J. P. Abriata, J. Garcés, R. Versaci, and . The-o?zr, Oxygen-Zirconium) system. Bulletin of Alloy Phase Diagrams, vol.7, pp.116-124, 1986.

A. Aladjem, F. A. Lewis, and . Zirconium-hydrogen, Solid State Phenomena, vol.49, pp.281-330, 1996.

G. Aurelio, A. F. Guillermet, G. J. Cuello, and J. Campo, Structural properties and stability of metastable phases in the Zr-Nb system: Part II. Aging of bcc (?) alloys and assessment of ?-Zr, Metallurgical and Materials Transactions A, vol.34, issue.12, pp.2771-2779, 2003.

J. B. Bai, Effect of Hydriding Temperature and Strain Rate on the Ductile-Brittle Transition in ? Treated Zircaloy-4, Journal of Nuclear Science and Technology, vol.33, issue.2, pp.141-146, 1996.

J. E. Bailey, Electron microscope observations on the precipitation of zirconium hydride in zirconium, Acta Metallurgica, vol.11, issue.4, pp.267-280, 1963.

L. Baker and L. C. Just, Studies of Metal-Water Reactions at High Temperatures. III. Experimental and Theoretical Studies of the Zirconium-Water Reaction, Argonne National Lab. (ANL), 1962.

P. Barberis, Propriétés du zirconium et du hafnium. Techniques de l'Ingénieur, 2015.

P. Barberis, Métallurgie du zirconium et du hafnium. Techniques de l'Ingénieur, 2016.

A. Barbu and J. P. Massoud, Comportement des matériaux dans le coeur des REP, 2008.

K. G. Barraclough and C. J. Beevers, The nature of the ?-phase in zirconium-hydrogen alloys, Journal of the Less Common Metals, vol.35, issue.1, pp.177-179, 1974.

I. O. Bashkin, V. Y. Malyshev, and . Myshlyaev, Reversible ? ? ? + ? transformation in zirconium deuteride, Soviet Physics Solid State, vol.34, pp.1182-1184, 1992.

R. L. Beck, W. M. Mueller, and . Hydrides, Hydrides and Hafnium Hydrides, pp.241-335, 1968.

G. M. Benites and A. Fernández-guillermet, Structural properties of metastable phases in Zr-Nb alloys: II. Systematics of the atomic volumes and interatomic distances, Journal of Alloys and Compounds, vol.302, issue.1, pp.192-198, 2000.

G. Beranger and P. Lacombe, Contribution à l'étude de la cinétique de l'oxydation du zirconium ? et de la diffusion de l'oxygène dans le métal sous-jacent à l'oxyde, Journal of Nuclear Materials, vol.16, issue.2, pp.190-207, 1965.

M. Billone, Y. Yan, T. Burtseva, and R. Daum, Cladding embrittlement during postulated loss-ofcoolant accidents, Argonne National Lab, 2008.

P. Boisot and G. Béranger, Variations des paramètres cristallins de la solution solide a zirconiumoxygène en fonction de la teneur en oxygène, Comptes Rendus de l'Académie Des Sciences, vol.269, pp.587-590, 1969.

P. Bordet, Affinement de diagrammes de diffraction de poudres par la méthode de Rietveld. Insitut Néel, CNRS-UGA, Grenoble. Cours de La Formation Diffraction Par Les Matériaux Polycristallins, 2016.

P. Bossis, D. Pecheur, K. Hanifi, J. Thomazet, and M. Blat, Comparison of the high burn-up corrosion on M5 and low tin Zircaloy-4, Journal of ASTM International, vol.3, issue.1, pp.494-524, 2004.

J. Brachet, V. Vandenberghe, . Comments, J. H. Papers-of, and . Kim, ] recently published in JNM "On the hydrogen uptake of Zircaloy-4 and M5 TM alloys subjected to steam oxidation in the 1100-1250°C temperature range, vol.395, pp.169-172, 2009.

J. C. Brachet, J. L. Béchade, A. Castaing, L. Le-blanc, and T. Jouen, Relationship between Crystallographic Texture and Dilatometric Behaviour of a Hexagonal Polycrystalline Material, Materials Science Forum, pp.273-275, 1998.

J. C. Brachet, L. Portier, T. Forgeron, J. Hivroz, D. Hamon et al., Influence of hydrogen content on the alpha/beta phase transformation temperatures and on the thermal-mechanical behavior of Zy4, M4 (ZrSnFeV) and M5 (ZrNbO) alloys during the first phase of LOCA transient, Zirconium in the Nuclear Industry: 13th International Symposium, pp.673-701, 2002.

J. C. Brachet, L. Portier, V. Maillot, T. Forgeron, J. P. Mardon et al., Overview of the CEA Data on the Influence of Hydrogen on the Metallurgical and Thermal-mechanical Behavior of Zircaloy-4 and M5 Alloys under LOCA Conditions, Nuclear Safety Research Conference, pp.1-28, 2004.

J. C. Brachet, V. Vandenberghe-maillot, L. Portier, D. Gilbon, A. Lesbros et al., Hydrogen content, pre-oxidation and cooling scenario effects on postquench microstructure and mechanical properties of Zircaloy-4 and M5 alloys in LOCA conditions, Journal of ASTM International, vol.5, issue.5, pp.1-28, 2008.

J. C. Brachet, C. Toffolon-masclet, D. Hamon, T. Guilbert, G. Trego et al., Hydrogen and Main Alloying Chemical Elements Partitioning Upon Alpha-Beta Phase Transformation in Zirconium Alloys, Solid State Phenomena, pp.172-174, 2011.

J. C. Brachet, D. Hamon, and C. Raepsaet, Capabilities of EPMA and µ-ERDA to quantify the microchemical elements partitioning within nuclear fuel cladding materials after LOCA transient, HPG Meeting on LOCA, 2012.

J. C. Brachet, D. Hamon, J. L. Béchade, P. Forget, C. Toffolon-masclet et al., Quantification of the chemical elements partitioning within pre-hydrided Zircaloy-4 after high temperature steam oxidation as a function of the final cooling scenario (LOCA conditions) and consequences on the (local) materials hardening, Proceeding of IAEA Technical Meeting on Fuel Behaviour and Modelling under Severe Transient and LOCA Conditions, pp.253-265, 2013.

J. Brachet, D. Hamon, M. Le-saux, V. Vandenberghe, C. Toffolon-masclet et al., Study of secondary hydriding at high temperature in zirconium based nuclear fuel cladding tubes by coupling information from neutron radiography/tomography, electron probe micro analysis, micro elastic recoil detection analysis and laser induced breakdown spectroscopy microprobe, Journal of Nuclear Materials, vol.488, pp.267-286, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01488896

J. S. Bradbrook, G. W. Lorimer, and N. Ridley, The precipitation of zirconium hydride in zirconium and zircaloy-2, Journal of Nuclear Materials, vol.42, issue.2, pp.142-160, 1972.

L. R. Bunnell, G. B. Mellinger, and J. L. Bates, High-temperature properties of Zy-O alloys. EPRI NP-524, Research Project, pp.251-252, 1977.

W. G. Burgers, On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium, Physica, vol.1, issue.7, pp.561-586, 1934.

C. Salcedo and A. , Modélisation du comportement mécanique "post-trempe", après oxydation à haute température, des gaines de combustible des réacteurs à eau pressurisée, MINES ParisTech, 2012.

C. D. Cann and A. Atrens, A metallographic study of the terminal solubility of hydrogen in zirconium at low hydrogen concentrations, Journal of Nuclear Materials, vol.88, issue.1, pp.42-50, 1980.

C. D. Cann and E. E. Sexton, An electron optical study of hydride precipitation and growth at crack tips in zirconium, Acta Metallurgica, vol.28, issue.9, pp.1215-1221, 1980.

C. D. Cann, M. P. Puls, E. E. Sexton, and W. G. Hutchings, The effect of metallurgical factors on hydride phases in zirconium, Journal of Nuclear Materials, vol.126, issue.3, pp.197-205, 1984.

G. J. Carpenter, The dilatational misfit of zirconium hydrides precipitated in zirconium, Journal of Nuclear Materials, vol.48, issue.3, pp.264-266, 1973.

M. P. Cassidy and C. M. Wayman, The crystallography of hydride formation in zirconium: I. The ? ? ? transformation, Metallurgical and Materials Transactions A, vol.11, issue.1, pp.47-56, 1980.

B. Ceki?, K. ?iri?, M. Iordoc, S. Markovi?, M. Mitri? et al., Kinetics of hydrogen absorption in Zr-based alloys, Journal of Alloys and Compounds, vol.559, pp.162-166, 2013.

D. Charquet, R. Hahn, E. Ortlieb, J. Gros, and J. Wadier, Solubility limits and formation of intermetallic precipitates in ZrSnFeCr alloys, Zirconium in the Nuclear Industry: 8th Symposium, ASTM, pp.405-422, 1988.

R. Chosson, Etude expérimentale et modélisation du comportement en fluage sous pression interne d'une gaine en alliage de zirconium oxydée en atmosphère vapeur, MINES ParisTech, 2014.

R. Chosson, A. F. Gourgues-lorenzon, V. Vandenberghe, J. C. Brachet, and J. Crépin, Creep flow and fracture behavior of the oxygen-enriched alpha phase in zirconium alloys, Scripta Materialia, vol.117, pp.20-23, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01288691

C. K. Chow, P. C. Bera, and H. E. Rosinger, Creep behavior of oxidized Zircaloy-4 fuel sheathing, Materials in Nuclear Energy, 1982.

H. M. Chung, Fuel behavior under loss-of-coolant accident situations, Nuclear Engineering and Technology, vol.37, issue.4, pp.327-362, 2005.

H. M. Chung and T. F. Kassner, Pseudobinary zircaloy-oxygen phase diagram, Journal of Nuclear Materials, vol.84, issue.1, pp.327-339, 1979.

H. M. Chung and T. F. Kassner, Embrittlement criteria for Zircaloy fuel cladding applicable to accident situations in light-water reactors, Argonne National Lab, 1980.

B. Chung, H. M. Daum, R. S. Hiller, J. M. Billone, and M. C. , Characteristics of Hydride Precipitation and Reorientation in Spent-Fuel Cladding, Zirconium in the Nuclear Industry: Thirteenth International Symposium, 2002.

T. Chuto, F. Nagase, and T. Fuketa, High temperature oxidation of Nb-containing Zr alloy cladding in LOCA conditions, Nuclear Engineering and Technology, vol.41, issue.2, pp.163-170, 2008.

F. Couvreur and G. André, In situ" Neutron Scattering study of hydrogen-containing Zircaloy-4 alloys, 2000.

B. Cox, Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants, Internal Atomic Energy Agency, 1998.

B. Cox, A mechanism for the hydrogen uptake process in zirconium alloys, Journal of Nuclear Materials, vol.264, issue.3, pp.283-294, 1999.

B. Cox and J. P. Pemsler, Diffusion of oxygen in growing zirconia films, Journal of Nuclear Materials, vol.28, issue.1, pp.73-78, 1968.

J. Crépin, Etude des mécanismes de déformation et d'endommagement du zirconium grade 702 traité ?. Application aux cordons de soudure, 1995.

G. J. Cuello, A. Fernández-guillermet, G. B. Grad, R. E. Mayer, and J. R. Granada, Structural properties and stability of the bcc and omega phases in the Zr-Nb system. I. Neutron diffraction study of a quenched and aged Zr-10 wt% Nb alloy, Journal of Nuclear Materials, vol.218, issue.2, pp.236-246, 1995.

E. L. Cussler, Diffusion Mass Transfer in Fluid Systems, 1997.

Y. Dali, Etude expérimentale de l'oxydation des alliages de zirconium à haute pression de vapeur d'eau et modélisation des mécanismes, 2007.

R. S. Daum, Y. S. Chu, and A. T. Motta, Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction, Journal of Nuclear Materials, vol.392, issue.3, pp.453-463, 2009.

C. O. De-gonzález and E. A. García, Determination of the diffusion coefficients of oxygen in zirconium by means of XPS, Applied Surface Science, vol.44, issue.3, pp.211-219, 1990.

J. Debuigne, Contribution à l'étude de l'oxydation du zirconium et de la diffusion de l'oxygène dans l'oxyde et dans le métal, Faculté Des Sciences de, 1966.

J. Desquines, D. Drouan, S. Guilbert, and P. Lacote, Embrittlement of pre-hydrided Zircaloy-4 by steam oxidation under simulated LOCA transients, Journal of Nuclear Materials, vol.469, pp.20-31, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02557552

W. A. Dollase, Correction of intensities for preferred orientation in powder diffractometry: application of the March model, Journal of Applied Crystallography, vol.19, issue.4, pp.267-272, 1986.

C. Domain, R. Besson, and A. Legris, Atomic-scale Ab-initio study of the Zr-H system: I. Bulk properties, Acta Materialia, vol.50, issue.13, pp.3513-3526, 2002.
URL : https://hal.archives-ouvertes.fr/hal-01828674

D. L. Douglass, The Metallurgy of Zirconium, Atomic Energy Review, Supplement, 1971.

, Bibliographie

P. Doumalin, Microextensométrie locale par corrélation d'images numériques. Application aux études micromécaniques par microscopie électronique à balayage, 2000.

N. Dupin, I. Ansara, C. Servant, C. Toffolon, C. Lemaignan et al., A thermodynamic database for zirconium alloys, Journal of Nuclear Materials, vol.275, issue.3, pp.287-295, 1999.

. Edf, La production d'électricité d'origine nucléaire, p.20, 2018.

E. Media, , 2020.

X. Feaugas and E. Conforto, Influence de l'hydrogène sur les mécanismes de déformation et d'endommagement des alliages de titane et de zirconium, pp.161-178, 2009.

I. F. Ferguson, Computer x-ray powder diffraction patterns and densities for corundum, aluminium, zirconium, delta-UZr2 and the zirconium hydrides, United Kingdom Atomic Energy Authority (UKAEA). Rapport N°, issue.S, 1976.

R. W. Fong, F. Fazeli, and T. Smith, Thermal Expansion Anisotropy of Zr-2.5Nb Pressure Tube Material on Heating to 1100°C. Proceeding of 35th Annual Conference of the Canadian Nuclear Society & 38th CNS/CNA Student Conference, Canada, vol.1, pp.636-648

T. Forgeron, J. C. Brachet, F. Barcelo, A. Castaing, J. Hivroz et al., Experiment and Modeling of Advanced Fuel Rod Cladding Behavior Under LOCA Conditions: Alpha-Beta Phase Transformation Kinetics and EDGAR Methodology, STP1354-EB Zirconium in the Nuclear Industry: Twelfth International Symposium, pp.256-278, 2000.

A. M. Garde, H. M. Chung, and T. F. Kassner, Uniaxial tensile properties of Zircaloy containing oxygen: summary report. ANL-77-30, 1977.

M. I. Gasik, Chapter 14 -Technology of Niobium Ferroalloys. Handbook of Ferroalloys, pp.411-419, 2013.

V. L. Gelezunas, P. K. Conn, and R. H. Price, The Diffusion Coefficients for Hydrogen in ?-Zirconium, Journal of The Electrochemical Society, vol.110, issue.7, pp.799-805, 1963.

J. Goldak, L. T. Lloyd, and C. S. Barrett, Lattice Parameters, Thermal Expansions, and Grüneisen Coefficients of Zirconium, 4.2 to 1130°K, Physical Review, vol.144, issue.2, pp.478-484, 1966.

D. Gosset and M. Le-saux, In-situ X-ray diffraction analysis of zirconia layer formed on zirconium alloys oxidized at high temperature, Journal of Nuclear Materials, vol.458, pp.245-252, 2015.

D. Gosset, M. Le-saux, D. Simeone, and D. Gilbon, New insights in structural characterization of zirconium alloys oxidation at high temperature, Journal of Nuclear Materials, vol.429, issue.1, pp.19-24, 2012.

P. Gravereau, Introduction à la pratique de la diffraction des rayons X par les poudres, 2012.
URL : https://hal.archives-ouvertes.fr/cel-00671294

M. Grosse, C. Roessger, J. Stuckert, M. Steinbrueck, A. Kaestner et al., Neutron Imaging Investigations of the Secondary Hydriding of Nuclear Fuel Cladding Alloys during Loss of Coolant Accidents, Physics Procedia, vol.69, pp.436-444, 2015.

M. Grosse, M. Steinbrueck, B. Schillinger, and A. Kaestner, Situ Investigations of the Hydrogen Uptake of Zirconium Alloys during Steam Oxidation, pp.1114-1135, 2018.

M. K. Grosse, J. Stuckert, M. Steinbrück, A. P. Kaestner, and S. Hartmann, Neutron Radiography and Tomography Investigations of the Secondary Hydriding of Zircaloy-4 during Simulated Loss of Coolant Nuclear Accidents, Physics Procedia, vol.43, pp.294-306, 2013.

S. Guilbert-banti, P. Lacote, G. Taraud, P. Berger, J. Desquines et al., Influence of hydrogen on the oxygen solubility in Zircaloy-4, Journal of Nuclear Materials, vol.469, pp.228-236, 2016.
URL : https://hal.archives-ouvertes.fr/cea-01261954

G. Hache and H. M. Chung, The history of LOCA embrittlement criteria. Argonne National Lab, 2001.

M. He, Caractérisation du comportement à rupture des alliages de zirconium de la gaine du crayon combustible des centrales nucléaires dans la phase post-trempe d'un APRP (Accident de Perte de Réfrigérant Primaire), MINES ParisTech, 2012.

A. Heiming, W. Petry, J. Trampenau, W. Miekeley, and J. Cockcroft, The temperature dependence of the lattice parameters of pure BCC Zr and BCC Zr-2 at.%Co, Journal of Physics: Condensed Matter, vol.4, issue.3, pp.727-733, 1992.

A. Hellouin-de-ménibus, Formation de blisters d'hydrures et effet sur la rupture de gaines en Zircaloy-4 en conditions d'accident d'injection de réactivité, MINES ParisTech, 2012.

A. Hellouin-de-menibus, T. Guilbert, Q. Auzoux, C. Toffolon, J. Brachet et al., Hydrogen contribution to the thermal expansion of hydrided Zircaloy-4 cladding tubes, Journal of Nuclear Materials, vol.440, issue.1, pp.169-177, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00830844

J. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids, 1954.

D. O. Hobson, Ductile-brittle behavior of Zircaloy fuel cladding, ANS Topical Meeting on Water Reactor Safety, pp.274-288, 1973.

D. O. Hobson and P. L. Rittenhouse, Embrittlement of Zircaloy clad fuel rods by steam during LOCA transients. Oak Ridge National Lab, 1972.

L. Holliger, Modélisation à l'échelle atomique des transformations de phase dans le système H-Zr

D. Thèse-de, , 2010.

R. A. Holt, The beta to alpha phase transformation in zircaloy-4, Journal of Nuclear Materials, vol.35, issue.3, pp.322-334, 1970.

H. S. Hong, S. J. Kim, and K. S. Lee, Effect of oxygen content on the beta-quenched microstructure of modified Zircaloy-4, Journal of Nuclear Materials, vol.265, issue.1-2, pp.108-111, 1999.

C. E. Hunt and P. Niessen, The continuous cooling transformation behaviour of zirconium-niobiumoxygen alloys, Journal of Nuclear Materials, vol.38, issue.1, pp.17-25, 1971.

E. H. Bibliographie-kisi and C. J. Howard, Crystal Structures of Zirconia Phases and their Inter-Relation, Key Engineering Materials, pp.153-154, 1998.

O. Kubashewski, Diffusion. Atomic Energy Review, Special Issue, vol.6, pp.263-268, 1976.

P. Lafaye, C. Toffolon-masclet, J. Crivello, and J. Joubert, Experimental investigations and thermodynamic modelling of the Cr-Nb-Sn-Zr system. Calphad, vol.64, pp.43-54, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02011300

L. Lanzani and M. Ruch, Comments on the stability of zirconium hydride phases in Zircaloy, Journal of Nuclear Materials, vol.324, issue.2-3, pp.165-176, 2004.

L. Bail and A. , Extracting structure factors from powder diffraction data by iterating full pattern profile fitting, Accuracy in Powder Diffraction II, vol.846, 1992.

L. Hong, T. Turque, I. Le-saux, M. Brachet, J. C. Crépin et al., Metallurgical evolutions of zirconium alloys containing high hydro-gen contents during cooling from high temperature. Proceeding of Fontevraud 9, Contribution of Materials Investigations and Operating Experience to Light Water NPP's Safety, 2018.

L. Saux and M. , Comportement et rupture de gaines en Zircaloy-4 détendu vierges, hydrurées ou irradiées en situation accidentelle de type RIA, MINES ParisTech, 2008.

L. Saux, M. Vandenberghe, V. Crébier, P. Brachet, J. C. Gilbon et al., Influence of Steam Pressure on the High Temperature Oxidation and Post-Cooling Mechanical Properties of Zircaloy-4 and M5 Cladding (LOCA Conditions), Zirconium in the Nuclear Industry: 17th International Symposium, vol.1543, pp.1002-1053, 2014.

L. Saux, M. Guilbert, T. Brachet, and J. C. , An approach to study oxidation-induced stresses in Zr alloys oxidized at high temperature, Corrosion Science, vol.140, pp.79-91, 2018.

L. Saux, M. Brachet, J. C. Vandenberghe, V. Rouesne, E. Urvoy et al., Effect of a pre-oxide on the high temperature steam oxidation of Zircaloy-4 and M5Framatome alloys, Journal of Nuclear Materials, vol.518, pp.386-399, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02149361

C. Lebon, Etude expérimentale et simulation numérique des mécanismes de plasticité dans les alliages de zirconium, 2011.

H. Lee, K. Kim, J. Kim, and Y. Kim, Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition, Nuclear Engineering and Technology, vol.52, issue.2, pp.352-359, 2020.

C. Lemaignan and A. T. Motta, Zirconium alloys in nuclear applications, Materials Science and Technology, vol.10, pp.1-51, 1994.

G. G. Libowitz, A pressure-composition-temperature study of the zirconium-hydrogen system at high hydrogen contents, Journal of Nuclear Materials, vol.5, issue.2, pp.228-233, 1962.

X. Ma, C. Toffolon-masclet, T. Guilbert, D. Hamon, and J. C. Brachet, Oxidation kinetics and oxygen diffusion in low-tin Zircaloy-4 up to 1523K, Journal of Nuclear Materials, vol.377, issue.2, pp.359-369, 2008.
URL : https://hal.archives-ouvertes.fr/cea-02355377

M. Inteer, W. Baty, W. A. Tein, and K. O. , The influence of tin content on the thermal creep of Zircaloy

, Zirconium in the Nuclear Industry: Eighth International Symposium, pp.621-640, 1989.

T. Maimaitiyili, A. Steuwer, C. Bjerkén, J. Blomqvist, M. Hoelzel et al., The preparation of Zr-deuteride and phase stability studies of the Zr-D system, Journal of Nuclear Materials, vol.485, pp.243-252, 2017.

M. Mallet and W. Albrecht, High temperature oxidation of two zirconium-tin alloys, Journal of Electrochemical Society, vol.102, pp.407-414, 1955.

J. P. Mardon, Matériaux des tubes de gainage pour réacteurs à eau pressurisée, 2008.

J. P. Mardon, D. Charquet, and J. Senevat, Influence of composition and fabrication process on out ofpile and in-pile properties of M5 alloy, Zirconium in the Nuclear Industry: Twelfth International Symposium, pp.505-524, 2000.

J. P. Mardon, G. L. Garner, and P. Hoffmann, M5® a breakthrough in Zr Alloy, Proceedings of 2010 LWR Fuel Performance/TopFuel/WRFPM, pp.577-586, 2010.

B. Massicot, Étude du système Fe-Ti-V et de ses applications au stockage de l'hydrogène, 2009.

M. Mayer and . Simnra, Simulation Program for the Analysis of NRA, RBS and ERDA, Proceedings of the 15th International Conference on the Application of Accelerators in Research and Industry. American Institute of Physics Conference Proceedings, vol.475, p.541, 1998.

B. Mazères, Étude expérimentale et modélisation de l'oxydation à haute température et des transformations de phases associées dans les gaines en alliage de zirconium, 2013.

B. Mazères, C. Desgranges, C. Toffolon-masclet, and D. Monceau, Contribution to Modeling of Hydrogen Effect on Oxygen Diffusion in Zy-4 Alloy During High Temperature Steam Oxidation, Oxidation of Metals, vol.79, pp.121-133, 2013.

A. Mcminn, E. C. Darby, and J. S. Schofield, The Terminal Solid Solubility of Hydrogen in Zirconium Alloys, Zirconium in the Nuclear Industry: Twelfth International Symposium, pp.173-195, 2000.

S. Mishra, K. S. Sivaramakrihnan, and M. K. Asundi, Formation of the gamma phase by a peritectoid reaction in the zirconium-hydrogen system, Journal of Nuclear Materials, vol.45, issue.3, pp.235-244, 1972.

M. Moalem and D. R. Olander, The high-temperature solubility of hydrogen in pure and oxygencontaining Zircaloy, Journal of Nuclear Materials, vol.178, issue.1, pp.61-72, 1991.

F. Nagase, Behavior of LWR fuel during loss-of-coolant accidents, Comprehensive Nuclear Materials, vol.2, pp.595-608, 2012.

F. Nagase and T. Fuketa, Behavior of Pre-hydrided Zircaloy-4 Cladding under Simulated LOCA Conditions, Journal of Nuclear Science and Technology, vol.42, issue.2, pp.209-218, 2005.

F. Nagase and T. Fuketa, Fracture Behavior of Irradiated Zircaloy-4 Cladding under Simulated LOCA Conditions, Journal of Nuclear Science and Technology, vol.43, issue.9, pp.1114-1119, 2006.

F. Nagase, T. Otomo, and H. Uetsuka, Oxidation Kinetics of Low-Sn Zircaloy-4 at the Temperature Range from 773 to 1,573K, Journal of Nuclear Science and Technology, vol.40, issue.4, pp.213-219, 2003.

P. P. Narang, G. L. Paul, and K. N. Taylor, Location of hydrogen in ?-zirconium, Journal of the Less Common Metals, vol.56, issue.1, pp.125-128, 1977.

B. Nath, G. W. Lorimer, and N. Ridley, The relationship between gamma and delta hydrides in zirconium-hydrogen alloys of low hydrogen concentration, Journal of Nuclear Materials, vol.49, issue.3, pp.262-280, 1974.

B. Nath, G. W. Lorimer, and N. Ridley, Effect of hydrogen concentration and cooling rate on hydride precipitation in ?-zirconium, Journal of Nuclear Materials, vol.58, issue.2, pp.153-162, 1975.

D. O. Northwood and U. Kosasih, Hydrides and delayed hydrogen cracking in zirconium and its alloys, International Metals Reviews, vol.28, issue.1, pp.92-121, 1983.

D. O. Northwood and D. T. Lim, A TEM metallographic study of hydrides in a Zr-2.5wt%Nb alloy. Metallography, vol.14, pp.21-35, 1981.

H. Okamoto and . O-zr, Oxygen-Zirconium), Journal of Phase Equilibria and Diffusion, vol.28, issue.5, pp.498-498, 2007.

Z. L. Pan and M. P. Puls, Precipitation and dissolution peaks of hydride in Zr-2.5Nb during quasistatic thermal cycles, Journal of Alloys and Compounds, vol.310, issue.1, pp.214-218, 2000.

R. E. Pawel, Oxygen diffusion in beta zircaloy during steam oxidation, Journal of Nuclear Materials, vol.50, issue.3, pp.247-258, 1974.

R. E. Pawel, J. V. Cathcart, and J. J. Campbell, The oxidation of zircaloy-4 at 900 and 1100°c in high pressure steam, Journal of Nuclear Materials, vol.82, issue.1, pp.129-139, 1979.

G. S. Pawley, Unit-cell refinement from powder diffraction scans, Journal of Applied Crystallography, vol.14, issue.6, pp.357-361, 1981.

R. A. Perkins, Oxygen diffusion in ?-Zircaloy, Journal of Nuclear Materials, vol.68, issue.2, pp.148-160, 1977.

V. Perovic, G. C. Weatherly, and C. J. Simpson, Hydride precipitation in ?/? zirconium alloys, Acta Metallurgica, vol.31, issue.9, pp.1381-1391, 1983.

V. Perovic, G. C. Weatherly, S. R. Macewen, and M. Leger, The influence of prior deformation on hydride precipitation in zircaloy, Acta Metallurgica et Materialia, vol.40, issue.2, pp.363-372, 1992.

R. A. Ploc, The lattice parameter of cubic ZrO2 formed on zirconium, Journal of Nuclear Materials, vol.99, issue.1, pp.124-128, 1981.

L. Portier, T. Bredel, J. C. Brachet, V. Maillot, J. Mardon et al., Influence of Long Service Exposures on the Thermal-Mechanical Behavior of Zy-4 and M5 TM Alloys in LOCA Conditions, Journal of ASTM International, vol.2, issue.2, pp.1-24, 2005.

A. Pshenichnikov, J. Stuckert, and M. Walter, Microstructure and mechanical properties of Zircaloy-4 cladding hydrogenated at temperatures typical for loss-of-coolant accident (LOCA) conditions, Nuclear Engineering and Design, vol.283, pp.33-39, 2015.

A. Pshenichnikov, J. Stuckert, M. Walter, and D. Litvinov, Hydrides and fracture of pure zirconium and zircaloy-4 hydrogenated at temperatures typical for Loss-Of-Coolant accident conditions, Proceedings of 23th International Conference on Nuclear Engineering, pp.1724-1735, 2015.

M. P. Puls, Elastic and plastic accommodation effects on metal-hydride solubility, Acta Metallurgica, vol.32, issue.8, pp.1259-1269, 1984.

M. P. Puls, Review of the thermodynamic basis for models of delayed hydride cracking rate in zirconium alloys, Journal of Nuclear Materials, vol.393, issue.2, pp.350-367, 2009.

C. Raepsaet, P. Bossis, D. Hamon, J. L. Béchade, and J. C. Brachet, Quantification and local distribution of hydrogen within Zircaloy-4 PWR nuclear fuel cladding tubes at the nuclear microprobe of the Pierre Süe Laboratory from ?-ERDA, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol.266, pp.2424-2428, 2008.

J. Ribis, F. Onimus, J. Béchade, S. Doriot, A. Barbu et al., Experimental study and numerical modelling of the irradiation damage recovery in zirconium alloys, Journal of Nuclear Materials, vol.403, issue.1, pp.135-146, 2010.

H. M. Rietveld, A profile refinement method for nuclear and magnetic structures, Journal of Applied Crystallography, vol.2, issue.2, pp.65-71, 1969.

I. G. Ritchie and A. Atrens, The diffusion of oxygen in alpha-zirconium, Journal of Nuclear Materials, vol.67, issue.3, pp.254-264, 1977.

J. Rodríguez-carvajal, An introduction to the program Fullprof, Laboratoire Léon Brillouin, 2000.

J. H. Root and R. W. Fong, Neutron diffraction study of the precipitation and dissolution of hydrides in Zr-2.5Nb pressure tube material, Journal of Nuclear Materials, vol.232, issue.1, pp.75-85, 1996.

J. H. Root, W. M. Small, D. Khatamian, and O. T. Woo, Kinetics of the ? to ? zirconium hydride transformation in Zr-2.5Nb, Acta Materialia, vol.51, issue.7, pp.2041-2053, 2003.

C. J. Rosa, Oxidation of zirconium-A critical review of literature, Journal of the Less Common Metals, vol.16, issue.3, pp.173-201, 1968.

N. Rupa, Effet de l'hydrogène et des hydrures sur le comportement viscoplastique du zircaloy-4 recristallisé, 2000.

A. Sawatzky, A Proposed Criterion for the Oxygen Embrittlement of Zircaloy-4 Fuel Cladding. Zirconium in the Nuclear Industry, pp.479-496, 1979.

A. Sawatzky and B. J. Wilkins, Hydrogen solubility in zirconium alloys determined by thermal diffusion, Journal of Nuclear Materials, vol.22, issue.3, pp.304-310, 1967.

A. Serres, Corrosion sous contrainte par l'iode du Zircaloy-4 : cinétiques de fissuration et influence de l'irradiation sur l'amorçage, 2008.

D. Setoyama, J. Matsunaga, M. Ito, H. Muta, K. Kurosaki et al., Influence of additive elements on the terminal solid solubility of hydrogen for Zirconium alloy, Journal of Nuclear Materials, vol.344, issue.1, pp.291-294, 2005.

S. S. Sidhu, N. S. Murthy, F. P. Campos, and D. D. Zauberis, Neutron and X-ray diffraction studies of nonstoichiometric metal hydrides, Advances in Chemistry, vol.39, pp.87-98, 1963.

L. A. Bibliographie-simpson and C. D. Cann, Fracture toughness of zirconium hydride and its influence on the crack resistance of zirconium alloys, Journal of Nuclear Materials, vol.87, issue.2, pp.303-316, 1979.

G. B. Skinner and H. L. Johnston, Thermal Expansion of Zirconium between 298°K and 1600°K, The Journal of Chemical Physics, vol.21, issue.8, pp.1383-1384, 1953.

W. M. Small, J. H. Root, and D. Khatamian, Observation of kinetics of ? zirconium hydride formation in Zr-2.5Nb by neutron diffraction, Journal of Nuclear Materials, vol.256, issue.2, pp.102-107, 1998.

M. Someno, Solubility and diffusion of hydrogen in zirconium, Nippon Kinzoku Gakkaishi, pp.249-253, 1960.

M. Steinbrück, Hydrogen absorption by zirconium alloys at high temperatures, Journal of Nuclear Materials, vol.334, issue.1, pp.58-64, 2004.

M. Steinbrück, J. Birchley, A. Goryachev, M. Große, T. Haste et al., Status of studies on high-temperature oxidation and quench behaviour of Zircaloy4 and E110 cladding alloys. Proceeding of the 3rd European Review Meeting on Severe Accident Research (ERMSAR-2008) Nesseber, Vigo Hotel, 2008.

A. Stern, Comportement métallurgique et mécanique des matériaux de gainage du combustible REP oxydés à haute température, MINES ParisTech, 2007.

A. Stern, J. Brachet, V. Maillot, D. Hamon, F. Barcelo et al., Investigations of the Microstructure and Mechanical Properties of Prior-? Structure as a Function of the Oxygen Content in Two Zirconium Alloys, Journal of ASTM International, vol.5, issue.4, pp.1-20, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00488994

J. Stuckert, M. Große, C. Rössger, M. Klimenkov, M. Steinbrück et al., QUENCH-LOCA program at KIT on secondary hydriding and results of the commissioning bundle test QUENCH-L0, Nuclear Engineering and Design, vol.255, pp.185-201, 2013.

S. Suman, M. K. Khan, M. Pathak, R. N. Singh, and J. K. Chakravartty, Hydrogen in Zircaloy: Mechanism and its impacts, International Journal of Hydrogen Energy, vol.40, issue.17, pp.5976-5994, 2015.

R. Tang and X. Yang, Dissolution and precipitation behaviors of hydrides in N18, Zry-4 and M5 alloys, International Journal of Hydrogen Energy, vol.34, issue.17, pp.7269-7274, 2009.

R. Thieurmel, Identification des conditions de rupture fragile des gaines combustibles en alliage de zirconium oxydés sous vapeur d'eau à haute température et trempé sous charges axiales, MINES ParisTech, 2018.

R. Thieurmel, J. Besson, E. Pouillier, A. Parrot, and A. Ambard, Gourgues-Lorenzon, A.-F. Contribution to the understanding of brittle fracture conditions of zirconium alloy fuel cladding tubes during LOCA transient, Journal of Nuclear Materials, vol.527, p.151815, 2019.

C. Toffolon-masclet, Étude métallurgique et calculs des diagrammes de phases des alliages base zirconium du système : Zr-Nb-Fe-(O,Sn), 2000.

C. Toffolon-masclet, T. Guilbert, and J. C. Brachet, Study of secondary intermetallic phase precipitation/dissolution in Zr alloys by high temperature-high sensitivity calorimetry, Journal of Nuclear Materials, vol.372, issue.2, pp.367-378, 2008.
URL : https://hal.archives-ouvertes.fr/cea-02355390

C. Toffolon-masclet, C. Desgranges, C. Corvalan-moya, and J. C. Brachet, Simulation of the ???(O) Phase Transformation due to Oxygen Diffusion during High Temperature Oxidation of Zirconium Alloys, Solid State Phenomena, vol.172, pp.652-657, 2011.

C. Toffolon-masclet, C. Desgranges, and J. C. Brachet, A mobility database for zirconium alloys, CALPHAD XLI, 2012.
URL : https://hal.archives-ouvertes.fr/cea-02339662

E. Torres, Spécificités de la mobilité de l'oxygène et de l'hydrogène dans le Zircaloy-4 en condition APRP et conséquences mécaniques, 2017.

E. Torres, J. Desquines, M. C. Baietto, M. Coret, F. Wehling et al., Adsorption and diffusion of hydrogen in Zircaloy-4. Fontevraud 8 -Contribution of Materials Investigations and Operating Experience to LWRs' Safety, Performance and Reliability, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01952471

R. Traccucci and J. Leclercq, Thermomécanique du combustible des réacteurs à eau sous pression. Techniques de l'Ingénieur, vol.2, 1996.

M. T. Tran, Caractérisation des microstructures trempée et sélection des variants dans le Zircaloy-4

D. Thèse-de, , 2015.

R. Tricot, . Métallurgie, and . Zirconium, applications dans l'industrie chimique. Journées d'études Sur Le Zirconium, Nouveau Matériau Pour Les Industries Chimiques, SF2M, 1990.

I. Turque, Effet de fortes teneurs en hydrogène sur les propriétés métallurgiques et mécaniques des gaines en alliage de zirconium après incursion à haute température, MINES ParisTech, 2016.

I. Turque, R. Chosson, M. Saux, J. Brachet, V. Vandenberghe et al., Gourgues-Lorenzon, A.-F. Mechanical Behavior at High Temperatures of Highly Oxygen-or Hydrogen-Enriched ? and Prior-? Phases of Zirconium Alloys, Zirconium in the Nuclear Industry: 18th International Symposium, ASTM STP 1597, pp.240-280, 2018.

H. Uetsuka, T. Furuta, and S. Kawasaki, Zircaloy-4 Cladding Embrittlement due to Inner-Surface Oxidation Under Simulated Loss-of-Coolant Condition, Journal of Nuclear Science and Technology, vol.18, issue.9, pp.705-717, 1981.

H. Uetsuka, T. Furuta, and S. Kawasaki, Embrittlement of Zircaloy-4 due to Oxidation in Environment of Stagnant Steam, Journal of Nuclear Science and Technology, vol.19, issue.2, pp.158-165, 1982.

H. Uetsuka, T. Furuta, and S. Kawasaki, Failure-Bearing Capability of Oxidized Zircaloy-4 Cladding under Simulated Loss-of -Coolant Condition, Journal of Nuclear Science and Technology, vol.20, issue.11, pp.941-950, 1983.

P. Bibliographie-van-effenterre, Etude du diagramme d'équilibre et des transformations structurales obtenues par trempe à vitesse variable ou par revenu dans les alliages de zirconium-niobium (0 -55 % Nb), 1972.

V. Vandenberghe, J. C. Brachet, M. Le-saux, D. Gilbon, M. Billone et al., Influence of the Cooling Scenario on the Post-Quench Mechanical Properties of Pre-Hydrided Zircaloy-4 Fuel Claddings after high Temperature Steam Oxidation

, Proceedings of 2010 LWR Fuel Performance/TopFuel/WRFPM, pp.270-277, 2010.

R. A. Versaci and M. Ipohorski, Temperature dependence of lattice parameters of alpha-zirconium (Technical Report) | ETDEWEB, 1991.

M. S. Veshchunov and A. V. Berdyshev, Modelling of hydrogen absorption by zirconium alloys during high temperature oxidation in steam, Journal of Nuclear Materials, vol.255, issue.2, pp.250-262, 1998.

M. S. Veshchunov and V. E. Shestak, Models for hydrogen uptake and release kinetics by zirconium alloys at high temperatures, Nuclear Engineering and Design, vol.252, pp.96-107, 2012.

. Veznaz, , 2015.

P. Vizca??o, A. D. Banchik, and J. P. Abriata, Solubility of hydrogen in Zircaloy-4: irradiation induced increase and thermal recovery, Journal of Nuclear Materials, vol.304, issue.2-3, pp.96-106, 2002.

S. Vogel, A Review of Neutron Scattering Applications to Nuclear Materials, ISRN Materials Science, vol.2013, 2013.

C. Wang, M. Zinkevich, and F. Aldinger, On the thermodynamic modeling of the Zr-O system. Calphad, vol.28, pp.281-292, 2004.

Z. Wang, A. Steuwer, N. Liu, T. Maimaitiyili, M. Avdeev et al., Observations of temperature stability of ?-zirconium hydride by highresolution neutron powder diffraction, Journal of Alloys and Compounds, vol.661, pp.55-61, 2016.

J. Wei, Effect of Hydrogen on the Corrosion Performance of Zirconium Alloys, 2012.

O. T. Woo and K. Tangri, Transformation characteristics of rapidly heated and quenched zircaloy-4-oxygen alloys, Journal of Nuclear Materials, vol.79, issue.1, pp.83-94, 1979.

S. Yamanaka, K. Yoshioka, M. Uno, M. Katsura, H. Anada et al., Thermal and mechanical properties of zirconium hydride, Journal of Alloys and Compounds, vol.293, pp.23-29, 1999.

S. Yamanaka, D. Setoyama, H. Muta, M. Uno, M. Kuroda et al., Characteristics of zirconium hydrogen solid solution, Journal of Alloys and Compounds, vol.372, issue.1, pp.129-135, 2004.

K. Yan, D. G. Carr, S. Kabra, M. Reid, A. Studer et al., Situ Characterization of Lattice Structure Evolution during Phase Transformation of Zr-2.5Nb, vol.13, pp.882-886, 2011.

Y. Yan, M. C. Billone, T. A. Burtseva, H. M. Chung, and . Loca, Integral Test Results for High-Burnup BWR Fuel, 2005.

O. Zanellato, M. Preuss, J. Buffiere, F. Ribeiro, A. Steuwer et al., Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4, Journal of Nuclear Materials, vol.420, issue.1, pp.537-547, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01668802

C. Zhang, B. Li, and P. R. Norton, The study of hydrogen segregation on Zr(0001) and Zr(1010) surfaces by static secondary ion mass spectroscopy, work function, Auger electron spectroscopy and nuclear reaction analysis, Journal of Alloys and Compounds, vol.231, issue.1, pp.354-363, 1995.

Z. Zhao, Identification d'une nouvelle phase d'hydrure de zirconium et modélisation à l'échelle microscopique de sa précipitation, 2008.

Y. Zhao, J. Zhang, C. Pantea, J. Qian, L. L. Daemen et al., Thermal equations of state of the ?, ?, and ? phases of zirconium, Physical Review B, vol.71, issue.18, p.184119, 2005.

Y. T. Zhu and J. H. Devletian, Determination of equilibrium solid-phase transition temperature using DTA, Metallurgical Transactions A, vol.22, issue.9, pp.1993-1998, 1991.

E. Zuzek, J. P. Abriata, A. San-martin, F. F. Manchester, and . The-h-zr,

A. , Compléments sur le protocole de chargement en hydrogène à 500°C

A. 1. Dispositif and .. .. ,

. .. A.2-;, Répartition de l'hydrogène dans les échantillons en Zy4 à l'issue du chargement, p.254

A. , Traitement thermique d'homogénéisation de l'hydrogène

B. , Mise au point du protocole d'homogénéisation des matériaux « modèles » chargés en oxygène et en hydrogène

B. , Compléments sur la mise en capsule des échantillons avant traitement thermique

B. , Compléments sur la microstructure des échantillons en M5Framatome à l'issue du traitement thermique à 1200 -1300°C

C. Compléments and .. .. ,

C. , Principes de détermination des températures de dissolution et de précipitation des hydrures

C. , Températures de disparition au chauffage et d'apparition au refroidissement des hydrures pour le M5Framatome contenant plus de 5000 ppm-mass

C. , Compléments sur les résultats des essais de calorimétrie effectués sur Zy4 préhydruré, p.266

C. , Lien entre l'enthalpie et la teneur globale en hydrogène

D. , Microstructure des échantillons analysés aux diffractions de neutrons et DRX

E. Données,

F. Récapitulatif,

G. , Courbes des essais de traction uniaxiale en température

H. , Compléments sur les corrélations et la modélisation

H. , Compléments sur la loi de comportement mécanique

H. , Corrélations et modélisation exprimées en fonction des concentrations atomiques en hydrogène et oxygène, p.253

, Limite d'élasticité Rp0,2 et résistance mécanique Rm

I. Microanalyse and E. .. ,

I. 1. Principe-de-la-microanalyse and E. .. ,

J. Compléments and .. .. ,

B. Tableau, Teneur en hydrogène (CH) dans les tubes en Zy4 et M5Framatome chargés en oxygène à 0,9 et 1,1 %-mass. avant et après les traitements thermiques effectués à 1300°C, vol.1

, 2007) fonctionne très bien pour les cas des tubes en M5Framatome et en Zy4 oxydés à moins de 0,5 %-mass., mais il doit être amélioré et adapté pour les matériaux préhydrurés ou contenant de fortes teneurs en oxygène

B. , Tentatives d'optimisation du protocole Pour tenter d'homogénéiser les tubes en Zy4 contenant 0,9 %-mass. d'oxygène, de nouveaux traitements thermiques ont été réalisés sur des tubes en Zy4 oxydés à 0,8 -1,07 %-mass., mais cette fois-ci avec une durée de maintien à 1300°C de

, On constate toujours la présence de couches de phase ?Zr(O) d'environ 150 ?m d'épaisseur à l'extérieur et à l'intérieur des tubes, comme observé après traitement de 3h à 1300°C pour le Zy4 oxydé à 0,86 %-mass. (Figure B.2). Il semble donc que la phase ?Zr soit déjà saturée en oxygène à 1300°C, comme le prévoient d'ailleurs les calculs thermodynamiques à l'équilibre effectués avec Thermo-Calc et Zircobase (Figure B.5), Plusieurs mesures de microdureté Vickers 100g ont été effectuées le long d'une direction à 45° dans le plan radial-circonférentiel, balayant ainsi toute l'épaisseur des échantillons ; les résultats sont illustrés sur la Figure B.4

, Une nouvelle tentative a donc consisté à traiter les échantillons (oxydés sous vapeur d'eau à 1000°C) à 1400 ou 1500°C dans un four nommé I2T-Ox (CEA/DEN/DMN/SRMA/LA2M), sous hélium, vol.99, p.9999

, Une prise d'oxygène très importante, conduisant à une teneur en oxygène moyenne déduite de gain de masse de l'ordre de 3 -4 %-mass., a été relevée sur ces échantillons

C. , Compléments sur les essais de calorimétrie précipiter, 2014.

K. ;. Kim and . Khatamian, L'identification des points MST et PT est plus facile et objective. De nombreux auteurs utilisent MST, considérant qu'elle est proche de la moyenne de CT et PT, pour déterminer la TSSD et la TSSP, comme fait par exemple pour interpréter les courbes de DSC obtenues sur des échantillons en Zy2, Zy4 et Zr-2,5Nb (Zr-2,5 %-mass. de Nb) préhydrurés à des teneurs en hydrogène allant jusqu'à environ 700 ppm-mass., avec une température maximale lors des cycles thermique de 500 -600°C et une vitesse de chauffage ou de refroidissement de 10 -20°C/s, MST et PT (cf. Figure IV.6 et Figure IV.7) devraient être identiques, 1967.

. Khatamian, . Root, . Ct, and . Mst, PT obtenus à partir d'expériences de DSC effectuées sur du Zr-2,5Nb préhydruré à des teneurs en hydrogène inférieures à 1000 ppm-mass., en appliquant une température maximale de 340°C et une vitesse de chauffage et de Vierge 0