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Historical evolution of airships

On December 3 rd , 1784, a french officer named Jean-Baptiste Meusnier de La Place designed an airship as a hot air balloon of 79 m long and with an envelope having an ellipsoidal shape, three propellers and a sail-like aft rudder as a steering system [START_REF]Mémoire Sur l'Équilibre Des Machines Aérostatiques, Sur Les Différens Moyens de Les Faire. Savoirs et Traditions Series[END_REF]. More than half a century later, Henri Giffard, a french engineer built in 1852 the first airship that successfully flew 27 km (17 miles) at a speed of 3 hp with a steam-powered system. The airship had a length of 44 m and a diameter of 12 m. A 52 m long, 1900 m 3 airship called La France and constructed by Charles Renard and Arthur Constantin Krebs, flew in 1884 at 24 km/h with the aid of a 9 hp electrically-driven airscrew during 8 minutes. Eleven years later, the first rigid airship made of aluminum appeared thanks to the Hungarian-Croatian engineer David Schwarz, that unfortunately crashed due to malfunction of a propeller belt [START_REF] Liao | A review of airship structural research and development[END_REF]. Alberto Santos Dumont constructed in 1898 the first non-rigid airship for passenger flights and public demonstration. The hydrogen was used as lifting gas. This impetus hit its stride with the successful development of the Luftschiff Zeppelin LZ1 in July 1900, a rigid airship built by Count von Zeppelin. It had a length of 128 m, a diameter of 12 m, and achieved a speed of 20 km/h. Most of the Zeppelin airships were used by the German army for military missions such as bombings during World War I. Inspired by the model of the Zeppellin, the British Royal Navy constructed several small rigid balloons such as the R34 which crossed over the transatlantic in 1919; followed by the United States, with the California Arrow made by Thomas Scott Baldwin in 1904. The airship is 173 m length and steered with a 5 hp two-cylinder motor. Later, in 1911 the well-known blimp's manufacturer Good Year come to light and delivered to the United States Army and Navy airships for seaboard and aerial military surveillance. Unlike others, the American airships were filled with helium, in spite being very costly and rare. Between 1920s and 1930s, Britain, Germany, Italy, France and the United States focused on the fabrication of rigid, semi-rigid and non rigid airships for military or touristic use. However, on May 6, 1937, the gold age of the airship came to an end with the Hindenburg tragedy. Indeed, the largest passenger-carrying rigid airship ever built at that time, the LZ 129 Hindenburg, exploded after 14 months of flight, causing the loss of 36 lives. It had 244 m of length, 41 m diameter and speed of 130 km/h. This disaster left its mark on the history of the aerospace, thus limiting the construction of these aerostat and the few that have been built were manufactured by the United States with a non-rigid structure, filled with helium such as the Blimp GZ-19. A brief summary of the history of the airships is exhibited in Figure 1.1.

Since the early Twentieth-first century, a new generation of airships takes shape, named High-Altitude Platforms (HAPs). The high-altitude information platform describes a trial aircraft that can fly quasi-stationary for a longtime at above 20 km, i.e., the stratosphere area, and can bear a payload with certain weight and size. The stratosphere refers to the region of the atmosphere from about 10 km (6.2 miles) to 50 km (31 miles), below which fly the traditional aerial aircrafts, and above which orbit different kinds of satellites. This layer is characterized by its atmospheric stability; with low water vapor and the rarefied air, the wind and the vertical temperature gradients in the stratosphere are relatively small. Thus, the stratosphere, and more specifically the bottom half, is the calmest region in the atmosphere, which benefits the telecommunication, observation and information transmission. As a typical lighter-than-air aircraft, the stratospheric airship is an ideal carrier, which can be utilized as platforms for various applications, such as space observation, region navigation, environmental monitoring, and telecommunication. Compared with satellites, the stratospheric airship is highly cost-effective, very mobile, fast to deploy and convenient to retrieve; compared with airplanes, the platform has a long duration, a wide coverage and a great survivability. Therefore, the stratospheric airship is at present a focus of worldwide near-space development due to its specific applications. Several projects for research and development of HAPs and more specifically for the stratospheric airships have been established such as the Japanese Stratospheric Platform program or the Korean one. However, for both projects there was no follow-up.

The project STRATOBUS

One of the Europe's largest satellite manufacturers, Thales Alenia space, launched in 2014 the project Stratobus, that officially kicked-off in 2016, a High Altitude airship that will soar to great height to cover a wide range of missions such as the surveillance of borders or high-value sites, security, environmental monitoring (forest fires, soil erosion, pollution, etc.) and telecommunications (reinforcement of internet in deprived areas). This autonomous stratospheric platform is designed to operate at an altitude of 20 kilometers, above the jet-stream and air traffic and expected to be able to remain stable in the stratosphere for 5 years. The propulsion system made of four electrical motors placed on either sides of the balloon will enable Stratobus to remain stationary and to resist wind gusts of 90 km/h. Solar concentrators mounted on the surface provide electrical power to the steering system. This airship measures an enormous five metric tons, with 100 meters length, 33 meters maximum diameter. It can carry 250 kilos of payload and will be equipped with radar and optical imaging payloads, which gives it continuous surveillance capability day or night and under all weather conditions.

It is important to say that during a big project which is still under conception, as the Stratobus, several changes could be made in order to make the project stronger. In that respect, all along the thesis the design and shape of the airship have been modified increasing the performance and the stability. As shown in Figure 1.2, the length of the vehicle changed from 100 meters to 150 meters and the diameter from 34 meter to 32 meters, leading to a more slender airship. Moreover, other modifications were made by placing the solar concentrator outside, on top of the airship and the originally transparent envelope became opaque.

Role of Computational Fluid Dynamics (CFD) in airship design

Because of its special working circumstance, the design of the stratospheric airship is quite different from the atmospheric one. Firstly, the air density of the altitude where the stratospheric airship stays is much less dense. In order to maintain the same load capability, the stratospheric airship has to be much larger than ordinary atmospheric airships. In addition, the difference between stratospheric airships and the atmospheric ones is in size, leading to the huge differences in their aerodynamic characteristics and structural strength, which brings problems to the overall design of the aerodynamic shape of the stratospheric airship. As a result, at the design stage of the stratospheric airship, airflow analysis is necessary for predicting its aerodynamic performance in order to validate the correctness and the feasibility of the design and also lay foundation for aerodynamic shape optimization. Moreover, the development of the stratospheric airship depends largely on the Computational Fluid Dynamics (CFD) technology, which has been widely used in many fields of industry along with the development of the computer science and modeling fluid mechanics theory.

In the aerospace industry, different kinds of CFD software like CFX, FLUENT and STAR-CD benefit the analysis, design, certification, and support of aerospace products to a great extent. Nevertheless, the challenges facing CFD in terms of numerical solution, computing power, and physical modeling can't be neglected. Besides becoming faster and more affordable by exploiting higher computing power, CFD needs to provide better accuracy and reliability in the description of the physical phenomena to account also for multiphase flows, especially in the prediction of integral coefficients or flow features in aerodynamic simulations where high accuracy is required. Thus, further effort is expected to be exerted to optimize the performance of the CFD technology. Some researches have already been studying and analyzing the aerodynamic characteristics of some kinds of stratospheric airships based on the numerical simulations with CFD technology. For example, a new dynamic model for the motion of stratospheric airships, which takes into account the influence of wind, was proposed on the basis of the relationship of the ground speed, wind speed and airspeed in wind field [START_REF] Zhou | Motion modeling of stratospheric airship in wind field[END_REF]. The new model has a simpler form and expressing the dynamic of the airship without calculating the wind-induced forces, which improves effectiveness of the motion simulations. In addition, calculation and simulation analysis of aerodynamic forces have been carried out for stratosphere airship during floating flight [START_REF] Wu | Calculation and simulation analysis of aerodynamic force for stratosphere airship during floating flight[END_REF]. Results of simulation indicate that influence of air viscosity on the motion of airship cannot be neglected, which is the main cause of the frictional and pressure resistance on the airship. They both increase with the airflow speed. In case of a big slenderness ratio, the momentum integral method can be validly used for calculating friction resistance. A research [START_REF] Wu | Aerodynamic simulation of airship ambient flows with high attack angles and analysis on turbulence models and parameters[END_REF] which focused on high attack angles was studied, including both separated flows and vortex motions. Results show that SST k w and Realizable k e are more suitable for the aerodynamic simulation than SA model. Moreover, lift and drag coefficients vary linearly with the turbulence intensity I when I > 0.5%. The concept of equivalent Reynolds number is introduced, which is found to have great effects on aerodynamic characteristics within a certain range.

In terms of aerodynamic shape optimization, different kinds of methodologies are also proposed. For example, design optimization of stratospheric airship has been studied in [START_REF] Alam | Multidisciplinary design optimization of stratospheric airship[END_REF], which couples various models including solar, wind, aerodynamic, structure, etc. for multidisciplinary design and analyses. The efficacy of this methodology in arriving at the output parameters, and in carrying out sensitivity analyses of key parameters has been demonstrated. Moreover, a study of the effect of transition on the stratospheric airship hull points out that aerodynamic performance of the optimized hull taking laminar-turbulent transition model into account is obviously better than taking the full turbulent model into account [START_REF] Zhang | Effect of transition on optimization of stratospheric airship hulls[END_REF]. The existence of the laminar region enables to change the shape of rear part of the hull and determine a better shape with smaller separation zone. Then, on basis of this research, the influence of geometry of hull tail on aerodynamic drag is studied [START_REF] Zhang | Influences of geometry of hull tail on aerodynamic drag of stratospheric airships[END_REF]. By analyzing the effect of axial symmetry momentum boundary layer thickness on aerodynamic drag of airship, it is found that reducing the thickness of momentum boundary layer can reduce effectively the surface static pressure gradient, so as to reduce the total aerodynamic drag and optimize the aerodynamic shape.

Objective of the thesis

The aim of this thesis is to deliver to Thales Alenia Space two numerical platforms. The former can be described as a numerical wind tunnel, where a consistent and efficient CFD framework to analyze the performance of each design and to study the aerodynamic performance of Stratobus in an extreme environment has been implemented. This framework has the twofold advantage of solving turbulent flows at high Reynolds number using a combination of anisotropic boundary layer mesh adaptation with stabilized finite element methods. Indeed, the high accuracy requirement for the prediction of integral coefficients in aerodynamic simulations often implies the necessity to correctly resolve local flow features such as flow separation, or boundary layers, where the fluid velocity exhibits strong gradients in the wall normal direction, and skin-friction usually plays a defining role. It is generally acknowledged that extremely refined mesh is widely required in order to capture global as well as local flow features past simplified and complex geometries, which can often be time and budget consuming. We propose here an anisotropic boundary layer mesh adaptation procedure meant for generic geometries immersed in an arbitrary coarse unstructured mesh. A multi-levelset method is then used to locate the boundary layer, to control the mesh size distribution and orientation ensuring a smooth gradation. Taking into account the physical parameters of the simulation and the curvature of the geometry, a new metric map is obtained, that satisfies the required mesh sizes in the needed directions at the solid interface and all along the domain. Another issue addressed in this research concerns the anisotropic behavior for fully turbulent flows, as it is also well known that most classical numerical schemes tend to fail when highly stretched elements are used. Here, the incompressible unsteady Navier-Stokes equations are solved using a Variational MultiScale (VMS) method [START_REF] Hughes | Multiscale phenomena: Green's functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF][START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF] also known as iLES (implicit Large Eddy Simulation) that decomposes both the velocity and the pressure fields into resolvable/coarse and unresolved/fine scales, to cope with convection dominated problems and velocity-pressure space compatibility. A stabilized finite element method is then used to solve the convection-diffusion-reaction equation related to the RANS/Spalart-Allmaras turbulence model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF].

The second framework, is an extension of the previous one to deal with a multi-domain approach to handle multiphase flows inside the same computational domain. The objective behind is to model the ballonet slosh inside the hull of the lighter-than-air allowing the take-off of Stratobus. The proposed numerical method for modeling such fluid-structure interaction will be referred as the Immersed Volume Method (IVM) [START_REF] Coupez | Solution of high-reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing[END_REF][START_REF] Coupez | Adaptive timestep with anisotropic meshing for incompressible flows[END_REF][START_REF] Mesri | On optimal simplicial 3d meshes for minimizing the hessian-based errors[END_REF][START_REF] Feghali | Novel monolithic stabilized finite element method for fluid-structure interaction[END_REF]. It enables to well-capture the sharp discontinuities of interface between different phases, applying an anisotropic parallel adaptive meshing techniques. Adding to it, the use of an implicit distance function, called the levelset, to localize and immerse the object inside the global domain. Full description will be given. These methods are regrouped in the C++ finite element library CimLib-CFD [START_REF] Digonnet | -object-oriented programming for Şfast and easy Ť development of parallel applications in forming processes simulation[END_REF][START_REF] Digonnet | Cimlib: a fully parallel application for numerical simulations based on components assembly[END_REF].

In a nutshell, the contribution of the proposed work is to provide an efficient, reliable and costeffective tool capable to handle the simulations for the Stratobus regardless of the dimensions, shape and physical properties of the objects. Several validations will be proposed and compared to experimental and numerical results from the literature.

Layout of the thesis

This thesis is divided into 6 chapters. Chapter 2 will describe the anisotropic boundary layer mesh adaptation technique. Then, the governing equations and the details regarding the numerical schemes used to perform the VMS computations are provided in Chapter 3. Chapter 4 summarizes the different numerical turbulence models and presents the approach used in this thesis: RANS/Spalarat-Allmaras. The fifth chapter gives a detailed description of the Immersed Volume Method (IVM). The validation of the numerical wind tunnel and the multiphase platform on the Stratobus is presented in chapter 6. And the thesis will end up with a conclusion and the perspectives of this work.

The work in this thesis has contributed to the following publications, oral communications and prizes presented below:
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• G. Guiza, A. Larcher, A. Goetz, L. • Finalist for the first edition of Pierre Laffite Award, "How could airships replace satellites", October 2017.

Résumé en français

Le ballon dirigeable, est un aéronef plus léger que l'air, qui doté de systèmes de propulsion et de direction a été au fil du temps destiné à plusieurs utilisations à savoir militaire ou transport de passagers sur de longue distance. L'histoire de cet aérostat a connu de nombreux revers, dont la célèbre catastrophe du Hindenburg en 1937. Dans ce chapitre, l'évolution à travers l'histoire de cet engin est détaillée jusqu'à l'arrivée du Stratobus.

Le projet STRATOBUS, dans lequel s'inscrit cette thèse, a pour objectif d'étudier un ballon dirigeable de 100 m de long, d'un volume de 50.000 m 3 , pilotable à distance, transportant 300 kg de charge utile et pouvant atteindre les 20 km d'altitude, localisé au niveau de la stratosphère. Proposé par le groupe Thales Alenia Space, ce dirigeable aura pour rôle : la surveillance des frontières ou de la piraterie maritime, la gestion des catastrophes naturelles l'analyse des données météorologiques ou encore le renforcement de la connexion internet dans les zones désertiques et difficiles d'accès. Néanmoins, certaines contraintes techniques posent encore problème du fait de son important volume, de sa longueur considérable, des conditions stratosphériques et de sa flexibilité membranaire.

En se basant sur les outils existants au sein de la librairie de calcul élément finis de l'équipe Calcul Intensif et Mécanique des Fluides (CFL) du Centre de Mise en Forme des Matériaux (CEMEF) de l'Ecole des Mines de Paris (Mines ParisTech), nous avons développé une soufflerie numérique. Elle inclue un outil de maillage couche limite anisotrope s'adaptant automatiquement autour des objets ainsi que différents solveurs pour la résolution des équations de Navier-Stokes incompressible et muliphasique à savoir le VMS (Variational MultiScale) ou RANS. Ceci a pour but de prédire les performances aérodynamiques de différente géométrie du ballon dirigeable Stratobus.

Cette plateforme numérique a été étendue pour modéliser le take-off du ballon, qui sera réalisée à l'aide d'hélium et d'air contenu à l'intérieur du dirigeable. Ainsi une modélisation de l'interaction entre les fluides et l'interface du dirigeable sera effectuée. La méthode d'immersion de volume largement développée au sein de l'équipe CFL est utilisé dans ce travail, pour son aptitude à prendre en compte toutes les composantes du procédé de manière unifiée. Alliée à des méthodes puissantes d'adaptation de maillage, la méthode des volumes immergés permet la résolution des physiques aux interfaces, déterminante dans l'obtention de résultats précis et fiables. La construction de cette soufflerie va permettre de répondre aux besoins des industriels de manière précise, robuste et automatique.

Introduction

In 1904, the famous German fluid dynamicist Ludwig Prandtl introduced the concept of the boundary layer that revolutionize the fluid dynamics world [START_REF] Prandtl | erhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg 1904[END_REF]. He theorized that the boundary layer is a thin region adhering to the object surface, where the velocity of the fluid increases from zero at the wall (no slip) to its full value. In other terms, two regions could be distinguished: for the vast region of the flow field away from the body, the viscosity can be neglected and a second one, which is the boundary layer, the friction plays a defining role. Within the boundary layer two different flow forms can occur, the flow can be laminar or turbulent. A thin flat plate in Figure 2.1 shows that the boundary layer is laminar close to the leading edge, where fluid element moves smoothly and in parallel to the streamline, and as the distance from the leading edge gets larger, the laminar boundary layer increases in thickness and becomes turbulent. The fluid element moves in a random way and tend to produce random eddies, vortices and other flow fluctuations. Between the turbulent and laminar regions, experimental investigations have established the existence of a transition region.

In spite of its relative thinness, the boundary layer is very important for many problems in aerodynamics, including wing stall due to the flow separation, that occurs when the pressure distribution dramatically changes over the surface, also the skin friction drag on an object etc. Therefore, boundary layer has been extensively studied both experimentally and numerically. From numerical points of view, it is generally acknowledged that extremely refined mesh are widely required in order to capture global as well as local flow features which can often be time and budget consuming. A large variety of methods have thus been proposed to optimize the trade-off between numerical accuracy and computational cost in CFD. In the present study, the proposed method consists in generating boundary layer mesh algorithms that allows the creation of mesh with extremely anisotropic elements stretched along the interface. The idea is to generate a priori mesh taking into account the physical parameter of the simulations. The chapter is structured as follows:we start in section 2.2 by presenting some theoretical notions about the boundary layer. In section 2.3, an overview about mesh generation techniques and mesh adaptation is presented with particular analysis for the ones that we used in this work. The anisotropic mesh adaptation method used here is described in section 2.4 and finally some numerical examples are presented in section 2.5.

Boundary layer concept

The boundary layer is a region of the flow where frictional effects are dominant. A large part of the boundary layer theory is devoted to the calculation of two important quantities: the shear stress at the wall and the boundary layer thickness, t w and d , respectively. As described previously, the velocity begins from zero at the interface and increases continuously to the velocity value of the flow (see Figure 2.1). This velocity profile governs the wall shear stress defined as:

t w = µ ✓ dV dy ◆ y=0 (2.1) With ⇣ dV dy ⌘ y=0
is the velocity gradient at the wall and µ the viscosity of the fluid. Since it is difficult to compute the wall shear stress without knowing the velocity solution, the dimensionless skin friction coefficient is calculated as being a dimensionless quantity obtained by dividing the shear stress by the freestream dynamic pressure:

C f = t w q • = t w 1 2 r • V 2 • (2.2)
r • and V • are the freestream density and veolcity, respectively. When turbulent flow regimes take place, the skin friction coefficient is deduced from the Schlichting skin-friction correlation for flows with Reynolds number Re < 10 9 [START_REF] Schlichting | Boundary-layer theory[END_REF]:

C F = [2log 10 (Re L ) 0.65] 2.3 (2.3)
Recall that, the flow in the boundary layer is laminar or turbulent depending on the Reynolds number Re:

Re = rxV • µ (2.4)
Where x is the distance from the leading edge. Figure 2.2 depicts the velocity profiles depending on whether the flow is laminar or turbulent and on the boundary layer thickness d as it was showed in [START_REF] Schlichting | Boundary-layer theory[END_REF]. So that, the expression of this thickness for laminar flows is:

d lam = 5L Re 1 2 L (2.5)
And for turbulent flows is:

d turb = 0.38L Re 1 5 L (2.6)

Geometric construction of the boundary layer mesh

As explained in [2], the boundary layer can be considered as a superposition of layers when flow behaves differently. So the mesh is built in our work layer by layer, following the procedure sketched in Figure 2.3. All tetrahedrons (triangles in 2D) at the surface of the object have the same size h min given by:

h min = y + 0 µ v t (2.7)
With y + 0 is a non-dimensional number related to the wall distance for the first cell and v t the friction velocity defined as: Combining equations 2.2 and 2.8 in 2.7 finally allows determining the mesh size at the surface as a function of the Reynolds number and the characteristic length L of the problem:

v t = r t w r (2.8)
h min = Ly + 0 Re L q C F 2 (2.9)
A stretching parameter a is adopted to control the growth of the tetrahedron size in the direction normal to the object, namely the first layer of tetrahedrons, of size h min , is multiplied by the a, conventionally set to 1.2 to generate the second layer of size ah min . A maximum number of layer n is prescribed, and the above process repeats as many times as specified by this parameter. The size of the last layer is thus h min • a n 1 , and n is chosen for the last layer to be located at a distance equal to:

h min n 1 Â j=0 a j = h min ⇤ a n 1 a 1 > d (2.10)

Multi-Levelset method

We propose here a new anisotropic boundary layer mesh adaptation procedure meant for generic geometries immersed in an arbitrary coarse unstructured mesh. A multi-levelset method is used to locate the boundary layer, to control the mesh size distribution and orientation ensuring a smooth gradation. A levelset is a signed distance function, used to implicitly represent and localize the interface of the object, but also as a geometric tool to specify some properties of the surface such as smoothness and gradients.

Let's suppose that the whole domain is denoted by W, where an interface of the geometry is immersed and denoted by G. Hence, the interface decomposed the domain into two-subdomains W 1 and W 2 such that W = W 1 [ W 2 . The levelset is a signed distance function defined as a scalar field for each node of W as follows:

a(X) = 8 < : dist(X, G) if X 2 W 1 0 if X 2 G dist(X, G) if X 2 W 2 (2.11)
As shown in Figure 2.3, the boundary layer is composed of several layers. Each one need to be localized by using the multi-levelset method. In fact, the interface is represented by the isovalue zero of the levelset, then the first layer is equal to the same levelset of the interface plus the the minimum size of the mesh between the two layers, i, e. h min . The second sub-layer is equal to the precedent one plus the h min multiplied by a. The procedure continue until we reach the last layer. The expression below resume the steps:

Levels[k] = Levels[k 1] + h min (2.12)
Using the same approach and in a simple way, We suppose that the whole domain with the immersed geometry inside is decomposed into three boxes as illustrated in Figure 2.4:

• Box 1: Holds the immersed interface zone with the boundary layer around.

• Box 2: Covers a zone where the mesh grows linearly with the distance from the last layer of the boundary mesh, up to the edges of the intermediate box.

• Box 3: Represents all the computational domain and the mesh grows exponentially with the distance from Box2 to the edges of the computational domain. All the obtained mesh sizes, computed as we described previously can be assembled now to build both isotropic and anisotropic mesh according to a given metric tensor. But before that, a state of the art on the existing mesh generation techniques is provided.

Anisotropic boundary layer mesh 2.3.1 Review of boundary layer mesh generation methods

In the literature, there exist numerous mesh generation methods, depending on the complexity of the geometry to be modeled. In general, these approaches are classified into two main categories, namely block-structured strategies and unstructured meshes. The general concept of the block-structured approach is to generate a blocking topology that divide the domain into different meshed regions [START_REF] Cedar | Engine/airframe installation cfd for commercial transports: An engine manufacturer's perspective[END_REF][START_REF] Meakin | Moving body overset grid methods for complete aircraft tiltrotor simulations[END_REF][START_REF] Nordanger | Simulation of airflow past a 2d naca0015 airfoil using an isogeometric incompressible navier Űstokes solver with the spalart Űallmaras turbulence model[END_REF][START_REF] Qin | Flow feature aligned grid adaptation[END_REF]. Connectivity of all interior nodes and elements are identical. In spite of being one of the most famous meshing techniques for the accuracy of the results, however, when it comes to 3D complex geometries the unstructured meshes offer more flexibility. In the unstructured approach, meshes are automatically generated starting from an arbitrary mesh domain. But because of the high gradients prevailing in the boundary layer regions, anisotropic meshes are very desirable. Different computational methods have been established to generate unstructured anisotropic meshes. One can distinguish four classes of these methods that we will describe, briefly for the first three techniques and with more details for the last one: the advancing front methods, the Delaunay methods, the octree methods and the MTC topological mesh generator methods. One can refer to [START_REF] George | Tet meshing: construction, optimization and adaptation[END_REF] for more explanation.

• Advancing front methods: The technique has been introduced in [START_REF] Lo | A new mesh generation scheme for arbitrary planar domains[END_REF][START_REF] Löhner | Generation of three-dimensional unstructured grids by the advancing-front method[END_REF]. Starting from the boundary discretization as an initial front, elements are constructed layer by layer progressively, advancing the front until the whole domain is meshed and the front vanishes. The difficulty of this task reside in the generation of points that may create new elements overlapping with the existing ones causing convergence problems. Nevertheless, these methods produce high quality elements. This class of methods has been massively used and improved in the literature in [START_REF] Pirzadeh | Unstructured viscous grid generation by the advancing-layers method[END_REF][START_REF] Hassan | Unstructured tetrahedral mesh generation for three-dimensional viscous flows[END_REF][START_REF] Garimella | Boundary layer mesh generation for viscous flow simulations[END_REF][START_REF] Bottasso | A procedure for tetrahedral boundary layer mesh generation[END_REF][START_REF] Loseille | Boundary layer mesh generation and adaptivity[END_REF][START_REF] Möller | On advancing front mesh generation in three dimensions[END_REF] • Delaunay method: The basic idea of the method is due to the russian mathematician Boris Delaunay [START_REF] Delaunay | Sur la sphere vide. a la memoire de georges voronoi[END_REF] who carry out the Delaunay criterion. The latter states that the circumscribed sphere (a disk in 2D) of a tetrahedron (triangle) should not contain any vertex. Consequently, a Delaunay triangulation should satisfy the lemma announced above. Starting from the boundary mesh, new nodes are inserting inside the domain and the construction of the new elements should respect the Delaunay property, which means that the elements whose circumscribed disk contains these nodes will be removed.The main drawback of the Delaunay method is that the Delaunay property is not a mesh quality criterion. The algorithm can create degenerate elements with very bad qualities especially near the boundaries of the domain. An optimization step is generally required. For more details, one can refer to [START_REF] Borouchaki | Delaunay mesh generation governed by metric specifications. part i. algorithms[END_REF][START_REF] Weatherill | Efficient three-dimensional delaunay triangulation with automatic point creation and imposed boundary constraints[END_REF][START_REF] Shewchuk | Tetrahedral mesh generation by delaunay refinement[END_REF][START_REF] Baker | Automatic mesh generation for complex three-dimensional regions using a constrained delaunay triangulation[END_REF][START_REF] George | Delaunay triangulation and meshing[END_REF] • Quadtree/octree methods: Introduced in [START_REF] Yerry | A modified quadtree approach to finite element mesh generation[END_REF], the method consists in defining a bounding box (a rectangle in 2D) that contains the object and seen as the root of a tree structure. The box is subdivided into equal identical sub-cell. When these sub-cell intersect with the boundary of the object, a sub-division is applied again and the mesh is recursively refined until it reaches an imposed criterion. Although these mesh generators are robust, fast, and easy to implement and parallelize, the generated elements tend to be aligned in a certain direction influencing the solversâ Ȃ Ź solutions and posing the difficulty of constructing anisotropic meshes.

• MTC topological methods: All meshes presented in this work have been generated through CIMLIB by the MTC mesher and remesher. This mesher was developed at Cemef. A brief analysis is given in the following section.

Topological optimization mesh generation

The MTC mesher is based on the topological optimization technique that modify locally the mesh. A local optimization of a mesh topology consist into a cut/paste operation, or in other terms, replacing a local topology(around a node or an edge) by another one, that respects the metric, the minimal volume criterion and the mesh geometric quality.

Let 0 s denote N as a finite set of nodes in W ⇢ R d and T a set of mesh elements generated from the N nodes. Let F (T ) be the set of elements faces of T . Starting from an initial random meshing of the domain, the first step consists in generating a first mesh topology T = T ⇤ (X, ∂ T ). T ⇤ (X, ∂ T ) is the starring operator that connect a node X to the boundary faces that do not contain it and is expressed as follow:

T (X, F ) ⇤ = X [ F , F 2 F andX / 2 F (2.13)
In general, we say that T is a mesh topology of W if and only if: each F 2 F (T ) is shared by at most two elements of T and the couple (N , ∂ T ) is a mesh of the boundary ∂ W.

The minimum volume criterion The mesh topology is called conformal only when the volume of the element is optimal and satisfying the minimum volume principle:

 T 2T |T | = |W| (2.14)
Where |T | is the volume of the element.

The mesh geometric quality criterion A mesh topology satisfying the minimum volume principle might not be unique. That 0 s why, another selection criterion is required. The latter is based on the quality of the elements defined in [START_REF] Dompierre | On simplex shape measures with extension for anisotropic meshes[END_REF] as:

Local topology optimization

Q (T ) = |T | h d T (2.15)
Where h T is the longest edge of element T and d is the space dimension. Q measures how much the elements of a candidate topology are degenerate or not, the more Q is close to 1, the best is T .

Algorithm 

(T ) = |T | h d T end Update T = [ n T n end 2.

Metric-based anisotropic mesh adaptation

Various physical problems, including shock waves, shear, interfaces and boundary layers displays anisotropic behavior which means that solutions varying significantly in one direction than the others. Recall that, in this work we are dealing with the boundary layer, that is a highly viscous region in which the large velocity gradients produce substantial vorticity. Consequently, using isotropic meshes, will lead to an extremely large number of elements and high computational cost. Therefore, anisotropic mesh seems to be an appropriate approach to overcome this type of problems, because the adaptation is performed by constructing a metric map that allows the mesh size to be imposed in the direction of the distance function gradient. In the literature, a vast area of strategies have been developed and improved to build anisotropic mesh by using metric tensors [START_REF] Borouchaki | Delaunay mesh generation governed by metric specifications. part i. algorithms[END_REF][START_REF] Castro | New progress in anisotropic grid adaptation for inviscid and viscous flows simulations[END_REF][START_REF] Garimella | Boundary layer meshing for viscous flows in complex domains[END_REF][START_REF] Dompierre | Anisotropic mesh adaptation: towards user-independent, mesh-independent and solver-independent cfd. part iii. unstructured meshes[END_REF][START_REF] Huang | Metric tensors for anisotropic mesh generation[END_REF][START_REF] Coupez | Génération de maillage et adaptation de maillage par optimisation locale[END_REF][START_REF] Marcum | Aligned metric-based anisotropic solution adaptive mesh generation[END_REF][START_REF] Digonnet | -object-oriented programming for Şfast and easy Ť development of parallel applications in forming processes simulation[END_REF].

A metric is a symmetric positive definite tensor transforming any unstructured mesh generator into an anisotropic one. The main idea of this metric is to build a unit mesh in prescribed Riemannian metric space, that have almost the same notions of length and area as the Euclidean metric space. The Riemannian metric space is denoted by (M (x)) x2W as M is a symmetric definite positive matrix, called metric tensor. As the metric tensor is symmetric definite positive, thus it can be diagonalizable:

M (x) = t R(x)L(x)R(x) (2.16)
Where L is the diagonal matrix composed of the eigenvalues l i=1..N of M which are strictly positive, N denotes the number of vertices in a mesh. R is an orthonormal matrix and contain the eigenvectors

(v i ) i=1..N of M verifying t RR = R t R = I d .
The metric tensor can be geometrically represented. The set of points that verified t xM i x = 1 defines a unique ellipsoid, called the unit-ball (See Figure 2.5). The desired mesh size is given by h i = l i 1 2 and defined along the principal direction prescribed in R i . In the Figure 2.5, we can clearly notice that mapping between physical space (R d , I d ) to the metric space (R d , M ) is defined by

l 1 2 R. h 2 • ṽ2 h 1 .ṽ 1 ũ (R 2 , I 2 ) t RL 1/2 L 1/2 R kh 2 .ṽ 2 k M = 1 kh 1 .ṽ 1 k M = 1 kũk M = 1 (R 2 , M) h 1 .ṽ 1 h 2 .ṽ 2 ũ Figure 2.5: Mapping from the physical space (R d , I d ) to the metric space (R d , M ) [2].
The metric is defined at each vertex of the initial mesh and then sent to the mesh generator to build the desired one. As explained previously the main operation performed by the mesh generator is to optimize topologically the mesh while the minimal volume principle and the quality criterion are satisfied. The quality criterion for an element K in the mesh has another expression while using metric based anisotropic mesh adaptation:

Q K = min c 0 |K| M (K) h d M (K) , h d M (K) , 1 h d M (K)

!

(2.17)

With:

• M (K) = 1 d+1 Â d i=0 M i is the mean element metric, beingM i the metric.

•

|K| M = |K| p M (K) is the new volume of the element |K|. • h M (K) = ⇣ 2 d(d+1) Â d i=0 X i j 2 M (K)
⌘ 1 2 is the average edge length.

• c 0 = 2 d 2 d! p
d+1 is a constant that is chosen so that a quality 1 would be obtained when the element is equilateral in the Riemannian space.

We introduce the following notations for a generic node X i , the set of nodes connected to node X i G(i) = j, 9K 2 K , X i , X j are nodes of K such that X i j = X j X i .

Boundary layer metric: Mesh size, directions and curvature

Let h n be all the obtained mesh sizes computed previously for the wall normal direction. an isotropic mesh is generated using the following metric:

M = 0 B @ 1 h 2 n 0 0 0 1 h 2 n 0 0 0 1 h 2 n 1 C A = 1 h 2 n I d (2.18)
However, high anisotropic elements are expected to be used, consequently high aspect ratio in the tangential directions has to be applied. The anisotropic ratio R a is thus defined as:

R a = h t h n (2.19)
Recall that, the anisotropic elements will be essentially set in the boundary layer which give an important anisotropi ratio in that region more than in the others. h t becomes the maximum mesh size in Box2 and set as H 2 and the new expression of the ratio is:

R a = H 2 h n (2.20)
The resulting optimal metric solution could be written as :

M = 8 > < > : 1 h 2 n N • N + 1 h 2 t (I d N • N T ) Inside Box2, where h t = H 2 1 h 2 t I d Outside Box2 (2.21) 
Where : N represents the normal vector to the surface written as :

N = 5f | 5f | (2.22)
In the preceding sections, we have described how to build the boundary layer mesh layer by layer in a structured way with the corresponding mesh size. However, the formulation of the metric that we set has several drawbacks, such that, the complexity of the geometry is not taken into account, specially the curvature. But also, the tangential directions are not appropriately define, Consequently, the interface could not be smoothly recovered by element faces in 3D. The development proposed in [2] aims to solve this issue. Let 0 s consider the shape operator S:

S = -T N = 1 |-f (P)| (I N • N T )Hes(f )(P) (2.23)
Where Hes(f ) is the Hessian matrix that measures the second-order rate of change of f . We aim to reach the eigenvalues and eigenvectors of S. N is an eigenvector of S associated to the zero eigenvalue because S • N = 0. The two other eigenvalues have the following general expression :

k i = tr(S) + s ✓ tr(S) 2 
◆ 2 ± Z(S) (2.24)
The associated eigenvectors gives the orthonormal basis (N, T 1 , T 2 ). Curvatures need now to be transform into tangential mesh sizes. As shown in figure 2.6 the tangential mesh size can be deduced from a geometrical approach by taking into account the inverse of the radius of the circle C . The Ñ (x P , y P )

T P R C O(x 0 , y 0 ) G im Figure 2.6:
The interface G is represented in black, while the best fit circle in P 2 g is drawn in red. The circle C is centered in O(x 0 , y 0 ) and has for radius R. The vector normal and tangential to the interface at P are denoted Ñ and T [2]. mesh size in the tangential direction h t is then recovered from the curvature k and the normal mesh size. We obtain thus :

h ti = r 2 h n k i + h 2 n (2.25)
The boundary layer metric can be written as :

M = 0 @ N T 1 T 2 1 A 0 B @ 1 h n 0 0 0 1 h t1 0 0 0 1 h t2 1 C A N T 1 T 2 (2.26)

Numerical examples

We present a 2D and a 3D numerical test to assess the efficiency of the mesh adaptation method. The mesh fits the boundary layer with highly anisotropic elements that are optimal in size and alignment with the solution gradients upon which the metric field is based.

NACA0015

As a first example, we consider a NACA0015 airfoil adopted in [START_REF] Nordanger | Simulation of airflow past a 2d naca0015 airfoil using an isogeometric incompressible navier Űstokes solver with the spalart Űallmaras turbulence model[END_REF]. To demonstrate the capability of the method described above, this geometry is interesting because it holds numerous curvatures. The Figure 4.7 depicts the geometry of the NACA airfoil, which is placed into a domain that is 10 chord lengths wide and 50 chord lengths long. The a priori mesh is generated for the study of a flow at Reynolds number equal to Re = 2.5 ⇥ 10 6 and the unitary cord length. This leads to a finally boundary layer composed of 20 layers such that h min = 5.10 4 , y + 0 = 1 and 115533 elements. A representation of the final boundary layer mesh is pictured in Figure 2.8, with the position of the different boxes around the geometry. The Figure clearly represents the interface of the NACA in red and then the levelsets from the multi-level set method are described in blue and green. The maximum mesh size set in Box2 is h 2 = 0.1 and in the whole domain h 1 = 1. The number of elements in the domain and their distribution in respect to the total number of elements for each box are described in Table 2.1. In Figure 2.9, a zoom around the different parts of the airfoil is illustrated such as the interface, the leading and the trailing edges. As expected, a high degree of mesh anisotropy is reached and the geometry shape is properly well-fitted. The quality of the resulting mesh reflects the potential of the proposed method to capture these layers

3D sphere

We consider, as a first 3D numerical test, one of the classical benchmark for bluff-body aerodynamics, that is, the flow of an incompressible viscous fluid past a sphere. This test case has been the objective of numerous experimental and numerical investigations. The primary interests in these include the visualization of the vortical flow structures in the wake of axisymmetric bodies at Reynolds numbers of up to 300. We will show these results in the next chapter. For the moment, the main idea behind this test is to demonstrate the ability of the boundary layer mesh framework needed for local flow features. The 3D sphere of diameter D equal to one, as shown in figure 3.4, is centered at (0, 0, 0). The computational domain size is 90D for the length and 50D ⇥ 50D for the width. For the aerodynamic part, different Reynolds number have been considered and are equal to: 50, 100, 250 and 300. For each case, a boundary layer mesh is supposed to be generated. However, we have decided to construct one mesh framework that handle all the numerical tests and hence proving the validity and robustness of our meshing tool. A plot of the final boundary layer mesh is represented in Figure 3.5, composed of 20 layers such that h min = 10 3 . As shown in Table 2.2, starting from 1, 738, 715 the number of elements obtained at the end is set to 2, 922, 022. Taking a close look at the mesh around the interface of the sphere, we can detect the good orientation of the elements with the stretching in the relevant direction. 

Conclusion

In this chapter, we have shown that the new anisotropic boundary layer mesh method has the flexibility to start from arbitrary coarse meshes, to encompass the size distribution and orientation to ensure a smooth gradation along the curvature of the geometry and to generate highly stretched elements around any 2D and 3D arbitrary geometries. Therefore, a multilevel set method has been used to control the mesh size distribution and orientation and a new metric map has been constructed, that satisfies the required mesh sizes in the needed directions at the interface and all along the domain. This a priori mesh will serve later for the simulations to predict mean and fluctuating drag and lift coefficients. To prove the efficiency, results of this method have been given for the NACA 0015 airfoil and the 3D bluff-body sphere. Note that more test cases will be given in the following chapters. 

Résumé en français

Dans ce chapitre, nous avons présenté une nouvelle procédure automatique permettant de générer des maillages à priori, adaptés pour la résolution précise de la couche limite tels que prescrit par la théorie. Cette approche repose sur une méthode multilevelset permettant de localiser chacune des sous-couches composant la couche limite et ainsi de contrôler la taille et l'orientation des éléments. Cela permet d'assurer une variation progressive de la taille de maille, indispensable au solveur pour assurer une résolution précise. Elle permet aussi de décrire au mieux l'interface entre le fluide et le solide immergé. Ainsi, à partir des paramètres physiques caractéristiques de l'écoulement et de la fonction distance associée à l'interface fluide-structure, un maillage couche limite précis représentant fidèlement l'interface peut-être généré itérativement quelle que soit la complexité de la géométrie 2D ou 3D immergés. 

Introduction

While the modeling of turbulent flow remains a challenge over the past decade, rapid headway has been made from the numerical standpoint, with the rise of adaptive methods now allowing an accurate description of complex flows at a reasonable cost. Indeed, Computational fluid dynamics (CFD) combined with meshing capabilities is foreseen to provide a tremendous progress in terms of accuracy and reliability in the description of the physical phenomena. This progress can clearly be observed in the advanced development that have known the Finite Element methods (FEM), and hence became widely used in solving many problems of fluid flow, heat transfer, structural analysis, electromagnetic field and many others. The Finite Element Methods have provided approximate solutions to mathematical equations that have long been the pet peeve of scientists. We can obviously give as an example the Navier-Stokes equations. We will present in this chapter, the governing equations, namely the unsteady incompressible Navier-Stokes equations and their discretizations. The stabilized Finite Element scheme for the Navier-Stokes equations is derived from a variational multiscale point of view. Both the velocity and the pressure spaces are enriched which cures the spurious oscillations in the convection dominated regime and deals with the pressure instability. particular attention is paid to the determination of the stabilization parameters in the presence of mesh anisotropy.

The Navier-Stokes equations 3.2.1 Basic Formulation of the equation

For many aerodynamic applications, similarity parameters are used to properly model the effects of the aerodynamic forces generated by the flowing fluid stream around an object. The most wellknown similarity parameters are the Reynolds number and the Mach number. The Reynolds number is a dimensionless parameter that measures the ratio of inertia forces to viscous forces in a flow :

Re = rV L µ (3.1)
Where r is the density of the fluid, µ the dynamic viscosity, L a characteristic length scale and V the velocity magnitude of the flow. Named after the physicist Osborne Reynolds in 1883, the Reynolds number is frequently used to qualify different flow regimes, whether the flow is laminar, i • e• viscous forces are dominant and the streamlines are smooth and regular (Re << 1), or turbulent regime, where inertial forces are dominant so that the fluid moves in a random and irregular fashion (Re >> 1). The rate of the compressibility effects that occurred in the flow is determined by resolving the ratio of the flow velocity to the speed of sound. This ratio is called the Mach number in honor of the 19th century physicist Ernst Mach :

Ma = V c (3.2)
V characteristic velocity of the flow and c the velocity of the sound equal to 340 m/s in the air. In most of the cases treated here, the Mach number is below 0.3 and so the flow is treated as incompressible.

Flow motion of an incompressible fluid is described by the Navier-Stokes equations, to be solved in the fluid domain W ⇢ R d at time t 2 [0, T ], where d is the space dimension and ∂ W its boundary. This equation consists in finding the velocity v(x,t) and the pressure p(x,t) such that:

⇢ r (∂ t v + v • -v) -• s = f in W ⇥ [0, T ] -• v = 0 in W ⇥ [0, T ] (3.3)
Where r is the density and f a given force vector. s represents the stress tensor for a Newtonian fluid, where the strain rate and stress tensors are linearly proportional, and is written as:

s = 2µ e(v) pI d (3.4) 
With I d the d-dimensional identity tensor, p the pressure and µ the dynamic viscosity. The strain rate tensor e(v), is defined by:

e(v) = 1 2 ⇥ -v + t -v ⇤ (3.5)
Combining (3.3) and (3.5) yields the following equation:

⇢ r (∂ t v + v • -v) 2µ-• e(v) + -p = f in W ⇥ [0, T ] -• v = 0 in W ⇥ [0, T ] (3.6)

Intial and boundary conditions

The incompressible Navier-Stokes equations (3.6) are a non-linear partial differential equation. In order to solve them, initial and boundary conditions must be satisfied. The initial condition must verify -• v 0 = 0 at t = 0 so that we obtain a well-posed problem, and is written as follow:

v = v 0 in W ⇥ 0 (3.7)
Let's denote G D the boundary where Dirichlet conditions are applied and G N for the Neumann ones such that,

∂ W = G = G D [ G N and G D \ G N = ?.
These conditions represent the boundary conditions and are defined as follow:

v = v D on G D ⇥ [0, T ] (3.8) n • s = h N on G N ⇥ [0, T ] (3.9) 
With v D and h N are given functions, n is the unit outward normal vector to G N .

It is important to mention that in most of the cases simulated in this work, The Dirichlet boundary condition are prescribed for the inflow boundary. The outflow boundary conditions still a challenging task, that have been extensively discussed in the literature. Here, the nullity of Neumann boundary conditions are imposed. consequently, a condition on the pressure should be added: R W p dW = p 0 , with p 0 is a constant that can be zero or a constant value.

Weak formulation

As explained previously, the computational framework used in this work is the Finite Element Method. Let's start by defining the function spaces for the velocity, the weighting function space for the velocity and the scalar function space for the pressure respectively :

V = n v, v 2 ⇥ H 1 (W) ⇤ d | v = v D on G D o (3.10) W = n v, v 2 ⇥ H 1 (W) ⇤ d | v = 0 on G D o (3.11) Q = p, p 2 L 2 (W) (3.12)
Such that, H 1 (W) is the Sobolev space of square integrable functions whose distributional derivatives belong to L 2 (W), for a given W ⇢ R d . Those functional spaces are denoted as follows:

L 2 (W) = ⇢ f : W ! R; Z W | f | 2 < +• [L 2 (W)] d = ⇢ f : W d ! R d ; Z W | f | 2 < +• H 1 (W) = n f 2 L 2 (W); -f 2 [L 2 (W)] d if W ⇢ R d o [H 1 (W)] d = n f 2 [L 2 (W)] d ; -f 2 [L 2 (W)] d⇥d if W ⇢ R d o (3.13)
We define also the standard scalar product in L 2 (W) as:

(j, y) = Z W jy dW (3.14)
The variational formulation of (3.6) is obtained by multiplying this system by test functions w 2 W and q 2 Q and integrating over the computational domain. After integrating by parts, the problem can be written in the weak form as follows: for a given

f 2 [L 2 (W)] d , find (v, p) 2 (V , Q) such that: ⇢ (r∂ t v, w) + (rv • -v, w) + (2µe(v) : e(w)) (p, -• w) = ( f , w) + (h N , w) G N (-• v, q) = 0 (3.15)
The discretization is carried out by the classical Galerkin approach. The domain W is decomposed into N el elements K such that they cover the domain and are either disjoint or share a complete edge (or face in 3D). In our case, the domain is subdivided in tetrahedral (for d = 3) and triangular (for d = 2) P 1 elements. We denote by T h this finite element partition. Using the latter, The above defined functional spaces (3.10), (3.11) and (3.12) are approached by finite dimensional spaces spanned by continuous piecewise polynomials as follows:

V h = n v h |v h 2 C 0 (W) d , v h|k 2 P 1 (K) d , 8K 2 T h o (3.16) W h = w h 2 V h , w h|G = 0 (3.17) Q h = q h 2 C 0 (W) , q h|K 2 P 1 (K), 8K 2 T h (3.18)
Thus, the Galerkin discrete problem for (3.15) consists now in solving the mixed problem by finding

(v h , p h ) 2 (V h , Q h ), 8(w h , q h ) 2 (W h , Q h ) such that: 8 > > < > > : r h⇣ ∂ v h ∂t , w h ⌘ + (v h • -v h , w h ) i + (2µe(v h ) : e(w h )) (p h , -• w h ) = ( f , w h ) + (h N , w h ) G N ) (-• v h , q h ) = 0 (3.19)
It is well known that the stability of the formulation (3.19) requires an appropriate choice of the finite element spaces V h and Q h , that must to fulfill a compatibility condition [START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers[END_REF][START_REF] Digonnet | -object-oriented programming for Şfast and easy Ť development of parallel applications in forming processes simulation[END_REF] named the inf-sup condition or Brezzi-Babuska :

inf q h 2Q h sup v h 2V h|G (-• v h , q h ) W |q h | 0 |v h | 1 b > 0 (3.20)
Where b is a constant independent of h. Accordingly, the standard Galerkin method with the P1/P1 element (i.e. the same piecewise linear space for V h and Q h ) is not stable. Moreover, convection-dominant problems (i.e. problems where the convection term v • -v is much larger than the diffusion term -• (2µ e) also lead to a loss of coercivity in formulation (3.19), hence numerical oscillations that end up polluting the whole solution. For this reason, stabilized formulation is used to deal with these two problems.

Variational MultiScale Method (VMS)

Recall that, using linear approximation, is very desirable because it is simple to implement with affordable computing cost especially for 3D applications. But, as stated before, the P1-P1 approximation for the velocity and the pressure does not guarantee the convergence of the solution. In the literature, many measures may be distinguished to solve and circumvent the instabilities in convectiondominant regime and the velocity-pressure compatibility condition. One of these measures, we can cite the MINI element method used to stabilize the mixed-formulation for the Stokes problem [START_REF] Arnold | A stable finite element for the stokes equations[END_REF][START_REF] Franca | Bubble functions prompt unusual stabilized finite element methods[END_REF] and later for Navier-Stokes [START_REF] Tezduyar | Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements[END_REF][START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF]. The basic idea is to enrich the space of velocity formulation by a discrete bubble functions space. Those bubble functions are considered as continuous piecewise linear functions on each element and disappeared at the boundary of this element by a static condensation process. In this work, we use a Variational MultiScale method [START_REF] Hughes | Multiscale phenomena: Green's functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF][START_REF] Hughes | The variational multiscale method Ůa paradigm for computational mechanics[END_REF][START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF] which circumvents both problems through a Petrov-Galerkin approach. The basic idea is to consider that the unknowns can be split into two components, a coarse one and a fine one, corresponding to different scales or levels of resolution.

First, we solve the fine scales in an approximate manner and then we replace their effect into the large-scale equation.

Let us split the velocity and the pressure fields into resolvable coarse-scale and unresolved finescale components: v = v h + ṽ and p = p h + p. The same decomposition can be applied to the weighting functions: w = w h + w and q = q h + q. Subscript h is used hereafter to denote the finite element (coarse) component, whereas the tilde is used for the so called subgrid scale (fine) component of the unknowns. The enrichment of the functional spaces is performed as follows:

V = V h Ṽ , W = W h W and Q = Q h Q.
The scale decomposition applied to the unknowns, test functions, as well as to spaces is written as follows :

v = v h + ṽ 2 V h Ṽ p = p h + p 2 Q h Q (3.21) w = w h + w 2 W h W q = q h + q 2 Q h Q (3.22)
The discretized finite element approximation for the time-dependent Navier-Stokes problem therefore reads:

Find (v, p) 2 V ⇥ Q such that: 8 > > > > < > > > > : (r∂ t (v h + ṽh ), w h + wh ) + (r(v h + ṽh ) • -(v h + ṽh ), w h + wh ) + (2µe(v h + ṽh ) : e(w h + wh )) (p h + ph , -• (w h + wh )) = ( f , w h + wh ) + (h N , w h + wh ) G N (-• (v h + ṽh ), q h + qh ) = 0 (3.23)
This equation can be split as well into the coarse-scale and the fine-scale problem in order to derive the stabilized formulation as follows:

The coarse-scale problem

8 > > > > < > > > > : (r∂ t (v h + ṽh ), w h ) + (r(v h + ṽh ) • -(v h + ṽh ), w h ) + (2µe(v h + ṽh ) : e(w h )) (p h + ph , -• w h ) = ( f , w h ) (-• (v h + ṽh ), q h ) = 0 (3.24)
The fine-scale problem

8 > > > > < > > > > : (r∂ t (v h + ṽh ), wh ) + (r(v h + ṽh ) • -(v h + ṽh ), wh ) + (2µe(v h + ṽh ) : e( wh )) (p h + ph , -• wh ) = ( f , wh ) (-• (v h + ṽh ), qh ) = 0 (3.25)
The fine-scale problem is defined on element interiors. Several assumptions are imposed regarding the quasi time-dependency of the subscale system (even though the subscales are not tracked in time), but also a remedy to the non-linearity of the momentum equation due to the convective term has been found by ignoring the convective contribution of the small-scale velocity: [START_REF] Hachem | Stabilized finite element method for incompressible flows with high reynolds number[END_REF]. Moreover, since the fine-scale space is assumed to be orthogonal to the finite element space, all the cross-product terms vanished. Under these assumptions, the fine-scale solutions ṽh and ph are written in function of the time-dependent large-scale variables using consistently derived residual-based terms. Consequently, we can use statistic condensation, that consists in substituting ṽh and ph into the large-scale problem, which gives rise to additional terms in the Finite Element formulation, adjusted by a local stabilizing parameter. These terms are responsible for the enhanced stability compared to the standard Galerkin formulation. Therefore small-scale system is rewritten as follow:

(v h + ṽh ) • -v h + ṽh ) ⇡ v h • -v h + ṽh )
8 > > > > < > > > > : r (∂ t ṽh , wh ) + r (v h • -ṽh , wh ) + (2µe( ṽh ) : e( wh )) + (-ph , wh ) = ( f r∂ t v h rv h • -v h -p h , wh ) = (R m , wh ) (-• ṽh , qh ) = ( -• v h , qh ) = (R c , qh ) (3.26)
Taking into account that the problem involves linear interpolation functions, all the terms covering second derivatives take zero values such as as -• (2µe(w h )), so that the momentum residual R M and the continuity residual R C are expressed as:

R M = f r∂ t v h rv h • -v h -p h R C = -• v h (3.27)
As proposed in [START_REF] Franca | Pressure bubbles stabilization features in the stokes problem[END_REF] and in [START_REF] Masud | A stabilized mixed finite element method for darcy flow[END_REF][START_REF] Badia | Stabilized continuous and discontinuous galerkin techniques for darcy flow[END_REF], the fine-scale for the pressure and the velocity will take respectively the following forms:

p ⇡ t C R C ṽ ⇡ Â K2T h t K R M b K (3.28)
With b K is the C 0 -continuous shape function used to approximate the small scale solution. The quantities t C and t K are stabilization parameters for which we adopt the definition proposed in [START_REF] Codina | Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods[END_REF][START_REF] Codina | Time dependent subscales in the stabilized finite element approximation of incompressible flow problems[END_REF][START_REF] Codina | Dynamic subscales in the finite element approximation of thermally coupled incompressible flows[END_REF]:

t C = " ✓ µ r ◆ 2 + ✓ c 2 kv h k K c 1 h K ◆ 2 # 1 2 , (3.29) 
t K = " ✓ c 2 rkv h k K h K ◆ 2 + ✓ c 1 µ h 2 K ◆ 2 # 1 2 (3.30)
Where h K is the characteristic length of the element and c 1 and c 2 are algorithmic constants. We take them as c 1 = 4 and c 2 = 2 for linear elements [START_REF] Codina | Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods[END_REF].

Consequently, the large-scale system is finally read as:

8 > > > > < > > > > : (r∂ t v h , w h ) W + (rv h • -v h , w h ) W Â K2T h (t K R M , rv h -w h ) K + (2µe(v h ) : e(w h )) W (p h , -• w h ) W + Â K2T h (t C R C , -• w h ) K = ( f , w h ) W , 8w h 2 V h,0 (-• v h , q h ) W Â K2T h (t K R M , -q h ) K = 0, 8q h 2 Q h (3.31)
Where (•, •) W represents the scalar product on the whole domain omega while (•, •) K is the scalar product on Element K. Compared to the standard Galerkin method, the proposed stable formulation involves additional integrals that are evaluated element-wise. These additional terms represent the stabilizing effect of the sub-grid scales and are introduced in a consistent way in the Galerkin formulation. They make it possible to avoid instabilities caused by both dominant convection terms and incompatible approximation spaces.

Equations (3.31) are discretized in time by a semi-implicit scheme. The convective term, the viscous term and the pressure term in the momentum equation, as well the divergence term in the continuity equation, are integrated implicitly through a backward Euler scheme. All other contributions (i.e. the source term and the stabilization terms) are integrated explicitly by a forward Euler scheme. Among the implicit terms, the convection operator v h • -v h is non-linear, thus a Newton root finding algorithm is applied to the system at each time step. Using the superscript n to denote the value of the quantities at time t n and n + 1, i to denote the value of the quantities for time t n+1 at the i-th iteration of the Newton method, the system to be solved for (v n+1,i+1 h , p n+1,i+1 h ) at each iteration i reads:

8 > > > > > > > > > > < > > > > > > > > > > : ✓ r v n+1,i+1 h v n h Dt , w h ◆ W + ⇣ r h v n+1,i h • -v n+1,i+1 h + v n+1,i+1 h • -v n+1,i h v n+1,i h • -v n+1,i h i , w h ⌘ W Â K2T h t n K R n+1 M , rv n h -w h K + ⇣ 2µ n e(v n+1,i+1 h ) : e(w h ) ⌘ W ⇣ p n+1,i+1 h , -• w h ⌘ W Â K2T h t n C R n+1 C , -• w h K = ( f n , w h ) W , 8w h 2 V h,0 ⇣ -• v n+1,i+1 h , q h ⌘ W Â K2T h t n K R n+1 M , -q h K = 0, 8q h 2 Q h . (3.32)
We usually precondition the linear system with a block Jacobi method supplemented by a incomplete LU factorization, and solve it by means of a GMRES algorithm.

Numerical results

As an immediate and quick applications, we compare results obtained for the flow around NACA 0012 airfoil and 3D bluff body sphere with data from literature to assess the correctness and the efficiency of the Variational MultiScale Method (VMS) used to resolve the Navier-Stokes equations.

2D Application: NACA 0012 airfoil

The classical benchmark for aerodynamic simulations, NACA 0012 airfoil is chosen as a first test case for the numerical methods described in the previous sections. The Reynolds number Re based in the unity chord c is equal to 5000. The dimensions of the computational domain are the same as for the NACA 0015 presented in the previous chapter: which means 10 chord lengths wide and 50 chord lengths long as shown in Figure 4.7. Starting from a coarse mesh with 75000 elements, the computational domain ends up with 67448 elements and the mesh is well refined and adapted within the thickness that represents the boundary layer around the airfoil as depicted in Figure 3.2. h min is set to 10 3 , the growth factor is chosen by convention to 1.2 and 20 layers are constructed. The mesh sizes of both Box2 and Box3 are respectively equal to 0.1 and 1. Once the mesh is ready, we launch the calculations to determine the aerodynamic characteristics. No slip conditions are imposed on the horizontal boundaries v • n = 0 , s n = 0 and a null farfield pressure value is imposed. For the NACA profile no slip conditions are imposed as well on the velocity field. The time step is fixed to Dt = 10 4 s. In this aerodynamic application, for comparison purposes, we are interested in the lift coefficient C L and the drag coefficient C D defined as:

C D = 2F D r Ū2 A C L = 2F L r Ū2 A (3.33)
Where A is a reference area, F D is the drag force oriented in the direction e x parallel to the flow and F L is the lift force oriented in a direction e y normal to the flow. In 2D, these coefficients are usually expressed per unit of span length by substituting a reference length L for the reference area A. Table 3.2 addresses a comparison of the values of the drag and lift coefficients with the ones obtained in [START_REF] Swanson | Comparison of naca 0012 laminar flow solutions: structured and unstructured grid methods[END_REF] for 0 angle of attack. As may be seen, the results are in 3% range of error for the Drag coefficient and almost the zero value for the Lift coefficient, which confirms that the solving the Navier-Stokes equations by the VMS Stabilized method can perfectly handle this test. The final result plots for the velocity and the pressure are shown in Figure 3.3 and appear in good agreement with similar tests in the literature. 

3D Application: Flow past a sphere

As a 3D test case, we go back to the bluff-body benchmark, that is the 3D sphere. Recall that in chapter 2, we presented the construction of the anisotropic boundary layer mesh adapted to the geometry of the sphere. As stated previously, this test case has been the objective of numerous experimental and numerical investigations whose focus has been on describing and visualizing the (first steady, then unsteady) hairpin structures that develop at Reynolds numbers up to 300 [START_REF] Fornberg | Steady viscous flow past a sphere at high reynolds numbers[END_REF][START_REF] Johnson | Flow past a sphere up to a reynolds number of 300[END_REF][START_REF] Constantinescu | LES and DES investigations of turbulent flow over a sphere[END_REF][START_REF] Tomboulides | Numerical investigation of transitional and weak turbulent flow past a sphere[END_REF][START_REF] Kim | Laminar flow past a sphere rotating in the transverse direction[END_REF][START_REF] Jindal | Large eddy simulations around a sphere using unstructured grids[END_REF]. In our case, the main idea behind this test is to demonstrate from one hand, the ability of the boundary layer mesh framework to capture local flow features but also to assess the validity, accuracy and efficiency of the VMS stabilization method. A reminder that the sphere has diameter D, and its center is the origin of the domain at (0, 0, 0) and also the dimensions of the computational domain shown in Figure 3 A plot of the final boundary layer mesh is represented in Figure 3.5, composed of 20 layers such that h min = 10 3 . The number of elements is set to 2, 922, 022. As expected, a high degree of mesh anisotropy is reached and the geometry shape is properly well-fitted.

Four tests are considered and correspond to simulate the flow past the sphere for different Reynolds number. The non-dimensional time step is chosen equal to Dt = 0.1s. The first one is for a Reynolds number Re = 100 based on the inlet velocity and the sphere diameter. The solution shown in 3.6(a) is characterized by a steady axisymmetric recirculating region located just behind the sphere, similar to the topology described in [START_REF] Johnson | Flow past a sphere up to a reynolds number of 300[END_REF], reproduced just besides. The steady value of drag compares especially well to that reported in the aforementioned reference, with a discrepancy lower than 2%. The second case is at Re = 250, for which the flow remains steady, but no longer exhibits axial symmetry [START_REF] Johnson | Flow past a sphere up to a reynolds number of 300[END_REF] as stated in Figure3.6(b). We have checked the dynamics to be similar to the simulation of [START_REF] Johnson | Flow past a sphere up to a reynolds number of 300[END_REF], with the upper spiral in the (x, y)-plane being fed by fluid from upstream, while the lower spiral releases fluid into the wake after sending it up and around the upper spiral. Again, the steady value of drag exhibits a high level of compliance with the reference values of the literature, as a discrepancy lower than 4% is reported in Table 3.2.

For Reynolds numbers larger than Re = 270, the flow past is expected to become unsteady, with a highly organized periodic structure dominated by vortex shedding [START_REF] Johnson | Flow past a sphere up to a reynolds number of 300[END_REF]. An important point to note is that the resulting wake retains the reflectional symmetry observed before the onset of unsteadiness, only pairs of vortex structures with opposite signs are now periodically shed. This subtle feature is accurately recovered by the present approach, which is best seen from the streamlines of the time averaged solution computed here at Re = 300 and unveiled in Figure 3.7. The results synthesized in Table 3.2 again show a good agreement with the literature data, with the discrepancy smaller than 3% on the mean values of drag and lift. The only noticeable difference is in the shedding frequency, found to be slightly underestimated by 7 8%, but the agreement remains satisfying. 1.14 0.72 0.679 ±3.9 ⇥ 10 3 0.066 ±2.03 ⇥ 10 2 0.139

Conclusion

In this chapter, we have presented the first part of the numerical methods used to solve the CFD problem. The Variational MultiScale (VMS) approach has been selected as a Stabilized Finite Element methods for the resolution of the unsteady Navier-Stokes equations. The VMS introduces on a priori decomposition of the unknowns into coarse and fine components, that correspond to different scales of resolution. The general idea is that only the large scales of the flow field are fully represented and resolved at the discrete level, while the effect of the small unresolved scales is taken into account by means of consistently derived source terms proportional to the residual of the resolved scale solution. It has been proven that this method enhances the accuracy and stability of the standard Galerkin formulation and treats efficiently the non-physical spurious instabilities due to the convection-dominated flows. 2D and 3D results have been presented and upcoming, more test cases will be shown in the next chapters.

Résumé en français

Dans ce chapitre, nous avons présenté une des méthodes Eléments Finis utilisées pour la mécanique des fluides numériques. En effet, pour résoudre les équations de Navier-Stokes instationnaires, une approche variationnelle multiéchelle (Variational MultiScale -VMS) a été sélectionnée. L'idée générale consiste à effectuer une décomposition des inconnus en une contribution grande échelles et une contribution petites échelles. Les grandes échelles du champ d'écoulement sont pleinement représentées tandis que seul l'effet du système petites échelle est modélisé en substituant sa solution dans le système grande échelle ce qui fait apparaitre un terme de stabilisation instationnaire. Il a été prouvé que cette formulation garantit une stabilisation naturelle du problème numérique dans les régimes de convection dominante et éviter ainsi les oscillations numériques provoquées par la formulation faible de Galerkin. De plus, la méthode VMS permet de contourner la condition inf-sup et ainsi l'utilisation d'éléments finis P1-P1 pour la vitesse et la pression dans la résolution mixte des équations de Navier-Stokes qui devient plus accessible. Une solution plus stable et plus physique est ainsi obtenue. 

Introduction

As declared by Prof. Peter Bradshaw in 1978: ' The one uncontroversial fact about turbulence is that it is the most complicated kind of fluid motion.' In fact, turbulence has always been considered as the most fascinating and intriguing scientific problem. Many books have been written and researches have been devoted to physically understand and numerically model this phenomena. There are many occasions to observe turbulent flows in our everyday environment including smoke of lit cigarette or chimney, a stone in a river, the blood flow in an artery, the air flow around vehicles, airplanes, ships or a bridge etc. Turbulence occurs when the fluid elements moves in a random and irregular way, leading to the appearance of eddies with different sizes and scales. At the largest scales motion, the eddies are unstable and break up into smaller eddies, which go through the same process and decomposed into smaller and smaller ones, transferring at each time an energy called energy cascade until the eddies reach the Kolmogorov dimension, below which they dissipated by the viscous effects. From practical point of view, the turbulent flows are characterized by the fluctuations of velocity that occur at high Reynolds numbers.

After one century of research and experiences, there are no prospects of analytical theory to predict the evolution of these turbulent flows. In recent years, numerical simulation has proven to be effective in accelerating the understanding of complex problems as well as helping decrease the development costs for new process. That's why, there has been increasing interest in studying numerically the turbulence phenomena and large numbers of modeling approaches have been developed. The effortless procedure is to solve the Navier-Stokes equations with suitable boundary conditions using Direct Numerical Simulation (DNS). However, difficulties arise when dealing with high Reynolds number, an extremely large computer resource is required to resolve all the scales with the adequate time step. A remedy to that is the Large Eddy Simulation (LES), which aims into a complete resolution of the large-scale and to model the effect of the smallest one. This approach is less costly than DNS, but is not the best remedy. In this work, the approaches adopted are the Reynolds Averaged Navier-Stokes (RANS), since they average the Navier-Stokes equations. An unknown stress tensor appear in the equations called the Reynolds stresses and are determined through a turbulence model. We are interested in considering the one equation model; the Splarat-Allamars Turbulence Model, which gained in popularity these last years in many fields especially for aerodynamics flows in engineering applications. The finite element implementation of this framework will be described and analyzed in this chapter. The use of stabilized finite element method is then used to solve the convection-diffusion-reaction equation related to the Spalart-Allmaras turbulence model.

Turbulence modeling 4.2.1 DNS: Direct Numerical Simulation

From the conceptual point of view, the Direct Numerical Simulation is the simplest approach to turbulence simulation since it is solving directly the Navier-Stokes equations without averaging or approximation. It is completely relies to the standard Galerkin finite element formulation. Since all the motions contained in the flow are resolved, the computational domain must be with dimensions equal at least to the physical domain to be considered or as large as the largest turbulent eddy and according to Kolmogorov 0 s theory [START_REF] Kolmogorov | The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers[END_REF], the number of mesh nodes required for the simulation should respect the following condition:

✓ L h ◆ 3 ⇠ ✓ Re 3 4 L ◆ 3 = Re 9 4 L (4.1)
Where L being the dimension of the largest scale, h the well-known Kolmogorov scale and Re L the Reynolds number based on L. For instance, the Reynolds number for the flow around the airship can reach 10 7 , which bears approximately 10 63 4 vertices. Even though being unrivaled accurate, the DNS need a huge amount of computational resources that increase so rapidly with Reynolds number, which is extremely costly. In the literature, one can refer to [START_REF] Kim | Turbulence statistics in fully developed channel flow at low reynolds number[END_REF][START_REF] Rogallo | Numerical experiments in homogeneous turbulence[END_REF][START_REF] Wilcox | Turbulence modeling for CFD[END_REF][START_REF] Feiereisen | Numerical simulation of a compressible homogeneous, turbulent shear flow[END_REF][START_REF] Pope | Turbulent flows[END_REF] to have more details about the Direct Numerical Simulation.

LES: Large Eddy Simulation

The basic idea of the Large Eddy Simulation is to fully resolve the large-scale motions, whereas the effect of the small-scale structure is modeled. Technically, a filtering operation is define to decompose the quantity of concern into the sum of resolved (or filtered) component and the subgrid-scale (SGS) or residual component. Introduced in [START_REF] Leonard | Energy cascade in large-eddy simulations of turbulent fluid flows[END_REF], the general filtering operation applied to the velocity is defined by:

V (x) = Z D G(x, x 0 )V (x x 0 ,t)dx 0 (4.2)
Where G(x, x 0 ) is the filter function which satisfies the normalization condition R D G(x, x 0 )dx 0 = 1. There is a large amount of literature concerning the choice and design of the filtered governing equations and the subgrid-scale models [START_REF] Germano | A dynamic subgrid-scale eddy viscosity model[END_REF][START_REF] Sagaut | Large eddy simulation for incompressible flows: an introduction[END_REF][START_REF] Lesieur | New trends in large-eddy simulations of turbulence[END_REF][START_REF] Fröhlich | Introduction to large eddy simulation of turbulent flows[END_REF][START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF]. Large Eddy Simulation is three dimensional, time dependent and expensive but much less costly than DNS for the same simulation.

RANS: Reynolds Averaged Navier-Stokes

The Reynolds Averaged Navier-Stokes (RANS) models are most often used for industrial applications, due to the prohibitive cost of turbulent scale-resolving approaches. It consists into modeling all turbulent motions by averaging flow parameters, such as air velocity and pressure using some turbulence modeling. So that, the velocity may be decomposed respectively into a mean value, noted with a bar, and fluctuating part with a tilde such that:

v (x,t) = v (x,t) + ṽ (x,t) . (4.3)
This decomposition is referred to as the Reynolds decomposition and was introduced by Boussinesq in 1872 [START_REF] Boussinesq | Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section[END_REF]. The time average is calculated as:

v(x) = lim T !• 1 2T Z T 0 v (x,t) dt. (4.4) 
Let's suppose that the fluctuating values are centered, so applying the averaging will give us v = 0. Moreover, two properties of the filtering operator are:

(v) = v + ṽ = v + v = v (4.5) 
And, vu = vu + ṽ ũ. (4.6)

Spatial and temporal differentiation commute with averaging revealing:

∂ v ∂t = ∂ v ∂t , -v = -v. ( 4.7) 
As a consequence, The incompressibility condition applied to the mean flow is written:

-• v = 0. (4.8)
Besides, the fluctuations are also divergence-free:

-• ṽ = 0. (4.9)
By applying a time-averaging procedure to the Navier-Stokes equations we obtain:

⇢ r (∂ t v + v • -v) -• (µ-v + -vt ) + -p + r-• ṽ ⌦ ṽ = f in W ⇥ [0, T ] -• v = 0 in W ⇥ [0, T ] (4.10)
The averaging of the equations gives rise to an extra term, named the Reynolds stress tensor, that takes into account all turbulence effects. In the literature, many method were proposed to compute the Reynolds stress by "closing" the problem [START_REF] Spalart | Direct simulation of a turbulent boundary layer up to r q = 1410[END_REF][START_REF] Rodi | One-equation near-wall turbulence modeling with the aid of direct simulation data[END_REF][START_REF] Kim | Investigation of a reattaching turbulent shear layer: flow over a backward-facing step[END_REF]. The Boussinesq approximation [START_REF] Boussinesq | Théorie de l'écoulement tourbillonnant et tumultueux des liquides dans les lits rectilignes a grande section[END_REF] can then be used to model this additional stress as a turbulent eddy viscosity µ t . The RANS equations, with Reynolds-averaged velocity and pressure as unknowns, have the same form as the Navier-Stokes equations, except that the viscosity µ is replaced by the sum µ + µ t . The methods are classified conforming to the number of additional transport equations to be solved:

• Zero-equation models: the two-layer algebraic 0-equation model Baldwin-Lomax [START_REF] Baldwin | Thin-layer approximation and algebraic model for separated turbulentflows[END_REF], Cebeci-Smith model [START_REF] Smith | Numerical solution of the turbulent-boundary-layer equations[END_REF].

• One-equation models: such as the Prandtl's one-equation model [START_REF] Wilcox | Turbulence modeling for CFD[END_REF] or Baldwin-Barth model [START_REF] Baldwin | A one-equation turbulence transport model for high reynolds number wall-bounded flows[END_REF] but also the Spalart-Allmaras model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF].

• Two equation turbulence models, as the so-called k-e model [START_REF] Launder | The numerical computation of turbulent flows[END_REF][START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF] and k-w model [START_REF] Wilcox | Reassessment of the scale-determining equation for advanced turbulence models[END_REF][START_REF] Menter | Zonal two equation kw turbulence models for aerodynamic flows[END_REF].

In this work, the turbulence model chosen to compute the eddy viscosity is the one-equation Spalart-Allmaras (SA) turbulence model. Introduced first by P. Spalart and S. Allmaras in 1992 [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF], this model becomes frequently, especially for aerodynamics flows. It is simpler, less computationally expensive, and more robust than multi-equation models. The SA requires the resolution of a non linear advection-diffusion-reaction equation to represent the evolution of the kinematic eddy viscosity ñ = µ r . That's why, the next section is dedicated to describe the general equation of convectiondiffusion-reaction and present the stabilization method used to solve them.

Convection-Diffusion-Reaction equation

In the past decades, many physical situations have be modeled using the Convection-Diffusion-Reaction (CDR) equations. However, when convective terms are dominated non-physical oscillations in the numerical solutions are observed. In the literature, we can found many papers with different methods proposed to get round the lack of stability of the formulation. Hence,we will present in this section the several stabilized Finite Element approaches that have been proposed to solve the Convection-Diffusion-Reaction (CDR) equations and the ones implemented in our library CimLib.

Problem setting

The general equation of convection-diffusion-reaction over a bounded domain W ⇢ R d at time t 2 [0, T ], where d is the space dimension and ∂ W its boundary, consists in finding a scalar f (x,t) such that:

∂ t f + v • -f | {z } convection -• (k-f ) | {z } diffusion + rf |{z} reaction = f (4.11)
• f : is the variable of interest.

• v : is the convection velocity, assumed to be a divergence-free velocity subject to -• v = 0.

• v • -f : is the convection term (or advection term), defined as the transfer of any information due to the fluid transport. It is a first-order spatial derivatives.

• k : is the diffusivity, a constant coefficient throughout the domain.

• -• (k-f ) : is the diffusion term, defined as the expansion of the information throughout the physical domain of the problem. It is a second-order spatial derivatives.

• r : is the he reaction coefficient.

• rf : is the reaction term that describes the creation (production) or destruction of the information.

Initial and boundary conditions

As for the Navier-Stokes equations, initial and boundary conditions must be set. We have to notify here is that in contrast with Navier-Stokes equations, this one equation is solving one scalar. The initial condition for the problem is prescribed as :

f = f 0 in W ⇥ 0 (4.12)
Where f 0 a scalar field.

Let's denote G D the boundary where Dirichlet conditions are applied and G N where the Neumann ones are applied, such that,

∂ W = G = G D [ G N and G D \ G N = ?.
The Dirichlet boundary condition is specified as:

f = f D on G D ⇥ [0, T ] (4.13) 
Being f D the prescribed scalar. The Neumann boundary condition is defined as:

n • k-f = h N on G N ⇥ [0, T ] (4.14)
With n is the outward normal vector to the surface boundary and h N is the given Neumann boundary condition.

Temporal discretization

The convection-diffusion-reaction is subject to a discretization in time. Using the finite difference family approximations, the equation (4.11) can be approximated as follows:

f n+1 f n Dt + q L f n+1 + (1 q ) (L f n ) = q f n+1 + (1 q ) f n (4.15) 
With L being the convection-diffusion-reaction operator:

L = v • - -• (k-) + r (4.16)
Dt is the time discretization step, n the previous time level subject to n = 0, .., (T /Dt) 1 and T being the simulation time. Here q denotes the parameter of method, taken to be in the interval [0, 1]. It's defining the weightage of the implicit method, so that (q = 1) includes the backward Euler scheme, (q = 0.5) the Crank-Nicolson method and (q = 0) the forward Euler scheme. The forward Euler scheme, called explicit scheme, have a first-order accuracy, i.e. the convergence is proportional to Dt to the power one. This scheme is perhaps the simplest scheme to implement. However, it is liable to CFL (Courant-Friedrich-Levy) condition : Dtv h where Dt being the time step, v the velocity and h the chosen spatial discretization . The CFL-condition may become very restrictive when extremely small time are chosen. For more details, one can refer to [START_REF] Hughes | The finite element method: linear static and dynamic finite element analysis[END_REF]. For the Crank-Nicholson, called Mid-point rule, we aim to retain the advantages of using this scheme because It is the only scheme bearing second-order accuracy. But, the potential occurrence of oscillations during the development of the solution when specially using too large time step. The backward Euler scheme, called implicit scheme, whose parameter lies between 1/2 and 1 become favorite here. This method is also a firstorder scheme. The main feature of this method is its ability to overcome the disadvantage of the time step by the strong damping feature, that it comes into play by choosing q > 1/2. In an effort to cure the oscillations, [START_REF] Heywood | Finite element approximation of the nonstationary navierstokes problem. i. regularity of solutions and second-order error estimates for spatial discretization[END_REF] has proposed to increase a bit q overhead 1/2. However, the second-order accuracy will be lost.

Spatial discretization

Let's define the solution function space:

V f = f 2 H 1 (W)| f = f D on G D (4.17)
and the weighting function space:

W f = y 2 H 1 (W)| y = 0 on G D (4.18)
The variational formulation of the equation (4.11) is found by multiplying it by a test function y and integrating it on W. The problem becomes: Find f h 2 V f so that 8y 2 W f :

(∂ t f , y) + (v • -f , y) + (k-f , -y) + (rf , y) = ( f , y) + (h N , y) G N (4.19)
Where (., .) denotes the inner production in L 2 (W):

(a, b) = Z W ab dW (4.20)
The Galerkin discrete problem of (4.19) consists in finding

f h 2 V h f such that 8y 2 W h f : (∂ t f h , y h ) + (v • -f h , y h ) + (k-f h , -y h ) + (rf h , y h ) = ( f , y h ) + (h N , y h ) G N (4.21)
With V h f and W h f are the finite-dimensional subspaces for the solution function and the weighting function respectively, written as:

V h f = f | f 2 C 0 (W), f h|k 2 P 1 (K), 8K 2 T h (4.22) W h f = n y 2 V h f | y h|k = 0 o (4.23)
This equation being numerically unstable when solving by the Galerkin, a stabilization term has to be added to the variational formulation.

Peclet Number

Named after the physicist Eugène Péclet (1793 1857), the Peclet number is a dimensionless number giving the rate of advection term of a flow to its rate of diffusion:

Pe = vL k (4.24)
Where v is a measure of the convective velocity, L a characteristic length and k the diffusivity. So the flow is assumed to be :

• Convection-dominated: for Pe >> 1.

• Diffusion-dominated: for Pe << 1.

The convection-dominated regime is extremely challenging for computational purposes, because using the standard Galerkin procedure leads to the appearance of a skew matrix which gives rise to numerical instabilities affecting the solution. One way to eliminate these instabilities is to use stabilized finite element approaches and more specifically the Streamline Upwind Petrov-Galerkin (SUPG) method.

Stabilized finite element methods for CDR equation

A great deal of effort has been expanded in recent years on the application of the finite element methods to resolve the Convection-Diffusion-Reaction equations. This development has come an awareness to the fact that with the standard Galerkin finite element method or central-difference type finite difference methods (both are well related) is almost always impossible to achieve satisfactory results for flows at high Peclet or Reynolds numbers. Indeed, artificial node to node oscillations in the numerical solution, named also "wiggles" are generated. One of the reason is the antisymmetry of the coefficients coming from the central-difference approximations.

Other alternatives have been proposed to exclude wiggles, which are the "upwind" methods. One of the important breakthroughs in the area has been the development of these techniques by [START_REF] Christie | Finite element methods for second order differential equations with significant first derivatives[END_REF]. It announced that to reach the upwind effect, the element upstream of a node is weighted more heavily than the element downstream of a node. Besides the fact that Upwind techniques have a first-order accuracy while second-order accuracy is satisfactorily obtained by using the central difference approximations, oscillations are eliminated. Since that, improvements have been constructed by adding artificial diffusion [START_REF] Kelly | A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems[END_REF]. Then, Petrov-Galerkin method [START_REF] Hughes | Theoretical framework for petrov-galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure[END_REF] proposed to modify the weighting function and hence, allow more weight to the node in the upstream direction and reducing the weight in the downstream direction. Some of these methods was designed for the steady state of the equation, but also not taking into account neither the reaction term nor the source term. Moreover, they were developed to the one-dimensional advection-diffusion equation. One can not deny the fact that the previous methods bring a significant improvement for the Galerkin method, however, when it comes to more complicated situations, such that, generalization to multi-dimensions, time dependant or simply adding the reaction or/and the source terms, accuracy of the results severely degraded. In fact, Those methods are limited in the streamline directions, because the added upwinding effects caused excessive crosswind diffusion.

A new stabilized finite element method to well approximate the solution of CDR equations in multi-dimension was proposed in which introduces upwinding of the convection, transient as well as reaction and source terms, named Streamline Upwind Petrov-Galerkin (SUPG) method [START_REF] Brooks | Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations[END_REF][START_REF] Brooks | Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations[END_REF]. The streamline upwind as explained in Hughes [START_REF] Hughes | A multi-dimensioal upwind scheme with no crosswind diffusion[END_REF], is constructed to add artificial diffusion which acts only in the flow direction, eliminating the possibility of any crosswind diffusion. However, it seems that upwind weighting should be done for all the terms of the equation, convection include. And thus, a desired effect will be given through the SUPG technique. Nevertheless, SUPG could not avoid some spurious oscillations known as overshoots and undershoots that occur in the presence of boundary or internal layers where sharp gradients are high. To improve the results, some methods have been proposed with the concept of adding a non-linear term to the SUPG formulation acting in the direction of the solution gradient. These methods are usually referred as discontinuity capturing or shock capturing methods [START_REF] Hughes | A new finite element formulation for computational fluid dynamics: Iii. the generalized streamline operator for multidimensional advective-diffusive systems[END_REF][START_REF] Hughes | A new finite element formulation for computational fluid dynamics: Ii. beyond supg[END_REF][START_REF] Hughes | A new finite element formulation for computational fluid dynamics: Iv. a discontinuity-capturing operator for multidimensional advective-diffusive systems[END_REF][START_REF] Do Carmo | Feed back petrov-galerkin methods for convection dominated problems[END_REF]. Further amelioration appear with the Consistent Approximate Upwind (CAU) methods [START_REF] Galeao | A consistent approximate upwind petrov-galerkin method for convection-dominated problems[END_REF][START_REF] Do Carmo | A new stabilized finite element formulation for scalar convection-diffusion problems: the streamline and approximate upwind/petrov-galerkin method[END_REF] and the Spurious oscillations at layers Diminishing (SOLD) methods [START_REF] John | On discontinuity Ůcapturing methods for convection Ůdiffusion equations[END_REF][START_REF] John | On spurious oscillations at layers diminishing (sold) methods for convection-diffusion equations: Part i-a review[END_REF]. However, few of them have been so far used in the simulation of timedependent. In the literature, one can also find many other methods to optimize the performance of the partial differential equation by adding a production regime, Galerkin/Least-Squares(GLS) appeared in [START_REF] Hughes | A new finite element formulation for computational fluid dynamics: Viii. the galerkin/least-squares method for advective-diffusive equations[END_REF][START_REF] Harari | Galerkin/least-squares finite element methods for the reduced wave equation with non-reflecting boundary conditions in unbounded domains[END_REF] and Gradient Galerkin/Least-Squares(GGLS) [START_REF] Franca | The galerkin gradient least-squares method[END_REF]. The Least-Squares framework was added to the Galerkin formulation and then were naturally extended from steady state to Space-Time Galerkin/Least-Squares (ST-GLS) [START_REF] Shakib | A new finite element formulation for computational fluid dynamics: Ix. fourier analysis of space-time galerkin/least-squares algorithms[END_REF].

For more details about all these methods, one can refer to [START_REF] Codina | Comparison of some finite element methods for solving the diffusion-convectionreaction equation[END_REF]. In the following, we will present the SUPG framework as stabilized finite finite element method used in this work to solve the transient advection-diffusion-reaction equations.

Streamline Upwind Petrov-Galerkin Method

Recall that the time-dependent Convection-Diffusion-Reaction equation is defined as: Find f h 2 V f so that 8y 2 W f :

(∂ t f , y) + (v • -f , y) + (k-f , -y) + (rf , y) = ( f , y) + (h N , y) G N (4.25)
We take into account here the previous discretization in time to the continuous equation (4.15), we apply the backward implicit Euler method to the equation (4.25) and we obtain the followed: Given

f n , find f n+1 2 V f so that 8y 2 W f : f n+1 h Dt , y h ! + v • -f n+1 h , y h + k-f n+1 h , -yh + rf n+1 h , y h = ✓ f n h Dt , y h ◆ + ( f , y h ) + (h N , y h ) G N (4.26)
By adding a streamline upwind perturbation which acts mainly in the flow direction, the expression of the new test function is:

ỹh = y h + tv • -y h (4.27)
Where ỹh is the modified weighting function, y h the original one and tv•-y h the perturbation, with t is a stabilizing parameter that control the amplitude of the added artificial diffusion. (4.27) is inserted into the equation (4.26) and the SUPG method is formulated as follows: 8y 2 W f :

f n+1 h Dt , y h ! + v • -f n+1 h , y h + k-f n+1 h , -y h + rf n+1 h , y h + Â K (Rf h , t K v • -y h ) = ✓ f n h Dt , y h ◆ + ( f , y h ) + (h N , y h ) G N (4.28)
Where Rf h is the residual of the finite element components f h . One can notice that S SUPG (f h , y h ) = 0 if f h is the solution of the continuous equation, and hence, demonstrate the consistency of the stabilized method. The added stabilizing terms are indicated by a subscript K which denotes integration over the element (only added on the element interiors). The value of the parameter t K , called intrinsic time scale, has been also the object of extensive investigations in the literature. The origin expression of this parameter goes back to the concept of adding artificial diffusion to act in the flow direction and to avoid the under diffusivity that appears in the central difference solutions and the over diffusivity generated by upwind methods, and hence, was described in [START_REF] Kelly | A note on upwinding and anisotropic balancing dissipation in finite element approximations to convective diffusion problems[END_REF] as 'anisotropic balancing dissipation'. However, the expression was computed from the simple steady-state one-dimensional model equation:

v df dx k d 2 f dx 2 = 0 (4.29)
With x 2 [0, 1] and the boundary conditions are given. It has been shown in [START_REF] Hughes | A multi-dimensioal upwind scheme with no crosswind diffusion[END_REF] the numerical solution is nodally exact when the intrinsic time parameter is given by:

t = h 2v x (Pe) (4.30) 
Where

x (Pe) = coth (Pe) 1 Pe , Pe := vh 2k (4.31)
Later, several expressions of the stabilization parameters were proposed such as the ones derived from formulations based on the SubGrid Scale method (SGS) [START_REF] Hughes | Multiscale phenomena: Green's functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF]. Introduced in [START_REF] Hughes | Multiscale phenomena: Green's functions, the dirichlet-to-neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods[END_REF], those methods are a class of stabilization techniques that guarantee a good stability for reaction-dominated regime.

In [START_REF] Codina | Comparison of some finite element methods for solving the diffusion-convectionreaction equation[END_REF][START_REF] Codina | On stabilized finite element methods for linear systems of convection-diffusionreaction equations[END_REF] the expression of t was determined by satisfying the Discrete Maximum Principle (DMP):

t cod =  4k h 2 + 2 |v| h + |r| 1 (4.32)
In [START_REF] Shakib | A new finite element formulation for computational fluid dynamics: X. the compressible euler and navier-stokes equations[END_REF], a new similar expression have been proposed with respect of the sign of the reaction terms.

In [START_REF] John | Finite element methods for time-dependent convection Űdiffusion Űreaction equations with small diffusion[END_REF] a stabilized parameter have been proposed to show how stabilization methods designed for steady problem could be adapted for non-stationary problem, since most efforts have been invested to deal with steady problem. The idea consists into combining between the work of Codina [START_REF] Codina | On stabilized finite element methods for linear systems of convection-diffusionreaction equations[END_REF] and Shakib [START_REF] Shakib | A new finite element formulation for computational fluid dynamics: X. the compressible euler and navier-stokes equations[END_REF] and take into consideration the transient term as an extra reaction term and inserting the time step Dt ad follow:

t K = ✓ 2 Dt ◆ 2 + ✓ 2 kvk K h K ◆ 2 + 9 ✓ 4k h 2 K ◆ 2 + r 2 ! 1 2 (4.33)
For more proposed parameters, one can take a look in this reference [START_REF] Narayanan | Variational multiscale stabilized fem formulations for transport equations: stochastic advection Űdiffusion and incompressible stochastic navier Űstokes equations[END_REF].

The Spalart-Allmaras turbulence model (SA)

Recall that, the turbulence model chosen to compute the eddy viscosity is the one-equation Spalart-Allmaras (SA) turbulence model [START_REF] Spalart | A one-equation turbulence model for aerodynamic flows[END_REF]. The latter, represents the evolution of the kinematic eddy viscosity ñ by a a non linear advection-diffusion-reaction equation:

∂ ñ ∂t + v • -ñ c b1 (1 f t2 ) S ñ + h c w1 f w c b1 k 2 f t2 i ✓ ñ d ◆ 2 c b2 s -ñ • -ñ 1 s -• [(n + ñ)-ñ] = 0 (4.34)
The eddy viscosity can then be obtained from µ t = r ñ f v1 , with: In order to improve accuracy and convergence, some modifications may be performed, in particular to avoid the generation of negative viscosity values. There exist in the literature many variations for the SA model, most of which are collected in NASA's turbulence modeling resource webpage [START_REF] Rumsey | Nasa turbulence modeling resource page[END_REF].

f v1 = c 3 c 3 + c 3 v1 , c = ñ n , f v2 = 1 c 1 + c f v1 f t2 = c t3 e c t4 c 2 f w = g  1 + c 6 w3 g 6 + c 6 w3 1 6 , g = r + c w2 (r 6 r), r = ñ Sk 2 d 2 , S = S + ñ k 2 d 2 f v2 , S = p 2e e e ( 
In this work, the Negative Spalart-Allmaras Model is used because of its capability to avoid the generation of negative turbulent viscosity without the use of clipping [START_REF] Allmaras | Modifications and clarifications for the implementation of the spalart-allmaras turbulence model[END_REF]. It consists in replacing (4.34) when ñ is negative by:

∂ ñ ∂t + v • -ñ c b1 (1 c t3 )S ñ c w1 ✓ ñ d ◆ 2 c b2 s -ñ • -ñ 1 s -• [(n + f n ñ)-ñ] = 0, (4.37) 
With f n = (c n1 + c 3 )/(c n1 c 3 ) and c n1 = 16. Moreover, the turbulent eddy viscosity µ t is set to zero when ñ is negative.

A stabilized Finite Element discretization of the Spallart-Allmaras model is proposed in [START_REF] Khurram | Multiscale finite element method applied to the spalart-allmaras turbulence model for 3d detached-eddy simulation[END_REF][START_REF] Sari | Anisotropic adaptive stabilized finite element solver for rans models[END_REF]. Following a similar idea, we recast Equation (4.34) into a convection-diffusion-reaction form, and apply a backward Euler time discretization:

ñn+1 ñn Dt + ⇣ v n+1 c b2 s -ñn+1 ⌘ • -ñn+1 | {z } convection 1 s -• ⇥ (n + ñn+1 )-ñn+1 ⇤ | {z } diffusion  c b1 (1 f n+1 t2 ) Sn+1 + ⇣ c w1 f n+1 w c b1 k 2 f n+1 t2 ⌘ ñn+1 d 2 ñn+1 | {z } reaction = 0, (4.38)
Where ñn stands for the value of ñ at discrete time t n . We recall that the value of the velocity field at time t n+1 is computed before the Spallart-Allmaras equation at the same time step, so the quantities v n+1 , Sn+1 , f n+1 t2 and f n+1 w are explicitly available when solving Equation (4.38). Equation (4.38) is non-linear. Following [START_REF] Khurram | Multiscale finite element method applied to the spalart-allmaras turbulence model for 3d detached-eddy simulation[END_REF], we apply the non-linear root finding algorithm at semi-discrete level, but we chose to work with a simpler Picard-like linearization instead of the Newton method employed in [START_REF] Khurram | Multiscale finite element method applied to the spalart-allmaras turbulence model for 3d detached-eddy simulation[END_REF]. Using the superscript ñn+1,i for the value of ñn+1 at the i-th iteration, an iteration of the non-linear root search reads:

ñn+1,i+1 ñn Dt + ⇣ v n+1 c b2 s -ñn+1,i ⌘ • -ñn+1,i+1 1 s -• ⇥ (n + ñn+1,i )-ñn+1,i+1 ⇤  c b1 (1 f t2 ) Sn+1 + ⇣ c w1 f w c b1 k 2 f t2 ⌘ ñi d 2 ñn+1,i+1 = 0, (4.39)
Equation (4.39) is then discretized in space using a Streamline Upwind Petrov-Galerkin (SUPG) method. The Galerkin formulation is obtained by multiplying (4.39) by appropriate test functions w h 2 W h , applying the divergence theorem to the diffusion terms and integrating by parts. Following the lines in [START_REF] Badia | Analysis of a stabilized finite element approximation of the transient convection-diffusion equation using an ale framework[END_REF] on the use of stabilization methods for transient convection-diffusion-reaction equations, the stabilized weak form of equation (4.39) reads:

✓ ñn+1,i+1 ñn Dt , w h ◆ W + ⇣h v n+1 c b2 s -ñn+1,i i • -ñn+1,i+1 h , w h ⌘ W ✓ 1 s (n + ñi h )-ñn+1,i+1 h , -w h ◆ W " c b1 (1 f n+1 t2 ) Sn+1 h + ⇣ c w1 f n+1 w c b1 k 2 f n+1 t2 ⌘ ñn+1,i h d 2 # ñn+1,i+1 h , w h ! W + Â K ⇣ R( ñn+1,i ), t n+1,i h v n+1 h c b2 s -ñn+1,i h i • -w h ⌘ K = 0, 8w h 2 W h . (4.40)
Where R( ñ) is the finite element residual of (4.39). The stabilization parameter t 3 , is computed within each element as:

t = ✓ c 2 h ka c k K + c 1 h 2 K a d + a r ◆ 1 (4.41)
where a c , a d and a r are respectively the convection, diffusion and reaction coefficients in Equation (4.40), h K is the element size, ka c k K a characteristic norm of the convection term and c 1 = 4, c 2 = 2 for linear elements. The linear system arising from Equation (4.40) is solved using the same numerical method as for the Navier-Stokes equations as described in the previous chapter.

Recall that the coefficient t weights the stabilization terms added to the weak formulations. They are defined for each element K of the triangulation and depend on the local mesh size h K . Many numerical experiments show that good results can be obtained when using the minimum edge length of K [START_REF]On the performance of high aspect ratio elements for incompressible flows[END_REF], while others always use the triangle diameter (see [START_REF] Micheletti | Stabilized finite elements on anisotropic meshes: A priori error estimates for the advection-diffusion and the stokes problems[END_REF] for details).

However, in the case of strongly anisotropic meshes with highly stretched elements, the definition of h K is still an open problem and plays a critical role in the design of the stabilizing coefficients [START_REF] Harari | What are c and h?: inequalities for the analysis and design of finite element methods[END_REF][START_REF] Codina | Stabilization of incompressibility and convection through orthogonal sub-scales in finite element methods[END_REF]. In [START_REF] Förster | Stabilized finite element formulation for incompressible flow on distorted meshes[END_REF], the authors examine deeply the effect of different element length definitions on distorted meshes. In [START_REF] Cangiani | The residual-free-bubble finite element method on anisotropic partitions[END_REF], anisotropic error estimates for the residual free bubble (RFB) method are developed to derive a new choice of the stabilizing parameters suitable for anisotropic partitions. In this work, we adopt the definition proposed in [START_REF] Tezduyar | Finite element stabilization parameters computed from element matrices and vectors[END_REF] to compute h K as the size of K in the direction of the velocity:

h K = 2|v h | S N K i=1 |v h • -j i | (4.42)
Where N K is the number of vertices of K and j 1 , ..., j N K are the usual basis functions of P 1 (K) mapped onto K.

Applications

In this section, we aim to assess the effectiveness of the anisotropic boundary layer mesh framework proposed in chapter 2, as well as the ability of the numerical method described in chapter 3 and this chapter to correctly calculate the aerodynamic characteristics. Therefore, we compare results obtained for 2D classical benchmarks such as the flow around a prismatic cylinder and the NACA 0015 airfoil with data from the literature, and present a more complex application, namely the flow past the 3D geometry of a drone.

Turbulent flow around a square cylinder

We start with an academic test case, the widely benchmarked turbulent flow past a square cylinder [START_REF] Iaccarino | Reynolds averaged simulation of unsteady separated flow[END_REF]. We are looking for correctly predict the main features of the flow oscillations (e.g., mean and fluctuating drag and lift coefficients, vortex-shedding frequency). The cylinder is spanwise infinite with diameter H, so the flow is treated as being 2D. The center of the cylinder is the origin of the domain at (0, 0). The dimensions of the computational domain are The Reynolds number is set to 2.2 ⇥ 10 4 , based on the inlet velocity and the cylinder diameter. The inflow boundary conditions are v = (V in , 0), together with ñ = 3n, which corresponds to a ratio of eddy to kinematic viscosity of ⇠ 0.2 (varying the value of this ratio was found to have little influence on the numerical results). For the outer boundaries, symmetry conditions are imposed parallel to the flow direction as v y = 0, ∂ v x ∂ y = 0 and ∂ ñ ∂ y = 0. For the outflow, Ov.e x = 0, ∂ ñ ∂ x = 0 and p = 0 are prescribed and no slip conditions are imposed at the cylinder surface. Our reference simulation is for a boundary layer mesh comprising of 95, 945 elements, elements, such that, the minimum mesh size to reach is h min ⇡ 10 3 . The latter is shown in Figure 4.2, together with a close-up on the topright corner evidencing the anisotropy and the perfect orientation of the elements with respect to the cylinder surface.

The evolution of drag and lift coefficients for three different time steps Dt = 0.01, Dt = 0.05 and Dt = 0.1 is shown in figure 4.3. After a transient, all three simulations converged to the expected oscillating state [START_REF] Sohankar | Large eddy simulation of flow past a square cylinder: comparison of different subgrid scale models[END_REF].

The evolution of the velocity in the wake of the square cyliner for different increments is reported in Figure 4.4, the time history of the pressure distribution is presented in Figure 4.5 and the turbulent variable ñ in the periodic regime of the flow is depicted in Figure 4.6.

Boundary layer mesh

Zoom on the corner The main features of the oscillations reported in Table 4.1 compare well to 2D RANS numerical data available from the literature. A similar agreement exists with the reference 3D experimental data of [START_REF] Lyn | A laser-doppler velocimetry study of ensembleaveraged characteristics of the turbulent near wake of a square cylinder[END_REF], which suggests that the 2D flow assumption holds true (at least to a first approximation) and assesses the reliability of the retained numerical approach.

NACA0015 airfoil at

Re = 2.5 ⇥ 10 6
We consider the flow around a NACA0015 airfoil [START_REF] Nordanger | Simulation of airflow past a 2d naca0015 airfoil using an isogeometric incompressible navier Űstokes solver with the spalart Űallmaras turbulence model[END_REF], that is a standard benchmark for aerodynamic simulations. The objective of this test case is to demonstrate the capability of the method to simulate turbulent flows at Reynolds numbers typical of aeronautical applications. The boundary layer mesh procedure for the NACA 0015 has already been presented and described in Chapter 2. The geometry of the NACA airfoil is placed in a domain that is 10 chord lengths wide and 50 chord lengths long, which is considered sufficiently large to avoid any influence of the boundaries on the flow in the vicinity of the airfoil. The computational domain is depicted in Figure 4.7.

The Reynolds number based on a fluid density of r = 1.205kg/m 3 , dynamic viscosity µ = 1.8208 ⇥ 10 5 kg/ms, inlet velocity v • = 37.775m/s and the unitary cord length is Re = 2.5 ⇥ 10 6 and the Mach number is Ma = 0.1, thus ensuring the validity of the incompressibility hypothesis. Flat velocity and turbulent viscosity ( ñ = 3n) profiles are imposed at the inlet boundary. Slip conditions are prescribed on the boundaries parallel to the flow as v • n = 0 and s n = 0. On the profile, no-slip boundary conditions for the velocity as well as homogeneous Dirichlet conditions for the SA working variable ñ are imposed. Time marching is performed until the steady-state is reached. The non-dimensional time step is set to Dt = 10 4 .

The upper part of Figure 4.8 reminds the boundary layer mesh that properly well-fit the geometry shape of the airfoil. The final boundary layer mesh is composed of 20 layers such that h min = 10 115533 elements. The bottom part depicts the profile of the velocity and the pressure for the initial configuration of the NACA. The obtained velocity profile for different angles of attack is illustrated in Figure 4.9. As the angle increases to a = 6 and then a = 12 , the lowest part of the airfoil is more and more exposed to the heating of the flow and the latter becomes asymmetric. Figure 4.9 represents also the turbulent eddy viscosity ñ once the steady state is reached. We can clearly notice that the turbulence model has been activated in specific zones and thus the effect of the averaging is well reflected. The validity of coupling the VMS solver to the Spalart Allmaras model is well-confirmed.

As the configuration of the airfoil rotated and took higher angles of attack, the aerodynamic coefficients increase as well as reported in Table 4.2. The drag and lift coefficients seems to be in good accordance with the values obtained in the reference [START_REF] Nordanger | Simulation of airflow past a 2d naca0015 airfoil using an isogeometric incompressible navier Űstokes solver with the spalart Űallmaras turbulence model[END_REF], though few differences. These differences might be due to the fact that the mesh framework is different or may be to the discretization in time.

Analysis of turbulent flow past a drone

This last case is about a 3D flying drone with buchled wing, for which we seek to reproduce experimental results obtained for several angles of attack. The experimental setup is depicted in Figure 4.10. The model has a span of 300 mm and a total length of 300 mm. The inlet velocity is set to 13.5 m/s, yielding a span-based Reynolds number of Re = 2 ⇥ 10 6 .

The model is placed in a computational domain of length 3m and width 1m, with Figure 4.11 giving a general view of the constructed mesh. The boundary layer mesh is generated around the The obtained mesh is composed of 1,000,000 elements made of 20 layers with h m in = 0.01. The CPU time needed to perform that process is 9 hours using 12 cores. Once again, the ability of the proposed procedure is well highlighted in Figure 4.12 by capturing with high fidelity all the details of the drone for angles of attack equal to 0 and 60 . Results obtained for the drag are presented in Figure 4.13. The agreement between the numerical and the experimental results is satisfying despite the discrepancies between the experimental setup and the numerical simulations. In particular, the surface roughness of the model obtained by additive manufacturing may be the cause of the higher drag, due to the increased turbulent skin friction.

In 

conclusion

In this chapter, we have described different approaches for the numerical resolution of turbulent fluid flows. the classical turbulence models used in the literature are described. More specifically, the Reynolds Averaged Navier-Stokes (RANS) with the Spalart Allmaras turbulence model as closure scheme has been adopted in this work. Then, different stabilization techniques were discussed and analyzed to enhance the stability of the standard Galerkin formulation. The Streamline Upwind Petrov-Galerkin (SUPG) method was applied to deal with convection dominated convectiondiffusion-reaction problems. This method eliminates the non-physical oscillations appearing in the solution to deal with the convection problems. The performance and the efficiency of the overall benchmark starting from the anisotropic boundary layer mesh procedure coupled to the VMS Navier-Stokes and the RANS/Spalart Allmaras have been demonstrated on 2D and 3D benchmarks.

Introduction

Classical airship design require a large hull equipped with more than one ballonet to keep the control of the buoyancy, the pitch angle and intern pressure. As depicted in Figure 5.1, ballonets are bags filled with air, surrounded by a lifting gas and employed to maintain a fixed pressure inside the hull as the airship altitude changes. However, the movement of these gases in the airship may cause the well-known ballonet slosh and free surface instability, which could be a disaster for the stability of the engine. Thus, the design of the ballonets and their emplacement inside the hull is very important to be studied. In the literature, experimental tests [START_REF] Nakadate | Development and flight test of spf-2 low altitude stationary flight test vehicle[END_REF][START_REF] Delaurier | Influence of ballonet motions on the longitudinal stability of tethered aerostats[END_REF] and theoretical models [START_REF] Mueller | Optimal ascent trajectories for stratospheric airships using wind energy[END_REF][START_REF] Zi-Li | Dynamic modeling for airship equipped with ballonets and ballast[END_REF] have been conducted to analyze the effect of ballonet sloshing on the dynamics characteristics of an airship. And this was realized by measuring the variation of ballonet volume and the hull internal pressure at different altitudes for various pitch angles depending on the type of the airhips. An equivalent mechanical model of sloshing has been proposed [START_REF] Abramson | The dynamic behavior of liquids in moving containers, with applications to space vehicle technology[END_REF][START_REF] Kareem | Stochastic response of structures with fluid-containing appendages[END_REF][START_REF] Ibrahim | Recent advances in liquid sloshing dynamics[END_REF], that model the ballonet as a container fulled of multiple mass-spring-damper system, giving a natural frequency. In the work of Maekawa and Saito [START_REF] Maekawa | The effect of ballonet slosh on an airshipŠs longitudinal motion[END_REF], this model was adopted to show its effect on the airship longitudinal motion. In [START_REF] Wang | Effect of ballonet sloshing on the stability characteristics of an airship[END_REF] Volume Of Fluid (VOF) model is used to investigate on how far the ballonet sloshing can effect the airship stability characteristcs under some conditions such as the ballonet number or the volume ratios of the helium. In the last few years, with the advancement of modern techniques, automatic control, Computational Fluid Dynamics (CDF) and the desire to constantly optimize the design, unconventional interior configuration of the lighter-than-air vehicles appear and has been considered, in order to limit the sloshing effect and free surface instability due to the influence of ballonets. For the new airship Stratobus, as being a stratosphere dirigible flying at an altitude of 20 km, the flight will be most of the time at pressure height. Therefore, Stratobus is designed with a single ballonet configuration without controlling of the limitations cited above. Figure 5.2 presents the ascension of the airship to the stratosphere: it will take-off with 15% of volume filled with a bubble of helium (He) as a lifting gas and 85% of air in a ballonet. The helium bubble will move toward the nose of the airship, helping the latter to rotate from horizontal to vertical position. Meanwhile, exhaust valves release air, which permits the control of the ascension. The air ballonet is depleted progressively and airship is almost all filled with helium. And hence, natural rotation to horizontal position starts to occur thanks to gondola pendulum effect. In the previous chapters, we have described all the different numerical methods needed to establish the numerical wind channel, used to analyze the aerodynamic performance of the airship. This framework is extended to deal with a multidomain approach to handle multiphase. The latter can be divided into several compartment as shown in Figure 5.2; The outside and the inside the hull of the airship, are separated by an envelope explicitly represented as a non-deformable body. The external part is made of the atmosphere air. the internal one is also decomposed into the helium bubble, tracked with a levelset function and surrounded with the air. Therefore, the main objective of this chapter is to present numerical method for modeling such interaction between the different phases of the flow, named the Immersed Volume Method (IVM).

Eulerian framework

The Fluid-Structure Interaction problem is one of the most active areas of research in numerical simulation in the coming years. The immediate and potential applications include the vast majority of industrial, social and environmental domains. The simulation of Fluid-Structure Interaction is made possible by the considerable progress of computer and technological resources but also by the maturity of the numerical methods for the study of complex physical systems involving laminar or turbulent fluids and rigid or flexible structures. There is a significant number of applications within this theme, particularly in the fields of civil engineering (bridges, towers), medicine (blood flow in the arteries) or aeronautics (flow around airships). In practice, different calculation codes are used to model this interaction. These codes are classified into two main approaches: partitioned and monolithic approaches. The principle of the partitioned ones is to subdivide the global problem into smaller subsystems and consider specific solver for each one. The difficulties may appear when information are exchanged from one code to another. In order to enforce the coupling between the two schemes, weakly or strongly coupled versions may be used. With the first approach, a single solution is computed at each time step, and hence, the coupling boundary conditions is not satisfied. One remedy is to solve the problem iteratively [START_REF] Gerbeau | A quasi-newton algorithm based on a reduced model for fluidstructure interaction problems in blood flows[END_REF][START_REF] Fernández | A newton method using exact jacobians for solving fluid-structure coupling[END_REF][START_REF] Tallec | Fluid structure interaction with large structural displacements[END_REF][START_REF] Gerbeau | Fluid-structure interaction in blood flows on geometries based on medical imaging[END_REF][START_REF] Mok | Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures[END_REF][START_REF] Wall | Partitioned analysis approach of the transient coupled response of viscous fluids and flexible structures[END_REF]. In spite of the accuracy and efficiency of the latter approach, instabilities appear depending in the ration of the densities and the geometry of the domain [START_REF] Causin | Added-mass effect in the design of partitioned algorithms for fluid-structure problems[END_REF]. As an alternative, monolithic approach consists of considering one set of equations for both the fluid and the object and to solve it with an Eulerian framework, i, e. with a fixed mesh in space. The continuity at the interface is then recovered naturally and there is no need to enforce it. In the literature, various methods have been proposed for multi-fluid flows or FSI applications, such that: the extended finite element methods (X-FEM) [START_REF] Sukumar | Extended finite element method for three-dimensional crack modelling[END_REF], the Immersed Boundary methods [START_REF] Peskin | The immersed boundary method[END_REF], the fictitious domain [START_REF] Glowinski | A distributed lagrange multiplier/fictitious domain method for particulate flows[END_REF][START_REF] Glowinski | A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow[END_REF] or also the ghost method [START_REF] Fedkiw | A non-oscillatory eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[END_REF] etc. In this work, we aim to retain the features of the monolithic approaches combined to the anisotropic mesh adaptation to keep the precision and accuracy of the interface. The Immersed Volume Method (IVM) was developed and applied in this context [START_REF] Bruchon | Using a signed distance function for the simulation of metal forming processes: Formulation of the contact condition and mesh adaptation. from a lagrangian approach to an eulerian approach[END_REF][START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF][START_REF] Valette | A direct 3d numerical simulation code for extrusion and mixing processes[END_REF]. The method is based on three principles: the use of the levelset approach to localize the interfaces between the different phases, the anisotropic mesh adaptation to well capture this interface and finally mixing laws are adopted to distribute the physical properties for each subdomains.

The level set framework 5.2.1.1 Principle of the method

The basic idea of the method consists into implicitly tracking the interface by a signed distance function called the levelset function. Firstly introduced by Sethian during his PhD on propagating flames in 1982 [START_REF] Sethian | An analysis of flame propagation[END_REF] and then generalized in 1988 with S. Osher [START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations[END_REF], this method has been widely used for diverse applications: multiphase flows [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF][START_REF] Hachem | Unified adaptive variational multiscale method for two phase compressible-incompressible flows[END_REF][START_REF] Hachem | High fidelity anisotropic adaptive fem towards physical couplings occurring in turbulent boiling[END_REF], Fluide-Structure interaction [5,[START_REF] Cottet | A semi-implicit level set method for multiphase flows and fluidstructure interaction problems[END_REF], Image segmentation [START_REF] Li | Distance regularized level set evolution and its application to image segmentation[END_REF] or also Electromagnetic applications [START_REF] Marioni | Modélisation numerique et couplage électromagnétique-CFD dans les procédés decoulée[END_REF]. In other terms, as sketched in Figure 5.3 a signed distance function of an interface G, which decomposed the whole domain W into two-subdomains W 1 and W 2 such that W = W 1 [ W 2 , is used to localize the interface of the immersed body W 1 at any point x of the computational domain as follows:

a(x) = 8 < : d(x, G) if x 2 W 2 0 if x 2 G d(x, G) if x 2 W 1 (5.1)
Where d(x, G) is the minimum distance between the immersed geometry and the nodes of the computational mesh, such that:

d(x, G) = min x p 2G (|x x p |) (5.2) 
The distance function, has by definition the following property:

|-a| = 1 (5.3)
One advantage of the levelset function that it gives access to some desirable properties of the geometry such as the unit outward normal vector to the interface:

n = -a |-a| (5.4) 
And the curvature:

k = -• n = -• ✓ -a |-a| ◆ (5.5)
The motion of the levelset function is governed by the advection equation, as it is advected by the velocity v :

Da Dt = ∂ a ∂t + v • -a = 0 (5.6)
However, the property of the levelset 5.3 is not conserved when the interface is advected by the equation 5.6. Consequently, Non-physical problems in the resolution appear due to the large values of the gradient of the solution -a, which affects also the smoothed Heaviside and Dirac functions. One remedy to this is to re-initialize the levelset by solving the following Hamilton-Jacobi [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF]:

⇢ ∂ b ∂ t + s (|-b | 1) = 0 b (t = 0, x) = a (t, x) (5.7)
Where t is an artificial time step, b the levelset function under the re-initialization process and s is the sign function of the levelset. At each time step t, the re-initialization equation is solved and level set a is updated as a distance function; the zero isovalue of the re-initialized function and the non-reinitialized one are synchronized. Therefore, the physical problem is still maintained.

Convected level set

The re-initialization with the Hamilton-Jacobi gives good results, however it necessitates an important computational cost. As proposed in [START_REF] Coupez | Convection of local level set function for moving surfaces and interfaces in forming flow[END_REF] one solution is to combine the convection equation 5.6 and the Hamilton-Jacobi probelm 5.7 and to resolve one equation. The idea is firstly to write the physical time t and the artificial time t under one relation given by:

∂ a ∂ t = ∂ a ∂t ∂t ∂ t (5.8) 
The equation 5.7 can be re-written in the physical time step:

∂ a ∂t + l s (|-a| 1) = 0 (5.9)
Where l is parameter equal to:

l = ∂ t ∂t (5.10)
However, the advection equation needs to be solved in the physical time space. To do that, as explained in [START_REF] Marioni | Modélisation numerique et couplage électromagnétique-CFD dans les procédés decoulée[END_REF] the re-initilaization equation has to be written in advection equation shape:

∂ b ∂ t + s ✓ -b |-b | • -b 1 ◆ = 0 (5.11) ∂ b ∂ t +V • -b = s (5.12)
Where V is the re-initialization velocity defined as:

V = s -b |-b | (5.13)
As b is a distance function so the property |-b | = 1 is assured. Consequently |V | = 1. Furthermore, it is more accurate to write the virtual time step as the CFL condition required:

Dt = h |V | = h (5.14)
Consequently, the parameter l may be expressed as the ratio between the mesh size and the physical time step as follows:

l = h Dt (5.15)
Finally, the advection equation combined to the re-initialization equation becomes:

∂ a ∂t + v • -a = l s (|-a| 1) = 0 (5.16)
The use of the signed distance function as it is seems to be the most straightforward way to model the distribution of the material parameters. However, it generates various numerical problems, related specially to the continuity of the function. In fact, the eulerian signed distance function needs to be C • to well-compute the appropriate gradient for the proprieties 5.4 and 5.5, which requires high derivatives of the function. One way to enhance that is to filter the level set function. Numerous filters have been studied in the literature and the reader is referred to [START_REF] Marioni | Modélisation numerique et couplage électromagnétique-CFD dans les procédés decoulée[END_REF], where a comparison of the different filters have been established. In this work, we will use the filter, named the hyperbolic tangent filter that consists into defining a thickness of truncation E, where the filtered level set ã is expressed as:

ã = E tanh ⇣ a E ⌘ (5.17) 
The filtered level set satisfies the following property:

|-ã| = 1 ✓ ã E ◆ 2 (5.18) 
The convection re-initialization equation for the filtered function can be written:

∂ ã ∂t + v • -ã = l s |-ã| ✓ ã E ◆ 2 ! (5.19)
For the sake of simplicity, a will refereed to the filtered function from hereon.

Stabilization method for the convected level set

Let 0 s denote by V = v + l s -f |-ã| the convective velocity and by S = l s

⇣ 1 a E 2 ⌘
the term source and we re-write the equation above in a more straightforward shape as :

∂ a ∂t + v • -a = S (5.20) 
The variational formulation of the problem is:

✓ ∂ a ∂t +V.-a, w ◆ W = (S, w) W (5.21) 
We choose here the SUPG stabilized method described in the previous chapters, that consists in adding a weighted term to each element of the domain as follows:

wh = w h + t SUPG V • -w h (5.22)
By introducing the stabilization term, the problem becomes:

✓ ∂ a h ∂t +V.-a h , w h ◆ W h + Â K t SUPG ✓ ∂ a h ∂t +V.-a h S,V • -w h ◆ K = (S, w h ) W h (5.23)

Mesh adaptation

In the previous chapter, we have highlighted the importance of using anisotropic mesh adaptation that generates highly stretched and well oriented elements specially in zones where gradients of solutions are significant as the boundary layers. The difference in this part, the grid is not anymore body-fitted and the physical problem requires a special treatment. In fact, the modeling of the multiphase flows is based on the non-uniformity of the material properties across the interface. This discontinuity may give rise to a non-alignment of the interface with the element edges, and thus, numerical solution is polluted by nonphysical oscillations. Consequently, a locally mesh refinement around the moving interface is needed to sharply capture it and to well-distribute the material parameters. The idea is to couple the level set approach with anisotropic mesh adaptation [START_REF] Coupez | Grandes transformations et remaillage automatique[END_REF][START_REF] Coupez | Convection of local level set function for moving surfaces and interfaces in forming flow[END_REF][START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF]. To do that, a symmetric positive definite matrix, called metric tensor, need to be constructed that assign optimal mesh sizes and elements orientations under the constraint of a fixed number of nodes, and then, given to the MTC mesher to generate the desired mesh as shown in Figure 5.4. The principle is based on the edge length distribution tensor that assembles information from all the edges at the node and the associate edge based error computed along the edge and then minimized.

Edge-based error estimator

Let 0 s consider v 2 C 2 (W) = V the exact solution of the Partial Differential Equations and v h the approximated solution that belongs to V h a simple P 1 finite element approximation space:

V h = w h 2 C 0 (W), w h|K 2 P 1 (K), K 2 K (5.24)
We denote the set of nodes in the mesh as:

X = n X i 2 R d , i = 1, ..., N o (5.25) 
And by V i the nodal value of v at X i , such that, v(X i ) = V i . The set of nodes connected to nodes X i is defined as:

G(i) = j, 9K 2 K , X i , X j are nodes of K (5.26)
As shown in Figure 5.5, for a generic node X i , we have:

8 j 2 G(i) X i j = X i X j and V i j = V i V j (5.27) 
Let 0 s consider P h the interpolation operator from V to V h

P h v(X i ) = v(X i ) = V i , 8i = 1, ..., N (5.28) 
The aim is to generate a mesh that minimizes the approximation error kv v h k. According to the Lemma of Cea [START_REF] Céa | Approximation variationnelle des problèmes aux limites[END_REF] the approximation error is bounded by the interpolation error:

kv v h k  C kv P h vk (5.29) 
Figure 5.4: From top to bottom the mesh is getting refined in all the domain for the same number of elements. Anisotropic mesh adaptation of the infinity symbol (Left). Zoom at the interface (Right)

X j V j X i V i X i j V i j x y z Figure 5.5: Edge X i j joining nodes X i and X j .
With C is a constant. Let 0 s consider the Taylor series expansion about the node X i :

V j = V i + -v h|K • X i j
(5.30)

Which imply:

-v h|K • X i j = V i j (5.31)
The interpolated solution v h is defined in the nodes (P 1 ). The gradient of v h is constant by elements (P 0 ) and discontinuous from one element to another. However, its projection onto the edges is continuous since it depends on the nodal values at the extremities of the edges. Consequently, the interpolation error along the edges is of second order for P 1 elements, as proved in [START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF]. In fact, the latter showed that: The error in the projected gradients of the exact and interpolated solutions is bounded by the hessian of the solution:

-v h • X i j | {z } V i j -v(X i ) • X i j  max Y 2[X i ,X j ] H(v)(Y )X i j • X i j (5.32)
Where H(v)(Y ) = - (2) v(Y ) is the associated Hessian of u evaluated at a generic point Y . A Taylor series development of the gradient of v leads to:

-v(X j ) = -v(X i ) + H(v)(X i )X i j (5.33) 
We denote by g i j = -v(X j ) -v(X i ) the variation of the gradient along the edge X i j . Th projection of 5.33 onto X i j can be interpretaed as an evolution of a second order interpolation error along the edge. Hence, we obtain:

e i j = g i j • X i j = H(v)X i j • X i j (5.34)
We aim to retain the advantages of using linear approximations (P1 finite elements), however the equation above requires the knowledge of the nodal gradient values of v . To overcome this difficulty, a recovery gradient approach is adopted. In the literate, a recovery approach based on several methods were proposed, such that the projection methods [START_REF] Zienkiewicz | The superconvergent patch recovery and a posteriori error estimates. part 1: The recovery technique[END_REF], the polynomial preserving techniques [START_REF] Zhang | A new finite element gradient recovery method: superconvergence property[END_REF] or also the variational methods [START_REF] Alauzet | High-order sonic boom modeling based on adaptive methods[END_REF] . the gradient reconstruction proposed here is based on a least squares approximation of -v h along the edges of the mesh [START_REF] Picasso | A numerical study of some hessian recovery techniques on isotropic and anisotropic meshes[END_REF]. The principle is that for each node X i , we seek G i 2 R d the proposed gradient reconstruction of v satisfying:

G i = argmin G2R d  j2G(i) (G -v h ) • X i j 2 = argmin G2R d  j2G(i) gX i j V i j 2 (5.35)
By deriving 5.35 to zero we obtain the minimum as follow:

 j2G(i) G i X i j V i j X i j = 0 (5.36)
Which is equivalent to:

G i  j2G(i) X i j ⌦ X i j =  j2G(i) V i j X i j (5.37)
By substituting the recovered gradient G to g in the equation 5.34, the error estimation along the edge X i j is given:

e i j = G i j • X i j = H(v)X i j • X i j (5.38)

Edge length distribution tensor

The proposed mesh adaptation method allows the creation of meshes with extremely stretched elements. To illustrate the stretching of the elements, the idea is to modify the length distribution tensor as follows:

X i = 1 |G(i)| Â j2G(i)
s i j X i j ⌦ s i j X i j (5.39)

We have also:

e V i j = s i j -v(X i ) • X i j + 1 2 s 2 i j H(v)X i j • X i j (5.40)
Where s i j is the stretching factor associated to the edge X i j that modify the direction of the edge. The expression of this factor is fundamental for the construction of the metric tensor and in [START_REF] Feghali | Novel monolithic stabilized finite element method for fluid-structure interaction[END_REF] it was obtained in a way to minimize the interpolation error by equi-distribute it under the constraint of a fixed number of nodes. Consequently, the error could be written as a quadratic function of the stretching factor s i j ::

e e i j = e G i j • e X i j  s 2 i j H(u)X i j • X i j = s 2 i j • e i j (5.41) 
Hence, the associated metric tensor that intends to minimize the interpolation error estimates by equi-distributing a uniform error over the mesh under a fixed number of nodes given by the theorem proposed in [START_REF] Jannoun | Adaptation anisotrope précise en espace et temps et méthodes dŠéléments finis stabilisées pour la résolution de problèmes de mécanique des fluides instationnaires[END_REF] is defined as:

M i = 1 d (X ) 1 = 1 d 1 |G(i)| Â j2G(i) s 2 i j X i j ⌦ X i j ! 1 (5.42) 
The number of nodes generated from the expression above and in the direction of the edge X i j is given by:

n i j = s 1 i j = ✓ e e i j e i j ◆ 1 2 (5.43) 
In [START_REF] Jannoun | Adaptation anisotrope précise en espace et temps et méthodes dŠéléments finis stabilisées pour la résolution de problèmes de mécanique des fluides instationnaires[END_REF], the node distribution tensor is defined in a least squares sense:

N i = 1 d X i 1 Â j2G(i) n i j X i j ⌦ X i j ! (5.44)

Dynamic mesh adaptation

In the previous sections, we have explained how a metric filed driving the mesh adaptation can be derived from an edge-based error estimator under the constraint of a constant number of nodes. Nevertheless, this chapter is dedicated to the solution of multiphase flows and fluid-structure interaction problems, which involve several unknowns, such as the velocity field v and the levelset field a. A way to adapt a mesh according to several variables is to compute the metrics to each variable and then produce a unique one by intersection of metrics [START_REF] Alauzet | Estimateur d'erreur géométrique et métriques anisotropes pour l'adaptation de maillage. Partie I: aspects théoriques[END_REF]. The resulting metric should yield the largest mesh size in any direction that still fulfills the size constraint given by all the metrics. The intersection operation between several metric fields is not uniquely defined. The most common technique, consisting of a sequence of simultaneous reductions of two metrics, does not provide the optimal metric, is not commutative and incurs a relatively high computational cost. Robust techniques, based on the optimization problems, are even more costly. In this work, we simplify this operation by using one field that accounts for different variables. The basic idea is to construct a unique metric directly using a multi-component error vector containing, for instance, all the components of the velocity field, and the levelset. Hence, we do not need to intersect several metrics. In two dimensions the vector of error sources can be locally defined as:

Y (x i ) = v i x kv i k , v i y kv i k , v i max j kv j k , ã ãmax ! (5.45)
The field used as input for the error estimator previously is the norm

 k Y 2 k 1 2
of Y , with Y k the components of Y . This definition measures the error in the norm as well as in the direction of the velocity vector v. Because all fields are normalized (the velocity components v x , v y and v z by the local velocity norm, the velocity norm kvk and he filtered level set function ã by their respective global maximum), a field that is much larger in absolute value does not dominate the error estimator, and the variations of all variables are fairly taken into account.

Mixing laws

To well distribute the different material properties on both side of the immersed interface, a heaviside function is given for each subdomain as:

H(a) = ( 1 if a(x) > 0 0 if a(x) < 0 (5.46)
However, numerical instabilities appear due to the sharp discontinuities across the interface. This is can be avoided by smoothing the jump of material properties along the interface. The idea is to attribute a thin thickness e to the interface equivalent to the mesh size in the normal direction to the interface such that e = O(h). The expression of the Heaviside function becomes:

H(a) = 8 > > > < > > > : 1 if a(x) > e, 1 2 ✓ 1 + a e + 1 p sin ⇣ pa e ⌘ ◆ if |a(x)|  e, 0 if a(x) < e, (5.47) 
Note that the mesh size can be computed in the vicinity of the interface as follows:

h = max j,l2K -a • X jl (5.48) 
Where K is the mesh element and X jl = X l X j . The physical properties can now be calculated in function of the Heaviside:

x i = H(a)x 1i + (1 H(a)) x 2i (5.49)
With x i is the i th parameter. For example, let 0 s denote by r 1 and r 2 the densities in the solid and the fluid respectively. Thus, as shown in Figure 5.6 the density r in the whole domain can be calculated as follows:

r = H(a)r 1 + (1 H(a))r 2 (5.50)

Implicit surface tension

In this section, we will briefly detailed the mathematical model presented in [START_REF] Khalloufi | High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension[END_REF][START_REF] Khalloufi | Multiphase flows with phase change and boiling in quenching processes[END_REF] used to deal with multiphase flows with a surface tension. The idea obey to the main objective of the monolithic formulation, which is expressing the whole problem in one and unique system. Therefore, a new adaptive Variational MultiScale (VMS) method is extended to hold a semi-implicit surface tension in order to overcome the the difficulty of choosing the appropriate time-step. The surface tension as given in [START_REF] Khalloufi | Multiphase flows with phase change and boiling in quenching processes[END_REF] is treated a source term in the Navier-Stokes equations and can be written as:

f ST = gkd (G)n (5.51)
Where g the surface tension coefficient and d (G) is a Dirac function. Let 0 s remind that n = -f |-f | the normal to the interface G and k = -• n the mean curvature. Thus, the expression of surface tension can be re-written in function of the level set function as follows:

f ST = gd e (a)  -• ✓ -a |-a| ◆ -a (5.52) 
With d e is a smoothed Dirac function expressed in [START_REF] Van Der Pijl | A mass-conserving level-set method for modelling of multi-phase flows[END_REF] as: The expression of the surface Laplacian of an identity mapping in function of the normal and curvature, was formulated in [START_REF] Buscaglia | Variational formulations for surface tension, capillarity and wetting[END_REF] as follows:

d e = ( 1 
D s I G = -s • -s I G = kn (5.54)
The evolution of the position of the interface in time according to [START_REF] Hysing | A new implicit surface tension implementation for interfacial flows[END_REF]:

I n+1 G = I n G + v n+1 Dt (5.55)
Here n denotes the previous time level and n + 1 the actual one. The author in [START_REF] Hysing | A new implicit surface tension implementation for interfacial flows[END_REF] used a Laplace-Beltrami operator to obtain semi-implicit implementation of the surface tension derived from the CSF method. Thus, the variational formulation of the surface tension is reformulated in its semi-implicit form :

D s I n+1 G = D s I n G + DtD s v n+1 (5.56) (kn) n+1 = (kn) n + Dt D s v n+1
(5.57)

The equation 5.57 is multiplied by g and for simplicity kn will be used to refer to (kn) n : g (kn) n+1 = gkn + gDt D s v n+1 (5.58)

In order to remove the stiffness caused by the surface diffusion, the Laplace-Beltrami operator has been written as function of a standard Laplacian [START_REF] Xu | An eulerian formulation for solving partial differential equations along a moving interface[END_REF]:

D s v = D 2 s v = D 2 v ∂ 2 v ∂ n 2 k ∂ v ∂ n (5.59) With ∂ v ∂ n = -v • n.
Finally, the expression of the surface tension force is written as follows:

f ST = gkd (a)n gd (a)Dt ✓ ∂ 2 v ∂ n 2 + k ∂ v ∂ n -2 v n+1 ◆ (5.60)
In order to circumvent the non-physical instabilities when dealing with multiphase flows due to the discontinuity of the material properties across the interface, the loss of mass or not respect of the capillary wave condition, the time step should be restrained to:

Dt < (Dx) 3 2 s r 2pg
(5.61)

Explicit representation of the envelope as non-deformable body

In this section, the monolithic approach adopted here is based on the work of S. Feghali in [START_REF] Feghali | Novel monolithic stabilized finite element method for fluid-structure interaction[END_REF], written in a fully Eulerian scheme. The difference with the framework described in the previous section is the external structure of Stratobus will be considered as a non-deformable body, so there is no need to solve the advection levelset equation. Instead, the rigid body motion, is used to define the new position of the structure in the domain. The rigid body is prescribed under the constraint of imposing the nullity of the strain tensor in the Navier-Stokes equations, and its movement is achieved by solving the rigid body motion.

Rigid body motion

A body is considered rigid, when the deformation is zero or so small that it can be neglected; i, e. the distance between all the particles of which it is composed, remains constant, even when the position of the body changes. The rigid body motion can be decomposed into translational and rotational components and the velocity field within the particle at each point is given as : The rigid body motion is presented by : V (X,t) = U + w ^X (5.62)

Where X is the position vector, U and w are respectively the translational and angular velocities of the rigid body. The optimal U and w would be calculated from the velocity field V computed from the Navier-Stokes equations, at each point x, by minimizing:

j(U, w) = Z W s | U + w ^X V | 2 dx
The minimum is achieved by setting the derivative of j to zero as follows:

∂ j(U, w) ∂U = 0 ∂ j(U, w) ∂ w = 0 (5.63)
Consequently, to reach the concerning velocities of the solid, a matrix formulation of the system has to be solved and written for 2d cases like this:

0 B B B B @  i N i 0  i N i y i 0  i N i  i N i x i  i N i y i  i N i x i  i N i (x 2 i + y 2 i ) 1 C C C C A 0 B B B @ U x U y w 1 C C C A = 0 B B B B @  i N i V x i  i N i V y i  i N i (V y i x i V x i y i ) 1 C C C C A
The matrix formulation of the system to be solved for 3D cases reaches:

0 B B B B B B B B B B B B B B @  i N i 0 0 0  i N i z i  i N i y i 0  i N i 0  i N i z i 0  i N i x i 0 0  i N i  i N i y i  i N i x i 0 0  i N i z i  i N i y i  i N i (y 2 i + z 2 i )  i N i x i y i  i N i x i z i  i N i z i 0  i N i x i  i N i x i y i  i N i (x 2 i + z 2 i )  i N i y i z i  i N i y i  i N i x i 0  i N i x i z i  i N i y i z i  i N i (x 2 i + y 2 i ) 1 C C C C C C C C C C C C C C A 0 B B B B B B B B B B B B B B @ U x U y U z w x w y w z 1 C C C C C C C C C C C C C C A = 0 B B B B B B B B B B B B B B @  i N i V x i  i N i V y i  i N i V z i  i N i (V y i z i V z i y i )  i N i (V z i x i V x i z i )  i N i (V x i y i V y i x i ) 1 C C C C C C C C C C C C C C A
Being N i the Gauss points.

Once U and w are determined, the new position X n of the structure is calculated in function of the old one X 0 :

X n = X 0 + Dt U + w ^X0 (5.64)

Multiphase domain for the airship Stratobus

As stated previously, one of the objective of this work is to model the take-off of the lighter-than-air Stratobus. The later is filled with 15% of helium and the rest with air. Hence, the main objective of this chapter is to provide a full Eulerian numerical framework to simulate a multiphase domain for the airship Stratobus. As depicted in Figure 5.7, the coupling between the subdomains is ensured using either the rigid body motion to explicitly represents the envelope, which splits the outside and the inside the hull of the airship, or using the levelset function to track the interface between the helium bubble and the air inside the balloon. In addition, a dynamic fluid-mesh is resolved, which permitted a sharp capture of the interfaces and an accurate material distribution over the different subdomains.

In the next section, we will present 2D benchmarks to test the numerical two fluid flows represented by the levelset method and will be combined with the rigid body motion framework in the upcoming chapter. 

Applications

In order to validate the proposed methods for multiphase flows with a surface tension are presented in this section. The results obtained are the compared with solutions found in the literature.

2D rising bubble

The 2D rising bubble is a classical benchmark for multiphase flows and it has been widely studied in the literature [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF][START_REF] Hysing | Quantitative benchmark computations of two-dimensional bubble dynamics[END_REF][START_REF] Jacqmin | Calculation of two-phase navier-stokes flows using phase-field modeling[END_REF][START_REF] Khalloufi | High fidelity anisotropic adaptive variational multiscale method for multiphase flows with surface tension[END_REF]. We present the 2D rising bubble benchmark proposed in [5]. A circular bubble of radius r = 0.25 and center (0.5, 0.5) located in a computational domain W = (0, 1) ⇥ (0, 2) is considered. We denote by W 1 the domain inside the bubble and W 2 the domain outside. The considered test case has been sketched in And the E ötv ös number, that measures the ratio of gravitational forces to the surface tension:

E o = r 2 |g| D 2 g
(5.66)

Where g = (0, 0.98) the gravitational forces, D the diameter of the bubble and g the surface tension.

To quantify the temporal evolution of the bubbles, the following benchmark quantities are defined:

• The position of the center of mass of the bubble:

X c = R W 1 x dx R W 1 1 dx (5.67)
• The velocity of the center of mass of the bubble:

U c = R W 1 v dx R W 1 1 dx (5.68)
• The circularity: C = Perimeter of area-equivalent circle Perimetr of bubble (5.69)

The main problem parameters used in the simulation have been reported in table 5.1. The predicted time-evolving bubble interface in Figure 5.9 plotted for the first simulation, is compared to the results obtained in [5]. The density ratio and viscosity ratio are chosen respectively equal to 10. The effect of high surface tension that tends to maintain the shape of the bubble as an ellipsoid, can be observed here. In the literature, the second test is considered very challenging for interface tracking methods with dimensionless parameters chosen as R e = 35, E 0 = 125, a high density and viscosity ratio equal respectively to 1000 and 100. in Figure 5.10, the velocity magnitude is represented, and due to the low surface tension, one can discern the formation of thin filaments on both sides of the bubble that can sometimes break up for some methods. For both simulations, the time step is set to Dt = 2 • 10 3 s. close to each other. For the second case, however, the overall result is similar among these studies, but some dispersion is observed in the filaments of the bubble.

Sloshing tank

In this test case, we simulate the two-dimensional sloshing tank presented in [START_REF] Rasthofer | An extended residual-based variational multiscale method for two-phase flow including surface tension[END_REF]. The computational domain is a rigid container W with 1m width and 1.5m height (See Figure 5.15). The upper side of the tank is occupied by a fluid with a density r 2 = 1kg/m 3 and a viscosity µ 2 = 0.01kg/(ms). The lower side is occupied by a fluid with density r 1 = 1000kg/m 3 and viscosity µ 1 = 1kg/(ms). The initial shape of the interface separating the two sub-domains has the following equation: G = {(x, y) : y = 0.26 + 0.1 sin(px) , 0  x  1}

(5.70)

The two phases are submitted to the gravitational force g = t (0, 1). The surface tension is set to zero and slip-conditions are prescribed on the walls. The time step is fixed to 0.015s. The simulations are carried out using 8449 elements (Figure 5.17). In Figure 5. [START_REF] Hachem | Stabilized finite element method for heat transfer and turbulent flows inside industrial furnaces[END_REF], we can see the evolution of the two-fluid interface in function of time and compared to the results obtained in [START_REF] Rasthofer | An extended residual-based variational multiscale method for two-phase flow including surface tension[END_REF]. Figure 5.18 shows the elevation of the position where the interface intersect the left wall of the tank over time. The frequency of the oscillation computed here is 0.280Hz, which is in a very good agreement with the value founded in [START_REF] Fries | The intrinsic xfem for two-fluid flows[END_REF] equal to 0.274.

Collapsing water column

The collapsing water column test represents the study of the collapse of the water column in an air cavity. In the literature, this test case is known as the dam break benchmark and has been extensively studied both experimentally [START_REF] Martin | Part iv. an experimental study of the collapse of liquid columns on a rigid horizontal plane[END_REF] and numerically [START_REF] Marioni | Two-fluid flow under the constraint of external magnetic field: Revisiting the dam-break benchmark[END_REF][START_REF] Murrone | A five equation reduced model for compressible two phase flow problems[END_REF][START_REF] Abdolmaleki | Simulation of the dam break problem and impact flows using a navier-stokes solver[END_REF][START_REF] Fries | The intrinsic xfem for two-fluid flows[END_REF][START_REF] Elias | Stabilized edge-based finite element simulation of free-surface flows[END_REF]. We consider here the 2D simplification described in [START_REF] Fries | The intrinsic xfem for two-fluid flows[END_REF] and a sketch of the simulation domain is presented in where a = 0.584m and b = 0.45m. The simulation is performed for the physical parameters reported in table 5.2, for 9311 elements and time step set up to 0.0003s. Figure 5.20 depicts the position of the interface over the time. 

Conclusion

In this chapter, we have presented the Immersed Volume Method (IVM) to deal with multiphase flows and Fluid-Structure interaction phenomena. A single domain is discretized and all the phases and geometries are immersed in this domain. A single set of equation is solved and a single mesh is constructed. Mixing laws have been used to distribute the material properties in each subdomains but also to enable a smooth transition across the interface. The latter is represented by the zero-isovalue We also introduced the adaptive anisotropic mesh methodology using metric field to set optimal mesh sizes and element orientations under the constraint of a fixed number of elements. An edge-based error estimator with a multi-criteria functional that estimates the error on a combination of several physical features such as the velocity as well as the level set field. A description of the motion of a solid into the computational domain achieved by solving the rigid body motion system is also presented in this chapter. The proposed framework have been tested for several benchmarks and seems to be very accurate for the description of interface and in the resolution of numerical problem, with a very limited computational cost. It will be extended in the following chapter to model the take-off of the airship Stratobus.

Résumé en français

L'objectif de ce chapitre est d'étendre la plateforme numérique présentée précédemment pour modéliser les phénomènes multiphasiques ainsi que les interactions fluide-structure. Pour ce faire, une approche eulérienne monolithique est adoptée, permettant la génération automatique d'un seul maillage et la résolution d'un seul ensemble d'équations dans tout le domaine. Cette approche est connue sous le nom d'immersion de volume. Elle fait appel à la fonction distance signée levelset pour immerger et localiser les interfaces séparant les différentes phases. Ensuite les propriétés physiques des composantes sont distribuées en calculant une loi de mélange utilisant la levelset. L'évolution de l'interface est obtenue par la résolution d'une équation de transport tout en appliquant une méthode dite de "réinitialisation" afin de préserver la propriété de distance à la levelset. Afin de mieux capturer la forte discontinuité et les gradients des propriétés physiques entre les interfaces, l'immersion de volume en appelle à une méthode d'adaptation anisotrope du maillage qui permet d'adapter dynamiquement le maillage à la physique du problème et à la solution de l'écoulement. La structure présente dans le fluide est considérée soit comme un corps rigide et dans ce cas une résolution d'un système de mouvement d'un corps rigide est effectuée ou bien une tension de surface exprimée d'une manière semi-implicite dans les équations de Navier-Stokes est prise en considération. Des cas tests pour la simulation d'écoulements multiphasiques permettent de montrer la grande flexibilité de cette méthode dans la prise en compte de plusieurs géométries, mais aussi la précision des calculs avec un coût très intéressant.

Introduction

In this chapter, we aim to present the efficiency and the accuracy of the developed Computational Fluid Dynamics (CFD) tools on industrial applications. Indeed, all the previous developments will serve as a dedicated numerical platform for the Stratobus project. This platform is constituted of anisotropic boundary layer mesh adaptation to generate an a priori mesh fitting the geometry boundary layer which is ready for the simulations. The feature of these simulations is the capability of computing accurate solutions of high Reynolds number flows using a combination of Variational MultiScale (VMS) finite element method to solve the incompressible Navier-Stokes equations, and a Spalart-Allmaras turbulend model stabilized by an Upwind Petrov-Galerkin method. Then the platform was extended to deal with a multidomain approach referred to Immersed Volume Method (IVM). It is based on the use of an adaptive anisotropic mesh refinement by means of the level set to well capture the sharp discontinuities on the interface. The objective of this framework is to determine the aerodynamic performances as well as the optimization of the shape of Stratobus but also to treat the fluid-structure interactions and the multiphase flows on both sides of the airship. All the 2D and 3D numerical results obtained for Stratobus will be presented here.

In general, the Computational Fluid Dynamics (CFD) simulation consists of basically three steps that are involved in the analysis of the fluid flows:

• Pre-processing: To accurately simulate turbulent flows around complex geometries with a reasonable computational cost, the domain of interest needs to be properly discretized. Known as mesh generation, this step is one of the most important aspects for any CFD simulation. In Figure 6.2, a schematic representation of the pre-processing step for different dimensions and shapes of the airship Stratobus is depicted.

• Solver: Once the geometry representation is correctly generated, numerical simulation of turbulent flows past different design and shapes of the geometry can be performed. Hence, a meshing process before running the CFD simulation is a necessity. Most of the industrial applications require the use of CAD tools to define their highly complex geometries. And, once the CAD model developed, it is transformed into a file exchange, such as STL (stereolithography) format file, a surface mesh of the object made of segments in 2D and triangles in 3D or IGES (Initial Graphics Exchange Specifications) or STEP (Standard for the Exchange of Product model data). Then we use a mesh generator software, which is in our case the free software Gmsh [START_REF] Geuzaine | Gmsh: A 3-d finite element mesh generator with built-in preand post-processing facilities[END_REF] in order to generate 2D or 3D desirable finite element grid. However, some problems may occur during the transformation from CAD model to the exchange files, including loss of information, overlapping surfaces ... hence the need for a much simpler geometry than it looks in real life. Figure 6.1 provides a schematic representation of the first stage of the pre-processing step, showing the transition from the reality to CAD geometry then to STL surface mesh (or any other file exchange) and finally to fluid-solid mesh for different shapes and dimensions of the object. 

Aerodynamic analysis

In this section, the aim is to assess the capability of our numerical method to simulate the turbulent flow past the airship. Recall that, the original dimensions of the model are 33 m for the diameter and 100 m as a total length. However, experiments were carried out on prototype of length 0.84 m and diameter 0.27 m to study aerodynamic performance and we compared here the obtained experiments results to the numerical ones accomplished by our numerical platform and the commercial CFD code Fluent. The dimensions of the computational domain are 50 m, 33 m and 33 m in the streamwise (x), crosswise (y) and spanwise (z) directions, which is considered large enough to avoid any influence of the boundaries as shown in Figure 6.3. In the numerical simulations, same parameters and conditions are adopted as the wind tunnel experiment. The inlet velocity is set to 34 m/s, the density r = 1.225 kg/m 3 and the viscosity µ = 1.78 ⇥ 10 5 kg/(ms) yielding a span-based Reynolds number of Re = 600, 000. Similarly to the preceding test cases, flat velocity and turbulent viscosity ( ñ = 3n) profiles are prescribed at the inlet boundary, a pressure condition is imposed at the outlet, and slip conditions are used on the boundaries parallel to the flow. At the airship wall, no-slip boundary conditions for the velocity as well as homogeneous Dirichlet conditions for the turbulent viscosity ñ are specified. Time marching the governing equations with a non-dimensional time step set to Dt = 10 1 . Figure 6.3: The airship inside the numerical wind channel The computational domain adopted in Fluent is decomposed to a hemisphere and a cylinder. The diameter of the hemisphere and the cylinder is 10 m and the height of the cylinder is 20 m. The boundary conditions are divided into inlet, outlet, wall and symmetrical boundaries conditions, as illustrated in Figure 6.4. For inlet boundary condition, the pressure-par-field is chosen for ideal gas in this case. The boundary condition for outlet is pressure-outlet, with Gauge Pressure setting to 0. The boundary of the flow field and the surface of the airship are considered as no-slip wall, and the symmetrical boundary condition is symmetry. The adaptive mesh refinement in 3D is represented in Figure 6.5 including different close-ups to highlight the size and directions of the elements close to the interface. The mesh has been generated for h min = 10 4 . This leads to a final boundary layer composed of 20 layers and a total number of elements of 7, 098, 793. Whereas, Figure 6.6 presents the mesh used in Fluent, which is a combination of structured and unstructured mesh. The area of the airship is meshed by unstructured mesh and the external flow field is meshed by a structured one. The near-wall mesh of the airship is well refined with 20 layers in order to guarantee the accuracy of the calculation. Finally, the mesh of 4, 907, 038 elements is adopted for later calculations, with a good balance of computational efficiency and accuracy. As important indicators of aerodynamic performance, the lift and drag coefficients are also calculated with Fluent and Cimlib-CFD for different angles of attack. The obtained results are compared to the experimental data of the wind tunnel tests. So far, there groups of data for drag coefficient have been collected for 0 , 5 and 10 . The comparison of the results is presented in Table 6.1 and Figure 6.9. In this part, the agreement between the numerical and experimental results are very good and can be achieved for Cimlib-CFD despite the discrepancies between the numerical simulations and experimental setup. For Fluent, the result obtained in the case of 0 is exactly the same data as the wind tunnel test. However, with the increment of the angle of attack, the difference between the results of Fluent and the ones of wind tunnel tests becomes wider. 

Simulations for optimized airship model

Several shapes of the airship were studied and in this section the aerodynamic performances of the new optimized airship model are presented and analyzed, as well as the comparison between the results achieved for the original model and for the new one, which is also the last one. The shape of the airship becomes slender, with a total length of 140 m and a maximum diameter of 32 m, leading to a slenderness ratio f = 4.375, which is defined as:

f = L d (6.1)
With L the total length and d the maximum diameter of the airship. The computational domain has the same dimensions as the ones used for the original mesh as shown in Figure 6.12. In Fluent, same mesh generation method is adopted. In addition, as an improvement, the unstructured area around the airship is refined. The near-wall mesh of the airship is well refined with 40 layers in order to improve the accuracy of the calculation. The general view of the mesh and the refined boundary layer mesh are showed in Figure 6.14. The total number of elements here is 7, 007, 212, which can ensure the accuracy of the calculation. The boundary conditions of the previous simulations are also adopted here. Simulations are lunched for the new shape of Stratobus with several angles of attack, ranging from 0 to 15 . The evolution in time of the velocity field and the expected pressure distribution until it reaches a steady states, both for different angles of attack are depicted respectively in Figure 6.15 and Figure 6.16. We can clearly notice the flow detachment and the wake past the airship in Figure 6.17. The values of the aerodynamic coefficients obtained respectively with Cimlib-CFD and fluent are depicted in the plot of the Figure 6.18. The comparison between the two codes showed some distinctions of the drag coefficient, which is not the case for the values of the lift, which are in a good accordance. In the absence of experimental tests for this case, no conclusion can be drawn on the true value of these coefficients. However, we made a comparison of the drag coefficient between the old and new design of the airship as shown in Figure 6.19. Considering that the new design of the airship is getting heavier and longer than the old one, the coefficient is becoming higher the angle of attack is getting important. 

Slosh of an air ballonet in an helium volume

In this section, we present the obtained results for the 2D and 3D model of the Stratobus to illustrate the flexibility of the approach dealing with complex geometry and to assess its accuracy. The implemented multiphase numerical framework will be used here. Therefore, we combine the convected levelset method with dynamic anisotropic mesh adaptation for moving interfaces with change of topology. Whereas, the rigid body motion explained in chapter 5 will be used for global movement. Indeed, the hull deformation being very small are neglected.

2D airship ascension

In this section, we consider the 2D model of the Stratobus to validate the proposed formulation. The computational domain size is 100 ⇥ 60 in the streamwise and spanwise directions, respectively. The 2D airship is centered in length, and has a diameter of 3.28 and a total length of 10 (See figure 6.20). At the airship wall and on the exterior boundary, no-slip boundary conditions for the velocity as well as homogeneous Dirichlet conditions. The simulation is performed using about 50000 elements. The time step is set to Dt = 10 1 . In figure 6.21, we reproduce the experimental tests carried out by Thales Alenia Space and consisted in filling the airship with 10% of helium and the rest full of air. The physical parameters as summarized in Table 6.2. As the helium is lighter than the air, the airship will tend to float up in the air. 

3D airship ascension

In this section, we focus on the Stratobus as a 3D benchmark to illustrate the effectiveness of the approach. The model has a diameter of 2.77m and a total length of 8.36m and is placed in a computational domain of length 33m and width 23m ⇥ 16m. Here again at the airship and domain walls, no-slip boundary conditions for the velocity as well as homogeneous Dirichlet conditions. The nondimensional time step is set at Dt = 10 2 . All the simulations are performed using about 750000 elements. In the first test case, the airship goes up in the air since the helium is lighter than air (Figure 6.23). Since the density of the air is higher than the helium one, consequently in Figure 6.24 we can see that the Stratobus tend to go down. Figure 6.26 shows very good agreement between numerical results and the experimental tests realized by Thales Alenia Space. This agreement shows that the present approach is able to predict well the behavior of the airship full of helium or air or helium/air. Nota: Please notice that the experimental pictures are exclusively the property of Thales Alenia Space and cannot be reproduced without their permissions. The faces of the persons appearing in these pictures have been hiden. 

Conclusion

In this chapter, the 2D and 3D numerical results obtained for the simulation of the airship Stratobus behavior have been presented, and hence validated all the numerical methods analyzed and described throughout this manuscript. First, aerodynamic characteristics for the different shape and sizes of the engine but also for divers angles of attack and angles of sideslip have been established. Then, a comparison with the experiments from one side and with the commercial software Fluent have been made and showed a good accuracy between the results, despite the few discrepancies due whether to the surface roughness of the prototype during the experiment setup or to the lack of information concerning the calculation of some parameters for the initial conditions regarding Fluent. At the end, the ascension of the airship started to be investigated by modeling the ballonet sloshing inside the hull. The Immersed Volume Method coupled with the semi-implicit surface tension and the rigid body motion have proved its efficiency by performing validation test cases in 2D and 3D and compared to the first experiments made by Thales for a 8m prototype. Perspectives of this project will be given in the next chapter. 

Résumé en français

Ce dernier chapitre a été consacré à tester nos plateformes numériques pour le dirigeable Stratobus, qui a fait l'objet de cette thèse. Dans un premier temps, l'étude des performances aérodynamiques pour différentes formes et dimensions du ballon mais aussi pour divers angles d'attaque et de glissement a été effectuée, ensuite comparée avec d'une part les essais expérimentaux menés sur une maquette de 1 m de long et d'autre part avec les résultats numériques obtenus avec le logiciel commercial Fluent. Cette étude a montré la pertinence et la robustesse de nos méthodes numériques implémentées au sein de notre librairie. Dans un deuxième temps, on a fait appel à la seconde plateforme pour commencer à établir la modélisation du décollage du dirigeable et de même comparée avec les premières expériences obtenues avec Thales Alenia Space. La méthode d'immersion de volume couplé à l'expression semi-implicite de la tension de surface et au mouvement corps rigide a été le bon choix à faire pour la simulation des phénomènes multiphasiques ainsi que l'interaction entre fluide et structure. Les perspectives de ce travail de thèse seront données dans le prochain chapitre. The objective of this thesis was to develop two robust, efficient and accurate numerical platforms to simulate complex flow problems and capable to handle a variety of geometries and industrial problems. More specifically, these platforms were developed to study the behavior of the airship "Stratobus" proposed by Thales Alenia Space. The first platform (chapter 2, 3 and 4) has been dedicated to the study of aerodynamic performances as well as the optimization of the shape of the geometries and the second one (chapter 5) to treat the fluid-structure interaction and the multiphase flows on both sides of the balloon. The tools used in this thesis are the Finite Element Method (FEM), that it is shown as an attractive way to solve turbulent flow and Interaction Fluid-Structure problems and it can be applied for a various physical phenomena. We started in chapter 2 with the land preparation process where we introduced the boundary layer mesh adaptation method applied to generate automatically an a priori boundary layer. It is based on the use of multi-levelset method to locate the boundary layer, to control the mesh size distribution and orientation ensuring a smooth gradation from the interface of the geometry immersed into an arbitrary coarse domain. In all 2D and 3D cases, the adaptation algorithm allows the creation of meshes with extremely anisotropic elements stretched along the interface, and hence very accurate representation of the boundary layers was provided.

In chapter 3, we have described a stabilized finite element element method for the transient incompressible Navier-Stokes equations based on the Variational MultiSclae (VMS) principle. The VMS introduces on a priori decomposition of the unknowns into coarse and fine components, that correspond to different scales of resolution. The general idea is that only the large scales of the flow field are fully represented and resolved at the discrete level, while the effect of the small unresolved scales is taken into account by means of consistently derived source terms proportional to the residual of the resolved scale solution. The aim of this approach is to circumvent the instabilites and oscillations from which suffer the Standard Galerkin mixed Finite Element when using equal order interpolation and dealing with convection dominated regime.

In chapter 4, the background of turbulence models is worked out in order to justify the choice of the particular method that must be used to simulate turbulent flows. The Reynolds-Averaged Navier-Stokes approach with the Spalart-Allmaras turbulence model as closure scheme were introduced, studied and adopted. Moreover, the stabilization finite element methods have been revisited again to deal with time-dependent Convection Diffusion Reaction (CDR) equation. The Streamline Upwind Petrov-Galerkin (SUPG) method was selected as a stabilized method to enhance the accuracy and precision of the results that exhibits global spurious oscillations in convection-dominated problems when standard finite element method are used.

The main objective of the second platform was to simulate the slosh of air inside an helium volume designed for the ascension of the airship to the stratosphere. Therefore, the chapter 5 was dedicated to present numerical framework for modeling such interaction between the different phases of the flow, refered as the Immersed Volume Method (IVM).

The Immersed Volume Method (IVM) is a monolithic approach, meaning that only a single set of equation is solved in a single domain, and hence it is able to take into account all the features process in a unified way. This method is based on the use of an adaptive anisotropic local grid refinement by means of the levelset function to well capture the sharp discontinuities of the interfaces when having different physical properties. Coupled with an a posteriori error estimator, this method enables to increase the accuracy of the computation by following all the physical features of the flow. Moreover, we have presented a semi-implicit time discretization of surface tension implemented in the context of Variational MultiScale Method to enable large simulation involving surface tension.

The application of all these numerical tools on 3D airship geometry, named the Stratobus, have been investigated in chapter 6. We started by describing the steps on which the Computational Fuild Dynamics (CFD) are based to analyze the fluid flow, including the pre-processing, solver and postprocessing steps. Then the areodynamic performances have been performed using the numerical wind tunnel described above and implemented in Cimlib-CFD then compared to the ones obtained with the commercial CFD software Fluent. The simulations were launched for various angles of attack and different shapes of the airship. As a result, The comparison between the two codes indicates that the results are in good agreement and that Cimlib-CFD is performing accurately the calculations. However, some discrepancies in the values can be noticed due may be to the way the boundary conditions are calculated in Fluent and the differences in the boundary layer mesh process. Finally, the IVM method coupled to the semi-implicit surface tension is applied to model the take-off of the lighter-than-air. The latter is immersed into a computational domain made of atmosphere air. The envelope of the airship was explicitly represented as a non-deformable body and the hull is decomposed into an helium bubble tracked with a level set function and surrounded with air. The first results obtained illustrate perfectly the experiments effectuated with a small prototype of the engine.

This work took advantage of the previous developments in the parallel Finite Element library Cimlib-CFD developed by the Computing & Fluids group at CEMEF, a research center of MINES ParisTech-PSL Research University and as shown all along this manuscript, the performance and potential of all these numerical methods have been exposed on two and three dimensional applications reflecting their accuracy in simulating physical phenomena and their ability to automatically handle any industrial geometry.

It is obvious to say that the project Stratobus is far from finished. Firstly, further study should concentrate on the design optimization of the airship, both numerically and experimentally, to determine the final airship model. Indeed, all the simulations presented above were accomplished for straightforward geometry of the airship that did not include for example the solar concentrator or the propellers. Besides, the envelope was considered to be solid in order to simplify the calculation model. However, in the real case, it will be made of thin a multi layer hull composed of very light but very resistant materials enable the balance between atmospheric pressure and the gas inside the balloon. The perspective will be to extend the second platform, which is the multiphase framework by inserting a source term in the Navie-Stokes equations taking into account all the properties characterizing the envelope of the engine.

ABSTRACT

This thesis is devoted to the modeling and the numerical simulation of unsteady, turbulent flows relevant to external aerodynamic applications. The proposed study aims at developing methods suited to incompressible, monophase and multiphase flows around various slender and non-slender bodies. The latter rely on the Variational Multiscale (VMS) stabilized finite element method that introduces an a priori decomposition of the solution into coarse and fine scale components. The general idea is that only the large scales are fully represented and resolved at the discrete level, while the effect of the small unresolved scales is taken into account by means of consistently derived source terms proportional to the residual of the resolved scale solution. An automatic procedure is used to build complex meshes combining a multilayer inner region structured according to the boundary layer theory, and an external nonstructured region refined using a VMS error estimator under the constraint of a fixed number of nodes. For cases involving several immiscible phases, an advanced level-set method is used to accurately follow the interfaces while accounting for surface tension effects. The coupling between these various components into a unified formulation, and their implementation in a context of high performance computing, make for the novelty and the main objective of this thesis. Several test-cases in two and three dimensions are presented to assess the accuracy and the robustness of the proposed methods. The solver is then used to analyze the aerodynamics of the Stratobus, a stratospheric airship designed by Thales Alenia Space for a wide range of civilian and military operations. In the permanent regime, a rigid envelope assumption allows predicting the forces exerted on the structure in good agreement with the experiments. The effect of a lighter-than-air ballonet slosh located in the hull is also simulated to characterize the airship dynamics during take-off. 
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 35 Where d is the shortest distance to the wall, k = 0.4 is the von Kármán constant, and the remaining model coefficients are:
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  MOTS CLÉS Aérodynamique des dirigeables, Ecoulements turbulents monophasiques et multiphasiques, Eléments finis stabilisés VMS, Modélisation RANS, Interaction Fluide-Structure, Maillages couche limite. RÉSUMÉ Cette thèse porte sur la modélisation et la simulation numérique d'écoulements instationnaires et turbulents dans un contexte d'aérodynamique externe. L'étude proposée contribue au développement de méthodes adaptées aux écoulements incompressibles, monophasiques et multiphasiques, autour de divers corps profilés et non-profilés. Celles-ci reposent sur une méthode éléments finis stabilisés innovante de type Variational Multiscale (VMS), dans laquelle la solution est décomposée a priori en une grande échelle résolue et une petite échelle modélisée, dont l'effet sur la grande échelle est pris en compte au travers de termes sources proportionnels aux résidus des équations du problème grande échelle. Une procédure automatique est utilisée afin de générer des maillages hybrides combinant une région interne structurée en strates et conforme à la théorie des couches limites, et une région externe non structurée et adaptée via un estimateur d'erreur VMS sous la contrainte d'un nombre d'éléments fixé. Pour les cas mettant en jeu plusieurs phases immiscibles, une méthode level-set est utilisée afin de suivre précisément les interfaces tout en prenant en compte les effets de tension de surface. L'originalité et l'enjeu principal de cette thèse résident dans le couplage de ces différentes approches en une formulation unifiée, et leur mise en oeuvre dans un contexte de calcul massivement parallèle. Plusieurs cas-tests en deux et trois dimensions sont présentés afin de démontrer la précision et la robustesse des outils proposés. Le solveur est ensuite utilisé pour analyser l'aérodynamique du Stratobus, un dirigeable stratosphérique développé par Thalès Alenia Space et destiné à un large éventail d'applications civiles ou militaires. En régime permanent, une hypothèse d'enveloppe rigide permet de prédire les forces exercées sur la structure en bon accord avec l'expérience. L'effet du slosh d'un ballonet d'hélium placé à l'intérieur de l'enveloppe est également simulé afin de caractériser la dynamique du dirigeable durant la phase de décollage. KEYWORDS Aerodynamics of airships, Turbulent monophase et multiphase flows, VMS stabilized finite elements, RANS modeling, Fluid-structure interations, Boundary-layer meshes.
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  Local optimization of a mesh topology algorithm Input: (N , ∂ T ) a mesh topology of W . Output: (N opt , ∂ T opt ) the optimal mesh topology . while  T 2T |T | |W| do for each node and edge in T do • Remove the local mesh topology T x associated to the node or the edge • Replace it with a new local mesh topology T n = T ⇤ (S x , ∂ T x ) that minimizes the volume  T 2T |T | and maximizes the quality of the elements Q

Table 2 .

 2 1: Distribution of elements for the NACA 0015.

	Starting domain Final Domain Box 2	Boundary layer
	Number of elements 90,598	115,533	105,135 (91 %) 50,257 (43.5 %)

Table 2 . 2 :

 22 Number of elements before and after the mesh adaptation for the sphere.

	Starting domain Final Domain
	Number of elements 1,738,715	2,922,022

Table 3 . 1 :

 31 Comparison of drag and lift coefficients with the Reference for flow over a NACA 0012.

		Reference	Present work
	C D	0.0555	0.0574
	C		

L 2.519 ⇥ 10 12 2.519 ⇥ 10 7 Relative error 3%

Table 3 . 2 :

 32 Comparison of drag and lift coefficients and Strouhal number between present and previous studies for flow past a sphere.

	C d	C l	St

Table 4 .

 4 1: Results of drag and lift coefficients for the square cylinder.

	Model	C D	C D rms	C L rms	S t

Negative SA / Dt = 0.1 2.0895 0.2087 1.7175 0.1168 Present work Negative SA / Dt = 0.05 2.0736 0.2001 1.649 0.1224 Present work Negative SA / Dt = 0.01 2.0351 0.169 1.547 0.1268

Table 5 .

 5 1: Physical parameters for the 2D rising bubble test case.

		Test 1 Test 2
	r 1 (kg/m 3 )	100	1
	r 2 (kg/m 3 )	1000 1000
	µ 1 (kg/ms)	1	0.1
	µ 2 (kg/ms)	10	10
	Gravity m/s 2 0.98	0.98
	g (N/m)	24.5	1.96
	R e	35	35
	E 0		

Table 5 .

 5 2: Physical parameters for the collapsing column water test case.

	Parameters Values
	r 1	1000kg/m 3

Table 6 .

 6 1: Comparison of aerodynamic performance of the airship.

	a	0	5	10	15
	FLUENT Cimlib-CFD 2.39 ⇥ 10 2 2.64 ⇥ 10 2 3.55 ⇥ 10 2 4.94 ⇥ 10 2 2.1 ⇥ 10 2 2.27 ⇥ 10 2 2.77 ⇥ 10 2 3.83 ⇥ 10 2 Experiment 2.1 ⇥ 10 2 2.71 ⇥ 10 2 4.3 ⇥ 10 2

Table 6 .

 6 2: Physical parameters defining the test case for the 2D rising airship.

	Helium	air
	1.2 µ 1.87 ⇥ 10 5 1.0 ⇥ 10 5 r 1.7 ⇥ 10 1