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Résumé

Dans le cadre de la théorie mathématique de l'échantillonnage comprimé (Compressed Sensing, CS), développée récemment, il est possible de reconstruire un signal ou une image à partir de très peu d'acquisitions. Dans cette thèse, nous étudions comment cette théorie peut être adaptée à deux techniques de microscopie optique : la microscopie à fluorescence, et la tomographie en cohérence optique. Ces deux technologies présentent chacune des limitations, qui peuvent être corrigées par prise en compte de stratégies d'échantillonnage comprimé, que l'on peut diviser en deux catégories : des solutions algorithmiques propres au traitement d'image, et des techniques d'acquisition optique.

L'acquisition d'image en microscopie à fluorescence est le fruit d'un inévitable équilibre entre qualité d'image et photo-toxicité. Dans ces conditions, les images sont souvent dégradées par du bruit, de nature complexe. Dans ce manuscrit, nous présentons un algorithme de débruitage, inspiré du CS, qui permet la reconstruction d'images débruitées à partir de très peu de leurs coefficients de Fourier, même lorsque le bruit à traiter est de nature complexe (et donc réaliste). D'autre part, nous introduisons un nouveau cadre pour l'acquisition parcimonieuse d'image en microscopie à fluorescence, appelé CS en domaine direct, permettant la reconstruction d'une image à partir de seulement 25% des pixels de la caméra, en utilisant une matrice de micromiroirs, accélérant la vitesse d'acquisition d'un facteur 2. Enfin, nous étendons cette nouvelle approche à la microscopie à illumination structurée, montrant que l'on peut reconstruire des images super-résolues sans utiliser plus d'information qu'en microscopie à champ large classique.

En tomographie en cohérence optique (optical coherence tomography, OCT ), les récents développements de techniques telles que l'OCT en domaine spectral (SD-OCT) ou à balayage de source (SS-OCT), entraînent la nécessiter de stocker et traiter des quantités de données exponentiellement croissantes, rendant parfois ces méthodes inutilisables en pratique. Dans cette thèse, nous adaptons notre algorithme de débruitage, inspiré du CS, au contexte de la SD-OCT, obtenant des résultats de simplification et de segmentation d'images de rétine et de coeur humain, utilisant seulement 10% des coefficients de Fourier d'une image. Enfin, nous étendons le cadre du CS en domaine direct à la SS-OCT, proposant un nouveau montage CS/SS-OCT, qui, nous le pensons, connaîtra de nombreuses applications dans la recherche biomédicale de demain.

Mots-clé:

Échantillonnage comprimé, problèmes inverses, variation totale, transformée de Fourier, parcimonie, débruitage, imagerie biologique, microscopie à fluorescence, microscopie à illumination structurée, tomographie en cohérence optique. 

General Introduction

Optical microscopy has been central in the evolution of biological and medical research, as it enables the study of phenomena at microscopic scales, such as inter and intra-cellular interactions. The evolution of optical techniques along with the modern developments in image processing and analysis permit an uninterrupted improvement of the capability of nowadays microscopes in terms of depth penetration, optical resolution, acquisition speed, etc. However, these expansions come with a price, and modern microscopy techniques suffer from several limitations, from acquisition speed to photo-toxicity, including the need to handle large quantities of data. Recently, the mathematical framework of Compressed Sensing (CS) has emerged as a potential solution to tackle these limitations, as this theory shows, under some constraints, that it is possible to reconstruct an image from a few randomly selected coefficients.

The introduction of CS in the context of biological microscopy has been at the heart of two previous thesis works. In [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF], Marcio Marim laid the foundations of CS-based biological microscopy, along two main axes: on the one hand, he proposed a denoising algorithm, reconstructing a noise-free image from few random Fourier coefficients; on the other hand, he developed and implemented a CS-based digital holography set-up, which remains today the main application of the CS theory in holography. In [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF], Yoann Le Montagner developed further the CS-based denoising algorithm, with a dedicated study on the Fouriersampling process and optimization algorithm. He also designed an estimator of reconstruction error in the context of mixed Poisson-Gaussian noise, called Poisson-Gaussian unbiased risk estimator (PG-URE), and finally extended the Fourier-based CS reconstruction techniques to video samples.

In this thesis, we further investigate how CS can be integrated to biological microscopy paradigms, in order to offer an answer to the situation presented in the first paragraph. Indeed, two of the common solutions to tackle all the issues listed above are: either to reduce the illumination light intensity, or to accelerate the acquisition process, both options leading images with a low signal to noise ratio (SNR). In this work, we propose two complementary approaches to improve the quality of image reconstruction in this context: removing noise through image processing, and accelerating the speed of acquisition through Compressed Sensing. This manuscript is organized into four parts:

In Chapter I, we present a general introduction on the mathematical theory of Compressed Sensing. After introducing the main notions and theoretical results that will be useful in this xxiv General Introduction work, we focus on the development of CS in the context of image acquisition and reconstruction, and present the main examples of application of the CS framework in imaging today.

Chapter II is directly in line with the previous works of Marcio Marim [Marim11a] and Yoann Le Montagner [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF]. We present how the CS-based denoising algorithm introduced in [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF] is well suited to reconstruct images corrupted with complex, realistic noise, inherent to low-light biological microscopy imaging. After an extensive study on the presence of noise in biological microscopy, we propose a review of the state-of-the-art denoising methods for complex noise models, along with our proposed fusion of sparse reconstructions (FSR) algorithm, which is an improved version of the one developed in [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF], that we evaluate on both synthetic and real fluorescence microscopy images.

In Chapter III, we introduce the new framework of direct-domain Compressed Sensing (DDCS), enabling the implementation of the CS theory in the context of fluorescence microscopy. In addition to this theoretical approach, we propose the proof of concept of a DDCS microscope, that we further develop in the context of structured illumination microscopy (SIM), aiming at reconstructing super-resolved images at faster rate.

Finally, these two approaches (image processing from Chapter II and compressed acquisition from Chapter IV) are not limited to fluorescence microscopy, and can be adapted to other frameworks. We present in Chapter IV how they can be adapted in the context of optical coherence tomography (OCT). We first propose to adapt our FSR algorithm to spectral-domain OCT (SD-OCT) images, aiming for the denoising and segmentation of layers in human cardiac and retinal tissues. Then, we present the implementation of the first (to our knowledge) CSbased swept-source OCT (SS-OCT) system.

Chapter I

Compressed Sensing Theory

The mathematical theory of Compressed Sensing (CS) has been introduced simultaneously in 2006 by Candès, Romberg and Tao [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] and Donoho [START_REF] Donoho | Compressed sensing[END_REF]. The goal of this theory is to provide tools and methods for the reconstruction of signals with a sparse structure, from a small collection of linear measurements. Mathematically, the problem of CS consists in recovering a signal x ∈ C N that has a sparse structure, from a linear observation y = Φx ∈ C M , where Φ ∈ C M ×N is called the measurement operator, even when the number of observations is drastically lower than the size of the signal to recover (M N ). The problem y = Φx is strongly ill-posed in this context, and the prior information on the sparsity of the signal x is key. More generally, we consider that the signal x has a sparse representation in a known dictionary Ψ ∈ C N ×L , meaning that there exists a vector s ∈ C L such that x = Ψs with very few non-zero coefficients. In this case, Ψ ∈ C N is called the sparsifying transform or sparsity dictionary.

In this chapter, we lay down the principal definitions and theoretical results which are central in the CS theory, especially in the context of image reconstruction. We also introduce the principal algorithms that are commonly used in CS-based image reconstruction. Then, we present a few applications of the CS theory in imaging. We finally conclude this chapter with a practical example of Fourier-based CS reconstruction in fluorescence microscopy. 

I.1 Definitions and generalities

In this manuscript, we will focus on the applications of the Compressed Sensing theory with images. Formally, we denote by Ω the finite support of an image. Inspired by the cameras used in most imaging frameworks, we suppose that Ω is a (m × n) matrix, where m and n are positive integers, usually chosen such that log 2 (m) and log 2 (n) are integers too. Then, each camera pixel is represented by a coordinate (k, l) ∈ 1, m × 1, n in the matrix Ω. Theoretically, we can define an image x as an application x : Ω → C. In other words, an image x is the information of the complex value corresponding to each pixel (k, l). In practice, cameras encode pixels over integer values in a given range 0, 2 b , where b is the depth of encoding of the camera, in bits. For example, most modern CMOS cameras used in fluorescence microscopy are of size 1024 × 1024 and encode data over 16 bits, meaning values of an image are integers lesser or equal to 2 16 = 65536. In summary, images will be, in the practical applications of this manuscript, elements of 0, 2 b m×n . For the sake of simplicity, and without loss of generality, we will denote images x as elements of C N , where N = m × n ∈ N in this section.

When there is no ambiguity, we will make no difference between the two spaces C N and C m×n . Thus, we will identify images x ∈ C m×n as vectors x ∈ C N without changing notation. Consequently, the value of an image x at pixel (k, l) will be indifferently denoted as x(k, l) or x(t), depending on the context. Note that in this case, the value t ∈ 1, N is obtained from the couple (k, l) ∈ 1, m × 1, n using the following rule: t(k, l) = (l -1)m + k. Reciprocally, for a given t ∈ 1, N , one can recover the corresponding pair (k, l) ∈ 1, m × 1, n , writing k = t mod m and l = 1 + t -k m .

I.1.1 Sparsity and compressibility

We must first define the notion that is central in the CS theory -sparsity -and its weaker version -compressibility.

Definition 1 (Sparsity). An image x ∈ C N is said to be S-sparse (with 0 ≤ S ≤ N ) if it has at most S non-zero coefficients. Mathematically, S = x 0 , which is the 0 -norm of x. Finally, x is said to be sparse if x 0 N . In addition, we call support of x, and denote Supp(x) the set of pixels (k, l) ∈ Ω such that ∀(k, l) ∈ Supp(x), x(k, l) = 0. By extension, we will say that an image x ∈ C N is sparse in a dictionary Ψ ∈ C N ×L if there exists a sparse image s ∈ C L such that x = Ψs. In this case, s is said to be a sparse representation of x in the sparsifying dictionary Ψ. See Figure I.1 for an example of a sparse image. There, ∂ h x is defined as ∂ h x(k, l) = x(k + 1, l) -x(k, l) for each pixel coordinate pair (k, l) such that (k + 1, l) ∈ Ω, and ∂ h x(k, l) = 0 otherwise. However, application of the strict mathematical definition might be of limited use in practice, and the notion of being much smaller than is quite vague. Also, one is not really interested whether an image is sparse or not, but more likely what the degree of sparsity of an image is.

Definition 2 (Degree of sparsity). If an image x ∈ C N is S-sparse (with 0 ≤ S ≤ N ), we define its degree of sparsity as:

τ S (x) = S N (I.1)
Consequently, x is said to be sparse if τ S (x) 1.

Now, it is important to notice that natural images are not sparse. Whether it is because of the image degradation inherent to most imaging techniques (aberrations, noise, etc), or to the intrinsic smooth nature of real-life objects, the condition must be as small as possible is not very constraining. In particular, there is no hard constraint to be reached: as long as the 0 norm is as small as possible (which can be big), it meets the condition. Consequently, we use a weaker version of the notion of sparsity [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF]: Definition 3 (Compressibility, weak sparsity). An image x ∈ C N is said to be compressible if, for some value r > 1, there exists a constant C r (depending only on r) such that : where the sequence x (1) , x (2) , . . . , x (N ) represents the pixels of x sorted in decreasing order with respect to their magnitudes :

|x (t) | ≤ C r (t + 1)
|x (1) | ≥ |x (2) | ≥ • • • ≥ |x (N ) |.
This formal definition leads to the intuitive definition of x being almost sparse. Indeed, for any S ∈ 1, N , we can construct an S-sparse image xS ∈ C N by setting to 0 all the components of x, except the S largest ones. Then, the l 1 -norm of the approximation error x -xS 1 can be bounded as follows :

x

-xS 1 ≤ C r r -1 • 1 S r-1 (I.3)
Following the same idea, we can now define the degree of compressibility of an image:

Definition 4 (Degree of compressibility). If an image x ∈ C N is compressible, let us denote xS its closest S-sparse image (with 0 ≤ S ≤ N ), in the sense of (I.3). We then define its degree of compressibility as: τ C (x) = τ S (x S ) (I.4)

In practice, we will only keep the definition of degree of sparsity, as we will suppose that the image xS is easily accessible once x is given. We display on Figure I.2 an example of a compressible image. As most of the coefficients of ∂ h y are close to zero, we can define the closest S-sparse image ỹS of y by setting to zero these almost-zero coefficients. This way, ỹS is close to the noiseless image x from Fig I .1. This example is representative of most real-life situations, where sparsity is prevented because of noise degrading the image. We can already notice that the recovery of the sparse image x from its noisy version y can lead to errors if we only transform ∇y by setting to zero its smallest coefficients. One of the main axis of this thesis will be to study how this noise term can be handled to recover sparse images from biological images obtained in fluorescence microscopy (see Chapter II).

Note that, in practice, we can construct the closest S-sparse image xS of a compressible image x, but that the result depends on the norm used to define the notion of closeness. More precisely, we can define, as proposed in [START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF], the p -best S-sparse approximation of x as: Definition 5 (Best p S-sparse approximation). Let 0 < p < +∞ be a positive real number, so that the norm p is defined, and let x ∈ C N be an image. Then, we define the p -best S-term approximation error as: σ S (x) p = inf

z∈C N z 0 =S x -z p .
When the infimum is reached for a certain z ∈ C N , we denote by xS p this image, which is called the p -best S-sparse approximation of x.

Note that, in this manuscript, we will exclusively work in the case where p = 1, and will denote without loss of generality, for an image x ∈ C N and an integer S ≤ N , xS = xS 1 .

I.1.2 Dictionaries

In practical situations, images are not sparse nor compressible in their canonical representation basis. As seen on Figures I.1 and I.2, it seems more natural to consider that images are sparse or compressible up to a transformation. In other words, we say that an image x ∈ C N has a sparse representation s ∈ C L if there is a matrix Ψ ∈ C N ×L such that x = Ψs. This matrix Ψ is called a sparsity dictionary or sparsifying transform, and its choice is strongly dependent on the type of images that we study, and the application. Note that, if L = N , the matrix Ψ will be denoted as a sparsity basis, and as a redundant dictionary if L > N . The case where L < N , denoted as under-determined dictionary raises more difficulties, as it can lose information during encoding. Out of all the examples in the literature, we can highlight the following well-known sparsifying transforms: undecimated wavelet basis for piecewise regular images [START_REF] Starck | Redundant multiscale transforms and their application for morphological component separation[END_REF], dyadic wavelet basis for images containing bright spots on a dark background (spot detection in microbiology [Olivo-Marin02], astronomy [START_REF] Bobin | Compressed sensing in astronomy[END_REF][START_REF] Starck | Polarized wavelets and curvelets on the sphere[END_REF]), curvelet frames for piecewise regular images [START_REF] Emmanuel | New tight frames of curvelets and optimal representations of objects with piecewise c2 singularities[END_REF], bandlet transforms when images contain anisotropic structures [START_REF] Mallat | A review of bandlet methods for geometrical image representation[END_REF], etc.

The a priori knowledge of a sparsity dictionary is fundamental in order to adapt in the best way possible the Compressed Sensing theory to a given problematic. Hence, this can rapidly become a limitation of the method, as such prior knowledge can be difficult to evaluate. With the recent developments in the field of machine learning, due to the never-ending accumulation of huge quantities of data, in more and more domain of applications, automatic dictionary learning approaches are now an efficient alternative. In the context of Compressed Sensing, numerous methods have been developed to learn several dictionaries against sets of data, in a class of methods called dictionary learning. One of the milestones in this field is the work of Elad and Aharon in 2006 with the K-SVD method [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF][START_REF] Aharon | rmk-svd: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF]. This algorithm builds an optimal overcomplete dictionary that represents a given set of data in the sparsest way possible. Many applications have been developed thereafter, such as [START_REF] Rubinstein | Efficient implementation of the k-svd algorithm using batch orthogonal matching pursuit[END_REF][START_REF] Rubinstein | Analysis k-svd: A dictionarylearning algorithm for the analysis sparse model[END_REF][START_REF] Ma | A dictionary learning approach for poisson image deblurring[END_REF] for denoising purposes. Additionally, the paper of Duarte-Carvajalino and Sapiro [Duarte-Carvajalino09] provides a general framework for dictionary learning in Compressed Sensing.

In 2011, Gleichmann and Eldar proposed to push even further the concept of getting rid of the prior knowledge on the sparsity basis, by introducing the theory of blind Compressed Sensing [START_REF] Gleichman | Blind compressed sensing[END_REF]. Their method allows for the reconstruction of data using the CS theory, even when the sparsifying transform is not given. This method has lead to high quality results in several applications, such as dynamic MRI [START_REF] Goud | Blind compressive sensing dynamic mri[END_REF].

I.2 Image reconstruction I.2.1 Recovering a sparse image from incomplete measurements

I.2.1.1 Uncertainty principle

Originally stated by Heisenberg in the field of quantum physics in 1927, and detailed in [START_REF] Percy | The uncertainty principle[END_REF][START_REF] Heisenberg | The physical principles of the quantum theory[END_REF], the uncertainty principle can be rephrased as follows [START_REF] David | Uncertainty principles and signal recovery[END_REF]: The product of time-duration and bandwidth of a signal are bounded from below by 1:

∆t∆ω ≥ 1.
In terms of image sparsity, it means that an image and its Fourier transform cannot be sparse simultaneously. This principle has been studied in the field of signal processing [START_REF] Gabor | Theory of communication. part 1: The analysis of information[END_REF], and generalized in the late 90s to lay the foundations of what eventually became the Compressed Sensing theory [START_REF] David | Uncertainty principles and signal recovery[END_REF].

In [START_REF] David | Uncertainty principles and ideal atomic decomposition[END_REF], the authors have shown that the uncertainty principle can be generalized to several pairs of bases (Dirac and sinusoids, wavelets and sinusoids, wavelets and ridgelets, etc.). These pairs of bases will be crucial to define properly the framework for Compressed Sensing reconstruction, and we first need to define precisely the notion of mutual incoherence between bases [START_REF] David | Uncertainty principles and ideal atomic decomposition[END_REF].

Definition 6 (Mutual coherence). Let Φ ∈ C M ×N , and Ψ ∈ C N ×L be two matrices, and denote by φ 1 , . . . , φ N the rows of Φ and ψ 1 , . . . , ψ N the columns of Ψ. Then, the mutual coherence of Φ and Ψ is defined as:

µ(Φ, Ψ) = max k,l∈ 1,N | φ k , ψ l |. (I.5)
In the cases mentioned earlier, for instance where Φ and Ψ represent respectively a Dirac basis and a basis of sinusoids, these two bases have a small value of µ(Φ, Ψ), and are said to be mutually incoherent. For example, if Φ is a partial Fourier transform, and Ψ is the identity matrix (corresponding to the study of directly sparse images), then µ(Φ, Ψ) = 1. Incoherence guarantees that the information contained in the vectors of Φ are spread out over the entire domain described by Ψ. We understand well this concept in the case of the Fourier transform, knowing that each Fourier coefficient is a linear combination of all the pixels of an image.

I.2.1.2 Compressed Sensing: an inverse problem

The problem of recovering sparse solutions x ∈ C N from the system of linear observation y = Φx ∈ C M with a known observation matrix Φ ∈ C M ×N has been studied in 2003 in parallel by [START_REF] David | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF] and [START_REF] Gribonval | Sparse representations in unions of bases[END_REF], who propose to obtain the solution as the minimizer of the optimization problem:

arg min x∈C N x 0 subject to y = Φx. (I.6)
Remembering that the notion of sparsity is too strict in general, the problem is actually to recover images that are sparse with respect to a given dictionary Ψ ∈ C N ×L , which is written:

arg min x∈C N Ψ * x 0 subject to y = Φx. (I.7)
where the operator Ψ * ∈ C L×N transforms the image x into a sparse representation vector s such that x = Ψs.

In general, solving an optimization problem that is relying on an 0 norm is NP-hard [START_REF] Kausik | Sparse approximate solutions to linear systems[END_REF] and requires a brute-force search of the optimal solution, whose complexity grows exponentially with N , making it impossible to solve in practice, even for extremely small images. Therefore, a convex relaxation approach is almost always considered in works on sparsity, replacing the 0 sparsity measure by the 1 norm, leading to the following convex optimization problem:

arg min x∈C N Ψ * x 1 subject to y = Φx, (I.8)
Here, it is important to note that in the case where M = N , the problem (I.8) is a standard inverse problem, and the literature gives a vast collection of methods to solve it in a very precise way. The whole theory of sparse recovery, and then of Compressed Sensing, solves this problem when M N . In other words, it means that one wants to recover an image from very few linear observations. The problem is then ill-posed, and that is why new paradigms have been designed, here in the case of sparse images. In this manuscript, we will always suppose that M N .

In the following section, we will see how the mutual coherence between Φ and Ψ plays a vital role in the efficiency of the convex optimization problem (I.8), and what are the requirements for consistent reconstructions.

I.2.2 Theoretical results

In a series of papers [START_REF] Emmanuel | Decoding by linear programming[END_REF][START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] Emmanuel | Near-optimal signal recovery from random projections: Universal encoding strategies[END_REF], Candès, Romberg and Tao have developed a framework to establish theoretical results about the reconstruction of sparse signals from a small set of linear measurements, following the works of [START_REF] David | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF] and [START_REF] Gribonval | Sparse representations in unions of bases[END_REF], giving consistent hypotheses for robust solutions to the problem (I.8), even in the case of noisy measurements, and when the images are only compressible, instead of sparse. Their main contribution is the introduction of the notion of restricted isometry property of a linear operator, defined as: Definition 7 (Restricted isometry property (RIP)). Given a linear operator Φ ∈ C M ×N and an integer S ∈ 1, N , the S-restricted isometry constant associated to Φ is the smallest scalar δ S ∈ R such that:

(1 -δ S ) x 2 2 ≤ Φx 2 2 ≤ (1 + δ S ) x 2 2 ∀x ∈ C N such that x 0 ≤ S. (I.9)
When, the constant δ S exists and belongs to (0, 1), the operator Φ is said to satisfy the Srestricted isometry property.

The closer from 0 the constant δ S , the more the operator Φ behaves like an isometry for S-sparse images, meaning that Φ almost preserves the norms. In terms of Compressed Sensing theory, the smaller the constant δ S associated to Φ, the larger the class of images that can be recovered from (I.8). Sadly, computing the constant δ S is a NP-hard problem [START_REF] Andreas | The computational complexity of the restricted isometry property, the nullspace property, and related concepts in compressed sensing[END_REF], and most applications of the Compressed Sensing theory focus on sensing operators that are known to satisfy the RIP with small δ S constants, such as Gaussian random sampling, Rademacher, Partial Fourier, Gabor window, etc (see [START_REF] Götz E Pfander | The restricted isometry property for time-frequency structured random matrices[END_REF] for a developed study on this matter).

The introduction of the RIP, and the framework developed accordingly, in addition to the papers of Donoho [START_REF] David L Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF][START_REF] Donoho | Compressed sensing[END_REF], contributed to the definition of a new mathematical theory: the Compressed Sensing theory. In this manuscript, the question of recovering a signal or an image, that is sparse or compressible in a given transform domain, from very few linear measurements in an incoherent domain, will be referred to as a Compressed Sensing problem. Formally, suppose that we acquire an observation y = Φx + b ∈ C M of an image x ∈ C N (with M N ) that has a sparse representation s in a transform domain given by Ψ ∈ C N ×L (i.e. such that x = Ψs), where Φ ∈ C M ×N is a measurement operator and b represents an unknown zero mean additive noise such that b 2 ≤ ε, an estimator x of the image x is obtained by minimizing the optimization problem:

x = arg min x∈C N Ψ * x 1 subject to y -Φx 2 ≤ ε.
(I.10) Note that this model has been originally proposed in the context where Ψ is the identity matrix, meaning that x is directly sparse, and then generalized in [START_REF] Elad | Analysis versus synthesis in signal priors[END_REF] for any dictionary Ψ.

Then, if the constant δ S associated with Φ verifies some upper bound, which depends on the type of minimization algorithm used to solve (I.10), we can evaluate the upper bound of the reconstruction error (some examples are detailed in [START_REF] Emmanuel | Compressed sensing with coherent and redundant dictionaries[END_REF][START_REF] Götz E Pfander | The restricted isometry property for time-frequency structured random matrices[END_REF]):

x -x 2 ≤ C 1 Ψ * x -( Ψ * x) S 1 √ S + C 2 ε, (I.11)
where ( Ψ * x) S is the 1 best S-sparse approximation of Ψ * x (matching Definition 5), and C 1 , C 2 are two positive constants. As expected, the reconstruction error is bounded by two terms: the first one representing the non-sparsity of the image, and the second one representing the noise term that is degrading the observation y.

To introduce the main result for real-life application of the Compressed Sensing theory in image processing from Candes and Romberg [START_REF] Candes | Sparsity and incoherence in compressive sampling[END_REF], we need to focus on a specific class of measurement operators Φ which are often encountered in CS imaging applications, known as partial orthogonal transforms. Mathematically, we write Φ = ΣU ∈ C M ×N where U ∈ C N ×N is an orthogonal matrix (U * U = I N ), and Σ ∈ {0, 1} M ×N is a selection matrix, with exactly one non-zero entry per line, and at most one non-zero entry per column (as M < N ). In practice, it means that the measurement operator is obtained as a (usually random) selection of M rows of the orthogonal matrix U . Classical examples of this construction in imaging applications are partial Fourier transforms, partial Hadamard transforms, etc.

Supposing that Φ is a partial orthogonal transform, and that the sparsifying matrix Ψ is an orthogonal basis, then they give a condition on the number M of linear observations of an image x ∈ C N (that is sparse in the domain defined by Ψ) through a device modeled by Φ ∈ C M ×N , in the noiseless case, so that this image x can be recovered with an overwhelming precision from these measurements:

Theorem 1. Let Φ ∈ C M ×N
be a partial orthogonal transform. Then, each image x ∈ C N that is S-sparse in the domain defined by Ψ ∈ C N ×N can be recovered, with a probability close to 1, from the observation y = Φx ∈ C M ×N , as long as:

M ≥ Cµ(Φ, Ψ) 2 S log N (I.12)
where C is a positive constant.

Note that this theorem is stated only in the case where the matrix Φ is a partial orthogonal transform. In that case, the mutual coherence µ(Φ, Ψ) is bounded by √ N . Most, if not all, applications of the Compressed Sensing theory will suppose that the matrix Φ represents a selection of the rows of an orthogonal matrix. The case where µ(Φ, Ψ) is greater than √ N leads to ineffective results (the number M should be larger than N , which is not relevant). The main application of this theorem is the case where the two matrices Φ and Ψ are strongly incoherent, and µ(Φ, Ψ) is close to 1. In that case, one can reconstruct an estimate x of x using M ∝ S log N coefficients.

In addition, in the case where the observation is degraded with noise y = Φx + b, the number of measurements M needed for recovery follows the same rule as in Theorem 1, but the reconstruction is not exact. Nevertheless, the reconstruction error is bounded by (I.11).

Finally, we emphasize that this theorem states that, for a given pair of matrices Φ and Ψ, one can recover any S-sparse image using about S log N coefficients. It can be noted that, in some applications, only a single image x ∈ C N needs to be recovered, and the matrices Φ and Ψ can be adapted accordingly. In this case, we can give a better lower bound for M , that we will not detail here as we do not target this kind of application. See for instance [START_REF] Foucart | A mathematical introduction to compressive sensing[END_REF] for a discussion on this matter.

Most recent works on Compressed Sensing theory focus on the refinement of Theorem 1, along two main axes:

On the one hand, one can generate more precise lower bounds for the integer M in (I.12), depending on the matrices Φ and Ψ. But we will not go into more details in this manuscript, and we refer to [START_REF] Krahmer | Structured random measurements in signal processing[END_REF] for more details on that matter.

On the other hand, several works have been investigating the possibility of alleviating some constraints for applying of the main theorems, especially by releasing the RIP condition. The preliminary work of [START_REF] Zhang | Theory of compressive sensing via 1 -minimization: a nonrip analysis and extensions[END_REF] (the first version of this paper has been published in 2008) proposed a framework for CS reconstruction without requiring the RIP constraint, by giving conditions on the null-space of the matrix Φ instead. In 2011, Candès and Plan proposed in [START_REF] Emmanuel | A probabilistic and ripless theory of compressed sensing[END_REF] a general RIP-less theory of Compressed Sensing, focusing on the Isotropy property of the measurement operators, instead of the RIP. In addition, they showed that the requirement of S log N measurement coefficients sufficient for faithful reconstruction holds in the case of Fourier coefficients, even if the selection is not random.

Finally, the most recent research on Compressed Sensing theory lead to an almost complete redefinition of the CS framework, mainly thanks to the work of Adcock [START_REF] Adcock | Breaking the coherence barrier: asymptotic incoherence and asymptotic sparsity in compressed sensing[END_REF][START_REF] Adcock | Breaking the coherence barrier: A new theory for compressed sensing[END_REF]. Observing the efficiency of the applications of CS in many fields, despite not meeting the requirements of the classical CS theory, the authors have provided a new framework, mathematically justifying these observations. In addition to the refinement of the often too restrictive RIP, the central notions of sparsity, coherence and random sampling are replaced in this framework with more general concepts: asymptotic sparsity, asymptotic incoherence and multilevel random sub-sampling. In this manuscript, we will almost exclusively work with the Fourier transform as either measurement or sparsifying operator, and therefore position ourselves in the best case scenario of Compressed Sensing theory. Hence, we will use the lower bound given by I.12 as our reference.

I.2.3 Block sparsity and Total Variation

In several works on CS-based image reconstruction such as [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Kim | Accelerated threedimensional upper airway MRI using compressed sensing[END_REF][START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF][START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF], the 1 -norm of the sparsified image Ψ * x in the optimization problem (I.10) is replaced by the discrete Total Variation (TV) norm of the image x, defined as in [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF]:

x TV = (k,l)∈Ω (∂ h x(k, l)) 2 + (∂ v x(k, l)) 2 (I.13)
where ∂ h and ∂ v represent the horizontal and vertical discrete derivative operators. The most common definition of these operators is given by: ∀

(k, l) ∈ Ω, ∂ h x(k, l) = x(k + 1, l) -x(k, l) and ∂ v x(k, l) = x(k, l + 1) -x(k, l
), but other choices of discretization are possible. Then, the optimization problem (I.10) becomes:

x = arg min x∈C N x TV subject to y -Φx 2 ≤ ε. (I.14)
The TV norm is essentially the 1 norm of the isotropic discrete derivative of the image x. Hence, this problem describes the enforcement of a TV driven sparsity, which minimizes the discrete derivative of the image x, meaning that it aims at reconstructing an image x that is piecewise constant. It results in images with sharp edges and high-contrast objects, which is especially well adapted to most biological microscopy images.

This operator can be seen as a particular case of a mixed 2,1 norm [Kowalski09, Chambolle10], which is central in the field of block sparsity. It has been the subject of many recent works, as a generalization of the notion of sparsity, and therefore of the CS theory. The notion of block sparsity [START_REF] Yuan | Model selection and estimation in regression with grouped variables[END_REF] has been introduced to take into account the fact that, in some applications, the set of non-zero pixels of a sparse image exhibit some particular structure. Formally, suppose that the support Ω of the image

x is partitioned into G subsets (ω 1 , . . . , ω G ) such that G g=1 ω g = ∅ and G g=1 ω g = Ω.
Then, the structured sparsity of the image x can be enforced by minimizing, for instance (see [START_REF] Teschke | An iterative algorithm for nonlinear inverse problems with joint sparsity constraints in vector-valued regimes and an application to color image inpainting[END_REF][START_REF] Fornasier | Recovery algorithms for vectorvalued data with joint sparsity constraints[END_REF]), its p,1 norm, defined as:

x p,1 = G g=1   (k,l)∈ωg (x(k, l)) p   1/p . (I.15)
For a set of images to recover, the decomposition of Ω into G subsets is known a priori and has to be independent from the image x to be recovered.

We display on Figure I.3 a possible application of block-sparsity. This image (Figure I.3(a)) represents a frame extracted from a movie obtained during a protocol experiment designed by Laura Barrio and Samy Gobaa at the Pasteur Institute. In this experiment, the HeLa cells, marked with GFP dye, are physically constrained to a fixed support (micro-patterns [START_REF] Azioune | Protein micropatterns: A direct printing protocol using deep uvs[END_REF][START_REF] Yennek | Cell adhesion geometry regulates non-random dna segregation and asymmetric cell fates in mouse skeletal muscle stem cells[END_REF]), specifically designed so that the cells evolution and movements can be controlled. Formally, the image can be divided into smaller subsets (Figure I.3(b)), such that only the red-colored parts of the image can contain information (the rest is background only). Now, since these physical constraints are unaltered during the experiment, the whole set of images obtained will present the same structured-sparsity. In conclusion, considering a mixed norm based on this specific support, we can recover all the images obtained in this experiment with a higher quality than if we only considered a standard 1 norm, from the same amount of linear measurements.

Recent developments in electronic engineering have led to the design of pixel-sensitive cameras (see for instance [START_REF] Sabatier | Asynchronous event-based fourier analysis[END_REF]), meaning that only the pixels receiving photon intensity will be activated during image acquisition. This technology seems to be perfectly adapted to groupsparsity models, as the decomposition of Ω into active/inactive subsets would be automatic.

Several works have developed in more details the notion of block sparsity, giving convergence guarantees, upper bound estimation of the reconstruction error [START_REF] Huang | The benefit of group sparsity[END_REF], dedicated reconstruction algorithms based on the mixed norms [START_REF] Yonina C Eldar | Block-sparse signals: Uncertainty relations and efficient recovery[END_REF] or Fourier block sampling strategies [START_REF] Bigot | An analysis of block sampling strategies in compressed sensing[END_REF]. Among applications of block sparsity, we can cite image inpainting 

I.2.4 Reconstruction through convex optimization

In this section, we present a quick review on a few popular algorithms to recover an image x from a noisy observation y = Φx + b, solving the problem (I.10). We refer to [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF] for a more detailed study.

I.2.4.1 Orthogonal Matching Pursuit

The most basic algorithm to recover an S-sparse image x is to manually build S-sparse candidates x, and try them against the given model y = Φx + b, until finding the one that returns the smallest error. Naturally, this technique is unrealistic (it is actually NP-hard) as soon as the image is bigger than a few pixels.

A first possible approach to avoid this manual selection, called Orthogonal Matching Pursuit (OMP), has been proposed in [START_REF] Chandra Pati | Orthogonal matching pursuit: Recursive function approximation with applications to wavelet decomposition[END_REF] and adapted for CS reconstruction in [START_REF] Joel | Signal recovery from random measurements via orthogonal matching pursuit[END_REF]. The principle of this method is to iteratively identify the support of the image to reconstruct (see Algorithm 1). This method is very straightforward in terms of implementation, and is guaranteed to converge [START_REF] Mark | Analysis of orthogonal matching pursuit using the restricted isometry property[END_REF]. The main issue is that it requires extremely sparse images to converge in a reasonable time, and therefore cannot be extended to images not exactly sparse (which is the case of most real-life applications). In addition, it is limited to the noiseless 1 model (I.8), and cannot be used for the general noisy model (I.10), nor in the TV model (I.14), that we use in many CS applications.

Algorithm 1: Orthogonal Matching Pursuit.

Input : y: Observation, Φ: Measurement operator.

Output: x: Sparse estimate of x.

1 Initialize: p ← 0, Λ p ← ∅, x p ← 0, r p ← y. 2 while x p 0 < S do 3 p ← p + 1 ; 4 (k p , l p ) ← arg max (k,l)∈Ω h(k, l) where h = Φ * r p ; 5 Λ p ← Λ p-1 {(k p , l p )} ; 6 x p ← arg min x∈C N y -Φx 2 subject to Supp(x) ⊂ Λ p ; 7 r p ← y -Φx p ; 8 end 9 x ← x p

I.2.4.2 NESTA

In the vast majority of CS applications, the image x, modeled as the solution of an inverse problem such as (I.10) or (I.14), is recovered using convex optimization methods. Many convex optimization methods have been recently adapted to, or specifically designed for the context of CS (primal-dual interior point [START_REF] Candes | 1 -magic: Recovery of sparse signals via convex programming[END_REF], Bregman [START_REF] Yin | Bregman iterative algorithms for \ell_1-minimization with applications to compressed sensing[END_REF], FISTA [START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF], SpaRSA [START_REF] Stephen | Sparse reconstruction by separable approximation[END_REF], etc). Among this abundant literature, we chose to focus on the NESTA algorithm [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF]. Indeed, according to the studies of [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF][START_REF] Hayashi | A user's guide to compressed sensing for communications systems[END_REF], this algorithm gives an interesting trade-off between flexibility, reconstruction quality and execution speed in the context of CS reconstruction in biological imaging. More precisely, this method relies on the remark that the functions f that we need to optimize in the context of CS are non-smooth. For both cases (I.10) and (I.14), the function to minimize is respectively f (x) = Ψ * x 1 and f (x) = x TV . However, these functions share the common property that they can be written as:

f (x) = max z∈Q z|W x (I.16)
where •|• is the canonical inner product of C L , W ∈ C L×N is a given dictionary, and Q is a convex subset of C L (see [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF][START_REF] Weiss | Algorithmes rapides d'optimisation convexe[END_REF] for more details). For instance, in the case where

f (x) = Ψ * x 1 , then W = Ψ * and Q is the ∞ unit ball, defined as: u ∈ C N , u ∞ ≤ 1 .
Now, following the framework developed in [START_REF] Nesterov | Gradient methods for minimizing composite objective function[END_REF], the authors of [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] proposed an accelerated gradient descent method with back-projection for the reconstruction of x. The method can be separated into two steps (see Algorithm 2):

1. First, approximate the non-smooth function f with a smooth function f µ defined as:

f µ (x) = max z∈Q z|W x - µ 2 z -z 0 2 2 (I.17)
where µ > 0 is a scalar parameter, and z 0 ∈ Q (see [START_REF] Nesterov | Smooth minimization of non-smooth functions[END_REF][START_REF] Weiss | Algorithmes rapides d'optimisation convexe[END_REF]). The smoothness of this function is controlled by the parameter µ. This function is L µ -Lipschitz, with L µ = 1 µ W 2 , and its gradient is known, which leads to a straightforward gradient descent:

∇f µ (x) : t →    x(t)/µ, if |x(t)| < µ sgn(x(t)), otherwise. ∀t ∈ 1, N (I.18) 2. Second, solve the problem arg min x∈C N f µ (x) subject to y -Φx 2 ≤ ε.
using an accelerated gradient descent method with back-projection of the feasible set at each step of the descent.

Note that the contribution of [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] has been to prove that, in the case where Φ * Φ is a linear projector (i.e. (Φ * Φ) 2 = Φ * Φ), the following problem:

Γ(x) = arg min z∈C N z -x 2 subject to Φz -y 2 ≤ ε (I.19)
has an explicit solution that can be evaluated efficiently. Partial orthogonal transforms are linear projectors, which justifies the use of the NESTA algorithm in our case (see Section I.2.2). The code is available at: https://statweb.stanford.edu/~candes/nesta/.

I.2.4.3 The LASSO formulation

The Least Absolute Shrinkage and Selection Operator (LASSO) [START_REF] Tibshirani | Regression shrinkage and selection via the lasso[END_REF], proposes to rewrite (I.10) as: x = arg min

x∈C N y -Φx 2 subject to f (x) ≤ τ, (I.20)
where τ is a scalar parameter that plays a role similar to ε in the standard formulation. The choice of one of both approaches depends on the type of prior information accessible. On the one hand, (I.10) is adapted when a prior about the noise in the image is known, and implemented in ε. On the other hand, (I.20) is adapted when a prior about the sparsity level of the signal is known, rather than the noise level. In the context of CS, suppose that the function f is defined as f (x) = Ψ * x 1 . Then, this approach can be used when the user has a prior knowledge on the targeted sparsity level of the image to reconstruct, for acceleration. Many works have used this approach, and we refer for instance to [START_REF] Mário | Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems[END_REF][START_REF] Emmanuel | A probabilistic and ripless theory of compressed sensing[END_REF] Algorithm 2: NESTA. Input : y: Observation, Φ: Measurement operator, µ, ε: positive scalar parameters. Output: x: Sparse estimate of x.

1 Initialize: p ← 0, x p ← Φ * y, β p-1 ← x p , r p ← 2ε. 2 while r p ≥ ε do 3 p ← p + 1 ; 4 x temp ← x p ; 5 Compute ∇f µ (x p ) ; 6 α p ← x p -µ∇f µ (x p ) ; 7 λ 1 ← max 0, 1 εµ y -Φα p 2 -1 µ ; 8 y p ← I -µλ 1 1+µλ 1 Φ * Φ (µλ 1 Φ * y + α p ) ; 9 β p ← β p-1 -µ p+1 2 ∇f µ (x p ) ; 10 λ 2 ← max 0, 1 εµ y -Φβ p 2 -1 µ ; 11 z p ← I -µλ 2 1+µλ 2 Φ * Φ (µλ 2 Φ * y + β p ) ; 12 x p ← 2 p+3 z p + p+1 p+3 y p ; 13 r p ← |f µ (x p ) -f µ (x temp )| ; 14 end 15 x ← x p
for applications and theoretical developments of this framework. We also want to highlight the work of Van Den Berg [START_REF] Van Den | Probing the pareto frontier for basis pursuit solutions[END_REF], who proposed SPGL1 as a root-finding algorithm for solving the LASSO formulation of the CS problem (Algorithm 3). The idea of this approach is to solve several instances of the LASSO problem (I.20) for different values of τ , until the corresponding solution xτ verifies Φx τ -y 2 = ε. The main contribution of Van den Berg is to note that the operator:

Π(x) = arg min z∈C N z -x 2 subject to z 1 ≤ τ (I.21)
has an explicit solution, obtained through soft-thresholding. The code is available at: http: //www.cs.ubc.ca/~mpf/spgl1/index.html.

Note that this approach could be adapted to the case where f (x) = x TV , by replacing the soft-thresholding in (I.21) with a dedicated TV-based algorithm, such as ROF [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. However, we will favor the NESTA algorithm in this manuscript, as this method presents an interesting trade-off between flexibility and execution speed in the context of biological microscopy imaging [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF]. In addition, the prior information on the 1 or TV norm, represented by the parameter τ in (I.20) is generally inaccessible in microscopy, making the LASSO formulation less adapted to our framework. 

< α min < α max , α 0 ∈ [α min , α max ], γ ∈ (0, 1), M ≥ 1. Initialize: p ← 0, x p ← Π(y), r p ← y -Φx p , g p ← -Φ * r p , α p ← α 0 . 2 while r p 2 -(y * r p -τ g p ∞ )/ r p 2 < ε do 3 α ← α p ; 4 x ← Π(x p -αg p ) ; 5 r ← y -Φx ; 6 while r 2 2 > max j∈[0,min{k,M -1} ] r p-j 2 2 + γ(x -x p ) * g p do 7 α ← α/2 ; 8 x ← Π(x p -αg p ) ; 9 r ← y -Φx ; 10 end 11 x p+1 ← x, r p+1 ← r, g p+1 ← -Φ * r p+1 ; 12 ∆x ← x p+1 -x p ,

I.2.4.4 Group sparsity

Finally, we want to stress that methods have been recently developed in the context of group sparsity, in order to recover images that have a known sparse structure (see Section I.2.3). In addition to the preliminary works of [START_REF] Huang | The benefit of group sparsity[END_REF][START_REF] Yonina C Eldar | Block-sparse signals: Uncertainty relations and efficient recovery[END_REF], we want to highlight the generalization of the SPGL1 algorithm for group sparse images [START_REF] Van Den | Sparse optimization with least-squares constraints[END_REF], and more generally the studies on group-LASSO approaches, such as [START_REF] Simon | A sparse-group lasso[END_REF]. In addition, recent progresses in 

I.3 Applications of Compressed Sensing in image processing

We detail in this section four applications of Compressed Sensing in imaging that we believe are of wide interest and impact in research. Other fields not discussed here, include astronomy [START_REF] Bobin | Compressed sensing in astronomy[END_REF], radar [START_REF] Matthew | High-resolution radar via compressed sensing[END_REF][START_REF] Krahmer | Structured random measurements in signal processing[END_REF], and X-ray computed tomography [START_REF] Chen | Prior image constrained compressed sensing (piccs): a method to accurately reconstruct dynamic ct images from highly undersampled projection data sets[END_REF]. We also refer to [START_REF] Mcleod | Unconventional methods of imaging: computational microscopy and compact implementations[END_REF] for a review on state-of-the-art unconventional microscopy techniques.

I.3.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique relying on the nuclear composition of the water molecules inside the human body [START_REF] Lauterbur | Image formation by induced local interactions: examples employing nuclear magnetic resonance[END_REF]. More precisely, a MRI image is obtained by putting a patient inside a controlled magnetic field, and observing the alignment of the protons in the water molecules in reaction to this magnetic field. Measuring the frequency of these changes of alignment allows to reconstruct an image of the patient's tissue, or targeted part of the body. Antennas of MRI scanners measure a physical signal that is essentially the Fourier Transform of the image that needs to be recovered. In addition, images of anatomical structures like the brain or the heart have compressible representations in domains such as wavelet or gradient [START_REF] Lustig | Sparse mri: The application of compressed sensing for rapid mr imaging[END_REF][START_REF] Huang | Compressed magnetic resonance imaging based on wavelet sparsity and nonlocal total variation[END_REF].

For these reasons, MRI has been the first imaging modality to benefit from the CS theory [START_REF] Lustig | Sparse mri: The application of compressed sensing for rapid mr imaging[END_REF] (see Figure I.4), and is still today a major field of application of CS. MRI specialists are now able to strongly compress the amount of data necessary for MRI reconstruction using CS methods, with highly accurate images, for very complex experiments (such as real-time dynamic volumetric data [START_REF] Feng | Golden-angle radial sparse parallel mri: Combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric mri[END_REF]). Today, one of the main research themes in CS MRI is to seek for efficient sampling strategies. From the use of the Traveling salesman problem [START_REF] Joseph | On the shortest spanning subtree of a graph and the traveling salesman problem[END_REF] for continuous sampling [START_REF] Chauffert | Variable density sampling with continuous trajectories[END_REF] to optimized Fourier-domain radial sampling strategies [START_REF] Bigot | An analysis of block sampling strategies in compressed sensing[END_REF] (see Figure I.4), the amount of data necessary in MRI reconstruction is still decreasing.

I.3.2 Holography

Similarly to MRI, holography is an imaging technique relying on the acquisition of data in a given k-space, which leads to straightforward CS application if the latter has the required properties. Here, an image acquired through an holographic set-up, known as hologram, corresponds to the Fresnel transform of the actual image of interest. Mathematically close from the Fourier transform operator, the Fresnel transform characterizes the optical phenomenon known as Fresnel diffraction, which appears when waves are passing through an aperture or around an object, as long as it is observed relatively close to this object (near-field propagation).

In holography, a coherent radiation emitted by a laser is split into two beams inside an interferometer (see Figure I.5). The first beam illuminates a transparent object (the one to be observed), and the second beam follows the same optical path, without passing through the object. Then, the interference pattern is collected on the camera, and a post processing step is required to recover the image from the hologram.

As originally proposed by [START_REF] David | Compressive holography[END_REF], and then developed by [START_REF] Marim | Denoising in fluorescence microscopy using compressed sensing with multiple reconstructions and non-local merging[END_REF][START_REF] Marim | Off-axis compressed holographic microscopy in lowlight conditions[END_REF], the CS framework can be applied successfully to a holographic set-up, in the case where the image to be recovered presents a sparse structure. We also refer to [START_REF] Rivenson | Overview of compressive sensing techniques applied in holography[END_REF] for a review on several methods and approaches for CS-based digital holography. Finally, recent developments have lead to technical improvements of these techniques, and the introduction of methods for more complex data, such as video holography [START_REF] Wang | Compressive holographic video[END_REF].

I.3.3 STORM

In 2006, the new PALM/STORM [START_REF] Betzig | Imaging intracellular fluorescent proteins at nanometer resolution[END_REF][START_REF] Michael | Sub-diffractionlimit imaging by stochastic optical reconstruction microscopy (storm)[END_REF] techniques have revolutionized the field of biological super resolution microscopy. Based on a single-molecule activation approach, these methods have allowed to observe structures that are much smaller than the theoretical bound given by the diffraction limit. We illustrate in Figure I.6 the general principle of STORM imaging. With a spatial resolution of the order of a nanometer, PALM/STORM are essential in nowadays super resolution imaging, under specific technical requirements are met (see Chapter III for more details).

One of the main drawbacks of PALM/STORM is the huge amount of data that needs to be acquired and processed. Indeed, these techniques rely on the acquisition of millions of images, each one of them being composed of only a few illuminated pixels. This quantity of data, as well as the extremely sparse structure of these images make PALM/STORM natural candidates to benefit from the CS theory. To this extent, [START_REF] Zhu | Faster storm using compressed sensing[END_REF] has proposed a framework for CS-based STORM reconstruction, resulting in a faster imaging technique, that is now close to real-time.

I.3.4 Electron Tomography

Electron tomography (ET) is a three-dimensional (3D) imaging technique, where 2D projections of an object are recorded using a transmission electron microscope (TEM) and combined, following dedicated algorithms, to reconstruct an estimation of the 3D object (Figure I.7). This method is a typical example of an inverse problem, where many acquisitions are required to reconstruct an object of interest, and hence would benefit from the CS theory, as long as the usual requirements of sparsity and incoherence are met.

First, the authors in [START_REF] Leary | Compressed sensing electron tomography[END_REF] show that most TEM images present a sparse structure in gradient domain, while the authors in [START_REF] Donati | Compressed sensing for stem tomography[END_REF] explain that the Haar wavelet transform is also a good sparsifying matrix for TEM images. Second, [START_REF] Leary | Compressed sensing electron tomography[END_REF] shows that the measurement operator in the context of TEM imaging can actually be understood as a discrete version of the Radon transform, which presents a good incoherence property, essential for CS reconstruction. In conclusion, the CS theory can be applied to TEM, with first promising results in [START_REF] Leary | Compressed sensing electron tomography[END_REF], and more recently in [START_REF] Donati | Compressed sensing for stem tomography[END_REF], where a specific acquisition-reconstruction framework is developed to reduce the number of acquisitions necessary in STEM imaging.

I.3.5 Single pixel camera

The single-pixel camera is not an imaging field per se, but the development of an optical set-up that can then be used in several domains. Presented in [START_REF] Richard | Compressive sensing [lecture notes[END_REF][START_REF] Marco F Duarte | Single-pixel imaging via compressive sampling[END_REF], this innovative image acquisition device is a proof of concept of a direct application of CS to imaging. The if N is the number of micro-mirrors on the DMD) we record the sum of all the pixels corresponding to the on positions. Mathematically, the vector of collected samples y ∈ C M is modeled as y = Φx, where Φ represents the matrix of the DMD, which is a random selection of linear measurements. Then, the CS theory states that if the image x is sparse, it can be recovered using only a few samples M N .

After remaining a toy example for several years, despite some refinements such as the use of a TV minimization for the image reconstruction [START_REF] Li | An efficient algorithm for total variation regularization with applications to the single pixel camera and compressive sensing[END_REF], the single pixel camera got a second wind in the recent years, following the modern trend of optical set-ups to use DMDs. We can cite for instance the work of [START_REF] Zhao | Super resolution imaging based on a dynamic single pixel camera[END_REF], who is using the single pixel camera for super resolution imaging, and the work of , where this set-up is adapted to digital holography.

I.4 A practical example: Fourier-domain Compressed Sensing in fluorescence microscopy

In this section, we present a practical example of CS-based image reconstruction in the context of fluorescence microscopy. Note that this is only an example of CS-based image reconstruction, meaning that we aim at reconstructing an image from very few measurements, but this is not a real case of CS, as the random selection of Fourier coefficients is simulated, and not performed during acquisition. Indeed, when working in fluorescence microscopy, the incoherence of the light that is emitted by the fluorophores prevents an efficient access of the Fourier Transform of the image during acquisition (see Chapter III).

The image displayed on Figure I.9 is symptomatic of fluorescence microscopy-based cell biology, as it represents a set of cells on a dark background. More precisely, this image represents amoebas marked with EGFP (green) and DAPI (blue), obtained with a Zeiss Axio Inverted Microscope (20x, NA = 0.5). The image is composed of 2048 × 2048 pixels, encoded over 16 bits, but we display only a zoom of size 512 × 512 on a group of cells.

For this example, we acquired the image (a) on the microscope, that we stored on the computer. Then, we applied the random sampling mask (c) on the Fourier Transform of the image, to simulate a CS acquisition. In addition, we performed TV minimization (I.14) instead of 1 (I.8), as the gradient of the image presents a reasonable sparsity level (as shown in (d)). Mathematically, we simulate an acquisition process y = Φx, where x is the image to recover, and Φ is a partial Fourier Transform. Then, we solve the optimization problem (I.14) using the NESTA algorithm 2, with regularization parameter ε = 0, as the noise is negligible in this image. We display in (b) the image obtained with this algorithm, proving the power of CSbased reconstruction using random Fourier coefficients following a Gaussian sampling model (see for instance [START_REF] Wang | Variable density compressed image sampling[END_REF] for a justification of the efficiency of this model.) Remark that, since it is a colored image, we actually processed each RGB canal independently. Chapter II

CS-based denoising of fluorescence microscopy images

Low-light conditions and short exposure times are current strategic goals of research in biological imaging for longer observations and less degradation of specimens, but raise major challenges as they significantly increase the noise influence and degrade image quality. One of the avenues that has been investigated to tackle these challenges is the development of dedicated image denoising methods based on mixed Poisson-Gaussian noise models, which are specific to biological microscopy. In this chapter, after a brief presentation of the principles involved in the formation of biological microscopy images, we present a review of a selection of 12 state-of-the-art denoising methods together with an original CS-based denoising algorithm that are benchmarked and tested on the different types of strong and complex noise (Gaussian, Poisson and mixed) that are found in microscopic biology. In addition, we introduce the variance map, a new method for extracting gradient-like information in images corrupted by strong mixed Poisson-Gaussian noise. 

Contents

II.1 Biological Microscopy

II.1.1 Generalities

Depending on the type of biological behavior that is studied, the scale and temporality of the phenomena, or the nature of the objects of interest, a large collection of microscopy techniques have been developed since the 17th century and are still developed today. The main field of microscopy used in biology is the optical microscopy, even though other methods have also been used, such as electron microscopy [START_REF] Ruska | Die magnetische sammelspule für schnelle elektronenstrahlen. (The Magnetic Concentrating Coil for Fast Electron Beams[END_REF], computed tomography [START_REF] Macleod | Representation of a function by its line integrals, with some radiological applications[END_REF] or atomic force microscopy [START_REF] Binnig | Atomic force microscope[END_REF].

An optical microscope is an optical system, composed of several pieces, that enables to magnify images of small subjects, in order to make them visible to the human eye. The scheme of a modern optical microscope is illustrated on Figure II.1. Visible light is used as the illumination source, which properties are exploited to recover an image as faithful as possible. With wavelengths spreading from 380 nm to 750 nm, the light source can be either coherent (such as lasers, with a single wavelength, or more realistically with a very narrow spectrum of emission), or incoherent (such as natural light, with a large spectrum of emission). Note that the specimen to be observed with the microscope can have emission properties that break the coherence of the incident light (such as in fluorescence microscopy for instance), and we will make the distinction between coherent microscopy and incoherent microscopy, based on the incoherence of the observed emitted light, not the illumination light. One of the main limitations of optical microscopy is the diffraction phenomenon. Due to the wave-like nature of light, the objects present on the light-path of the microscope induce a modification of the waveform of the incident beam, due to self-interference of the wave (see Figure II.2). As a consequence, when looking through a microscope, a spot (seen as a mathematical spot, meaning that its size if null) is seen, not as itself, but as a small pattern, known as the Airy disc. Hence, if two spots are too close to each other, the microscope will not be able to determine from where exactly is coming the light, and these two spots will be seen as a single -thicker -Airy disc (see Figure II.2).

The limit distance at which two Airy discs can be resolved as two separate spots is defined as the Rayleigh limit, which corresponds to the spatial resolution of the microscope, and is given by the following formula:

R = 1.22λ 2NA (II.1)
where λ is the wavelength of the emitted light, and NA is called the numerical aperture of the microscope.

A microscope is characterized by a series of parameters:

1. λ, the emission light wavelength. In the case of incoherent illumination, the emitted light is characterized by a spectrum of wavelengths [λ min , λ max ].

2. NA, its numerical aperture. It measures its ability to gather light and resolve fine specimen details at a fixed distance. It is defined as NA = n sin(µ), where n is the refractive index of the medium (n = 1 for air, n = 1.5 for specifically designed oil) and µ is the cone angle defined as in Figure II.2. 3. M, its magnification factor. It represents the ratio between the actual size of the object and the size of the object that we collect on the camera.

II.1 Biological Microscopy

4. Its camera, that is most often a CCD or a CMOS camera. Camera parameters include N px and px , the number of pixels and the size of the pixels, respectively. Other parameters come also into play, such as camera temperature, or gain factor.

II.1.2 Coherence of light in microscopy

The information on the coherence of light is fundamental in optical microscopy. The principle of coherence is actually divided into two notions: temporal coherence and spatial coherence:

• The temporal coherence measures the average correlation between a light wave and itself delayed by a time t. In the context of optical imaging, temporal coherence is related to the wavelength profile of the wave: an ideal monochromatic wave (containing a single wavelength, and thus a single color) has an infinite temporal coherence, while a white light, which contains the whole visible spectrum, has a very low temporal coherence. In most cases, monochromatic lasers are used as highly temporally coherent light sources.

• The spatial coherence measures the correlation between two points (in space) of a light wave along time. In the context of optical imaging, spatial coherence is related to the shape of the light source: a light wave emitted through an infinitely small pinhole is highly spatially coherent, while the light emitted by a source of large size, such as a LED or a tungsten filament lamp, has very low spatial coherence. Here again, lasers are used as spatially coherent sources.

Depending on the coherence degree of the light going through a microscope, we divide optical microscopy techniques into two categories.

II.1.2.1 Microscopy with coherent light

The presence of coherent light in an optical system enables the generation of interference fringes. Interference is an optical phenomenon that appears when two waves superpose in a coherent fashion, creating a wave with a different pattern, which contains periodical regions of high amplitude (constructive interference) and regions of low amplitude (destructive interference). Mathematically, we can understand wave interference in the simplest case, by considering the superposition of two sine waves W 1 and W 2 which have the same wavelength, same amplitude, and only a different phase. We write W 1 (x, t) = A cos(kx-ωt) and W 2 (x, t) = A cos(kx-ωt+ϕ). Then, the resulting wave W = W 1 + W 2 is written as:

W (x, t) = A cos(kx -ωt) + cos(kx -ωt + ϕ = 2A cos ϕ 2 cos kx -ωt + ϕ 2 . (II.2)
Now, for ϕ ≡ 0[2π], the amplitude of W is 2A > A and for ϕ ≡ π[2π], the amplitude is 0, justifying the terms constructive and destructive interference.

Several microscopy techniques exploit the information contained in the interference pattern, among which we highlight digital holography (see Section I.3.2) and optical coherence tomography (see Chapter IV). In addition, the phase of the waves are known in coherent light microscopy, and can be controlled at each step of the optical set-up. This benefit allows, for instance, to have access to the Fourier Transform of the observed image directly on the set-up. Therefore, coherent-light imaging techniques are good candidates for Compressed Sensing, as the acquisition in the Fourier domain is ideal for this framework (see Chapter I).

However, the property of wave interference involves the phenomenon of self-interference, which means that a wave can interfere with itself, conducting to the degradation of the signal, leading to a specific type of noise, known as speckle (detailed in Chapter IV). Therefore, when the coherence is not needed for image observation, microscopy set-ups based on incoherent light are developed, in order to reduce the effect of speckle.

II.1.2.2 Microscopy with incoherent light

Incoherence of light in an optical set-up can be caused for instance by the emission light source (with a large spectral bandwidth, such as a LED or a tungsten filament lamp), by optically breaking the coherence in the set-up (using a laser speckle reducer), or by the nature of the observed sample (which is the case of fluorescence microscopy). These imaging techniques avoid issues linked with wave interference, so that images are not degraded by speckle and interference patterns.

However, the incoherence of light leads to the randomization of the phase of the signal, which cannot be accessed to. The loss of control of the phase of the signal means that k-spacebased techniques are not accessible anymore. For instance, the Fourier transform of an image II.1 Biological Microscopy cannot be observed in an incoherent imaging set-up, meaning that Fourier-based CS techniques cannot be applied.

Among incoherent imaging techniques, we now detail the principle of fluorescence microscopy, which is the target application of our denoising algorithm.

II.1.3 Fluorescence microscopy

II.1.3.1 Principle

Fluorescence is the property of some atoms and molecules to absorb light at a particular wavelength and to subsequently emit light at another given wavelength after a brief interval. Fluorescence microscopy targets specific elements of a sample via fluorescent molecules -called fluorophores -and illumination of the sample with a light of a given wavelength, that will activate these fluorophores. The fluorophores emit light at another given wavelength (see Because of the nature of the fluorophores, the light emitted by the sample is non-coherent. Therefore, coherence of the excitation wave is not required, which allows the use of a speckle reducer, and prevents the apparition of speckle in fluorescence microscopy images.

In the context of cell biology, fluorescence microscopy is used to observe with high precision specific elements inside a cell. To do so, we feed the cells with fluorophores, that are attached to a specific protein, such that the fluorophores are assimilated by the cells and directed towards the ojects of interest. Modern fluorescence microscopy techniques use a combination of several lasers of different wavelength and several fluorophores of different natures, to observe simultaneously several parts of the cell.

Several microscopes can be used to acquired fluorescence-based images, depending on the experiment requirements, including:

• Widefield: As most basic techniques for fluorescence microscopy, widefield microscopy uses a permanent uniform illumination over the whole sample. It is the fastest method, but has poor spatial resolution, and is hence often coupled with a post-processing step of deconvolution to increase image quality. Widefield microscopy serves as the basis of several more modern techniques, such as total internal reflection fluorescence (TIRF) microscopy or structured illumination microscopy (SIM).

• Confocal: To increase the spatial resolution of fluorescence microscopy images, the confocal microscope proposes an efficient alternative to widefield microscopy. Indeed, instead of illuminating the whole image at once, a confocal microscope uses a pinhole to focus the illumination on a single point at a time. Then, the whole sample is scanned point by point to recover the full image. Consequently, this method is more spatially resolved than widefield microscopy, but slower. Note that the fluorescence microscopy images that we will use in this part have been obtained with a confocal microscope.

• Super resolution: Several methods have been developed recently to overcome the diffraction limit of an optical set-up, and obtain images with higher resolution. See Section III.2 for a detailed study on super resolution techniques.

Fluorescence microscopy is nowadays central in microbiology research, but presents some limitations. First, the samples to be observed have to be meticulously prepared, and for certain applications the preparation step is extremely difficult and time-consuming. In addition, during the illumination process, the fluorophores are consumed by the light, and lose their ability to fluoresce with time. This phenomenon, called photobleaching, prevents long-time experiments, as the overall intensity and contrast of the images decrease exponentially with time (see Figure II.3.(b-c)). This drawback of fluorescence microscopy techniques is one of the main motivation to the development of CS-based techniques in this field, as it would lead to shorter acquisition time, requiring less illumination and then to enabling longer observations [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF].

II.1.3.2 Image acquisition

The camera of a fluorescence microscope acquires an image of the fluorescent particles inside a sample. More precisely, each fluorophores emits a light wave, which corresponds to a given number of photons per unit of time. Technically, the acquisition camera is a matrix of receptors (or pixels), each one of them counting the number of photons arriving during a given time (referred to as acquisition time). But because of the stochastic nature of photons, the phenomenon of image acquisition is not deterministic. In other words, the number of photons received from two parts of the same biological area (and therefore composed of the same number of fluorophores) will not be the same, but differ, according to a probability density law. However, only a fraction of the acquisition of fluorescent signal is random, and this level of uncertainty can be experimentally controlled, mostly by two factors: the excitation light and the acquisition time. Indeed, if the number of photons received by the sample increases (which is controlled by the light source), the number of photons emitted by the sample increases too, along with the image quality. Similarly, if the image of a sample is acquired for a longer time, the number of photons received by the camera increases as well. But, these image quality enhancements come with a cost:

1. A light source of higher intensity sends more photons on the sample, but if the power of the laser is set above a certain threshold (depending on the samples), it may result in an alteration of the sample integrity. This scenario is therefore not adapted to live cell imaging.

2. A light source of low intensity can be compensated by a longer exposure time. However, this means longer acquisition time, which is not suited for real-time imaging, and 3. A light source of low intensity combined with short time exposure enables the observation of live imaging, with less photobleaching. However, this results to a degradation of image quality in a random fashion. This phenomenon, called noise, is reviewed in the next section.

II.2 Noise in microscopy images

II.2.1 Noise sources in microscopy

In the context of microscopy, there are three main sources of noise, listed below, inherent to the digital microscopy sensing apparatus. We display on Figure II.4 a scheme of microscopy image acquisition, along with the different noise sources (in red).

The dark noise corresponds to the electronic noise generated by thermal agitation of electrons. More precisely, vibrations of silicon atoms in the camera sensor's substrate liberate electrons even when no incident photon is detected. High-quality sensors have a cooler to reduce dark noise. In terms of image models, the dark noise follows a Poisson distribution P(λ d ), where λ d represents the average dark flux. This noise affects the data model in the background, making it stochastic rather than null, and following a Poisson distribution. However, most modern cameras contain a built-in cooling system, and the dark noise is negligible in comparison with other sources of noise.

The photon noise, or shot noise, is generated from the statistical fluctuations of the number of photons sensed at a given exposure level. Due to the stochastic nature of photon emissions, photon noise is inherent in all optical signals. In terms of signal modeling, we assume an average photon flux λ p , and what is recorded is a number of photon counts that follows a Poisson distribution with parameter λ p . This noise affects the signal model inside the structures being imaged, making it stochastic rather than deterministic, and following a Poisson distribution.

The readout noise is mainly generated by the non-perfectness of the output amplifier of the camera during the process of converting charges into voltages. In terms of image modeling, this noise is usually described as an additive component with a zero-mean Normal distribution.

The level of noise depends on the exposure time, experimental conditions affecting the sensors such as the temperature or other parameters like the fluorescence of the structures being imaged in case of fluorescence microscopy.

Three models are mainly used in microscopic image denoising [START_REF] Boyat | A review paper: noise models in digital image processing[END_REF]. In general terms, we note x ∈ C N the true image, where N is the number of pixels in the image, and y ∈ C N the observation of x, corrupted by noise.

II.2.1.1 Additive white Gaussian noise

The additive white Gaussian noise is the standard model used in most of the image processing literature (see [START_REF] Boyat | A review paper: noise models in digital image processing[END_REF] for instance). It represents the readout noise in digital microscopy, modeled as an additive random component to each true measure, with independent temporal values drawn from a zero-mean and constant variance Gaussian probability distribution function. Mathematically, the model is written y = x + n, where n ∈ R N follows a zero-mean Gaussian distribution, n ∼ N (0, σ 2 ). In other words, for each pixel coordinates s ∈ Ω:

P y(s) = g = 1 √ 2πσ 2 e -(x(s)-g) 2 2σ 2 (II.3)
where g is a gray level value and σ is the standard deviation of the noise model. See 

σ 1 < σ 2 < σ 3 .
We display on Figure II.6 the influence of Gaussian noise on a test image, for two different parameters of σ. This examples highlights the fact that Gaussian noise impacts the quality of the full image in the same fashion, whatever the intensity level. In practice, the Gaussian readout noise generated by the camera is independent of the acquired image, meaning that in low-light conditions where the intensity is low, the influence of the Gaussian noise will be relatively stronger. In this chapter, we will place ourselves in the context of strong Gaussian noise, with values of σ between 0.01 and 0.2.

II.2.1.2 Poisson noise

Poisson noise is actually the result of observing a deterministic signal through a detector that samples it as a Poisson process, i.e. dark noise and photon noise, with inherent fluctuations in the measured values, and signal-dependent levels of fluctuations in the final pixel measure.

Poisson noise is the main source of fluctuations in microscopy. The observed measures follow a discrete probability distribution that expresses the probability of a given number of events to occur in a fixed interval of time. Mathematically, the model describing an image perturbed with Poisson noise can be written y(s) = P(λ s ), where P is a Poisson random process of intensity parameter λ s . In other words, for each pixel coordinate s ∈ Ω:

P y(s) = g = λ g s e -λs g! (II.4)
The denoising process aims at estimating the underlying intensity value λ s = x(s). The mean and variance of a Poisson law are both equal to λ s and vary across the image domain. The brighter parts of an image have a higher mean value but also a higher variance, and therefore higher noise level. See We display on Figure II.7 the influence of Poisson noise on a test image, for two different values of the parameter λ. In this example, the value of λ corresponds to the expected number of photons received by the detector during acquisition. As expected, the degradation is more visible in the brighter areas of the image, however this examples highlights the fact that a higher value of λ reduces the degradation caused by noise. In this chapter, we will always place ourselves in the context of low-light conditions, with values of λ between 1 and 100.

II.2.1.3 Mixed Poisson-Gaussian noise

A more realistic noise model in microscopy [START_REF] Sarder | Deconvolution methods for 3-d fluorescence microscopy images[END_REF][START_REF] Boyat | A review paper: noise models in digital image processing[END_REF] consists of a combination of both Poisson and Gaussian noise, which is commonly called Mixed Poisson-Gaussian (MPG) noise. This model takes into account the three main sources of noise (dark noise, shot noise and readout noise). Mathematically, we write y(s) = γP (λ s ) + n, where γ is a gain constant that modulates the predominance of the contribution of the Poisson noise in the model. P is a Poisson random process, and n is a zero-mean Gaussian random variable with variance σ 2 . In other words, assuming that the Poisson and Gaussian random processes are independent, for each pixel coordinate s ∈ Ω (cf. [START_REF] Jezierska | An EM approach for Poisson-Gaussian noise modeling[END_REF]):

P y(s) = g = e -λs √ 2πσ 2 × +∞ p=0 λ p s p! e -(γp-g) 2 2σ 2 (II.5)
For the sake of simplicity, we will write the noisy version y of the ground truth image x as y = 1 λ P(λx) + n, where P is a Poisson process and n ∼ N (0, σ 2 ). Note that the term 1 λ is a normalization term, so that the range of values of 1 λ P(λx) is that same as the one of x. We display on Figure II.8 an example of an image perturbed with mixed Poisson-Gaussian noise, with different parameters σ and λ. Note that on this figure, the first row presents images corrupted with pure Gaussian noise, and the first column presents images corrupted with pure Poisson noise. 

II.2.2 Noise estimation in microscopy images

II.2.2.1 Inference of noise parameters

When an image is built using a random noise generator, in order for instance to simulate a noisy acquisition, the noise parameters are set by the user, meaning that these same parameters can be used during the denoising process. For real-life images, the exact noise parameters are not known, and we need methods to estimate them. In the context of fluorescence microscopy, we suppose that the noise follows a mixed Poisson-Gaussian model, where the parameter of the Poisson part of the noise is λ, and the parameter of the Gaussian noise is σ.

Several approaches for estimating noise parameters from an observation have been designed in the literature, that can be grouped into three main axes:

• The Variance stabilization approach (see [START_REF] Mäkitalo | Noise parameter mismatch in variance stabilization, with an application to poisson-gaussian noise estimation[END_REF] and references therein): Standard in the field of denoising, a variance stabilization transform consists in applying an operator to an image, in order to transform its noise into a gaussian noise model (see Section II.3.4 for more details). Once this transform is applied, we can estimate easily the standard deviation of the resulting Gaussian noise (usually by computing the standard deviation on each uniform region in the image), and find the parameters λ and σ through an inverse VST.

• The Expectation-Maximization (EM) approach (see [START_REF] Jezierska | An em approach for time-variant poissongaussian model parameter estimation[END_REF] and references therein):

In this Bayesian approach, we consider that the noisy image is the realization of a stochastic process, involving a true image and two noise terms (in the case of mixed Poisson-Gaussian noise). Then, this methods consists in computing the maximum likelihood estimator of the model, and estimate the parameters λ and σ by solving an EM algorithm (for instance, using Douglas-Rachford).

• The cumulant matching approach (see [START_REF] Rose | Mathematical statistics with mathematica, chapter 7.2c: k-statistics: Unbiased estimators of cumulants[END_REF][START_REF] Zhang | Contributions à la microscopie à fluorescence en imagerie biologique: modélisation de la PSF, restauration d'images et détection super-résolutive[END_REF]). Coming from the field of statistics, the cumulants of a probability distribution are a sequence of real numbers that describe the distribution, similarly to the moments for instance. Now, considering a noise image as the realization of a random variable with parameters λ and σ, the cumulant matching approach proposes to compute the first 4 cumulants k 1 , . . . , k 4 directly from the image y, and derive the parameters λ and σ from these values.

This problem is complex, especially in the case of mixed Poisson-Gaussian noise, and there is no superior method. However, the cumulant-based approach is faster in terms of computation time, and is directly based on the image instead of a given transformation.

II.2.2.2 Measures of denoising performance

When working in the field of image restoration, or more precisely image denoising, it is essential to be able to evaluate quantitatively the reconstruction quality of a given algorithm. For this purpose, several tools have been designed in the field of image processing, depending on which 40 II.2 Noise in microscopy images kind of distortion/degradation a user can accept. For instance, in some applications, a good image contrast recovery is mandatory, while tiny details in the image are of secondary importance.

Operators, defined as a function of the denoised estimate and the ground truth image, are called data fidelity measures or reconstruction errors. If we denote as x ∈ C N the ground truth image and x ∈ C N an estimator of x obtained with the algorithm to evaluate, we can define the following data fidelity measures:

Mean-Squared Error

The first intuition when we need to compare two images is to compare them pixel by pixel. The mean-squared error (MSE) measure does just that, as it represents the average of the quadratic distances between the two images, pixelwise. Mathematically, it is defined as follows:

MSE(x, x) = E (x -x) 2 = 1 N N s=1 x(s) -x(s) 2 (II.6)
MSE is central in most fields of signal and image processing, as it is a derivable operator, it is robust to outliers, and, most importantly, if an image y is the corrupted version of an image x, with a zero-mean white Gaussian noise N (0, σ), then MSE(y, x) = σ 2 .

Peak Signal to Noise Ratio

A version of the MSE that is more often used in image processing is the peak signal-to-noise ratio, that measures the ratio between the power peak of the signal (i.e. the maximum possible intensity) and the power of the corrupting noise, given by the MSE:

PSNR(x, x) = 10 • log 10 R 2 MSE(x, x) = 10 • log 10 N × R 2 N s=1 x(s) -x(s) 2 (II.7)
where R is the maximum possible value that the pixels of the image x can take (usually, R = 1 as we normalize images to [0, 1] in our computations). The definition of the PSNR as the log-ratio of two power terms means that it is evaluated in decibels (dB), allowing to read more easily the values in the case of extreme degradation.

Structured Similarity Index Measure Rather than comparing two images pixel by pixel, [START_REF] Wang | Mean squared error: Love it or leave it? a new look at signal fidelity measures[END_REF] has proposed a measure called structured similarity index measure (SSIM), that relies on the similarity of local patches in the image, in terms of brightness, contrast and structures:

SSIM(x, x) = 2µ xµ x + C 1 µ 2 x + µ 2 x + C 1 brightness • 2σ xσ x + C 2 σ 2 x + σ 2 x + C 2 contrast • σ xx + C 3 σ xσ x + C 3 structure (II.8)
where µ x and µ x are the local means of x and x, σ x and σ x are the local standard deviations of x and x, σ xx is the cross correlation of x and x, and C 1 , C 2 , C 3 are small positive constants. This estimator is supposed to give a better rendering of how the human eye perceives the images and is often used in image processing.

When the ground truth image x is not known, as in real-life problems, the Stein's unbiased risk estimator (SURE) has been proposed in [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF], and designed for pure Gaussian noise. Following this work, similar estimators have been proposed in the case of pure Poisson noise [START_REF] Luisier | Fast interscale wavelet denoising of poisson-corrupted images[END_REF] and finally in the case of mixed Poisson-Gaussian noise [Le Montagner14].

Finally, some additional data fidelity measures can be used when the ground truth image is not known, such as the signal-to-noise ratio (SNR) or the contrast-to-noise ratio (CNR).

II.3 State-of-the-art denoising for complex noise models

In this section, we present a review of a selection of 12 state-of-the-art denoising methods [Rudin92, Louchet14, Sawatzky09, Chambolle11, Bioucas-Dias10, Buades05, Deledalle10, Salmon14, Bindilatti18, Rubinstein13, Donoho95a, Dabov07] that are later on benchmarked and tested on the different types of strong and complex noise (Gaussian, Poisson and mixed) found in microscopic images. While all the methods have been originally designed for general denoising purpose, most of them have been adapted afterwards to restore images acquired with deterministic or Poisson measures as well as with additive or multiplicative noise components. Even if they have not been designed specifically for microscopic imaging, the selected methods represent, in our view, the best performing denoising options currently available, with the additional advantage that the respective codes were made available and are distributed by their authors.

II.3.1 Total Variation-based methods

Total Variation (TV)-based methods have been introduced to infer, in an optimization framework, the most probable original noiseless image given a noisy observation, a noise model, as well as an image model involving the nature of the measure (deterministic or Poisson) and II.3 State-of-the-art denoising for complex noise models spatial regularity of the structures in the image (via TV semi-norm suited for piecewise constant structures). We review the standard TV filter and a subset of four TV-based denoising methods designed for Poisson measures and complex noise models. In all reviewed methods, the TV norm metric TV refers to the isotropic TV semi-norm defined in [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] as:

x TV = s∈Ω (∂ h x(s)) 2 + (∂ v x(s)) 2 (II.9)
where ∂ h , ∂ v represent the horizontal and vertical discrete derivative operators.

II.3.1.1 TV-filtering

Image filtering and denoising using TV has been introduced by Rudin, Osher and Fatemi [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]. The proposed method assumes that an image is composed of a finite number of piecewise constant sets, and a finite number of discontinuities and edges. The denoised image is obtained as a minimizer of the following functional:

xTV = arg min x∈R N x TV s.t. x -y 2 ≤ (II.10)
where y is the input noisy image, xTV is the inferred true image, and > 0 is a real constant that is proportional to the variance of the noise in the image. Note that this approach was designed for an additive Gaussian noise model. This denoising technique is very popular and extremely powerful on piecewise constant images, but suffers from the well known staircase effect in large structures of almost but non-exactly constant intensity values.

II.3.1.2 TV-ICE

The TV-LSE method was proposed by Louchet and Moisan in [START_REF] Louchet | Total variation denoising using posterior expectation[END_REF] to reduce the staircase effect. They reformulate the TV optimization problem using a least square error (LSE) criterion on a Bayesian formulation of the problem. They define image sets E µ , and prior probability density functions p β of the true image x on these sets as follows, with parameter β > 0:

∀µ ∈ R, E µ =    x ∈ R Ω , s∈Ω x(s) = µ|Ω|    and p β (x) = 1 Z β e -β x TV , where Z β = E 0 e -β x TV dx.
In the case of Gaussian noise, they write y = x + n, with n ∼ N (0, σ 2 n ). In a Bayesian framework, they formulate the posterior density function (pdf) p(x|y) as:

p(x|y) = 1 Z exp - E λ (x) 2σ 2 n (II.11) where E λ (x) = x -y 2 2 + λ x TV , λ = 2βσ 2 n ,
and Z is a normalizing factor ensuring that x → p(x|y) is a probability density function on R Ω . Here images are modeled as finite sets of pixels with real values. As the authors explain, regular TV filtering generates the maximum a posteriori (MAP) estimator of this pdf, and can introduce staircase effects in the solution with globally maximal probability. As an alternative, they propose to maximize the pdf using a LSE criterion. This leads to the following LSE estimate:

xLSE = R Ω exp - E λ (x) 2σ 2 n • x dx R Ω exp - E λ (x) 2σ 2 n dx = E x∼π (x) (II.12)
with the posterior distribution:

π(x) = exp - E λ (x) 2σ 2 n R Ω exp - E λ (x) 2σ 2 n dx
The authors propose an algorithmic solution to Eq (II.12) using a Monte Carlo Markov Chain (MCMC) algorithm with a Metropolis scheme. The denoised pixels are weighted averages over pixels from multiple possible image candidates.

Louchet and Moisan proposed in [START_REF] Louchet | Total variation denoising using iterated conditional expectation[END_REF] the TV-Iterated conditional expectation (TV-ICE) as a variant of TV-LSE to improve computational efficiency. They replace the posterior mean (obtained via the MCMC model) by an iterated conditional marginal mean. This leads to the definition of the following recursion operator that converges towards its fixed point:

∀s ∈ Ω, p ≥ 0, x p+1 (s) = E x∼π [x(s)|x (Ω\{s}) = x p (Ω\{s})]
with:

x p+1 (s) ---→ p→∞ xICE (s)
where E x∼π is defined in Eq. (II.12).

From an algorithmic point of view, the denoised pixels are posterior means, conditionally to the values of all other pixels. Both the TV-LSE and TV-ICE methods show strong performances in terms of reducing the staircase effect and the TV-ICE technique shows great improvement in terms of computation time. The main drawback of these approaches is their sensitivity to the noise model and level. If the noise model is not Gaussian additive, or if the noise variance σ 2 n is very large, denoising performance is greatly degraded for both methods. The authors have recently extended in [START_REF] Abergel | Total variation restoration of images corrupted by Poisson noise with iterated conditional expectations[END_REF] the TV-ICE denoising framework to Poisson noise using the Poisson pdf in the data fidelity term.

Using TV regularization to infer the posterior Poisson likelihood raises issues that have been the focus of several works [START_REF] Le | A variational approach to reconstructing images corrupted by poisson noise[END_REF][START_REF] Sawatzky | Total variation processing of images with poisson statistics[END_REF][START_REF] Setzer | Deblurring Poissonian images by split Bregman techniques[END_REF][START_REF] Figueiredo | Restoration of Poissonian images using alternating direction optimization[END_REF][START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. Options are direct gradient descent with TV approximation via the divergence operator, following a loglikelihood variational approach, that leads to computational difficulties due to the nonlinearity of the model [START_REF] Le | A variational approach to reconstructing images corrupted by poisson noise[END_REF], the Expectation-Maximization (EM) applied to KL-divergence which is slow and introduces "checkboard" artefacts [START_REF] Sawatzky | Total variation processing of images with poisson statistics[END_REF], a primal-dual formulation of the Bayesian approach [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF], or applying directly the split Bregman method [START_REF] Setzer | Deblurring Poissonian images by split Bregman techniques[END_REF][START_REF] Figueiredo | Restoration of Poissonian images using alternating direction optimization[END_REF] which is complex to implement and has a high computational cost.

II.3.1.3 Poisson EM-TV

The TV-based denoising scheme proposed by Rudin et al. [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF] was formulated for deterministic measures corrupted with additive Gaussian noise. The Poisson-TV variational model, derived from the negative log likelihood function, is:

xP-TV = arg min x∈R N s∈Ω (x(s) -y(s) log [x(s)]) + λ x T V (II.13)
where Ω is the image domain, and λ is the positive regularization parameter, as before. Note that in a Poisson statistics model, x(s), y(s) > 0, ∀s ∈ Ω. This model is strongly nonlinear in the data fidelity term, which leads to issues in the computation of minimizers. Authors in [START_REF] Sawatzky | Total variation processing of images with poisson statistics[END_REF] proposed a formulation of the solution of the Poisson-TV regularization problem alternating between expectation maximization (EM) and TV regularization. Alternating EM inference and TV regularization along with a simplification of the data fidelity term with a second order Taylor approximation, leads to the following modified TV-filter model:

xP-EM-TV = arg min x∈R N 1 2 x -y √ y 2 2 + λ x TV (II.14)
The proposed approach to solve the minimization problem is based on a dual approach using a characterization of subgradients of total variations as divergences of vector fields with constrained norm, resulting in a projected gradient algorithm. Examples on images with Poisson statistics are provided in [START_REF] Sawatzky | Total variation processing of images with poisson statistics[END_REF] using a weighted 2 data-fidelity model.

II.3.1.4 TV-MAP Poisson

As described in [START_REF] Abergel | Several mathematical models and fast algorithms for image processing[END_REF] (and also on Abergel's website, see Table II.3), Chambolle and Pock [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF] have developed a dual formulation of the MAP approach written in Equation (II.13). We can rewrite the discrete total variation with a dual formulation as follows:

T V (x) = max p∈R N ×R N ∇x, p subject to p ∞,2 ≤ 1 where •, • is the usual scalar product on R N × R N , ∇ is the discrete gradient operator, defined as ∇x = (∂ v x, ∂ h x) ∈ R N × R N , and p ∞,2 = max (u, v) ∈ R N p(x, y) 2 .
Then, we inject this definition into the problem (II.13), leading to a classical primal-dual reformulation, xTV-MAP-Poisson = arg min

x∈R N + max p∈R N ×R N s∈Ω (x(s) -y(s) log [x(s)]) + λ∇x, p -δ(p) (II.15)
where δ is the indicator function of the closed unit ball of the norm • ∞,2 . This problem can be solved using the Chambolle-Pock algorithm [START_REF] Chambolle | A first-order primal-dual algorithm for convex problems with applications to imaging[END_REF]. Each iteration of this method consists in a succession of two steps, successively the dual update and the primal update. This method is one of the most popular today in the image processing field. Its implementation is straightforward, and the convergence is ensured in a reasonable time. However, images denoised with this algorithm suffer from the staircasing effect, which are more visible than in most other methods.

II.3.1.5 MIDAL

The Multiplicative Image Denoising by Augmented Lagrangian (MIDAL) algorithm proposed by [Bioucas-Dias10] was specifically designed to remove multiplicative noise components from a piecewise-constant field. The noise is assumed to be positive, following a known probability distribution (here Gamma distribution for speckle noise), have a mean of 1 and standard deviation of σ n . The method is designed in three steps: Log-transform of the signal and formulation of the unconstrained MAP estimator with TV regularization; reformulation as a constrained problem via variable splitting; and solving via an augmented Lagrangian method (in their implementation the alternating direction method of multipliers (ADMM) [START_REF] Boyd | Distributed optimization and statistical learning via the alternating direction method of multipliers[END_REF] algorithm was used.). The algorithmic formulation along with the noise model and the logtransform lead to an optimization problem with guaranteed convergence and a unique solution.

The noisy image is modeled as y = nx and log-transformed to manipulate log(y) = log(n) + log(x) which we write y = n + x. Note that this approach is used in many techniques that aim at denoising images corrupted with multiplicative noise [START_REF] Rudin | Multiplicative denoising and deblurring: theory and algorithms[END_REF][START_REF] Huang | A new total variation method for multiplicative noise removal[END_REF][START_REF] Durand | Multiplicative noise removal using l1 fidelity on frame coefficients[END_REF]. The new variable x is split into a pair of variables (u, x). In the case where n ∼ Gamma(1, σ n ), the proposed regularized MAP estimator becomes:

xMIDAL = exp(x) (x, û) = arg min x,u L(x, u) s.t. x = u, with L(x, u) = 1 σ 2 n s∈Ω x s + e ys-xs + λ||u|| T V .
where λ is a regularization weight parameter. This method requires the a priori knowledge of the noise standard deviation σ n and the authors showed that λ should decrease as the noise level increases for optimal denoising performance.

II.3.2 Non-Local filtering

Non-local filtering constitutes a very popular and powerful family of denoising methods, exploiting the fusion of patches from over the whole image instead of just local filtering. They are based on the assumption that real images are non-locally repetitive (i.e. self-similar). We review here some of the most popular non-local denoising methods, which have generated among
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the best results in the case of complex non-additive noise.

II.3.2.1 NLM

The original non-local means (NLM) algorithm was introduced by Buades et al. in [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF].

The denoising principle is that, for each noisy patch, it exists somewhere in the same image other patches representing the same structure, shape or texture, that can then be aggregated altogether to remove the noise. Formally, the denoised image is generated via the following operation:

∀s ∈ Ω, xNLM (s) = t∈Ω w s,t y(t) t∈Ω w s,t (II.16) with w s,t = exp - F s,t h 2 , F s,t = b∈N f (y(s + b), y(t + b))
where h is a filtering parameter, N is a patch, i.e. a neighborhood of fixed size and centered around the pixel of interest and f is a similarity metric used to compare noisy patches. In the case of additive white Gaussian noise, f is chosen as the 2 norm and the denoised estimate is computed as:

∀s ∈ Ω, xNLM (s) = 1 Z(s) t∈Ω y(t)e - y(Ns)-y(N t ) 2 2 h 2 with Z(s) = t∈Ω e - y(Ns)-y(N t ) 2 2 h 2
where N k denotes a neighborhood of fixed size and centered at the pixel k, and h is a parameter that controls the decay of the weights as a function of the 2 norm (note that we used notations from [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]).

II.3.2.2 NLM-Poisson

Deledalle et al. have proposed in [START_REF] Deledalle | Poisson NL means: Unsupervised non local means for Poisson noise[END_REF] a formulation of the NLM to denoise images corrupted by Poisson noise. They add two modifications to Eq. (II.16), where xNLM-P oisson is defined as xNLM , but:

with w s,t = exp - F s,t h 2 1 - G s,t h 2 1 , F s,t = b∈N f (y(s + b), y(t + b)) and G s,t = b∈N g θ(s + b), θ(t + b)
with θ an a-priori estimate of the noise free image x and (h 1 , h 2 ) two filtering parameters. Using an image prior has been suggested as a means of improving NLM performance in images with very low SNR. It is typically infered with local convolution filters such as averaging or Gaussian filters. The following similarity metrics are proposed:

∀s, t ∈ Ω f y(s), y(t) = y(s) log y(s) + y(t) log y(t) -y(s) + y(t) log y(s) + y(t) 2 . g θ(s), θ(t) = θ(s) -θ(t) log θ(s) θ(t) .
which correspond to the Poisson likelihood ratio and the Kullback-Leibler divergence metrics.

The parameters (h 1 , h 2 ) influence greatly the denoising performances. The authors propose a method for tuning them using a Poisson unbiased risk estimator (PURE) criterion and its optimization via Newton's gradient descent. These parameters end up being mainly influenced by the level of noise in the image. This approach suffers from two limitations. First, the parameter tuning phase makes the method quite slow to run. Second, the noise variance parameter of the method is estimated automatically, and hence the user cannot enforce manually the level of regularization, which is needed for most methods in case of strong noise variance.

II.3.2.3 NLPCA

Building up on non-local (NL) patch aggregation and Poisson likelihood measures, Salmon et al. have proposed in [START_REF] Salmon | Poisson noise reduction with non-local PCA[END_REF] to denoise groups of patches via joint optimization of dictionaries and projection coefficients, which constitute the principal component analysis (PCA) part of the NLPCA denoising method. The algorithm is decomposed into four steps: aggregation of patches for all pixels, clustering of patches, denoising of patches in individual clusters via dictionary decomposition, fusion of denoised patches within clusters and backprojection of denoised patches to form the denoised image. Denote by Y ∈ R N ×P the collection of N overlapping patches (size √ P × √ P ) of the noisy image y. Y is organized so that Y i,: denotes the ith patch in a row-vector form. The first step of the method consists in clustering patches into K clusters using some K-means type of algorithm (e.g. Poisson K-means), that enable working with an a priori fixed small dictionary size within each cluster Y k of size N k (in their work they use l = 4 elements per dictionary and K = 14 clusters). The second step of the method is to define dictionaries V k ∈ R l×P and corresponding projection coefficients U k ∈ R N k ×l in an exponential form so that positivity of the denoised estimates xk of patches in the k th cluster is guaranteed. Using the Poisson likelihood, the kth PCA-based partial II.3 State-of-the-art denoising for complex noise models

estimator xk ∈ R N k is obtained via the following optimization: xk = exp(U * k V * k ) (U * k , V * k ) ∈ arg min (U,V )∈R N ×l ×R l×P L(U k , V k ) L(U k , V k ) = N k i=1 P j=1 exp(U k V k ) i,j -Y k i,j (U k V k ) i,j
Finally, the denoised image x is obtained by fusing all partial estimators for a given pixel (averaging is used in the implementation of the authors). They also investigated a refined version called NLSPCA, where S stands for sparse, adding a 1 penalty term on the coefficients U in the loss function L(U, V ). This method requires two parameters: number of patch clusters and number of dictionary elements per cluster. This method was designed specifically for low-photon counting statistics and ends up being very sensitive to the quality of the patch clustering step. This observation led the authors to recommend to perform this clustering on a pre-denoised version of the image in case of high noise. Results can suffer from over-smoothing artifacts.

II.3.2.4 PNL Wiener

The Wiener filter [START_REF] Steven | Fundamentals of statistical signal processing, volume i: Estimation theory[END_REF] is a very popular tool for image restoration in the presence of noise. It was derived as the optimal linear filter solution to the linear minimum mean-squared-error (LMMSE) problem. In the presence of white Gaussian noise, its expression is very simple while leading to high-quality denoising performance. Bindilatti et al. [START_REF] André | A nonlocal poisson denoising algorithm based on stochastic distances[END_REF][START_REF] André | Poisson wiener filtering with non-local weighted parameter estimation using stochastic distances[END_REF] have proposed to adapt the Wiener filter for images with Poisson statistics, exploiting a non-local weighted parameter estimation. The Poisson Non-local Wiener estimator (PNLW) is obtained as follows:

∀s ∈ Ω, xP N LW (s) = ȳ(s) + σ 2 y (s) -ȳ(s) σ 2 y (s) β (y(s) -ȳ(s))
where ȳ(s) = t∈Ns w s,t y(t) and σ 2 y = t∈Ns w s,t y(t) 2 -t∈Ns w s,t y(t) 2 are non-local estimators of the mean and variance of y, N s is a search region centered on the pixel s, and β is a method parameter introduced to control a priori the denoising strength. The non-local weights w s,t are obtained using the Kullback-Leibler distance d KL as:

w s,t = 1 W s exp -q∈N d KL (λ Nt (q), λ Ns (q)) γλ(s) 2
where λ are the approximate pixel-wise Poisson parameter values, obtained via non-local denoising of y in [START_REF] André | A nonlocal poisson denoising algorithm based on stochastic distances[END_REF], N is a patch neighborhood, and corresponding patch values of λ centered at pixel s are denoted λ Ns . W s is a normalization parameter, so that the w s,t sum up to 1, and γ is a method parameter controling the rate of decay of the weights. The two method parameters are empirically tuned in [START_REF] André | A nonlocal poisson denoising algorithm based on stochastic distances[END_REF][START_REF] André | Poisson wiener filtering with non-local weighted parameter estimation using stochastic distances[END_REF].

II.3.3 Sparse filtering

II.3.3.1 Analysis K-SVD

Introduced in [START_REF] Elad | Image denoising via sparse and redundant representations over learned dictionaries[END_REF] and [START_REF] Aharon | rmk-svd: An algorithm for designing overcomplete dictionaries for sparse representation[END_REF], the K-Singular Value Decomposition (K-SVD) method exploits the theory of dictionary learning to denoise images. The principle is the following: Extract a large number (N patches = 1000 in this manuscript) of fixed size patches (n patches = 5 × 5 pixels in their implementation) of the noisy image y, stored in a matrix Y . Then, denoise each patch using sparse coding [START_REF] Lee | Efficient sparse coding algorithms[END_REF] on a given dictionary D. Finally, average the overlapping patches to get a denoised estimator xKSV D . Several algorithms have been developed following the same workflow, with different dictionary constructions or optimization methods in the sparse coding step (see for instance [START_REF] Rubinstein | Efficient implementation of the k-svd algorithm using batch orthogonal matching pursuit[END_REF] or [START_REF] Ma | A dictionary learning approach for poisson image deblurring[END_REF] in the context of Poisson data).

In this work, we propose to study the Analysis K-SVD method [START_REF] Rubinstein | Analysis k-svd: A dictionarylearning algorithm for the analysis sparse model[END_REF], which improves the original K-SVD method by including both backward greedy (BG) and optimized backward greedy (OPG) algorithms, and a penalty function to take into account some prior information given on the data, like TV sparsity for example.

Given a training set Y of patches obtained from the noisy image y, and an initial dictionary D 0 , the method constructs a dictionary D adapted to the image, and a denoised estimator xA-KSV D of the true image x. The algorithm uses an iterative scheme, each iteration containing two steps: first, find for each patch Y i which rows of the current dictionary D current represents it in the sparsest way, and second update each row of D current to represent in the sparsest way each of the patches associated to it. Once convergence is reached, overlapping patches are aggregated to reconstruct xA-KSV D . Although this technique shows high performances for large sets of images, and has the versatility to be adapted to different types of noise and different regularization constraints, it is not really adapted to routine work in biological microscopy. Indeed, the learning step is extremely long, almost 4 minutes for one image and 1000 patches only in the training set, which is not compatible with real life experiments. In addition, quality of the results depends strongly on the training set, hence limiting capacity in the case of extremely noisy data.

II.3.3.2 Wavelet Soft-Thresholding

Wavelet soft-thresholding for denoising was introduced by [Donoho95a], exploiting wavelet functions to decompose a noisy image into subbands at various scales and making the assumption that the noise is mainly encoded in the smaller coefficients. Formally, if (W, W -1 ) denote the wavelet transform, direct and inverse operators (i.e. analysis and synthesis), then the denoised estimate xWST of the noisy observation y is obtained as:

xWST = W -1 (D [W(y)]) (II.17)
where D is the soft-thresholding operator defined as:

D[w] = sign(w) max(|w| -λ wav , 0) (II.18)
with λ wav the threshold parameter which is typically set based on a priori knowledge of the noise standard deviation σ n and the dimension N of the image. Examples include the universal VisuShrink threshold [START_REF] Donoho | Ideal spatial adaptation by wavelet shrinkage[END_REF], or the more evolved SureShrink procedure [START_REF] Donoho | Adapting to unknown smoothness via wavelet shrinkage[END_REF]. We used the SureShrink procedure in our experiments. This method is straightforward to implement and extremely fast. Results provided by wavelet soft-thresholding are often of good quality, but suffer from major artifacts, in particular around edges of piecewise constant structures, where oscillations tend to appear.

II.3.3.3 BM3D

Also exploiting non-local patches, the Block-Matching and 3D Filtering (BM3D) method was introduced by Dabov et al. in [START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF] and remains the most used method, often serving as state-of-the-art for all imaging modalities. The method is decomposed into three steps, pixelwise: grouping similar patches from the original noisy image in stacks, denoising patch stacks in some transform domain (process called collaborative filtering), and aggregation of denoised patches to form the denoised image via weighted-averaging. The pipeline is actually run twice: a first time to estimate a pre-denoised image using wavelet transform and hard thresholding on noisy patches as collaborative filtering and a second time using Wiener filtering on both noisy and pre-denoised patches as collaborative filtering. The method involves several parameters that control the build up of stacks of similar patches and the thresholds of wavelet coefficients. As reported in [START_REF] Lebrun | An analysis and implementation of the bm3d image denoising method[END_REF], empirical optimal value for the wavelet threshold is quite insensitive to noise level but parameters controlling the patch stacks have optimal values that are greatly variable across noise levels. Note that other methods have been developed recently following the multi-layer structure approach of BM3D, combining it for instance with connected random fields (see [START_REF] Sa Haider | Fluorescence microscopy image noise reduction using a stochastically-connected random field model[END_REF]).

II.3.4 Variance stabilizing transforms

As an alternative to process the signal directly as a Poisson signal, it is possible to use a variance-stabilizing transform (VST) to transform the observed signal. Indeed, for Poisson signals, the variance of y(s) is proportional to the intensity λ s . It is possible to stabilize the variance of y, noted σ y via a transformation z = T (y) such that σ z is asymptotically constant (e.g. σ z =1), irrespective of the values of λ s .

The most used form of VST transform is:

T (y) = b × sign(y + c) × |y + c| 1/2
, where c ∈ R controls the convergence rate of z toward a Normal distribution with a stable variance as λ s becomes large [START_REF] Zhang | Multiscale variance-stabilizing transform for mixed-Poisson-Gaussian processes and its applications in bioimaging[END_REF]. The most popular VST is the Anscombe transform for which c = 3/8, and has been used in recent works like [START_REF] Sa Haider | Fluorescence microscopy image noise reduction using a stochastically-connected random field model[END_REF]. In addition, some work has been done to adapt the Anscombe transform to the case where an image is perturbed with a mixed Poisson-Gaussian noise model [START_REF] Makitalo | Optimal inversion of the generalized Anscombe transformation for Poisson-Gaussian noise[END_REF]. In both cases, the inverse transform required after denoising the transformed version is a source of instabilities and artefacts that have a major impact on the quality of the denoising process, and tend to oversmooth images in the case of low photon acquisitions [START_REF] Willett | Multiscale analysis of photon-limited astronomical images[END_REF].

II.4 Fusion of Sparse Reconstructions (FSR) methods

II.4.1 History of the method

The development of the fusion of sparse reconstructions (FSR) algorithm presented in this section is the third installment of a long-time research project, aiming to propose a CS-based algorithm for biological images denoising:

1. In [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF], the original idea of the method was proposed: First, perform a random sub-sampling scheme (following a uniform process or a radial sampling process) of the Fourier transform of an image. Then reconstruct an estimate of this image from the selected Fourier coefficients through Compressed Sensing optimization, with TV minimization. Finally, repeat the process a given number of times, and reconstruct a denoised image as the average of the several partial estimators. An alternative fusion method has been proposed, corresponding to a non-local averaging of the partial estimators.

2. In [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF], the method was refined with the use of a more adapted sampling strategy (see Figure II.10), and the introduction of the NESTA algorithm as the bestsuited technique for CS-based reconstruction in this context. In addition, an automated estimation of the noise parameters σ and λ, called PG-URE, has been developed.

3.

In this chapter, we confront the already existing algorithm to the situation of low-light conditions, and therefore strong noise level. We also propose three new fusion methods, with different philosophies and characteristics. In addition, we propose an extensive comparison of our method with the state-of-the-art of image denoising, and optimized the parameters of all these methods for low-light conditions image restoration. Finally, we exploit the variance map as a new tool for edge-enhancing in the context of images degraded with strong noise.

II.4.2 Presentation of the method

In the context of this work, which is centered on cellular bioimaging, we make the assumption that these images are piecewise constant (e.g. images consisting of cells with nuclei, cytoplasm and small objects, on a uniform background). The TV semi-norm (see Eq.(II.9)) is well suited for such images, with minimal values on constant-intensity areas. Based on the work in [START_REF] Marim | Denoising in fluorescence microscopy using compressed sensing with multiple reconstructions and non-local merging[END_REF], we propose a method that combines three denoising strategies: local averaging (via an operator denoted H(y(s))), TV-filtering to generate partial estimators xk , and a linear minimal error estimator for global TV optimization. Aggregation of noisy (or partial) estimators has been studied in many image denoising (or enhancement) approaches. Beyond naive averaging, the linear minimum mean-squared-error (LMMSE) estimator has optimal properties when working with correlated random observations or independent noisy observations with a white Gaussian additive noise model, but relies on the inference of covariance parameters between observations and the ground-truth signal. Therefore LMMSE performance is greatly affected by the type and level of the actual noise corrupting the observation, and is non-practical when working with spatially-varying noise. It has however raised interest in the context of nonlocal patch-based denoising [START_REF] André | Poisson wiener filtering with non-local weighted parameter estimation using stochastic distances[END_REF][START_REF] Chatterjee | Patch-based near-optimal image denoising[END_REF][START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF][START_REF] Salmon | Patch reprojections for non-local methods[END_REF][START_REF] Angelino | Patch confidence knearest neighbors denoising[END_REF]. In [START_REF] Angelino | Patch confidence knearest neighbors denoising[END_REF], LMMSE is used to aggregate multiple estimators of a pixel value from denoised patches, while taking into account the fact that estimators have different reliability levels (denoising confidence), depending on the similarity of patches inferred on the noisy image. In our case, all the estimators have the same a priori confidence, but this confidence varies in space, hence the choice to use spatially varying weigths α k (s) for the linear combination operator. We first formulate our general denoising estimator as:

x * (s) = α 0 (s) × H(y(s)) + F({x k (s)} k>0 ) (II.19) If we set F to be linear (i.e. F({x k (s)} k ) = k>0 α k (s) × xk (s)
) and using the same weights on all partial estimators, we can further simplify our estimator to:

x * (s) = α 0 (s) × H(y(s)) + α 1 (s) × xmean (s) where ∀s ∈ Ω, xmean (s) = 1 R R k=1 xk (s).
Further simplifying Eq. (II.19), we set α 0 (s) = α(s) and α

1 (s) = 1 -α(s) with α(s) ∈ [0, 1], which leads to: x * (s) = α(s) × H(y(s)) + (1 -α(s)) × xmean (s)
The choice of α(s) is made so as to get x * (s) T V closer to the ground-truth TV than xmean T V via the following computation, developed here in 1D for the sake of simplicity of notations:

x * (s) 1D T V = ∂α(s) × H(y(s)) + α(s) × ∂H(y(s)) + ∂(1 -α(s)) × xmean (s) + (1 -α(s)) × ∂ xmean (s) = ∂ xmean (s) + α(s) × (∂H(y(s)) -∂ xmean (s)) + ∂α(s) × (H(y(s)) -xmean (s))
The first term corresponds to xmean T V . Three assumptions are used to get x * (s) T V closer to the ground-truth TV than xmean T V : (1) xmean (s) is an approximation of the ground-truth with equal or higher contrast; 

xvar (s) = 1 R R k=1 (x k (s) -xmean (s)) 2
Regarding the choice (1), we exploit the denoising capacity of the Compressed Sensing (CS) framework [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] David L Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF] when passing a noisy observation through a Fourier-based sensing operator Φ defined as a random partial Fourier transform and using TVregularization. If we denote F = ( 1

√ N exp -2iπpq N ) 0≤p,q≤N -1
, the discrete Fourier transform matrix, then the sensing operator is written Φ = ΣF, where Σ ∈ {0, 1} M ×N is a selection matrix, and M is the number of coefficients selected among the total N pixels of the image. We need to define the sampling rate τ = M N ∈ [0, 1] as an input parameter (see [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF] for a detailed study of the suitable methods of selection of coefficients in the Fourier domain). A denoised estimator x of the true signal x can be obtained from the noisy observation y by solving the following convex optimization problem:

x = argmin x∈C N x TV s.t. Φx -ỹ 2 ≤ (II.20)
where ỹ = Φy is the collection of subsampled Fourier coefficients of the noisy image y, and is a scalar input parameter related to the energy of the corrupting noise (discussed below). Note that, following the work of [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] and [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF], the CS framework guarantees convergence to a stable and accurate estimate x of x under the assumption of an additive noise model. One strength of the proposed method is to exploit multiple estimators to yield high-quality results for various types of noise. This leads to our proposed Linear Weighted Combination (LWC) denoised estimator defined as, ∀s ∈ Ω:

xLW C (s) = x * std (s) × H(y(s)) + (1 -x * std (s)) × xmean (s) (II.21)
where y is the noisy observation and H is the median filter. We now detail the generation of the multiple partial estimators xk and introduce two alternative fusion strategies, implemented for comparison purpose and to test if the general denoising concept introduced in Eq. II.19 can be extended to alternative weigthing strategies.

II.4.2.1 Generation of multiple sparsity-based partial estimators

The proposed aggregation of CS-based partial estimators is composed of three steps (see coefficients which encode structural information of the objects inside the image [START_REF] Wang | Variable density compressed image sampling[END_REF]. The generation of random sampling patterns in the Fourier domain and its impact on the reconstruction has been studied extensively in [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF][START_REF] Poon | On the role of total variation in compressed sensing[END_REF] in the context of compressed sensing. Here, we consider a dense low-pass sampling (selection of all the coefficients with frequency ν < ν c ), completed with a random sampling of high-frequency coefficients, with an overall sampling rate of τ ∈ [0, 1] (see [START_REF] Kim | Accelerated threedimensional upper airway MRI using compressed sensing[END_REF]). From the single noisy observation y, we generate R sets of measures via linear operation: y k = Φ k y, where Φ k = Σ k F is constructed by zeroing through random measurement matrices Σ k most coefficients in the 2D Fourier transform matrix F. Φ k follows the restricted isometry property and thus is well suited for CS reconstructions [START_REF] Candes | Sparsity and incoherence in compressive sampling[END_REF]. The influence and the setting of the three parameters τ , ν c and R is studied in Section II.5.

b. Reconstruction of partial estimators through convex optimization

We solve the following TV-based convex optimization problems to recover R partial estimators xk from the measurement vectors y k :

xk = arg min x∈R N x TV s.t. Φ k x -y k 2 ≤ (II.22)
where is a noise-dependent parameter defined in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] as: = γ σ n τ N + 2 √ 2τ N . In this formula, σ n represents the standard deviation of the additive Gaussian component of the noise, which we obtain using the cumulant method [START_REF] Rose | Mathematical statistics with mathematica, chapter 7.2c: k-statistics: Unbiased estimators of cumulants[END_REF] on a uniform region of the noisy image (e.g. the background) and γ is a gain that we introduce to handle specific image types (see below Section II.5). We use the NESTA algorithm [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] to solve the optimization problem.

II.4.3 New FSR denoising method with two alternative fusion approaches

The partial estimators obtained by solving (II.22) are already denoised versions of the initial image y. Qualitatively, these estimates are different random draws of the same density law, corresponding to TV-constrained estimations of the ground-truth image. We detail here two alternative fusion approaches to use in Eq. II.19 with α 0 = 0 for comparison and generalization purposes.

II.4.3.1 Exponentially Weighted Aggregate

In [START_REF] Dalalyan | Aggregation by exponential weighting, sharp PAC-Bayesian bounds and sparsity[END_REF] Exponentially Weighted Aggregate (EWA) is an aggregation method that was designed to reach optimal average risk, in the context of non-parametric statistical regression. It has been used for image denoising in [START_REF] Kervrann | PEWA: Patch-based exponentially weighted aggregation for image denoising[END_REF] to fuse "weakly" denoised patches into a single one. Using the formulation from [START_REF] Kervrann | PEWA: Patch-based exponentially weighted aggregation for image denoising[END_REF], for each partial estimator xk , we denote

r k (s) = |y(s) -xk (s)| 2 -σ 2
n the risk of the estimator xk at pixel s, assuming a zero-mean additive white Gaussian noise with standard deviation σ n . The EWA aggregator is defined as:

∀s ∈ Ω, xEWA (s) = R k=1 θ k (s)x k (s) with θ k (s) = exp(-|r k (s)|/β)π k (s) R i=1 exp(-|r i (s)|/β)π i (s)
where β > 0 is typically called a temperature parameter and {π i (s)} i=1,.,R is drafted from a probability distribution function π(s) and is used to put prior weights on the estimators. In our work we define π as a uniform random distribution and β = 0.01. This aggregator considers the partial estimators xk as independent observations of the same true image x, and aggregates them using exponential weights. Note that, as r k decreases, the corresponding weight θ k increases, which meets the MSE-minimization objective.

II.4.3.2 Fourier Burst Accumulation

In [START_REF] Delbracio | Hand-held video deblurring via efficient fourier aggregation[END_REF], the authors propose a new image deblurring method based on what they call Fourier burst accumulation. In the context of burst mode acquisition of multiple image frames with a camera, they reconstruct a single deblurred image by aggregating a burst of images via taking what is less blurred of each frame to build an image that is sharper and less noisy than all the images in the burst. To do so, they compute a weighted average of the Fourier coefficients of the images in the burst set. Their working assumption is that the partial estimators are nonnoisy but blurred and that the blurring kernels are all positive and with unit norm, leading to no amplification of spectral values. In our context, the partial estimators xk are derived by sacrificing some high-frequency components and using TV spatial regularization. We can therefore make the same assumptions. Formally, the FBA aggregator is defined as:

∀s ∈ Ω, xFBA (s) = F -1 R k=1 w k (ζ) • F(x k )(ζ) (s), (II.23) w k (ζ) = |F(x k )(ζ)| p R l=1 |F(x l )(ζ)| p (II.24)
where p is a non-negative integer, F represents the Fourier transform operator and ζ the frequency index. The weight w k controls the contribution, at each frequency, of reconstruction k in the final reconstruction xF BA . This method prioritizes, among all reconstructions, the one that contains most information at a given frequency. The parameter p emphasizes the predominance of the highest Fourier coefficient value. The authors suggest to set its value in the interval [7, .. , 30], where the reconstruction error becomes minimal in terms of Mean Squared Error (MSE). In our work, we empirically identified p = 15 as the value leading to optimal results.

II.5 Extended study of the FSR algorithm

Our method is composed of several steps, each one of them containing few parameters that we have tuned to be optimal for individual fluorescence microscopy images. In this section, we will see in details each of the pieces of the method that can be modified, and how we optimized them to develop the final FSR technique. We performed all the experiments in this section using the Synth. image (presented on 

II.5.1 Sampling in the Fourier domain

As explained in Section II.4.2.1, the first step is the generation of random subsets from measurement vectors y k in the Fourier domain. Extensively studied in [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF], chapter 3, the sampling process in the Fourier domain is crucial for the reconstruction of images in the context of Compressed Sensing. In the light of this work, and reinforced by the observation that the high-frequency Fourier coefficients of a fluorescence microscopy image are much 4 . Note that if the image is a rectangle rather than a square, the low-frequency area is the ellipse of semi-axes ν c N 1 /2 and ν c N 2 /2 (where N 1 × N 2 = N ).

• Second, sample, following a uniform random process, a number N high of high-frequency Fourier coefficients. For more versatility, the second parameter of the method, after ν c , is the overall sampling parameter τ = M/N , which we manipulate in this manuscript, as it reflects the data compression factor obtained with CS. Then, the value N high is set such that the

N high + N low = M , or equally: τ = (N high + N low )/N .
Therefore, the two parameters for the sampling part are the cut-off frequency ν c and the sampling rate τ . Their influence on the reconstruction quality of xk for a given Φ k is studied on Figure II.11.(a), where we run, for several values of ν c and τ the FSR algorithm with R = 1, so that the reconstructed images are partial estimators xk . First, we can observe that, as expected, the higher the values of τ and ν c , the better the reconstruction.

Intuitively, the parameter ν c , which is the radius of the fully sampled low-frequency area, is chosen so that it contains most of the relevant information of the natural image. As a consequence, its influence on the quality of the reconstruction is extremely high, as shown with two examples: for a fixed value of τ = 0.2, the case where ν c = 0.01 (almost corresponding to a random uniform sampling over the whole Fourier domain) gives a very poor estimation of the true image x. However, the case where ν c = 0.3 is much more satisfying.

We can notice, especially for ν c = 0.2 and ν c = 0.25, that τ has no influence on the quality of the reconstruction. It is explained by our construction of the sampling strategy: is N low is already greater than M (remember that τ = M/N ), then the value of N high is 0. In addition, we observe that the higher the value of ν c , the lower the overall influence of τ . In the Results section, we will fix the values τ = 0.2 and ν c = 0.3.

II.5.2 Convex optimization algorithm

We use the Compressed Sensing theory to recover the R estimators xk from the sub-sampled Fourier measures. Given each measurement vector y k , we resolve a CS reconstruction problem using a TV regularization constraint (see Equation (II.20)).

The parameter in Equation (II.20) is set in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] as = σ τ N + 2 √ 2τ N , where σ is an estimator of the Gaussian component of the noise. In the scenario of denoising as postprocessing, the parameter σ is estimated using the cumulant method (see Section II.2.2.1). However, since the model studied in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] considers only the case of images corrupted with additive white Gaussian noise, the performance of the algorithm in the presence of mixed Poisson-Gaussian noise has not been evaluated. As a consequence, we propose a slightly different definition of the regularization parameter: = γ σ τ N + 2 √ 2τ N , where γ is an additional gain factor.

Note that the influence of the parameter in Equation (II.20) is standard in the field of constrained optimization. Indeed, the problem solved by this equation has two parts: the regularization term ( x TV is minimized) and the data-fidelity term ( Φ k x -y k 2 ≤ ). In this situation, the smaller the value of ε, the more the importance of the data-fidelity. And reversely, the higher the value of , the stronger the regularization. We display on Figure II.11.(b) the influence of this parameter on the quality of the reconstruction of a single partial estimator xk . We observe that the reconstruction error curve is composed of two phases: first, the quality of the reconstruction improves when the value of γ increases, and then drastically decreases. These two phases can be interpreted as follows: if is "too small", the data-fidelity term is predominant in the optimization, and the result is still noisy; if is "too high", the regularization term is predominant, and the result is too sparse. As a consequence, for a given noisy image, the parameter has an optimal value, which leads to the best trade-off between data-fidelity and TV-sparsity. Interestingly, we observe that the optimal value of in this case is different form the one proposed in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF], which is due to the presence of mixed Poisson-Gaussian noise. For a better visualization of this phenomenon, we display four examples of reconstructed partial estimators, for different values of γ : For γ = 0, the data-fidelity term is predominant, and the recovered image is still noisy. For γ = 2, the regularization term is predominant, and the recovered image is overly smoothed. For γ = 1, which corresponds to the value of proposed in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF], the estimator still contains noise.

Finally, γ = 1.4 corresponds to the optimal estimator in this example.

Note that, as an alternative to the TV-based NESTA that we use in our experiments, we could also use other regularization constraints, that we have also implemented, for the sake of comparison. For this purpose, the CS-based model consists in replacing x TV in Eq (II.20) by x 1 , x 2 or even Ψx , where Ψ represents a wavelet transform (for instance Haar). We display on Figure II.11.(b) the influence of the parameter γ on the quality of the reconstruction with the NESTA algorithm, for all 4 regularization constraints. We observe that, out of all the regularization techniques, the TV-based approach gives the best results, which confirms our model.

II.5.3 Number of sparse reconstructions

Each of xR reconstructions provides an approximated denoised version of the original image. They differ due to the random sampling of Fourier coefficients but also share some structural coherence, sharing multiple common Fourier coefficients (especially the in the low-frequencies) and spatial coherence thanks to the T V regularization. We observe on Figure II.11.(c) the influence R on the quality of the four proposed FSR estimators. For this experiment, we constructed 50 partial estimators xk with different randomly selected Fourier samples, and computed the final estimator using only R of these 50 partial estimators.

As expected, the quality of the final estimator tends to increase with the number of reconstructions. However, this tendency should be refined by the following observations:

• The EWA and FBA fusions lack robustness with the number of reconstructions, as there is a strong variation between the estimators obtained from R and R + 1 reconstructions, for any R.

• Except for FBA, more than R = 20 reconstructions is not necessary for an improved estimator.

• For both Mean and LWC fusions, the curve is decomposed into three phases: for R ∈ [1, 10], the quality of the reconstruction increases with R, for R ∈ [10, 20], the quality decreases, and for R > 20, the quality remains constant. This phenomenon is explained by the intrinsic concept of these fusion methods: they both rely on the pixel-wise average of the R partial estimators. However, since these partial estimators differ mostly around the edges of the images (see Section II.7), averaging them tends to smooth edges. In the context of TV-sparse images, smoother edges means estimators of lesser quality, as TV-based algorithm target the reconstruction of very sharp objects. We display on 

II.6 Comparison of the presented denoising algorithms

II.6.1 Experimental set-up

Dataset We performed experiments on 3 sets of images to compare the state-of-the-art and proposed denoising methods, using the following images, illustrated in Fig. II.12:

1. (Pure) We generated a bi-color flat image (values 0.25 and 0.75, of size 100 × 100 pixels) corrupted with mixed Poisson-Gaussian noise, to evaluate the denoising power of each method on pure noise fields, before testing them on more complex images. short exposure time (0.1 second). To obtain a ground truth noise-free image, we then acquired a second image with a long time exposure (10 seconds), using the fact that the accumulation of a large number of photons results in a high quality image with almost no noise, at the expense however of the sample integrity.

We tested each denoising method on the Pure and Synth. images in the case of white Gaussian noise, pure Poisson noise and mixed Poisson-Gaussian noise, for several noise levels (0.05 ≤ σ ≤ 0.2 and 6 ≤ λ ≤ 100). We compare in Figure II.13 denoising performance for all methods, when varying the noise level using mixed Poisson-Gaussian noise. We also display on We also tested the different state-of-the-art algorithms on the Pure and Synth. images corrupted with pure Gaussian noise (for several noise levels: 0.05 ≤ σ ≤ 0.2) and for pure Poisson noise (for several noise levels: 6 ≤ λ ≤ 100). We display all the corresponding results in Appendix A.

Finally, results on two additional Hela images are displayed in Appendix A.

II.6.1.1 Parameterization of the methods

We summarize in Table II.2 the code sources and parameterization details for each method.

When possible, we used the code provided by the authors for the state-of-the-art methods. We list in Table II.3 the websites used to retrieve the codes, when available. For the synthetic images, we used the ground-truth noise information to set a priori input noise parameters.

For the real microscopic image, since we do not know the actual characteristics of the noise, we estimated the noise variance inside a patch in the background of the image using the cumulant approach [START_REF] Rose | Mathematical statistics with mathematica, chapter 7.2c: k-statistics: Unbiased estimators of cumulants[END_REF]. For each method, we optimized the different parameters in order to reconstruct the best image with respect to the PSNR metric. The optimized parameters vary with the type of image and with the noise model. We report in Table II.2 the parameter values tuned on the Synth image perturbed with mixed Poisson Gaussian noise with parameters σ = 0.15 and λ = 9.

II.6.1.2 Algorithm performance evaluation

We evaluate and compare denoising performance on two criteria: visual quality and computation performance. Visual quality is evaluated via measuring PSNR which is the most commonly used metric in the image denoising literature and SSIM [START_REF] Wang | Mean squared error: Love it or leave it? a new look at signal fidelity measures[END_REF] which is advocated to better reflect the human eye perception. The experiments are run on a PC workstation 2.93 GHz Quad-core CPU with 8GB of RAM. All codes were implemented in Matlab c , some (indicated 

v ∈ [v * -σv 2 , v * ], intermediate for v ∈ [v * -σ v , v * -σv 2 ]
, and poor otherwise. For each set of computation time values, we collect 15 out of the 16 values in a vector t (note that we do not consider the computation time of the Analysis K-SVD method, which is a strong outlier), and compute its standard deviation t * . We then define the three categories as follows: best for t ∈ [0, σt 2 ], intermediate for t ∈ [ σt 2 , σ t ] and poor otherwise.

We report in Fig. II.13 results from testing on the Synth. image the robustness of denoising performance over 16 different levels of mixed Poisson-Gaussian noise (0.05 ≤ σ ≤ 0.2 and 6 ≤ λ ≤ 100), with noise-level specific optimized parameters (for the state of the art methods) or keeping parameters fixed (our proposed method). We observe that our proposed method (with various fusion operators) always compares well with the best-performing state-of-the-art method, in terms of PSNR and SSIM, over all noise levels, is robust to noise level (i.e. smaller variations of performance metrics) and have no outlier cases. We can see that TV and Poisson EM-TV methods return the best maxima (corresponding to low noise level cases) but that the performance is not consistent over stronger noise levels. The FSR-LWC method returns the best average PSNR value. Finally, the Poisson EM-TV method returns high SSIM values, but a large variability in terms of PSNR, due to strong localized artefacts, that affect PSNR measures but not SSIM.

Results obtained on the Pure image (cf. Fig.II.14) enable to clearly capture visual characteristics of individual denoising methods. Images have been rescaled to [0, 1], so that the ground-truth appears black and white instead of grey (true values being 0.25 and 0.75). Consequently, the loss of contrast present in some results is due to the presence of few outliers that control the overall rescaling. We decided to emphasize the presence of such outliers, observed in many methods, via such rescaling. As expected, the TV filter gives very satisfactory results on this type of pure-noise images, as we enforced the regularization parameter to obtain a TV-sparse result. Similarly, wavelet-based images, using Haar wavelets, return close to stateof-the-art results. On the other hand, the non-local methods fail to denoise this image, as there is no texture to exploit here. Overall, this figure provides visual evidence on how each non-local denoising method deals with noise and suffers from generated artefactual structures.

Regarding the Synth image, some methods like NLM, NLPCA, PNLW, KSVD, wavelet thresholding, and BM3D fail to return a good quality image. Our proposed method performs well with all fusion operators, with a visual quality comparable to TV and Poisson EM-TV. MIDAL and TV-ICE have intermediate quality, with contrast between structures poorly recovered. The TV results show some clear staircase artefacts, not present in Poisson EM-TV results nor with our method. Our method returns the highest PSNR value with EWA fusion operator, and runs in about ∼14s while Poisson EM-TV runs in 2.4s. But Poisson EM-TV requires the setting of a maximum number of iterations which is empirical and requires manual adjustment when performing tests on various types and level of noises.

II.6.3 Results on real images

On the Hela image, all methods return interpretable images, but TV-ICE, NLM and wavelet thresholding have the lowest visual quality, with clear loss of structural details. Other methods are all comparable and again our proposed method returns the highest PSNR value but this time with the LWC fusion operator. In terms of computation time, BM3D is the fastest algorithm with ∼4s, while our method runs in ∼30s.

More generally, methods that have been designed specifically for Poisson noise, such as NLM-Poisson, NLPCA and PNLW, perform poorly on images corrupted with mixed Poisson-Gaussian noise. This observation confirms the fact that such methods make strong assumption on the noise model, and that the mathematical approach chosen to solve the denoising problem 

II.6 Comparison of the presented denoising algorithms

is then less robust to other types of noise. However, these methods have the particularity of being non-local, and give good results on biological images that contain textures. For microscopic images, if there are many similar cells on a background, the NLM algorithm will perform very well [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF]. However, in the case of images with only few cells, with singular objects, or with Poisson measures, the method is less adapted, suffering from the lack of similar patches. It also has problems with large areas separated by a sharp edge, called the noise halo effect in [START_REF] Deledalle | Poisson NL means: Unsupervised non local means for Poisson noise[END_REF] and observed in our results as well.

Additional results are displayed in Appendix A. 

II.7 Methods for estimating variance maps

Gradient maps are essential in image processing for tasks such as anisotropic diffusion, TV filtering, edge-based segmentation (with edge filters, deformable models,...), edge-based registration, and edge-based fusion [START_REF] Vladimir | Gradient-based multiresolution image fusion[END_REF] or image-quality evaluation [START_REF] Chen | Gradient-based structural similarity for image quality assessment[END_REF]. However, this information can be difficult to compute because of the presence of various types of noise (Gaussian, Poisson, mixed Poisson-Gaussian), which hinders the proper definition and location of edges or gradient-like information, and can lead to objects below noise level to be missed.

As a result, most gradient-like operators tend to misrepresent important structures, compromising the downstream processing steps, like segmentation or filtering.

One of the outcomes of our FSR algorithm is the variance map xvar , which is a new tool for extracting gradient-like information, which is robust to most of the noise types found in biological imaging and provides additionally structural information on the objects.

We show on synthetic and real images that our method provides a more robust gradient map than traditional state-of-the-art methods, even in the case of low-SNR, and is able to extract objects occluded by noise. We also show that, by including this algorithm into three popular image filtering techniques, we improve their performance in a significant manner, in particular in the case of mixed Poisson-Gaussian noise.

II.7.1 An enhanced gradient-like information

II.7.1.1 Edge-enhancing operator

Having used TV-regularization to generate the partial estimators, the localization of highvariability pixels in the estimators correspond to structural edges in the original observation. Edges are the locations where TV-based CS estimations suffer from reconstruction errors. Specific CS reconstruction algorithms, such as edge-guided CS [START_REF] Guo | Edgecs: Edge guided compressive sensing reconstruction[END_REF] and support-constrained CS approaches in general [START_REF] Dossal | Sharp support recovery from noisy random measurements by 1 -minimization[END_REF] are very efficient solutions if edge information is known a priori. We show in this letter that the variance map operator generated with our FSR method behaves as a local edge detector and enhancer, without requiring any knowledge on the type and level of noise that corrupts the noisy observation, nor on the edge locations.

The variance map estimated from the noisy observation encodes enhanced gradient information robust to noise (i.e. no strong edges due to noise) and to contrast levels between structures (i.e. variance not sensitive to local intensity values). To illustrate the quality of gradient enhancement, we compare our variance map to a standard gradient map (using a Robert's filter), and a non-stationary degree (NSD) operator. The latter operator was originally designed to detect jumps in noisy signals, and has been adapted for image analysis in [START_REF] Bao | Structure-adaptive sparse denoising for diffusion-tensor MRI[END_REF] for instance. We used the following NSD filter implementation, as in [START_REF] Bao | Structure-adaptive sparse denoising for diffusion-tensor MRI[END_REF]:

xNSD = (x h) 2 h -(x h h) 2
where h is an averaging filter of size 3 × 3. Similarly to the variance map, the NSD map enhances edges of low-contrast structures inside noisy images. 

II.7.1.2 Revealing small structures despite noise

Denoising algorithms tend to reduce the quantity of information present in an image, as fine details and structures can be blurred or removed. In this section, we show how the variance map enables the reconstruction of fine noise-embedded structures, by exploiting the TV-sparsity of the target image and the denoising potential of Fourier sub-sampling.

In a first experiment, illustrated on the first row of Fig. II.19, we added random details on the original ground truth Synth image before adding noise, and tested the different gradient estimators. The variance map reconstructs the small details with high fidelity. The NSD operator reconstructs them only partially and with some loss of contrast, while the edge filter has lost this information. Note that we tested both NSD and gradient filter directly on the noisy image, and also after applying a Wiener filter of size 3 × 3.

On the second row of Fig. II.19, we display the gradient maps on an image of T cells, obtained with a confocal microscope. While NSD and edge filters correctly outline the cells' boundaries, the variance map reveals additional structures inside the cells, that are not visible elsewhere in this experiment. 

II.7 Methods for estimating variance maps

II.7.2 Application to the improvement of classical filters

II.7.2.1 Lee filter

The local Lee noise filter presented in [START_REF] Lee | Digital image enhancement and noise filtering by use of local statistics[END_REF] is one of the keystone denoising method handling various types of noise models. Aiming to enhance the contrast as well as filtering the noise in digital images, this denoising method is based on the local mean and variance of the noisy input image. Denoising is formulated as the inference of the true signal x from the noisy observation y with the following generic form:

xLee = x + k(y -ȳ) (II.25)
where x and ȳ are maps of local mean values of x and y, and k is a gain operator proportional to the local standard deviation σ x . The method is can be used to remove additive, multiplicative or combined additive and multiplicative noise components by using specific gain operators, as detailed below. For each noise model, local statistics (x, σ x ) are inferred on the noisy observation, assuming some a priori knowledge on the noise statistics. Therefore, the definition of the gain k will depend on the type of noise corrupting the image, in order to better adapt the reconstruction.

Additive noise

The observation is modeled as: y = x + n, where n ∼ N (0, σ 2 n ). The estimated local mean and variance of the true signal are defined as:

x = ȳ σ 2 x = var(y) -σ 2 n
and the gain k is defined as:

k = σ 2 x σ 2 x + σ 2 n . (II.26)
Hence when σ x = 0, k = 0 and x = x.

Multiplicative noise

The observation is modeled as: y = nx, where the noise n has local mean values n(s) and standard deviation σ n (s). The estimated local mean and variance of the true signal are defined as:

x = ȳ/n σ 2 x = var(y) + ȳ2 σ 2 n + n2 -x2
and the gain k is defined as:

k = nσ 2 x x2 σ 2 n + n2 σ 2 x , (II.27)
and we still have k = 0 when σ x = 0.

Combined additive and multiplicative noise

The observation is modeled as: y = nx + w in which the n and w are independent white noise components, w ∼ N (0, σ 2 w ) and n has local mean values n(s) and standard deviation σ n (s). The estimated local mean and variance of the true signal are defined as:

x = (ȳ -w)/n σ 2 x = var(y) + ȳ2 σ 2 n + n2 -x2 -σ 2 w
and the gain k is defined as:

k = nσ 2 x x2 σ 2 n + n2 σ 2 x + σ 2 w (II.28)
The Lee filter has inspired many works, such as [START_REF] Frost | A model for radar images and its application to adaptive digital filtering of multiplicative noise[END_REF][START_REF] Kuan | Adaptive restoration of images with speckle[END_REF], defining a general family of local statistics filtering which includes the Wiener filter, as reviewed in [START_REF] Loizou | Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery[END_REF]. It is one of the only family of denoising techniques that provides solutions for the three main noise models. Its main limitation is that the characteristics of the noise (its mean and variance) need to be known a priori. In addition, the performances of the method shrink with the augmentation of the noise level, as the simple local estimators proposed by the method are inefficient in that case.

In practice, the results obtained with this method are of suboptimal quality, but it gives interesting clues on how complex noise like the mixed Poisson-Gaussian noise model can be processed.

Estimations of the local standard deviation on the noisy observation is highly inaccurate. The variance map xvar generated by our FSR method provides a more accurate estimation of the local variance of the target image. We tested the potential improvement in denoising with II.7 Methods for estimating variance maps the Lee filter, obtained by replacing σ 2

x in the gain defined in Eq. II.25 with xvar , leading to the following linear reconstruction: 

∀s ∈ Ω, c(s) = exp - ||∇I(s)|| K 2 (II.30)
and K is a method parameter, that can be fixed by hand or automatically (for instance in [START_REF] Perona | Scale-space and edge detection using anisotropic diffusion[END_REF], K is equal to 90% of the sum of absolute values of ∇I). In this letter, we propose to build an estimator xdiff-var as a solver of the discrete version of the equation I t = c var ∆I + ∇c var ∇I, where c var is defined as:

∀s ∈ Ω, c var (s) = exp - xvar (s) K 2 (II.31)
Note that this approach is akin to the speckle reducing anisotropic diffusion (SRAD) method [START_REF] Yu | Speckle reducing anisotropic diffusion[END_REF], where authors replace the variance term in the standard anisotropic diffusion with a function of the local gradient magnitude and the Laplacian operators. However, the SRAD algorithm was developed and tailored for filtering speckled images, while our approach is rather a refinement technique, adaptable to several algorithms.

II.7.2.3 Application to Total Variation filtering

Image filtering using Total Variation (TV) was introduced as the ROF TV filter in [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF].

The proposed method assumes that the image to recover is composed of a finite number of piecewise constant sets, and a finite number of discontinuities or edges. The enhanced image is obtained as a minimizer of the following functional:

xTV = arg min x∈R N x TV s.t. x -y 2 ≤ (II.32)
where y is the input noisy image, xTV is the inferred true image, and > 0 is a real constant that is proportional to the variance of the noise in the image. Chambolle [START_REF] Chambolle | An algorithm for total variation minimization and applications[END_REF] proposed a semi-implicit gradient descent scheme to solve the ROF (Eq.II.32). In this approach, the iterated variable denoted p n returns a partial estimator of the denoised image at step n as xn = µ div p n (with µ a hyperparameter of the method). Then, the descent at step n is computed along the direction given by α n = ∇(div p n -y/µ), with a Lagrangian multiplier equal to |α n | and a temporal step τ with τ ∈ (0; 1/8] for convergence. The gradient descent step of the algorithm at each pixel (i, j) becomes:

p n+1 i,j = p n i,j + τ (∇(div p n -y/µ)) i,j 1 + τ |(x var ) i,j | (II.33)
where the final denoised estimator is defined as xTV-var = lim n→∞ µ div p n . In our experiments, we set µ = 0.6 and τ = 2/8, which returned the best results. Both SSIM and PSNR metrics prove that our method outperforms the classical filter for each case. In all three cases, we observe an improvement of the overall contrast of the image. Visually, we observe three different behaviors:

II.7.2.4 Results

Results on the

First, the results on the Lee filter prove to be less noisy when enhanced. This comes from the fact that the variance operator used in the classical Lee filter is of poor quality, especially in the context of high noise variance. The quality of the Variance map proves to be efficient in that case.

Second, on the Anisotropic diffusion filter, we observe an improvement of the reconstruction around the edges of the image, as revealed by the error map. This comes from the fact that the Variance map gives a more precise detection of these specific areas than the local variances computed by the classical anisotropic diffusion method.

The effect of the variance-map enhanced technique is not so visible on both Synth. and Hela images, as the TV-filter performance on this type of image are comparable with the best II.8 Conclusions and perspectives state-of-the-art denoising methods (see Section II.6).

Further works will consider the implementation of this technique on some denoising filters studied in Section II.3 that present results of lesser quality on this type of images, such as non-local methods.

Additional results on other kinds of images are displayed in Appendix A.

II.8 Conclusions and perspectives

In this chapter, we have introduced a CS-based denoising method, combining partial reconstructions via dedicated fusion operators, which surpassed 12 state-of-the-art denoising methods in terms of PSNR in three sets of experiments on microscopic images corrupted with high and complex noise. Our proposed method systematically provided excellent quantitative and qualitative results both on synthetic and real images, with the advantages on being based on a single set of parameter values and a simple additive noise model to set a parameter that weights TV regularization versus data fidelity in the CS cost metric.

Our method shares several attributes with the tested state-of-the-art methods. The use of multiple sparsity-based reconstructions is akin to wavelet-thresholding, which combines a low-pass approximation of the noisy observation with filtered high-pass sparse details. Indeed, our Fourier sampling scheme ensures the presence of a low-pass approximation, enriched during the aggregation procedure with denoised details reconstructed via CS and TV-regularization. We do not exploit a multi-scale structure in our proposed method, since we are able to gather multiple versions of the details at the initial resolution, but this could be envisaged easily via the exploitation of multiple values of the cutoff frequency ν c in a future extension.

Denoising power in our method relies on the use of TV regularization, as in many of the best-performing denoising methods tested in this work. The proposed FSR method is not limited to images with patch redundancies across the field of view (as for NLM and BM3D), but it does exploit redundant spatial information from multiple overlapping sub-samplings of the Fourier domain during fusion. It does not rely on an a priori model of the type of noise that corrupts the observation, as required by some specialized methods tested.

Finally, we tested the concept of using an a priori estimate of denoised image to guide the denoising in the EWA fusion operator. Such oracle is used in the NLM-Poisson method which is based on Stein's unbiased risk estimate (SURE) minimization [START_REF] Stein | Estimation of the mean of a multivariate normal distribution[END_REF].

Single parameterization and robustness to noise types are highly relevant in the field of microscopic imaging, as such images are perturbed with highly variable levels and types of mixed Poisson-Gaussian noise which are complex to model a priori or via a Poisson likelihood term to optimize. Another benefit of our approach is the use of only a subset of the samples in the Fourier domain (typically 35%), which could lead to great potentials in data compression or data sub-sampling during acquisition. The proposed FSR method is highly adaptive and can be optimized in the future via investigations of alternative fusion strategies, Fourier sampling strategies and more sophisticated exploitation of the variance map. Bottom part shows denoising results with the original and enhanced implementation (using the variance map). Last row displays the absolute differences between results from the two implementations. We also introduced the variance map as a new tool to detect gradient-like information in noisy images at a relatively low computational cost (between 10 and 100 seconds depending on the number of iterations required). This algorithm provides strongly enhanced fine details, while being robust to noise level, noise type (additive or multiplicative, Gaussian or Poisson), and local contrast between objects. These properties make this method very well suited for challenging images such as fluorescence microscopy, where noise increases in low-light conditions used, for example, to limit photobleaching. The versatility of the variance map makes it a good alternative to traditional gradient filters in the generic field of image processing. We enhanced three standard image filters using the variance map, resulting in a higher image quality. Future works will consider its integration into additional image filters such as the non-local means filter. The one technique which can do much better, because it does not offer as much resolution gain, is structured illumination microscopy. It usually gets only twice beyond the diffraction limit, but it really offers a lot of other benefits, particularly for live imaging.

II.8 Conclusions and perspectives

Chapter III

Direct-domain Compressed Sensing

In other words, the sole super-resolution technique that combines both a reasonable acquisition time and a very low photo-toxicity is structured illumination microscopy (SIM), which makes it the ideal candidate for super-resolved fluorescence microscopy images. However, the number of acquisitions required to obtain one super-resolved two dimensional image is, depending on the reconstruction method, between 4 and 15, which still prevents this method to be a true live imaging technique.

In this chapter, we introduce the direct domain Compressed Sensing framework, that enables the acquisition of fluorescence images at a faster rate (with at least a factor 2), and investigate how it can be applied to the context of SIM. We also propose an on-set implementation of the system, which is one of the first examples of CS-based fluorescence microscope. This approach has seen numerous applications in many fields (see Chapter I).

Contents

However, fluorescence microscopy is a field that has seen very few applications of Compressed Sensing. Before listing the reasons why CS-based fluorescence microscopy has remained very marginal, we want to highlight the experimental works of [START_REF] Wu | Experimental demonstration of an optical-sectioning compressive sensing microscope (csm)[END_REF], followed by the more detailed study of [START_REF] Studer | Compressive fluorescence microscopy for biological and hyperspectral imaging[END_REF]. Authors of both articles proposed a CS-based fluorescence microscope, following the same objective: limit photobleaching in fluorescence microscopy, by reducing the illumination of the samples, and exploiting the CS theory to recover images from very few samples. To do so, they illuminate a fluorescent sample with a random sampling pattern, designed as a Hadamard matrix, and implemented with the help of a digital micromirror device (DMD), inspired by the single-pixel camera [START_REF] Marco F Duarte | Single-pixel imaging via compressive sampling[END_REF]. Then, exploiting the incoherence between the Hadamard pattern and the Dirac basis, they draw a CS model, allowing to reconstruct sparse fluorescence images (either intrinsically sparse, or in a wavelet basis) from very few samples acquired along a Hadamard pattern. This framework represents, to our knowledge, the only example of CS-based fluorescence microscope today (except for the CS-based STORM [START_REF] Zhu | Faster storm using compressed sensing[END_REF], discussed in Chapter I). Its rather limited diffusion (in comparison with CS-based MRI for instance) can be explained by few factors: First, modifying the illumination is costly in terms of implementation, and may create additional artifacts on the sample (see for instance [START_REF] Ayuk | Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-sim algorithm[END_REF] who addresses this problem in structured illumination microscopy). Second, unlike the single-pixel camera, here the camera has to record the entire sample information (even when most pixels are equal to zero, they have to be recorded), which limits the acquisition speed theoretically gained with CS. Finally, this approach exploits the sparsity of images either in the direct or a given wavelet domain, meaning that prior information has to be given on the nature of the samples, and a fortiori, the technique cannot be used on samples who have no sparse representation. Note that [START_REF] Schwartz | Compressive fluorescence microscopy using saliency-guided sparse reconstruction ensemble fusion[END_REF] proposed an adaptive sampling strategy, to take into account various structures in fluorescence images, and generalize the technique to non-sparse samples.

Few recent approaches have been proposed to exploit the properties of CS in fluorescence microscopy, without modifying the illumination or acquisition techniques. In [START_REF] Pavillon | Compressed sensing laser scanning microscopy[END_REF], the authors propose a CS-based confocal microscopy technique, inspired by CS-MRI. Indeed, conventional confocal microscopy reconstructs an image by scanning the sample, and sequentially acquiring point-like measurements. The CS approach, similar to CS-MRI, consists in acquiring only a fraction of the measurements, and reconstruct the whole image through convex optimization. As acknowledged by the authors themselves, this approach does not exactly correspond to Compressed Sensing, as requirements such as matrices incoherence are not met. However, the results fit the expectations in terms of data reduction, and their approach could be the basis of a future CS-based confocal microscope.

In [START_REF] Woringer | Faster and less phototoxic 3d fluorescence microscopy using a versatile compressed sensing scheme[END_REF], the acquisition of the image of a sample in fluorescence microscopy remains standard, but the authors propose a CS framework for 3D imaging. Indeed, building a dictionary with a collection of PSFs at various locations, the authors propose to exploit the sparsity of the 3D distribution of fluorescent structures is sparse according to this dictionary, and propose to sub-sample images along the z-axis. By doing so, they manage to recover 3D images of a fluorescence sample from only a fraction of depth sections, allowing faster acquisition, and illumination reduction (and thus, reducing photobleaching).

III.1.1.2 A new approach

Most standout applications of CS in imaging devices lay on the same principle: recover sparse images from partial Fourier or Fresnel acquisitions (see Chapter I for more details). Any other attempt on CS-based imaging has been condemned to either remain a beautiful theoretical result, or a proof-of-concept without any real-life application. Fluorescence microscopy follows the same rule, and it is because of the inner nature of fluorescence. As detailed in Chapter I, light emitted by fluorescent samples is not coherent. Therefore, even though the optical Fourier transform of an image can easily be obtained in theory [START_REF] Joseph W Goodman | Introduction to Fourier optics[END_REF], it requires coherence of the light to be achieved. When this requirement is not met, frequencies of each light-emitting spot on the sample will spread over the whole wave, and the frequency information of the image is completely lost.

In this manuscript, we propose a model for developing a CS-based fluorescence microscope, based on the following observation: when observed through a microscope, the image of a sample is blurred, due to the optical transfer function (OTF), or point-spread function (PSF) of the optical system. Mathematically, it means that the Fourier transform of the observed image corresponds to the application of a low-pass filter on the ideal sample image: only the lowfrequency information is available. In other words, observing a sample through a microscope III.1 CS-based fluorescence microscope consists in sparsifying its Fourier transform. We therefore propose to go back to the roots of Compressed Sensing, and exploit the Fourier-domain sparsity of a signal, to recover it from very few spatial measurements. In what follows, we refer to this approach as direct domain Compressed Sensing.

III.1.2 Direct-domain Compressed Sensing

III.1.2.1 Literature on direct domain CS

The idea of exploiting the sparsity of the Fourier Transform for image or signal reconstruction has been introduced even before the concept of Compressed Sensing. In 2001, Donoho, who would later become one of the instigators of CS, showed that if a signal S is the superposition of few sine waves, the knowledge of S is enough to identify each of the frequencies inside this signal, through convex optimization. At the same time, [START_REF] Bofill | Blind separation of more sources than mixtures using sparsity of their short-time fourier transform[END_REF] proposed to use linear programming (LP) and to exploit the short-time Fourier transform for solving a similar problem, and the works in [START_REF] Gilbert | Near-optimal sparse fourier representations via sampling[END_REF] introduce the notion of random sampling, and propose a sampling algorithm to recover with high precision the Fourier transform of the sampled signal S.

After the birth of CS in 2006, the question of recovering a signal with a sparse Fourier transform has received many answers. We refer to Chapter I for more details on the early works in CS, but highlight here the work of [START_REF] Rauhut | Stability results for random sampling of sparse trigonometric polynomials[END_REF], who proved theoretical results of reconstruction stability for basis pursuit (BP) methods on sparse trigonometric polynomials (which, therefore, have a sparse Fourier transform). In [START_REF] Michael Wakin | A nonuniform sampler for wideband spectrally-sparse environments[END_REF], authors went a step further, and proposed a hardware device to acquire and reconstruct Fourier-sparse signals, in the context of direct domain CS.

Among the applications of direct-domain Compressed Sensing, one of the most fruitful is the problem of reconstructing multi-band signals. These signals share a common property: the support of their Fourier transform is known. Indeed, a multi-band signal is a superposition of several signals who have a very small frequency bandwidth, but all centered on different frequencies. Mishali and Eldar proposed in [START_REF] Mishali | Blind multi-band signal reconstruction: Compressed sensing for analog signals[END_REF] a framework for direct-domain CS, exploiting the structured-sparsity property of those signals to design a blind-sampling method, that allows the reconstruction of such signals from very few measurements. In [START_REF] Mishali | From theory to practice: Subnyquist sampling of sparse wideband analog signals[END_REF], they validated their first theoretical results by experimentally designing a CS-based acquisition set-up for multi-band signals.

Exploiting the Fourier-sparsity of signals has also been applied for video imaging. In [START_REF] Veeraraghavan | Coded strobing photography: Compressive sensing of high speed periodic videos[END_REF], the authors built the so-called coded strobing camera (CSC), which exploits the periodicity of natural scenes (such as a fan in motion, for instance). By randomly opening and closing the shutter of a camera at a very high speed, they generate a collection of very few direct-domain samples of a scene. Then, exploiting the temporal periodicity (or Fourier sparsity) of the motion they are observing, they manage to recover a ultra high-speed movie of the same scene. However, this approach does not exploit any property of the images, but only the temporal periodicity of each pixel information, so that it remains a one-dimensional technique.

To conclude this section, we refer to the work of Duarte and Baraniuk [START_REF] Marco | Spectral compressive sensing[END_REF], which presents an exhaustive state-of-the-art of models, methods and algorithms for the recovery of Fourier-sparse signals, along with a new algorithm: spectral iterative hard thresholding (SIHT), that they derive into several methods, including Fourier-domain minimization, which is central in this field but somehow not much developed. Their experiments prove to be very efficient, and are today the reference for what they call spectral compressive sensing. However, all their work has been thought for one-dimensional signals, and any generalization to two-dimensional images is hopeless, as computation time greatly increases with sample sizes.

To our knowledge, direct domain Compressed Sensing has exclusively been developed for one-dimensional signals, and therefore doesn't fit the requirements for fluorescence microscopy.

The model that we propose in this section is not subject to this restriction.

III.1.2.2 Model

Following the original CS problem (see Chapter I, Equation I.10), suppose that we acquire an observation y = Φx + b ∈ C M of an image x ∈ C N (with M << N ), where Φ ∈ {0, 1} M ×N is a binary matrix, selecting randomly (following a uniform law) M pixels out of the N that define x, and b is an unknown zero-mean additive noise term such that b 2 ≤ ε. Suppose in addition that the Fourier transform of the image x, denoted as F(x) has a sparse support (meaning that |F(x)(ξ)| = 0 for most of the frequencies ξ). The sparsifying transform Ψ in Equation I.10 is therefore the inverse Fourier transform operator Ψ = F -1 . Then, an estimator x of the image x is obtained by minimizing the following problem:

x = arg min x∈C N F(x) 1 subject to y -Φx 2 ≤ ε. (III.1)
It is important to notice that this problem is written identically, whether the objects x and y are signals or images, and F stands for the 1D or 2D Fourier transform operator, respectively.

The measurement operator Φ is a specific case of partial unitary transform (Φ = ΣU , where Σ is a selection matrix, and U * U = I N , see Section I.2.2), where the orthogonal matrix U is the identity matrix, meaning that the restricted isometry property is verified for our model, with very small constant δ S . In addition, the mutual coherence µ(Φ, Ψ) is equal to 1, which is optimal for CS recovery. Thanks to these two properties, we can apply the result of Theorem 1, and state that the solution of Equation III.1 estimates the image x with great precision, if the number of samples M verifies the lower bound:

M ≥ C • SlogN, (III.2)

III.1 CS-based fluorescence microscope

The reconstruction error is given by the upper bound:

x - In practice, suppose that we work with a camera containing N pixels, of size px , and a microscope objective with a given numerical aperture NA. Finally, the overall magnification of the system -combining the magnification of the microscope objective, and potentially an additional lens between the objective and the camera -is denoted M. Then, if the illumination light has a wavelength λ, the spatial cutoff frequency of the system is defined as

x 2 ≤ C 1 F(x) -F(x) S 1 √ S + C 2 ε, (III.
f c = c • 2NA 1.22λ
, where c is the speed of light in vacuum. Therefore, the surface of the Fourier domain containing information is a disk of radius f c . On the other hand, we define the pixel optical resolution of the system as the finest detail possibly recorded with the camera. We denote it as λ max = px M , and it represents the true size of the camera pixels. Then, if we denote f max = c/λ max its corresponding frequency, we observe that the extent of the total Fourier domain is this of a square of side 2 × f max . Finally, we can give the following result:

Theorem 2. Let x be an image acquired through a microscope objective (with a numerical aperture NA and an overall magnification coefficient M), and recorded on a camera with pixels of size px . If the illumination wavelength is denoted as λ, then the Fourier-degree of sparsity of x is given by: As shown on Equation (III.2), the sampling rate necessary for optimal reconstruction in the context of CS is given by τ S log N . Then, in order to recover an image x from as few pixel values as possible, we need:

τ S (x) = πf 2 c 4f 2 max = π NA × px 1.22 × λ × M
• The numerical aperture NA to be small.

• The size of the camera pixels px to be small.

• The excitation wavelength λ to be long.

• The magnification coefficient M to be high.

Since we work in the context of fluorescence microscopy, the parameters NA and λ are constrained, meaning that their influence on the CS-based fluorescence microscope will be negligible. However, the two other parameters can be easily tuned, and we decided to focus, in our set-up, on the impact of the parameter M, as it requires almost no hardware modification (see Section III. 1.3.3).

Finally, note that the result given by the theorem represents the ideal case. In practice, due to, among other things, acquisition noise and illumination intensity, the support of the Fourier domain containing exploitable information is smaller than the theoretical one. Meaning that, in practice, the Fourier-sparsity of microscopic images is even higher.

III.1.3.2 Algorithmic solutions

At the heart of direct domain Compressed Sensing lies the issue of Fourier domain optimization. However, with a few exceptions [START_REF] Robert | Fast fourier optimization[END_REF][START_REF] Marco | Spectral compressive sensing[END_REF], this field is largely unexplored. We decided to use already existing methods which were not specifically designed for Fourierdomain optimization, but we believe that the development of such techniques could be a great asset for direct domain Compressed Sensing.

As discussed in Chapters I and II, the NESTA algorithm [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] is well suited for solving Problem III.1 in the context of fluorescence microscopy. In addition, the versatility of this algorithm allows to work with either one dimensional signals or two dimensional images with ease. This property is crucial for us, as we showed in Section III.1.2.1 that all the examples of direct domain CS have been performed on one dimensional signals, and could hardly be extended to images. In addition, NESTA allows to define the matrices Φ and Ψ via function handles, leading to faster computations, since the size of these matrices in the case of image processing cannot be handled numerically. For example, for an image x of size N = 512×512 = 2 18 pixels, the matrix Ψ * (representing the Fourier transform operator) is of size N × N = 2 36 , and the complexity of the matrix -vector multiplication (2 36 ). On the other hand, the fast Fourier Transform (FFT) of the image x is in O(N log N ) ∼ O (2 22 ). The same observation can be made for the operators Φ and Φ * , where the computation speed gain is even stronger when using functions handles: selecting M pixels out of the N contained in the matrix x is in O(N ), while the evaluation Φ

Ψ * • x is in O(N 2 ) = O
• x is in O(N × M ). Numerically, if M = N/4, the complexity with function handles is in O(2 18 ) instead of O(2 18+16 ) = O(2 34 ).
In practice, we implement the NESTA algorithm on Matlab c , and the parameters (which are listed in Algorithm 2) are tuned as follows:

• The measurement operator Φ ∈ {0, 1} M ×N is given as a function Φ(x, m) where x ∈ C N is an image and m is a random boolean mask, containing the value true at the locations where the pixels are kept, and false elsewhere. The sampling rate (number of true pixels among the whole mask size) is denoted as τ . Random sampling is performed uniformly over the whole field of view, such that the probability of each pixel of the mask m to be true follows a Bernoulli distribution of parameter τ .

• The adjoint measurement operator Φ * is given as a function Φ * (y, m) where y ∈ C M is a list of selected pixels, and m is a random boolean mask. This function builds an image of size N such that, the pixel values stored in y are placed at the locations stored in the mask m. The distribution of values is such that Φ (Φ * (y, m), m) = y.

• The sparsifying transform Ψ is the Fourier transform operator F, either 1D or 2D, and given as a function handle.

• The adjoint sparsifying transform Ψ * is the inverse Fourier transform operator F -1 , either 1D or 2D, and given as a function handle.

• The 2 error bound ε is given in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF]:

ε = σ τ N + 2 √ 2τ N
, where σ is the estimated noise variance of the acquired image y.

In Section III.1.4.1, we evaluate the performance of the NESTA algorithm in the context of direct domain Compressed Sensing. More precisely, we investigate the influence of three parameters on the quality of the results: the Fourier-degree of sparsity τ S (x), the sampling rate τ and the noise level σ.

III.1.3.3 Implementation on the set-up

The proof of concept of our direct-domain compressed sensing (DDCS) fluorescence microscope is based on a structured illumination microscope, that was developed by Piernicola Spinicelli at the Pasteur Institute. In this section, the generation of structure illumination patterns is discarded (see Section III.2 for more details on this set-up), and we only mention the compounds that play a role in the Compressed Sensing acquisition:

• The camera: Andor ixon 888 of size 1024 × 1024 pixels. We only exploit an area of size N = 512 × 512, and we make the approximation in what follows that the camera size is N . The size of the pixels is px = 6.5µm.

• The light source: a diode Laser with wavelength λ = 568nm.

In addition, a digital micro-mirror array device (DMD) containing N = 512×512 micro-mirrors is used to generate the sampling mask.

III.1 CS-based fluorescence microscope

The use of a DMD Before being able to build a direct domain CS microscope that can sub-sample the image pixels at any rate, we propose a system based on a digital micro-mirror device (DMD). This device is composed of N micro-mirrors that can be switched between two positions, that we call on and off. Now, when a light beam is projected on the DMD, only the photons impacting the micro-mirrors that are on are transmitted (they are reflected in a direction inside the optical path of the system), while the photons impacting the micro-mirrors that are off are reflected outside of the optical path, and hence dismissed. As discussed before, the DMD has been used in the context of fluorescence microscopy in [START_REF] Studer | Compressive fluorescence microscopy for biological and hyperspectral imaging[END_REF], but as part of the illumination. Here, we use the DMD as part of the acquisition device.

In this manuscript, we only consider the case where 25% of the micro-mirrors are on, corresponding to a sampling rate τ = 0.25. The value of τ = 0.25 is motivated by two reasons. First, this value is close from the threshold for optimal reconstruction in the context of direct domain CS (see section III.1.4.1), and lower sampling rates lead to images of lesser quality for now. Second, and most importantly, our aim is to build a fluorescence microscope with a faster acquisition rate, which is crucial for live-SIM. However, with modern cameras, reducing the number of detectors measuring photons does not have a relevant influence on the acquisition speed. The only way to acquire images faster with the same set-up, is to add a binning step to the acquisition. Binning is a technique that consists in grouping several acquisition pixels into one. For instance, with our camera Andor ixon 888, for size N = 512 × 512 pixels, the maximal acquisition rate for the full frame is 35 frames per second. Now, with a binning step of size 2 × 2, meaning that the acquisition process simulates a camera of size N/4 = 256 × 256, the maximal acquisition rate for the full frame is 68 frames per second, which is 1.94 times faster.

Our direct-domain CS microscope combines the pixel selection potential of the DMD with the faster acquisition rate given by the binning: we build a pseudo-random mask m τ such that, for each group of 4 micro-mirrors, exactly 1 is on, following a regular sub-division. Mathematically, if the image support Ω containing N pixels (where N is a power of 2) is sub-divided into a regular grid of N/4 groups Ω k of 4 pixels, then for each k ∈ 1, N/4 , the restriction of m τ to the support Ω k contains exactly one on position, and three off. Finally, we set the camera with a 2 × 2 binning step, such that each new pixel corresponds to one support Ω k . By doing so, each pixel of the camera will receive photons from one micro-mirror, whose intensity is spread over the pixel. We display on Figure III.2 a scheme of principle of our system, on a tiny part of size 16 × 16 pixels extracted from the Target image (left image). The micro-mirror array of the DMD, of size N , is represented in blue, while the binned-pixel array of the camera is represented in red. The second image shows the 25% of pixels that are kept from the fluorescence image, with the DMD. The third image is a display of the acquisition on the binned camera, where each pixel contains the information of exactly one micro-mirror. where only 25% of the mirrors are activated, and reflect light toward the camera (the pixels array of the camera is represented in red). For each camera pixel, there is exactly one activated micro-mirror.

III.1 CS-based fluorescence microscope

DDCS microscope

The acquisition set-up of our direct-domain CS microscope is quite straightforward, in comparison with a standard wide-field fluorescence microscope (see Section II.1.3.1). Light is emitted by a Laser and driven into the set-up through an optical fiber. The beam is then expanded using a pair of lenses and then sent through a fluorescence tube lens, and in the microscope objective (we detail in Section III.1.4.3 the different objectives used in this set-up), to illuminate the sample.

Emitted fluorescence light is collected through the same objective and the acquired image of the sample is created by the lens on a DMD, where 25% of the pixels are switched on, while the 75% remaining are dismissed. Finally, an optical image relay system (composed of two lenses) projects the image of the DMD on the camera (with a binning of 2 × 2).

Note that the mirror position can be changed with a frequency of ∼ 10 kHz, which is way faster than the fluorescence image acquisition speed required for live imaging.

As explained in section III.1.3.1, we can modify the magnification factor of the set-up by putting an additional lens between the dichroic mirror and the lens on Figure III.2. This operation improves drastically the reconstruction potential of the DDCS microscope, at almost no instrumental cost. The only drawback of this procedure is that, since we increase the magnification factor without changing the numerical aperture or the camera size, the field of view of the sample is reduced.

III.1.4 Results

III.1.4.1 Influence of the parameters

We quantitatively evaluate the influence of individual set up and method parameters on the quality of the CS reconstructions on synthetic images. We use as a reference the synthetic Shepp-Logan phantom image x 0 , of size N = 256 × 256. Three parameters are tested via numerical simulations:

• The Fourier-degree of sparsity τ S is simulated as follows: we draw a series of Airy discs

A µ of radii µ × N 2
, where the values of µ are set in the range [0; 0.5], corresponding to values of τ S between 0 and π 4 (see Equation III.4). Then, we build the test images x µ as the convolutions between x 0 and the PSF associated to A µ .

• The random sampling mask m τ of parameter τ is built following a series of independent Bernoulli distributions on each pixel: We used a normalization step on the computation of the MSE, for a better visual comparison. We define in this part the MSE between an estimator x and a reference image x as MSE(x, x) =

x -x 2 / x 2 .

Influence of the Fourier-degree of sparsity τ S (x) In this paragraph, we fixed the values of the sampling rate at τ = 0.25 (corresponding to the sampling rate that we can perform with our set-up) and the noise variance σ = 0. We then simulated an acquisition of the Shepp-Logan phantom image through a microscope with varying OTF A µ . For each value of µ, the reference image is x µ (corresponding to the convolution between the Shepp-Logan image and the PSF of parameter µ), and the reconstructed image is denoted as xµ . We display on Figure III.3.(a) the SSIM and MSE values between x µ and xµ for increasing values of τ S from 0 (extremely sparse) to 1 (not sparse at all).

For τ S larger than 0.07, the SSIM decreases exponentially, while the MSE remains fairly low (less than 10% error, even in the worst case scenario where the image is not sparse). This can be explained by the fact that, for higher values of τ S , smooth structural artifacts appear during reconstruction: the pixel-wise intensity does not vary much, but other metrics such as contrast are degraded. However, as displayed on Figure III.3.(a), even in the worst case scenario, the visual quality of the reconstructed image is very satisfactory.

Influence of the sampling rate τ

In this paragraph, we study the influence of the sampling rate τ on the reconstruction. We still consider the noiseless case, and this time we fix the sparsity rate τ S = 0.13 (which corresponds to a real-life OTF parameter, as used for instance in [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF]. See Section III.1.4.3 for more details on the range of values of τ S used with our set-up). On Figure III.3.(b), we observe that exact reconstruction is obtained for τ = 0.30 and above. However, for lower values of τ , the MSE error increases exponentially, but remains below 5% for τ higher than 0.1, meaning that images with high visual quality can be recovered from 10% of the pixels. On Figure III.3.(b), we also display two visual examples, corresponding to sampling rate values 0.05 and 0.33. On these examples, we display in red the pixels that are discarded during the selection process, meaning that the images recovered though optimization are obtained from the non-red pixels only. We observe two different situations: first, if τ = 0.05, we observe that the overall shape of the Phantom is well recovered, but, here again, the image suffers from structural artifacts, due to errors in the Fourier domain reconstruction. On the other hand, when τ = 0.33, we observe that the Phantom is exactly reconstructed.

Influence of the noise

In this paragraph, we make the assumption that our observation is degraded by additive Gaussian noise with variance σ. We chose to neglect the influence of Poisson noise in this experiment, as we want to compare our results with the upper bound on Equation III.3, which has been designed in the context of additive white noise. Experimentally, this approximation corresponds to screening conditions with high level of photon count. We set τ = 0.25 and τ S = 0.13. Figure III.3.(c) shows the evolution of the reconstruction quality with respect to the noise variance. As expected, exact reconstruction cannot be reached in this case, but the error is well controlled. Our observations agree with the theoretical bound in Equation (III.3), as the MSE error is linearly proportional to the noise variance. Indeed, in this experiment we consider a sparse image, so the first term in the upper bound is zero:

F(x) S = F(x), so Equation (III.3) becomes: x -x 2 ≤ C 2 ε.
Indeed, the value ε used to solve the optimization problem (III.1) is linearly proportional to σ, following the rule given in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF]:

ε = σ τ N + 2 √ 2τ N .
We have also independently experimented the influence of the coefficient ε on the reconstruction quality, and confirmed that the value proposed in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] is optimal. Finally, for the range of noise levels being studied, the pixel-wise MSE reconstruction errors remain below 15%.

We also display on Figure III.3.(c) an example of direct domain CS reconstruction in the noise-free case, as well as in the noisy case, with an additive white Gaussian noise of parameter σ = 0.05. Even though the shape of the phantom is well restored, the quality of the reconstructed image is poor, in comparison with the level of noise which is fairly low. This experiment shows the dramatic influence of the noise on the reconstruction, and we believe that the consideration of Fourier-domain optimization techniques could improve the reconstruction quality.

Discussion on the constant C in Equation (III.2)

Adapting the theoretical result of Equation (III.2), we observe that, for a given degree of sparsity τ S , the minimum sampling rate τ = M/N required for exact reconstruction is given by:

τ ≥ Cτ S log N
where C is an unknown constant.

In the first experiment (see Paragraph III.1.4.1), the sampling rate τ is fixed at value 0.25, and therefore exact reconstruction is supposed to be reached with CS reconstruction if the degree of sparsity τ S of the image verifies:

τ S ≤ τ C τ S log N
Here, we observe that we reach exact reconstruction for values of τ S up to 0.07, which corresponds to a constant C τ S = 3.10.

In the second experiment (see Paragraph III.1.4.1), the degree of sparsity τ S is fixed at value 0.13, and therefore exact reconstruction is supposed to be reached if the sampling rate τ
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τ ≥ C τ τ S log N Here, we observe that exact reconstruction is obtained for τ above 0.30, which leads to a constant C τ = 0.21.

There is a factor 15 between the value of C experimentally obtained in both situations, which is highly contradictory with the theory. This leads to a couple of observations: First, the result given by the theory is very restrictive (see discussion in Section I.2.2), and we were expecting a divergence between the theory and the experiment. Second, our experiments show that the threshold given by the theory is extremely pessimistic. For instance, an image with a degree of sparsity of τ S = 0.25 should, according to the theory, never be reconstructed exactly, assertion that is strongly contradicted here. In what follows, we will set the value of C = 1, which corresponds to the order of magnitude of the values observed. Further work will consider the theoretical evaluation of this constant in the context of fluorescence microscopy.

III.1.4.2 Computation time

As detailed in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] and later on in [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF], the complexity of the NESTA algorithm is, depending on the type of operator Φ used, between O(N ) and O(N log N ). We focus here on the computation time of the direct domain Compressed Sensing, and especially the influence of the image size N and the sampling rate τ . To do so, we used the Shepp-Logan phantom image of size N = 512 × 512 pixels, that we cropped into smaller parts of size 8 × 8 up to the original size 512 × 512, obtaining seven images of increasing size. For each of these images, we performed the direct domain CS technique for different values of τ in the range [0.05; 1]. Here again, we fixed the value of τ S to be 0.13.

All computations where run using Matlab c code, on a PC workstation 2.93 GHz quad-code CPU, with 8 GB of RAM. We report computation times on The curves are not exactly straight lines, but it is a good approximation to consider that the evolution of the computation time is linear with N log N , for images larger than 16 × 16 (which is way smaller than the images we work with in the context of fluorescence microscopy), for all sampling rates.

Note that, for images of size 256 × 256 and 512 × 512, which is the range of image size we deal with in this chapter, computation time is of the order of the second, which is extremely reasonable at this stage.

The observations made on this example prove to be consistent with all the direct domain Compressed Sensing experiments we present throughout this manuscript.

III.1.4.3 Example with realistic parameters

In this part, we simulate the acquisition of a fluorescence image using our set-up (detailed in Section III. 1.3.3). The synthetic target image (Target), commonly used in super-resolution to evaluate the resolution power of microscopes, contains structures that are important to recover in imaging: thin lines, dots, small angles [START_REF] Wicker | Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in fourier space[END_REF]. The microscope that we use is defined by the following characteristics: N = 1024 × 1024, NA = 1.45, M = 100, px = 13µm, λ = 568nm (excitation wavelength of the Alexa 568 fluorophore). In addition, the DMD is tuned so that τ = 25% of the pixels only are kept. Then, following the result of Theorem 2, the Fourier-domain degree of sparsity is given by:

S N = π NA × px 1.22 × λ × M 2 = 0.23, (III.5)
which, according to the theoretical lower bound given by Equation (III.2), will not guarantee exact reconstruction in the noiseless case. Indeed, the sparsity-rate required for exact reconstruction with the characteristics of our experiment is given by:

S N = τ log(N ) = 0.0415. (III.6)
We also simulate the same experiment with a doubled magnification factor, M = 200, easily obtained experimentally. In this situation, the field of view of the target image is reduced, but 100

III.1 CS-based fluorescence microscope

the Fourier-degree of sparsity as well, which is now equal to 0.06, so that the reconstruction error foreseen by the theory is negligible.

For both experiments, we simulated a noise-free situation as well as an example with a realistic Poisson-Gaussian noise of parameters σ = 0.01 and λ n = 50.

We display on Figures III.5 and III.6 results of both experiments, and reported the SSIM and PSNR (although we report the MSE values for theoretical study, as it corresponds to the norm in the upper bound, we prefer to report the PSNR (in dB) measures for image analysis, as it is more standard in the community.) values of each reconstruction. We confirm with these simulations that doubling the magnification factor of the microscope improves drastically the quality of the reconstruction, so that, in the noiseless case, exact recovery of the image from only 25% of the pixels is achieved. In addition, in the noisy case, we observe that, even though the reconstructed image still contains some noise, differences between the ideal image and its CS-recovered version correspond to a pure Mixed Poisson-Gaussian noise image, illustrating the denoising capacity of CS. We did not exploit this property as much as in Chapter II, because the optimization lies in the Fourier domain in the context of CS-based fluorescence microscopy, and Fourier-domain regularization is still a field to be explored. Note in addition that the introduction of the DMD can further degrade image quality. Indeed, since only 1 pixel out of 4 is actually transmitted (meaning that, on the direct domain CS camera, only a quarter of the surface of each pixel receives photons), the light intensity recorded on the camera is reduced by a factor of 4. As a consequence, the signal to noise ratio is reduced in comparison with a standard fluorescence microscope (see II.1.3.2 for a discussion on the influence of the number of photons acquired on the camera on the image quality).

III.1.4.4 Fluorescence microscopy images

We then performed two experiments of the direct domain Compressed Sensing method on real fluorescence microscopy images. For both experiments, we acquired the complete images on a traditional microscope, and simulated the sub-sampled CS-acquisition, allowing to easily test any sampling rate τ ∈ [0; 1]. In each situation, we used a series of three different objectives A low resolution case: Amoebae In the first experiment, the sample is a fixed amoebae culture with DAPI dye, targeting the nuclei of the cells. The images obtained in this context are poorly resolved, as the average size of an amoeba nucleus (of this type) is of the order of 1µm.

We display on Figure III.9.(a) the MSE and SSIM of the images reconstructed for different values of the sampling rate τ , for the three objectives. Because of inherent acquisition noise, exact reconstruction can not be obtained, but we observe an exponential convergence of the reconstruction error in the three cases. Interestingly, convergence is faster as the sparsity rate ). In addition, note that the overall quality of the reconstructions with the 5x objective (NA = 0.16, M = 5) is worse, as the original acquisition was worse. We decided to keep this image, as it highlights the influence of acquisition noise on the reconstruction quality. Nevertheless, reconstruction quality increases with τ even in this case, but with bigger error.

We display on Figure III.7 a visualization of the results for this experiment, for τ = 0.25. Note that, for a better visualization, we display only a zoom (of size 161 × 161 pixels) on a small part of the sample, corresponding to a group of seven amoebae with the 5x objective. Along with the images reconstructed with direct domain CS, we display the original images, the pixel selections on the DMD, the images acquired on the binned camera, and the pixel-wise difference between the original images and their corresponding reconstructions. Finally, we display the Fourier transforms of each image (but corresponding to the full-field images).

We observe that images are very well recovered with our method, with error maps being almost uniformly null, except for the nuclei in the 5x case, due to the acquisition noise. However, reconstruction is not perfect, as we observe a blurry effect on the reconstructed images, especially visible on the 63x case. Nevertheless, it is not clear whether this smoothing effect acts as an imperfections correction, or an image degradation. In both cases, an additional deblurring step could be performed as post-processing, but we will see in Section III.2.3.1 that this in not necessary for our use in SIM imaging set-up. The smoothing effect is more visible on the Fourier transforms of the images, where we observe a smaller support of our CS reconstructions than our original images. Now, recalling the sparsity rates calculated at the beginning of this section (Equations III.5 and III.6), we observe that the actual OTF supports are way smaller than foreseen. This confirms our initial observation: amoebae images are less resolved, containing no details smaller than 1µm. In this case, the OTF support corresponding to the degrees of sparsity we have computed is correct, but there are no high frequency structures, and therefore the actual support (or effective support) of the OTF is smaller than the theoretical one. Hence, direct domain Compressed Sensing performance are highly improved in comparison with our theoretical previsions.

A high resolution case: HeLa cells In a second experiment, the sample is a fixed HeLa cells culture with EGFP dye, targeting the actin filaments in the cells. These images contain details that are below the diffraction limit (meaning that there are structures smaller than 200 nm, and thus invisible on a microscope -see Chapter II), and therefore represent the most challenging scenario for direct domain CS, as information is present over the whole OTF support, and the degree of sparsity is limited.

We display on Figure III.9.(b) the MSE and SSIM of the images reconstructed for different values of the sampling rate τ , for the three objectives. In this experiment, images obtained with the three objectives are almost noise-free, which allows us to compare the influence of the 
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sparsity rate exclusively. Here again, the reconstruction error follows an exponential curve for all three objectives, converging toward almost exact reconstruction. The convergence speed difference between the three cases is clearly visible, which confirms once again the influence of the sparsity rate τ S on the reconstruction quality, for a given sampling rate τ .

We also display on Figure III.7 a visualization of the results of this experiment, for τ = 0.25. Here again, we display only a zoom (of size 161 × 161 pixels) on a part of the sample, corresponding to a single HeLa cell with the 5x objective. This time, since the three acquisitions are of good quality, we observe the influence of the sparsity rate without any bias. The smoothing effect is once again visible (especially in the Fourier domain), and is stronger as the degree of sparsity increases. As a consequence, the reconstruction quality in the case of 5x is poorer, while the recovered image with the 63x is almost perfect.

In this experiment however, the anticipated degrees of sparsity correspond to what we observe on the Fourier transforms. Indeed, in this case, the sample contains details below the diffraction limit (∼ 200nm), meaning that the whole OTF contains information. This property corresponds to the most challenging scenario for the direct domain CS framework, which explains why the convergence of the reconstruction quality with respect to the sampling rate is slower than for the Amoebae. However, even in the most challenging scenario, we can conclude that the images recovered with our technique are of great quality, especially for bigger objectives, which is the situation that we favor, since we are aiming to use this framework in SIM imaging.

In conclusion, we have proposed in this section a proof of concept for a direct-domain Compressed Sensing microscope, able to reconstruct images of size N from a camera of size N/4, at a very small implementation cost (using a DMD and a pair of lenses). The main advantage of our approach is that, without loss of quality, we can record fluorescence images two times faster. Future work will actually implement this microscope, and investigate if the potential aberrations and acquisition errors will have an impact on the reconstruction quality. In the meantime, we can already investigate if the direct domain CS framework can be applied to SIM. 

III.2 CS-based Structured Illumination Microscopy

Unlike most super-resolution techniques, structured illumination microscopy (SIM) [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF] can image live cells at a very fast acquisition rate (around 30 acquisitions per second), while requiring very low light intensity (which strongly limits photobleaching) and no specific sample preparation. This technology has two limitations however: its resolution power is limited to ∼ 100 nm, and today's commercial SIM microscopes require 9 to 15 acquisitions to reconstruct a single super-resolved image. More recent works have proven that only 4 images are necessary to recover a SIM image [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF], and we show in this section how the results from directdomain CS can further reduce the need in data acquisition and storage for SIM, without losing its resolution power.

III.2.1 Super-resolution imaging in fluorescence microscopy

Among the vast collection of review papers on super-resolution imaging, we want to highlight the works of [Huang09a, Jost13, Sahl17], which give complete and educational state-of-the-art reviews on super-resolution techniques at their respective time of publication. We also mention [START_REF] Antoine G Godin | Superresolution microscopy approaches for live cell imaging[END_REF] for a review of SR methods in live cell microscopy.

First, remembering that the resolution power of a microscope is given by the formula

d min = 1.22λ 2N A
, a first strategy is to minimize this value mechanically. Since the illumination wavelength λ is bounded between 400 and 800 nm (otherwise, we step out of optical microscopy), the only parameter that can be tuned is the numerical aperture N A. The total internal reflection fluorescence (TIRF) microscope has been proposed in [START_REF] Axelrod | Total internal reflection fluorescent microscopy[END_REF]. Illuminating a sample with an almost horizontal beam (requiring a very high numerical aperture), of evanescent wave, TIRF microscopy allows the imaging of fluorescent samples at a resolution below 100 nm (similar to SIM). However, this technique is only useful for observing the surface of samples, as details that are deeper than 200 nm can not be resolved.

In the context of fluorescence microscopy, light is subjected to the laws of diffraction, limiting the resolution power of the microscope, and thus the level of details that can be observed on biological samples. With current optical microscopes, the optimal resolution level in fluorescence microscopy is of the order of 200 nm, which is an obvious limitation for the study of biological phenomena taking place at a much smaller scale.

The principle of super-resolution (SR) is to develop optical methods that will allow to surpass the diffraction limit of microscopes within the super-resolution literature (deblurring in post-processing is not considered as super-resolution), we highlight four of the most popular techniques in fluorescence microscopy, relying on different approaches in terms of optics, sample preparation, reconstruction methods, etc. We display on Table III.1 the reference papers for each of these four techniques, along with their resolution power, their main strength and weakness, and one high-impact application paper in biology. 

III.2.1.1 STED

One of the first methods developed for breaking the diffraction barriers has been proposed in [START_REF] Hell | Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[END_REF] and experimentally demonstrated in [START_REF] Thomas | Subdiffraction resolution in far-field fluorescence microscopy[END_REF], and is known as the stimulationemission-depletion (STED) fluorescence microscopy (see Figure III.10). STED is a scanning method, which uses a second STED laser to prevent, at each imaging location, the fluorophores located out of the center of the excitation to emit photons. To do so, the STED laser emits light in a torus shape, with an intensity equal to zero at the center. Then, the excitation laser activates only the fluorophores in an area around the focal point way smaller than in standard microscopy. The size of this region is controlled by the power of the STED laser, meaning that, in theory, the resolution power of STED is infinite. However, with laser power comes deterioration of the cells and photobleaching, and a compromise has to be made, between resolution power and photo-toxicity. Most STED microscopes are able to resolve details of 30-40 nm in the sample, which is about five times better than standard microscopy. STED has since been applied to numerous cell biology applications, and we highlight the works presented in [START_REF] Katrin I Willig | Sted microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis[END_REF], where the resolution power of the method allowed the study of synaptic vesicles, previously invisible in fluorescence microscopy. 

III.2.1.2 PALM/STORM

Instead of breaking the diffraction barrier by using complex illumination processes, [START_REF] Betzig | Imaging intracellular fluorescent proteins at nanometer resolution[END_REF] and [START_REF] Michael | Sub-diffractionlimit imaging by stochastic optical reconstruction microscopy (storm)[END_REF] have simultaneously proposed to reverse the problem, and consider fluorescence microscopy as a single-molecule technique. Their methods, respectively named photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), replace the usual fluorophores with photo-switchable fluorescence probes, so that their response to laser excitation can be controlled. The idea of PALM/STORM (see Figure III.11) is then to acquire thousands of images with an extremely short acquisition time, so that each acquisition contains only a few activated molecules. By doing so, it becomes easy to localize with an extremely high precision the exact position of the molecules on each of the acquired frames. Then, all the frames are merged into a super-resolved image that can reach a resolution of ∼ 10 nm. Although PALM/STORM is extremely powerful in terms of spatial resolution, it suffers from few limitations: sample preparation is complex and can require weeks of work, the number of acquisitions required (several thousands) limits the temporal resolution of the experiments, and finally images can be altered by artifacts, due to photobleaching and blinking. When all these limitations were handled, PALM/STORM leads to drastic improvements in cell biology imaging, allowing for instance the observation of DNA model samples [START_REF] Bates | Multicolor super-resolution imaging with photo-switchable fluorescent probes[END_REF].

III.2.1.3 MINFLUX

Recently, a new super-resolution technique has been proposed in [START_REF] Balzarotti | Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[END_REF]. This method, called MINFLUX (see Figure III.12), as it uses minimal photon fluxes, has been thought as a best of both world strategy, combining the benefits of PALM/STORM and STED. Using photo-switchable fluorophores as in PALM/STORM, this approach uses a STED-like doughnutshaped STED laser beam, allowing to determine the exact positions of the activated molecules. In addition, the doughnut-shaped laser is placed at four focal plane positions (forming an equilateral triangle with its center), and photons emitted by the activated fluorophore are collected for each of the four positions. Finally, a minimization algorithm is run to determine with high precision the localization of the probe. Repeating this routine multiple times leads to the reconstruction of a fluorescence images with a resolution of only ∼ 1 nm, at the cost of a long acquisition time (authors state at least 50 seconds per image), preventing the application of MINFLUX to image fast dynamical processes. Authors in [START_REF] Balzarotti | Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes[END_REF] propose to apply this technique for single-molecule tracking in E.coli bacteria, and this method will undoubtedly have a strong impact on many fields in cell biology.

III.2.1.4 SIM

Among the popular super-resolution methods, one of them stands out for the real-time study of living cells: structured illumination microscopy (SIM). Initially proposed in [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF], this method relies on the Moiré effect, to recover details that are beyond the resolution limit (we go through the technique in more details below). SIM requires the same preparation, about the same illumination power, and almost the same optical devices as standard fluorescence microscopy. Its only limitation is its resolution power, as it cannot reveal details that are smaller than ∼ 100 nm.

In recent years, SIM has been perpetually enhanced, adding the possibility for 3-D reconstruction [START_REF] Mats Gl Gustafsson | Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured illumination[END_REF], using a spatial light modulator (SLM) instead of a mechanical grid [START_REF] Felipe | Axial coding in full-field microscopy using three-dimensional structured illumination implemented with no moving parts[END_REF] (which strongly reduces the presence of artifacts, and increases the temporal resolution of the method), making the first SIM movies [START_REF] Kner | Super-resolution video microscopy of live cells by structured illumination[END_REF], reducing the number of acquisitions needed for one super-resolved image from 9 to 4 [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF], and even using new
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illumination strategies [START_REF] Mudry | Structured illumination microscopy using unknown speckle patterns[END_REF]. We refer for instance to [START_REF] Heintzmann | Super-resolution structured illumination microscopy[END_REF] for a state-of-theart review of SIM in fluorescence microscopy.

III.2.1.5 Resolution-enhancement methods

An alternative approach for resolution-enhancement, is via post-processing. Modeling the PSF of a microscope and using it to deconvolve images has been the topic of a vast literature, and we refer here to [START_REF] Sarder | Deconvolution methods for 3-d fluorescence microscopy images[END_REF] for a review on deconvolution methods in fluorescence microscopy. Although multiple variations have been proposed, most deconvolution methods follow the same principle: model the image acquisition as a convolution between a true high-resolution sample and the optical transfer function of the microscope, and solve an inverse problem.

Recent works have been done on post-processing image deconvolution [START_REF] Gustafsson | Fast live-cell conventional fluorophore nanoscopy with imagej through super-resolution radial fluctuations[END_REF][START_REF] Culley | Srrf: Universal live-cell super-resolution microscopy[END_REF], following an inverse problem approach, and leading to extremely promising results, achieving a resolution power of ∼ 60 nm from widefield images (that have an initial resolution of ∼ 200 nm).

III.2.2 Insights on 2D-SIM

In this manuscript, we explore how direct-domain CS can be applied to SIM, as we believe this method is the most well suited for real-time imaging of living cells. We first detail the method, before presenting our results.

III.2.2.1 The Moiré effect

The first concept to understand in SIM is the one of Moiré fringes. When two sinusoidal patterns are superposed multiplicatively, a new pattern appears. There are some properties that we can highlight, depending on the original patterns.

Let us denote the first 2-dimensional patterns f 1 and f 2 , as:

f 1 (x, y) = a 1 + ∞ n=1 b 1 n cos[nφ 1 (x, y)] f 2 (x, y) = a 2 + ∞ m=1 b 2 m cos[mφ 2 (x, y)]
The multiplicatively superposed signal is defined:

f 1 (x, y)f 2 (x, y) = a 1 a 2 + a 1 ∞ m=1 b 2 m cos[mφ 2 (x, y)] + a 2 ∞ n=1 b 1 n cos[nφ 1 (x, y)] + ∞ m=1 ∞ n=1 b 1 n b 2 m cos[nφ 1 (x, y)] cos[mφ 2 (x, y)] interference term
The first three terms are known via the two original patterns. The last term is the interesting one, and can be rewritten as:

1 2 ∞ m=1 ∞ n=1 b 1 n b 2 m cos nφ 1 (x, y) -mφ 2 (x, y) + 1 2 ∞ m=1 ∞ n=1 b 1 n b 2 m cos nφ 1 (x, y) + mφ 2 (x, y)
The classic example of straight equi-spaced lines oriented with an angle 2θ between them is illustrated on Figure III.13. Mathematically, this corresponds to:

f 1 (x, y) = a 1 + b 1 cos[φ 1 (x, y)] f 2 (x, y) = a 2 + b 2 cos[φ 2 (x, y)] with φ 1 (x, y) = 2π λ (x cos θ + y sin θ) φ 2 (x, y) = 2π λ (x cos θ -y sin θ)
where λ is the line spacing of the grating (or the wavelength of the signal). Then, the superposed signal is:

f 1 (x, y)f 2 (x, y) = a 1 a 2 + a 1 b 2 cos[φ 2 (x, y)] + a 2 b 1 cos[φ 1 (x, y)] + 1 2 b 1 b 2 cos φ 1 (x, y) -φ 2 (x, y) + cos φ 1 (x, y) + φ 2 (x, y) (III.7)
And we can simplify it, knowing that

φ 1 (x, y) -φ 2 (x, y) = 4π sin θ λ y φ 1 (x, y) + φ 2 (x, y) = 4π cos θ λ x
The three first terms of Equation (III.7) refer to the two original gratings, while the fourth term represents a new sinusoidal wave with two components. An interesting remark is that the wavelengths of these new sinusoids are known: λ 2 sin θ and λ 2 cos θ . For instance, when θ << 1, sin θ ∼ θ and cos θ ∼ 1, so that the two new wavelengths that come into play are λ 2θ and λ 2 . And, in this case, the second term is prevailing, and thus appears as a wave of wavelength

λ 2θ > λ (see Figure III.13).
As detailed in Section III.1.3.1, observing an image through a microscope can be modeled as a convolution between the real image and a point spread function (PSF), defined by the microscope. This phenomenon is usually expressed as a low-pass filter in the Fourier domain of the image, meaning that the visible frequencies are only those smaller than the cutoff frequency 

III.2 CS-based Structured Illumination Microscopy

III.2.2.2 A mathematical interpretation of SIM

The idea of SIM proposed in [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF] relies on the Moiré effect: the sample, containing frequencies that are not visible through the microscope, is illuminated by a pre-defined pattern, so that the resulting interference is observable. Mathematically, an image g acquired in SIM is the result of the convolution between the microscope PSF h and the modulated sample (which is the point-wise multiplication between the illumination function I and the sample f ). In order to easily handle the convolution step, we will consider the Fourier transforms of the mathematical objects in this section, since F(f g) = F(f ).F(g), where F(•) is the Fourier transform operator. In the context of linear SIM, the illuminations patterns are sinusoidal modulations, that can be written, for each pixel location (p, q) ∈ [1, n 1 ] × [1, n 2 ] as:

I(p, q) = I 0 1 + α cos 2π k p p n 1 + k q q n 2 + ϕ (III.8)
where I 0 is the mean intensity of the illumination, α is the modulation depth, ϕ its phase, and (k p , k q ) encodes its orientation and frequency. Note that, for a sinusoidal pattern of angle θ and wavelength λ, the values of k p and k q are: k p = n 1 cos θ λ and k q = n 2 sin θ λ . Now, using the property that cos φ = e iφ +e -iφ

2

, we rewrite Equation (III.8) as:

I(p, q) = I 0 1 + α 2 e 2iπ( kpp n 1 + kq q n 2 )+2iπϕ + α 2 e -2iπ( kpp n 1 + kq q n 2 )-2iπϕ
Now, if f (p, q) denotes the sample function at the pixel location (p, q), we can write the modulated sample function as:

(I.f )(p, q) = I 0 f (p, q) + α 2 e 2iπϕ f (p, q)e 2iπ( kpp n 1 + kq q n 2 ) + α 2 e 2iπϕ f (p, q)e -2iπ( kpp n 1 + kq q n 2 )
Then, the Fourier transform of the latter function is given by

F(I.f )(ξ p , ξ q ) = (p,q)∈Ω (I.f )(p, q)e -2ipπ n 1 ξp-2iqπ n 2 ξq , with Ω = [1, n 1 ] × [1, n 2 ].
Consequently:

F(I.f )(ξ p , ξ q ) = (p,q)∈Ω I 0 f (p, q) + α 2 e 2iπϕ f (p, q)e 2iπ( kpp n 1 + kq q n 2 ) + α 2 e 2iπϕ f (p, q)e -2iπ( kpp n 1 + kq q n 2 ) e -2ipπ n 1 ξp-2iqπ n 2 ξq = I 0 F(f )(ξ p , ξ q ) + α 2 F(f )(ξ p -k p , ξ q -k q )e -2iπϕ + α 2 F(f )(ξ p + k p , ξ q + k q )e -2iπϕ

III.2 CS-based Structured Illumination Microscopy

Finally, if h denotes the PSF of the microscope, the acquired image g corresponds to the convolution of h with the modulated sample (g = h I.f ). The Fourier transform of g is then the product between the Fourier transform of h and the Fourier transform of the modulated image. This leads to:

F(g)(ξ p , ξ q ) = I 0 F(h)(ξ p , ξ q ) F(f )(ξ p , ξ q ) + α 2 F(f )(ξ p -k p , ξ q -k q )e -2iπϕ + α 2 F(f )(ξ p + k p , ξ q + k q )e -2iπϕ
(III.9)

III.2.2.3 Schematics of acquisition and reconstruction in classical SIM

To rephrase the previous section, we can write that to obtain a modulated image in the context of SIM, we illuminate the sample with a fixed sine wave, of a given frequency f , a given modulation depth α, a given angle θ and a given phase ϕ. The acquired image corresponds, in the Fourier domain, to the convolution between the FT of the sample and 3 dots (corresponding to the FT of the illumination pattern). 1. In order to recover the high-frequency information from the acquired image, repeat the acquisition of 3 images using illumination patterns with the same frequency and angle, but different phases (namely, ϕ, ϕ + 2π/3 and ϕ -2π/3). Denote these images as I 1 , I 2 and I 3 .

Demodulate the acquired images as follows:

• I W F = I 1 + I 2 + I 3 is the widefield image of the sample.

• I +f = I 1 + I 2 e -2iπ/3 + I 3 e 2iπ/3 is the high-frequency image of the sample, corresponding to the frequency +f .

• I -f = I 1 + I 2 e 2iπ/3 + I 3 e -2iπ/3 is the high-frequency image of the sample, corresponding to the frequency -f .

3. Create an image with higher frequency details, through the registration of I W F , I +f and I -f . This step consists in relocating the demodulated images in their correct Fourier location (see Figure III.16).

4. Repeat the first three steps for several values of θ, the angle of the illumination pattern, in order to obtain an isotropic distribution of the high-frequency information of the image.

In [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF], the author suggests the values θ = 0, 2π/3, 4π/3, leading to a SIM image obtained from the acquisition of 9 images. 

III.2.2.4 SIM acquisition set-up

The SIM acquisition set-up (Figure III.17) is relatively simple, as it is based on a standard widefield fluorescence microscope (which is the same as in Section III.1.3.3, without the DMD). The only addition in the case of SIM, is the illumination part. After going through the beam expander, the light beam is projected on a spatial light modulator (SLM), which modulates the beam into a sinusoidal pattern, controlled by a computer. Note that, before illuminating the SLM, the beam goes through a despeckler, to break its spatial coherence and therefore reduce speckle noise in the beam, and a polariser, so that is it only active along one direction of polarisation.

Then, since the illumination pattern is a discrete approximation of a sinusoid (see Figure III.13), its Fourier transform consists in a central dot -or zero order -corresponding to the mean of the sine wave, the -1 and +1 orders, corresponding to the frequency of the theoretical sinusoid, and additional orders, corresponding to harmonics of the discretized sinusoid. By placing a shutter in the optical Fourier plane of the SLM, the second orders are easily removed. In addition, an optional, step is to block the zero order of the signal, as proposed in [START_REF] Vermeulen | Out-of-focus background subtraction for fast structured illumination super-resolution microscopy of optically thick samples[END_REF]. Indeed, since one of the images recorded is the wide-field image (when there is no SLM), the information obtained from the zero order is already known. By shutting off the zero-order for the other images, we acquire only the -1 and +1 orders, leading to an improved image quality.

Finally, the sample is illuminated with the projection of the pattern created in the SLM, and the modulated image is projected back to the camera.

In order to build a direct-domain Compressed Sensing microscope, it is only required to add a DMD before the camera, as on III.17.

III.2.2.5 Optimized SIM

An inverse problem In [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF], the authors proposed an inverse problem formulation of the SIM technique, allowing the reconstruction of a super-resolved image using only 4 SIM 

H is a block diagonal matrix with H in each block

The overset SIM4I inverse problem is written:

f = arg min J(f ) = g -HRIf 2 2 + γ Df 2 2 (III.12)
where Df 2 2 is a regularization constraint, that we set as the Hessian operator in this work, which is well suited for biological samples. γ is an hyperparameter of the problem, controlling the balance between the regularization term Df 2 and the data-fidelity term g -HRIf 2 .

A gradient descent A first approach to solve the inverse problem (III.12) is to perform a gradient descent. Indeed, since both terms composing the functional J are 2 norms, a solution f of (III.12) is equivalent to a solution f of:

I T R T HT HRI + γD T D A f = I T R T HT g b (III.13)
where D T represents the transpose of the matrix D. By construction, the matrix A is real, symmetric and positive-definite, so the inverse problem Af = b is solved using, for instance, the conjugate gradient method, described in Algorithm 4.

Proof. Keeping the same notations as before, the functional J(f ) defined in Equation (III.12) can be rewritten as:

J(f ) = g -HRIf |g -HRIf + γ Df |Df by definition of the euclidean norm ( • 2 2 = •|• ).
Then, for a given vector h, we have:

J(f + h) = g -HRI(f + h)|g -HRI(f + h) + γ D(f + h)|D(f + h) = g -HRIf 2 2 -2 g -HRIf |g -HRIh + γ Df 2 2 + 2γ Df |Dh + o( h ) = J(f ) -2 I T R T HT g|h + 2 I T R T HT HRIf |h + 2γ D T Df |h + o( h ) = J(f ) + 2 I T R T HT HRI + γD T D f -I T R T HT g ∇J(f ) |h + o( h )
If we define the matrix A and the vector b as in Equation (III.13), the gradient of the function J is ∇J(f ) = Af -b, therefore minimizing J is equivalent to solving Af = b (because the functional J is convex). 

1 Initialize: p ← 0, f p ← 0, r p ← b -Af p , d p ← r p . 2 while r p 2 > ε do 3 α p ← r T p r p d T p Ad p ; 4 f p+1 ← f p + α p d p ; 5 r p+1 ← r p -α p Ad p ; 6 β p = r T p+1 r p+1 r T p r p ; 7 d p+1 ← r p+1 + β p d p ; 8 p ← p + 1 ; 9 end 10 f ← f p+1

Bayesian inversion

In order to automatically determine the optimal value of the hyperparameter γ in Equation (III.12), the authors in [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF] propose a Bayesian formulation of the SIM inverse problem.

In this framework, we can recover the unknowns f (the HR image to reconstruct) and γ thanks to the posterior law p(f, γ|g). The Bayes rule gives:

p(f, γ|g) = p(g|f, γ)p(f, γ) p(g)
Actually, γ is composed of two contributions: γ n that comes from the noise (basically the variance of the noise) and γ f that is a smoothness penalty.

We can rewrite the formula above, and we get:

p(f, γ n , γ f |g) ∝ p(f |g, γ n )p(f |γ f )p(γ n )p(γ f ) Indeed, p(f, γ n , γ f |g) ∝ p(g|f, γ n , γ f )p(f, γ n , γ f ) (by Bayes rule) ∝ p(g|f, γ n )p(f, γ n , γ f ) (because γ f depends on f ) ∝ p(g|f, γ n )p(f |γ n , γ f )p(γ n , γ f ) ∝ p(g|f, γ n )p(f |γ f )p(γ n , γ f ) (because f and γ n are independent) ∝ p(g|f, γ n )p(f |γ f )p(γ n )p(γ f ) (because γ f and γ n are independent)
Once the law of p(f, γ n , γ f |g) is defined, a Gibbs sampler can be used to recover f [START_REF] Geman | Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[END_REF].

III.2 CS-based Structured Illumination Microscopy

As proposed in [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF], the posterior law is defined as:

p(f, γ f , γ n |g) ∝ γ (N -1)/2-1 f L l=1 γ N/2-1 n l exp - L l=1 γ n l 2 g l -HM l f 2 exp - γ f 2 Df 2 ,
(III.14) To compute the final estimator f as the expectation of this law, a Monte Carlo Markov Chain is used to provide stochastic samples, using the Gibbs algorithm [START_REF] Geman | Stochastic relaxation, gibbs distributions, and the bayesian restoration of images[END_REF] (see [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF] for more details in the context of SIM).

In the following, we will consider the Bayesian 4 images SIM approach (SIM4i) when referring to SIM.

III.2.3 Compressed Sensing based SIM

In the context of direct-domain CS, we acquire only a subset of M randomly chosen camera pixels of each raw observation. Using the notations defined above, the acquisition model (III.10) becomes:

f l = Φ (HI l f + n l ) = Φg l
where f l is the partial SIM acquisition. Now, we solve, using NESTA, the direct domain CS problem (III.1), to reconstruct an estimator ĝl,CS from the raw observation g l : ĝl,CS = arg min

g l ∈C N F(g l ) 1 subject to f l -Φg l 2 ≤ ε.
Finally, collecting the L estimators ĝl,CS into a vector ĝCS , we can apply the SIM4i inverse problem (III.12), and write the CS-SIM technique as:

fCS-SIM = arg min f ∈R N ĝCS -HIRf 2 2 + γ Df 2 2 (III.15)

III.2.3.1 Experimental results

Dataset

We tested the CS-SIM algorithm on two images. The first one is a synthetic target image, designed for testing super-resolution methods [START_REF] Wicker | Non-iterative determination of pattern phase in structured illumination microscopy using auto-correlations in fourier space[END_REF]. We display in Fig III .18-III.19 part of the original image (matrix size = 400 × 400 pixels, pixel size = 25nm) for better clarity.

The second image is a fluorescence microscopy image of Hela cells (matrix size = 400 × 400 pixels, pixel size = 100nm), acquired in our unit at Pasteur Institute. Both images serve as ground-truth high-resolution (HR), which we degrade, to simulate widefield observations, with a smoothing PSF modeled as an Airy disc with a central disc diameter of 10 pixels. We simulated CS-SIM acquisition on both images. As in [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF], four modulation grids were used at angles 0, 0, π 3 , 2π 3 , phases ϕ = 0, 2π 3 , 0, 0 , and frequency adapted to the size of the PSF. The noise term is chosen to be white Gaussian with standard deviation σ = 1 . Finally, the sensing operator Φ is a uniform random selection of either τ = 25% or τ = 50% of the total number of pixels in each observation (i.e. camera captors). 

III.2 CS-based Structured Illumination Microscopy

Qualitative results On Fig. III.18, we display the HR images and their widefield observation, along with the Fourier Transforms. This visualization confirms the validity of Fourier-domain sparsity, with the majority of the high-frequency coefficients (outside the central disc) encoding the noise. The third row displays, for each HR image x, the original subsampled data y with a sampling rate τ = 25%, as well as its Fourier Transform F(y). We also display the CS-reconstruction results of the widefield image for τ = 25%, that is our target sampling rate, and τ = 50%, which shows some visual improvement compared to τ = 25%.

Comparison of the Fourier transform of the CS reconstruction and the original widefield image shows some artifacts along the central vertical axis, which are negligible on the direct domain reconstructed images.

After applying CS-reconstruction on each of the K = 4 modulated observations, we display in Fig. III.19-III.20 the CS-SIM reconstruction results for both test images, with τ = 25% and τ = 50%. We clearly see that the super-resolution effect of SIM, increasing the spatial extent of the Fourier spectrum of the reconstructed image. The support size is the same for both τ = 25% and τ = 50%, enabling to maintain the resolution gain at a factor 2.

We provide in Fig. III.20 zoomed views of both series of results, enabling visual assessment of the quality of the reconstruction at the pixel level. We can see that resolution is already greatly improved with τ = 25%, and almost optimal (with respect to the original SIM4i image) for τ = 50%. A segment was selected in both image sets and intensity profiles are displayed, showing contrast improvement at an intermediate level between the widefield observation and reference the HR image.

The two zoomed areas were chosen to illustrate the power of resolution improvement in separating adjacent structures such as two high-contrast spots or three low-contrast linear shapes. The HR images show separate structures, while the widefield images merge them and distort their shapes. We see that the original SIM4i technique and CS-SIM reconstructions are able to recover separate objects, with better estimates of the intensity levels in low-contrast areas.

Quantitative results

To quantify the visual quality of the reconstructed images, three metrics are used: Mean Square Error (MSE), Structural Similarity Index Measure (SSIM) [START_REF] Wang | Mean squared error: Love it or leave it? a new look at signal fidelity measures[END_REF], and normalized Fourier Spectrum Analysis (FSA) [START_REF] Demmerle | Assessing resolution in super-resolution imaging[END_REF]. The FSA computes the average energy along concentric circles of radius inversely proportional to resolution (see Fig III .3). Both MSE and SSIM measurements use a reference image for comparison, which is supposed to be the ideal image. Accordingly, we used as our reference the widefield images to evaluate CS-reconstructions, and the HR images to evaluate CS-SIM reconstructions. All measures, tested versus the sampling rate value τ , are reported in Fig. III.3 The normalized FSA measures show that our CS-SIM method recovers the Fourier information as efficiently as the original SIM4i method, with τ as low as 25%.

For both MSE and SSIM, CS-reconstruction quality improves quite fast with the sampling rate. Even though the error is never exactly zero, we notice that the CS-SIM reconstruction provides strong improvement in this direction. Indeed, in terms of MSE, the CS-SIM recon- struction is already almost exact for a sampling rate of 40%. The SSIM keeps improving as the sampling rate increases, which visually corresponds to elimination of small artifacts around the edges of tiny objects inside the images.

III.3 Conclusions and perspectives

In this chapter, we introduced the framework of direct-domain Compressed Sensing for widefield and SIM imaging, leading to a proof of concept of a Compressed-Sensing based direct and super-resolution fluorescence microscope. This microscope will be able to record fluorescence images two times faster than traditional wide-field microscopes, and will allow the reconstruction of high-quality images, with no loss of spatial resolution, while needing to store four times less pixel values. In addition to the clear advantages in acquisition speed and data storage, this microscope will consequently limit photobleaching, allowing longer fluorescence experiments. We believe that this microscope will be one big step further toward the development of a live-SIM system.

On the optical side, works in the near future will consist in implementing the direct-domain CS SIM microscope, and investigate how the potential aberrations caused by the DMD will influence the reconstruction quality of our method. In addition, we want to generalize the concept of CS-SIM to other structured illumination paradigms, such as blind SIM, but also to On the mathematical side, we want to develop dedicated Fourier domain-based optimization methods, in order to improve the reconstruction quality of the direct domain CS algorithm, as well as its computation time, keeping in mind the idea of a complete on-set software, which would reconstruct high-quality images from partial acquisitions in real time. 

Chapter IV

Optical Coherence Tomography

First introduced in 1991 by Huang et al [START_REF] Huang | Optical coherence tomography[END_REF], optical coherence tomography (OCT) is an imaging technique that belongs to the field of tomography. A 3D object is reconstructed from a series of cross-sectional images obtained with penetrating optical waves, and interference properties of light to reconstruct an image.

The original OCT technique has been extended into several techniques in the following years, that can be divided into three categories: time-domain OCT (TD-OCT), Frequency domain OCT (FD-OCT) and full-field OCT (FF-OCT). The first category refers to the original OCT technique, and the latter is a more recent technique that uses a totally different approach (there is no scanning, and this method is actually an en face imaging technique), we will focus in this chapter on the field of FD-OCT, that contains mainly two techniques: spectral-domain OCT (SD-OCT) and swept-source OCT (SS-OCT). This alternative approach exploits the properties of the k-space based imaging techniques, and in particular the Fourier transform, to perform faster and more precise image acquisition. As a consequence, FD-OCT is an interesting candidate to adapt the Compressed Sensing theory, and we will see in this chapter two CS-based approaches in FD-OCT.

The research presented in this chapter is the result of a collaboration with the team of Professor Christine P. Hendon inside the Department of Electrical Engineering, Columbia University, New York, USA. More precisely, the work on SD-OCT has been performed with Dr. Yu Gan, who acquired all the cardiac OCT and histology images, and the work on SS-OCT has been the result of a close collaboration with Dr. Yuye Ling, who developed the CS-SS-OCT set-up in his laboratory at the Columbia University, allowing an almost day-to-day discussion on the elaboration of the technique. 

Contents

IV.1 Generalities

Histology suffers from multiple difficulties, both technical (the need of performing a surgery to obtain a sample, the complex sample preparation, associated with sample deformation and degradation), ethical (pain caused to the patient by such surgery) and analytic with nonreproducibility of the experiment. Medical researchers have been investigating how to exploit optical imaging techniques as an in-vivo alternative. These techniques are safe for the patient, cheaper, and the properties of light having been extensively studied for centuries, they are supported by a strong theoretical background on new light-based imaging technique.

Proposed in 1991 by Huang et al [START_REF] Huang | Optical coherence tomography[END_REF], optical coherence tomography (OCT) is a noninvasive, non-toxic, in vivo imaging technique that allows the observation of precise structure and tissue information on biological samples that are a few millimeters deep. For almost 30 years, this technique has been studied, developed, extended, to become one of today's most promising alternative to surgery-based histology. Modern OCT images, with higher resolution, give access to more details on the morphological and tissue information, broadening the image analysis possibilities in fields like optical biopsy and virtual histology.

The idea of optical coherence tomography is based on the principle that, when a beam of light is sent into a biological tissue, it is backscattered in a different fashion, depending on the optical properties of the target tissue. Hence, if we illuminate a biological sample consisting of several layers of tissues with different characteristics, and read the backscattered signal (using interferometry), we can reconstruct a volumetric estimation of this sample.

We can divide the field of OCT into three main categories: time-domain OCT (TD-OCT) [START_REF] Huang | Optical coherence tomography[END_REF], which relies on the mechanical displacement of a reference mirror to generate interference fringes; Fourier-domain OCT (FD-OCT), further divided into two techniques: spectraldomain OCT (SD-OCT) [START_REF] Adolph F Fercher | Measurement of intraocular distances by backscattering spectral interferometry[END_REF] and swept-source OCT (SS-OCT) [START_REF] Sr Chinn | Optical coherence tomography using a frequency-tunable optical source[END_REF], where the reference mirror is fixed, and full-field OCT (FF-OCT) [START_REF] Beaurepaire | Full-field optical coherence microscopy[END_REF], which acquired en face images of samples rather than cross-sections. The latter is a very different approach, and we focus on the two first categories in this manuscript (see Figure IV.1 for schemes of these techniques).

IV.1.1 Time-domain OCT

In order to be able to detect the backscattering signal, low-coherence interferometry (LCI) is used in TD-OCT. Therefore, OCT is an interferometric-based imaging technique, relying on a Michelson interferometer (see Figure IV.2). A low-coherence light source generates light that is split into two arms: a reference arm, with a moving mirror, and a sample arm, where the sample to be imaged is placed. The reflected light from both arms are then recombined, and interfere at the surface of the detector. Interference fringes, corresponding to the layers refraction index and depth along one axial direction, are obtained by scanning the reference mirror (corresponding to the z axis). The light beam illuminating the sample scans the whole sample along a transverse axis (x axis), in order to reconstruct a whole slice of the object. The depth information along one direction is called a A-scan, or A-line, while the final reconstructed 2D image revealing the internal structures of the sample is called B-scan (see Figure IV.1).

The necessity of using a broadband light source, synonymous of short temporal coherence, comes from the original goal of the design of the OCT technique: imaging biological tissues in depth. Indeed, at the cost of the complicated issues that are linked with the generation and observation of interference pattern from a partially coherent light source, as well as how such fields propagate inside biological tissues, OCT can reconstruct objects deeper than most noninvasive optical imaging techniques [START_REF] Joseph | Optical coherence tomography (oct): a review[END_REF]. However, these technical difficulties (along with complex reconstruction algorithms) are balanced by a relative low cost of the hardware set-up [START_REF] Joseph | Optical coherence tomography (oct): a review[END_REF].

Mathematically, if an OCT set-up uses a light source of spectral bandwidth ∆λ centered at wavelength λ 0 , then its axial resolution ∆z can be measured as a function of both parameters. Similarly to the definition of optical resolution (see Chapter II), the axial resolution of an OCT system is defined as the minimum distance between two axially oriented backscaterring layers that would produce different interference peaks [Bayleyegn12]. In other words, the axial resolution measures the ability of the OCT system to separate two layers that are at distance ∆z from each others. One can prove that this value is:

∆z = 2 ln 2λ 2 0 πn∆λ (IV.1)
where n is the refraction index of the sample. The axial resolution is proportional to the square of the center wavelength λ 0 and, more importantly, to the inverse of the spectral bandwidth ∆λ, explaining the need of a low-coherence light source (i.e. high ∆λ. One of the main drawbacks of this technique is that, in order to obtain B-scans in a reasonable time (e.g. 10 frames per second), we need the scanning rate of the reference mirror to be extremely fast. However, this scanning is a mechanical process, and is therefore condemned to speed limitations. Most modern scanners can reach a scanning rate of 100 Hz, meaning that if we aim at acquiring B-scans at a rate of 10 frames per second, these B-scan can not contain more than 10 A-scans, which is not realistic. Another drawback linked with the TD-OCT imaging model, is that the following parameters are linked together: sensitivity, optical power, resolution, imaging depth and A-scan rate [Bayleyegn12]. In the context of biological tissue, high sensitivity and limited optical power are necessary, while the resolution is controlled by the light source bandwidth. Hence, the two parameters that can be tuned are the A-scan rate and the maximum depth of scanning, and a trade-off has to be found, which is not satisfactory as we usually need both parameters to be optimal.

IV.1.2 Fourier-Domain OCT

More recently, Fourier-domain OCT has been introduced as an alternative approach of OCT that doesn't need to move the reference mirror, and with a sensitivity that does not depend on the source bandwith. This new approach is divided into two main techniques (see Figure IV.1 middle and right), both having the reference mirror fixed at the position equivalent to the sample position (so that both light paths are of the same length). The depth image of the object is generated from the measure of interference patterns in the Fourier domain.

Initially denoted as backscattering spectral interferometry, the idea of measuring the intensity of backscattered light from a sample at various wavelength led to the invention of the SD-OCT technique in 1995 [START_REF] Adolph F Fercher | Measurement of intraocular distances by backscattering spectral interferometry[END_REF]. Requiring the use of a Fourier-based reconstruction step, this method allowed the acquisition of OCT images with a much higher SNR than with TD-OCT [De Boer03]. The system has later been further refined to achieve higher acquisition rate, leading to a video-rate acquisition speed, especially in ophthalmology [START_REF] Sh Yun | High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength[END_REF][START_REF] Na Nassif | In vivo high-resolution videorate spectral-domain optical coherence tomography of the human retina and optic nerve[END_REF].

In SD-OCT, the light source is a broadband source, similarly to TD-OCT. The reference mirror being fixed, the interference pattern coming from the backscattered signal is measured using a spectrometer, and collected all together on the detector. This protocol allows the reconstruction of one A-line, and similarly to TD-OCT, a sequential scanning of the sample allows the reconstruction of the whole B-scan. This technique is further detailed in Section IV.2, where we also show how the FSR algorithm can be applied for several applications.

The second technique is called swept-source OCT (SS-OCT) [START_REF] Sr Chinn | Optical coherence tomography using a frequency-tunable optical source[END_REF], wjere the light source has a higher coherence (i.e. shorter bandwith) at each acquisition, and is rapidly swept across wavelengths along a broad bandwith. The spectral interference pattern is then acquired on a photodetector as a function of time. In parallel, a reference clock signal is acquired, that records the information on the emission light source wavelength during time. We present in Section IV.3 more details about this technique, and show how the CS theory can be adapted to the clock signal acquisition.

Both SD-OCT and SS-OCT enable fast A-lines acquisitions, and greatly improve the SNR of the reconstructed images, in comparison with TD-OCT. These improvements have enabled the acquisition of OCT images at video-rate, for both 2D or 3D visualizations of objects [START_REF] Klein | Megahertz oct for ultrawide-field retinal imaging with a 1050nm fourier domain mode-locked laser[END_REF][START_REF] Wang | Four-dimensional live imaging of hemodynamics in mammalian embryonic heart with doppler optical coherence tomography[END_REF]. However, these improvements come with some difficulties. The first one is that FD-OCT requires the design of dedicated reconstruction algorithms, that can introduce artifacts. The second one is that both methods generate immense quantities of data, that prove to be a strong limitation, both for image storage and image analysis.

IV.1.3 Fields of application

Since it has been proposed by Huang et al [START_REF] Huang | Optical coherence tomography[END_REF] in 1991, OCT has been widely used in ophthalmology [START_REF] Michael R Hee | Optical coherence tomography of the human retina[END_REF]. Indeed, its non-invasive and non-toxic properties make OCT an ideal imaging technique for observing the human retina, with tissue thickness lesser than 500 µm. It is considered today as a reference tool in ophthalmology [START_REF] Fujimoto | The development, commercialization, and impact of optical coherence tomography[END_REF]. In this manuscript, we present some image simplification and segmentation results on human retinal SD-OCT images.

A more recent field of application for OCT is cardiology. Benefiting from the development of miniaturized OCT systems insertable in a catheter [START_REF] Tearney | Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the international working group for intravascular optical coherence tomography standardization and validation[END_REF], this imaging technique enables intravascular inspections in the human body, providing for instance detailed morphological and biological information inside the human heart [START_REF] Christina M Ambrosi | Virtual histology of the human heart using optical coherence tomography[END_REF]. In addition to internal heart fibers, atrial ventricular nodes and myofiber organization, the field of cardiac-targeted OCT imaging allows the study of the myocardial and atrial tissue, with precise reconstruction of collagen and endothelium layers. Once again, the relative short depth of human atria wall thickness (between 2 and 5 mm) is a strong motivation for using the non-invasive potential of OCT, rather than classical surgery-based methods. Cardiac SD-OCT imaging has been at the heart of our research on the application of our FSR algorithm in biomedical imaging.

Among other fields of biomedical application for OCT imaging, we can mention gynecology [START_REF] Kuznetsova | Oct in gynecology[END_REF], dermatology [START_REF] Marvdashti | Classification of basal cell carcinoma in human skin using machine learning and quantitative features captured by polarization sensitive optical coherence tomography[END_REF], pulmonary medicine [START_REF] Hariri | Toward the guidance of transbronchial biopsy: identifying pulmonary nodules with optical coherence tomography[END_REF] or ex vivo breast tissue, fundamental to aid the early detection of breast cancer [START_REF] Stephen A Boppart | Optical coherence tomography: feasibility for basic research and imageguided surgery of breast cancer[END_REF].

IV.1.4 Speckle noise

Unlike fluorescence microscopy, OCT relies on the coherence of the light used. Coherence is key for the observation of interference patterns. Backscattering light is also subject to a self-interference phenomenon, also known as speckle noise. This phenomenon leads to random image artifacts, degrading OCT images contrast, SNR, and sometimes tissue boundaries that are more difficult to resolve. Since both phenomena -interference of backscattered light and speckle noise -are two sides of the same coin, there is no optical way to reduce speckle noise without reducing the quality of the interference. Schmitt asks the question in [START_REF] Joseph | Optical coherence tomography (oct): a review[END_REF]: "Is speckle actually a source of noise in OCT or is it the signal itself?".

OCT speckle noise is often modeled with a Rayleigh distribution of parameter σ (see Equation IV.2), where σ is the variance of the OCT image (meaning that, similar to Poisson noise, σ depends on the image y) [START_REF] Joseph | Optical coherence tomography (oct): a review[END_REF][START_REF] Gan | An improved sos method for generating multiple uncorrelated rayleigh fading waveforms[END_REF]. Therefore, it is almost always handled via post-processing image filtering techniques that have not necessarily been designed for this type of noise. The question of is there signal information inside the speckle noise remains open. We will discuss in more details the problem of removing speckle noise in SD-OCT imaging in Section IV.2.

∀s ∈ Ω, P y(s) = g = g σ 2 e -g 2 /(2σ) 2 (IV.2)

IV.1.5 Existing Compressed Sensing approaches in SD-OCT

The use of Compressed Sensing in SD-OCT has been previously investigated in [START_REF] Mohan | Compressed sensing in optical coherence tomography[END_REF][START_REF] Liu | Compressive SD-OCT: the application of compressed sensing in spectral domain optical coherence tomography[END_REF], where the authors proved that it is possible to reconstruct OCT images using only a fraction of the CCD camera pixels. Their method exploited 1D-Fourier transforms of the acquisition samples, but did not exploit the 2D regularity of the layers. In addition, their method was only tested on noise-free data, and its robustness to noise has to be further experimented.

Another approach has been proposed by [START_REF] Lebed | Rapid volumetric oct image acquisition using compressive sampling[END_REF], where OCT images are acquired using an under-sampled grid. However, their mathematical formulation is not related to Compressed Sensing (CS), as requirements like matrices incoherence [START_REF] Donoho | Compressed sensing[END_REF] are not met in their work. Indeed, the acquisition is performed in the direct domain, while the reconstruction is implemented in the wavelet domain, which is not incoherent with the direct domain. They further (represented by k = 2π/λ). An interpolation step is required here, as the change of variable λ → 1/λ is non-linear. Third, apodization is performed on the signal, meaning that the signal is multiplied by a window transfer function, in order to reduce the influence of high-frequency coefficients. Finally, the intensity profile of the SD-OCT A-line corresponds to the inverse Fourier transform of the latter.

IV.2.1.2 Datasets for our experiments

In this work, we used two series of OCT images, the first one consisting in N = 7 human cardiac images, and the second one containing N = 45 human retinal volumetric images. See 

In-vitro cardiac tissue images

The images were acquired by Dr. Yu Gan at Columbia University, using a Telesto (Thorlabs, GmbH, Germany) commercial OCT system. Briefly, the system uses a 1325 nm center wavelength, a 150 nm bandwidth, a lateral resolution of 7.5 µm, and an axial resolution of 15 µm. Human hearts were obtained under the Institutional Review Board (IRB) protocol from the National Disease Research Interchange (NDRI) [START_REF] Gan | Automated classification of optical coherence tomography images of human atrial tissue[END_REF]. In their experiment, we acquired B-scan images of size 800×512 pixels, corresponding to 4mm×2.51mm. Fresh samples were stored in phosphate buffered saline (PBS) and imaged within 48 hours of the donor's death. Upon OCT imaging, sections of samples were processed for histology. Sample pieces were cut parallel to the directions of the B-scans. After a fixation process in formalin and ethanol solution, the sample sections were stained with Masson Trichrome.

IV.2 CS-based SD-OCT image simplification and segmentation

Cardiac tissue

Retinal images

We exploited the data set of retinal OCT images shared by the authors of [START_REF] Pratul P Srinivasan | Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images[END_REF] on the link http://people.duke.edu/~sf59/Srinivasan_BOE_2014_dataset.htm. This data set was obtained with IRB-approved protocols using a Spectralis SD-OCT (Heidelberg Engineering Inc.) imaging system at Duke University. The following population of 45 subjects was screened: 15 healthy subjects, 15 patients with dry age-related macular degeneration (AMD), and 15 patients with diabetic macular edema (DME). Each volume contains 128 B-scans of size 650 × 512 pixels, representing a sample of size 6mm × 6mm × 8mm.

IV.2.2 FSR-based processing of SD-OCT images

We exploit the FSR-LWC algorithm presented in Chapter II to reconstruct simplified SD-OCT images, and their corresponding variance map, and further segment tissue layers. We also aim at reducing as much as possible the amount of data used, as one of our objectives is to reduce data storage in SD-OCT. We now present how we optimized three key parameters of the FSR-LWC method: the sampling scheme in the Fourier domain, the number of partial reconstructions, and the regularization level enforced during the implementation of the NESTA algorithm.

The FSR-LWC algorithm generates two outputs for each given noisy image: the simplified image x with layers preserved (in terms of positions and average intensity), and the variance map xvar , with precise delineation of layers interfaces, corresponding to local disagreements between the reconstructions. From the SD-OCT image, an edge map is extracted (using the Sobol edge detection algorithm). Then, the Hough transform is applied on the edge map, and the area of brighter intensity on the resulting image corresponds to the main direction angle θ.

IV.2.2.1 Sampling in the Fourier domain

The OCT images that we want to simplify have a very specific structure, displaying horizontal and almost parallel layers of tissue. We exploit this a priori information by using a star-shapped pattern as the sampling operator Φ in the Fourier domain (see [START_REF] Wang | Variable density compressed image sampling[END_REF]).

To make sure that the principal direction of the layers is recovered, we compute the Hough transform [START_REF] Duda | Use of the Hough transformation to detect lines and curves in pictures[END_REF] on the noisy image. More precisely, we first run an edge detection algorithm (the Sobel edge detection algorithm from Matlab), and we apply the Hough transform on the latter. From the Hough accumulator, we extract the area of higher intensity, corresponding to the angle θ 0 of the main direction of the layers in the SD-OCT image. We display a sketch of the method on Figure IV.5.

In practice, the principal direction of the layers in the Fourier domain is better recovered by sampling in an area slightly thicker than a line. Hence, if we denote by θ 0 the angle of the principal line direction obtained with the Hough transform, we sample all angle values within the cone θ 0 ± θ , with θ = π 16 .

To capture additional local details on the layer interfaces, we complete the Fourier sampling mask with N b branches positioned at regular angular intervals in 2π. Randomness between Φ k draws on the same image is added via a set of N p random coefficients uniformly sampled in the Fourier domain, so that the overall sampling rate is τ . Note that the overall parameter τ needs to remain small, as we aim at data compression in this application. In our experiments, 

IV.2.2.2 Spatial regularization in the FSR-LWC method

We solve for (k = 1, . . . , R) the classic convex optimization problem based on TV minimization, using the NESTA algorithm:

xk = arg min x x TV s.t. Φ k x -y k 2 ≤ ε (IV.3)
The parameter ε is defined in [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] to be optimal with respect to the original image, with value:

ε 0 = σ n τ N + 2 √
2τ N which depends on the estimated noise variance σ n and the sampling rate τ . In this work, we want to enforce TV sparsity, and therefore give more weight to the regularization term than to the data fitting term. The values chosen for ε depend on the target application, and we display on Figure IV.7 the influence of this parameter ε on the reconstruction sparsity.

As expected, we observe that a lower value ε -of ε preserves some textural information on the OCT image, whereas a higher value ε + tends to oversmooth the layers. Overall, the optimal value ε 0 given by [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] corresponds to the best-case scenario, as highlighted on Figure IV.7, according with two observations:

• First, we plot the TV-norm x TV of the estimators x obtained by solving Equation (IV. [START_REF] Meiniel | Denoising of microscopy images: A review of the state-of-the-art, and a new sparsity-based method[END_REF] for several values of ε. Since the parameter ε is linear with the noise variance σ n , we tested values of ε corresponding to σ n ∈ [0; 1] (where σ n = 0 codes for a noise-free image, and σ n = 1 codes for a SNR equal to zero). Here, we observe that ε 0 corresponds to the smaller value of ε which realizes the minimal TV. • Second, we plot the intensity profiles of one A-line, for the three values of ε, as well as for the noisy image. Here, ε 0 corresponds to a threshold value, as profiles corresponding to lesser values of ε are noisy, and profiles corresponding to higher values of ε have a lower contrast, and reconstruct a layer of unrealistic thickness. We also display the B-scans corresponding to the three values of ε, confirming our observations.

ε = ε -< ε 0 ε = ε 0 ε = ε + > ε 0
As a consequence, we will keep the value ε 0 = σ n τ N + 2 √ 2τ N for our experiments throughout this section.

IV.2.2.3 Number of reconstructions in the FSR-LWC method

Multiple acquisitions are performed using R sets of N p random points. Since we aim at data compression, the number of reconstruction R should remain low. However, since the branches of the star pattern, and the cone, are fixed, it is not necessary to acquire them several time, and we denote by N star the number of pixels composing the star and by N cone the number of pixels composing the cone. N star depends on the image size and the number of branches N b , while

IV.2 CS-based SD-OCT image simplification and segmentation

N cone depends on the angles θ 0 and θ , as the size of the cone depends on its orientation. In terms of data storage, the actual quantity of space that is used is equal to the number of pixels contained in one star pattern, plus R times the number N p of pixels coming from the uniform random sampling added to the selection. Overall, the total number of Fourier coefficients used to simplify one SD-OCT image is:

N tot = N star + N cone + R × N p .
For instance, for the SD-OCT image used on Figures IV.5-IV.6, the image size is N = 800 × 512, N b = 16, θ 0 = -π 12 and θ = π 16 . In this experiment, N star = 5428, N cone = 8648 and N p = 9389 so that τ = 0.05. Then, if the number of reconstruction is R = 3, the total number of frequency coefficients used is N tot = 33243, which corresponds to 8.12% of the Fourier coefficients of the noisy image y.

IV.2.2.4 Segmentation

Cardiac layers

We implemented a dedicated sparsity-based segmentation method exploiting local peak detection on vertical profiles of the variance map. Our method is comparable to a greedy nearest neighbor search algorithm, and is described in Algorithm 5. The findpeaks function used is the one implemented in Matlab c : for a given vector x, it returns the values and locations of the local peaks in x. We chose the values = 0.2 to select only the local peaks of high enough intensity, to avoid false positive (note that the values of xvar are contained in [0; 1]), and δ = 10 (in pixels), authorizing "jumps" up to 10 pixels for the layers interfaces. The segmentation map output is a binary image where the values 1 corresponds to a layer interfaces.

This method is very straightforward, but gives very satisfactory results in the context of cardiac tissue samples. However, when the number of layers in the SD-OCT image increases, the segmentation results given by our algorithm are less efficient. As a consequence, we will not use this algorithm in the context of retinal images, and future works will consider the development of a more robust variance map-based segmentation technique for SD-OCT images.

Retinal layers Intra-retinal layer extraction from OCT images has been widely studied in the literature. Either performing a graph-search method [Garvin09], a gradient-based approach [START_REF] Yang | Automated layer segmentation of macular OCT images using dual-scale gradient information[END_REF] or a kernel-based optimization algorithm [START_REF] Mishra | Intra-retinal layer segmentation in optical coherence tomography images[END_REF], efficient segmentation solutions are now used in ophthalmology. In this study, we tested the retinal layer segmentation method from [START_REF] Pratul P Srinivasan | Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images[END_REF] which consists in a first step of denoising with a Gaussian filter, followed by a hierarchical graph-based segmentation of the several layers of tissues, to isolate the different compartments of the retina. We tested the segmentation method on the original noisy image with Gaussian denoising, after BM3D denoising, and on our enhanced images, without additional denoising.

IV.2.3 Simplification and segmentation results

In this section, we compare our image enhancement results to four state of the art methods: TV-filtering [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], Non-Local Means [START_REF] Buades | A review of image denoising algorithms, with a new one[END_REF], Wavelet soft-thresholding [START_REF] Donoho | De-noising by soft-thresholding[END_REF], and BM3D [START_REF] Dabov | Image denoising by sparse 3-D transform-domain collaborative filtering[END_REF]. We chose these methods among the list of denoising techniques presented in Chapter II, because they represent the three main categories of image denoising, are fast and easily accessible to a wide audience. The literature of OCT image denoising is still quite restricted and most methods revolve around two main approaches: spatial compounding via acquiring several OCT images, and averaging [START_REF] Gargesha | Denoising and 4D visualization of OCT images[END_REF], or wavelet thresholding [START_REF] Mayer | Wavelet denoising of multiframe optical coherence tomography data[END_REF]. The first option is interesting, but not part of our target acquisition protocol. The second option is part of our selection of state-of-the-art denoising methods.

A third option has been proposed in [START_REF] Fang | Sparsity based denoising of spectral domain optical coherence tomography images[END_REF][START_REF] Fang | Fast acquisition and reconstruction of optical coherence tomography images via sparse representation[END_REF], where the sparsity of SD-OCT images was used for denoising. After building dictionaries adapted to SD-OCT images, they solve a CS optimization problem to recover estimators that have a sparse representation in these dictionaries. They further developed their approach in [START_REF] Fang | Segmentation based sparse reconstruction of optical coherence tomography images[END_REF], adding a segmentation step before the construction of the sparsifying dictionaries. Although similar to our approach, the dictionary-learning denoising technique that they propose requires long computation times (due to the learning step -see Chapter II for a discussion on dictionary-learning denoising methods), and the quality of the method relies on the quality of high-SNR SD-OCT images used as a learning data set.

For each method, we optimized the different parameters in order to reconstruct the best image with respect to the PSNR metric. We report in Table IV to reconstruct the Heart 1 and, when they differ, the ones chosen for the Retina 1 image. Note that the estimated noise variance on these two images, on which depend several parameters of this list, have been estimated at σ cardiac = 0.055 and σ retinal = 0.041.

We present in Figures IV.8 and IV.11 the simplification results on both series of images, obtained with the five methods. On Figures IV.9 and IV.12 we display the variance maps of both series of images, along with the segmentation results. In the following section, we comment on the visual quality and quantitative performance of our method on cardiac and retinal images.

IV.2.3.1 Cardiac images

In the context of cardiac tissue layers, we chose to present the results on four different situations, each one displaying unique characteristics, causing several reconstruction issues:

• Heart 1 : One layer of constant thickness. Such configuration is typical for human atrial tissue, where the regular layer corresponds to dense collagen.

• Heart 2: One layer of non-constant thickness. Such configuration is typical of a diseased human cardiac tissue. The enlarged dense collagen layer is caused by myocardial scar.

• Heart 3: One thin layer. Such configuration is typical for healthy ventricular septum. The thin layer is the endothelium, and there is no dense collagen layer.

• Heart 4: Two layers. On some human atrial tissue, we can distinguish deeper layers, beyond the dense collagen in the first layer. They correspond to loose collagen, smooth muscle, or elastic tissues.

We can observe on Figure IV.8 that the four state of the art methods lead to problematic degradation of the image content in at least one heart case: over-smoothing of one layer (Heart 1, wavelet soft-thresholding; Heart 3, TV filtering), introduction of strong visual artifacts such as oscillations (Heart 2 with BM3D; Heart 4 with NLM), patch effects (NLM) and staircasing (TV). Regarding the visual quality on fine structural details of individual cases, we can make the following remarks: • On Heart 1, wavelet soft-thresholding fails to detect the lower border of the layer, which can impact the segmentation of the dense collagen layer.

• Heart 2 has a high level of noise which greatly degrades the performance of BM3D.

• Heart 3 is over-smoothed by TV regularization which leads to the disappearance of the thin endothelium layer.

• On Heart 4, NLM tends to make the interface between the two layers disappear, and merge them into a unique layer.

We show in Figure IV.9 the segmentation results obtained with the local peak detection algorithm on cardiac tissue images, and compare them with the manual segmentation performed by an expert on the same images. We also display the histological images of the same heart layers, which served the expert as reference information for the segmentation. Qualitatively, our automated segmentation algorithm gives near perfect results for the Hearts 1-2-3 images, and the delimitation between the two layers on the Heart 4 image is satisfactory.

For quantitative evaluation, we compared our segmentation results with the manual segmentation from an expert (See Table IV.2). Histology images were also available and segmented manually, but the match between histology images and OCT cannot be assessed at the pixel level due to deformation (curving and shrinking) of tissue after chemical staining during histology. We computed the Root Mean Square (RMS) error between the manual and automated estimates of the average thickness of each layer appearing in the images.

The RMS equals to 21 µm, which is similar to the pixel resolution of our images (15 µm). This very satisfying result confirms the efficiency of the variance map to precisely detect layers. In addition, correlation between the thickness values from manual segmentation of SD-OCT and histology segmentation (ρ 1 = 0.921) is very close to the correlation between automated measures on the variance maps and the histology-based segmentation (ρ 2 = 0.924). This confirms that our results are consistent with those obtained through histopathological observations.

IV.2.3.2 Retinal images

In the context of retinal OCT, images are much more challenging for layers segmentation, as they contain up to eight different layers, of variable shape, width and intensity. In addition, depending on the location in the sample, the shape of the layers may differ, even in the case of healthy subjects. A description of these layers can be found for instance in [START_REF] Andrew S Camp | Structural correlation between the nerve fiber layer and retinal ganglion cell loss in mice with targeted disruption of the brn3b gene[END_REF], and are labeled as follows (from top to bottom on the images displayed in this chapter): Inner limiting membrane / nerve fiber layer (ILM/NFL), ganglion cell layer (GCL), inner plexiform layer (IPL), inner nuclear layer (INL), outer plexiform layer (OPL), outer nuclear layer (ONL), inner-outer photoreceptors segments (IS/OS PR) and retinal pigment epithelium (RPE) (see Figure IV.10).

Table IV.2: Average thickness of the cardiac tissue layers. Comparison between our method (Automated), the manual segmentation of noisy OCT images (Manual) and the histologybased segmentation. We also report the difference (in absolute value) between the Manual and Automated segmentation, the global Root Mean Square (RMS) error between Manual and Automated estimates (for the 5 layers), as well as the correlation between the thickness values from manual and histology segmentation (ρ 1 ) and the correlation between the automated and histology segmentation (ρ 2 ). The 3 first columns represent the yellow layer from Hearts (H) 1 to 3, and the last two columns represent respectively the yellow (-1) and the green (-2) layer in Heart 4. For each image, we present the results of the segmentation technique from [START_REF] Pratul P Srinivasan | Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images[END_REF] obtained using the noisy image, the BM3D algorithm, and our simplification method. We also display the variance map of each retinal image.

of the images, the layers detected with our method are more consistent with their actual locations.

Finally, we display on the same figure the variance maps obtained on the three retinal images, showing the well recovered layers.

IV.2.4 Conclusions and perspectives

We presented in this part how our FSR-LWC method can be optimized for the enhancement and segmentation of layers of tissues on OCT images, for both retinal or myocardial applications. The proposed method is able to remove noise, preserve tissue layers intensities and interfaces, and generates a variance map which is directly exploitable for the segmentation of the different layers of the OCT images, and can be applied to the classification of such images, for both cardiac and retinal samples. A strong benefit of our approach is that it uses less than 10% of the samples in Fourier domain which bears great potentials for data compression.

Another straightforward evolution in the field of CS based SD-OCT image processing and compression, is to generalize out method to 3D OCT images. At the cost of a longer computation time, similar analysis can be processed on series of B-scans in a 3 dimensional OCT volume. We already obtained some results in this direction (see Figure IV.13), but the exponential computation time required to process such quantities of OCT is a strong limitation at the moment. Finally, the next step of research in CS-SD-OCT will focus on implementing such image simplification directly at the sensing stage, using multiple CS acquisitions. Such implementation is still not trivial, requiring open OCT systems to modify the sampling scheme and hardware implementation of pseudo-random sampling patterns. A theoretical justification will also be required to prove that the Compressed Sensing theory can be rightfully applied during the reconstruction process displayed on Figure IV.3. In addition a priori information such as layer orientations and noise level will need to be inferred prior to acquisition.

The possibility to use Compressed Sensing for FD-OCT A-line acquisition has not been demonstrated on hardware yet.

IV.3 Development and implementation of a CS-based SS-OCT system IV.3.1 Introduction

Presented in [START_REF] Sr Chinn | Optical coherence tomography using a frequency-tunable optical source[END_REF], swept-source optical coherence tomography (SS-OCT) is a type of FD-OCT, where the broadband light source is replaced with a source of much shorter bandwidth (typically a laser), but whose emission wavelength varies with time. This modification allows to avoid the use of a spectrometer in the acquisition step (which is the case in SD-OCT). However, the principle of recovering depth information from the interference pattern caused by the backscattered light from a sample, at different wavelengths, is still at the basis of SS-OCT. This method allows the reconstruction of OCT images with a much higher SNR than in TD-OCT [START_REF] Michael A Choma | Sensitivity advantage of swept source and fourier domain optical coherence tomography[END_REF], with a sensitivity comparable to the one of SD-OCT, while allowing a much faster acquisition rate [START_REF] Wieser | Multi-megahertz oct: High quality 3d imaging at 20 million a-scans and 4.5 gvoxels per second[END_REF].

Because of data storage and transfer difficulties (detailed in this section), SS-OCT has received less praise than its natural competitor, SD-OCT. We can still highlight a few applications, mostly for the observation of vascular circulation and angiography, for instance on mice skin [START_REF] Mariampillai | Speckle variance detection of microvasculature using swept-source optical coherence tomography[END_REF], or human retina [START_REF] Yasuno | In vivo highcontrast imaging of deep posterior eye by 1-µm swept source optical coherence tomography and scattering optical coherence angiography[END_REF][START_REF] Hirata | Macular choroidal thickness and volume in normal subjects measured by swept-source optical coherence tomography[END_REF].

As explained in the previous section, one of the main issue in FD-OCT is the huge amount of data that needs to be stored and processed, in order to make this technique useful. The situation tends to be even worse in the case of functional SS-OCT systems, where two channels are recorded simultaneously: a channel recording the interference pattern generated by the backscattered light inside the sample, and a clock signal, measuring with precision the current emission wavelength of the source throughout the experiment. In addition, technical developments performed in the past decade in terms of acquisition speed led to the design of SS-OCT systems that could acquire over 10 millions A-lines per second, which corresponds to a temporal resolution sufficient for the reconstruction of three dimensional objects at video rates [START_REF] Wieser | Multi-megahertz oct: High quality 3d imaging at 20 million a-scans and 4.5 gvoxels per second[END_REF].

With these developments, SS-OCT is today one of the most promising OCT technique, while remaining almost unusable in practice. In order to make SS-OCT a sustainable image acquisition technique, we show in this section how the CS theory can drastically reduce the amount of data needed for image reconstruction. To this effect, we propose a CS-based SS-OCT strategy, where we under-sample the clock signal during acquisition, and reconstruct SS-OCT images based on the under-sampled clock signal. We implemented our strategy directly on hardware, leading to the generation of the first CS empowered SS-OCT set-up to date.

IV.3.1.1 SS-OCT image acquisition

As displayed on Figure IV.1, the set-up of a SS-OCT system is very similar to the classical TD-OCT set-up. The difference is that, instead of scanning the reference arm in the spatial domain, scanning is performed in the Fourier domain. Practically, the reference mirror is fixed, and the light source illuminates the sample successively with different wavelengths (inside a pre-defined spectral bandwidth, as low coherence is still required in OCT). Interference patterns are then acquired in a similar fashion than for TD-OCT, meaning that these patterns are detected by a photo-detector, and then sampled by a data acquisition (DAQ) board in time domain. Unlike the CCD camera used in SD-OCT, this photodetector doesn't suffer from acquisition rate limitation.

Similarly to SD-OCT, a reconstruction step is mandatory to recover OCT B-scans that display the depth information of the sample. In the particular case of SS-OCT, a calibration signal (referred to as clock signal) is acquired simultaneously, in order to record the spectral interferogram of the light-source at each time point, leading to a more precise reconstructed OCT image, as it provides a stabilization of the phase of the measurement. As a consequence, a typical SS-OCT set-up is composed of two parts: the sample information and the reference clock (see Figure IV.14-(a)). Figure IV.14-(b) shows a flow diagram of the processing step in SS-OCT image acquisition. For each A-line, the phase angle is extracted from the Hilbert transform of the clock signal, and then unwrapped, such that the resulting unwrapped phase is proportional to the wavenumber of the sweeping curve. This curve is then used to interpolate the sample spectrum. After recalibration, the final depth information signal (A-line) is obtained through inverse Fourier transform. We can notice here that the difference of this approach with SD-OCT is that, in SD-OCT, the calibration signal is measured directly on the spectrometer.

Since the SS-OCT set-up is composed of two interferometers, the clock signal used for correction of the raw OCT signal uses half of the data bandwidth, while containing extremely redundant information. CS theory can be applied on the clock signal without interfering on the data signal, using a second DAQ, locked with the original signal, so that both clock and OCT signals are acquired simultaneously, but allowing the addition of a sub-sampling mask on the clock arm, leading to a drastic reduction of the amount of clock data needed for SS-OCT image reconstruction.

IV.3.1.2 Model of SS-OCT image acquisition

As illustrated on Figure IV.14-(a), the SS-OCT set-up can be divided into two parts: an OCT imaging engine, and a reference clock. The OCT imaging part is based on a low-coherence interferometry (LCI) system, where the optical path length is fixed, and the emission source is a succession of highly coherent light waves. Then, rather than a function of depth, the Aline is a function of the wavelength of the emission at time t. In this case, the mathematical model representing the acquisition of one A-line is the following: Let r(z) represents the spatial distribution of the object along the depth axis z, and S(k) be the emission spectrum of the light source, where k = 2π λ is the wave number corresponding to the emission wavelength λ. Note that k depends on t in the context of SS-OCT. Then, the backscattered field form the sample can be written:

E S (k) = ∞ 0 r(z)S(k)e -2ikz dz, (IV.4)
where we suppose that the object is placed at z = 0. Accordingly, the reflected field from the reference arm can be written:

E R (k) = ∞ 0 δ z 0 (z)S(k)e -2ikz dz = S(k)e 2ikz 0 , (IV.5)
where z 0 is the (fixed) optical path length between the light source and the reference mirror, and δ z 0 is the dirac function at z 0 . Therefore, the registered intensity on the photo-detector is a function of the wave number k, defined as:

I signal (k) = |E S (k)E R (k) * | 2 = |E S (k)| 2 auto-correlation + |E R (k)| 2 background + E S (k)E R (k) * interference + E R (k) * E S (k) complex conjugate . (IV.6)
The first term is the auto-correlation term, assimilated to shot noise in OCT, and the second term is a background term that is, in nowadays systems, of much higher intensity than the auto-correlation term, meaning that the former can be neglected [START_REF] Ruikang | A practical approach to eliminate autocorrelation artefacts for volume-rate spectral domain optical coherence tomography[END_REF]. The third term, which is the interference term, contains the depth information that will be resolved with postprocessing, and the fourth term is its complex conjugate. Then, the term of interest can be expanded as:

I int (k) = E S (k)E R (k) * = |S(k)| 2 ∞ 0 r(z)e -2ik(z-z 0 ) dz, (IV.7)
which corresponds to the Fourier transform of the depth information r(z) times a term depending only on the emission wavelength.

On the other hand, the reference clock signal is similarly obtained as a spectral interference term, where the object to observe is replaced by a mirror placed at an optical path length z 1 from the light source, meaning that the sample field term E S is replaced by another reference arm field E R . Mathematically, it means that the intensity registered on the photo-detector in the reference clock arm is the result of the interference between two fields E R (k) = S(k)e 2ikz 0 and E R (k) = S(k)e 2ikz 1 . As a result, the registered clock intensity is a function k that can be written as:

I clock (k) = |E R (k)E R (k) * | 2 = 2 |S(k)| 2 (1 + cos (2k∆z)) , (IV.8)
where we define ∆z = z 1 -z 0 the optical path length difference between both mirrors.

Here again, only the interference term 2 |S(k)| 2 cos(2k∆z) is of interest, as the first term contains only background information. Furthermore, the term |S(k)| 2 is usually considered constant, assuming that the clock signal is a sine function. However, in OCT, this signal has to be digitized in time domain in order to facilitate the processing. Therefore, the function I clock (k) is rather seen as a function of time I(t), which is no longer a sine wave, but a chirped sinusoidal, defined as:

I(t) = A [k(t)] cos [2k(t)∆z] (IV.9)
where A = 2|S| 

IV.3.2 Design of a CS-based SS-OCT set-up

In this section, we focus on the reconstruction of the reference clock using the CS framework.

After proving the feasibility of the method during standard A-line acquisition, we propose how we can drastically increase the performance of CS-based SS-OCT with two dimensional acquisition. Note that, in all that follows, the background term has to be taken into account for the application of CS-based techniques, as we aim at applying random under-sampling directly on the SS-OCT set-up, and not after background subtraction.

IV.3.2.1 Direct domain CS for SSOCT

The reference clock signal in SS-OCT has two properties that motivated us to develop CS-based techniques, suited for faster SS-OCT acquisition:

First, a single clock signal, corresponding to a single A-line, is referred to, in the literature, as a chirped sinusoidal function [START_REF] Gora | Ultra high-speed swept source oct imaging of the anterior segment of human eye at 200 khz with adjustable imaging range[END_REF] (see Equation (IV.9) and Figure IV.15-(a)). Such signals, especially in the case of SS-OCT reference clock, tend to have a highly localized spectrum. In other words, these signals have sparse Fourier transform, which is the best case scenario for direct-domain CS acquisition (see Chapter III), meaning that such signal can be reconstructed with a high precision from very few samples, randomly acquired on the set-up.

Second, thanks to the robustness of the light source, two consecutive clock signals (corresponding to two consecutive A-lines, during the scanning process of the whole sample) have a very similar shape (see Figure ). The pixel-wise difference of two consecutive clock signals is equal to a constant, up to a few exceptions, where notable phase shifts are observed. These shifts can be due to the following factors: first, the mechanical motions involved in the tuning of the swept source laser, and second, the difficulty of synchronizing exactly the onset of the DAQ with the beginning of the wavelength sweeping.

As a consequence, if we consider the whole stack of reference clock signals as a clock Bscan, the resulting image presents a strong redundancy along the temporal x direction (see Figure IV.15-(c)). This redundancy will be exploited in this part, as we observe that CS reconstruction results can be improved when considering clock signals as two dimensional images.

IV.3.2.2 Clock A-line reconstruction

Before applying the results of CS theory to the clock signal, we need to understand in more details how the function I described in Equation (IV.9) behaves in our experiments. Following the work of [START_REF] Ling | Phase-noise analysis of swept-source optical coherence tomography systems[END_REF], we make the assumption, without loss of generality, that the approximation of the function A[k(t)] is constant. In addition, in the context of SS-OCT, the optical path length difference between both mirrors ∆z is assumed fixed. Hence, the clock signal is a sine function of the variable k. However, OCT data need to be acquired in the time domain during the experiment, and not in the k domain. We must then consider the function I as a function of time. Furthermore, the function is sampled over a fixed number of points M , corresponding to the length of an A-line. As a consequence, the clock signal that is processed can be written, for all m ∈ 0, M -1 :

I[m] = A cos (2k[m]∆z) . (IV.10)
The ideal function k of the swept light source is obtained from the ideal wavelength function λ on Figure IV.16, since the relation between wavelength and wave number is given by

k[m] = 2π λ[m]
for every time point. Ideally, the function k would be linear, leading to a signal I being a perfect sinusoidal function. However, the ideal function k given by the datasheet of the laser is a non-linear curve. The deviation from a perfect linear curve is called the scanning variability, and is caused by the mechanical and electrical scanning of the source. It should be noted that, in reality, this curve is not as smooth as presented, and contains a random noise term (see [START_REF] Ling | Phase-noise analysis of swept-source optical coherence tomography systems[END_REF] for a detailed work on this matter). This observation leads to the following conclusion: the clock signal is similar to a sinusoidal function, except that its amplitude varies with the power spectrum of the source, and its phase sensibly varies with the curve k. The variation in phase, denoted as δk, has been measured in [START_REF] Ling | Phase-noise analysis of swept-source optical coherence tomography systems[END_REF], where the authors observe that the error δk/k is of the order of 0.002%.

The consequence of the scanning variability is that the clock signal consists in a sine wave with modulated amplitude, to which are added sine waves of lower frequency. If we check the Fourier transform of the clock signal, we observe a central peak (due to the background term 

[M -1] = k min + k (M -1) = k max = 2π λ min = 2π λ c -∆λ 2
. Therefore, the quantity k is: where we make the approximation

k = k max -k min M -1 (IV.11) k = 2π λc-∆λ 2 -2π λc+ ∆λ 2 M -1 (IV.12) k ∼ 2π∆λ λ 2 c (M - 
λ c - ∆λ 2 λ c + ∆λ 2 ∼ λ 2 c for ∆λ << λ c .
The relevant quantity in the context of CS theory is the sparsity level of the signal τ S (I) (see Definition 2 in Chapter I). Theoretically, the support of the Fourier transform of one SS-OCT clock signal is represented by the union of the supports of the central peak and the two secondary peaks. However, the size of these area, which depends on the true function k -t is unknown. In this context, we make the approximation that τ S (I) is equal to the distance between the two peaks divided by the length of the A-line. Or, in the discrete case that we have studied above, τ S (l) = f c f max = 2f c M , as the maximal frequency that can be resolved with M samples is f max = M 2 (Shannon-Nyquist theorem). Finally, we can give the following result: Theorem 3. Let I be a clock signal obtained in SS-OCT. If the swept-source is described by a central wavelength λ c and a spectral bandwidth ∆λ with ∆λ << λ c , and if the optical path length difference between both mirrors is ∆z and the signal is recorded over M samples, then the Fourier-sparsity level of I is given by:

τ S (I) = 4∆λ∆z λ 2 c (M -1)
.

(IV.14)

Note that the true support of the Fourier transform of I is included inside the support that we considered in our model. As a consequence, we expect the experimental results to outperform the theoretical ones.

Knowing that, for a signal with a sparsity level of τ S , a sampling rate of τ S log M is necessary IV.3 Development and implementation of a CS-based SS-OCT system to obtain exact reconstruction through CS optimization, we observe that a SS-OCT set-up is best suited for CS acquisition if:

• The spectral bandwidth of the light source ∆λ is small.

• The optical path length difference between both mirrors ∆z is small.

• The central emission wavelength λ c is high.

• The number of samples M of an A-line is high.

In our experiments, the parameters are set as follows: λ c = 1329nm, ∆λ = 100nm, ∆z = 100µm, and M = 2048. In this case, the Fourier-sparsity level of the signal is equal to τ S (I) = 1%. Then, in the case of a noiseless signal, the CS theory states that a sampling rate of ∼ 9% is enough to recover the exact signal. However, this theoretical value tends to vary in practice, because of acquisition noise as well as scanning variability, and data characteristics (level of background, contrast, etc).

Let us now define the CS model adapted for A-line SS-OCT acquisition, based on the directdomain CS model presented in Chapter III. Suppose that we acquire a fraction τ M of the M A-line samples, obtained during the acquisition of a Fourier-sparse clock signal. Then, we write J = ΦI ∈ C τ M the stored samples, where I is the discretized version of the clock signal I clock , and Φ ∈ {0, 1} τ M ×M is a random selection matrix. Now, if we denote by F the discrete Fourier transform of a vector, the CS theory states that we can recover I from J by solving:

Î = arg min I∈C M F(I) 1 such that ΦI = J (IV.15)
where this equation is solved using the NESTA algorithm. We illustrate on Figure IV.18 an example of CS reconstruction of a signal using 25% of the samples. The recovered signal (c) from a random set of samples (b) is almost exactly equal to the true clock signal (a), as the difference between both fall under the acquisition noise level (d). This observation can be confirmed in the Fourier domain (e,g,h), where the secondary peaks are recovered with high precision. In addition, we want to stress that, when observing the Fourier transform of the sub-sampled clock signal (f), the secondary peaks are totally hidden by the noise, meaning that the frequency information seems to be inaccessible. However, our results show that our algorithm allows the recovery of these peaks and the phase information, despite this observation. Finally, in SS-OCT, the amplitude of the clock signal is an information that is much less important than its phase. Therefore the slight loss in amplitude information during the reconstruction is not an issue.

IV.3.2.3 Clock B-scan reconstruction

Results presented in the previous section led to significant improvements in phase-resolved SS-OCT (see Section IV.3.3), without exploiting the temporal redundancy of the clock signal. Yet, the emission laser supposedly follows the same frequency modulation function k for each consecutive A-line, meaning that the clock signal could be recorded for the first A-line only. In practice, there is a phase shift from one A-line to the next, during B-scan acquisition, meaning that the clock signal has to be recorded for each A-line. However, this variation is almost exclusively in the phase domain, and two consecutive clock signals are both chirped sine waves (IV.9) with the same characteristics λ c , ∆λ and k .

From this observation, we can induce two conclusions:

First, considering the collection of N clock signals, that we refer to as a clock B-scan, as an image, allows the exploitation of the redundancy along the x axis. Indeed, each x-axis line (horizontal) in the clock B-scan is almost constant (except for some phase jumps), meaning that the patterns of interest in the image will be exclusively along x and z axes. No additional structures exist in the image, and consequently the Fourier transform of the image is sparse.

Second, the sparsity level of the Fourier transform of such image can be easily derived from the sparsity level of a single clock signal. Indeed, each column of the Fourier transform of a clock B-scan will consist in the 1D Fourier transform of a clock signal. Therefore, Theorem 3 can be generalized to the case of clock B-scans, and the optimal sampling rate given by Theorem 1 also applies.

As expected, we obtain much higher compression ratios in the 2D-case, where the sampling rate can be drastically reduced. We display on Figure IV.19 the results obtained with the 2D approach, with only 5% of the coefficients of the clock B-scan being kept. Here again, the Fourier transform of the sub-sampled data is mostly noise, but the reconstructed clock B-scan is almost identical to the original B-scan. In this case, we observe that the Fourier transform of the result is not exactly equal to the original one, which comes mostly for border issues, that are more visible in 2D than in 1D signals.

In practice, SS-OCT is a scanning technique, that records depth information for a series of successive A-lines. In other words, the reconstruction of a sub-sampled clock B-scan as a 2D image is only possible as a post-processing step, which loses the main aim of reducing data acquisition. Because of storage and speed limitations, it is not possible to acquire the full clock B-scan at once, but we have been able to develop a technique that records up to 16 A-lines of length M = 4096 each. Note that M = 2048 on the experiments displayed in this chapter, for better visualization.

The CS-based reconstruction approach that we have developed can then be divided into three steps. First, acquire R = N/N A stacks of N A A-lines (where N A is an integer between 2 and 16 with our set-up), that we denote J 1 , . . . , J R , using a fixed random sampling mask, represented by a selection matrix Φ ∈ {0, 1} M ×N A . Second, reconstruct the estimators of each stack of A-lines Îk by solving the problem (IV.16) using NESTA (where this time, F denotes the 2D Fourier transform operator). Finally, stack the R partial reconstructions as the final (IV.16)

As a measure of the reconstruction error, we computed, for an estimator Î of the ground truth B-scan I, the quantity:

Err( Î, I) = Î -I 2 I 2
which is a relative mean-square error, so that the results are read as a percentage of error.

We display on Figure IV.20 the evolution of the relative reconstruction error with respect to the sampling rate, for the 1D and 2D approaches with stacks of 2, 4, 8 and 16 A-lines. As expected, we observe that reconstruction quality improves with sampling rate for both approaches. In addition, the larger the number of A-lines recorded together, the better the reconstruction. However, the improvement between 8 A-lines and 16 A-lines is negligible in our experiment. As a reference, we also added the relative mean-square error obtained if the complete clock B-scan could be acquired simultaneously. This additional curve allows to conclude that, for a sampling rate larger than 15%, the reconstruction using a stack of 16 A-lines is almost as accurate as using the full clock B-scan. Finally, for our set-up with 16 A-lines (and τ > 15%), we observe that the error is inferior to 1% with a data compression factor of 20, which is very high.

The current main limitation of our CS-SS-OCT method is the computation time. Indeed, the drastic reduction in data acquisition and storage comes at the cost of complex algorithmic computations, which are time consuming. We report on Figure IV.21 the reconstruction time of a full 1024 × 1024 clock B-scan, for several sampling rates and stack sizes. We observe that computation time tends to decrease when sampling rate increases (as the NESTA algorithm converges faster when the initial data is closer from the solution), and also that the algorithm converges faster for larger stacks of A-line, with the exception of the case where N A = 8, which breaks this tendency. We made this observation on many samples, and it remains an open question to know why this phenomenon occurs. In addition, note that computation time is proportional to the size of the B-scan. For a B-scan twice as large (for instance with a depth M = 1024 and a spread N = 2048), the reconstruction time is twice as long. For the range of parameters that we use in practice (N A ∈ {8, 16} and τ ∈ [0.05; 0.3]), the computation time remains between 20 and 35 seconds for a 1024 × 1024 clock B-scan.

All computations were run using Matlab c , on a PC workstation with 2.93 GHz quad-core CPUs, with 8 GB of RAM. However, works in the near future will test the implementation of the reconstruction algorithm directly on the SS-OCT computer board, which we believe will lead to faster computation. In addition, this step is mandatory to make our CS-SS-OCT system fully available for users.

As a conclusion to this part, we display on Figure IV.22 a zoom on a clock B-scan, reconstructed from only 5% of the samples. We observe on this image that the phase jumps, visible as variations along the x axis, are perfectly reconstructed. The imperfection on the reconstructions are only intensity based, which is of less importance. In additional examples, a fortiori, we observed that the phase information, which is crucial in SS-OCT, can be even more precise after CS-reconstruction. In the next section, we further discuss how our proposed CS-based SS-OCT system, in addition to reducing data sampling by a factor of 20, actually improves the quality of SS-OCT images. 

IV.3.2.4 Hardware implementation

In this section, we summarize the improvements that have been enabled on the hardware system of SS-OCT. Technical implementation was performed by Dr. Yuye Ling at Columbia University, allowing the full demonstration of the CS-SS-OCT system that we have developed together. We refer to [START_REF] Ling | High-speed phase-stable swept source optical coherence tomography: functional imaging and biomedical applications[END_REF] for more details on the technical implementation.

In addition to the standard SS-OCT system, our CS-SS-OCT set-up contains a few refinements, mostly in the acquisition part. An extra data DAQ board was added, to acquire the reference clock signal independently. It had to be locked with the original DAQ to prevent any jitter between them. An external system was added to synchronize both DAQs, instead of being activated by their internal clock. In addition, the new DAQ operates a random selection mask, where each of the 16 × 4096 registers determines (according to a predefined mask) if the specific sampling point is stored or discarded (see At the cost of some work in data alignment and storage, Dr. Ling was able to program the DAQ to sample stacks of multiple A-lines together. This crucial improvement in the SS-OCT set-up has been central to the development of our technique, as it allowed to benefit from the best performing 2D reconstruction approach. As it stands, the system can record 16 A-lines of M = 4096 samples simultaneously, with the random sampling mask being applied on a DAQ board. In the future, we hope to build specifically designed DAQ boards that could record even more A-lines at a time.

IV.3.3 Application to flow velocity measurement

In this section, we present a series of three experiments to evaluate the phase stability of the CS-reconstructed clock signals, and apply our CS-SS-OCT technique to the study of blood flow velocity, first on a synthetic object and then on an ex vivo swine artery. These experiments have been conducted with our CS-SS-OCT set-up by Dr. Yuye Ling at Columbia University.

IV.3.3.1 Phase stability

We first evaluated the scheme within its intended context, using the reconstructed calibration signal to remap and stabilize the corresponding OCT spectrum. A "standardized test" was conducted to measure phase stability of the proposed system as described below.

We placed a microscope slide (1 mm thick, Microscope Slides, Fisherfinest, USA) under the sample arm, and blocked the reference arm. The interference pattern between the light reflected from the top surface and the bottom surface of the sample was obtained from the DAQ board #1 at 800 MS/s. The sub-sampled calibration signal was recorded by DAQ board #2 according to a predefined mask (τ = 0.3, N A = 1), while the same calibration signal was fully digitized by DAQ board #1 for comparison purposes. 1,000 A-lines were obtained at a fixed sample location.

We later reconstructed the calibration signal from its sub-sampled copy, and used this reconstructed signal to remap the OCT signal. The instantaneous phase angles over time at the peak location of the OCT A-lines were extracted and their standard deviation was calculated. The extracted k-t curve from the full and the reconstructed signals are illustrated side-byside in Figure IV.24(c). The error, which is four orders of magnitude smaller than the original signal, is also plotted in the same panel in red solid line.

An exemplary full calibration A-line is plotted in

In the last step, we computed the histogram of the phase angle distribution at the peak location. Results, using the full and the reconstructed calibration signal, are shown in Figure IV.24(d) and (e), respectively. The standard deviation of the measured phase angles is equal to 4.53 mrad (SNR = 52.65 dB) for full calibration and 4.49 mrad (SNR = 50.86 dB) for reconstructed calibration. The phase stability of the proposed system is not compromised, while only 30% of the bandwidth for the extra calibration channel is used in this example.

IV.3.3.2 Doppler OCT

To further validate the proposed method, an experimental phantom was constructed to mimic blood flow. Intralipid emulsion (Sigma Aldrich, USA) was diluted to a concentration of 0.25% in de-ionized water and stored within an intravenous fluid bag and tubing setup. The tubing was fitted into an irrigation pump (CoolFlow, Biosense Webster, USA) which allowed for precise manipulation of laminar flow rates. Imaging was performed over the short axis of the tubing for flow rates ranging between 1-3 mL/min. The system configuration is same as in Section 3.IV.3.3.1, and to showcase the performance of our proposed system, we used two other remapping schemes (pre-measured calibration, from [START_REF] Yasuno | Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments[END_REF] and full calibration, from [START_REF] Shangguan | Wavenumber calibration and phase measurement in swept source optical coherence tomography (in Chinese)[END_REF]) on the same OCT dataset, for comparison.

We set the flow velocity of the irrigation pump to be 2 mL/min. The Tygon tubing (Saint-Gobain, France) we used in the experiment has an inner diameter of about 0.89 mm and an outer diameter of 1.56 mm. It should be noted that the tube was positioned at an angle of 86.05 • to the vertical and the cross-sectional area of the tube is 87.11% smaller than that of the pump. The original OCT image of the phantom is shown in 

IV.3.3.3 Ex vivo blood flow detection in swine samples

Epicardial ablation is an effective tool for the treatment of complex arrhythmias such as postmyocardial infarction ventricular tachycardia (VT). In such procedures, care must be taken to avoid energy delivery proximal to coronary vasculature which can lead to vessel occlusion and thrombus formation [START_REF] Aliot | Ehra/hrs expert consensus on catheter ablation of ventricular arrhythmias: developed in a partnership with the european heart rhythm association (ehra), a registered branch of the european society of cardiology (esc), and the heart rhythm society (hrs); in collaboration with the american college of cardiology (acc) and the american heart association (aha)[END_REF][START_REF] Whitaker | Accelerated idioventricular rhythm after left atrial tachycardia ablation as a marker of acute coronary ischemia[END_REF]. In this ex vivo experiment, we showcase the capability of the proposed system to detect the blood blow, which could potentially be used Fresh swine hearts were obtained from Green Village Packing (Green Village, New Jersey). Ventricular slabs containing epicardial vasculature were resected and cannulated using 900 µm diameter flexible tubing coupled to an irrigation pump (CoolFlow, Biosense Webster, USA). Whole swine blood was then diluted at 1:10 ratio in phosphate buffered saline and perfused through the vessel at 5 mL/min. OCT volumes (2048 pixels×256 pixels×1024 pixels, 1.2 mm×4.8 mm×2.5 mm, long×width×depth) were acquired. The sub-sampling rate of the calibration channel was set to 30% and the mask width was 1. We used the OMAG algorithm to detect the blood flow.

The obtained OCT image and the calculated OMAG mapping are overlaid and presented in 

IV.3.4 Conclusions and Perspectives

In this section, we proposed a hardware-based Compressed Sensing SS-OCT system implemented by collaborators at Columbia University, allowing the reduction of data sampling in the clock channel by a factor 20, while refining the reconstruction of SS-OCT images. Al-though the CS-based reconstruction of the clock signal from under-sampled data remains a post-processing step for now, our work in the near future will be to implement a graphics processing unit (GPU) based package to perform the reconstruction directly on the set-up, aiming for real-time reconstruction and OCT image visualization.

On the theoretical side, the result of Theorem 3 comes from a rough approximation of the support of the Fourier transform of a clock signal. A more refined study of the k -t function will be necessary to identify a more robust sparsity-level result, which will allow much better predictions in terms of sampling reduction possibilities of the CS-SS-OCT technique.

Another lead of research in the field of CS-SS-OCT would be to also exploit the CS reconstruction on the object channel. Although Fourier sparsity of OCT images depend on the object, this option would allow to adapt the CS theory directly on the emission part. As it stands today, the whole spectrum of bandwidth ∆λ has to be spread by the emission laser. But our work suggests that only a fraction of wavelengths is necessary to recover the complete clock signal. The open question is whether the data reduction benefit that comes from CS sampling of the clock data can be directly applied to the emission, allowing for faster scanning of an object and using less light energy.

Chapter V

Conclusions and perspectives

In this manuscript, we have presented how the Compressed Sensing theory can be further implemented in the context of biological microscopy as well as optical coherence tomography, offering a realistic alternative to most nowadays limitations in terms of photo-toxicity and acquisition speed. We have proposed two complementary frameworks: First, we have further developed the CS-based denoising algorithm originally proposed in [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF] to handle realistic mixed Poisson-Gaussian noise, and showed its predominance over state-of-the-art denoising methods for both synthetic and real fluorescence microscopy images, with the advantage of being based on a single set of parameter values and a simple additive noise model to set a parameter that weights TV regularization versus data fidelity in the CS cost metric.

Denoising power in our method relies on the use of TV regularization, as in many of the best-performing denoising methods tested in this work. The proposed FSR method is not limited to images with patch redundancies across the field of view (as for NLM and BM3D), but it does exploit redundant spatial information from multiple overlapping sub-samplings of the Fourier domain during fusion. It does not rely on an a priori model of the type of noise that corrupts the observation, as required by some specialized methods tested.

Single parameterization and robustness to noise types are highly relevant in the field of microscopic imaging, as such images are perturbed with highly variable levels and types of mixed Poisson-Gaussian noise which are complex to model a priori or via a Poisson likelihood term to optimize. Another benefit of our approach is the use of only a subset of the samples in the Fourier domain (typically 35%), which could lead to great potentials in data compression or data sub-sampling during acquisition. The proposed FSR method is highly adaptive and can be optimized in the future via investigations of alternative fusion strategies, Fourier sampling strategies and more sophisticated exploitation of the variance map.

We also introduced the variance map as a new tool to detect gradient-like information in noisy images at a relatively low computational cost (between 10 and 100 seconds depending on the number of iterations required). This algorithm provides strongly enhanced fine details, while being robust to noise level, noise type (additive or multiplicative, Gaussian or Poisson), and local contrast between objects. These properties make this method very well suited for challenging images such as fluorescence microscopy, where noise increases in low-light conditions used, for example, to limit photobleaching. The versatility of the variance map makes it a good alternative to traditional gradient filters in the generic field of image processing. We enhanced three standard image filters using the variance map, resulting in a higher image quality. Future works will consider its integration into additional image filters such as the non-local means filter. This denoising technique, that has been designed to reconstruct images obtained in low-light conditions, has been further adapted in the context of SD-OCT, for both retinal or myocardial applications. The proposed method is able to remove noise, preserve tissue layers intensities and interfaces, and generates a variance map which is directly exploitable for the segmentation of the different layers of the OCT images, and can be applied to the classification of such images, for both cardiac and retinal samples. A strong benefit of our approach is that it uses less than 10% of the samples in Fourier domain which bears great potentials for data compression.

A straightforward evolution in the field of CS based SD-OCT image processing and compression, is to generalize out method to 3D OCT images. At the cost of a longer computation time, similar analysis can be processed on series of B-scans in a 3 dimensional OCT volume. We already obtained some results in this direction, but the exponential computation time required to process such quantities of OCT is a strong limitation at the moment.

Finally, the next step of research in CS-SD-OCT will focus on implementing such image simplification directly at the sensing stage, using multiple CS acquisitions. Such implementation is still not trivial, requiring open OCT systems to modify the sampling scheme and hardware implementation of pseudo-random sampling patterns. A theoretical justification will also be required to prove that the Compressed Sensing theory can be rightfully applied during the reconstruction process. In addition a priori information such as layer orientations and noise level will need to be inferred prior to acquisition.

Future work will consider the implementation of the CS acquisition on the SD-OCT set-up, so that the gain in data storage brought by the CS theory can be extended to data acquisition. In addition, we believe that further development of our FSR method should consider faster numerical implementations, in order to extend this technique to four-dimensional video samples, and to real-time reconstruction, in both fluorescence microscopy and SD-OCT.

Second, we have proposed a proof of concept for a direct-domain Compressed Sensing microscope, able to reconstruct images of size N from a camera of size N/4, at a very small implementation cost (using a DMD and a pair of lenses). This framework exploits the natural Fourier-sparsity of images acquired in the context of biological microscopy (among others) to reconstruct with high precision images from a subset of the camera pixels. The main advantage of our approach is that, without loss of quality, we can record fluorescence images two times faster. In terms of data storage, four times less pixels are needed during image acquisition.

This technique has been further adapted in the context of SIM, where we proved that it is possible to reconstruct a super-resolved image from only four under-sampled acquisitions (with a factor 4). In other words, we believe that a super-resolved image can be reconstructed while using the same amount of data than in standard fluorescence microscopy. In addition to the technique still perform better than all the other methods on these two specific situations. 

A.1.3 Gaussian noise -visual results

We display on Figures A.3 

A.3 Additional results on variance map-based improvement of classical filters

We present in this section the results of Section II.7 on a few reference images from the image processing field, to show that our approach is not limited to biological microscopy. In each case, we tested the standard and enhanced filters on the image corrupted with a mixed Poisson Gaussian noise of parameters σ = 0.15 and λ = 9. Visual results of the variance map-based enhancement of three classical filters on the Cameraman, Barbara and Peppers images are displayed on Figures A.11, A.12 and A.13 respectively. Image quality metrics corresponding to these results are reported in Table A.2. These three experiments show both the visual and quantitative improvement of our variance map-based enhancement method over the classical filters. Unlike the study perpetrated in Section II.7.2.4, these images do not meet the prior requirement that was made in Chapter II, where we designed a TV-based optimization suited for piece-wise constant images. Last row displays the absolute differences between results from the two implementations.

B.1 Introduction à la théorie du CS

le processus d'acquisition, les deux options conduisant à des images avec un faible rapport signal sur bruit (SNR). Dans ce travail, nous proposons deux approches complémentaires pour améliorer la qualité de la reconstruction de l'image dans ce contexte : la réduction du bruit par le traitement de l'image et l'accélération de la vitesse d'acquisition par l'échantillonnage comprimée. Ce manuscrit est organisé en quatre parties : Dans le Chapitre I, nous présentons une introduction générale sur la théorie mathématique de l'acquisition comprimée. Après avoir présenté les principales notions et les résultats théoriques qui seront utiles dans ce travail, nous nous concentrons sur le développement du CS dans le contexte de l'acquisition et de la reconstruction d'images, et présentons les principaux exemples d'application du CS en imagerie aujourd'hui. Le Chapitre II s'inscrit dans la continuité directe des travaux de Marcio Marim [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF] et Yoann Le Montagner [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF]. Nous présentons comment l'algorithme de débruitage basé sur le CS introduit dans [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF] est bien adapté pour reconstruire des images corrompues par un bruit complexe et réaliste, inhérent à l'imagerie microscopique biologique en basse lumière. Après une étude approfondie sur la présence du bruit en microscopie biologique, nous proposons une revue des méthodes de débruitage de pointe pour les modèles de bruit complexes, ainsi que notre proposition de fusion de reconstructions parcimonieuses (fusion of sparse reconstructions, FSR), qui est une version améliorée de celle développée dans [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF], que nous évaluons sur des images synthétiques et réelles en microscopie fluorescence.

Dans le Chapitre III, nous présentons le nouveau cadre de l'échantillonnage comprimée en domaine direct (direct-domain Compressed Sensing, DDCS), permettant la mise en oeuvre de la théorie CS dans le contexte de la microscopie à fluorescence. En plus de cette approche théorique, nous proposons la preuve de concept d'un microscope DDCS, que nous développons dans le cadre de la microscopie à illumination structurée (SIM), visant à reconstruire des images super-résolues à une vitesse plus élevée.

Enfin, ces deux approches (traitement d'image dans le Chapitre II et acquisition compressée à partir du Chapitre IV) ne se limitent pas à la microscopie en fluorescence, et peuvent être adaptées à d'autres cadres. Nous présentons dans le Chapitre IV comment ils peuvent être adaptés dans le contexte de la tomographie en cohérence optique (optical coherence tomography, OCT ). Nous proposons tout d'abord d'adapter notre algorithme FSR aux images OCT dans le domaine spectral (SD-OCT), dans le but de débruiter et de segmenter les couches des tissus cardiaques et rétiniens humains. Ensuite, nous présentons la mise en oeuvre du premier (à notre connaissance) système OCT à balayage de source (SS-OCT) exploitant le CS.

B.1 Introduction à la théorie du CS

La théorie mathématique de l'échantillonnage comprimé (CS) a été introduite simultanément en 2006 par Candès, Romberg et Tao [START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF] et Donoho [START_REF] Donoho | Compressed sensing[END_REF]. Le but de cette théorie est de fournir des outils et des méthodes pour la reconstruction de signaux présentant une structure parcimonieuse, à partir d'une petite collection de mesures linéaires. Mathématiquement, le problème du CS consiste à récupérer un signal x ∈ C N qui a une structure parcimonieuse, à partir d'une observation linéaire y = Φx ∈ C M , où Φ ∈ C M ×N est appelé l' opérateur de mesure, même lorsque le nombre des observations est considérablement inférieur à la taille du signal à récupérer (M N ). Le problème y = Φx est fortement mal posé dans ce contexte, et l'information préalable sur la rareté du signal x est essentielle. Plus généralement, nous considérons que le signal x a une représentation parcimonieuse dans un dictionnaire connu Ψ ∈ C N ×L , ce qui signifie qu'il existe un vecteur s ∈ C L tel que x = Ψs avec très peu de coefficients non nuls. Dans ce cas, Ψ ∈ C N s'appelle le dictionnaire de parcimonie.

Après avoir rappelé quelques définitions indispensables à la bonne compréhension de la théorie du CS, nous présentons dans cette partie les principaux outils et modèles utilisés dans ce manuscrit.

Nous devons d'abord définir la notion qui est centrale dans la théorie du CS -la parcimonie -et sa version plus faible -la compressibilité.

Definition 8 (Parcimonie). Une image x ∈ C N est dite S-parcimonieuse (avec 0 ≤ S ≤ N ) si elle a au plus S coefficients non nuls. Mathématiquement, S = x x 0 , qui est la norme 0 de x. Enfin, x est dit parcimonieuse si x 0 N . En outre, nous appelons support de x, et désignons Supp(x) l'ensemble des pixels (k, l) ∈ Ω tels que ∀(k, l) ∈ Supp(x), x(k, l) = 0. Par extension, nous dirons qu'une image x ∈ C N est parcimonieuse dans un dictionnaire Ψ ∈ C N ×L s'il existe une image parcimonieuse s ∈ C L telle que x = Ψs. Dans ce cas, s est dit être une représentation parcimonieuse de x dans le dictionnaire Ψ. Toutefois, l'application de la définition mathématique stricte pourrait être d'une utilité limitée dans la pratique, et la notion d'"être beaucoup plus petit que" est assez vague. En outre, on ne s'intéresse pas vraiment à savoir si une image est parcimonieuse ou non, mais plus probablement quel est le degré de parcimonie d'une image. Definition 9 (Degré de parcimonie). Si une image x ∈ C N est S-parcimonieuse (avec 0 ≤ S ≤ N ), nous définissons son degré de parcimonie comme :

τ S (x) = S N (B.1)
Par conséquent, x est dite parcimonieuse si τ S (x) 1.

Maintenant, il est important de noter que les images naturelles ne sont pas parcimonieuses. Que ce soit à cause de la dégradation de l'image inhérente à la plupart des techniques d'imagerie (aberrations, bruit, etc.) ou à la nature lisse des objets réels, la condition doit être aussi petite que possible n'est pas très contraignante. En particulier, il n'y a pas de contrainte forte à atteindre : tant que la norme 0 est aussi petite que possible (qui peut être grande), elle remplit la condition. Par conséquent, nous utilisons une version plus faible de la notion de parcimonie [START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF] : 

|x (t) | ≤ C r (t + 1) r for allt ∈ 1, N (B.2)
où la suite x (1) , x (2) , . . . , x (N ) représente les pixels de x triés par ordre décroissant de leur norme :

|x (1) | ≥ |x (2) | ≥ • • • ≥ |x (N ) |.
Dans une série d'articles [Candes05b, Candès06a, Candès06b, Candes06c], Candès, Romberg et Tao ont développé un cadre pour établir des résultats théoriques sur la reconstruction de signaux parcimonieux à partir d'un petit nombre de mesures linéaires, en suivant les travaux de [START_REF] David | Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization[END_REF] et [START_REF] Gribonval | Sparse representations in unions of bases[END_REF]. Leur principale contribution est l'introduction de la notion de propriété isométrique restreinte d'un opérateur linéaire, défini comme : Definition 11 (Propriété isométrique restreinte (RIP)). ]. Étant donné un opérateur linéaire Φ ∈ C M ×N et un entier S ∈ 1, N , la constante isométrique restreinte S associée à Φ est la plus petite valeur de δ S ∈ R scalaire telle que :

(1 -δ S ) x 2 2 ≤ Φx 2 2 ≤ (1 + δ S ) x 2 2 ∀x ∈ C N such that x| 0 ≤ S. (B.3)
Quand, la constante δ S existe et appartient à [0; 1], l'opérateur Φ est dit satisfaire la propriété isométrique restreinte de degré S. 

x TV = (k,l)∈Ω (∂ h x(k, l)) 2 + (∂ v x(k, l)) 2 (B.5) où ∂ h et ∂ v représentent
(k, l) ∈ Ω, ∂ h x(k, l) = x(k + 1, l) -x(k, l) et ∂ v x(k, l) = x(k, l + 1) -x(k, l + 1) -x(k, l),

B.2.2 Fusion de reconstructions parcimonieuses : une approche CS pour le débruitage

Dans le cadre de ce travail, centré sur la bioimagerie cellulaire, nous partons de l'hypothèse que ces images sont constantes par morceaux (par exemple des images constituées de cellules à noyaux, cytoplasme et petits objets, sur un fond uniforme). La semi-norme TV est bien adaptée à de telles images, avec des valeurs minimales sur les zones à intensité constante. Basé sur les travaux de [START_REF] Marim | Denoising in fluorescence microscopy using compressed sensing with multiple reconstructions and non-local merging[END_REF], nous proposons une méthode qui combine trois stratégies de débruitage : le débruitage local (via un opérateur appelé H(y(s)), le filtrage TV pour générer des estimateurs partiels xk et un estimateur linéaire d'erreur minimale pour une optimisation TV globale.

L'algorithme de fusions de reconstructions parcimonieuses (FSR) que nous proposons est composé de trois étapes (voir la figure B.1) : a. Génération de vecteurs de mesures aléatoires dans le domaine de Fourier Dans le cas d'images microscopiques, les informations concernant les détails des structures se trouvent dans les coefficients de Fourier haute fréquence qui sont beaucoup plus dégradés par le bruit que les coefficients basse fréquence qui codent les informations structurelles des objets dans l'image [START_REF] Wang | Variable density compressed image sampling[END_REF]. La génération de modèles d'échantillonnage aléatoire dans le domaine de Fourier et son impact sur la reconstruction ont fait l'objet d'études approfondies dans le contexte du CS [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF][START_REF] Poon | On the role of total variation in compressed sensing[END_REF]. Nous considérons ici un échantillonnage passe-bas dense (sélection de tous les coefficients avec fréquence ν < ν c ), complété par un échantillonnage aléatoire de coefficients haute fréquence, avec un taux d'échantillonnage global de τ ∈ [0, 1] (voir [START_REF] Kim | Accelerated threedimensional upper airway MRI using compressed sensing[END_REF]). A partir de l'observation bruitée y, nous générons des ensembles de mesures R via une opération linéaire : 

y k = Φ k y, où Φ k = Σ k F est construit
N x T V t.q. Φ k x -y 2 ≤ (B.8)
où est un paramètre dépendant du bruit défini dans [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] comme : = γ σ n τ N + 2 √ 2τ N . Dans cette formule, σ n représente l'écart-type de la composante gaussienne additive du bruit, que nous obtenons en utilisant la méthode du cumulant [START_REF] Rose | Mathematical statistics with mathematica, chapter 7.2c: k-statistics: Unbiased estimators of cumulants[END_REF] sur une région uniforme de l'image bruitée (par exemple le fond) et γ est un gain que nous introduisons pour traiter des types spécifiques d'images . Nous utilisons l'algorithme NESTA [START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] pour résoudre le problème d'optimisation.

c. Fusion des reconstructions partielles

Les estimateurs partiels obtenus en résolvant (B.8) sont déjà des versions débruitées de l'image initiale y. Qualitativement, ces estimations sont des tirages aléatoires différents de la même loi de densité, correspondant à des estimations contraintes par la TV de l'image de vérité-terrain. Nous présentons ici différentes méthodes de fusion que nous avons développées. ∀s ∈ Ω :

• xmean (s) = 1 R R k=1
xk (s) est la moyenne pixel par pixel des reconstructions partielles. • xLW C (s) = xvar (s)×H(y(s))+(1-x var (s))×x mean (s) est un estimateur plus fin, combinant les deux précédents, en exploitant un filtre local pré-défini H, typiquement un filtre médian. Nous avons appelé cette méthode "combinaison linéaire pondérée".

• xvar (s) = 1 R R k=1 (x k (s) -xmean (s))
• Dans [?] la somme pondérée exponentiellement (EWA) est une méthode d'agrégation conçue pour atteindre un risque moyen optimal, dans le contexte de la régression statistique non paramétrique. Il a été utilisé pour le débruitage d'image dans [START_REF] Kervrann | PEWA: Patch-based exponentially weighted aggregation for image denoising[END_REF] pour fusionner les patchs "faiblement" débruités en un seul. En utilisant la formulation de [START_REF] Kervrann | PEWA: Patch-based exponentially weighted aggregation for image denoising[END_REF], pour chaque estimateur partiel xk , nous notons r k (s) = |y(s) -xk (s)| 2 -σ 2 n le risque du calculateur xk au pixel s, en supposant un bruit blanc gaussien additif d'écart-type σ n . L'opérateur de fusion EWA est défini comme :

∀s ∈ Ω, xEWA (s) = R k=1 θ k (s)x k (s) avec θ k (s) = exp(-|r k (s)|/β)π k (s) R i=1 exp(-|r i (s)|/β)π i (s) où β > 0 est
généralement appelé un paramètre de température et {π i (s)} i=1,.,R est tiré d'une fonction de distribution de probabilités π(s) et est utilisé pour mettre des poids aux estimateurs. Dans notre travail, nous définissons π comme une distribution aléatoire uniforme et β = 0, 01. Cet opérateur considère les estimateurs partiels xk comme des observations indépendantes de la même image vraie x, et les somme en utilisant des poids exponentiels. Notons que, à mesure que r k diminue, le poids correspondant θ k augmente, ce qui répond à l'objectif de minimisation de l'erreur quadratique moyenne (MSE).

• Dans [START_REF] Delbracio | Hand-held video deblurring via efficient fourier aggregation[END_REF], les auteurs proposent une nouvelle méthode de défloutage d'image basée sur ce qu'ils appellent l'accumulation de Fourier. Dans le contexte de l'acquisition en mode rafale de plusieurs images avec une caméra, ils reconstruisent une seule image non floue en prenant ce qui est moins flou de chaque image pour construire une image plus nette et moins bruitée que toutes les images dans la rafale. Pour ce faire, ils calculent une moyenne pondérée des coefficients de Fourier des images de la rafale. Leur hypothèse de travail est que les estimateurs partiels sont non bruités mais flous et que les noyaux flous sont tous positifs et avec une norme unitaire, ce qui n'entraîne aucune amplification des valeurs spectrales. Dans notre contexte, les estimateurs partiels xk sont dérivés en sacrifiant certaines composantes haute fréquence et en utilisant la régularisation spatiale TV. Nous pouvons donc faire les mêmes hypothèses. Formellement, l'opérateur FBA est défini comme suit : Une image acquise à l'aide d'un montage optique correspond à la convolution entre le champ lumineux réel et la fonction d'étalement du point (PSF) du système, qui est modélisée en microscopie à champ large comme une tache d'Airy [START_REF] Keuper | Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (otf)[END_REF]. Ceci correspond à un filtrage passe-bas dans le domaine de Fourier, conduisant à un degré de parcimonie proportionnel au support de la fonction de transfert optique (OTF) dans le domaine de Fourier. L'OTF est définie comme la transformée de Fourier de la PSF. Mathématiquement, si x est l'image échantillon et P SF est la PSF du montage optique, nous avons l'identité suivante : F(x * P SF ) = F(x) × F(P SF ) où * est le produit convolution.

En pratique, supposons que l'on travaille avec une caméra contenant N pixels, de taille px , et un objectif de microscope avec une ouverture numérique NA donnée. Enfin, le grossissement global du système -combinant le grossissement de l'objectif du microscope et éventuellement un objectif supplémentaire entre l'objectif et la caméra -est noté M. Ensuite, si la lumière d'illumination a une longueur d'onde λ, la fréquence de coupure spatiale du système est définie Enfin, avec une approche similaire à ce que nous avons présenté précédemment, on résout le problème (B.11) à l'aide de l'algorithme NESTA. Nous avons étudié en profondeur l'influence des différents paramètres de notre modèle sur des images synthétiques et réelles, mais nous souhaitons nous concentrer dans ce résumé détaillé sur les résultats obtenus dans le cadre de la microscopie à illumination structurée.

B.3.2 Mise en oeuvre d'un microscope à échantillonnage comprimé

La preuve de concept de notre microscope à échantillonnage comprimé en domaine direct (DDCS) est basée sur un microscope à illumination structurée, développé par Piernicola Spinicelli à l'Institut Pasteur. Dans cette section, la génération de franges d'illumination structurées est écartée, et nous ne mentionnons que les composants qui jouent un rôle dans l'acquisition par détection comprimée :

• La caméra : Andor ixon 888 de taille 1024 × 1024 pixels. Nous n'exploitons qu'une zone de taille N = 512 × 512, et nous faisons l'approximation dans ce qui suit que la taille de la caméra est N . La taille des pixels est px = 6.5µm.

• La source lumineuse : une diode Laser à longueur d'onde λ = 568nm.

De plus, un dispositif numérique à micro-miroirs (DMD) contenant N = 512×512 micro-miroirs est utilisé pour générer le masque d'échantillonnage.

L'utilisation d'un DMD Avant de pouvoir construire un microscope CS à domaine direct capable de sous-échantillonner les pixels de l'image à n'importe quel taux, nous proposons un système basé sur un dispositif numérique à micro-miroirs (DMD). Ce dispositif est composé de N micro-miroirs qui peuvent être commutés entre deux positions, que nous appelons on et off. Ainsi, lorsqu'un faisceau lumineux est projeté sur le DMD, seuls les photons impactant les micro-miroirs qui sont on sont transmis (ils sont réfléchis dans une direction à l'intérieur du trajet optique du système), tandis que les photons impactant les micro-miroirs qui sont off sont réfléchis hors du trajet optique, et donc rejetés. Le DMD a été utilisé dans le contexte de la microscopie à fluorescence dans [START_REF] Studer | Compressive fluorescence microscopy for biological and hyperspectral imaging[END_REF], mais dans le cadre de l'illumination. Ici, nous utilisons le DMD comme partie intégrante du dispositif d'acquisition.

Dans ce manuscrit, nous considérons seulement le cas où 25% des micro-miroirs sont on, ce qui correspond à un taux d'échantillonnage τ = 0.25. La valeur de τ = 0.25 est motivée par deux raisons. Tout d'abord, cette valeur est proche du seuil de reconstruction optimale dans le contexte du domaine direct CS, et des taux d'échantillonnage inférieurs conduisent à des images de moindre qualité pour le moment. Deuxièmement, et c'est le plus important, notre objectif est de construire un microscope à fluorescence avec un taux d'acquisition plus rapide, ce qui est crucial pour le SIM en direct. Cependant, avec les caméras modernes, la réduction du nombre de détecteurs mesurant les photons n'a pas d'influence significative sur la vitesse d'acquisition. La seule façon d'acquérir des images plus rapidement avec la même configuration est d'ajouter une étape de binning à l'acquisition. Le binning est une technique qui consiste à regrouper plusieurs pixels d'acquisition en un seul. Par exemple, avec notre caméra Andor ixon 888, pour une taille N = 512 × 512 pixels, le taux d'acquisition maximal pour une image complète est de 35 images par seconde. Maintenant, avec une étape de binning 2 × 2, ce qui signifie que le processus d'acquisition simule une caméra de taille N/4 = 256 × 256, le taux d'acquisition maximal pour l'image complète est de 68 images par seconde, ce qui est 1.94 fois plus rapide.

Notre microscope CS à domaine direct combine le potentiel de sélection de pixels du DMD avec le taux d'acquisition plus rapide donné par le binning : nous construisons un masque pseudo-aléatoire m τ tel que, pour chaque groupe de 4 micro-miroirs, exactement 1 est on, suivant une subdivision régulière. Mathématiquement, si le support d'image Ω contenant N pixels (où N est une puissance de 2) est subdivisé en une grille régulière de N/4 groupes Ω k de 4 pixels, alors pour chaque k ∈ 1, N/4 , la restriction de m τ au support Ω k contient exactement une position on et trois off. Enfin, nous réglons la caméra avec un pas de binning de 2 × 2, de sorte que chaque nouveau pixel correspond à un support Ω k . Ainsi, chaque pixel de l'appareil photo recevra les photons d'un micro-miroir, dont l'intensité est répartie sur le pixel.

Nous affichons sur la Figure B.3 un schéma de principe de notre système, sur une petite partie de taille 16 × 16 pixels extraits de l'image Target (image de gauche). Le réseau de micromiroirs du DMD, de taille N , est représenté en bleu, tandis que le réseau de pixels binnés de la caméra est représenté en rouge. La deuxième image montre les 25% de pixels qui sont conservés La lumière fluorescente émise est captée par le même objectif et l'image acquise de l'échantillon est créée par la lentille sur un DMD, où 25% des pixels sont allumés, tandis que les 75% restant sont rejetés. Enfin, un système de relais d'image optique (composé de deux lentilles) projette l'image du DMD sur la caméra (avec un binning de 2×2).

Notons que la position du miroir peut être modifiée avec une fréquence de ∼ 10 kHz, ce qui est bien plus rapide que la vitesse d'acquisition d'image de fluorescence requise pour l'imagerie en direct.

B.3.3 Application à la microscopie à illumination structurée

Le principe de la microscopie à illumination structurée (SIM) est d'illuminer un échantillon biologique donné avec une série de grilles, d'observer les interférences en résultant à travers un microscope, et d'enfin reconstruire une image super-résolue à partir de ces observations. Dans le contexte du SIM linéaire, les grilles d'illumination sont des modulations sinusoïdales, que l'on peut écrire, pour chaque pixel (p, q) : I(p, q) = I 0 (1 + α cos(2π(k p p + k q q + ϕ))) où I 0 est l'intensité moyenne de l'illumination, α est l'amplitude de la modulation, (k p , k q ) contiennent son orientation et sa fréquence, et ϕ sa phase.

Dans l'implémentation SIM standard [START_REF] Gustafsson | Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy[END_REF], K = 9 observations sont faites pour reconstruire une seule image SIM. Dans [START_REF] Orieux | Bayesian estimation for optimized structured illumination microscopy[END_REF], une approche alternative au SIM standard a été proposée, basée sur une formulation Bayésienne du problème inverse, et qui ne requiert que K = 4 acquisitions pour générer une image super-résolue. Dans la suite, nous appellerons cette technique le SIM4i.

Reconstruction SIM Mathématiquement, l'acquisition de chaque image brute g k ∈ R N , k = [1, 2, ., K] peut être modélisée de la manière suivante : Les deux parties zoomées ont été choisies pour illustrer la capacité de notre méthode à séparer des structures adjacentes telles que deux points à fort contraste, ou trois formes allongées de faible contraste. Les images HR présentent des structures séparées, tandis que les images en champ large les confondent et perdent la structure de l'image. On voit que la méthode originale SIM4i et les reconstructions CS-SIM sont capable de distinguer les objets séparés, avec une meilleure estimation de l'intensité dans les zones de faible contraste.

g k = HI k f + n k (B.

B.4 Tomographie en cohérence optique

Enfin, nous avons étudié comment les deux approches complémentaires de l'utilisation du CS en microscopie à fluorescence peuvent être étendues à d'autres modalités d'imagerie, et en particulier à la tomographie en cohérence optique (OCT). Dans un premier temps, nous avons appliqué notre méthode de débruitage dans le contexte de l'OCT en domaine spectral (SD-OCT), et obtenu des résultats de simplification et de segmentation d'images SD-OCT. Dans un second temps, nous avons développé le concept de CS en domaine direct dans le cadre de l'OCT à balayage de source (SS-OCT), et construit le premier système SS-OCT basé sur le CS.

B.4.1 Simplification d'images SD-OCT

Nous exploitons l'algorithme FSR-LWC présenté au Chapitre II pour reconstruire des images SD-OCT simplifiées, et leur carte de variance correspondante, afin de segmenter les couches de tissu. Nous visons également à réduire autant que possible la quantité de données utilisées, car l'un de nos objectifs est de réduire le stockage des données dans le domaine du SD-OCT. Nous détaillons dans ce manuscrit comment nous avons optimisé trois paramètres clés de la méthode FSR-LWC : le schéma d'échantillonnage dans le domaine de Fourier, le nombre de 

B.5 Conclusions et perspectives

Dans ce manuscrit, nous avons présenté comment la théorie de l'échantillonnage comprimé peut être mise en oeuvre dans le contexte de la microscopie biologique et de la tomographie par cohérence optique, offrant une alternative réaliste à la plupart des limitations actuelles en termes de phototoxicité et de vitesse d'acquisition. Nous avons proposé deux approches complémentaires : Tout d'abord, nous avons développé l'algorithme de débruitage basé sur le CS proposé à l'origine dans [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF] pour traiter du bruit mixte Poisson-Gaussien, et montré sa prédom- Le pouvoir de débruitage de notre méthode repose sur l'utilisation de la régularisation TV, comme dans la plupart des méthodes de débruitage les plus performantes testées dans ce travail. La méthode FSR proposée ne se limite pas aux images avec redondances de patchs dans le champ de vision (comme pour NLM et BM3D), mais elle exploite, à l'aide d'une étape de fusion, l'information spatiale redondante provenant de multiples sous-échantillonnages du domaine de Fourier. Il ne repose pas sur un modèle a priori du type de bruit qui corrompt l'observation, comme l'exigent certaines méthodes spécialisées testées.

Le paramétrage unique et la robustesse aux différents types de bruit sont très pertinents dans le domaine de l'imagerie microscopique, car ces images sont perturbées par des niveaux et des types de bruit mixte de Poisson-Gaussien très variables qui sont complexes à modéliser a priori ou par un terme de probabilité de Poisson à optimiser. Un autre avantage de notre approche est l'utilisation d'un seul sous-ensemble d'échantillons dans le domaine de Fourier (typiquement 35 %), ce qui pourrait mener à de grandes possibilités de compression ou de souséchantillonnage des données pendant l'acquisition. La méthode FSR proposée est hautement adaptative et peut être optimisée à l'avenir par l'étude de stratégies de fusion alternatives, de stratégies d'échantillonnage de Fourier et d'une exploitation plus sophistiquée de la carte de variance.

Nous avons également introduit la carte de variance comme un nouvel outil pour détecter les informations de type gradient dans les images bruitées pour un coût de calcul relativement faible (entre 10 et 100 secondes selon le nombre d'itérations requises). Cet algorithme fournit des détails très précis des éléments d'une image, tout en étant robuste au niveau de bruit, au type de bruit (additif ou multiplicatif, gaussien ou Poisson), et au contraste local entre objets. Ces propriétés rendent cette méthode très bien adaptée aux images de microscopie à fluorescence, où le niveau de bruit augmente grandement dans des conditions de faible luminosité utilisées, par exemple, pour limiter le photo-blanchiment. La polyvalence de la carte de variance en fait une bonne alternative aux filtres de gradient traditionnels dans le domaine générique du traitement d'images. Nous avons amélioré trois filtres d'image standard à l'aide de la carte de variance, ce qui a permis d'obtenir une meilleure qualité d'image. Les travaux futurs envisageront son intégration dans des filtres d'image supplémentaires tels que les méthodes de débruitage par patchs.

Cette technique de débruitage, conçue pour reconstruire des images obtenues dans des conditions de faible luminosité, a été adaptée dans le cadre du SD-OCT, tant pour des images rétiniennes que cardiaques. La méthode proposée permet d'éliminer le bruit, de préserver l'intensité et les interfaces des couches tissulaires et de générer une carte de variance directement exploitable pour la segmentation des différentes couches des images OCT, et applicable à la classification de ces images, tant pour les échantillons cardiaques que rétiniens. Un avantage fort de notre approche est qu'elle utilise moins de 10% des échantillons dans le domaine de Fourier qui présente un grand potentiel pour la compression des données.

Une évolution simple dans le domaine du traitement et de la compression d'images SD-OCT basé sur le CS, est de généraliser la méthode aux volumes OCT. Au prix d'un temps de calcul plus long, une analyse similaire peut être traitée sur des séries de coupes transversales dans un volume OCT tridimensionnel. Nous avons déjà obtenu quelques résultats dans ce sens, mais le temps de calcul exponentiel nécessaire pour traiter de telles quantités de données OCT est une forte limitation pour le moment.

Enfin, la prochaine étape de la recherche en CS-SD-OCT se concentrera sur la mise en oeuvre de la simplification d'image directement à l'étape de la détection, en utilisant plusieurs acquisitions CS. Cette mise en oeuvre n'est pas encore triviale, car elle nécessite de modifier directement les système d'acquisition d'un système SD-OCT, et la mise en oeuvre matérielle des modèles d'échantillonnage pseudo-aléatoires. Une justification théorique sera également nécessaire pour prouver que la théorie de l'échantillonnage comprimé peut être légitimement appliquée pendant le processus de reconstruction. En outre, les informations a priori telles que l'orientation des couches et le niveau de bruit devront être déduites avant l'acquisition.

Les travaux futurs porteront sur la mise en oeuvre de l'acquisition CS directement sur le montage SD-OCT, de sorte que le gain en stockage de données apporté par la théorie du CS puisse être étendu à l'acquisition de données. De plus, nous croyons que le développement futur de notre méthode FSR devrait envisager des implémentations numériques plus rapides, afin d'étendre cette technique à des échantillons vidéo en quatre dimensions et à la reconstruction en temps réel, tant en microscopie de fluorescence qu'en SD-OCT. Deuxièmement, nous avons proposé une preuve de principe d'un microscope à échantillonnage comprimé dans le domaine direct, capable de reconstruire des images de taille N à partir d'une caméra de taille N/4, à un très faible coût d'implantation (utilisant une matrice de micro-miroirs (digital micro-mirrors array, DMD) et une paire d'objectifs). Ce cadre exploite la parcimonie naturelle dans le domaine de Fourier des images acquises dans le cadre de la microscopie biologique (entre autres) pour reconstruire avec une grande précision des images à partir d'un sous-ensemble des pixels de la caméra. Le principal avantage de notre approche est que, sans perte de qualité, nous pouvons acquérir des images fluorescentes deux fois plus rapidement. En termes de stockage de données, quatre fois moins de pixels sont nécessaires lors de l'acquisition d'images.

Cette technique a été adaptée dans le contexte de la microscopie à illumination structurée (SIM), où nous avons prouvé qu'il est possible de reconstruire une image super-résolue à partir de seulement quatre acquisitions sous-échantillonnées (avec un facteur de 4). En d'autres termes, nous montrons qu'une image super-résolue peut être reconstruite en utilisant la même quantité de données qu'en microscopie à fluorescence standard. En plus des avantages évidents en termes de vitesse d'acquisition et de stockage des données, ce microscope limitera par conséquent le photo-blanchiment et permettra des expériences de fluorescence plus longues. Nous croyons que ce microscope sera un grand pas de plus vers le développement d'un système de live SIM.

Les travaux à venir consisteront à mettre en oeuvre le microscope DDCS-SIM et à étudier comment les aberrations potentielles provoquées par le DMD influenceront la qualité de reconstruction de notre méthode. De plus, nous voulons généraliser le concept de CS-SIM à d'autres paradigmes d'illumination structurés, tels que SIM aveugle, mais aussi à des concepts optiques plus généraux, tels que l'optique adaptative.

Sur le plan mathématique, nous voulons développer des méthodes d'optimisation spécialement dédiées au domaine de Fourier, afin d'améliorer la qualité de reconstruction de la méthode DDCS, ainsi que son temps de calcul, en gardant à l'esprit l'idée d'un logiciel complet intégré au système optique, qui permettrait de reconstruire en temps réel des images de haute qualité à partir des acquisitions partielles.

Nous avons également adapté le cadre du CS en domaine direct dans le contexte de SS-OCT, et mis en oeuvre la première configuration SS-OCT basée sur le CS, qui, à notre avis, permettra une large utilisation de cette technique, qui consommait auparavant trop de données.

Nous avons proposé un système de SS-OCT basé sur l'échantillonnage comprimé, mis en place par des collaborateurs de l'Université de Columbia, permettant de réduire d'un facteur 20 l'échantillonnage des données du signal d'horloge, tout en affinant la reconstruction des images SS-OCT. Bien que la reconstruction basée sur le CS du signal d'horloge à partir de données sous-échantillonnées reste une étape de post-traitement pour l'instant, notre travail dans un avenir proche consistera à développer l'algorithme en GPU pour effectuer la reconstruction directement sur l'installation, visant la reconstruction en temps réel et la visualisation des images OCT.

Du côté théorique, le résultat du Théorème 6 provient d'une approximation du support de la transformée de Fourier d'un signal d'horloge. Une étude plus fine de la fonction k -t sera nécessaire pour identifier un résultat plus robuste pour mesurer le niveau de parcimonie du signal d'horloge, ce qui permettra de bien meilleures prédictions en termes de possibilités de réduction d'échantillonnage de la technique CS-SS-OCT.

Une autre piste de recherche dans le domaine de la CS-SS-OCT serait d'exploiter également la reconstruction CS sur le canal objet. Bien que la parcimonie dans le domaine de Fourier des images OCT dépende de l'objet étudié, cette option permettrait d'adapter la théorie CS directement sur la partie émission. En l'état actuel des choses, tout le spectre de la bande passante ∆λ doit être parcouru par le laser d'émission. Mais notre travail suggère que seule une fraction de longueur d'onde est nécessaire pour récupérer le signal d'horloge complet. La question ouverte est de savoir si l'avantage de la réduction des données résultant de l'échantillonnage CS des données d'horloge peut être directement appliqué à l'émission, permettant un balayage plus rapide d'un objet et utilisant moins d'énergie lumineuse.

Nous attendons maintenant avec impatience les premières utilisations de notre technique CS-SS-OCT dans les domaines de l'imagerie médicale. D'autres expériences en angiographie seront menées dans un proche avenir et, espérons-le, seront suivies par de nombreuses autres. Dans le cas de la fluorescence, la mise en oeuvre de notre microscope DDCS est une priorité, et les tout premiers travaux porteront sur le traitement d'artefacts réels comme les erreurs d'alignement et les aberrations optiques. D'un point de vue théorique, nous pensons que le développement d'algorithmes d'optimisation dédiés au domaine de Fourier améliorera encore l'approche de reconstruction CS en domaine direct.
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Figure I. 1 :

 1 Figure I.1: Example of a piecewise constant image x, i.e. in which the horizontal discrete derivative ∂ h x is sparse, as shown by the low value of its degree of sparsity τ S . For a better visualisation, we display |1 -∂ h x|, so that white pixels are of value 0 and the black pixels are of value 1.

  Figure I.2: Example of a noisy piecewise constant image y, i.e. which horizontal discrete derivative ∂ h y is compressible. For a better visualisation, we display |1 -∂ h y|, so that white pixels are of value 0 and the black pixels are of value 1.

Figure I. 3 :

 3 Figure I.3: Illustration of the notion of structured sparsity. (a) Extracted frame from a movie of HeLa cells marked with GFP dye constrained to micro-pattern structures. (b) Example of a support decomposition (modeled by the blue lines) such that the non-zero pixels of the images are constrained inside a fixed subset (in red) in each frame of the movie. (Courtesy of Laura Barrio, Pasteur Institute)

Algorithm 3 :1

 3 SPGL1.Input : y: Observation, Φ: Measurement operator, τ, ε: positive scalar parameters. Output: x: Sparse estimate of x Define internal parameters: 0

  Figure I.4: (a) Illustration of the application of CS theory in MRI proposed by [Lustig07] (the picture is reproduced from this publication). (b) Four modern Fourier-domain sampling strategies for MRI, as proposed by [Bigot16].

Figure

  Figure I.5: Off-axis optical set-up for CS-holography proposed by [Marim11b] (the picture is reproduced from this publication).

Figure I. 6 :

 6 Figure I.6: Principle of STORM imaging as explained in [Rust06] (the picture is reproduced from this publication). Fluorophores can be switched between fluorescent and dark state, and thus are illuminated following a single-molecule activation approach.

Figure I. 7 :

 7 Figure I.7: Principle of electron tomography, as explained in [Grünewald02] (the picture is reproduced from this publication). (a-b) Acquire several 2D projections of the object, using different tilt angles. (c) Align the acquisitions, and back-project them to recover the 3D object of interest (F denotes the back-projection operator).

Figure

  Figure I.8: Single-pixel camera principle (the picture is reproduced from [Don18]).

Figure I. 9 :

 9 Figure I.9: Compressed Sensing reconstruction of a fluorescence microscopy image of amoebas, using 5% of the Fourier coefficients, using a Gaussian sampling strategy. (a) Original fluorescence microscopy image. (b) CS reconstruction from 5% of the Fourier coefficients selected randomly, using the Gaussian sampling strategy displayed on (c). (c) Fourier Transform of the image (a). The coefficients kept for CS reconstruction are shown in red. (d) Gradient map of the image (a), with sparsity level τ S (x) = 0.12.

Figure

  Figure II.1: (a) Picture of a modern optical microscope (Nikon). (b) Basic scheme of principle of a fluorescence microscope (source: https://www.biotek.com/).

Figure

  Figure II.2: (a) Principle of diffraction of light. A plane wave emitted by a source S passes through a small aperture (d < λ), and is diffracted into a spheric wave. (b) Numerical aperture visualization. (c) Resolution limit visualization. (source: http://olympus.magnet.fsu.edu).

  Figure II.3.(a)), which is observed on camera (see Figure II.1). Note that the dichroic mirror (see Figure II.1.(b)) is central in fluorescence microscopy: it reflects the illumination light and transmits the fluorescence emission light.

Figure II. 3 :

 3 Figure II.3: (a) Fluorophores absorption and emission profiles (source: http://zeiss-campus. magnet.fsu.edu/). (b) Evolution of image intensity vs exposure time. (c) Visualization of photobleaching on a sample. The images represent the sample at the time values t = 0, t 1/2 , t 1/4 , t 1/8 corresponding to the moments where the total intensity value of the image is I max , I max /2, I max /4, I max /8, respectively.

Figure II. 4 :

 4 Figure II.4: Scheme of fluorescence microscopy image acquisition. In red are displayed the three main sources of noise: photon noise, dark noise and readout noise. We also visualize the stochastic behavior of photons: if an average of 100 photons is emitted per area, a number slightly different is counted on each receptor, following a Poisson law.

  Figure II.5.(a) for three examples of Gaussian probability density functions, with zero-mean, and standard deviations:

  Figure II.5: Probability distribution functions (PDF) of (a) a Gaussian random process, with parameters σ 1 < σ 2 < σ 3 and (b) a Poisson random process with parameters λ 1 < λ 2 < λ 3 . On both figures, the arrows represent the standard-deviation of each PDF. Note that the standard deviation of a Poisson PDF of mean λ is also λ.

  Figure II.5.(b) for three examples of Poisson probability density functions, corresponding to three values λ: λ 1 < λ 2 < λ 3 . The parameter λ s is directly linked to the quantity of photons arriving at each pixel. In microscopy, it depends on the exposure time used to acquire the image y, but also on the fluorescence level in case of fluorescence microscopy. More precisely, the longer the illumination, the lower the influence of Poisson noise on the resulting image. Therefore, one of the most common methods for reducing Poisson noise is to acquire images during a longer exposure time, at the cost of photobleaching.

Figure II. 6 :

 6 Figure II.6: Influence of zero-mean Gaussian noise, with parameters σ = 0.01 and σ = 0.05, on a test image with 11 gray levels, scaled to [0, 1]. The right column shows the histograms of the corresponding images. The y axes have been normalized for a better visualization.

Figure II. 7 :

 7 Figure II.7: Influence of Poisson noise, with parameters λ = 250 and λ = 2500, on a test image with 11 gray levels, scaled to [0, 1]. The right column shows the histograms of the corresponding images. The y axes have been normalized for a better visualization.

1 Figure

 1 Figure II.8: Example of Synth. images corrupted with mixed Poisson-Gaussian noise for different values of the parameters σ and λ in the context of low-light conditions. Note that the first row shows examples of an image corrupted with pure Gaussian noise, and the first column shows examples of an image corrupted with pure Poisson noise.

( 2 )

 2 α(s) is close to a Dirac function with non-zero values only at true edge locations; (3) H(y(s)) generates an approximation of the ground-truth with reduced contrast. Under these assumptions, the second term decreases the first term by a factor α(s) which is non-zero only at edges, while the third term cancels where α(s) is non-zero thanks to the contrast difference ∂H(y(s)) < ∂ xmean (s) and the Dirac derivative having opposite signs across edges. Assumptions are met if we use respectively (1) TV-regularized CS-based reconstructions from the noisy observation to generate the xk (s); (2) a local-averaging filter for H; (3) α(s) = x * std (s) = xvar (s)/ xvar (s) ∞ , with xvar , called the variance map, defined as: ∀s ∈ Ω:

  Figure II.9: Generation of partial estimators. From a noisy image y, a given number of lowsampled measurement vectors y k are generated, by taking the Fourier transform (FT) of y and selecting a subset of the Fourier coefficients (Φ k ). Then, each y k is used to produce an estimator xk of the original signal through a convex optimization reconstruction scheme. Finally, all the xk are combined into an estimator x using one of the proposed fusion techniques.

  Figure II.12 and in Section II.6.1), corrupted with a mixed Poisson Gaussian noise of parameters σ = 0.15 and λ = 9. The results of the experiments conducted on each step of the FSR algorithm are displayed in Figure II.11.

Figure 2 :

 2 Figure II.10: Sampling strategy for FSR-LWC. (left) Synth. image corrupted with mixed Gaussian Poisson noise (σ = 0.15, λ = 9). (middle) Fourier transform of the noisy image. (right) Selection of the Fourier coefficients: the circle of normalized radius ν c contains N low coefficients, and N high additional coefficients are uniformly randomly sampled. The overall sampling rate is τ = (N low + N high )/N .

  Figure II.11: Quantitative evaluation of the reconstruction quality of the FSR algorithm, depending on several parameters. For each graph, we computed the standardized (the values are scaled over [0, 1]) MSE between the noiseless Synth. image and one partial reconstruction xk in (a-b), and the FSR-LWC estimator x in (c). The experiments are run on the Synth. image corrupted with mixed Poisson-Gaussian noise with parameters σ = 0.15 and λ = 9 (see Figure II.12). We also display on each figure the resulting images for a few choices of parameters. Note that, in (c), we chose to display a zoom on a single cell, for better visualization.

Figure

  Figure II.12: Images used for the evaluation of the denoising methods: (a, d) Pure., (b,e) Synth., (c, f) Hela. The synthetic images are illustrated with realistic mixed Poisson-Gaussian noise with parameters λ = 9 and σ = 0.15.

  Figure II.14 the visual results of this comparison on the Pure image, and on Figures II.15 and II.16 the visual results of this comparison on the Synth. image, along with a zoom on a single cell. Finally, we regroup the PSNR and SSIM values of the images displayed on these figures in TableII.5.Since the noise parameters of the Hela image cannot be tuned, we only display the visual results of the different state-of-the-art denoising methods on Figure II.17.

Figure

  Figure II.13: Box plots of the PSNR and SSIM measures obtained with each denoising method, over 16 levels of mixed Poisson-Gaussian noise (0.05 ≤ σ ≤ 0.2 and 6 ≤ λ ≤ 100). Each box plot emcompasses the PSNR or SSIM values over all noise levels. Blue rectangles englobe 50% of the measures, black tails represent first and last quartiles, horizontal red bars indicate the mean values, and red crosses represent outliers. (a) PSNR values for Pure. (b) SSIM values for Pure. (c) PSNR values for Synth. (d) SSIM values for Synth.

  Figure II.14: Comparison of the denoising methods on the Pure. image, with values rescaled to [0, 1]. The image y is corrupted with a mixed Poisson-Gaussian noise of parameters λ = 9 and σ = 0.15.

  Figure II.15: Comparison of the denoising methods on the Synth. cell image, with values rescaled to [0, 1]. The image y is corrupted with a mixed Poisson-Gaussian noise of parameters λ = 9 and σ = 0.15.

  Figure II.16: Comparison of the denoising methods on the Synth. cell image -zoom on a single cell, with values rescaled to [0, 1]. The image y is corrupted with a mixed Poisson-Gaussian noise of parameters λ = 9 and σ = 0.15.

  Figure II.17: Comparison of the denoising methods on the Hela. image, with values rescaled to [0, 1].

  Figure II.18: Comparison between a sparsity-based variance map xvar (for R = 3 and R = 25 partial reconstructions), the Sobel gradient map and the NSD map computed on the ground truth image x, and on the noisy image y. The maps are normalized between [0, 1]

Figure

  Figure II.19: Detection of hidden structures in the noisy image. First line represents the Synth image perturbed with additional structures then gaussian noise, and the images obtained through different gradient-like methods. Second line represents the Lymphocytes T image, and shows how the variance map reveals structures inside the cells that are not visible through gradient or NSD filters. Both filters are tested directly on the noisy image (direct) and on a smoothed version (smooth) of the image, using a 3 × 3 wiener filter.

  ∀s ∈ Ω, xLee-var (s) = x(s) + xvar (s)(y(s) -ȳ(s)) (II.29)II.7.2.2 Application to Anisotropic diffusion Anisotropic diffusion [Perona90, Weickert98] solves a partial differential equation (PDE) problem to smooth an image via diffusion of pixel values everywhere except across edges. Our Variance map being a robust indicator of edge locations in an image, even under strong noise conditions, we adapted the anisotropic filter from [Perona90] using this map. More precisely, the estimator of the denoised image xdiff is obtained by solving a discretized version of the PDE I t (s) = c(s)∆I(s) + ∇c(s)∇I(s), where c is a function of the magnitude of the local gradient of the image:

Figure

  Figure II.20: Enhancement of three denoising filters using the variance map on the Synth. image corrupted with mixed Poisson-Gaussian noise (σ = 0.15, λ = 9). Top part displays the ground truth Synth. image (left), its noisy version (middle) and the variance map (right).Bottom part shows denoising results with the original and enhanced implementation (using the variance map). Last row displays the absolute differences between results from the two implementations.

Figure

  Figure II.21: Enhancement of three denoising filters using the variance map on the Hela image. Top part displays the short exposure Hela image (left), its long exposure version (middle) and the variance map (right). Bottom part shows denoising results with the original and enhanced implementation (using the variance map). Last row displays the absolute differences between results from the two implementations.

  When receiving his Nobel prize -along with Stefan Hell and William Moerner -in 2014 for the development of super-resolved fluorescence microscopy, Eric Betzig gave a lecture on his work, and he said: You have to ask yourself what are you doing to the poor cell when you are trying to look at it live? Finally, the acquisition times of many of [super-resolution] methods are far slower than the rate at which dynamics is happening in cells, so you get motion-induced artifacts or cannot follow the thing you want to do.
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 13 CS-based fluorescence microscope . . . . . . . . . . . . . . . . . . . 84 III.1.1 A discrete field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 III.1.2 Direct-domain Compressed Sensing . . . . . . . . . . . . . . . . . . . . 86 III.1.3 Implementation of a DDCS fluorescence microscope . . . . . . . . . . 88 III.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 84 III.1 CS-based fluorescence microscope III.2 CS-based Structured Illumination Microscopy . . . . . . . . . . . . 108 III.2.1 Super-resolution imaging in fluorescence microscopy . . . . . . . . . . 108 III.2.2 Insights on 2D-SIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 III.2.3 Compressed Sensing based SIM . . . . . . . . . . . . . . . . . . . . . . 122 Conclusions and perspectives . . . . . . . . . . . . . . . . . . . .Although the premises of Compressed Sensing theory have been laid out to recover signals that are a sum of a few sine waves[START_REF] David | Uncertainty principles and ideal atomic decomposition[END_REF], it has later been developed to recover sparse signals from partial Fourier measurements[START_REF] Candès | Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information[END_REF][START_REF] Candès | Stable signal recovery from incomplete and inaccurate measurements[END_REF][START_REF] David L Donoho | Stable recovery of sparse overcomplete representations in the presence of noise[END_REF]. In other words, instead of exploiting the sparsity of signals in the Fourier domain, most works on CS have studied the opposite framework, where the Fourier domain lies as the measurements domain.
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 13131 is the best S-sparse approximation of F(x), and C 1 , C 2 are two positive constants. Implementation of a DDCS fluorescence microscope Degree of sparsity An image acquired through an optical set-up corresponds the convolution between the true light field, and the point spread function (PSF) of the system, which is modeled in widefield microscopy as an airy Bessel pattern[START_REF] Keuper | Blind deconvolution of widefield fluorescence microscopic data by regularization of the optical transfer function (otf)[END_REF]. This corresponds to a low-pass filtering in the Fourier domain, leading to a degree of sparsity (see Definition 2) proportional to the support of the optical transfer function (OTF) in the Fourier domain. The OTF is defined as the Fourier transform of the PSF. Mathematically, if x is the sample image and P SF is the PSF of the optical set-up, we have the following identity: F(x * P SF ) = F(x) × F(P SF ), where * is the convolution product. We display on Figure III.1.(a) an example of a convolution between a synthetic sample and a simulated PSF, along with the corresponding operation in the Fourier domain.

2 .

 2 (III.4) A visualization of the proof is given on Figure III.1.(b).

Figure III. 1 :

 1 Figure III.1: Influence of the optical transfer function (OTF) of a microscope on image formation. (a) Simulation of the observation of an image through an objective. First row: convolution between the sample and the PSF. Second row: Pixelwise product between the Fourier transform of the sample and the OTF. (b) Representation of the Fourier-degree of sparsity of an image obtained in microscopy: the red circle outlines the support of the OTF, the blue square represents the support of the camera. The blue curve is the OTF profile along one dimension.

Figure III. 2 :

 2 Figure III.2: Sketch of the direct-domain Compressed Sensing fluorescence microscope. In the framed box, we display a scheme of principle of our direct domain CS acquisition model. The fluorescence image is projected on the DMD (the micro-mirrors array is represented in blue),where only 25% of the mirrors are activated, and reflect light toward the camera (the pixels array of the camera is represented in red). For each camera pixel, there is exactly one activated micro-mirror.

•

  ∀s ∈ Ω, P(m τ = true) = τ . The values of τ in our experiments are spread over the range [0; 1]. The contribution of the noise is simulated as an additive white Gaussian noise. An image x is corrupted with noise according to the following law: ∀s ∈ Ω, x σ (s) = x + N (0, σ). The values of σ are spread over the range [0; 0.1], for images with values in [0, 1]. We report in Figure III.3 the quantitative results of all three experiments. For each set of parameters, we computed the SSIM and MSE between the reference image (which varies

Figure III. 3 :

 3 Figure III.3: Quantitative evaluations of the CS reconstructions quality, depending on parameters τ S , τ , σ. For each graph, we computed the MSE (in blue) and the SSIM (in red) indexes between the CS-reconstructed image x, and the reference images x. Only one of the three parameters is varying in each image. When varying one parameter, others are fixed at values τ S (x) = 0.13%, τ = 0.25, σ = 0. We also display on each figure the resulting images for two choices of parameters.

  Figure III.4, visualizing them along two directions: • On Figure III.4.(a) we plot the evolution of the computation time with respect to the sampling rate, for several image sizes. For better visualization, computation time values on the y axis are displayed on a logarithmic scale. We observe that computation time decreases linearly with the sampling rate, for all image sizes. • On Figure III.4.(b) we plot the evolution of the computation time with respect to N log N , for several sampling rates. This time, both axes are represented with a logarithmic scale.

Figure III. 4 :

 4 Figure III.4: Computation times on crops of the Shepp-Logan phantom of different sizes N , and for several sampling rates τ . (a) Evolution of computation time with respect to sampling rate, for several image sizes N . (b) Evolution of computation time with respect to image size N , for several sampling rates τ .

[O 1 :

 1 (NA = 0.16, M = 5), O 2 : (NA = 0.5, M = 20), O 3 : (NA = 1.4, M = 63)]. The sample is illuminated with a laser of wavelength λ = 430nm, and the Fourier-sparsity for each of the three objectives is [τ S 1 = 0.49, τ S 2 = 0.30, τ S 3 = 0.25]. The two experiments, detailed below, were conducted on two different biological samples with different resolution properties.

Noiseless 2 :

 2 Figure III.5: Simulation of the reconstruction of the Target image from partial acquisitions using our direct-domain CS-based microscope. Four experiments are presented on the four rows: the two first rows represent the noiseless and noisy case with M = 100, and the two last rows represent the noiseless and noisy case with M = 200. The noisy images are corrupted with a mixed Poisson-Gaussian noise of parameters σ = 0.01 and λ n = 50. The PSNR and SSIM are measured with respect to the noiseless image.

Figure III. 7 :

 7 Figure III.7: Experiment on an Amoebae sample in fluorescence microscopy (zoom on a 161 × 161 pixels area), using DAPI dye. The direct-domain CS-reconstruction results from 25% of the samples are displayed, along with the acquired image on the binned camera, the original image and differences, and their Fourier transforms, for the following magnifications: 5x, 20x and 63x.

Figure III. 8 :

 8 Figure III.8: Experiment on a HeLa sample in fluorescence microscopy (zoom on a 161 × 161 pixels area), using EGFP dye. The direct-domain CS-reconstruction results from 25% of the samples are displayed, along with the acquired image on the binned camera, the original image and the differences and their Fourier transforms, for the following magnifications: 5x, 20x and 63x.

  Figure III.9: Reconstruction results corresponding to Figures III.7 and III.8. Note that the y axes are separated into two parts on Figure (a), for better visualization.

  Chapter III: Direct-domain Compressed Sensing 109 Table III.1: Comparison of four of the most popular super-resolution techniques in fluorescence microscopy. -emission-depletion; PALM = photo-activated localization microscopy; STORM = stochastic optical reconstruction microscopy; SIM = structured illumination microscopy.

Figure III. 10 :

 10 Figure III.10: Principle of STED microscopy. (a) The process of stimulated emission. (b) Scheme of a STED microscope. (c) PSF in standard microscopy, combined with the doughnutshaped beam, leading to a smaller effective PSF. Taken from [Huang09b]

Figure III. 11 :

 11 Figure III.11: Principle of PALM/STORM microscopy. A few fluorescent probes are photoactivated at different time points, allowing the precise localization of individual non-overlapping spots.Taken from[START_REF] Huang | A new total variation method for multiplicative noise removal[END_REF] 

Figure

  Figure III.12: Principle of the MINFLUX technique. (A) Simplified set-up. (B) Four doughnutshaped beams are sequentially placed at the four locations r 0 , . . . , r 3 , and photons emitted by the fluorophore (displayed as a star) are counted for each position. (C-E) Proposed applications of MINFLUX to nanoscopy and tracking. Taken from [Balzarotti17]

Figure

  Figure III.13: The Moiré effect. When superposing two grids of same frequency and different orientations, a new pattern appears, of coarser frequency.

Figure III. 14 :

 14 Figure III.14: The Moiré effect, seen through a microscope. The grids of high frequency are invisible because of the PSF of the microscope, but the pattern resulting from the superposition is.

  Figure III.15 displays a scheme of this step. The SIM reconstruction method proposed in [Gustafsson00] can be divided into four steps (summed up in Figure III.16):

Figure III. 15 :

 15 Figure III.15: Principle of the SIM acquisition process of a single SIM image, with angle θ = 0 and phase φ = 0. The sample is illuminated by a structured pattern (corresponding to a pixelwise multiplication), and the resulting modulated image is observed through the microscope objective (corresponding to a convolution with the objective PSF, see Figure III.1.(a)). The complete SIM acquisition consists in recording sequentially several images with different values of θ and φ. Each image is displayed in both direct space (left) and Fourier domain (right).

Figure

  Figure III.16: Principle of the SIM reconstruction process proposed in [Gustafsson00]. Visualization is made in the Fourier domain, for better understanding.

Figure 1 . H is the convolution term 2 .

 12 Figure III.17: Sketch of the structured illumination microscope designed in this work.

Algorithm 4 :

 4 Conjugate gradient method, solving the inverse problem Af = b. Input : A: Real, symmetric, positive-definite matrix, b: Real vector, ε: positive parameter. Output: f : Estimate of f , solution of Af = b.

Figure

  Figure III.18: High-resolution (HR), widefield observations and CS-reconstructions (with τ = 25% or 50%) of the widefield data on the Synthetic and Hela images, along with their Fourier Transforms (F.T.), shown in log-values for visualization. Third row represents the spatial random sampling collected on the camera, along with its Fourier Transform.

Figure III. 19 :

 19 Figure III.19: SIM4i and CS-SIM reconstructions (τ = 25% or 50%) of the Synthetic and Hela images, along with their Fourier Transforms (F.T.).

  Figure III.20: Magnified view (patch size = 50 × 50 pixels) of the CS-SIM reconstructions from Fig.III.19 on structural details for the Synthetic and Hela images. The last row displays intensity profile values along the red dotted segments shown on the HR images. Unit of x axis is in µm.
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Figure IV. 1 :

 1 Figure IV.1: Schemes of OCT techniques. (top) Principles of TD-OCT, SD-OCT and SS-OCT (image taken from [Ling18]). (bottom) OCT image acquisition strategy: each A-line is recorded sequentially, to recover the whole B-scan.

Figure IV. 2 :

 2 Figure IV.2: Scheme of a TD-OCT system. Image taken from [Bayleyegn12].

Figure IV. 3 :

 3 Figure IV.3: Principle of an A-line reconstruction in SD-OCT (image taken from [Gan17]). (a) Recorded signal, with background. (b) Signal after background subtraction. (c) Signal representation in the k domain. (d) Signal after apodization. (e) SD-OCT signal, after inverse Fourier Transform.

  Figure IV.4 for examples of each series of images.

Figure

  Figure IV.4: Examples of SD-OCT images. (top) In-vitro human cardiac tissue images. (bottom) Human retinal images.

Figure

  Figure IV.5: Localization of θ 0 using the Hough transform. From the SD-OCT image, an edge map is extracted (using the Sobol edge detection algorithm). Then, the Hough transform is applied on the edge map, and the area of brighter intensity on the resulting image corresponds to the main direction angle θ.

Figure

  Figure IV.6: Sampling strategy for FSR-LWC. (left) Fourier transform of the SD-OCT image display in Figure IV.5. (right) Selection of Fourier coefficients: N b branches of the star pattern, the cone delimited by angles θ 0 -θ and θ 0 -θ , and N p uniformly sampled Fourier coefficients.

Figure IV. 7 :

 7 Figure IV.7: Influence of the parameter ε in Equation (IV.3) on the quality of the reconstruction of one cardiac tissue SD-OCT image. (top -left) TV-norm of the estimators x reconstructed using different parameters ε. (top -right) Intensity profiles of one A-line of the estimators x for different values of ε. (bottom) Corresponding B-scans.

Algorithm 5 :for p = 1 : n 2 do 4 p ← p + 1 ; 5 [ 7 for k = 1 : m p-1 do 8 for l = 1 : m p do 9 if

 5141571819 Cardiac tissue layers segmentation. Input : xvar : Variance map, , δ: Integer parameters. Output: xseg : Segmentation map. 1 Initialize: [n 1 , n 2 ] = size(x var ), p ← 1, z p ← xvar (:, 1). ; 2 First step: [vals 1 , locs 1 ] = findpeaks(z 1 , 'MinPeakHeight', ). ; 3 val p , locs p ] = findpeaks(z p , 'MinPeakHeight', ) ; 6 m p-1 ← length(vals p-1 ), m p ← length(vals p ) ; |locs p (k) -locs p-1 (l)| < δ then 10 xseg (k, l) ← 1 ;

= 3 ,

 3 .1 the parameter values chosen 144 IV.2 CS-based SD-OCT image simplification and segmentation Table IV.1: Parameters values of the different denoising methods used for comparison. Patch size = 4 px, α = 0.1 -Wav. thresh. [Donoho95a] λ wav = 0.2, depth = 10, type = haar -N b = 16, θ 0 = -π 12 , τ = 5%, ε = 13.78 θ 0 = 0, ε = 9.18 px = pixels.

Figure IV. 8 :

 8 Figure IV.8: Simplification of the cardiac images. For each noisy data, we present the result of our simplification algorithm, along with the 4 tested denoising methods: BM3D, Wavelt soft-thresholding, TV and NLM. We highlight with yellow ellipses typical reconstruction errors associated with each algorithm.

Thickness

  ) = 0.021, ρ 1 = 0.921, ρ 2 = 0.924.

FigureFigure

  Figure IV.10: Retinal layer structure visualization: (A-C-E) SD-OCT B-scan. (B-D-F) Histological sections.

  Figure IV.13: Example of image simplification using our FSR-LWC algorithm on a 3D volume of human cardiac tissue.

Figure

  Figure IV.14: Fundamentals of SS-OCT acquisition. (a) Scheme of a highly stable SS-OCT set-up, where the reference clock arm is separated from the OCT acquisition arm. (b) Principle of an A-line reconstruction in SS-OCT. The two main parts are well separated: in blue, the reference clock signal, and in red the object signal (images taken from [Ling18]).

2 ,

 2 and k(t) is an unknown function. Finally, the post-processing step of the clock signal consists in extracting the curve k, to refine the OCT image reconstruction (see Figure IV.14-(b)).

  Figure IV.15: Examples of clock signals in SS-OCT. (a-b) Example of a clock signal measured during the acquisition of a single A-line (M = 2048), and its Fourier transform (c-d) 2D visualization of the N = 2048 clock signals measured during the acquisition of a B-scan, and its Fourier transform (displayed in log-scale).

Figure IV. 16 :λ max = 2π λ c + ∆λ 2 ,

 162 Figure IV.16: Characteristics of the swept light source used in our experiments. The ideal function λ is represented in pink, as a function of time (1 A-line is acquired over 5µs). Source: http://www.santec.com/en/products/oct/hsl-1020.

1 )(

 1 Figure IV.17: Scheme of the Fourier transform of a SS-OCT clock signal. The curve is composed of three main parts: a central peak corresponding to the intensity mean of the clock signal, and two symmetrical areas delimited by the frequencies f c and -f c .

Figure

  Figure IV.18: Example of CS-based reconstruction of a clock signal, using 25% of the samples. (a) Clock signal of length M = 2048. (b) Under-sampled clock signal, keeping 25% of the samples. (c) CS-based reconstruction of the clock signal. (d) Reconstruction error (a)-(c). (e-g) Fourier transforms of (a-c). (h) Reconstruction error (e)-(g).

Figure

  Figure IV.19: Example of CS-based reconstruction of a clock B-scan, using 5% of the samples. (a) Clock B-scan of size M × N = 2048 × 2048. (b) Under-sampled clock B-scan, keeping 5% of the samples. (c) CS-based reconstruction of the clock B-scan. (d) Reconstruction error (a)-(c). (e-g) Fourier transforms of (a-c), displayed in log-view. (h) Reconstruction error (e)-(g).

Figure

  Figure IV.20: Evolution of the relative reconstruction error of a complete clock B-scan with respect to sampling rate, for several sampling stack sizes. The relative error for 1 A-line and τ = 1% (not displayed) is equal to 0.5.

Figure

  Figure IV.21: Computation time (in seconds) of our CS-SS-OCT method on a given 1024×1024 clock B-scan, for several sampling rates and several A-line stack sizes.

Figure

  Figure IV.22: Zoom on phase jumps in the results from Figure IV.19 (window of size 100 × 148 pixels). (a) Clock B-scan. (b) Under-sampled clock B-scan, keeping 5% of the coefficients. (c) CS-based reconstruction of the clock B-scan. (d) Reconstruction error |(c)-(a)|.

  Figure IV.23).

Figure

  Figure IV.23: The schematic of the hardware-based sub-sampling. The object channel is fully digitized by the first DAQ board, while the clock channel is sub-sampled by the second DAQ board. Both digitized signals are later transferred to the host PC. Note that this figure displays a first example with a compression ratio of 2, but our method allows a sampling reduction up to a factor 20.

  Figure IV.24(a), while the sub-sampled acquisition and reconstruction are given in Figure IV.24(b). The reconstructed calibration signal is almost identical to the fully sampled one in spite of a scaling factor, which is caused by the difference between the two DAQ boards.

  Figure IV.25(a), and its discrete Fourier transform (DFT) spectrum against the fast axis is shown in Figure IV.25(e). The DFT spectrum shows a strong Doppler frequency shift in the inside region of the tube. After highpass filtering the image, we obtain the optical micro-angiography (OMAG) image by following the steps described in Wang et al [Wang09a].

Figure IV. 24 :

 24 Figure IV.24: The proposed CS-enabled calibration method requires less data bandwidth without compromising phase stability. (a) The Full calibration signal. (b) The experimentally obtained sub-sampled calibration signal (red squares) and its reconstruction (black solid line).(c) The k-t curves extracted from the full calibration signal and the reconstructed signal. The error, whose amplitude is less than 0.1% of that of the original signal over the entire spectrum, is also plotted. The histogram of the instantaneous phase angles obtained from the peak location of OCT images by using full calibration signal and reconstructed signal are presented in (d) and (e). The standard deviation of the distribution is 4.53 mrad and 4.49 mrad, respectively.

Figure

  Figure IV.25: The results of the flow velocity measure. (a) The original OCT image of the flow phantom. Its 1D DFT in fast axis direction is given in (e), where we could spot the Doppler frequency shift due to the presence of the intralipid flow. The resultant OMAG images by using full calibration, pre-measured calibration, and proposed CS-based remapping schemes are given in (b), (c) and (d), respectively. In panel (c), the artifacts due to the timing jitter is pointed out by yellow arrows and yellow box. (f) The computed Doppler image by using proposed CS-based remapping. The averaged (4 adjacent A-lines) depth profile at the red line's location is plotted in (g).

Figure

  Figure IV.26: The blood flow detection in ex vivo swine left marginal artery. (a) Volumetric OCT image overlaid with corresponding OMAG image. The cross-sectional views in y -z and x -z planes are shown in (b) and (c), respectively. The white scale bars represent for 1 mm in each direction.

  Figure IV.26(a). Representative sectional views in both y (slow scanning axis)-z and x (fast scanning axis)-z planes are given in Figure IV.26(b) and (c), respectively. The left marginal artery is clearly visible in OMAG image with high contrast. Artifacts on the lower boundary of the vessel are mainly due to the lower SNR in the region.

Figure A. 2 :

 2 Figure A.2: Box plots of the PSNR and SSIM measures obtained with each denoising method, over 20 levels of Gaussian noise (0.01 ≤ σ ≤ 0.2) and 16 levels of Poisson noise (6 ≤ λ ≤ 100). (a) PSNR values for Pure (Gaussian noise). (b) SSIM values for Pure (Gaussian noise). (c) PSNR values for Synth. (Gaussian noise). (d) SSIM values for Synth. (Gaussian noise). (e) PSNR values for Pure (Poisson noise). (f) SSIM values for Pure (Poisson noise). (g) PSNR values for Synth. (Poisson noise). (h) SSIM values for Synth. (Poisson noise).

  , A.4 and A.5 visual results obtained in the context of pure Gaussian noise (with σ = 0.15) on the Pure and Synth. images. Similarly to the mixed Poisson-Gaussian case, most TV-based techniques (except TV-ICE, which struggles to reconstruct wide constant areas), including our proposed FSR method, reconstruct almost perfectly the Pure image. On the other hand, the non-local and sparse filtering techniques display strong artifacts.Concerning the Synth. image, the same observations can be made for the TV-based techniques, except for the TV-MAP Poisson which presents artifact structures in the background and a loss of contrast of the cell. However, non-local methods tend to perform better on this example, given that some redundant structures are present in the image this time. Finally, TV, Poisson EM-TV and all four FSR methods present an almost perfect reconstruction.

Figure A. 3 :

 3 Figure A.3: Comparison of the denoising methods on the Pure. image, with values rescaled to [0, 1]. The image y is corrupted with Gaussian noise of parameter σ = 0.15.

Figure A. 4 :

 4 Figure A.4: Comparison of the denoising methods on the Synth. cell image, with values rescaled to [0, 1]. The image y is corrupted with Gaussian noise of parameter σ = 0.15.

Figure A. 5 :

 5 Figure A.5: Comparison of the denoising methods on the Synth. cell image -zoom on a single cell, with values rescaled to [0, 1]. The image y is corrupted with Gaussian noise of parameter σ = 0.15.

Figure A. 6 :

 6 Figure A.6: Comparison of the denoising methods on the Pure. image, with values rescaled to [0, 1]. The image y is corrupted with Poisson noise of parameter λ = 9.

Figure A. 7 :

 7 Figure A.7: Comparison of the denoising methods on the Synth. cell image, with values rescaled to [0, 1]. The image y is corrupted with Poisson noise of parameter λ = 9.

Figure A. 8 :

 8 Figure A.8: Comparison of the denoising methods on the Synth. cell image -zoom on a single cell, with values rescaled to [0, 1]. The image y is corrupted with Poisson noise of parameter λ = 9.

Figure A. 9 :

 9 Figure A.9: Comparison of the denoising methods on the Hela 2 image, with values rescaled to [0, 1].

  Figure A.10: Comparison of the denoising methods on the Hela 3 image, with values rescaled to [0, 1].

  Figure A.11: Enhancement of three denoising filters using the variance map on the Cameraman image corrupted with mixed Poisson-Gaussian noise. Top part displays the ground truth Cameraman image (left), its noisy version (middle) and the variance map (right). Bottom part shows denoising results with the original and enhanced implementation (using the variance map). Last row displays the absolute differences between results from the two implementations.

B. 1

 1 Introduction à la théorie du CS Definition 10 (Compressibilité, parcimonie faible). Une image x ∈ C N est dite compressible si, pour une valeur r > 1, il existe une constante C r (dépendant uniquement de r) telle que :

L

  'introduction du RIP, et le cadre développé en conséquence, en plus des articles de Donoho [Donoho06a, Donoho06b], ont contribué à la définition d'une nouvelle théorie mathématique : le Compressed Sensing. Formellement, supposons que nous acquérons une observation y = Φx + b ∈ C M d'une image x ∈ C N (avec M N ) qui a une représentation parcimonieuse s dans un domaine de transformation donné par Ψ ∈ C N ×L (c'est-à-dire tel que x = Ψs), où Φ ∈ C M ×N est un opérateur de mesure et b représente un bruit additif blanc inconnu tel que b 2 ≤ ε, un estimateur x de l'image x est obtenu en résolvant le problème d'optimisation : x = arg min xC N Ψ * x 1 tel que |y -Φx 2 ≤ ε. (B.4) Dans plusieurs travaux sur la reconstruction d'image basée sur le CS tels que [Candès06a, Kim09, Marim11a, LeMontagner13], la norme 1 de l'image parcimonieuse Ψ * x dans le problème d'optimisation (B.4) est remplacée par la norme de Variation Totale (TV) discrète de l'image x, définie comme dans [Chambolle04] :

.

  

Figure B. 1 :

 1 Figure B.1: Schéma de fonctionnement de la méthode FSR. A partir d'une image bruitée y, un nombre donné de vecteurs faiblement échantillonnés y k sont générés, en calculant la transformée de Fourier (FT) de y et en sélectionnant un sous-ensemble des coefficients de Fourier (Φ k ). Ensuite, chaque y k est utilisé pour produire un estimateur xk du signal original à travers un schéma de reconstruction d'optimisation convexe. Enfin, tous les xk sont combinés dans un estimateur x en utilisant une des techniques de fusion proposées.

  en mettant à zéro la plupart des coefficients dans la matrice 2D de transformation de Fourier F. Φ k suit la propriété isométrique restreinte et convient donc bien aux reconstructions CS [Candes07]. b. Reconstruction d'estimateurs partiels par optimisation convexe . Nous résolvons les problèmes d'optimisation convexe suivants pour récupérer les estimateurs partiels xk à partir des vecteurs de mesure y k : xk = arg min

  x∈R

  ∀s ∈ Ω, xFBA (s) = F -1 R k=1 w k (ζ) • F(x k )(ζ) (s), (B.9) w k (ζ) = |F(x k )(ζ)| p R l=1 |F(x l )(ζ)| p (B.10) où p est un entier strictement positif, F représente l'opérateur de transformée de Fourier et ζ l'indice de fréquence. Le poids w k contrôle la contribution, à chaque fréquence, de la reconstruction partielle k dans la reconstruction finale xF BA . Cette méthode donne la priorité, parmi

Figure B. 2 :

 2 Figure B.2: Comparaison des méthodes de débruitage sur l'image de cellule synthétique (zoom sur une seule cellule). L'image originale est dégradée par un bruit mixte Poisson-Gaussien de paramètres λ = 9 et σ = 0.15.

1 FS

 1 4), supposons que nous obtenions une observation y = Φx + b ∈ C M d'une image x ∈ C N (avec M <<< N ), Φ ∈ {0, 1} M ×N est une matrice binaire, sélectionnant aléatoirement (suivant une loi uniforme) M pixels parmi les N qui définissent x, et b est un terme de bruit additif inconnu tel que b 2 ≤ ε. Supposons en outre que la transformée de Fourier de l'image x, notée F(x) a un support parcimonieux (ce qui signifie que |F(x)(ξ)| = 0 pour la plupart des fréquences ξ). La transformée Ψ dans l'équation B.4 est donc l'opérateur de transformée de Fourier inverse Ψ = F -1 . Ensuite, un estimateur x de l'image x est obtenu en minimisant le problème suivant :x = arg min x∈C N F(x) 1 tel que Φx 2 ≤ ε. (B.11)Il est important de noter que ce problème est écrit de la même façon, que les objets x et y soient des signaux ou des images, et F représente l'opérateur de transformée de Fourier 1D ou 2D, respectivement. Par souci de généralité, nous utilisons l'algorithme NESTA[START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] pour résoudre l'équation (B.11), car il peut être facilement adapté aux cas 1D et 2D. L'opérateur de mesure Φ est un cas spécifique de transformation unitaire partielle (Φ = ΣU , où Σ est une matrice de sélection, et U * U = I N ), où la matrice orthogonale U est la matrice identité, ce qui signifie que la propriété isométrique limitée se vérifie pour notre modèle, avec une très faible constante ∆ S . De plus, la cohérence mutuelle µ(Φ, Ψ) est égale à 1, ce qui est optimal pour la reconstruction CS. Grâce à ces deux propriétés, on peut appliquer le résultat du Théorème 4, et affirmer que la solution de l'équation B.11 estime l'image x avec grande précision, si le nombre d'échantillons M vérifie la limite inférieure :M ≥ C • SlogN, (B.12)L'erreur de reconstruction est donnée par la borne supérieure :x -x 2 ≤ C est la meilleure approximation S-parcimonieuse de F(x), et C 1 , C 2 sont deux constantes positives.

  comme f c = c • 2NA 1.22λ , où c est la vitesse de la lumière dans le vide. Par conséquent, la surface du domaine de Fourier contenant l'information est un disque de rayon f c . D'autre part, nous définissons la résolution optique des pixels du système comme le détail le plus fin possible enregistré par la caméra. Nous le désignons par λ max = px M , et il représente la taille réelle des pixels de la caméra. Ensuite, si on désigne f max = c/λ max sa fréquence correspondante, on observe que l'étendue du domaine de Fourier total est celle d'un carré de côté 2 × f max . Enfin, nous pouvons donner le résultat suivant : Theorem 5. Soit x une image acquise au microscope (avec une ouverture numérique NA et un coefficient de grossissement global M), et enregistrée sur une caméra avec des pixels de taille px . Si la longueur d'onde d'illumination est λ, alors le degré de parcimonie de Fourier de x est donné par :

Figure B. 3 :

 3 Figure B.3: Schéma de montage du microscope à échantillonnage comprimé en domaine direct.Dans le cadre, nous présentons un schéma de principe de notre modèle d'acquisition CS à domaine direct. L'image de fluorescence est projetée sur le DMD (le réseau de micro-miroirs est représenté en bleu), où seulement 25% des miroirs sont activés, et réfléchissent la lumière vers la caméra (le réseau de pixels de la caméra est représenté en rouge). Pour chaque pixel de caméra, il y a exactement un micro-miroir activé.

Figure B. 5 :Figure B. 6 :Figure B. 7 :

 567 Figure B.4: Haut -Vue magnifiée (taille de la fenêtre = 50 × 50 pixels) des reconstructions CS-SIM sur des détails de structure dans les images Synthétique et HeLa. Bas -Profils d'intensité le long des segments en pointillés pour chaque image. L'axe des x est en µm.

Figure B. 8 :

 8 Figure B.8: Détection du flux sanguin dans l'artère gauche marginale d'un porc (ex-vivo). a) Image OCT volumétrique superposée à l'image OMAG correspondante. Les vues en coupe transversale dans les plans y -z et x -z sont présentées en (b) et (c), respectivement. Les barres d'échelle blanches représentent 1 mm dans chaque direction.
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Table II .

 II 1: Review of the tested denoising methods.

	Acronym	Ref.	Method	Prior noise model Signal model
	TV	[Rudin92]	Convex optimization	Additive	Deterministic
	TV-ICE	[Louchet14]	Iterative local update of the pixel values Additive	Deterministic
	Poisson EM-TV	[Sawatzky09]	Convex optimization	Poisson	Probabilistic
	TV-MAP Poisson [Chambolle11]	Primal-dual formulation	Poisson	Probabilistic
	MIDAL	[Bioucas-Dias10] Variable splitting convex optimization	Multiplicative	Deterministic
	NLM	[Buades05]	Non-local filtering	Additive	Deterministic
	NLM-Poisson	[Deledalle10]	Non-local filtering	Poisson	Probabilistic
	NLPCA	[Salmon14]	Principal component analysis	Poisson	Probabilistic
	PNLW	[Bindilatti18]	Non-local filtering	Poisson	Probabilistic
	Analysis K-SVD	[Rubinstein13]	Dictionary learning	Additive	Deterministic
	Wavelet thresh.	[Donoho95a]	Wavelet domain filtering	Additive	Deterministic
	BM3D	[Dabov07]	Non-local wavelet-based filtering	Additive	Deterministic
	FSR		Fusion of sparsity-based reconstructions	High-frequency	Deterministic

Table II .

 II 2: Sources of code implementation and parameters values of the different denoising methods for the Synth image corrupted with mixed Poisson-Gaussian noise with parameters σ = 0.15 and λ = 9. Note that all the in-house codes have been written in Matlab c . In addition, codes with a symbol "*" are using mex files.

	Method	Code source	Parameters
	TV	in-house, using NESTA* (see Table II.3(a))	= 65.53
	TV-ICE	in-house, based on [Louchet14]	λ = 0.2, n iter = 10 (convergence reached)
	Poisson EM-TV	Sawatzky himself	w = 256 2 , β = 0.002
	TV-MAP Poisson Abergel website (see Table II.3(b))	λ = 0.7, n iter = 200
	MIDAL	Bioucas Dias himself	M = 2, λ mid = 4, n iter = 200
	NLM	Peyré Matlab toolbox (see Table II.3(c))	Patch size = 4 pixels, α = 0.1
	NLM-Poisson*	Deledalle website (see Table II.3(d))	Patch size for pre-estimate = 4 pixels
	NLPCA	Salmon website (see Table II.3(e))	P = 10, K = 14, = 4
	PNLW	Bindilatti himself	γ = 0.32, β = 20, Patch size = 11
	Analysis K-SVD	Elad website (see Table II.3 (f))	N patches = 1000, n patch = 5
	Wavelet thresh.	in-house	λwav = 0.2, wavelet depth = 10, wavelet type = haar
	BM3D*	Dabov website (see Table II.3(g))	σ b = 25
	FSR	in-house, using NESTA*	R = 10, νc = 0.3, τ = 0.2, = 16.22(γ = 1.4)

Table II

 II Table II.4: Highlights of visual results obtained with the tested denoising methods.

	Ref. [Rudin92] [Louchet14] [Sawatzky09] TV-MAP Poisson [Chambolle11] TV TV-ICE Poisson EM-TV MIDAL [Bioucas-Dias10] Overall good performance. Quality Very efficient on piecewise constant images. Efficient on small structures. Outperforms TV, especially for Poisson noise. Outperforms classical TV-ICE on wide areas. NLM [Buades05] High performance on textured images. NLM-Poisson [Deledalle10] Very efficient result on Synth image with Poisson noise. NLPCA [Salmon14] Efficient on Hela image. PNLW [Bindilatti18] Efficient on pure Poisson noise. Analysis K-SVD [Rubinstein13] High performance on textured images. Wavelet thresh. [Donoho95a] Intermediate performance on Hela image. Ref. Method Acronym BM3D [Dabov07] Overall best on Hela.	Artefacts Staircase effects on real images. Deals poorly with wide homogeneous areas. Staircase effect. Loss of contrast on Synth image. Loss of texture and modification of overall contrast. Loss of contrast on Synth image and appearance of texture patterns on Pure image. Performance degraded in presence of Gaussian noise. Visible textures on Pure image, blurred structures on Synth image. Loss of contrast on mixed noise. Extremely slow, not adapted to high noise. Artifacts around edges. Visual artifacts on the Synth image.
	FSR	Overall high performance over all image types and noise models.	Small staircase effects and blur at the edges of Synth. image.

.3: Websites for source codes.

and Hela. This table contains 16 × 3 × 3 = 135 values v (without considering the PSNR and SSIM measures of the noisy images). To review the results, we grouped these values into three categories: best, intermediate and low values (color-coded in the tables). Denoting v * the overall best value among each column of 16 experiments (v * is shown in bold font in the tables), and σ v their standard deviation, these three categories are defined as: best for

Table II .

 II 5: Visual quality metrics (PSNR (dB) and SSIM) and computation performance (in seconds) of 12 state-of-the-art denoising algorithms, along with 4 FSR implementations, on the Pure, Synth. and Hela images corrupted with mixed Poisson-Gaussian noise. These values correspond to the images displayed on Figures II.14, II.15 and II.17.

			Pure			Synth.			Hela	
		PSNR	SSIM	t(s)	PSNR	SSIM	t(s)	PSNR	SSIM	t(s)
	Noisy	10.81	0.255	-	13.71	0.112	-	17.72	0.094	-
	TV	23.82	0.916	1.3	32.79	0.770	1.1	29.99	0.832	4.9
	TV-ICE	12.40	0.410	1.7	16.85	0.337	10.6	24.95	0.391	62.7
	Poisson EM-TV	25.87	0.975	0.56	26.01	0.903	2.4	30.53	0.753	16.4
	TV-MAP	19.65	0.908	0.55	15.09	0.296	2.3	19.92	0.337	11.1
	MIDAL	15.48	0.886	0.36	15.22	0.493	0.7	18.88	0.309	10.4
	NLM	21.36	0.889	1.0	24.44	0.777	15.3	27.56	0.804	73.6
	NLM-Poisson	15.35	0.744	0.24	21.26	0.626	44.2	28.46	0.571	11.1
	NLPCA	17.54	0.725	1.2	23.47	0.652	15.9	30.19	0.793	46.7
	PNLW	17.62	0.655	1.8	16.81	0.191	27.9	24.30	0.254	82.8
	Analysis K-SVD	13.60	0.574	277	17.47	0.378	480	26.62	0.473	1208
	Wavelet thresholding	21.74	0.943	5.3	25.97	0.651	5.0	25.45	0.394	4.8
	BM3D	23.52	0.974	0.18	25.67	0.795	1.2	30.63	0.827	3.5
	FSR-Mean	32.52	0.996	1.8	28.13	0.925	14.2	31.07	0.837	33.1
	FSR-EWA	32.93	0.997	1.9	28.63	0.927	16.8	31.05	0.831	35.5
	FSR-FBA	32.65	0.996	2.1	27.93	0.888	14.3	29.73	0.638	33.3
	FSR-LWC	22.11	0.884	1.9	29.30	0.911	14.3	31.13	0.842	33.3

Color coding of cells: green = best, yellow = intermediate, white = poor performance.

Table II .

 II 6: Image quality metrics (SSIM & PSNR) for three denoising filters, comparing the original implementation and when using the variance map (enhanced implementation). Results are reported for the Cameraman, Barbara and Peppers images, degraded with mixed Poisson-

	Gaussian noise.				
				SSIM	PSNR (db)
			Orig. Enhanced Orig. Enhanced
	Synth.	Lee Anisotropic 0.394 0.147 TV 0.658	0.281 0.496 0.659	12.27 17.37 21.46	13.96 19.76 21.47
	Hela	Lee Anisotropic 0.770 0.139	0.163 0.799	15.28 26.60	19.41 26.75
		TV	0.825	0.826	30.20	30.22

  Synth. image corrupted with mixed Poisson-Gaussian noise (with σ = 0.15, λ = 9) are illustrated in Fig. II.20 and denoising metrics are reported in TableII.6. We also display on Figure II.21, and report in TableII.6 the results on the Hela image.

  Quantitative evaluations of the CS reconstructions versus widefield images and the CS-SIM reconstructions versus HR images. For each technique, we report MSE (in blue) and SSIM (in red) measurements with respect to the sampling rate used by the CS. On the third column, we report the normalized FSA measures for the different reconstructions.

	Synthetic	0 0.05 0.1 0.15 0.2 0.25 0.3	0.2	0.4 Sampling rate 0.6	0.8 MSE SSIM	1	0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	0.25 0.3 0.35 0.4 0.45 0.5	0.2	0.4 Sampling rate 0.6 CS-SIM 0.8 Widefield SIM4i SIM4i Widefield CS-SIM	1 0 0.2 0.4 0.6 0.8 1	0 0.1 0.2 0.3 0.4 0.5 1 0.9 0.8 0.7 0.6	0	500	250 Resolution[nm] Widefield 125 SIM4i 25% CS-SIM 100 50% CS-SIM 75% CS-SIM
	Hela	0.005 0.01 0.015 0.02 0.025		MSE SSIM	0.2 0.4 0.6 0.8 1	0.03 0.04 0.05		CS-SIM Widefield SIM4i	CS-SIM SIM4i Widefield	0.2 0.4 0.6 0.8 1	0.2 0.3 0.4 0.5 1 0.9 0.8 0.7 0.6			Widefield SIM4i 25% CS-SIM 50% CS-SIM 75% CS-SIM
		0	0.2	0.4 Sampling rate 0.6	0.8	1 0	0.02	0.2	0.4 Sampling rate 0.6	0.8	1 0	0 0.1	0	2000	1000 Resolution [nm]	500	400
			CS-reconstruction					CS-SIM							Normalized FSA
	Figure III.21:													

Table A .

 A 1: Visual quality metrics (PSNR (dB) and SSIM) and computation performance (in seconds) of 12 state-of-the-art denoising algorithms, along with 4 proposed, on the Pure and Synth. images corrupted with Gaussian noise (σ = 0.15) and with Poisson noise (λ = 9), as well as on the Hela images. These values correspond to the images displayed on Figures A.3, A.4, A.6, A.7, A.9 and A.10.

			Pure			Synth.			Hela	
		Gaussian	Poisson	Gaussian	Poisson	Hela 2	Hela 3
		PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
	Noisy	14.01	0.355	9.94	0.240	11.70	0.114	12.76	0.111	17.79	0.116	17.72	0.094
	TV	32.68	0.995	32.87	0.995	30.20	0.958	29.84	0.952	24.66	0.679	25.93	0.697
	TV-ICE	17.55	0.816	10.58	0.536	17.78	0.439	26.51	0.729	25.14	0.528	25.68	0.558
	P. EM-TV	21.49	0.969	37.67	0.997	29.71	0.982	31.53	0.970	26.10	0.715	27.02	0.723
	TV-MAP	29.27	0.988	25.97	0.982	15.30	0.364	23.51	0.426	16.59	0.431	16.72	0.457
	MIDAL	17.76	0.951	21.53	0.965	17.55	0.562	25.92	0.668	15.44	0.333	12.75	0.304
	NLM	25.40	0.973	18.74	0.863	25.58	0.779	25.04	0.914	23.85	0.738	25.63	0.749
	NLM-P.	23.68	0.965	15.42	0.791	21.14	0.652	26.96	0.818	19.94	0.191	21.28	0.279
	NLPCA	20.58	0.913	16.58	0.677	24.16	0.730	25.51	0.760	26.51	0.767	24.40	0.754
	PNLW	19.46	0.854	19.87	0.874	14.97	0.300	19.83	0.415	23.15	0.279	23.07	0.266
	A. K-SVD	13.96	0.684	13.35	0.570	18.82	0.457	21.59	0.577	24.06	0.539	21.21	0.494
	Wav. thre.	20.63	0.941	11.66	0.635	17.73	0.516	25.49	0.790	25.32	0.541	24.19	0.509
	BM3D	28.67	0.984	22.24	0.967	26.08	0.807	23.28	0.832	26.52	0.778	24.75	0.789
	FSR-Mean	36.87	0.998	33.32	0.998	28.96	0.957	32.01	0.956	26.67	0.789	25.63	0.778
	FSR-EWA	36.04	0.997	32.98	0.996	29.44	0.958	30.34	0.955	26.75	0.792	27.09	0.795
	FSR-FBA	36.21	0.997	32.14	0.995	28.68	0.927	30.83	0.932	26.14	0.726	24.59	0.694
	FSR-LWC	34.21	0.995	29.81	0.987	31.01	0.961	31.18	0.955	26.67	0.783	25.20	0.761
	Color coding of cells: green = best, yellow = intermediate, white = poor performance.				

Table A .

 A 2: Image quality metrics (SSIM and PSNR) for three denoising filters, comparing the original implementation and when using the variance map (enhanced implementation). Results are reported for the Cameraman, Barbara and Peppers images, degraded with mixed Poisson-Gaussian noise.

				SSIM	PSNR (db)
			Original Enhanced Original Enhanced
	Cam.	Lee Anisotropic	0.231 0.541	0.371 0.656	24.61 11.94	26.19 20.20
		TV	0.556	0.690	20.77	20.90
	Bar.	Lee Anisotropic	0.355 0.462	0.457 0.600	18.55 11.87	19.16 22.70
		TV	0.570	0.603	26.20	27.14
	Pep.	Lee Anisotropic	0.321 0.584	0.385 0.700	16.67 11.81	22.44 23.21
		TV	0.595	0.688	29.40	29.43

  les opérateurs dérivés discrets horizontaux et verticaux. La définition la plus courante de ces opérateurs est donnée par : ∀

2 Débruitage d'images de microscopie à fluorescence à l'aide du CS B.2.1 Etat de l'art du débruitage d'images biologiques

  La norme TV est essentiellement la norme 1 de la dérivée isotrope discrète de l'image x. Par conséquent, ce problème décrit l'application d'une parcimonie contrôlée par la TV, qui minimise la dérivée discrète de l'image x, ce qui signifie qu'elle vise à reconstruire une image x qui est une constante par morceaux. Il en résulte des images avec des bords nets et des objets à contraste élevé, ce qui est particulièrement bien adapté à la plupart des images de microscopie biologique.Supposons de plus que Φ est une transformation orthogonale partielle, et que la matrice Ψ est une base orthogonale, on obtient alors le résultat suivant : Theorem 4. Soit Φ ∈ C M ×N une transformation orthogonale partielle. Alors, chaque image x ∈ C N qui est S-parcimonieuse dans le domaine défini par ΨC N ×N peut être reconstruite, avec une probabilité proche de 1, à partir de l'observation y = Φx ∈ C M ×N , tant que :Ce théorème n'est défini que dans le cas où la matrice Φ est une transformation orthogonale partielle. Dans ce cas, la cohérence mutuelle µ(Φ, Ψ) est limitée par √ N . La plupart, sinon toutes les applications de la théorie de l'échantillonnage comprimé supposeront que la matrice Φ représente une sélection des lignes d'une matrice orthogonale. Le cas où µ(Φ, Ψ) est supérieur à √ N entraîne des résultats inefficaces (le nombre M devrait être supérieur à N , ce qui n'est pas pertinent). L'application principale de ce théorème est le cas où les deux matrices Φ et Ψ sont fortement incohérentes, et µ(Φ, Ψ) est proche de 1. Dans ce cas, on peut reconstruire une estimation x de x avec M ∝ S log N coefficients.En pratique, nous utilisons l'algorithme NESTA[START_REF] Becker | Nesta: A fast and accurate firstorder method for sparse recovery[END_REF] pour résoudre le problème (B.6).Les conditions de faible luminosité et les temps d'exposition courts sont des objectifs stratégiques actuels de la recherche en imagerie biologique pour des observations plus longues et moins de dégradation des spécimens, mais ils posent des défis majeurs car ils augmentent considérablement l'influence du bruit et dégradent la qualité d'image. L'une des pistes étudiées pour relever ces défis est la mise au point de méthodes dédiées de débruitage d'images basées sur des modèles mixtes de bruit de Poisson-Gaussien, spécifiques à la microscopie biologique. Dans ce manuscrit, nous présentons une revue détaillée d'une sélection de 12 méthodes de débruitage de pointe (résumées dans le tableau B.1 ainsi qu'un algorithme de débruitage original basé sur le CS qui sont testés sur les différents types de bruit fort et complexe (Gaussien, Poisson et mixte) que l'on retrouve en biologie microscopique. De plus, nous introduisons la carte de variance, une nouvelle méthode d'extraction d'informations de type gradient dans des images corrompues par un fort bruit mixte de Poisson-Gaussien.

	M ≥ Cµ(Φ, Ψ) 2 S log N	(B.7)

mais il existe d'autres choix de discrétisations. Ensuite, le problème d'optimisation (B.4) devient : x = arg min x∈C N x TV tel que|y -Φx 2 ≤ ε. (B.6) où C est une constante positive et µ(Φ, Ψ) = max k,l∈ 1,N | φ k , ψ l | est la cohérence mutuelle entre Φ et Ψ.

B.

  Table B.5: Etude quantitative de la qualité de reconstruction des algorithmes de débruitage étudiés (PSNR et SSIM), et performance de calcul, sur les trois types d'images testés, dégradées par un bruit mixte Poisson-Gaussien. Les valeurs de la colonne centrale correspondent aux images affichées dans la Figure B.2. 'information basse fréquence est disponible. Autrement dit, observer un échantillon au microscope consiste à rendre parcimonieuse sa transformée de Fourier. Nous proposons donc de revenir aux sources de l'échantillonnage comprimé, et d'exploiter la parcimonie d'un signal dans le domaine de Fourier, pour le reconstruire à partir de très peu de mesures spatiales. Dans ce qui suit, nous appelons cette approche direct domain Compressed Sensing. En s'inspirant du problème initial de CS (voir Equation B.

			Pure			Synth.			Hela	
		PSNR	SSIM	t(s)	PSNR	SSIM	t(s)	PSNR	SSIM	t(s)
	Bruitée	10.81	0.255	-	13.71	0.112	-	17.72	0.094	-
	TV	23.82	0.916	1.3	32.79	0.770	1.1	29.99	0.832	4.9
	TV-ICE	12.40	0.410	1.7	16.85	0.337	10.6	24.95	0.391	62.7
	Poisson EM-TV	25.87	0.975	0.56	26.01	0.903	2.4	30.53	0.753	16.4
	TV-MAP	19.65	0.908	0.55	15.09	0.296	2.3	19.92	0.337	11.1
	MIDAL	15.48	0.886	0.36	15.22	0.493	0.7	18.88	0.309	10.4
	NLM	21.36	0.889	1.0	24.44	0.777	15.3	27.56	0.804	73.6
	NLM-Poisson	15.35	0.744	0.24	21.26	0.626	44.2	28.46	0.571	11.1
	NLPCA	17.54	0.725	1.2	23.47	0.652	15.9	30.19	0.793	46.7
	PNLW	17.62	0.655	1.8	16.81	0.191	27.9	24.30	0.254	82.8
	Analysis K-SVD	13.60	0.574	277	17.47	0.378	480	26.62	0.473	1208
	Wavelet thresholding	21.74	0.943	5.3	25.97	0.651	5.0	25.45	0.394	4.8
	BM3D	23.52	0.974	0.18	25.67	0.795	1.2	30.63	0.827	3.5
	FSR-Mean	32.52	0.996	1.8	28.13	0.925	14.2	31.07	0.837	33.1
	FSR-EWA	32.93	0.997	1.9	28.63	0.927	16.8	31.05	0.831	35.5
	FSR-FBA	32.65	0.996	2.1	27.93	0.888	14.3	29.73	0.638	33.3
	FSR-LWC	22.11	0.884	1.9	29.30	0.911	14.3	31.13	0.842	33.3

l

  15)où f ∈ R N est l'image haute-résolution à reconstruire, H représente la PSF du microscope, I k est la grille d'illumination de l'observation k, et n k est le terme de bruit l'affectant. La figure d'illumination ne change pas l'effet passe-bas de la PSF, mais la fréquence de la modulation doit rester dans le support spectral de la PSF.Ensuite, si l'on regroupe les K images brutes en un vecteur g = [g 1 , . . . , g K ], le modèle global peut être écrit :g = HIRf + n (B.16) où H et I sont des matrices diagonales par blocs contenant respectivement H et I k dans chaque bloc, R est une matrice de réplication, et n est le terme de bruit global. La technique SIM4i résout un problème inverse qui s'écrit [Orieux12] : CS-SIM Ici, nous proposons de n'acquérir qu'un sous-ensemble de M pixels à chaque observation, choisis aléatoirement. En utilisant les notations définies ci-dessus, le modèle d'acquisition (B.15) devient : g k = Φ (HI k f + n k ) Maintenant, on résout le problème d'optimisation (B.11), afin de reconstruire un estimateur ĝk,CS à partir de l'observation g k . Enfin, en regroupant les K estimateurs ĝk,CS dans un vecteur ĝCS , on peut appliquer le problème inverse SIM4i (B.17), et on décrit la reconstruction CS-SIM : fCS-SIM = arg min Résultats Sur la figure B.4 sont affiché des zooms sur des parties détaillées des reconstructions, ce qui permet de valider la qualité de la reconstruction à l'échelle du pixel. On peut voir que la résolution est largement améliorée pour τ = 25%, et presque optimale (par rapport à la méthode SIM4i) pour τ = 50%. Nous affichons aussi le profil d'intensité le long d'un segment dans chaque image, pour illustrer l'amélioration de contraste, à mi-chemin entre l'image en champ large et l'image HR.

	f ∈R N	ĝCS -HIRf 2 2 + λ Df 2 2	(B.18)

fSIM = arg min

f ∈R N g -HIRf 2 2 + λ Df

2 2 (B.17) où λ est un hyper-paramètre déterminé par inférence Bayésienne, et Df est la Hessienne de l'image f .
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(a) Influence of the degree of sparsity τ S . (b) Influence of the sampling rate τ : the red pixels are rejected. (c) Influence of the noise variance σ.

(a) Computation time vs τ (semi-log scale). (b) Computation time vs N (log scale).
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B.3 CS en domaine direct B.3.1 Application à la microscopie à fluorescence

La plupart des applications les plus remarquables du CS dans les dispositifs d'imagerie reposent sur le même principe : reconstruire des images parcimonieuses à partir d'acquisitions partielles de Fourier ou de Fresnel. Toute autre tentative d'imagerie à base de CS a été condamnée à rester soit un beau résultat théorique, soit une preuve de concept sans aucune application réelle. La microscopie à fluorescence suit la même règle, et c'est à cause de la nature même de la fluorescence. En effet, la lumière émise par les échantillons fluorescents n'est pas cohérente. Pourtant, même si la transformée de Fourier optique d'une image peut facilement être obtenue en théorie [START_REF] Joseph W Goodman | Introduction to Fourier optics[END_REF], elle nécessite une cohérence de la lumière pour être obtenue. Lorsque cette exigence n'est pas satisfaite, les fréquences de chaque point lumineux de l'échantillon se répartissent sur toute l'onde et l'information de fréquence de l'image est complètement perdue.

Dans ce manuscrit, nous proposons un modèle pour le développement d'un microscope à échantillonnage comprimé, basé sur l'observation suivante : lorsqu'elle est observée au microscope, l'image d'un échantillon est floue, en raison de la fonction de transfert optique (OTF) du système optique. Mathématiquement, cela signifie que la transformée de Fourier de l'image observée correspond à l'application d'un filtre passe-bas sur l'image échantillon idéale : seule
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with a * in Table II.2) exploiting compiled mex files. We report on Table II.5 the computation times for Pure, Synth. and Hela images.

II.6.2 Results on synthetic images

Visual results for the three types of images are summarized in II.4. Several artifacts seen on the Pure and Synth images replicate findings in [START_REF] Salmon | Patch reprojections for non-local methods[END_REF], including the rare patch effect at edges and presence of patch borders in flat regions of the image.

In Table II.5, we report the PSNR and SSIM values obtained for each method as well as computation times. We highlight in bold the best PSNR and SSIM values obtained with our method, and the fastest method among all, which is MIDAL for Synth. and BM3D for Pure IV.2 CS-based SD-OCT image simplification and segmentation generalized their approach to OCT volumes in [START_REF] Young | Real-time high-speed volumetric imaging using compressive sampling optical coherence tomography[END_REF].

Overall, the previous research done on CS-based OCT focused exclusively on SD-OCT, which leaves the field of CS-based SS-OCT free of references.

IV.2 CS-based SD-OCT image simplification and segmentation

IV.2.1 Introduction

A modern ultra-high resolution SD-OCT image over a field of view of 4 mm × 4 mm generate up to 2 GB of data during acquisition [START_REF] Yao | Myocardial imaging using ultrahigh-resolution spectral domain optical coherence tomography[END_REF] and the data size is even larger using SS-OCT. In addition, OCT data storage is currently a major issue for the SD-OCT community [START_REF] Myakinin | A digital method for lossless and lossy compression of high definition optical coherence tomography data[END_REF], and compression via image simplification bears great potentials.

In this section we focus on in-vitro SD-OCT images of cardiac and retinal samples. In both cases, tissues are organized in layers, and a large portion of OCT data is redundant while corrupted by speckle noise. A data simplification scheme, targeting data size reduction and denoising via image re-sampling is proposed to make tissue layers extraction simpler and faster, while also enabling data storage reduction. This constitutes a radically different approach from the trend in retinal OCT imaging to design specialized layer segmentation methods such as [START_REF] Garvin | Automated 3-D intraretinal layer segmentation of macular spectral-domain optical coherence tomography images[END_REF][START_REF] Mishra | Intra-retinal layer segmentation in optical coherence tomography images[END_REF][START_REF] Yang | Automated layer segmentation of macular OCT images using dual-scale gradient information[END_REF] which might not work on pathological cases, require careful parameter tuning (e.g. a priori layer thickness information) and sometimes rely on machinelearning.

We propose an image simplification method that exploits the sparsity of structural details in OCT images. Indeed, we are interested in the layer structures of the studied images, and not in details inside the layers. Our objective is to simplify SD-OCT myocardial and retinal images while preserving detailed information on the layers interfaces toward tissue segmentation. This approach consists in removing the speckle in the OCT images, without making the distinction between true speckle noise and potential signal information hidden inside it (see discussion in IV.1.4).

IV.2.1.1 SD-OCT image acquisition

As illustrated on Figure IV.1, the interference patterns in SD-OCT are measured using a spectrometer, and all the wavelengths from a broad spectrum source are collected together on a single detector. As a consequence, each A-line is obtained through a Fourier inversion algorithm, as explained in [START_REF] Gan | Image analytic tools for tissue characterization using optical coherence tomography[END_REF] and schematized on Figure IV.3.

The first step is to remove the background information, which corresponds to the signal recorded when there is no sample to be observed. This background signal is recorded before placing the sample, and supposed to be the same throughout the experiment. Second, the measurements are converted from wavelength domain (represented by λ) to wavenumber domain Visual illustrations of image enhancement with our proposed method and with the four state-of-the-art denoising methods are reported in Figure IV.11 on three retinal images.

On these more challenging images, as they are composed of many layers of different widths and intensities, the differences of performance between algorithms is striking. First, the NLM and TV methods, while recovering overall denoised images, fail to reconstruct the very thin layers, and the resulting images are overly smoothed, and therefore bad candidates for segmentation. The wavelet thresholding approach is more satisfying on this matter, but suffers from an import loss of contrast, leading here again to poor segmentation results. Finally, both BM3D and our proposed FSR-LWC method perform well, as BM3D enhances thin contrasted structures while our method preserves some texture.

We display on Figure IV.12 the segmentation results obtained with the algorithm proposed in [START_REF] Pratul P Srinivasan | Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images[END_REF], with three different references images: the noisy image, the image denoised with BM3D and the image simplified with our method. We do not display the results obtained with the three other methods, as they performed poorly in comparison with BM3D and FSR-LWC. We first remark that the segmentation obtained with the BM3D and FSR-LWC approach both outperform the original approach. In addition, we observe that, especially on the borders clear advantages in acquisition speed and data storage, this microscope will consequently limit photobleaching, allowing longer fluorescence experiments. We believe that this microscope will be one big step further toward the development of a live-SIM system.

Works in the near future will consist in implementing the direct-domain CS SIM microscope, and investigate how the potential aberrations caused by the DMD will influence the reconstruction quality of our method. In addition, we want to generalize the concept of CS-SIM to other structured illumination paradigms, such as blind SIM, but also to more general optical concepts, such as adaptive optics.

On the mathematical side, we want to develop dedicated Fourier domain-based optimization methods, in order to improve the reconstruction quality of the direct domain CS algorithm, as well as its computation time, keeping in mind the idea of a complete on-set software, which would reconstruct high-quality images from partial acquisitions in real time.

We have also adapted the direct-domain CS framework in the context of SS-OCT, and implemented the first CS-based SS-OCT set-up, which we believe will enable a broad use of this technique, which was previously too much data consuming.

We proposed a hardware-based Compressed Sensing SS-OCT system implemented by collaborators at Columbia University, allowing the reduction of data sampling in the clock channel by a factor 20, while refining the reconstruction of SS-OCT images. Although the CS-based reconstruction of the clock signal from under-sampled data remains a post-processing step for now, our work in the near future will be to implement a graphics processing unit (GPU) based package to perform the reconstruction directly on the set-up, aiming for real-time reconstruction and OCT image visualization.

On the theoretical side, the result of Theorem 3 comes from a rough approximation of the support of the Fourier transform of a clock signal. A more refined study of the k -t function will be necessary to identify a more robust sparsity-level result, which will allow much better predictions in terms of sampling reduction possibilities of the CS-SS-OCT technique.

Another lead of research in the field of CS-SS-OCT would be to also exploit the CS reconstruction on the object channel. Although Fourier sparsity of OCT images depend on the object, this option would allow to adapt the CS theory directly on the emission part. As it stands today, the whole spectrum of bandwidth ∆λ has to be spread by the emission laser. But our work suggests that only a fraction of wavelengths is necessary to recover the complete clock signal. The open question is whether the data reduction benefit that comes from CS sampling of the clock data can be directly applied to the emission, allowing for faster scanning of an object and using less light energy.

We are now looking forward to the first uses of our CS-SS-OCT technique in fields of medical imaging. Further experiments in angiography will be run in the near future, and will hopefully be followed by many others. In the case of fluorescence, the implementation of our proof of concept microscope is a priority, and the very first works will consider the handling of real-life artifacts such as misalignment and optical aberrations. From a theoretical point of view, we believe that the development of dedicated Fourier-based optimization algorithms will further improve the direct-domain CS reconstruction approach.

Appendix A

Supplementary material

In this appendix, we display some additional results obtained in the context of CS-based denoising in Chapter II. We first present comparison between our proposed FSR algorithm and the state-of-the-art denoising methods completing Section II.6, and then display a few supplementary results on the three variance-map enhanced algorithms, completing Section II.7.2.4. 
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A.1 Additional denoising results on synthetic images

In this section, we perform a comparison between the performance of our proposed FSR algorithm and the state-of-the-art algorithm on the Pure and Synth. images, in the context of pure Gaussian noise and pure Poisson noise. These results are complementary to the results presented in Section II.6, and therefore the experimental procedure is the same. 

A.1 Additional denoising results on synthetic images

A.1.1 Dataset

We display on Figure A.1 the images used in this appendix. Both Pure and Synth. images are corrupted with pure Gaussian noise and pure Poisson noise respectively. Similarly to the study in Section II.6, we display numerical results obtained with a range of noise levels (0.01 ≤ σ ≤ 0.2 and 6 ≤ λ ≤ 100), but only display visual results for a single noise parameter (σ = 0.15 and λ = 9, respectively). The Hela2 and Hela3 images are obtained following the same procedure as the Hela image in Section II.6.

A.1.2 Performance measures

We display on Table A.1 the SSIM and PSNR measures of all the reconstructed images presented in this section, corresponding to Figures A.3, A.4, A.6, A.7, A.9 and A.10.

We observe that our FSR method quantitatively outperforms the state-of-art denoising methods in this example, except for two situations, where the Poisson EM-TV algorithm presents the best results: The PSNR value of the Poisson EM-TV is the highest on the Pure images corrupted with Poisson noise, and the SSIM value of the same method is the highest on the Synth. image corrupted with Poisson noise. This confirms the observations made in Section II.6 that the Poisson EM-TV outperforms most state-of-the-art techniques in the context of piecewise constant images corrupted with Poisson noise. However, our proposed FSR

A.1.4 Poisson noise -visual results

We display on Figures A.6, A.7 and A.8 visual results obtained in the context of pure Poisson noise (with λ = 9) on the Pure and Synth. images. Similarly to the Gaussian case, most TVbased techniques (except TV-ICE), including our proposed FSR method, reconstruct almost perfectly the Pure image, and, the non-local and sparse filtering techniques display strong artifacts.

The results on the Synth. image, however, are less satisfying. None of the methods leads to a perfect reconstruction as in the Gaussian case. However, we observe that the four FSR techniques, along with the TV and Poisson EM-TV give the most satisfying results, which respects the trend observed on the other experiments.

A.2 Additional denoising results on real images

We display on Figures A.9 and A.10 results on real images, completing Section II.6.3. Here again, the four FSR methods, along with the BM3D algorithm, outperform the other state-ofthe-art techniques. In this case, however, the FSR-EWA outperforms the FSR-LWC technique.

A.3 Additional results on variance map-based improvement of classical filters

Appendix B

Résumé francophone détaillé

La microscopie optique a joué un rôle central dans l'évolution de la recherche biologique et médicale, car elle permet l'étude de phénomènes à des échelles microscopiques, tels que les interactions inter et intra-cellulaires. L'évolution des techniques optiques ainsi que les développements modernes dans le traitement et l'analyse d'images permettent une amélioration constante des capacités des microscopes actuels en termes de profondeur de champ, résolution optique, vitesse d'acquisition, etc. Cependant, ces expansions ont un prix, et les techniques modernes de microscopie souffrent de plusieurs limitations, de la vitesse d'acquisition à la phototoxicité, en passant par la nécessité de traiter de grandes quantités de données. Récemment, le cadre mathématique de l'échantillonnage comprimé (Compressed Sensing, CS) est apparu comme une solution potentielle pour remédier à ces limites, car cette théorie montre, sous certaines contraintes, qu'il est possible de reconstruire une image à partir d'un petit nombre de coefficients choisis aléatoirement.

L'introduction du CS dans le contexte de la microscopie biologique a été au coeur de deux travaux de thèse antérieurs. Dans [START_REF] Marim | A compressed Sensing framework for biological microscopy[END_REF], Marcio Marim a posé les bases de la microscopie biologique exploitant le CS, selon deux axes principaux : d'une part, il a proposé un algorithme de débruitage, reconstruisant une image sans bruit à partir de quelques coefficients de Fourier aléatoires ; d'autre part, il a développé et mis en oeuvre un système d'holographie numérique exploitant le CS, qui reste aujourd'hui la principale application de la théorie CS en holographie. Dans [START_REF] Lemontagner | Algorithmic solutions toward applications of compressed sensing for optical imaging[END_REF], Yoann Le Montagner a développé l'algorithme de débruitage, avec une étude détaillée des différents processus d'échantillonnage de Fourier ainsi que des algorithmes d'optimisation existant. Il a également conçu un estimateur de l'erreur de reconstruction dans le contexte du bruit mixte Poisson-Gaussien, appelé Poisson-Gaussian unbiased risk estimator (PG-URE), et a finalement étendu les techniques de reconstruction CS basées sur Fourier aux échantillons vidéo.

Dans cette thèse, nous étudions plus en détail comment le CS peut être intégré aux paradigmes de la microscopie biologique, afin d'offrir une réponse à la situation présentée dans le premier paragraphe. En effet, deux des solutions communes pour résoudre tous les problèmes énumérés ci-dessus sont : soit de réduire l'intensité lumineuse de la source d'illumination, soit d'accélérer 

Development and implementation of Compressed Sensing-based denoising and acquisition strategies for fluorescence microscopy and optical coherence tomography
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Développement et mise en oeuvre de stratégies d'échantillonnage comprimé pour le débruitage et l'acquisition d'images en microscopie à fluorescence et en tomographie en cohérence optique

RESUME : Dans le cadre de la théorie mathématique de l'échantillonnage comprimé (Compressed Sensing, CS), développée récemment, il est possible de reconstruire un signal ou une image à partir de très peu d'acquisitions. Dans cette thèse, nous étudions comment cette théorie peut être adaptée à deux techniques de microscopie optique : la microscopie à fluorescence, et la tomographie en cohérence optique. Ces deux technologies présentent chacune des limitations, qui peuvent être corrigées par prise en compte de stratégies d'échantillonnage comprimé, que l'on peut diviser en deux catégories : des solutions algorithmiques propres au traitement d'image, et des techniques d'acquisition optique.
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