reference panel 

of LL and YY to get proportions of matched segment. If the proportion was higher in one breed, the 

crossbred segment was considered to originate from this breed. Throughout all the segments within a 

crossbred phased chromosome, if the vast majority of segments were considered as originating from one 

specific breed, then the crossbred phased chromosome was assigned to that breed. Consequently, 5,203 

crossbred phased alleles were traced to either breed LL or YY.  
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Statistical model         

For Landrace and Yorkshire, the statistical model was as follows: 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛 = 𝜇 + ℎ𝑦𝑠𝑖 + 𝑚𝑜𝑛𝑡ℎ𝑗 + ℎ𝑦𝑏𝑟𝑖𝑑𝑘 + 𝑏1 𝑎𝑔𝑒𝑖𝑗𝑘𝑙𝑚𝑛 + 𝑏2 𝑎𝑔𝑒𝑖𝑗𝑘𝑙𝑚𝑛
2 + 𝑎𝑚 + 𝑠𝑏𝑛 + 𝑒𝑖𝑗𝑘𝑙𝑚𝑛, 

where the dependent variable 𝑦𝑖𝑗𝑘𝑙𝑚𝑛 represented TNB in the first parity in breed LL or YY; 𝜇 was the 

general mean; ℎ𝑦𝑠𝑖, 𝑚𝑜𝑛𝑡ℎ𝑗 and ℎ𝑦𝑏𝑟𝑖𝑑𝑘 represented fixed effects of herd-year-season, month at farrowing 

and hybrid indicator of service sire (same or different breed as sow); 𝑎𝑔𝑒𝑖𝑗𝑘𝑙𝑚𝑛 and 𝑎𝑔𝑒𝑖𝑗𝑘𝑙𝑚𝑛
2  

were 

covariates for the age of farrowing and its squared value, with regression coefficient 𝑏1 and 𝑏2, respectively; 

𝑎𝑚 was the random additive genetic effect of sow; 𝑠𝑏𝑛 was a random service sire effect; 𝑒𝑖𝑗𝑘𝑙𝑚𝑛  was the 

random residual effect. Random effects were assumed to be independently normally distributed, 𝒂 ~ N(0, 

𝐇(L)σ𝑎𝐿
2 ) or 𝒂 ~ N(0, 𝐇(Y)σ𝑎𝑌

2 ), depending on which pure breed; 𝒔𝒃 ~ N(0, 𝐈σsb
2 ) and 𝒆 ~ N(0, 𝐈σe

2), in which 

𝐇(L)  and 𝐇(Y)  were defined previously; I was the identify matrix; σ𝑎𝐿
2  and σ𝑎𝑌

2  were additive genetic 

variances for breed LL and YY for purebred performances, respectively; σsb
2  and σe

2 were variance of service 

boar effect and variance of residual effect.  

Model for crossbred records was: 

𝑦𝑖𝑗𝑙𝑚 = 𝜇 + ℎ𝑦𝑠𝑖 + 𝑚𝑜𝑛𝑡ℎ𝑗 + 𝑏1 𝑎𝑔𝑒𝑖𝑗𝑙𝑚 + 𝑏2 𝑎𝑔𝑒𝑖𝑗𝑙𝑚
2 + 𝑐𝑚

(𝐿)
+ 𝑐𝑚

(𝑌)
+ 𝑒𝑖𝑗𝑙𝑚, 

where dependent variable 𝑦𝑖𝑗𝑙𝑚 represented TNB in the first parity in crossbred animals; 𝜇, ℎ𝑦𝑠𝑖, 𝑚𝑜𝑛𝑡ℎ𝑗, 

𝑎𝑔𝑒𝑖𝑗𝑙𝑚 and 𝑒𝑖𝑗𝑙𝑚 represented same effects as in model for purebred records; 𝑐𝑚
(𝐿)

 and 𝑐𝑚
(𝑌)

 were breed LL 

and YY origin additive genetic effect, respectively. The two additive genetic effects were assumed to be 

independently normally distributed, 𝒄(𝐿)~ N(0, 𝐇(L)σ𝑐𝐿
2 ) and 𝒄(𝑌)~ N(0, 𝐇(Y)σ𝑐𝑌

2 ), in which 𝐇(L) and 𝐇(Y) 

were breed LL or YY specific partial additive genetic relationships; σ𝑐𝐿
2  and σ𝑐𝑌

2  were additive genetic 

variances for crossbred performances of breed LL and YY, respectively. 

Scenarios 

Variance components, heritabilities and genetic correlations between purebred and crossbred performances 

(rpc) were first investigated in the full population. Heritability for purebred performance was defined as the 

ratio of additive genetic variances for purebred performance (σ𝑎
2) to phenotypic variances (𝜎𝑝

2 = 𝜎𝑎
2 + 𝜎𝑠𝑏

2 +

𝜎𝑒
2), whereas heritability for crossbred animals was defined as the ratio of total additive genetic variance of 

crossbred performance for two breed-specific gametes (0.5(𝜎𝑐𝐿
2 + 𝜎𝑐𝑦

2 )) to phenotypic variances (0.5 (𝜎𝑐𝐿
2 +

𝜎𝑐𝑦
2 ) + 𝜎𝑒𝐿𝑌

2 ). To explore the effect of different genotyping strategies on genetic evaluation for crossbred 
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performance, the breed-specific partial relationship matrices were constructed based on three different 

scenarios (SC) : (1) Nogen_SC, pedigree information only, which represented the traditional BLUP method; 

(2) Genpure_SC, pedigree information and purebred genotypes (7,723 LL and 7,785 YY), representing 

genotyping purebreds only; (3) Genall_SC, pedigree information, all purebred and crossbred genotypes 

(7,723 LL, 7,785 YY and 5,203 crossbreds). The purposes of studying Genall_SC were to check the 

necessity of including crossbred genomic information, which is normally not available, and to study the 

improvement of genomic prediction of purebred animals for crossbred performance. Information on each 

scenario is shown in Table 1. To make the results comparable across all studies, specific relationship 

matrices for breed LL and YY were calculated using allelic frequencies estimated from “old” purebred 

population (born before January 1, 2011), which were 2210 LL and 2161 YY, respectively. For each 

scenario, the variance components for purebred and crossbred performances were estimated and the genetic 

correlation between them was obtained.  

Table 1 Scenarios for model-based reliability 
Scenario Genotypes Phenotypes 

Nogen_SC No genotypes 
Full data: 293,339 LL, 180,112 

YY, and 10,974 crossbred animals 
Genpure_SC 7,723 LL, 7,785 YY 

Genall_SC 7,723 LL, 7,785 YY, 5,203 crossbreds 

 

Secondly, model-based reliabilities of crossbred performance for purebred boars were calculated in the 

mentioned three different scenarios. According to pedigree, 7,407 LY and 3,567 YL were offspring of 765 

LL and 465 YY sires, respectively. These sires were divided into two subgroups of genotyped and non-

genotyped animals and mean model-based reliabilities were computed in each subgroup. Mean model-based 

reliability was calculated as (Mrode, 2005): 𝑟2 = ∑ (1 − SEPi
2/σc

2)/𝑛𝑛
𝑖=1 , where SEPi was the standard error 

of prediction for animal i; σc
2 was the variance of additive genetic effect for crossbred performance and 𝑛 

was the number of purebred boars that were studied. In addition, the proportion of animals that have higher 

model-based reliabilities in one scenario compared to another scenario in each subgroup was also 

investigated. 

Finally, the predictive ability for crossbred animals in the validation population (4,195 crossbreds) was 

investigated in different scenarios. The farrowing date of January 1, 2012 was used as the cut-off date to 

divide recorded sows in the full population into training and validation populations. For purebred genotyped 

boars, only birth dates were accessible, not days of farrowing. Thus, for genotyped animals, the birth date of 

January 1, 2011 was instead used as the cut-off date. As a result, 240,543 LL, 139,868 YY and 6,779 

crossbreds were contained in training population, with genotyped 2,210 LL, 2,161 YY and 2,357 crossbreds 

being included as well. The validation population for crossbred performance included 4,195 crossbreds, 
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among which 2,846 were genotyped. Phenotypes of crossbred animals in the validation population were 

corrected for fixed and random effects other than additive genetic effect (𝒀𝑐 = 𝐜m
(L)

+ 𝐜m
(Y)

+ 𝐞). 𝒀𝑐  were 

obtained by using full population data, with partial relationship matrices constructed in Genall_SC .   

Breed-specific partial relationship matrices were constructed based on scenarios, concerning genotypes of 

animals in the training population: Nogen_T is the scenario where relationship matrices H contained only 

pedigree information (𝑖.e. 𝐇(L) = 𝐀(L)  and  𝐇(Y) = 𝐀(Y) ); Genpure_T is the scenario where relationship 

matrices H contained pedigree information and purebred genotypes of 2,210 LL and 2,161 YY; Genpc_T is 

the scenario where relationship matrices H contained pedigree information and genotypes of the 2,210 LL, 

2,161 YY and 2,357 crossbreds that were involved in the training dataset; Genall_T is the scenario where 

relationship matrices H comprised all information in Genpc_T, plus extra genomic information (but not the 

phenotypic information) of the 2,846 crossbreds in the validation population. Detailed information on each 

scenario is shown in Table 2. Variance components were estimated based on phenotypes from the training 

population in each scenario, being only slightly different from those based on phenotypes from the full 

population. The predictive ability of crossbreds was measured by validation correlations 𝑐𝑜𝑟(�̂�, 𝒀𝑐) in each 

scenario, where �̂�  were the estimated additive genetic effects for crossbreds ( �̂� = 𝐜m
(L)

+ 𝐜m
(Y)

) in the 

validation population from different scenarios; For Genall_T, the validation population was divided into two 

subgroups of genotyped and non-genotyped animals and the validation correlations were made in the 

subgroup as well as in the whole validation population. Hotelling-Williams t-test at confidence level 5% was 

applied to evaluate the significance for the differences of validation correlations in each scenario. Moreover, 

in order to detect the possible inflation or deflation of predictions, the regression coefficients of  𝒀𝑐 on �̂� 

were explored to check whether they were close to one. In addition, to measure uncertainty associated with 

results, bootstrap sampling (Mäntysaari and Koivula, 2012; Cuyabano et al., 2015) was used in the test 

population to estimate means and standard errors of correlations. Results were similar to the Hotelling-

Williams test above and are not shown.  

Table 2 Scenarios for predictive ability 

Scenario Genotypes Phenotypes 

Nogen_T No genotypes Training: 240,543 LL, 139,868 YY, 6,779     

crossbred animals 

Validation: 52,796 LL, 40,244 YY, 4,195 

crossbred animals 

Genpure_T 2,210 LL, 2,161 YY 

Genpc_T 2,210 LL, 2,161 YY, 2,357 crossbreds 

Genall_T 2,210 LL, 2,161 YY, 5,203 crossbreds 

  

To check the possible impact of different genotyping scenarios on the ranking and selection of purebred 

animals for their crossbred performance, Spearman’s rank correlations (Spearman, 1904) between breeding 
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values of purebred sires (765 LL and 465 YY) for crossbred performance were calculated across different 

scenarios. In addition, the breeding values for crossbred performance were ranked from highest to lowest in 

different scenarios, and then the consistency of the purebred boars in the top 5% highest breeding values was 

checked across different scenarios. Furthermore, to investigate re-rankings in a situation closer to the way 

selection for crossbred performance could be implemented in practice for such a sow-trait, the Spearman’s 

rank correlation and the top 5% studies were also made on the “young” sows that were included in the 

validation population (52,796 LL and 40,244 YY), i.e. purebred animals without own records. Among these 

“young” sows, 1,103 LL and 1,085 YY were genotyped. These two studies were processed on the genotyped 

and non-genotyped “young” sows, separately. 

The new single-step BLUP method  for crossbreds is complex, and therefore we tried a simpler single-trait 

single-step BLUP method (Legarra et al., 2009; Christensen and Lund, 2010). This method assumed that all 

animals belonged to a single population, using a single relationship matrix, where the compatibility 

adjustment of 𝐆 to 𝐀𝟐𝟐 was done as in Christensen et al. (2012). Predictive abilities for crossbred animals in 

the validation population were also measured as 𝑐𝑜𝑟(�̂�, 𝒀𝑐). 

RESULTS 

Variance components, heritabilities and genetic correlations  

Estimates of variance components and genetic correlations between purebred and crossbred performances for 

Landrace and Yorkshire in each scenario are shown in Table 3 together with calculated heritabilities. For 

each scenario, both pure breeds showed higher additive genetic variances for purebred performance (𝜎𝑎
2) 

than for crossbred performance (𝜎𝑐
2). Residual variances for purebred animals (𝜎𝑒

2) were larger than those for 

crossbred animals (𝜎𝑒𝐿𝑌
2 ). For all scenarios, the estimated heritabilities for purebred performance (ℎ2) were 

always 0.11 and 0.09 for Landrace and Yorkshire, respectively. Heritabilities for crossbred animals (ℎ𝐿𝑌
2 ) 

were around 0.09 in the different scenarios.  The estimated genetic correlation between purebred and 

crossbred ranged from 0.70 in Nogen_SC to 0.78 in Genall_SC for the Landrace breed and ranged from 0.57 

in Nogen_SC to 0.68 in Genall_SC for the Yorkshire breed. Standard errors were generally large, but kept 

decreasing from around 0.12 (Nogen_SC) to 0.1 (Genall_SC) for both breeds. Slight differences of the 

estimated genetic correlation were observed between the two breeds. The Landrace breed showed slightly 

higher genetic correlation between purebred and crossbred performance than that for the Yorkshire breed.  
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Table 3 Variance components
1
, heritabilities for purebred performance

2
, genetic correlation between 

purebred and crossbred performance for Landrace and Yorkshire
3
 and heritabilities for crossbred animals

4
 

Scenario Breed 𝜎𝑎
2 𝜎𝑎,𝑐 𝜎𝑐

2 𝜎𝑠𝑏
2  𝜎𝑒

2 𝑟𝑝𝑐(s. e) ℎ2 𝜎𝑒𝐿𝑌
2  ℎ𝐿𝑌

2  

Nogen_SC Landrace 1.63 0.62 0.48 0.83 12.07 0.70 (0.12) 0.11 
8.36 0.08 

 Yorkshire 1.23 0.61 0.92 0.73 11.47 0.57 (0.13) 0.09 

Genpure_SC Landrace 1.65 0.78 0.68 0.88 12.16 0.73 (0.11) 0.11 
8.40 0.09 

 Yorkshire 1.21 0.64 0.96 0.72 11.67 0.59 (0.12) 0.09 

Genall_SC Landrace 1.65 0.89 0.79 0.88 12.16 0.79 (0.09) 0.11 
8.33 0.10 

 Yorkshire 1.23 0.75 0.99 0.72 11.67 0.68 (0.10) 0.09 

1𝜎𝑎
2=additive genetic variance for purebred performance; 𝜎𝑎,𝑐=genetic covariance between purebred and crossbred 

performance; 𝜎𝑐
2=additive genetic variance for crossbred performance; 𝜎𝑠𝑏

2 =variance of service-boar effect; 

𝜎𝑒
2=residual variance for purebred performance; 𝜎𝑒𝐿𝑌

2 =residual variance for crossbred animals.   
2ℎ2=heritability for purebred performance (= 𝜎𝑎

2/(𝜎𝑎
2 + 𝜎𝑠𝑏

2 + 𝜎𝑒
2)). 

3
rpc=genetic correlation between purebred and crossbred performance. 

4ℎ𝐿𝑌
2 =heritability for crossbred animals (= 0.5(𝜎𝑐𝐿

2 + 𝜎𝑐𝑦

2 )/(0.5(𝜎𝑐𝐿

2 + 𝜎𝑐𝑦

2 ) + 𝜎𝑒𝐿𝑌

2 )). 

Model-based reliability 

Table 4 compares the mean model-based reliabilities for purebred sires for their crossbred performance in 

different scenarios across all boars and for genotyped and non-genotyped subgroups. The genotyped 

subgroup always had higher model-based reliabilities than the non-genotyped group, and for the group of all 

boars, model-based reliabilities were in-between those of the subgroups of genotyped and non-genotyped 

animals in each scenario. Model-based reliabilities increased from about 0.28 to 0.39 for the Landrace breed 

and from about 0.22 to 0.37 for the Yorkshire breed from Nogen_SC to Genall_SC. From Nogen_SC to 

Genall_SC, model-based reliabilities kept increasing in all the three groups. Overall, methods with marker 

information (Genpure_SC and Genall_SC) presented higher model-based reliabilities than the pedigree-

based scenario (Nogen_SC). In addition, proportions of purebred boars that have larger model-based 

reliabilities between pairwise scenarios were also studied. Result shows that 100% of LL and YY boars had 

larger model-based reliabilities in the Genall_SC compared to the Nogen_SC and Genpure_SC (results not 

shown). Concerning the single-trait, single-step BLUP model, model-based reliabilities for purebred LL and 

YY in Genall_SC were 0.70 ± 0.12 and 0.69 ± 0.12, respectively. Although these values are much higher 

than results shown in Table 4, they cannot be compared directly, because they represent the reliability of 

animals drawn from a breed that would be a mixture of YY and LL, which is not the case. In fact this single 

trait model has lower predictive abilities than Christensen’s model as will be shown next.  
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Table 4 Mean model-based reliabilities of purebred boars for their crossbred performance  

 All
1
  Genotyped

2
  Non-genotyped

3
 

 Nogen

_SC 

Genpure

_SC 

Genall_

SC 

 Nogen_

SC 

Genpure

_SC 

Genall_

SC 

 Nogen_

SC 

Genpure

_SC 

Genall_

SC 

LL 0.303 0.332 0.385  0.307 0.341 0.391  0.280 0.279 0.346 

YY 0.262 0.284 0.365  0.264 0.288 0.369  0.218 0.223 0.301 
1
All = all the sires of crossbred animals, consisting of 765 Landrace and 465 Yorkshire. 

2
Genotyped = genotyped sires of crossbred animals, consisting of 656 Landrace and 443 Yorkshire. 

3
Non-genotyped = Non-genotyped sires of crossbred animals, consisting of 109 Landrace and 22 Yorkshire. 

Predictive abilities  

Predictive abilities for crossbred pigs in the validation group for different scenarios are shown in Table 5. 

The Pearson correlation between the corrected phenotypes and the estimated breeding values (𝑐𝑜𝑟(�̂�, 𝒀𝑐)) 

range from 0.084 in Nogen_T to 0.120 in Genall_T, as shown in the second row of Table 5. No statistically 

significant differences between Genpure_T and Nogen_T were found, but Genpc_T and Genall_T were 

statistically significantly more accurate than those two scenarios. For the Genall_T, the subgroup of 2,846 

genotyped crossbred pigs reveals larger correlation coefficients than that in the subgroup of non-genotyped 

pigs. Furthermore, the subgroup of non-genotyped pigs in Genall_T shows larger correlation coefficients 

than those in other scenarios.  

Regression coefficients of corrected phenotypes on the estimated breeding values are shown in Table 5. In 

general, regression coefficients were a little bit larger than one for all the scenarios. Regression coefficients 

for scenarios with marker information (Genpure_T, Genpc_T and Genall_T) were closer to one than that for 

pedigree based scenario (Nogen_T). Among scenarios with marker information, in terms of unbiasedness, 

there was no clear trend showing which scenario performed better, but none was clearly biased. For the 

Genall_T, the subgroup of genotyped animals had less bias than the subgroup of non-genotyped animals. 
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Table 5 Predictive abilities for crossbred animals in the validation population in different scenarios 

 Nogen_T Genpure_T Genpc_T  Genall_T 

 All genotyped non-

genotyped 

𝑐𝑜𝑟(�̂�, 𝒀𝑐)
1
 0.084

a
 0.088

a
 0.097

b
  0.120

c
 0.126 0.106 

Regression coefficients
2
 1.179 1.049 1.081  1.067 1.048 1.105 

Single-trait 𝑐𝑜𝑟(�̂�, 𝒀𝑐)
3
 0.079 0.084 0.088  0.106 0.109 0.103 

Single-trait regression 

coefficients
4
 

0.588 0.644 0.644  0.698 0.875 0.647 

1 𝑐𝑜𝑟(�̂�, 𝒀𝑐) is correlation coefficients between corrected phenotypes and estimated breeding values; different 

superscripts of small letters among scenarios indicate significant differences (p<0.05) by Hotelling-Williams t-test  
2
Regression coefficients of corrected phenotypes on estimated breeding values 

3
Single-trait 𝑐𝑜𝑟(�̂�, 𝒀𝑐) is correlation coefficients between corrected phenotypes and estimated breeding values 

based on the single trait single-step BLUP method 
4
Single-trait regression coefficients is regression coefficients of corrected phenotypes on estimated breeding 

values based on the single trait single-step BLUP method 

Single-trait single-step BLUP predictive abilities  

Predictive abilities by a single-trait single-step BLUP method for crossbred animals in the validation 

population were shown in last two rows in Table 5. They increase from 0.079 in Nogen_T to 0.106 in 

Genall_T. It can also be seen that the predictive abilities calculated based on the single-trait model show 

similar trends as those calculated from the three-trait model, but are smaller than in each corresponding 

scenario. Regression coefficients increase slightly from 0.59 in Nogen_T to 0.70 in Genall_T, but are further 

from 1 when compared with regression coefficients calculated based on the three-trait model. For Genall_T, 

the genotyped subgroup also had higher predictive abilities than that in non-genotyped subgroup.       

Re-ranking of purebred animals across scenarios 

The Spearman’s rank correlations between estimated crossbred breeding values of purebred boars (765 LL 

and 465 YY) in pairwise scenarios were shown in Table 6. For both breeds, it can be seen that the pairwise 

correlations are always smaller than 1. In terms of the “top 5%” study, from 60% to 82% of purebred boars 

(either LL or YY) were shared from one scenario to another in the top 5% highest breeding values (Results 

not shown). Similar results were observed in “young” purebred sows (Results not shown).  

Table 6 Spearman’s rank correlations between crossbred breeding values for 765 Landrace boars (above the 

diagonal) and 465 Yorkshire boars (below the diagonal) of crossbred animals in pairwise scenarios   

 Nogen_SC Genpure_SC Genall_SC 

Nogen_SC 1.00 0.92 0.90 

Genpure_SC 0.93 1.00 0.98 

Genall_SC 0.87 0.95 1.00 
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DISCUSSION 

This study implemented the single-step BLUP method of Christensen et al. (2014) by using both purebred 

and crossbred data from Danish Landrace and Yorkshire in several scenarios with regard to different 

amounts of genomic information. Results indicated that the model was applicable. The genetic correlation 

between purebred and crossbred performance for TNB was successfully estimated. Methods with marker 

information were powerful for genetic evaluation for crossbred performance with regard to the predictive 

ability and unbiasedness. In addition, this study demonstrated that, in order to implement genetic evaluation 

for crossbred performance, crossbred genomic information is useful in addition to purebred genotypes. 

In the model, a key assumption was that breed origins of phased marker genotypes for crossbred animals 

were known. In this study, crossbred 60K genotypes were imputed from 8K crossbred panel. Although 

Xiang et al (2015) concluded that the imputation accuracies would be larger than 99% in terms of allele 

correct rates and 95% in terms of correlation coefficients between imputed genotypes and true genotypes, the 

uncertainty of crossbred genotypes cannot be totally eliminated. The algorithm of tracing alleles in the 

current study were considered as working efficiently, since the differences between two purebred reference 

panels were considerably large in several sampled chromosomes. However, errors of tracing alleles still 

probably appeared if the similarity of two phased crossbred segments were high. All in all, a hidden risk of 

using incorrect alleles may still exist when building the breed-specific partial relationship matrix. This needs 

further research.  

The additive genetic variances for purebred performance ( 𝜎𝑎
2 ) were larger than those for crossbred 

performance (𝜎𝑐
2) implying that the phenotypes of purebred animals could be more diverse than for the 

crossbred animals, which was in line with the phenotypic variances for purebred animals (15.12 and 14.14 

for LL and YY, respectively) were larger than those for crossbred animals (9.49). The heritabilities for 

crossbred animals (ℎ𝐿𝑌
2 ) were not dramatically different from heritabilities for purebred performance (ℎ2), 

which was opposite to results in Wei and van der Werf (1995), and is due to the fact that in the current study, 

variances of environmental effects for crossbreds (𝜎𝑒𝐿𝑌
2 ) were only two-thirds of those for purebreds (𝜎𝑒

2), 

which could be a consequence of heterosis and phenotypic plasticity (better fitness) to the multiple herds for 

crossbreds than for purebreds (Misztal and Løvendahl, 2012) or alternatively be due to fact that only three 

different herds were used for crossbreds. Crossbreeding capitalizes on heterosis effects and complementarity 

between breeds and results in an increased performance of crossbreds compared to purebreds (Dekkers, 

2007).  

When selection is based on purebred performance, the genetic correlation between purebred and crossbred 

performance (rpc) is a key genetic parameter in crossbreeding schemes (Bell, 1982; Bijma and Bastiaansen, 
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2014). The genetic correlations between purebred and crossbred performance for TNB were around 0.75 and 

0.63 for Landrace and Yorkshire, which confirmed the existence of a moderate correlation. The rpc is smaller 

than one, which is due to different environments for purebreds and crossbreds (Lutaaya et al. 2001) and the 

presence of dominant gene action combined with different allele frequencies in the two breeds (Lo et al., 

1997; Christensen et al. 2014). This result was in line with Wong et al. (1971), which reported that the rpc for 

litter size was 0.74. However, Wei et al. (1992) reviewed some other studies that reported low or even 

negative genetic correlations between purebred and crossbred performance for litter size. A change of rpc 

over time was reported to be caused by long-term purebred selection (Pirchner and VonKrosigk, 1973) and 

thus, it needs to be estimated regularly. The standard errors on the estimated genetic correlations were 

generally large in the current study, which implies that the sample size was not large enough, especially for 

crossbreds. Taking the standard errors into account, the estimated correlations in different scenarios were not 

very different. Nevertheless, the slight decrease of standard errors with an increased amount of genomic 

information indicated that genotypes, especially crossbred genotypes, would reduce the uncertainty of rpc. 

The decreasing standard errors demonstrated the better performance of the new single-step model 

incorporating crossbred marker information compared to the pedigree-based selection of purebred animals 

for crossbred performance. Bijma and Bastiaansen (2014) showed that when using pedigree relationships, the 

standard error of rpc was determined by number of sire families and reliabilities of EBVs and suggested that 

the standard error should not exceed 0.05. In the current study, the TNB was a low heritable trait (around 0.1) 

and only 1,018 sires of the 1,230 sires of 10,974 crossbred animals were genotyped, which was also low. 

Thus, large standard errors were expected. Results in the current study showed that rpc for Landrace was 

slightly larger than that for Yorkshire, although standard errors were large. Genetic correlations (rpc) also 

consistently increase with number of genotypes used. One possible explanation could be that there are still 

some discordances between the definition of base populations in genomic and pedigree relationships. 

Concerning heritabilities for purebred performance, our estimates confirmed the results of Guo et al. (2015), 

which estimated heritability 0.11 and 0.09 for TNB in Landrace and Yorkshire, respectively.  

The model-based reliabilities for purebred boars for their crossbred performance were generally low in the 

current study. The magnitude of these reliabilities is a direct function of the prediction error variances, which 

in this case are mostly determined by the numbers of offspring per boar (Dufrasne et al., 2011). In the current 

study, the numbers of crossbred offspring for each boar ranged from 1 to 11, with average 5, which were low 

and led to high uncertainty of prediction. According to Table 4, model-based reliabilities tended to increase 

as the amount of genomic information increased for both two breeds. The scenarios with marker information 

presented larger model-based reliabilities than the pedigree-based scenario, which may be due to the 

additional marker information. Reliabilities for the subgroup of genotyped animals were larger than that for 

the subgroup of non-genotyped animals in each scenario, but non-genotyped animals also benefitted from 

genomic information of genotyped animals, as the reliabilities for non-genotyped subgroup kept increasing 
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from Nogen_SC to Genall_SC. These results are in line with Lourenco et al. (2015). Reliabilities for non-

genotyped animals in Genall_SC were even larger than those in Nogen_SC and Genpure_SC for genotyped 

animals, implying the benefit of genotyping crossbred animals. In addition, 100% of purebred boars had 

larger model-based reliabilities in the Genall_SC than that in the other two scenarios which also evidenced 

that the model incorporating crossbred marker information was useful for genetic evaluation for crossbred 

performance in purebred boars. We concluded that crossbred genomic information plays a role in improving 

reliabilities for crossbred performance in purebred boars. Nevertheless, it has been reported that the model-

based reliabilities overestimated the true reliabilities (VanRaden et al., 2009), because the markers may 

overfit the dataset (Su et al., 2012). Thus, further investigation on true reliabilities is needed, potentially by a 

simulation study.  

Correlation coefficients between corrected phenotypes and estimated breeding values for TNB in crossbred 

animals were lower than results for daily gain and feed conversion ratio in Christensen et al. (2012). This 

may be related to the fact that the heritability was higher for the traits of daily gain and feed conversion ratio 

than for the TNB in current study. Moreover, the additive genetic effects for crossbred animals required 

estimating two breed of origin genetic effects c(L) and c(Y), which may led to more uncertainty for crossbred 

animals than studies for purebred animals in Christensen et al. (2012). The 𝑐𝑜𝑟(�̂�, 𝒀𝑐) in different scenarios 

confirmed that the methods with marker information would enhance the predictive ability. The crossbred 

genomic information was useful to improve the prediction, since scenarios with only purebred genotypes did 

not show significant improvement compared with the pedigree-based scenario, but improved significantly 

when crossbred genomic information was also involved. Results showed that genotyped animals had larger 

𝑐𝑜𝑟(�̂�, 𝑌𝑐) than non-genotyped animals, which was opposite to studies by Guo et al. (2015). This could be 

because in current study, the validation group consisted of crossbred animals among which the genotyped 

subset was a random sample, without biases for prediction (Su et al., 2012), whereas in Guo et al. (2015) the 

validation group consisted of purebred animals among which the genotyped subset was a preselected group. 

Preselection reduces accuracies of estimated breeding values (Bijma, 2012; Lourenco et al., 2015). The non-

genotyped subgroup of crossbred animals in Genall_T had larger accuracies than those in other scenarios, 

indicating that non-genotyped validated animals benefited from crossbred genotyped animals in the 

validation population. Thus, we suggest to genotype crossbred animals as well as purebred animals when 

implementing genomic selection for crossbred animals.  

Regression coefficients of corrected phenotypes on EBVs did not show a clear preference for a specific 

scenario, but coefficients in all scenarios with marker information were closer to one than in the pedigree-

based scenario. All the regression coefficients were larger than 1, suggesting the underestimation (deflation) 

of variation of the estimated genomic breeding values (Gao et al., 2012).  
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Both the values of Spearman’s rank correlations lower than one and the “top 5%” study indicated that 

rankings of purebred animals’ breeding values for crossbred performance were not consistent across different 

scenarios. The selected purebred candidates for crossbred performance will be different with the availability 

of (crossbred) genomic information.  

In terms of the predictive abilities and bias, the single-trait model was less robust than the three-trait model, 

although easier to implement. With crossbred genomic information, the three-trait model showed up to 13% 

higher predictive abilities than the single-trait model, which seems an interesting gain for this low heritable 

trait.      

 

CONCLUSION 

The new single-step model works well for genetic evaluation for crossbred performance in pigs. A moderate, 

positive genetic correlation between purebred and crossbred performance (rpc ranged from 0.57 to 0.78) for 

TNB in purebred Landrace and Yorkshire is confirmed. Crossbred genomic information reduces the standard 

error on the estimate of this genetic correlation. Models with marker information, especially crossbred 

genomic information, improve model-based reliabilities for crossbred performance of purebred boars, and 

also improve the predictive ability for validated crossbred animals and somehow reduce the bias of 

prediction. The single-step model that considered the three populations as a single one resulted in lower 

predictive abilities. The model is a good tool in the genetic evaluation for crossbred performance in purebred 

animals.      
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ABSTRACT 

A single-step genomic BLUP method (ssGBLUP) has been successfully developed and applied for purebred 

and crossbred performance in pigs. However, it requires phasing the genotypes and inferring breed origin of 

alleles in crossbred animals, which is somehow inconvenient.  Recently, a new concept of metafounders that 

considers relationship within and across base populations was developed. With this concept of metafounders, 

regular methods to build and invert the pedigree relationships matrix can be used with only minor 

modifications and moreover, genomic relationships and pedigree-based relationships are automatically 

compatible in the ssGBLUP. In this study, data of total number of piglets born in Danish Landrace, 

Yorkshire, and two-way crossbred pigs and models for purebred and crossbred performance was revisited by 

use of ssGBLUP with two metafounders. Genetic variances and genetic correlations between purebred and 

crossbred performances were first re-estimated. Then, model-based reliabilities of purebred boars for their 

crossbred performance and predictive abilities for crossbred animals were compared in different scenarios. 

Results in this study were compared to those in a previous study with identical data but with models that 

required known breed origin of crossbred genotypes. Results show that relationships for base individuals 

within Landrace and within Yorkshire are similar, and that the ancestor populations for Landrace and 

Yorkshire are related. In terms of model-based reliabilities and predictive abilities, ssGBLUP with 

metafounders performs at least as well as the single-step method requiring phasing, at a lower complexity. 

 

Key words: crossbred performance, genomic evaluation, metafounders, pig, single-step method.  
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INTRODUCTION 

Single-step genomic BLUP (ssGBLUP) (Legarra et al., 2009; Christensen and Lund, 2010) has been 

successfully used in genomic evaluation to handle the situation where only a fraction of animals are 

genotyped. Christensen (2012) summarized two issues with ssGBLUP. First, in theory allelic frequencies in 

the base population of the pedigree should be used in the genomic relationship matrix (VanRaden, 2008), but 

these frequencies are rarely available. Second, how to make genomic and pedigree-based relationship 

matrices compatible. 

Compatibility of genomic and pedigree relationship across populations is difficult as pedigree implies 

unrelatedness of base populations, whereas markers “show” relatedness across base populations. In a series 

of papers, Christensen (2012), Legarra et al. (2015) and Christensen et al. (2015) present a solution: genomic 

relationships should be constructed using 0.5 allelic frequencies, and pedigree relationships should refer to 

these allelic frequencies in the base populations; i.e. base populations must be assumed related and inbred, 

using the concept of metafounders. Metafounders are thus a generalization of unknown parent groups, in the 

spirit claimed by Kennedy (1991). Matrix 𝚪 describes relationships within and across metafounders, that is, 

base populations. With metafounders added to the pedigree, regular methods to construct a sparse inverse of 

the new pedigree relationship matrix 𝐀(𝚪) exist (Legarra et al. 2015). 

How genomic evaluation with metafounders performs in real data and for several populations and crosses is 

unknown yet. The aim in this study is to revisit the dataset and models for purebred and crossbred 

performances in Xiang et al. (2016), and investigate the effect of ssGBLUP with metafounders. In that study, 

the additive genetic effects of crossbreds were split into two breed-specific additive gametic effects and a 

ssGBLUP method with two breed-specific partial relationship matrices was investigated. On the contrary, in 

the current study we employ one pedigree relationship matrix containing two metafounders and all animals 

across the three populations.  

 

MATERIALS AND METHODS 

Data 

The data set analysed is the same as in Xiang et al. (2016), and is only briefly presented here; further details 

can be found in Xiang et al. (2016). The trait of total number of piglets born (TNB) in the first parity was 

recorded in three pig populations: 293,339 Danish Landrace (L), 180,112 Danish Yorkshire (Y) and 10,974 

two-way F1 crosses (LY) between these two pure populations. Among the F1, 7,407 had Landrace sire and 
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Yorkshire dam and 3,567 had Yorkshire sire and Landrace dam. The F1 were daughters of 765 L and 465 Y 

boars, respectively. Totally, 7,723 L and 7,785 Y were genotyped with the PorcineSNP60 BeadChip and 

5,203 LY were genotyped with a 8.5K GGP-Porcine Low Density Illumina Bead SNP Chip. After SNP 

quality controls and imputation as described in Xiang et al. (2015), 41,009 phased genotyped SNP were 

available for the genotyped animals in both purebreds and crossbreds. A complete pedigree was traced from 

crossbred offspring to their purebred parents and backwards until the year 1994 by the DMU Trace program 

(Madsen, 2012). Consequently, 332,929 L, 210,554 Y, and 10,974 LY were in the pedigree. Two 

metafounders were added corresponding to Landrace and Yorkshire populations, respectively. 

Within and across breed relationships using metafounders  

In this research, we fit additive models to the data as in Wei and Van der Werf (1994) and Lo et al (1997),  

where non-additive effects at the individual level ignored, but modelled at the mean population level and 

using the three-trait (two purebreds and crossbred) parametrization with genetic correlations. Legarra et al. 

(2015) defined an additive relationship matrix 𝐀(𝚪) across all animals with the relationships among the base 

populations (metafounders) that is determined by a positive definite matrix  𝚪. The matrix 𝚪 consists of 

elements representing relatedness for base animals within or across breeds. In this study, there are two 

purebred populations, and thus two metafounders, and the matrix 𝚪 = [
𝛾𝐿 𝛾𝐿,𝑌

𝛾𝐿,𝑌 𝛾𝑌
]，where 𝛾𝐿and 𝛾𝑌  are 

relatedness for base animals within L and Y, respectively; 𝛾𝐿,𝑌 is the relatedness across base populations L 

and Y. The 𝐀(𝚪) matrix is defined as follows. First, for the metafounders L and Y self-relationships were set 

to  𝑎11 = 𝛾𝐿 and 𝑎22 = 𝛾𝑌 and the relationships 𝑎21 = 𝑎12 = 𝛾𝐿,𝑌 (in other words, the upper left corner of 

𝐀(𝚪) is set to 𝚪).  The remaining elements in the 𝐀(𝚪) matrix are defined by the usual tabular rules; see 

Legarra et al. (2015): 

 𝑎𝑖𝑖 = 1 + 0.5𝑎𝑠𝑑 

𝑎𝑖𝑗 = 0.5(𝑎𝑠𝑗 + 𝑎𝑑𝑗), 

where the 𝑠 and 𝑑 are sire and dam of animal 𝑖. Then, following the recursive process, the whole 𝐀(𝚪) 

matrix is defined. Explicit construction of 𝐀(𝚪) is not needed, because its inverse is constructed directly.   

In principle, the matrix 𝚪  should be determined by observed phenotypes and marker genotypes, but in 

practice, it can be estimated by observed marker genotypes only (Christensen, 2012). Christensen (2012) 

used maximum likelihood to estimate 𝚪, while Legarra et al. (2015) suggested using the method of moments 

based on summary statistics (Legarra et al., 2015). García-Baccino et al. (2017) compared several ways of 

estimating 𝚪 in a simulation study with a single metafounder and showed that generalized least squares (GLS) 

and maximum likelihood obtained the most accurate 𝚪. Therefore, in this study, GLS was used to estimate 𝚪. 
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According to Christensen (2012) and García-Baccino et al. (2017), the relatedness within breed 𝛾𝐿𝐿 =

8𝜎𝑝𝐿𝐿
2 and 𝛾𝑌 = 8𝜎𝑝𝑌𝑌

2 , where 𝜎𝑝𝐿𝐿
2 and 𝜎𝑝𝑌𝑌

2  are the variances of true (but usually unobserved) allelic 

frequencies in the base population L and Y, respectively; the relatedness across L and Y is 𝛾𝐿,𝑌 =

8𝑐𝑜𝑣(𝑝𝐿 , 𝑝𝑌) = 8𝜎𝑝𝐿 ,𝑝𝑌
,  where 𝜎𝑝𝐿,𝑝𝑌

 is the covariance between allelic frequencies across all loci of 

individuals in Landrace and Yorkshire populations. An explanation is as follows. Cockerham (1969) 

observed that  𝜃 = 𝜎𝑝
2/𝑝(1 − 𝑝) was “the coancestry of one population with itself” where 𝜎𝑝

2 refers to the 

variance of existing allelic frequencies in a population whereas 𝑝 refers to the (assumed) allelic frequencies 

in the meta-population from which this population is conceptually drawn. In other words, 𝜃 is the covariance 

of the numeric values of two alleles drawn at random from such population. In the metafounder method, 𝑝 is 

assumed to be 0.5 for all loci, by which we impose that the meta-population has 𝑝 = 0.5. Thus, and because 

relationship is twice the coancestry, substituting 𝑝 = 0.5 in the above expression yields 𝛾 = 8𝜎𝑝
2. The base 

allelic frequencies that constitute 𝜎𝑝
2 are estimated by GLS (equivalently, BLUP), as described in the next 

paragraphs. 

The procedure for estimating allele frequencies is as follows. Define regular additive genetic relationship 

matrices 𝑨𝐿𝐿 and 𝑨𝑌𝑌 according to the pedigrees of Landrace and Yorkshire, respectively. Gene content at 

one marker is the number of copies of a particular reference allele (e.g coded as [0,1,2] for genotypes AA, AB 

and BB) (Falconer and Mackay, 1996). The gene content can be seen as a quantitative trait with heritability 

of 1 and all variation is strictly additive genetic (Forneris et al., 2015). The mean of gene content in the base 

population is 𝜇𝑖 = 2𝑝𝑖, where 𝑝𝑖 is the allelic frequency at the base population, whereas its variance is 2𝑝𝑖𝑞𝑖 

with 𝑞𝑖 = 1 − 𝑝𝑖 . The covariance of gene contents between two individuals is a function of coancestry 

(Cockerham, 1969) and it equals 𝐴𝑖𝑗(2𝑝𝑖𝑞𝑖), where 𝐴𝑖𝑗 is the additive relationship between two individuals. 

Thus, a linear model for gene content can be written as: 

𝒎𝑖𝑗 = 𝟏𝜇𝑖 + 𝑾𝒖𝑖𝑗 + 𝒆𝑖𝑗 ,   

where 𝒎𝑖𝑗  is a vector with genotypes in the form [0,1,2] for locus 𝑖  across all 𝑗  animals; overall mean 

𝜇𝑖 = 2𝑝𝑖  is the mean of gene content for each locus 𝑖; random effect 𝒖𝑖𝑗 is deviation of each individual from 

this mean, following a multivariate normal distribution, 𝒖𝑖𝑗~𝑁(𝟎, 𝑨2𝑝𝑖𝑞𝑖) and 𝑨  is the regular additive 

genetic relationship matrix. In this study, the above mentioned 𝑨𝐿𝐿 and 𝑨𝑌𝑌 were used for Landrace and 

Yorkshire populations, respectively. 𝑾 is an incidence matrix relating individuals to genotypes; 𝒆𝑖𝑗  is an 

error term, with 𝜎𝑒
2 = 0.001 so that the heritability is almost 1. This model has been independently proposed 

by McPeek et al. (2004) and Gengler et al. (2007).  

For each locus 𝑖, two separate BLUPs (one for Landrace and one for Yorkshire, with respective matrices 𝑨𝐿𝐿
−1 

or 𝑨𝑌𝑌
−1 ) were used to estimate, for each locus, the respective means 𝜇𝑖𝐿  and 𝜇𝑖𝑌 using BLUPF90 (Misztal et 
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al., 2002). Then the allelic frequency �̂�𝑖 was calculated as half of the �̂�𝑖. Across all the loci, the empirical 

variance 𝜎𝑝
2 = 𝑣𝑎𝑟(𝑝𝑖)  can be obtained, and finally 𝛾𝐿 = 8𝜎𝑝𝐿𝐿

2 ,  𝛾𝑌 = 8𝜎𝑝𝑌𝑌
2  and 𝛾𝐿,𝑌 = 8𝜎𝑝𝐿,𝑝𝑌

 are 

estimated.  

ssGBLUP with metafounders  

According to Legarra et al. (2015) and Christensen et al. (2015), with metafounders, the inverse of the 

relationship matrix that combined the pedigree and marker information 𝐇(𝚪)−1 is: 

𝐇(𝚪)−1 = [
𝟎 𝟎
𝟎 𝐆−1 − 𝐀(𝚪)22

−1] + 𝐀(𝚪)−1, 

where 𝐆 is a matrix including genomic relationships for genotyped individuals; 𝐀(𝚪)22 is a pedigree-based 

relationship matrix across genotyped individuals. The matrix 𝐆 is as in Christensen et al. (2015): 

𝐆 = (𝐦 − 𝟏𝟏′) (𝐦 − 𝟏𝟏′)
′

/𝑠, 

where 𝐦 is the allele contents matrix with entries 0, 1, 2 and 𝑠 is a scaling parameter. García-Baccino et al. 

(2017) showed that 𝑠 is equal to half of the number of markers. In this study, the number of markers finally 

used were 41,009 SNP markers so that 𝑠 = 20504.5. To accommodate that not all genetic variance is 

captured by marker genotypes, 𝐆 is replaced by 𝐆ω = 𝐆(1 − ω) + ω𝐀(𝚪), where ω = 0.4 is the proportion 

of genetic variance in the genotyped individuals not attributable to markers. We used the value of 0.4 as this 

was the optimal value in Xiang et al (2016) for prediction, but it could alternatively be computed using 

variance component estimation (Christensen and Lund, 2010). Matrix 𝐀(𝚪)−1 is constructed using inversion 

of 𝚪  followed by Henderson’s rules (1976). Matrix 𝐀(𝚪)22
−1  is the inverse of matrix 𝐀(𝚪)22 , which is 

constructed following the algorithm by Colleau (2002). 

Statistical model 

A three-trait model, as in (Xiang et al., 2016), was used here. The model was: 

𝒚𝐿 = 𝑿𝐿𝜷𝐿 + 𝒁𝐿𝒂𝐿 + 𝑾𝐿𝒔𝒃𝐿 + 𝒆𝐿, 

𝒚𝑌 = 𝑿𝑌𝜷𝑌  +  𝒁𝑌𝒂𝑌  +  𝑾𝑌𝒔𝒃𝑌 + 𝒆𝑌, 

𝒚𝐿𝑌  =  𝑿𝐿𝑌𝜷𝐿𝑌  + 𝒁𝐿𝑌𝒄𝐿𝑌  +  𝒆𝐿𝑌, 

where 𝒚𝐿 , 𝒚𝑌 and 𝒚𝐿𝑌 contain records of TNB in the first parity for L, Y and LY, respectively; 𝑿𝐿𝜷𝐿 , 𝑿𝑌𝜷𝑌 

and 𝑿𝐿𝑌𝜷𝐿𝑌  contain fixed effects, including herd–year–season, month at farrowing, hybrid indicator of 

service sire (same or different breed as the sow) and covariates for the age of farrowing and its squared value; 
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𝒂𝐿 and 𝒂𝑌 represent purebred breeding values for L and Y, respectively; 𝒄𝐿𝑌 is the additive genetic effects of 

crossbred LY animals; 𝒔𝒃𝐿 and 𝒔𝒃𝑌 are random effects of service boar for L and Y, respectively; 𝒁 and 𝑾 

are the respective incidence matrices; 𝒆𝐿 , 𝒆𝑌  and 𝒆𝐿𝑌  are overall residual effects. Assumptions were that 

random effects were independently normally distributed: 𝒔𝒃 ~ 𝑁(𝟎, 𝑰𝜎𝑠𝑏
2 ) and 𝒆 ~𝑁(𝟎, 𝑰𝜎𝑒

2). The genetic 

variance and covariance structure for the additive genetic effects was: 

𝑣𝑎𝑟

[
 
 
 
 
 
 
 
 
𝒂𝐿

∗
𝒄𝐿

∗
𝒂𝑌

𝒄𝑌

∗
∗

𝒄𝐿𝑌]
 
 
 
 
 
 
 
 

= 𝐇(𝚪)⨂ 𝐆0,    

where 𝒂 stands for breeding values for purebred performance (when mated within breed); 𝒄𝐿 and 𝒄𝑌 stand 

for breeding values for crossbred performance (when mated to the other breed); 𝒄𝐿𝑌  is additive genetic 

effects for crossbred animals; ∗  denotes artificial random vectors and  𝐆0  is a 3 × 3  genetic variance 

components:  

 𝐆0 = [

𝜎𝐴𝐿

2 𝜎𝐴𝐿𝐴𝑌
𝜎𝐴𝐿𝐴𝐿𝑌

𝜎𝐴𝑌𝐴𝐿
𝜎𝐴𝑌

2 𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝐴𝐿𝑌
𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝑌

2

], 

where elements in the diagonal are additive genetic variances within each population,  𝜎𝐴𝐿𝐴𝑌
 is the genetic 

covariance between breeding values for purebred L and Y, and 𝜎𝐴𝐿𝐴𝐿𝑌
 and 𝜎𝐴𝑌𝐴𝐿𝑌

 are genetic covariances 

between breeding values for purebred and crossbreed performances for L and Y, respectively. The three-trait 

model accounts for potential genotype by environment or genotype by genotype (dominance, epistasis) 

interactions (Wei and Van der Werf, 1994; Christensen et al. 2014). 

𝐇(𝚪) is an additive genetic relationship matrix across three populations, which has 9 blocks: 

𝐇(𝚪) = [

𝑯𝐿,𝐿
𝛾

𝑯𝐿,𝑌
𝛾

𝑯𝐿,𝐿𝑌
𝛾

𝑯𝑌,𝐿
𝛾

𝑯𝑌,𝑌
𝛾

𝑯𝑌,𝐿𝑌
𝛾

𝑯𝐿𝑌,𝐿
𝛾

𝑯𝐿𝑌.𝑌
𝛾

𝑯𝐿𝑌,𝐿𝑌
𝛾

], 

i.e. three blocks for within populations, 𝑯𝐿,𝐿
𝛾

, 𝑯𝑌,𝑌
𝛾

 and 𝑯𝐿𝑌,𝐿𝑌
𝛾

, two blocks for between purebreds, 𝑯𝐿,𝑌
𝛾

 and 

𝑯𝑌,𝐿
𝛾

, and the remaining four blocks for between purebred and crossbred animals, 𝑯𝐿,𝐿𝑌
𝛾

, 𝑯𝑌,𝐿𝑌
𝛾

, 𝑯𝐿𝑌,𝐿
𝛾

 and 
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𝑯𝐿𝑌,𝑌
𝛾

. In this study, different genomic information was used to construct this additive genetic relationship 

matrix, which will be described more detailed in the following section. 

The differences between the model here and the model in (Xiang et al., 2016) are as follows. First, in the 

previous study, a breed-of-origin model was used, where breeds of origin on genotypes were traced and the 

rules of García-Cortés and Toro (2006) were applied to split the genetic effects of crossbred animals into two 

independent breed-of-origin terms. Therefore, two breed-specific partial relationship matrices were used. 

The assumption behind this is that base individuals within and across different breeds are totally unrelated. In 

this study, to the contrary, it is assumed that base individuals (and marker effects) are related within and 

across different breeds. Hence, pedigree relationships are specified across all the animals in the pedigree, and 

genomic relationships are also specified across the three populations. Consequently only one combined 

relationship matrix is specified in this study. Second, genetic parameters are different in the two studies. The 

parameters in this study are not corresponding to the usual genetic variances where the individuals in the 

base population are unrelated (Legarra et al. 2015). Besides, genetic correlation between purebred L and Y 

effects (𝜎𝐴𝐿𝐴𝑌
) did not exist in the previous study. Finally, in this study the genetic variance in the crossbreds 

has one component (𝜎𝐴𝐿𝑌

2 ) whereas in the previous study it had two, one coming from each breed.  

Scenarios 

Scenarios used in this study were the same as those in (Xiang et al., 2016). Variance and covariance 

parameters, heritabilities and genetic correlations between purebred and crossbred performances (𝑟𝑃𝐶) were 

first investigated in the three scenarios: Nogen, where the relationship matrix 𝐇(𝚪) was replaced by 𝐀(𝚪), 

which was constructed based on pedigree information; Genpure, where pedigree information in combination 

with purebred genomic information (7,723 L and 7,785 Y) was used to construct the 𝐇(𝚪); Genall, where 

𝐇(𝚪) was constructed based on all purebred and crossbred genomic information (7,723 L, 7,785 Y and 5,203 

LY) and pedigree information. Initial convergence of REML was very slow. Thus, initial guesses of variance 

components were estimated by Gibbs sampling using GIBBS1F90 (Misztal et al., 2002). A total of 300,000 

iterations of the sampler were made, with the first 5,000 iterations discarded as burn-in samples and every 

25th sample included in the posterior analysis. The posterior means were used as starting values for 

REMLF90 (Misztal et al., 2002), which converged after a few (≤ 3) iterations. Legarra et al. (2015) and 

Christensen et al. (2015) pointed out that the estimated genetic parameters (unscaled) in the method with 

metafounders were not directly comparable with the usual genetic parameters where the animals in base 

populations were assumed to be unrelated. To compare the estimated genetic parameters with those in 

(Xiang et al., 2016), genetic parameters need to be multiplied by (1 − 𝛾𝑏/2) , corresponding to the 

(co)variances among the unrelated breed 𝑏 animals (scaled). More specifically, the scaled genetic variances 

of purebred performances (𝜎𝑎
2 ) were 𝜎𝐴𝐿

2 (1 − 𝛾𝐿/2)  within L and 𝜎𝐴𝑌

2 (1 − 𝛾𝑌/2)  within Y; the scaled 



Chapter 4: The ssGBLUP with metafounders for F1 cross 

87 
 

genetic variances of crossbred performances (𝜎𝑐
2) were 𝜎𝐴𝐿𝑌

2 (1 − 𝛾𝐿/2) for L and 𝜎𝐴𝐿𝑌

2 (1 − 𝛾𝑌/2) for Y; the 

scaled genetic covariance between purebred and crossbred performances (𝜎𝑎,𝑐) were 𝜎𝐴𝐿𝐴𝐿𝑌
(1 − 𝛾𝐿/2) and 

𝜎𝐴𝑌𝐴𝐿𝑌
(1 − 𝛾𝑌/2) for L and Y, respectively. Heritabilities for purebred performance (ℎ𝐿𝐿

2  for L and ℎ𝑌𝑌
2  for 

Y) were defined as the ratio of the scaled additive genetic variances for purebred performance (𝜎𝑎
2 =

𝜎𝐴𝐿

2 (1 −
𝛾𝐿

2
)  for L and 𝜎𝑎

2 = 𝜎𝐴𝑌

2 (1 −
𝛾𝑌

2
)  for Y) to phenotypic variances (𝜎𝑃𝐿

2 = 𝜎𝐴𝐿

2 (1 −
𝛾𝐿

2
) + 𝜎𝑠𝑏𝐿

2 +

𝜎𝑒𝐿
2 for L and 𝜎𝑃𝑌

2 = 𝜎𝐴𝑌

2 (1 −
𝛾𝑌

2
) + 𝜎𝑠𝑏𝑌

2 + 𝜎𝑒𝑌
2  for Y). The genetic correlations between purebred and 

crossbred performances (𝑟𝑝𝑐𝐿
for L and 𝑟𝑝𝑐𝑌

for Y) were calculated as 𝑟𝑝𝑐𝐿
=

𝜎𝐴𝐿𝐴𝐿𝑌
 

√𝜎𝐴𝐿
2 𝜎𝐴𝐿𝑌

2
 and 𝑟𝑝𝑐𝑌

=
𝜎𝐴𝑌𝐴𝐿𝑌

√𝜎𝐴𝑌
2 𝜎𝐴𝐿𝑌

2
.  

Model-based reliabilities of crossbred performance for purebred boars (765 L and 465 Y) were calculated in 

the mentioned three different scenarios. These boars were divided into genotyped (656 L and 443 Y) and 

non-genotyped (109 L and 22 Y) subgroups and mean model-based reliabilities were computed in each 

subgroup. Mean model-based reliability was calculated as (Van Vleck, 1993): 𝑟2 = ∑ (1 −
𝑆𝐸𝑃𝑖

2

𝐻𝑖𝑖∗𝜎𝐴𝐿𝑌
2 )/𝑛𝑛

𝑖=1 , 

where 𝑆𝐸𝑃𝑖 was the standard error of prediction for animal 𝑖 (obtained by inversion using blupf90); 𝐻𝑖𝑖 is the 

self-relationship coefficient in 𝐇(𝚪) for animal 𝑖 ; 𝜎𝐴𝐿𝑌

2  was the additive genetic variance in crossbreds 

(unscaled additive genetic variance for crossbred performance) and 𝑛 was the number of purebred boars 

studied. 

For comparison of the performance of the different models, predictive abilities for crossbred animals in the 

validation populations were studied in the same different scenarios as in (Xiang et al., 2016). The farrowing 

date of January 1, 2012 was used as cut-off date to divide recorded sows into training and validation 

populations. For the genotyped boars the birth date of January 1, 2011 was used as cut-off date. 

Consequently, training population contained phenotypes recorded in 240,543 L, 139,868 Y and 6,779 LY 

sows and genomic information of 2,210 L, 2,161 Y and 2,357 LY. The validation population for crossbred 

performance included 4,195 LY, among which 2,846 were genotyped. The predictive ability was measured 

by cross-validation as the correlation between phenotypes (corrected for fixed and non-genetic random 

effects) and estimated additive genetic effects for crossbred animals ( 𝑐𝑜𝑟(𝒀𝑐 , 𝒄𝐿�̂�) ). To compare the 

predictive abilities with those in (Xiang et al., 2016), the corrected phenotypes 𝒀𝑐 used in that study were 

also used here. 

 Additive genetic effects 𝒄𝐿�̂� were estimated in the following four scenarios, concerning different amount of 

genomic information for constructing the relationship matrix 𝐇(𝚪): Nogen_T, where 𝐇(𝚪) was constructed 

based on pedigree information (thus, 𝐇(𝚪) = 𝐀(𝚪)); Genpure_T, where 𝐇(𝚪) was constructed based on the 

combined pedigree and purebred genomic information (2,210 L and 2,161 Y); Genpc_T, where the 𝐇(𝚪) was 

constructed based on pedigree information and genotypes of 2,210 L, 2,161Y and 2,357 LY that belonged to 
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the training population; Genall_T, where all information in Genpc_T in combination with extra 2,846 

validation crossbred genotyped animals was used to construct 𝐇(𝚪). These scenarios are the same as in 

Xiang et al. (2016) for comparison purposes, but we note that scenario Nogen_T has no practical relevance 

because (a) the connection across the two breeds is not informative and (b) genotypes were used to estimate 

matrix 𝚪. For Genall_T, the validation population was divided into two subgroups of genotyped and non-

genotyped animals and the validation correlations were made within the two subgroups as well as in the 

whole validation population. A Hotelling-Williams t-test at a 5% confidence level was applied to evaluate 

the significance for the differences of validation correlations between scenarios. Furthermore, the regression 

coefficients of 𝒀𝑐 on 𝒄𝐿�̂� were explored to check the possible biases of predictions.   

RESULTS AND DISCUSSION 

Estimations of 𝜞 

The self-relationship of the metafounder L or the relationship coefficient across animals in the base 

population of Landrace (𝛾𝐿) was 0.756. For Yorkshire, the 𝛾𝑌 = 0.730 was close to 𝛾𝐿 . The similar 𝛾’s 

indicated that the additive relationships among base animals for Landrace and for Yorkshire were similar. 

According to Legarra et al. (2015), 𝛾 was determined by (or a measure of) the effective population size, 

which is, in both breeds, around 55 (personal communication, Tage Ostersen, Danish Pig Research Center). 

In this study, both 𝛾’s were smaller than 1, which lead to a negative inbreeding coefficient of metafounder 

(𝐹 =  𝛾 − 1) (Legarra et al. 2015). This negative inbreeding represents an excess of heterozygotes relative to 

the average of the population and indicated in most cases, gametes of base animals were not identical 

(Legarra et al., 2015). In other words, the base population has a large genetic variability. For an infinite 

population, the inbreeding of the population is -1 (i.e. all animals are heterozygotes). The relationship 

coefficient between base populations of Landrace and Yorkshire (𝛾𝐿,𝑌) was 0.259. The 𝛾𝐿,𝑌 was larger than 0, 

suggesting there was an overlap between their ancestor populations, which was in line with the mixture 

history of Landrace and Yorkshire (King, 1991; Wang et al., 2013). As a whole, the estimated relationship 

matrix among the base populations (metafounders) is 𝚪 = [
𝛾𝐿 𝛾𝐿,𝑌

𝛾𝐿,𝑌 𝛾𝑌
] = [

0.756 0.259
0.259 0.730

]. 

Variance components, heritabilities and genetic correlations 

Estimates of variance components, calculated heritabilities and genetic correlations between purebred and 

crossbred performances for Landrace and Yorkshire in each scenario are shown in Table 1. For all the 

presented genetic parameters, they were scaled to be comparable with the usual genetic variance where the 

founders of pedigree were assumed to be unrelated (Legarra et al., 2015). From the table, it can be seen that 

for each breed, genetic parameters for purebred performance were nearly the same across different scenarios. 
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For crossbred performance, genetic variances in scenarios with genomic information were slightly larger 

than those in Nogen scenario. When comparing these estimated variance components with results in our 

previous study (Xiang et al., 2016), additive genetic variances for purebred performances were almost 

identical, but the genetic variances for crossbred performance were slightly different, ranging around 0.1~0.2. 

As for the non-genetic parameters, estimates were very close to results in the previous study (Xiang et al., 

2016). Heritabilities (ℎ2) were constant for Landrace (0.11) and for Yorkshire (0.09) in different scenarios. 

Genetic correlations between purebred and crossbred performances (𝑟𝑝𝑐 ) ranged from 0.73 to 0.80 for 

Landrace and from 0.63 to 0.70 for Yorkshire. Slight differences of the estimated genetic correlations were 

observed between the two breeds. Landrace showed a bit higher 𝑟𝑝𝑐 than that for Yorkshire. These values 

were similar to our previous results, which show a range of 0.70~0.78 for Landrace and 0.57~0.68 for 

Yorkshire (Xiang et al., 2016). The genetic correlations between purebred L and Y effects were 0.23 and 

0.30 as estimated in Genpure and Genall scenarios; we consider that the genetic correlations between L and 

Y with Nogen scenario is unreliable because only ancestral relationships in 𝚪 are used and do not present the 

genetic correlations between L and Y in Nogen scenario. The genetic correlations between effects of 

different populations have rarely been estimated; Legarra et al. (2014) estimated values of 0.3 to 0.5 across 

sheep breeds and Karoui et al. (2012) from 0 to 0.8 for dairy cattle breeds.  
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Table 1 Variance components 
1
, heritabilities

2
, and genetic correlations between purebred and crossbred 

performances
3
 with standard errors for Landrace and Yorkshire  

Scenarios Breed 𝜎𝑎
2 𝜎𝑎,𝑐 𝜎𝑐

2 𝜎𝑠𝑏
2  𝜎𝑒

2 𝜎𝑒𝐿𝑌
2  ℎ2 𝑟𝑝𝑐 

Nogen 

L 
1.63 

(0.09) 

0.80 

(0.16) 

0.73 

(0.14) 

0.88 

(0.03) 

12.17 

(0.05) 8.46 

(0.13) 

0.11 

(0.02) 

0.73 

(0.11) 

Y 
1.23 

(0.08) 

0.60 

(0.16) 

0.74 

(0.14) 

0.72 

(0.02) 

11.67 

(0.06) 

0.09 

(0.02) 

0.63 

(0.12) 

Genpure 

L 
1.64 

(0.09) 

0.85 

(0.12) 

0.82 

(0.11) 

0.88 

(0.03) 

12.17 

(0.05) 8.40 

(0.13) 

0.11 

(0.02) 

0.73 

(0.09) 

Y 
1.22 

(0.08) 

0.71 

(0.14) 

0.84 

(0.11) 

0.71 

(0.02) 

11.68 

(0.06) 

0.09 

(0.02) 

0.70 

(0.11) 

Genall 

L 
1.64 

(0.09) 

0.93 

(0.12) 

0.82 

(0.11) 

0.88 

(0.03) 

12.29 

(0.05) 8.40 

(0.13) 

0.11 

(0.02) 

0.80 

(0.09) 

Y 
1.22 

(0.08) 

0.68 

(0.13) 

0.84 

(0.11) 

0.71 

(0.02) 

11.76 

(0.06) 

0.09 

(0.02) 

0.67 

(0.10) 
1
Variance components for genetic parameters correspond to the usual genetic variance which is the variance 

among unrelated individuals in base population: 𝜎𝑎
2  is additive genetic variance for purebred performance, 

= 𝜎𝐴𝐿

2 (1 −
𝛾𝐿

2
)  for Landrace and 𝜎𝐴𝑌

2 (1 −
𝛾𝑌

2
)  for Yorkshire; 𝜎𝑐

2  is additive genetic variance for crossbred, 

= 𝜎𝐴𝐿𝑌

2 (1 −
𝛾𝐿

2
) for Landrace and 𝜎𝐴𝐿𝑌

2 (1 −
𝛾𝑌

2
) for Yorkshire; 𝜎𝑎,𝑐  is genetic covariance between purebred and 

crossbred performances , = 𝜎𝐴𝐿𝐴𝐿𝑌
(1 −

𝛾𝐿

2
) for Landrace and 𝜎𝐴𝑌𝐴𝐿𝑌

(1 −
𝛾𝑌

2
) for Yorkshire; 𝜎𝑠𝑏

2 = variance of 

service-boar effect; 𝜎𝑒
2 =  residual variance for purebred performance; 𝜎𝑒𝐿𝑌

2 =  residual variance for crossbred 

animals. Numbers between brackets are the standard errors of the corresponding parameters. 
2
Heritablity ℎ2 = 𝜎𝑎

2/(𝜎𝑎
2 + 𝜎𝑠𝑏

2 + 𝜎𝑒
2) 

3
Genetic correlation 𝑟𝑝𝑐 =

𝜎𝑎,𝑐

√𝜎𝑎
2𝜎𝑐

2
=

𝜎𝐴𝐿𝐴𝐿𝑌
 

√𝜎𝐴𝐿
2 𝜎𝐴𝐿𝑌

2
 for Landrace; =

𝜎𝐴𝑌𝐴𝐿𝑌
 

√𝜎𝐴𝑌
2 𝜎𝐴𝐿𝑌

2
 for Yorkshire 

Model-based reliability and Predictive abilities 

Mean model-based reliabilities for purebred boars for their crossbred performance in different scenarios are 

shown in Table 2. Model-based reliabilities increased from about 0.34 to 0.48 for the Landrace breed and 

from about 0.27 to 0.40 for the Yorkshire breed from Nogen to Genall. Scenarios with marker information 

(Genpure and Genall) show higher model-based reliabilities than the pedigree-based scenario (Nogen). With 

crossbred genomic information, reliabilities were further improved in scenario Genall. The genotyped 

subgroup presented higher model-based reliabilities than the non-genotyped group across different scenarios. 

Comparing the results to the previous one (Xiang et al., 2016), results here were 0.03~0.10 higher than 

results in the corresponding scenarios in that study. 
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Table 2 Model-based reliabilities for crossbred performance in purebred boars 

 All
1
  Genotyped

2
  Non-genotyped

3
 

 Nogen Genpure Genall  Nogen Genpure Genall  Nogen Genpure Genall 

L 0.338 0.368 0.484  0.341 0.371 0.486  0.336 0.356 0.477 

Y 0.274 0.376 0.404  0.285 0.377 0.405  0.272 0.373 0.396 

1
All = all the sires of crossbred animals, consisting of 765 Landrace and 465 Yorkshire. 

2
Genotyped = genotyped sires of crossbred animals, consisting of 656 Landrace and 443 Yorkshire. 

3
Non-genotyped = Non-genotyped sires of crossbred animals, consisting of 109 Landrace and 22 Yorkshire. 

Table 3 shows predictive abilities for crossbred animals in the validation populations. The validation 

correlations between corrected phenotypes and estimated additive genetic effect for crossbreds 𝑐𝑜𝑟(𝒀𝑐 , 𝒄𝐿�̂�) 

ranged from 0.084 in Nogen_T to 0.125 in Genall_T. No significant differences were detected between 

scenarios Nogen_T and Genpure_T, but Genpc_T and Genall_T presented significantly higher accuracies 

than those two scenarios. Results here were virtually the same as results in the corresponding scenarios in 

our previous study (Xiang et al., 2016). For scenario Genall_T, the genotyped subgroup (0.132) had higher 

𝑐𝑜𝑟(𝒀𝑐 , 𝒄𝐿�̂�)  than that in the non-genotyped subgroup (0.109). The value of 𝑐𝑜𝑟(𝒀𝑐 , 𝒄𝐿�̂�)  in the non-

genotyped subgroup in Genall_T was still higher than that in the other three scenarios. The 𝑐𝑜𝑟(𝒀𝑐 , 𝒄𝐿�̂�) for 

the genotyped subgroup in Genall_T was about 30% higher than that in Genpc_T. The regression 

coefficients of estimated additive genetic effects for crossbred animals are also shown in Table 3. In general, 

the regression coefficients were close to 1. The regression coefficients in scenarios with genomic information 

were closer to 1 than that in Nogen_T. Among scenarios with genomic information, in terms of regression 

coefficients, there was no clear pattern showing which scenario performed better than others, although 

regression coefficient in Genpc_T was closest to 1. When comparing these regression coefficients with those 

in our previous study (Xiang et al., 2016), slightly smaller regression coefficients (~0.02) were found in this 

study. 

Table 3 Predictive abilities for crossbred animals in the validation populations 

 
Nogen_T Genpure_T Genpc_T 

Genall_T 

All Genotyped Non-Genotyped 

𝑐𝑜𝑟(𝒀𝑐 , 𝒄𝐿�̂�)1 0.084
a
 0.090

a
 0.099

b
 0.125

c
 0.132 0.109 

Regression coefficients
2
 1.204 0.978 1.043 1.044 1.034 1.059 

1 𝑐𝑜𝑟(𝒀𝑐, 𝒄𝐿�̂�) is correlation coefficients between corrected phenotypes and estimated additive genetic effects on 

crossbred animals; different superscripts of small letters among scenarios indicate significant differences (p<0.05) 

by Hotelling-Williams t-test  
2
Regression coefficients of corrected phenotypes on estimated additive genetic effects 
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Predictive abilities empirically assess the fitness of the models, whereas model-based reliabilities assess 

individual accuracies. Unfortunately, assessing the predictive ability for breeding values of boars for their 

crossbred performance was very difficult, as the boars in our study have a small number of crossbred 

daughters (around 5). Results in this work are similar to Xiang et al. (2016) (except for Nogen_T), which is 

in line with Christensen (2012) that the ssGBLUP with an adjusted pedigree-based relationship matrix 𝐀(𝚪) 

should perform equal or better than methods based on adjusting the marker-based relationship matrix. This 

study also shows that the ssGBLUP method with metafounders is applicable for genomic evaluation of 

purebred and crosses. For scenarios with crossbred genomic information, results of reliabilities and 

validation correlations in this study seemed to be slightly higher than those in the previous study. In practice, 

the method used in the previous study requires phasing the data and inferring breed origin, which is a bit 

cumbersome. Thus, all else being equal, the ssGBLUP method with metafounders (Legarra et al., 2015) is 

more convenient to implement than ssGBLUP with breed-specific partial relationship matrices (Christensen 

et al., 2014). 

Modelling breeds and their crosses using genetic groups (metafounders in this case) is not common in pigs, 

but is customary in ruminants, e.g. Arnold et al. (1992). It is more common to use a multiple-trait approach 

(Wei and Van der Werf, 1994; Lo et al., 1997; Lutaaya et al., 2001). Here we combine both in a way that is 

at the same time sensible to the specialties of markers (genomic relationship across breeds) and to the fact 

that the three populations differ in genetic and environmental background. More specifically, biological 

dominance and epistasis provoke that substitution effects of the causal genes differ from one population to 

the other. For instance, the substitution effect 𝛼 = 𝑎 + (𝑞 − 𝑝)𝑑 differs from matings within the same breed 

to matings with another breed because the allelic frequencies change. With differences in the environment 

the allele substitution effects also differ between populations. However, the fact that effects may be similar 

across breeds is accounted for through correlations. This is markedly different from the assumption in Xiang 

et al. (2016) that relationships between lines (and, accordingly, the correlation between marker effects) are 0. 

All in all, a method of single-step genomic evaluation with metafounders was successfully implemented in 

the Danish Landrace, Yorkshire and crossbred populations in this study. The estimated variance components 

were generally similar to those parameters in the previous study and the model-based reliabilities and 

predictive abilities were at least as good as those obtained by a single-step genomic evaluation using breed-

specific partial relationship matrices in the previous study (Xiang et al., 2016). There is good agreement 

across studies, which is reassuring. 
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CONCLUSION 

Effective population sizes are similar for Landrace and Yorkshire and the ancestor populations for Landrace 

and Yorkshire are related. In the method of ssGBLUP with metafounders, models with crossbred genomic 

information improve model-based reliability for crossbred performance for purebred boars and predictive 

abilities for validated crossbred animals while reducing regression coefficients. The single-step genomic 

evaluation method with metafounders performs at least as well as the breed-origin based ssGBLUP in 

prediction. 
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Abstract 

Background 

Improved performance of crossbred animals is partly due to heterosis. One of the major genetic bases of 

heterosis is dominance, but it is seldom used in pedigree-based genetic evaluation of livestock. Recently, a 

trivariate genomic best linear unbiased prediction (GBLUP) model including dominance was developed, 

which can distinguish purebreds from crossbred animals explicitly. The objectives of this study were: (1) 

methodological, to show that inclusion of marker-based inbreeding accounts for directional dominance and 

inbreeding depression in purebred and crossbred animals, to revisit variance components of additive and 

dominance genetic effects using this model, and to develop marker-based estimators of genetic correlations 

between purebred and crossbred animals and of correlations of allele substitution effects between breeds; (2) 

to evaluate the impact of accounting for dominance effects and inbreeding depression on predictive ability 

for total number of piglets born (TNB) in a pig dataset composed of two purebred populations and their 

crossbreds. We also developed an equivalent model that makes the estimation of variance components 

tractable. 

Results 

For TNB in Danish Landrace and Yorkshire populations and their reciprocal crosses, the estimated 

proportions of dominance genetic variance to additive genetic variance ranged from 5 to 11%. Genetic 

correlations between breeding values for purebred and crossbred performances for TNB ranged from 0.79 to 

0.95 for Landrace and from 0.43 to 0.54 for Yorkshire across models. The estimated correlation of allele 

substitution effects between Landrace and Yorkshire was low for purebred performances, but high for 

crossbred performances. Predictive ability for crossbred animals was similar with or without dominance. The 

inbreeding depression effect increased predictive ability and the estimated inbreeding depression parameter 

was more negative for Landrace than for Yorkshire animals and was in between for crossbred animals. 

Conclusions 

Methodological developments led to closed-form estimators of inbreeding depression, variance components 

and correlations that can be easily interpreted in a quantitative genetics context. Our results confirm that 

genetic correlations of breeding values between purebred and crossbred performances within breed are 

positive and moderate. Inclusion of dominance in the GBLUP model does not improve predictive ability for 

crossbred animals, whereas inclusion of inbreeding depression does. 
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Background 

Crossbreeding is primarily and intensively applied in meat production systems [1], especially for swine and 

poultry. Crossbreeding capitalizes on heterosis effects and complementarity between breeds, and results in an 

increased performance of crossbred animals compared to purebred animals [1]. In terminal crossbreeding 

systems, selection on purebred animals to maximize their crossbred performance is the ultimate goal [2, 3]. 

Due to the existence of genotype-by-environment interaction effects and non-additive genetic effects in 

combination with different allele frequencies in different breeds [3, 4], the genetic correlation of breeding 

values between purebred and crossbred performances (𝑟𝑃𝐶) is usually lower than 1 [1, 5], and therefore, 

purebred performance under nucleus conditions may not be an optimal predictor for crossbred performance 

in commercial animals [4, 6]. 

One of the major genetic bases of heterosis is dominance [7, 8]. At the level of gene action, dominance is due 

to interactions between alleles at the same locus [9]. In pedigree-based genetic evaluation, dominance is 

rarely included because large-scale datasets that comprise a high proportion of full sibs are required to obtain 

accurate estimates and because the computational complexity is high [10]. With the recent availability of 

single nucleotide polymorphism (SNP) information and the development of genomic selection, estimation of 

the dominance effects of SNPs has become more feasible [11, 12]. 

Genomic evaluation has been successfully used in purebred [13, 14] and crossbred populations [15-17]. 

However, these studies generally ignore the dominance effects. A number of studies have been carried out on 

genomic evaluation including dominance effects using either simulated [18] or real purebred data [9, 12]. 

Recently, several studies [19, 20] have tried to extend genomic evaluation including dominance effects from 

purebred performance to crossbred performance. However, they either used genomic information on 

purebred animals only [19] or applied a genomic model that assumed that all animals belong to a single 

population, and thus the variance components were estimated based only on the genotyped crossbred animals 

[20]. Nevertheless, combining purebred and crossbred information is essential to implement genetic 

evaluation for crossbred performance [1, 19]. Furthermore, because of genotype-by-environment interaction 

effects and different patterns of linkage disequilibrium (LD) between SNPs and quantitative trait loci (QTL), 

the effects of SNPs may be breed-specific [21]. To overcome these issues, a trivariate genomic best linear 

unbiased predictor (GBLUP) model that explicitly distinguishes between purebred and crossbred data and 

includes dominance was recently developed by Vitezica et al. [22]. This model allowed the estimation of 

different, yet correlated, additive and dominance marker effects in crossbred and purebred individuals. 

However, the empirical predictive ability of the trivariate GBLUP model has not been evaluated yet. 



Xiang 2017, PhD thesis 

 

100 
 

Thus, the current study had the following objectives:(1) to show how genomic inbreeding can be 

meaningfully included in GBLUP, even for crossbred animals; (2) to estimate the variance components of 

additive and dominance genetic effects by using data on total number of piglets born (TNB) in two Danish 

purebred and one crossbred pig populations using the trivariate GBLUP model; (3) to show how to derive, 

from variance component estimates, estimated genetic correlations of breeding values between purebred and 

crossbred performances in each pure breed, and also correlations of allele substitution effects between the 

two pure breeds; and (4) to evaluate the impact of dominance effects from genomic information on genomic 

evaluation by comparing accuracies of estimated genomic values in different cross-validation scenarios. 

Methods 

Animals and genotypes 

We begin this section with a short presentation of the data used in the study, with the aim of defining the 

notation for the methodological developments that follow. For this study, all datasets were provided by the 

Danish Pig Research Centre. Data from three Danish pig populations were analyzed simultaneously: 

Landrace (L), Yorkshire (Y) and their reciprocal crosses (LY). Only data on TNB data for the first parity of 

sows in the three populations were used. In total, there were 2126, 2218 and 5143 genotyped sows with own 

records on TNB for L, Y and LY, respectively. Instead of using original records, corrected phenotypic values 

of TNB were used as dependent variables for the trivariate GBLUP model, because the pre-correction for 

non-genetic effects, such as herd-year-season, month at farrowing, and service sire was more accurately 

achieved on a larger dataset (293,339 L, 180,112 Y, and 10,974 LY). Among the crossbred animals, 7407 

LY had a Landrace sire and a Yorkshire dam, while 3567 LY had a Yorkshire dam and a Landrace sire; L 

and Y populations were from nucleus farms and LY from a commercial farm. The litters of purebred sows 

were both purebred and crossbred litters. The relationship between LY-L and LY-Y are comparable since, in 

both cases, parents of the F1 animals are in the purebred datasets; further details about the model used for the 

pre-correction are in [17]. All the purebred sows had first farrowing dates between 2003 and 2013, while the 

crossbred sows first farrowed between 2010 and 2013. Only five of these purebred L and Y sows were dams 

of the LY. 

The pedigrees for both purebred and crossbred sows were available and all crossbred animals were traced 

back to their purebred ancestors until 1994 by the DMU Trace program [23], as was done for the larger 

dataset used for pre-correction. Consequently, 8227 L, 9851 Y and 5143 LY individuals were in the pedigree. 

The dataset of pre-corrected TNB records for genotyped individuals is termed “full genomic dataset” 

throughout the whole paper, and it should not be confused with the larger dataset used to do the pre-

correction. 
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For the “full genomic dataset”, purebred sows were genotyped with the Illumina PorcineSNP60 Genotyping 

BeadChip [24], while the crossbred sows were genotyped with a 8.5K GGP-Porcine Low Density Illumina 

Bead SNP chip [25]. SNP quality controls (such as: call rate for individuals ≥ 80%; call rate for SNPs ≥ 90%; 

minor allele frequencies ≥ 0.01; etc.) were applied on the same dataset in a previous study [26], which 

provides more details. Then, for the crossbred individuals, imputation from low density to moderate density 

was done by using a joint reference panel of the two pure breeds [26] using the software Beagle version 3.3.2 

[27] (imputation accuracies ≥ 95% in terms of correlation coefficients and ≥ 99% in terms of correct rates 

between imputed and true genotypes). Finally, 41,009 SNPs were available for all the recorded purebred and 

crossbred sows. 

Considering genomic inbreeding and heterosis 

Inbreeding can be defined as the proportion of homozygous SNPs across all loci for each animal, as 

suggested by several authors (e.g., [28]). If there is directional dominance causing inbreeding depression [29], 

then inbreeding should be considered in the genetic evaluation models [30]. Otherwise, using pedigree or 

marker data, estimates of genetic parameters are inflated [30, 31]. In Vitezica et al. [28], genomic inbreeding 

was fitted as a covariate and, in the current study, we prove this reasoning by using a parametric genomic 

model, such as a GBLUP. 

Theory and evidence of directional dominance (equivalently, inbreeding depression) suggest that dominance 

effects of genes (here associated to markers) should have a priori a positive value for traits that exhibit 

inbreeding depression or heterosis. If we call 𝐝 the vector of dominance marker effects, the following prior 

distribution is plausible: 

(𝐝) ~ 𝑁(𝟏𝜇𝑑 , 𝐈𝜎𝑑
2), 

where 𝜇𝑑  is the overall mean of dominance effects, which should be positive if there is heterosis due to 

dominance. A typical model for genomic prediction is that in Toro and Varona [11]: 

𝐲 = 𝐗𝛃 + 𝐙𝐚 + 𝐖𝐝 + 𝐞,      (1) 

where 𝐲 contains phenotypic values; 𝐗𝛃 stands for fixed effects and random effects other than additive and 

dominance effects; 𝐚 is the vector of “biological” additive SNP effects, 𝐝  is the vector of “biological” 

dominance SNP effects for each of the markers; matrix 𝐙 has entries 1, 0, -1, for SNP genotypes AA, Aa and 

aa, respectively, while matrix 𝐖 has entries 0, 1, 0 for SNP genotypes AA, Aa and aa, respectively. 𝐞 is the 

vector of overall random residual effects. 
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Typically, genetic models require 𝐚 and 𝐝 to have zero means, which is not true for 𝐝 when directional 

dominance exist. Defining 𝐝∗ = 𝐝 − E(𝐝), then E(𝐝∗) = 𝟎, and Equation (1) can be written as: 

𝐲 = 𝐗𝛃 + 𝐙𝐚 + 𝐖(𝐝∗ + 𝐄(𝐝)) + 𝐞 

= 𝐗𝛃 + 𝐙𝐚 + 𝐖𝐝∗ + 𝐖𝟏𝛍𝐝 + 𝐞. 

The term 𝐖𝟏𝜇𝑑 is actually an average of dominance effects for each individual and is equal to 𝐡𝜇𝑑 , where 

𝐡 = 𝐖𝟏 contains the row-sums of 𝐖, i.e. individual heterozygosities (it should be noted that 𝐖 has a value 

of 1 at heterozygous loci for an individual). Inbreeding coefficients 𝐟 can be calculated as: 

𝐟 = 𝟏 − 𝐡/𝑁, 

where 𝑁 is the number of SNPs. Then, the prior means 𝐡𝜇𝑑 can be rewritten as: 

𝐡𝜇𝑑 = (𝟏 − 𝐟)𝑁𝜇𝑑 = 𝟏𝑁𝜇𝑑 + 𝐟(−𝑁𝜇𝑑). 

The term 𝟏𝑁𝜇𝑑 is confounded with the overall mean of the model (𝛍), while the term 𝐟(−𝑁𝜇𝑑) models the 

inbreeding depression and 𝑏 = (−𝑁𝜇𝑑) is the inbreeding depression parameter summed over the SNPs, 

which has to be estimated. Thus, the linear model including genomic inbreeding is, finally: 

𝐲 = 𝐗𝛃 + 𝐟𝑏 + 𝐙𝐚 + 𝐖𝐝∗ + 𝐞. 

Thus, we have proven why fitting overall homozygosity for the individual as a measure of inbreeding 

depression accounts for directional dominance. 

Estimating genetic (co)variances of markers with additive and dominance effects 

A trivariate model based on “biological” (genotypic) additive and dominance effects of SNPs [22, 32], and 

including genomic inbreeding as above, was applied considering TNB as a different trait in each population: 

𝐲𝐿 = 𝟏𝜇𝐿 + 𝐟𝐿𝑏𝐿 + 𝐙𝐿𝐚𝐿 + 𝐖𝐿𝐝𝐿 + 𝐞𝐿 ,     (2) 

𝐲𝑌 = 𝟏𝜇𝑌 + 𝐟𝑌𝑏𝑌 + 𝐙𝑌𝐚𝑌 + 𝐖𝑌𝐝𝑌 + 𝐞𝑌, 

𝐲𝐿𝑌 = 𝟏𝜇𝐿𝑌 + 𝐟𝐿𝑌𝑏𝐿𝑌 + 𝐙𝐿𝑌𝐚𝐿𝑌 + 𝐖𝐿𝑌𝐝𝐿𝑌 + 𝐞𝐿𝑌, 

where 𝐲𝐿 , 𝐲𝑌and 𝐲𝐿𝑌 contain corrected phenotypic values for purebred L, purebred Y and crossbred LY sows, 
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respectively; 𝜇𝐿 , 𝜇𝑌  and 𝜇𝐿𝑌  are the respective means; 𝐚𝐿, 𝐚𝑌 and 𝐚𝐿𝑌  are the “biological” additive SNP 

effects and 𝐝𝐿 , 𝐝𝑌 and 𝐝𝐿𝑌 are the “biological” dominance SNP effects for each of the SNPs for L, Y and LY, 

respectively; matrices 𝐙 and 𝐖 are as above; 𝐟𝐿𝑏𝐿, 𝐟𝑌𝑏𝑌 and 𝐟𝐿𝑌𝑏𝐿𝑌 model the inbreeding depression for L, 

Y and LY populations; 𝐞𝐿, 𝐞𝑌 and 𝐞𝐿𝑌 are the overall random residual effects. 

Note that “biological” is used here to refer to the genotypic additive and dominance values of the SNPs, to 

distinguish them from the traditional treatment of quantitative genetics in terms of “statistical” effects 

(breeding values and dominance deviations) [32]. 

The above equations can be reformulated to genotypic values of individuals instead of SNPs, in order to be 

compatible with the classical GBLUP model and animal breeding software, such as BLUPF90 [33] and 

DMU [34]: 

𝐲𝐿 = 𝟏𝜇𝐿 + 𝐟𝐿𝑏𝐿 + 𝐮𝐿 + 𝐯𝐿 + 𝐞𝐿 ,     (3) 

𝐲𝑌 = 𝟏𝜇𝑌 + 𝐟𝑌𝑏𝑌 + 𝐮𝑌 + 𝐯𝑌 + 𝐞𝑌, 

𝐲𝐿𝑌 = 𝟏𝜇𝐿𝑌 + 𝐟𝐿𝑌𝑏𝐿𝑌 + 𝐮𝐿𝑌 + 𝐯𝐿𝑌 + 𝒆𝐿𝑌. 

Note that 𝐮 and 𝐯 are vectors of genotypic additive and dominance effects and therefore cannot be directly 

compared to breeding values and dominance deviations in the pedigree-based genetic evaluation. In addition, 

𝐟  is a vector of genomic inbreeding coefficients and 𝑏  is a population-specific inbreeding depression 

parameter per unit of genomic inbreeding, respectively. Note that there is potentially inbreeding depression 

at the level of the crossbred animals, although, first, the numeric values of the vector 𝐟 should be smaller 

since crossbred animals have a higher level of heterozygosity, and second, the estimates of the inbreeding 

depression parameters (b) do not need to be identical across the three populations, which thus gives 

considerable flexibility. 

In terms of the genotypic additive effects 𝐮, the variances within each breed are: 

𝑉𝑎𝑟(𝐮𝐿) = 𝑣𝑎𝑟(𝐙𝐿𝐚𝐿) = 𝐙𝐿𝐙𝐿
′ 𝜎𝑎𝐿

2 , 

𝑉𝑎𝑟(𝐮𝑌) = 𝑣𝑎𝑟(𝐙𝑌𝐚𝑌) = 𝐙𝑌𝐙𝑌
′ 𝜎𝑎𝑌

2 , 

𝑉𝑎𝑟(𝐮𝐿𝑌) = 𝑣𝑎𝑟(𝐙𝐿𝑌𝐚𝐿𝑌) = 𝐙𝐿𝑌𝐙𝐿𝑌
′ 𝜎𝑎𝐿𝑌

2 , 

where 𝜎𝑎𝐿
2 , 𝜎𝑎𝑌

2  and 𝜎𝑎𝐿𝑌
2  are the additive variances of SNP effects in breeds L, Y and LY, respectively. The 
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covariances between the genotypic additive effects 𝐮 are: 

𝐶𝑜𝑣 (

𝐮𝐿

𝐮𝑌

𝐮𝐿𝑌

) = (

𝐙𝐿𝐙𝐿
′ 𝜎𝑎𝐿

2 𝐙𝐿𝐙𝑌
′ 𝜎𝑎𝐿,𝑌

𝐙𝐿𝐙𝐿𝑌
′ 𝜎𝑎𝐿,𝐿𝑌

𝐙𝑌𝐙𝐿
′ 𝜎𝑎𝐿,𝑌

𝐙𝑌𝐙𝑌
′ 𝜎𝑎𝑌

2 𝐙𝑌𝐙𝐿𝑌
′ 𝜎𝑎𝑌,𝐿𝑌

𝐙𝐿𝑌𝐙𝐿
′ 𝜎𝑎𝐿,𝐿𝑌

𝐙𝐿𝑌𝐙𝑌
′ 𝜎𝑎𝑌,𝐿𝑌

𝐙𝐿𝑌𝐙𝐿𝑌
′ 𝜎𝑎𝐿𝑌

2

),   (4) 

where 𝜎𝑎𝐿,𝑌
, 𝜎𝑎𝐿,𝐿𝑌

 and 𝜎𝑎𝑌,𝐿𝑌
 are the additive covariances of SNP effects between populations L and Y, 

populations L and LY, and populations Y and LY, respectively. Analogous structures exist for dominance 

genotypic effects: 

𝐶𝑜𝑣 (

𝐯𝐿

𝐯𝑌

𝐯𝐿𝑌

) = (

𝐖𝐿𝐖𝐿
′𝜎𝑑𝐿

2 𝐖𝐿𝐖𝑌
′𝜎𝑑𝐿,𝑌

𝐖𝐿𝐖𝐿𝑌
′ 𝜎𝑑𝐿,𝐿𝑌

𝐖𝑌𝐖𝐿
′𝜎𝑑𝐿,𝑌

𝐖𝑌𝐖𝑌
′𝜎𝑑𝑌

2 𝐖𝑌𝐖𝐿𝑌
′ 𝜎𝑑𝑌,𝐿𝑌

𝐖𝐿𝑌𝐖𝐿
′𝜎𝑑𝐿,𝐿𝑌

𝐖𝐿𝑌𝐖𝑌
′𝜎𝑑𝑌,𝐿𝑌

𝐖𝐿𝑌𝐖𝐿𝑌
′ 𝜎𝑑𝐿𝑌

2

). 

Estimation of marker-based variance components using an equivalent model 

The variance components 𝜎𝑎𝐿
2 , 𝜎𝑎𝑌

2 , 𝜎𝑎𝐿𝑌
2  and 𝜎𝑎𝐿,𝑌

, 𝜎𝑎𝐿,𝐿𝑌
, 𝜎𝑎𝑌,𝐿𝑌

 in Equation (4) cannot be estimated by 

regular methods or software (i.e. REML or Gibbs sampling) because they cannot be factorized out from 

Equation (4). To fit such a multivariate structure, we used an equivalent model. Additional effects need to be 

defined, even if they are of no interest per se. For instance, the vectors of hypothetical genotypic additive 

effects of the genotypes of the L breed on the scale of breed Y (𝐮𝐿,𝑌) and LY (𝐮𝐿,𝐿𝑌) have variance-

covariance matrices 𝐙L𝐙L
′ σaY

2  and 𝐙L𝐙L
′ σaLY

2 , respectively. Thus, as a whole, the genetic variance and 

covariance structure for the genotypic additive effects 𝐮 are: 

𝑉𝑎𝑟(𝐮) = var

[
 
 
 
 
 
 
 
 

𝐮𝐿

𝐮𝐿,𝑌

𝐮𝐿,𝐿𝑌

𝐮𝑌,𝐿

𝐮𝑌

𝐮𝑌,𝐿𝑌

𝐮𝐿𝑌,𝐿

𝐮𝐿𝑌,𝑌

𝐮𝐿𝑌 ]
 
 
 
 
 
 
 
 

= var

[
 
 
 
 
 
 
 
 

𝐙𝐿𝐚𝐿

𝐙𝐿𝐚𝑌

𝐙𝐿𝐚𝐿𝑌

𝐙𝑌𝐚𝐿

𝐙𝑌𝐚𝑌

𝐙𝑌𝐚𝐿𝑌

𝐙𝐿𝑌𝐚𝐿

𝐙𝐿𝑌𝐚𝑌

𝐙𝐿𝑌𝐚𝐿𝑌]
 
 
 
 
 
 
 
 

 

= [

𝐙𝐿𝐙𝐿
′ 𝐙𝐿𝐙𝑌

′ 𝐙𝐿𝐙𝐿𝑌
′

𝐙𝑌𝐙𝑳
′ 𝐙𝑌𝐙𝑌

′ 𝐙𝑌𝐙𝐿𝑌
′

𝐙𝐿𝑌𝐙𝐿
′ 𝐙𝐿𝑌𝐙𝑌

′ 𝐙𝐿𝑌𝐙𝐿𝑌
′

]⨂ [

σ𝑎𝐿
2 𝜎𝑎𝐿,𝑌

𝜎𝑎𝐿,𝐿𝑌

𝜎𝑎𝑌,𝐿
σ𝑎𝑌

2 𝜎𝑎𝑌,𝐿𝑌

𝜎𝑎𝐿𝑌,𝐿
𝜎𝑎𝐿𝑌,𝑌

𝜎𝑎𝐿𝑌
2

] 
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= 𝐙𝐙′⨂[

𝜎𝑎𝐿
2 𝜎𝑎𝐿,𝑌

𝜎𝑎𝐿,𝐿𝑌

𝜎𝑎𝑌,𝐿
𝜎𝑎𝑌

2 𝜎𝑎𝑌,𝐿𝑌

𝜎𝑎𝐿𝑌,𝐿
𝜎𝑎𝐿𝑌,𝑌

𝜎𝑎𝐿𝑌
2

] , 

where matrix 𝐙 contains elements 1, 0, -1 for the three genotypes, and is defined across the three breeds, 

𝐙 = [
𝐙𝐿

𝐙𝑌

𝐙𝐿𝑌

]. 

To construct a relationship matrix similar to the classical 𝐆-matrix of GBLUP [35], Vitezica et al. [22] 

introduced a normalized genomic relationship matrix 𝐆 = 
𝐙𝐙′

{tr[𝐙𝐙′]}/n
, where n is the number of animals 

across the three populations and the division by {tr[𝐙𝐙′]}/n scales the matrix such that the average of the 

diagonal elements equals 1. This alters the variances across genotypic additive effects 𝐮 in the following way: 

𝑉𝑎𝑟(𝐮) = 𝑣𝑎𝑟

[
 
 
 
 
 
 
 
 

𝐮𝐿

𝐮𝐿,𝑌

𝐮𝐿,𝐿𝑌

𝐮𝑌,𝐿

𝐮𝑌

𝐮𝑌,𝐿𝑌

𝐮𝐿𝑌,𝐿

𝐮𝐿𝑌,𝑌

𝐮𝐿𝑌 ]
 
 
 
 
 
 
 
 

= 𝐙𝐙′⨂[

𝜎𝑎𝐿
2 𝜎𝑎𝐿,𝑌

𝜎𝑎𝐿,𝐿𝑌

𝜎𝑎𝑌,𝐿
𝜎𝑎𝑌

2 𝜎𝑎𝑌,𝐿𝑌

𝜎𝑎𝐿𝑌,𝐿
𝜎𝑎𝐿𝑌,𝑌

𝜎𝑎𝐿𝑌
2

] 

= (𝐆 ×
{tr[𝐙𝐙′]}

n
)⨂[

𝜎𝑎𝐿
2 𝜎𝑎𝐿,𝑌

𝜎𝑎𝐿,𝐿𝑌

𝜎𝑎𝑌,𝐿
𝜎𝑎𝑌

2 𝜎𝑎𝑌,𝐿𝑌

𝜎𝑎𝐿𝑌,𝐿
𝜎𝑎𝐿𝑌,𝑌

𝜎𝑎𝐿𝑌
2

] 

= 𝐆 ⨂[

𝜎𝐴𝐿

2 𝜎𝐴𝐿𝐴𝑌
𝜎𝐴𝐿𝐴𝐿𝑌

𝜎𝐴𝑌𝐴𝐿
𝜎𝐴𝑌

2 𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝐴𝐿𝑌
𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝑌

2

]  = 𝐆 ⨂ 𝐆0,    (5) 

where 𝐆0  are variance components associated to the genotypic additive effects 𝐮 . This structure (a 

Kronecker product) is compatible with animal breeding software for BLUP and REML and the variance-

covariance component 𝐆0 can be estimated in a straightforward manner. Then, the (co)variances of additive 

genotypic effects of SNPs across populations can be obtained as: 

[

𝜎𝑎𝐿
2 𝜎𝑎𝐿,𝑌

𝜎𝑎𝐿,𝐿𝑌

𝜎𝑎𝑌,𝐿
𝜎𝑎𝑌

2 𝜎𝑎𝑌,𝐿𝑌

𝜎𝑎𝐿𝑌,𝐿
𝜎𝑎𝐿𝑌,𝑌

𝜎𝑎𝐿𝑌
2

] =
𝐆0

{tr[𝐙𝐙′]}/n⁄  
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= [

𝜎𝐴𝐿

2 𝜎𝐴𝐿𝐴𝑌
𝜎𝐴𝐿𝐴𝐿𝑌

𝜎𝐴𝑌𝐴𝐿
𝜎𝐴𝑌

2 𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝐴𝐿𝑌
𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝑌

2

]  {tr[𝐙𝐙′]}/n⁄ .    (6) 

The variances across genotypic dominance effects 𝐯 are altered in a similar way: 

𝑉𝑎𝑟(𝐯) = 𝑣𝑎𝑟

[
 
 
 
 
 
 
 
 

𝐯𝐿

𝐯𝐿,𝑌

𝐯𝐿,𝐿𝑌

𝐯𝑌,𝐿

𝐯𝑌

𝐯𝑌,𝐿𝑌

𝐯𝐿𝑌,𝐿

𝐯𝐿𝑌,𝑌

𝐯𝐿𝑌 ]
 
 
 
 
 
 
 
 

 

= 𝐃 ⨂[

𝜎𝐷𝐿

2 𝜎𝐷𝐿𝐷𝑌
𝜎𝐷𝐿𝐷𝐿𝑌

𝜎𝐷𝑌𝐷𝐿
𝜎𝐷𝑌

2 𝜎𝐷𝑌𝐷𝐿𝑌

𝜎𝐷𝐿𝐷𝐿𝑌
𝜎𝐷𝑌𝐷𝐿𝑌

𝜎𝐷𝐿𝑌

2

] = 𝐃 ⨂ 𝐃0,    (7) 

where 𝐃0  contains variances and covariances associated to the genotypic dominance effects 𝐯  and 𝐃 =

𝐖𝐖′

{tr[𝐖𝐖′]}/n
, where the matrix 𝐖 contains elements 0, 1, 0 for the three genotypes, and is defined across the 

three breeds (𝐖 = [
𝐖𝐿

𝐖𝑌

𝐖𝐿𝑌

]) and 𝐖′ = [𝐖𝐿
′ 𝐖𝑌

′ 𝐖𝐿𝑌
′ ]. Then, the (co)variances of dominance genotypic 

effects of SNPs are: 

[

𝜎𝑑𝐿

2 𝜎𝑑𝐿,𝑌
𝜎𝑑𝐿,𝐿𝑌

𝜎𝑑𝑌,𝐿
𝜎𝑑𝑌

2 𝜎𝑑𝑌,𝐿𝑌

𝜎𝑑𝐿𝑌,𝐿
𝜎𝑑𝐿𝑌,𝑌

𝜎𝑑𝐿𝑌

2

] =
𝐃0

{tr[𝐖𝐖′]} n⁄⁄   

= [

𝜎𝐷𝐿

2 𝜎𝐷𝐿𝐷𝑌
𝜎𝐷𝐿𝐷𝐿𝑌

𝜎𝐷𝑌𝐷𝐿
𝜎𝐷𝑌

2 𝜎𝐷𝑌𝐷𝐿𝑌

𝜎𝐷𝐿𝐷𝐿𝑌
𝜎𝐷𝑌𝐷𝐿𝑌

𝜎𝐷𝐿𝑌

2

] {tr[𝐖𝐖′]}/n⁄     (8) 

This approach, which is an extension of Vitezica et al. [22], makes it possible to estimate (co)variances of 

genotypic effects of SNPs in purebred and crossbred populations under a genomic model with additive and 

non-additive (dominance) inheritance. 

Matrices 𝐙 and 𝐖, their crossproducts and the inverses of 𝐆 and 𝐃 were built using own programs. Genetic 
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parameters were estimated by using average information REML with software airemlf90 [33]. Standard 

errors on functions of genetic parameters (i.e. standard errors on correlations) were estimated from the 

average information matrix using the REML-MVN method of Houle and Meyer [36]. 

Additive and dominance variances in purebred and crossbred populations 

The additive and dominance (co)variances of genotypic effects of SNPs, either within breed or between 

breeds, were calculated using Equations (6) and (8), respectively. Using these calculated additive and 

dominance (co)variances of SNPs across all the SNPs, the corresponding traditional, individual-based 

genetic parameters can be obtained as follows. The genetic parameters obtained are directly comparable to 

pedigree-based estimates [32]. 

Consider the allele substitution effect 𝛼 = 𝑎 + (𝑞 − 𝑝)𝑑. According to [32], the additive genetic variances 

for purebred performance (mating animals in the same breed) for breed L (𝜎𝐴𝑃𝐿 

2 ) and Y (𝜎𝐴𝑃𝑌 

2 ) are: 

𝜎𝐴𝑃𝐿 

2 = ∑(2𝑝𝑖
𝐿𝑞𝑖

𝐿)𝜎𝑎𝐿
2 + ∑(2𝑝𝑖

𝐿𝑞𝑖
𝐿(𝑞𝑖

𝐿 − 𝑝𝑖
𝐿)

2
) 𝜎𝑑𝐿

2 , 

𝜎𝐴𝑃𝑌

2 = ∑(2𝑝𝑖
𝑌𝑞𝑖

𝑌)𝜎𝑎𝑌
2 + ∑(2𝑝𝑖

𝑌𝑞𝑖
𝑌(𝑞𝑖

𝑌 − 𝑝𝑖
𝑌)

2
)𝜎𝑑𝑌

2 , 

where 𝜎𝑎
2 and 𝜎𝑑

2 are the variances of additive and dominance genotypic effects of SNPs in either breed L or 

Y; 𝑝𝑖  and 𝑞𝑖 are allele frequencies for SNP 𝑖; indices 𝐿 and Y denote the breeds Landrace and Yorkshire, 

respectively. For crossbred performance of say, Landrace, the allele substitution effect is 𝛼𝐴𝐶𝐿
= 𝑎𝐴𝐶𝐿

+

(𝑞𝑌 − 𝑝𝑌)𝑑𝐴𝐶𝐿
. Thus, the additive genetic variances within purebred L and Y for crossbred performance 

(due to gametes from the L or Y individuals in the crossbred population) are equal to: 

𝜎𝐴𝐶𝐿

2 = ∑(2𝑝𝑖
𝐿𝑞𝑖

𝐿)𝜎𝑎𝐿𝑌
2 + ∑(2𝑝𝑖

𝐿𝑞𝑖
𝐿(𝑞𝑖

𝑌 − 𝑝𝑖
𝑌)

2
) 𝜎𝑑𝐿𝑌

2 , 

𝜎𝐴𝐶𝑌

2 = ∑(2𝑝𝑖
𝑌𝑞𝑖

𝑌)𝜎𝑎𝐿𝑌
2 + ∑(2𝑝𝑖

𝑌𝑞𝑖
𝑌(𝑞𝑖

𝐿 − 𝑝𝑖
𝐿)

2
)𝜎𝑑𝐿𝑌

2 , 

where the 𝜎𝐴𝐶𝐿

2  represents the additive genetic variance of animals in breed L when mated to animals in breed 

Y; the 𝜎𝐴𝐶𝑌

2  represents the additive genetic variance of animals in breed Y when mated to animals in breed L; 

and 𝜎𝑎𝐿𝑌
2  and 𝜎𝑑𝐿𝑌

2  are the variances of additive and dominance genotypic effects of SNPs in the crossbred 

LY population, respectively. The additive genetic variance for animals in the crossbred LY population (𝜎𝐴𝐶𝐿𝑌

2 ) 

is the sum of the additive genetic variance of Landrace alleles and that of Yorkshire alleles in the crossbred 

animals [22] as follows: 
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𝜎𝐴𝐶𝐿𝑌

2 =
1

2
𝜎𝐴𝐶𝐿

2 +
1

2
𝜎𝐴𝐶𝑌

2 . 

Note that this variance is not the additive genetic variance of the crossbred animals acting as reproducers (i.e., 

creating an F2) [37]. 

The additive genetic covariances between purebred and crossbred performances within breeds L (𝜎𝐴𝑃𝐿,𝐴𝐶𝐿
) 

and Y (𝜎𝐴𝑃𝑌,𝐴𝐶𝑌
) are: 

𝜎𝐴𝑃𝐿,𝐴𝐶𝐿
= ∑(2𝑝𝑖

𝐿𝑞𝑖
𝐿) 𝜎𝑎𝐿,𝐿𝑌

+ ∑(2𝑝𝑖
𝐿𝑞𝑖

𝐿(𝑞𝑖
𝐿 − 𝑝𝑖

𝐿)(𝑞𝑖
𝑌 − 𝑝𝑖

𝑌)) 𝜎𝑑𝐿,𝐿𝑌
, 

𝜎𝐴𝑃𝑌,𝐴𝐶𝑌
= ∑(2𝑝𝑖

𝑌𝑞𝑖
𝑌) 𝜎𝑎𝑌,𝐿𝑌

+ ∑(2𝑝𝑖
𝑌𝑞𝑖

𝑌(𝑞𝑖
𝑌 − 𝑝𝑖

𝑌)(𝑞𝑖
𝐿 − 𝑝𝑖

𝐿)) 𝜎𝑑𝑌,𝐿𝑌
, 

where 𝜎𝑎𝐿,𝐿𝑌
 and 𝜎𝑑𝐿,𝐿𝑌

 are the covariances of SNP effects between purebred L and crossbred LY populations 

for additive and dominance, respectively; 𝜎𝑎𝑌,𝐿𝑌
 and 𝜎𝑑𝑌,𝐿𝑌

 are the covariances of SNP effects between 

purebred Y and crossbred LY populations for additive and dominance, respectively. 

Therefore, the genetic correlations of breeding values between purebred and crossbred performances within 

L (𝑟𝑃𝐶𝐿
) and Y (𝑟𝑃𝐶𝑌

) are: 

𝑟𝑃𝐶𝐿
=

𝜎𝐴𝑃𝐿,𝐴𝐶𝐿

√𝜎𝐴𝑃𝐿
2 𝜎𝐴𝐶𝐿

2
 and 𝑟𝑃𝐶𝑌

=
𝜎𝐴𝑃𝑌,𝐴𝐶𝑌

√𝜎𝐴𝑃𝑌
2 𝜎𝐴𝐶𝑌

2
. 

According to [22], the dominance genetic variances within purebred populations L and Y are 𝜎𝐷𝐿

2 =

∑(2𝑝𝑖
𝐿𝑞𝑖

𝐿)
2
𝜎𝑑𝐿

2  and 𝜎𝐷𝑌

2 = ∑(2𝑝𝑖
𝑌𝑞𝑖

𝑌)
2
𝜎𝑑𝑌

2 , respectively. The dominance genetic variance in crossbred LY 

animals is 𝜎𝐷𝐿𝑌

2 = ∑(4𝑝𝑖
𝐿𝑞𝑖

𝐿𝑝𝑖
𝑌𝑞𝑖

𝑌)𝜎𝑑
2. 

The broad sense heritabilities for purebred performance (𝐻𝑃
2) were calculated as the ratio of total genetic 

variances for purebred performance (𝜎𝐴𝑃
2 + 𝜎𝐷

2) to phenotypic variances (𝜎𝐴𝑃
2 + 𝜎𝐷

2 + 𝜎𝑒
2). 

Correlations of allele substitution effects between two breeds 

The breeding value of an individual includes the allele substitution effects of all genes and the allele 

frequencies. For purebred performance, the allele substitution effects of one locus for breed L and Y are: 

𝛼𝐿 = 𝑎𝐿 + (𝑞𝑖
𝐿 − 𝑝𝑖

𝐿)𝑑𝐿 , 
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𝛼𝑌 = 𝑎𝑌 + (𝑞𝑖
𝑌 − 𝑝𝑖

𝑌)𝑑𝑌, 

where 𝑎 is the additive effect and 𝑑 is the dominance effect for each SNP; 𝑝𝑖 and 𝑞𝑖 are allele frequencies for 

SNP 𝑖, with superscripts denoting breeds L or Y. In the case of purely additive gene action, the covariance 

between 𝛼𝐿 and 𝛼𝑌 is 𝜎𝑎𝐿,𝑌
, which can be interpreted as a genetic correlation among populations [38-40]. 

Then, the covariance between the allele substitution effects of one locus is: 

𝑐𝑜𝑣(𝛼𝐿 , 𝛼𝑌) = 𝑐𝑜𝑣(𝑎𝐿 + (𝑞𝑖
𝐿 − 𝑝𝑖

𝐿)𝑑𝐿, 𝑎𝑌 + (𝑞𝑖
𝑌 − 𝑝𝑖

𝑌)𝑑𝑌) 

= 𝑐𝑜𝑣(𝑎𝐿 , 𝑎𝑌) + (𝑞𝑖
𝐿 − 𝑝𝑖

𝐿)(𝑞𝑖
𝑌 − 𝑝𝑖

𝑌)𝑐𝑜𝑣(𝑑𝐿 , 𝑑𝑌) 

= 𝜎𝑎𝐿,𝑌
+ (𝑞𝑖

𝐿 − 𝑝𝑖
𝐿)(𝑞𝑖

𝑌 − 𝑝𝑖
𝑌)𝜎𝑑𝐿,𝑌

, 

where 𝜎𝑎𝐿,𝑌
 and 𝜎𝑑𝐿,𝑌

 are the additive and dominance covariances of SNP effects between breeds L and Y for 

additive and dominance, respectively. If we assume that SNP effects (both additive and dominance) are 

independent across loci, then the covariance between the allele substitution effects across all 𝑛 loci is: 

𝑐𝑜𝑣(𝛼𝐿 , 𝛼𝑌) = 𝜎𝛼𝐿,𝑌
= 𝜎𝑎𝐿,𝑌

+
1

𝑛
∑((𝑞𝑖

𝐿 − 𝑝𝑖
𝐿)(𝑞𝑖

𝑌 − 𝑝𝑖
𝑌)) 𝜎𝑑𝐿,𝑌

. 

Also, the variances of allele substitution effects across all 𝑛 loci for breeds L and Y are: 

𝑣𝑎𝑟(𝛼𝐿) = 𝜎𝛼𝐿
2 = 𝜎𝑎𝐿

2 +
1

𝑛
∑((𝑞𝑖

𝐿 − 𝑝𝑖
𝐿)

2
)𝜎𝑑𝐿

2 , 

𝑣𝑎𝑟(𝛼𝑌) = 𝜎𝛼𝑌
2 = 𝜎𝑎𝑌

2 +
1

𝑛
∑((𝑞𝑖

𝑌 − 𝑝𝑖
𝑌)

2
) 𝜎𝑑𝑌

2 , 

where 𝜎𝑎
2  and 𝜎𝑑

2  are the additive and dominance variance of SNPs. Then, the correlation of allele 

substitution effects for purebred performance between populations L and Y is 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
=

𝜎𝛼𝐿,𝑌

𝜎𝛼𝐿
𝜎𝛼𝑌

. If there is 

no dominance variation, the 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
 relates to additive genetic variances as 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌

=
𝜎𝑎𝐿,𝑌

𝜎𝑎𝐿
𝜎𝑎𝑌

. 

The correlation of allele substitution effects for crossbred performance between populations L and Y is 

similar to that for purebred performance, but the allele frequencies are swapped, as: 

𝑟𝛼𝐶𝐿 ,𝛼𝐶𝑌
=

𝜎𝛼𝐿 𝑖𝑛 𝐿𝑌,𝑌 𝑖𝑛 𝐿𝑌

𝜎𝛼𝐿 𝑖𝑛 𝐿𝑌
𝜎𝛼𝑌 𝑖𝑛 𝐿𝑌

=
𝜎𝑎𝐿𝑌

2 +
1
𝑛 ∑((𝑞𝑖

𝐿 − 𝑝𝑖
𝐿)(𝑞𝑖

𝑌 − 𝑝𝑖
𝑌)) 𝜎𝑑𝐿𝑌

2

√𝜎𝑎𝐿𝑌
2 +

1
𝑛 ∑((𝑞𝑖

𝑌 − 𝑝𝑖
𝑌)

2
) 𝜎𝑑𝐿𝑌

2 √𝜎𝑎𝐿𝑌
2 +

1
𝑛 ∑((𝑞𝑖

𝐿 − 𝑝𝑖
𝐿)

2
)𝜎𝑑𝐿𝑌

2

, 
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where 𝜎𝑎𝐿𝑌
2  and 𝜎𝑑𝐿𝑌

2  are the additive and dominance variance of SNPs in the crossbred LY population. If 

there is no dominance variation, the 𝑟𝛼𝐶𝐿,𝛼𝐶𝑌
 is equal to 1, by assumption in the model. 

Scenarios 

Variance components, genetic correlations of breeding values between purebred and crossbred performances 

(𝑟𝑃𝐶 ) within each pure breed and correlations of allele substitution effects for purebred (𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
) and 

crossbred (𝑟𝛼𝐶𝐿 ,𝛼𝐶𝑌
) performance between two pure breeds were first investigated using the full genomic 

dataset. To explore the effects of using genomic information and the inclusion of dominance deviation on the 

genetic evaluation of crossbred performance in the trivariate model, three different scenarios were compared. 

Nogen： 

The statistical model was a trivariate BLUP model, similar to Equation (3), but the dominance deviation was 

excluded. Instead of using a genomic relationship matrix, a single relationship matrix 𝐀 was constructed 

across the three breeds, assuming that they form a single population. Thus, the genetic (co)variances of 

additive genetic effects 𝐮 were: 

𝑉𝑎𝑟(𝐮) = 𝐀 ⨂ [

𝜎𝐴𝐿

2 𝜎𝐴𝐿𝐴𝑌
𝜎𝐴𝐿𝐴𝐿𝑌

𝜎𝐴𝑌𝐴𝐿
𝜎𝐴𝑌

2 𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝐴𝐿𝑌
𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝑌

2

]  = 𝐀 ⨂ 𝐀𝟎, 

where 𝐀𝟎 were variance components associated to genetic additive effects and not the genotypic additive 

effects in Equation (5). Pedigree-based inbreeding depression was also included in the model. The pedigree-

based inbreeding coefficients were calculated as in [41] using the software inbupgf90 [33]. 

Gen_AM： 

The statistical model was similar to Equation (3), but without dominance deviations. Genomic information 

was used to construct the additive genomic relationship matrix. 

Gen_ADM： 

The statistical model includes additive and dominance effects as in Equation (3). Genomic information was 

used to construct the additive and dominance genomic relationship matrices. 
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To explore the impact of genomic information and dominance effects on genomic evaluation for crossbred 

performance, the full genomic dataset was split into training and validation populations and the predictive 

ability for crossbred animals in the validation population was investigated in different scenarios. The 

farrowing date of January 1, 2013 was used as the cut-off date to divide recorded purebred and crossbred 

sows into training and validation populations. As a result, 6769 sows (1270 L, 1405 Y and 4094 LY) were 

included in the training population, while the remaining 2716 sows (854 L, 813Y and 1049 LY) were 

included in the validation population. Predictive ability of crossbreds was measured as the correlations 

𝑐𝑜𝑟(𝑦𝑐 , �̂�) in the validation population for each scenario, where 𝑦𝑐  is the corrected phenotypic records of 

TNB for crossbred animals; �̂� is the predicted corrected observations of TNB for crossbred animals and is 

equal to the sum of the estimated population mean (�̂�), inbreeding (𝑓�̂�) and genotypic values (𝑔); the 

genotypic value 𝑔 was calculated as the sum of additive and dominance genetic effects in the scenario 

Gen_ADM. In the other two scenarios, the genotypic value 𝑔 only included the additive genetic effect. 

Hotelling-Williams t-test at a confidence level of 5% was applied to evaluate the significance of the 

differences in validation correlations in each scenario. Furthermore, to detect the possible biases in the 

predictions, the regression coefficients of 𝑦𝑐 on �̂� were explored. Note that no bias implies that a regression 

coefficient equals 1. In addition, to measure the uncertainty associated with the predictions, 1000 bootstrap 

samples [42] was applied to estimate the means and standard errors. 

For comparison, the predictive ability of crossbred animals was also investigated in a model without 

inbreeding depression effects, for all three scenarios. The predictive ability was measured as the correlation 

𝑐𝑜𝑟(𝑦𝑐 , �̂�), where �̂� is the sum of the estimated population mean (�̂�) and genotypic value (𝑔). 

Results 

Variance components, heritabilities and correlations 

Table 1 shows the estimates of variance components for additive genetic effects for purebred (𝜎𝐴𝑃
2 ) and 

crossbred (𝜎𝐴𝐶
2 ) performance in different scenarios, and dominance variations (𝜎𝐷

2) in the Gen_ADM scenario. 

For all scenarios, the additive genetic variances for purebred performance (𝜎𝐴𝑃
2 ) were larger than those for 

their crossbred performance (𝜎𝐴𝐶
2 ). Estimated variance components in the scenarios Gen_AM and Gen_ADM 

were very close, but different from those obtained in scenarios without using genomic information. In 

general, estimates had large standard errors in all scenarios, but no obvious differences in standard errors 

were detected between different scenarios. Residual variance for purebred animals (𝜎𝑒
2) was larger than for 

crossbred animals (𝜎𝑒𝐿𝑌
2 ) in each scenario. For the scenario Gen_ADM, the ratios of dominance genetic 

variance to additive genetic variance ranged from 5 to 11% for both purebred and crossbred populations. 
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Table 1 Variance components of additive and dominance genetic effects for purebred and crossbred animals 

Scenario Breed 𝜎𝐴𝑃
2  𝜎𝐴𝑃,𝐴𝐶 𝜎𝐴𝐶

2  𝜎𝐷
2 𝜎𝑒

2 𝜎𝐴𝐶𝐿𝑌

2  𝜎𝐷𝐿𝑌

2  𝜎𝑒𝐿𝑌
2  

Nogen L 0.99 

(0.31) 

0.17 

(0.07) 

0.05 

(0.02) 

- 10.82 

(0.43) 

0.05 

(0.02) 

- 7.35 

(0.15) 

 Y 1.07 

(0.33) 

0.15 

(0.07) 

0.05 

(0.02) 

- 8.96  

(0.38) 

Gen_AM L 0.87 

(0.22) 

0.47 

(0.10) 

0.28 

(0.07) 

- 10.89 

(0.38) 

0.28 

(0.07) 

- 7.11 

(0.15) 

 Y 0.55 

(0.20) 

0.17 

(0.10) 

0.28 

(0.07) 

- 9.42  

(0.33) 

Gen_AD

M 

L 0.86 

(0.21) 

0.46 

(0.10) 

0.28 

(0.06) 

0.04 

(0.03) 

10.86 

(0.38) 

0.28 

(0.06) 

0.02 

(0.01) 

7.11 

(0.15) 

 Y 0.54 

(0.18) 

0.17 

(0.09) 

0.28 

(0.06) 

0.06 

(0.05) 

9.35  

(0.33) 

𝜎𝐴𝑃
2  is the additive genetic variance for purebred performance; 𝜎𝐴𝑃,𝐴𝐶 is the additive genetic covariance between 

purebred and crossbred performance; 𝜎𝐴𝐶
2  is the additive genetic variance for crossbred performance; 𝜎𝐷

2 is the 

dominance genetic variance for either purebred animals; 𝜎𝑒
2 is the residual variance for purebred animals; 𝜎𝐴𝐶𝐿𝑌

2 is 

the additive genetic variance for the F1 crossbred animals LY; 𝜎𝐷𝐿𝑌

2  is the dominance genetic variance for the F1 

crossbred animals LY; and 𝜎𝑒𝐿𝑌

2 is the residual variance for the F1 crossbred animals LY.  

L: Landrace and Y: Yorkshire breeds. 

Numbers in brackets are the standard errors of the corresponding parameters. 

The broad sense heritabilities for purebred and crossbred animals, genetic correlations between breeding 

values for purebred and crossbred performances within pure breeds and correlations of allele substitution 

effects across the two breeds are in Table 2. In different scenarios, the heritabilities of purebred performance 

(𝐻𝑃
2) ranged from 0.07 (0.03) to 0.08 (0.03) and from 0.06 (0.03) to 0.10 (0.03) for breeds L and Y, 

respectively. Standard errors of 𝐻𝑃
2 were almost consistent across scenarios. Estimated genetic correlations of 

breeding values between purebred and crossbred performances (𝑟𝑃𝐶) increased from 0.76 (0.20) (Nogen) to 

0.95 (0.06) (Gen_AM) for breed L and from 0.43 (0.22) (Gen_ADM) to 0.54 (0.30) (Nogen) for breed Y. The 

𝑟𝑃𝐶 was higher for breed L than for breed Y in all scenarios, but the standard errors of 𝑟𝑃𝐶  were always 

higher for breed Y than for breed L. With genomic information, the correlations of allele substitution effects 

between purebred (𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
) and crossbred (𝑟𝛼𝐶𝐿 ,𝛼𝐶𝑌

) performance between breeds L and Y were estimated, 

as shown in Table 3. For purebred performance, 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
 was equal to 0.14 and 0.19 in Gen_AM and 

Gen_AMD, respectively. However, the standard errors were large, around 0.2 in both scenarios. For 

crossbred performance, 𝑟𝛼𝐶𝐿 ,𝛼𝐶𝑌
 was equal to 0.98 in Gen_ADM. This high correlation is a byproduct of 

assuming that additive biological effects in crossbred animals are the same regardless of the Yorkshire or 

Landrace origin of the allele. However, the same allele has potentially different effects in the respective 

Landrace or Yorkshire genetic backgrounds, and the difference is modeled through the correlations, hence 

the low values of 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
.Without including the dominance effects in the model Gen_AM, 𝑟𝛼𝐶𝐿,𝛼𝐶𝑌

 was 

equal to 1 by definition. 
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Table 2 Heritabilities and genetic correlations between breeding values for purebred and crossbred 

performances 

Scenario Breed 𝑟𝑃𝐶 𝐻𝑃
2 

Nogen L 0.76 (0.20) 0.08 (0.03) 

 Y 0.54 (0.30) 0.10 (0.03) 

Gen_AM L 0.95 (0.06) 0.07 (0.03) 

 Y 0.44 (0.20) 0.06 (0.03) 

Gen_ADM L 0.93 (0.05) 0.08 (0.03) 

 Y 0.43 (0.22) 0.06 (0.03) 

L: Landrace Y: Yorkshire. 

𝑟𝑃𝐶  is the genetic correlation of breeding values between purebred and crossbred performances within the 

Landrace or Yorkshire breeds. 

𝐻𝑃
2 is the broad sense heritability for purebred performance for the Landrace and Yorkshire breeds in different 

scenarios. 

Numbers between brackets are the standard errors of the corresponding parameters. 

 

Table 3 Correlations of allele substitution effects for purebred and crossbred performance between Landrace 

and Yorkshire breeds 

Scenario 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
 𝑟𝛼𝐶𝐿,𝛼𝐶𝑌

 

Nogen - - 

Gen_AM 0.14 (0.22) 1 

Gen_ADM 0.19 (0.24) 0.98 (0.02) 

𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
 is the correlation of allele substitution effects for purebred performance between the Landrace and 

Yorkshire breeds. 

𝑟𝛼𝐶𝐿,𝛼𝐶𝑌
 is the correlation of allele substitution effects for crossbred performance between the Landrace and 

Yorkshire breeds. For Gen_AM, 𝑟𝛼𝐶𝐿,𝛼𝐶𝑌
 is equal to 1 by definition. 

Numbers between brackets are the standard errors of the corresponding parameters. 

 

Predictive abilities 

Predictive abilities for crossbred pigs in the validation population are in Table 4. The correlation between the 

corrected phenotypic values and the predicted observations for TNB (𝑐𝑜𝑟(𝑦𝑐 , �̂�)) ranged from 0.010 in the 

scenario Nogen to 0.056 in scenarios Gen_AM and Gen_ADM. Standard errors of 𝑐𝑜𝑟(𝑦𝑐 , �̂�) based on 1000 

bootstrap samples were equal to 0.03 across all scenarios. No significant differences in predictive ability 

between scenarios were detected by the Hotelling-Williams t-test at the confidence level of 5%. 

The regression coefficients of corrected phenotypic values on the predicted corrected observations for TNB 

are in the second row of Table 4. Regression coefficients were smaller than 1 for the three scenarios. Among 

these scenarios, regression coefficients for scenarios with genomic information (Gen_AM and Gen_ADM) 

were slightly closer to 1 than that for the pedigree-based scenario (Nogen). Except for the Nogen scenario, 

standard errors of regression coefficients were around 0.39. For the Nogen scenario, the standard error was 

around 5 times larger than that for other scenarios. Overall, there was no clear trend towards a scenario with 
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less bias. 

For comparison, predictive abilities 𝑐𝑜𝑟(𝑦𝑐 , �̂�) for crossbred pigs in the validation population for the models 

without the inbreeding depression effect were equal to -0.08 in scenario Nogen, 0.045 in scenario Gen_AM 

and 0.046 in scenario Gen_ADM. In all cases, these are lower than the predictive abilities in Table 4, and 

these differences are statistically significant according to the Hotelling-Williams t-test. 

Table 4 Predictive ability for crossbred animals in the validation population 

 Nogen Gen_AM Gen_ADM 

𝑐𝑜𝑟(𝑦𝑐 , �̂�)1
 0.010 (0.031) 0.056 (0.031) 0.056 (0.031) 

Regression coefficient
2
 0.703 (2.218) 0.736 (0.386) 0.730 (0.385) 

1
Predictive ability (cor(yc, ŷ)) is given by the correlation coefficient between the corrected phenotypes (𝑦𝑐) and 

their predictions (�̂�) for total number of piglets born (TNB) in crossbred animals. 
2
Regression coefficient of the corrected phenotypes (𝑦𝑐) on the predicted observations (�̂�) in crossbred animals 

Numbers between brackets are the standard errors of the corresponding parameters. 

 

Inbreeding depression 

Marker-based and pedigree-based inbreeding coefficient ( 𝑓 ) for each population and their estimated 

corresponding inbreeding depression parameters (b) in the different scenarios are in Table 5. Marker-based 

inbreeding coefficients were almost identical for breeds L and Y, but they were larger than those for LY, 

which was expected because crossbred animals have a higher level of heterozygozity than purebred animals. 

However, according to the pedigree-based inbreeding coefficients, the Landrace population was slightly 

more inbred than the Yorkshire population. In terms of inbreeding depression parameters (b), they were all 

negative (thus, genomic inbreeding has detrimental effects for TNB even in crossbred animals) but not of the 

same magnitude across the three populations. Note that for the scenario Nogen, b was estimated based on the 

pedigree-based inbreeding coefficients. As a whole, breed L had the most negative b, while breed Y had the 

least negative b, regardless of the scenario. Thus, TNB was more negatively affected by inbreeding in breed 

L than in breed Y and population LY. 
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Table 5 Marker-based and pedigree-based inbreeding coefficients 𝑓 and estimated inbreeding depression 

parameter b (piglets per 100% of inbreeding) in different scenarios for each breed 

 L Y LY 

Marker-based inbreeding coefficient 𝑓1
 0.695 (0.019) 0.698 (0.020) 0.565 (0.012) 

Pedigree-based inbreeding coefficient 𝑓2
 0.111 (0.032) 0.078 (0.031) 0 

Nogen (b) -4.821 -3.561 0 

Gen_AM (b) -9.656 -1.924 -5.122 

Gen_ADM (b) -9.731 -1.878 -5.055 

1
 is calculated as the proportion of homozygous loci per individual. 

2
 is calculated as in Meuwissen and Luo [41]. 

In this table, the inbreeding coefficient is the mean inbreeding coefficient across individuals within each breed. 

Numbers between brackets are the standard deviations of the mean inbreeding coefficient. 

For Nogen, the inbreeding depression parameter 𝑏 is the regression of phenotype on pedigree-based inbreeding. 

For Gen_AM and Gen_ADM, the inbreeding depression parameter 𝑏 is the regression of phenotype on marker-

based inbreeding. 

 

Discussion 

This study extended the trivariate GBLUP model of Vitezica et al. [22] in order to obtain (co)variances of 

effects of SNPs, genetic correlations of breeding values between purebred and crossbred performances and 

correlations of allele substitution effects under dominance. We also evaluated this model using different 

scenarios for the genetic evaluation of crossbred performance in Danish purebred and crossbred pigs. 

Scenarios that included or not genomic information were studied to estimate the genetic correlations of 

breeding values between purebred and crossbred performances. To our knowledge, this is the first study to 

report correlations of allele substitution effects between two breeds in the presence of dominance effects. 

The results show that the Vitezica model [22] is a tool that can be used for the genomic evaluation of 

crossbred performance in genotyped animals. In this study, for TNB, models with dominance deviations did 

not improve the genomic evaluation of crossbred performance with regard to both predictive ability and 

unbiasedness, but the inclusion of an inbreeding depression effect in the models significantly improved 

predictive ability. 

Phenotypic variances were larger for purebred animals (11.76 for breed L and 9.99 for breed Y) than for 

crossbred animals (7.30 for LY). This could be the reason why the estimated additive genetic variances for 

purebred performance (𝜎𝐴𝑃
2 ) were larger than those for crossbred performance (𝜎𝐴𝐶

2 ). However, compared to 

results in a previous study that used a much larger Danish purebred and crossbred dataset [17], both 

estimated additive genetic variances and phenotypic variances in the current study were smaller, which is 

due to three reasons. (1) The dataset in the current study was a genotyped subset of the population used in the 

previous study. Purebred genotyped individuals were pre-selected and their performances were more 
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homogeneous than that of the whole population. The preselection process resulted in a loss of about 15% of 

the purebred phenotypic variation. However, the genotyped crossbred animals were an almost random 

sample of the whole population and there was only a small loss of about 5% of phenotypic variation for 

crossbred animals. (2) The phenotypic values for TNB in the current study were pre-corrected for fixed and 

non-genetic random effects. This pre-correction led to a loss of about 11 and 17% of phenotypic variation for 

purebreds and crossbreds, respectively. (3) During the pre-correction, some genetic variation may have been 

allocated to other random effects (e.g. service boar effects), in particular because TNB is a lowly heritable 

trait. 

The estimated heritabilities of TNB for purebred performance (𝐻𝑃
2) were slightly lower than those previously 

reported (0.11 and 0.09 for breeds L and Y, respectively) [17, 22, 43]. Large standard errors of 𝐻𝑃
2 implied 

that the current dataset was not large enough. The consistent standard errors across scenarios indicated that 

even when genomic information was included, the uncertainty of 𝐻𝑃
2 did not decrease. Taking the standard 

errors into account, the estimated 𝐻𝑃
2 across scenarios were not very different. Compared to the results of 

[17], the lower 𝐻𝑃
2 found in the current study was due to the sharp decrease in additive genetic variances 

(𝜎𝐴𝑃
2 ). 

The ratios of estimated dominance genetic variances to additive genetic variances in the current study (5 to 

11%) were generally a little smaller than in other studies on TNB. Vitezica et al. [22] reported that this ratio 

was equal to about 20% for litter size in both purebred and crossbred lines by using the same trivariate 

GBLUP model. Esfandyari et al. [19] stated that, by using purebred genomic information in a univariate 

Bayesian mixture model at the SNP level, the ratio between dominance variance and additive variance for 

TNB was equal to 15 and 18% for breeds L and Y, respectively. Based on pedigree information, Misztal et al. 

[10] reported a ratio that reached about 25% for number of piglets born alive in a Yorkshire population. 

However, there are some studies that did report smaller ratios than those reported here. For instance, Hidalgo 

et al. [20] reported that, based on genotyped crossbred animals, the dominance variance for TNB accounted 

for nearly zero of the total genetic variance and concluded that TNB was not affected by dominance effects 

in the Dutch Landrace and Yorkshire populations. For other traits or species, different ratios of dominance 

genetic variance to additive genetic variance were also reported. For average daily gain in Duroc pigs, Su et 

al. [9] estimated a ratio of 15%, but their results were based on genotypic variance components and cannot 

be directly compared to genetic variance components [32]. For average daily weight gain in Yorkshire and 

Landrace pigs, Lopes et al. [44] reported ratios of 13.8 and 28%, respectively by including genomic 

information. For Fleckvieh cattle, Ertl et al. [12] calculated ratios that ranged from 3.4% for stature to 69% 

for protein yield by using a univariate SNP-BLUP model. Overall, these different ratios of dominance 

genetic variance to additive genetic variance may reflect differences in the traits analyzed and in the type of 

information used for the estimation [9], and also uncertainty in the estimates. 



Chapter 5: Genomic evaluation by including dominance effects and inbreeding depression  

117 
 

The genetic correlation of breeding values between purebred and crossbred performances (𝑟𝑃𝐶) is a key 

parameter in crossbreeding schemes [2]. In the current study, the estimated 𝑟𝑃𝐶  was in line with results 

reviewed by Wei et al [3]. Lutaaya et al. [5] also reported 𝑟𝑃𝐶 that ranged from 0.32 to 1. Such differences in 

𝑟𝑃𝐶 may reflect differences in the extent of GxE interactions and the distance across breeds. In our study, 

estimated 𝑟𝑃𝐶  did not vary dramatically across the scenarios, when the standard errors were taken into 

account. These standard errors were very large, which indicated that the amount of available information was 

too small to ensure accurate  𝑟𝑃𝐶 estimates. Across scenarios, standard errors of 𝑟𝑃𝐶 decreased when genomic 

information was included, which indicates that including genomic information may reduce the uncertainty of 

the estimations. 𝑟𝑃𝐶 was larger for breed L than for breed Y, which was in agreement with a previous study 

[17] and may be due to the data structure. Among the 5143 crossbred animals, the number of Yorkshire sires 

(N = 1125) was much smaller than that of Landrace sires (N = 4018). Such a different amount of information 

affects the accuracy of the estimates, and thus the standard error of 𝑟𝑃𝐶 was larger for breed Y than for breed 

L (see Table 2). However, compared to the results reported in [17], the 𝑟𝑃𝐶 for breed L increased by about 10% 

while that for breed Y did not change much. Both pre-correction of data and the genotyped subset of original 

data used may play a role in the differences observed between the current and previous results [17]. In the 

previous study, a single-step method, which can use pedigree information and genomic information 

simultaneously, was used. In this study, the use of only phenotypic records on genotyped individuals affected 

the accuracy of estimates. Our results confirmed the moderate value of the 𝑟𝑃𝐶 for TNB in breeds L and Y. 

To our knowledge, this is the first time that correlations of allele substitution effects for both purebred 

(𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
) and crossbred (𝑟𝛼𝐶𝐿 ,𝛼𝐶𝑌

) performance between two breeds in the presence of dominance variation 

are estimated. In genomic selection, SNPs are assumed to be in LD with QTL along the whole genome [45]. 

The correlation of allele substitution effects between breeds measures the degree of average similarities 

between SNP effects assuming that the QTL effects are the same in breeds 1 and 2 [38-40]. In practice, the 

correlation of allele substitution effects between two breeds can be interpreted as indicating “how consistent 

the SNP substitution effects are across two breeds”. For purebred performance, the estimated SNP 

substitution effects were based on the within-breed allele frequencies. A high 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
 correlation means that 

the estimated SNP substitution effects based on allele frequencies from breed L can be used for breed Y and 

vice versa. However, 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
was not significantly different from 0 in the current study, which demonstrates 

that SNP effects estimated from a reference population that consists of one pure breed (e.g. Landrace) cannot 

be readily applied to the other breed (e.g. Yorkshire). This was in agreement with the findings of [46] who 

reported that prediction based on an across-population reference panel was worse than within-population 

prediction. In other species, estimated correlations of allele substitution effects between breeds based on 

models without dominance, oscillate between 0 and 0.8, and are trait-dependent [38, 47]. For crossbred 

performance, an 𝑟𝛼𝐶𝐿,𝛼𝐶𝑌
 close to 1 was found in the current study, which indicated that the allele 
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substitution effects based on the allele frequencies from the opposite breeds were very similar for the L and 

Y breeds. In practice, this suggests that SNP substitution effects that are estimated based on a reference 

population consisting of crossbred animals can be used to estimate crossbred breeding values for both breeds 

L and Y. 

It was expected that genomic evaluations obtained by including dominance deviations in the model would be 

improved, especially when records of crossbred animals were included [9]. However, our results showed that 

inclusion of dominance deviations did not increase the predictive ability for crossbreds. This result was in 

line with conclusions in [9, 12, 20], but was opposite to those in [18, 19, 48, 49]. Theoretically, estimating 

dominance genetic effects should be useful because ignoring them will result in less accurate estimates of 

allele substitution effects and consequently less accurate estimated breeding values in genomic prediction 

[11]. However, regarding the additive genetic variance, estimates were nearly the same in scenarios Gen_AM 

and Gen_ADM, which demonstrated that the additive variances were already well captured by the additive 

model. Thus, the accuracy of the estimated additive genetic effects was not affected when dominance effects 

were included in the model [12]. Moreover, a simulation study at the level of the gene action showed that 

when all gene actions were purely additive, including dominance in addition to the additive effects in the 

model was not advantageous compared to using an additive model. Hidalgo et al. [20] showed that TNB was 

not affected by dominance in the Dutch crossbred population. In the current study, we also observed similar 

results, and dominance variation accounted for a small proportion of the total genetic variation (4 to 10%). 

The lack of change in predictive ability also indicated the difficulty of distinguishing dominance genetic 

effects from additive genetic effects [9], but it confirmed a previous simulation study that concluded that the 

use of a dominance model did not negatively affect genomic evaluation even if the trait was purely additive 

[18]. 

Scenarios in which genomic information was included (Gen_AM and Gen_ADM) showed higher predictive 

abilities than the pedigree-based scenario (Nogen). For the Nogen scenario, the relationship matrix was 

constructed based on a base population that was considered as a mixture of L and Y animals, which was not 

the case. Therefore, the results of the Gen_AM and Gen_ADM scenarios were more reliable than those of the 

Nogen scenario. Although predictive abilities were not significantly different according to the Hotelling-

Williams t-test, the results from 1000 bootstrap samples still showed that the predictive abilities of about 90% 

of the crossbred animals would be higher when genomic information was available (894 of 1000 bootstrap 

samples showed higher predictive abilities in scenarios that included genomic information than those in the 

Nogen scenario; results not shown). Comparison of the predictive abilities that were estimated in the current 

study with those from a previous study [17] indicated that the single-step model [16] might be more robust 

than the Vitezica model [22] used in this paper in terms of both predictive ability and unbiasedness for the 

crossbred performance. Our results suggested that using a small set of genotyped animals and pre-corrected 
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data to implement genetic evaluation for crossbred performance was less powerful than using the whole 

dataset, which is similar to the conclusions for purebred performance [43]. 

The regression coefficients obtained with the Vitezica model were less than 1, which suggests that variations 

in total genetic effects could be overestimated (inflated). In terms of unbiasedness, there was no clear trend 

among the scenarios examined, regardless of whether genomic information was included or not. Overall, 

unbiasedness was not a problem in the current study because the regression coefficients in all scenarios did 

not significantly differ from 1. 

Inbreeding depression for litter size in pigs is a well-known phenomenon [50, 51], and we found that 

inclusion of inbreeding effects in the model improved predictive abilities of crossbred animals. Estimates of 

inbreeding depression effects are rarely reported, but our estimates agree with those previously reported for 

commercial and Iberian pigs [52]. Inbreeding depression was, for the same amount of marker-based 

inbreeding, more detrimental in the Landrace than in the Yorkshire breed. There are many possible 

explanations among which the purging of lethal recessive alleles [53]. We also report an estimate of the 

inbreeding depression parameter for the crossbred animals, which is between the estimates for the parental 

breeds. To our knowledge, this estimate has never been reported. 

The correlation between breeding values and dominance deviations is of theoretical concern [30]. However, 

this does not apply to the current marker-based analyses for the following reasons. (1) In a pedigree-based 

analysis, mating in an inbred population produces deviations from the Hardy-Weinberg equilibrium, which 

generate correlations between breeding values and dominance deviations [30]. However, in our study, SNPs 

are in Hardy-Weinberg equilibrium if allele frequencies are considered in the current generation. (2) Such a 

correlation occurs because the pedigree information forces the genetic model to refer to the base population, 

since the state of alleles is not known, i.e. only probabilities of IBD are known. In our study, the states of 

alleles are known and the model can be described as referring to the current generation instead. (3) The 

equivalent GBLUP models in Equation (3) used genotypic additive and dominance values, not breeding 

values and dominance deviations. A reasonable assumption in the model is that additive and dominance 

effects are unrelated at each SNP. Thus, covariance between additive and dominance genetic effects was 

ignored in the current study. 
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Conclusions 

We present for the first time the use of genomic inbreeding in crossbred and purebred genomic evaluation. 

Estimates are biologically sound and are relevant even for crossbred animals. We also report for the first 

time, estimated correlations of allele substitution effects in the presence of dominance. For TNB, the 

dominance genetic variance accounts for only a small proportion of the total genetic variation (4 to 10%). A 

moderate, positive genetic correlation between breeding values for TNB for purebred and crossbred 

performances was confirmed. Inclusion of dominance in the GBLUP model did not improve predictive 

ability for crossbred animals, whereas inclusion of inbreeding depression effects did. An additive GBLUP 

model is sufficient to capture the additive genetic variances and for genomic evaluation. The GBLUP model 

[22] was applied successfully for genetic evaluations for crossbred performance in pigs. This model can 

potentially be a useful tool in genetic evaluation for crossbred performance. 
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Introduction 

Genomic selection (Meuwissen et al., 2001) has been widely used in the pig industry in different countries. 

In pig industry, selection intensities are already high and the generation intervals are not long. However, the 

accuracies of pedigree-based conventional EBVs are low, especially for the traits with sex-limitation, low 

heritabilities and that cannot be recorded early in life or are difficult to be measured (Muir, 2007). Therefore, 

when compared with dairy cattle (Hayes et al., 2009), the increased genetic gain through using GS is mainly 

due to the improved accuracies of EBVs in pig.  

For purebred performance, pig breeding companies, such as DanAvl, PIC and Topigs Norsvin, commonly 

chose the single-step GBLUP method (Legarra et al., 2009; Christensen and Lund, 2010) as the standard 

approach in their routine genetic evaluation. Due to the economical restrictions, it is currently unfeasible to 

genotype all animals. In DanAvl, potential breeding candidates must be tested and breeding indices are 

calculated. The breeding indices are used as criterion for selecting which animals will be genotyped 

(Eskildsen and Weber, 2016). Then more accurate breeding indexes are calculated based on both pedigree 

and genomic information, by using single-step GBLUP method.    

Recently, the single-step GBLUP method has been theoretically extended to crossbred performance 

(Christensen et al., 2014; Christensen et al., 2015; Legarra et al., 2015), because pig production largely relies 

on the crossbreeding system and performance of purebred animals is not an optimal predictor for its 

crossbred performance (Dekkers, 2007). This method had to be verified in real datasets. Hence, this thesis 

was initially inspired by the question on how to apply single-step method for crossbred performance in a 

feasible way.  

To find out solutions, in chapter 2, genotype imputation was first implemented in both Danish purebred and 

crossbred pigs using low-density panels. This chapter was the precondition for the applications of GS in 

other chapters. Weigel et al. (2010) and Cleveland and Hickey (2013) demonstrated that accuracies of GS 

did not decline significantly when imputed SNP markers were used instead of real genotyped markers, 

whereas the costs of genotyping reduced sharply. In chapter 2, differences in imputation accuracies between 

purebred and crossbred animals were compared from 5K to 8K panels first and then, according to the 

“optimal” imputation strategy, imputation was processed from 8K to 60K panels in crossbred animals as the 

second step. The study confirmed that to impute two-way crossbred genotypes correctly, both parental 

breeds should be included in the reference population, which was in line with Moghaddar et al. (2015), and 

imputation worked almost as well in crossbred animals as in purebred animals. Then both purebred and 

(imputed) crossbred genomic information was used in chapter 3, 4 and 5. In chapter 3 and 4, single-step 

GBLUP method was used to investigate both the purebred and crossbred performances. These chapters 

considered either two breed-specific partial relationship matrices or one relationship matrix with two 
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metafounders to account for genomic relationships across three pig populations. Results were mutually 

consistent, which was reassuring. They both confirmed the existence of a moderate, positive genetic 

correlation for breeding values between purebred and crossbred performances for TNB. Models with 

genomic information, especially from crossbred animals, can improve model-based reliabilities for crossbred 

performance of purebred boars and also improve predictive abilities for validated crossbred animals. The 

common genetic approach in chapter 4 performed at least as well as the partial genetic approach in chapter 3, 

and was also easier to implement. Chapter 3 and 4 indicated that the single-step method is applicable for 

genomic evaluation for both purebred and crossbred performances. However, single-step method is difficult 

to extend to account for dominance effects, but dominance is the main genetic basis for heterosis. Hence, 

investigation on models including dominance effects was studied in chapter 5. The estimated correlations of 

allele substitution effects of markers across breeds were reported for the first time. Results indicated that 

TNB was only slightly affected by the dominant gene actions and the accuracies of predictions were not 

improved by including dominance effects in the model, but genomic inbreeding depressions are relevant, 

even in crossbreds, and their inclusion can efficiently improve the performance of prediction.  

In this general discussion part, I will mainly discuss the shortcomings or possible improvements for the 

thesis. For those issues that have been discussed in the respective chapters, I will not repeat them here.          

Genotype Imputation 

Imputation of genotypes in both purebred and two-way crossbred pigs using low-density panels was done in 

chapter 2. Results indicated that to impute crossbred genotypes accurately, the reference population should 

be composed of animals from both parental breeds. We also concluded that close relatives in the reference 

population to the target animals in the imputed population play a much higher important role than distant 

relatives, in line with Huang et al. (2012) and Pszczola et al. (2012). Although the strategy of imputing 

crossbred genotypes was considered as “optimal” in chapter 2, to enhance the imputation accuracies for 

crossbred genotypes further, the reference population can still be optimized. In chapter 2, mainly purebred 

sires of crossbred animals were genotyped and included in the reference population, but neither their dams 

nor sibs were. Moghaddar et al. (2015) successfully used crossbred reference population to impute crossbred 

Merino sheep and they obtained ~0.88 correlation coefficients between imputed and real genotypes. They 

concluded that crossbreds need larger imputation reference sets that included genotypes for all relevant 

breeds than purebreds. However, with additional funds, dams should be genotyped in a higher priority than 

the crossbred sibs for two reasons: 1) higher proportion of haplotypes can be shared between the parents and 

imputed offspring than between crossbred sibs; 2) purebred parents are closely related to the purebred 

selection candidates.  
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Comparison of different imputation software was beyond the scope of chapter 2. Beagle version 3.3.2 used 

algorithms that depend crucially on local LD patterns across markers and thus, its performance may be 

breed-specific. Although Ma et al. (2013) recommended Beagle as the most robust software for imputation, 

the family structure information was not used during the process of imputation. Johnston and Kistemaker 

(2011) and Ventura (2013) showed that the family based software Fimpute (Sargolzaei et al., 2011) slightly 

outperformed Beagle, and imputation time was reduced to one-twentieth of that in Beagle. Thus, it would be 

interesting to test other software in imputing crossbred genotypes as well. 

In chapter 2, only autosomes were imputed and they were used for genomic evaluation in the other chapters. 

However, Hickey and Kranis (2013) pointed out that a large portion of genome is in sexual chromosomes. 

Although X chromosomes were considered more difficult to impute accurately than autosomes, the markers 

on the X chromosomes contributed to the accuracy of genomic evaluation and inclusion of genomic 

information of the X chromosomes can increase the reliability of genomic prediction (Su et al., 2014). Thus, 

genotype imputation should also be carried out on the X chromosome in chapter 2 if the low density 

genotypes were available for X chromosome. 

Models 

We investigated different approaches and scenarios of genomic evaluation for crossbred performance in pigs 

in chapter 3, 4 and 5. Single-step GBLUP was applied in chapter 3 (partial genetic approach) and chapter 4 

(common genetic approach) and GBLUP method including dominance and genomic inbreeding was used in 

chapter 5. Chapter 3 and 4 used additive models where non-additive effects at the individual level were 

ignored, while dominance effects and inbreeding depressions were included explicitly in GBLUP model in 

chapter 5. It is difficult to estimate dominant relationships accurately based on the pedigree information. In 

combination with computational complexities, single-step method has not been extended to account for 

dominance effects yet (Legarra et al., 2014). Although the additive models in chapter 3 and 4 did not 

explicitly contain dominance effects, it may still capture parts of dominant gene actions and other non-

additive gene actions (Christensen et al., 2014), because substitution effects involve functional dominance 

and epistatic effects. For instance, the 𝑟𝑝𝑐 smaller than 1 could partly be due to the dominant gene actions.  

The model used in chapter 3 was the model from Christensen et al (2014), which was an extension of full 

model in Wei and Van der Werf (1994). Christensen et al. (2014) chose to extend the full model rather than 

reduced model in Wei and Van der Werf because crossbred marker genotypes provide information on the 

Mendelian sampling of the additive genetic effects for crossbred animals, and such genomic information 

cannot be incorporated in the reduced model.  
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In chapter 3, the model contains two breeding values for purebred and crossbred performance and these two 

breeding values are correlated by 𝑟𝑝𝑐 . This model is more sophisticated than models in other studies 

(Dekkers, 2007; Ibánẽz-Escriche et al., 2009; Hidalgo, 2015; Lopes, 2016) because those models can only be 

used for evaluating either purebred or crossbred performance for each animal at one time.  

In chapter 3, it was assumed that genetic variances were different in the two pure breeds. It used two breed-

specific variance and covariance structures between additive genetic effects for purebred and crossbred 

breeding values, which were [
𝜎𝑎𝐿

2 𝜎𝑎𝐿𝑐𝐿

𝜎𝑐𝐿𝑎𝐿
𝜎𝑐𝐿

2 ] and [
𝜎𝑎𝑌

2 𝜎𝑎𝑌𝑐𝑌

𝜎𝑐𝑌𝑎𝑌
𝜎𝑐𝑌

2 ] for Landrace and Yorkshire, respectively. 

The additive genetic variance for crossbred animals is 𝜎𝐴𝐿𝑌

2 = 0.5 ∗ (𝜎𝑐𝐿
2 + 𝜎𝑐𝑌

2 ). In chapter 3, it was assumed 

that the covariance between Landrace and Yorkshire was 0, which was in line with the pedigree information 

that base individuals in different populations were unrelated. A special case in chapter 3 is when the additive 

genetic variances for crossbred performance are same for Landrace and Yorkshire and thus, 𝜎𝐴𝐿𝑌

2 = 𝜎𝑐𝐿
2 =

𝜎𝑐𝑌
2  (Christensen et al. 2014). In such case, instead of using breed-specific variance and covariance matrices, 

one combined (co)variance matrix (𝐆𝐬𝐩𝐞𝐜𝐢𝐚𝐥) across three populations can be used as 

 𝐆𝐬𝐩𝐞𝐜𝐢𝐚𝐥 = [

𝜎𝑎𝐿
2 0 𝜎𝑎𝐿𝑐𝐿

0 𝜎𝑎𝑌
2 𝜎𝑎𝑌𝑐𝑌

𝜎𝑐𝐿𝑎𝐿
𝜎𝑐𝑌𝑎𝑌

𝜎𝐴𝐿𝑌

2

], 

and there would be no need to trace the breed-origin of crossbred genotypes. This (co)variance structure 

looks similar to the 𝐆𝟎  matrix ([

𝜎𝐴𝐿

2 𝜎𝐴𝐿𝐴𝑌
𝜎𝐴𝐿𝐴𝐿𝑌

𝜎𝐴𝑌𝐴𝐿
𝜎𝐴𝑌

2 𝜎𝐴𝑌𝐴𝐿𝑌

𝜎𝐴𝐿𝑌𝐴𝐿
𝜎𝐴𝐿𝑌𝐴𝑌

𝜎𝐴𝐿𝑌

2

]) used in chapter 4, but actually with several 

differences. Two differences were discussed in the method section in chapter 4: a) with the concept of 

metafounder, the base animals in different populations become related, and the additive genetic covariance 

between Landrace and Yorkshire is not 0 anymore; b) genetic parameters in 𝐆𝐬𝐩𝐞𝐜𝐢𝐚𝐥 were the usual genetic 

variances, but in chapter 4, those parameters corresponded to the unusual situation that base populations 

were related. Another difference is that, in this special case, the compatibility between pedigree-based and 

marker-based relationship matrices could be a problem because it is difficult to adjust the marker-based 

relationship matrix for both two pure breeds at the same time. However, with the concept of metafounder in 

chapter 4, pedigree-based matrix is compatible with the marker-based matrix automatically. Conversely, 

having metafounders in the special case in chapter 3 is also possible. An underlying assumption is that the 

relatedness across base populations in Landrace and Yorkshire is 0 (that is 𝛾𝐿,𝑌 = 0). 𝐆𝟎 matrix in chapter 4 

can be regarded as an extension of such special case 𝐆𝐬𝐩𝐞𝐜𝐢𝐚𝐥. 
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It has to be understood that although the notation of 𝐆𝟎 matrix was also used in chapter 5, it had totally 

different meanings from in chapter 4. In chapter 4, the 𝐆𝟎 matrix was associated with breeding values, but in 

chapter 5, it was associated with genotypic additive effects. Vitezica et al. (2013) compared the differences 

between breeding values and genotypic additive effects and concluded that parameters from these two scopes 

were not comparable directly. Based on Vitezica et al. (2016), 𝐆𝟎 matrix in chapter 5 was transferred to the 

additive (co)variances of SNP effects first and then transferred to the individual scaled genetic parameters, 

which is comparable with traditional pedigree-based genetic parameters directly. Note that as we mentioned 

above, 𝐆𝟎 matrix in chapter 4 had to be transferred to the scale that base populations were unrelated, and 

then it can also be comparable with pedigree-based genetic parameters directly.  

Comparing the magnitudes of predictive abilities and the unbiasedness across chapters 3, 4 and 5, single-step 

genomic model worked better than the GBLUP model with precorrected data. However, it does not mean 

GBLUP model always works poorer than the single-step method. It depends on how many animals are 

genotyped and which animals are genotyped. Furthermore, the proportion of genetic variances that can be 

captured by genotypes also affect the performance of different models. For traits that are not much affected 

by dominant gene actions, single-step additive model seems to be a reasonable choice.        

Genetic correlations between purebred and crossbred performances  

The parameter of genetic correlation between breeding values for purebred and crossbred performances (𝑟𝑝𝑐) 

is crucial in a crossbreeding system, since it determines the need of including crossbred information in 

genetic evaluation.  Due to the genotyped by environment interactions, dominance effects, and different 

allele frequencies in different populations, the 𝑟𝑝𝑐 is usually not equal to 1. Thus, in chapter 3, 4 and 5, the 

same “biological” trait (TNB) was regarded as different phenotypes in purebreds and crossbreds.  

The 𝑟𝑝𝑐 varied largely in different chapters (0.43~0.70 for YY and 0.70~0.95 for LL) due to the different 

amount of information that was used to estimate the 𝑟𝑝𝑐 . The reported 𝑟𝑝𝑐  in other studies also ranged 

dramatically depending on the specific traits and the associated environments. Usually, it is difficult to 

estimate 𝑟𝑝𝑐  accurately and the SE of 𝑟𝑝𝑐  are high. Bijma and Bastiaansen (2014) showed that if only 

pedigree relationships were available, the SE of 𝑟𝑝𝑐  was affected by the number of sire families and the 

reliabilities of sire EBVs. For a trait with ℎ2 = 0.30, more than 100 half-sib families are needed to make the 

SE of 𝑟𝑝𝑐 be smaller than 0.05. In this thesis, the number of sire families were all smaller than 10 and thus, it 

was hard to have accurate 𝑟𝑝𝑐 . The 𝑟𝑝𝑐  is related to both estimated additive and dominant genetic 

(co)variances and allele frequencies in different populations and thus, it changes after long-term selection. 

For a trait that is purely affected by additive genetic effects, the 𝑟𝑝𝑐 would not change under selection (Wei, 

1992). However, if the trait is partly influenced by dominance effects, 𝑟𝑝𝑐 changes in different directions, e.g: 
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a) 𝑟𝑝𝑐 tends to increase after the purebred selection because the differences between allele frequencies in 

different populations decline (Wei and Steen, 1991);  b) if overdominance exists, with combined purebred 

and crossbred selection,  𝑟𝑝𝑐 usually decreases because alleles with opposite effects tend to be neutral (Swan, 

1992). Wei and Steen (1991) thus considered the change of  𝑟𝑝𝑐  as a detector for the existence of 

overdominance. Generally, the 𝑟𝑝𝑐 should be re-estimated frequently so that the efficiency of selection in 

purebred nucleus herd for crossbred performance can be kept.   

The 𝑟𝑝𝑐  is always associated with a certain environment (Wei, 1992). An interesting topic is how to 

decompose the 𝑟𝑝𝑐  into different components because this can help to improve the design of a reference 

population (Wei, 1992; Esfandyari, 2016). If the environment can be identical in the purebred and crossbred 

herds and the calculated 𝑟𝑝𝑐 is still lower than 1, it indicates that using a model that accounts for dominance 

effects could be an efficient way of improving genomic evaluation for crossbred performance; if the same 

traits that recorded in the diverse environments showed there is a strong G by E interactions, it indicates that 

using purebred reference cannot achieve optimal accuracy of 𝑟𝑝𝑐 for crossbred performance and crossbred 

animals should be included in the reference population; if both G by E interactions and dominance contribute 

to the 𝑟𝑝𝑐 < 1, model including dominance effects in combination with a combined purebred and crossbred 

reference population was recommended to be used (Dufrasne, 2015).     

In chapter 5, both 𝑟𝑝𝑐 and correlations of allele substitution effects between two breeds were calculated based 

on the substitution effects summarized over all the marker loci. If there are no dominance effects existing, 

the 𝑟𝑝𝑐𝐿
=

𝜎𝑎𝐿,𝐿𝑌

𝜎𝑎𝐿
𝜎𝑎𝐿𝑌

, and the correlation of allele substitution effects for purebred performance between L and 

Y is 𝑟𝛼𝑃𝐿,𝛼𝑃𝑌
=

𝜎𝑎𝐿,𝑌

𝜎𝑎𝐿
𝜎𝑎𝑌

. They have similar structure and it is easy to replace one parameter by another one to 

estimate both these two genetic correlations. If dominance effects exist, how to relate these two correlations 

could be an interesting topic.  

Obstacles in applying genomic selection for crossbred performance 

In this thesis, we used data recording from both purebred and crossbred animals. The single-step genomic 

evaluation approach requires different types of information. Thus, to implement the approaches in the thesis, 

several difficulties need to be overcome beforehand.  

First, some traits are difficult to measure accurately in either purebred or crossbred herds. Usually, 

phenotypes of purebred animals living in nucleus herds are recorded by automatized devices, which are 

standard and objective. However, in the commercial herds, due to the differences of recording systems and 

environments, biases depending on the technologies and technicians often appear (Dufrasne, 2015). 
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Furthermore, among the commercial herds, the environments and devices may not be homogeneous. 

Additionally, for some traits, like resistance to diseases, they can only be recorded in the commercial herds 

because in the nucleus herds, the diseases have been eliminated by bio-security (Esfandyari, 2016). 

Therefore, the first challenge is how to collect phenotypes in both purebred and crossbred herds in consistent 

criteria. 

Second, in practice, the pedigree of crossbred animals is usually unknown. Normally, companies have a large 

amount of commercial animals and it is not easy to record the pedigree. For those genotyped purebred 

animals, some of them are distant ancestors for the crossbred animals and several generation gaps may exist 

between purebred and crossbred animals. This increases the difficulties of tracing pedigree. However, to 

implement single-step approach, accurate pedigree information from crossbred offspring to purebred 

ancestors is essential. One possible solution is to use parentage assignation chips (Clarke et al. 2014) to 

correct pedigree information, which is low cost. 

The third one is how to trace the breed-origin of crossbred alleles. Ibáñez-Escriche et al. (2009) applied a 

model with breed-specific SNP effects to fit crossbred phenotypes, which required the breed-origin of 

crossbred alleles are known. Esfandyari et al. (2015) found that when the pure breeds in training population 

were distantly related, the tracing of the breed origin of alleles in crossbreds can improve genomic prediction 

for crossbred performance. In Christensen model (2014), the breed-origin of crossbred alleles is assumed to 

be known. Thus, tracing the breed-origin of crossbred alleles is crucial. Although an algorithm was applied 

in chapter 3, the accuracy of assigning crossbred alleles to its breed origin is hard to evaluate. This algorithm 

largely depended on the accuracies of phasing (by Beagle 3) in crossbred animals. Therefore, even if 

reliabilities in chapter 4 were higher than those in chapter 3, we cannot conclude whether it is due to the 

robustness of the model with metafounders or due to the lack of accuracies in the alleles tracing in chapter 3. 

Several other algorithms have also been suggested to trace crossbred alleles. For instance, Bastiaansen et al., 

(2014) used a long-range phasing method without the need of pedigree information of crossbred animals, 

which was easy to implement in practice. The advantage of such method is that even if the relationships 

between purebred and crossbred animals are low, the long-range method can still work. This approach was 

based on results from software AlphaPhase (Hickey et al., 2012) and they considered that if more than 90% 

of a haplotype was located to one breed, the whole haplotype was from that breed. This approach has similar 

problem as the approach used in chapter 3 because wrong phasing (crossing-over between parental 

haplotypes) cannot be totally avoided. To avoid the possible errors from crossing-over, Sevillano et al. (2016) 

and Vandenplas et al. (2016) showed a “BOA” approach that assign breed origin to phased haplotypes. To 

ensure the correctness of phasing, pedigree information was needed and they showed that the average 

accuracy of correctly assigning crossbred alleles to its breed-origin is around 90%. These accuracies 

increased with distance increasing between parental breeds, but still difficult to reach accuracy of 100%. 
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Simulation studies can be used to compare different approaches and the consequences of error allele tracing 

on genomic evaluation can be further investigated. 

Problems on convergence appeared during the process of parameter estimation. REML variance component 

estimation in models with non-additive effects converged much slower than the additive model, e.g: model in 

chapter 5 took around one month to converge but it took only 3 days to converge for the model in chapter 3. 

However, for chapter 4, although an additive model was used, due to the increased number of genetic 

parameters within one relationship, one day was needed for each REML iteration. Thus, Gibbs sampling was 

first used to get ballpark estimates of starting values for REML, but this was still inefficient. With the 

increased amount of genomic information, it seems to be a challenge to run the genomic evaluation for 

crossbred performance efficiently.  

Future perspectives  

In this thesis, each individual had two breeding values: one for purebred performance and another one for 

crossbred performance. A question is how to set the selection criteria for the next generation. Bijma and Van 

Arendonk (1998) argued that the breeding goal of the pig industry is to maximize the crossbred performance 

and thus, selection should be done based on breeding values for crossbred performance. Dekker (2007) and 

Lutaaya et al. (2001) found that selection based on crossbred performance can still make genetic gains in 

purebred lines. However, Wei et al. (1991) showed that if selection is based on crossbred performance, 

purebred performance would be improved more slowly, sometimes even reduced, but the inbreeding levels 

may increase quickly, which is not desired. Thus, they suggested breeders to use the combined purebred and 

crossbred breeding values as the selection criteria. The combined breeding values were calculated as 

BV = w𝑝 ∗ 𝐵𝑉𝑝 + w𝑐 ∗ 𝐵𝑉𝑐 , where the w𝑝  and w𝑐  were weights of breeding values for purebred and 

crossbred performances; 𝐵𝑉𝑝  and 𝐵𝑉𝑐  were breeding values for purebred and crossbred performances, 

respectively. The relative weights were trait and species dependent. For the reproductive traits in pigs, w𝑐 

usually was much larger than w𝑝 because the number of commercial animals were much larger than the 

number of breeding animals in purebred lines. For cattle and sheep, due to the low reproductive rate, 

magnitude of w𝑝  is usually higher than the w𝑐  (Wei and van der Werf, 1994). However, in practice, 

industries prefer to keep the breeding system simple and they pay much attention to the genetic gains within 

purebred lines and therefore, they usually just focus on purebred performance. If the 𝑟𝑝𝑐 is close to 1, there 

are no obstacles for improving crossbred performance as well as the purebred performance, but if the 𝑟𝑝𝑐 is 

close to 0, selection makes no sense for crossbreds. If the 𝑟𝑝𝑐 is between 0 and 1, selection on purebred 

performance can also improve crossbred performance to some extent.  
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In this thesis, investigations focused on two-way crossbred animals. However, usually commercial pig 

producers use three-way crossbreeding animals instead of two-way crossbreeding animals in a terminal 

system. In this system, two-way F1 sows perform well in reproduction traits. They are mated to a third breed 

of purebred boars that perform well in production traits to reproduce the three-way crossbred pigs 

(Christensen et al., 2015). In Denmark, Duroc is used as boar line and sow lines are crosses between 

Landrace and Yorkshire. Therefore, breeding values of purebred pigs for crossbred performance in the three-

way crosses need to be estimated. Christensen et al. (2015) have extended the single-step GBLUP method 

from two-way crossbreeding to three-way crossbreeding, but it has not been applied in real dataset yet. The 

model for three-way crossbreeding is a four-variate model, three for recordings from each pure breed and 

one for the recording from crossbreds. Similar to the two-way crossbreeding system, either partial or 

common genetic approach can be applied to construct the relationship matrices across the purebred and 

crossbred animals. When partial genetic approach applies, three breed-specific partial relationship matrices 

need to be specified for breed A, B and C, respectively. For instance, breed A partial relationship matrix 

accounts for relationships across purebred A animal, breed A gametic effects in F1 and breed A gametic 

effects in three-way crossbreds. In this approach, totally, 10 genetic parameters have to be estimated 

simultaneously and also, breed origin of crossbred alleles need to be traced, which will be a problem 

especially for the three-way crossbred animals. Alternatively, common genetic approach, which uses one 

relationship matrix across all the populations with three metafounders, can be used. Totally, 10 genetic 

parameters will be contained in the relationship matrix and 6 gamma parameters need to be estimated 

beforehand. Moreover, four-way crossbred animals where F1 sires are mated to F1 dams to reproduce F2 

pigs as the terminal products are also used in the crossbreeding system. The single-step genomic evaluation 

approach can also be extended to four-way crossbreeding system (Christensen et al. 2015).  

In this thesis, only TNB was studied. In DanAvl, the trait of litter size at day 5 after birth (LS5) is actually set 

as breeding goal because piglet mortality has a positive genetic correlation with TNB (Lund et al., 2012; Su 

et al., 2007). In practice, genomic evaluation for traits with similar genetic background usually uses a 

multiple-trait model because the inclusion of genetic and environmental correlations among traits may 

achieve higher reliabilities on EBVs. Single-step approach used in this thesis also works for multiple traits. 

The additive relationship matrices do not need any changes, but the number of genetic parameters increases. 

For instance, if there are two traits (trait 1 and trait 2, e.g: TNB and LS5) being considered in the partial 

genetic approach simultaneously, one of the breed-specific partial relationship matrices will be changed to a 

4 by 4 matrix, as: 

 

[
 
 
 
 

𝜎𝑎1
2 𝜎𝑎1𝑎2

𝜎𝑎1𝑐1
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𝜎𝑎2
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where 𝑎 and 𝑐 are breeding values for purebred and crossbred performances, respectively. It still needs to be 

investigated whether this model with multiple traits performs better than the model with single trait. If no, 

EBVs for each trait should be estimated separately and then weighted by their economic values, being a 

single index value used for breeding finally.  

In chapter 5, it is assumed that additive and dominance effects at each SNP are unrelated. However, mating 

in an inbred population will produce deviations from Hardy-Weinberg equilibrium, and these deviations 

generate correlations between breeding values and dominant deviations (Fernández et al., 2017). 

Furthermore, it has been found that magnitudes of additive and dominant genetic effects in quantitative trait 

loci are related by the dominance coefficients 𝛿 = 𝑑/|𝑎|, and two ways of directional relationships between 

additive and dominance effects, such as cor(|𝑎|, 𝛿) = 0 (BayesD2) and cor(|𝑎|, 𝛿) > 0  (BayesD3) were 

suggested (Wellmann and Bennewitz, 2012). Nevertheless, these relationships in magnitude cannot be fitted 

in individual scales in the animal model and they are not compatible with standard mixed model theory and 

animal breeding software. Thus, a current study is about fitting the correlation between genotypic additive 

and dominant effects in genomic evaluation.      

In chapter 5, the single-step model was replaced by a GBLUP model because of the difficulty of extending 

dominance genomic relationship matrix to a combined pedigree and genomic dominance relationship matrix. 

This could be feasible in the future if methodological and computational problems can be overcome. With 

the development of new technologies (e.g: genotyping by sequencing), it will further reduce the genotyping 

cost, making large-scale genotyping being possible. Thus, much more genomic information from both 

purebred and crossbred animals is expected. Also, with the use of new phenotyping equipment and recording 

systems, more reliable datasets can be anticipated in the crossbreeding system in the near future (Dufrasne, 

2015). As large numbers of animals have genomic information and phenotypic records, GBLUP model with 

non-additive genetic effects would become more attractive.   
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CHAPTER 7: CONCLUSIONS 
This thesis realized the two proposed objectives of the PhD project. It successfully applied single-step and 

GBLUP genomic evaluation for both purebred and crossbred performances in different scenarios with data 

recording and genomic information in Danish Landrace, Yorkshire and F1 crossbred pig populations, 

confirming the existence of a moderate and positive genetic correlation between breeding values for 

purebred and crossbred performances and showing the importance of combined purebred and crossbred 

genomic information on the reliability of predictions. It also successfully investigated the impact of non-

additive genetic on improvement of genomic evaluation for crossbred performance and first reported the 

importance of including genomic inbreeding depressions in the genomic evaluation. This thesis can be 

regarded as a preliminary experiment for the large-scale applications of genomic evaluation for both 

purebred and crossbred performances in the breeding industry.  
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Title : COMBINED PUREBRED AND CROSSBRED INFORMATION FOR GENOMIC EVALUATION IN PIG 

Abstract: This PhD thesis has two aims: first, apply single-step genomic evaluation method for purebred and crossbred 

performances in different scenarios with data records and genotypes in Danish Landrace, Yorkshire and F1 crossbred 

pig populations; second, investigate the impact of non-additive genetic effects on genomic evaluation for crossbred 

performance. In chapter 2, performances of genotype imputation in low density SNP-panels were compared in both 

purebred and crossbred populations. Imputation for crossbreds worked as well as for purebreds if both parental breeds 

were included in the reference population. In chapter 3, the single-step GBLUP method was applied to a combined 

purebred and crossbred dataset, focusing on evaluating genetic ability for crossbred performance of total number of 

piglets born (TNB). Additive genetic effects in crossbred animals were split into two breed-specific gametic effects. 

The analysis confirmed the existence of a moderate, positive genetic correlation between purebred and crossbred 

performances for TNB. Models with genomic information, especially from crossbred animals, improved model-based 

reliabilities for crossbred performance of purebred boars and also improve predictive abilities on crossbred animals in a 

validation population. This method requires tracing the breed origin of crossbred alleles, which may be inconvenient. 

Therefore, in chapter 4, this dataset was reanalysed using a single relationship matrix with metafounders to relate all the 

involved animals in the three populations. This method did not need tracing the breed origin of crossbred alleles. 

Estimates of genetic parameters were similar to those in chapter 3 and the predictive abilities for crossbred performance 

were at least as good as in chapter 3. Both chapters 3 and 4 indicate that the single-step method for combined purebred 

and crossbred performances is applicable for genomic evaluation. In chapter 5, genomic evaluation using a model 

including dominance effects and inbreeding depression was investigated for genotyped animals in GBLUP context. The 

estimated correlations between allele substitution effects of markers for different breeds were reported for the first time. 

Results indicated that the accuracies of predictions were not improved by including dominance effects in the model, but 

inclusion of genomic inbreeding depression effects did improve the performance of prediction.  

Keywords: Genomic evaluation, crossbred, pig 

 

Résumé : Cette thèse de doctorat a donc deux objectifs : Premièrement, l’application de la méthode en une seule étape 

pour l’évaluation génomique du rendement des animaux de race pure et des hybrides dans de différentes scénarios, en 

appliquant des recensements de données et génotypes de Danish Landrace, Yorkshire et F1 populations de porc; 

Deuxièmement, l’examen du résultat des effets génétiques non-additifs sur l’évaluation génomique du rendement des 

hybrides. Dans le chapitre 2, les rendements sur l’imputation génotypique des panneaux à SNP [SNP-panels] à basse 

densité sont comparés dans des populations de pure race et d’hybrides. L’imputation d’animaux hybrides a fonctionné 

aussi bien que l’imputation d’animaux de pure race, si les deux races parentales sont inclues dans la population de 

référence. Dans le chapitre 3, la méthode GBLUP en une seule étape est appliquée sur un jeu de données combiné, 

incluant des animaux de pure race et des hybrides, et en focalisant sur l’évaluation de la valeur génétique au croisement 

pour la taille de portée. Des effets additifs et génétiques en hybrides sont divisés en deux effets gamétiques et 

spécifiques de la race. L’analyse confirme l’existence d’une corrélation modérée, positive et génétique entre le 

rendement des animaux de pure race et des hybrides en ce qui concerne la taille de portée. Les modèles avec 

information génomique provenant particulièrement d’hybrides améliorent la précision du modèle pour le rendement 

hybride de verrats de pure race, et améliorent également la précision de prédiction pour hybrides dans une population de 

validation. Cette méthode demande une détection de l’origine de race des allèles en hybrides, ce qui peut être un 

désavantage. Dans le chapitre 4, ce jeu de données est analysé en utilisant une seule matrice de parenté avec méta-

fondateurs pour rélier tous les animaux impliqués dans les trois populations. Avec cette méthode, il n’est pas nécessaire 

de tracer l’origine de race des allèles dans des hybrides. Les estimations de paramètres génétiques correspondent à 

celles décrites dans le chapitre 3, et la capacité de prédiction pour le rendement des hybrides est au moins aussi bonne 

qu’en chapitre 3. Les chapitres 3 et 4 indiquent que la méthode en une seule étape pour le rendement combiné des 

animaux de pure race et des hybrides est applicable pour l’évaluation génomique. Dans le chapitre 5, l’évaluation 

génomique, dans laquelle on applique un modèle incluant les effets de dominance et la dépression de consanguinité, est 

examinée en utilisant GBLUP. Les corrélations estimées entre les effets de substitution d’allèles de marqueurs pour des 

races différentes sont ainsi documentées pour la première fois dans cette thèse. Les résultats indiquent que la capacité de 

prédiction ne s’est pas améliorée en incluant des effets de dominance dans le modèle. Par contre, l’inclusion des effets 

de dépression de consanguinité dans le modèle a amélioré  la capacité de prédiction. 

Mots-clés : évaluation génomique, hybride, porc 

 


