Résumé du chapitre en français

Dans ce chapitre, les procédés industriels de solidification des aciers, et notamment la coulée en lingot et la coulée continue, sont exposés. Les notions essentielles relatives aux évolutions microstructurales développées durant les processus de solidification sont présentées, en allant de l'échelle des dendrites à celle du produit coulé final. Ensuite, les différents phénomènes physiques se déroulant lors de la solidification sont détaillés. En particulier, les interactions mécaniques entre la phase solide et la phase liquide ainsi que leurs rôles dans les procédés de solidification sont présentés. Pour cela, un travail de recherche bibliographique portant sur la modélisation numérique des procédés de solidification est réalisé, donnant une revue des travaux de recherche déjà effectués et des défis qui restent à relever.

Dans la dernière partie de ce chapitre, le contexte du projet de doctorat, les objectifs définis et la description de la structure du manuscrit de thèse sont introduits. total steel production in 2017 and 96.3% is produced by CC, with the rest 0.2% corresponding to the production of liquid steel for casting. IC is a unitary process, or almost so, 4 to 8 ingots being cast on a single cast plate. By consequence, it is generally a very time-consuming method since it requires large molds to sit and a long solidifying time. Besides, a considerable amount of material may also be produced. However, nowadays IC still plays an important role in the steel casting industry and even becomes more and more demanding in recent days. Indeed, very large raw form ingots can be produced.

Moreover, less complicated industrial manufacturing processes are required compared with CC.

Massive parts for heavy industries are generally produced with this method for unique manufactures, such as the enormous 600 tons ingot shown in 

Continuous casting

The CC method is quite recent. Early concepts and studies were carried out in the 19th century and its first industrialization started only in the late 1950s. After several decades of developments and innovations, CC has become today a sophisticated and very efficient steel casting method. An illustration of the CC method is shown in Fig. I.1b, presenting a curved CC method, one of the most frequently used configurations in the industry. Molten liquid steel flows from the ladle, through a tundish into the mold. The tundish acts as a buffer zone, ensuring a continuous feeding of liquid steel to the mold, even when ladles are switched. The mold uses water-cooling to extract sufficient heat so as to form a solid shell at the exit from the mold, which is of sufficient thickness/strength to support the pressure of the remaining liquid within the mold. This step corresponds to the primary cooling stage. Below the mold exit, the solid shell moves downward continuously using several motorized sets of supporting rolls at a constant casting speed. After the exit of the mold region, the solid shell serves as a mold for the remaining melt. The cast metal continues solidifying with heat extracted by water or air mist sprays between the supporting rolls until its molten core becomes fully solidified. This step corresponds to the secondary cooling stage. Finally, the fully solidified cast metal is cut into ingots of the desired length for further metal forming processes. In Fig. I.2b, the fully solidified cast metal in slab form is shown, being cut at the end of the CC machine while it is still at a high temperature.

Compared to the previous IC method, the CC method has the great advantage to produce continuously the standardized product, in forms of billet, bloom, or slab. This makes the CC a very productive and cost-efficient steel casting method.

Essential knowledge of solidification

Some basic knowledge on metal solidification has to be introduced, which is essential for the understanding of our further numerical models developed on steel casting processes. More precisely, the first part of this section will address the multi-scale aspect of solidification, from the microstructure at the scale of the dendrite to the macro zone formation at the scale of the cast metal. The second part of this section will focus on the multi-physics aspect of solidification, giving an overview of the physical phenomena involved during solidification processes.

Microstructure and zone formation

Both IC and CC are fundamentally based on the same physical process, i.e. progressive solidification of liquid metal. Hereafter, the solidification of an ingot will be discussed, which is representative and sufficient for a general introduction of the solidification problems. The macrostructural zone formation of an ingot under solidification is shown in 

State of the art in numerical models of solidification

Numerical modeling of solidification processes has only been developed in recent years due to its complex nature and the limit of computer resources. However, the solid-liquid interface morphology of the dendrites is extremely complex and explicitly un-describable at the scale of the product.

Consequently, the conventional methods for fluid-structural interaction (FSI) problems [START_REF] Piperno | Partitioned procedures for the transient solution of coupled aroelastic problems Part I: Model problem, theory and two-dimensional application[END_REF][START_REF] Hübner | A monolithic approach to fluid-structure interaction using space-time finite elements[END_REF] are not suitable for solidification, either in a coupled or partitioned approach. In order to overcome these difficulties, two numerical models are mainly reported in the literature. The first one is based on the mixture theory [START_REF] Bennon | A continuum model for momentum, heat and species transport in binary solid-liquid phase change systems-I. Model formulation[END_REF], in which the two-phase problem involving solid and liquid phases in solidification is considered as a "single-phase" problem. The mushy zone is assumed as a continuum with effective "averaged" physical properties. Conservation equations of mass, momentum, energy and solute may be developed and applied to the liquid zone, the mushy zone and the solid zone as in a single domain.

Such a method is not sufficient because no relative motion of solid and liquid phases is allowed in the mushy zone. As a consequence, macrosegregation defects due to solid motion [START_REF] Koshikawa | Experimental study and two-phase numerical modeling of macrosegregation induced by solid deformation during punch pressing of solidifying steel ingots[END_REF][START_REF] Flemings | Our understanding of macrosegregation: past and present[END_REF] cannot be modeled. The second approach is the two-phase model developed by Ni and Beckermann [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF] by applying the volume averaging method. Volume-averaged macroscopic conservation equations of momentum, mass, energy and species can be developed from their respective microscopic equations.

Interactions between solid and liquid phases at the microscopic scale are averaged in a Representative Elementary Volume (REV) and taken into consideration at the macroscopic scale. Fluid flow, solid movement, heat transfer, phase transformation, solute segregation and many other microscopic phenomena can be considered in this model. Based on this pioneering work, numerous studies were carried out. Among them, many studies focused on the simulation of fluid flow induced by natural convection and the related macrosegregation phenomena under a columnar dendritic solidification regime [START_REF] Schneider | Formation of macrosegregation by multicomponent thermosolutal convection during the solidification of steel[END_REF][START_REF] Combeau | Analysis of a numerical benchmark for columnar solidification of binary alloys[END_REF][START_REF] Saad | Simulation of Channel Segregation During Directional Solidification of In-75 wt pct Ga. Qualitative Comparison with InSitu Observations[END_REF]. However, in these models, the solid phase is assumed to be fixed and no mechanical resolution is developed on this latter. Other researches have focused on the equiaxed dendritic solidification regime [START_REF] Wang | Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling[END_REF][START_REF] Wang | Equiaxed dendritic solidification with convection: Part II. Numerical simulations for an Al-4 wt.%Cu alloy[END_REF][START_REF] Beckermann | Equiaxed dendritic solidification with convection: Part III. Comparisons with NH4Cl-H2O experiments[END_REF][START_REF] Ludwig | Modeling of globular equiaxed solidification with a two-phase approach[END_REF][START_REF] Combeau | Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains[END_REF][START_REF] Nguyen | Finite Element Multiscale Modeling of Chemical Segregation in Steel Solidification Taking into Account the Transport of Equiaxed Grains[END_REF]. Nucleation, growth and transport of grains by thermo-solutal convection have been successfully modeled. Promising results have been obtained to predict the macrosegregation phenomenon. More recently, numerical models of columnar-to-equiaxed transition in solidification have been achieved [START_REF] Ludwig | Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach[END_REF][START_REF] Leriche | Modeling of Columnar-to-Equiaxed and Equiaxed-to-Columnar Transitions in Ingots Using a Multiphase Model[END_REF]. However, in all the above research works, the solid phase is either oversimplified as an immobile domain, as in the case of columnar dendritic solidification regime or assumed to be rigid, as in the equiaxed dendritic solidification regime. Stress-strain formed in e.g. the fully solidified regions of columnar dendrites or the equiaxed dendrites packed bed is completely ignored. The study of the stress-strain analysis related to solidification starts with the introduction of the constitutive model for semi-solid alloys based on the concepts of continuum medium and the mixture theory [START_REF] Toyoshima | A numerical simulation of forming processes for semi-solid materials[END_REF][START_REF] Nguyen | Theoretical and experimental study of the isothermal mechanical behavior of alloys in the semi-solid state[END_REF]. Compressible viscoplastic constitutive models are derived and applied to the solid phase in the mushy zone for the stress-strain analysis. However, these models were under isothermal conditions and cannot be directly applied to solidification. Numerical models, including solid mechanics for the stress-strain analysis in the solid phase and fluid mechanics for the fluid flow calculation in solidification, were developed only in recent years. These models can be conveniently divided into two categories: the coupled approach and the partitioned approach. In the coupled approach, conservation equations for solid and liquid phases are coupled and solved simultaneously while in a partitioned approach, separate fluid and solid problems are solved and then coupled. In the framework of a coupled approach, macrosegregation induced by the relative velocity of solid and liquid phases at the secondary cooling of the CC was demonstrated [START_REF] Fachinotti | Two-phase thermomechanical and macrosegregation modeling of binary alloys solidification with emphasis on the secondary cooling stage of steel slab continuous casting processes[END_REF][START_REF] Vakhrushev | On modeling viscoplastic behavior of the solidifying shell in the funnel-type continuous casting mold[END_REF]. Macrosegregation induced by grain transport [START_REF] Ludwig | Two-phase modeling of equiaxed crystal sedimentation and thermomechanic stress development in the sedimented packed bed[END_REF][START_REF] Ludwig | Simulation of crystal sedimentation and viscoplastic behavior of sedimented equiaxed mushy zones[END_REF] or solid movement in the mushy zone [START_REF] Rodrigues | A Comprehensive Analysis of Macrosegregation Formation During Twin-Roll Casting[END_REF] has been studied. However, due to the huge difference between the liquid viscosity and solid consistency, in all these models, compressible viscoplastic behaviors are utilized for the solid phase, to avoid severe numerical conditioning problems. An elasto-viscoplastic behavior such as the one described in the work of Bellet and Thomas [START_REF] Bellet | Solidification macroprocesses (Thermal-mechanical Modeling of Stress, Distortion and Hot Tearing)[END_REF], would be better, especially for the modeling of the residual stresses formed in the fully solidified regions. Besides, in a coupled approach, at least 10 unknowns values are determined concurrently (velocity in three directions and pressure for each phase, temperature, solute concentration) in application to a 3D solidification problem. This resolution may be very time and computer resource demanding. As pointed in the work of Heil et al. [START_REF] Heil | Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches[END_REF], the coupling effect between the solid and fluid mechanics in a general FSI problem can be characterized using an FSI index , defined as the ratio of the flow stresses in the fluid and solid (or structure) regions:
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where why the liquid viscosity should be arbitrarily maintained at a high value when considering simultaneously liquid and solid metal in a single-step solution of a mechanical problem [START_REF] Bellet | ALE method for solidification modeling[END_REF]. It was proved by Heil et al. [START_REF] Heil | Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches[END_REF] that for such a weak FSI problem, a partitioned approach is more efficient than a monolithic one. Kajitani et al. [START_REF] Kajitani | Numerical simulation of deformation-induced segregation in continuous casting of steel[END_REF] proposed a partitioned model for the prediction of the deformation-induced macrosegregation in CC. Bellet and coworkers initiated the partitioned approach in application to IC processes, showing promising results of this approach for the concurrent modeling of fluid flow and stress-strain [START_REF] Boughanmi | A Partitioned Fluid-Structure Interaction Approach during Steel Solidification: Application to the Simulation of Ingot Casting[END_REF] and the modeling of macrosegregation [START_REF] Rivaux | Simulation 3D éléments finis des macroségrégations en peau induites par déformations thermomécaniques lors de la solidification d'alliages métalliques[END_REF]. Nevertheless, these models have not yet been validated and applied to industrial cases.

My thesis project 1.4.1 Context

This thesis is part of the European Space Agency (ESA) project entitled Chill Cooling for the Electro-Magnetic Levitator in relation with Continuous Casting of steel (CCEMLCC), initiated from early 2007 for the first phase of this project and currently for a third phase (from late 2016 to late 2019).

The general objective of this project is to have a better understanding of the formation of surface defects during the casting process of steels, including those due to mechanical interactions between solid and liquid phases. Lots of experimental tests and numerical models of solidification have already been carried out on Earth. However, the gravity-induced and gravity-independent interactions between heat and mass transport in solidification make it extremely complex for the comparative studies between the numerical modeling results and experimental data. • EVRAZ, Regina, Canada solidified droplet. However, in this latter work, the solid phase was assumed to be fixed and the stressstrain analysis was neglected.

As a continuation of the work carried out previously at CEMEF [START_REF] Rivaux | Simulation 3D éléments finis des macroségrégations en peau induites par déformations thermomécaniques lors de la solidification d'alliages métalliques[END_REF][START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF], two directions are defined during the present third phase of this CCEMLCC project for two different theses in Cemef. The first thesis aims to improve the previous model developed by Saad [36], by adding the surface tension at the liquid/gas interface. Moreover, the level set method is applied to model the metal/substrate interface, in order to improve the heat transfer problem at this interface. The application of this work is limited to a small scale, focusing on the modeling of the solidification of a steel droplet under microgravity. The second thesis, which is also the present thesis, consists in the development of a partitioned algorithm for solidification with applications to industrial casting processes. More precisely, the objective of this thesis is to develop a partitioned two-step algorithm for concurrent simulation of fluid flow, solid deformation and macrosegregation dedicated to solidification processes into a unique simulation code in CimLib. The solidification under a pure columnar dendritic solidification regime will be assumed. In one time increment, a solid structure code based on the continuum medium approach will be used for modeling of solid mechanics problem in the already solidified regions [START_REF] Boughanmi | A Partitioned Fluid-Structure Interaction Approach during Steel Solidification: Application to the Simulation of Ingot Casting[END_REF][START_REF] Rivaux | Simulation 3D éléments finis des macroségrégations en peau induites par déformations thermomécaniques lors de la solidification d'alliages métalliques[END_REF]. The liquid flow will be modeled by the two-phase model based on the volume averaging method [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF]. All equations will be formulated in the level set framework to track the metal/gas interface.

Energy and solute conservation equations as developed in [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF] will be solved, for the further application of this algorithm to macrosegregation modeling. Besides, accurate control of the existing procedures for adaptive and dynamic remeshing will be applied to develop relevant simulations, optimize results and improve computation efficiency. The newly developed algorithm will be validated with analytical solutions regarding simple applications and apply to test cases approaching the complexity of the industrial process, for both IC and CC processes.

Outline

This manuscript consists of five chapters. Chapter 2 is dedicated to a brief description of the basic numerical modeling methods used in this Ph.D. thesis. The level set method, the volume averaging method and the mesh adaptation methods will be introduced. Chapter 3 focuses on the development of conservation equations for modeling heat and solute transfer problems, solid mechanics and fluid mechanics in solidification. Chapter 4 provides the monolithic governing equations under the level set framework followed by their time and space discretization in the Finite Element (FE) framework. The concurrent partitioned two-step solution algorithm will also be detailed. Chapter 5 is dedicated to applications and associated discussion. The use of the standard Heaviside function can lead to numerical problems, especially for the situation with large properties ratios across the interface [START_REF] Sussman | A level set approach for computing solutions to incompressible two-phase flow[END_REF]. Therefore, a smooth transition domain over a defined interface thickness [-F, +F] centered at the zero-level set interface is introduced to develop a continuous transition between domains. This smoothed Heaviside function is defined as follows:
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Eq. (II.4) is used to preserve a smooth transition of physical quantities at the interface. Denoting U & and U D the values of a physical variable U relative to metal and gas sub-domains, the mixed value of U through the level set transition zone, U J , can be defined by an arithmetic mixing law:

U J = ℋ & U & + (1 -ℋ & )U D (II.5)
Note that expression (II.5) holds as well in each of the two sub-domains [ & and [ D , i.e. outside of the transition zone.

Volume averaging method

Due to the huge difference of the characteristic length between the dendrite scale and the final product, the conservation equations would hardly be solved separately in the solid and liquid phases at a macroscopic scale with the spatial resolution on microstructure. Under this specific context of solidification, the volume averaging method is introduced for the numerical modeling of solidification [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF]. This method was initially proposed for the modeling of fluid flow through a porous medium [START_REF] Gray | On the general equations for flow in porous media and their reduction to Darcy's law[END_REF].

This method relies on the hypothesis that the macroscopic behavior of such saturated biphasic medium can be modeled by macroscopic equations from averaging the local conservation equations in a

Representative Elementary Volume (REV). In this thesis, the modeling of porosity defects in the cast metal is not considered and the REV is therefore simplified as a saturated medium composed entirely of solid phase (É) and liquid phase (r) as illustrated in Fig. II.3. Moreover, the temperature is assumed to be uniform and same for both solid and liquid phases in the REV with their interface noted as 6 -/* . z -/* and z */-are the outward unit vectors to this interface relative to solid and liquid phases.

According to the work of Whitaker [START_REF] Whitaker | Advances in theory of fluid motion in porous media[END_REF], the characteristic length of such volume element b " $ , should be chosen between the microscopic characteristic length b L (typically a few Nm) and the macroscopic characteristic length b M (typically from several centimeters to meters) of solidification, i.e. b L ≪ b " $ ≪ b M . Some basic values defined through the REV have also consequently to be defined.
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The symbol "*" denotes the values taken at the solid/liquid interface 6 -/* . U - * and U * * represent respectively the value of U in solid and liquid phases taken at the same interface. ( * is the solid/liquid interface velocity. z -/* and z */-are the outward unit vectors to the interface respectively for solid and liquid phases. The spatial derived average value for solid and liquid phases is given by:
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Finally, we will introduce the definition of the fluctuating components of U, noted as U Y -and U Y * respectively for the solid and liquid phases:

U Y -= (U -〈U〉 -) T - (II.15) U Y * = (U -〈U〉 * ) T *
We can derive the following relationship, relative to solid and liquid phases:

〈UV〉 -= 〈U〉 -〈V〉 -+ 〈U Y -V Y -〉 - (II.16) 〈UV〉 * = 〈U〉 * 〈V〉 * + 〈U Y * V Y * 〉 *
The intrinsic averaged value of the product of the two physical quantities, U and V, can be described as one part of the product of the two intrinsic averaged values and another part related to their fluctuating components. Beckermann and Viskanta [START_REF] Beckermann | Mathematical modeling of transport phenomena during alloy solidification[END_REF] proposed that in the context of solidification, the correlation between the fluctuating components of the phase density ? and any physical quantity V can be neglected:

〈?V〉 -= 〈?〉 -〈V〉 - (II.17) 〈?V〉 * = 〈?〉 * 〈V〉 *
In the following of this thesis, the above-simplified relationship will be assumed.

Adaptive remeshing methods

One of the most basic but also the most difficult issue in numerical modeling is the mesh definition. This is especially the case for numerical modeling of solidification. One typical and critical situation is that fine mesh is locally required in the very thin solid shell (typically of several millimeters) to calculate the undergoing stress and strain in the filling stage of IC or the mold region of CC, while the global simulation domain is about several meters and coarse mesh may be sufficient in other unimportant regions. Therefore, a uniform isotropic fine mesh generally used in simulations at a small scale is not appropriate. Besides, to save computation resources and time, an anisotropic mesh is preferred in such a situation. Moreover, in the framework of a level set formulation, Saad [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF] pointed out that local fine anisotropic mesh is necessary for the level set transition zone, where gradients of material properties across the metal/gas interface are very high and may derive severe numerical oscillations. Therefore, it is of crucial importance to define a meshing strategy, allowing an adaptive anisotropic mesh in solidification. For this purpose, we propose to use the two adaptive remeshing methods, developed in CEMEF [START_REF] Coupez | Parallel meshing and remeshing[END_REF][START_REF] Hitti | Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context[END_REF][START_REF] Coupez | Metric construction by length distribution tensor and edge based error for anisotropic adaptive meshing[END_REF][START_REF] Coupez | Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing[END_REF]. Before entering the details of each remeshing method, let's first introduce the definition of the metric tensor, x, through which a "unitary mesh" is defined. The metric tensor is symmetric and positive, representing at a given node of the mesh, the way to compute a distance and define a scalar product, such that for any vectors ] and ^:

‖]‖ Y = √] ' x] and 〈], ^〉Y = ] ' x^ (II.18)
By consequence, all edge vectors of the mesh should have a unit length, given the metric tensor.

Moreover, x is diagonalizable in an orthonormal basis (d , , d / , d 4 ) of the 3D Euclidean space ℝ 4 , and its eigenvalues are related explicitly to the mesh sizes, following the Eq. (II.19):

ℳ = Ç ⎝ ⎜ ⎜ ⎜ ⎛ 1 ℎ P % / 1 ℎ P & / 1 ℎ P ' / ⎠ ⎟ ⎟ ⎟ ⎞ Ç ' (II.19)
Ç is a rotation matrix corresponding to the change of the reference frame. ℎ P % , ℎ P & and ℎ P ' are the desired mesh size respectively in the direction of d , , d / , and d 4 .

Distance-based remeshing method

The distance-based remeshing method was initially developed in CEMEF, with application mainly to the multiscale modeling of microstructure evolution in polycrystalline material [START_REF] Coupez | Parallel meshing and remeshing[END_REF][START_REF] Hitti | Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context[END_REF]. More precisely, this method is used to generate an anisotropic mesh along the grains boundaries in REV defined by the zero-isovalue of several signed distance functions under a level set framework. This method works also very well in the context of solidification under the level set framework, where only one interface is present, characterized by the signed distance function, S, relative to the metal/gas interface. One specific and critical issue in the level set framework is the mesh refinement at the level set transition zone. In particular, mesh size in the direction perpendicular to the metal/gas interface should be refined to avoid numerical oscillations due to sharp material properties variation. In orde to better illustrate the advantage of this method in solidification, especially for the mesh description of the metal/gas interface, we would like to present hereunder a full description of this method and an associated example. The corresponding metric x at each mesh node is expressed as follows:

x = `(√S × √S) + _Õ (II.20)

Õ is the identity tensor. B and C are two scalars, with their expressions given respectively in Eq. (II.21)

and Eq. (II.22):

_ = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ 1 ℎ O / ¨1 ℎ , / - 1 ℎ O / ≤ ´F/ -|S| F / -F , + 1 ℎ O / 1 ℎ , / if |S| > F / (II.21) if F , ≤ |S| ≤ F / if |S| < F , ,
and
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F , and F / are two positive values, with F / ≥ F , . ℎ , and ℎ / are respectively the desired mesh size in the direction perpendicular to √S and in the direction of √S, within the zone defined by |S| < F , . ℎ O is the desired mesh size within the zone defined by |S| > F / . In order to provide a better illustration of the above metric, the eigenvalues of this metric are given in Table II.1. Between the inner zone (|S| < F , ) and outer zone (F / > |S|) around the zero-isovalue of distance function S, the desired mesh size changes progressively from ℎ / to ℎ O in the direction of √S and from ℎ , to ℎ O in the direction perpendicular to √S. The main advantage of this metric is that anisotropic mesh can be generated around the metal/gas interface with explicit and precise fine mesh size in the direction of interest while ensuring a coarse isotropic mesh outside this critical zone. The error along and in the direction of an edge linking node e 8 and e N is defined as:

Eigenvalues |S| < F , F , ≤ |S| ≤ F / F / > |S| M , , M 4 (two directions perpendicular to ∇S) 1 ℎ , / ⁄ ¨1 ℎ , / - 1 ℎ O / ≤ * F / -|S| F / -F , + 1 ℎ O / 1 ℎ O / ⁄ M / (direction ∇S) 1 ℎ / / ⁄ ¨1 ℎ / / - 1 ℎ O / ≤ * F / -|S| F / -F , + 1 ℎ O / 1 ℎ O / ⁄
f 8N = 'o 8N • e 8N ' (II.25)
where o 8N = o 8 -o N . To obtain the optimal mesh, the edge stretching factors É 8N are introduced:

f̃8 N = É 8N / f 8N ; 'e á 8N ' = É 8N 'e 8N ' (II.26)
where f8 N and e á 8N denote respectively the target error and associated edge length. Under the hypothesis that the optimal mesh is obtained with the minimal total approximation error and two other practical constraints (a desired maximal number of elements {|h, a minimal mesh size ℎ @8E ), we can deduce the stretching factor for each edge, can be calculated by:

É 8N = <7y '¨f =1= f 8N ≤ , U , 'e 8N ' ℎ @8E ÷ (II. 27 
)
where i is a constant of value 1.5 and f =1= the total interpolation error given by:

f =1= = ' ∑ ∑ f 8N U UX/ N∈](8) 8a, =1 J c D (c D -1){|h ÷ UX/ U (II.28)
where c D is the geometry dimension, which is equal to four in the case of a tetrahedral element. Finally, the continuous metric field defined at the mesh nodes is derived, based on the definition of the length distribution tensor and the calculated optimal edge stretching factors É 8N :

ℳ 8 = 1 b JK ¨1 |6(7)| - É 8N / e 8N × e 8N N∈] (8) 
≤ +,

(II.29)

One of the great advantages of this method compared to the previous one is the possibility to adapt the mesh simultaneously to more than one scalar field. For example, considering four scalar fields, ", #, $, %, which should influence a given metric tensor, the continuous gradient fields are, o 8 ! , o 8 " , o 8 # , o 8 $ , respectively calculated through Eq. (II.24). The multi-field error along the edge can be defined as:

f 8N = <"å Ø'ÿ! ! o 8N ! , ! " o 8N " , ! # o 8N # , ! $ o 8N $ Ÿ • e 8N ', F 722 'e 8N ' / ± (II.30)
where ! ! , ! " , ! # , ! $ are weighting coefficients for the different fields to ensure an equilibrium of the contribution to the final error when different spatial evolution exists.

ÿ! ! o 8N ! , ! " o 8N " , ! # o 8N # , ! $ o 8N $ Ÿ is a tensor of dimension 3 × 4.
Noting that in the case of zero gradient fields, the error defined by Eq. (II.25) would create a numerical problem by diving by zero when calculating the edge stretching factors as in Eq. (II.27). Therefore, a strictly positive regularization value F 722 is introduced in Eq. (II.30) to ensure a non-zero value of f 8N in Eq. (II. 25) through the way as presented in Eq. (II.30). In the following, we will give an example of this metric applied to the solidification of an ingot, studying the influence of different mesh parameters including the desired maximal number of element {|h, F 722 and the weighting coefficients. consequence, the mesh size is coarser homogeneously over the whole domain. As a general remark, this error based remeshing method is very efficient, capable of adapting different fields under a fixed number of mesh elements. However, this method has two weaknesses which may limit its application.

First, the definition of the relevant weighting coefficients is not easy, especially when more than two fields are present. In such a case, constant coefficients are not sufficient to ensure the equilibrium of elements distributed to each field. More precisely, during the solidification process, the surface of the metal/gas interface keeps increasing due to solidification shrinkage while the desired total number of elements is unchanged. The mesh quality at the interface may gradually decrease leading to numerical oscillations. Secondly, in CC applications where the simulation domain of the metal sub-domain may grow overtime under a global non-steady state approach, a constant desired total number of elements is not appropriate with the same desired mesh quality over the whole simulation domain. Hence, the distance-based method is chosen as the reference remeshing method for the metal/gas interface mesh adaptation, while the error-based remeshing method is used for mesh adaptation to potentially useful fields, e.g., solute concentration, stress, velocity, and temperature.

Conclusions

In this chapter, the three numerical methods required for the further modeling of solidification processes are presented. The global solidifying system defined in this thesis, made up of metal subdomain and gas sub-domain, requires the proposed specific numerical method corresponding to the level set approach. This method allows a unique level set formulation of the final governing equations for various physical phenomena, including heat transfer, solute transfer, solid mechanics and fluid mechanics, over the whole simulation domain. Details of such formulation and its related FE formulations will be presented in Chapter 4. Moreover, this method permits an explicit tracking of the free metal/gas interface under solidification, which corresponds to the industry need to predict "shrinkage pipe" defect.

Our second numerical method, the volume averaging method, is a basic method for the modeling of solidification. Metal sub-domain is considered as a true two-phase medium, saturated with solid and liquid phases. More precisely, the relative movement between the solid and liquid phases is allowed.

This second method is necessary for the further development of conservation equations in Chapter 3, essentially in the metal sub-domain with application to problems of heat transfer, solute transfer, and fluid mechanics. These conservation equations are a basis for the unique level set formulation mentioned previously.

Our third numerical method consists of the description of two main remeshing methods, which will be utilized in Chapter 5 dedicated to applications. The first distance-based remeshing method is suitable for precise control of the mesh around the metal/gas interface, in order to prevent numerical oscillations induced by a mesh with low quality in this critical zone. While the second error based remeshing method allows a local mesh refinement according to several given fields. Therefore, reasonable simulation results can be obtained with limited computational resources. As an example we can refine locally the solid shell by this method with adaptation to the stress field and perform a stress-strain analysis in this domain during the filling stage of the IC process instead to develop a mesh refinement in the whole metal sub-domain.

As a general summary, the three methods introduced in this chapter can be considered as a numerical toolkit required in following chapters to develop our numerical model for solidification. 

Chapter 3 Conservation and constitutive equations

Equations in the metal sub-domain 3.1.1 Heat transfer in metallic alloys under solidification

In this section, the local conservation and constitutive equations will firstly be introduced for a general description of the heat transfer problem in metallic alloys under solidification. Then macroscopic equations, averaged over the REV, will be detailed. These equations are considered as a basis for the heat transfer modeling in our partitioned numerical model for solidification processes.

Energy conservation equation

For a general heat transfer problem, the local energy conservation equation can be written as [START_REF] Rappaz | Numerical modeling in materials science and engineering[END_REF]:

\(?ℎ) \> + ∇ • (?ℎ() + ∇ • s ' = fl \} \> + ∇ • (}() ‡ + @: Ġ+ ̇' (III.1)
where ? is the density, ℎ the specific enthalpy, ( the velocity field. The Right Hand Side (RHS) terms of Eq. (III.1) present the variation of enthalpy by four different kinds of contributions. The first two correspond to the variation of energy due to the total derivative of pressure } and by consequence resulting from local compression and decompression. @ denotes the stress tensor and Ġ the strain rate tensor. ̇' is the volumetric heat source term and s ' is the heat flux. In the context of this thesis, the four first terms of this RHS will be ignored. The first two energy contributions are generally negligible compared to the latent heat of phase transformation. The heat source, ̇', can be neglected in present cases of casting simulations as no heat is introduced in processes during the solidification stage. Finally, energy variations due to mechanical contribution will not be considered as they are assumed very low (i.e. very low strain rate in solid and very low stress in liquid). As a consequence, with some basic calculations based on the volume averaging method, the macroscopic averaged form of Eq. (III.1) is

given respectively for the solid phase as [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF]:

\(j -〈?〉 -〈ℎ〉 -) \> + ∇ • (j -〈?〉 -〈ℎ〉 -〈(〉 -) + ∇ • 〈s ' -〉 = 6 ' - (III.2)
and for the liquid phase:

\(j * 〈?〉 * 〈ℎ〉 * ) \> + ∇ • (j * 〈?〉 * 〈ℎ〉 * 〈(〉 * ) + ∇ • 〈s ' * 〉 = 6 ' * (III.3)
where j -and j * denote the volume fraction respectively for solid and liquid phases. 〈?〉 * and 〈?〉 -are the intrinsic densities, 〈ℎ〉 -and 〈ℎ〉 * are the intrinsic specific enthalpies, 〈(〉 -and 〈(〉 * are the intrinsic velocities, 〈s ' -〉 and 〈s ' * 〉 are the averaged heat fluxes, 6 ' -and 6 ' * are the heat exchange terms at the solid/liquid interface, all with respect to solid and liquid phases in the REV and with their detailed expressions given hereunder according to the definition given in the previous chapter:

6 ' -= - 1 # W ∏ (?ℎ) - * ( * ] ( * ⁄ • z -* ⁄ bÖ + 1 # W ∏ (?ℎ() - * ] ( * ⁄ • z -* ⁄ bÖ - 1 # W ∏ s ' - * ] ( * ⁄ • z -* ⁄ bÖ (III.4) 6 ' * = - 1 # W ∏ (?ℎ) * * ( * ] ( * ⁄ • z * - ⁄ bÖ + 1 # W ∏ (?ℎ() * * ] ( * ⁄ • z * - ⁄ bÖ - 1 # W ∏ s ' - * ] ( * ⁄ • z * - ⁄ bÖ
Values taken at the solid/liquid interface are indicated by the symbol "*". Because the two outward unit vectors, z -* ⁄ and z * - ⁄ , are in the opposite directions, we can write the sum of these two surface terms, 6 ' -+ 6 ' * , as the following expression:

6 ' -+ 6 ' * = - 1 # W ∏ ÿ(?ℎ) - * -(?ℎ) * * Ÿ( * ] ( * ⁄ • z -* ⁄ bÖ (III.5) + 1 # W ∏ ÿ(?ℎ() - * -(?ℎ() * * Ÿ ] ( * ⁄ • z -* ⁄ bÖ - 1 # W ∏ ÿs ' - * -s ' * * Ÿ ] ( * ⁄ • z -* ⁄ bÖ
Assuming that there is a continuity of the physical qualities at the solid/liquid interface in its normal direction in the REV, each integral in the above expression is null and the whole expression is evaluated to zero. Therefore, by adding up Eq. (III.2) and Eq. (III.3), we obtain the macroscopic conservation equation in a form comparable with the local conservation equation previously written, for a "single-phase" metal sub-domain, ':

\〈?ℎ〉 & \> + ∇ • 〈?ℎ(〉 & + ∇ • 〈s ' 〉 & = 0 (III.6)
with the definition of the averaged values relative to the metal sub-domain:

〈?ℎ〉 & = j * 〈?〉 * 〈ℎ〉 * + j -〈?〉 -〈ℎ〉 - (III.7) 〈?ℎ(〉 & = j * 〈?〉 * 〈ℎ〉 * 〈(〉 * + j -〈?〉 -〈ℎ〉 -〈(〉 - (III.8) 〈s ' 〉 & = 〈s ' -〉 + 〈s ' * 〉.
(III.9)

Constitutive equations

The constitutive equations for heat transfer in metallic alloys under solidification consist in the description of the diffusive heat flux s ' and the specific enthalpy ℎ.

• Diffusive heat flux s '

The diffusive heat flux is given by the Fourier's law:

s ' = -t∇' (III.10)
where t denotes the thermal conductivity, ' the temperature field. The macroscopic form of Eq.

(III.10) over the REV can be written respectively for the solid phase, as:

〈s ' -〉 = -j -〈t〉 -∇' (III.11)
and for the liquid phase

〈" ' * 〉 = -j * 〈t〉 * -' (III.12)
where 〈t〉 -and 〈t〉 * are respectively the intrinsic heat conductivity of solid and liquid phases. The macroscopic constitutive equation written as a "single phase" in the metal sub-domain is given by:

〈s ' 〉 & = -〈t〉 & ∇' (III.13)
with the definition of the averaged heat conductivity of metal, 〈t〉 & , given by the following equation:

〈t〉 & = j -〈t〉 -+ j * 〈t〉 * (III.14)
• Specific enthalpy ℎ

Considering constant pressure, one pertinent approximation of the specific enthalpy of a phase can be formulated as:

ℎ = ∏ `< b' ' O (III.15)
where `< is the specific heat under constant pressure. The macroscopic form of Eq. (III.15) over the REV for the solid phase is:

〈ℎ -〉 = j -〈ℎ〉 -= j -∏〈`< 〉 -b' ' O (III.16)
Besides, assuming a constant latent heat v -/* for the energy release during solidification, the averaged specific enthalpy of the liquid phase is given by:

〈ℎ * 〉 = j * 〈ℎ〉 * = j * '∏〈`< 〉 * b' ' O + v -/* ÷ (III.17)
Finally, the macroscopic constitutive equation written as a "single-phase" in the metal sub-domain is given by:

〈ℎ〉 & = ∏〈`< 〉 & b' ' O + j * v -/* (III.18)
with definitions of the averaged values:

〈ℎ〉 & = 〈ℎ -〉 + 〈ℎ * 〉 (III.19) 〈`< 〉 & = j -〈`< 〉 -+ j * 〈`< 〉 * (III.20)
Nonetheless, the specific heat `< and the specific latent heat v -/* are rarely constant for metallic alloys; they may depend on the local temperature and solute compositions. Strong hypotheses are usually required on the values of `< and v -/* in order to develop such estimations of specific enthalpy for practical use, e.g. considering a constant `< per phase and a constant v -/* [START_REF] Combeau | Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains[END_REF][START_REF] Combeau | A numerical benchmark on the prediction of macrosegregation in binary alloys[END_REF]. An alternative method consists in the definition of the specific enthalpy directly from the existing thermodynamic database. The averaged specific enthalpy in the metal sub-domain can be written in the following form, as a variation of Eq. (III.19):

〈ℎ〉 & = j -〈ℎ〉 -+ j * 〈ℎ〉 * (III.21)
in which the intrinsic specific enthalpy of the solid phase 〈ℎ〉 -and the liquid phase 〈ℎ〉 * are evaluated through the database at its local temperature and solute concentration fields, deriving a theoretically correct averaged specific enthalpy for the metal sub-domain. This latter method is better as correct estimations are provided for these quantities, but also more time consuming because it supposes a huge number of requests to the thermodynamic database. This is the reason why tabulations are preferably used, allowing the calculation of the specific enthalpy according to the temperature and several limited solute concentrations [START_REF] Saad | Simulation of Channel Segregation During Directional Solidification of In-75 wt pct Ga. Qualitative Comparison with InSitu Observations[END_REF][START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF][START_REF] Saad | Temperature-based energy solver coupled with tabulated thermodynamic properties-Application to the prediction of macrosegregation in multicomponent alloys[END_REF]. In the further chapter for applications, the previous two methods are utilized, with the former method dedicated to a quick application of macrosegregation phenomena and the latter for more accurate simulations.

Solute transfer in metallic alloys under solidification

In this section, the local solute conservation equations and the related constitutive equations will be introduced for a general description of the solute transfer problem in metallic alloys under solidification. The macroscopic form of these equations averaged over the REV will also be given.

Solute conservation equations

Denoting, à 8 , the mass fraction of solute 7, the local solute conservation equation can be written as:

\(?à 8 ) \> + ∇ • (?à 8 () + ∇ • s . " = ̇." (III.22)
with, ̇." , denoting the volumetric solute source term and, s . " , the diffusive term corresponding to the flux of solute 7. In the context of this thesis, there is no source term. The macroscopic averaged form of Eq. (III.22) over the REV is given respectively for the solid phase as [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF]:

\(j -〈?〉 -〈à 8 〉 -) \> + ∇ • (j -〈?〉 -〈à 8 〉 -〈(〉 -) + ∇ • 〈s . " -〉 = 6 . " - (III.23)
and for the liquid phase:

\(j * 〈?〉 * 〈à 8 〉 * ) \> + ∇ • (j * 〈?〉 * 〈à 8 〉 * 〈(〉 * ) + ∇ • 〈s . " * 〉 = 6 . " * (III.24)
where 〈à 8 〉 -and 〈à 8 〉 * are the intrinsic mass fractions respectively for solid and liquid phases, 〈s . " -〉 and 〈s . " * 〉 are the averaged solute fluxes, 6 . " -and 6 . " * are the solute exchange at solid and liquid boundaries. The sum of the two surface terms, 6 . " -and 6 . " * , can be given as follows by analogy to Eq.

(III.5) written for energy conservation equations:

6 . " -+ 6 . " * = - 1 # W ∏ ÿ(?à 8 ) - * -(?à 8 ) * * Ÿ( * ] ( * ⁄ • z -* ⁄ bÖ (III.25) + 1 # W ∏ ÿ(?à 8 () - * -(?à 8 () * * Ÿ ] ( * ⁄ • z -* ⁄ bÖ - 1 # W ∏ ÿs . " - * -s . " * * Ÿ ] ( * ⁄ • z -* ⁄ bÖ
Assuming the continuity of physical quantities at the solid/liquid interface in its normal direction, this expression becomes null and the macroscopic conservation equation can be derived in the metal subdomain:

\〈?à 8 〉 & \> + ∇ • 〈?à 8 (〉 & + ∇ • 〈s . " 〉 & = 0 (III.26)
with the definition of averaged values in the metal sub-domain:

〈?à 8 〉 & = j * 〈?〉 * 〈à 8 〉 * + j -〈?〉 -〈à 8 〉 - (III.27) 〈?à 8 (〉 & = j * 〈?〉 * 〈à 8 〉 * 〈(〉 * + j -〈?〉 -〈à 8 〉 -〈(〉 - (III.28) 〈s . " 〉 & = 〈s . " -〉 + 〈s . " * 〉 (III.29)

Constitutive equations

Eq. (III.22) is not sufficient for the determination of the mass fraction of solute 7, à 8 , given a known velocity field. Complementary equations are needed for the definition of the solute flux vector s . " .

The constitutive equation of the solute transfer problem is given simply by Fick's first law:

s . " = -c 8 ∇(?à 8 ) (III.30)
where c 8 denotes the diffusion coefficient of solute 7. The macroscopic form of Eq. (III.30) over the REV can be written respectively for the solid phase:

〈s . " -〉 = -j -〈c 8 〉 -∇(〈?〉 -〈à 8 〉 -) (III.31)
and for the liquid phase 〈s .

" * 〉 = -j * 〈c 8 〉 * ∇(〈?〉 * 〈à 8 〉 * ) (III.32)
where 〈c 8 〉 -and 〈c 8 〉 * are the intrinsic diffusion coefficients of solute 7 respectively in solid and liquid phases. As a general remark, the solute diffusion phenomenon is much smaller compared to the solute convection phenomenon in liquid steel. Besides, the diffusion of solute in the solid phase is nearly negligible compared to that in the liquid phase. Typically, the diffusion coefficient of carbon in steel at the liquid state is about several 10 +c m / • s +, while in its solid state, this value is about several 10 +,, m / • s +, [START_REF] Agarwala | Diffusion of carbon in stainless steels[END_REF][START_REF] Goldberg | The diffusion of carbon in iron-carbon alloys at 1560 C[END_REF]. Therefore, the diffusion in the solid phase is generally neglected [START_REF] Liu | 2-Dimensional FEM modeling of macrosegregation in the directional solidification with mesh adaptation[END_REF] and the macroscopic constitutive equation written as a "single-phase" in the metal sub-domain can be simplified as:

〈s . " 〉 & = -j * 〈c 8 〉 * ∇(〈?〉 * 〈à 8 〉 * ) (III.33)

Solid mechanics in metallic alloys under solidification

Unlike the previous two sections where conservation and constitutive equations are developed under an effective two-phase model, in this section, the mixture theory will be used, considering the metallic alloy under solidification as a homogenized "single phase" continuum. Such approximation is generally accepted for stress-strain analyses in metallic alloys. Here in this section, local mass and momentum conservation equations will be introduced for a general description of the solid mechanics problem in metallic alloys under solidification. Constitutive equations in the metal sub-domain (either in solid, liquid or mushy states) will also be detailed.

Momentum conservation equations

The local momentum conservation equation for a general mechanics problem can be written as:

∇ • @ + ?l = ?‰ (III.34)
where @ is the stress tensor, ? is the density, l is the gravity vector and ‰ is the acceleration associated with the total derivative of the velocity field. Note that in IC or CC processes, the accelerations in the fully solidified regions are extremely low. The acceleration term is thus neglected in Eq. (III.34) in this thesis work. The stress tensor, @, can be decomposed into two parts. The first one is a deviatoric stress tensor Ñ and the second one is related to the pressure field }, given as follow:

@ = Ñ -}Â (III.35)
with  the unit tensor. By substituting Eq. (III.35) into Eq. (III.34) and taking into consideration the hypothesis made on the acceleration term, the final local momentum conservation equation is given by: ∇ • Ñ -∇} + ?l = 0 (III.36)

Constitutive equations

Constitutive equations of the solid mechanics problem consist of the description of the relationship between the stress tensor and the strain rate and/or strain tensors. Since solidification processes have a long temperature range, from the initial metal in the liquid state to the final full solidified metal at ambient temperature, different constitutive equations for the metal in its different states (either in liquid, mushy or solid) are used [START_REF] Jaouen | Modélisation tridimensionnelle par éléments finis pour l'analyse thermo-mécanique du refroidissement des pièces coulées[END_REF][START_REF] Bellet | An ALE-FEM approach to the thermomechanics of solidification processes with application to the prediction of pipe shrinkage[END_REF]. Depending on the local temperature, two different constitutive models are presented hereunder.

• Thermo-Elasto-ViscoPlastic (TEVP) constitutive model

Metallic alloys in the solid state can be modeled either as Thermo-ElasticPlastic (TEP) or Thermo-Elastic-ViscoPlastic (TEVP) materials. In the latter class of models, a lot of models with different complexities can be found in the literature [START_REF] Estrin | A versatile unified constitutive model based on dislocation density evolution[END_REF][START_REF] Agelet De Saracibar | On the constitutive modeling of coupled thermomechanical phase-change problems[END_REF]. One of the simplest TEVP models is the following:

Ġ= Ġ7 * + Ġ; < + Ġ= > (III.37) Ġ7 * = Ê +, @̇= 1 + O h @̇- O h tr(@̇)Â (III.38) Ġ; < = √3 2D E fl D E -D : √3uF̅ E ‡ X , @ Ñ (III.39
)

Ġ= > = - 1 3? b? b> Â (III.40)
The strain rate tensor Ġ is split into an elastic part, Ġ7 * , a viscoplastic part, Ġ; < , and a thermal part, Ġ= > (Eq. (III.37)). The latter consists of the thermal expansion rate (Eq. (III.40)). Eq. (III.38) yields the hypoelastic Hooke's law where Ê represents the elastic tensor, depending on the Young's modulus h, and on the Poisson's coefficient O. @̇ denotes the total time derivative of the stress tensor. Eq. (III. [START_REF] Sethian | Level set methods for fluid interfaces[END_REF] gives the relation between the viscoplastic strain rate and the stress deviator Ñ. Coefficient u is the viscoplastic consistency, D : denotes the static yield stress below which no viscoplastic deformation occurs. The function [å] X is equal to 0 when å is negative and to the value å otherwise. Coefficients m and n denote the strain-rate sensitivity coefficient, and the strain hardening coefficient, respectively. In the context of high temperature processing, all material parameters are supposed temperature dependant. The von Mises equivalent stress and strain rate are denoted D E and F̅ ̇ , respectively, and are defined as follows:

D E = Ë 3 2 Ñ: Ñ (III.41) F̅ ̇= Ë 2 3 Ġ; < : Ġ; <
In light of Eq. (III.39), the corresponding relationship between them is the following:

D E = D : + uÿ√3Ÿ @X, F̅ ̇@F̅ E (III.42)
An alternative simple TEVP model is the following:

⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ Ġ= Ġ7 * + Ġ; < + Ġ= > Ġ7 * = Ê +, @̇= 1 + O h @̇- O h tr(@̇)Â Ġ; < = √3 2D E È D E -(D : + qF̅ E ) √3u Í X , @ Ñ Ġ= > = - 1 3? b? b> Â (III.43)
which leads to the following relation:

D E = D : + qF̅ E + uÿ√3Ÿ @X, F̅ ̇@ (III.44)
with q a constant coefficient. The first model is named « multiplicative » while the second is named « additive ».

• Thermo-ViscoPlastic (TVP) constitutive model

A metallic alloy in the mushy state is indeed a two-phase liquid-solid medium. An accurate description of the mechanical response of such a medium requires an effective two-phase model, which expresses separately the behavior of liquid and solid phases. The interaction between the deformation of the solid phase and the fluid flow, which is characteristic to the "sponge-effect" within the mushy zone, can thus be correctly modeled [START_REF] Fachinotti | Two-phase thermomechanical and macrosegregation modeling of binary alloys solidification with emphasis on the secondary cooling stage of steel slab continuous casting processes[END_REF]. Nevertheless, in practice, the mushy zone can be approximated as a homogenized "single phase" continuum with a generalized non-Newtonian fluid behavior, when the analysis of stresses and distortions is aimed at. Besides, in the context of a partitioned two-step resolution scheme, the correct calculation of the fluid flow within the mushy zone can be treated in the complementary fluid mechanics solver. The following Thermo-ViscoPlastic (TVP) model is thus proposed to model the solid-like behavior of the metal:

Ġ= Ġ; < + Ġ= > (III.45) Ġ; < = 1 2u ÿ√3F̅ Ÿ,+@ Ñ (III.46) Ġ= > = - 1 3? b? b> Â (III.47)
The strain rate tensor Ġ is split into a viscoplastic part, Ġ; < , and a thermal part, Ġ= > , Eq. (III.45). Eq.

(III.46) is the classical constitutive equation for a generalized non-Newtonian fluid behavior. It relates the viscoplastic strain rate Ġ; < to the stress deviator Ñ , in which the strain-rate sensitivity < continuously increases with the liquid fraction in the mushy zone. The Newtonian behavior, which is assumed to be the behavior law of the liquid metal above its liquidus temperature, ' 5 , is obtained for < = 1. In this case, the viscoplastic consistency u is simply the dynamic viscosity of the liquid, N * .

Eq. (III.48) yields the well-known power law relating the equivalent von Mises strain rate and stress: 

D E = uÿ√3Ÿ
ryØD E(j * , F̅ )± = 1 -j * 1 -j 01> * ry ØD Eÿj 01> * , F̅ Ÿ± + j * -j 01> * 1 -j 01> * ryØD E(1, F̅ )± (III.51)
Expressing then the equivalent stress by Eq. (III.48), a few additional calculations lead to the expressions of u and < as functions of the liquid fraction in the interval of interest:

ry u(j * ) = 1 -j * 1 -j 01> * ry uÿj 01> * Ÿ + j * -j 01> * 1 -j 01> * ry u(j * = 1) (III.52) <(j * ) = 1 -j * 1 -j 01> * <ÿj 01> * Ÿ + j * -j 01> * 1 -j 01> * <(j * = 1) (III.53)
Reminding that u(j * = 1) is the dynamic viscosity of liquid N * , and that <(j * = 1) is equal to one in the pure liquid phase. Following the above considerations, we can propose the final constitutive model applicable over the whole solidification temperature range, by combining the TEVP and TVP constitutive models: i) In the solid zone, for temperature below the critical transition temperature: the TEVP model is applied as given by Eqs. (III.37-III.44). The mechanical properties, q, u, <, D : , and y are available and supposed depending on temperature. Note that the value of D : and y , and eventually q (in case of an additive TEVP model) should be zero for temperature above the critical temperature to ensure stress continuity at the critical temperature.

ii)

In the liquid zone for temperature above the liquidus: the TVP model is given by Eqs. (III.45-III.48) with strain rate sensitivity coefficient < equal to one and the viscoplastic consistency u equal to the dynamic viscosity of liquid, N * . Remark that the use of the nominal (effective) liquid viscosity may drive numerical conditioning problems due to the abrupt transition of mechanical behavior in the mushy zone even though the previous proposed logarithmic mixture is applied. Therefore the liquid viscosity will be artificially increased to ensure stability in numerical resolution. It will be shown that in the context of a two-step concurrent resolution, there is no drawback in proceeding this way.

iii)

In the mushy zone: a transition from TEVP constitutive model to TVP constitutive model is proposed by the following expressions of u and < as functions of ! ! , which are defined separately in two different regions of the solidification interval: (III.54), u first decreases linearly in the zone below the liquid coherency fraction. Then it decreases logarithmically until the liquidus temperature, where u is found equal to the artificially augmented dynamic viscosity of the liquid. While < increases linearly in both intervals. But in the first interval, it is determined by the value at solidus and the related experimental slope value. And in the second interval, it is simply a linear interpolation between the value at liquid coherency fraction and < = 1 at liquidus temperature.

Firstly, in the interval [0, j 01> * ] ⎩ ⎪ ⎨ ⎪ ⎧ u(j * ) = u( ' 6 ) + \u \j * j * <(j * ) = <( ' 6 ) + \< \j * j * (III.54) (close to the solidus) Secondly, in the interval [j 01> * ,1] ⎩ ⎪ ⎨ ⎪ ⎧ u(j * ) = uÿj 01> * Ÿ ,+d * ,+d ,-. * N * d * +d ,-. * ,+d ,-. * <(j * ) = <ÿ j 01> * Ÿ 1 -j * 1 -j 01> * + j * -j 01> * 1 -

Mass conservation equations

Still considering the metallic alloy under solidification as a homogenized "single-phase" continuum, the mass conservation equation can be written as:

∇ • ( = - 1 ? b? b> (III.55)
Remark that the Right Hand Side (RHS) term of Eq. (III.55) can be written in another form, related to the strain rate tensor Ġ:

∇ • ( = >"(Ġ) (III.56)
For the TVP model, by substituting Eqs. (III.45-III.47) into Eq. (III.56) and assuming that the plastic deformation is volume-preserving, >"ÿĠ; < Ÿ = 0, we recover the mass conservation equation, Eq.

(III.55):

∇ • ( = >"(G) = >"(Ġ= > ) = - 1 ? b? b> (III.57)
We can also write in the following way, combining both TVP and TEVP models:

-• ( = q(' B -')>"(Ġ7 * ) + >"(Ġ= > ) (III.58)
where q(' B -') is the standard Heaviside function equal to one if the temperature, ', is below the critical temperature ' B , and zero otherwise. Similarly, substituting Eqs. (III.38, III.40, III.47) into Eq.

(III.58), we can deduce the following expression [START_REF] Jaouen | Modélisation tridimensionnelle par éléments finis pour l'analyse thermo-mécanique du refroidissement des pièces coulées[END_REF]:

-• ( = -q(' B -') 1 T b} b> - 1 ? b? b> (III.59)
where T = h (3(1 -2O)) ⁄ denotes the elastic modulus for compressibility. Finally, we should note that with the TEVP model, Eq. (III.59) is slightly different from the mass conservation equation. This is because in the current TEVP model, the thermal strain rate, as given by Eq. (III.47), does not accommodate the influence of the pressure on the density and thus not strictly recovers the mass conservation equation. Indeed, in TEVP model, in application to the fully solidified zone, the thermal strain rate in the "single-phase" continuum, defined as follows, would be more appropriate:

Ġ= > = - 1 3 1 ? \? \' \' \> Â ≡ - 1 3 ) ' \' \> Â (III.60)
where isotropy is assumed and ) ' is defined as the thermal expansion coefficient usually taken as constant. However, we should note that such definitions become more complicated in the mushy zone where two phases are present with the phase transformation. The definition of an equivalent thermal expansion, taking into consideration both the thermal dilatation and phase transformation may be an option. However, it is generally assumed that the contribution of the pressure variation to the density is almost negligible compared to that of the temperature variation in metallic alloys under solidification.

By consequence, Eq. (III.59) remains a good approximation for the description of the velocity-pressure relationship with respect to the mass conservation equation.

Fluid mechanics in solidification

In this section, the local momentum and mass conservation equations will firstly be introduced for a general description of the fluid mechanics problem in solidification. When fluid flow is considered in the mushy zone, it is necessary to express averaged formulation over the REV, respectively for the solid and liquid phases, leading to the macroscopic momentum conservation equation relative to the liquid phase and the macroscopic total mass conservation equation in the metal sub-domain.

Constitutive equations of the liquid in the metal sub-domain will also be provided.

Mass and momentum conservation equations

The local mass and momentum conservation equations for a general fluid mechanics problem are the same as those presented in the solid mechanics problem, see Eqs. (III.34) and (III.55). In the framework of a two-phase model, their macroscopic averaged forms over the REV relative to the liquid phase are given as follows [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF]:

\(j * 〈?〉 * 〈(〉 * ) \> + -• (j * 〈?〉 * 〈(〉 * × 〈(〉 * ) --• 〈Ñ * 〉 + -• (} * Â) -j * 〈?〉 * l = w * (III.61) \(j * 〈?〉 * ) \> + -• (j * 〈?〉 * 〈(〉 * ) = 6 * (III.62)
where j * , 〈?〉 * , 〈(〉 * , 〈Ñ * 〉, 〈} * 〉 are respectively the liquid fraction, the intrinsic liquid density, the intrinsic liquid velocity, the averaged deviatoric stress tensor and the averaged pressure. w * in Eq. (III.61) is the interfacial momentum transfer with respect to the liquid phase. 6 * in Eq. (III.62) is the interfacial mass transfer due to phase change, relative to the liquid phase. The exact expression of w * can be given by the following expression:

w * = 1 # W ∏ (Ñ * -} * Â) * z */-bÖ ] (/* - 1 # W ∏ ÿ(? * ( * ) * ( * • z */--(? * ( * × ( * ) * z */-ŸbÖ ] (/* (III.63)
where # W is the volume of the RVE, 6 -/* denotes the interface between solid and liquid phases, and z */-is the outward (relative to the liquid phase) unit vector to 6 -/* . The second term at the RHS is induced by inertia and phase transformation, with ( * the interfacial velocity vector of the solid/liquid interface. The first term at the RHS is due to interfacial stress and can be divided into two parts. The

first part, -1 # W ⁄ ∫ } * * Âz */-bÖ ] (/*
, can be approximated as } * * ∇j * with } * * the average liquid pressure onto the interface. Assuming that there is an immediate equilibrium of pressure in the liquid phase, we have:

} * * = 〈}〉 * (III.64)
Therefore, this first part, written as 〈}〉 * ∇j * , can be combined with the term ∇〈} * 〉 in the momentum equation to finally yield the term j * ∇〈}〉 * . The second part,

1 # W ⁄ ∫ Ñ * * z */-bÖ ] (/*
, is generally interpreted as the average interfacial viscous stress exerted by the solid structure onto the liquid phase and vice-versa. In the case of slow fluid flow through a columnar dendritic structure, its expression can be written as [START_REF] Gray | On the general equations for flow in porous media and their reduction to Darcy's law[END_REF][START_REF] Whitaker | Flow in porous media I: A theoretical derivation of Darcy's law[END_REF][START_REF] Ganesan | Conservation of mass and momentum for the flow of interdendritic liquid during solidification[END_REF]:

1 # W ∏ Ñ * * z */-bÖ ] (/* = -j * / N * L +, (⟨(⟩ * -⟨(⟩ -) (III.65)
where L is the permeability tensor and N * the dynamic viscosity of the liquid phase. L is represented by a 3x3 matrix containing at least two different components, considering the anisotropy of the columnar dendritic structure. However, for the sake of simplicity, in most literature studies, isotropic permeability is assumed and thus the permeability tensor reduces to a simple scalar K. The same assumption is done in the present thesis study, the permeability is approximated by the well-known

Carman-Kozeny relationship [START_REF] Carman | Fluid flow through granular beds[END_REF], assuming that the specific surface of the solid phase is equal to that of uniform spheres with constant diameter M / :

K = M / / j * 4 180(1 -j * ) / (III.66)
where M / is the secondary interdendritic spacing, which is defined a priori. Another approximation in Eq. (III.63) consists in neglecting the second term at the RHS in the momentum exchange term. Indeed, this term represents the exchange of momentum due to inertia and volume change during solidification.

Considering liquid flow in the mushy zone, when the liquid phase is dominant (i.e. j * > 0.7), the liquid flow induced by the thermal-solutal convection is much greater than that induced by phase change. On the other hand, when the local amount of liquid is relatively small, the interfacial viscous effect (the first term at the RHS in Eq. (III.63)) is certainly dominant compared to that induced by phase change. In fact, in conventional industry casting applications, the volume change due to solid/liquid transformation is small and it is commonly accepted that the second term at the RHS in the momentum exchange term can be neglected. Finally, the macroscopic momentum conservation equations relative to the liquid phase can be obtained, taking into consideration the solid movement in the mushy zone:

\ \> (j * 〈?〉 * 〈(〉 * ) + ∇ • (j * 〈?〉 * 〈(〉 * × 〈(〉 * ) -∇ • 〈Ñ * 〉 + j * ∇〈}〉 * -j * 〈?〉 * l + j * / N * K +, (⟨(⟩ * -⟨(⟩ -) = 0 (III.67)
The total mass conservation equation is derived from the sum of Eq. (III.62) relative to the liquid phase and another similar equation relative to the solid phase:

\(j * 〈?〉 * + j -〈?〉 -) \> + ∇ • (j -〈?〉 -〈(〉 -) + ∇ • (j * 〈?〉 * 〈(〉 * ) = 6 -+ 6 * (III.68)
where j -, 〈?〉 -, 〈(〉 -are respectively the solid fraction, the intrinsic solid density, the intrinsic solid velocity. 6 -in Eq. (III.68) is the interfacial mass transfer due to phase change, relative to the solid phase. Similar reasoning as in the previously done for energy and solute conservation equations, the detailed expression of the sum, 6 -+ 6 * , is given by:

6 -+ 6 * = - 1 # W ∏ ÿ〈?〉 - * -〈?〉 * * Ÿ( * ] ( * ⁄ • z -* ⁄ bÖ + 1 # W ∏ ÿ〈?(〉 - * -〈?(〉 * * Ÿ ] ( * ⁄ • z -* ⁄ bÖ (III.69)
Assuming again the continuity of physical quantities at the solid/liquid interface in its normal direction in the REV, we can find that the interfacial mass exchange terms 6 -and 6 * cancel each other.

Therefore, we can write Eq. (III.68) in the following form, introducing the averaged liquid velocity

〈( * 〉, -• 〈( * 〉 = - 1 〈?〉 * Ú \〈?〉 & \> + 〈( * 〉 • -〈?〉 * + -• (j -〈?〉 -〈(〉 -)Û (III.70)
where 〈?〉 & = j * 〈?〉 * + j -〈?〉 -is the averaged metal density. Note that, Eq. (III.67) and Eq. (III.70), stand not only in the mushy zone but also in the pure liquid zone (i.e. j * = 1). According to the expression (III.66), the inverse value of permeability, K +, , tends toward zero in the pure liquid zone.

Darcy's term is thus not present in the bulk liquid. Therefore, the above-averaged momentum and mass where ? * , ( * , Ñ * , } * are respectively the density, velocity, deviatoric stress tensor and pressure of the liquid.

Constitutive equations

Metal in the liquid state is considered as an incompressible Newtonian fluid. Its microscopic constitutive equation is expressed by:

Ñ * = N * (∇( * + ∇ e ( * ) (III.73)
As justified by Ni and Beckermann [START_REF] Ni | A volume-averaged two-phase model for transport phenomena during solidification[END_REF], taking into account that the density differences between the phases are small, that the phase change rates are low, and that the interfacial velocities of the liquid and solid phases are approximately equal, the averaged deviatoric stress tensor 〈Ñ * 〉 can be modeled as:

〈Ñ * 〉 = N * (∇〈( * 〉 + ∇ e 〈( * 〉) (III.74)

Equations in the gas sub-domain

In the context of this thesis, in the level set framework, a gas sub-domain is introduced above the metal sub-domain, to track the dynamic metal/gas interface. Nonetheless, we should remind that the REV is defined only in the metal sub-domain as a saturated medium of solid and liquid phases. A full description of the interactions between the metal and the gas at the scale of REV is thus not considered in this thesis. Indeed, in a level set framework where the metal/gas interface is described as a homogenized artificial transition zone, interactions between the metal and gas are taken at a macroscopic scale through the smooth Heaviside function; this will be explained later in the next chapter. Moreover, as the main purpose of this thesis relies on the metal sub-domain, the description of the physical phenomena will be simplified. Being aware of the fact that gas is generally compressible, the gas sub-domain will be considered as a pure single-phase domain with an incompressible Newtonian behavior in this thesis work. Moreover, constant values will be used for the description of the four physical phenomena under study in this thesis in the gas sub-domain.

Heat transfer in gas

By analogy to the local energy conservation equation Eq. (III.1) written in metal sub-domain and neglecting all energy contributions at the RHS of this equation, we can deduce the energy conservation equation in the gas sub-domain, given by: (III.10), we can deduce the constitutive equation of the heat flux in the gas sub-domain as follows:

\(? O D ℎ D ) \> + ∇ • (? O D ℎ D ( D ) + ∇ • s ' D = 0 (III.
s ' D = -t O D ∇' (III.76)
where t O D is the constant heat conductivity of the gas. By the same reasoning, the constitutive equation of the specific enthalpy in the gas sub-domain is given by:

ℎ D = ∏ `< O D b' ' O = `< O D ' (III.77)
where `< O D is the constant specific heat of the gas.

Solute transfer in gas

Like for the energy conservation equation developed in the gas sub-domain, the conservation equation of solute in the gas sub-domain can be expressed as follows:

\(? O D à 8 D ) \> + ∇ • ÿ? O D à 8 D ( D Ÿ + ∇ • s . " D = 0 (III.78)
where ? O D , à 8 D , ( D and 〈" . " 〉 D are respectively the constant density, mass fraction, velocity, and solute flux in the gas sub-domain. Similarly, the constitutive equation in gas sub-domain is simply given by:

s . " D = ? O D c 8 O D ∇à 8 D (III.79)
with c 8 O D the constant diffusion coefficient of solute 7 in gas. One important issue to be mentioned concerns the description of the solute transfer problem in the gas sub-domain. The conservation and constitutive equations, as given by Eq. (III.78) and Eq. (III.79), are surely applicable in the gas subdomain. Nonetheless, there is hardly any solute in the gas sub-domain, knowing that metal evaporation phenomena can be ignored for steel casting processes. This specificity of the solute transfer problem with the presence of gas may arise special numerical issues at the metal/gas interface. More details of this special point will be given in the next chapter.

Solid mechanics in gas

Commonly speaking, it is not appropriate to speak of solid mechanics in the gas sub-domain as gas is considered as an incompressible Newtonian fluid. Nonetheless, in the framework of level set, it is necessary to present here the mass and momentum conservation equations, and the corresponding constitutive equations, in the context of the solid mechanics problem, to develop the monolithic equations of each physical problem that we will develop in the next chapter. Based on the local momentum and mass conservation equation presented in the metal sub-domain, we can deduce the following equations for gas:

∇ • Ñ D -∇} D + ? O D l = 0 (III.80)
where Ñ D , ? O D , } D are respectively the deviatoric stress tensor, pressure and constant density of the gas.

While for the mass conservation equation, due to its incompressibility, it is given simply by:

∇ • ( D = 0 (III.81)
The related constitutive equations in the gas sub-domain can be considered as the same as that of the Newtonian behavior of the metal in the liquid state in the metal sub-domain, with < equal to one and the viscoplastic consistency u is simply the dynamic viscosity of the gas, N D .

Fluid mechanics in gas

Unlike in equations given in the above section for solid mechanics, the time derivative term will be conserved in the momentum equation for gas here, to be coherent with that presented for fluid mechanics in the metal sub-domain:

? O D \( D \> + ? O D -• (( D × ( D ) --• Ñ D + -} D -? O D l = 0 (III.82)
where ? O D , ( D , Ñ D , } D represent respectively the constant density, velocity, deviatoric stress tensor and pressure of the gas. The mass conservation equation is the same as that of Eq. (III.81), given in the above section. Finally, the corresponding constitutive equation for the incompressible gas is given by the following expression by analogy with Eq. (III.73) in case of an incompressible liquid:

Ñ D = N D (∇( D + ∇ e ( D ) (III.83)
with N D is the dynamic viscosity of the gas.

Conclusions

In this chapter, conservation and constitutive equations are presented, for the modeling of four different physical problems in metallic alloys under solidification. The relative equations in the gas sub-domain are also introduced, as required in the level set framework defined in this thesis work. These equations will be used in the next chapter for the development of the monolithic conservation equations governing each physical problem in our partitioned two-step solidification model. The description of the physical problems in the gas sub-domain is indeed oversimplified. But it will be shown further in the chapter of applications, that such a simplification has few influences on the specific purpose defined in this thesis work concerning the concurrent fluid flow, stress-strain analysis and macrosegregation in the metal sub-domain. • The advection term related to the compressibility of the liquid phase is negligible in Eq. (IV.1):

〈?〉 * 〈ℎ〉 * -• 〈( * 〉 ≈ 0. (IV.3)
• The advection term related to the gradient of the liquid density is negligible in Eq. (IV.1):

〈ℎ〉 * 〈( * 〉 • -〈?〉 * ≈ 0. (IV.4)
• Enthalpy relationship for the liquid phase in the advection term is given by:

∇〈ℎ〉 * = 〈`< 〉 * ∇'. (IV.5)
Firstly, under a pure columnar solidification regime, we can consider that the movement of the solid phase is extremely low for most of the IC processes compared to that of the fluid flow induced by the thermo-solutal effect (typically ~ 1 -100 mm • s +, .). The hypothesis of a fixed solid phase is thus reasonable (Eq. (IV.2)). Secondly, in the energy transport term, the solidification shrinkage (Eq. (IV.3))

and thermal dilatation of the liquid phase (Eq. (IV.4)) are neglected compared to the convection of the liquid enthalpy. Finally, concerning the last hypothesis, we should note that theoretically the value of 〈`< 〉 * should be derived from a thermodynamic database or by tabulating the liquid enthalpy with respect to the temperature and solute concentration fields. Nonetheless, in the previous work of Saad [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF], a constant 〈`< 〉 * is taken for simplification, with its value evaluated at the initial temperature and solute concentration fields. Within the above hypotheses, Saad [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF] deduced hereunder the energy conservation equation in the metal sub-domain:

\〈?ℎ〉 & \> + 〈( * 〉〈?〉 * 〈`< 〉 * • ∇' -∇ • (〈t〉 & ∇') = 0 (IV.6)
However, this equation becomes not appropriate to model heat transfer in CC, as the first hypothesis made is no longer correct. In CC, solid velocity is nearly the casting velocity (typically about several centimeters per second) and is thus no more negligible compared to the fluid flow, especially in the secondary cooling zone where the liquid velocity is of the same order of magnitude as the solid one.

Inspired by the work of Bellet and Heinrich [START_REF] Bellet | A two-dimensional finite element thermomechanical approach to a global stress-strain analysis of steel continuous casting[END_REF], we choose to adopt a similar global non-steady-state approach for the modeling of CC in this thesis work. Such an approach requires a moving mesh grid to comply with the continuous increase of the calculation domain and the use of the Arbitrary Lagrangian-Eulerian (ALE) method. By consequence, the energy conservation equation in the metal sub-domain should be redeveloped from its initial integral form as given in Eq. (IV.1). In the following, we will present in detail this newly developed conservation equation for CC applications and we will find that with some simplifications, we can recover a similar form of Eq. (IV.6) as initially proposed for IC applications. Denoting ( @-> the mesh velocity, Eq. (IV.1) can be reformulated in the following form:

\ @-> 〈?ℎ〉 & \> + -• 〈?ℎ(〉 & -( @-> • -〈?ℎ〉 & --• (〈t〉 & -') = 0 (IV.7)
By developing the expressions of 〈?ℎ(〉 & and 〈?ℎ〉 & in Eq. (IV.7) and with some reorganizations, we obtain:

\ @-> 〈?ℎ〉 & \> + ∇ • (j * ⟨?⟩ * ⟨ℎ⟩ * ⟨(⟩ * ) -( @-> • ∇(j * ⟨?⟩ * ⟨ℎ⟩ * ) (IV.8) +∇ • (j -⟨?⟩ -⟨ℎ⟩ -⟨(⟩ -) -( @-> • ∇(j -⟨?⟩ -⟨ℎ⟩ -) -∇ • (〈t〉 & ∇') = 0
Let's first consider the following term, -• (j -⟨?⟩ -⟨ℎ⟩ -⟨(⟩ -) -( @-> • -(j -⟨?⟩ -⟨ℎ⟩ -) in Eq. (IV.8). This term represents the energy transport related to the solid phase, which is zero in the fully liquid zone. Assuming that the volume change of the solid, due to elasticity and thermal dilatation, has a negligible impact on heat transfer, the solid phase is supposed here to be intrinsically incompressible,

-• ⟨(⟩ -= 0, then -• (j -⟨?⟩ -⟨ℎ⟩ -⟨(⟩ -) -( @-> • -(j -⟨?⟩ -⟨ℎ⟩ -) = (⟨(⟩ --( @-> ) • -(j -⟨?⟩ -⟨ℎ⟩ -) (IV.9)
In the framework of the ALE method, the fully solidified zone is considered as Lagrangian: the mesh velocity is defined to be equal to the intrinsic solid velocity, ( @-> = ⟨(⟩ -. By consequence, the above RHS term becomes zero in the solid zone. In other words, the energy transport due to the motion of the solid phase in the fully solidified zone is achieved through the updating of the mesh grid.

Nonetheless, in the mushy zone, the definition of ( @-> is rather arbitrary. For instance, in the work of Bellet and Fachinotti [START_REF] Bellet | ALE method for solidification modeling[END_REF], the mesh velocity of a node in the mushy zone was defined roughly as the average velocity of its neighboring nodes, in order to minimize the distortion of the mesh. Note that if ( @-> is equal to ⟨(⟩ -in the mushy zone, this energy transport term related to the solid phase becomes zero over the whole metal sub-domain. Based on this remark, a simplified mesh velocity is defined, in the solid and mushy zones, given as in the following equation:

( @-> = j * ( 00 + j -( A (IV.10)
where ( A is the solution field from the third solid-oriented submodel that we will introduce later in the third section of this chapter and ( 00 the constant casting velocity of the CC machine. In the fully liquid zone, the definition of the mesh velocity is arbitrary. According to the specific configuration of each simulation model, a pure Eulerian zone is usually defined with ( @-> = 0 in regions where metal remains in the liquid state. More details of such a definition will be given in the later application to CC processes. In this section, we need to retain the fact that this ( A is considered as a good approximation of the intrinsic solid velocity ⟨(⟩ -in the mushy zone and an exact solution of the intrinsic solid velocity in the solid zone. By consequence, in the solid zone, ( @-> = ( A = ⟨(⟩ -and in the mushy zone, ( @-> keeps being a good approximation of the intrinsic solid velocity because in CC the intrinsic solid velocity in the mushy zone is nearly the casting velocity ( 00 . The direct use of ( A as the mesh velocity may be a simpler alternative choice, but this may derive additional mesh distortions in the fully liquid zone compared to that defined as Eq. (IV.10) in which the mesh nodes in the fully liquid zone moves with a constant velocity ( 00 during the mesh grid updating. Therefore, ( @-> , defined in Eq. (IV.10) is a good approximation of the intrinsic velocity of the solid phase in both the mushy and solid zones, and we can thus neglect the term of energy transportation by the solid phase as defined in Eq. (IV.9).

Considering now the following term, -• (j * ⟨?⟩ * ⟨ℎ⟩ * ⟨(⟩ * ) -( @-> • -(j * ⟨?⟩ * ⟨ℎ⟩ * ), in Eq. (IV.8), it represents the energy transport related to the liquid phase. Assuming that energy transfer due to solidification shrinkage and thermal dilatation of the liquid phase is negligible, as given in Eq. (IV.3) and Eq. (IV.4), we obtain:

∇ • (j * ⟨?⟩ * ⟨ℎ⟩ * ⟨(⟩ * ) -( @-> • ∇(j * ⟨?⟩ * ⟨ℎ⟩ * ) (IV.11) = j * ⟨(⟩ * • ∇(⟨?⟩ * ⟨ℎ⟩ * ) -( @-> • ∇(j * ⟨?⟩ * ⟨ℎ⟩ * )
Similarly as for the treatment of the first transport term, here we need to introduce the definition of ( AA , solution field from the fluid-oriented submodel that we will detail in the fourth section of this chapter.

Here we need to know that in the metal sub-domain, ( AA , represents the averaged liquid velocity, j * ⟨(⟩ * , in the liquid and mushy zones and it tends to the solid velocity ( A when approaching the end of the mushy zone. Knowing the definition of ( AA , we propose the following approximation for Eq. (IV.11) in the entire domain:

j * ⟨(⟩ * • ∇(⟨?⟩ * ⟨ℎ⟩ * ) -( @-> • ∇(j * ⟨?⟩ * ⟨ℎ⟩ * ) ≈ (( AA -( @-> ) • ∇(⟨?⟩ * ⟨ℎ⟩ * ) (IV.12)
Note that in the fully liquid and solid zones, we can respectively find that the RHS term of Eq. (IV.12) is equal to the LHS term with the above-defined fields ( @-> and ( AA . While in the mushy zone, we can remark that it is a quite reasonable approximation when liquid fraction is high. Besides, both the RHS and LHS terms tend to zero when the liquid fraction tends to zero. Finally, taking the same hypothesis as given in Eq. (IV.5) and the specific definition of ( @-> as given in Eq. (IV.10), we can deduce the energy conservation equation in the metal sub-domain for CC process:

\ @-> 〈?ℎ〉 & \> + (( AA -( @-> ) • ⟨?⟩ * ı`<ˆ*∇' -∇ • (〈t〉 & ∇') = 0 (IV.13)
It is worth noting that in the fully Eulerian framework, as it is the case in the thesis work of Saad [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF] where ( @-> = 0, we recover Eq. (IV.6) developed for IC, knowing the definition of ( AA . Although hypotheses made and the reasoning of Eq. (IV.6) and Eq. (IV.13) are not exactly the same, in the following of this thesis, we will consider Eq. (IV.13) as a general form of Eq. (IV.6). For the sake of simplicity, a further presentation of the monolithic governing equations and its relative development in the next two sub-sections will be based on Eq. (IV.13).

Gas sub-domain

Note that for both IC and CC, the gas sub-domain will be considered under a pure Eulerian framework with a fixed mesh grid. Therefore, Eq. (III.75) is sufficient for the description of the heat transfer in the gas sub-domain. We propose to reformulate Eq. (III.75) in the following way with the involvement of ( @-> considered as null in gas sub-domain and taking into consideration the relative constitutive equations:

\ @-> (? O D ℎ D ) \> + (( D -( @-> ) • ? O D • `< O D ∇' -∇ • (t O D ∇') = 0 (IV.14)

Monolithic governing equations

The 

ℋ & \ @-> 〈?ℎ〉 & \> + (1 -ℋ & ) \ @-> (? O D ℎ D ) \> (IV.15) +ℋ & (( AA -( @-> )⟨?⟩ * ı`<ˆ* • ∇' + (1 -ℋ & )(( D -( @-> ) • ? O D • `< O D ∇' -ℋ & ∇ • (〈t〉 & ∇') -(1 -ℋ & )∇ • (t O D ∇') = 0
Let's now introduce the following mixing values, with the superscript "˜" designating specifically the mixing properties of the fluid (over the liquid in the metal sub-domain and gas in the gas sub-domain)

while values without the superscript denote values over the metal and gas sub-domains:

?ℎ ¯= ℋ & 〈?ℎ〉 & + (1 -ℋ & )? O D ℎ D (IV.16) ( ˘? = ℋ & ( AA + (1 -ℋ & )( D ?`< ¯? = ℋ & ⟨?⟩ * ı`<ˆ* + (1 -ℋ & )? O D • `< O D t J = ℋ & 〈t〉 & + (1 -ℋ & )t O D
Neglecting the temporal and spatial derivation terms related to ℋ & , we propose the following approximations:

ℋ & \ @-> 〈?ℎ〉 & \> + (1 -ℋ & ) \ @-> (? O D ℎ D ) \> ≈ \?ℎ \> (IV.17) ℋ & ∇ • (〈t〉 & ∇') + (1 -ℋ & )∇ • (t O D ∇') ≈ ∇ • ÿt J ∇'Ÿ (IV.18) ℋ & (( AA -( @-> )⟨?⟩ * ı`<ˆ* • ∇' + (1 -ℋ & )(( D -( @-> ) • ? O D • `< O D ∇' (IV.19) ≈ (( ˘? -( @-> )?`< ¯?∇'
Substituting the above approximations into Eq. (IV.15), the monolithic governing equation in this heat transfer sub-model is finally obtained:

\?ℎ \> + (( ˘? -( @-> )?`< ¯? • ∇' = ∇ • ÿt J ∇'Ÿ (IV.20)
Remark that in the case of IC under pure Eulerian framework and with a fixed solid phase, the monolithic governing equation is reduced to the following form, as given in the previous work by Saad [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF]:

\?ℎ \> + ( ˘??`< ¯? • ∇' = ∇ • ÿt J ∇'Ÿ (IV.21)
Finally, we should be aware that the monolithic formulation here obtained is based on the three strong approximations given by Eqs. (IV.17 -IV.19), i.e. neglecting the time and space derivatives of ℋ & .

Approximations are in fact made over the level set transition zone at the metal/gas interface, as Eq.

(IV.20) recovers Eq. (IV.13) and Eq. (IV.14) respectively in the full metal and gas sub-domains. In this thesis work, interactions between the metal and gas at the physical metal/gas interface are not taken into consideration. Within the level set method, an artificial metal/gas interface with a certain thickness (also called level set transition zone) is defined. This zone is considered as a homogenized continuum. The above approximations have been proposed in this specific context. The spatial and temporal derivatives of the smooth Heaviside function have been neglected regarding these approximations. Moreover, the energy conservation equation is not fully verified in this level set transition zone with such approximations. However, the correct expression of the energy conservation equation in the level set transition zone may derive numerous additional terms and make it extremely difficult for the numerical resolution [START_REF] Chen | Three dimensional Cellular Automaton-Finite Element (CAFE) modeling for the grain structures development in Gas Tungsten/Metal Arc Welding processes[END_REF]. Besides, the level set transition zone is very limited, totally negligible regarding the metal sub-domain or gas sub-domain. Such choice will be retained in the further section for solute transfer, solid mechanics or fluid mechanics problems over the level set transition zone.

Weak form and finite element discretization

The finite element resolution of Eq. (IV.20) is performed by a temperature-based non-linear solver with temperature field ' as the principal unknown [START_REF] Saad | Temperature-based energy solver coupled with tabulated thermodynamic properties-Application to the prediction of macrosegregation in multicomponent alloys[END_REF] with the following two boundary conditions:

• Imposed flux (Z 8@< ) boundary condition along the domain boundary \[ G :

-t J ∇' • z = Z 8@< over \[ G (IV.22)
• Convective flux (Neumann law) boundary condition along the domain boundary \[ > with ℎ ' the convective coefficient, ' 7T= the constant exterior temperature and z the outward normal vector:

-t J ∇' • z = ℎ ' (' -' 7T= ) over \[ > (IV.23)
We can thus deduce the weak form of Eq. (IV.20):

∏ \ @-> ?ℎ \> ' * b# M + ∏ (( ˘? -( @-> )?`< ¯? • (∇')' * b# M + ∏ t J ∇' • ∇' * b# M (IV.24) + ∏ ℎ ' '' * bÖ fM . + ∏ Z 8@< ' * bÖ fM / -∏ ℎ ' ' 7T= ' * bÖ fM . = 0
where ' * denotes any virtual temperature field belonging to the Sobolev space q , ([) over the analysis domain [. The discretized formulation over the computational mesh [ > is given hereunder:

∏ \ @-> ?ℎ ¯(' > ) \> ' > * b# M . + ∏ (( ˘? -( @-> )?`< ¯? • (∇' > )' > * b# M . + ∏ t J ∇' > • ∇' > * b# M (IV.25) + ∏ ℎ ' ' > ' > * bÖ fM . -∏ Z 8@< • ' > * bÖ fM / -∏ ℎ ' ' 7T= ' > * bÖ fM . = 0
where ' > , ' > * are the discretized forms of ' and ' * . The backward Euler scheme is chosen, which makes the system described by Eq. (IV.25) a non-linear problem. This non-linear equation is then solved with the Newton-Raphson iterative method, using at each iteration an iterative solver to solve the corresponding linear system (preconditioned conjugate residual solver with block Jacobi preconditioning and incomplete LU factorization).

formulation affects only the advection term of Eq. (IV.26) and thus we can deduce the following ALE formulation for the solute transfer problem in the metal sub-domain:

\ @-> (〈?〉 & 〈à 8 〉 & ) \> + (( AA -( @-> ) • ∇(〈?〉 * 〈à 8 〉 * ) -∇ • Øj * 〈c 8 〉 * ∇(〈?〉 * 〈à 8 〉 * )± (IV.29) = -〈?〉 * 〈à 8 〉 * ∇ • 〈( * 〉
with the same definition of the mesh grid velocity ( @-> , as defined by Eq. (IV.10).

Gas sub-domain

Similar reasoning of the equation develops in the gas sub-domain for heat transfer problem, the governing equation for the solute transfer problem will be based on the solute conservation and the relative constitutive equations, Eq. (III.78) and Eq. (III.79). The mesh grid velocity ( @-> will be introduced in this sub-domain though it is null in this Eulerian sub-domain. Therefore, the governing equations in the gas sub-domain is given by:

\ @-> (? O D à 8 D ) \> + (( D -( @-> ) • ? O D • ∇à 8 D -∇ • ÿc 8 O D ? O D ∇à 8 D Ÿ = 0 (IV.30)

Monolithic governing equations

The mathematical form of the monolithic governing equation for the solute transfer problem is derived from the sum of the respective governing equations in the metal and gas sub-domains with the help of the smoothed Heaviside function leading to ℋ & × Eq. (IV.29)+(1 -ℋ & ) × Eq. (IV.30), with the detailed expression given hereunder:

ℋ & \ @-> (〈?〉 & 〈à 8 〉 & ) \> + (1 -ℋ & ) \ @-> (? O D à 8 D ) \> (IV.31) +ℋ & (( AA -( @-> ) • -(〈?〉 * 〈à 8 〉 * ) + (1 -ℋ & )(( D -( @-> ) • ? O D • -à 8 D -ℋ & -• Øj * 〈c 8 〉 * -(〈?〉 * 〈à 8 〉 * )± -(1 -ℋ & )-• ÿc 8 O D ? O D -à 8 D Ÿ = -ℋ & 〈?〉 * 〈à 8 〉 * ∇ • 〈( * 〉
Similarly to the development provided in previous heat transfer problem, we introduce the following mixing values:

? k = ℋ & 〈?〉 & + (1 -ℋ & )? O D (IV.32) à ˘8 = ℋ & 〈à 8 〉 & + (1 -ℋ & )à 8 D ( ˘? = ℋ & ( AA + (1 -ℋ & )( D ?à ˙8? = ℋ & 〈?〉 * 〈à 8 〉 * + (1 -ℋ & )? O D à 8 D c ˚8? = ℋ & j * 〈c 8 〉 * + (1 -ℋ & )c 8 O D
The level set transition zone is considered as a homogenized continuum and interactions between metal and gas in this very limited zone are neglected. Therefore, the following three approximations are made, respectively for the time derivative term, convection term, and diffusion term:

ℋ & \ @-> (〈?〉 & 〈à 8 〉 & ) \> + (1 -ℋ & ) \ @-> (? O D à 8 D ) \> ≈ \ @-> (? kà ˘8) \> (IV.33) ℋ & (( AA -( @-> ) • ∇(〈?〉 * 〈à 8 〉 * )+(1 -ℋ & )(( D -( @-> ) • ? O D • ∇à 8 D (IV.34) ≈ (( ˘? -( @-> ) • ∇?à ˙8? ℋ & ∇ • Øj * 〈c 8 〉 * ∇(〈?〉 * 〈à 8 〉 * )± + (1 -ℋ & )∇ • ÿc 8 O D ? O D ∇à 8 D Ÿ ≈ ∇ • Øc ˚8? ∇?à ˙8? ± (IV.35)
Substituting the above approximations in Eq. (IV.31), we obtain the final monolithic governing equation for solute transfer problem for both IC and CC:

\ @-> (? kà ˘8) \> + (( ˘? -( @-> ) • ∇?à ˙8? -∇ • Øc ˚8? ∇?à ˙8? ± (IV.36) = -ℋ & 〈?〉 * 〈à 8 〉 * ∇ • 〈( * 〉
In the case of IC in a pure Eulerian framework, the previous monolithic governing equation is reduced to a simple form as ( @-> is equal to zero. So that we recover the monolithic governing equation previously developed in the work of Saad [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF]:

\(? kà ˘8) \> + ( ˘? • ∇?à ˙8? -∇ • Øc ˚8? ∇?à ˙8? ± = -ℋ & 〈?〉 * 〈à 8 〉 * ∇ • 〈( * 〉 (IV.37)
Finally, we would like to address the numerical issue of solute transfer in the gas sub-domain. We can assume that there is no solute present in the gas sub-domain and that solute transfer occurs essentially in the metal sub-domain. This is generally the case in most of industrial casting processes, where the evaporation of solutes at the metal/gas interface is negligible due to the presence of a slag layer.

Therefore, the solute concentration in the gas sub-domain could be set to zero, à 8 D = 0. Nonetheless, this may create numerical oscillation due to the sharp solute concentration gradient at the metal/gas interface. Being confronted with this numerical problem, as initially proposed in the work of Saad [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF],

we will consider the gas sub-domain as a fictitious metal zone with solute concentration set to be the initial solute concentration in the metal sub-domain, thus reducing the concentration gradient at the metal/gas interface. Moreover, the solute diffusion coefficient in the gas sub-domain will be defined with a value much smaller than that of the solute diffusion in the liquid phase, c 8 O D ≪ 〈c 8 〉 * , in order to maintain a weak diffusive transport of solute at the metal/gas interface. For a similar consideration, the fluid velocity, ( ˘?, will be post-processed to be zero in the gas sub-domain, thus suppressing the possible solute transport at the metal/gas interface. The impact on the prediction of macrosegregation in the metal sub-domain is thus limited. Nonetheless, being aware that theoretically, the monolithic governing equation given by Eq. (IV.36) does not verify the solute conservation equation in the level set transition zone, with the additional approximations made above, we may encounter problem in solute conservation on the entire system.

Weak form and finite element discretization

The numerical resolution of the monolithic governing equation, Eq. (IV.36), requires some additional numerical approximations that we will present hereunder. First, let us introduce the following mixing values, given by:

? k ? = ℋ & 〈?〉 * + (1 -ℋ & )? O D (IV.38) à ˘8? = ℋ & 〈à 8 〉 * + (1 -ℋ & )à 8 D (IV.39)
By assuming the following approximation:

?à ˙8? = ? k ? à ˘8? (IV.40)

Eq. (IV.36) can be simplified through the following form:

\ @-> (? kà ˘8) \> + (( ˘? -( @-> ) • ∇?à ˙8? -∇ • ¡c ˚8? ∇ÿ? k ? à ˘8? Ÿ¬ = -ℋ & 〈?〉 * 〈à 8 〉 * ∇ • 〈( * 〉 (IV.41)
Assuming that the contribution of the solidification shrinkage term is dominant in the total mass conservation equation given in Eq. (III.70), we can deduce the following approximations concerning the RHS term of Eq. (IV.41):

-ℋ & 〈?〉 * 〈à 8 〉 * ∇ • 〈( * 〉 ≈ -ℋ & 〈?〉 * 〈à 8 〉 * ¨-1 〈?〉 * \〈?〉 & \> ≤ = ℋ & 〈à 8 〉 * \〈?〉 & \> (IV.42)
Moreover, the following approximation can be made:

-ℋ & 〈?〉 * 〈à 8 〉 * ∇ • 〈( * 〉 = à ˘8? \? k \> (IV.43)
Eq. (IV.41) becomes:

? k \ @-> à ˘8 \>
+ (( ˘? -( @-> ) • ∇ÿ? k ? à ˘8? Ÿ -∇ • ¡c ˚8? ∇ÿ? k ? à ˘8? Ÿ¬ + ÿà ˘8 -à ˘8? Ÿ \ @-> ? k \> = 0 (IV. [START_REF] Rappaz | Numerical modeling in materials science and engineering[END_REF] with à ˘8 and à ˘8? the remaining two unknown variables. Finally, the Voller-Prakash variable splitting method [START_REF] Voller | The modeling of heat, mass and solute transport in solidification systems[END_REF] will be applied in such a way that only the unknown variable à ˘8 is kept. The variable splitting scheme considers that the average concentration field à ˘8? is given by:

à ˘8? = ÿà ˘8? Ÿ = + à ˘8 -à ˘8= (IV.45)
where the superscript > denotes time corresponding to the previous resolution increment and the absence of this superscript corresponds to unknown variables for the current resolution increment.

Substituting Eq. (IV.45) into Eq. (IV.44) and neglecting the space derivative term of the fluid density, we obtain:

? k \ @-> à ˘8 \> + ? k ? (( ˘? -( @-> ) • ∇à ˘8 -∇ • Øc ˚8? ? k ? ∇à ˘8± = (IV.46) +? k ? (( ˘? -( @-> ) • ∇ Øà ˘8= -ÿà ˘8? Ÿ = ±

Solid-oriented submodel

In this solid-oriented submodel, we will focus our interest on the numerical modeling of the solid mechanics problem in solidification. As is known, it is of crucial importance to evaluate the solid 

State of the art

Due to a very large temperature interval for solidification processes, the mechanical problem in solidification is different from the ones encountered in conventional solid mechanics problems. The mechanical response of the metal under solidification depends on its local state, either in liquid, mushy or solid state, and thus involves different mechanical constitutive laws. Especially in the mushy zone, because of the coexistence of the solid and liquid phases, and of the complex microstructure, it is particularly difficult to model the macroscopic mechanical behavior. In the literature, there exist mainly two approaches. The first one considers the metal under solidification as a homogenized singlephase medium. There is thus no relative motion between the solid and the liquid phases in the mushy zone. For most models in this approach [START_REF] Jaouen | Modélisation tridimensionnelle par éléments finis pour l'analyse thermo-mécanique du refroidissement des pièces coulées[END_REF][START_REF] Koeune | A one phase thermomechanical model for the numerical simulation of semi-solid material behavior, Application to thixoforming[END_REF][START_REF] Favier | Transient and non-isothermal semi-solid behaviour: 3D micromechanical modeling[END_REF], the mechanical behavior depends on the solid fraction. At low solid fraction, metal is simply considered as Newtonian, while with the increase of the solid fraction, the mechanical behavior varies from a TVP constitutive law for metal at mushy state until TEVP constitutive law in the fully solidified regions. A large number of these models are dedicated to the thixoforming process. We can cite the research work of Koeune and Ponthot [START_REF] Koeune | A one phase thermomechanical model for the numerical simulation of semi-solid material behavior, Application to thixoforming[END_REF],

With the volume averaging method, the macroscopic momentum conservation equation is developed for the solid phase, considering a compressible mechanical behavior of the solid skeleton in the mushy zone. Numerical models in this approach give a more accurate estimation of the solid movement in the mushy zone [START_REF] Ludwig | Two-phase modeling of equiaxed crystal sedimentation and thermomechanic stress development in the sedimented packed bed[END_REF][START_REF] Ludwig | Simulation of crystal sedimentation and viscoplastic behavior of sedimented equiaxed mushy zones[END_REF]. The computation of the subsequent macrosegregation induced by the solid motion can be achieved in CC [START_REF] Koshikawa | Experimental study and two-phase numerical modeling of macrosegregation induced by solid deformation during punch pressing of solidifying steel ingots[END_REF][START_REF] Fachinotti | Two-phase thermomechanical and macrosegregation modeling of binary alloys solidification with emphasis on the secondary cooling stage of steel slab continuous casting processes[END_REF] or other processes like twin-roll casting [START_REF] Rodrigues | A Comprehensive Analysis of Macrosegregation Formation During Twin-Roll Casting[END_REF].

An example of such a model is given in Figure IV.9: Central carbon macrosegregation in Fe-0.1wt.%C steel due to the motion of the solid phase in the mushy zone in the secondary cooling zone of a CC process (the thickness of the product is about 0.2 m). The red and blue zones respectively represent the positive and negative segregated zones [START_REF] Fachinotti | Two-phase thermomechanical and macrosegregation modeling of binary alloys solidification with emphasis on the secondary cooling stage of steel slab continuous casting processes[END_REF].

Our mechanical submodel will be based on the previous work done in CEMEF [START_REF] Bellet | An ALE-FEM approach to the thermomechanics of solidification processes with application to the prediction of pipe shrinkage[END_REF][START_REF] Bellet | ALE method for solidification modeling[END_REF] under the "single-phase" approach. The reasoning for this is twofold:

• Firstly, such a model is sufficient for a general stress-strain analysis in the already solidified zones for metal under solidification, which is our main objective concerning the solid-oriented submodel.

• Secondly, within the logic of a partitioned solution algorithm, the interactions from the motion of the solid phase will be taken into consideration in the fluid-oriented submodel.

Note that compressibility of the solid phase in the mushy zone is thus neglected within the "singlephase" approach though the solid motion and its interactions to the liquid phase can be eventually modeled through a partitioned algorithm. In the following chapter, we will demonstrate more in detail the advantages and limits of such a choice made for the mechanical submodel.

Governing equations 4.3.2.1 Metal sub-domain

The solid mechanics solver used in this solid-oriented step is derived from a previous thermomechanical solidification solver [START_REF] Bellet | An ALE-FEM approach to the thermomechanics of solidification processes with application to the prediction of pipe shrinkage[END_REF][START_REF] Bellet | ALE method for solidification modeling[END_REF] within the "single-phase" approach. The governing equations in the metal sub-domain will be the momentum conservation equation, Eq. (III.36), and the approximated mass conservation equation developed in the restricted context of metal under solidification, Eq. (III.59). The system of governing equations is given by:

˝∇ • Ñ -∇} + ?l = 0 -• ( = -q(' B -') 1 T b} b> - 1 ? b? b> (IV.49)
Note that in the present work, the critical temperature ' B is chosen to be equal to the solidus temperature ' 6 . Therefore, TEVP constitutive laws, Eq. (III. [START_REF] Saad | Temperature-based energy solver coupled with tabulated thermodynamic properties-Application to the prediction of macrosegregation in multicomponent alloys[END_REF][START_REF] Osher | Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations[END_REF][START_REF] Sethian | Level set methods for fluid interfaces[END_REF][START_REF] Saad | Simulation of shrinkage-induced macrosegregation in a multicomponent alloy during reduced-gravity solidification[END_REF], are used for metal in the fully solid state, and TVP constitutive laws, Eq. (III. [START_REF] Whitaker | Advances in theory of fluid motion in porous media[END_REF][START_REF] Beckermann | Mathematical modeling of transport phenomena during alloy solidification[END_REF][START_REF] Coupez | Parallel meshing and remeshing[END_REF][START_REF] Hitti | Precise generation of complex statistical Representative Volume Elements (RVEs) in a finite element context[END_REF], are used for metal in the mushy state and in the pure liquid state. However, unlike the metal density ? in Eq. (III.40), the metal density in Eq. (III.47) concurrently involves the effects of thermal dilatation and solidification shrinkage. In previous works [START_REF] Bellet | Solidification macroprocesses (Thermal-mechanical Modeling of Stress, Distortion and Hot Tearing)[END_REF][START_REF] Bellet | An ALE-FEM approach to the thermomechanics of solidification processes with application to the prediction of pipe shrinkage[END_REF][START_REF] Bellet | ALE method for solidification modeling[END_REF], the metal density used in the solidification interval in Eq. (IV.49) was the mixed density defined by: ? = (1 -j * )? 6 + j * ? 5 (IV. [START_REF] Coupez | Solution of high-Reynolds incompressible flow with stabilized finite element and adaptive anisotropic meshing[END_REF] where ? 6 and ? 5 refer to the metal density at solidus and liquidus temperatures, respectively. Outside the solidification interval, [' 6 , ' 5 ], the density in fully solid and fully liquid regions is temperaturedependent, respectively corresponding to the functions ? 6 (') and ? 5 (') and thus accounting for thermal dilatation. Considering Eq. (IV.50), Eq. (IV.49) includes the thermal expansion of the two phases, as well as the solidification shrinkage in the solidification interval. However, two reasons explain the need to change the expression of Eq. (IV.50) in the present study:

• Firstly, applying the shrinkage contribution to the whole solidification interval is not appropriate. This is especially true below the coherency point, in the interval [0,j 01> * ], where the stiffness is still high as it consists of a direct extension of the solid behavior. Applying Eq. (IV.50) would make the mechanical problem very stiff, initiating possible numerical difficulties and/or giving birth to spurious local velocity fields.

• Secondly, in the framework of a partitioned two-step solution algorithm, we are essentially interested in the intrinsic velocity of the solid phase (i.e. the movement of the columnar dendritic structure in the mushy zone) when using the TVP model in this solid-oriented submodel. Using Eq.

(IV.50), in the definition of Ġ= > the velocity field in this solid-oriented submodel would be a mixture of the movement of the columnar dendritic structure and of the feeding liquid, due to volume change during solidification.

For those two reasons, the approach retained within the solid-oriented submodel in the present work consists in taking into account the thermal dilatation of the sole solid phase in the definition of Ġ= > :

? = ? -(') (IV.51)
In addition, in order to avoid discontinuity of density ? at liquidus temperature, the density in the pure liquid zone is also provided by the extension of expression Eq. (IV.51). Even if this approximation is non-physical, the objective of this solid-oriented submodel is to compute velocity and stress fields in the solid zones, together with a good approximation of the intrinsic solid velocity field in the mushy zones. The precise estimation of the liquid velocity field and the accounting for solidification shrinkage will be ensured in the following fluid-oriented submodel, as explained later.

Gas sub-domain

In the gas sub-domain, the system of the governing equations is given from the momentum (Eq. (III.80))

and mass (Eq. (III.81)) conservation equations:

π ∇ • Ñ D -∇} D + ? O D l = 0 ∇ • ( D = 0 (IV.52)
Note that in this set of equations in the gas sub-domain, the superscript "G" is used for the designation of gas. While previously for the governing equations developed in the metal sub-domain, the superscript "M" is not present for the sake of simplicity considering the metal under solidification as a "single-phase" continuum. Nonetheless, in the scope of a unique writing form for the further development of the monolithic equation, we should be aware that the variables present in Eq. (IV.49) are equivalent to their corresponding variables with superscript "M". Any ambiguity of the notation system should be precluded. More precisely, the following expressions are assumed:

Ñ ≡ Ñ & , ? ≡ ? & , } ≡ } & , ( ≡ ( & (IV.53)

Monolithic governing equations

The monolithic governing equations are derived from the sum of the above two equations, ℋ & × Eq.

(IV.49)+(1 -ℋ & ) × Eq. (IV.52). By analogy with the methodology used for the heat transfer or solute transfer problems, we directly give hereunder the system of the monolithic governing equations without a detailed description of the approximations made over the metal/gas interface:

˝∇ • Ñ k -∇}̂+ ? kl = 0 -• ( ˘= ℋ & ¡-q(' B -') 1 T b} b> - 1 ? b? b> ¬ (IV.54)
where the mixing values are defined as follows:

Ñ k = ℋ & Ñ & + (1 -ℋ & )Ñ D (IV.55) }̂= ℋ & } & + (1 -ℋ & )} D ? k = ℋ & ? & + (1 -ℋ & )? O D ( ˘= ℋ & ( & + (1 -ℋ & )( D
Finally, in the context of a velocity-pressure formulation, we propose to write, ( ˘≡ ( and }̂≡ } as the two principal unknowns, and Eq. (IV.54) is simplified as:

˝∇ • Ñ k -∇} + ? kl = 0 -• ( = ℋ & ¡-q(' B -') 1 T b} b> - 1 ? b? b> ¬ (IV.56)

Weak form and finite element discretization

The numerical resolution of Eq. (IV.56) is performed by a non-linear solver as in [START_REF] Bellet | An ALE-FEM approach to the thermomechanics of solidification processes with application to the prediction of pipe shrinkage[END_REF][START_REF] Bellet | ALE method for solidification modeling[END_REF] in the framework of the finite element method, with tetrahedral elements of P1+/P1 type. The weak form of Eq. (IV.56) is given by:

⎩ ⎪ ⎨ ⎪ ⎧ ∏ Ñ k: Ġ(( * )b# M -∏ }∇ • ( * b# M -∏ ? kl • ( * b# M -∏ Q 8@< • ( * bÖ gM 0 = 0 ∏ } * Ú-∇ • ( + ℋ & ¡-q(' B -') 1 T b} b> - 1 ? b? b> ¬Û b# M = 0 (IV.57)
with the following boundary conditions: imposed velocity vector (Dirichlet condition, ( = ( 8@< ) on velocity-imposed boundary ∂[ ; , or imposed stress vector (Q = Q 8@< ) on ∂[ h . In Eq. (IV.57), ( * denotes any virtual velocity field belonging to the Sobolev space q , ([) over the analysis domain [ with zero boundary condition over ∂[ ; , and } * denotes any virtual pressure field belonging to the Sobolev space q , ([). Eq. (IV.57) is then discretized on a finite element mesh [ > , composed of linear tetrahedra, with a P1+/P1 formulation [START_REF] Arnold | A stable finite element for Stokes equation[END_REF]. It is just reminded here that this formulation basically consists in adding three extra degrees of freedom for the velocity at the center of each element to ensure the Brezzi-Babuska condition [START_REF] Babuška | Error-bounds for finite element method[END_REF][START_REF] Brezzi | On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers[END_REF]:

( > = ( > 5 + ^> (IV.58)
Hence the discretized velocity field ( > is divided into two parts: the first part ( > 5 is linear over the element, and verifies the velocity-imposed boundary conditions. The second part ^> is "bubble-type": linear in each of the four sub-tetrahedra constituting the element and taking zero values along the entire boundary of the element. The finite element discretization form of Eq. (IV.57) is given as follows:

⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧ ∏ Ñ k(( > 5 ): Ġ(( > 5 * )b# M . -∏ } > ∇ • ( > 5 * b# M . -∏ ? kl • ( > 5 * b# M . -∏ Q 8@< • ( > 5 * bÖ gM . 0 = 0 ∏ Ñ k(^>): G(^> * )b# i . -∏ } > ∇ • ^> * b# M . -∏ ? kl • ^> * b# M . = 0 ∏ } > * Ú-∇ • (( > 5 + ^>) + ℋ & ¡-q(' B -') 1 c b}̇> b> - 1 ? b? b> ¬Û b# M . = 0 (IV.59)
At this stage, it should be noted that different constitutive equations cannot be used concurrently in a given finite element, i.e. TVP at an integration point and TEVP at another one. This is inherent to the P1+/P1 character of elements. Therefore the value of the smooth Heaviside function ℋ & used in Eq. (IV.57) and the second equation of Eq. (IV.59) is calculated using the value of the relative distance function evaluated at the center of each tetrahedron. Similarly, the Heaviside function in the last bracketed expression is calculated using the temperature at the center of each tetrahedron: q(' B -' 07E=72 ). Without entering into the details of the resolution of Eq. (IV.59), it is worth noting that the "bubble" extra-unknowns ^> can be eliminated because they are internal to each finite element. This explains that the second equation in Eq. (IV.59) can, in fact, be injected in the two others, yielding only (( > 5 , } > ) as principal unknowns. Details on "bubble elimination" or "bubble condensation" can be found in [START_REF] Bellet | Modélisation thermomécanique des procédés de déformation plastique et de solidification[END_REF] and references therein. The resulting set of equations is then solved with the Newton-Raphson iterative method. At each iteration, the corrections of nodal values are calculated by solving a set of linear equations, using an iterative solver (preconditioned conjugate residual solver with block Jacobi preconditioning and incomplete LU factorization). In order to optimize the convergence of this solver, and in addition to the use of the preconditioner, an adaptive change of variable is carried out regarding the pressure degrees of freedom. The objective is first to homogenize units in Eq. (IV.59) in order to better express the norm of residual vectors, and second to monitor the amplitude of the diagonal terms of the different blocks of the stiffness matrix. Further details on this change of variable, which is performed at each time increment and for each node, can be found in [START_REF] Bellet | Optimisation du changement de variable sur la pression pour les formulations éléments finis vitesse-pression de Thercast® et R2sol[END_REF][START_REF] Chen | Thermomechanical numerical modelling of additive manufacturing by selective laser melting of powder bed: Application to ceramic materials[END_REF].

This solid-oriented submodel will be noted as STEP I, in the sense that it is the first step of a partitioned solution algorithm coupling solid mechanics and fluid mechanics. By consequence, the velocity and pressure fields obtained from this STEP I, through the resolution of Eq. (IV.59), will be denoted as

(( A , } A ).

Remarks and discussions

It is important to remind here some main features of STEP I:

i)

The values of the fluid viscosity are arbitrarily augmented for both the liquid metal and the gas with values ranging from several ˇ" • É to several hundreds of ˇ" • É. As already outlined in Section 3.1.3.2 of Chap 3, this keeps the solver robust by preserving an acceptable conditioning of the stiffness matrices. From the perspective of a two-step resolution algorithm, no problem should occur from that. Although the velocity field ( A will effectively show underestimated values in gas and liquid metal because of such arbitrary high viscosities, the fluid-oriented submodel (see next Section) will act as a corrector step to finally provide a good prediction of liquid metal and gas flows.

ii)

The mechanical behavior of the metal in the solidification interval (between solidus and coherency point) consists of an extension of metal behavior in the solid state. The objective is to develop a solution field, ( A , close to the velocity field of the solid phase in the mushy zone defined by the solidification interval. This is in view of the following fluid-oriented resolution step in which it will be necessary to express a relative velocity between the liquid and the solid phase. The latter will be taken as ( A , as calculated in STEP I, see next Section. It is reminded here that in its current development state, the present approach is restricted to a dendritic columnar growth of the solid phase.

iii)

The temperature dependence of the metal density in the solidification interval is chosen as an extension of the density variation in the solid state, in line with the previous feature. From what precedes regarding the constitutive modeling of metal in the solidification interval in STEP I, it follows that the density variation should be selected accordingly. This is why it has been chosen to restrict the thermal part of the strain-rate tensor, Ġ= > , to the dilatation of the sole solid phase. As a consequence, solidification shrinkage is not modeled in STEP I resolution but will be taken into account in the STEP II resolution, in order to ensure the global mass conservation.

It is reminded that such a choice is pertinent with the definition of the mesh grid velocity defined by Eq. (IV.10) where ( A is considered as a good approximation of the intrinsic velocity of the solid phase in the mushy zone.

Because of the above-mentioned features, it is clear that STEP I cannot give access to any pertinent information about the liquid flow due to thermo-solutal convection and shrinkage, both in the liquid bulk and in the mushy zone through the solid phase. Thus, a liquid-oriented submodel is necessary to supplement, in a coupled way, the solid-oriented submodel. This is precisely the objective of the fluidoriented submodel, which is described in the next section.

⎩ ⎪ ⎨ ⎪ ⎧ \ \> (j * 〈?〉 * 〈(〉 * ) + ∇ • (j * 〈?〉 * 〈(〉 * × 〈(〉 * ) -∇ • 〈Ñ * 〉 + j * ∇〈}〉 * -j * 〈?〉 * l + j * / N * K +, (⟨(⟩ * -⟨(⟩ -) = 0 -• 〈( * 〉 = - 1 〈?〉 * Ú \ \> (j * 〈?〉 * + j -〈?〉 -) + 〈( * 〉 • -〈?〉 * + -• (j -〈?〉 -〈(〉 -)Û (IV.60)
Assuming the following simplification made on the momentum transport term of the liquid phase [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF]:

∇ • (j * 〈?〉 * 〈(〉 * × 〈(〉 * ) ≈ 1 j * ⁄ 〈?〉 * (∇〈( * 〉)〈( * 〉 (IV.61)
where the space derivative of the inverse of the liquid fraction, the dilatation of the liquid, and the contribution of the divergence of the averaged liquid velocity are neglected compared to that of the RHS term of Eq. (IV.61). Then we assume that the liquid density can be considered constant, 〈?〉 O * , in all terms of the momentum equation except in the gravity term of Eq. (IV.60) where the hereunder relationship is considered:

〈?〉 * = 〈?〉 O * Ú1 -) ' * ÿ' -' 27U Ÿ --) . " * Øà 8 -à 8 27U ± 8 Û (IV.62)
where ) ' * is the thermal dilatation coefficient of the liquid phase and ' 27U the corresponding reference temperature. If the solute transfer problem is considered, an additional term is added, evaluating the influence of solute concentrations of any 7 element to the liquid density. ) . " * represents the solutal dilatation coefficient of liquid for solute 7 and à 8 27U the corresponding reference solute concentration.

Finally, an important issue in this fluid-oriented submodel is to identify the intrinsic average velocity of the solid phase, ⟨(⟩ -, which is involved both in the momentum and mass conservation equations of Eq. (IV.60). As underlined in Section 4.4, in the mushy zone, the velocity field obtained in the previous solid-oriented resolution, ( A , is developed as an estimate of the intrinsic velocity of the solid phase in the mushy zone. At the same time, from a numerical point of view, there is an interest in obtaining a liquid velocity field, deep in the mushy zone, that would converge toward the intrinsic velocity of the solid zone. Consequently, we propose to replace j * 〈(〉 -by ( A in the Darcy term in the momentum conservation equation. Note that such a choice is feasible as long as the intrinsic velocity of solid structure deep in the mushy zone remains small compared to the average velocity of the liquid phase in front of the mushy zone, that is to say for rather small values of the solid phase movement.

Fortunately, this is generally the case in solidification problems under consideration in the present work. We should remind that this numerical treatment is also essential for the approximation previously made on the energy conservation equation as given in Eq. (IV.12), ensuring zero energy transport of the liquid phase in the fully solidified zones. Finally, taking into consideration all the above three approximations made (Eqs. (IV.61) and (IV.62) and consideration on solid velocity) and with a subsequent division of the momentum conservation equation by the liquid fraction, we obtain a simplified form for Eq. (IV.60) written using a moving mesh:
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Gas sub-domain

In the gas sub-domain, the system of the governing equations is derived from the momentum and mass conservation by Eq. (III.82) and Eq. (III.83), considering an incompressible Newtonian fluid behavior of gas. The set of governing equation is thus given hereunder, written with the introduction of the mesh velocity ( @-> though it is always assumed as null in the gas sub-domain:

# ? O D Ú \ @-> ( D \> + (-( D )(( D -( @-> )Û --• Ñ D + -} D -? O D l = 0 -• ( D = 0 (IV.64)

Monolithic governing equations

In the framework of level set formulation, a monolithic equation can be obtained by mixing Eq. (IV. 64), deriving the following set of equations:
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Let's now introduce the following mixing values, where the superscript "˜" designates specifically the mixing properties of the fluid (either for liquid or gas):
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In a velocity-pressure resolution, with unknowns velocity ( ≡ ( ˘? and pressure } ≡ 〈}〉 * ≡ 〈}〉 D , we can obtain our final set of governing equations. These equations can be applied to the whole simulation domain, with variables mixed in the neighborhood of the metal/gas interface:
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Remark that the monolithic formulation given by Eq. (IV.67), has the same expression as given by Eq.

(IV.65). However, in the artificial metal/gas transition zone, the momentum conservation equation of Eq. (IV.67) is not equal to Eq. (IV. 65), but is an artificial homogenized form of Eq. (IV.65). It is anticipated here that such a homogenized form makes the coding of the momentum equation much easier, avoiding all space and time derivative terms related to the smoothed Heaviside function, and ensuring a unique momentum conservation equation over the whole simulation domain, including the artificial metal/gas transition zone.

Weak form and finite element discretization

The expression of the weak formulation of Eq. (IV.67) can be obtained after some calculations requiring successive integrations by part of certain terms. Calculation details are provided in [START_REF] Bellet | Modélisation thermomécanique des procédés de déformation plastique et de solidification[END_REF].

Finally, this weak form can be written as follows:
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where ( * denotes any virtual velocity field belonging to the Sobolev space q , (Ω) over the analysis domain Ω with zero boundary condition over the velocity-imposed boundary and Dirichlet conditions for solid zones with values from STEP I. } * denotes any virtual pressure field belonging to the Sobolev space q , (Ω). It is well known that the conventional weak formulation as described in Eq. (IV.68) may encounter numerical oscillations and other instabilities when solving problems with high Reynolds numbers. This is why the SUPG-PSPG stabilization method, initially proposed by Tezduyar et al. [START_REF] Tezduyar | Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements[END_REF][START_REF] Tezduyar | Finite element stabilization parameters computed from element matrices and vectors[END_REF] is used. At Cemef laboratory, the SUPG-PSPG formulation was introduced by Gouttebroze et al. [START_REF] Gouttebroze | Modélisation 3D par éléments finis de la macroségrégation lors de la solidification d'alliages binaires[END_REF][START_REF] Gouttebroze | 3D macrosegregation simulation with anisotropic remeshing[END_REF] and was later implemented in CimLib by Hachem et al. [START_REF] Hachem | Stabilized Finite Element Method for Heat Transfer and Turbulent Flows inside Industrial Furnaces[END_REF]100]. The present work is based on the latter developments. The discretized formulation over the computational mesh [ > is given by:
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Partitioned two-step solution algorithm

A partitioned two-step solution algorithm is developed for application to the modeling of solidification processes. It gives access to a concurrent simulation of the fluid flow problem in the bulk liquid, and the stress-strain analysis in the already solidified zones. In the following section, we will present in detail the algorithm scheme, including the heat transfer and solute transfer resolution stages.

Algorithm scheme

The algorithm scheme of the partitioned solution is presented hereunder, considering that the two resolutions STEP I and STEP II are performed once at each time increment Δ>. The incremental resolution scheme is divided into 8 modules, as illustrated in Fig. IV.13.

• 1 st stage: Heat transfer. The energy conservation equation is solved, giving access to the temperature distribution in the metal and in the gas, and to the liquid metal fraction. The advection velocity in the convection terms consists of the relative velocity between the fluid field ( AA and the mesh velocity ( @-> calculated at the previous time increment

• 2 nd stage: Solute transfer, the solute conservation equation is solved, giving access to the solute distribution in the metal sub-domain. Such a solute transfer step is necessary when the prediction of the macrosegregation is demanded. Otherwise, the constant nominal concentration can be assumed with material properties depending only on the temperature field.

• 3 rd stage: STEP I solid-oriented resolution. The first folder of the momentum solutions focuses on the stress-strain analysis in the solid region, with an augmented liquid viscosity and a continuity of solid density in the mushy and liquid regions. It provides velocity and pressure fields on the whole domain: (( A , } A ). However, only ( A at nodes belonging to fully solid elements will be used in the follow-up of the resolution scheme. The stress tensor @, and the generalized plastic strain F̅ and strain rate F̅ ̇ are calculated in the fully solid elements. Such a solid-oriented resolution is not necessary when solid is not yet formed. This is the case for example in the early filling stage of a casting process when all metal is still in the liquid state.

• 4 th stage: STEP II fluid-oriented resolution. The second folder of the momentum solution consists of the fluid flow computation in the liquid and mushy regions, with a real liquid viscosity and including solidification shrinkage. It provides velocity and pressure fields on the whole domain: (( AA , } AA ). Note that at nodes belonging to fully solid elements, ( AA is imposed equal to ( A .

• 5 th stage: mesh updating. The position of each mesh node is updated following an explicit scheme with the mesh velocity, ( @-> (Eq. IV.10 defined in the context of CC).

Ü E7. = Ü 1*9 + (>( @-> (IV.70)

Based on this consideration, we assume that the energy transportation relative to the solid phase in the solid and mushy zones is achieved through the mesh updating process.

• The thermal dilatation of solid and liquid phases are considered with constant dilatation coefficients ) ' -and ) ' * , respectively. The densities in metal thus follow:

? -(â, >) = ? 6 ÿ1 -) ' -('(â, >) -' 6 )Ÿ (V. 1)

? * (â, >) = ? 5 Ø1 -) ' * ('(â, >) -' 5 )± (V. 2)
where ' 6 and ' 5 are respectively the solidus and liquidus temperature.

• The solidification path is intentionally simplified, assuming that the volume fraction of the phases evolves linearly with temperature in the solidification interval:

j -= ' 5 -'(â, >) ' 5 -' 6 "yb j * = '(â, >) -' 6 ' 5 -' 6 (V. 3)
• In STEP I, both gas and metal (whatever its state for the latter) are considered as purely Newtonian fluids, with a fixed viscosity of 100 Pa • s. This is simply achieved by choosing a very low critical temperature, ' B , and adequate parameters for the TVP model. For STEP II, viscosities in both domains are differentiated and closer in magnitude to values reported in the literature: the dynamic viscosities of gas and liquid metal are respectively equal to 10 +j Pa • s and 5 × 10 +4 Pa • s.

• The gas density is artificially augmented, in order to keep a stable solution of velocity at the metal/gas interface. Such an assumption is obviously not physical but it is justified in the context of a test case as it has no influence on the solidification process in metal. The values of all parameters mentioned above are summarized in Table V.1.

The values of all parameters mentioned above are summarized in Table V 

Analytical solution

The temperature field is imposed as a function of time > and vertical coordinate â, '(â, >):

'(â, >) = ' O V1= -Ä> + mâ (V. 4)
In the following, we consider an instant > such that solid, mushy and liquid zones coexist in the metal domain with solidus (' 6 ) and liquidus (' 5 ) isotherms being respectively at height â 6 and â 5 (Fig. V.1a).

In addition, the position of the free surface, â 8E=72UQ07 , can be deduced from a simple calculation based on total metal mass conservation when â 6 and â 5 are known. In the solid-oriented resolution, considering the previous assumptions, the motion of the metal and of the gas is exclusively governed by thermal dilatation. Indeed, with Eq. (III.59), elasticity has been neglected considering the extremely low critical temperature that has been chosen for this case (i.e. 0 °C). It can be seen that the solution velocity field ( A at any time > should satisfy the condition:

-• ( A = >"(Ġ) = >"(Ġ= > ) = - 1 ? b? b> (V. 5)
Considering the assumptions formulated in Section 4.4 of the previous chapter regarding the expression of the density ? in STEP I (Eq. (IV.51)), the solution velocity field ( A should fulfill the following conditions:

STEP I: ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧∇ • ( A = - 1 ? - b? - b> in solid ∇ • ( A = - 1 ? -¡ \? - \> + ( A ⋅ ∇? -¬
in mush and liquid ∇ • ( A = 0 in gas ( A (â = 0) = 0 and continuity of ( A at solidus and free surface

(V. 6)
In the mush and in the liquid zone, the transport term ( A ⋅ ∇? -is neglected in the simulation. This is justified as it remains very small compared to the time derivative of solid density. The system described by Eq. (V.6) has an explicit solution:

0 A = ⎩ ⎪ ⎪ ⎨ ⎪ ⎪ ⎧- ) ' -Äâ 1 -) ' -m(â -â 6 ) in solid -) ' -Äâ 6 + Ä m lnÿ1 -) ' -m(â -â 6 )Ÿ in mush and in liquid -) ' -Äâ 6 + Ä m ln Ø1 -) ' -mÿâ 8E=72UQ07 -â 6 Ÿ± in gas (V. 7)
Similarly, regarding STEP II and considering the sole Eq. (IV.60), the velocity field ( AA can be solved through the following set of equations, with consideration of solidification shrinkage in the solidification interval:

STEP II:

⎩ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎧ ( AA = ( A in solid ∇ • ( AA = - 1 ? * Ú \(j -? -+ j * ? * ) \> + ( AA ⋅ ∇? * + ∇ • (j -? -( A )Û in mush ∇ • ( AA = - 1 ? * ¨\? * \> + ( AA ⋅ ∇? * ≤ in liquid
∇ • ( AA = 0 in gas ( AA (z = 0) = 0 and continuity of ( AA at solidus, liquidus, and free surface (V. 8)

The system described in Eq. (V.8) does not have an explicit solution in the mushy zone due to the extra divergence term involving the solid velocity resulting from STEP I. However, a numerical solution can be easily obtained by resolving a differential equation. The preceding resolutions can consequently be extended to the situation where no mushy zone or no fully solid region have formed yet, providing the full analytical solution for comparison with a numerical simulation.

Reminder of algorithm

The effective algorithm applied in this 1D test case is resumed in the following Fig. V.2. Remark that there is no solute transfer resolution stage and the heat transfer resolution stage is not considered as the temperature is predefined for each increment. Besides, the mesh velocity, ( @-> , is taken to be zero condition for STEP II resolution. According to the assumptions, the velocity gradient is thus the same as the one found in the mushy zone for ( A . Small differences exist between the analytical reference solution and the simulation. They are mainly due to mesh discretization, especially in To conclude, the present test case thus demonstrates the capacity of the partitioned two-step algorithm for predicting velocity fields in both the solid and the liquid regions.

Mass conservation

The mass conservation issue relative to the metal sub-domain is now investigated. the appearance of the solid/mush interface. It should be mentioned that at this stage, the metal/gas interface remains in a fully liquid state, with its motion characterized by the fluid velocity ( AA . We proved that the increase of mass was mainly induced by the thermal dilatation of the solid and liquid phases as no mass increase was observed in complementary simulation in which the solid and liquid densities were taken as constant [START_REF] Zhang | Two-step staggered resolution -Application to test case and mass conservation study[END_REF]. During the period from the formation of the solid/mush boundary until the formation of the solid/gas interface, there is a significant decrease of the metal mass, with finally a maximum relative error of -1.6%. The reason for this decrease is twofold. The first part of the decrease, until the appearance of the mush/gas boundary, is mainly induced by the extra divergence term involving the solid velocity, ∇ • (j -? -( A ). As shown in Eq. (V.8), this extra term has an influence on the resolution of ( AA in the mushy zone and subsequently on the velocity at the metal/gas interface. It was found that the decrease in mass was no more present when this extra term was neglected. The second part of the decrease, from the appearance of the mush/gas boundary until the appearance of the solid/gas interface, is principally related to the use of the level set method. More precisely, explicit analytical analysis reveals that the simulated velocity of the mush/gas boundary from equation Eq. (IV.67), as a concurrent result of both solidification shrinkage and thermal dilatation, is slightly higher than its physical value in terms of magnitude. This is not only a purely numerical issue because currently only one level set is utilized for the description of the mush/gas boundary.

While in reality, two level sets are needed for the respective description of the solid/gas and liquid/gas interfaces. Finally, when the solid/gas interface is formed, the metal/gas interface is transported by ( A , the solution from equation Eq. (IV.56). A slow decrease in the metal mass is observed. The specific For stress in the &-direction, the solid shell is firstly loaded in tension at the early stage of cooling at 10 s. Several millimeters away from the mold surface, compression is found, expressing the necessary mechanical equilibrium along the vertical direction. This profile is progressively inverted and, at 120 s, the opposite situation is found with compression in the skin and tension at the inner place of the product. This can be explained by the fact that at a early stage, when solid shell thickness is still small, the cooling rate of the solid shell is higher at the surface than in depth, due to the release of the latent heat in the mushy zone. The heat flux extracted from the cooling surface decreases continuously due to the Fourier-type condition limit. At later stage, when the solid shell is thick enough, the latent heat release has little influence on the analyzed 20 mm solid shell near the cooling surface.

Therefore the cooling rate becomes higher in depth than at the cooling surface.

Discussions

Beyond the above demonstration of the partitioned two-step solution algorithm, a discussion concerning simulation time and metal mass conservation is given hereafter.

• Computation time analysis

The computation time is investigated for the academic ingot casting case previously analyzed. 

• Mass conservation of the metal sub-domain

The metal mass conservation issue is present in this IC test case. Certainly, the use of a level set method in the context of a solidification process is the onset of the difficulty to fix mass conservation problems as studied previously in the 1D unidirectional solidification test case. Velocity used to transport the metal/gas interface is an approximation obtained by considering the physical surface as a mixture of metal and gas sub-domains. Nonetheless, there exist other issues like finite element discretization, time discretization, mesh adaptation, etc., which may also significantly influence to non-conservation of the total metal mass in complex solidification processes. Therefore, the incremental mass correction method is applied in the present algorithm to demonstrate its efficiency in a more complex solidification configuration. Fig. V.10 shows the typical time evolution of the deviation of the total mass from its value over the first 96 s of the simulation. Without mass correction, the total metal mass globally decreases until about time 50 s and then continuously increases until 96 s. The relative mass error reaches a maximum value of about 1.3 %. When the mass correction method is applied, the total metal mass is well conserved as liquid/gas or mushy gas interface is always present and correction is active. One should consider that, with the present methodology, the correction of the level set position at each time increment remains of the order of a few Fm. This is 1000 times lower than the artificial level set thickness used in the simulation. Hence, the application of this correction method in the partitioned resolution algorithm has almost no influence on the calculated fluid flow and solid stress, while keeping a good metal mass conservation. 

Application to macrosegregation 5.2.1 2D benchmark test case

Before appyling the present algorithm to macrosegregation, the solver dedicated to solute transportation is validated through a 2D test case as introduced hereunder. In order to simplify the problem and in the scope of comparisons with reference results [START_REF] Combeau | Analysis of a numerical benchmark for columnar solidification of binary alloys[END_REF], STEP I is neglected in this test case. Only macrosegregation due to thermo-solutal convection of the liquid phase is considered.

Model description

This case consists of modeling the solidification of a Pb-18wt.% Sn alloy ingot. The geometry of the benchmark is a parallelepiped ingot as presented in is shown through arrows, the color of which indicating the magnitude of the velocity. The maximum value of fluid velocity reaches about 6.17 mm • s )* in a downward direction, with the flow being dominated by the solidification shrinkage effect. The metal/gas interface is predicted as shown in Fig.

V.18a. The liquid/gas interface remains a flat surface while the solid/gas and mush/gas boundaries form a parabolic-like surface due to progressive solidification shrinkage. varying between 0 and 2 mm • s )* . In this step, the solute transfer phenomenon is considered in order to investigate the influence of the movement of the solid shell on the formation of macrosegregation. [7], the solid velocity induced by the punching effect in this specific position is approximately the same as in the present simulation, about several millimeters per second. Nonetheless, the liquid velocity was of several centimeters per second, thus creating an upward relative solid/liquid velocity of the same magnitude of the fluid flow. In the present simulation, the liquid velocity has nearly the same value as the solid velocity. This difference of the liquid velocity in the mushy zone can be explained by the fact that in a monolithic resolution algorithm [START_REF] Koshikawa | Experimental study and two-phase numerical modeling of macrosegregation induced by solid deformation during punch pressing of solidifying steel ingots[END_REF], a solid continuum in the mushy zone is considered as a deformable compressible porous medium while in the present model, the compressibility of the solid skeleton is neglected. More precisely, the description of the mechanical interactions between the solid and liquid phases in the mushy zone by Darcy's law is not sufficient. In fact, the compressibility of the solid skeleton should be considered in order to better model the strong interaction from the deformation of the solid skeleton to the interstitial fluid, especially to the pressure of the interstitial fluid. This explanation is supported by the fact that the pressure gradient in [START_REF] Koshikawa | Experimental study and two-phase numerical modeling of macrosegregation induced by solid deformation during punch pressing of solidifying steel ingots[END_REF] at this central part of the ingot is about 50 times higher than the present model. In the present model, A = and A == have nearly the same magnitude due to the strong permeability effect from Darcy's law while in [START_REF] Koshikawa | Experimental study and two-phase numerical modeling of macrosegregation induced by solid deformation during punch pressing of solidifying steel ingots[END_REF] the magnitude of A == is much higher than that of A = due to the high pressure-gradient created in the interstitial fluid through the deformation of the solid skeleton. A free velocity is considered on the upper surface of the simulation domain, allowing gas to flow in and out freely. The surrounding faces of the entry nozzle are defined as sticking. The bottom surface of the metal sub-domain is imposed with the constant vertical casting velocity A FF . Moreover, another constant vertical velocity A 7;'$! is imposed at the top surface of the entry nozzle, more precisely on nodes at the interior of this surface. The value of A 7;'$! is deduced through the following expression: A 7;'$! = A FF u 6G! u 7;'$! ⁄ in order to conserve the metal volume, with u 6G! and u 7;'$! denoting respectively the surface of the nozzle entry (not the entire surface as nodes at the boundary of this surface is considered as sticking) and the bottom surface. The same mechanical boundary conditions as described above are applied to both STEP I and STEP II, except for the surrounding vertical surfaces in contact with the mold in STEP II. At these surfaces, sticking boundary conditions are assumed, in order to reduce numerical instabilities due to the presence of the intensive nozzle jet in contact with the mold.

Material parameter

The initial mesh is defined in Fig. V.23b. Isotropic mesh with a constant mesh size of 10 mm is used over both the metal and gas sub-domains except two critical regions. First, in the 20 mm thick metal/gas transition zone where the mesh is refined in an anisotropic manner with a mesh size of 1.5 mm in the vertical direction and 10 mm in the horizontal directions. An extra 20 mm thick transition zone is defined along each side of the interface, between the refined level set transition zone and the outside zone with constant coarse mesh, in order to ensure a smooth transition of the mesh size between the two zones and reduce the possible numerical instabilities due to poor mesh quality in this critical region around the metal/gas interface. Besides, for the metallic zone in the vicinity of the mold, isotropic refined mesh is used, with a minimum mesh size of 4 mm, in order to ensure a further reliable stress-strain analysis in the very thin solid shell (only a few millimeters thick). The number of mesh elements in the initial mesh as defined in Fig. V.23b is about 640 000. It should be mentioned that as the simulation is performed under a global non-steady state approach, the mesh element will keep increasing with a globally linear evolution over time. A geometrically predefined interface is defined by the green-colored region shown in Fig. V.23c, with the use of a Heaviside distance function, ℋ &1" , smoothed over a total thickness of 20 mm and equal to zero above the interface. This Heaviside function is related to the definition of the mesh velocity. More precisely, the bulk liquid region nearby the nozzle entry and the full gas sub-domain are considered pure Eulerian zones and are represented by the blue colored zone above this fixed interface. The fully solidified zone, the mushy zone and the pure liquid zone under this fixed interface are applied with the mesh velocity as defined in Eq. (IV.10), i.e. A &1" = v ' A FF + v 1 A = . As a summary, the mesh velocity over the whole simulation domain can be given by A &1" = ℋ &1" (v ' A FF + v 1 A = ). Finally, the material properties are based on a 40CrMnMoS8-6 steel grade as in the previous work [START_REF] Zhang | A partitioned two-step solution algorithm for concurrent fluid flow and stress-strain numerical simulation in solidification processes[END_REF] with several additional simplifications. The values of the material properties used together with simulation parameters are resumed in Table V.9. Note that properties of the gas are oversimplified in the current simulation, in order to reduce the numerical instabilities at the metal/gas interface. 

Material parameters

Conclusions

During this work, a new numerical model for solidification is developed with a partitioned resolution algorithm in the context of a CimLib development environment. This numerical model provides concurrently the estimation of fluid flow evolution, a stress-strain analysis and the prediction of macrosegregation. Applications are developed on industrial casting processes, regarding both the IC and CC processes. In the following, we summarize the main achievements of this work regarding various aspects.

• Modeling methodology

Through this work, a new numerical model for solidification has been developed with a partitioned resolution algorithm in the context of the CCEMLCC project. This research has been conducted in the framework of a 3 three-year research plan carried out by ESA and its industrial partners for a better understanding of the industrial solidification processes.

In the present model, the level set method is used with the presence of an additional gas domain over the metal domain, to consider the evolution of the metal/gas interface during the solidification process.

The four main physical phenomena involved in solidification processes are investigated and modeled: heat transfer, solute transfer, solid mechanics and fluid mechanics. In particular, the mechanical interactions between the solid and liquid phases in the mushy zone are considered, through a partitioned resolution scheme, coupling solid and fluid mechanics. This partitioned algorithm is extended to its ALE formulation in application to CC processes, offering the possibility to perform non-steady state simulations. This model takes advantage of the development of various remeshing methods available at CEMEF, allowing the definition of adaptive meshes according to different simulation contexts.

• Partitioned thermomechanical modeling For the thermomechanical modeling in solidification, a partitioned solution algorithm is proposed. It consists in treating the problem into two different sub-problems, the thermo-solutal fluid modeling and the solid mechanics modeling. These two sub-problems are solved separately and coupled at each resolution increment.

On one hand, the solid mechanics modeling is based on a homogenized continuum approach, assuming that there is no relative movement between the solid and liquid phases. Besides, only the thermal dilatation of the solid phase is taken into account for the computation of the intrinsic solid velocity in both the solid and mushy zones. In the mushy zone, different mechanical responses of the mushy zone are modeled according to a coherency point characterized by the critical liquid fraction v FG" ' . The viscosity of the liquid phase is artificialy augmented in order to overcome the conditioning problem induced by the huge stiffness difference between the solid and liquid phases. Finally, the variable change technique for the velocity and pressure fields (A, B) is applied, to better conditioning the mechanical problem and thus improving the convergence for the iterative mechanical solver.

model can be further enriched and exploited. In the following, future works which may be carried out are summarized in several directions:

• Implementation into Thercast One important perspective of this work is its implementation into the commercial solidification software Thercast, co-developed by Cemef and Transvalor. This integration will allow the current model to take advantage of the commercial software developement environment. Notably, the multidomain simulations will be possible, taking into account both the thermal and mechanical contacts between the cast metal and the molds. Besides, a large number of numerical tools that have already been implemented in Thercast will be available for further optimizations of the present partitioned model, such as mesh velocity algorithm and contact management between the metal and the molds.

• Numerical resolution to be optimized

The first issue is the mesh velocity. Currently, the mesh velocity is oversimplified as in the case for CC application. An intelligent mesh velocity [START_REF] Bellet | ALE method for solidification modeling[END_REF] could be more appropriate, preventing at each increment a post-remeshing step and thus saving greatly the computation time and resources. Remind that although the mesh velocity is neglected for applications to IC in this study, the general algorithm as is presented in Fig. V.12 is applicable also for IC. Moreover, in application to ingot filling simulations, such an appropriate mesh velocity can reduce the frequency of the post-remeshing step and thus save significant computational time.

The second issue is the desynchronization of STEP I and STEP II, as the physical characteristic time scales of the solid and fluid mechanics are very different. Moreover, the time steps for both resolution steps are currently taken as constant and equal, it could be better to compute the respective dynamic time step at each resolution increment according to their physical conditions.

The third issue addresses to a more elaborate remeshing strategy in large industrial applications, providing an adaptive mesh to zones of interest while keeping within an affordable number of mesh elements.

The fourth issue essentially lies in the treatment of contact with molds. At present, there is a strong hypothesis of non-departure of the solidified skin formed from the mold surface due to the limitation of the CimLib development environment. This should be taken into account by implementing a penalty treatment of the non-penetration condition.

The last issue concerns the modeling of the slag layer at the metal/gas interface, which is commonly present for most of the industrial casting processes. It is neglected in the present numerical model.

• Compressibility of the mushy zone

Results from the ingot punching test case reveal that the current model is not relevant to predict macrosegregation due to solid deformation. The reason of this incapacity lies in the fact that the compressibility of the mushy zone is currently neglected in STEP I. More precisely, the movement of 

  Fig. I.2a, manufactured as a central part of the containment vessel for a nuclear reactor. (a) (b) Figure I.2: Examples of industrial applications for IC and CC methods: (a) 600 tons ingot manufactured by IC method for nuclear industry [5]; (b) steel slab at the exit of a CC machine, being cut with oxyacetylene torches [6].

  Fig. I.3a. At the very beginning of solidification, solid nuclei firstly appear with random orientations close to the cold mold due to the initial high cooling rate at the metal/mold interface. The outer equiaxed zone is thus formed near the mold also corresponding to the skin zone of the ingot. However, due to its very limited extent, it is rarely dealt with in detail.Then due to the development of this initial structure formed at these mold interfaces, columnar dendrites develop at a larger scale. Their directional structure is induced by a grain selection mechanism explained by the temperature gradient located at these interfaces. An illustration of the columnar dendritic microstructure is presented in Fig.I.3b. The distance between two neighboring columnar dendrites is the primary dendrite arm spacing, noted as M , . Each columnar dendrite has a parabolic needle-like main structure and lots of small branches. The distance between two neighboring branches is the secondary dendrite arm spacing, noted as M / . These columnar dendrites keep growing in a preferred direction parallel and opposite to the heat flow, forming the columnar zone. Beyond a certain development, small branches of the dendrites may detach due to local remelting. Nucleation on heterogeneous particles can also take place. These solid fragments tend to grow into an equiaxed form because of radial heat extraction from the surrounding undercooled melt. They form subsequently the equiaxed dendrites or globular grains depending on the final morphologies. The microstructure of equiaxed dendrites is shown in Fig. I.3c, in a 2D representation, with parabolic needle-like main structures developed in its four principal crystallographic directions (2D). Six growth directions would

  D E stands for the equivalent von Mises stress. In the context of solidification, the FSI index keeps very low values. The highest values are encountered for thin solid shells just below the liquidus when exposed to fluid flow, or in mushy zones just above the solidus. In such cases, the liquid dynamic viscosity N * is about 10 +4 Pa ⋅ s. Assuming a generalized strain rate F̅ ̇ in the metal flow in the range of 10 to 1000 s +, , D E U*Z89 , being equal to 3 N * F̅ , is of the order of 10 +/ to 1 Pa. The flow stress D E -1*89 of the solid zone at the very high temperature being about 1 to 10 MPa, the FSI index is then found in the range [10 +[ , 10 +\ ], expressing a very weak interaction. More concretely, such a solid region is hardly deformed by fluid flow. Such a low -value problem is associated with very poor conditioning of the stiffness matrices arising in the solution of the momentum conservation equation. That explains

  Fig. II.7 shows the initial mesh of the ingot and final mesh adapted to three fields in solidification, the normalized temperature field, the normalized fluid velocity field and the Smoothed Heaviside function. The geometry of the ingot is the same as the previous example, but with a more refined initial isotropic mesh with size 1 mm, 4 mm and 1 mm respectively in directions Ü, € and ‹ as shown in Fig. II.7a.

Fig

  Fig. II.7b gives an adapted and optimized mesh with nearly half the mesh element compared to that of Fig. II.7a. As for the regularization value F 722 , it should be chosen carefully according to the global mesh size and zones of interests. As shown in Fig. II.7b and Fig. II.7c, under the same desired maximal element number and weighting coefficients, a bigger value of F 722 tends to refine the mesh in the gas sub-domain, therefore fewer elements are available for the remeshing in zones of interests. Fig. II.7d shows the influence of the weighting coefficient, by increasing the value from 1 to 10 for the normalized fluid velocity field from the case corresponding to Fig. II.7c. Under the same desired maximal element number, more elements are distributed to adapt to the fluid velocity field. Mesh size adapted to the interface, the temperature gradient and the gas domain are significantly degraded. The same effect is observed by the increase of the weighting coefficient for the temperature field, comparing Fig. II.7b and Fig. II.7e. Finally, Fig. II.7f shows the mesh with a sudden decrease of the total estimated element number compared to the case of Fig. II.7b, from 20000 to 5000. As a

  Figure II.7: (a) The initial mesh configuration. (b-f) Adapted mesh with different mesh parameters.
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 12 Equations in the metal sub-domain 3.1.1 Heat transfer in metallic alloys under solidification 3Equations in the gas sub-domain 3.3 ConclusionsRésumé du chapitre en françaisDans ce chapitre, les équations de conservation et les lois de comportement correspondant à l'échelle macroscopique sont introduites pour les quatre phénomènes physiques actifs dans les procédés de solidification. Ces équations sont considérées comme une base pour le nouveau modèle numérique de solidification qui sera présenté dans le prochain chapitre. Le transfert d'énergie, le transfert de soluté, les problèmes de mécanique des solides et de mécanique des fluides dans le domaine métallique sont d'abord présentés en détaillant également les lois de comportement correspondant à chaque problématique. Ensuite, dans la dernière partie de ce chapitre, les équations dans le domaine gazeux sont présentées tout ensemble, dont les équations sont simplifiées au contexte de notre thèse où nous somme intéressé principalement par les physiques dans le domaine métallique. Une discussion plus détaillée de ce point est également donnée dans cette section.

  Figure III.2: (a) Variation of (a) the viscoplastic consistency K and (b) the strain rate sensibility coefficient m in the solidification interval, according to the proposed model (Eq.III.54).

Figure

  Figure III.2 shows respectively the viscoplastic consistency and the strain rate sensitivity coefficient in the mushy zone. It is worth noting that in this simple application, values of u and < in the pure solid zone are not presented except at solidus temperature. According to the proposed model in Eq.

  conservation equations are reduced to the classical Navier-Stokes equations for a single liquid phase medium: \ \> (? * ( * ) + -• (? * ( * × ( * ) --• Ñ * + -} * -? * l = 0 (III.71) -• ( * = -1 ? * ¨\? * \> + ( * • -? * ≤ (III.72)

  [START_REF] Combeau | Prediction of macrosegregation in steel ingots: Influence of the motion and the morphology of equiaxed grains[END_REF] where ? O D , ℎ D , ( D and s ' D are respectively the constant density, specific enthalpy, velocity and heat flux of the gas. Similarly, based on the local constitutive equation of the metal sub-domain given by Eq.

4.5. 1

 1 Algorithm scheme 4.5.2 Incremental mass correction method Résumé du chapitre en français Dans ce chapitre, un nouveau modèle numérique est présenté pour la modélisation des procédés de solidification des alliages métalliques, en particulier les aciers dans le contexte de cette thèse. La nouveauté de ce modèle consiste à découpler la mécanique du solide de la mécanique des fluides à chaque incrément de la résolution. En considérant la modélisation des transferts d'énergie et des solutés, nous pouvons ainsi déterminer, simultanément, le mouvement de la phase liquide, la contrainte et la déformation dans la phase solide, et la macroségrégation. A cet effet, dans ce chapitre les quatre sous-modèles numériques utilisés pour la modélisation correspondant respectivement au transfert thermique, au transfert des solutés, à la mécanique des solides et à la mécanique des fluides sont détaillés. Pour chaque sous-modèle, une courte bibliographie est donnée pour positionner et justifier le sous-modèle choisi dans cette thèse au regard de la littérature. Les équations principales dans les sous-domaines métalliques et gaz sont détaillées ainsi que la formulation monolithique de ces équations en présence d'une level set pour suivre une frontière métal-gaz. Les hypothèses et approximations sont également précisées pour chaque sous-modèle. Finalement, la forme faible et la discrétisation spatiale de chaque formulation monolithique sont présentées. Après cela, dans la dernière section de ce chapitre, l'algorithme du nouveau modèle est détaillé, précisant les étapes de résolutions, et couplant les quatre sous-modèles. Une méthode incrémentale de correction de masse developpée dans cette thèse est également détaillée.

  monolithic formulation consists of the development of a unique energy conservation equation over the whole simulation domain. In a level set framework, it is achieved through the sum of the above two conservation equations developed respectively in the metal and gas sub-domains by the use of the smoothed Heaviside function, ℋ & , such as ℋ & × Eq. (IV.13) +(1 -ℋ & ) × Eq. (IV.14):

  deformation induced by thermal dilatation and non-uniform cooling in casting processes. Surface or sub-surface cracks may initiate in the very thin shell solidified at the vicinity of the mold during the filling stage of IC. Similar observation is possible in CC in the solid shell formed in the mold region where an intense nozzle jet flow and a high heat extraction rate are present or during the bending and unbending operations in the secondary cooling zone[START_REF] Pascon | Finite element study of the effect of some local defects on the risk of transverse cracking in continuous casting of steel slabs[END_REF]. A typical crack observed in CC is given hereunder in Fig.IV.7 for a high strength low alloyed steel grade. Thus cracks may induce a significant waste of material and by consequence important economic losses for industries. In this solid-oriented submodel, we will present the mechanical solver used for the computation of stress and strain in the solid zone. Details of the governing equations will be given from its strong form to the final discretized form.

Figure IV. 7 :

 7 Figure IV.7: Typical fine corner crack observed in a CC slab process for a low C, high Mn microalloyed steel [91]

Fig. IV. 9 .

 9 The cast metal in the secondary cooling stage of the CC is modeled. Due to the deformation of the external solid shell in contact with the support rolls, the solid skeleton in the mushy zone (center part of the cast metal) undergoes deformation and squeezes out or in the solute enriched liquid and, consequently, creates central positive and negative segregation patterns.

  63) and Eq. (IV.64) with the smoothed Heaviside function, as ℋ & × Eq. (IV. 63)+(1 -ℋ & ) × Eq. (IV.

  ? k O ? I J ? l + ? k O ? I J ? (( > -( A )&b# = 0 (IV.69) ( > , ( > * , } > , } > * are the discretized forms of (, ( * , } , and } * , respectively. R 6!CD is the SUPG (Streamline-Upwind/Petrov-Galerkin) stabilization parameter; R C6CD is the PSPG (Pressure-Stabilization/Petrov-Galerkin) stabilization parameter; R 56AB is the LSIC (Least-Squares on Incompressibility Constant) stabilization parameter. The linear system described in Eq. (IV.69) is

  Fig.V.3d for STEP II. In fact, the mesh is locally not fine enough to capture the transition between the mushy zone and the liquid sub-domain or gas sub-domain. In total, the maximum relative error on velocities is 0.55 % at time 0.05 s, 2.45 % at time 0.3 s, 0.66 % at time 0.9 s and 3.96 % at time 1.2 s expressing a good quantitative agreement. Note that due to the solidification shrinkage, the â position of the metal/gas interface has nearly decreased by 10 mm from > = 0.05 s to > = 1.2 s, as shown by the gray vertical lines illustrated on the far right of Figs. V.3(a-d). To conclude, the present test case

  Fig. V.4 illustrates the time evolution of the metal mass, respectively for cases with and without the incremental mass correction method introduced in Section 4.5.2 of Chapter 4. As shown by the black line, without the application of mass correction, the metal mass increases slowly during the initial cooling stage until

Fig. V. 9 .

 9 Fig. V.9. Stress in the three principal directions x, y, z at 20 mm height in the ingot, respectively at time t equal to (a) 10 s, (b) 20 s, (c) 60 s and (d) 120 s. Stress is plotted in a 20 mm-layer from the cooling surface, more precisely, from the starting point of coordinates (40 mm, 0, 20 mm) to the ending point of coordinates (20 mm, 0, 20 mm). Stress profiles computed on the domain front surface at height & = 20 mm are drawn in Fig. V.9 at four different times. As stress remains very low far from the cooling surface, representation in Fig. V.9is limited to a region that extends only 20 mm inward the metal from the cooling surface, e.g. 20 mm < ) < 40 mm. Figs. V.9(a-c) reveal that the stress component in the )-direction is relatively small compared to the two other directions. This evolution is explained by the fact that solidification proceeds in the )-direction, mainly deriving an *̇! " contribution that corresponds to the highest , gradient. It contributes little to stress generation. As for stress in the --direction at the surface of the simulation domain, tension is observed at all times. One should remind that according to the planar type boundary conditions deformation along the --direction cannot be accommodated and the associate stress component continuously increases with time, reaching almost 700 MPa at 120 s in

Fig. V. 10 .

 10 Fig. V.10. Evolution with the time of the error on metal mass conservation without (black line) and with correction (red line).

  Fig. V.11a. The metal sub-domain is 100 mm wide, 60 mm high and 5 mm thick, while the gas sub-domain is located above the metal sub-domain, with an additional height of 10 mm. Heat is extracted from the metal through the sole right-hand lateral surface using a convection-type expression for heat flux density, G = ℎ # (, -, $%! ), where the heat transfer coefficient ℎ # and the external temperature , $%! are constant. The metal is supposed to slide along surrounding surfaces except for the right-hand lateral surface where a sticking boundary condition is imposed. The bottom surface is considered sticking and a free top surface is assumed. A symmetry plane is defined at the left-hand surface, hence reducing the width of the simulation domain to 50 mm. The problem configuration is planar even if simulations are performed in 3D. All boundary conditions are summarized in Fig. V.11a.

18 :

 18 Snapshot of the results in 3.3-ton ingot solidification simulation at time b = 1000 s with (a) solid fraction and the fluid flow in the metal sub-domain; (b) von Mises equivalent stress; (c) macrosegregation map, shown through the carbon segregation index (i.e. (〈^7〉 < -〈^7〉 3 < ) 〈^7〉 3 < ⁄ ). The final macrosegregation map is shown at (d) time b = 2000 s. The associated von Mises equivalent stress formed in the already solidified regions is given in Fig. V.18b. A maximum value of 24 MPa is found near the bottom corners of the ingot due to the sharp temperature gradient present in these zones. It should be mentioned that this value of the equivalent stress is surely overestimated due to the very specific boundary conditions that are imposed on the surrounding surfaces of the ingot (no contact release, i.e. sticking contact with the mold). Finally, the macrosegregation map of the carbon concentration is shown in Fig. V.18c, evaluated by the carbon segregation index. Coherent results are obtained compared to the typical configuration of macrosegregation in large ingot solidification as analyzed in [86]: a negative segregated cone is found at the bottom of the ingot, due to the wash-up effect of the thermo-solutal fluid flow in the mushy zone. Besides, typical "A" segregated channels are also predicted with the present algorithm. Fig. V.18d shows the ingot state after 2000 s of solidification. Typical primary and secondary pipes are predicted. Note that such deep pipe defect is justified by the fact that in the present model the hot top is not considered. Finally, typical positive segregated zones at the top and central part of the ingot are obtained. It should be mentioned that transport and sedimentation of solid grains are fully neglected in the velocity on the projection surface of the cylindrical tool onto this metal surface. More precisely, a linear spatial interpolation is used. As illustrated by the red arrows in Fig. V.19c, the imposed velocity

& 22 :

 22 Fig. V.23a, it is actually not explicitly modeled in the simulation. This is related to the CimLib development environment, where only single-domain simulations are performed.

Figure V. 26 :

 26 Figure V.26: Results of the solid fraction at the narrow cooling face, for five different times from t = 5 s to t = 25 s.

Fig. A. 3 :

 3 Fig. A.3: Evolution of the specific solid enthalpy Ä J and specific liquid enthalpy Ä L as a function of temperature
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	II.3 gives the mesh
	parameters, corresponding respectively to the final mesh obtained in Fig. II.7(b-f). The minimal mesh
	size, ℎ @8E , is set to be 1 mm. ! ℋ ! , ! ' , ! ‖)‖ represent the weighting coefficients respectively for the Heaviside function, normalized temperature field and normalized fluid velocity field.
	{|h -Case b 200000 Case a Case c 200000 100 F 722 -0.1 Case d 200000 100 Case e 200000 100 Case f 50000 0.1 Table II.3: Different mesh parameters under study. ! ℋ ! ! ' Final mesh element ! ‖)‖ ---352836 1 1 1 182166 1 1 1 181576 1 1 10 185726 1 10 1 182207 1 1 1 48226

  Using those relations, the continuity of the flow stress at the critical temperature ' B is ensured, provided that, in the TEVP model, both the yield stress D : and the strain hardening coefficient y tend to zero at the critical temperature for the multiplicative TEVP model, see Eqs. (III.42) and (III.48). For the additive TEVP model, the coefficient q beside the previous two coefficients should also tend to zero at the critical temperature, considering Eqs. (III.44) and (III.48). At higher volume fractions of liquid (j * ≥ j 01> * ), the present model simply expresses a smooth transition towards the Newtonian behavior characterizing the liquid metal. It consists of a mixture rule applied to the flow stress. Considering that the flow stress varies by several orders of magnitude between coherency and liquidus points, a logarithmic mixture rule is proposed, i.e. for j * ∈ [j 01>

@X, F̅ @ (III.48) 0.3, respectively. * ,1]:

  j 01>

* (between coherency and liquidus)

Let's give a simple illustration of this constitutive model as described in Eq. (III.54). First, essential parameters are given in Table. III.1. Parameters u( ' 6 ) <( ' 6 ) j 01> * \u \j * ⁄ \< \j * ⁄ N * Values 15 MPa • s R 0.15 0.3 -20 MPa • s R 0.3 100 Pa • s Table III.1: Typical parameters as deduced from experimental studies conducted on steels [58] for u and < variations in the mushy zone.

  .1. No filling stage is considered. At zero time the bottom domain is filled with metal at rest up to position z = 40 mm, the rest being filled with gas. The corresponding initial mesh is shown in Fig. V.1b. It is generated based on the signed distance function as defined in Eq. (II.1). An isotropic mesh with size 1 mm is used outside the fine mesh zone at the metal/gas interface, as observed in Fig.V.1b. Through this transition zone of total thickness 2ε, an anisotropic mesh is used, with size 0.1 mm in the vertical direction. An extra-transition zone of thickness 1 mm is defined over and below the level set transition zone, with mesh size varying from 0.1 mm to 1 mm in the vertical direction, in order to smooth the transition between the level set transition zone and the outside isotropic mesh zone. As for the boundary Table V.1. Values of material and numerical parameters used in the unidirectional solidification test case.

	Material parameter	Symbol	Value	Unit
	Initial bottom temperature Vertical temperature gradient Cooling rate Solidus temperature Liquidus temperature Solid density at solidus Liquid density at liquidus Gas density Solid dilatation coefficient Liquid dilatation coefficient Gas viscosity STEP I | STEP II Liquid viscosity STEP I | STEP II Solid consistency Numerical parameter	' O V1= m Ä ' 6 ' 5 ? 6 ? 5 ? D ) ' -) ' * N D N * u Symbol	1500 3030.3 100 1431 1490.5 8000 6000 6000 4 × 10 +k 2 × 10 +k 100 | 100 5 × 10 +4 | 10 +j Pa • s °C °C • m +, °C • s +, °C °C kg • m +4 kg • m +4 kg • m +4 °C+, °C+, Pa • s 100 Pa • s Value Unit
	Level set thickness Time step	F ∆>	1 0.01	mm s
	conditions for STEP I and STEP II, the bottom horizontal surface is considered sticking, i.e. the
	velocity equals to zero, the upper horizontal surface is considered as a free surface (allowing gas entry),
	and pure sliding conditions are applied to all other surfaces, i.e. the normal velocity to surfaces equals
	to zero.			

Table V .

 V The simulation is performed on 28 Intel® cores with a computation time of 67 h until the processing time 96 s with a full two-step algorithm and 12 h from 96 s to 120 s with only STEP I performed. The time consumption of the different steps of the algorithm is detailed in TableV.4 until time 96 s, in order to analyze the computation efficiency of the full two-step algorithm. Results show that the remeshing step and level set reset step take considerable resources representing respectively 27 % and 31 % of the total computation time. The remeshing step is performed at each time increment in the present simulation. Frequent remeshing is indeed necessary in order to capture the evolving metal/gas interface during filling. However, the metal/gas interface is later on relatively stable as it evolves slowly at each increment during ingot cooling. Frequent remeshing becomes unnecessary. Management of the remeshing frequency thus becomes an interesting optimization approach to reduce the computing time.The level set reset step has also an important cost despite the already optimized direct reinitialization method. In the present algorithm, a complete reconstruction of the distance function is performed at each level set reset step. However, only the distance over an artificial interface thickness [-;, +;] around the zero-level set interface is valuable so as to calculate the smoothed Heaviside function. An option would thus be to reinitiate the distance function only through a certain thickness around the zero-level set surface, not over the complete domain. Finally, the thermal resolution and the mechanical resolutions STEP I and STEP II represent 39 % of the total computation time, of which STEP I takes about 58 % of the cost. This is due to the fact that the resolution of STEP I is non-linear while STEP II is linear. Actually, one single linear iteration of STEP I takes less computation time than that of STEP II, due to the work done on the (A, B) variable change in STEP I[START_REF] Bellet | Optimisation du changement de variable sur la pression pour les formulations éléments finis vitesse-pression de Thercast® et R2sol[END_REF][START_REF] Chen | Thermomechanical numerical modelling of additive manufacturing by selective laser melting of powder bed: Application to ceramic materials[END_REF]. Nonetheless, taking into account the number of iterations necessary for STEP I (typically 3~5 iterations), STEP I becomes more time-consuming than STEP II. Therefore, another possible option to save computation time is the desynchronization of STEP I and STEP II, i.e. not updating stress and deformation fields at each time increment. 4. Distribution of the computation time for the ingot casting simulation at process time 96 s.

	Solver	Computation time [h]
	Energy Mechanics STEP I | STEP II Level set updating and reset Remeshing Others Total	2 15 | 9 21 18 2 67

  Table V.5. Material, simulation and numerical parameters used in the 2D benchmark test case. interface. The material used in the simulation correspond to the Fe-0.36wt.% C alloy with the thermodynamic properties summarized in Table V.7. Thermal conductivity of liquid/solid/gas 〈O〉 ' | 〈O〉 1 | O 3

	Material parameter		Symbol		Value	Unit
	Melting temperature		, &$'!		327.5	°C
	Liquidus slope Material parameter	K ( Symbol		-2.334 Value	°C • (wt. %) )* Unit
	Partition coefficient Melting temperature Thermal expansion coefficient of liquid Liquidus slope Partition coefficient	O +,-! , &$'! P # ' K ( O +,-!		0.31 1532 -80.45 1.16 × 10 ). 0.314	°C -°C • (wt. %) )* °C)* -
	Solutal expansion coefficient of liquid Liquidus temperature (nominal) Thermal conductivity of liquid and solid Solidus temperature (nominal) Reference temperature	' P / !" 〈O〉 ' | 〈O〉 1 , -$? , ( , >		4.9 × 10 )0 1503.038 17.9 1439.76 1503.038	(wt. %) )* °C °C W • m )* • °C)* °C
	Latent heat Thermal expansion coefficient of liquid	U 1/' P # '		3.76 × 10 . 1.07 × 10 ).	J • kg )* °C)*
	Specific heat of liquid and solid Solutal expansion coefficient of liquid	YZ + [ ' | YZ + [ P / & '	1	176 1.4164 × 10 )4	J • kg )* • °C)* (wt. %) )*
	Reference density of liquid Thermal expansion coefficient of solid Liquid viscosity Secondary dendritic arm spacing Latent heat Initial lead mass concentration of liquid Specific heat of liquid/solid/gas Reference density of liquid/solid/gas	〈\〉 3 ' P # 1 F ' ] 4 U 1/' 〈^5 6 〉 3 ' YZ + [ ' | YZ + [ 〈\〉 3 ' | \ 3 | \ 3 1 | Z + 3 : : :	9250 6.55 × 10 )@ 1.1 × 10 )0 25|39.3|0.1 2.71 × 10 @ 1.85 × 10 ). 500|500|500 18 6990|7276|6900	°C)* kg • m )0 W • m )* • °C)* Pa • s J • kg )* m J • kg )* • °C)* wt.% kg • m )0
	Diffusion coefficient of liquid Viscosity of liquid/gas	〈_ 7 〉 ' F ' | F :		1 × 10 )8 4.2 × 10 )0 |0.1	m 4 • s )* Pa • s
	Diffusion coefficient of gas Secondary dendritic arm spacing	] 4	_ 7 3 :		1 × 10 )*4 5 × 10	m 4 • s )*
	Thermal conductivity of gas		O 3 :		0.1	W • m )* • °C)*
	Specific heat of gas		Z + 3 :		176	J • kg )* • °C)*
	Density of gas		\ 3 :		8000	kg • m )0
	Initial lead mass concentration of gas		〈^5 6 〉 3 :		18	wt.%
	Viscosity of gas		F :		1 × 10 )*	Pa • s
	Simulation parameter		Symbol		Value	Unit
	Initial temperature		, 7;7!		285.488	°C
	External temperature		, $%!		25	°C
	Heat transfer coefficient		ℎ #		400	W • m )4 • K )*
	Numerical parameter		Symbol		Value	Unit
	Half level set thickness		;		1	mm
	Time step		∆b		0.1	s

  Table V.7. Material, simulation and numerical parameters used in the 3.3-ton ingot casting process for macrosegregation modeling.

			).	m
	Initial carbon concentration of liquid	〈^A〉 3 '	0.36	wt.%
	Reference carbon concentration of liquid 〈^A〉 3 '	0.36	wt.%
	Diffusion coefficient of liquid/gas	〈_ 7 〉 ' |_ 7 3 :	2 × 10 )B |2 × 10 )*4 m 4 • s )*
	Solid consistency	h	,ijklibmno	Pa • s C
	Poisson's ratio	p	0.3	-
	Strain rate sensibility	K	,ijklibmno	-
	Hardening coefficient	o	,ijklibmno	-
	Young modulus	q	,ijklibmno	MPa
	Yield stress	r D	,ijklibmno	MPa
	Simulation parameter	Symbol	Value	Unit
	Initial temperature	, 7;7!	1503.038	°C
	External temperature	, $%!	,ijklibmno	°C
	Heat transfer coefficient	ℎ #	,ijklibmno	W • m )4 • °C)*
	Numerical parameter	Symbol	Value	Unit
	Half level set thickness	;	20	mm
	Time step	∆b	0.1	s

-∇ • ¡? k ? c ˚8? ∇ Øà ˘8= -ÿà ˘8? Ÿ = ±¬ -\ @-> ? k \> Øà ˘8= -ÿà ˘8? Ÿ = ±

For the sake of simplicity, the constant value at the RHS of Eq. (IV.46) will be noted as ¸?. The weak form of Eq. (IV. [START_REF] Beckermann | Mathematical modeling of transport phenomena during alloy solidification[END_REF]) is thus given by: where à ˘8 * denotes any virtual solute field belonging to the Sobolev space q , ([) over the analysis domain [. The discretized formulation over the computational mesh [ > is given hereunder:

+ ∏ ? k ? (( ˘? -( @-> ) • ÿ∇à ˘8> Ÿà ˘8> * b# M (IV.48)

where à ˘8> and à ˘8> * are the discretized form respectively for à ˘8 and à ˘8 * . The linear system described in Eq. (IV.48) is solved, using a preconditioned conjugate residual solver with block Jacobi preconditioning and incomplete LU factorization.

solved using a preconditioned conjugate residual solver with block Jacobi preconditioning and incomplete LU factorization.

The velocity and pressure fields obtained from fluid-oriented submodel, through the resolution of Eq.

(IV.69), are denoted (( AA , } AA ), considering this submodel as the second step of a partitioned solution algorithm after the previous solid mechanics resolution step.

Indeed, this incremental mass correction method is a pure numerical treatment to solve the mass conservation problem in the metal sub-domain. However, in the next chapter for applications, we will show that the incremental distance corrected at the metal/gas interface, ; 56 , is negligible compared to the thickness of the artificial level set transition zone. The influence of the application of this mass correction method is thus insignificant to the global simulation results understudy in the metal subdomain while keeping a good metal mass conservation. More details will be given in the next chapter justifying the validity of this method in the present context of solidification processes. The test case can be conveniently separated into two steps. Firstly, the solidification step, for which a rectangular parallelepipedic geometry is considered for the metallic ingot, 500 mm wide, 160 mm thick and 750 mm high. Above the metal sub-domain, an additional gas sub-domain is considered with a height of 100 mm. Heat is extracted from the ingot through its lateral and bottom surfaces with a convection-type expression for the heat flux. Due to the symmetry of the system, only half of the geometry was considered (Fig. V.19a). The top surface of the gas sub-domain is assumed to be free, allowing the gas to flow in and out. A pure sliding boundary condition is imposed on the symmetry plane while all other surfaces are considered as sticking. This step lasts for a total time of 100 s, ensuring the formation of a thick solid shell at the periphery and a mushy zone in the central part of the ingot.

Résumé du chapitre en français

The material used in this simulation is an iron-carbon alloy: Fe-0.2wt%C. Thermodynamic properties of the Fe-0.2.wt% C alloy are computed with a tool called PATH as a part of the numerical library PhysalurgY developed at CEMEF. This library is coupled with the thermodynamic databases proposed in the Thermocalc software [START_REF]TCFE6: A thermodynamic database for different kinds of steels and Fe-based alloys[END_REF]. The database TCFE6 was used presently assuming full equilibrium, with a carbon concentration range from 0.1wt.% to 0.3wt.% to tabulate thermodynamic and physical properties [START_REF] Saad | Numerical modeling of macrosegregation formed during solidification with shrinkage using a level set approach[END_REF]. Note that in this initial solidification step, the solute transfer phenomenon is neglected, thus the nominal concentration is supposed to be uniform during the solidification process.

A constant mesh with anisotropic mesh size is defined in the metal and gas sub-domains. Element size Koshikawa [7], the present prediction does not show a central negative segregated zone due to punching effect, as expected. This can be explained by the fact that no relative movement between the solid and liquid phases is created at the central part of the ingot due to the punching in the present simulation. In the work of Koshikawa On the other hand, the modeling of the fluid flow in the bulk liquid and in the mushy zone is developed under a full two-phase model approach based on a spatial averaging technique, and taking into account the relative motion of the solid and liquid phases. The thermo-solutal convection, as well as the solidification shrinkage, are taken into consideration in fluid flow computation. Moreover, the mechanical interactions between the solid and liquid phases are numerically modeled. Both the momentum and mass conservation equations in the fluid mechanics resolution step consider the velocity field computed in the solid mechanics resolution step.

• Test cases and industrial applications

The present partitioned algorithm has been first validated through a 1D unidirectional solidification test in comparison with its analytical solutions. A very good agreement was found. Besides, an incremental mass correction method ensures mass conservation of the metal domain. This algorithm is investigated and then applied to an IC process with both the filling and cooling stages. Though the scale of the simulation is limited to centimeters, it shows the ability of the present algorithm to predict concurrently the fluid flow and stress-strain field, for application to solidification processes approaching complex industrial configurations. Then in the scope of applications to macrosegregation, the macrosegregation solver is firstly validated through a benchmark, considering only the thermosolutal convection of the liquid phase and assuming a fixed solid phase. Satisfying results of the segregation maps are obtained in comparison with reference results. After this verification step, the present algorithm is applied to the solidification of an industrial ingot. Coherent results of macrosegregation are found in comparison to typical results from the literature, showing the ability of the present algorithm to compute at the same time the fluid flow, the stress-strain and the thermosolutal and deformation-induced macrosegregation. Moreover, macrosegregation due to the solid motion in the mushy or solid zones is investigated through an ingot punching test case. Nonetheless, the present algorithm fails to predict this specific macrosegregation phenomenon as the compressibility of the solid skeleton in the mushy zone is neglected in the current model. Finally, the present algorithm is applied to a CC test case, demonstrating its capacity to model complex industrial CC applications.

The fluid flow is computed with the presence of the nozzle entry with its nominal viscosity as well as the stress-strain analysis in the thin solid shell formed near the cooling faces, all under a global nonsteady regime. As a conclusion, this new algorithm has proposed a solution scheme for the longstanding challenge that the existing commercial software has not yet solved in the field of numerical modeling for solidification, i.e. the concurrent modeling of fluid flow (with nominal viscosity), stressstrain and macrosegregation.

Perspectives

The present numerical model provides an essential response to the long-existing solid/fluid coupling problem in solidification. Nonetheless, there are some challenges encountered during the development of this model and some of them still remain to be overcome or optimized. On the other hand, this the columnar dendritic structure in the mushy zone and its interaction to the increase of the pressure of the interdendritic liquid phase should be better captured. This was already done by Bellet and coworkers in a 2D finite element model with a concurrent resolution (in a single non-linear set of equations) of liquid velocity, solid velocity and liquid pressure for the study of liquid/metal interactions in the mushy zones [START_REF] Koshikawa | Experimental study and two-phase numerical modeling of macrosegregation induced by solid deformation during punch pressing of solidifying steel ingots[END_REF][START_REF] Fachinotti | Two-phase thermomechanical and macrosegregation modeling of binary alloys solidification with emphasis on the secondary cooling stage of steel slab continuous casting processes[END_REF]. The challenge for this modeling issue for further development of the present model is twofold. Firstly, the compressibility of the solid structure in the mushy zone should be considered in STEP I when treating the solid mechanics problem. Secondly, the relationship between the solid velocity from STEP I and the pressure of the liquid phase in STEP II should be taken into consideration, either with modifications of equations directly to STEP II or with a post-treatment on the pressure field.

• Integration of the grain transport model Modeling of the transport and sedimentation of the solid grains is of crucial importance for the prediction of macrosegregation in common industrial casting processes. It is then essential to couple a grain transport model, such as proposed by Nguyen et al. [START_REF] Nguyen | Finite Element Multiscale Modeling of Chemical Segregation in Steel Solidification Taking into Account the Transport of Equiaxed Grains[END_REF], to the present partitioned solution algorithm, in order to give access to enhanced predictions of macrosegregation due to thermal-solutal convection, shrinkage flow, grain transport, and sedimentation, as well as thermomechanical deformation of solid and mushy regions. Together with the demonstrated efficient coupling of thermosolutal fluid flow and solid mechanics modeling effects on heat and total mass transport, this is expected to provide engineers with radically new simulation methods and packages for optimization of industrial casting processes.

Appendix

Thermomechanical properties of steel grade 40CrMnMoS8-6