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Méthodes hybrides d’ordre élevé pour la mécanique
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Résumé

Dans cette thèse, nous nous intéressons aux développements des méthodes hybrides d’ordre
élevé (Hybrid High-Order, HHO, en anglais) pour la mécanique des solides non-linéaire. Les
méthodes HHO sont formulées en termes d’inconnues de face portées par le squelette du mail-
lage et d’inconnues dans les cellules qui sont ajoutées pour des raisons d’approximation et de
stabilité de la méthode. Ces méthodes présentent de nombreux avantages dans le cadre de la
mécanique des solides : (i) formulation primale ; (ii) suppression du verrouillage numérique
dû aux problèmes d’incompressibilité ; (iii) ordre d’approximation arbitraire k ≥ 1 ; (iv) utili-
sation de maillages polyédriques avec des interfaces possiblement non-conformes ; et (v) coûts
numériques attractifs grâce à la condensation statique qui permet d’éliminer les inconnues
portées par les cellules tout en maintenant un stencil compact. Dans cette thèse, des méthodes
HHO en version primale sont développées pour résoudre le problème des grandes déformations
hyperélastiques et des petites déformations plastiques. Une extension aux grandes déforma-
tions plastiques est ensuite présentée en utilisant le cadre des déformations logarithmiques.
Enfin, un couplage avec une approche de type Nitsche a permis de traiter le problème du con-
tact unilatéral de Signorini avec frottement de Tresca. Des taux de convergence optimaux en
hk+1 ont été prouvés en norme d’énergie. L’ensemble de ces méthodes ont été implémentées
à la fois dans la librairie open-source disk++ et dans le code de calcul industriel open-source
code_aster. De nombreux cas-tests bi- et tridimensionnels ont été réalisés afin de valider
ces méthodes et de les comparer par rapport aux méthodes éléments finis H1-conformes et
mixtes.

Mot-clés : Méthodes hybrides d’ordre élevé, Absence de verrouillage, Maillages polyé-
driques, Grandes déformations, Plasticité, Contact unilatéral, Frottement de Tresca, Méthode
de Nitsche.

Abstract

In this thesis, we are interested in the devising of Hybrid High-Order (HHO) methods for
nonlinear solid mechanics. HHO methods are formulated in terms of face unknowns on
the mesh skeleton. Cell unknowns are also introduced for the stability and approximation
properties of the method. HHO methods offer several advantages in solid mechanics: (i)
primal formulation; (ii) free of volumetric locking due to incompressibility constraints; (iii)
arbitrary approximation order k ≥ 1 ; (iv) support of polyhedral meshes with possibly non-
matching interfaces; and (v) attractive computational costs due to the static condensation
to eliminate locally cell unknowns while keeping a compact stencil. In this thesis, primal
HHO methods are devised to solve the problem of finite hyperelastic deformations and small
plastic deformations. An extension to finite elastoplastic deformations is also presented within
a logarithmic strain framework. Finally, a combination with Nitsche’s approach allows us to
impose weakly the unilateral contact and Tresca friction conditions. Optimal convergence
rates of order hk+1 are proved in the energy-norm. All these methods have been implemented
in both the open-source library disk++ and the open-source industrial software code_aster.
Various two- and three-dimensional benchmarks are considered to validate these methods
and compare them with H1-conforming and mixed finite element methods.

Keywords: Hybrid High-Order methods, Locking-free, Polyhedral meshes, Large deforma-
tions, Plasticity, Unilateral contact, Tresca friction, Nitsche’s method.
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CHAPTER 1

INTRODUCTION

Dans ce chapitre, nous présentons le contexte, les enjeux et les objectifs de cette thèse. Nous
introduisons ensuite les méthodes hybrides d’ordre élevé (Hybrid High-Order en anglais).
Puis, nous décrivons les principaux problèmes issus de la mécanique des solides non-linéaire
qui sont étudiés dans ce manuscrit : les grandes déformations plastiques et le problème de
contact unilatéral de Signorini avec frottement de Tresca. Enfin, nous présentons le plan du
manuscrit avec les principales contributions.
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(a) Centrale nucléaire (b) Éoliennes offshore

Figure 1.1: Exemple d’installations de production électrique.

1.1 Contexte et enjeux industriels

Le groupe EDF (Électricité de France) a pour mission, en tant qu’exploitant de son parc de
production électrique (nucléaire, hydraulique, éolien...), de contribuer à l’approvisionnement
en électricité du territoire français. Pour cela, il doit maintenir en état ses installations de
production, effectuer des éventuelles réparations et justifier auprès des autorités de leurs tenue
aussi bien en fonctionnement qu’en cas d’incidents. En particulier, l’accident de Fukushima
en 2011 a amené l’autorité de sûreté nucléaire (ASN) à rehausser ses exigences en termes
de sécurité et de sûreté des installations de production. En outre, EDF souhaite prolonger
la durée de vie de son parc nucléaire au-delà de 40 ans (voire 50 ans). Afin de répondre à
ces nouvelles exigences de sûreté, tout en mâıtrisant les coûts des réparations et de mise en
conformité, EDF s’appuie de plus en plus sur la simulation numérique. Celle-ci s’avère être
souvent le seul outil dont EDF dispose car la justification par des moyens expérimentaux en
plus d’être coûteuse, est longue et complexe.

Dans ce contexte, EDF R&D développe en interne de nombreux codes de simulation
numérique en fonction des problèmes physiques à traiter. En ce qui concerne la mécanique
des structures, le département ERMES est en charge du développement du code de calcul
éléments finis code_aster [111111]. code_aster est un logiciel open-source développé depuis
1989 pour répondre et anticiper les besoins des départements d’ingénierie d’EDF ainsi que
pour les besoins de la recherche menée en interne au sein de la R&D pour tout ce qui concerne
la thermomécanique des structures non-linéaires. De plus, ce code est développé avec le sys-
tème d’assurance-qualité qu’exige l’industrie nucléaire. Depuis plusieurs années, code_aster
a été intégré au sein de la plateforme de simulation numérique salome_meca afin de disposer
en open-source de tous les outils nécessaires à des études mécaniques complètes incluant
notamment les pré- et post-traitements, et une interface graphique de mise en données.

Cette hausse des exigences en termes de sûreté de fonctionnement des unités de produc-
tion implique de réaliser des simulations de plus en plus réalistes afin de justifier de la tenue
des équipements au vieillissement ou à des aléas externes. Par exemple, en mécanique des
structures non-linéaire, les études numériques dédiées à la durée de vie des structures mé-
talliques entrâınent l’utilisation de modèles numériques complexes afin d’obtenir des résultats
très précis pouvant justifier la tenue des ouvrages sur le long terme. En particulier, ces prob-
lématiques englobent la tenue de la cuve d’un réacteur nucléaire, des générateurs de vapeur
(GV), mais aussi des équipements de secours (cf Fig. 1.31.3). De même, des simulations sont sou-
vent nécessaires pour justifier de la pertinence et de la qualité des opérations de maintenance
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Figure 1.2: Plateforme de simulation salome_meca intégrant le logiciel code_aster.

Figure 1.3: Simulation de la pose d’un bouchon dans un tube GV en grandes déformations
plastiques avec contact frottant.

réalisées sur les équipements essentiels des installations nucléaires et conventionnelles.

Les principales difficultés numériques rencontrées lors de la simulation viennent de la
présence de grandes déformations et du comportement des matériaux qui peuvent plasti-
fier. Ces phénomènes engendrent des fortes non-linéarités dans le modèle qui peuvent en
plus s’ajouter à d’autres comme celle du contact frottant. Différentes formulations éléments
finis ont déjà été développées dans code_aster pour résoudre ces problèmes comme les élé-
ments sous-intégrés ou des formulations mixtes. En particulier, cette thèse fait suite à une
thèse sur le développement de formulations mixtes pour les grandes déformations plastiques
[88]. Malheureusement, ces formulations présentent toujours certains inconvénients comme le
manque de généricité, un problème de type point-selle à résoudre ou la présence d’oscillations
numériques. C’est pour essayer de surmonter ces inconvénients que cette thèse sur l’extension
des méthodes Hybrid High-Order à la mécanique des solides non-linéaire a été lancée.

1.2 Objectifs

Les principaux objectifs de cette thèse et le cahier des charges sont les suivants :

• Développement d’une méthode de discrétisation en formulation primale qui supprime
le verrouillage numérique dû à l’incompressibilité.

• Développement d’une méthode générique qui supporte tous les types de mailles
présentes dans code_aster (triangle, quadrangle, tétraèdre, hexaèdre, prisme, pyra-
mide) et qui soit applicable en linéaire et quadratique.
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• Applicabilité à toutes lois de comportement plastiques présentes dans code_aster sans
modifications de celles-ci aussi bien en petites qu’en grandes déformations.

• Extension possible à d’autres problèmes physiques : thermique, dynamique, analyse
spectrale.

• Implémentation et validation dans code_aster, avec le souhait de réutiliser au maxi-
mum l’architecture actuelle du code (assemblage, calculs locaux, structures de données).

• Intégration dans la version officielle de code_aster sous assurance qualité (documen-
tations et cas tests)

1.3 Introduction aux méthodes Hybrid High-Order

Nous allons présenter dans cette section les méthodes Hybrid High-Order (HHO) par
l’intermédiaire du problème de l’élasticité linéaire. Le but est de décrire les grands principes
de construction des méthodes HHO. Par simplicité, nous supposons que le domaine Ω0 ⊂ Rd,
1 ≤ d ≤ 3, est un domaine polyédrique borné, connexe et avec un bord Lipschitzien Γ := ∂Ω0.
Le domaine Ω0 se déforme sous l’action d’un chargement volumique f ∈ L2(Ω0;Rd) et des
conditions de type Dirichlet homogène sont imposées sur le bord Γ (pour simplifier). La
formulation faible du problème est :{

Trouver u ∈ H1
0 (Ω0;Rd) tel que

2µ(∇su,∇sv)L2(Ω0) + λ(∇·u,∇·v)L2(Ω0) = (f, v)L2(Ω0), ∀v ∈ H1
0 (Ω0;Rd),

(1.1)

où H1
0 (Ω0;Rd) =

{
v ∈ H1(Ω0;Rd) : v = 0 sur Γ

}
, et µ > 0 et λ ≥ 0 sont les paramètres de

Lamé du matériau. De plus, ∇s désigne la partie symétrique de l’opérateur gradient et ∇·
l’opérateur divergence.

1.3.1 Historiques et motivations

Ces méthodes HHO sont développées depuis quelques années par Di Pietro, Ern et leurs
collaborateurs. Les premiers travaux portent sur les problèmes de la diffusion linéaire [9191]
et de l’élasticité linéaire [8989]. Depuis, les méthodes HHO ont été étendues à des physiques
différentes pour traiter des problèmes aussi bien linéaires que non-linéaires. Pour les prob-
lèmes linéaires, nous pouvons citer les travaux sur le problème de Stokes [9393], sur la diffusion
linéaire à coefficients variables [77, 9090], sur l’advection-diffusion-réaction [8686], sur le problème
de Cahn–Hilliard [5656], et sur les écoulements en milieux poreux fracturés [5454, 5555]. L’utilisation
de maillages courbes est considérée dans [3838] pour le problème de la diffusion linéaire. Pour
les problèmes non-linéaires, nous pouvons citer les travaux sur le problème de Leray–Lions
[8484, 8585], sur les équations de Navier–Stokes stationnaires [3939, 9494], sur les problèmes spectraux
[4646], et sur les fluides de Bingham [4949]. En ce qui concerne plus particulièrement la mécanique
des solides, il y a eu l’extension au problème de l’élasticité non-linéaire en petites déforma-
tions [4040], au problème de Biot [3232], aux équations des plaques de Kirchhoff–Love [3333], et les
travaux réalisés dans cette thèse sur l’hyperélasticité en grandes déformations [22], la plasticité
en petites [33] et grandes [44] déformations et le contact unilatéral avec frottement de Tresca
[6262]. Les méthodes HHO ont également été étendues aux méthodes de domaines fictifs [4545] et
aux méthodes multi-échelles [7272]. D’un point de vue numérique, un intérêt particulier a été
porté à l’implémentation de ces méthodes de manière générique de façon à inclure les mail-
lages polyédriques en dimension quelconque. Ces développements sont capitalisés au sein du
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code open-source disk++ au CERMICS. Les détails concernant l’implémentation sont donnés
dans [7171]. Pour finir, des revues des méthodes HHO sont disponibles dans [9292] et [9595].

Les méthodes HHO sont des méthodes non-conformes comme les méthodes de type
Galerkin discontinu (dG), mais contrairement à ces dernières, elles sont formulées en ter-
mes d’inconnues de faces (portées par le squelette du maillage). Des inconnues dans les
cellules sont aussi ajoutées pour des propriétés de stabilité et d’approximation (d’où le terme
Hybrid). Ces inconnues de cellules peuvent être éliminées localement par condensation sta-
tique (ou complément de Schur). Le terme High-Order vient du fait que les méthodes HHO
permettent de faire de l’ordre bas comme de l’ordre élevé sans modification de la méthode.
La construction des méthodes HHO repose sur deux idées : (i) la reconstruction locale d’un
gradient ou d’un potentiel à partir des inconnues de la cellule et des inconnues des faces
en “mimant” une intégration par parties ; et (ii) un opérateur de stabilisation locale afin
d’imposer faiblement sur chaque face de la cellule la consistance entre les inconnues de la face
et la trace des inconnues de la cellule. Les méthodes HHO présentent de nombreux avan-
tages : (i) ordre d’approximation arbitraire (k ≥ 0 pour la diffusion linéaire et k ≥ 1 pour
l’élasticité linéaire) ; (ii) utilisation de maillages polyédriques avec des interfaces possible-
ment non-conformes (voir Fig. 1.41.4 pour des exemples de maillages); (iii) robustesse vis à vis
des paramètres physiques (incompressibilité élastique, advection dominante...) ; (iv) coûts
numériques attractifs grâce à la condensation statique qui permet d’éliminer les inconnues
portées par les cellules tout en maintenant un stencil compact ; et (v) conservation locale des
flux sur chaque cellule du maillage.

Le point (iii) est particulièrement pertinent dans le contexte de ce manuscrit, où nous
nous intéressons aux problèmes de la mécanique des solides car les méthodes HHO vont nous
permettre d’utiliser une formulation purement primale (sans ajout de multiplicateurs de La-
grange contrairement aux formulations mixtes) afin d’éliminer le verrouillage numérique issu
de l’incompressibilité qui est habituellement présent pour les méthodes H1-conformes. Quand
au point (ii), une motivation est de pouvoir réaliser un raffinement local du maillage sans
devoir se préoccuper de l’éventuelle présence de nœuds orphelins comme dans les méthodes
H1-conformes. En effet, comme illustré à la Fig. 1.51.5, la présence des nœuds orphelins est
gérée simplement en traitant la maille correspondante comme un polygone (ou un polyèdre).

1.3.2 Cadre discret

Nous considérons une famille de maillages (Th)h>0, où pour chaque h > 0, le maillage Th
est composé de polyèdres ouverts, disjoints non-vides, qui ont des faces planes, et tels que
Ω0 =

⋃
T∈Th T . La taille globale du maillage est décrite par le paramètre h = maxT∈Th hT , où

hT est le diamètre de la cellule T . Un sous-ensemble fermé F de Ω0 est appelé une face si c’est
un sous-ensemble ayant un intérieur relatif non-vide contenu dans un hyperplan affine HF et
si (i) soit il existe deux cellules distinctes T−, T+ ∈ Th telles que F = ∂T−∩∂T+∩HF (et F est
alors appelée une interface) ou (ii) il existe une cellule T ∈ Th telle que F = ∂T ∩Γ∩HF (et F
est alors appelée une face de bord). Les faces du maillage sont réunies dans l’ensemble Fh qui
est ainsi partitionné en deux sous-ensembles, F i

h l’ensemble des interfaces et Fb
h l’ensemble

des faces de bord. Pour tout T ∈ Th, F∂T désigne l’ensemble des faces du maillage qui sont
incluses dans ∂T et nT la normale sortante unitaire à la cellule T . Nous supposons dans la
suite que la famille de maillages (Th)h>0 est régulière au sens spécifié dans [8989], c.à.d. pour
tout h > 0, il existe un sous-maillage conforme de Th composé de simplexes qui appartient
à une famille régulière de maillages simpliciaux dans le sens habituel de Ciarlet [6969] et tel
que chaque cellule T ∈ Th du maillage (respectivement, chaque face F ∈ Fh) peut être
décomposée en un nombre uniformément borné de sous-cellules (respectivement, sous-faces)
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Figure 1.4: Exemples de maillages polyédriques supportés par les méthodes HHO.

(a) Maillage initial (4 mailles) (b) Raffinement pour les méth-
odes HHO (10 mailles)

(c) Raffinement pour les méth-
odes H1-conformes (16 mailles)

Figure 1.5: Exemple de raffinement local traité par les méthodes HHO et par les méthodes
H1-conformes en partant d’un même maillage initial.
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qui appartiennent à seulement une cellule du maillage (respectivement, à seulement une face
ou à l’intérieur d’une cellule) avec un diamètre uniformément comparable.

Soit k ≥ 1 un degré polynomial fixé. Dans chaque cellule T ∈ Th du maillage, les
inconnues HHO locales sont la paire (vT , v∂T ), où l’inconnue de cellule vT ∈ Pkd(T ;Rd) est
un polynôme à valeurs vectorielles à d-variables de degré au plus k dans la cellule T , et
v∂T ∈ Pkd−1(F∂T ;Rd) :=

Ś

F∈F∂T P
k
d−1(F ;Rd) est un polynôme à valeurs vectorielles défini

par morceaux à (d− 1)-variables de degré au plus k sur chaque face F ∈ F∂T de la cellule T .
Nous écrivons de manière plus concise dans la suite que

v̂T := (vT , v∂T ) ∈ ÛkT := Pkd(T ;Rd)× Pkd−1(F∂T ;Rd). (1.2)

Les degrés de liberté sont illustrés en Fig. 1.61.6, où un point représente un degré de liberté
(mais par forcément un point physique d’évaluation) et la forme géométrique de la cellule est
uniquement illustrative. Les degrés de liberté n’ont pas de sens physique a priori et d’un point
de vue algébrique, ils correspondent simplement aux coefficients dans une base polynomiale.
L’espace ÛkT est muni de la semi-norme discrète locale suivante :

|v̂T |21,T := ‖∇svT ‖2L2(T )
+ ‖η

1
2
∂T (vT |∂T − v∂T )‖2

L2(∂T )
, (1.3)

avec la fonction constante par morceaux η∂T telle que

η∂T |F = h−1
F , ∀F ∈ F∂T , (1.4)

où hF est le diamètre de F . Nous introduisons également l’espace des mouvements de corps
rigide sur T tel que

RM(T ) :=
{
v : T → Rd | v(x) = c+ ωx, où c ∈ Rd et ω ∈ SOd

}
. (1.5)

où SOd est l’ensemble des matrices de rotation dans l’espace euclidien réel. Notons que
∇sv = 0 est équivalent à v ∈ RM(T ) et que P0

d(T ;Rd)  RM(T )  P1
d(T ;Rd).

Lemme 1.1 Pour tout v̂T ∈ ÛkT , |v̂T |1,T = 0 si et seulement si vT est un mouvement de
corps rigide et que v∂T est la trace de vT sur ∂T .

Preuve. Remarquons que |v̂T |1,T = 0 équivaut à

∇svT = 0, et vT |∂T − v∂T = 0. (1.6)

Nous en déduisons que vT est un mouvement de corps rigide car ∇svT = 0 et que v∂T est la
trace de vT sur ∂T car vT |∂T − v∂T = 0.

�

1.3.3 Opérateurs locaux de reconstruction et de stabilisation

Les méthodes HHO se basent sur la reconstruction de différentes quantités discrètes qui vont
venir jouer le rôle de leur contre-partie continue dans la formulation du problème discret.
Dans le cas de la discrétisation du problème de l’élasticité linéaire (1.11.1), le premier ingrédient
clé est l’opérateur de reconstruction du gradient symétrique Ek

T : ÛkT → Pkd(T ;Rd×dsym) à

partir de l’inconnue de cellule vT ∈ Pkd(T ;Rd) et des inconnues de face v∂T ∈ Pkd−1(F∂T ;Rd)
composant la paire v̂T = (vT , v∂T ). Pour tout v̂T ∈ ÛkT , le gradient symétrique reconstruit
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(a) k = 1 (b) k = 2 (c) k = 3

Figure 1.6: Cellule pentagonale T : degrés de liberté de la cellule (bleu) et des faces (vert)
dans ÛkT pour différentes valeurs de l’ordre d’approximation k dans le cas bidimensionnel.
Chaque point représente un degré de liberté (c.à.d. un coefficient polynomial) mais pas
forcément un point physique d’évaluation.

Ek
T (v̂T ) ∈ Pkd(T ;Rd×dsym) est obtenu en résolvant le problème local suivant: pour tout τ ∈

Pkd(T ;Rd×dsym),

(Ek
T (v̂T ), τ )L2(T ) = (∇svT , τ )L2(T ) + (v∂T − vT |∂T , τ nT )L2(∂T ). (1.7)

Résoudre ce problème implique de choisir une base polynomiale de Pkd(T ;R) seulement et
d’inverser la matrice de masse associée pour chaque composante du tenseur Ek

T (v̂T ).
Le second ingrédient clé pour construire les méthodes HHO est l’opérateur de stabilisation

locale qui permet d’imposer faiblement l’égalité entre les inconnues de face v∂T et la trace
de l’inconnue de cellule vT |∂T par le biais d’une pénalisation au sens des moindres carrés

de la différence v∂T − vT |∂T ∈ Pkd−1(F∂T ;Rd). L’opérateur de stabilisation Sk∂T : ÛkT →
Pkd−1(F∂T ;Rd) est défini tel que, pour tout v̂T = (vT , v∂T ) ∈ ÛkT :

Sk∂T (v̂T ) = Πk
∂T

(
v∂T −Dk+1

T (v̂T )|∂T
)
−Πk

T

(
vT −Dk+1

T (v̂T )
)
|∂T , (1.8)

où Πk
T et Πk

∂T sont les projecteurs L2-orthogonaux sur Pkd(T ;Rd) et Pkd−1(F∂T ;Rd) re-
spectivement. De plus, l’opérateur local de reconstruction d’un champ de déplacement
d’ordre supérieur Dk+1

T : ÛkT → Pk+1
d (T ;Rd) est défini tel que, pour tout v̂T ∈ ÛkT ,

Dk+1
T (v̂T ) ∈ Pk+1

d (T ;Rd) est obtenu en résolvant le problème de Neumann suivant: pour

tout w ∈ Pk+1
d (T ;Rd),

(∇sDk+1
T (v̂T ),∇sw)L2(T ) = (∇svT ,∇sw)L2(T ) + (v∂T − vT |∂T ,∇swnT )L2(∂T ). (1.9)

Cette reconstruction est définie de manière unique en imposant également les deux conditions∫
T
Dk+1
T (v̂T ) dT =

∫
T
vT dT, et

∫
T
∇ssDk+1

T (v̂T ) dT =

∫
∂T

1

2
(v∂T ⊗ nT − nT ⊗ v∂T ) d∂T .

(1.10)
où ∇ss est la partie antisymétrique de l’opérateur gradient.

CommeEk
T (v̂T ) n’est pas stable au sens oùEk

T (v̂T ) = 0 n’implique pas nécessairement que
v∂T = vT |∂T = cst, il est nécessaire de coupler l’opérateur Ek

T à l’opérateur de stabilisation

Sk∂T . Ainsi, l’ajout de ce terme de stabilisation permet de retrouver une propriété de stabilité
locale qui est nécessaire pour démontrer la coercivité du problème discret.

Lemme 1.2 (Stabilité et caractère borné) Soit l’opérateur de reconstruction du gradi-
ent symétrique défini par (1.71.7) et l’opérateur de stabilisation défini par (1.81.8). Soit η∂T défini
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par (1.41.4). Alors, il existe 0 < α[ < α] < +∞, indépendants de h, tels que, pour tout T ∈ Th
et tout v̂T ∈ ÛkT ,

α[|v̂T |1,T ≤
(
‖Ek

T (v̂T )‖2
L2(T )

+ ‖η
1
2
∂TS

k
∂T (v̂T )‖2L2(∂T )

) 1
2

≤ α]|v̂T |1,T . (1.11)

Preuve. voir [8989, Lemme 4].

�

Une autre propriété importante du gradient symétrique reconstruit est une propriété de com-
mutativité qui est essentielle pour prouver la robustesse de la méthode dans la limite incom-
pressible.

Lemme 1.3 (Commutativité) Pour tout T ∈ Th et tout v ∈ H1(T ;Rd), l’égalité suivante
est vraie :

Ek
T (ÎkT (v)) = Πk

T (∇sv), (1.12)

où ÎkT : H1(T ;Rd)→ ÛkT est l’opérateur local de réduction tel que

ÎkT (v) = (Πk
T (v),Πk

∂T (v|∂T )). (1.13)

Preuve. voir [8989, Proposition 3].

�

Pour la suite, nous définissons également l’opérateur de divergence discret Dk
T : ÛkT →

Pkd(T ;R) tel que

Dk
T (v̂T ) := trace(Ek

T (v̂T )), ∀v̂T ∈ ÛkT . (1.14)

Remarque 1.4 (Variantes des méthodes HHO) Il existe plusieurs variantes de la
méthode HHO présentée ici. Une fois le degré polynomial k fixé pour les inconnues de face,
l’inconnue de cellule peut être de degré polynomial l ∈ {k − 1, k, k + 1}, l ≥ 1, sans change-
ment des propriétés d’approximation et de stabilité (cf. [7474]). Une autre variante est possible
sur les maillages simpliciaux dans le cas où le degré k de l’inconnue de la cellule et des faces
est le même. Il est alors possible de reconstruire un gradient stable dans le sens où il n’est
alors plus nécessaire d’ajouter un terme de stabilisation (Sk∂T ≡ 0). Pour cela, il suffit de
le reconstruire dans un espace plus grand que Pkd(T ;Rd×dsym) qui contient au moins l’espace de

Raviart–Thomas-Nédélec RTNkd(T ;Rd×d) := Pkd(T ;Rd×d)⊕(Pk,Hd (T ;Rd)⊗X), où Pk,Hd (T ;Rd)
est l’espace composé des polynômes homogènes de degré k et X ∈ Rd est le point courant de
la cellule (cf. [22, 8787]).

Remarque 1.5 (Connexion avec d’autres méthodes) Les méthodes HHO présentent
des connections plus ou moins étroites avec d’autres méthodes numériques développées ces
dernières années. Pour les méthodes d’ordre bas, il existe des liens avec les méthodes vol-
umes finis Hybrid Finite Volumes [119119, 120120] et Mixed Finite Volumes [101101, 102102], avec les
méthodes Mimetic Finite Differences [4242, 4343, 154154] (voir [103103] pour un cadre unfié des trois
méthodes précédentes), ainsi qu’avec les méthodes Compatible Discrete Operator [3434, 3535] et
les Gradient Schemes [104104, 105105]. Pour les méthodes d’ordre supérieur, une connexion a
été établie dans [7474] entre les méthodes HHO, Hybridizable Discontinuous Galerkin (HDG)
[7676, 197197] et nonconforming Virtual Element Methods (ncVEM) [1818]. Les principales simil-
itudes et différences entre les méthodes HHO, HDG, et ncVEM sont : (i) la reconstruction
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des opérateurs discrets pour HHO remplace les équations de flux pour HDG et ces opérateurs
jouent le même rôle que les opérateurs de projection utilisés par ncVEM, et (ii) les opéra-
teurs de stabilisation pour HHO et HDG sont définis d’un point de vue fonctionnel (et sont
différents dans le cas où les inconnues de cellule ont le même degré que les inconnues de
face) alors que pour ncVEM, ces opérateurs sont définis d’un point de vue algébrique tout en
conduisant à des formes quadratiques équivalentes à HHO.

1.3.4 Problème global discret HHO

Définissons maintenant le problème global discret. Posons

Pkd(Th;Rd) :=
ą

T∈Th

Pkd(T ;Rd) et Pkd−1(Fh;Rd) :=
ą

F∈Fh

Pkd−1(F ;Rd). (1.15)

L’espace global des inconnues HHO est défini tel que

Ûkh := Pkd(Th;Rd)× Pkd−1(Fh;Rd). (1.16)

Pour un élément générique v̂h ∈ Ûkh, nous utilisons la notation v̂h = (vTh , vFh). Pour toute

cellule T ∈ Th du maillage, nous notons v̂T ∈ ÛkT les composantes locales de v̂h liées à la
cellule T et aux faces composant son bord ∂T , et pour toute face F ∈ Fh, nous notons vF
la composante de v̂h liée à la face F . Des conditions aux limites de Dirichlet homogènes
sont appliquées de manière forte sur les inconnues liées aux faces de bord F ∈ Fb

h . Nous
introduisons pour cela le sous-espace

Ûkh,0 :=
{
v̂h ∈ Ûkh | vF = 0, ∀F ∈ Fb

h

}
. (1.17)

Nous définissons la fonction ‖ · ‖Ûkh,0 : Ûkh,0 → R telle que

‖v̂h‖2Ûkh,0 :=
∑
T∈Th

|v̂T |21,T , ∀v̂h ∈ Ûkh,0. (1.18)

Proposition 1.6 La fonction ‖ · ‖Ûkh,0 définit une norme sur Ûkh,0.

Preuve. Il suffit de montrer que pour tout v̂h ∈ Ûkh,0, ‖v̂h‖Ûkh,0 = 0 implique vT = 0 pour

tout T ∈ Th et vF = 0 pour tout F ∈ Fh. Remarquons que ‖v̂h‖Ûkh,0 = 0 implique que pour

tout T ∈ Th
∇svT = 0, et vT |F − vF = 0, ∀F ∈ F∂T . (1.19)

Prenons une cellule T ∈ Th ayant au moins une face de bord F ∈ F∂T ∩ Fb
h , si bien que

vF = 0. Alors vT |F = 0 car vT |F − vF = 0. En combinant cela à ∇svT = 0 et avec une
inégalité de Korn, nous obtenons vT = 0. De plus, comme vT |F ′ − vF ′ = 0, ∀F ′ ∈ F∂T \ {F},
nous en déduisons vF ′ = 0 pour tout F ′ ∈ F∂T . Il suffit de prolonger ce raisonnement couche
par couche de cellules jusqu’à avoir parcouru toutes les cellules T ∈ Th et toutes les faces
F ∈ Fh.

�
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Le problème discret est le suivant :
Trouver ûh ∈ Ûkh,0 tel que∑
T∈Th

aT (ûT , v̂T ) =
∑
T∈Th

(f, vT )L2(T ), ∀v̂h ∈ Ûkh,0, (1.20)

avec

aT (ûT , v̂T ) :=2µ
{

(Ek
T (ûT ),Ek

T (v̂T ))L2(T ) + (η∂TS
k
∂T (ûT ), Sk∂T (v̂T ))L2(∂T )

}
+ λ(Dk

T (ûT ), Dk
T (v̂T ))L2(T ). (1.21)

Le membre de droite dans (1.211.21) est obtenu en remplaçant les opérateurs continus par leurs
versions discrètes et en ajoutant le terme de stabilisation. Nous pouvons montrer qu’il existe
une unique solution ûh ∈ Ûkh,0 au problème (1.201.20) (cela découle de la propriété de stabilité
locale du Lemme 1.21.2). De plus, comme les contributions dans (1.211.21) sont calculées de manière
locale aux cellules, il est très facile de paralléliser ces calculs. Les méthodes HHO ont des
taux de convergence optimaux sur des maillages généraux aussi bien en norme de l’énergie
qu’en norme L2 (sans hypothèse de régularité elliptique).

Théorème 1.1 (Erreur en norme de l’énergie) Soit k ≥ 1. Soit u ∈ H1
0 (Ω0;Rd)

l’unique solution du problème (1.11.1) et ûh ∈ Ûkh,0 l’unique solution du problème (1.201.20). En

supposant également la régularité additionnelle u ∈ Hk+2(Ω0;Rd), il existe une constante
C > 0, indépendante de h, µ, et λ, telle que

∑
T∈Th

|ÎkT (u)− ûT |21,T

 1
2

≤ Chk+1
(

2µ|u|Hk+2(Ω0) + λ|∇·u|Hk+1(Ω0)

)
. (1.22)

Preuve. voir [8989, Théorème 8].

�

Théorème 1.2 (Erreur en norme L2) Sous les hypothèses du Théorème 1.11.1 et en sup-
posant la régularité elliptique pour le problème du modèle (1.11.1), il existe une constante C > 0,
indépendante de h, µ, et λ, telle que

∑
T∈Th

‖Πk
T (u)− uT ‖2L2(T )

 1
2

≤ Chk+2
(

2µ|u|Hk+2(Ω0) + λ|∇·u|Hk+1(Ω0)

)
. (1.23)

Preuve. voir [8989, Théorème 11].

�

Les estimations du Théorème 1.11.1 et du Théorème 1.21.2 sont robustes à limite incompressible
puisqu’elles ne font intervenir que la régularité de ∇·u en fonction de λ. Ces taux de con-
vergence sont confirmés numériquement ainsi que la robustesse. Enfin, il est important de
rappeler que ces taux de convergence sont supérieurs d’un ordre à ceux obtenus pour des
éléments finis H1-conformes en utilisant des polynômes de degré k dans les cellules.
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Remarque 1.7 (Structures minces et verrouillage en pincement) Dans le cadre des
structures minces où au moins une dimension est très inférieure aux autres (comme
l’épaisseur pour les éléments de plaque) d’autres problèmes de verrouillage peuvent apparaitre.
Un des principaux qui peut être rencontré pour les éléments finis linéaires H1-conformes est
le verrouillage en pincement (pinching locking en anglais). Ce verrouillage apparait car la
déformation est constante dans l’épaisseur pour les éléments finis linéaires alors qu’une ap-
proximation linéaire est nécessaire dans l’épaisseur. Ce problème est résolu dans les méthodes
HHO car le gradient symétrique reconstruit est au moins linéaire dans l’épaisseur, et ceci
même pour k = 1. Des tests numériques avec les méthodes HHO viennent confirmer cette
absence de verrouillage en pincement. Une étude numérique pour les méthodes HDG dans
le cadre des structures minces en grandes déformations hyperélastiques est présentée dans
Terrana & al. [203203].

1.3.5 Condensation statique et assemblage

Lors de l’implémentation des méthodes HHO dans un code de calcul, deux étapes sont par-
ticulièrement importantes. Il y a l’étape de condensation statique locale (ou complément de
Schur) qui permet d’éliminer les inconnues de cellule uTh et d’obtenir un problème global à
résoudre plus petit car composé uniquement des inconnues de face uFh . La deuxième étape
importante est l’étape d’assemblage du problème global à partir des contributions locales.
Afin d’être plus pédagogique, nous présentons d’abord l’assemblage puis la condensation sta-
tique. Pour cela, nous illustrons ces différentes étapes sur un maillage composé de 7 cellules
(cinq carrés et deux pentagones) et de 20 faces pour le cas k = 1. Ce maillage est illustré à
la Fig. 1.71.7.

Pour les méthodes HHO comme pour les méthodes d’éléments finis classiques, le calcul
des contributions élémentaires est local à chaque cellule T ∈ Th. Il faut ensuite assembler
les contributions élémentaires dans la matrice globale (et le vecteur de chargement global)
pour permettre le calcul de la solution globale discrète ûh. Cet assemblage est réalisé en
remarquant que les inconnues portées par une face F sont partagées par les deux cellules
partagent cette face. De plus, comme les inconnues portées par une cellule ne communiquant
pas directement avec les autres cellules du maillage, il n’y a pas d’assemblage spécifique à
faire (une simple copie des valeurs à réaliser). Le processus d’assemblage global est illustré à
la Fig. 1.71.7 où à partir des contributions élémentaires de plusieurs cellules, le problème global
est assemblé.

Comme les inconnues portées par une cellule T ∈ Th ne communiquent pas directement
avec les autres cellules du maillage, il y a une partie de la matrice assemblée du problème
global qui a une structure diagonale par bloc où chaque bloc représente la contribution locale
venant de l’inconnue uT de chaque cellule. Chaque bloc étant symétrique défini positif, il est
possible d’éliminer les inconnues uTh cellule par cellule afin de se ramener à une matrice plus
petite (composée uniquement des inconnues de face uFh). Ainsi, le nombre d’inconnues global

de la discrétisation HHO est proportionnel à kd−1 card(Fh) alors que pour les méthodes de
type Galerkin discontinu, nous avons kd card(Th), ce qui fait que les méthodes HHO sont
attractives d’un point de vue coût numérique. Si nous avons besoin, après la résolution du
problème discret, des valeurs de uTh , il suffit de rajouter une étape de décondensation statique
localement à chaque cellule.

D’un point de vue implémentation, il est en général plus facile d’inverser l’ordre de ces
opérations. Il faut mieux d’abord faire la condensation statique pour éliminer les inconnues
de cellule, puis effectuer l’assemblage global sur les inconnues de face. L’enchâınement de ces
différents étapes est présenté à la Fig. 1.81.8.
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Figure 1.7: Processus d’assemblage des contributions locales en un problème global.

Figure 1.8: Processus complet: condensation statique puis assemblage du problème global en
termes d’inconnues de face uniquement.
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1.3.6 Résultats numériques

Nous allons présenter quelques résultats numériques sur les méthodes HHO. Pour cela, nous
considérons le problème bidimensionnel sur le carré unitaire Ω0 = [0; 1]2 avec pour solution
analytique u : Ω0 → R2 la fonction suivante :

ux(x, y) = 0.2 sin(2πy)(cos(2πx)− 1) +
sin(πx) sin(πy)

5 + 5λ
,

uy(x, y) = −0.2 sin(2πx)(cos(2πy)− 1) +
sin(πx) sin(πy)

5 + 5λ
.

les coefficients de Lamé µ et λ étant pris égaux à µ = 1 et λ = 1000. Dans un premier temps,
nous regardons l’influence de l’ordre d’approximation k sur la solution discrète obtenue pour
un maillage régulier composé de 256 quadrangles. Pour cela, la solution reconstruite à partir
des inconnues cellules est tracée sur la Fig. 1.91.9 pour différents ordres k ∈ [1; 3]. Comme
attendu, la solution discrète obtenue est meilleure quand l’ordre d’approximation k augmente.
De plus, la discontinuité de la solution uTh est bien mise en évidence pour k = 1 et elle tend
à se réduire notablement quand l’ordre d’approximation augmente (les discontinuités sont
encore un peu présentes pour k = 2 et sont imperceptibles pour k = 3).

Dans un deuxième temps, nous regardons l’influence de la taille du maillage sur la solution
discrète calculée pour k = 1. Pour cela, la solution reconstruite comme ci-dessus est tracée
sur la Fig. 1.101.10 pour différents maillages triangulaires quasi-uniformes. La solution discrète
obtenue est meilleure quand la taille du maillage diminue. De plus, les discontinuités de la
solution discrète diminuent sensiblement avec la taille du maillage (les discontinuités sont
quasiment invisibles sur le maillage composé de 1024 triangles).

En résumé, nous remarquons que les méthodes HHO donnent de très bons résultats et que
les discontinuités de la solution discrète uTh se réduisent sensiblement quand le maillage est
de plus en plus fin ou quand l’ordre d’approximation augmente. La solution discrète obtenue
est alors quasiment continue et est très proche de la solution que nous pouvons obtenir avec
des éléments finis H1-conformes (avec des taux de convergence meilleurs pour les méthodes
HHO).

0.3990.000265 0.2

(a) k = 1

 

0.00112 0.204 0.408

(b) k = 2

0.47.99e-06 0.2

(c) k = 3

Figure 1.9: Norme euclidienne de la solution discrète reconstruite à partir des incon-
nues cellule sur un maillage régulier composé de 256 quadrangles et pour différents ordres
d’approximation k.
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0.5020.00208 0.252

(a) 64 triangles

 

0.000186 0.211 0.421

(b) 256 triangles

 

2.11e-05 0.204 0.407

(c) 1024 triangles

Figure 1.10: Norme euclidienne de la solution discrète reconstruite à partir des inconnues
cellule pour k = 1 et pour différents maillages triangulaires quasi-uniformes.

1.4 Grandes déformations et plasticité

Nous nous intéressons ici à deux types de non-linéarités que nous pouvons rencontrer en
mécanique des solides. La première non-linéarité est la non-linéarité matérielle qui représente
le fait que la relation entre le tenseur des déformations et le tenseur des contraintes n’est
plus linéaire. Cette non-linéarité se rencontre dans la modélisation de la plasticité où les
déformations irréversibles qui peuvent apparâıtre rendent nécessaire la prise en compte de
l’histoire du matériau afin de pouvoir déterminer son état actuel. La deuxième non-linéarité
est la non-linéarité géométrique qui apparâıt lorsque la mesure des déformations n’est plus
linéaire par-rapport au champ de déplacement. Cette deuxième non-linéarité se rencontre
dans la modélisation des grandes déformations.

Pour décrire plus précisément ces deux non-linéarités et les problèmes numériques asso-
ciés, nous nous intéressons au problème suivant. Nous considérons un corps déformable B0

représenté dans sa configuration de référence par le domaine polygonal/polyédrique Ω0 ⊂ Rd,
d ∈ {2, 3}. Le bord Γ := ∂Ω0 est partitionné en deux parties d’intersection vide ΓD et ΓN,
où mes(ΓD) > 0 pour bloquer les mouvements de corps rigides. ΓD représente le bord de
Dirichlet et ΓN le bord de Neumann. Nous nous intéressons à une évolution quasi-statique
sur l’intervalle de pseudo-temps [0, tF ], tF > 0, du corps B0 sous l’action du chargement
volumique f : Ω0 × [0, tF ] → Rd, du chargement surfacique tN : ΓN × [0, tF ] → Rd sur ΓN et

du déplacement imposé uD : ΓD × [0, tF ] → Rd sur ΓD. L’intervalle de pseudo-temps [0, tF ]
est discrétisé en N sous-intervalles tels que t0 = 0 < t1 < · · · < tN = tF .

Nous introduisons l’espace de Hilbert des déplacements cinématiquement admissibles V n
D,

0 ≤ n ≤ N , et V 0 des déplacements nuls sur le bord ΓD :

V n
D :=

{
v ∈ H1(Ω0;Rd) : v = uD(tn) sur ΓD

}
, V 0 :=

{
v ∈ H1(Ω0;Rd) : v = 0 sur ΓD

}
.

1.4.1 Élasticité linéaire en petites déformations

Le modèle de l’élasticité linéaire est le modèle le plus simple que nous puissions utiliser en
mécanique des solides. Il a été utilisé à la section précédente pour présenter les méthodes
HHO. Dans ce cas, aucune non-linéarité n’est présente. Les déformations sont mesurées par
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l’intermédiaire du tenseur des déformations linéarisées ε ∈ Rd×dsym tel que

ε(v) =
1

2
(∇v + ∇v

T
), (1.24)

pour tout v ∈ H1(Ω0;Rd). Le tenseur des déformations linéarisées dépend linéairement du
champ de déplacement v. Le tenseur des contraintes de Cauchy σ ∈ Rd×dsym dépend lui aussi
linéairement du tenseur des déformations linéarisées ε :

σ(v) = 2µε(v) + λ trace(ε(v))Id, (1.25)

où µ > 0 et λ ≥ 0 sont les paramètres de Lamé du matériau et Id le tenseur identité d’ordre
d. En omettant la dépendance par rapport au temps, les équations d’équilibre à vérifier par
le champ de déplacement u : Ω0 → Rd sont :

−∇ · σ(u) = f dans Ω0,

u = uD sur ΓD,

σ(u)N = tN sur ΓN,

(1.26)

où ∇ · est l’opérateur de divergence à valeurs vectorielles et N la normale sortante unitaire.
Ainsi, la formulation faible du problème de l’élasticité linéaire en petites déformations est : Trouver u ∈ V D tel que∫

Ω0

σ(u) : ε(v) dΩ0 =

∫
Ω0

f ·v dΩ0 +

∫
ΓN

tN·v dΓ, ∀v ∈ V 0.
(1.27)

Le problème (1.271.27) admet une unique solution.
Une difficulté numérique apparâıt à la limite incompressible quand λ→ +∞. Cette limite

incompressible se traduit par des déformations à trace nulle, trace(ε(v)) = 0, ce qui revient
à chercher un champ de déplacement à divergence nulle non trivial car trace(ε(v)) = ∇·v,
où ∇· est l’opérateur de divergence à valeur réelle. Si nous utilisons une discrétisation par
éléments finis H1-conformes, des problèmes de verrouillage numérique peuvent apparâıtre, ce
qui se traduit par une sous-estimation des déplacements ou par des oscillations importantes
de la trace du tenseur des contraintes de Cauchy.

1.4.2 Petites déformations plastiques

Les déformations plastiques se traduisent par la présence de déformations irréversibles. Il faut
alors prendre en compte cette irréversibilité des déformations lors du calcul du tenseur des
contraintes de Cauchy. Une hypothèse importante pour modéliser les déformations plastiques
est que le tenseur des déformations linéarisées est décomposé en partie élastique εe et plastique
εp sous la forme

εe = ε− εp. (1.28)

Les deux tenseurs εe et εp sont symétriques, et nous supposons également que les déformations
plastiques sont incompressibles (ce qui est confirmé expérimentalement), c.à.d.,

trace(εp) = 0. (1.29)

Dans la suite, nous nous plaçons dans le cadre des matériaux standard généralisés développé
initialement par Halphen & Son Nguyen [127127] puis par Lemaitre & Chaboche [159159]. Ce cadre
permet de définir des modèles de plasticité thermodynamiquement admissibles. L’état local
du matériau est décrit par le tenseur des déformations linéarisées ε ∈ Rd×dsym , le tenseur des
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déformations plastiques εp ∈ Rd×dsym , et un ensemble de variables internes α := (α1, · · · , αm) ∈
Rm, qui contient typiquement au moins la déformation plastique équivalente p ≥ 0. Par
simplicité, nous notons χ := (εp, α) ∈ X les variables internes généralisées, où l’espace des
variables internes généralisées est

X :=
{
χ = (εp, α) ∈ Rd×dsym × Rm | trace(εp) = 0

}
. (1.30)

Enfin, nous supposons que la modèle de plasticité ne dépend pas du temps ni de la vitesse
de déformation. Ainsi, nous considérons uniquement un problème sous forme incrémentale
à résoudre sur [0, tF ]. La formulation faible du problème de plasticité incrémentale est :
Pour tout 1 ≤ n ≤ N avec un−1 ∈ V n−1

D et χn−1 ∈ L2(Ω0;X ) donnés à partir du pas de
pseudo-temps précédent ou de la condition initiale :

Trouver un ∈ V n
D et χn ∈ L2(Ω0;X ) tels que∫

Ω0

σn : ε(v) dΩ0 =

∫
Ω0

fn·v dΩ0 +

∫
ΓN

tnN·v dΓ, ∀v ∈ V 0.

(χn,σn) = SMALL PLASTICITY(χn−1, ε(un−1), ε(un)).

(1.31)

La procédure SMALL PLASTICITY permet de calculer les nouvelles valeurs des variables
internes généralisées χ et du tenseur des contraintes σ à partir des valeurs précédentes des
variables internes généralisées χn−1 et du tenseur des déformations εn−1, et de la valeur
actuelle du tenseur des déformations εn. Les détails concernant le contenu de cette procé-
dure peuvent être trouvés dans Simo & Hughes [8383] et de Souza Neto, Peric & Owen [8383]
par exemple. Cette procédure contient typiquement des équations d’évolution incrémentales
des variables internes généralisées. Pour un modèle de plasticité avec écrouissage positif, le
problème (1.311.31) est bien posé.

Comme pour l’élasticité linéaire en petites déformations à la limite incompressible,
l’incompressibilité des déformations plastiques, trace(εp) = 0, peut provoquer des problèmes
de verrouillage numérique.

1.4.3 Grandes déformations hyperélastiques

Quand les déformations deviennent importantes, l’hypothèse des petites déformations n’est
plus valable et l’utilisation du tenseur des déformations linéarisées ε n’est plus réaliste. Il
est alors nécessaire de changer la mesure des déformations afin d’obtenir des résultats plus
réalistes.

Dans le cas d’un modèle de comportement hyperélastique, c.à.d. sans déformations plas-
tiques irréversibles, plusieurs mesures de déformation sont possibles comme le tenseur du
gradient des déformations F ∈ Rd×d+ (Rd×d+ est l’ensemble des matrices dans Rd×d ayant
un déterminant strictement positif), le tenseur des déformations de Cauchy–Green droit
C ∈ Rd×dsym , ou le tenseur des déformations de Green–Lagrange EGL ∈ Rd×dsym . Ces tenseurs
sont liés par les relations suivantes :

F (v) = Id + ∇v, C(v) = F (v)TF (v), et EGL(v) =
1

2
(C(v)− Id). (1.32)

Un modèle couramment utilisé est le modèle hyperélastique néohookéen qui utilise comme
mesure de déformation F et comme tenseur des contraintes P (Piola–Kirchhoff de première
espèce) :

P (F ) = µ̃(F − F−T ) + λ̃J(J − 1)F−T . (1.33)
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où J = detF , et µ̃ et λ̃ sont les paramètres hyperélastiques du matériau. En omettant à
nouveau la dépendance au temps et en supposant par simplicité que les chargements extérieurs
sont morts (c’est à dire indépendants du champ de déplacement), les équations d’équilibre
à vérifier en configuration lagrangienne [3636, 7070] par le champ de déplacement u : Ω0 → Rd
sont :


−∇X · P (u) = f dans Ω0,

u = uD sur ΓD,

P (u)N = tN sur ΓN,

(1.34)

où ∇X · est l’opérateur de divergence à valeurs vectorielles par rapport aux coordonnées
de référence et N la normale sortante unitaire dans la configuration de référence. Ainsi, la
formulation faible du problème de l’hyperélasticité en configuration lagrangienne est : Trouver u ∈ V D tel que∫

Ω0

P (F (u)) : ∇v dΩ0 =

∫
Ω0

f ·v dΩ0 +

∫
ΓN

tN·v dΓ, ∀v ∈ V 0.
(1.35)

Le problème (1.351.35) admet au moins une solution (Ball, [2121]) car l’énergie hyperélastique
associée à un matériau néohookéen est polyconvexe. Un traitement mathématique détaillé
des problèmes hyperélastiques est présenté dans Ciarlet [7070]. Il faut noter que nous sommes ici
en présence d’une non-linéarité matérielle et d’une non-linéarité géométrique simultanément.

Le problème du verrouillage numérique intervient également à la limite incompressible,
c.à.d. quand λ̃ → +∞. De plus, une particularité des matériaux hyperélastiques en général
est que la rigidité du matériau augmente quand les déformations augmentent, contrairement
à la plasticité.

1.4.4 Grandes déformations plastiques

Un problème encore plus compliqué est celui des grandes déformations plastiques car les non-
linéarités matérielle et géométrique sont présentes comme pour les grandes déformations hy-
perélastiques mais il faut en plus prendre en compte les déformations plastiques irréversibles.
Deux modèles sont couramment utilisés : le modèle des déformations multiplicatives où une
décomposition multiplicative (Simo, [189189]) de F en partie élastique F e et plastique F p est
supposée telles que F = F eF p et le modèle des déformations logarithmiques (Miehe, Apel
& Lambrecht, [167167]). Nous nous concentrons ici sur ce deuxième modèle car il a l’avantage
de permettre une extension simple des lois plastiques en petites déformations aux grandes
déformations moyennant un pré- et un post-traitement géométriques et une ré-identification
des paramètres du matériau. Le tenseur des déformations logarithmiques E ∈ Rd×dsym est défini
tel que

E =
1

2
ln(F TF ). (1.36)

Comme pour le tenseur des déformations linéarisées ε dans le cas des petites déformations
plastiques, nous supposons une décomposition additive du tenseur des déformations logarith-
miques E en partie élastique Ee ∈ Rd×dsym et plastique Ep ∈ Rd×dsym telles que

Ee = E −Ep. (1.37)

Nous supposons également que les déformations logarithmiques plastiques sont incompress-
ibles, c.à.d.,

trace(Ep) = 0. (1.38)
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Le fait de considérer cette même décomposition additive et cette même hypothèse
d’incompressibilité plastique permet d’étendre facilement les lois plastiques écrites en pe-
tites déformations aux grandes déformations (moyennant un pré- et un post-traitement
géométriques). Comme ci-dessus, nous nous plaçons dans le cadre des matériaux standard
généralisés [127127, 159159]. L’état local du matériau est décrit par le tenseur des déformations
logarithmiques E ∈ Rd×dsym , le tenseur des déformations logarithmiques plastiques Ep ∈ Rd×dsym ,
et un ensemble de variables internes α := (α1, · · · , αm) ∈ Rm. Par simplicité, nous notons
χ

log
:= (Ep, α) ∈ X log les variables internes généralisées, où l’espace des variables internes

généralisées est

X log :=
{
χ

log
= (Ep, α) ∈ Rd×dsym × Rm | trace(Ep) = 0

}
. (1.39)

La formulation faible du problème de plasticité incrémentale en grandes déformations plas-
tiques est: Pour tout 1 ≤ n ≤ N avec un−1 ∈ V n−1

D et χn−1
log
∈ L2(Ω0;X log) donnés à partir

du pas de pseudo-temps précédent ou de la condition initiale :
Trouver un ∈ V n

D et χn
log
∈ L2(Ω0;X log) tels que∫

Ω0

P n : ∇v dΩ0 =

∫
Ω0

fn·v dΩ0 +

∫
ΓN

tnN·v dΓ, ∀v ∈ V 0.

(χn
log
,P n) = FINITE PLASTICITY(χn−1

log
,F (un−1),F (un)).

(1.40)

où comme précédemment, les chargements extérieurs sont supposés morts (c’est à dire
indépendants du champ de déplacement un). La procédure FINITE PLASTICITY per-
met de calculer les nouvelles valeurs des variables internes généralisées χ

log
et du tenseur

des contraintes de Piola–Kirchhoff P à partir des valeurs précédentes des variables in-
ternes généralisées χn−1 et du tenseur du gradient de déformations F n−1, et de la valeur
actuelle du tenseur du gradient de déformations F n. Cette procédure réutilise la procédure
SMALL PLASTICITY en complément d’un pré- et d’un post-traitement géométriques. Les
détails concernant le contenu de cette procédure et son calcul peuvent être trouvés dans
Miehe, Apel & Lambrecht [167167, Box 4].

1.4.5 Gestion numérique de l’incompressibilité

Comme évoqué précédemment, un problème de verrouillage numérique peut apparâıtre avec
les éléments finis H1-conformes (d’ordre bas) quand les déformations élastiques sont quasi-
incompressibles et/ou les déformations plastiques sont incompressibles. Une raison pour
l’apparition de ce verrouillage est que les éléments H1-conformes (d’ordre bas) ne sont pas
assez riches pour approcher correctement une telle solution. Pour résoudre cette difficulté
numérique, de nombreuses méthodes ont été développées. Nous présentons ci-dessous les
principales méthodes ainsi que leurs avantages et inconvénients. Nous commençons par les
méthodes les plus anciennes.

• Méthodes mixtes : L’idée est d’introduire un ou plusieurs multiplicateurs de Lagrange
pour imposer la condition d’incompressibilité. L’ajout de ces multiplicateurs augmente
le coût de la construction et de la résolution du problème global. En outre, celui-ci est
de type point-selle, ce qui peut compliquer la résolution avec une méthode itérative.
De plus, la formulation des méthodes mixtes est dépendante de la loi de comportement
utilisée et ces méthodes sont difficilement extensibles aux maillages polyédriques. Pour
les grandes déformations hyperélastiques, nous mentionnons les travaux de Al Akhrass
& al. [99], Brink & Stein [4444], Dobrowolski [9999], et Klass, Maniatty & Shephar [150150],
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et en ce qui concerne la plasticité, nous avons en petites déformations les travaux de
Cervera & al. [5353, 5252, 5151] et Chimumenti & al. [6060, 5959] et en grandes déformations les
travaux de Al Akhrass & al. [99], Agelet de Saracibar & al. [66], Bargellini & al. [2424],
Le Tallec, Rahier & Kaiss [157157], de Souza Neto & al. [8282], et Simo, Taylor & Pister
[196196]. Plus récemment, une analyse de stabilité menée par Aurichhio & al. [1616, 1717,
1515] a montré certaines limitations des méthodes mixtes pour les grandes déformations
hyperélastiques.

• Méthodes de Galerkin discontinu (dG) : Les méthodes dG (Arnold & al. [1212],
Cockburn [7373]) reposent sur une formulation primale comme les méthodes éléments
finis H1-conformes. En revanche, l’espace d’approximation n’est plus continu mais
typiquement polynomial par morceaux. Un inconvénient de ses méthodes dG est qu’elles
sont coûteuses car il y a beaucoup d’inconnues. En outre, dans le cas de la plasticité, le
comportement doit être calculé sur les faces en plus des cellules et la matrice tangente
de Newton n’est pas symétrique. Nous mentionnons pour les grandes déformations
hyperélastique, les travaux de Eyck & Lew [117117], Eyck, Celiker & Lew [116116, 115115], et
Noels & Radovitzsky [174174]. Les méthodes Interior penalty dG ont été développées pour
la plasticité classique en petites déformations par Hansbo [131131] et Liu & al. [162162],
et en grandes déformations par Liu, Wheeler & Yotov [163163]; et en ce qui concerne la
plasticité à gradient en petites déformations, nous mentionnons les travaux de Djoko &
al. [9898, 9797] et en grandes déformations, ceux de McBride & Djoko [166166].

• Méthodes d’intégration réduite ou sélective : La technique d’intégration réduite
(Zienkiewicz, Taylor & Too, [217217]) consiste à intégrer la matrice de rigidité associée
aux éléments finis H1-conformes en utilisant une règle d’intégration d’ordre plus faible
que celui nécessaire pour une intégration exacte, alors que la méthode d’intégration
sélective (Doherty, Wilson & Taylor, [100100]) consiste à ne sous-intégrer que les termes
de la matrice de rigidité liés à la contrainte d’incompressibilité. Ces deux méthodes
permettent de réduire en partie les problèmes de verrouillage (cf. Ponthot [179179]) mais
présentent des difficultés pour les stabiliser (présence de modes à énergie nulle) et les
étendre à des matériaux anisotropes (cf. les travaux de Hughes [145145]). Un lien a pu
être établi sous conditions avec certaines méthodes mixtes par Malkus & Hughes [165165]
et l’opérateur de stabilisation des méthodes dG par Reese & al. [2727, 182182]. En ce qui
concerne les grandes déformations, nous mentionnons pour l’hyperélasticité, les travaux
de Adam & al. [55] et Reese, Küssner & Reddy [55, 183183], et pour la plasticité, les travaux
de Reese [181181].

• Méthodes Enhanced Assumed Strain (EAS) : Les méthodes EAS ont été intro-
duites par Simo & Rifai [194194] où l’idée est de venir enrichir le tenseur des déformations
par l’ajout de variables additionnelles dont certaines peuvent être éliminées par con-
densation statique. Cependant, il est en général nécessaire de stabiliser ces méthodes.
Pour les grandes déformations, ces méthodes ont été utilisées dans les travaux de Eyck
& Lew [118118] et Reese & Wriggers [184184] en hyperélasticité et dans les travaux de Krysl
[152152, 153153] et Simo & al. [191191, 192192] en plasticité.

Depuis quelques années, d’autres méthodes que celles présentées ci-dessus ont été développées
pour résoudre entre autres le problème du verrouillage numérique.

• Méthodes isogéométriques (IGA) : L’idée des méthodes IGA est d’utiliser pour
la discrétisation des fonctions de base qui sont plus régulières que les polynômes de
Lagrange comme les NURBS. Un avantage sur les domaines à frontière courbe, la
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représentation de la géométrie réelle est plus fine, ce qui permet de réduire l’erreur de
discrétisation géométrique. De manière générale, le prix à payer est un stencil plus
étendu et une forte dépendance entre le module géométrique et le solveur éléments
finis. Ces méthodes ont été développées pour la plasticité en petites déformations par
Elguedj & al. [112112] et en grandes déformations par Elguedj & Hughes [113113]. De plus,
une adaptation de l’intégration sélective aux méthodes IGA a été proposée par Adam
& al. [55].

• Méthodes de type Virtual Element Method (VEM) : Assez récemment, les
méthodes VEM (Beirão da Veiga, Brezzi, Marini & Russo, [2828, 2929]) ont été développées
afin d’étendre les éléments finis aux maillages polyédriques. Ces méthodes reposent
sur une formulation primale et elles sont robustes dans la limite incompressible. Nous
mentionnons en particulier la méthode VEM d’ordre bas pour les petites déformations
plastiques par Beirão da Veiga, Lovadina & Mora [3030] (et son extension bidimensionnelle
d’ordre élevé par Artioli & al. [1313]), alors que le cas des grandes déformations plastiques
est traité par Wriggers & Hudobivnik [209209] en 2D et Hudobivnik, Aldakheel & Wriggers
[143143] en 3D, toujours pour de l’ordre bas. Le cas hyperélastique est étudié par Chi,
Beirão da Veiga & Paulino [5858] et Wriggers & al. [210210].

• Méthodes hybrides : Ces dernières années, de nombreuse méthodes hybrides ont
été développées en plus de HHO. L’idée est de rajouter des variables globales pour
rendre les autres locales et donc éliminables par condensation statique. Ces méthodes
se différencient par le choix des variables globales et par le lien entre variables globales et
locales. Les méthodes Hybridizable Discontinuous Galerkin (HDG) [7676] ont été utilisées
pour l’hyperélasticité par Kabaria, Lew & Cockburn [147147] et Nguyen et Peraire [171171],
alors que les méthodes hybrid dG (d’ordre bas) avec traces conformes et hybridizable
weakly conforming Galerkin avec traces non-conformes ont été étudiées dans le cadre
de la mécanique des solides linéaire par Krämer & al. [151151] et dans le cas non-linéaire
par Bayat & al. [2626] et Wulfinghoff & al. [212212].

Nous terminons cette brève revue bibliographique en illustrant le phénomène de verrouillage
numérique sur la simulation d’un essai de traction en grandes déformations plastiques, voir
la Fig 1.111.11. Nous remarquons que la trace du tenseur des contraintes de Cauchy oscille pour
les éléments finis H1-conformes linéaires (a) et quadratiques (b) avec intégration complète,
alors que pour les éléments finis quadratiques sous-intégrés (c) et mixtes à trois champs (d),
le verrouillage est éliminé.
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(a) Q1 (b) Q2 (c) Q2 RI (d) UPG

Figure 1.11: Gestion numérique de l’incompressibilité pour un essai de traction en grandes
déformations plastiques: trace du tenseur des contraintes de Cauchy σ (en MPa) aux points
de quadrature pour les méthodes éléments finis H1-conformes linéaires (a) et quadratiques
(b) avec intégration complète, quadratiques avec intégration réduite (c), et mixtes à trois
champs (d).

1.5 Contact unilatéral de Signorini avec frottement de Tresca

Après les non-linéarités matérielle et géométrique vues précédemment, la non-linéarité de
contact-frottement est l’autre non-linéarité qui est très souvent présente dans les simulations
numériques en mécanique des solides (voir entre autres les travaux de Kikuchi & Oden [148148],
Haslinger, Hlaváček & Nečas [134134], Han & Sofonea [129129], Laursen [156156], Wriggers [208208], et
Wohlmuth [207207]). Cette non-linéarité pose en général un certain nombre de difficultés en
particulier si les maillages sont non-cöıncidents au niveau des surfaces de contact entre deux
corps déformables (précision et robustesse). Nous nous limitons ici au problème initialement
introduit par Signorini [188188] d’un corps déformable élastique linéaire (petites déformations et
pas de plasticité) qui entre en contact avec une fondation rigide.

1.5.1 Modèle continu

Nous considérons un corps élastique B0 qui est représenté dans sa configuration de référence
par le domaine polygonal/polyédrique Ω0 ⊂ Rd, d ∈ {2, 3} (voir la Fig 1.121.12). Le bord
Γ := ∂Ω0 est partitionné en trois parties disjointes : le bord de Dirichlet ΓD, le bord de
Neumann ΓN et le bord de contact-frottement ΓC. Nous supposons que mes(ΓD) > 0 pour
bloquer les mouvements de corps rigide et mes(ΓC) > 0 pour assurer la présence de contact.
Pour simplifier, le bord de contact-frottement ΓC est supposé être une ligne droite en 2D ou
un polygone plan en 3D. Le corps B0 est encastré sur le bord de Dirichlet ΓD et se déforme
sous l’action d’un chargement volumique f ∈ L2(Ω0;Rd) et d’un chargement surfacique tN ∈
L2(ΓN;Rd) sur le bord de Neumann. La normale sortante unitaire est notée N .

Pour décrire les conditions de contact-frottement, nous adoptons la décomposition en
partie normale et tangentielle du champ de déplacement v et du vecteur des forces surfaciques



1.5. Contact unilatéral de Signorini avec frottement de Tresca 23

Figure 1.12: Géométrie du problème de contact avec une fondation rigide.

σN (v) := σ(v)N défini sur ∂Ω0 :

v = vNN + vT et σN (v) = σN (v)N + σT (v).

où vN := v·N et σN (v) := σ(v)N ·N . Les conditions de contact unilatéral de Signorini [188188]
sur la surface de contact ΓC sont données par

(i) uN ≤ 0, (ii) σN (u) ≤ 0, (iii) σN (u)uN = 0. (1.41)

La première condition implique que le corps déformable ne peut pas pénétrer la fondation
rigide. La deuxième condition indique que les efforts de contact sont des efforts de répulsion.
La troisième est une condition de complémentarité qui implique qu’il y a du contact (uN = 0)
quand l’effort de contact est non nul et qu’il n’y a pas d’effort de contact quand il n’y a pas
de contact (uN < 0).

Dans les situations réalistes, la présence de contact induit souvent la présence de frotte-
ment entre les deux objets. Plusieurs modèles de frottement existent comme le frottement
de Tresca ou de Coulomb. Par simplicité, nous nous limitons ici au frottement de Tresca qui
se traduit par les conditions suivantes sur ΓC : |σT (u)| ≤ s, si uT = 0, (iv)

σT (u) =− s uT
|uT |

sinon, (v)
(1.42)

où s ≥ 0 est le seuil de glissement qui est donné. Notons que les conditions (iv) et (v)
impliquent que |σT (u)| ≤ s dans tous les cas, et que si |σT (u)| < s alors uT = 0 (adhérence).
Dans la situation uT 6= 0 (glissement), la contrainte tangentielle est de signe opposé au
glissement et s’oppose à celui-ci. Ce modèle est assez réaliste dans le cas du contact bilatéral
(uN = 0 sur ΓC), mais moins dans le cas général. Le frottement de Coulomb est alors plus
approprié même si son traitement mathématique et numérique est plus compliqué. Le cas du
contact sans frottement se retrouve en prenant s = 0 dans (1.421.42).

Le problème de contact unilatéral avec frottement de Tresca consiste à trouver un champ
de déplacement u : Ω0 → Rd vérifiant les équations (1.261.26) avec uD ≡ 0, et les conditions de
contact (1.411.41) et de frottement (1.421.42). Nous introduisons le cône convexe K des déplacements
admissibles :

K := {v ∈ V 0 : vN ≤ 0 sur ΓC} .
Les éléments de K satisfont la condition de Dirichlet sur ΓD et de non-interpénétration sur
la zone de contact ΓC. Posons

a(u, v) :=

∫
Ω0

σ(u) : ε(v) dΩ0, L(v) :=

∫
Ω0

f ·v dΩ0 +

∫
ΓN

tN·v dΓ, j(v) :=

∫
ΓC

s|vt| dΓ,
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pour tout u et v dans V 0. La formulation faible du problème (1.261.26)–(1.411.41)–(1.421.42) comme
une inéquation variationnelle de seconde espèce (voir [148148, 123123]) est la suivante :{

Trouver u ∈ K tel que
a(u, v − u) + j(v)− j(u) ≥ L(v − u), ∀ v ∈ K. (1.43)

Ce problème admet une unique solution, voir par exemple [148148, Theorème 10.2, Chapitre
10]. Une difficulté supplémentaire pour les problèmes de contact-frottement est le manque de
régularité de la solution. En effet, ce type de problème présente des singularités quelle que
soit la régularité des données (voir [170170]), et généralement la solution ne peut pas être plus

régulière que H
5
2 (Ω0;Rd).

1.5.2 Discrétisation par éléments finis

La discrétisation par éléments finis de l’inégalité variationnelle (1.431.43) est étudiée depuis de
nombreuses années aussi bien d’un point de vue mathématique que numérique. Différentes
stratégies de résolution ont été proposées pour imposer les conditions de Signorini au niveau
discret :

• Méthodes pénalisées : L’idée est de remplacer les inéquations de contact-frottement
par des équations non-linéaires en introduisant des coefficients de pénalisation.
L’avantage de ces méthodes est qu’elles reposent sur une formulation primale et sont
donc facilement implémentables. Cependant, les méthodes pénalisées sont en général in-
consistantes et une pénétration non-physique ainsi qu’un problème de conditionnement
peuvent apparaitre si les coefficients de pénalisation sont mal choisis. Ces méthodes
ont été utilisées pour les problèmes de contact par Chernov, Maischak & Stephan [5757],
Chouly & Hild [6565], Kikuchi & Oden [148148], Kikuchi & Song [149149], Oden & Kikuchi
[175175], et Oden & Kim [176176].

• Méthodes mixtes : L’idée est d’introduire des multiplicateurs de Lagrange pour
imposer les conditions de contact-frottement de manière consistante. Cependant, le
problème à résoudre devient un problème de type point-selle et une condition de type
inf-sup doit être vérifiée pour garantir la stabilité discrète. Nous mentionnons entre
autres les travaux de Hild [139139], Hild & Renard [140140], Ben Belgacem & Renard [3131],
Hauret and Le Tallec [136136], Laborde & Renard [155155], Haslinger, Hlaváček & Nečas [134134],
Wohlmuth [207207], et Abbas, Drouet & Hild [11].

• Méthodes Nitsche-FEM : La combinaison de l’approche Nitsche [173173] avec les élé-
ments finis H1-conformes permet d’imposer les conditions de contact-frottement en
les remplaçant par des équations non-linéaires. L’avantage est que ces méthodes re-
posent sur une formulation primale comme les méthodes pénalisées mais elles sont en
outre consistantes. L’idée de ces méthodes est esquissée à la section 1.5.31.5.3 ci-dessous.
L’application de ces méthodes pour le problème de Signorini a été étudiée par Chouly
& Hild [6464], Chouly [6161], Chouly, Hild & Renard [6767], Chouly & al. [6363], et Chouly,
Mlika & Renard [168168, 6868].

Pour la plupart des discrétisations, le frottement de Tresca crée des difficultés supplé-
mentaires pour établir des taux de convergence optimaux en comparaison de ce qui peut être
obtenu dans le cas sans frottement (voir, par exemple, les travaux de Hüeber & Wohlmuth
[144144], Wohlmuth [207207], Hild & Renard [141141], et Drouet & Hild [107107] pour le contact sans frot-
tement). En effet, les termes intégraux non-différentiables dus aux frottement introduisent
dans les estimations d’erreur des quantités supplémentaires qui sont difficiles à majorer,
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même quand des hypothèses supplémentaires sont faites (voir, par exemple, [134134, 207207]). Par
conséquent, les résultats de convergence sont limités pour la plupart des discrétisations. Les
premières estimations prouvées pour les méthodes mixtes et mortar sont sous-optimales (voir,
par exemple, les travaux de Haslinger & Hlaváček [133133], Hild [138138], et Baillet & Sassi [1919, 2020]).
Récemment, un taux de convergence en O(hν) pour une régularité H1+ν(Ω0;Rd), 0 ≤ ν ≤ 1,
a été obtenu par Wohlmuth [207207, Theorème 4.9] dans le cas bidimensionnel pour une méthode
mixte d’ordre bas avec des hypothèses techniques sur la zone de contact-frottement (c’est la
première estimation optimale à notre connaissance). Dans le cas tridimensionnel, un taux

en O(hmin( 1
2
,ν)) a été prouvé sans hypothèse supplémentaire toujours par Wohlmuth dans

[207207, Théorème 4.10]. Pour la méthode pénalisée, un taux en O(h
1
2

+ ν
2

+ν2) pour une régular-

ité H
3
2

+ν(Ω0;Rd), 0 < ν < 1
2 , et le taux quasi-optimal en O(h| log h| 12 ) pour une régularité

H2(Ω0;Rd) ont été établis par Chouly & Hild dans [6565], sans hypothèse supplémentaire sur
la zone de contact-frottement. Ces résultats ont été améliorés récemment par Dione dans
[9696] où des taux optimaux ont été obtenus si le paramètre de pénalisation est suffisamment
grand. Pour la discrétisation Nitsche-FEM, la convergence optimale d’ordre O(hs) en norme
H1(Ω0;Rd) a été prouvée par Chouly dans [6161] sous l’hypothèse de régularité H1+s(Ω0;Rd)
avec s ∈ (1

2 , k], où k ≥ 1 est le degré polynomial des éléments finis de Lagrange (il est remar-
quable qu’aucune hypothèse supplémentaire ne soit nécessaire). De plus, l’estimation d’erreur
reste valide en deux et trois dimensions d’espace, et pour tout degré polynomial k ≥ 1.

Dans cette thèse, nous utilisons les méthodes de Nitsche pour imposer les conditions de
contact et de frottement. Ce choix est motivé d’une part par le fait que les méthodes de
Nitsche permettent de se passer de multiplicateurs de Lagrange, ce qui nous permettra de
conserver une formulation primale en cohérence avec les développements précédents pour
résoudre les problèmes de verrouillage numérique dû à l’incompressibilité. D’autre part, des
méthodes Nitsche-HHO ont été développées dans [5050] pour le problème de Signorini scalaire
et des taux de convergence optimaux en O(hk+1) pour la norme de l’énergie ont été prouvés.
Nous allons ici étendre cette analyse au problème de l’élasticité avec des conditions de contact
et de frottement.

1.5.3 Formulation de Nitsche

La méthode de Nitsche a été développée initialement pour imposer faiblement les conditions
aux limites de Dirichlet [173173]. Depuis, cette méthode a été étendue aux traitements des
conditions de contact et de frottement. L’idée est de reformuler les conditions de contact
(1.411.41) et de frottement (1.421.42) en équations non-linéaires. Cela a été proposé pour la première
fois dans [7979] par Curnier & Alart (voir aussi [6161] pour une preuve détaillée).

Proposition 1.8 Soit γ une fonction à valeurs strictement positives sur ΓC. Les conditions
de contact avec frottement de Tresca (1.411.41)–(1.421.42) peuvent être reformulées comme suit :

σN (u) = [σN (u)− γ uN ]
R−

(1.44a)

σT (u) = [σT (u)− γ uT ]s . (1.44b)

où [x]
R−

:= min(x, 0) est la projection de x sur le sous-ensemble fermé convexe R− = (−∞, 0]

et pour tout α ∈ R+, [x]α est la projection orthogonale de x sur B(0, α) ⊂ Rd−1, où B(0, α)
est la boule fermée centrée sur l’origine 0 et de rayon α. Cette projection est définie de
manière analytique, pour tout x ∈ Rd−1, par

[x]α =

{
x si |x| ≤ α,

α
x

|x| sinon. (1.45)
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Soit {Th}h≥0 une famille d maillages simplicaux réguliers au sens habituel de Ciarlet [6969] de
Ω0, et soit

V h := {vh ∈ C0(Ω0;Rd) : vh|T ∈ Pk(T ;Rd); ∀T ∈ Th}
l’espace d’éléments finis de degré k ≥ 1 sur Th. Nous considérons le sous-espace V h,0 :=
{vh ∈ V h : v = 0 sur ΓD}. La discrétisation conforme Nitsche-FEM de la formulation faible
(1.431.43) est la suivante (voir [6363]) :{

Trouver uh ∈ V h,0 tel que

aγθ,h(uh, vh) = `γθ,h(vh) ∀vh ∈ V h,0,
(1.46)

où les formes semi-linéaire et linéaire introduites ci-dessus sont

aγθ,h(vh, wh) :=a(vh, wh)−
∫

ΓC

θ

γ
σN (vh)·σN (wh) dΓ

+

∫
ΓC

1

γ

[
φNγ,1(vh)

]
R−
φNγ,θ(wh) dΓ +

∫
ΓC

1

γ

[
φT
γ,1

(vh)
]
s
·φT
γ,θ

(wh) dΓ, (1.47a)

`γθ,h(wh) :=L(wh), (1.47b)

avec φNγ,θ(v) := θσN (v)− γvN et φT
γ,θ

(v) := θσT (v)− γvT . Notons que aγθ,h est non-linéaire

par rapport à son premier argument. Ici, les paramètres utilisateur sont le paramètre de
symétrie θ ∈ {−1, 0, 1} et le paramètre de pénalisation γ, tel que γ = γ0 h

−1 avec γ0 choisi
suffisamment grand pour assurer la coercivité pour θ 6= −1 (la valeur minimum dépend d’une
inégalité de trace discrète, voir, par exemple, les travaux de Nitsche [173173], Hansbo [130130]), et
Stenberg [199199]). Voir Chouly & al. [6363] pour une discussion plus complète sur le choix de θ
et γ0, et ses implications.

1.6 Plan du manuscrit et contributions

Le manuscrit se compose de cinq chapitres et d’une annexe. Après cette introduction sur les
problématiques rencontrées et les méthodes Hybrid High-Order (HH0) dans ce Chapitre 11, le
Chapitre 22 est consacré à l’extension des méthodes HHO à la modélisation des grandes défor-
mations hyperélastiques. Le problème discret est écrit comme résultant de la minimisation
d’une énergie élastique non-linéaire où une reconstruction locale du gradient des déplacements
est utilisée. Deux méthodes HHO sont considérées : une méthode stabilisée où le gradient
discret est reconstruit dans l’espace des polynômes à valeurs matricielles d’ordre k et une
stabilisation est ajoutée à la fonctionnelle d’énergie discrète, et une méthode non-stabilisée
qui reconstruit un gradient discret stable d’ordre supérieur ce qui évite l’ajout d’un terme de
stabilisation. Les deux méthodes vérifient localement le principe des travaux virtuels avec des
tractions équilibrées. Nous présentons une étude numérique réalisée dans disk++ des deux
méthodes sur des solutions analytiques et sur des cas-tests tridimensionnels proches des appli-
cations industrielles visées où sont présents de fortes bandes de cisaillement et des phénomènes
de cavitation. Les résultats obtenus sont comparés à ceux obtenus avec code_aster pour des
méthodes conformes. De plus, les coûts numériques des deux méthodes HHO sont comparés
et les deux méthodes présentent un comportement robuste à la limite incompressible. Ce
chapitre est issu d’un article publié en 2018 chez Computational Mechanics intitulé “Hybrid
High-Order methods for finite deformations of hyperelastic materials” [22].

Le Chapitre 33 se concentre sur le développement des méthodes HHO pour la plasticité
associative en petites déformations. La méthode HHO développée supporte les maillages
polyédriques avec des interfaces non-conformes, ne verrouille pas, l’intégration du comporte-
ment est réalisée seulement en des points de quadrature de la cellule, et la matrice tangente



1.6. Plan du manuscrit et contributions 27

de Newton est symétrique. La méthode vérifie localement le principe des travaux virtuels
avec des tractions équilibrées. Plusieurs cas-tests bidimensionnels et tridimensionnels issus
de la littérature sont présentés en utilisant la librairie disk++. Les résultats comprennent des
comparaisons avec des solutions analytiques ou des résultats obtenus avec code_aster ainsi
que des méthodes d’éléments finis H1-conformes et mixtes. Ce travail peut en outre être vu
comme la première extension des méthodes Hybridizable Discontinuous Galerkin (HDG) à
la plasticité en petites déformations grâce au lien étroit entre HDG et HHO. Ce chapitre est
issu d’un article publié en 2019 chez Computer Methods in Applied Mechanics and Engineer-
ing intitulé “A Hybrid High-Order method for incremental associative plasticity with small
deformations” [33].

Le Chapitre 44 porte sur l’extension des méthodes HHO développées pour les petites dé-
formations plastiques aux grandes déformations plastiques. Cette extension se fait grâce à
l’utilisation du formalisme des déformations logarithmiques, ce qui permet de réutiliser les
lois de comportement développées pour les petites déformations plastiques. Comme pour les
petites déformations, la méthode HHO développée supporte les maillages polyédriques avec
des interfaces non-conformes, ne verrouille pas, l’intégration du comportement est réalisée
seulement en des points de quadrature de la cellule, et la matrice tangente de Newton est
symétrique. Une étude numérique en utilisant les logiciels disk++ et code_aster sur des
cas-tests bidimensionnels et tridimensionnels issus de la littérature. Les comparaisons se font
grâce à des solutions analytiques ou à des résultats obtenus avec code_aster et des méthodes
d’éléments finis H1-conformes et mixtes. Ce travail peut également être vu comme la pre-
mière extension des méthodes HDG à la plasticité en grandes déformations. Ce chapitre est
issu d’un article publié en ligne en 2019 chez International Journal for Numerical Methods in
Engineering intitulé “A Hybrid High-Order method for finite plasticity within a logarithmic
strain framework” [44].

Le Chapitre 55 présente le couplage entre les méthodes Nitsche et HHO pour gérer le
contact unilatéral avec frottement de Tresca dans le cas de l’élasticité linéaire en petites dé-
formations. L’imposition des conditions de contact et de frottement est réalisée sans ajout de
multiplicateur de Lagrange grâce à l’approche de Nitsche. Des taux de convergence optimaux
en hk+1 sont prouvés en norme de l’énergie ainsi que la robustesse à la limite incompressible.
Comme précédemment, une implémentation dans disk++ est réalisée ainsi que des compara-
isons grâce à des solutions analytiques ou à des résultats obtenus avec code_aster pour
des problème de contact (le frottement de Tresca n’étant pas disponible dans code_aster).
Enfin, une extension de l’approche de type Nitsche aux problèmes de la plasticité en petites
déformations est présentée. Ce Chapitre est issu d’une collaboration avec Franz Chouly et
un article intitulé “A Hybrid High-Order discretization combined with Nitsche’s method for
contact and Tresca friction in small strain elasticity” [6262] a été soumis.

Enfin, l’annexe AA présente les principales idées pour l’implémentation dans code_aster

des méthodes HHO pour la mécanique des solides.
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CHAPTER 2

HYBRID HIGH-ORDER METHODS FOR FINITE
DEFORMATIONS OF HYPERELASTIC MATERIALS

Abstract. We devise and evaluate numerically Hybrid High-Order (HHO) methods for
hyperelastic materials undergoing finite deformations. The HHO methods use as discrete
unknowns piecewise polynomials of order k ≥ 1 on the mesh skeleton, together with
cell-based polynomials that can be eliminated locally by static condensation. The discrete
problem is written as the minimization of a broken nonlinear elastic energy where a local
reconstruction of the displacement gradient is used. Two HHO methods are considered: a
stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order
k and a stabilization is added to the discrete energy functional, and an unstabilized method
which reconstructs a stable higher-order gradient and circumvents the need for stabilization.
Both methods satisfy the principle of virtual work locally with equilibrated tractions. We
present a numerical study of the two HHO methods on test cases with known solution and
on more challenging three-dimensional test cases including finite deformations with strong
shear layers and cavitating voids. We assess the computational efficiency of both methods,
and we compare our results to those obtained with an industrial software using conforming
finite elements and to results from the literature. The two HHO methods exhibit robust
behavior in the quasi-incompressible regime.

This chapter is based on a publication in Computational Mechanics entitled “Hybrid High-
Order methods for finite deformations of hyperelastic materials” [22].
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2.1 Introduction

Hybrid-High Order (HHO) methods have been introduced a couple of years ago for linear
elasticity problems in [8989] and for diffusion problems in [9191]. A review on diffusion prob-
lems can be found in [9292], and a Péclet-robust analysis for advection-diffusion problems in
[8686]. Moreover, an open-source implementation of HHO methods using generic programming
tools is available through the Disk++ library described in [7171]. Recent developments of HHO
methods in computational mechanics include the incompressible Stokes equations (with pos-
sibly large irrotational forces) [9393], the incompressible Navier–Stokes equations [9494], Biot’s
consolidation problem [3232], and nonlinear elasticity with small deformations [4040]. The goal
of the present work is to devise and evaluate numerically HHO methods for hyperelastic
materials undergoing finite deformations. Such problems are particularly challenging since
finite deformations induce an additional geometric nonlinearity on top of the one present in
the stress-strain constitutive relation. Moreover, hyperelastic materials are often considered
near the incompressible limit, so that robustness in this situation is important.

The discrete unknowns in HHO methods are face-based unknowns that are piecewise poly-
nomials of some order k ≥ 1 on the mesh skeleton (k ≥ 0 for diffusion equations). Cell-based
unknowns are also introduced in the discrete formulation. These additional unknowns are
instrumental for the stability and approximation properties of the method and can be locally
eliminated by using the well-known static condensation technique. In the present nonlinear
context, this elimination is performed at each step of the nonlinear iterative solver (typically
Newton’s method). The devising of HHO methods hinges on two ideas: (i) a reconstruction
operator that reconstructs locally from the local cell and face unknowns a displacement field
or a tensor-valued field representing its gradient; (ii) a stabilization operator that enforces
in a weak sense on each mesh face the consistency between the local face unknowns and the
trace of the cell unknowns. A somewhat subtle design of the stabilization operator has been
proposed in [8989, 9191] leading to O(hk+1) energy-error estimates, where h is the mesh-size, for
linear diffusion and elasticity problems and smooth solutions. HHO methods offer several
advantages: (i) the construction is dimension-independent; (ii) general meshes (including
fairly general polytopal mesh cells and non-matching interfaces) are supported; (iii) a local
formulation using equilibrated fluxes is available, and (iv) HHO methods are computation-
ally attractive owing to the static condensation of the cell unknowns and the higher-order
convergence rates.

HHO methods have been bridged to Hybridizable Discontinuous Galerkin (HDG) methods
in [7474]. HDG methods, as originally devised in [7676], are formulated in terms of a discrete
triple which approximates the flux, the primal unknown, and its trace on the mesh skeleton.
The HDG method is then specified by the discrete spaces for the above triple, and the
stabilization operator that enters the discrete equations through the so-called numerical flux
trace. The difference between HHO and HDG methods is twofold: (i) the HHO reconstruction
operator replaces the discrete HDG flux (a similar rewriting of an HDG method for nonlinear
elasticity can be found in [147147]), and, more importantly, (ii) both HHO and HDG penalize in
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a least-squares sense the difference between the discrete trace unknown and the trace of the
discrete primal unknown (with a possibly mesh-dependent weight), but HHO uses a non-local
operator over each mesh cell boundary that delivers one-order higher approximation than just
penalizing pointwise the difference as in HDG.

Discretization methods for linear and nonlinear elasticity have undergone a vigorous de-
velopment over the last decade. For discontinuous Galerkin (dG) methods, we mention in
particular [160160, 132132, 7878] for linear elasticity, and [117117, 174174] for nonlinear elasticity. HDG
methods for linear elasticity have been coined in [198198] (see also [7777] for incompressible Stokes
flows), and extensions to nonlinear elasticity can be found in [197197, 171171, 147147]. Other recent
developments in the last few years include, among others, Gradient Schemes for nonlinear
elasticity with small deformations [106106], the Virtual Element Method (VEM) for linear and
nonlinear elasticity with small [3030] and finite deformations [5858, 210210], the (low-order) hybrid
dG method with conforming traces for nonlinear elasticity [212212], the hybridizable weakly
conforming Galerkin method with nonconforming traces for linear elasticity [151151], the Weak
Galerkin method for linear elasticity [204204], and the discontinuous Petrov–Galerkin method
for linear elasticity [4848].

In the present work, we devise and evaluate numerically two HHO methods to approxi-
mate hyperelastic materials undergoing finite deformations. Following the ideas of [117117, 147147]
developed in the context of dG and HDG methods, both HHO discrete solutions are for-
mulated as stationary points of a discrete energy functional that is defined from the exact
energy functional by replacing the displacement gradient in the Piola–Kirchhoff tensor by
its reconstructed counterpart. In the first HHO method, called stabilized HHO (sHHO),
a quadratic term associated with the HHO-stabilization operator is added to the discrete
energy functional. For linear elasticity, one recovers the original HHO method from [8989]
if the displacement gradient is reconstructed locally in the tensor-valued polynomial space
∇XPk+1

d (T ;Rd) where k is the degree of the polynomials attached to the mesh skeleton and
T is a generic mesh cell (and if the displacement divergence is reconstructed in Pkd(T ;R)); the
notation is defined more precisely in the following sections. In the present nonlinear context,
the gradient is reconstructed in Pkd(T ;Rd×d) (which is a strict superspace of ∇XPk+1

d (T ;Rd));
the same reconstruction space is considered for HDG in [147147] for nonlinear elasticity with finite
deformations (where the stabilization operator is, however, different), and a similar choice
with symmetric-valued reconstructions is considered for HHO in [4040] for nonlinear elasticity
with small deformations. The main reason for reconstructing the gradient in a larger space
stems from the fact that the reconstructed gradient of a test function acts against a dis-
crete Piola–Kirchhoff tensor which is not in gradient form. For a discussion and a numerical
example in the context of the Leray–Lions problem, we refer the reader to [8787, §4.1].

In nonlinear elasticity, the use of stabilization can lead to numerical difficulties since it is
not clear beforehand how large the stabilization parameter ought to be and since a large value
of this parameter can deteriorate the conditioning of the system and hamper the convergence
of the iterative solvers; see [116116, 115115] for a related discussion on dG methods and [3030, 5858] for
VEM. Moreover, [147147, Section 4] presents an example where spurious solutions can appear in
an HDG discretization if the stabilization parameter is not large enough. Motivated by these
difficulties, we also consider a second method called unstabilized HHO (uHHO). Inspired by
the recent ideas in [146146] on stable dG methods without penalty parameters, we consider an
HHO method where the gradient is reconstructed in a higher-order polynomial space, and
no stabilization is added to the discrete energy. Focusing for simplicity on matching simpli-
cial meshes, the reconstruction space can be (i) the Raviart–Thomas–Nédélec (RTN) space

RTNkd(T ;Rd×d) := Pkd(T ;Rd×d)⊕(Pk,Hd (T ;Rd)⊗X), where Pk,Hd (T ;Rd) is the space composed

of homogeneous polynomials of degree k, or (ii) the (larger) polynomial space Pk+1
d (T ;Rd×d).



32 Chapter 2. Finite deformations of hyperelastic materials

For both choices, we prove, using the ideas in [146146], that the reconstructed gradient is stable,
thereby circumventing the need to introduce and tune any stabilization parameter. Recon-
structing the gradient in RTNkd(T ;Rd×d) leads to optimal O(hk+1)-convergence rates for linear
problems and smooth solutions, Instead, reconstructing the gradient in Pk+1

d (T ;Rd×d) leads
to O(hk)-convergence rates for linear problems and smooth solutions, i.e., the method still
converges but at a suboptimal order in ideal situations. The advantage of reconstructing the
gradient in Pk+1

d (T ;Rd×d) is, however, that our numerical results indicate that the method
is more robust to handle strongly nonlinear problems.

This paper is organized as follows. In Section 2.22.2, we present the nonlinear hyperelasticity
problem and we introduce some basic notation. The two HHO methods are presented in
Section 2.32.3, where we also discuss some theoretical and implementation aspects. Section 2.42.4
then contains test cases with analytical (or computable) solution. We first consider three-
dimensional traction test cases with manufactured solution to assess the convergence rates
delivered by sHHO and uHHO in the nonlinear case. Then, we consider the dilatation of
a quasi-incompressible annulus; in this test case, proposed in [147147, Section 5.2], the exact
solution can be approximated to a very high accuracy by solving an ordinary differential
equation in the radial coordinate. We also compare the computational efficiency of both
methods, and we consider a continuous Galerkin (cG) approximation based on H1-conforming
finite elements using the industrial software code_aster [111111]. Section 2.52.5 considers three
application-driven, three-dimensional examples: the indentation of a compressible and quasi-
incompressible rectangular block (where we also provide a comparison with the industrial
software code_aster), a hollow cylinder deforming under compression and shear, and a
sphere expanding under traction with two cavitating voids. These last two examples are
particularly challenging, and our results are compared to the HDG solutions reported in
[147147].

2.2 The nonlinear hyperelasticity problem

We are interested in finding the static equilibrium configuration of an elastic continuum
body that occupies the domain Ω0 in the reference configuration and that undergoes finite
deformations under the action of a body force f in Ω0, a traction force tN on the Neumann
boundary ΓN, and a prescribed displacement uD on the Dirichlet boundary ΓD (the external
forces f and tN are assumed dead, i.e. independent of the displacement). Here, Ω0 ⊂ Rd,
d ∈ {2, 3}, is a bounded connected polytopal domain with unit outward normal N and with
Lipschitz boundary Γ := ∂Ω0 decomposed in the two relatively open subsets ΓN and ΓD such
that ΓN ∪ ΓD = Γ, ΓN ∩ ΓD = ∅, and ΓD has positive Hausdorff-measure (so as to prevent
rigid-body motions).

As is customary for elasticity problems with finite deformations, we adopt the Lagrangian
description (cf, e.g, the textbooks [3636, 7070]). Due to the deformation, a point X ∈ Ω0 is
mapped to a point x = X + u(X) in the equilibrium configuration, where u : Ω0 → Rd is
the displacement mapping. The model problem consists in finding a displacement mapping
u : Ω0 → Rd satisfying the following equations:

−DivX(P ) = f in Ω0, (2.1a)

u = uD on ΓD, (2.1b)

P N = tN on ΓN, (2.1c)

where P := P (X,F (u)) is the first Piola–Kirchhoff stress tensor and F (u) = I + ∇X u is
the deformation gradient. The deformation gradient takes values in Rd×d+ which is the set
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of d × d matrices with positive determinant. The governing equations (2.12.1) are stated in
Lagrangian form; in particular, the gradient and divergence operators are taken with respect
to the coordinate X of the reference configuration (we use the subscript X to indicate it).

We restrict ourselves to bodies consisting of homogeneous hyperelastic materials for which
there exists a strain energy density Ψ(F ) defined by a function Ψ : Rd×d+ → R. We assume
that the first Piola–Kirchhoff stress tensor is defined as P = ∂FΨ so that the associated elastic
modulus is given by A = ∂2

F FΨ. We denote by V D the set of all kinematically admissible
displacements which satisfy the Dirichlet condition (2.1b2.1b), and we define the energy functional
E : V D → R such that

E(v) =

∫
Ω0

Ψ(F (v)) dΩ0 −
∫

Ω0

f ·v dΩ0 −
∫

ΓN

tN·v dΓ. (2.2)

The static equilibrium problem (2.12.1) consists of seeking the stationary points of the energy
functional E which satisfy the following weak form of the Euler–Lagrange equations:

0 = DE(u)[δv] =

∫
Ω0

P (F (u)) : ∇X(δv) dΩ0 −
∫

Ω0

f ·δv dΩ0 −
∫

ΓN

tN·δv dΓ, (2.3)

for all virtual displacements δv satisfying a zero boundary condition on ΓD. We assume that
the strain energy density function Ψ is polyconvex (cf e.g. [2121]) so that local minimizers of the
energy functional exist. In the present work, we will mainly consider hyperelastic materials
of Neohookean type extended to the compressible range such that

Ψ(F ) =
µ

2
(F : F − d)− µ ln J +

λ

2
Θ(J)2, (2.4)

where J ∈ R>0 is the determinant of F , µ and λ are material constants, and Θ : R>0 → R
is a smooth function such that Θ(J) = 0⇔ J = 1 and Θ′(1) 6= 0. The function Θ represents
the volumetric deformation energy, and the potential Ψ defined by (2.42.4) satisfies the principle
of material frame indifference [7070]. For further insight into the physical meaning, we refer
the reader to [177177, Chap.7]. For later use, it is convenient to derive directly from (2.42.4) the
first Piola–Kirchhoff stress tensor

P (F ) = µ(F − F−T ) + λJΘ(J)Θ′(J)F−T , (2.5)

where we have used that ∂F J = JF−T , as well as the elastic modulus

A(F ) =µ(I ⊗ I + F−T⊗F−1)− λJΘ(J)Θ′(J)F−T⊗F−1

+ λ
[
JΘ(J)(JΘ′′(J) + Θ′(J)) + (JΘ′(J))2

]
F−T ⊗ F−T , (2.6)

where ⊗, ⊗ and ⊗ are defined such that {◦ ⊗ •}ijkl = {◦}ij{•}kl, {◦⊗•}ijkl = {◦}il{•}jk
and {◦⊗•}ijkl = {◦}ik{•}jl, for all 1 ≤ i, j, k, l ≤ d.

2.3 The Hybrid High-Order method

In this section, we present the unstabilized and stabilized HHO methods to be considered in
our numerical tests.



34 Chapter 2. Finite deformations of hyperelastic materials

Figure 2.1: Face (black) and cell (gray) degrees of freedom in ÛkT for k = 1 and k = 2 in
the two-dimensional case (each dot represents a degree of freedom which is not necessarily a
point evaluation).

2.3.1 Discrete setting

Let (Th)h>0 be a shape-regular sequence of affine simplicial meshes with no hanging nodes of
the domain Ω0. A generic mesh cell in Th is denoted T ∈ Th, its diameter hT , and its unit
outward normal nT . It is customary to define the global mesh-size as h = maxT∈Th hT . The
mesh faces are collected in the set Fh, and a generic mesh face is denoted F ∈ Fh. The set
Fh is further partitioned into the subset F i

h which is the collection of mesh interfaces and
the subset Fb

h which is the collection of mesh faces located at the boundary Γ. We assume
that the mesh is compatible with the partition of the boundary Γ into ΓD and ΓN, and we
further split the set Fb

h into the disjoint subsets Fb,D
h and Fb,N

h with obvious notation. For
all T ∈ Th, F∂T is the collection of the mesh faces that are subsets of ∂T .

Let k ≥ 1 be a fixed polynomial degree. In each mesh cell T ∈ Th, the local HHO
unknowns are a pair (vT , v∂T ), where the cell unknown vT ∈ Pkd(T ;Rd) is a vector-valued
d-variable polynomial of degree at most k in the mesh cell T , and v∂T ∈ Pkd−1(F∂T ;Rd) =
Ś

F∈F∂T P
k
d−1(F ;Rd) is a piecewise, vector-valued polynomial of degree at most k on each

face F ∈ F∂T . We write more concisely that

v̂T := (vT , v∂T ) ∈ ÛkT := Pkd(T ;Rd)× Pkd−1(F∂T ;Rd). (2.7)

The degrees of freedom are illustrated in Fig. 2.12.1, where a dot indicates one degree of freedom
(and is not necessarily computed as a point evaluation). More generally, the polynomial
degree k of the face unknowns being fixed, HHO methods can be devised using cell unknowns
that are polynomials of degree l ∈ {k − 1, k, k + 1}, see [7474]; these variants are not further
considered herein. We equip the space ÛkT with the following local discrete strain semi-norm:

|v̂T |21,T := ‖∇XvT ‖2L2(T )
+ ‖η

1
2
∂T (v∂T − vT |∂T )‖2

L2(∂T )
, (2.8)

with the piecewise constant function η∂T such that η∂T |F = h−1
F for all F ∈ F∂T where hF is

the diameter of F . We notice that |v̂T |1,T = 0 implies that both functions vT and v∂T are
constant and take the same constant value.

2.3.2 Local gradient reconstruction

A crucial ingredient in the devising of the HHO method is a local gradient reconstruction
in each mesh cell T ∈ Th. This reconstruction is materialized by an operator GT : ÛkT →
R(T ;Rd×d), where R(T ;Rd×d) is some finite-dimensional linear space typically composed
of Rd×d-valued polynomials in T . For all v̂T ∈ ÛkT , the reconstructed gradient GT (v̂T ) ∈
R(T ;Rd×d) is obtained by solving the following local problem: For all τ ∈ R(T ;Rd×d),

(GT (v̂T ), τ )L2(T ) = (∇XvT , τ )L2(T ) + (v∂T − vT |∂T , τ nT )L2(∂T ). (2.9)



2.3. The Hybrid High-Order method 35

Solving this problem entails inverting the mass matrix associated with some basis of the
polynomial space R(T ;Rd×d). In the present work, we consider three choices for the re-
construction space R(T ;Rd×d). The choice R(T ;Rd×d) := Pkd(T ;Rd×d) is considered in the
context of the stabilized HHO method which is further described in Section 2.3.42.3.4. The other
two choices are R(T ;Rd×d) = RTNkd(T ;Rd×d) (that is, the RTN space of order k defined
in the introduction) and the larger space R(T ;Rd×d) = Pk+1

d (T ;Rd×d). These choices are
considered in the context of the unstabilized HHO method which is further described in
Section 2.3.32.3.3.

Lemma 2.1 (Boundedness and stability) The gradient reconstruction operator defined
by (2.92.9) enjoys the following properties: (i) Boundedness: There is α] < +∞, uniform

w.r.t. h, so that, for all T ∈ Th and all v̂T ∈ ÛkT ,

‖GT (v̂T )‖L2(T ) ≤ α]|v̂T |1,T , . (2.10)

(ii) Stability: Provided RTNkd(T ;Rd×d) ⊆ R(T ;Rd×d), there is α[ > 0, uniform w.r.t. h, so
that, for all T ∈ Th and all v̂T ∈ ÛkT

α[|v̂T |1,T ≤ ‖GT (v̂T )‖L2(T ), (2.11)

Proof. The boundedness property (2.102.10) follows by applying the Cauchy–Schwarz inequality
to the right-hand side of (2.92.9) and a discrete trace inequality so as to bound ‖τ nT ‖L2(∂T )

by h
− 1

2
T ‖τ‖L2(T ). The proof of the stability property (2.112.11) is inspired from [146146]; we sketch

it for completeness. Let v̂T ∈ ÛkT . We need to find a field τ ∈ R(T ;Rd×d) so that (i)
|v̂T |21,T ≤ c(GT (v̂T ), τ )L2(T ) and (ii) ‖τ‖L2(T ) ≤ c|v̂T |1,T for some constant c uniform w.r.t. h.

Owing to our assumption RTNkd(T ;Rd×d) ⊆ R(T ;Rd×d), we can build τ ∈ RTNkd(T ;Rd×d),
and we do so by prescribing its canonical degrees of freedom in T as follows:

(τ ,φ)L2(T ) = (∇XvT ,φ)L2(T ), ∀φ ∈ Pk−1
d (T ;Rd×d),

(τ nT , ϕ)L2(∂T ) = (η∂T (v∂T − vT |∂T ), ϕ)L2(∂T ), ∀ϕ ∈ Pkd−1(F∂T ;Rd).

With this choice, the above property (i) holds true since (GT (v̂T ), τ )L2(T ) = |v̂T |21,T , whereas
(ii) can be shown by using the classical stability of RTN functions in terms of their canonical
degrees of freedom.

�

Remark 2.2 (General meshes) The above stability proof exploits the properties of the
RTN functions on simplicial meshes. If the meshes contain hanging nodes or cells with more
general shapes, one possibility considered in the recent work [8787] is to reconstruct the gradient
using piecewise RTN functions on a simplicial submesh of the mesh cell T ∈ Th. Another
construction has been recently devised in [121121] for dG methods using a high-order lifting of
the jumps on a simplicial submesh.

2.3.3 The unstabilized HHO method

Let us set Pkd(Th;Rd) :=
Ś

T∈Th P
k
d(T ;Rd) and Pkd−1(Fh;Rd) :=

Ś

F∈Fh P
k
d−1(F ;Rd). The

global space of discrete HHO unknowns is defined as

Ûkh := Pkd(Th;Rd)× Pkd−1(Fh;Rd). (2.12)
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For a generic element v̂h ∈ Ûkh, we use the notation v̂h = ((vT )T∈Th , (vF )F∈Fh). For any

mesh cell T ∈ Th, we denote by v̂T = (vT , v∂T ) ∈ ÛkT the local components of v̂h attached
to the mesh cell T and the faces composing its boundary, and for any mesh face F ∈ Fh, we
denote by vF the component attached to the face F . The Dirichlet boundary condition on
the displacement field can be enforced explicitly on the discrete unknowns attached to the
boundary faces in Fb,D

h . We set

Ûkh,D :=
{
v̂h ∈ Ûkh | vF = Πk

F (uD), ∀F ∈ Fb,D
h

}
, (2.13a)

Ûkh,0 :=
{
v̂h ∈ Ûkh | vF = 0, ∀F ∈ Fb,D

h

}
, (2.13b)

where Πk
F denotes the L2-orthogonal projector onto Pkd−1(F ;Rd).

The discrete counterpart of the energy functional E defined by (2.22.2) is the discrete energy
functional Eu

h : Ûkh,D → R defined by

Eu
h (v̂h) =

∑
T∈Th

{
(Ψ(F T (v̂T )), 1)L2(T ) − (f, vT )L2(T )

}
−

∑
F∈Fb,N

h

(tN, vF )L2(F ), (2.14)

for all v̂h ∈ Ûkh,D, with the local deformation gradient operator F T : ÛkT → R(T ;Rd×d) such

that F T (v̂T ) := I +GT (v̂T ) where the local gradient reconstruction space is R(T ;Rd×d) =
RTNkd(T ;Rd×d) or R(T ;Rd×d) = Pk+1

d (T ;Rd×d).
The discrete problem consists in seeking the stationary points of the discrete energy

functional Eu
h . This leads to the following discrete equations: Find ûh ∈ Ûkh,D such that∑

T∈Th

(P (F T (ûT )),GT (δv̂T ))L2(T ) =
∑
T∈Th

(f, δvT )L2(T ) +
∑

F∈Fb,N
h

(tN, δvF )L2(F ), (2.15)

for any generic virtual displacement δv̂h ∈ Ûkh,0. The discrete problem (2.152.15) expresses the
principle of virtual work at the global level. As is often the case with discrete formulations
using face-based discrete unknowns, it is possible to devise a local principle of virtual work in
terms of face-based discrete tractions that comply with the law of action and reaction. This
has been shown in [7474] for HHO methods applied to the diffusion equation, and the argument
extends immediately to the present context. For all T ∈ Th, let us define the discrete traction:

T T = Πk
∂T (ΠR

T (P (F T (ûT ))))nT , (2.16)

where ΠR
T denotes the L2-orthogonal projector onto R(T ;Rd×d). (Note that the projector

Πk
∂T is not needed if R(T ;Rd×d) = RTNkd(T ;Rd×d) since the normal component on ∂T of

functions in RTNkd(T ;Rd×d) is in Pkd−1(∂T ;Rd).)

Lemma 2.3 (Equilibrated tractions) The following local principle of virtual work holds
true for all T ∈ Th: For all δvT ∈ Pkd(T ;Rd),

(P (F T (ûT )),∇XδvT )L2(T ) − (T T , δvT |∂T )L2(∂T ) = (f, δvT )L2(T ), (2.17)

where the discrete tractions T T ∈ Pkd−1(F∂T ;Rd) defined by (2.162.16) satisfy the following law

of action and reaction for all F ∈ F i
h ∪ F

b,N
h :

T T−|F + T T+|F = 0, if F ∈ F i
h with ∂T− ∩ ∂T+ = F , (2.18a)

T T |F = Πk
F (tN), if F ∈ Fb,N

h with ∂T ∩ ΓN = F . (2.18b)
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Proof. We follow the ideas in [7474]. The local principle of virtual work (2.172.17) follows by
considering the virtual displacement ((δvT δT,T ′)T ′∈Th , (0)F∈Fh) ∈ Ûkh,0 in (2.152.15), with the
Kronecker delta such that δT,T ′ = 1 if T = T ′ and δT,T ′ = 0 otherwise, and observing that,
owing to (2.92.9), we have

(f, δvT )L2(T ) = (P (F T (ûT )),GT (δvT , 0))L2(T )

= (ΠR
TP (F T (ûT )),GT (δvT , 0))L2(T )

= (ΠR
T (P (F T (ûT ))),∇XδvT )L2(T ) − (ΠR

T (P (F T (ûT )))nT , δvT |∂T )L2(∂T )

= (P (F T (ûT )),∇XδvT )L2(T ) − (T T , δvT |∂T )L2(∂T ).

Similarly, the balance property (2.182.18) follows by considering, for all F ∈ F i
h ∪ F

b,N
h , the

virtual displacement ((0)T∈Th , (δvF δF,F ′)F ′∈Fh) ∈ Ûkh,0 in (2.152.15) (with obvious notation for

the face-based Kronecker delta), and observing that both δvF and T T±|F are in Pkd−1(F ;Rd).

�

Let us now discuss the choice of the gradient reconstruction space where one can set
either R(T ;Rd×d) = RTNkd(T ;Rd×d) or R(T ;Rd×d) = Pk+1

d (T ;Rd×d). The key property
with R(T ;Rd×d) = RTNkd(T ;Rd×d) is that the normal component on ∂T of functions in
RTNkd(T ;Rd×d) is in the space Pkd−1(∂T ;Rd) used for the face HHO unknowns (the normal

components of such functions actually span Pkd−1(∂T ;Rd)). Proceeding as in [8989] then leads
to the following important commuting property:

GT (ÎkT (v)) = ΠR
T (∇Xv), ∀v ∈ H1(T ;Rd), (2.19)

where the reduction operator ÎkT : H1(T ;Rd) → ÛkT is defined so that ÎkT (v) =
(Πk

T (v),Πk
∂T (v)), where Πk

T is the L2-orthogonal projector onto Pkd(T ;Rd) and Πk
∂T is the

L2-orthogonal projector onto Pkd−1(F∂T ;Rd). Proceeding as in [8989, Thm. 8] and using the ap-
proximation properties of the RTN finite elements, one can show that for the linear elasticity
problem and smooth solutions, the energy error measured as ‖∇Xu−Gh(ûh)‖L2(Th) converges

as hk+1|u|Hk+2(Ω0) (the subscript L2(Th) means that the Hilbertian sum of L2(T ;Rd×d)-norms
over the mesh cells is considered). Concerning implementation, we observe that the recon-
struction operator needs to select basis functions for the RTN space; however, the canonical
basis functions are not needed, and one can use simple monomial bases.

Considering instead the choice R(T ;Rd×d) = Pk+1
d (T ;Rd×d) leads to a larger space for

the local gradient reconstruction (for d = 3, the local space is of dimension 45 (k = 1) and
108 (k = 2) for RTN functions and of dimension 90 (k = 1) and 180 (k = 2) for Rd×d-valued
polynomials of order (k + 1)). One benefit of considering a larger space is, according to our
numerical experiments, an increased robustness of the method to handle strongly nonlinear
cases. One disadvantage is that the above property on the normal component of functions
in R(T ;Rd×d) no longer holds. Therefore, one no longer has (2.192.19); however, one can infer
from (2.92.9) the weaker property

GT (ĨkT (v)) = ∇X(Πk
T (v)), ∀v ∈ H1(T ;Rd), (2.20)

where the reduction operator ĨkT : H1(T ;Rd) → ÛkT is defined so that ĨkT (v) =
(Πk

T (v),Πk
T (v)|∂T ). Proceeding as in [8989, Thm. 8], one can show that for the linear elas-

ticity problem and smooth solutions, the energy error ‖∇Xu −Gh(ûh)‖L2(Th) converges as

hk|u|Hk+1(Ω0). This convergence rate will be confirmed by the experiments reported in Sec-

tion 2.4.12.4.1. Finally, regardless of the choice of R(T ;Rd×d), testing (2.92.9) with a function
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τ = qI ∈ Pkd(T ;Rd×d) with q arbitrary in Pkd(T ;R), one can show that

Πk
T (trace(GT (ÎkT (v)))) = Πk

T (∇·v), ∀v ∈ H1(T ;Rd). (2.21)

The presence of the projector Πk
T on the left-hand side indicates that trace(GT (ÎkT (v))) may

be affected by a high-order perturbation hampering the argument of [8989, Prop. 3] to prove
robustness in the quasi-incompressible limit for linear elasticity. Nevertheless, we observe
absence of locking in the numerical experiments performed in Sections 2.4.22.4.2 and 2.52.5.

2.3.4 The stabilized HHO method

The discrete unknowns in the stabilized HHO method are exactly the same as those in the
unstabilized HHO method. The only difference is in the form of the discrete elastic energy.
In the stabilized HHO method, the gradient is reconstructed locally in the polynomial space
R(T ;Rd×d) = Pkd(T ;Rd×d) for all T ∈ Th. Since the norm ‖GT (v̂T )‖L2(T ) does not control

the semi-norm |v̂T |1,T for all v̂T ∈ ÛkT (as can be seen from a simple counting argument based
on the dimension of the involved spaces), we need to augment the discrete elastic energy by
a stabilization semi-norm. This semi-norm is based on the usual stabilization operator for
HHO methods Sk∂T : ÛkT → Pkd−1(F∂T ;Rd) such that, for all v̂T ∈ ÛkT ,

Sk∂T (v̂T ) = Πk
∂T

(
v∂T −Dk+1

T (v̂T )|∂T − (vT −Πk
T (Dk+1

T (v̂T )))|∂T
)
, (2.22)

with the local displacement reconstruction operator Dk+1
T : ÛkT → Pk+1

d (T ;Rd) such that, for

all v̂T ∈ ÛkT , Dk+1
T (v̂T ) ∈ Pk+1

d (T ;Rd) is obtained by solving the following Neumann problem

in T : For all w ∈ Pk+1
d (T ;Rd),

(∇XD
k+1
T (v̂T ),∇Xw)L2(T ) = (∇XvT ,∇Xw)L2(T ) + (v∂T − vT |∂T ,∇XwnT )L2(∂T ), (2.23)

and additionally enforcing that
∫
T D

k+1
T (v̂T ) dT =

∫
vT dT . Comparing with (2.92.9), one

readily sees that ∇XD
k+1
T (v̂T ) is the L2-orthogonal projection of GT (v̂T ) onto the subspace

∇XPk+1
d (T ;Rd) ( Pkd(T ;Rd×d) = R(T ;Rd×d). Following [8989, Lemma 4], it is straightforward

to establish the following stability and boundedness properties (the proof is omitted for
brevity).

Lemma 2.4 (Boundedness and stability) Let the gradient reconstruction operator be de-
fined by (2.92.9) with R(T ;Rd×d) = Pkd(T ;Rd×d). Let the stabilization operator be defined
by (2.222.22). Then, there exist real numbers 0 < α[ < α] < +∞, uniform w.r.t. h, so that

α[|v̂T |1,T ≤
(
‖GT (v̂T )‖2

L2(T )
+ ‖η

1
2
∂TS

k
∂T (v̂T )‖2

L2(∂T )

) 1
2

≤ α]|v̂T |1,T , (2.24)

for all T ∈ Th and all v̂T ∈ ÛkT , with η∂T defined below (2.82.8).

Remark 2.5 (HDG-type stabilization) In general, HDG methods use the stabilization

operator S̃
k
∂T (v̂T ) = v∂T − vT |∂T in the equal-order case, or S̃

k
∂T (v̂T ) = Πk

∂T (v∂T − vT |∂T ) if
the cell unknowns are taken to be polynomials of order (k + 1) (see [158158]). The definition
in Eq. (2.222.22), introduced in [8989], enjoys, even in the equal-order case, the high-order ap-

proximation property ‖η
1
2
∂TS

k
∂T (ÎkT (v))‖L2(∂T ) ≤ chk+1

T |v|Hk+2(T ) with the reduction operator

ÎkT : H1(T ;Rd)→ ÛkT defined below (2.192.19) and c uniform w.r.t. h.
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In the stabilized HHO method, the discrete energy functional Es
h : Ûkh,D → R is defined as

Es
h(v̂h) =

∑
T∈Th

{
(Ψ(F T (v̂T )), 1)L2(T ) − (f, vT )L2(T )

}
−

∑
F∈Fb,N

h

(tN, vF )L2(F )

+
∑
T∈Th

β

2
‖η

1
2
∂TS

k
∂T (v̂T )‖2

L2(∂T )
, (2.25)

with a user-dependent weight of the form β = β0µ with typically β0 ≥ 1 (in the original
HHO method for linear elasticity [8989], the choice β0 = 2 is considered). The discrete problem
consists in seeking the stationary points of the discrete energy functional: Find ûh ∈ Ûkh,D
such that ∑

T∈Th

(P (F T (ûT )),GT (δv̂T ))L2(T ) +
∑
T∈Th

β(η∂TS
k
∂T (ûT ), Sk∂T (δv̂T ))L2(∂T )

=
∑
T∈Th

(f, δvT )L2(T ) +
∑

F∈Fb,N
h

(tN, δvF )L2(F ), (2.26)

for all δv̂h ∈ Ûkh,0. As for the unstabilized HHO method, the discrete problem (2.262.26) expresses
the principle of virtual work at the global level, and following [7474], it is possible to devise a
local principle of virtual work in terms of face-based discrete tractions that comply with the

law of action and reaction. Let Ŝ
k
∂T : Pkd−1(F∂T ;Rd)→ Pkd−1(F∂T ;Rd) be defined such that

Ŝ
k
∂T (θ) = Πk

∂T

(
θ − (I −Πk

T )Dk+1
T (0, θ)|∂T

)
. (2.27)

Comparing (2.222.22) with (2.272.27), we observe that Sk∂T (v̂T ) = Ŝ
k
∂T (v∂T − vT |∂T ) for all v̂T ∈ ÛkT .

Let Ŝ
k∗
∂T : Pkd−1(F∂T ;Rd) → Pkd−1(F∂T ;Rd) be the adjoint operator of Sk∂T with respect to

the L2(∂T ;Rd)-inner product. We observe that the stabilization-related term in (2.262.26) can
be rewritten as

(η∂TS
k
∂T (ûT ), Sk∂T (δv̂T ))L2(∂T ) = (Ŝ

k∗
∂T (η∂T Ŝ

k
∂T (u∂T − uT |∂T )), δv∂T − δvT |∂T )L2(∂T ). (2.28)

Finally, let us define the discrete traction

T T = Πk
T (P (F T (ûT )))|∂T nT + βŜ

k∗
∂T (η∂T Ŝ

k
∂T (u∂T − uT |∂T )). (2.29)

Lemma 2.6 (Equilibrated tractions) The following local principle of virtual work holds
true for all T ∈ Th: For all δvT ∈ Pkd(T ;Rd),

(P (F T (ûT )),∇XδvT )L2(T ) − (T T , δvT )L2(∂T ) = (f, δvT )L2(T ), (2.30)

where the discrete tractions T T ∈ Pkd−1(F∂T ;Rd) defined by (2.292.29) satisfy the following law

of action and reaction for all F ∈ F i
h ∪ F

b,N
h :

T T−|F + T T+|F = 0, if F ∈ F i
h with ∂T− ∩ ∂T+ = F , (2.31a)

T T |F = Πk
F (tN), if F ∈ Fb,N

h with ∂T ∩ ΓN = F . (2.31b)

Proof. Proceed as in the proof of Lemma 2.32.3; see also [7474].

�
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Let us briefly comment on the commuting properties of the reconstructed gradient in
Pkd(T ;Rd×d). Proceeding as above, one obtains

GT (ÎkT (v)) = Πk
T (∇Xv), ∀v ∈ H1(T ;Rd), (2.32)

where the reduction operator ÎkT : H1(T ;Rd) → ÛkT is defined below (2.192.19). Proceeding as
in [8989, Thm. 8], one can show that for the linear elasticity problem and smooth solutions,
the energy error ‖∇Xu−Gh(ûh)‖L2(Th) converges as hk+1|u|Hk+2(Ω0). This convergence rate
will be confirmed by the experiments reported in Section 2.4.12.4.1. Moreover, taking the trace
in (2.322.32), we infer that (compare with (2.212.21))

trace(GT (ÎkT (v))) = Πk
T (∇·v), ∀v ∈ H1(T ;Rd), (2.33)

which is the key commuting property used in [8989] to prove robustness for quasi-incompressible
linear elasticity. This absence of locking is confirmed in the numerical experiments performed
in Sections 2.4.22.4.2 and 2.52.5 in the nonlinear regime. Finally, we refer the reader to [4040] for
further analytical results on symmetric-valued gradients reconstructed in the smaller space
Pkd(T ;Rd×dsym).

Remark 2.7 (Choice of β0) For the HHO method applied to linear elasticity, a natural
choice for the stabilization parameter is β0 = 2 [8989]. To our knowledge, there is no general
theory on the choice of β0 in the case of finite deformations of hyperelastic materials. Fol-
lowing ideas developed in [116116, 115115] for dG and in [3030] for VEM, one can consider to take
(possibly in an adaptive fashion) the largest eigenvalue (in absolute value) of the elastic mod-
ulus A. This choice introduces additional nonlinearities to be handled by Newton’s method,
and may require some relaxation. Another possibility discussed in [5858] for VEM methods is
based on the trace of the Hessian of the isochoric part of the strain-energy density Ψ. Such
an approach bears similarities with the classic selective integration for FEM, and for the
Neohookean materials considered herein, this choice implies to take β0 = 1. Finally, let us
mention that [147147, Section 4] presents an example where spurious solutions can appear if the
HDG stabilization parameter is not large enough; however, too large values of the parameter
can also deteriorate the condition number of the stiffness matrix and can cause numerical
instabilities in Newton’s method.

2.3.5 Nonlinear solver and static condensation

Both nonlinear problems (2.152.15) and (2.262.26) are solved using Newton’s method. Let i ≥ 0
be the index of the Newton’s step. Given an initial discrete displacement û0

h ∈ Ûkh,D, one

computes at each Newton’s step the incremental displacement δûih ∈ Ûkh,0 and updates the

discrete displacement as ûi+1
h = ûih + δûih. The linear system of equations to be solved is∑

T∈Th

(A(F T (ûiT )) : GT (δûiT ),GT (δv̂T ))L2(T )

+
∑
T∈Th

β(η∂TS
k
∂T (δûiT ), Sk∂T (δv̂T ))L2(∂T ) = −Rih(δv̂h), (2.34)

for all δv̂h ∈ Ûkh,0, with the residual term

Rih(δv̂h) =
∑
T∈Th

(P (F T (ûiT )),GT (δv̂T ))L2(T ) +
∑
T∈Th

β(η∂TS
k
∂T (ûiT ), Sk∂T (δv̂T ))L2(∂T ) (2.35)

−
∑
T∈Th

(f, δvT )L2(T ) −
∑

F∈Fb,N
h

(tN, δvF )L2(F ),
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where β = 0 in the unstabilized case and β = β0µ in the stabilized case, the gradient being
reconstructed in the corresponding polynomial space. It can be seen from (2.342.34) that the
assembling of the stiffness matrix on the left-hand side is local (and thus fully parallelizable).

As is classical with HHO methods [8989], and more generally with hybrid approximation
methods, the cell unknowns δuiTh in (2.342.34) can be eliminated locally using a static con-
densation (or Schur complement) technique. Indeed, testing (2.342.34) against the function
((δvT δT,T ′)T ′∈Th , (0)F∈Fh) with Kronecker delta δT,T ′ and δvT arbitrary in Pkd(T ;Rd), one can
express, for all T ∈ Th, the cell unknown δuiT in terms of the local face unknowns collected in
δui∂T . As a result, the static condensation technique allows one to reduce (2.342.34) to a linear sys-
tem in terms of the face unknowns only. This reduced system is of sizeNFh×dim(Pkd−1(T ;Rd))
where NFh denotes the number of mesh faces, and its stencil is such that each mesh face is
connected to its neighbouring faces that share a mesh cell with the face in question.

The implementation of the HHO methods is realized using the open-source library DiSk++

[7171] which provides generic programming tools for the implementation of HHO methods and
is available at the address https://github.com/wareHHOuse/diskpp. The data structure
requires access to faces and cells as in standard dG or HDG codes. The gradient and sta-
bilization operators are built locally at the cell level using scaled translated monomials to
define the basis functions (see [7171, Section 3.2.1] for more details). Finally, the Dirichlet
boundary conditions are enforced strongly, and the linear systems are solved using the direct
solver PardisoLU from the MKL library (alternatively, iterative solvers are also applicable).
Dunavant quadratures [108108] are used with order 2k for stabilized HHO methods, and with
order (2k + 2) for unstabilized HHO methods.

2.4 Test cases with known solution

The goal of this section is to evaluate the stabilized and unstabilized HHO methods on
some test cases with known solution. This allows us to compute errors on the displace-
ment and the gradient as ‖u − uTh‖L2(Ω0) and ‖∇Xu −Gh(ûh)‖L2(Th) where u is the exact
solution. We assess the convergence rates to smooth solutions and we study the behav-
ior of the HHO methods in the quasi-incompressible regime. We consider two- and three-
dimensional settings. We use the abridged notation uHHO(k) for the unstabilized method
with R(T ;Rd×d) = Pk+1

d (T ;Rd×d) and sHHO(k) with R(T ;Rd×d) = Pkd(T ;Rd×d) for the sta-
bilized method; whenever the context is unambiguous, we drop the polynomial degree k. All
the considered meshes are matching, simplicial affine meshes.

2.4.1 Three-dimensional manufactured solution

We first report convergence rates for a nonlinear problem with a manufactured solution in
three space dimensions. We denote by X = (X,Y, Z) the Cartesian coordinates in R3. We
set Γ = ΓD and the value of uD is determined from the exact solution on ΓD. Concerning
the constitutive relation, we take µ = 1, λ = 10 (which corresponds to a Poisson ratio of
ν ' 0.455), and Θ(J) = ln J . We consider the unit cube Ω0 = (0, 1)× (0, 1)× (0, 1) and the
exact displacement solution is

uX =

(
1

λ
+ α

)
X + ϑ(Y ), uY = −

(
1

λ
+

α+ γ + αγ

1 + α+ γ + αγ

)
Y, (2.36a)

uZ =

(
1

λ
+ γ

)
Z + g(X) + h(Y ), (2.36b)

where α and γ are positive real numbers, and ϑ : R→ R, g : R→ R, h : R→ R are smooth
functions. Choosing ϑ(Y ) = α sin(πY ), g(X) = γ sin(πX), and h(Y ) = 0, the corresponding



42 Chapter 2. Finite deformations of hyperelastic materials

body forces are given by

fX = µαπ2 sin(πX), fY = 0, fZ = µγπ2 sin(πY ). (2.37)

We set α = γ = 0.1. The stabilization parameter is taken as β0 = 1 for sHHO. The
displacement and gradient errors are reported as a function of the average mesh size h for
k = 1 in Tab. 2.12.1, for k = 2 in Tab. 2.22.2 and for k = 3 in Tab. 2.32.3. For all k ∈ {1, 2, 3},
the displacement and the gradient converge, respectively, with order (k + 2) and (k + 1) for
sHHO and with order (k + 1) and k for uHHO. These convergence rates are consistent with
the discussion at the end of Sections 2.3.32.3.3 and 2.3.42.3.4 on the convergence rates to be expected
for linear elasticity and smooth solutions.

2.4.2 Quasi-incompressible annulus

Our goal is now to evaluate the sHHO and uHHO methods in the quasi-incompressible case for
finite deformations. We consider a test case from [147147, Section 5.2] that consists of an annulus
centered at the origin with inner radius R0 = 0.5 and outer radius R1 = 1. The annulus is
deformed by imposing a displacement uD(X) = X(r0 − R0)/R0 on ΓD = SR0 where r0 is a
real positive parameter, and tN = 0 on ΓN = SR1 (SR is the sphere of radius R centered at the
origin). An accurate reference solution can be computed by solving an ordinary differential
equation along the radial coordinate, as detailed in [147147]. We set r0 = 1.5 and µ = 0.333
(different values of λ are considered). Since we use meshes with planar faces, we only consider
k = 1.

The reference and deformed configuration for sHHO(1) are shown in Fig. 2.2a2.2a for
λ = 1666.44 (which corresponds to a Poisson ratio of ν ' 0.4999). The stabilization pa-
rameter has to be of the order of β0 = 100 to achieve convergence. In Fig. 2.2b2.2b, we display
the discrete Jacobian Jh on the reference configuration (computed using sHHO(1)), and we
observe that this quantity takes values very close to 1 everywhere in the annulus (as ex-
pected). Convergence rates for the displacement and the gradient are reported in Tab. 2.42.4
for λ = 1666.44 (similar convergence rates, not reported herein, are observed for lower values
of λ). We observe that for sHHO, the displacement and the gradient converge with order
2, whereas for uHHO, the displacement converges with order 2 and the gradient with or-
der 1. More importantly, the errors are uniform with respect to λ as shown Fig. 2.32.3. This
result confirms numerically that in this case, sHHO and uHHO remain locking-free in quasi-
incompressible finite deformations. Incidentally, we notice that sHHO produces slightly lower
errors than uHHO which is consistent with the higher-order convergence for sHHO. Moreover,
the displacement on the boundary is imposed by uniform load increments. For λ = 1666.44,
sHHO requires 30 loading steps with a total of 125 Newton’s iterations, whereas uHHO re-
quires 33 loading steps with a total of 137 Newton’s iterations, i.e., sHHO is about 10% more
computationally-effective than uHHO in this example. Finally, the reference values of ur,
Prr and Pθθ at the barycenter of each cell are plotted in Fig. 2.42.4 for λ = 1666.44, showing
the pointwise convergence of the various discrete solutions. We observe that for both HHO
methods, the error on Prr is slightly more important near the inner boundary of the annulus
(where the stress is maximal).

2.4.3 Efficiency

In this section, we compare the performance of sHHO, uHHO and that of a continuous
Galerkin (cG) method in terms of efficiency when solving the three-dimensional manufactured
solution from Section 2.4.12.4.1. The number of unknowns is the number of degrees of freedom
attached to faces after static condensation for sHHO and uHHO and the number of degrees of
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Mesh sHHO(1) uHHO(1)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

4.75e-1 1.14e-3 - 9.40e-3 - 1.85e-3 - 6.64e-2 -

3.21e-1 4.27e-4 2.49 4.66e-3 1.78 7.76e-4 2.22 4.00e-2 1.25

2.19e-1 1.22e-4 3.28 2.24e-3 1.91 3.49e-4 2.10 2.95e-2 0.84

1.76e-1 6.36e-5 2.97 1.51e-3 1.79 2.19e-4 2.12 2.36e-2 1.01

1.39e-1 3.10e-5 3.05 9.16e-4 2.14 1.36e-4 2.01 1.88e-2 0.96

1.11e-1 1.56e-5 3.00 5.92e-4 1.91 8.79e-5 1.94 1.50e-2 1.00

Table 2.1: 3D manufactured solution: errors vs. h for k = 1.

Mesh sHHO(2) uHHO(2)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

4.75e-1 1.04e-4 - 9.89e-4 - 1.96e-4 - 7.68e-3 -

3.21e-1 3.01e-5 3.16 3.18e-4 2.71 6.10e-5 2.96 3.51e-3 1.96

2.19e-1 4.54e-6 4.04 9.57e-5 3.01 1.68e-5 3.17 1.60e-3 2.02

1.76e-1 1.79e-6 4.23 4.78e-5 3.16 9.72e-6 2.49 1.10e-3 1.68

1.39e-1 7.23e-7 3.85 2.35e-5 3.01 4.30e-6 3.36 6.53e-4 2.24

1.11e-1 2.93e-7 3.96 1.21e-5 2.91 2.23e-6 2.88 4.20e-4 1.94

Table 2.2: 3D manufactured solution: errors vs. h for k = 2.

Mesh sHHO(3) uHHO(3)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

4.75e-1 7.39e-6 - 6.42e-5 - 1.59e-5 - 7.79e-4 -

3.21e-1 9.88e-7 5.13 1.67e-5 3.41 2.80e-6 4.42 2.16e-4 3.26

2.19e-1 1.58e-7 4.79 2.98e-6 4.53 5.23e-7 4.40 6.55e-5 3.14

1.76e-1 5.54e-8 4.77 1.37e-6 3.52 2.07e-7 4.21 3.23e-5 3.19

1.39e-1 1.60e-8 5.29 4.86e-7 4.43 8.08e-8 4.01 1.61e-5 2.95

1.11e-1 5.01e-9 5.17 1.96E-7 4.03 3.25e-8 4.05 8.25E-6 2.97

Table 2.3: 3D manufactured solution: errors vs. h for k = 3.

Mesh sHHO(1) uHHO(1)
size Displacement Gradient Displacement Gradient
h Error Order Error Order Error Order Error Order

1.15e-1 5.98e-2 - 3.22e-1 - 4.00e-2 - 1.23e-1 -

5.77e-2 1.81e-2 1.72 8.23e-1 1.97 1.32e-2 1.62 1.01e-1 0.28

3.45e-2 6.30e-3 2.05 3.15e-2 1.86 3.80e-3 2.42 6.60e-2 0.83

2.52e-2 3.42e-3 1.95 1.83e-2 1.73 2.03e-3 2.05 5.11e-2 0.94

1.64e-2 1.49e-3 1.93 7.98e-3 1.93 9.76e-4 1.72 3.09e-2 1.08

Table 2.4: Quasi-incompressible annulus: errors vs. h for k = 1 and λ = 1666.44.
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(a) Reference and deformed configuration

0.99910 0.99958 1.00006

(b) Discrete Jacobian on the
reference configuration

Figure 2.2: Quasi-incompressible annulus with λ = 1666.44: sHHO(1) solution on a mesh
composed of 10161 triangles.
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Figure 2.3: Quasi-incompressible annulus: errors vs. λ for h = 2.52e-2
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Figure 2.4: Quasi-incompressible annulus with λ = 1666.44: comparison of the reference and
computed values of ur, Prr and Pθθ at the barycenter of the mesh cells (located in the upper
quadrant) for two different meshes obtained with the sHHO and uHHO methods.
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freedom attached to nodes for cG. The cG method is based on a primal formulation realized
within the industrial open-source FEM software code_aster [111111] interfaced with the open-
source mfront code generator [137137] to generate Neohookean laws.

We present the displacement error versus the number of degrees of freedom in Fig. 2.5a2.5a
and versus the number of non-zero entries in the stiffness matrix in Fig. 2.5b2.5b. Owing to
the static condensation, we observe that, for the same approximation order and the same
number of degrees of freedom or non-zero entries in the stiffness matrix, the displacement
error is smaller for sHHO than for cG and comparable between uHHO and cG. Let us now
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Figure 2.5: 3D manufactured solution: comparison of the displacement error obtained with
sHHO, uHHO, and cG.

compare the time spent to solve the non-linear problem when using sHHO(k) and uHHO(k)
with k ∈ {1, 2}. For the present test case, the nonlinear problem is solved, for both methods,
in four Newton’s iterations. The codes are instrumented to measure the assembly time τass
to build the local contributions to the global stiffness matrix and the solver time τsol which
corresponds to solving the global linear system (τass and τsol are computed after summation
over all the Newton’s steps). In DiSk++, the linear algebra operations are realized using
the Eigen library and the global linear system (involving face unknowns only) is solved with
PardisoLU. The tests are run sequentially on a 3.4 Ghz Intel Xeon processor with 16 Gb of
RAM. In Fig. 2.6a2.6a we plot the ratio τass/τsol versus the number of mesh faces, card(Fh). We
can see that on the finer meshes, the cost of local computations becomes negligible compared
to that of the linear solver; we notice that the situation is a bit less favorable than for the
results on linear elasticity reported in [8989] since the space to reconstruct the gradient is now
larger. In Fig. 2.6b2.6b we provide a more detailed assessment of the cost on a fixed mesh with
31621 faces. More precisely, the time τass spent in assembling the problem is now divided
into two parts, one part, denoted Gradrec, to reconstruct the gradient and build the global
system to solve (the part related to static condensation is not included and takes a marginal
fraction of the cost), and another part, denoted Stabilization, to build the stabilization
operator for the sHHO method (including the time to build the displacement reconstruction,
see (2.232.23)). In addition, the time τsol spent in solving the system is now denoted Solver. We
observe that the difference between sHHO(k) and uHHO(k) is not really important; in fact,
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the time that uHHO(k) spends in reconstructing the gradient in a larger space is more or less
equivalent to the time that sHHO(k) spends in building the stabilization operator. Moreover,
if memory is not a limiting factor, the gradient and the stabilization can be computed once
and for all, and re-used at each Newton’s step.
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(b) Time for the different operations normalized by
the total time for sHHO(1) for a mesh with 31621
faces

Figure 2.6: Comparison of CPU times for the sHHO and uHHO methods.

Another interesting observation is that the condition number of the global stiffness matrix
for both methods is improved by static condensation, as shown in Fig. 2.7a2.7a where the ratio
of the condition number without and with static condensation is displayed as a function of
the number of face degrees of freedom. This positive effect is even increased as the mesh is
refined, and it is also more pronounced when the polynomial degree k is higher. Finally, we
assess the influence of the stabilization parameter β on the condition number of the stiffness
matrix for sHHO(k) k ∈ {1, 2}. Fig. 2.7b2.7b reports the condition number for β ∈ {103, 106}
normalized by the condition number for β = 1, as a function of the total number of face
degrees of freedom. We observe that the condition number is amplified by a factor of 102

when β goes from 1 to 103 and by a factor 103 when β goes from 103 to 106, independently
of the polynomial degree k.
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Figure 2.7: Condition number of the global stiffness matrix.

2.5 Application-driven three-dimensional examples

The goal of this section is to show that sHHO and uHHO are capable of dealing with chal-
lenging three-dimensional examples with finite deformations. For the first test case, we com-
pare our results to those obtained with a cG method implemented in the industrial software
code_aster. For the second and third test cases, we compare our results with the HDG
solutions reported in [147147]. In all cases, we choose Θ(J) = ln J .

2.5.1 Quasi-incompressible indented block

In this example, we model an indentation problem as a prototype for a contact problem. We
consider the unit cube (−1, 1) × (−1, 1) × (−1, 1). To model the rigid indentor, the bottom
surface is clamped, a vertical displacement of −0.8 is imposed on the subset (−0.5, 0.5) ×
(−0.5, 0.5)×{1} of the top surface, and the other parts of the boundary are traction-free. We
set µ = 1 and λ = 4999 in the quasi-incompressible regime (which corresponds to a Poisson
ratio of ν ' 0.4999). The stabilization parameter needs to be taken of the order of β0 = 100
for sHHO. Fig. 2.8c2.8c and Fig. 2.8d2.8d present the Euclidean displacement norm on the deformed
configuration obtained with cG(1) and sHHO(1) respectively (the uHHO(1) solution is very
close to the sHHO(1) solution). We observe the locking phenomenon affecting the cG solution.
To better appreciate the influence of the parameter λ on the discrete solutions, we plot in
Fig. 2.8a2.8a and Fig. 2.8b2.8b the Euclidean displacement norm on the deformed configuration in the
compressible regime (λ = 1, which corresponds to a Poisson ratio of ν = 0.25). We observe
that in the compressible regime, the results produced by the various numerical methods are
all very close, whereas the cG solutions depart from the the sHHO and uHHO solutions in
the quasi-incompressible regime. Finally, the computed vertical component of the discrete
traction integrated over the indented top surface is plotted in Fig. 2.92.9 for sHHO and uHHO
as a function of the imposed vertical displacement. The two HHO methods produce very
similar results and capture well the nonlinear response of the block.
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(a) Euclidean displacement norm for cG(1) in the
compressible regime

(b) Euclidean displacement norm for sHHO(1) in
the compressible regime

(c) Euclidean displacement norm for cG(1) in the
quasi-incompressible regime

(d) Euclidean displacement norm for sHHO(1) in
the quasi-incompressible regime

Figure 2.8: Indented block: compressible (top) and quasi-incompressible regime (bottom)
with Euclidean displacement norm shown in color on a mesh composed of 5526 tetrahedra.
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Figure 2.9: Indented block: vertical component of the computed discrete traction integrated
over the indented surface versus the imposed vertical displacement using the sHHO and
uHHO methods.

2.5.2 Cylinder under compression and shear

This test case, proposed in [147147], simulates a hollow cylinder under important compression
and shear (it can be seen as a controlled buckling). The cylinder in its reference configuration
has a inner and outer radius of 0.75 and 1, and a height of 4. The bottom face is clamped,
whereas the top face has an horizontally and vertically imposed displacement of −1 in both
directions, and the lateral faces are traction-free. We set µ = 0.1, λ = 1 (which corresponds
to a Poisson ratio of ν ' 0.455). For sHHO, the stabilization parameter has to be taken
of the order of β0 = 100. We notice that both sHHO and uHHO are robust and produce
very close results, which compare very well with the results reported in [147147]. The loading
is applied in 30 steps for uHHO and in 37 steps for sHHO, leading respectively to a total of
152 and 187 Newton’s iterations. This indicates that uHHO is up to 20% more effective for
this test case. Some snapshots of the solution obtained with uHHO(1) on a mesh composed
of 20382 tetrahedra are shown in Fig. 2.102.10 where the color indicates the Euclidean norm of
the displacement. Fig. 2.112.11 displays the von Mises stress at different loading steps on the
deformed configuration. This figure allows one to observe the emerging localization of the
deformation field. Finally, the evolution during the loading of the vertical component of the
discrete traction integrated over the top face of the cylinder is plotted in Fig. 2.122.12. The
minimum is reached when the cylinder begins to bend at 75% of the loading; beyond this
value, the cylinder becomes less rigid.

2.5.3 Sphere with cavitating voids

The last example simulates the problem of cavitation encountered for instance in elastomers,
that is, the growth of cavities under large tensile stresses [2222]. Simulations of cavitation
phenomena present difficulties because the growth induces significant deformations near the
cavities. For a review, we refer the reader to [213213]. Some conforming [161161], non-conforming
[213213], and HDG [147147] methods have already been studied for this problem. For cavitation to
take place, the strain energy density has to be changed, and we consider here, as in [147147], the
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Figure 2.10: Sheared cylinder: snapshots of the Euclidean displacement norm on the deformed
configuration at 0%, 40%, 80%, and 100% of loading, and a zoom where the deformations are
the most important (uHHO(1) solution). The color scale goes from 0.0 (blue) to 1.8 (red).

Figure 2.11: Sheared cylinder: von Mises stress on the deformed configuration at 40%, 80%
and 100% of loading (uHHO(1) solution). The color scales goes from 0.0 (blue) to 0.275
(red).
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Figure 2.12: Sheared cylinder: evolution during the loading of the vertical component of the
discrete traction integrated over the top of the cylinder for sHHO and uHHO.

following modified Neohookean law:

Ψ(F ) =
2µ

35/4
(F : F )3/4 − µ ln J +

λ

2
(ln J)2, (2.38)

where µ and λ are constant parameters. We set µ = 1, λ = 1 (which corresponds to a Poisson
ratio of ν = 0.25).

The reference configuration consists of a unit sphere of radius 1 with two spherical cavities.
The origin of the Cartesian coordinate system is the center of the sphere. The first cavity
has a radius of 0.15 and its center is the point of coordinates (−0.7,−0.7, 0), and the second
cavity has a radius of 0.2 and its center is the point of coordinates (0.25, 0.25, 0.25). A
displacement u(X) = rX with r ≥ 0 is imposed on the outer surface (|X| = 1) of the sphere.
The stabilization parameter has to be taken of the order of β0 = 100 for sHHO. The mesh is
composed of 32288 tetrahedra, and the value of r is increased progressively until the moment
where the Newton’s method fails to converge. Some snapshots of the Euclidean displacement
norm are shown in Fig. 2.132.13 on the deformed configuration for uHHO(2). We also present
a zoom near the region where the two cavities are only separated by a thin layer. The
reported solution compares very well with the HDG solution from [147147]. Interestingly, the
maximum value attained of r is larger for uHHO than for sHHO and is larger for k = 2 than
for k = 1 (see Fig. 2.142.14). For k = 2, the maximum value of r is 2.52 for uHHO and 2.13
for sHHO, which indicates about 15% more robustness for uHHO than for sHHO to handle
extreme loading situations in this case. Finally, Fig. 2.142.14 presents the radial component of
the discrete traction integrated over the outer surface of the sphere versus the imposed radial
displacement obtained with sHHO and uHHO.
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Figure 2.13: Sphere with cavitating voids: snaphots of the Euclidean displacement norm at
r = 0, r = 0.8, r = 1.6 and r = 2.52 of loading (the sphere is cut along the Equatorial plane)
for uHHO(2) on the deformed configuration. The bottom right plot shows a thin slice of the
sphere (still along the Equatorial plane) for r = 2.52.

0 0.5 1 1.5 2
0

5

10

15

20

1.8 2.13

sHHO(1) sHHO(2)

0 0.5 1 1.5 2 2.5
0

5

10

15

20

1.92

uHHO(1) uHHO(2)

Figure 2.14: Sphere with cavitating voids: radial component of the discrete traction inte-
grated over the outer surface versus the imposed radial displacement obtained with sHHO
(left) and uHHO (right). Notice in both cases the larger value attained by r for k = 2.
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2.6 Conclusion

We have proposed and evaluated numerically two HHO methods to approximate hyperelastic
materials undergoing finite deformations. Both methods deliver solutions that compare well
to the existing literature on challenging three-dimensional test cases, such as a hollow cylin-
der under compression and shear or a sphere under traction with two cavitating voids. In
addition, both methods remain well-behaved in the quasi-incompressible limit, as observed
numerically on an annulus under traction and on the indentation of a rectangular block. The
test cases with analytical solution also show that both methods are competitive with respect
to an industrial software using conforming finite elements. The stabilized HHO method rests
on a firmer theoretical basis than the unstabilized method, but requires the introduction and
tuning of a stabilization parameter that can become fairly large in the quasi-incompressible
limit. The unstabilized HHO method avoids any stabilization by introducing a stable gradient
reconstructed in the higher-order polynomial space Pk+1

d (T ;Rd×d), but for smooth solutions,
the convergence rate is one order lower than with the stabilized method, i.e., the unstabilized
method still converges, but in a suboptimal way. For compressible materials, the unstabi-
lized method appears to be somewhat more competitive than the stabilized method since it
requires less Newton’s iterations and, at the same time, supports stronger loads, as observed
in particular in the case of cavitating voids in the sphere.

We have also evaluated numerically the unstabilized HHO method using Raviart–
Thomas–Nédélec reconstructions of the gradient (detailed results were not reported herein
for brevity). We have retrieved the optimal-order convergence rates for smooth solutions,
but the method seems to be somewhat less robust for strongly nonlinear problems. For ex-
ample, in the case of the sphere with cavitating voids for k = 1, if the discrete gradient is
reconstructed in RTNkd(T ;Rd×d), then the maximum value is r = 1.12 whereas, if the discrete
gradient is reconstructed in RTNk+1

d (T ;Rd×d) (which contains the space Pk+1
d (T ;Rd×d)), then

the maximum value for r is the same as for uHHO using Pk+1
d (T ;Rd×d) and k = 1 (r = 1.92).

Among possible perspectives of this work, we mention the devising of a reconstruction
based on the ideas introduced in [121121] for dG methods, and the use of different reconstructions
for the isochoric and volumic parts of the energy density. The present methods can also be
applied to approximate other nonlinear problems.



CHAPTER 3

A HYBRID HIGH-ORDER METHOD FOR INCREMENTAL
ASSOCIATIVE PLASTICITY WITH SMALL DEFORMATIONS

Abstract. We devise and evaluate numerically a Hybrid High-Order (HHO) method
for incremental associative plasticity with small deformations. The HHO method uses as
discrete unknowns piecewise polynomials of order k ≥ 1 on the mesh skeleton, together with
cell-based polynomials that can be eliminated locally by static condensation. The HHO
method supports polyhedral meshes with non-matching interfaces, is free of volumetric
locking, and the integration of the constitutive law is performed only at cell-based quadrature
nodes. Moreover, the principle of virtual work is satisfied locally with equilibrated tractions.
Various two- and three-dimensional test cases from the literature are presented including
comparison against known solutions and against results obtained with an industrial software
using conforming and mixed finite elements.

This chapter is based on a publication in Computer Methods in Applied Mechanics and
Engineering entitled “A Hybrid High-Order method for incremental associative plasticity with
small deformations” [33].
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3.1 Introduction

Hybrid High-Order (HHO) methods have been introduced a few years ago for diffusion prob-
lems in [9191] and for linear elasticity problems in [8989]. Recently, the development of HHO
methods has received a vigorous interest. Examples include in solids mechanics Biot’s prob-
lem [3232], nonlinear elasticity with small deformations [4040], and hyperelasticity with finite
deformations [22], and in fluid mechanics, the incompressible Stokes equations [9393], the steady
incompressible Navier–Stokes equations [9494], and viscoplastic flows with yield stress [4949]. The
discrete unknowns in HHO methods are face-based unknowns that are piecewise polynomials
on the mesh skeleton. Cell-based unknowns are also introduced. These additional unknowns
are instrumental for the stability and approximation properties of the method and can be
locally eliminated by using the well-known static condensation technique (based on a local
Schur complement). For nonlinear problems, this elimination is performed at each step of
the nonlinear iterative solver (typically Newton’s method).

The devising of HHO methods hinges on two key ideas: (i) a local higher-order reconstruc-
tion operator acting on the face and cell unknowns; (ii) a local stabilization operator that
weakly enforces on each mesh face the consistency between the local face unknowns and the
trace of the cell unknowns. A somewhat subtle design of the stabilization operator has been
proposed in [8989, 9191] leading to O(hk+1) energy-error estimates for linear model problems with
smooth solutions, where h is the mesh-size and k is the polynomial order of the face unknowns.
HHO methods offer several advantages: (i) the construction is dimension-independent; (ii)
general meshes (including fairly general polyhedral mesh cells and non-matching interfaces)
are supported; (iii) a local formulation using equilibrated fluxes is available, and (iv) compu-
tational benefits owing to the static condensation of the cell unknowns and the higher-order
convergence rates. In computational mechanics, another salient feature of HHO methods is
the absence of volumetric locking [8989]. Furthermore, HHO methods have been bridged in [7474]
to Hybridizable Discontinuous Galerkin (HDG) methods [7676] and to nonconforming Virtual
Element Methods (ncVEM) [1818]. The essential difference with HDG methods is that the HHO
stabilization is different so as to deliver higher-order convergence rates on general meshes.
Concerning ncVEM, the devising viewpoint is different (ncVEM considers the computable
projection of virtual functions instead of a reconstruction operator), and the stabilization
achieves similar convergence rates as HHO but is written differently. An open-source imple-
mentation of HHO methods, the DiSk++ library, is available using generic programming tools
[7171].

In the present work, we devise and evaluate numerically a HHO method for incremental
associative plasticity with small deformations. Modelling plasticity problems is particularly
relevant in nonlinear solid mechanics since this is one of the main nonlinearities that can be
encountered. Moreover, plasticity can have a major influence on the behavior of a mechanical
structure. Plastic deformations are generally assumed to be incompressible, which can lead
to serious volumetric-locking problems, particularly with a continuous Galerkin (cG) approx-
imation based on (low-order) H1-conforming finite elements, where only the displacement
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field is approximated globally contrary to the plastic deformations and the variables associ-
ated with the plastic behavior which are defined and solved locally in each mesh cell. A way
to circumvent volumetric locking is to consider mixed methods on simplicial or hexahedral
meshes, as in [6060, 196196, 194194]. However, mixed methods need additional global unknowns to
impose the condition of plastic incompressibility that generally increase the cost of building
and solving the global system (the variables associated with the plastic behavior are still
solved locally). Moreover, devising mixed methods on polyhedral meshes with non-matching
interfaces is a delicate question. Note that cG methods as well as mixed methods require to
perform the integration of the constitutive law only at quadrature nodes in the mesh cells.
Another class of methods free of volumetric locking are discontinuous Galerkin (dG) meth-
ods. We mention in particular [117117, 116116, 115115, 174174] for hyperelasticity and [169169] for damage
mechanics. Interior penalty dG methods have been developed for classical plasticity with
small [131131, 162162] and finite [163163] deformations, and for gradient plasticity with small [9898, 9797]
and finite [166166] deformations. However, dG methods from the literature generally require to
perform the integration of the constitutive law also at additional quadrature nodes located at
the mesh faces. Since the behavior integration can be the most expensive part of the compu-
tation during the assembling step [137137], this additional integration on the mesh faces can lead
to a substantial increase in the computational burden. Moreover, implementing the behavior
integration on the mesh faces in an existing finite element code is not straightforward since
the data structure for internal variables cannot be necessarily re-used. We also mention the
lowest-order Virtual Element Method (VEM) for inelastic problems with small deformations
devised in [3030] using the maximum norm of the tangent modulus for stabilization (see also
[1313] for a two-dimensional higher-order extension), whereas the case of finite deformations is
treated in [209209], still in the lowest-order case, with a pseudo-energy based stabilization.

The HHO method devised in this work uses polynomials of arbitrary order k ≥ 1 on the
mesh faces, and as in [4040, 22], the local reconstruction operator builds a symmetric gradi-
ent in the tensor-valued polynomial space Pkd(T ;Rd×dsym), where T is a generic mesh cell and
d is the space dimension. The present HHO method offers the above-mentioned benefits
of HHO methods (dimension-independent construction, general meshes, local conservation,
static condensation). In particular, equilibrated tractions satisfying the law of action and
reaction while being in local balance with the external loads and the internal efforts are
available. Moreover, in view of the above discussion on the literature, we observe that the
present HHO method (i) hinges on a displacement-based formulation thus avoiding the need
to introduce additional global unknowns; (ii) is free of volumetric locking; (iii) supports gen-
eral meshes; and (iv) requires the integration of the constitutive law only at the cell level.
Another attractive feature is that the linear system at each step of Newton’s method is co-
ercive for strain-hardening materials provided the stabilization parameter is simply positive.
We also notice that, to our knowledge, HDG methods have not yet been devised for plasticity
problems (for hyperelasticity problems, we mention [147147, 171171]). Owing to the close links
between HHO and HDG methods, this work can thus be seen as the first HDG-like method
for plasticity problems. Another follow-up of the HHO idea of local reconstruction is to pave
the way for dG methods requiring only a cell-based integration of the constitutive law, by
using discrete gradients as in [117117, 8888, 147147]. We also mention the recent study of low-order
hybrid dG method with conforming traces and the hybridizable weakly conforming Galerkin
method with nonconforming traces in [2626] in the context of nonlinear solid mechanics.

This paper is organized as follows: in Section 2, we present the incremental associative
plasticity problem and the weak formulation of the governing equations. In Section 3, we
devise the HHO method and highlight some of its theoretical aspects. In Section 4, we
investigate numerically the HHO method on two- and three-dimensional test cases from



58 Chapter 3. Associative plasticity with small deformations

the literature, and we compare our results to analytical solutions whenever available and
to numerical results obtained using established cG and mixed methods implemented in the
open-source industrial software code_aster [111111].

3.2 Plasticity model

In what follows, we write v for scalar-valued fields, v or V for vector-valued fields, V for
second-order tensor-valued fields, and V for fourth-order tensor-valued fields. Contrary to
the elastic model, the elastoplastic model is based on the assumption that the deformations
are no longer reversible. We place ourselves within the framework of generalized standard
materials initially introduced in [127127] and further developed in [159159]. Moreover, we consider
the regime of small deformations and the plasticity model is assumed to be strain-hardening
(or perfect) and rate-independent, i.e., the time and the speed of the deformations have
no influence on the solution. For this reason, only the incremental plasticity problem is
considered.

3.2.1 Helmholtz free energy and yield function

An important hypothesis for the modelling of plasticity under small deformations is that
the (symmetric) total strain tensor ε, which is equal to the symmetric gradient ∇su of the
displacement field u, can be decomposed into the sum of an elastic part and a plastic part,
denoted by εe and εp respectively, so that ε = εe + εp, which is rewritten as follows:

εe = ε− εp. (3.1)

Both tensors, εe and εp, are symmetric, and the plastic deformations are assumed to be
incompressible so that

trace(εp) = 0. (3.2)

Since we consider generalized standard materials, the local material state is described by the
total strain tensor ε ∈ Rd×dsym , the plastic strain tensor εp ∈ Rd×dsym , and a finite collection of
internal variables α := (α1, · · · , αm) ∈ Rm. We assume that there exists a Helmholtz free
energy Ψ : Rd×dsym ×Rm → R acting on the pair (εe, α) and satisfying the following hypothesis.

Hypothesis 3.1 (Helmholtz free energy) Ψ can be decomposed additively into an elastic
and a plastic part as follows:

Ψ(εe, α) =
1

2
εe : C : εe + Ψp(α) (3.3)

where the function Ψp is strictly convex, and the elastic modulus is C = 2µIs + λI ⊗ I, with
µ > 0, 3λ+ 2µ > 0, (Is)ij,kl = 1

2(δikδjl + δilδjk), and (I ⊗ I)ij,kl = δijδkl.

The elastic modulus C is isotropic, constant, and positive definite with e : C : e = 2µ e :
e+ λ trace(e)2, for all e ∈ Rd×dsym .

As a consequence of the second principle of thermodynamics, the Cauchy stress tensor
σ ∈ Rd×dsym and the thermodynamic forces q ∈ Rm are derived from Ψ as follows:

σ = ∂εeΨ = C : εe and q = ∂αΨp. (3.4)

The criterion to determine whether the deformations are plastic hinges on the scalar yield
function Φ : Rd×dsym ×Rm → R, which is a continuous and convex function of the stress tensor
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σ and the thermodynamic forces q. The set of stresses and thermodynamic forces that verify
Φ(σ, q) ≤ 0 is the convex set of admissible states (or plasticity admissible domain):

A :=
{

(σ, q) ∈ Rd×dsym × Rm | Φ(σ, q) ≤ 0
}
. (3.5)

The set of admissible states is partitioned into two disjoint subsets, the elastic domain Ae
which is the interior of the set A and the yield surface ∂A which is the boundary of the set
A, so that

Ae :=
{

(σ, q) ∈ A | Φ(σ, q) < 0
}
, ∂A :=

{
(σ, q) ∈ A | Φ(σ, q) = 0

}
. (3.6)

Hypothesis 3.2 (Yield function) The yield function Φ : Rd×dsym × Rm → R satisfies the
following properties: (i) Φ is a piecewise analytical function; (ii) the point (0, 0) lies in the
elastic domain, i.e., Φ(0, 0) < 0; and (iii) Φ is differentiable at all points on the yield surface
∂A.

3.2.2 Plasticity model problem in incremental form

We are interested in finding the quasi-static evolution in the pseudo-time interval [0, tF ],
tF > 0, of an elastoplastic material body that occupies the domain Ω0 in the reference
configuration. Here, Ω0 ⊂ Rd, d ∈ {2, 3}, is a bounded connected polyhedral domain with
Lipschitz boundary Γ := ∂Ω0 decomposed in the two relatively open subsets ΓN and ΓD, where
a Neumann and a Dirichlet condition are enforced respectively, and such that ΓN ∪ ΓD = Γ,
ΓN ∩ ΓD = ∅, and ΓD has positive Hausdorff-measure (so as to prevent rigid-body motions).
The evolution occurs under the action of a body force f : Ω0 × [0, tF ] → Rd, a traction

force tN : ΓN × [0, tF ] → Rd on the Neumann boundary ΓN, and a prescribed displacement
uD : ΓD × [0, tF ] → Rd on the Dirichlet boundary ΓD: The pseudo-time interval [0, tF ] is
discretized into N subintervals such that t0 = 0 < t1 < · · · < tN = tF . We denote by V ,
resp. V 0, the set of all kinematically admissible displacements which satisfy the Dirichlet
conditions, resp. homogeneous Dirichlet conditions on ΓD

V n
D =

{
v ∈ H1(Ω0;Rd) | v = uD(tn) on ΓD

}
, V 0 =

{
v ∈ H1(Ω0;Rd) | v = 0 on ΓD

}
.

(3.7)
Moreover, we denote χ := (εp, α) ∈ X the generalized internal variables, where the space of
the generalized internal variables is

X :=
{
χ = (εp, α) ∈ Rd×dsym × Rm | trace(εp) = 0

}
. (3.8)

Then the problem can be formulated as follows: For all 1 ≤ n ≤ N , given un−1 ∈ V n−1
D and

χn−1 ∈ L2(Ω0;X ) from the previous pseudo-time step or the initial condition, find un ∈ V n
D

and χn ∈ L2(Ω0;X ) such that∫
Ω0

σn : ε(v) dΩ0 =

∫
Ω0

fn·v dΩ0 +

∫
ΓN

tnN·v dΓ for all v ∈ V 0, (3.9a)

and

(χn,σn,Cnep) = SMALL PLASTICITY(χn−1, ε(un−1), ε(un)− ε(un−1)). (3.9b)
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The procedure SMALL PLASTICITY allows one to compute the new values of the gen-
eralized internal variables χ, the stress tensor σ and the consistent elastoplastic tangent
modulus Cep at each pseudo-time step. This procedure is detailed in Section 3.2.33.2.3 below.
The incremental problem (3.93.9) can be reformulated as an incremental variational inequality
by introducing a dissipative function, see for example [9797]. For strain-hardening plasticity,
the weak formulation (3.93.9) is well-posed, see [128128, Section 6.4]. For perfect plasticity, un-
der additional hypotheses on the loads, the existence of a solution to (3.93.9) with bounded
deformation is studied in [8080].

3.2.3 Algorithmic aspects

Algorithm 11 presents the incremental associative elastoplasticity problem that has to be solved
in order to find the new value, after incrementation, of the generalized internal variables
χnew = (εp,new, αnew) ∈ X , the stress tensor σnew ∈ Rd×dsym , and the consistent elastoplastic
tangent modulus Cnew

ep , given the generalized internal variables χ ∈ X , the strain tensor

ε ∈ Rd×dsym , and the incremental strain tensor dε ∈ Rd×dsym . Solving this problem is denoted as
previously

(χnew,σnew,Cnew
ep ) = SMALL PLASTICITY(χ, ε, dε). (3.10)

The procedure to compute (χnew,σnew,Cnew
ep ) is described in Algorithm 11. First, an elastic

trial state (σtrial, qtrial) is computed. If (σtrial, qtrial) ∈ Ae, then the evolution is elastic, the
trial state is accepted, and the internal variables are not modified. Otherwise, the evolution
is plastic and the normal and flow rules are used to correct the elastic trial state (σtrial, qtrial).
Specifically, we introduce (see line 99 of Algorithm 11) the plastic multiplier (or consistency
parameter) which depends on the yet-unknown pair (σnew, qnew),

Λ(σnew, qnew) =
∂σΦ(σnew, qnew) : C : dε

∂σΦ(σnew, qnew) : C : ∂σΦ(σnew, qnew) +H(σnew, qnew)
≥ 0, (3.11)

where H(σnew, qnew) := ∂qΦ(σnew, qnew) : ∂2
α,αΨp(αnew) : ∂qΦ(σnew, qnew) ≥ 0 is the gener-

alized hardening modulus. For strain-hardening plasticity (resp. perfect plasticity), we have
H > 0 (resp. H = 0). The normal and flow rules then state that the pair (σnew, qnew) ∈ A
must be such that dεp = Λ ∂σΦ and dα = −Λ ∂qΦ, where the dependencies in (σnew, qnew)
are omitted for simplicity and where the multiplier Λ verifies in addition the complementary
conditions

Λ ≥ 0, Λ Φ = 0, (3.12)

and the consistency condition

Λ dΦ = 0 if (σnew, qnew) ∈ ∂A. (3.13)

For strain-hardening plasticity, one can show (see [142142]) that there exists a unique solution
to the constrained nonlinear system considered in lines 77-99 of Algorithm 11.
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Algorithm 1 Computation of (χnew,σnew,Cnew
ep )

1: procedure SMALL PLASTICITY (χ, ε,dε)

2: Set σtrial = C : (εe + dε) and qtrial = ∂αΨp(α)

3: if (σtrial, qtrial) ∈ Ae or if (σtrial, qtrial) ∈ ∂A and ∂σΦ(σtrial, qtrial) : C : dε ≤ 0 then

4: dχ = (dεp,dα) = (0, 0), σnew = σtrial, Cnew
ep = C

5: else
6: Solve the following constrained nonlinear system in (σnew, qnew,dεp,dα):
7: Φ(σnew, qnew) = 0, ∂σΦ(σnew, qnew) : C : (dε− dεp) ≤ 0
8: σnew = C : (εe + dε− dεp), qnew = ∂αΨp(α+ dα)
9: dεp = Λ(σnew, qnew) ∂σΦ(σnew, qnew), dα = −Λ(σnew, qnew) ∂qΦ(σnew, qnew)

10: and set Cnew
ep = C−

(C : ∂σΦ(σnew, qnew))⊗ (C : ∂σΦ(σnew, qnew))

∂σΦ(σnew, qnew) : C : ∂σΦ(σnew, qnew) +H(σnew, qnew)
11: end if
12: χnew = (εp,new, αnew) = χ+ dχ
13: return (χnew,σnew,Cnew

ep )
14: end procedure

Line 88 of Algorithm 11 shows that the increment in the stress tensor is given by dσ = C :
(dε − dεp), and one then introduces the so-called consistent elastoplastic tangent modulus
Cnew
ep such that dσ = Cnew

ep : dε; Cnew
ep is a fourth-order tensor having minor and major

symmetries. If the evolution is elastic, then Cnew
ep = C, and the consistent elastoplastic

tangent modulus has two eigenvalues: 2µ with multiplicity five and 3λ+ 2µ with multiplicity
one. Instead, if the evolution is plastic, then Cnew

ep 6= C, and the eigenvalues of Cnew
ep , which

are positive for strain-hardening plasticity (and non-negative for perfect plasticity) depend
on the Helmholtz free energy Ψ and the yield function Φ (see [200200] for details). For a finite
incremental strain, the consistent elastoplastic tangent modulus generally differs from the so-
called continuous elastoplastic tangent modulus which is obtained by letting the incremental
strain tend to zero [195195].

3.2.4 Example: combined linear isotropic and kinematic hardening with a
von Mises yield criterion

An illustration of the plasticity model defined above is the combined linear isotropic and
kinematic hardening model. The internal variables are α := (εp, p), where p ≥ 0 is the
equivalent plastic strain. We assume that the plastic part of the free energy is fully decoupled
so that

Ψp(α) =
K

2
εp : εp +

H

2
p2. (3.14)

where H ≥ 0, resp. K ≥ 0, is the isotropic, resp. kinematic, hardening modulus. The
associated thermodynamic forces q := (β, r) are the back-stress tensor β = Kεp and the
internal stress r = Hp. Note that β is a deviatoric tensor since trace(β) = 0. The perfect
plastic model is retrieved by taking H = K = 0. Concerning the yield function, we consider
a J2-plasticity model with a von Mises criterion:

Φ(σ, q) =

√
3

2
‖ dev(σ − β)‖`2 − σy,0 − r, (3.15)

where σy,0 is the initial yield stress, dev(τ ) := τ − 1
d trace(τ )I is the deviatoric operator,

and the Frobenius norm is defined as ‖τ‖`2 =
√
τ : τ , for all τ ∈ Rd×d. The above model

describes with a reasonable accuracy the behaviour of metals (see [159159]).
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3.3 The Hybrid High-Order method

3.3.1 Discrete setting

We consider a mesh sequence (Th)h>0, where for each h > 0, the mesh Th is composed of
nonempty disjoint open polyhedra with planar faces such that Ω0 =

⋃
T∈Th T . The mesh-

size is h = maxT∈Th hT , where hT stands for the diameter of the cell T . A closed subset F
of Ω0 is called a mesh face if it is a subset with nonempty relative interior of some affine
hyperplane HF and (i) if either there exist two distinct mesh cells T−, T+ ∈ Th such that
F = ∂T− ∩ ∂T+ ∩HF (and F is called an interface) or (ii) there exists one mesh cell T ∈ Th
such that F = ∂T ∩ Γ ∩HF (and F is called a boundary face). The mesh faces are collected
in the set Fh which is further partitioned into the subset F i

h which is the collection of the
interfaces and the subset Fb

h which is the collection of the boundary faces. We assume that
the mesh is compatible with the partition of the boundary Γ into ΓD and ΓN, so that we
can further split the set Fb

h into the disjoint subsets Fb,D
h and Fb,N

h with obvious notation.
For all T ∈ Th, F∂T is the collection of the mesh faces that are subsets of ∂T and nT is the
unit outward normal to T . We assume that the mesh sequence (Th)h>0 is shape-regular in
the sense specified in [8989], i.e., there is a matching simplicial submesh of Th that belongs to
a shape-regular family of simplicial meshes in the usual sense of Ciarlet [6969] and such that
each mesh cell T ∈ Th (resp., mesh face F ∈ Fh) can be decomposed in a finite number of
sub-cells (resp., sub-faces) which belong to only one mesh cell (resp., to only one mesh face
or to the interior of a mesh cell) with uniformly comparable diameter.

Let k ≥ 1 be a fixed polynomial degree. In each mesh cell T ∈ Th, the local HHO unknowns
consist of a pair (vT , v∂T ), where the cell unknown vT ∈ Pkd(T ;Rd) is a vector-valued d-
variate polynomial of degree at most k in the mesh cell T , and v∂T ∈ Pkd−1(F∂T ;Rd) =
Ś

F∈F∂T P
k
d−1(F ;Rd) is a piecewise, vector-valued (d − 1)-variate polynomial of degree at

most k on each face F ∈ F∂T . We write more concisely that

v̂T := (vT , v∂T ) ∈ ÛkT := Pkd(T ;Rd)× Pkd−1(F∂T ;Rd). (3.16)

The degrees of freedom are illustrated in Fig. 3.13.1, where a dot indicates one degree of freedom
(which is not necessarily computed as a point evaluation). More generally, the polynomial
degree k of the face unknowns being fixed, HHO methods can be devised using cell unknowns
that are polynomials of degree l ∈ {k − 1, k, k + 1} ∩N?, (see [7474]); these variants are briefly
investigated numerically in Section 3.4.63.4.6. We equip the space ÛkT with the following local
discrete strain semi-norm:

|v̂T |21,T := ‖∇svT ‖2L2(T )
+ ‖η

1
2
∂T (v∂T − vT |∂T )‖2

L2(∂T )
, (3.17)

with the piecewise constant function η∂T such that η∂T |F = h−1
F for all F ∈ F∂T , where hF

is the diameter of F . We notice that |v̂T |1,T = 0 implies that vT is a rigid-body motion and
that v∂T is the trace of vT on ∂T .

3.3.2 Local symmetric strain reconstruction and stabilization

The first key ingredient in the devising of the HHO method is a local symmetric strain re-
construction in each mesh cell T ∈ Th. This reconstruction is materialized by an operator
Ek
T : ÛkT → Pkd(T ;Rd×dsym) mapping onto the space composed of symmetric Rd×d-valued poly-

nomials in T . The main reason for reconstructing the symmetric strain tensor in a larger
space than the space ∇sPk+1

d (T ;Rd) originally introduced in [8989] for the linear elasticity prob-
lem is that the reconstructed symmetric gradient of a test function acts against a discrete
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(a) k = 1 (b) k = 2

Figure 3.1: Face (black) and cell (gray) degrees of freedom in ÛkT for k = 1 and k = 2 in
the two-dimensional case (each dot represents a degree of freedom which is not necessarily a
point evaluation).

Cauchy stress tensor which is not in symmetric gradient form, see [8787, Section 4] for further
insight. For all v̂T ∈ ÛkT , the reconstructed symmetric strain tensor Ek

T (v̂T ) ∈ Pkd(T ;Rd×dsym)

is obtained by solving the following local problem: For all τ ∈ Pkd(T ;Rd×dsym),

(Ek
T (v̂T ), τ )L2(T ) = (∇svT , τ )L2(T ) + (v∂T − vT |∂T , τ nT )L2(∂T ). (3.18)

Solving this problem entails choosing a basis of the polynomial space Pkd(T ;R) and inverting
the associated mass matrix for each component of the tensor Ek

T (v̂T ). The second key
ingredient in the HHO method is a local stabilization operator that enforces weakly the
matching between the faces unknowns and the trace of the cell unknowns. Following [9191, 8989],
the local stabilization operator Sk∂T : ÛkT → Pkd−1(F∂T ;Rd) is used to penalize the difference
between the face unknown v∂T and the trace of the cell unknown vT |∂T in a least-squares

sense. The stabilization operator Sk∂T is defined such that, for all v̂T ∈ ÛkT ,

Sk∂T (v̂T ) = Πk
∂T

(
v∂T −Dk+1

T (v̂T )|∂T − (vT −Πk
T (Dk+1

T (v̂T )))|∂T
)
, (3.19)

where Πk
T and Πk

∂T denote, respectively, the L2-orthogonal projectors onto Pkd(T ;Rd) and

Pkd−1(F∂T ;Rd). The local displacement reconstruction operator Dk+1
T : ÛkT → Pk+1

d (T ;Rd) is

such that, for all v̂T ∈ ÛkT , Dk+1
T (v̂T ) ∈ Pk+1

d (T ;Rd) is obtained by solving the following local

Neumann problem: For all w ∈ Pk+1
d (T ;Rd),

(∇sDk+1
T (v̂T ),∇sw)L2(T ) = (∇svT ,∇sw)L2(T ) + (v∂T − vT |∂T ,∇swnT )L2(∂T ), (3.20)

together with the mean-value conditions
∫
T D

k+1
T (v̂T ) dT =

∫
T vT dT and∫

T ∇ssDk+1
T (v̂T ) dT =

∫
∂T

1
2(v∂T ⊗ nT − nT ⊗ v∂T ) d∂T , where ∇ss is the skew-symmetric

part of the gradient operator. Comparing with (3.183.18), one readily sees that ∇sDk+1
T (v̂T )

is the L2-orthogonal projection of Ek
T (v̂T ) onto the subspace ∇sPk+1

d (T ;Rd). Following
[8989, Lemma 4], it is straightforward to establish the following stability and boundedness
properties (the proof is omitted for brevity).

Lemma 3.3 (Boundedness and stability) Let the symmetric strain reconstruction oper-
ator be defined by (3.183.18) and the stabilization operator be defined by (3.193.19). Let η∂T be
defined below (3.173.17). Then, we have the following properties: (i) Boundedness: there exists
α] < +∞, uniform w.r.t. h, so that, for all T ∈ Th and all v̂T ∈ ÛkT ,(

‖Ek
T (v̂T )‖2

L2(T )
+ ‖η

1
2
∂TS

k
∂T (v̂T )‖2

L2(∂T )

) 1
2

≤ α]|v̂T |1,T . (3.21)
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(ii) Stability: there exists α[ > 0, uniform w.r.t. h, so that, for all T ∈ Th and all v̂T ∈ ÛkT ,

α[|v̂T |1,T ≤
(
‖Ek

T (v̂T )‖2
L2(T )

+ ‖η
1
2
∂TS

k
∂T (v̂T )‖2

L2(∂T )

) 1
2

. (3.22)

As shown in [8989], the following important commuting property holds true:

Ek
T (ÎkT (v)) = Πk

T (∇sv), ∀v ∈ H1(T ;Rd), (3.23)

where the reduction operator ÎkT : H1(T ;Rd) → ÛkT is defined so that ÎkT (v) =
(Πk

T (v),Πk
∂T (v|∂T )). Proceeding as in [8989, Thm. 8], one can show that for the linear elas-

ticity problem and smooth solutions, the energy error converges as hk+1|u|Hk+2(Ω0). Finally,
taking the trace in (3.233.23), we infer that

trace
(
Ek
T (ÎkT (v))

)
= Πk

T (∇·v), ∀v ∈ H1(T ;Rd), (3.24)

which is the key commuting property used in [8989] to prove robustness for quasi-incompressible
linear elasticity. This absence of volumetric locking is confirmed in the numerical experiments
performed in Section 3.43.4 in the nonlinear setting of incremental associative plasticity.

3.3.3 Global discrete problem

Let us now devise the global discrete problem. We set Pkd(Th;Rd) :=
Ś

T∈Th P
k
d(T ;Rd) and

Pkd−1(Fh;Rd) :=
Ś

F∈Fh P
k
d−1(F ;Rd). The global space of discrete HHO unknowns is defined

as

Ûkh := Pkd(Th;Rd)× Pkd−1(Fh;Rd). (3.25)

For a generic element v̂h ∈ Ûkh, we use the notation v̂h = ((vT )T∈Th , (vF )F∈Fh). For any

mesh cell T ∈ Th, we denote by v̂T = (vT , v∂T ) ∈ ÛkT the local components of v̂h attached
to the mesh cell T and the faces composing its boundary, and for any mesh face F ∈ Fh, we
denote by vF the component attached to the face F . The Dirichlet boundary condition on
the displacement field can be enforced explicitly on the discrete unknowns attached to the
boundary faces in Fb,D

h . Letting Πk
F denote the L2-orthogonal projector onto Pkd−1(F ;Rd),

we set

Ûk,nh,D :=
{
v̂h ∈ Ûkh | vF = Πk

F (uD(tn)), ∀F ∈ Fb,D
h

}
, (3.26a)

Ûkh,0 :=
{
v̂h ∈ Ûkh | vF = 0, ∀F ∈ Fb,D

h

}
. (3.26b)

Note that the map v̂h 7→ (
∑

T∈Th |v̂T |
2
1,T )

1
2 defines a norm on Ûkh,0 (see [8989, Prop. 5]).

A key feature of the present HHO method is that the discrete generalized internal variables
are computed only at the quadrature points in each mesh cell. We introduce for all T ∈ Th,
the quadrature points ξ

T
= (ξ

T,j
)1≤j≤mQ , with ξ

T,j
∈ T for all 1 ≤ j ≤ mQ, and the

quadrature weights ωT = (ωT,j)1≤j≤mQ , with ωT,j ∈ R for all 1 ≤ j ≤ mQ. We denote by kQ
the order of the quadrature. Then, the discrete internal variables are sought in the space

X̃mQTh :=
ą

T∈Th

XmQ , (3.27)

that is, for all T ∈ Th, the internal variables attached to T form a vector χ
T

=
(χ
T

(ξ
T,j

))1≤j≤mQ with χ
T

(ξ
T,j

) ∈ X for all 1 ≤ j ≤ mQ.
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We can now formulate the global discrete problem. We use the following notation for two
tensor-valued functions defined on T :

(s, e)L2
Q(T ) :=

mQ∑
j=1

ωT,j s(ξT,j) : e(ξ
T,j

). (3.28)

We also need to consider the case where we know the tensor s̃ only at the Gauss nodes (we
use a tilde to indicate this situation), i.e., we have s̃ = (s̃(ξ

T,j
))1≤j≤mQ ∈ (Rd×d)mQ . In

this case, we slightly abuse the notation by denoting again by (s̃, e)L2
Q(T ) the quantity equal

to the right-hand side of (3.283.28) with s̃ replacing s. The global discrete problem consists in

finding for any pseudo-time step 1 ≤ n ≤ N , the pair of discrete displacements ûnh ∈ Ûk,nh,D
and the discrete internal variables χ̃nTh

∈ X̃mQTh such that, for all δv̂h ∈ Ûkh,0,

∑
T∈Th

(σ̃n,Ek
T (δv̂T ))L2

Q(T ) +
∑
T∈Th

β(η∂TS
k
∂T (ûnT ), Sk∂T (δv̂T ))L2(∂T )

=
∑
T∈Th

(fn, δvT )L2(T ) +
∑

F∈Fb,N
h

(tnN, δvF )L2(F ), (3.29)

where for all T ∈ Th and all 1 ≤ j ≤ mQ,

(χ̃n
T

(ξ
T,j

), σ̃n(ξ
T,j

), C̃nep(ξT,j)) =

SMALL PLASTICITY(χ̃n−1
T

(ξ
T,j

),Ek
T (ûn−1

T )(ξ
T,j

),Ek
T (ûnT )(ξ

T,j
)−Ek

T (ûn−1
T )(ξ

T,j
)),

(3.30)

with ûn−1
h ∈ Ûk,n−1

h,D and χ̃n−1
Th
∈ X̃mQTh given either from the previous pseudo-time step or the

initial condition. Moreover, in the second line of (3.293.29), the stabilization employs a weight
of the form β = 2µβ0 with β0 > 0. In the original HHO method for linear elasticity [8989], the
choice β0 = 1 is considered. In the present setting, the choice for β0 is further discussed in
Section 3.3.53.3.5 and in Section 3.4.63.4.6.

Remark 3.4 (Unstabilized HHO method) An unstabilized HHO (uHHO) method has
been considered in [22] on affine simplicial meshes without hanging nodes for hyperelastic ma-
terials in finite deformations inspired by the stable dG methods without penalty parameters
devised in [146146]; a more comprehensive treatment of unstabilized gradient reconstructions
including polyhedral meshes can be found in [8787]. In the uHHO method from [22], the sym-
metric gradient is reconstructed in a larger space than Pkd(T ;Rd×dsym), typically Pk+1

d (T ;Rd×dsym),

to achieve stability as in Lemma 3.33.3 with Sk∂T ≡ 0. The price to be paid is a convergence rate
of order k for smooth solutions. In the present setting of elastoplasticity with small deforma-
tions, our numerical tests (not shown for brevity) indicate for k = 1 less accurate results for
uHHO than for HHO with stabilization, and for k = 2, the results are of comparable accuracy.
The CPU costs are more or less comparable since the time saved by avoiding the stabilization
for uHHO is compensated by the need to reconstruct the strain in a larger space.

3.3.4 Discrete principle of virtual work

The discrete problem (3.293.29) expresses the principle of virtual work at the global level, and
following the ideas introduced in [7474] (see also [4040, 22]), it is possible to infer a local principle
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of virtual work in terms of face-based discrete tractions that comply with the law of action

and reaction. Let Ŝ
k
∂T : Pkd−1(F∂T ;Rd)→ Pkd−1(F∂T ;Rd) be defined such that

Ŝ
k
∂T (θ) = Πk

∂T

(
θ − (I −Πk

T )Dk+1
T (0, θ)|∂T

)
. (3.31)

Comparing (3.193.19) with (3.313.31), we observe that Sk∂T (v̂T ) = Ŝ
k
∂T (v∂T − vT |∂T ) for all

v̂T ∈ ÛkT . Let Ŝ
k∗
∂T : Pkd−1(F∂T ;Rd) → Pkd−1(F∂T ;Rd) be the adjoint operator of Ŝ

k
∂T

with respect to the L2(∂T )-inner product so that we have (η∂T Ŝ
k
∂T (θ), Ŝ

k
∂T (ζ))L2(∂T ) =

(Ŝ
k∗
∂T (η∂T Ŝ

k
∂T (θ)), ζ)L2(∂T ) (recall that the weight η∂T is piecewise constant on ∂T ). Let

Πk
Q,T : (Rd×d)mQ → Pkd(T ;Rd×d) denote the L2

Q-orthogonal projector such that for all

s̃ ∈ (Rd×d)mQ , (Πk
Q,T (s̃), e)L2(T ) = (s̃, e)L2

Q(T ) for all e ∈ Pkd(T ;Rd×d). Finally, for any

pseudo-time step 1 ≤ n ≤ N and all T ∈ Th, let us define the discrete traction:

TnT := Πk
Q,T (σ̃nT )nT + βŜ

k∗
∂T (η∂T Ŝ

k
∂T (un∂T − unT |∂T )) ∈ Pkd−1(F∂T ;Rd), (3.32)

where σ̃nT = (σ̃nT (ξ
T,j

))1≤j≤mQ ∈ (Rd×dsym)mQ with σ̃nT (ξ
T,j

) = C : (Ek
T (ûnT )(ξ

T,j
) − ε̃p,nT (ξ

T,j
))

for all 1 ≤ j ≤ mQ.

Lemma 3.5 (Equilibrated tractions) Assume that kQ ≥ 2k. Then, for any pseudo-time
step 1 ≤ n ≤ N , the following local principle of virtual work holds true for all T ∈ Th:

(σ̃nT ,∇sδvT )L2
Q(T ) − (TnT , δvT )L2(∂T ) = (fn, δvT )L2(T ), ∀δvT ∈ Pkd(T ;Rd), (3.33)

where the discrete tractions TnT defined by (3.323.32) satisfy the following law of action and

reaction for all F ∈ F i
h ∪ F

b,N
h :

TnT−|F + TnT+|F = 0, if F ∈ F i
h with F = ∂T− ∩ ∂T+ ∩HF , (3.34a)

TnT |F = Πk
F (tnN), if F ∈ Fb,N

h with F = ∂T ∩ ΓN ∩HF . (3.34b)

Proof. Recall the notation σ̃nT = (σ̃nT (ξ
T,j

))1≤j≤mQ with σ̃nT (ξ
T,j

) = C : (Ek
T (ûnT )(ξ

T,j
) −

ε̃p,nT (ξ
T,j

)) for all 1 ≤ j ≤ mQ. Let us consider the virtual displacement

((δvT δT,T ′)T ′∈Th , (0)F∈Fh) ∈ Ûkh,0 in (3.293.29), with the Kronecker delta such that δT,T ′ = 1
if T = T ′ and δT,T ′ = 0 otherwise. Owing to (3.183.18), and since the quadrature is by assump-
tion at least of order 2k, we have

(fn, δvT )L2(T ) = (σ̃nT ,E
k
T (δvT , 0))L2

Q(T ) + β(η∂T Ŝ
k
∂T (un∂T − unT |∂T ), Ŝ

k
∂T (−δvT |∂T ))L2(∂T )

= (Πk
Q,T (σ̃nT ),Ek

T (δvT , 0))L2(T ) − β(Ŝ
k∗
∂T (η∂T Ŝ

k
∂T (un∂T − unT |∂T )), δvT |∂T )L2(∂T )

= (Πk
Q,T (σ̃nT ),∇sδvT )L2(T ) − (Πk

Q,T (σ̃nT )nT , δvT )L2(∂T )

− β(Ŝ
k∗
∂T (η∂T Ŝ

k
∂T (un∂T − unT |∂T )), δvT |∂T )L2(∂T )

= (σ̃nT ,∇sδvT )L2
Q(T ) − (TnT , δvT )L2(∂T ).

This establishes the local principle of virtual work (3.333.33). Similarly, the law of action and

reaction (3.343.34) follows by considering, for all F ∈ F i
h ∪ F

b,N
h , the virtual displacement

((0)T∈Th , (δvF δF,F ′)F ′∈Fh) ∈ Ûkh,0 in (3.293.29) (with obvious notation for the face-based Kro-

necker delta), and observing that both δvF and T T±|F are in Pkd−1(F ;Rd). If F ∈ Fb,N
h with



3.3. The Hybrid High-Order method 67

F = ∂T ∩ ΓN ∩HF , we have

(tnN, δvF )L2(F ) = (Πk
F (tnN), δvF )L2(F )

= (σ̃nT ,E
k
T (0, δvF ))L2

Q(T ) + β(η∂T Ŝ
k
∂T (un∂T − unT |∂T ), Ŝ

k
∂T (δvF ))L2(F )

= (Πk
Q,T (σ̃nT ),Ek

T (0, δvF ))L2(T ) + β(η∂T Ŝ
k
∂T (un∂T − unT |∂T ), Ŝ

k
∂T (δvF ))L2(∂T )

= (Πk
Q,T (σ̃nT )nT , δvF )L2(F ) + β(Ŝ

k∗
∂T (η∂T Ŝ

k
∂T (un∂T − unT |∂T )), δvF )L2(∂T )

= (TnT |F , δvF )L2(F ),

whereas if F ∈ F i
h with F = ∂T− ∩ ∂T+ ∩HF , we have

0 = (σ̃nT+ ,E
k
T+(0, δvF ))L2

Q(T+) + β(γ∂T+Ŝ
k
∂T+

(un∂T+
− unT+ |∂T+

), Ŝ
k
∂T+

(δvF ))L2(∂T+)

+ (σ̃nT− ,E
k
T−(0, δvF ))L2

Q(T−) + β(γ∂T−Ŝ
k
∂T−(un∂T− − unT− |∂T−), Ŝ

k
∂T−(δvF ))L2(∂T−)

= (Πk
Q,T+(σ̃nT+)nT+ , δvF )L2(∂T+) + β(Ŝ

k∗
∂T+

(γ∂T+Ŝ
k
∂T+

(un∂T+
− unT+ |∂T+

)), δvF )L2(∂T+)

+ (Πk
Q,T−(σ̃nT−)nT− , δvF )L2(∂T−) + β(Ŝ

k∗
∂T−(γ∂T−Ŝ

k
∂T−(un∂T− − unT− |∂T−)), δvF )L2(∂T−)

= (TnT+|F + TnT−|F , δvF )L2(F ).

�

3.3.5 Nonlinear solver

The nonlinear problem (3.293.29)-(3.303.30) arising at any pseudo-time step 1 ≤ n ≤ N is solved

using a Newton’s method. Given ûn−1
h ∈ Ûk,n−1

h,D and χ̃n−1
Th
∈ X̃mQTh from the previous pseudo-

time step or the initial condition, the Newton’s method is initialized by setting ûn,0h = ûn−1
h

up to the update of the Dirichlet condition and χ̃n,0Th
= χ̃n−1

Th
. Then, at each Newton’s step

i ≥ 0, one computes the incremental displacement δûn,ih ∈ Ûkh,0 and updates the discrete

displacement as ûn,i+1
h = ûn,ih + δûn,ih . The linear system of equations to be solved is∑

T∈Th

(C̃n,iep : Ek
T (δûn,iT ),Ek

T (δv̂T ))L2
Q(T ) +

∑
T∈Th

β(η∂TS
k
∂T (δûn,iT ), Sk∂T (δv̂T ))L2(∂T ) = −Rn,ih (δv̂h),

(3.35)

for all δv̂h ∈ Ûkh,0, where for all T ∈ Th and all 1 ≤ j ≤ mQ,

(χ̃n,i
T

(ξ
T,j

), σ̃n,i(ξ
T,j

), C̃n,iep (ξ
T,j

)) = SMALL PLASTICITY(χn−1
T,j

, en−1
T,j , e

n,i
T,j − en−1

T,j ), (3.36)

with χn−1
T,j

= χ̃n−1
T

(ξ
T,j

), en,iT,j = Ek
T (ûn,iT )(ξ

T,j
), en−1

T,j = Ek
T (ûn−1

T )(ξ
T,j

), and the residual
term

Rn,ih (δv̂h) =
∑
T∈Th

(σ̃n,i,Ek
T (δv̂T )L2

Q(T ) +
∑
T∈Th

β(η∂TS
k
∂T (ûn,iT ), Sk∂T (δv̂T ))L2(∂T )

−
∑
T∈Th

(fn, δvT )L2(T ) −
∑

F∈Fb,N
h

(tnN, δvF )L2(F ). (3.37)

The assembling of the stiffness matrix resulting from the left-hand side of (3.353.35) is local (and
thus fully parallelizable). The discrete internal variables χ̃nTh

∈ X̃mQTh are updated at the end

of each pseudo-time step.
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For strain-hardening plasticity, the consistent elastoplastic tangent modulus Cep is sym-
metric positive-definite. Let us set θTh,Q := min(T,j)∈Th×{1,...,mQ} θ

min(C̃ep(ξT,j)), where

θmin(M) denotes the smallest eigenvalue of the symmetric fourth-order tensor M. The fol-
lowing result shows that the linear system (3.353.35) arising at each Newton’s step is coercive
under the simple choice β0 > 0 on the stabilization parameter for strain-hardening plasticity.

Theorem 3.6 (Coercivity) Assume that kQ ≥ 2k and that all the quadrature weights are
positive. Moreover, assume that the plastic model is strain-hardening. Then, the linear
system (3.353.35) in each Newton’s step is coercive for all β0 > 0, i.e., there exists Cell > 0,
independent of h, such that for all v̂h ∈ Ûkh,0,

∑
T∈Th

(C̃ep : Ek
T (v̂T ),Ek

T (v̂T ))L2
Q(T ) +

∑
T∈Th

β(η∂TS
k
∂T (v̂T ), Sk∂T (v̂T ))L2(∂T )

≥ Cell min

(
β0,

θTh,Q
2µ

)
2µ
∑
T∈Th

|v̂T |21,T . (3.38)

Proof. Since the material is strain-hardening, the consistent elastoplastic tangent modulus
is symmetric positive-definite (see line 1010 of Algorithm 11). Hence, its smallest eigenvalue is
real and positive, so that θTh,Q > 0. Observing that Ek

T (v̂T ) ∈ Pkd(T,Rd×d) for all v̂h ∈ Ûkh,0
and that all the quadrature weights are by assumption positive, we infer that∑

T∈Th

(C̃ep : Ek
T (v̂T ),Ek

T (v̂T ))L2
Q(T )

+
∑
T∈Th

β(η∂TS
k
∂T (v̂T ), Sk∂T (v̂T ))L2(∂T )

=
∑
T∈Th

mQ∑
j=1

ωT,jE
k
T (v̂T )(ξ

T,j
) : C̃ep(ξT,j) : Ek

T (v̂T )(ξ
T,j

)

+
∑
T∈Th

β(η∂TS
k
∂T (v̂T ), Sk∂T (v̂T ))L2(∂T )

≥
∑
T∈Th

θTh,Q
mQ∑
j=1

ωT,jE
k
T (v̂T )(ξ

T,j
) : Ek

T (v̂T )(ξ
T,j

)


+
∑
T∈Th

β(η∂TS
k
∂T (v̂T ), Sk∂T (v̂T ))L2(∂T )

≥ min(θTh,Q, β)
∑
T∈Th

{
‖Ek

T (v̂T )‖2
L2
Q(T )

+ ‖η
1
2
∂TS

k
∂T (v̂T )‖2

L2(∂T )

}

= min(θTh,Q, β)
∑
T∈Th

{
‖Ek

T (v̂T )‖2
L2(T )

+ ‖η
1
2
∂TS

k
∂T (v̂T )‖2

L2(∂T )

}
.

We conclude by using the stability result from Lemma 3.33.3 and recalling that β = 2µβ0.

�

Remark 3.7 Theorem 3.63.6 remains valid if the assumption on the strain-hardening plasticity
model is replaced by the weaker assumption that θTh,Q > 0 which is verified if the consistent
elastoplastic tangent modulus is symmetric positive-definite.
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A reasonable choice of the stabilization parameter appears to be β0 ≥ max(1,
θTh,Q

2µ ) because

β0 = 1 is a natural choice for the linear elasticity problem (see [8989]) and the choice β0 ≥ θTh,Q
2µ

allows one to adjust the stabilization parameter if the evolution is plastic. We investigate
numerically the choice of β0 in Section 3.4.63.4.6. For the combined linear isotropic and kinematic
plasticity model with a von Mises yield criterion, the suggested choice leads to β0 ≥ 1 since

the smallest eigenvalue θTh,Q is such that
θTh,Q

2µ = H
µ+H

< 1 for the continuous elastoplastic

tangent modulus.

3.3.6 Implementation and static condensation

As is classical with HHO methods [8989, 9191], and more generally with hybrid approxima-
tion methods, the cell unknowns δun,iT in (3.353.35) can be eliminated locally by using a static
condensation (or Schur complement) technique. Indeed, testing (3.353.35) against the function
((δvT δT,T ′)T ′∈Th , (0)F∈Fh) with Kronecker delta δT,T ′ and δvT arbitrary in Pkd(T ;Rd), one can

express, for all T ∈ Th, the cell unknown δun,iT in terms of the local face unknowns collected

in δun,i∂T . As a result, the static condensation technique allows one to reduce (3.353.35) to a linear

system in terms of the face unknowns only. The reduced system is of size NFh × d
(
k+d−1
d−1

)
,

where NFh denotes the number of mesh faces (Dirichlet boundary faces can be eliminated
by enforcing the boundary condition explicitly). In the reduced system, each mesh face is
connected to neighbouring faces that share a mesh cell with the face in question. Note that
static condensation can improve the condition number of the global stiffness matrix; we refer
the reader to [22, Section 4.3] for numerical results in the case of HHO methods for hyperelastic
materials. Since the behavior integration is performed at the cell level, the same procedure
as for cG methods can be used to deal with a large variety of constitutive laws. One salient
example is the standard radial return mapping [193193] (see also [1414, 201201]) that will be used in
the numerical examples of Section 3.43.4 to solve the nonlinear problem in Algorithm 11.

The implementation of HHO methods is realized using the open-source library DiSk++

[7171] which provides generic programming tools for the implementation of HHO methods and
is available online11. The data structure requires access to faces and cells as in standard
dG or HDG codes. The reconstruction and stabilization operators are built locally at the
cell level using scaled translated monomials to define the basis functions (see [7171, Section
3.2.1] for more details). If memory is not a limiting factor, it is computationally effective to
compute these operators once and for all in all the mesh cells, and to re-use them at each
Newton’s step. The DiSk++ library employs different quadratures depending on the type of
the mesh cells. On segments, standard Gauss quadrature is used. On quadrilaterals and
hexahedra, the quadrature is obtained by tensorizing the one-dimensional Gauss quadrature.
On triangles and tetrahedra, the Dunavant [108108] and Grundmann–Moeller [124124] quadratures
are used, respectively. Polyhedral cells are split into sub-simplices, and the integration is
performed in each sub-simplex separately. The linear algebra operations are realized using
the Eigen library and the global linear system (involving face unknowns only) is solved with
PardisoLU from the MKL library (alternatively, iterative solvers are also applicable). Finally,
the Dirichlet boundary conditions are enforced strongly on the face unknowns as described
above.

1 https://github.com/wareHHOuse/diskpp
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3.4 Numerical examples

The goal of this section is to evaluate the proposed HHO method on two- and three-
dimensional test cases from the literature: a sphere under internal pressure, a quasi-
incompressible Cook’s membrane, a perforated strip subjected to uniaxial extension, and
a cube under compression. We compare the results produced by the HHO method to the
analytical solution whenever available or to numerical results obtained using the industrial
open-source FEM code code_aster[111111]. In this case, we consider a quadratic cG formula-
tion, referred to as T2 or Q2 depending on the mesh, and a three-field formulation in which
the unknowns are the displacement, the pressure and the volumetric strain fields referred
to as UPG [99]; in the UPG method, the displacement field is quadratic, whereas both the
pressure and the volumetric strain fields are linear. The T2 and Q2 methods are known
to present volumetric locking due to plastic incompressibility, whereas the UPG method is
known to be robust but costly. Numerical results obtained using the UPG method on a very
fine grid are used as a reference solution whenever an analytical solution is not available.
Moreover, we also investigate the behavior of the HHO method on general meshes. The
combined linear isotropic and kinematic plasticity model with a von Mises yield criterion
described in Section 3.2.43.2.4 is used for all the test cases. Strain-hardening plasticity is con-
sidered for the two-dimensional cases, i.e., the quasi-incompressible Cook’s membrane and
the perforated strip under uniaxial traction, whereas perfect plasticity is considered for the
three-dimensional cases, i.e., the sphere under internal pressure and the cube under compres-
sion. Moreover, for the two-dimensional test cases, we assume additionally a plane strain
condition. In the numerical experiments reported in this section, the stabilization parameter
is taken to be β = 2µ (β0 = 1), and all the quadratures use positive weights. We employ the
notation HHO(k) when using face (and cell) polynomials of order k. All the tests are run
sequentially on a 3.4 Ghz Intel Xeon processor with 16 Gb of RAM.

3.4.1 Sphere under internal pressure

This first benchmark consists of a sphere under internal pressure for which an analytical
solution is known (see [8383, Section 7.5.2]). The sphere has an inner radius Rin = 100 mm
and an outer radius Rout = 200 mm. An internal radial pressure P is imposed. The material
parameters adopted are those of [8383]: a Young modulus E = 210 GPa, a Poisson ratio
ν = 0.3, and an initial yield stress σy,0 = 240 MPa. For symmetry reasons, only one-eighth
of the sphere is discretized, and the mesh is composed of 506 tetrahedra, see Fig. 3.2a3.2a. The
simulation is performed until the limit load corresponding to an internal pressure Plim '
332.71 MPa is reached. Numerically, this limit load is reached when the Newton solver stops
converging. The load-deflection curves are plotted for HHO methods in Fig. 3.2b3.2b showing
that both HHO(1) and HHO(2) produce numerical results in very good agreement with the
analytical solution. For this test case, we do not expect that HHO(2) will deliver much
more accurate solutions than HHO(1) since the geometry is discretized using tetrahedra with
planar faces. The computed radial (σrr) and hoop (σθθ) components of the stress tensor
are shown in Fig. 3.33.3 at all the quadrature points for P = 300 MPa. For both HHO(1)
and HHO(2), the computed stresses are very close to the analytical solution. The error on
the stresses is slightly larger for HHO(1) than for HHO(2) near the transition between the
elastic zone and the plastic zone (indicated by a dashed line at the radius Rp = 157.56 mm).
Finally, the trace of the stress tensor is compared for HHO, UPG and cG methods in Fig. 3.43.4
at all the quadrature points for the limit load. A sign of locking is the presence of strong
oscillations of the trace of the stress tensor. Thus, we notice that the quadratic element T2
locks, whereas HHO and UPG do not present any sign of locking and produce results that
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are very close to the analytical solution.
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Figure 3.2: Sphere under internal pressure: (a) Mesh in the reference configuration composed
of 506 tetrahedra. (b) Average radial displacement at the outer surface (mm) vs. applied
pressure (MPa); the dashed line indicates the theoretical limit load.

3.4.2 Quasi-incompressible Cook’s membrane

We consider the quasi-incompressible Cook’s membrane problem which is a well known
bending-dominated test case (see for example [194194, Section 6.2.3] or [6060]). It consists of a
tapered panel, clamped on one side, and subjected to a vertical load Fy = 1.8 N on the oppo-
site side, as shown in Fig. 3.5a3.5a. The material parameters are a Young modulus E = 70 MPa,
a Poisson ratio ν = 0.4999, an initial yield stress σy,0 = 0.243 MPa, an isotropic hardening
modulus H = 0.135 MPa and a kinematic hardening modulus K = 0 MPa. The simulation is
performed in twenty uniform increments of the load and with a sequence of refined quadran-
gular meshes such that each side contains 2N edges, 1 ≤ N ≤ 7. The vertical displacement
of the point A is plotted in Fig. 3.5b3.5b for the HHO(1), HHO(2), cG, and UPG methods. As
expected when comparing the number of degrees of freedom, the quadratic cG formulation
Q2 has the slower convergence, HHO(1) converges slightly faster than UPG, and HHO(2)
outperforms all the other methods. Moreover, we show in Fig. 3.63.6 the trace of the stress
tensor. The cG formulation Q2 presents strong oscillations that confirm the presence of vol-
umetric locking, contrary to the HHO and UPG methods which deliver similar and smooth
results.

3.4.3 Perforated strip subjected to uniaxial extension

We consider a strip of width 2L = 200 mm and height 2H = 360 mm. The strip is perforated
in its middle by a circular hole of radius R = 50 mm, and is subjected to a uniaxial extension
δ = 5 mm at its top and bottom ends. For symmetry reasons, only a quarter of the strip
is discretized. The geometry and the boundary conditions are presented in Fig. 3.7a3.7a. This
problem is frequently used in the literature, see for example [3030, 1313, 1414, 201201]. The material
parameters are a Young modulus E = 70 MPa, a Poisson ratio ν = 0.3, an initial yield stress
σy,0 = 0.8 MPa, an isotropic hardening modulus H = 10 MPa, and a kinematic hardening



72 Chapter 3. Associative plasticity with small deformations

100 120 140 160 180 200
−300

−200

−100

0

Analytical • HHO(1) • HHO(2)

(a) σrr (MPa) vs. r (mm)

100 120 140 160 180 200

−50

0

50

100

150

Analytical • HHO(1) • HHO(2)

(b) σθθ (MPa) vs. r (mm)

Figure 3.3: Sphere under internal pressure: radial (left) and hoop (right) components of the
stress tensor (MPa) vs. r (mm) for HHO(1) and HHO(2) at all the quadrature points and
for P = 300 MPa (the dashed line corresponds to the transition between the plastic zone and
the elastic zone).
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Figure 3.4: Sphere under internal pressure: trace of the stress tensor (MPa) vs. r (mm) at
all the quadrature points and for the limit load; (a) HHO(1) and HHO(2), (b) T2 and UPG.
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Figure 3.5: Quasi-incompressible Cook’s membrane: (a) Geometry and boundary conditions
(dimensions in mm). (b) Convergence of the vertical displacement of the point A (in mm)
vs. the number of degrees of freedom for Q2, UPG, HHO(1), and HHO(2).

modulus K = 5 MPa. The relative displacement errors err = (u − uref)/uref versus the
number of degrees of freedom are plotted for the points A and B (indicated in Fig. 3.7a3.7a),
and for different triangular meshes in Fig. 3.83.8 (the reference solution uref is computed with
the UPG method and a mesh composed of 37,032 triangles leading to 149,206 degrees of
freedom). The relative errors are similar for UPG and HHO(1), and the errors are lower for
HHO(2) for the same number of degrees of freedom. Finally, the equivalent plastic strain p is
shown in Fig. 3.7b3.7b for UPG and HHO(2) on a triangular mesh. We remark that the results
are similar and that there is no sign of locking.

3.4.4 Compression of a cube

This benchmark comes from [99, Section 5.2]. It consists of a rectangular block of length
and width 2L = 20 mm and height H = 10mm. The lateral faces are free and the bottom
face is clamped. Only one quarter is discretized owing to symmetries, see Fig. 3.9a3.9a. The
material parameters are a Young modulus E = 200 GPa, a Poisson ratio ν = 0.3, and an
initial yield stress σy,0 = 150 MPa. A vertical pressure P = 350 MPa is applied in 30 uniform
increments in the part of the upper surface indicated in Fig. 3.9a3.9a. The trace of the stress
tensor is plotted in Fig. 3.9b3.9b for UPG and HHO(1) on a tetrahedral mesh. Both methods do
not present oscillations, contrary to the cG formulation (not shown for brevity).

3.4.5 Polyhedral meshes

In the previous sections, the proposed HHO method has been tested on simplicial and hexa-
hedral meshes so as to be able to compare it to the UPG method which only supports these
types of meshes. Our goal now is to illustrate the fact that the HHO method supports general
meshes with possibly non-matching interfaces. For our test cases, the polyhedral meshes are
generated from quadrangular or hexahedral meshes by removing the common face for some
pairs of neighbouring cells and then merging the two cells in question (about 30% of the cells
are merged) thereby producing non-matching interfaces materialized by hanging nodes for a
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Figure 3.6: Quasi-incompressible Cook’s membrane: trace of the stress tensor (MPa) on the
reference configuration for a 64 × 64 quadrangular mesh; (a) Q2 (b) UPG (c) HHO(1) (d)
HHO(2).
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(a) (b)

Figure 3.7: Perforated strip: (a) Geometry. (b) Equivalent plastic strain p for a triangular
mesh with UPG (left) and HHO(2) (right); there are 5,542 degrees of freedom for UPG and
9,750 for HHO(2).
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Figure 3.8: Perforated strip: Relative displacement error at the points A (left) and B (right)
vs. the number of degrees of freedom for UPG, HHO(1) and HHO(2).
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(a) (b)

Figure 3.9: Compression of a cube: (a) Geometry. (b) Trace of the stress tensor on the
reference configuration (MPa) with UPG (left) and HHO(1) (right) on a tetrahedral mesh;
there are 25,556 degrees of freedom for UPG and 15,947 for HHO(1).

significant portion of the mesh cells. In two dimensions, a random moving of the internal
nodes is additionally applied in such a way that the cells remain star-shaped with respect to
their barycenter. We consider the last two benchmarks presented above, i.e., the perforated
strip (see Section 3.4.33.4.3) and the compressed cube (see Section 3.4.43.4.4). Concerning the perfo-
rated strip, we show an example of a polyhedral mesh in Fig. 3.10a3.10a and the equivalent plastic
strain for HHO(2) on a triangular mesh and the polygonal mesh in Fig. 3.10b3.10b. The results
agree very well on the two meshes. For the compression of the cube, we use a polyhedral
mesh which is generated as above from a hexahedral mesh by removing the common face for
some pairs of neighboring cells (see Fig. 3.11a3.11a for the mesh; note that a random moving of
the internal nodes is not applied here to avoid nonplanar faces). We compare in Fig. 3.11b3.11b
the trace of stress tensor for HHO(1) on a tetrahedral mesh and the polyhedral mesh. The
results agree very well on the two meshes, and there is no sign of volumetric locking. These
numerical experiments indicate that, as predicted by the theory, the HHO method supports
general meshes both in two and three dimensions.

3.4.6 Variants of the HHO method

Once the polynomial degree k attached to faces has been fixed, there are three different
possibilities for the polynomial degree l attached to cells, namely l ∈ {k − 1, k, k + 1} ∩ N
(see [7474] for diffusive problems). Nevertheless, for k = 1, the choice l = 0 is not possible for
linear elasticity because of the rigid body motions. In this appendix, we focus on the case
k = 2 and we compare the variants l ∈ {1, 2, 3} for the cell degrees of freedom. We use the
notation HHO(2;l) and observe that the choice l = 2 corresponds to the results presented
above. For the local operators Ek

T , D
k+1
T , and Sk∂T , the only difference is that we replace

v̂T ∈ ÛkT by v̂T ∈ Ûk,lT := Pld(T ;Rd) × Pkd−1(F∂T ;Rd). Moreover, for l = k + 1, we consider

the simpler expression for Sk∂T : Ûk,k+1
T → Pkd−1(F∂T ,Rd) such that for all v̂T ∈ Ûk,k+1

T ,

Sk∂T (v̂T ) = Πk
∂T (v∂T − vT |∂T ). Lemma 3.33.3, Lemma 3.53.5, and Theorem 3.63.6 remain true (up to

minor adaptations).

We compare these HHO variants on the first two benchmarks: the sphere under in-
ternal pressure (see Section 3.4.13.4.1) and the quasi-incompressible Cook’s membrane (see Sec-
tion 3.4.23.4.2). For the sphere benchmark, the computed radial (σrr) and hoop (σθθ) components
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(a) (b)

Figure 3.10: Perforated strip: (a) Example of a polygonal mesh composed of 536 cells. (b)
Equivalent plastic strain p with HHO(2) for a triangular mesh (left) and a polygonal mesh
(right); there are 9,750 dofs for the triangular mesh and 7,590 dofs for the polygonal mesh.

(a) (b)

Figure 3.11: Compression of a cube: (a) Example of a polyhedral mesh composed of 2,243
cells. (b) Trace of the stress tensor on the initial configuration (in MPa) for HHO(1) on
a tetrahedral mesh (left) and on the polyhedral mesh (right); there are 31,941 dofs for the
tetrahedral mesh and 75,261 dofs for the polyhedral mesh.
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of the stress tensor are shown in Fig. 3.123.12 at all the quadrature points for P = 300 MPa for
HHO(2;1) and HHO(2;3). The results are in agreement with those obtained with HHO(2;2).
Let us now compare the time spent to solve the non-linear problem when using HHO(2,l)
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σθθ: analytical • σθθ: HHO(2;1)

(a) HHO(2;1)
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Figure 3.12: Sphere under internal pressure: σrr (MPa) and σθθ (MPa) vs. r (mm) for
HHO(2;1) and HHO(2;3) methods at all the quadrature points for P = 300 MPa.

with l ∈ {1, 2, 3} and β = 2µ (β0 = 1). The assembly time to build the local contributions
to the global stiffness matrix is divided into three parts: one part, denoted Gradrec, to re-
construct the strain and build the global system; a second part, denoted Stabilization, to
build the stabilization operator (including the time to build the displacement reconstruction,
see (3.203.20)); and a last part, denoted Static Condensation, to perform the static conden-
sation. The solver time, which corresponds to solving the global linear system, is denoted
Solver. These times are computed after summation over all the Newton’s iterations and
are normalized by the total cost associated with HHO(2;2). In Fig. 3.13a3.13a, we provide an
assessment of the cost on a fixed mesh with 506 tetrahedra. We observe that the difference
between HHO(2;2) and HHO(2;3) is not really important; in fact, the time that HHO(2;3)
spends to reconstruct the less expensive stabilization is compensated by a larger number of
Newton’s iterations. The HHO(2;1) variant turns out to be the most efficient (around 20%
less CPU time than HHO(2;2)); indeed it needs less Newton’s iterations and the cost of a
single Newton’s iteration is the cheapest. In Fig. 3.13b3.13b, we report the total number of New-
ton’s iterations normalized by the result for HHO(2;2) and β0 = 1 versus β0. On the one
hand, we remark that β0 has a significant influence on the number of Newton’s iterations
if β0 . 1 and on the other hand, the different variants need the same number of Newton’s
iterations to converge if β0 & 10. Note that this experiment is particularly challenging since
we are considering here perfect plasticity for which the stability result from Theorem 3.63.6 is
not applicable.

We repeat the above experiments with the Cook’s membrane problem with strain hard-
ening plasticity so that the stability result of Theorem 3.63.6 holds true with θTh,Q ≈ 0.25. In
Fig. 3.14a3.14a, the CPU times on a 64 × 64 quadrangular mesh are reported. Here, HHO(2;3)
turns out to be the most efficient variant (around 22% less CPU time than HHO(2,2)); indeed
it needs the same number of Newton’s iterations and the computation of the stabilization
operator is faster than for the other variants. Nevertheless, these differences in terms of total
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Figure 3.13: Sphere under internal pressure: (a) Comparison of normalized CPU times for
HHO(2;l), l ∈ {1, 2, 3}. (b) Total number of Newton’s iterations versus β0 normalized by the
result for HHO(2;2) and β0 = 1.

CPU times are less noticeable in two dimensions than in three dimensions since the computa-
tions are less intensive. In Fig. 3.14b3.14b, we plot the number of Newton’s iterations normalized
by the result for HHO(2;2) and β0 = 1 versus β0. As above, HHO(2;1) is the variant that
depends the least on β0 but this behavior is less pronounced than for the sphere benchmark.

In addition, whatever variant is used, if we take β0 =
θTh,Q

2µ ≈ 0.005, the Newton’s method
needs more than 500 iterations to converge (compared to 108 iterations for HHO(2;2) and
β0 = 1). A first conclusion is that it seems reasonable to take β0 ∈ [1, 100] since the number
of Newton’s iterations is lower and the condition number does not increase too much. A
second conclusion is that it seems preferable to use HHO(2;1) than HHO(2;2) or HHO(2;3)
since HHO(2;1) is less sensitive to the choice of β0.
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Figure 3.14: Quasi-incompressible Cook’s membrane: (a) Comparison of normalized CPU
times for HHO(2;l), l ∈ {1, 2, 3}. (b) Number of Newton’s iteration versus β0 normalized by
the result for HHO(2;2) and β0 = 1.

3.5 Conclusion

We have devised and evaluated numerically a Hybrid High-Order method to approximate
associative plasticity problems in the small deformation regime. The method shows a robust
behavior for the perfect plasticity model as well as for the combined linear isotropic and
kinematic hardening model and produces accurate solutions with a moderate number of
degrees of freedom. In particular, as mixed methods, the HHO method prevents volumetric
locking due to plastic incompressiblity, but with less unknowns than mixed methods for the
same accuracy. Moreover, the HHO method supports general meshes with possibly non-
matching interfaces. This work can be pursued in several directions. One could use a non-
local plasticity model, as for example a strain-gradient plasticity model, to take into account
scale-dependent effects as in [9797]. Furthermore, error estimates can be investigated, possibly
by taking inspiration from [1111, 9797], where other discretization methods are analyzed for
plasticity problems. Finally, the extension of the present HHO method to elastoplasticity in
finite deformations is the subject of following chapter.



CHAPTER 4

A HYBRID HIGH-ORDER METHOD FOR FINITE
ELASTOPLASTIC DEFORMATIONS WITHIN A LOGARITHMIC

STRAIN FRAMEWORK

Abstract. We devise and evaluate numerically a Hybrid High-Order (HHO) method for
finite plasticity within a logarithmic strain framework. The HHO method uses as discrete un-
knowns piecewise polynomials of order k ≥ 1 on the mesh skeleton, together with cell-based
polynomials that can be eliminated locally by static condensation. The HHO method leads
to a primal formulation, supports polyhedral meshes with non-matching interfaces, is free
of volumetric locking, the integration of the constitutive law is performed only at cell-based
quadrature nodes, and the tangent matrix in Newton’s method is symmetric. Moreover, the
principle of virtual work is satisfied locally with equilibrated tractions. Various two- and
three-dimensional benchmarks are presented, as well as comparisons against known solutions
obtained with an industrial software using conforming and mixed finite elements.

This chapter is based on a paper published online in International Journal for Numerical
Methods in Engineering entitled “A Hybrid High-Order method for finite plasticity within a
logarithmic strain framework” [44].
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4.1 Introduction

Modelling plasticity, particularly in the regime of finite deformations, is of a major importance
in industrial applications since this is one of the main nonlinearites that can be encountered
in nonlinear solid mechanics. Moreover, finite elastoplastic deformations have a major influ-
ence on the life time of a mechanical structure. The present contribution is an extension to
the finite strain regime of the Hybrid High-Order (HHO) method for incremental associative
plasticity with small deformations [33]. This extension hinges on a logarithmic strain frame-
work [167167] for anisotropic finite elastoplasticity. This framework provides a natural extension
of small elastoplastic deformations to finite elastoplastic deformations by means of purely
geometric transformations. Indeed, the weak form of the plasticity problem is derived from
the minimization of an energy functional based on an incremental pseudo-energy density.

The present work aims at addressing the following important issues. Firstly, the incom-
pressibility of the plastic deformations generally leads to volumetric locking when employing a
continuous Galerkin (cG) approximation based on low-order H1-conforming finite elements.
In these methods, only the displacement field is approximated globally, whereas the vari-
ables associated with the plastic behavior are computed locally in each mesh cell (typically
at quadrature nodes). A way to circumvent the volumetric locking is to use high-order
H1-conforming finite elements or NURBS for small [113113] and finite [112112] elastoplastic de-
formations. Therein, the displacement is still the only field which is approximated globally.
However, the resulting discrete problem is more costly to solve because of the larger support
of the basis functions. Another possible way to prevent volumetric locking is to introduce
additional global unknowns as in the Enhanced Assumed Strain (EAS) methods [191191] and in
mixed methods [99, 66, 8282, 196196] on simplicial or hexahedral meshes (the variables associated
with the plastic behavior are still computed locally). However, the introduction of additional
globally coupled unknowns generally increases the cost of building and solving the discrete
problem. Moreover, devising mixed methods on polyhedral meshes with non-matching in-
terfaces is a delicate question. On the positive side, cG methods as well as EAS and mixed
methods require to perform the integration of the constitutive law only at the quadrature
nodes in the mesh cells. Another class of methods free of volumetric locking are discontinuous
Galerkin (dG) methods. We mention in particular [117117, 116116, 115115, 174174] for hyperelasticity.
Interior penalty dG methods have been developed for classical plasticity with small [131131, 162162]
and finite [163163] deformations, and for gradient plasticity with small [9898, 9797] and finite [166166]
deformations. However, dG methods from the literature generally require to perform the
integration of the constitutive law also at additional quadrature nodes located at the mesh
faces. Moreover, if the plasticity problem is solved using a Newton’s method, which is often
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the case, the tangent matrix from the dG formulation is generally non-symmetric owing to
the nonlinear nature of the consistency term. Thus, the solving cost can increase significantly,
particularly with iterative solvers (the memory requirement can become important for direct
solvers). We also mention the lowest-order Virtual Element Method (VEM) for inelastic
problems with small deformations [3030] (and its two-dimensional higher-order extension [1313]),
whereas the case of finite deformations is treated in [209209, 143143], still in the lowest-order case.
We also mention the recent study of low-order hybrid dG methods with conforming traces
[212212] and the hybridizable weakly conforming Galerkin method with nonconforming traces
in the context of linear [151151] and nonlinear [2626] solid mechanics. Moreover, finite volume
methods for plasticity problems have been developped for small deformations [202202] and for
large deformations [2525, 4747].

In the present work, we devise and evaluate numerically a HHO method for finite plas-
ticity within a logarithmic strain framework. HHO methods have been introduced a few
years ago for diffusion problems [9191] and for linear elasticity problems [8989]. Since then, the
development of HHO methods has received a vigorous interest. Examples include in solids
mechanics Biot’s problem [3232], nonlinear elasticity [4040] and associative plasticity [33] with
small deformations, and hyperelasticity with finite deformations [22], and in fluid mechanics,
the incompressible Stokes equations [9393], the steady incompressible Navier–Stokes equations
[9494], and viscoplatic flows with yield stress [4949]. The discrete unknowns in HHO methods in
computational mechanics are face-based vector-valued polynomials of arbitrary order k ≥ 1
on the mesh skeleton. Cell-based vector-valued polynomials are also introduced for the stabil-
ity and approximation properties of the method. These cell-based vector-valued polynomials
are eliminated locally by using the well-known static condensation technique (based on a
local Schur complement).

The devising of HHO methods hinges on two key ideas: (i) a local reconstruction operator
acting on the face and cell unknowns that builds a tensor-valued polynomial representing the
displacement gradient in the polynomial space Pkd(T ;Rd×d), where T is a generic mesh cell
and d is the space dimension [4040, 22]; (ii) a local stabilization operator that weakly enforces
on each mesh face the consistency between the local face unknowns and the trace of the cell
unknowns [9191, 8989]. HHO methods offer several advantages: (i) general meshes (including
fairly general polyhedral mesh cells and non-matching interfaces) are supported; (ii) a lo-
cal formulation using equilibrated fluxes is available; (iii) computational benefits owing to
the static condensation of the cell unknowns and the higher-order convergence rates, and
(iv) the construction is dimension-independent. Moreover, an open-source implementation
of HHO methods, the DiSk++ library, is available using generic programming tools [7171]. In
computational mechanics, other salient features of HHO methods are: (i) a displacement-
based formulation avoiding the need to introduce additional globally coupled unknowns; (ii)
absence of volumetric locking; (iii) the integration of the constitutive law only at the cell
quadrature nodes; and (iv) the tangent matrix arising in the Newton’s method is symmetric.
Furthermore, HHO methods have been bridged [7474] to Hybridizable Discontinuous Galerkin
(HDG) methods [7676] and to nonconforming Virtual Element Methods (ncVEM) [1818]. The es-
sential difference with HDG methods is that the HHO stabilization is different so as to deliver
O(hk+1) energy-error estimates for linear model problems with smooth solutions on general
meshes, where h is the mesh-size. Concerning ncVEM, the devising viewpoint is different
(ncVEM considers the computable projection of virtual functions instead of a reconstruction
operator), whereas the stabilization achieves similar convergence rates as HHO but is written
differently. We also notice that, to our knowledge, HDG methods have not yet been devised
for finite elastoplasticity problems (in contrast to hyperelasticity problems [147147, 171171]). Owing
to the close links between HHO and HDG methods, this work can thus be seen as the first



84 Chapter 4. Finite elastoplastic deformations within a logarithmic strain framework

HDG-like method for plasticity problems in finite deformations.
This paper is organized as follows: in Section 2, we present the plasticity model within a

logarithmic strain framework and the weak formulation of the governing equations. In Sec-
tion 3, we devise the HHO method and highlight some of its theoretical aspects. In Section 4,
we investigate numerically the HHO method on two- and three-dimensional benchmarks from
the literature, and we compare our results to analytical solutions whenever available and to
numerical results obtained using established cG and mixed methods implemented in the
open-source industrial software code_aster[111111].

4.2 Plasticity model

In what follows, we write v or V for scalar-valued fields, v or V for vector-valued fields,
v or V for second-order tensor-valued fields, and V for fourth-order tensor-valued fields.
Contrary to the hyperelastic model, the elastoplastic model is based on the assumption that
the deformations are no longer reversible.

4.2.1 Kinematics

Let B0 be an elastoplastic material body that occupies the domain Ω0 in the reference configu-
ration. Here, Ω0 ⊂ Rd, d ∈ {2, 3}, is a bounded connected polyhedral domain with Lipschitz
boundary Γ := ∂Ω0 decomposed in the two relatively open subsets ΓN and ΓD, where a
Neumann and a Dirichlet condition is enforced respectively, and such that ΓN ∪ ΓD = Γ,
ΓN ∩ ΓD = ∅, and ΓD has positive Hausdorff-measure (so as to prevent rigid-body motions).
Due to the deformation, a point X ∈ Ω0 is mapped to a point x(t) = X + u(X, t) in the
equilibrium configuration, where u : Ω0 × I → Rd is the displacement mapping. The defor-
mation gradient F (u) = I + ∇X u takes values in Rd×d+ which is the set of Rd×d-matrices
with positive determinant. In what follows, the gradient and divergence operators are taken
with respect to the coordinate X of the reference configuration (we use the subscript X to
indicate it).

We use the logarithmic strain framework [167167] developed for anisotropic finite elastoplas-
ticity. Hence, it allows us to define the logarithmic strain tensor E ∈ Rd×dsym as

E :=
1

2
ln(F TF ). (4.1)

This measure of the deformations E is objective. Moreover, if the eigenvectors of E do not
change with time (the eigenvalues may change in time), then Ė = U̇U−1, where U ∈ Rd×dsym

is the right stretch tensor from the polar decomposition F = RU . The plastic deformations
are measured by means of the plastic logarithmic strain tensor Ep ∈ Rd×dsym . We assume the
following additive decomposition of the logarithmic strain tensor E:

Ee := E −Ep, (4.2)

where Ee ∈ Rd×dsym is the elastic logarithmic strain tensor. Finally, the plastic strains are
assumed to be incompressible, i.e.

traceEp = 0. (4.3)

4.2.2 Constitutive logarithmic strain model

In what follows, we place ourselves within the framework of generalized standard materials
initially introduced in [127127] and further developed in [159159]. Moreover, the plasticity model is
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assumed to be strain-hardening (or perfect) and rate-independent, i.e., the time and the speed
of the deformations have no influence on the strains. For this reason, only the incremental
plasticity problem is considered. The local material state is described by the logarithmic
strain tensorE ∈ Rd×dsym , the plastic logarithmic strain tensorEp ∈ Rd×dsym , and a finite collection
of internal variables α := (α1, · · · , αm) ∈ Rm, which contain typically at least the equivalent
plastic strain p, see Sect. 4.2.54.2.5 for a simple example or [159159] for more detailed examples. For
simplicity, we denote χ := (Ep, α) ∈ X the generalized internal variables, where the space of
the generalized internal variables is

X :=
{
χ = (Ep, α) ∈ Rd×dsym × Rm | trace(Ep) = 0

}
. (4.4)

Moreover, we assume that there exists a Helmholtz free energy ψ : Rd×dsym × Rm → R acting
on the pair (Ee, α) and satisfying the following hypothesis.

Hypothesis 4.1 (Helmholtz free energy) ψ can be decomposed additively into an elastic
and a plastic part as follows:

ψ(Ee, α) = ψe(Ee) + ψp(α). (4.5)

where the function ψp is strictly convex and the function ψe is polyconvex.

Following the second principle of thermodynamics, the logarithmic stress tensor T ∈ Rd×dsym

and the thermodynamic forces q ∈ Rm are derived from ψ as follows:

T = ∂Eeψ
e(Ee) and q = ∂αψ

p(α). (4.6)

The criterion to determine whether the deformations become plastic hinges on the scalar-
valued yield function Φ : Rd×dsym × Rm → R, which is a continuous and convex func-
tion of the logarithmic stress tensor T and the thermodynamic forces q. Letting A :={

(T , q) ∈ Rd×dsym × Rm |Φ(T , q) ≤ 0
}

be the convex set of admissible states, the elastic domain
Ae is composed of all the pairs (T , q) such that Φ(T , q) < 0, and the yield surface ∂A of all
the pairs (T , q) such that Φ(T , q) = 0.

Hypothesis 4.2 (Yield function) The yield function Φ : Rd×dsym × Rm → R satisfies the
following properties: (i) Φ is a piecewise analytical function; (ii) the point (0, 0) lies in the
elastic domain, i.e., Φ(0, 0) < 0; and (iii) Φ is differentiable at all points on the yield surface
∂A.

Finally, the incremental dissipation function D : X → R is a convex function which is
positively homogeneous of degree one and is defined as follows:

D(dχ) = sup
(T ,q)∈A

(
T : dEp − q·dα

)
, (4.7)

where dχ,dEp, and dα are the finite increments of χ,Ep, and α, respectively.

4.2.3 Finite elastoplasticity model problem in incremental form

We are interested in finding the quasi-static evolution in the pseudo-time interval I = [0, tF ],
tF > 0, of the elastoplastic material body B0. The pseudo-time interval I is discretized into
N subintervals such that t0 = 0 < t1 < · · · < tN = tF . The evolution occurs under the action
of a body force f : Ω0 × I → Rd, a traction force tN : ΓN × I → Rd exerted on the Neumann

boundary ΓN, and a displacement uD : ΓD × I → Rd imposed on the Dirichlet boundary
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ΓD. Note that the external forces f and tN are assumed dead, i.e. independent of the
displacement. We denote by V the set of all displacements with weak gradient and by X the
set of generalized internal variables such that the integrals below are well defined. Moreover,
we denote by V n

D, resp. V 0, the subspace of V which satisfies the Dirichlet conditions, resp.
homogeneous Dirichlet conditions on ΓD and :

V n
D = {v ∈ V | v = uD(tn) on ΓD} , V 0 = {v ∈ V | v = 0 on ΓD} . (4.8)

Following [167167], we define for any pseudo-time step 1 ≤ n ≤ N , the incremental pseudo-energy
density Ψ : Rd×d+ ×X → R acting on the pair (F , χ) such that

Ψ(F , χ) =
{(
ψe(Ee) + ψp(α)

)
−
(
ψe(Ee(un−1)) + ψp(αn−1)

)}
+D(χ− χn−1), (4.9)

where un−1 ∈ V n−1
D and χn−1 ∈ X are given from the previous pseudo-time step or the initial

condition. Note that the second term in (4.94.9), which is evaluated at tn−1, is irrelevant for
minimization purposes. It is added so that the pseudo-energy is in a time-incremental form.
This allows us to define the energy functional En : V n

D×X→ R such that, for all kinematically
admissible displacement fields v ∈ V n

D and all generalized internal variables χ ∈ X.

En(v, χ) =

∫
Ω0

Ψ(F (v), χ) dΩ0 −
∫

Ω0

fn·v dΩ0 −
∫

ΓN

tnN·v dΓ. (4.10)

The quasi-static equilibrium of the elastoplastic body B0 is determined at each pseudo-time
step 1 ≤ n ≤ N by finding a displacement field un ∈ V n

D and generalized internal variables
χn ∈ X which minimize the energy functional En in (4.104.10), i.e.,

(un, χn) ∈ arg min
v∈V nD, χ∈X

En(v, χ). (4.11)

On the one hand, the first variation of En with respect to the displacement field leads to:

0 = DEn(un, χn)[v] =

∫
Ω0

P n : ∇Xv dΩ0 −
∫

Ω0

fn·v dΩ0 −
∫

ΓN

tnN·v dΓ, for all v ∈ V 0,

(4.12)
where P n := ∂FΨ(F (un), χn) is the first Piola–Kirchhoff stress tensor. On the other hand,
the first variation of En with respect to the generalized internal variables leads to the following
incremental nonlinear equations (see [167167, 190190] for example):

Ep,n −Ep,n−1 = Λ(T n, qn) ∂TΦ(T n, qn), and αn − αn−1 = −Λ(T n, qn) ∂qΦ(T n, qn),
(4.13)

where the plastic multiplier Λ(T n, qn) verifies the Kuhn–Tucker conditions

Λ(T n, qn) ≥ 0, Φ(T n, qn) ≤ 0, and Λ(T n, qn) Φ(T n, qn) = 0. (4.14)

We assume additionally that the incremental pseudo-energy density Ψ is polyconvex so that
local minimizers of the energy functional (4.104.10) exist (cf. e.g [167167, 2121]). Thus, the min-
imization problem (4.114.11) can be reformulated, in a more classical way as follows: For all
1 ≤ n ≤ N , given un−1 ∈ V n−1

D and χn−1 ∈ X from the previous pseudo-time step or the
initial condition, find un ∈ V n

D and χn ∈ X such that∫
Ω0

P n : ∇Xv dΩ0 =

∫
Ω0

fn·v dΩ0 +

∫
ΓN

tnN·v dΓ, for all v ∈ V 0, (4.15a)
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and

(χn,P n,Anep) = FINITE PLASTICITY(χn−1,F (un−1),F (un)). (4.15b)

The procedure FINITE PLASTICITY allows one to compute the new values of the general-
ized internal variables χ, the first Piola–Kirchhoff stress tensor P and the consistent nominal
elastoplastic tangent modulus Aep at each pseudo-time step. This procedure is detailed in
Section 4.2.44.2.4.

4.2.4 Algorithmic aspects

The incremental elastoplasticity problem that has to be solved is to find the new value, after
incrementation, of the generalized internal variables χnew = (Ep,new, αnew) ∈ X , the first

Piola–Kirchhoff stress tensor P new ∈ Rd×dsym , and the consistent nominal elastoplastic tangent
modulus Anewep , given the generalized internal variables χ ∈ X , the deformation gradient

F ∈ Rd×d+ , and the new value of the deformation gradient F new ∈ Rd×d+ . Solving this problem
is denoted as previously

(χnew,P new,Anewep ) = FINITE PLASTICITY(χ,F ,F new). (4.16)

The procedure to compute (χnew,P new,Anewep ) is described in Algorithm 22 and is composed of
three different steps. Firstly, a geometric pre-processing is applied in order to compute the log-
arithmic strain tensors E and Enew. Secondly, the procedure SMALL PLASTICITY is used
to solve the nonlinear incremental problem (4.134.13)-(4.144.14) so as to compute (χnew,T new,Enewep ).
The resolution of (4.134.13)-(4.144.14) inside the procedure SMALL PLASTICITY requires to solve
a constrained nonlinear problem which is the same as in the case of plasticity with small de-
formations and thus makes it possible to extend the procedures already developed for small
deformations to finite deformations without modifications (further details about the proce-
dure SMALL PLASTICITY can be found in [33, Sect. 2.3]). One significant example of such
a procedure is the standard radial return mapping [190190, 193193]. Finally, a geometric post-
processing step is applied to compute the new values of the first Piola–Kirchhoff stress tensor
P new and the consistent nominal elastoplastic tangent modulus Anewep from the logarithmic
stress tensor T new and the consistent logarithmic elastoplastic tangent modulus Enewep . De-
tailed explanations to compute the pre- and post-processing steps are given in [167167, Box. 4].
Note that Anewep := ∂FFΨ(F new, χnew) is the consistent elastoplastic tangent modulus and is a

Algorithm 2 Computation of (χnew,P new,Anewep )

1: procedure FINITE PLASTICITY(χ,F ,F new)

2: Set E = 1
2 ln(F TF ), Enew = 1

2 ln(F new,TF new) and dE := Enew −E
3: Compute (χnew,T new,Enewep ) = SMALL PLASTICITY(χ,E, dE).

4: Compute P new = T new : (∂FE)new and Anewep = (∂FE)new,T : Enewep : (∂FE)new +
T new : (∂FFE)new

5: return (χnew,P new,Anewep )
6: end procedure

fourth-order tensor having only the major symmetries contrary to Enewep which has the major
and minor symmetries. For a finite incremental strain, the consistent elastoplastic tangent
modulus generally differs from the so-called continuous elastoplastic tangent modulus which
is obtained by letting the incremental strain tend to zero [195195].
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4.2.5 Example: nonlinear isotropic hardening with a von Mises yield cri-
terion

An illustration of the plasticity model defined above is the nonlinear isotropic hardening
model with a von Mises criterion. The elastic part of the free energy is such that

ψe(Ee) =
1

2
Ee : C : Ee, (4.17)

where the elastic modulus is C = 2µIs + λI ⊗ I, with µ > 0, 3λ + 2µ > 0, (Is)ij,kl =
1
2(δikδjl + δilδjk), and (I ⊗ I)ij,kl = δijδkl. The internal variable is α := p, where p ≥ 0 is the
equivalent plastic strain. The plastic part of the free energy is such that

ψp(α) = σy,0p+
H

2
p2 + (σy,∞ − σy,0)(p− 1− e−δp

δ
), (4.18)

where H ≥ 0 is the isotropic hardening modulus, σy,0 > 0, resp. σy,∞ ≥ 0, is the initial, resp.
infinite, yield stress and δ ≥ 0 is the saturation parameter. The associated thermodynamic
force q = σy,0 + Hp + (σy,∞ − σy,0)(1 − e−δp) is called the internal stress. Concerning the
yield function, we consider a J2-plasticity model with a von Mises criterion:

Φ(T , q) =

√
3

2
‖ dev(T )‖`2 − q, (4.19)

where dev(τ ) := τ− 1
d trace(τ )I is the deviatoric operator, and the Frobenius norm is defined

as ‖τ‖`2 =
√
τ : τ , for all τ ∈ Rd×d. Moreover, the above model describes with a reasonable

accuracy the behaviour of metals [159159]. This model is used for the numerical examples
presented in Section 4.44.4.

4.3 The Hybrid High-Order method

4.3.1 Discrete setting

We consider a mesh sequence (Th)h>0, where for each h > 0, the mesh Th is composed of
nonempty disjoint open polyhedra with planar faces such that Ω0 =

⋃
T∈Th T . The mesh-

size is h = maxT∈Th hT , where hT stands for the diameter of the cell T . A closed subset F
of Ω0 is called a mesh face if it is a subset with nonempty relative interior of some affine
hyperplane HF and (i) if either there exist two distinct mesh cells T−, T+ ∈ Th such that
F = ∂T− ∩ ∂T+ ∩HF (and F is called an interface) or (ii) there exists one mesh cell T ∈ Th
such that F = ∂T ∩ Γ ∩HF (and F is called a boundary face). The mesh faces are collected
in the set Fh which is further partitioned into the subset F i

h which is the collection of the
interfaces and the subset Fb

h which is the collection of the boundary faces. We assume that
the mesh is compatible with the partition of the boundary Γ into ΓD and ΓN, so that we
can further split the set Fb

h into the disjoint subsets Fb,D
h and Fb,N

h with obvious notation.
For all T ∈ Th, F∂T is the collection of the mesh faces that are subsets of ∂T and nT is the
unit outward normal to T . We assume that the mesh sequence (Th)h>0 is shape-regular in
the sense specified in [8989], i.e., there is a matching simplicial submesh of Th that belongs to
a shape-regular family of simplicial meshes in the usual sense of Ciarlet [6969] and such that
each mesh cell T ∈ Th (resp., mesh face F ∈ Fh) can be decomposed in a finite number of
sub-cells (resp., sub-faces) which belong to only one mesh cell (resp., to only one mesh face
or to the interior of a mesh cell) with uniformly comparable diameter.

Let k ≥ 1 be a fixed polynomial degree and l ∈ {k, k + 1}. In each mesh cell T ∈ Th,
the local HHO unknowns consist of a pair (vT , v∂T ), where the cell unknown vT ∈ Pld(T ;Rd)
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(a) (k, l) = (1, 1) (b) (k, l) = (1, 2) (c) (k, l) = (2, 2) (d) (k, l) = (2, 3)

Figure 4.1: Face (black) and cell (gray) degrees of freedom in Ûk,lT for different values of the
pair (k, l) in the two-dimensional case (each dot represents a degree of freedom which is not
necessarily a point evaluation).

is a vector-valued d-variate polynomial of degree at most l in the mesh cell T , and v∂T ∈
Pkd−1(F∂T ;Rd) =

Ś

F∈F∂T P
k
d−1(F ;Rd) is a piecewise, vector-valued (d−1)-variate polynomial

of degree at most k on each face F ∈ F∂T . We write more concisely that

v̂T := (vT , v∂T ) ∈ Ûk,lT := Pld(T ;Rd)× Pkd−1(F∂T ;Rd). (4.20)

We write the superscript k first since k is the value that determines the convergence rates of
the approximation. The degrees of freedom are illustrated in Fig. 4.14.1, where a dot indicates
one degree of freedom (which is not necessarily computed as a point evaluation) and the

geometric shape of the cell is only illustrative. We equip the space Ûk,lT with the following
local discrete strain semi-norm:

|v̂T |21,T := ‖∇XvT ‖2L2(T )
+ ‖η

1
2
∂T (vT |∂T − v∂T )‖2

L2(∂T )
, (4.21)

with the piecewise constant function η∂T such that η∂T |F = h−1
F for all F ∈ F∂T , where hF

is the diameter of F . We notice that |v̂T |1,T = 0 implies that vT is a constant and that v∂T
is the trace of vT on ∂T .

4.3.2 Local gradient reconstruction and stabilization

The first key ingredient in the devising of the HHO method is a local gradient reconstruction
in each mesh cell T ∈ Th. This reconstruction is materialized by an operator Gk

T : Ûk,lT →
Pkd(T ;Rd×d) mapping onto the space composed of Rd×d-valued polynomials in T . The main
reason for reconstructing the gradient in a larger space than the space ∇XPk+1

d (T ;Rd) (as for
the linear elasticity problem [8989] ) is that the reconstructed gradient of a test function acts
against a discrete stress tensor which is not in gradient form, see [8787, Section 4] for further

insight. For all v̂T ∈ Ûk,lT , the reconstructed gradient Gk
T (v̂T ) ∈ Pkd(T ;Rd×d) is obtained by

solving the following local problem: For all τ ∈ Pkd(T ;Rd×d),

(Gk
T (v̂T ), τ )L2(T ) = (∇XvT , τ )L2(T ) + (v∂T − vT |∂T , τnT )L2(∂T ). (4.22)

Solving this problem entails choosing a basis of the polynomial space Pkd(T ;R) and inverting
the associated mass matrix for each component of the tensor Gk

T (v̂T ). The second key
ingredient in the HHO method is a local stabilization operator that enforces weakly the
matching between the faces unknowns and the trace of the cell unknowns. Following [9191, 8989],
the stabilization operator Sk∂T : Pld−1(F∂T ;Rd) → Pkd−1(F∂T ;Rd) acts on the difference θ =

v∂T − vT |∂T ∈ Pld−1(F∂T ;Rd), and in the mixed-order case l = k + 1 is such that, for all

θ ∈ Pk+1
d−1(F∂T ;Rd),

Sk∂T (θ) = Πk
∂T

(
θ
)
, (4.23)
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where Πk
∂T denotes the L2-orthogonal projectors onto Pkd−1(F∂T ;Rd), and in the equal-order

case l = k is such that, for all θ ∈ Pkd−1(F∂T ;Rd),

Sk∂T (θ) = Πk
∂T

(
θ − (I −Πk

T )Dk+1
T (0, θ)|∂T

)
, (4.24)

where Πk
T denotes the L2-orthogonal projectors onto Pkd(T ;Rd). The local displacement

reconstruction operator Dk+1
T : Ûk,lT → Pk+1

d (T ;Rd) is such that, for all v̂T ∈ Ûk,lT ,

Dk+1
T (v̂T ) ∈ Pk+1

d (T ;Rd) is obtained by solving the following local Neumann problem: For

all w ∈ Pk+1
d (T ;Rd),

(∇XD
k+1
T (v̂T ),∇Xw)L2(T ) = (∇XvT ,∇Xw)L2(T ) + (v∂T − vT |∂T ,∇XwnT )L2(∂T ). (4.25)

together with the mean-value conditions
∫
T D

k+1
T (v̂T )dT =

∫
T vT dT . Comparing with (4.224.22),

one readily sees that ∇XD
k+1
T (v̂T ) is the L2-orthogonal projection of Gk

T (v̂T ) onto the sub-

space ∇XPk+1
d (T ;Rd). Note also that the right-hand side of (4.244.24) can be rewritten as

Πk
∂T (v∂T − vT |∂T − (I −Πk

T )Dk+1
T (v̂T )|∂T ). Adapting [8989, Lemma 4], it is straightforward to

establish the following stability and boundedness properties (the proof is omitted for brevity).

Lemma 4.3 (Boundedness and stability) Let the gradient reconstruction operator be de-
fined by (4.224.22) and the stabilization operator be defined by (4.234.23) or (4.244.24). Let η∂T be defined
below (4.214.21). Then, we have the following properties: (i) Boundedness: there exists α] < +∞,

uniform w.r.t. h, such that, for all T ∈ Th and for v̂T ∈ Ûk,lT ,(
‖Gk

T (v̂T )‖2
L2(T )

+ ‖η
1
2
∂TS

k
∂T (v∂T − vT |∂T )‖2

L2(∂T )

) 1
2

≤ α]|v̂T |1,T . (4.26)

(ii) Stability: there exists α[ > 0, uniform w.r.t. h, such that, for all T ∈ Th and all v̂T ∈ Ûk,lT ,

α[|v̂T |1,T ≤
(
‖Gk

T (v̂T )‖2
L2(T )

+ ‖η
1
2
∂TS

k
∂T (v∂T − vT |∂T )‖2

L2(∂T )

) 1
2

. (4.27)

As shown in [8989], the following important commuting property holds true:

Gk
T (ÎkT (v)) = Πk

T (∇Xv), ∀v ∈ H1(T ;Rd), (4.28)

with the reduction operator ÎkT : H1(T ;Rd) → Ûk,lT defined as ÎkT (v) = (Πl
T (v),Πk

∂T (v|∂T )).
Taking the trace in (4.284.28), we infer that

trace
(
Gk
T (ÎkT (v))

)
= Πk

T (∇X ·v), ∀v ∈ H1(T ;Rd), (4.29)

which is the key commuting property to prove robustness for quasi-incompressible linear elas-
ticity, see [8989]. This absence of volumetric locking is confirmed in the numerical experiments
performed in Section 4.44.4 in the nonlinear setting of finite elastoplasticity. Finally, proceeding
as in [8989, Thm. 8], one can show that for the linear elasticity problem and smooth solutions,
the energy error converges as hk+1|u|Hk+2(Ω0).

Remark 4.4 (HDG-type stabilization) The stabilization operator (4.244.24) is essential to
prove the above mentioned convergence rates in the equal-order case for linear problems and
smooth solutions on general meshes. In general, HDG methods use the stabilization operator
Sk∂T (θ) = θ in the equal-order case which differs from the stabilization operator (4.244.24) and
allows one to show only that the energy error converges as hk|u|Hk+1(Ω0) for linear problems
and smooth solutions on general meshes. In the mixed-order case, the stabilization operator
(4.234.23) has been initially introduced in [158158] and the same convergence rates as for the HHO
method are obtained.
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4.3.3 Global discrete problem

Let us now devise the global discrete problem. We set Pld(Th;Rd) :=
Ś

T∈Th P
l
d(T ;Rd) and

Pkd−1(Fh;Rd) :=
Ś

F∈Fh P
k
d−1(F ;Rd). The global space of discrete HHO unknowns is defined

as
Û
k,l
h := Pld(Th;Rd)× Pkd−1(Fh;Rd). (4.30)

For an element v̂h ∈ Û
k,l
h , we use the generic notation v̂h = (vTh , vFh). For any mesh cell

T ∈ Th, we denote by v̂T ∈ Ûk,lT the local components of v̂h attached to the mesh cell T
and to the faces composing its boundary ∂T , and for any mesh face F ∈ Fh, we denote
by vF the component of v̂h attached to the face F . The Dirichlet boundary condition on
the displacement field can be enforced explicitly on the discrete unknowns attached to the
boundary faces in Fb,D

h . Letting Πk
F denote the L2-orthogonal projector onto Pkd−1(F ;Rd),

we set

Û
k,l,n
h,D :=

{
v̂h ∈ Û

k,l
h | vF = Πk

F (uD(tn)), ∀F ∈ Fb,D
h

}
, (4.31a)

Û
k,l
h,0 :=

{
v̂h ∈ Û

k,l
h | vF = 0, ∀F ∈ Fb,D

h

}
. (4.31b)

Note that the map v̂h 7→ (
∑

T∈Th |v̂T |
2
1,T )

1
2 defines a norm on Û

k,l
h,0.

A key feature of the present HHO method is that the discrete generalized internal variables
are computed only at the quadrature points in each mesh cell. We introduce for all T ∈ Th,
the quadrature points ξ

T
= (ξ

T,j
)1≤j≤mQ , with ξ

T,j
∈ T for all 1 ≤ j ≤ mQ, and the

quadrature weights ωT = (ωT,j)1≤j≤mQ , with ωT,j ∈ R for all 1 ≤ j ≤ mQ. We denote by kQ
the order of the quadrature. Then, the discrete internal variables are sought in the space

X̃mQTh :=
ą

T∈Th

XmQ , (4.32)

that is, for all T ∈ Th, the internal variables attached to T form a vector χ̃
T

=
(χ̃
T

(ξ
T,j

))1≤j≤mQ with χ̃
T

(ξ
T,j

) ∈ X for all 1 ≤ j ≤ mQ.

We can now formulate the global discrete problem. We use the following notation for two
tensor-valued functions (p, q) defined on T :

(p, q)L2
Q(T ) :=

mQ∑
j=1

ωT,j p(ξ
T,j

) : q(ξ
T,j

). (4.33)

We also need to consider the case where we know the tensor p̃ only at the quadrature nodes
(we use a tilde to indicate this situation), i.e., we have p̃ = (p̃(ξ

T,j
))1≤j≤mQ ∈ (Rd×d)mQ . In

this case, we slightly abuse the notation by denoting again by (p̃, q)L2
Q(T ) the quantity equal

to the right-hand side of (4.334.33). The discrete energy functional Enh : Û
k,l,n
h,D × X̃

mQ
Th → R is

defined for any pseudo-time step 1 ≤ n ≤ N by

Enh
(
v̂h, χ̃Th

)
=
∑
T∈Th

{
(Ψ̃(F k

T (v̂T ), χ̃
T

), 1)L2
Q(T ) − (fn, vT )L2(T )

}
−

∑
F∈Fb,N

h

(tnN, vF )L2(F )

+
∑
T∈Th

β

2
‖η

1
2
∂TS

k
∂T (v∂T − vT |∂T )‖2

L2(∂T )
, (4.34)

for all v̂h ∈ Û
k,l,n
h,D and χ̃Th

∈ X̃mQTh , with the local deformation gradient operator F k
T : Ûk,lT →

Pkd(T ;Rd×d) such that F k
T (v̂T ) := I +Gk

T (v̂T ). Moreover, in the second line of (4.344.34), the
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stabilization employs a weight of the form β = 2µβ0 with β0 > 0. In the original HHO
method for linear elasticity [8989], the choice β0 = 1 is considered. In the present setting, the
choice for β0 is further discussed in Section 4.3.54.3.5 and in Section 4.5.34.5.3. The global discrete
problem consists in seeking for any pseudo-time step 1 ≤ n ≤ N , a stationary point of

the discrete energy functional: Find the pair of discrete displacements ûnh ∈ Û
k,l,n
h,D and the

discrete internal variables χ̃nTh
∈ X̃mQTh such that, for all δv̂h ∈ Û

k,l
h,0,∑

T∈Th

(P̃
n
,Gk

T (δv̂T ))L2
Q(T ) +

∑
T∈Th

β(η∂TS
k
∂T (un∂T − unT |∂T ), Sk∂T (δv∂T − δvT |∂T ))L2(∂T )

=
∑
T∈Th

(fn, δvT )L2(T ) +
∑

F∈Fb,N
h

(tnN, δvF )L2(F ), (4.35)

where for all T ∈ Th and all 1 ≤ j ≤ mQ,

(χ̃n
T

(ξ
T,j

), P̃
n
(ξ
T,j

), Ãnep(ξT,j)) =

FINITE PLASTICITY(χ̃n−1
T

(ξ
T,j

),F k
T (ûn−1

T )(ξ
T,j

),F k
T (ûnT )(ξ

T,j
)), (4.36)

with ûn−1
h ∈ Ûk,l,n−1

h,D and χ̃n−1
Th
∈ X̃mQTh given either from the previous pseudo-time step or

the initial condition.

4.3.4 Discrete principle of virtual work

The discrete problem (4.354.35) expresses the principle of virtual work at the global level, and
adapting the ideas introduced in [7474] (see also [33, 4040]), it is possible to infer a local principle
of virtual work in terms of face-based discrete tractions that comply with the law of action
and reaction.

Let Sk∗∂T : Pkd−1(F∂T ;Rd) → Pkd−1(F∂T ;Rd) be the adjoint operator of Sk∂T with

respect to the L2(∂T ;Rd)-inner product so that we have (η∂TS
k
∂T (θ), Sk∂T (ζ))L2(∂T ) =

(Sk∗∂T (η∂TS
k
∂T (θ)), ζ)L2(∂T ) (recall that the weight η∂T is piecewise constant on ∂T ). Let

Πk
Q,T : (Rd×d)mQ → Pkd(T ;Rd×d) denote the L2

Q-orthogonal projector such that for all

p̃ ∈ (Rd×d)mQ , (Πk
Q,T (p̃), q)L2(T ) = (p̃, q)L2

Q(T ) for all q ∈ Pkd(T ;Rd×d). Finally, for any

pseudo-time step 1 ≤ n ≤ N and all T ∈ Th, let us define the discrete traction:

TnT := Πk
Q,T (P̃

n
T )·nT + βSk∗∂T (η∂TS

k
∂T (un∂T − unT |∂T )) ∈ Pkd−1(F∂T ;Rd), (4.37)

where P̃
n
T = (P̃

n
T (ξ

T,j
))1≤j≤mQ ∈ (Rd×d)mQ and ûnT ∈ Ûk,lT .

Lemma 4.5 (Equilibrated tractions) Assume that kQ ≥ 2k. Then, for any pseudo-time
step 1 ≤ n ≤ N , the following local principle of virtual work holds true for all T ∈ Th:

(P̃
n
T ,∇XδvT )L2

Q(T ) − (TnT , δvT |∂T )L2(∂T ) = (fn, δvT )L2(T ), ∀δvT ∈ Pld(T ;Rd), (4.38)

where the discrete tractions TnT defined by (4.374.37) satisfy the following law of action and

reaction for all F ∈ F i
h ∪ F

b,N
h :

TnT−|F + TnT+|F = 0, if F ∈ F i
h with F = ∂T− ∩ ∂T+ ∩HF , (4.39a)

TnT |F = Πk
F (tnN), if F ∈ Fb,N

h with F = ∂T ∩ ΓN ∩HF . (4.39b)
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4.3.5 Nonlinear solver and implementation

The nonlinear problem (4.354.35)-(4.364.36) arising at any pseudo-time step 1 ≤ n ≤ N is solved

using a Newton’s method. Given ûn−1
h ∈ Ûk,l,n−1

h,D and χ̃n−1
Th
∈ X̃mQTh from the previous pseudo-

time step or the initial condition, the Newton’s method is initialized by setting ûn,0h = ûn−1
h ,

up to the update of the Dirichlet condition, and χ̃n,0Th
= χ̃n−1

Th
. Then, at each Newton’s step

i ≥ 0, one computes the incremental displacement δûn,ih ∈ Û
k,l
h,0 and updates the discrete

displacement as ûn,i+1
h = ûn,ih + δûn,ih . The linear system of equations to be solved is∑
T∈Th

(Ãn,iep : Gk
T (δûn,iT ),Gk

T (δv̂T ))L2
Q(T )

+
∑
T∈Th

β(η∂TS
k
∂T (δun,i∂T − δu

n,i
T |∂T ), Sk∂T (δv∂T − δvT |∂T ))L2(∂T )

= −Rn,ih (δvTh , δvFh), (4.40)

for all δv̂T ∈ Û
k,l
h,0, where for all T ∈ Th and all 1 ≤ j ≤ mQ,

(χ̃n,i
T

(ξ
T,j

), P̃
n,i

(ξ
T,j

), Ãn,iep (ξ
T,j

)) = FINITE PLASTICITY(χn−1
T,j

,F n−1
T,j ,F

n,i
T,j), (4.41)

with χn−1
T,j

:= χ̃n−1
T

(ξ
T,j

), F n,i
T,j := F k

T (ûn,iT )(ξ
T,j

), F n−1
T,j := F k

T (ûn−1
T )(ξ

T,j
), and the residual

term

Rn,ih (δv̂h) =
∑
T∈Th

(P̃
n,i
,Gk

T (δv̂T ))L2
Q(T ) −

∑
T∈Th

(fn, δvT )L2(T ) −
∑

F∈Fb,N
h

(tnN, δvF )L2(F )

+
∑
T∈Th

β(η∂TS
k
∂T (un,i∂T − u

n,i
T |∂T ), Sk∂T (δv∂T − δvT |∂T ))L2(∂T ). (4.42)

The assembling of the stiffness matrix resulting from the left-hand side of (4.404.40) is local
(and thus fully parallelizable). The discrete internal variables χ̃nTh

∈ X̃mQTh are updated

at the end of each pseudo-time step. Moreover, since the consistent elastoplastic tan-
gent modulus Aep has major symmetries, its eigenvalues are real. Let us set θTh,Q :=
min(T,j)∈Th×{1,...,mQ} θ

min(Ãep(ξT,j)), where θmin(M) denotes the smallest eigenvalue of a sym-

metric fourth-order tensor M. The following result shows that the linear system (4.404.40) aris-
ing at each Newton’s step is coercive under the simple choice β0 > 0 on the stabilization
parameter if Ãep is positive-definite. Notice that strain-hardening plasticity is not a suffi-
cient condition for positive-definiteness of Ãep (only for Ẽep) since in finite elastoplasticity,
geometrical nonlinearities also exist.

Theorem 4.6 (Coercivity) Assume that kQ ≥ 2k and that all the quadrature weights are
positive. Moreover, assume that the consistent elastoplastic tangent modulus Aep is positive-
definite, i.e., θTh,Q > 0. Then, the linear system (4.404.40) in each Newton’s step is coercive for

all β0 > 0, i.e., there exists Cell > 0, independent of h, such that for all v̂h ∈ Û
k,l
h,0,

∑
T∈Th

(Ãep : Gk
T (v̂T ),Gk

T (v̂T ))L2
Q(T ) +

∑
T∈Th

β‖η
1
2
∂TS

k
∂T (v∂T − vT |∂T )‖2

L2(∂T )

≥ Cell min

(
β0,

θTh,Q
2µ

)
2µ
∑
T∈Th

|v̂T |21,T . (4.43)
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The proof follows directly from [33, Theorem 6]. Note that Theorem 4.64.6 states that one
iteration of the Newton’s process is stable under a positive-definiteness assumption but does
not state that a solution to the whole Newton’s process exists. The existence of such a
solution has been showed in the context of nonlinear elliptic equations for dG methods [214214].
Moreover, if the consistent elastoplastic tangent modulus Aep is no longer positive-definite for
at least one quadrature point which is a possibility in finite elastoplasticity since geometrical
nonlinearities also exist, then Theorem 4.64.6 is no longer valid (even if Ẽep remains positive-
definite). Moreover, a reasonable choice of the stabilization parameter appears to be β0 ≥
max(1,

θTh,Q
2µ ) because β0 = 1 is a natural choice for linear elasticity [8989] and the choice

β0 ≥ θTh,Q
2µ allows one to adjust the stabilization parameter if the evolution is plastic. We

investigate numerically the choice of β0 in Section 4.5.34.5.3.

From a numerical point of view, as is classical with HHO methods [8989, 9191], and more
generally with hybrid approximation methods, the cell unknowns δun,iT in (4.404.40) can be elim-
inated locally by using a static condensation (or Schur complement) technique. This allows
one to reduce (4.404.40) to a linear system in terms of the face unknowns only. The reduced
system is of size NFh × d

(
k+d−1
d−1

)
, where NFh denotes the number of mesh faces (unknowns

attached to Dirichlet boundary faces can be eliminated by enforcing the boundary condition
explicitly). The implementation of HHO methods is realized using the open-source library
DiSk++ which provides generic programming tools for the implementation of HHO methods
and is available online11. We refer the reader to [7171] and [33, Section 3.6] for further aspects
about the implementation.

4.4 Numerical examples

The goal of this section is to evaluate the proposed HHO method on two- and three-
dimensional benchmarks from the literature: (i) a necking of a 2D rectangular bar sub-
jected to uniaxial extension, (ii) a Cook’s membrane subjected to bending, (iii) a torsion
of a square-section bar, and (iv) a quasi-incompressible sphere under internal radial force.
We compare our results to the analytical solution whenever available or to numerical results
obtained using the industrial open-source FEM software code_aster[111111]. In this case, we
consider a linear, resp. quadratic, cG formulation, referred to as Q1, resp. T2 or Q2 when full
integration is used, or, Q2 RI when reduced integration is used, depending on the mesh, and
a three-field mixed formulation in which the unknowns are the displacement, the pressure
and the volumetric strain fields referred to as UPG [99]; in the UPG method, the displace-
ment field is quadratic, whereas both the pressure and the volumetric strain fields are linear.
The conforming Q1, T2 and Q2 methods with full integration, contrary to Q2 RI method
with reduced integration in most of the situations, are known to present volumetric locking
due to plastic incompressibility, whereas the UPG method is known to be robust but costly.
Numerical results obtained using the UPG method are used as a reference solution whenever
an analytical solution is not available.

The nonlinear isotropic plasticity model with a von Mises yield criterion described in
Section 4.2.54.2.5 is used for the test cases. For the first three test cases, strain-hardening plasticity
is considered with the following material parameters: Young modulus E = 206.9 GPa, Poisson
ratio ν = 0.29, hardening parameter H = 129.2 MPa, initial yield stress σy,0 = 450 MPa,
infinite yield stress σy,∞ = 715 MPa, and saturation parameter δ = 16.93. For the fourth
case, perfect plasticity is considered with the following material parameters: Young modulus
E = 28.85 MPa, Poisson ratio ν = 0.499, hardening parameter H = 0 MPa, initial and

1 https://github.com/wareHHOuse/diskpp
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Method Number of dofs Number of QPs

Q1 884 1600

Q2 2566 3600

Q2 RI 2566 1600

UPG 3450 3600

HHO(1;1) 3364 1600

HHO(1;2) 3364 1600

HHO(2;2) 5046 3600

HHO(2;3) 5046 3600

Table 4.1: Necking of a 2D rectangular bar: number of globally coupled degrees of freedom
(dofs) and quadrature points (QPs) for the different methods.

infinite yield stresses σy,0 = σy,∞ = 6 MPa, and saturation parameter δ = 0. Moreover, for
the two-dimensional test cases (i) and (ii), we assume additionally a plane strain condition.
In the numerical experiments reported in this section, the stabilization parameter is taken
to be β = 2µ (β0 = 1), and all the quadratures use positive weights. In particular, for the
HHO method, we employ a quadrature of order kQ = 2k for the behavior cell integration. We
employ the notation HHO(k, l) when using face polynomials of order k and cell polynomials
of order l.

In Section 4.54.5, we perform further numerical investigations to test other aspects of HHO
methods such as the support of general meshes with possibly non-conforming interfaces, the
possibility of considering the lowest-order case k = 0, and the dependence on the stabilization
parameter β.

4.4.1 Necking of a 2D rectangular bar

In this first benchmark, we consider a 2D rectangular bar with an initial imperfection. The
bar is subjected to uniaxial extension. This example has been studied previously by many
authors as a necking problem [113113, 191191, 8282, 66, 209209] and can be used to test the robustness
of the different methods. The bar has a length of 53.334 mm and a variable width from an
initial width value of 12.826 mm at the top to a width of 12.595 mm at the center of the bar
to create a geometric imperfection. A vertical displacement uy = 5 mm is imposed at both
ends, as shown in Fig. 4.2a4.2a. For symmetry reasons, only one-quarter of the bar is discretized,
and the mesh is composed of 400 quadrangles, see Fig. 4.2b4.2b. The load-displacement curve is
plotted in Fig. 4.2c4.2c. We observe that except for Q1, all the other methods give very similar
results. Moreover, the equivalent plastic strain p, respectively the trace of the Cauchy stress
tensor σ, are shown in Fig. 4.34.3, resp. in Fig. 4.44.4, at the quadrature points on the final
configuration. A sign of locking is the presence of strong oscillations in the trace of the
Cauchy stress tensor σ. We notice that the cG formulations Q1 and Q2 lock, contrary to
the HHO, Q2 RI, and UPG methods which deliver similar results. We remark however that
the results for HHO(1;1), HHO(1;2), and Q2 RI are slightly less smooth than for HHO(2;2),
HHO(2;3), and UPG. The reason is that on a fixed mesh, the three former methods have less
quadrature points than the three latter ones, see Table 4.14.1 (HHO(2;2), HHO(2;3), and UPG
have the same number of quadrature points). Therefore, the stress is evaluated using less
points in HHO(1;1), HHO(1;2), and Q2 RI. It is sufficient to refine the mesh or to increase
the order of the quadrature by two in HHO(1;1) and HHO(1;2) to retrieve similar results to
those for the three other methods (not shown for brevity).
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(a) (b)

0 1 2 3 4 5
0

2

4

6

Q1 Q2 Q2 RI

UPG HHO(1;1) HHO(1;2)

HHO(2;2) HHO(2;3)

(c)

Figure 4.2: Necking of a 2D rectangular bar: (a) Geometry and boundary conditions (dimen-
sions in mm). For symmetry reasons only the upper right-quarter of the bar is considered (b)
Mesh composed of 400 quadrangles used for the computations. (c) Vertical reaction versus
imposed displacement for the different methods (all the curves overlap except that for Q1) .
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(a) Q1 (b) Q2 (c) Q2 RI (d) UPG

(e) HHO(1;1) (f) HHO(1;2) (g) HHO(2;2) (h) HHO(2;3)

Figure 4.3: Necking of a 2D rectangular bar: Equivalent plastic strain p at the quadrature
points on the final configuration for the different methods.
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(a) Q1 (b) Q2 (c) Q2 RI (d) UPG

(e) HHO(1;1) (f) HHO(1;2) (g) HHO(2;2) (h) HHO(2;3)

Figure 4.4: Necking of a 2D rectangular bar: trace of the Cauchy stress tensor σ (in MPa)
at the quadrature points on the final configuration for the different methods.
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(a)
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HHO(2;2) HHO(2;3)

(b)

Figure 4.5: Cook’s membrane: (a) Geometry and boundary conditions (dimensions in mm).
(b) Convergence of the vertical displacement of the point A (in mm) vs. the number of
degrees of freedom for Q1, Q2, Q2 RI, UPG, and HHO methods.

4.4.2 Cook’s membrane

We consider the Cook’s membrane problem which is a well known bending-dominated test
case [191191, 99, 112112]. It consists of a tapered panel, clamped on one side, and subjected to
a total vertical load Fy = 5 kN applied uniformly along all the opposite side, as shown in
Fig. 4.5a4.5a. The simulation is performed on a sequence of refined quadrangular meshes such
that each side contains 2N edges with 0 ≤ N ≤ 6. The vertical displacement of the point
A versus the number of degrees of freedom is plotted in Fig. 4.5b4.5b for the different methods.
As expected when comparing the number of degrees of freedom, the linear cG formulation
Q1 has the slower convergence, HHO(1;2), Q2 RI, and UPG converge slightly faster than
HHO(1;1), Q2, whereas HHO(2;2) and HHO(2;3) outperform all the other methods and give
almost the same results. Moreover, we show in Fig. 4.64.6 the trace of the Cauchy stress tensor σ
at the quadrature points on the final configuration. The cG formulations Q1 and Q2 present
oscillations that confirm the presence of volumetric locking, contrary to the HHO, Q2 RI,
and UPG methods which deliver similar and smooth results (even if the cG formulations Q1
and Q2 present volumetric locking in terms of stress, they converge in terms of displacement
with mesh refinement). However, if we compare the trace of the Cauchy stress tensor σ
for HHO(1;1) and HHO(1;2), we remark that the trace is slightly smoother near the upper-
right corner for HHO(1;2) than for HHO(1;1). This can be explained by the presence of
non-physical vertical localization bands of plastic deformations for HHO(1;1) and not for
HHO(1;2). Localization bands constitute a well-known problem when the plasticity model is
local. Computational practice with cG approximations indicates that increasing the order of
the finite elements mitigates this issue. The same effect is observed here by increasing the
degree of the cell unknowns (further numerical investigations are performed in Sect. 4.5.14.5.1 for
HHO methods). An alternative is to use a non-local plasticity model [166166].



100 Chapter 4. Finite elastoplastic deformations within a logarithmic strain framework

(a) Q1 (b) Q2 (c) Q2 RI

(d) UPG (e) HHO(1;1) (f) HHO(1;2)

(g) HHO(2;2) (h) HHO(2;3)

Figure 4.6: Cook’s membrane: trace of the Cauchy stress tensor σ (in GPa) at the quadrature
points on the final configuration for a 32×32 quadrangular mesh and for the different methods.
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4.4.3 Torsion of a square-section bar

This third benchmark [143143] allows one to test the robustness of HHO methods under large
torsion. The bar has a square-section of length L = 1 mm and a height of H = 5 mm along
the z-direction. The bottom end is clamped and the top end is subjected to a planar rotation
of an angle Θ around its center along the z-direction and remains plane (the displacement of
the top end along the z-direction is blocked), see Fig. 4.7a4.7a. The mesh is composed of 1900
hexahedra, see Fig. 4.7b4.7b. The equivalent plastic strain p is plotted in Fig. 4.84.8 for HHO(1;1)
and for different rotation angles Θ. There is no sign of localization of the plastic deformations
even for large rotations whatever the HHO variant is used. Moreover, the trace of the Cauchy
stress tensor σ is plotted on the final configuration for Θ = 360◦ and for the Q2, UPG, and
HHO methods in Fig. 4.94.9. As expected, there is no sign of volumetric locking for the HHO
and UPG methods which give similar results contrary to Q2. The small oscillations observed
at both ends are due to the imposed conditions on the displacement.

(a) (b)

Figure 4.7: Torsion test of a square-section bar: (a) Geometry and boundary conditions
(dimensions in mm) (b) Mesh in the reference configuration composed of 1920 hexahedra.

4.4.4 Quasi-incompressible sphere under internal radial force

This last benchmark [99] consists of a quasi-incompressible sphere under internal radial forces
for which an analytical solution is known when the entire sphere has reached a plastic state.
This benchmark is particularly challenging compared to the previous ones since we consider
here perfect plasticity. The sphere has an inner radius Rin = 0.8 mm and an outer radius
Rout = 1 mm. An internal radial force P is imposed. For symmetry reasons, only one-eighth
of the sphere is discretized, and the mesh is composed of 1580 tetrahedra, see Fig. 4.10a4.10a. The
simulation is performed until the limit load corresponding to an internal radial force Plim '
20.43 N is reached. The equivalent plastic strain p is plotted for HHO(1;2) in Fig. 4.10b4.10b,
and the trace of the Cauchy stress tensor σ is compared for HHO, UPG and T2 methods
in Fig. 4.114.11 at all the quadrature points on the final configuration for the limit load. We
notice that the quadratic element T2 locks, whereas HHO and UPG do not present any sign
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(a) Θ = 0◦ (b) Θ = 90◦ (c) Θ = 180◦ (d) Θ = 270◦ (e) Θ = 360◦

Figure 4.8: Torsion of a square-section bar: Equivalent plastic strain p for HHO(1;1) at the
quadrature points for different rotation angles Θ.

of locking and produce results that are very close to the analytical solution. However, the
trace of the Cauchy stress tensor σ is slightly more dispersed around the analytical solution
for HHO(2;2) and HHO(2;3) than for HHO(1;1) and HHO(1;2) near the outer boundary. For
this test case, we do not expect that HHO(2;2) and HHO(2;3) will deliver more accurate
solutions than HHO(1;1) and HHO(1;2) since the geometry is discretized using tetrahedra
with planar faces.

We next investigate the influence of the quadrature order kQ on the accuracy of the
solution. The trace of the Cauchy stress tensor σ is compared for HHO(1;1), HHO(2;2),
and UPG methods in Fig. 4.124.12 at all the quadrature points on the final configuration for
the limit load, and for a quadrature order kQ higher than the one employed in Fig. 4.114.11
(HHO(1;2) and HHO(2;3) give similar results and are not shown for brevity). We remark
that when we increase the quadrature order, UPG locks for quasi-incompressible finite
deformations, whereas HHO does not lock, and the results are (only) a bit more dispersed
around the analytical solution. Moreover, HHO(2;2) is less sensitive than HHO(1;1) to
the choice of the quadrature order kQ. Note that this problem is not present for HHO
methods with small deformations [33]. Furthermore, this sensitivity to the quadrature order
seems to be absent for finite deformations when the elastic deformations are compressible
(the plastic deformations are still incompressible). To illustrate this claim, we perform the
same simulations as before but for a compressible material. The Poisson ratio is taken now
as ν = 0.3 (recall that we used ν = 0.499 in the quasi-incompressible case) whereas the
other material parameters are unchanged. Unfortunately, an analytical solution is no longer
available in the compressible case. We compare again the trace of the Cauchy stress tensor
σ for HHO(1;1), HHO(2;2), and UPG methods in Fig. 4.134.13 at all the quadrature points on
the final configuration and for different quadrature orders kQ. We observe a quite marginal
dependence on the quadrature order for HHO methods (as in the quasi-incompressible case);
whereas the UPG method still locks if the order of the quadrature is increased. Moreover,
in the compressible case, HHO(2;2) gives a more accurate solution than HHO(1;1).
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(a) Q2 (b) UPG (c) HHO(1;1) (d) HHO(1;2)

(e) HHO(2;2) (f) HHO(2;3)

Figure 4.9: Torsion of a square-section bar: trace of the Cauchy stress tensor σ (in MPa) at
the quadrature points for Θ = 360◦ and for the HHO, UPG, and Q2 methods .
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(a) (b)

Figure 4.10: Quasi-incompressible sphere under internal radial forces: (a) Mesh in the refer-
ence configuration composed of 1580 tetrahedra (dimensions in mm). (b) Equivalent plastic
strain p for HHO(1;2) on the final configuration.

4.4.5 Summary of the above results

The proposed HHO method has been tested successfully on four benchmarks in two and three
dimensions. A first conclusion is that the proposed HHO method is robust for large elasto-
plastic deformations and is locking-free as mixed methods but without the need to introduce
additional globally coupled unknowns. HHO(2;2) and HHO(2;3) give generally more accurate
results both for the displacement and the Cauchy stress tensor than HHO(1;1), HHO(1;2),
and UPG on a fixed mesh (cG methods lock). Moreover, contrary to the UPG method, HHO
methods are not very sensitive to the choice of the quadrature order (particularly for k = 2).
Finally, HHO(1;1) appears to be more prone to the localization of the plastic deformations,
contrary to the other variants HHO(1;2), HHO(2;2), and HHO(2;3).



4.4. Numerical examples 105

(a) HHO(1;1) (b) HHO(1;2;)

(c) HHO(2;2) (d) HHO(2;3)

(e) T2 (f) UPG

Figure 4.11: Quasi-incompressible sphere under internal radial force: trace of the Cauchy
stress tensor σ (in MPa) vs. deformed radius r (in mm) for the different methods at all the
quadrature points and for the limit load.
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(a) HHO (b) UPG

Figure 4.12: Quasi-incompressible sphere under internal radial force: trace of the Cauchy
stress tensor σ (in MPa) vs. deformed radius r (in mm) for HHO(1;1), HHO(2;2) and UPG
at all the quadrature points for the limit load and for a higher quadrature order kQ.
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(a) HHO with kQ = 2k (b) HHO with kQ = 2k + 2

(c) UPG

Figure 4.13: Compressible sphere (ν = 0.3) under internal radial force: trace of the Cauchy
stress tensor σ (in MPa) vs. deformed radius r (in mm) for the different methods at all the
quadrature points and for the limit load.
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4.5 Further numerical investigations

In this section, we perform further numerical investigations to test other capacities of HHO
methods such as the support of general meshes with possibly non-conforming interfaces, the
possibility of considering the lowest-order case k = 0, the dependence on the stabilization
parameter β, and the application to an industrial study.

4.5.1 Polygonal meshes

In the previous sections, the proposed HHO method has been tested on simplicial and hex-
ahedral meshes so as to be able to compare it to the UPG method which only supports
this type of meshes. Our goal is now to illustrate that the HHO method supports general
meshes with possibly non-matching interfaces. For our test cases, the polygonal meshes are
generated from quadrangular meshes by removing the common face for some pairs of neigh-
bouring cells and then merging the two cells in question (about 30% of the cells are merged)
thereby producing non-matching interfaces materialized by hanging nodes for a significant
portion of the mesh cells. We consider the Cook’s membrane problem from Section 4.4.24.4.2
and we use a mesh composed of 719 polygonal cells including quads, pentagons (quads with
one hanging node) and hexagons (quads with two hanging nodes). The trace of the Cauchy
stress tensor σ is shown in Fig. 4.144.14 at the quadrature points on the reference configuration;
and we compare the results with a reference solution computed with HHO(2;3) on a 32× 32
quadrangular mesh. The results agree very well except for HHO(1;1) where the trace is not
smooth due to the localization of the plastic deformations (as for the quadrangular mesh, see
Section 4.4.24.4.2). A reason for the localization of the plastic deformations is the loss of coer-
civity of the consistent elastoplastic tangent modulus Ãep. The evolution of the magnitude
of the smallest eigenvalue θTh,Q of Ãep during the loading is plotted in Fig. 4.154.15. We remark
that the magnitude of θTh,Q decreases quickly when the plastic evolution begins (around
Fy = 1 kN), then θTh,Q continues to decrease more slowly and remains positive for all HHO
methods except for HHO(1;1) where it decreases more quickly and becomes negative (so that
Theorem 4.64.6 is no longer valid). As mentioned above, this loss of positive-definiteness of
Ãep for HHO(1;1) can explain the presence of nonphysical plastic localization. Moreover, the
distribution of the smallest eigenvalue θmin(Ãep) of Ãep at the quadrature points at the end
of the loading Fy = 5 kN for the different HHO methods is summarized in Table 4.24.2. Only
HHO(1;1) has negative eigenvalues. We remark that the number of quadrature points where
Ãep has negative eigenvalues for HHO(1;1) or close to 0 (<0.5) for the others HHO methods
is small compared to the total number of quadrature points. This confirms that the loss
of positive-definiteness and the presence of plastic localization are local and confined to few
quadrature points. Note that for a total vertical load Fy > 6.1 kN, θTh,Q is negative for all
HHO methods.

4.5.2 Lowest-order variant

The main reason to take k ≥ 1 in the HHO method applied to the linear elasticity problem
is that the rigid-body motions RM(T ) are then a subset of U1,1

T . The lowest-order case
k = 0 and l = 1 is interesting since there are only d unknowns per face, i.e, two in 2D
and three in 3D; and we could expect that the energy error, resp. the L2-error, converges
as h|u|H2(Ω0), resp. as h2|u|H2(Ω0), for the linear elasticity problem. The difficulty with
this lowest-order case is to deal with the rigid-body motions on the faces since unfortunately
RM(T )|∂T * P0

d−1(F∂T ;Rd). Therefore, at the theoretical level, it is not clear that Lemma 4.34.3
still holds true. Nevertheless, we observed numerically that for the linear elasticity problem,



4.5. Further numerical investigations 109

(a) Reference solution with HHO(2;3)
on a quadrangular mesh

(b) HHO(1;1) (c) HHO(1;2)

(d) HHO(2;2) (e) HHO(2;3)

Figure 4.14: Cook’s membrane: trace of the Cauchy stress tensor σ (in GPa) at the quadra-
ture points on the reference configuration (a) Reference solution with HHO(2;3) on a 32× 32
quadrangular mesh composed of 1024 cells. (b)-(e) Results for the different HHO variants on
a mesh with hanging nodes composed of 719 polygonal cells.
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Table 4.2: Cook’s membrane: distribution of the smallest eigenvalue θmin(Ãep) (in MPa) of
the consistent elastoplastic tangent modulus Ãep at the quadrature points at the end of the
loading Fy = 5 kN for the different HHO methods on a mesh with hanging nodes composed
of 719 polygonal cells.
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Figure 4.15: Cook’s membrane: evolution of the magnitude of the smallest eigenvalue θTh,Q (in
MPa) vs. vertical load applied Fy (in kN) for the different HHO methods on a non-conforming
mesh with hanging nodes composed of 719 polygonal cells (a) during the complete loading
(b) a zoom when the plastic evolution occurs.

the energy error, resp. the L2-error, converges as h|u|H2(Ω0), resp. as h2|u|H2(Ω0), (the
expected optimal rates) if all the cells have at least 2d faces, i.e, four faces in 2D and six
faces in 3D. This observation seems to be confirmed for small elastoplasticity. However, the
conclusions are less clear for finite elastoplasticity. The equivalent plastic strain p and the
trace of the Cauchy stress tensor σ are plotted in Fig. 4.164.16 at the quadrature points on
the final configuration for the necking of a rectangular bar (see Section 4.4.14.4.1) approximated
using the HHO(0;1) variant. We observe the absence of volumetric locking and that the
results are close to those obtained for k ≥ 1 (see Fig. 4.34.3 and Fig. 4.44.4). However, for the
Cook’s membrane problem (see Section 4.4.24.4.2), the displacement is not correct (not shown for
brevity).

Remark 4.7 In[122122], a theoretical study of an HDG method for the linear elasticity problem
in the equal-order case k = 0 is performed where the main difference with the present HHO
method is the stabilization weight which is of the form O(1) and no longer O(h−1) as here. In
this case, for the linear elasticity problem, the the energy error, the L2-error, and the stress
error converge as h|u|H2(Ω0), h|u|H2(Ω0), as h

1
2 |u|H2(Ω0), respectively, on general meshes.

Moreover, recent numerical results still for the linear elasticity problem [187187] indicate that
the stress error can converge as h|u|H2(Ω0). Nevertheless, the L2-error converges slower for
this HDG variant than what we could expect for the lowest-order HHO method.

4.5.3 Influence of the stabilization parameter

To evaluate the influence of the stabilization parameter β0, we compare the total number
of Newton’s iterations needed to solve the nonlinear problem (4.354.35) versus the magnitude
of the stabilization parameter β0. The Newton’s iterations are stopped under the relative
criterion ‖Rh(δv̂h)‖Th ≤ 10−6‖Fint(δv̂h)‖Th where Fint are the internal forces. We perform
this comparison on two of the previous benchmarks, the Cook’s membrane problem (see Sec-
tion 4.4.24.4.2) and the quasi-incompressible sphere under internal radial force (see Section 4.4.44.4.4).
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(a) Equivalent plastic strain p (b) Trace of the Cauchy stress
tensor σ

Figure 4.16: Necking of a 2D rectangular bar with low-order variant HHO(0;1): (a) equivalent
plastic strain p and (b) trace of the Cauchy stress tensor σ (in MPa) at the quadrature points
on the final configuration.
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In Fig. 4.17a4.17a, we report the total number of Newton’s iterations for the Cook’s membrane
problem with strain-hardening plasticity. We use a 32× 32 quadrangular mesh, and 15 load
increments of equal size are considered. On the one hand, we remark that the different HHO
variants need almost the same total number of Newton’s iterations (around 78 compared
to 75 for UPG) if β0 ≥ 0.1; On the other hand, if β0 < 0.01, the Newton’s method stops
converging whatever the HHO variant and the number of load increments. For the quasi-
incompressible sphere under internal radial forces, the force is applied in 15 increments of
equal size. Recall that this experiment is particularly challenging since we are considering
here perfect plasticity for which the stability result from Theorem 4.64.6 is not applicable. In
Fig. 4.17b4.17b, we plot the total number of Newton’s iterations to perform the simulation. On
the one hand, if β0 ≥ 10, all the HHO variants need almost to the same total number of
Newton’s iterations (around 57 compared to 55 for UPG). On the other hand, if β0 ≤ 1, the
HHO variants with k = 2 need more Newton’s iterations than the HHO variants with k = 1.
As previously, if β0 < 0.1, the Newton’s method stops converging.

A first conclusion is therefore that the proposed HHO methods are stable for a large range
of values of the stabilization parameter β0. A second conclusion is that it seems reasonable
to take β0 ∈ [1, 100] since the number of Newton’s iterations is lower and close to the value
for UPG, and the condition number does not increase too much. Note that for extremely
large values of β0, HHO methods reduce to H1-conforming methods due to the matching of
the face unknowns with the trace of the cell unknowns, and volumetric-locking can appear
(not shown here for brevity).

10−2 10−1 100 101 102 103
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150

200

75

HHO(1;1) HHO(1;2)

HHO(2;2) HHO(2;3)

(a) Number of total Newton’s iterations vs. β0 for the
Cook’s membrane problem

10−1 100 101 102 103
50

60

70

80

55

HHO(1;1) HHO(1;2)

HHO(2;2) HHO(2;3)

(b) Number of total Newton’s iterations vs. β0 for
the quasi-incompressible sphere under internal radial
force

Figure 4.17: Influence of the stabilization parameter: Total number of Newton’s iterations
vs. β0 for (a) the Cook’s membrane and (b) the quasi-incompressible sphere under internal
radial forces.

4.5.4 An industrial application: a pump under internal forces

This study based on an industrial problem focuses on the deformation of a pump and two of
its pipes under the influence of a pressurized fluid, see Fig. 4.18a4.18a for the geometry. Since the
study is restricted to the structural part of the problem, the force applied by the fluid on the
walls of the pump and its pipes is replaced by an equivalent internal force. This surface force
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corresponds to a pressure of 14 MPa in the reference configuration. Moreover, the bottom of
the pump is clamped and the other surfaces are free. For this industrial application, strain-
hardening plasticity is considered with the following material parameters: Young modulus
E = 200 GPa, Poisson ratio ν = 0.3, hardening parameter H = 200 MPa, initial and infinite
yield stresses σy,0 = σy,∞ = 500 MPa, and saturation parameter δ = 0. The mesh is depicted
in Fig. 4.18b4.18b and is composed of 23,837 tetrahedra and 41,218 triangular faces.

The computations are performed in parallel with code_aster for UPG and HHO(1;2)
methods in order to compare the results. The discrete global problem to solve has around
190,000 dofs for UPG and 500,00 dofs for HHO(1;2). The Euclidean norm of the displacement
is plotted in Fig. 4.194.19 on the deformed configuration for HHO(1;2). Note that the upper left
part of the pump has the largest displacement. Moreover, the equivalent plastic strain p is
plotted for UPG and HHO(1;2) methods in Fig. 4.204.20 at all the quadrature points on the
deformed configuration. We remark that the plastic deformations are mainly present in the
pipes and in particular at the junction between the pump and its pipes with nearly 97% of
equivalent plastic strain p. The threshold of 10% of equivalent plastic strain having been
largely reached, the finite deformation framework is preferable for this problem to the small
deformation framework. Finally, the von Mises stress signed with the trace of the Cauchy
stress tensor is showed in Fig. 4.214.21 and the trace of the Cauchy stress tensor in Fig. 4.224.22 at
all the quadrature points on the deformed configuration. The results are in good agreement
between UPG and HHO(1;2), and there is no sign of volumetric locking.

This simulation validates the results of HHO methods on industrial problems.

(a) Geometry of the pump (b) Mesh composed of 23,837 tetrahedra

Figure 4.18: Pump under internal forces: (a) Geometry of the pump (b) Mesh composed of
23,837 tetrahedra and 41,218 triangular faces.
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(a) Full pump (b) Cut in the x-plane

Figure 4.19: Pump under internal forces: Euclidean norm of the displacement (in mm) for
HHO(1;2) on the deformed configuration (a) full pump with transparent reference configura-
tion (b) cut in the x-plane.

(a) UPG (b) HHO(1;2)

Figure 4.20: Pump under internal forces: equivalent plastic strain p (in %) at the quadrature
points for UPG and HHO(1;2) methods on the deformed configuration.
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(a) UPG (b) HHO(1;2)

Figure 4.21: Pump under internal forces: von Mises stress signed with the trace of the
Cauchy stress tensor (in MPa) at the quadrature points for UPG and HHO(1;2) methods on
the deformed configuration.

(a) UPG (b) HHO(1;2)

Figure 4.22: Pump under internal forces: trace of the Cauchy stress tensor σ (in MPa) at
the quadrature points for UPG and HHO(1;2) methods on the deformed configuration.
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4.6 Conclusion

We have devised and evaluated numerically a Hybrid High-Order (HHO) method to approxi-
mate finite elastoplastic deformations within a logarithmic strain framework. This framework
allows one to re-use constitutive laws developed originally for small deformations in the con-
text of finite deformations. The HHO method exhibits a robust behavior for strain-hardening
plasticity as well as for perfect plasticity, and produces accurate solutions with a moderate
number of degrees of freedom for various benchmarks from the literature. In particular, as
mixed methods, the HHO method avoids volumetric locking due to plastic incompressiblity,
but with less unknowns than mixed methods for the same accuracy. Moreover, the HHO
method supports general meshes with non-matching interfaces.

This work can be pursued in several directions. One could use a non-local plasticity model,
as for example a strain-gradient plasticity model, to take into account scale-dependent effects
[166166] and possibly prevent unphysical localization of the plastic deformations. Furthermore,
the extension of the present HHO method to contact and friction problems is the subject of
the following chapter.
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CHAPTER 5

NITSCHE’S METHOD FOR CONTACT AND TRESCA FRICTION
IN SMALL DEFORMATIONS

Abstract. We present the extension of a numerical method to weakly discretize contact
and Tresca friction conditions in small strain elasticity, that was previously devised and
studied for Dirichlet and scalar Signorini conditions [K. Cascavita et al. ‘Hybrid High-Order
discretizations combined with Nitsche’s method for Dirichlet and Signorini boundary
conditions’. Submitted]. This method supports polyhedral meshes with nonmatching
interfaces and is based on a combination of the Hybrid high-order (HHO) method and
Nitsche’s method. Since HHO methods involve both cell unknowns and face unknowns,
this leads to different formulations of Nitsche’s consistency and penalty terms, either using
the trace of the cell unknowns (cell version) or using directly the face unknowns (face
version). This paper focuses on the face version, which has better robustness properties than
the cell version in the incompressible limit. Also, we study different variants of Nitsche’s
formulation (symmetric, non-symmetric, skew-symmetric). We prove optimal error estimates
for all these variants. Moreover these estimates are robust in the incompressible limit for
bilateral contact. Numerical experiments in two and three dimensions for academic problems
illustrate the theoretical results and reveal that, in practice, the method is robust for all the
variants of Nitsche’s formulation. Finally, an extension to associative plasticity is proposed
and studied numerically.

This chapter results of a collaboration with Franz Chouly and an article entitled “A Hybrid
High-Order discretization combined with Nitsche’s method for contact and Tresca friction in
small strain elasticity” [6262] has been submitted.

5.1 Introduction

Hybrid high-order (HHO) methods have been introduced for linear elasticity in [8989] and for
linear diffusion problems in [9191]. HHO methods are formulated in terms of face unknowns
which are polynomials of arbitrary order k ≥ 0 on each mesh face and in terms of cell
unknowns which are polynomials of order l ∈ {k, k ± 1}, with l ≥ 0, in each mesh cell. The
devising of HHO methods hinges on two operators, both defined locally in each mesh cell: a
reconstruction operator and a stabilization operator. The cell unknowns can be eliminated
locally by static condensation leading to a global transmission problem posed solely in terms
of the face unknowns. HHO methods offer various assets: they support polyhedral meshes,

119
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lead to local conservation principles, and optimal convergence rates. HHO methods have been
bridged in [7474] to Hybridizable Discontinuous Galerkin methods [7676] and to nonconforming
Virtual Element Methods [1818]. HHO methods have been extended to many other PDEs.
Examples in computational mechanics include nonlinear elasticity [4040], hyperelasticity with
finite deformations [22], and elastoplasticity with small [33] and finite [44] deformations.

The goal of the present work is to devise, analyze and evaluate numerically a HHO
method to approximate contact problems with Tresca friction in small strain elasticity. Ei-
ther unilateral or bilateral contact can be considered. The main ingredient is to employ a
Nitsche-type formulation to enforce the nonlinear frictional contact conditions. The present
HHO-Nitsche method can be deployed on polyhedral meshes. As is classical with Nitsche’s
technique, we can consider symmetric, incomplete and skew-symmetric variants. Our main
results, Theorem 5.145.14 and Corollary 5.175.17, provide for all symmetry variants quasi-optimal
energy error estimates with convergence rates of order O(hr) for solutions with regularity
H1+r, r ∈ (1

2 , k + 1], where h is the mesh size and k ≥ 1 is the order of the polynomials for
the cell and the face unknowns, except for the face unknowns located on the frictional contact
boundary where polynomials of order (k + 1) are employed. Note that the optimal order of
convergence is O(hk+1) obtained with r = k+1. These results are established under minimal
thresholds for the penalty parameters weakly enforcing the contact and friction conditions,
and do not require any assumption on the (a priori unknown) friction/contact set. Particular
attention in the analysis is paid to the dependency of these parameters on the Lamé param-
eters, showing that the skew-symmetric variant enjoys more favorable properties regarding
robustness in the incompressible limit, at least from a theoretical viewpoint. Our 2D and 3D
numerical tests include comparisons with benchmarks from the literature and with solutions
obtained with the industrial software code_aster. We also consider a prototype of an indus-
trial application featuring a notched plug in a rigid pipe. Our numerical tests indicate a more
favorable dependency of the penalty parameters on the material parameters since robustness
in the quasi-incompressible regime is observed in all considered situations.

Let us put our work in perspective with the literature. For most discretizations, Tresca
friction creates additional difficulties in order to establish optimal convergence in comparison
to the frictionless case (see, e.g., [207207, 141141, 107107] and the references therein for frictionless con-
tact). As a consequence convergence results addressing Tresca friction are quite few. The rate
O(hr) for the energy error with a regularity H1+r(Ω), r ∈ (0, 1], has been obtained in the 2D
case for a mixed low-order finite element method (FEM) under some technical assumptions
on the contact/friction set [207207, Theorem 4.9] (this is the first optimal bound to the best of

our knowledge). In the 3D case the rate O(hmin( 1
2
,r)) has also been reached without additional

assumption [207207, Theorem 4.10]. For the penalty method, the rate of O(h
1
2

+ r
2

+r2) with a

regularity H
3
2

+r(Ω), r ∈ (0, 1
2), and the quasi-optimal rate of O(h| log h| 12 ) with a regularity

H2(Ω) were established in [6565] without additional assumptions on the contact/friction set.
This result has been improved recently in [9696] and optimal rates are recovered if the penalty
parameter is large enough. An important advance to discretize contact problems was accom-
plished in [6464] by combining Nitsche’s method with FEM. The FEM-Nitsche method differs
from standard penalty techniques which are generally not consistent. Moreover no additional
unknown (Lagrange multiplier) is needed and therefore no discrete inf-sup condition must be
fulfilled contrary to mixed methods. For contact problems with Tresca friction discretized
with FEM-Nitsche, optimal energy-error convergence of order O(hr) has been proved in [6161]
with the regularity H1+r(Ω), r ∈ (1

2 , k], where k ≥ 1 is the polynomial degree of the La-
grange finite elements. To this purpose there is no need of any additional assumption on
the contact/friction set. Note that the technical difficulties associated with the treatment of
contact and friction condition when Nitsche’s technique is not employed, are not limited to
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FEM, but appear as well for other discretizations such as discontinuous Galerkin (dG) [205205]
or Virtual finite elements (VEM) [206206].

The devising and analysis of HHO-Nitsche methods was started in [5050] for the scalar
Signorini problem. Therein a face version and a cell version were analyzed, depending on the
choice of the discrete unknown used to formulate the penalty terms. The cell version used cell
unknowns of order (k+ 1) (these unknowns can be eliminated by static condensation) and a
modified reconstruction operator inspired from the unfitted HHO method from [4545], leading
to energy error estimates of order O(hr) with H1+r-regularity, r ∈ (1

2 , k+ 1]. Unfortunately,
the modification of the reconstruction operator is not convenient in the context of elasticity
as it hampers a key commuting property with the divergence operator which is crucial in the
incompressible limit. This difficulty is circumvented in the present work by using a modified
face version with face polynomials of order (k+1) on the faces located on the contact/friction
boundary. The numerical analysis also involves two novelties. Firstly, the error analysis,
which adapts ideas from [6767, 6868] for FEM-Nitsche to HHO-Nitsche, is more involved than
[5050] since it covers all the symmetry variants and since it hinges on a sharper bound on the
consistency error allowing for a sharper threshold on the penalty parameters, especially in the
case of the skew-symmetric variant. Secondly, for the first time concerning FEM-Nitsche as
well, we track explicitly the dependency of the penalty parameters on the Lamé parameters
for the various symmetry variants. Furthermore the present study is completed with 2D
and 3D numerical tests including a prototype for an industrial application. Finally, let us
mention that polyhedral discretizations for contact and friction problems have received some
attention recently, as motivated by some numerical evidence illustrating their flexibility and
accuracy. These discretizations use for instance VEM [211211, 206206], the weak Galerkin (WG)
method [125125] or the hybridizable discontinous Galerkin (HDG) methods [216216], combined
with different techniques to handle contact and friction (such as a direct approximation of
the variational equality, node-to-node contact, penalty, Lagrange multipliers). The present
work constitutes, to our knowledge, the first polyhedral discretization method for frictional
contact problems using Nitsche’s technique.

This paper is organized as follows. The model problem is described in Section 5.25.2. The
HHO-Nitsche method is introduced in Section 5.35.3, and the stability and error analysis is
contained in Section 5.45.4. Numerical results are discussed in Section 5.55.5. Section 5.65.6 is
concerned with an extension of the proposed method to contact with plasticity.

5.2 Model problem

Let Ω be a polygon/polyhedron in Rd, d ∈ {2, 3}, representing the reference configuration
of an elastic body. The boundary ∂Ω is partitioned into three nonoverlapping parts (see
Fig 5.15.1): the Dirichlet boundary ΓD, the Neumann boundary ΓN, and the contact/friction
boundary ΓC. We assume meas(ΓD) > 0 to prevent rigid body motions and meas(ΓC) > 0
to ensure that contact is present. The small strain assumption is made, as well as plane
strain if d = 2. The linearized strain tensor associated with a displacement field v : Ω→ Rd
is ε(v) := 1

2(∇v + ∇v
T

) ∈ Rd×dsym . Assuming isotropic behavior, the Cauchy stress tensor
resulting from the strain tensor ε(v) is denoted by σ(v) and is given by

σ(v) = 2µε(v) + λ trace(ε(v))Id ∈ Rd×dsym , (5.1)

where µ and λ are the Lamé coefficients of the material satisfying µ > 0 and 3λ + 2µ > 0,
and Id is the identity tensor of order d. In what follows, we set κ := max(1, λ2µ). Let n be the
unit outward normal vector to Ω. On the boundary we consider the following decompositions
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Figure 5.1: Geometry of the contact problem.

into normal and tangential components:

v = vnn+ vt and σn(v) := σ(v)·n = σn(v)n+ σt(v)

where vn := v·n and σn(v) := σn(v)·n (so that vt·n = 0 and σt(v)·n = 0).
The body is subjected to volume forces f ∈ L2(Ω;Rd) in Ω and to surface loads gN ∈

L2(ΓN;Rd) on ΓN, and it is clamped on ΓD (for simplicity). The model problem consists in
finding the displacement field u : Ω→ Rd such that

∇ · σ(u) + f = 0 in Ω,

u = 0 on ΓD,

σn(u) = gN on ΓN,

(5.35.3) and (5.45.4) hold true on ΓC,

(5.2)

where the unilateral contact conditions on ΓC are as follows:

(i) un ≤ 0, (ii) σn(u) ≤ 0, (iii) σn(u)un = 0, (5.3)

whereas the Tresca friction conditions on ΓC read:

(iv) |σt(u)| ≤ s if ut = 0, (v) σt(u) = −s ut|ut|
if |ut| > 0, (5.4)

where s ≥ 0 is a given threshold and |·| stands for the Euclidean norm in Rd (or the absolute
value depending on the context). More generally s can be a nonnegative-valued function on
ΓC.

Remark 5.1 In the Tresca friction model (5.45.4), it is assumed that the amplitude of the
normal friction threshold is known (i.e., F |σn(u)| = s, see, e.g., [148148, Section 10.3]). The
introduction of the Tresca friction model is motivated more by its mathematical simplicity
than by physical reasons, though it can be of use in special situations. For instance:

• when a thin belt/tape is pressed against an elastic body, with a known pressure (see,
e.g., [148148, Chapter 10]),

• for persistent contact between solids with high intensity of contact pressures, such as it
may occur in earth sciences (see, e.g., [178178] and references therein).

Moreover the Tresca friction model can be useful for instance when Coulomb friction is ap-
proximated iteratively (see, e.g., [133133] and [155155, Section 9, Theorem 7]).
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Remark 5.2 (Variants) The case of frictionless contact is recovered by setting s := 0 in
(5.45.4). The case of bilateral contact with Tresca friction can be considered by keeping (5.45.4)
whereas (5.35.3) is substituted by the following equation:

un = 0 on ΓC. (5.5)

In the case of unilateral contact with Tresca friction, nonzero tangential stress can occur in
regions with no-adhesion, which is rather unphysical. The setting of bilateral contact prevents
such situations.

We introduce the Hilbert space V D and the convex cone K such that

V D :=
{
v ∈ H1(Ω;Rd) | v = 0 on ΓD

}
, K := {v ∈ V D | vn ≤ 0 on ΓC} ,

i.e., the Dirichlet condition on ΓD is explicitly enforced in the space V D and the non-
interpenetration condition on ΓC is explicitly enforced in the cone K. We define the following
bilinear form and the following linear and nonlinear forms:

a(v, w) := (σ(v), ε(w))L2(Ω) = (2µε(v), ε(w))L2(Ω) + (λ∇·v,∇·w)L2(Ω), (5.6)

`(w) := (f, w)L2(Ω) + (gN, w)L2(ΓN), j(w) := (s, |wt|)L2(ΓC), (5.7)

for any v and w in V D. The weak formulation of (5.25.2) as a variational inequality of the
second kind is {

Find u ∈ K such that
a(u,w − u) + j(w)− j(u) ≥ `(w − u), ∀w ∈ K. (5.8)

This problem admits a unique solution according, e.g., to [148148, Theorem 10.2].
An important observation is that it is possible to reformulate the contact and friction

conditions (5.35.3)-(5.45.4) as nonlinear equations. For any real number x ∈ R, let [x]
R−

:=

min(x, 0) denote its projection onto the closed convex subset R− := (−∞, 0]. Moreover, let
[·]α denote the orthogonal projection onto B(0, α) ⊂ Rd, where B(0, α) is the closed ball
centered at the origin 0 and of radius α > 0, i.e., for all x ∈ Rd, we have [x]α := x if |x| ≤ α
and [x]α := α x

|x| if |x| > α. The following result has been pointed out in [7979] (see also [6161]

for formal proofs).

Proposition 5.3 (Reformulation as nonlinear conditions) Let γn and γt be positive
functions on ΓC. The unilateral contact with Tresca friction conditions (5.35.3)-(5.45.4) can be
reformulated as follows:

σn(u) = [τn(u)]
R−
, τn(u) := σn(u)− γnun, (5.9)

σt(u) = [τ t(u)]s , τ t(u) := σt(u)− γtut. (5.10)

Remark 5.4 The conditions of Coulomb friction can be written similarly as: |σt(u)| ≤ F |σn(u)|, if ut = 0, (iv)

σt(u) =−F |σn(u)| ut|ut|
otherwise. (v)

(5.11)

where F ≥ 0 is the friction coefficient. Conditions (5.115.11) mean that, at a given contact point
on ΓC, sliding can not occur while the magnitude of the tangential stress |σt(u)| is strictly
below the threshold −Fσn(u). When the threshold −Fσn(u) is reached, sliding may happen,
in a direction opposite to σt(u) (see, e.g., [148148, Chapter 10]). Remark that this static form of
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Coulomb friction is an adaptation of the quasi-static (or dynamic) Coulomb’s law, in which
the tangential velocity u̇t plays the same role as the displacement ut (see , e.g., [2323, 109109, 110110]).
A formulation such as (5.115.11) is obtained for instance when the quasi-static Coulomb’s law
is discretized with a time-marching scheme (see, e.g., [207207]). The mathematical analysis of
FEM-Nitsche with Coulomb friction is much more involved than for Tresca friction, due to
the lack of strong monotonicity coming from the Coulomb term. Some first results of existence
and well-posedness are however provided in [6666].

5.3 HHO-Nitsche method

In this section we devise and analyze the HHO-Nitsche method to approximate the frictional
contact problem (5.85.8).

5.3.1 Meshes and discrete unknowns

Let (Th)h>0 be a mesh sequence, where for all h > 0, the mesh Th is composed of nonempty
disjoint cells such that Ω =

⋃
T∈Th T . The mesh cells are conventionally open subsets in Rd,

and they can have a polygonal/polyhedral shape with straight edges (if d = 2) or planar
faces (if d = 3). This setting in particular allows for meshes with hanging nodes. The mesh
sequence (Th)h>0 is assumed to be shape-regular in the sense of [8989]. In a nutshell, each mesh
Th admits a matching simplicial submesh =h having locally equivalent length scales to those
of Th, and the mesh sequence (=h)h>0 is shape-regular in the usual sense of Ciarlet. The
meshsize is denoted h := maxT∈Th hT , with hT the diameter of the cell T and nT denotes
the unit outward normal to T . Discrete trace and inverse inequalities in the usual form are
available on shape-regular polyhedral mesh sequences (see, e.g., [8888]).

A closed subset F of Ω is called a mesh face if it is a subset with nonempty relative
interior of some affine hyperplane HF and if (i) either there are two distinct mesh cells
T1, T2 ∈ Th so that F = ∂T1 ∩ ∂T2 ∩ HF (and F is called an interface) (ii) or there is one
mesh cell T1 ∈ Th so that F = ∂T1 ∩ Γ ∩HF (and F is called a boundary face). The mesh
faces are collected in the set Fh which is further partitioned into the subset of interfaces F i

h

and the subset of boundary faces Fb
h . We assume that the meshes are compatible with the

boundary partition ∂Ω = ΓD ∪ ΓN ∪ ΓC, which leads to the partition of the boundary faces
as Fb

h = Fb,D
h ∪ Fb,N

h ∪ Fb,C
h (with obvious notation).

Let k ≥ 1 be the polynomial degree. For all T ∈ Th, let F∂T be the collection of the
mesh faces that are subsets of ∂T , let F i

∂T := F∂T ∩ F i
h, Fb,C

∂T := F∂T ∩ Fb,C
h , and we use a

similar notation for Fb,D
∂T and Fb,N

∂T . We set F\∂T := F i
∂T ∪ F

b,D
∂T ∪ F

b,N
∂T for the collection of

all the faces composing ∂T except those located on ΓC. The local HHO unknowns belong to
discrete space

ÛkT := Pkd(T ;Rd)× Pk/k+1
d−1 (F∂T ;Rd),

where Pkd(T ;Rd) is composed of the restrictions to T of d-variate polynomials of total degree
at most k, and

Pk/k+1
d−1 (F∂T ;Rd) := Pkd−1(F\∂T ;Rd)× Pk+1

d−1(Fb,C
∂T ;Rd),

where Pkd−1(F\∂T ;Rd) and Pk+1
d−1(Fb,C

∂T ;Rd) are composed of the restrictions to F\∂T and Fb,C
∂T ,

respectively, of piecewise (d − 1)-variate polynomials of total degree at most k and (k + 1),
respectively. A generic element in ÛkT is a pair v̂T := (vT , v∂T ), where vT ∈ Pkd(T ;Rd) is the

cell unknown and v∂T ∈ Pk/k+1
d−1 (F∂T ;Rd) is the face unknown. The degrees of freedom are
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illustrated in Fig. 5.25.2, where a dot indicates one degree of freedom (which is not necessarily
computed as a point evaluation).

(a) Pentagonal cell with no

contact face (F\∂T = F∂T )

(b) Pentagonal cell with a con-

tact face in red (F\∂T  F∂T )

Figure 5.2: Face (black or red) and cell (gray) degrees of freedom in ÛkT for k = 1 and d = 2
(each dot represents a degree of freedom which is not necessarily a point evaluation).

Remark 5.5 (Face unknowns) We use a polynomial order (k+ 1) on the faces located on
the contact boundary (it is also possible to use this order on all the boundary faces). This
choice is motivated by the error analysis, where it will be shown that it allows one to recover
error bounds with optimal convergence order. Moreover this choice increases only marginally
the computational cost with respect to using the same order k for all the faces.

5.3.2 Local HHO operators

The first key ingredient in the devising of the HHO method is a local symmetric strain
reconstruction in each mesh cell T ∈ Th. Following [22, 4040, 33], we define the local discrete
symmetric gradient operator Ek

T : ÛkT → Pkd(T ;Rd×dsym) such that, for all v̂T ∈ ÛkT , Ek
T (v̂T ) ∈

Pkd(T ;Rd×dsym) solves the following local problem: For all τ ∈ Pkd(T ;Rd×dsym),

(Ek
T (v̂T ), τ )L2(T ) := (ε(vT ), τ )L2(T ) + (v∂T − vT |∂T , τ ·nT )L2(∂T ). (5.12)

Moreover, the local discrete divergence operator Dk
T : ÛkT → Pkd(T ;R) is simply defined by

taking the trace of the discrete symmetric gradient: For all v̂T ∈ ÛkT ,

Dk
T (v̂T ) := trace(Ek

T (v̂T )). (5.13)

The second key ingredient is a local stabilization operator Sk∂T : ÛkT → Pk/k+1
d−1 (∂T ;Rd) used

to penalize in a least-squares sense the difference between the face unknown v∂T and the

trace of the cell unknown vT |∂T . Let Π
k/k+1
∂T and Πk

T be the L2-orthogonal projections onto

Pk/k+1
d−1 (F∂T ;Rd) and Pkd(T ;Rd), respectively. Then we set, for all v̂T ∈ ÛkT ,

Sk∂T (v̂T ) := Π
k/k+1
∂T

(
v∂T −Dk+1

T (v̂T )|∂T
)
−Πk

T

(
vT −Dk+1

T (v̂T )
)
|∂T . (5.14)

Here Dk+1
T : ÛkT → Pk+1

d (T ;Rd) is a local displacement reconstruction operator such that,

for all v̂T ∈ ÛkT , Dk+1
T (v̂T ) ∈ Pk+1

d (T ;Rd) solves the following local problem: For all w ∈
Pk+1
d (T ;Rd),

(ε(Dk+1
T (v̂T )), ε(w))L2(T ) := (ε(vT ), ε(w))L2(T ) + (v∂T − vT |∂T , ε(w)·nT )L2(∂T ). (5.15)
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The reconstructed displacement is uniquely defined by prescribing additionally that∫
T D

k+1
T (v̂T )dT :=

∫
T vTdT and

∫
T ∇ss(Dk+1

T (v̂T ))dT :=
∫
∂T

1
2(v∂T ⊗ nT − nT ⊗ v∂T )d∂T

(see [8989]). Comparing with (5.125.12), one readily sees that ε(Dk+1
T (v̂T )) is the L2-orthogonal

projection of Ek
T (v̂T ) onto ε(Pk+1

d (T ;Rd)).
We use the above operators to mimic locally the exact local bilinear form a defined above

by means of the following local bilinear form defined on ÛkT × ÛkT (compare with (5.65.6)):

âT (v̂T , ŵT ) :=2µ(Ek
T (v̂T ),Ek

T (ŵT ))L2(T ) + λ(Dk
T (v̂T ), Dk

T (ŵT ))L2(T )

+ 2µh−1
T (Sk∂T (v̂T ), Sk∂T (ŵT ))L2(∂T ). (5.16)

The stabilization term is weighted (as in the linear case) by the Lamé coefficient µ.

5.3.3 Global discrete problem

For simplicity we employ the Nitsche technique only on the subset ΓC where the nonlinear
frictional contact conditions are enforced, whereas we resort to a strong enforcement of the
homogeneous Dirichlet condition on the subset ΓD. The global discrete space for the HHO-
Nitsche method is

Ûkh := Pkd(Th;Rd)×
(
Pkd−1(F i

h ∪ Fb,D
h ∪ Fb,N

h ;Rd)× Pk+1
d−1(Fb,C

h ;Rd)
)
, (5.17)

leading to the notation v̂h :=
(
(vT )T∈Th , (vF )F∈Fh

)
for a generic element v̂h ∈ Ûkh. For all

T ∈ Th, we denote by v̂T := (vT , (vF )F∈F∂T ) ∈ ÛkT the local components of v̂h attached to
the mesh cell T and the faces composing ∂T , and for any mesh face F ∈ Fh, we denote by vF
the component of v̂h attached to the face F . We enforce strongly the homogeneous Dirichlet
condition on ΓD by considering the subspace

Ûkh,0 := {v̂h ∈ Ûkh | vF = 0 ∀F ∈ Fb,D
h }.

The HHO-Nitsche method uses a symmetry parameter θ ∈ {−1, 0, 1} and two penalty
parameters γn > 0 and γt > 0 to enforce weakly the contact and friction conditions on ΓC,
respectively. The penalty parameters γn and γt, which are proportional to 2µ, have to be cho-
sen large enough as specified in Section 5.45.4. Choosing θ := 1 leads to a symmetric formulation
with a variational structure, choosing θ := 0 is interesting to simplify the implementation by
avoiding some terms in the formulation, and choosing θ := −1 allows one to improve on the
stability of the method by exploiting its skew-symmetry and making it more robust in the
incompressible limit. It is convenient to define the subset T C

h as the collection of the mesh
cells having at least one boundary face on ΓC and to set ∂TC := ∂T ∩ ΓC for all T ∈ T C

h .
The subset T N

h is defined similarly, and we set ∂TN := ∂T ∩ ΓN for all T ∈ T N
h . We consider

the following discrete HHO-Nitsche problem:

{
Find ûh ∈ Ûkh,0 such that

b̂h(ûh; ŵh) = ̂̀
h(ŵh) ∀ŵh ∈ Ûkh,0,

(5.18)

where the global discrete semilinear form âh and the global discrete linear form ̂̀
h are defined
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as follows:

b̂h(v̂h; ŵh) :=
∑
T∈Th

âT (v̂T , ŵT )

−
∑
T∈T C

h

θ
hT
γn

(σn(v̂T ), σn(ŵT ))L2(∂TC) −
∑
T∈T C

h

θ
hT
γt

(σt(v̂T ), σt(ŵT ))L2(∂TC)

+
∑
T∈T C

h

hT
γn

(
[τn(v̂T )]

R−
, (τn + (θ − 1)σn)(ŵT )

)
L2(∂TC)

+
∑
T∈T C

h

hT
γt

([τ t(v̂T )]s , (τ t + (θ − 1)σt)(ŵT ))L2(∂TC) ,

and ̂̀
h(ŵh) :=

∑
T∈Th

(f, wT )L2(T ) +
∑
T∈T N

h

(gN, w∂T )L2(∂TN).

Here, with a slight abuse of notation, we have written

σ(ŵT ) := 2µEk
T (ŵT ) + λDk

T (ŵT )Id ∈ Pkd(T ;Rd×dsym), (5.19)

together with the decomposition σ(ŵT )·nT := σn(ŵT )nT + σt(ŵT ), and we have introduced
the linear operators (again with a slight abuse of notation)

τn(ŵT ) := σn(ŵT )− γn
hT
w∂T ,n, τ t(ŵT ) := σt(ŵT )− γt

hT
w∂T ,t,

together with the decomposition w∂T := w∂T ,nnT +w∂T ,t for the face polynomials. Note that

in the definition of τn and τ t, the penalty parameters are rescaled by h−1
T in each mesh cell

in T C
h . Proposition 5.35.3 still holds true with this rescaling of the penalty parameters since the

only requirement therein is that γn and γt be positive.

Remark 5.6 (Comparison with FEM-Nitsche) In the FEM-Nitsche method devised in
[6161], one restricts the setting to simplicial meshes and considers the usual H1-confirming finite
element space V h composed of continuous functions that are piecewise polynomials of degree
at most k ≥ 1 in each mesh cell. The discrete problem is formulated in the subspace V h,0

explicitly enforcing the Dirichlet condition on ΓD and involves the global discrete semilinear
form

bh(vh;wh) := a(vh, wh)− ( θγ̃σn(vh), σn(wh))L2(ΓC) − ( θγ̃σt(vh, σt(wh))L2(ΓC)

+ ( 1
γ̃ [τn(vh)]

R−
, (τn + (θ − 1)σn)(wh))L2(ΓC)

+ ( 1
γ̃ [τ t(vh)]s , (τ t + (θ − 1)σt)(wh))L2(ΓC),

as well as the linear form `h(wh) := `(wh), where a and ` are the same as for the continuous
problem, the notation τn, σn, τ t, and σt is that employed for the exact solution, the symmetry
parameter is taken again in {−1, 0, 1}, and the penalty parameter γ̃ is a piecewise constant
function on ΓC such that γ̃|∂TC = h−1

T γ with γ > 0 for all T ∈ T C
h . Note that there is only one

penalty parameter in [6161] since the analysis therein did not consider the scaling with respect
to the Lamé parameters.

Remark 5.7 (Comparison with [5050]) There are various differences with the HHO-
Nitsche method devised in [5050] for the scalar Signorini problem. Herein we address the
vector-valued case and include Tresca friction. Moreover we use the face polynomials in
the definition of the operators τn and τ t which corresponds to the face version considered in
[5050]. However we employ here a higher polynomial degree on those faces located on ΓC.
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5.4 Stability and error analysis

In this section we perform the stability and error analysis of the above HHO-Nitsche dis-
cretization of the frictional contact problem. We first collect some useful analysis tools.
Then we establish a stability property and infer the well-posedness of the nonlinear discrete
problem (5.185.18). The stability property hinges on a minimal value for the penalty parameters
γn and γt, except if θ = −1 where these parameters need only to be positive. Then we slightly
tighten these minimal values to derive an error estimate bounding the energy error and the
error on the nonlinear boundary condition on ΓC and featuring optimal decay rates of order
(k + 1) for smooth solutions. The following properties of projections onto a convex set will
be useful:

([x]
R−
− [y]

R−
)(x− y) ≥ ([x]

R−
− [y]

R−
)2 ≥ 0, ∀x, y ∈ R, (5.20)

([x]s −
[
y
]
s
)·(x− y) ≥ ‖ [x]s −

[
y
]
s
‖2 ≥ 0, ∀x, y ∈ Rd. (5.21)

We use the symbol C to denote a generic constant whose value can change at each
occurrence as long as it is independent of the mesh size and the Lamé parameters. The value
of C can depend on the mesh regularity and the polynomial degree k ≥ 0. We abbreviate as
a . b the inequality a ≤ Cb with positive real numbers a, b and a constant C > 0 as above
and whose value can change at each occurrence.

5.4.1 Analysis tools for HHO operators

We begin this section with an approximation property that involves the strain, and that will
be useful in the sequel.

Lemma 5.8 Let k ≥ 1 be the polynomial degree. Let Πk
T denote the L2-orthogonal projection

onto Pkd(T ;Rd). Then, for any function v ∈ H1(T ;Rd), we have

‖v −Πk
T (v)‖L2(T ) ≤ C hT ‖ε(v)‖L2(T ). (5.22)

Proof. Let ΠRM
T be the projector such that for any function v ∈ H1(T ;Rd):

ΠRM
T (v) =

1

|T |d

∫
T
v dT +

1

|T |d
( ∫

T
∇ss(v) dT

)
(x− xb),

where xb denote the barycenter of T . We remark that ΠRM
T (v) ∈ P1

d(T ;Rd) and (v−ΠRM
T (v)) ∈

U(T ), where

U(T ) :=

{
v ∈ H1(T ;Rd) :

∫
T
v dT = 0 and

∫
T
∇ssv dT = 0

}
Hence, we infer that,

‖v −Πk
T (v)‖L2(T ) = ‖(v −ΠRM

T (v))−Πk
T (v −ΠRM

T (v))‖L2(T )

≤ C‖v −ΠRM
T (v)‖L2(T )

≤ CKhT ‖ε(v)‖L2(T ).

where we have used the fact that ΠRM
T (v) ∈ Pkd(T ;Rd) for k ≥ 1, Πk

T is a L2-orthogonal
projector, and a Korn’s inequality since (v −ΠRM

T (v)) ∈ U(T ).

�



5.4. Stability and error analysis 129

We equip the space ÛkT with the following local discrete strain seminorm:

|v̂T |21,T := ‖ε(vT )‖2
L2(T )

+ h−1
T ‖v∂T − vT |∂T ‖2L2(∂T )

, (5.23)

so that |v̂T |1,T = 0 implies that vT is a rigid-body motion and that v∂T is the trace of vT on
∂T . The following local stability and boundedness properties of the strain reconstructon and
stabilization operators are established as in [8989, Lemma 4].

Lemma 5.9 (Boundedness and stability) Let Ek
T be defined by (5.125.12) and Sk∂T

by (5.145.14). There are 0 < α[ < α] < +∞ such that, for all T ∈ Th, all h > 0, and all

v̂T ∈ ÛkT , we have

α[|v̂T |1,T ≤
(
‖Ek

T (v̂T )‖2
L2(T )

+ h−1
T ‖Sk∂T (v̂T )‖2

L2(∂T )

) 1
2

≤ α]|v̂T |1,T . (5.24)

Proof. We prove only the stability property by adapting the arguments in [8989, Lemma 4].
Let T ∈ Th and v̂T ∈ ÛkT , then we have:

‖ε(vT )‖2
L2(T )

=(ε(vT ), ε(vT ))L2(T )

=(ε(vT ),Ek
T (v̂T ))L2(T ) − (v∂T − vT |∂T , ε(vT )nT )L2(∂T )

≤‖ε(vT )‖L2(T )‖Ek
T (v̂T )‖L2(T ) + ‖v∂T − vT |∂T ‖L2(∂T )‖ε(vT )nT ‖L2(∂T )

≤‖ε(vT )‖L2(T )‖Ek
T (v̂T )‖L2(T ) + Cdth

− 1
2

T ‖v∂T − vT |∂T ‖L2(∂T )‖ε(vT )‖L2(T )

≤1

2
‖ε(vT )‖2

L2(T )
+ ‖Ek

T (v̂T )‖2
L2(T )

+ C2
dth
−1
T ‖v∂T − vT |∂T ‖2L2(∂T )

where we have used the definition of the symmetric strain operator (5.125.12) with τ = ε(vT ) ∈
Pkd(T ;Rd×dsym) in the second line, twice the Cauchy–Schwarz inequality in the third line, and
the discrete trace inequality in the fourth line, and twice the Young’s inequality in the last
line. Then, it follows

‖ε(vT )‖2
L2(T )

. ‖Ek
T (v̂T )‖2

L2(T )
+ h−1

T ‖v∂T − vT |∂T ‖2L2(∂T )
. (5.25)

Moreover, we set δT (v̂T ) = vT +Dk+1
T (v̂T )−Πk

TD
k+1
T (v̂T ). Then,

h
− 1

2
T ‖v∂T − vT |∂T ‖L2(∂T )

≤ h−
1
2

T ‖v∂T −Π
k/k+1
∂T (δT (v̂T )|∂T )‖L2(∂T ) + h

− 1
2

T ‖vT |∂T −Π
k/k+1
∂T (δT (v̂T )|∂T )‖L2(∂T )

= h
− 1

2
T ‖Sk∂T (v̂T )‖L2(∂T ) + h

− 1
2

T ‖Π
k/k+1
∂T (vT |∂T − δT (v̂T )|∂T )‖L2(∂T )

= h
− 1

2
T ‖Sk∂T (v̂T )‖L2(∂T ) + h

− 1
2

T ‖Π
k/k+1
∂T (Dk+1

T (v̂T )|∂T −Πk
TD

k+1
T (v̂T )|∂T ‖L2(∂T )

. h
− 1

2
T ‖Sk∂T (v̂T )‖L2(∂T ) + Cdth

−1
T ‖Dk+1

T (v̂T )|∂T −Πk
TD

k+1
T (v̂T )|∂T ‖L2(T )

. h
− 1

2
T ‖Sk∂T (v̂T )‖L2(∂T ) + ‖ε(Dk+1

T (v̂T ))‖L2(T )

. h
− 1

2
T ‖Sk∂T (v̂T )‖L2(∂T ) + ‖Ek

T (v̂T )‖L2(T ) (5.26)

where we have inserted±Π
k/k+1
∂T (δT (vT )|∂T ) and used the triangular inequality in the first line,

the fact that v∂T ∈ Pk/k+1
d−1 (F∂T ;Rd), the definition (5.145.14) of the stabilization operator Sk∂T

and that vT |∂T ∈ Pkd−1(F∂T ;Rd) ⊂ Pk/k+1
d−1 (F∂T ;Rd) in the second line, using the stability
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of the L2-orthogonal projector Π
k/k+1
∂T and a discrete trace inequality, using Lemma 5.85.8

with v = Dk+1
T (v̂T ) since k ≥ 1 in the fifth line and the fact that ε(Dk+1

T (v̂T )) is the L2-
orthogonal projection of Ek

T (v̂T ) onto the subspace ε(Pkd(T ;Rd)) and the stability of this
projection. Then, the stability property follows directly from (5.255.25) and (5.265.26). The proof
for the boundedness property use similar arguments and is omitted for brevity.

�

The key operator in the HHO error analysis is the local interpolation operator ÎkT :

H1(T ;Rd)→ ÛkT such that

ÎkT (v) := (Πk
T (v),Π

k/k+1
∂T (v|∂T )) ∈ ÛkT , (5.27)

for all v ∈ H1(T ;Rd) and all T ∈ Th. The global version Îkh : V D → Ûkh,0 is defined locally by

setting the local HHO components of Îkh(v) to (Îkh(v))T := ÎkT (v|T ) ∈ ÛkT , for all v ∈ V D and
all T ∈ Th. This definition makes sense since the fields in V D do not jump across the mesh
interfaces and vanish at the boundary faces located on ΓD. The HHO interpolation operator
allows one to obtain important local commuting properties satisfied by the reconstruction
operators (see, e.g., [8989, Proposition 3]), namely we have

Ek
T (ÎkT (v)) = Πk

T (ε(v)), Dk
T (ÎkT (v)) = Πk

T (∇·v), (5.28)

for all v ∈ H1(T ;Rd), all T ∈ Th, and all h > 0, where Πk
T is the L2-orthogonal projection onto

Pkd(T ;Rd×dsym) and Πk
T that onto Pkd(T ;R). For all v ∈ H1+ν(Ω;Rd), ν > 1

2 , and all ŵh ∈ Ûkh,0,
let us set (the reason for the notation will become clear in the proof of Theorem 5.145.14 below)

T′1,1(v, ŵh) :=
∑
T∈Th

−
(
(∇ · σ(v), wT )L2(T ) + âT (ÎkT (v), ŵT )

)
+

∑
T∈T N

h ∪T
C
h

(σn(v), w∂T )L2(∂TN∪∂TC),

(5.29)
where we recall that ŵT = (wT , w∂T ) are the local components of the test function ŵh ∈ Ûkh,0
attached to the mesh cell T ∈ Th. For a function z ∈ H1+ν(T ;R), ν > 1

2 , we employ the
notation

‖z‖2],T := ‖z‖2T + hT ‖z‖2∂T ,
and the same notation for tensor-valued fields.

Lemma 5.10 (Consistency for linear elasticity) Let T′1,1(v, ŵh) be defined in (5.295.29) for

all v ∈ H1+ν(Ω;Rd), ν > 1
2 , and all ŵh ∈ Ûkh,0. The following holds true:

|T′1,1(v, ŵh)|2 . A1(v)

( ∑
T∈Th

2µ|ŵT |21,T
)
, (5.30)

with the interpolation error

A1(v) :=
∑
T∈Th

1

2µ

(
(2µ)2‖ε(v)−Πk

T (ε(v))‖2],T + (2µ)2‖ε(v −Πk+1
T (v))‖2

L2(T )

+ λ2‖∇·v −Πk
T (∇·v)‖2],T

)
. (5.31)

Proof. The proof essentially follows [8989, Theorem 8] and is only sketched. Integrating by
parts the term (∇ · σ(v), wT )L2(T ) for all T ∈ Th, using (5.15.1) together with the definitions

(5.125.12)-(5.135.13) forEk
T (ŵT ) and Dk

T (ŵT ), respectively, re-arranging the terms, and setting ηT :=
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ε(v) −Ek
T (ÎkT (v)) = ε(v) −Πk

T (ε(v)) and ζT := ∇·v −Dk
T (ÎkT (v)) = ∇·v − Πk

T (∇·v) (owing
to the commuting properties (5.285.28)) leads to (details are skipped for brevity)

T′1,1(v, ŵh) =
∑
T∈Th

(
2µ(ηT , ε(wT ))L2(T ) + 2µ(ηT ·nT , w∂T − wT )L2(∂T )

− 2µh−1
T (Sk∂T (ÎkT (v)), Sk∂T (ŵT ))L2(∂T )

+ λ(ζT ,∇·wT )L2(T ) + λ(ζTnT , w∂T − wT )L2(∂T )

)
.

Invoking the Cauchy–Schwarz inequality and the upper bound from Lemma 5.95.9 to estimate

h
− 1

2
T ‖Sk∂T (ŵT )‖L2(∂T ), we infer that

|T′1,1(v, ŵh)|2 .
( ∑
T∈Th

1

2µ

(
(2µ)2‖ηT ‖2],T + (2µ)2h−1

T ‖Sk∂T (ÎkT (v))‖2
L2(∂T )

+ λ2‖ζT ‖2],T
))

×
( ∑
T∈Th

2µ|ŵT |21,T
)
.

Finally combining the ideas used in [8989, Eqs. (20)&(35)] with a local multiplicative trace
inequality and a local Korn inequality, we infer that

h−1
T ‖Sk∂T (ÎkT (v))‖2

L2(∂T )
. ‖ε(v −Dk+1

T (ÎkT (v)))‖2
L2(T )

≤ ‖ε(v −Πk+1
T (v))‖2

L2(T )
,

which completes the proof of (5.305.30).

�

5.4.2 Stability and well-posedness

Let us first establish an important monotonicity property of the semilinear form b̂h under
the assumption that the penalty parameters γn and γt are large enough. The lower bound
on these parameters involves the constant Cdt from the following discrete trace inequality:

‖vh‖L2(∂TC) ≤ Cdth
− 1

2
T ‖vh‖L2(T ), (5.32)

for all T ∈ T C
h , all h > 0, and all vh ∈ Pk(T ;Rq), q ∈ {1, d}. We equip the global HHO space

Ûkh,0 with the norm

‖v̂h‖2µ,λ :=
∑
T∈Th

(
2µ|v̂T |21,T + λ‖Dk

T (v̂T )‖2L2(T )

)
.

That ‖·‖µ,λ defines a norm on Ûkh,0 follows from the usual arguments since face unknowns

are null on all the faces in Fb,D
h and this set is nonempty by assumption.

Lemma 5.11 (Monotonicity) Assume that the penalty parameters are such that

min(κ−1γn, 2γt) ≥ 3(θ + 1)2C2
dtµ, (5.33)

recalling that κ := max(1, λ2µ). Then the semilinear form b̂h is monotone and we have for all

v̂h, ŵh ∈ Ûkh,0,

b̂h(v̂h; v̂h − ŵh)− b̂h(ŵh; v̂h − ŵh) ≥ 1

3
min(1, α2

[ )‖v̂h − ŵh‖2µ,λ. (5.34)
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Proof. Let v̂h, ŵh ∈ Ûkh,0 and set ẑh := v̂h− ŵh. Recalling the definition of the HHO-Nitsche

semilinear form b̂h and exploiting the positivity of the local HHO bilinear form âT , we infer
that∑
T∈Th

(
2µ
(
‖Ek

T (ẑT )‖2
L2(T )

+ h−1
T ‖Sk∂T (ẑT )‖2

L2(∂T )

)
+ λ‖Dk

T (ẑT )‖2L2(T )

)
≤ T1 + T2,n + T2,t − T3,n − T3,t, (5.35)

where

T1 := b̂h(v̂h; ẑh)− b̂h(ŵh; ẑh),

T2,n :=
∑
T∈T C

h

θ
hT
γn
‖σn(ẑT )‖2L2(∂TC), T2,t :=

∑
T∈T C

h

θ
hT
γt
‖σt(ẑT )‖2

L2(∂TC)
,

and

T3,n :=
∑
T∈T C

h

hT
γn

(
[τn(v̂T )]

R−
− [τn(ŵT )]

R−
, τn(ẑT )

)
L2(∂TC)

+
∑
T∈T C

h

(θ − 1)
hT
γn

(
[τn(v̂T )]

R−
− [τn(ŵT )]

R−
, σn(ẑT )

)
L2(∂TC)

T3,t :=
∑
T∈T C

h

hT
γt

([τ t(v̂T )]s − [τ t(ŵT )]s , τ t(ẑT ))L2(∂TC)

+
∑
T∈T C

h

(θ − 1)
hT
γt

([τ t(v̂T )]s − [τ t(ŵT )]s , σt(ẑT ))L2(∂TC) .

Let us consider T2,n − T3,n. Setting δT := [τn(v̂T )]
R−
− [τn(ŵT )]

R−
, we infer that

T2,n − T3,n ≤
∑
T∈T C

h

(
θ
hT
γn
‖σn(ẑT )‖2L2(∂TC) − ‖δT ‖2L2(∂TC) − (θ − 1)

hT
γn

(δT , σn(ẑT ))L2(∂TC)

)

≤
∑
T∈T C

h

1

4
(θ + 1)2hT

γn
‖σn(ẑT )‖2L2(∂TC) ≤

∑
T∈T C

h

1

4
(θ + 1)2C

2
dt

γn
‖σn(ẑT )‖2L2(T ),

where we used (5.205.20) in the first bound, Young’s inequality and the fact that θ+ 1
4(θ− 1)2 =

1
4(θ + 1)2 in the second bound, and the discrete trace inequality (5.325.32) in the third bound.
Recalling the definition (5.195.19) of the discrete HHO stress and using the triangle and Young’s
inequalities, we infer that

T2,n − T3,n ≤
∑
T∈T C

h

1

2
(θ + 1)2C

2
dt

γn

(
(2µ)2‖Ek

T (ẑT )‖2
L2(T )

+ λ2‖Dk
T (ẑT )‖2L2(T )

)

≤
∑
T∈T C

h

(θ + 1)2C
2
dt

γn
µκ×

(
2µ‖Ek

T (ẑT )‖2
L2(T )

+ λ‖Dk
T (ẑT )‖2L2(T )

)
.

The reasoning to bound T2,t−T3,t is similar except that σt(ẑT ) has only off-diagonal contri-
butions and is therefore independent of λ. We infer that

T2,t − T3,t ≤
∑
T∈T C

h

1

2
(θ + 1)2C

2
dt

γt
µ× 2µ‖Ek

T (ẑT )‖2
L2(T )

.
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Combining the above bounds and using the condition (5.335.33) leads to

T2,n + T2,t − T3,n − T3,t ≤
∑
T∈Th

2

3

(
2µ‖Ek

T (ẑT )‖2
L2(T )

+ λ‖Dk
T (ẑT )‖2L2(T )

)
.

Recalling (5.355.35) leads to

T1 ≥
∑
T∈Th

1

3

(
2µ
(
‖Ek

T (ẑT )‖2
L2(T )

+ h−1
T ‖Sk∂T (ẑT )‖2

L2(∂T )

)
+ λ‖Dk

T (ẑT )‖2L2(T )

)
.

Using the definition of T1, the lower bound from Lemma 5.95.9, and the definition of the norm
‖·‖µ,λ concludes the proof.

�

Using the argument from [4141, Corollary 15, p. 126] (see [6464] for the application to FEM-
Nitsche), we infer from Lemma 5.115.11 the following well-posedness result.

Corollary 5.12 (Well-posedness) The discrete problem (5.185.18) is well-posed.

Remark 5.13 (Lower bound (5.335.33)) The monotonicity result is robust in the incompresi-
ble limit for the skew-symmetric variant θ = −1 since the penalty parameters γn and γt need
only to be positive real numbers (proportional to µ), independently of the value of the ratio κ
which becomes large in the incompressible limit. Instead, for the two other variants θ ∈ {0, 1},
this property is lost for γn which scales as µκ. Instead the parameter γt still scales as µ, i.e.,
it remains independent of κ whatever the value of θ. Hence robustness is also achieved for
bilateral contact for any value of θ.

5.4.3 Error analysis

This section contains our main theoretical results on the convergence of the HHO-Nitsche
method for the frictional contact problem.

Theorem 5.14 (Error estimate) Let ε ∈ (0, 1]. Recall that κ := max(1, λ2µ). Assume that
the penalty parameters are such that

min(κ−1γn, 2γt) ≥ 3
(
(θ + 1)2 + ε(4 + (θ − 1)2)

)
C2

dtµ. (5.36)

Assume that the exact solution satisfies u ∈ H1+r(Ω;Rd), r 1
2 . Let ûh be the discrete solution

of (5.185.18) with local components ûT for all T ∈ Th. Then we have∑
T∈Th

(
2µ‖ε(u)−Ek

T (ûT )‖2
L2(T )

+ λ‖∇·u−Dk
T (ûT )‖2L2(T )

)
+

ε

2(1 + ε)

∑
T∈T C

h

(hT
γn
‖[τn(u)]

R−
− [τn(ûT )]

R−
‖2L2(∂TC) +

hT
γt
‖ [τ t(u)]s − [τ t(ûT )]s ‖2L2(∂TC)

)
. A1(u) + A2(u), (5.37)

A1(u) defined in (5.315.31), and recalling the HHO interpolation operator defined in (5.275.27), A2(u)
is given by

A2(u) :=
∑
T∈T C

h

2

ε

(hT
γn
‖δσn,T ‖2L2(∂TC) +

γn
hT
‖δun,T ‖2L2(∂TC)

+
hT
γt
‖δσt,T ‖2L2(∂TC)

+
γt
hT
‖δut,T ‖2L2(∂TC)

)
, (5.38)
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with δσn,T := σn(u) − σn(ÎkT (u)), δσt,T := σt(u) − σt(ÎkT (u)), and δun,T and δut,T are the

normal and tangential components on ΓC of δuT := u|∂T −Πk+1
∂T (u|∂T ).

Proof. Let us set ẑh := ûh − Îkh(u), where Îkh : V D → Ûkh,0 is the global HHO interpolation
operator defined in Section 5.4.15.4.1. The same manipulations as in (5.355.35) lead to∑

T∈Th

(
2µ
(
‖Ek

T (ẑT )‖2
L2(T )

+ h−1
T ‖Sk∂T (ẑT )‖2

L2(∂T )

)
+ λ‖Dk

T (ẑT )‖2L2(T )

)
≤ T1 + T2,n + T2,t − T3,n − T3,t,

where the terms on the right-hand side are defined as above by setting v̂h := ûh and ŵh :=
Îkh(u). We use the fact that ûh is the discrete solution to infer that T1 := b̂h(ûh; ẑh) −
b̂h(Îkh(u), ẑh) = ̂̀

h(ẑh) − b̂h(Îkh(u), ẑh). Recalling the definition of b̂h and ̂̀
h, we obtain

T1 := T1,1 + T1,2,n + T1,2,t − T1,3,n − T1,3,t with

T1,1 :=
∑
T∈Th

(
(f, zT )L2(T ) − âT (ÎkT (u), ẑT )

)
+
∑
T∈T N

h

(gN, z∂T )L2(∂TN),

T1,2,n :=
∑
T∈T C

h

θ
hT
γn

(σn(ÎkT (u)), σn(ẑT ))L2(∂TC),

T1,3,n :=
∑
T∈T C

h

hT
γn

(
[
τn(ÎkT (u))

]
R−
, (τn + (θ − 1)σn)(ẑT ))L2(∂TC),

and similar expressions for T1,2,t and T1,3,t. We add and subtract σn(u) and [τn(u)]
R−

in

T1,2,n and T1,3,n, respectively, and obtain

T1 := T′1,1(u, ẑh)− T′1,2,n − T′1,2,t + T′1,3,n + T′1,3,t, (5.39)

where T′1,1(u, ẑh) is defined in (5.295.29) and (recall that δσn,T := σn(u)− σn(ÎkT (u)))

T′1,2,n :=
∑
T∈T C

h

θ
hT
γn

(δσn,T , σn(ẑT ))L2(∂TC),

T′1,3,n :=
∑
T∈T C

h

hT
γn

([τn(u)]
R−
−
[
τn(ÎkT (u))

]
R−
, (τn + (θ − 1)σn)(ẑT ))L2(∂TC),

and similar expressions for T′1,2,t and T′1,3,t. To make appear the term T′1,1(u, ẑh) in (5.395.39),
we used that ∇ · σ(u) + f = 0 in Ω, σn(u) = gN on ΓN, whereas on ΓC we used that

σn(u) = [τn(u)]
R−

owing to Lemma 5.35.3, hT
γn

(θσn(ẑT ) − (τn + (θ − 1)σn)(ẑT )) = z∂T ,n, a

similar identity for the tangential component, and that σn(u)·z∂T = σn(u)z∂T ,n+σt(u)·z∂T ,t.
Combining T2,n with T′1,2,n, we infer that

T′2,n := T2,n − T′1,2,n =
∑
T∈T C

h

θ
hT
γn

(
‖σn(ẑT )‖2∂TC − (δσn,T , σn(ẑT ))L2(∂TC)

)
,

together with a similar expression for T′2,t := T2,t − T′1,2,t. Moreover, combining T3,n with
T′1,3,n, we infer that

T′3,n := − T3,n + T′1,3,n =
∑
T∈T C

h

hT
γn

([τn(u)]
R−
− [τn(ûT )]

R−
, (τn + (θ − 1)σn)(ẑT ))L2(∂TC),
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together with a similar expression for T′3,t := −T3,t + T′1,3,t. Putting everything together, we
infer that ∑

T∈Th

(
2µ
(
‖Ek

T (ẑT )‖2
L2(T )

+ h−1
T ‖Sk∂T (ẑT )‖2

L2(∂T )

)
+ λ‖Dk

T (ẑT )‖2L2(T )

)
≤ T′1,1(u, ẑh) + T′2,n + T′2,t + T′3,n + T′3,t. (5.40)

Let us now bound the terms (T′2,n + T′3,n) and (T′2,t + T′3,t). We only detail the bound on
(T′2,n + T′3,n) since the reasoning is similar for (T′2,t + T′3,t). Recalling the above expression
for T′2,n and using Young’s inequality (with β1 > 0) for the second term on the right-hand
side, we infer that

T′2,n ≤
∑
T∈T C

h

hT
γn

(
(θ + β1

2 )‖σn(ẑT )‖2∂TC + θ2

2β1
‖δσn,T ‖2L2(∂TC)

)
.

Turning to T′3,n, since ẑT = ûT − ÎkT (u) and the operator τn is linear, we have

(τn + (θ − 1)σn)(ẑT ) = −(τn(u)− τn(ûT )) + (τn(u)− τn(ÎkT (u))) + (θ − 1)σn(ẑT ),

so that we can re-arrange the terms composing T′3,n as follows:

T′3,n :=
∑
T∈T C

h

hT
γn

(
− ([τn(u)]

R−
− [τn(ûT )]

R−
, τn(u)− τn(ûT ))L2(∂TC)

+ ([τn(u)]
R−
− [τn(ûT )]

R−
, τn(u)− τn(ÎkT (u)))L2(∂TC)

+ (θ − 1)([τn(u)]
R−
− [τn(ûT )]

R−
, σn(ẑT ))L2(∂TC)

)
.

Using (5.205.20) for the first term on the right-hand side and letting ωn,T := [τn(u)]
R−
−[τn(ûT )]

R−

and δτn,T := τn(u)− τn(ÎkT (u)), we infer that

T′3,n ≤
∑
T∈T C

h

hT
γn

(
− ‖ωn,T ‖2L2(∂TC) + (ωn,T , δτn,T )L2(∂TC) + (θ − 1)(ωn,T , σn(ẑT ))L2(∂TC)

)
.

Using Young’s inequality to bound the second and the third terms on the right-hand side
(with β2 > 0 and β3 > 0), we infer that

T′3,n ≤
∑
T∈T C

h

hT
γn

(
(−1+ β2

2 + |θ−1|
2β3

)‖ωn,T ‖2L2(∂TC)+
1

2β2
‖δτn,T ‖2L2(∂TC)+

|θ−1|β3
2 ‖σn(ẑT )‖2L2(∂TC)

)
.

Putting the bounds on T′2,n and T′3,n together leads to

T′2,n + T′3,n ≤
∑
T∈T C

h

hT
γn

(
− ρ1‖ωn,T ‖2L2(∂TC) + ρ2‖σn(ẑT )‖2L2(∂TC)

+ θ2

2β1
‖δσn,T ‖2L2(∂TC) + 1

2β2
‖δτn,T ‖2L2(∂TC)

)
,

with
ρ1 := 1− β2

2 −
|θ−1|
2β3

, ρ2 := θ + β1
2 + |θ−1|β3

2 .

Let ε ∈ (0, 1] and let us choose β1 := 2ε, β2 := ε
1+ε , and β3 := |θ−1|(1+ε)

2 . Then we have

ρ1 = ε
2(1+ε) and ρ2 = (θ+1)2

4 + ε(1 + (θ−1)2

4 ), as well as θ2

2β1
= θ2

4ε ≤ 1
4ε ≤ 1

ε and 1
2β2

= 1+ε
2ε ≤ 1

ε .
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Using the above bound on T′2,n +T′3,n together with a similar bound on T′2,t +T′3,t in (5.405.40),
we infer that∑

T∈Th

(
2µ
(
‖Ek

T (ẑT )‖2
L2(T )

+ h−1
T ‖Sk∂T (ẑT )‖2

L2(∂T )

)
+ λ‖Dk

T (ẑT )‖2L2(T )

)
(5.41)

+ ρ1

∑
T∈T C

h

(hT
γn
‖ωn,T ‖2L2(∂TC) +

hT
γt
‖ωt,T ‖2L2(∂TC)

)
≤ T′1,1(u, ẑh) +

∑
T∈T C

h

ρ2

(hT
γn
‖σn(ẑT )‖2L2(∂TC) +

hT
γt
‖σt(ẑT )‖2

L2(∂TC)

)
+ A′2(u),

with ωt,T := [τ t(u)]s − [τ t(ûT )]s and

A′2(u) :=
∑
T∈T C

h

hT
εγn

(
‖δσn,T ‖2L2(∂TC) + ‖δτn,T ‖2L2(∂TC)

)
+
∑
T∈T C

h

hT
εγt

(
‖δσt,T ‖2L2(∂TC)

+ ‖δτ t,T ‖2L2(∂TC)

)
,

recalling that δσn,T := σn(u)−σn(ÎkT (u)), δσt,T := σt(u)−σt(ÎkT (u)) are defined in the asser-

tion, δτn,T := τn(u) − τn(ÎkT (u)) is defined above, and δτ t,T := τ t(u) − τ t(ÎkT (u)). Recalling
the definitions of the operators τn and τ t and invoking the triangle and Young’s inequalities,
we infer that A′2(u) ≤ A2(u), with A2(u) defined in the assertion. Note importantly that the
face component of ÎkT (u) on ∂TC is indeed Πk+1

∂T (u|∂T ) since the polynomial order is (k + 1)
on the faces located on ΓC. Next, we absorb the traces of σn(ẑT ) and σt(ẑT ) in (5.415.41) (in
the term multiplied by ρ2) by the positive terms from the left-hand side. To this purpose,
we proceed as in the proof of Lemma 5.115.11, i.e., we invoke the discrete trace inequality (5.325.32)
and the lower bound (5.365.36) on the penalty parameters. This yields∑

T∈Th

1

3

(
2µ
(
‖Ek

T (ẑT )‖2
L2(T )

+ h−1
T ‖Sk∂T (ẑT )‖2

L2(∂T )

)
+ λ‖Dk

T (ẑT )‖2L2(T )

)
+

ε

2(1 + ε)

∑
T∈T C

h

(hT
γn
‖ωn,T ‖2L2(∂TC) +

hT
γt
‖ωt,T ‖2L2(∂TC)

)
≤ T′1,1(u, ẑh) + A2(u).

Finally we invoke Lemma 5.105.10 and infer that |T′1,1(u, ẑh)|2 . A1(u)
∑

T∈Th 2µ|ẑT |21,T . Ow-
ing to the lower bound from Lemma 5.95.9 and Young’s inequality, we can hide the factor∑

T∈Th 2µ|ẑT |21,T on the left-hand side of the above inequality. We conclude the proof by
means of a triangle inequality.

�

Remark 5.15 (Lower bound (5.365.36)) The minimal value of the penalty parameters from
the lower bound in (5.365.36) is slightly tighter than that from the lower bound (5.335.33) and tends
to it as ε ↓ 0. Formally one recovers the arguments from the proof of Lemma 5.115.11 (which
invole only the two functions v̂h, ŵh instead of the three functions ûh, Î

k
h(u) and u as in the

proof of Theorem 5.145.14) by setting ε := 0 so that β1 = β2 = 0, β3 = |θ−1|
2 , ρ1 = 0 and

ρ2 = (θ+1)2

4 .

Remark 5.16 (Choice of ε, robustness) For θ ∈ {0, 1}, the value chosen for ε is not
really important, and one can simply set ε := 1. Then (5.365.36) shows that γn scales as µκ and
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γt scales as µ. Moreover, after taking the square root in (5.375.37) and observing that A1(u) is
robust in the incompressible limit (when κ is large) since the term involving κ involves the

approximation of ∇·u, one notices that the the upper bound still scales as κ
1
2 owing to the

terms depending on γn in A2(u). Instead, for θ = −1, an interesting choice is ε ≈ κ−1 leading
to γn ∼ µ (as γt ∼ µ), whereby the error estimate (5.375.37) delivers an upper bound scaling as

κ
3
2 (after taking the square root as above). In the case of bilateral contact, an interesting

choice is ε ≈ κ−
1
2 since only the penalty parameter γt, whereby the error estimate (5.375.37)

delivers an upper bound scaling as κ
1
4 (after taking the square root as above).

Convergence rates for smooth solutions can be inferred from Theorem 5.145.14 by using the
approximation properties of the L2-orthogonal projection on shape-regular polyhedral mesh
sequences. Referring, e.g., to [8888, 114114] for proofs, we have

‖v −Πk+1
T (v)‖L2(T ) + h

1
2
T ‖v −Πk+1

T (v)‖L2(∂T ) + hT ‖∇(v −Πk+1
T (v))‖L2(T )

+ h
3
2
T ‖∇(v −Πk+1

T (v))‖L2(∂T ) . h
1+r
T |v|H1+r(T ), (5.42)

for all v ∈ H1+r(T ;R), r ∈ (1
2 , k + 1], all T ∈ Th, and all h > 0. Similar bounds are available

for the projection of fields. Using (5.425.42) to bound A1(u) and A2(u) in (5.375.37) readily leads to
the following error estimate (note that one can assume γt ≤ γn without loss of generality).

Corollary 5.17 (H1-error estimate) Keep the assumptions and notation from Theo-
rem 5.145.14. Assume that the exact solution satisfies u ∈ H1+r(Ω;Rd) and ∇·u ∈ Hr(Ω;R),
r ∈ (1

2 , k + 1]. Then we have∑
T∈Th

(
2µ‖ε(u)−Ek

T (ûT )‖2
L2(T )

+ λ‖∇·u−Dk
T (ûT )‖2L2(T )

)
+

ε

2(1 + ε)

∑
T∈T C

h

(hT
γn
‖[τn(u)]

R−
− [τn(ûT )]

R−
‖2L2(∂TC) +

hT
γt
‖ [τ t(u)]s − [τ t(ûT )]s ‖2L2(∂TC)

)

.
∑
T∈Th

(
2µh2r

T |u|2H1+r(T )
+

1

2µ
λ2h2r

T |∇·u|2Hr(T ) +
1

ε

(µ2κ2

γn
+
µ2

γt
+ γn

)
h2r
T |u|2H1+r(T )

)
.

(5.43)

Remark 5.18 (Choice of k) A usual smoothness assumption is u ∈ H 5
2
−ε(Ω;Rd), ε > 0,

i.e., r = 3
2 − ε, as is generally the case when there is a transition between contact and no-

contact. Then the maximal convergence rate is O(h
3
2
−ε) and is reached for k = 1.

Remark 5.19 (Face polynomials) Using face polynomials of order (k + 1) on the faces
located on ΓC is crucial to obtain the above error estimate in the optimal case where r = k+1.
This allows us to invoke the approximation properties of Πk+1

∂T on ∂TC when bounding A2(u).

5.5 Numerical experiments

The goal of this section is to evaluate the proposed HHO-Nitsche method on two- and
three-dimensional benchmarks: (i) a two-dimensional manufactured solution; (ii) a three-
dimensional frictionless Hertz contact problem; (iii) a stick and slip transition, and (iv) a
prototype for an industrial application. We employ the notation HHO(k) when using poly-
nomials of order k ≥ 1. The implementation of HHO methods is discussed in [7171] and an
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Figure 5.3: 2D manufactured solution: Euclidean displacement norm on the deformed con-
figuration for HHO(1) and θ = 0 for a hexagonal mesh (h = 4.60e-2) (the contact boundary
ΓC is the bottom side).

open-source software is available11. The discrete nonlinear problem (5.185.18) is solved by a gen-
eralized Newton method as in [7979]. In the present implementation, the penalty parameters
for the stabilization and the friction/Tresca condition are proportional to 2µ and are scaled
by the reciprocal of the diameter of the local face rather than the diameter of the local cell.
We compare our numerical results to the analytical solution whenever available or to numer-
ical solutions obtained either from the literature or using the industrial open-source FEM
software code_aster [111111]. In this latter case we consider a mixed method called T2-LAC
(see [11]) where the discrete unknowns are the piecewise quadratic displacement field and the
piecewise constant contact pressure.

5.5.1 2D manufactured solution

We consider the unit square Ω := (0, 1)2, we set ΓC := (0, 1)×{0} and ΓD := {0, 1}× (0, 1)∪
(0, 1)×{1}. The Lamé coefficients are µ := 2 and λ := 1000 (which corresponds to a Poisson
ratio of ν ' 0.499). The manufactured solution is

ux(x, y) :=

(
1 +

1

1 + λ

)
xex+y, uy(x, y) :=

(
−1 +

1

1 + λ

)
yex+y. (5.44)

The x-dependnent friction threshold is s(x) := µ λ+2
6λ+6x

2. The displacement imposed on ΓD is
the trace of the manufactured solution, and the volume force is computed accordingly. The
penalty parameters are taken as γn = γt := 2µ. In this test case, we consider hexagonal
meshes to illustrate the polyhedral capabilities of the proposed HHO-Nitsche method. The
Euclidean displacement norm of the manufactured solution is plotted in Fig. 5.35.3 on the
deformed configuration for a hexagonal mesh composed of 280 cells.

We first report in Tab. 5.15.1 the H1-error (that is, the µ-dependnent part of the left-hand
side in (5.435.43)) and convergence rates as a function of the average mesh size h for k ∈ {1, 2} on
hexagonal mesh sequences and for the symmetric variant with θ = 1. For all k ∈ {1, 2}, the
H1-error converges with order (k+ 1) as predicted in Corollary 5.175.17. The results are similar
for the other variants with θ ∈ {−1, 0} (not shown for brevity). These convergence rates are

1https://github.com/wareHHOuse/diskpp
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Mesh size k = 1 k = 2
h H1-error order H1-error order

3.33e-1 5.423e-3 - 4.406e-4 -

1.75e-1 1.380e-3 2.13 5.871e-5 3.13

9.06e-2 3.472e-4 2.08 7.620e-6 3.07

4.60e-2 8.694e-5 2.05 9.719e-7 3.04

Table 5.1: 2D manufactured solution: H1-error and convergence order vs. h for θ = 1.
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(a) H1-error vs. λ (γn = γt = 2µ)
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(b) H1-error vs. γn
2µ

(λ = 1000 and γt = 2µ)

Figure 5.4: 2D manufactured solution: H1-error vs. λ and γn
2µ for a hexagonal mesh (h =

4.60e-2).

consistent with the predicted rates in Corollary 5.175.17 (we are not limited by the regularity of
the solution in this test case).

In Fig. 5.45.4 we report on a fixed hexagonal mesh the H1-error as a function of the material
parameter λ (left panel) and of the penalty parameter γn

2µ with γt = 2µ fixed (right panel)

for k ∈ {1, 2} and for the three variants with θ ∈ {−1, 0, 1}. We observe that the H1-error is
nearly independent of the values of λ and γn

2µ . These results indicate that the HHO-Nitsche
method appears to be locking-free in the incompressible limit despite that the theoretical
analysis is somewhat more pessimistic. The same comment can be made regarding the
necessity to enforce the lower bound in (5.365.36).

5.5.2 3D Hertz contact

The second benchmark is the well known three-dimensional Hertz contact problem of a half
sphere in contact with a rigid foundation. The half sphere is centered at the point having
coordinates (0, 0, 100) and has a radius of 100. The contact boundary is the infinite plane
z := 0 and a vertical displacement uz := −2 is applied on the top surface. For symmetry
reasons, one quarter of the half sphere is discretized. The material parameters are µ := 26.9
and λ := 40.3. This benchmark is frictionless, i.e., s := 0, so as to compare our numerical
results with a reference solution computed using the mixed quadratic formulation T2-LAC
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implemented in the industrial software code_aster. For this test case, we do not expect
HHO(2) to deliver a more accurate solution than HHO(1) since the geometry is discretized
using tetrahedra with planar faces. We consider only the variant with θ = 0 and we set
γn = γt := 2µ. The Euclidean displacement norm on the deformed configuration is plotted
in Fig. 5.5a5.5a for HHO(1). In Fig. 5.5b5.5b, we compare for HHO(k), k ∈ {1, 2}, and the refer-
ence T2-LAC solution, the evolution of the normal component of the Cauchy stress tensor
(see (5.195.19) for HHO) vs. the radial coordinate at the barycentrer of the contact faces. The
results for HHO(k), which are computed on a mesh composed of 3,740 tetrahedra, are in
good agreement with the reference solution which is computed on a finer mesh with 16,518
tetrahedra, although some differences are visible near r = 15 where the transition between
contact and no-contact occurs.

(a) Euclidean displacement norm on the deformed
configuration for HHO(1)

0 5 10 15 20 25
−8

−6

−4

−2

0

Reference HHO(1) HHO(2)

(b) σkn,T vs. radial-coordinate

Figure 5.5: 3D Hertz contact sphere: displacement field on the deformed configuration and
contact pressure vs. radial coordinate.

5.5.3 Stick and slip transition (Bostan & Han test case)

This thrid benchmark has been studied previously in [3737]. It consists of a rectangular domain
Ω := (0, 8)×(0, 4) which is clamped on the Dirichlet boundary ΓD := (0, 8)×{4} and subjected
to a horizontal surface load gN := (400, 0) on the Neumann boundary ΓN := {0}× (0, 4). The
bilateral contact boundary is ΓC := (0, 8) × {0}, where a Tresca friction is considered with
s := 150. Moreover the material parameters are µ := 384.6 and λ := 576.9. The symmetry
parameter is set to θ := 1 and the penalty parameters to γn = γt := 2µ. The reference
solution, referred to as Bostan&Han, comes from [3737, Example 6.2], where a mixed method
with adaptive mesh refinement is used.

In Fig. 5.65.6 we compare the normalized quantity ‖σt‖/s at the barycentrer of the contact
faces for HHO(k), k ∈ {1, 2}, and the reference solution on two different meshes: a coarse
mesh composed of 225 quadrangles and a fine mesh composed of 10,000 quadrangles. We
observe that the results for the HHO(k) methods are close to the reference solution even on
the coarse mesh. Moreover, on the fine mesh, both methods accurately capture the transition
between slip (‖σt‖/s = 1) and stick (‖σt‖/s < 1) at x ∼ 2.7. Moreover, the results are slightly
more accurate for HHO(2) than for HHO(1) on the coarse mesh and quasi-identical on the
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fine mesh. We note that increasing k does not improve significantly the results as expected,
since the regularity of the solution is a limiting factor in this example.

To evaluate the influence of the penalty parameters γn and γt, we compare the total num-
ber of Newton’s iterations needed to solve the nonlinear problem (5.185.18) versus the magnitude
of the normalized penalty parameter γ0 := γn

2µ = γt
2µ . The Newton’s iterations are stopped

under a relative residual convergence threshold of 10−7, and convergence failure is reported
after 200 iterations. We present the results in Fig. 5.75.7 for the coarse mesh composed of 225
quadrangles, for three symmetry variants, and for the polynomial degrees k ∈ {1, 2}. For
HHO(1), we remark that the different symmetry variants need the same total number of
Newton’s iterations (5 here) if γ0 ≥ 102, whereas the skew-symmetric variant (θ = −1) is the
most robust since the number of Newton’s iterations is almost independent of γ0, contrary to
the incomplete variant (θ = 0) which suffers some degradation in the convergence for γ0 ≤ 1,
and to the symmetric variant (θ = 1) which does not converge anymore if γ0 < 10−2. For
HHO(2), the skew-symmetric variant (θ = −1) is again the most robust, as for HHO(1).
However, both variants with θ = 0 and θ = 1 now exhibit a similar behavior and do not
converge anymore if γ0 < 10−3 and γ0 < 10−2, respectively. Finally, we observe that for
HHO(2), the number of iterations increases significantly for γ0 ≥ 104 whatever the value
of the symmetry parameter (and do not converge anymore if γ0 > 105). This effect is not
observed for HHO(1). To sum up this numerical experiment, an optimal range of values for
γ0 seems to be 10−1 ≤ γ0 ≤ 103.

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

HHO(1) HHO(2) Bostan&Han

(a) mesh composed of 225 quadrangles
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0.4

0.6

0.8

1

HHO(1) HHO(2) Bostan&Han

(b) mesh composed of 10000 quadrangles

Figure 5.6: Stick and slip transition (Bostan & Han test case): ‖σt‖/s vs. x-coordinate at
the barycentrer of the contact faces on a coarse and a fine mesh.

5.5.4 A prototype for an industrial application

This prototype simulates the installation of a notched plug in a rigid pipe. The mesh is
composed of 21,200 hexahedra and 510 prisms in the reference configuration, see Fig. 5.105.10
(for symmetry reasons, only one quarter of the pipe is discretized). The notched plug has a
length of 56mm and an outer radius of 8mm. The pipe is supposed to be rigid and has an
inner radius of 8.77mm (there is an initial gap of 0.77mm between the plug and the pipe).
The contact zone ΓC with Tresca’s friction (s := 3,000MPa) is between the rigid pipe and the
ten notches of the plug. In the actual industrial setting, an indenter imposes a displacement
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Figure 5.7: Stick and slip transition (Bostan & Han test case): total number of Newton’s
iterations vs. the normalized penalty parameter γ0 for a mesh composed of 225 quadrangles
(no value is plotted if Newton’s method has not converged after 200 iterations)

Figure 5.8: Notch plug : mesh composed of 21,200 hexahedra and 510 prisms in the reference
configuration.

to the upper surface of the plug. To simplify, sufficiently large vertical and horizontal forces
are applied to the upper surface of the plug to impose a contact between the pipe and the
notches. The material parameters for the plug are µ := 80, 769MPa and λ := 121, 154MPa
(which correspond to a Young modulus E := 210, 000MPa and a Poisson ratio ν := 0.3).
The simulation is performed using HHO(1), the symmetry variant θ := 1, and the penalty
parameters γn = γt := 2µ).

The von Mises stress is plotted in Fig. 5.95.9 on the deformed configuration. The maximal
value is reached where the force is applied. Moreover, a zoom on the contact zone is plotted
in Fig. 5.9b5.9b. We remark that there is contact between the notches and the pipe. Finally, the
normal stress σn is visualized in Fig. 5.105.10 on the inferior surface of the plug. We remark that
all the notches are in contact except the first three and the last one (where σn = 0), and that
a transition between contact and non-contact is located at the fourth notch. Moreover, the
maximal value of the contact pressure is reached at the extremity of the notches.
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(a) Full structure

(b) Zoom on the contact zone

Figure 5.9: Notch plug: von Mises stress on the deformed configuration (in MPa).

Figure 5.10: Notch plug: normal stress σn on the contact zone (in MPa).
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5.6 Nitsche-HHO method for associative plasticity

The main goal of this section is to propose an extension to a plastic behavior of the face-
based Nitsche-HHO method developed in Sect. 5.35.3 for a linear elastic behavior. The discrete
symmetric strain reconstruction operator (5.125.12) and the stabilization operator (5.145.14) are
keep unchanged. Moreover, the extension to a plastic behavior impose to reconstruct locally
a discrete stress tensor and a discrete tangent modulus from the values computed at the
quadrature points.

5.6.1 Frictional contact with plasticity

We adopt the plasticity model presented in Chap. 33. The plasticity model is assumed to be
strain-hardening and rate independent, i.e., the time and the speed of deformations have no
influence on the strains. For this reason, only the incremental plasticity problem is considered.
Moreover, we place ourselves in the framework of generalized standard materials initially
introduced in [127127]. Hence, the local material state is described by the total strain tensor
ε ∈ Rd×dsym , the plastic strain tensor εp ∈ Rd×dsym , and a finite collection of internal variables
α := (α1, · · · , αm) ∈ Rm. For simplicity, we denote χ := (εp, α) ∈ X the generalized internal
variables, where the space of the generalized internal variables is

X :=
{
χ = (εp, α) ∈ Rd×dsym × Rm | trace(εp) = 0

}
. (5.45)

Since we consider a plasticity model, the Cauchy stress tensor σ does not depend linearly
of the deformations when a plastic evolution occurs. Hence, the weak formulation (5.85.8) is
no more valid. This problem is circumvented by adapting the idea developed in [168168] for a
Nitsche-FEM formulation with large deformations. We introduce the non-smooth operator
Cγ : V 0 × Rd×dsym → Rd such that

Cγ(u,σ) = [σn − γun]
R−
n+ [σt − γut]s . (5.46)

where γ > 0 is the Nitsche’s penalty parameter (for simplicity we consider only one Nitsche’s
parameter γ := γn := γt). We are interested in finding the quasi-static evolution in the
pseudo-time interval [0, tF ], tF > 0, of an elastoplastic material body that occupies the
domain Ω in the reference configuration. The pseudo-time interval [0, tF ] is discretized into
M subintervals such that t0 = 0 < t1 < · · · < tM = tF . Then the problem can be formulated
as follows: For all 1 ≤ m ≤ M , given um−1 ∈ V 0 and χm−1 ∈ L2(Ω;X ) from the previous
pseudo-time step or the initial condition, find um ∈ V 0 and χm ∈ L2(Ω;X ) such that, for all
v ∈ V 0,∫

Ω
σm : ε(v) dΩ−

∫
ΓC

θ

γ
σmn ·

(
Cmep : ε(v)n

)
dΓ +

∫
ΓC

1

γ
Cγ(um,σm)·

(
θCmep : ε(v)n− γv

)
dΓ

=

∫
Ω
fm·v dΩ +

∫
ΓN

gmN ·v dΓ, (5.47a)

and

(χm,σm,Cmep) = SMALL PLASTICITY(χm−1, ε(um−1), ε(um)− ε(um−1)). (5.47b)

The procedure SMALL PLASTICITY allows one to compute the new values of the general-
ized internal variables χ, the stress tensor σ and the consistent elastoplastic tangent modulus
Cep at each pseudo-time step. This procedure is detailed in Section 3.2.33.2.3 and requires to solve
a constrained nonlinear problem.
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5.6.2 Stress and tangent modulus reconstructions

A key feature of the present HHO method is that the discrete generalized internal variables
are computed only at some quadrature points in each mesh cell. We introduce for all T ∈ Th,
the quadrature points ξ

T
= (ξ

T,j
)1≤j≤mQ , with ξ

T,j
∈ T for all 1 ≤ j ≤ mQ, and the

quadrature weights ωT = (ωT,j)1≤j≤mQ , with ωT,j ∈ R for all 1 ≤ j ≤ mQ. We denote by kQ
the order of the quadrature. Then, the discrete internal variables are sought in the space

X̃mQTh :=
ą

T∈Th

XmQ , (5.48)

that is, for all T ∈ Th, the internal variables attached to T form a vector χ̃
T

=
(χ̃
T

(ξ
T,j

))1≤j≤mQ with χ̃
T

(ξ
T,j

) ∈ X for all 1 ≤ j ≤ mQ. We will use the following no-

tation for two tensor-valued functions (p, q) defined on T :

(p, q)L2
Q(T ) :=

mQ∑
j=1

ωT,j p(ξ
T,j

) : q(ξ
T,j

). (5.49)

We will also need to consider the case where we know the tensor p̃ only at the quadra-
ture nodes (we use a tilde to indicate this situation), i.e., we have p̃ = (p̃(ξ

T,j
))1≤j≤mQ ∈

(Rd×d)mQ . In this case, we slightly abuse the notation by denoting again by (p̃, q)L2
Q(T ) the

quantity equal to the right-hand side of (5.495.49).
For the small plasticity problem, the discrete Cauchy stress σ̃ tensor and its associated

elastoplastic tangent modulus C̃ep are computed and known only at the quadrature points
(where the discrete generalized internal variables are computed). Then, for all mesh cell
T ∈ Th, the reconstructed Cauchy stress tensor σkT : (Rd×dsym)mQ → Pkd(T ;Rd×dsym) is obtained by

solving the following local problem: For all τ ∈ Pkd(T ;Rd×dsym),

(σkT (σ̃T ), τ )L2(T ) = (σ̃T , τ )L2
Q(T ) (5.50)

where σ̃T = (σ̃T (ξ
T,j

))1≤j≤mQ ∈ (Rd×dsym)mQ . Concerning the elastoplastic tangent modulus,

the reconstruction is obtained by remarking that the elastoplastic tangent modulus is always
contracted to the reconstructed symmetric strain Ek

T . This reconstruction is materialized by
an operator

(Cep : E)kT : (Sdsym)mQ × ÛkT → Pkd(T ;Rd×dsym),

where Sdsym is the space composed of fourth-order tensor having the minor and ma-

jor symmetries. For all C̃ep,T ∈ (Sdsym)mQ and v̂T ∈ ÛkT , the reconstructed operator

(Cep : E)kT (C̃ep,T , v̂T ) ∈ Pkd(T ;Rd×dsym) is obtained by solving the following local problem: For

all τ ∈ Pkd(T ;Rd×dsym),

((Cep : E)kT (C̃ep,T , v̂T ), τ )L2(T ) = (C̃ep,T : Ek
T (v̂T ), τ )L2

Q(T ). (5.51)

where C̃ep,T = (C̃ep,T (ξ
T,j

))1≤j≤mQ ∈ (Sdsym)mQ . Note that the associated mass matrix of this

problem can be computed and factorized once for all, then inverted for each new right-hand
side. Moreover, we prove the following invariance of the reconstructed stress and tangent
modulus operators.

Lemma 5.20 (Invariance) Assume that kQ ≥ 2k. Then, we have the following properties
for all T ∈ Th,

σkT (p̃) = p, ∀p ∈ Pkd(T ;Rd×dsym) (5.52)
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where p̃ = (p(ξ
T,j

))1≤j≤mQ ∈ (Rd×dsym)mQ, and

(Cep : E)kT (M, v̂T ) = M : Ek
T (v̂T ), ∀(M, v̂T ) ∈ P0

d(T ; Sdsym)× ÛkT . (5.53)

Moreover, the reconstructed operators (5.505.50) and (5.515.51) are consistant with those used for
the linear elasticity problem in Sect. 5.35.3 where p = 2µEk

T (v̂T ) + λDk
T (v̂T )Id and M = C.

Remark 5.21 Note that the reconstructed stress tensor σkT is the operator which is used in
Lemma 3.53.5 to prove a local principal of virtual work for plasticity with small deformations
without contact (under the additional assumption kQ ≥ 2k).

Remark 5.22 An other possible reconstruction of the elastoplastic tangent modulus is such
that for all C̃ep,T ∈ (Sdsym)mQ, the reconstructed operator Ckep,T (C̃ep,T ) ∈ Pkd(T ; Sdsym) is ob-

tained by solving the following local problem: For all M ∈ Pkd(T ;Sdsym),

(Ckep,T (C̃ep,T ),M)L2(T ) = (C̃ep,T ,M)L2
Q(T ) (5.54)

where C̃ep,T = (C̃ep,T (ξ
T,j

))1≤j≤mQ ∈ (Sdsym)mQ. Note that the first reconstruction (Cep : E)kT
use a smaller space than the second reconstruction Ckep,T . Morover, the first reconstruction

(Cep : E)kT is used to compute the Newton’s system in [33].

5.6.3 Discrete problem

Let us denote Cγ,T : ÛkT × (Rd×dsym)mQ → Rd the discrete version of Cγ .

Cγ,T (v̂T , σ̃T ) =
[
σkn,T (σ̃T )− γv∂T ,n

]
R−
nT +

[
σkt,T (σ̃T )− γv∂T ,t

]
s
. (5.55)

and DCγ,T (v̂T , σ̃T ), C̃ep,T ) the directional derivative of Cγ,∂T with respect to the displacement
field (see [180180] for details).

The global discrete problem consists in finding for any pseudo time-step 1 ≤ m ≤M , the
discrete displacements ûmh ∈ Ûkh,0 and the discrete internal variables χ̃mTh

∈ X̃mQTh such that,

for all δv̂h ∈ Ûkh,0,∑
T∈Th

(σkT (σ̃mT ),Ek
T (δv̂T ))L2(T ) +

∑
T∈Th

β(η∂TS
k
∂T (ûmT ), Sk∂T (δv̂T ))L2(∂T )

−
∑
T∈T C

h

θ

γ

(
σkT (σ̃mT )nT , (Cep : E)kT (C̃mep,T , δv̂T )nT

)
L2(∂TC)

+
∑
T∈T C

h

1

γ

(
Cγ,T (ûmT , σ̃

m
T ), θ(Cep : E)kT (C̃mep,T , δv̂T )nT − γδv∂T

)
L2(∂TC)

=
∑
T∈Th

(fm, δvT )L2(T ) +
∑
T∈T N

h

(gmN , δv∂T )L2(∂TN), (5.56)

where for all T ∈ Th and all 1 ≤ j ≤ mQ,

(χ̃m
T

(ξ
T,j

), σ̃mT (ξ
T,j

), C̃mep,T (ξ
T,j

)) =

SMALL PLASTICITY(χ̃n−1
T

(ξ
T,j

),Ek
T (ûm−1

T )(ξ
T,j

),Ek
T (ûmT )(ξ

T,j
)−Ek

T (ûm−1
T )(ξ

T,j
)),

(5.57)
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with ûm−1
h ∈ Ûkh,0 and χ̃m−1

Th
∈ X̃mQTh given either from the previous pseudo time-step or the

initial condition. Moreover, in the second line of (5.565.56), the stabilization employs a weight
of the form β = 2µβ0 with β0 > 0. In the original HHO method for linear elasticity [8989], the
choice β0 = 1 is considered.

Remark 5.23 If the material behavior remains elastic and kQ ≥ 2k, then the discrete plas-
ticity problem (5.565.56)-(5.575.57) is equivalent to the discrete linear elasticity problem (5.185.18) since
(Cep : E)kT (F )(C̃

m
ep,T (F ), δv̂T (F )) = σkT (δv̂T (F )).

5.6.4 Nonlinear solver

The nonlinear problem (5.565.56)-(5.575.57) arising at any pseudo-time step 1 ≤ n ≤ N is solved
using a generalized Newton’s method (see for example [1010, 185185]). Given ûm−1

h ∈ Ûkh,0 and

χ̃m−1
Th

∈ X̃mQTh from the previous pseudo-time step or the initial condition, the Newton’s

method is initialized by setting ûm,0h = ûm−1
h and χ̃m,0Th

= χ̃m−1
Th

. Then, at each Newton’s

step i ≥ 0, one computes the incremental displacement δûm,ih ∈ Ûkh,0 and updates the discrete

displacement as ûm,i+1
h = ûm,ih + δûm,ih . The linear system of equations to be solved is∑

T∈Th

((Cep : E)kT (C̃m,iep,T , δû
m,i
T ),Ek

T (δv̂T ))L2(T ) +
∑
T∈Th

β(γ∂TS
k
∂T (δûm,iT ), Sk∂T (δv̂T ))L2(∂T )

−
∑
T∈T C

h

θ

γ

(
(Cep : E)kT (C̃m,iep,T , δû

m,i
T )nT , (Cep : E)kT (C̃m,iep,T , δv̂T )nT

)
L2(∂TC)

+
∑
T∈T C

h

1

γ

(
DCγ,T (δûm,iT , σ̃m,iT , C̃m,iep,T ), θ(Cep : E)kT (C̃m,iep,T , δv̂T )nT − γδv∂T

)
L2(∂TC)

= −Rm,iθ,h (δv̂h), (5.58)

for all δv̂h ∈ Ûkh,0, where for all T ∈ Th and all 1 ≤ j ≤ mQ,

(χ̃m,i
T

(ξ
T,j

), σ̃m,iT (ξ
T,j

), C̃m,iep,T (ξ
T,j

)) = SMALL PLASTICITY(χm−1
T,j

, em−1
T,j , em,iT,j − em−1

T,j ),

(5.59)

with χm−1
T,j

= χ̃m−1
T

(ξ
T,j

), em,iT,j = Ek
T (ûm,iT )(ξ

T,j
), em−1

T,j = Ek
T (ûm−1

T )(ξ
T,j

), and the residual
term

Rm,iθ,h (δv̂h) =
∑
T∈Th

(σkT (σ̃m,iT ),Ek
T (δv̂T ))L2(T ) +

∑
T∈Th

β(η∂TS
k
∂T (ûm,iT ), Sk∂T (δv̂T ))L2(∂T )

−
∑
T∈T C

h

θ

γ

(
σkT (σ̃m,iT )nT , (Cep : E)kT (C̃m,iep,T , δv̂T )nT

)
L2(∂TC)

+
∑
T∈T C

h

1

γ

(
Cγ,T (ûm,iT , σ̃m,iT ), θ(Cep : E)kT (C̃m,iep,T , δv̂T )nT − γδv∂T

)
L2(∂TC)

−
∑
T∈Th

(fm, δvT )L2(T ) −
∑
T∈T N

h

(gmN , δv∂T )L2(∂TN). (5.60)

The assembling of the stiffness matrix resulting from the left-hand side of (5.585.58) is local (and
thus fully parallelizable). The discrete internal variables χ̃mTh

∈ X̃mQTh are updated at the end

of each pseudo-time step.
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Remark 5.24 The linearization is not full in (5.585.58) since few terms are omitted in the
left-hand side. At the continuous level, we omit the terms where ∂εCep appears. This term
∂εCep is a sixth-order tensor which is in general never computed at the quadrature points by
a generic behavior integrator. To have a complete linearization, ∂εCep has to be computed
by the procedure SMALL PLASTICITY which requires a theoretical study for each behaviour
law as well as a major development effort to adapt it in standard finite element software.
Note that ∂εCep is equal to zero if the behavior is elastic.

Remark 5.25 For the non-symmetric Nitsche variant θ = 0, the tangent system can be
simplified∑

T∈Th

((Cep : E)kT (C̃m,iep,T , δû
m,i
T ),Ek

T (δv̂T ))L2(T ) +
∑
T∈Th

β(γ∂TS
k
∂T (δûm,iT ), Sk∂T (δv̂T ))L2(∂T )

−
∑
T∈T C

h

(
DCγ,T (δûm,iT , σ̃m,iT , C̃m,iep,T ), δv∂T

)
L2(∂TC)

= −Rm,i0,h (δv̂h), (5.61)

with

Rm,i0,h (δv̂h) =
∑
T∈Th

(σkT (σ̃m,iT ),Ek
T (δv̂T ))L2(T ) +

∑
T∈Th

β(η∂TS
k
∂T (δûm,iT ), Sk∂T (δv̂T ))L2(∂T )

−
∑
T∈T C

h

(
Cγ,T (ûm,iT , σ̃m,iT ), δv∂T

)
L2(∂TC)

−
∑
T∈Th

(fm, δvT )L2(T ) −
∑
T∈T N

h

(gmN , δv∂T )L2(∂TN). (5.62)

In particular the linearization is full since the terms with ∂εCep are absent and the imple-
mentation is simpler compare to the Nitsche’s variant θ = −1 and θ = 1.

5.6.5 Numerical experiments

The goal of this section is to evaluated the proposed Nitsche-HHO method on a two-
dimensional frictionless Hertz’s contact problem with linear isotropic hardening. We compare
our results to those obtained using the industrial open-source FEM software code_aster

[111111]. We consider a linear, resp. quadratic, cG formulation, referred to as T1, resp. T2
where full integration is used, and a three-field mixed formulation in which the unknowns
are the displacement, the pressure and the volumetric strain fields referred to as UPG [99];
in the UPG method, the displacement field is quadratic, whereas both the pressure and the
volumetric strain fields are linear. Moreover, the contact conditions are imposed with a mixed
method referred as LAC (see [11]) where the additional unknowns are the contact pressure
which is piecewise constant. These three methods are referred as T1-LAC, T2-LAC, and
UPG-LAC respectively. The T1-LAC and T2-LAC methods with full integration, are known
to present volumetric locking due to plastic incompressibility, whereas the UPG-LAC method
is known to be robust but costly. Numerical results obtained using the UPG-LAC method
are used as a reference.

The combined linear isotropic and kinematic hardening plasticity model with a von Mises
yield criterion described in Section 3.2.43.2.4 is used for the test case. A strain-hardening plasticity
is considered with the following material parameters: Young modulus E = 70, Poisson ratio
ν = 0.3, hardening parameter H = 7, kinematic hardening K = 0, and initial yield stress
σy,0 = 2.5. We employ the notation HHO(k) when using polynomial of order k. Moroverer,
only the Nitsche’s variant θ = 0 has been implemented in disk++ for the moment since this
is easier.
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2D Hertz contact with plasticity

This benchmark is the well known two-dimensional Hertz’s contact problem of a half disk
in contact with a rigid foundation. The half disk is centred in (0, 50) and has a radius of
50. The contact boundary is ΓD = R × {0} and a vertical displacement uy = −5 is applied
on the top end. The mesh is composed of 4899 triangles. The euclidean displacement norm
on the deformed configuration is plotted in Fig. 5.115.11 for HHO(1). We plot the equivalent
plastic strain p in Fig. 5.125.12 for the different methods at the quadrature points on the reference
configuration. The results for HHO(1) and HHO(2) are in agreement with those obtained for
T2-LAC and UPG-LAC, whereas, the result for T1-LAC is less smooth compare to the others.
Moreover, the trace of the Cauchy stress tensor σ at the quadrature points on the reference
configuration is plotted in Fig. 5.135.13. We observe the absence of oscillation for T2-LAC, UPG-
LAC and HHO contrary to T1-LAC. This confirms numerically that HHO method prevents
volumetric locking as mixed methods. Note that both for the equivalent plastic strain p and
the trace of the Cauchy stress tensor, the results are slightly different between HHO and
LAC methods. The main reason is that the contact terms are computed on the deformed
contribution for the LAC method whereas they are computed on the reference configuration
for the Nitsche-HHO method. Hence, a small difference is present since the reference and
deformed configurations have to be distinguished for this benchmark.

Figure 5.11: Euclidean displacement norm on the deformed configuration for HHO(1).
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(a) T1-LAC (b) T2-LAC

(c) UPG-LAC

(d) HHO(1) (e) HHO(2)

Figure 5.12: 2D Hertz contact with plasticity: equivalent plastic strain p at the quadrature
points on the reference configuration for different methods.
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(a) T1-LAC (b) T2-LAC

(c) UPG-LAC

(d) HHO(1) (e) HHO(2)

Figure 5.13: 2D Hertz contact with plasticity: trace of the Cauchy stress tensor σ at the
quadrature points on the reference configuration for different methods.
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5.7 Conclusion

We have devised, analyzed, and evaluated numerically a HHO discretization combined with
a Nitsche method to impose weakly contact and Tresca friction conditions in small strain
elasticity. We have proved optimal error estimates for this nonlinear problem and have studied
the robustness of the estimates in the incompressible limit. The numerical tests indicate that
robustness is achieved in all configurations considered herein. Moreover, an extension to small
plasticity problem has been proposed. This work can be pursued in several directions, such
as extending the analysis to Coulomb friction and addressing further extensions (multi-body
contact, large transformations, plasticity) for industrial applications.



CHAPTER 6

CONCLUSIONS AND PERSPECTIVES

In this thesis, we have devised Hybrid High-Order methods (HHO) to deal with finite hypere-
lastic and elastoplastic deformations and the unilateral contact problem with Tresca friction.
Different primal HHO methods have been developed to solve these problems, i.e. without the
need to introduce additional global unknowns to impose the incompressibility condition and
prevent volumetric locking. For each problem, comparisons have been made with known so-
lutions and with computed solutions using the industrial finite element software code_aster.
In addition, the HHO methods presented in this thesis have been implemented both in the
disk++ and code_aster softwares (these developments are open-source and available online).

Firstly, the problem of finite hyperelastic deformations has been investigated where two
primal HHO methods have been devised on simplicial meshes. One of these methods circum-
vents the need for stabilization on simplicial meshes. Thus, it is not necessary to determine
(with difficulty) an appropriate value of the user-dependent stabilization parameter. Both
methods prevent volumetric locking at the incompressible limit.

Secondly, a primal HHO method has been developed on general meshes to deal with
the presence of small incompressible plastic deformations. This method has shown a robust
behavior for different local plasticity models and produces solutions as accurate as mixed
methods but with less unknowns.

Thirdly, the HHO method developed for small plastic deformations has been extended to
finite elastoplastic deformations by using the logarithmic strain framework. This framework
allows one to re-use behavior laws developed originally for small deformations by means
of purely geometric transformations. As for small deformations, the HHO method prevents
volumetric locking due to plastic incompressibility and delivers accurate results both in terms
of displacement and stress. However, a non-physical localization of plastic deformations can
appear for the lowest-order variant in a few situations.

Finally, the HHO methods has been combined with a Nitsche approach to impose weakly
the unilateral contact and Tresca friction conditions on a part of the boundary for the linear
elasticity problem with small deformations. More precisely, a primal face-based Nitsche-HHO
method has been devised. Optimal convergence rates have been proven even in presence
of Tresca friction and the method is robust at the incompressible limit. This results are
confirmed numerically.

This work can be pursued in several directions. Concerning the problems in computational
mechanics, we mention:

• Dynamic problems. In this thesis only static or quasi-static approaches have been
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considered. However, the friction conditions for Tresca or Coulomb are initially written
in terms of speed whereas we restricted ourselves in Chapter 55 to a static model. To
go further, it is important to be able to simulate dynamic problems such as impact
problems (see, e.g., Hauret & Le Tallec [135135] and Hager & al. [126126]). A possible
approach is to follow the ideas used for elastodynamics with Hybridizable Discontinuous
Galerkin methods by Nguyen, Peraire & Cockburn [172172].

• Non-local plasticity models. Non-physical phenomena such as the localization of plastic
deformations can occur when a local plasticity model is used (see Chapter 44 in our case).
Then, a way to circumvent this problem can be to use a non-local plasticity model as
for discontinuous Galerkin methods in small deformation by Djoko & al. [9797, 9898] and
finite deformations by McBride & Reddy [166166].

• Damage models. Above a given threshold in large plastic deformations, the material
can begin to damage. Then, it is necessary to combine a damage model with a plasticity
model which is generally non-local (see, e.g., Lorentz & al. [164164, 215215]).

• Deformable-deformable contact in finite elastoplastic deformations. Only a deformable
elastic body coming into contact with a rigid surface has been considered in this thesis.
The final goal is to be able to simulate the contact and friction between two (or more)
deformable bodies in finite elastoplastic deformations. This was recently done for a
Nitsche-FEM model by Seitz, Wall & Popp [186186].

• Validation on industrial applications. Since the HHO methods presented in this
manuscript have been implemented in code_aster, it is interesting to validate them on
more challenging problems. This will also help to optimize the implementation.

From a mathematical and numerical point of view, the following directions are suggested:

• a priori error estimates. The analysis in Chapter 55 is limited to linear elasticity with
Tresca friction. In many situations, the Coulomb friction is more physically relevant
than the Tresca friction. However, the analysis is much more complicated and the
theoretical results are very limited whatever the discretization method used. Moreover,
error estimates can also be investigated for the plasticity problem in small deformations,
possibly by taking inspiration from Alberty, Carstensen & Zarrabi [1111] and Djoko & al.
[9797], where other discretization methods are analyzed for plasticity problems

• Adaptativity. The HHO methods could take benefit from adaptativity in different ways.
The first one is to use an adaptive hp-refinement strategy to improve the accuracy of
the computed solution as in Daniel & al. [8181] for H1-conforming methods. This could
be facilitated for the HHO methods by the support of polyhedral meshes. The second
one is an adaptation of the stabilization parameter in the case of finite elastoplastic de-
formations since the stiffness of the material can change significantly. For the moment,
the value of the stabilization parameter is given a priori and does not change during
the simulation. Since this parameter can have a sizeable influence on the robustness
and the conditioning of HHO methods, it could be interesting to adapt automatically
this parameter locally in each mesh cell and during the simulation, as can be done for
the contact penalty parameter as well.

• Iterative solvers. To be able to perform massively parallel simulations, it is necessary
to have efficient iterative solvers for HHO methods. Efficient preconditioners are also
important. A possible approach is to follow the ideas developed for a diffusion problem
with HDG methods by Cockburn & al. [7575].



APPENDIX A

IMPLEMENTATION IN CODE_ASTER

Abstract. This appendix concerns the implementation of HHO methods for nonlinear solid
mechanics in the industrial finite open-source element software code_aster [111111]. The HHO
methods have been officialy integrated in code_aster in version 15.0.8. The details about
the implementation of HHO methods, i.e. computations of the different operators (gradient,
divergence, stabilization...), choice of basis functions, static condensation..., are already given
in [7171] for the open-source library disk++ using generic programming tools. Hence, we limit
ourselves here to explain the adaptations to the architecture of code_aster which were
realized during this thesis.
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code_aster is an industrial open-source software based on the finite element method
which is developed since 1989 by EDF R&D. It allows one to simulate linear and nonlinear
thermomechanical problems in static or dynamic settings. Moreover, strong assumptions have
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been done when the architecture of code_aster has been devised . This can complicate the
implementation of new numerical methods that differ from Lagrange finite element methods.
We list here the main assumptions:

• limited number of different geometric elements present in the mesh, i.e., triangle and
quadrangle in 2D, and tetrahedron, hexahedron, prism and pyramid in 3D (no support
of polyhedral meshes);

• strong connection between the geometric element and the finite element, i.e., the ap-
proximation order of the method is determined by the geometric element. For example,
a linear approximation for a 3-node triangle and a quadratic approximation for a 6-node
triangle;

• finite element unknowns supported only by the physical nodes of the mesh (and not by
the faces or the cells of the mesh as is the case for finite volume, discontinuous Galerkin,
and HHO methods).

The main objective for the implementation of HHO methods in code_aster is to reuse
as much as possible the architecture of the code and not to modify the critical points of
code_aster which are:

• data structures;

• finite element catalogues;

• locality of elementary computations;

• assembly operator.

We limited ourselves to the implementation of HHO methods for nonlinear solid mechanics
in code_aster for a limited number of geometric elements, i.e, triangle and quadrangle in
2D, and tetrahedron and hexahedron in 3D. Moreover, only the linear, k = 1, and quadratic,
k = 2, HHO methods are implemented. Quite important, The different modifications are
limited to two code_aster operators:

• CREA_MAILLAGE operator which allows one to create or transform a mesh.

• STAT_NON_LINE operator which is the quasi-static nonlinear solver for solid mechanics.

Remark A.1 This appendix uses a terminology specific to code_aster that can hamper the
understanding. However, the reader may find key elements to implement HHO methods in
other existing finite element codes.

A.1 Preliminaries

To implement HHO methods in a finite element code, two steps are particularly important
and need a special attention. The first one is the static condensation (or Schur complement)
which allows one to eliminate locally the cell unknowns in the local contributions (at the
end, a smaller global problem composed only of the face unknowns is solved). The second
important step is the assembly of the global problem composed only of the face unknowns
from local contributions after static condensation. These two steps are showed in Fig. A.1A.1.

We will show in the following sections how to perform these operations in code_aster

with only minor modifications of the architecture of the code.
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Figure A.1: The two important steps for the implementation of HHO methods: static con-
densation and assembly.

A.2 HHO unknowns and numbering

We recall that the local HHO unknowns v̂T = (vT , v∂T ) ∈ ÛkT that we have to compute
are the coefficients of cell-based and face-based polynomials (these coefficients have a priori
no physical meaning). After the static condensation, a global problem in term of the face
unknowns has to be assembled. Since this assembly has to be done face by face and since the
HHO unknowns can only be supported by a physical node of the mesh in code_aster, we
need that each face of the mesh owns at least one node that is not shared with any other face
of the mesh (typically a node located at the barycenter of the face). This is the case in 2D for
the 6-node triangle (referred to as TRIA6) and the 8-node quadrangle (refereed to as QUAD8),
and in 3D for the 27-node hexahedron (referred to as HEXA27). These geometric elements
correspond to quadratic elements for the isoparametric elements. Unfortunately, there is no
such standard tetrahedron, i.e. 4-node tetrahedron or 10-node tetrahedron. This is why, we
have created the mesh converter TETRA4_8 to have an eight-node tetrahedron (referred to as
TETRA8) which has a node located at the barycenter of each face. This mesh converter is
presented in Sect. A.4A.4.

The face unknowns vF for the face F ∈ Fh are supported by the node that is located
at the barycenter of the face F . These physical nodes of the mesh which support the face
unknowns are denoted unknown nodes. In addition, since the mesh faces are assumed to
be planar, we use the vertex nodes to describe the geometry of the cells and the faces and
to compute the different integrals. These physical nodes of the mesh which describe the
geometry of the elements are denoted geometric nodes. Finally, in the case of the HEXA27

element, the nodes located at the middle of the edges are not used. These physical nodes
of the mesh are denoted empty nodes. These different categories of nodes are illustrated in
Fig. A.2A.2 for the geometric elements TRIA6, QUAD8, TETRA8, and HEXA27. Moreover, the cell
unknowns vT are saved in a field which is constant by cell.

These tips for the localization of HHO unknowns allow us to reuse the data structures
and the assembly operator of code_aster. The resulting numbering is denoted global

numbering because this is the numbering which is used to assemble the global problem.
Moreover, we introduce also a local numbering which is used to sum the different local
contributions from a given cell before the static condensation (this numbering is never used
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to assemble the global problem). This is done by adding to a node of one of the faces the
cell unknowns. These two numberings are illustrated in Fig. A.3A.3 for the geometric element
QUAD8.

(a) TRIA6 (b) QUAD8

(c) TETRA8 (d) HEXA27

Figure A.2: Different categories of nodes considered in the implementation for the geometric
elements TRIA6, QUAD8, TETRA8, and HEXA27.
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(a) Global numbering (b) Local numbering

Figure A.3: Global and local numbering for the geometric element QUAD8.

A.3 Summation and static condensation

One of the major difficulties encountered in the implementation of HHO methods in
code_aster is the static condensation since the architecture of code_aster is not well
adapted to this procedure. Indeed, in code_aster, the elementary contributions (rigidity,
contact, Neumann loads...) are computed locally in an element (cell or face), then assem-
bled directly in the global problem using the global numbering as illustrated in Fig. A.4A.4 for
primal and mixed conforming finite element methods. However, this is not possible for HHO
methods since the static condensation procedure has to be performed before the assembly.
Hence, for HHO methods, we have to add an intermediary step. To begin, all the elementary
contributions coming from the same cell are summed locally in Aloc and bloc using the local
numbering such that

Aloc =

ncontrib∑
i=1

Ai
loc and bloc =

ncontrib∑
i=1

biloc. (A.1)

This operation is denoted Summation. Moreover, assuming that the cell unknowns vT are
ordered before the faces unknowns v∂T , the local problem to assemble reads as follows:AT,T

loc AT,∂T
loc

A∂T ,T
loc A∂T ,∂T

loc

( vT

v∂T

)
:=

bTloc

b∂Tloc

 (A.2)

where Aloc and bloc have been decomposed by block. The block AT,T
loc , composed only of

contributions coming from the cell unknowns vT , is positive definite (this block is dense).
Hence, we can eliminate the cell unknowns vT to keep only the face unknowns v∂T leading to

Acond v∂T := bcond. (A.3)

where

Acond = A∂T ,∂T
loc −A∂T ,T

loc (AT,T
loc )−1AT,∂T

loc , (A.4)

bcond = b∂Tloc −A∂T ,T
loc (AT,T

loc )−1AT,∂T
loc bTloc. (A.5)
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Acond and bcond are formulated only in terms of the face unknowns v∂T . This operation
is denoted Static condensation. The main difficulty is that the inputs Aloc and bloc of
the static condensation use the local numbering whereas the outputs Acond and bcond use
the global numbering. Finally, Aglob and bglob are assembled in the global problem using
the global numbering. The sequence of these different operations (elementary contributions,
summations, and static condensation) for the HHO methods is summarized in Fig. A.5A.5.
Note that the contributions coming from Neumann loads are directly assembled in the global
problem since they use only the face unknowns (and the global numbering). These tips allow
us to follow the principles of code_aster and to reuse the architecture with only minor
modifications.

Moreover, after solving the global problem, the values of the face unknowns v∂T are
known. The static decondensation procedure allows us to compute the cell unknowns vT
from the face unknowns v∂T as follows:

vT = (AT,T
loc )−1

(
bTloc −AT,∂T

loc v∂T

)
. (A.6)

To save computational time, the matrix (AT,T
loc )−1AT,∂T

loc and the vector (AT,T
loc )−1bTloc are saved

locally to the cell in two fields (constant by cell) during the static condensation procedure
and then reused in the static decondensation procedure.

Figure A.4: Sequence of operations to assemble the global problem using the global numbering
from the elementary contributions for primal and mixed conforming finite element methods.
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Figure A.5: Sequence of operations to assemble the global problem using both local and
global numbering from the elementary contributions for HHO methods.
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A.4 CREA_MAILLAGE

We have added a new option denoted TETRA4_8 in the CREA_MAILLAGE operator. The goal
is to transform a 4-node tetrahedron (referred to as TETRA4) into an 8-node tetrahedron
(referred to as TETRA8). The four new nodes of each tetrahedron are added to the barycenter
of each face. Hence, each new node is shared only by a face and two cells (or one cell, if
the face is a boundary face). This operation is illustrated in Fig. A.6A.6. Moreover, the new
geometric element TETRA8 has been added to code_aster.

Figure A.6: New option TETRA4_8 in the CREA_MAILLAGE operator to transform a 4-node
tetrahedron into an 8-node tetrahedron.

A.5 STAT_NON_LINE

The STAT_NON_LINE operator is the nonlinear solver for quasi-static thermomechanical prob-
lem in code_aster. The nonlinear problem is solved with a Newton’s method. To integrate
HHO methods in this solver, two intermediate operations are added. The first one is denoted
HHO_COMB and includes the summation and the static condensation procedure. This operation
is used between the computation of elementary contributions and the assembly. The second
one is denoted HHO_DECOND and allows one to perform the static decondensation procedure
after the solving. It is sufficient to add two boolean conditions in the STAT_NON_LINE op-
erator to use these two operations if the HHO methods are used for the computation. The
STAT_NON_LINE operator is summarized in Fig. A.7A.7 with the appropriate modifications for
HHO methods. Note that the modifications are very limited and circumscribed in the code.
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Figure A.7: Description of the quasi-static nonlinear solver STAT_NON_LINE where the modi-
fications to implement HHO method are added (in green).
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A.6 Dirichlet boundary conditions

The Dirichlet boundary conditions are imposed strongly in code_aster by modifying the
matrix and the load. The user has to specify the imposed displacement field on the Dirichlet
boundary. However, it is not straightforward for the user to give the values of face unknowns
since these coefficients have a priori no physical meaning. We have added an automatic
pre-processor which calculates the L2-orthogonal projector Πk

F (uD) and imposes the value
vF = Πk

F (uD) from the displacement field uD given at the nodes of the face (in the Lagrange
meaning)

A.7 Post-processing

The HHO unknowns are the coefficients of polynomials. These coefficients have a priori no
physical meaning. Hence, a post-processing has to be applied to visualize the results, typically
yielding the values of the displacement at the nodes of the mesh, in a classic visualization
software like paraview or gmsh. We have created a new field at the nodes of the mesh denoted
HHO_DEPL. The value at a node is the average of the value of the cell unknowns vT which
contain this node. Note that this field is globally continuous.

A.8 Basic HHO objects for the implementation

The core of code_aster is written mainly in FORTRAN 90 (and a bit in FORTRAN 77) contrary
to disk++ which is written in modern C++. Moreover, disk++ uses generic programming
tools to implement HHO methods with different levels of abstraction. This is not possible
in code_aster since it does not allow one to use Object-Oriented Programming (OOP).
However, to reuse in code_aster the implementation ideas developed in disk++ , we use the
possibilities offered by FORTRAN 2003. These possibilities allow one to create new types with
public and private arguments, and member functions. This is close to the notion of class in
C++ but without template. Hence, the implementation of HHO methods can be as generic as
possible in code_aster.

We outline in what follows the eight basic objects that we have created to facilitate the
implementation of HHO methods in code_aster. These objects have public and private
arguments, and member functions to access and modify the private arguments or to compute
the different quantities that we need.

• HHO_Field contains global information such as the numbering, the name of the global
variables which are necessary for the assembly and other operators;

• HHO_Data contains information as the face degree, the cell degree, the gradient degree,
and the stabilization coefficient;

• HHO_Face contains information about a face such as the topological dimension, the
nodes coordinates, the type of the geometric element, the barycenter, the diameter, the
measure, the outward normal...

• HHO_Cell contains the same information than for a face but for a cell. There is also a
list of type HHO_Face to have information about the faces of the cell.

• HHO_Monomials contains information to generate quickly the monomials used to com-
pute the basis functions;
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• HHO_Basis_Cell and HHO_Basis_Face allow one to compute the basis functions for a
cell and a face, respectively;

• HHO_Quadrature allows one to generate a quadrature on the physical element for a cell
or a face.

We present in Listing A.1A.1 a short example where we compute the scalar mass matrix
associated with a cell.

SUBROUTINE hhoMassMatCell(hhoCell , hhoData , massMat)

TYPE(HHO_CELL), INTENT(IN) :: hhoCell

TYPE(HHO_DATA), INTENT(IN) :: hhoData

REAL(KIND=8), INTENT(OUT) :: massMat(MSIZE , MSIZE)

! -------------------------------------------------------------

! Compute the scalar mass matrix of a Cell

! In hhoCell : current HHO Cell

! In hhoData : information about HHO parameters

! Out massMat : mass matrix

! -------------------------------------------------------------

TYPE(HHO_Basis_Cell) :: hhoBasisCell

TYPE(HHO_Quadrature) :: hhoQuad

REAL(KIND =8) :: basisScalEval(BSIZE), pg(3), wpg

INTEGER :: dimMat , ipg , cell_degree

! -------------------------------------------------------------

! --- Initialize basis functions

call hhoBasisCell%initialize(hhoCell)

! --- Get cell degree

cell_degree = hhoData%cell_degree ()

! --- Dimension of the mass matrix

dimMat = hhoBasisCell%BSSize(0, cell_degree)

! --- Initialize the mass matrix to zero

massMat = 0.d0

! --- Get quadrature of order 2* cell_degree ()

call hhoQuad%GetQuadCell(hhoCell , 2* cell_degree)

! --- Loop on quadrature points

do ipg = 1, hhoQuad%nbQuadPoints ()

! ------ Get coordinates and weight of the quadrature point

pg = hhoQuad%points (1:3,ipg)

wpg = hhoQuad%weights(ipg)

! ------ Evaluate scalar basis functions at the quadrature point

call hhoBasisCell%BSEval(hhoCell , pg , 0, &

cell_degree , basisScalEval)

! ------ Evaluate massMat (use BLAS routine dsyr)

call dsyr(’U’, dimMat , wpg , basisScalEval , 1, &

massMat , MSIZE)

end do

! --- Copy the lower part

call hhoCopySymPartMat(’U’, massMat (1:dimMat ,1: dimMat ))

END SUBROUTINE

Listing A.1: A short example on how to compute the scalar mass matrix associated with a
cell.
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We remark that the implementation is light and uses mainly the HHO objects since all the
details are hidden in these objects. Note that to compute the scalar mass matrix associated
with a face, it is only necessary to replace everywhere in the hhoMassMatCell routine the
keyword “cell” by “face”.

A.9 Comparison of performances with disk++

We compare the difference of performances between disk++ and code_aster for a mesh
composed of 26,846 tetrahedra and 55,541 faces. We measure the time to compute the
elementary contributions, the summation, the static condensation, and the assembly, i.e. the
steps summarized in Fig. A.5A.5. The results are shown in Tab. A.1A.1 for the simulation of a
problem in large elastoplastic deformations. We observe that the performances are similar
between disk++ and code_aster for k = 1, whereas code_aster is 25% more efficient than
disk++ for k = 2. We list here the main reasons of this difference of performance for k = 2
by level of importance:

• The implementation of HHO methods in disk++ is more generic than in code_aster

(general meshes, arbitrary order...). Hence, a lot of optimization can be done in
code_aster since we consider only four geometric elements and k = 1 and k = 2
(disk++ pays here its generic approach);

• The data structures and the architecture of code_aster are strongly optimized;

• The construction of the different operator is less segmented in code_aster than in
disk++;

• There is no dynamic allocation for the computation of elementary contributions in
code_aster contrary to disk++.

Method Time (in s) Difference
HHO disk++ code_aster (in %)

k = 1 16.2 17.2 + 6 %

k = 2 60 48 - 25 %

Table A.1: Performance comparison between disk++ and code_aster.
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[133] J. Haslinger and I. Hlaváček. Approximation of the Signorini problem with friction by
a mixed finite element method. J. Math. Anal. Appl., 86(1):99–122, 1982.
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