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      Abstract 

The French National Radioactive Waste Management Agency (Andra) manages an Underground 

Research Laboratory (URL) at the Meuse / Haute-Marne Center to study the feasibility of a deep 

geological repository in the Callovo-Oxfordian claystone (COx). The galleries follow the major 

and minor principal stress directions. Some galleries show a quasi-isotropic stress state in their 

cross-section, while others show a greater anisotropy. 

    These works study the short-term failure and fracturing phenomena induced by the 

underground structures’ excavation. Brittle softening damage is considered as a fundamental 

failure mechanism. The major part of scientific literature reports an estimation of this area from 

an elastic post-treatment or based on elastic-plastic analyses. If the first method does not consider 

the stresses’ redistribution due to dissipative phenomena, elastic-plastic approaches sometimes 

seem insufficient to explain the geometry of these zones in some cases of deep excavations in 

quasi-brittle rocks (Pouya et al 2016). Two phenomena are studied, through numerical simulations 

by 2d Finite Elements: the development of a diffused failures, around the galleries’ cross-section, 

and the fractures occurrence at their perimeter, along the excavation. While a plane strain analysis 

is suitable for the first problem, the second one is studied in axial symmetry. 

   For the first part of the research, two isotropic unloading processes, in softening elastic-

plasticity or elastic-damage, reproduce a global instability related to the first modelling, whereas 

localized failure occurs with the second one. The latter model, upgraded to consider intrinsic 

anisotropies in terms of elasticity, resistance and damage dissipative law, allows a consistent 

estimation of the short-term failure zone, with values of convergences in accordance to the data, 

for a gallery considered as a case study. Then, the transition of material’s failure from a brittle to 

ductile behaviour, with the confinement, is also simulated, according to different boundary 

conditions of a second gallery. The short-term damaged zones well reproduce the shape and 

extension of failure systems and the values of the instantaneous convergences are comparable to 

in-situ measurements (Trivellato et al 2018). 

    The second research axis concerns the elongation and mutual spacing of fractures, simplified 

as a system of finite and parallel discontinuities. Numerically, they are assimilated to joint 

elements (Goodman 1976). The cohesive fracture model, based on damage, (Pouya and Bemani 

2015) was chosen for these elements. In presence of a single potential fracture, an unstable 

initiation is observed, possibly followed by a stable evolution, of reduced length. Then, models 

with a sequences of several joints were used to analyse the fracture periodicity. This work also 

allowed the study of different numerical techniques simulating the advancement of an excavation 

front. According to a precise choice of parameters, fractures’ lengths are comparable to the 
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geological and geophysical surveys. Similarly, the activation of one potential fracture among 

different discontinuities was calculated, showing a periodic occurrence (Trivellato et al 2018). 

   This dissertation constitutes a new approach to reproduce the immediate effects of deep 

excavations in the Callovo-Oxfordian claystone. They study a short-term failure due to the 

material’s brittleness, under low confinement. Damage is adopted as the only dissipation 

mechanism and is integrated by the effects of material’s intrinsic anisotropy as well as its brittle-

ductile post-peak transition. Results obtained by every research axis appear favourable to employ 

these models as complements to excavation studies. In perspective, the integration of plasticity / 

creep effects, as well as a poro-elastic framework accounting for hydraulic effects, may be 

considered. 

 

Keywords : damage, softening claystone, deep galleries, diffused failure, fractures, numerical 

modelling. 
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      Résumé 

L'Agence nationale pour la gestion des déchets radioactifs (Andra) gère un laboratoire souterrain 

de recherche au Centre de la Meuse/Haute-Marne (CMHM), pour étudier la faisabilité d’un 

stockage géologique profonde dans l’argilite du Callovo-Oxfordien (COx). Les galeries 

suivent les deux contraintes horizontales principales majeure et mineure. Tandis que certaines 

galeries possèdent un état de contraintes presque isotrope dans leur section, les autres montrent 

une anisotropie plus importante.  

    Ces travaux étudient les phénomènes de rupture et fracturation à court terme, induits par 

l’excavation autour des ouvrages. L’endommagement fragile est considéré comme mécanisme 

fondamental de rupture. En effet, on retrouve dans la littérature scientifique une estimation de 

cette zone à partir d'un post-traitement du champ des contraintes en élasticité ou basée sur un 

calcul élasto-plastique. Si la première méthode ne considère pas la redistribution des contraintes 

due aux phénomènes dissipatifs, les approches élasto-plastiques semblent parfois insuffisantes 

pour expliquer la géométrie de cette zone dans certains cas des excavations en roches quasi-

fragiles (Pouya et al 2016). Deux phénomènes sont étudiés, avec des simulations numériques aux 

Eléments Finis 2d : le développement d’une rupture diffusé, autour de la section des galeries, et 

l’apparition des fractures le long de l’excavation. Alors qu’une modélisation en déformations 

planes simule le premier cas, le deuxième est étudié en axisymétrie.  

    Pour la première approche, deux décharges isotropes, en élasto-plasticité ou élasto-

endommagement radoucissant, démontrent une instabilité globale liée au premier modèle, alors 

que des ruptures localisées se produisent avec le deuxième. Ceci, enrichi pour considérer les 

anisotropies d’élasticité, de résistance et d’endommagement du matériau, permet une bonne 

estimation de la zone de rupture à court terme, avec des valeurs des convergences conformes aux 

données, pour une galerie testée comme cas d’étude. Ensuite, la transition de la rupture du 

matériau de fragile à ductile, avec le confinement, est aussi prise en compte, avec les différentes 

conditions aux limites d’une deuxième galerie. Les zones endommagées à court terme estiment 

correctement la forme et l'extension de la rupture et les valeurs des convergences instantanées 

sont comparables aux mesures (Trivellato et al 2018).  

    Le deuxième axe de recherche concerne la prédiction de la longueur des fractures, simplifiées 

comme des discontinuités finies et parallèles, ainsi que leur espacement. Numériquement, ces 

sont assimilées aux éléments joints (Goodman 1976). Le modèle de la fracture cohésive (Pouya 

et Bemani 2015) a été choisi pour ces éléments. Avec une seule discontinuité, on observe une 

initiation instable de la fracture, possiblement suivi par une évolution stable, d’une longueur 

réduite. Plusieurs séquences des joints ont été employés pour calculer la périodicité des fractures. 

Ces travaux ont permis aussi l’étude de différentes méthodes numériques qui simulent 
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l’avancement d’un front d’excavation. Selon un choix précis des paramètres, on calcule des 

longueurs de fracturation comparables aux mesures, ainsi que la possibilité d’obtenir l’activation 

d’une seule fracture parmi plusieurs (Trivellato et al 2018).  

    Ces travaux de thèse constituent une nouvelle approche de prédiction des effets du creusement 

sur l’argilite du Callovo-Oxfordien. Ils étudient une rupture à court terme due au comportement 

fragile sous faible confinement. Le mécanisme de dissipation en endommagement est intégré par 

les effets à la fois de l’anisotropie intrinsèque du matériau et de sa transition fragile-ductile. Les 

résultats obtenus par les deux axes de recherche favorisent l’utilisation de ces modèles comme 

compléments aux études des excavations. En perspective, leur intégration avec les effets de la 

plasticité/fluage du matériau, ainsi qu’avec la poro-élastique en comptant les effets hydrauliques, 

peut être envisageable. 

 

Mots-clés : endommagement, argilite radoucissante, galeries profondes, rupture diffusée, 

fractures, modélisation numérique. 
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V : virtual velocity in a numerical transient process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xiii 

      List of Figures 

Chapter 1 

Figure 1.1 : overview of DGR in the concept of Cigéo project. .................................................................................... 5 

Figure 1.2 : identification of four zones affected by mechanical perturbation due to excavation ................................. 6 

Figure 1.3 : plan of the Andra URL at the Centre Meuse-Haute Marne and principal stress directions [93]. ............... 8 

Figure 1.4 : excavation methods for the URL drifts reported in Figure 1.3.. ................................................................ 9 

Figure 1.5 : support systems for GCS (a) and GED (b) drifts. ...................................................................................... 9 

Figure 1.6 : 3d scan analyses around inside galleries at Andra URL. ......................................................................... 10 

Figure 1.7 : estimated fractures density, moving radially from GCS drift’s wall ........................................................ 10 

Figure 1.8 : conceptual model for extensional and shear (Chevron) fractures’ pattern for the drift GCS (a) together with 

detected fracture planes on the radial direction (b). ..................................................................................................... 10 

Figure 1.9 : 3d conceptual models for fractures patterns around drifts at the URL, together with the 2d simplification 

of the system EDZ-EdZ. .............................................................................................................................................. 12 

Figure 1.10 : (a), development of shear bands around GCS drift according to the total deviatoric strain at 60 days from 

excavation [66] and (b), contours of the cumulated plastic multiplier at the end of the excavation [57]. .................... 13 

Figure 1.11 : horizontal (blue) and vertical (orange) convergences evolution in GCS drift, excavated along σH (a), and 

in GED drift, excavated along σh (b). ........................................................................................................................... 13 

Figure 1.12 : Mine-by test concept for GCS. .............................................................................................................. 14 

Figure 1.13 : instantaneous and differed displacements around GCS from mine-by tests, modified from [93]. ......... 14 

Figure 1.14 : horizontal displacements prediction in drift GCS, reported in Guayacán–Carrillo and compared to the 

original results from Armand et al. .............................................................................................................................. 15 

Figure 1.15 : simplified chart of the Paris East Basin and location of the Andra URL at the CMHM ........................ 16 

Figure 1.16 : vertical section of the local geology at the site of the Andra CMHM. ................................................... 17 

Figure 1.17 : stress-strain behaviour under different lateral stresses, pC and principal stresses plot at failure with a 

Hoek-Brown failure criterion interpolation .................................................................................................................. 19 

Figure 1.18 : TXc tests showing a transition from the fragile post-peak response under uniaxial conditions (pC = 0) to 

the almost perfect yielding under high confining pressure (pC = 20 MPa). .................................................................. 19 

Figure 1.19 : illustration of the proposed analyses’ concept for failure description and numerical modelling ........... 21 

Figure 1.20 : failure modes, as reported in Vardoulakis et al. [109]. .......................................................................... 22 

Figure 1.21 : axial-splitting in sandstone (a) and shear failure in limestone (b), reported in Crook et al. [28]. .......... 23 

Figure 1.22 : qualitative comparison of the shape of the excavation damaged zone between (a) numerical prediction 

and (b) X-ray tomography scan after hollow cylinder testing ...................................................................................... 23 

Figure 1.23 : failure envelope for brittle failure, showing four failure mechanisms: no damage, shear failure, spalling, 

and unravelling. ........................................................................................................................................................... 24 

Figure 1.24 : axial symmetry of a 3d borehole problem (a) and plane of reference for the analysis of stress-strain fields 

on a gallery cross-section (b). ...................................................................................................................................... 26 

Figure 1.25 : analytical elastic solution for cylindrical stress components acting in the cross section gallery ............ 27 

Figure 1.26 : axial symmetry of a 3d borehole problem (a) and plane of reference for the study of the stress field with 

a circular failure extension on a gallery cross-section (b). ........................................................................................... 29 

Figure 1.27 : σθθ and σrr along a radial direction for internal pressures of 1 MPa (continuous lines) and 0.5 MPa (dotted 

lines). ........................................................................................................................................................................... 31 

Figure 1.28 : σθθ, σrr and σzz along a radial direction for internal pressures of 1 MPa (continuous lines) and 0.5 MPa 

(dotted lines). ............................................................................................................................................................... 33 

Figure 1.29 : localisation of failure at the point A due to an anisotropic in-situ stress on the section plane Γ. ........... 34 



 

xiv 

Figure 1.30 : localisation of failure at the point A due to different local values of UCS σ0 around the perimeter. ...... 34 
 

Chapter 2 

Figure 2.1 : procedures composing the step-by step resolution of the σ : ε relation for a classical constitutive law in 

Utilizer.f90. .................................................................................................................................................................. 41 

Figure 2.2 : general structure of the FE processor POROFIS: code core, i/o files and related subroutines. ................ 42 

Figure 2.3 : materials assignment and mesh creation in GiD, followed by insertion of a discontinuities network based 

on the original mesh through DISCRAC. ...................................................................................................................... 43 

Figure 2.4 : same stress-strain curve under monotonic uniaxial loading and different unloading-reloading paths with 

elastic-plasticity (P) or elastic-damage (D) mechanical model..................................................................................... 44 

Figure 2.5 : Plastic coefficient A in Eq. 2.14a, as a function of softening parameters β and ηr. .................................. 47 

Figure 2.6 : variation of the damage function g(D) with damage, for the same representative values for the parameter 

β.. ................................................................................................................................................................................. 49 

Figure 2.7 : numerical implementation steps for a circular gallery excavation for plane strains simulations. ............. 50 

Figure 2.8 : geometry for the first FE numerical model of a circular gallery excavation. ........................................... 51 

Figure 2.9 : extension of plastic deformations (a) and axial stress σzz (b), for a total unloading (p0 = 0), in perfect elastic-

plasticity ....................................................................................................................................................................... 52 

Figure 2.10 : extension of the damage variable (a) and axial stress σzz (b), for a total unloading (p0 = 0) in perfect 

elastic-damage. ............................................................................................................................................................. 53 

Figure 2.11 : values of the axial stress σzz , for p0 = 0, along a radial direction of Figure 2.9b and Figure 2.10b. ....... 53 

Figure 2.12 : three meshes adopted to perform the mesh sensitivity analyses in elastic-perfect-plastic conditions. ... 54 

Figure 2.13 : extension of the plastic deformations for the three meshes reported in Figure 2.12. .............................. 54 

Figure 2.14 : plastic radius evolution for the three meshes reported in Figure 2.12. ................................................... 54 

Figure 2.15: triaxial stress-strain data, reported in [117] (a) and [9] (b) ...................................................................... 56 

Figure 2.16: POROFIS validation of the elastic-softening models based on triaxial test data from [10]. ................... 56 

Figure 2.17: plastic deformations (a) and damage variable D (b) for an isotropic gallery excavation with elastic-plastic 

and elastic-damage materials, respectively. .................................................................................................................. 57 

Figure 2.18: plastic deformations (a) and damage variable D (b) for the same numerical models reported in Figure 

2.17............................................................................................................................................................................... 58 

Figure 2.19: evolution of the plastic radius rP during the unloading (normalized) of the opening in Figure 2.18a. .... 59 

Figure 2.20: Post-peak behaviour and related to the shear band thickness for a specimen under uniaxial compression 

evolution ([66], [99]). ................................................................................................................................................... 61 

Figure 2.21: uniaxial response of specimen compression simulated in POROFIS.. .................................................... 61 

Figure 2.22: possible bifurcated configuration of failure zone in n branches, around a cylindrical structure, on a cross-

section plane. ................................................................................................................................................................ 62 

Figure 2.23: elastic-perfect brittle behaviour as a particular case for of the uniaxial compressive behaviour in Figure 

2.4 (β = 0). .................................................................................................................................................................... 63 

Figure 2.24: elliptical-shaped gallery deformation at the elastic limit, derived from an initial circular gallery perimeter

 ..................................................................................................................................................................................... 63 

Figure 2.25: initial and boundary conditions on the same geometry of Figure 2.8, with an anisotropic 2d in the gallery 

cross section. ................................................................................................................................................................ 65 

Figure 2.26: plastic deformations in (a) and damage variable D in (b) for a complete unloading of the circular gallery.

 ..................................................................................................................................................................................... 65 

Figure 2.27: circular geometry adopted for numerical simulations further presented. ................................................ 66 

Figure 2.28: plastic deformations in (a) and damage in (b) for a complete unloading of the circular gallery.............. 66 

Figure 2.29: 8 lobes – shaped failure zone after complete unloading. ......................................................................... 68 

Figure 2.30: spiral shear bands in artificial sandstone. ................................................................................................ 68 



 

xv 

Figure 2.31: scheme of hydraulic boundary conditions for a specimen in a 1d consolidation problem. ..................... 69 

Figure 2.32: in (a) conceptual model and geometrical characteristic of the 2d excavation-induced zone referring to the 

observation for GCS drift. In (b), indication of the type of fractures included in the EDZ and EdZ on the same 2d 

numerical model. ......................................................................................................................................................... 71 

Figure 2.33: scheme of the implemented anisotropic damage expansion in the reference coordinates. ...................... 72 

Figure 2.34: mesh size sensitivity analyses in softening plasticity. ............................................................................. 74 

Figure 2.35: mesh size sensitivity analyses in softening damage with the 2d_ED model. .......................................... 74 

Figure 2.36: extension of the failure radius in softening plasticity (a) and softening 2d_ED model (b). .................... 75 
 

Chapter 3 

Figure 3.1 : 2d conceptual model for the system EDZ-EdZ for a drift excavated along stress σH at the Andra URL.. 80 

Figure 3.2 : numerical model, initial conditions (a) and excavation boundary conditions (b) for the numerical analyses 

presented in the current section. ................................................................................................................................... 81 

Figure 3.3 : contour plot for the damage D, at the end of the excavation, with its the horizontal extension. .............. 81 

Figure 3.4 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b). ................. 82 

Figure 3.5 : total horizontal (red line) and vertical displacements (blue line), measured at the GCS drift’s perimeter, 

with a focus on the initial values likely to correspond to the excavation-induced response. ........................................ 82 

Figure 3.6 : increasing of D expansion with the decreasing of σzz,(0) imposed as axial boundary/initial conditions (a) 

σzz,(0) = −10 MPa; (b) σzz,(0) = −8 MPa; (b) σzz,(0) = −5 MPa. ......................................................................................... 83 

Figure 3.7 : reference scheme of the excavation problem in a 2d stress state simplification with the global (Cartesian) 

and local (polar) coordinates systems. ......................................................................................................................... 84 

Figure 3.8 : conceptual model for the implementation of the anisotropic Drucker-Prager failure criterion. ............... 84 

Figure 3.9 : simulation of confined compression tests with sinα = 0.28, K = 5.3 MPa and h = 0.3.. .......................... 86 

Figure 3.10 : numerical results simulating a confined compression at pC = 12 MPa with the anisotropic Druger-Prager 

criterion ........................................................................................................................................................................ 88 

Figure 3.11 : initial/boundary conditions (a) and excavation procedure (b) with ra = 2.6 m ....................................... 89 

Figure 3.12 : contour plot for the damage D, at the end of the excavation. ................................................................. 90 

Figure 3.13 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b). ............... 90 

Figure 3.14 : 2d conceptual model for GED drift [9]. ................................................................................................. 90 

Figure 3.15 : contour plot for the damage D, at the end of the excavation. ................................................................. 91 

Figure 3.16 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b). ............... 91 

Figure 3.17 : total horizontal and vertical convergences, measured at the GED drift’s perimeter. ............................. 92 

Figure 3.18 : conceptual model of an horizontally stratified geological formation to formalize and implement the 

anisotropic elasticity. ................................................................................................................................................... 93 

Figure 3.19 : contour plot for the damage D, at the end of the excavation. ................................................................. 96 

Figure 3.20 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b). ............... 97 

Figure 3.21 : conceptual 2d scheme for failure localisation of drifts GCS and GED .................................................. 98 

Figure 3.22 : conceptual model for the implementation of the anisotropic 2d failure criterion in Eq. 3.30. ............... 99 

Figure 3.23 : plots of σ0,ω (red) and σ0(pC),ω confined at 12 MPa (blue), for φ = 20°, K = 15 MPa, h = 0.2. ............ 101 

Figure 3.24 : σ0,ω for φ = 20°, K = 15 MPa, h = 0.2. ................................................................................................. 101 

Figure 3.25 : non-monotonic calibration strength in specimen confined at 12 MPa [91]. ......................................... 102 

Figure 3.26 : contour plot for the damage D, GCS drift. ........................................................................................... 103 

Figure 3.27 : contour plots for horizontal displacement (a) and vertical displacements field (b), GCS drift. ........... 103 

Figure 3.28 : contour plot for the damage D, GED drift. .......................................................................................... 104 

Figure 3.29 : contour plots for horizontal displacement (a) and vertical displacements field (b), GED drift. ........... 104 



 

xvi 

Chapter 4 

Figure 4.1 : bi-dimensional schemes of the extension of EDZ-EdZ around the studied drifts, along σH and σh, at the 

Andra URL ................................................................................................................................................................. 110 

Figure 4.2 : conceptual model of the damage mechanism occurring in the material at failure. ................................. 110 

Figure 4.3 : model stress-strain curve under monotonic uniaxial loading and damage unloading-reloading ............ 112 

Figure 4.4 : damage extensions according to boundary and initial conditions in Table 4.1 of GCS in (a) and GED drifts 

in (b), after complete excavation. ηr = 0.9. ................................................................................................................. 113 

Figure 4.5 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions in Table 

4.1 of GCS drift (Figure 4.4a). ηr = 0.9. ..................................................................................................................... 113 

Figure 4.6 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions in Table 

4.1 of GED drift (Figure 4.4b). ηr = 0.9. .................................................................................................................... 113 

Figure 4.7 : damage extensions according to boundary and initial conditions in Table 4.1 for GCS in (a) and GED drifts 

in (b), after complete excavation. ηr = 0.2. ................................................................................................................. 114 

Figure 4.8 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions in Table 

4.1 of GCS drift (Figure 4.7a). ηr = 0.2. ..................................................................................................................... 114 

Figure 4.9 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions in Table 

4.1 of GED drift (Figure 4.7b). ηr = 0.2. .................................................................................................................... 114 

Figure 4.10 : uni- and triaxial compression tests (TXc) on COx specimens, focusing on the fragile response in uniaxial 

compressions. Modified after [8]. .............................................................................................................................. 116 

Figure 4.11 : monotonic interpretation of data in Table 3.10 (Section 3.4), according to the failure criterion in Eq. 4.8.

 ................................................................................................................................................................................... 116 

Figure 4.12 : Figure 3.2 : numerical model, initial conditions (a) and excavation boundary conditions (b) for the 

numerical analyses presented. .................................................................................................................................... 117 

Figure 4.13 : damage extensions according to boundary and initial conditions in Table 4.1 of GCS drift. Coarse mesh 

reported in Figure 4.12 in (a) and fine mesh reported in Figure 3.11, Section 3.2. .................................................... 117 

Figure 4.14 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions in Table 

4.1 of GCS drift, with the coarse mesh reported in Figure 4.12. ................................................................................ 117 

Figure 4.15 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions in Table 

4.1 of GCS drift, with the fine mesh reported in Figure 3.11, Section 3.2. ................................................................ 118 

Figure 4.16 : damage extensions according to boundary and initial conditions in Table 4.1 of GED drift. Coarser mesh 

reported in Figure 4.12 in (a) and finer mesh reported in Figure 3.11, Section 3.2. ................................................... 118 

Figure 4.17 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions in Table 

4.1 of GED drift, with the coarse mesh reported in Figure 4.12. ................................................................................ 118 

Figure 4.18 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions in Table 

4.1 of GED drift, with the fine mesh reported in Figure 3.11, Section 3.2. ................................................................ 119 

Figure 4.19 : conceptual model for the implementation of the new anisotropic 2d failure criterion. ........................ 120 

Figure 4.20 : scheme of failure localization at a coordinate 0 < θ < π/2 (in this case, π/4), symmetric to both axis x and 

y on the cross-section plane Γ. .................................................................................................................................... 122 

Figure 4.21 : numerical simulations validating the symmetric failure attainment calculated with the 2d anisotropic 

criterion modified by H. ............................................................................................................................................. 122 

Figure 4.22 : σ0,ω modelled with H (red line) and M (dotted line). φ = 20°, K = 15 MPa. hn = hs = 1.44 with H. h = 0.2 

with M. Linear representation in (a), radar representation in (b). ............................................................................... 123 

Figure 4.23 : σ0,ω variation according to, separately, hn (a) and hs (b). φ = 20°, K = 15 MPa. ................................... 123 

Figure 4.24 : calibration of the Mohr-Coulomb type anisotropic criterion (i.e. Eq. 4.8) defined with  Hσ~ . ............ 125 

Figure 4.25 : deviator stress vs. axial strain for TXc tests confined at 1 MPa (left) and 10 MPa (right). Modified from 

[14]. ............................................................................................................................................................................ 126 

Figure 4.26 : stress-strain curves in TXc tests with different confining stresses [46]. ............................................... 126 

Figure 4.27 : conceptual model for the subdivision of concentrically brittle-ductile transition zones in the area 

potentially subjected to damage. ................................................................................................................................ 127 



 

xvii 

Figure 4.28 : values of softening parameters β and ηr (respectively, in (a) and (b)) calculated from TXc data recorded 

in various bibliographic references. ........................................................................................................................... 128 

Figure 4.29 : scheme of the approach to select σrr representing every transition zone for the variation of softening 

parameters in the post-peak simulation of COx claystone behaviour. ....................................................................... 129 

Figure 4.30 : diagrams for the definition of β (a) and ηr (b) in the transition zones defined in the geometry of numerical 

modelling for GCS drift. ............................................................................................................................................ 130 

Figure 4.31 : diagrams for the definition of β (a) and ηr (b) in the transition zones defined in the geometry of numerical 

modelling for GED drift............................................................................................................................................. 130 

Figure 4.32 : numerical model, initial conditions (a) and excavation boundary conditions (b) for the last 2d plane strain 

numerical analyses. .................................................................................................................................................... 132 

Figure 4.33: distribution of the damage variable D for a complete unloading of the GCS drift with 3 brittle-ductile 

transition zones. ......................................................................................................................................................... 132 

Figure 4.34: distribution of displacements’ norm (a) and horizontal stress (b) for a complete unloading of the GCS drift 

with 3 brittle-ductile transition zones. ....................................................................................................................... 133 

Figure 4.35: distribution of the damage variable D for a complete unloading of the GCS drift with 6 brittle-ductile 

transition zones. ......................................................................................................................................................... 133 

Figure 4.36: distribution of displacements’ norm (a) and horizontal stress (b) for a complete unloading of the GCS drift 

with 6 brittle-ductile transition zones. ....................................................................................................................... 134 

Figure 4.37: distribution of the damage variable D for a complete unloading of the GED drift with 3 brittle-ductile 

transition zones. ......................................................................................................................................................... 134 

Figure 4.38: distribution of displacements’ norm (a) and vertical stress (b) for a complete unloading of the GED drift 

with 3 brittle-ductile transition zones. ....................................................................................................................... 135 

Figure 4.39: distribution of the damage variable D for a complete unloading of the GED drift with 6 brittle-ductile 

transition zones. ......................................................................................................................................................... 135 

Figure 4.40: distribution of displacements’ norm (a) and vertical stress (b) for a complete unloading of the GED drift 

with 6 brittle-ductile transition zones. ....................................................................................................................... 136 

Figure 4.41: distribution of the damage variable D for a complete unloading of the GCS drift with 6 brittle-ductile 

transition zones and β = 0.4, everywhere assigned. ................................................................................................... 136 

Figure 4.42: distribution of displacements’ norm (a) and horizontal stress (b) for a complete unloading of the GCS drift 

with 6 brittle-ductile transition zones and β = 0.4 ...................................................................................................... 137 

Figure 4.43: distribution of the damage variable D for a complete unloading of the GED drift with 6 brittle-ductile 

transition zones and β = 0.4 ....................................................................................................................................... 137 

Figure 4.44: distribution of displacements’ norm (a) and vertical stress (b) for a complete unloading of the GED drift 

with 6 brittle-ductile transition zones and β = 0.4. ..................................................................................................... 137 
 

Chapter 5 

Figure 5. 1: conceptual model of the 3d geomechanical problem in (a) and proposed simplification of 2d axisymmetric 

modelling of discontinuities in (b) ............................................................................................................................. 144 

Figure 5. 2: 3d scan structural survey for the interpretation of shear Chevrons’ structure, in (a), and excavation-induced 

fractures in drill core, in (b). ...................................................................................................................................... 145 

Figure 5. 3: multi-scale scheme for 2d axisymmetric simulations ............................................................................ 146 

Figure 5. 4: schematization of a cohesive zone model for crack evolution. .............................................................. 147 

Figure 5. 5: damage degradation of the single joint cohesive zone ........................................................................... 147 

Figure 5. 6: cohesive fracture’s yield surface, in (a), modified from [76]. Damage law g(D), for different values of the 

yielding parameter β. ................................................................................................................................................. 149 

Figure 5. 7: boundary/initial conditions (a) and excavation procedure (b) for 2d axisymmetric simulations in single 

fracture numerical analyses. ....................................................................................................................................... 152 

Figure 5. 8: initial unstable fracture opening (a), followed by a progressive joint-by-joint (stable) cracking (b). .... 153 

Figure 5. 9: diagram of the fracture evolution in (a) and a zoom on every consecutive joint opening in (b) ............ 154 



 

xviii 

Figure 5. 10: stress path for the joint element intersecting the drift’s sidewall. ......................................................... 154 

Figure 5. 11: analogue fracture initiation, increasing the cohesive zone strength, in (a) and comparison between the 

cracking length evolutions for the two single fracture simulations in (b). ................................................................. 155 

Figure 5. 12: horizontal displacement field in (a) and radial displacement of the drift’s perimeter along z in (b) .... 155 

Figure 5. 13: initial conditions in (a) and modified geometries corresponding to the drift’s advancements in (b), for the 

excavation method 1................................................................................................................................................... 157 

Figure 5. 14: results of fracture’s occurrence after the first excavation step, as reported in Figure 5. 13b.. .............. 157 

Figure 5. 15: numerical model for the excavation method 2, with boundary conditions in (a) and geometry’s dimensions 

in (b). .......................................................................................................................................................................... 158 

Figure 5. 16: excavation function d(z, t), as a function of space in (a) and of time in (b). ......................................... 159 

Figure 5. 17: contour plot illustrating the binary values assumed by d(z, t) during a drifting numerical process ...... 160 

Figure 5. 18: contour plot of damage on joint elements, adopting the excavation method 2, showing fractures’ 

occurrences and spacing. ............................................................................................................................................ 161 

Figure 5. 19: numerical model for the excavation method 3. In (a), geometry’s dimensions and boundary conditions 

and, in (b), a schematization of the numerical procedure applied for the excavation. ................................................ 162 

Figure 5. 20: contour plots for opened fractures, in (a), and horizontal displacements, in (b), calculated with the 

excavation method 3................................................................................................................................................... 163 
  

Appendices 

Figure A.1 : procedures composing the step-by step resolution of the σ : ε relation for a classical constitutive law in 

Utilizer.f90. ................................................................................................................................................................ 183 

Figure A.2 : local-global-local iterative procedure for yielding correction with global verification of the consistency 

law. ............................................................................................................................................................................. 184 

Figure A.3 : normal and tangential local coordinates system in POROFIS and DISROC, for the evaluation of the stress 

state at i.. .................................................................................................................................................................... 184 
  

Figure B.1: volume element scheme for the anisotropic Drucker-Prager failure criterion. ....................................... 185 

Figure B.2: volume element scheme for the anisotropic Mohr-Coulomb type failure criterion. ............................... 187 

Figure B.3: σ0,ω, as a function of ω, with φ = 20°, K = 15 MPa and h = 0.2. ............................................................. 189 

Figure B.4: σ0(pC = 12 MPa),ω as a function of ω, with φ = 20°, K = 15 MPa and h = 0.2. ....................................... 191 

Figure B.5: volume element scheme for the IV order anisotropic Mohr-Coulomb type failure criterion. ................. 191 

Figure B.6: σ0,ω, as a function of ω, with φ = 20°, K = 15 MPa and hn = hs = 1.44. ................................................. 194 

Figure B.7: σ0(pC = 12 MPa),ω as a function of ω, with φ = 20°, K = 15 MPa and hn = hs = 1.44 ............................. 195 

Figure B.8: 3d model for stratified formation behind the section Γ for 2d plane strain excavation problem. ............ 196 

 

 

 

 

 

 

 



 

xix 

      List of Tables 

Chapter 1 

Table 1.1 : average extensions of extensional and shear fraction around the drifts at Andra URL as function of the 

gallery radius ra. ........................................................................................................................................................... 11 

Table 1.2 : mineralogical composition at the main level of the URL [121]. ............................................................... 16 

Table 1.3 : summary of basic properties of Callovo-Oxfordian claystone according to different literature databases. 18 
 

Chapter 2 

Table 2.1 : set of parameters for the basic elastic-plastic and elastic-damage material laws in POROFIS. ................ 44 

Table 2. 2 : set of parameters adopted for the first elastic-plastic and elastic-damage numerical simulations with perfect 

yielding. ....................................................................................................................................................................... 51 

Table 2.3 : extension of plastic radius for each of the results reported in Figure 2.13................................................. 55 

Table 2.4 : parameters obtained by elastic-plastic and elastic-damage softening calibration. ..................................... 57 

Table 2.5 : initial stress state components for the geometry reported in Figure 2.25. ................................................. 65 

Table 2.6 : parameters to reproduce a perfect-brittle yielding response for failure zone in Figure 2.28...................... 66 

Table 2.7 : parameters employed for the failure zone calculus in Figure 2.29. ........................................................... 67 

Table 2.8 : parameters for the softening mesh size sensitivity analyses. ..................................................................... 74 

Table 2.9 : extension of plastic radius for each of the results reported in Figure 2.34 and Figure 2.35. ...................... 75 
 

Chapter 3 

Table 3.1 : boundary and initial stress components for the numerical analyses of EDZ shape and extension (inner 

heterogeneous failure) reported in Figure 3.1. ............................................................................................................. 80 

Table 3.2 : numerical values for the parametrization of the 2d_ED model adopted in the following. ......................... 81 

Table 3.3 : comparison between estimated intervals and computed values for short-term Ux and Uy. ........................ 82 

Table 3.4 : summary of σ0,ω and σ0(pC),ω employed for calibration of the anisotropic Drucker-Prager criterion. ....... 87 

Table 3.5 : parametrisation for stress-strain diagrams in Figure 3.10 and for the next numerical failure analysis around 

GCS drift...................................................................................................................................................................... 88 

Table 3.6: σ(0) components for the next numerical failure analysis around GCS drift. ................................................ 89 

Table 3.7: calculated maximal values of |Ux| and |Uy| around GCS and GED perimeters. Comparison with in-situ 

surveys from extensometers. ........................................................................................................................................ 92 

Table 3.8:  elastic parameters accounting for transverse isotropy, adopted in the next numerical analysis. ............... 96 

Table 3.9 :  calculated maximal values of |Ux| and |Uy| around GCS perimeters, compared with in-situ surveys from 

extensometers. ............................................................................................................................................................. 97 

Table 3.10 : data for σ0(pC),ω with pC = 12 MPa [91], on specimens sampled with different inclinations and 

approximately the same initial water content. ............................................................................................................ 101 

Table 3.11 : model parameters for the anisotropic failure criterion in Eq. 3.30, calibrated in Figure 3.25. ............... 103 

Table 3.12 : numerical values for components σxx,(0), σyy,(0) as reported in Figure 3.21. ............................................ 103 
 

Chapter 4 

Table 4.1: σ(0) components for the next numerical excavation analysis around GCS and GED drifts. ...................... 112 

Table 4.2: values of linear elastic and softening parameters adopted for the 2d_ESD model ................................... 115 

Table 4.3 : GCS drift, mesh-size sensitivity on displacements at the perimeter. ....................................................... 119 



 

xx 

Table 4.4 : GED drift, mesh-size sensitivity on displacements at the perimeter. ....................................................... 120 

Table 4.5: calibration of the Mohr-Coulomb type anisotropic criterion defined with  Hσ~ . ..................................... 125 

Table 4.6: contour plots of the analyses’ results, according to the boundary conditions and imposed division of 

transition zones........................................................................................................................................................... 131 

Table 4.7: summary of sub-horizontal and sub-vertical displacements calculated around GCS and GED drifts’ 

perimeter (r = ra) ........................................................................................................................................................ 138 
 

Chapter 5 

Table 5. 1 : description of σ(0) for GCS drift. ............................................................................................................. 146 

Table 5. 2 : σ(0) as initial/boundary conditions for 2d axisymmetric simulations. ..................................................... 151 

Table 5. 3 : failure and damage yielding parameters for the first single fracture numerical simulation. ................... 153 

Table 5. 4 : failure parameters for joint elements ...................................................................................................... 160 

Table 5. 5 : parameters for the numerical excavation procedure ............................................................................... 160 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

Chapter 1  

 

Introduction and Context  

of the Research 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 1 

2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction and Context of the Research 

3 

In this first chapter, the study motivations and industrial application of these thesis’ works are 

initially presented. The geomechanical problem to be investigated is explained, together with the 

choice of a modelling approach based on damage mechanics. A description of the real scale 

facilities (the Underground Research Laboratory managed by Andra), constituting the reference 

for mathematical and numerical simulations of the problem follows. Some significant researches 

concerning the modelling of the excavation effects in the geological formation of Callovo-

Oxfordian claystone are then reported, together with a presentation of the material characteristics. 

The first section is concluded with the work’s outline explaining the organisation of the 

manuscript and the logic paths followed to simplify the geomechanical problem for mathematical 

and numerical purposes. 

   The second section provides a brief summary of some literature benchmarks considered 

pertinent to provide a scientific framework for the topic of failure around deep boreholes. Then, 

to provide an analytical complement for the problem of stresses redistribution around circular 

openings, the elastic solution is reported together with a simple example considering a prefect 

yielding failure. The section is concluded showing two typical example of failure localization 

around a deep circular gallery. 
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1.1 Motivations and background 

Energy supply by nuclear power plants constitutes, nowadays, one of the main technologies 

adopted in this industrial sector. The treatment and isolation of the radioactive waste generated 

by activities based on nuclear energy have become fundamental concerns. In principle, more 

intensive emissions of radionuclides from radioactive waste would require more isolated disposal 

facilities. In France, about the 90% of total wastes (Low- and Intermediate-Level, Short-Lived 

wastes, LIL-SL, and Very Low-Level wastes, VLL) are disposed in existing, sub-surficial 

locations. At the national level, the principal issue is the disposal management of the minor part 

of nuclear waste, constituting, nonetheless, more than 90% of the total radionuclides emissions: 

the High-Level and Intermediate-Level, Long-Lived wastes (HL and IL-LL) [5]. Among other 

countries, France has identified the deep geological repository (DGR) as a suitable and safe 

technique to conceive and implement deep disposal facilities for radioactive waste correspondent 

to HL and IL-LL types. DGR is based on the individuation of favourable geological formations 

characterized by structural, hydro-mechanical and geochemical properties to isolate as best the 

radionuclides dispersion and assure the most efficient construction and operation of disposal 

facilities. These type of formations are identified as host media, or host rocks, because of their 

geological features (e.g. claystones and shales). In France, the mission of the site identification 

and feasibility studies for a DGR concept is in charge to the French national radioactive waste 

management agency, Andra (Agence Nationale pour la gestion des déchets radioactifs). The 

agency has individuated the deep geological formation of Callovo-Oxfordian claystone as an 

appropriate host rock constituting the final barrier for the disposal of HL and IL-LL wastes. 

Characteristics such as very low permeability and reduced molecular diffusion constitutes 

favourable elements for this choice ([8], [31] and [121]).  

Medium-term reversibility, for about 100 years, and safety after the repository closure, for 

thousands of years, are key requirements related to the conception of a geological repository. 

Andra has conceived the project Cigéo (Centre Industriel de Stockage Géologique / Industrial 

center for geological disposal) to forward these demands ([3], [31]): it will be composed of 

horizontal cells connected to access galleries and containing the radioactive wastes as illustrated 

in Figure 1.1. Once the feasibility study phase started, Andra began, in 2000, the construction of 

the Underground Research Laboratory (URL) at the agency Centre in the Meuse-Haute Marne 

department (CMHM). Excavated in the Callovo-Oxfordian formation, at about 500 m depth, the 

laboratory is a network of drifts to characterize the chemo-thermo-hydro-mechanical properties 

and behaviors of the confinement claystone, as well as test, demonstrate the feasibility, optimise 

the concept of the future DGR.  
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Figure 1.1 : overview of DGR in the concept of Cigéo project (image is property of Andra). 

 

Drifts are intended as real-scale experiments to characterize the response of the rock according to 

the excavation method, structure geometry, supports system and orientations with respect to the 

principal stresses’ directions (e.g. [7], [8], [91]).In geological formations such as the Callovo-

Oxfordian claystone, the excavation of deep tunnels creates a surrounding area characterized by 

cracking and diffused failure, whose shape and extension are the main issues for the repository 

safety. The terminology to define this zone has undergone several changes with progresses in 

geomechanics. Generally, researchers divide the overall zone in different concentric parts 

depending on the induced modifications on the hydraulic and transmission properties of the 

material ([71], [103]). In the proximity of the gallery perimeter, the formation of several 

interconnected macro-fractures leads to irreversible changes of these properties. Moving outward, 

the influence of the excavation decreases, together with the induced damage interconnections. 

Further, only temporary and reversible modifications of the material properties occur. Thus, in 

the area where failure occurs, variations of the excavation fractures’ entity and interconnections 

corresponds to different modifications of initial properties. These zones can be all referred as 

Excavation Damage Zones, EDZs, according to the classification review published by Perras and 

Diederichs [71]. Collecting different related works, the authors provide a scheme distinguishing 

four concentric levels of EDZs, from the excavation perimeter:  

1. Construction Damage Zone (CDZ): it includes inevitable excavation consequences and 

additional damage effects induced by the construction method. These second effects may be 

adjusted according to the excavation / support techniques. 
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2. Highly Damaged Zone (HDZ): it includes inevitable damage causing geometry, structure, 

and/or induced stress changes, independent of excavation method. Highly interconnected 

macro-fractures are typically observed. 

3. Excavation Damage Zone (EDZ): it corresponds to the transition from a connected damaged 

area to a partially connected or isolated damage area. In these areas, irreversible micro-

damage phenomena occur. 

4. Excavation Influence Zone (EIZ): this is a stress-strain influence zone involving only 

reversible (elastic) changes. The outer limit, occurring at a large radial distance, is of minimal 

interest for a single excavation. On the contrary, in case of multiple, parallel excavations the 

interaction of adjacent EIZs should be considered. 

In this work, for sake of simplicity in the notation, the ensemble of the three zones CDZ, HDZ 

and the inner EDZ is identified by the single acronym EDZ (D = Damaged). A unique notation 

identifying the area characterized by irreversible changes in the material were already proposed 

by Emsley et al. [35] and also adopted by Tsang et al. [103]. The transition zone, moving from 

the inner limit of the EDZ to the EIZ (irreversible to reversible changes) is identified with the 

acronym EdZ (d = disturbed). Many efforts are addressed by Andra to understand the phenomena 

leading to the formation of an EDZ-EdZ system around the drifts in the Callovo-Oxfordian 

claystone at the Underground Research Laboratory. 

 

 

Figure 1.2 : identification of four zones affected by mechanical perturbation due to excavation, as reported 

in Perras and Diederichs [71].  
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These efforts have undergone several scientific campaigns, at different levels, from laboratory 

micro-scale to in-situ experiments and monitoring, with the cooperation of different research 

groups (e.g. [91], [93]). This thesis project aims to provide a contribution on these efforts. 

Numerical analyses on computational models at the underground structure scale constitute the 

subject of this work and are presented and discussed in this manuscript. The approach adopted to 

model the EDZ-EdZ formation around deep galleries will account for a reduction of the host rock 

resistance when the reversible (elastic) conditions are overcome and material failure is attained. 

In general, the extension of this zone is estimated from a stress field calculated in elasticity or 

based on an elastic-plastic calculation ([3], [25]); if the first method does not take into account 

the redistribution of stresses due to irreversible phenomena, the conventional elastic-plastic 

modelling seems insufficient to explain the geometry of the failure zone encountered in some 

cases of deep structures in quasi-brittle rocks ([77], [78] and [102]). Observations suggest that 

damage mechanics phenomena, while the material resistance decreases (i.e. softening), are crucial 

to the development of these zones. Predictions of the material short-term failure will be performed 

by a purely mechanical mathematical and numerical modelling, based on damage mechanics. In 

the following, a description of the Andra URL, with relevant in-situ instrumentations and 

measurements is reported. Some related researches and thesis’ projects, concerning geotechnical 

aspects of the feasibility study, are discussed. A presentation of the Callovo-Oxfordian claystone 

concludes the contents of this section. 

 

1.1.1   Observations and studies at the Andra Underground Research Laboratory  

The Andra Underground Research Laboratory (URL), which construction began in 2000, is 

formed by a network of main drifts, service galleries and two vertical access shafts, accessible by 

the surface facilities at the CMHM. Drifts are characterized by diameter extensions varying from 

4 to 9 m. Micro-tunnels are also present, whose diameters do not exceed 1 m. According to its 

research purposes, it is still an ongoing work with advancing tunnel fronts and operating 

experiments and installations. An initial drift was excavated at a depth Z = 455 m from one of the 

vertical access shafts. Then, the main level of the galleries network forming the URL was set at 

Z = 490 m, within the Callovo-Oxfordian claystone. At this level, the formation presents an in-

situ stress state σ(0) without significant spatial variations. Its components have been estimated as 

follows (e.g. [31], [113]):     

- Vertical stress, σv = ρgZ ≈ 12.7 MPa; 

- Major horizontal stress, σH ≈ 16.2 MPa;  

- Minor horizontal stress, σh ≈ 12.4 MPa. 
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The pore pressure at the main level (-490 m) is around 4.7 MPa. It is underlined that the 

components reported above correspond to average values obtained from several estimation 

campaigns. Here, drifts are horizontally excavated and have been designed to follow, in most 

cases, the directions of the two principal horizontal stress components, σH and σh, respectively 

oriented at N155°E and N65°E ([8], [9] and [31]). A recent plan of the URL [93] is illustrated in 

Figure 1.3: the drifts’ network is formed by a series of galleries with perpendicular connections. 

According to the in-situ stresses previously reported, drifts can be divided in two groups: 

- Horizontal drifts with a quasi-isotropic, 2d stress state on their cross-section (i.e. σv and σh); 

- Horizontal drifts with an anisotropic, 2d stress state on the same section (i.e. σv and σH). 

Excavations of drifts (4 to 9 m of diameter) were generally performed with two standard devices: 

the pneumatic hammering machine, the road header machine and TBM, shown respectively in 

Figure 1.4a, Figure 1.4b and Figure 1.4c. Because of the anisotropy of the in-situ stress state 

components, a main target for mathematical and numerical modelling, generally related to 

excavation response in the material, consists in the prediction of an EDZ-EdZ system validated 

by observations for both groups of drifts, where the hydro-mechanical conditions of a boundary 

value problem change. In particular, two instrumented drifts, already considered by previous / 

ongoing researches (e.g. [41], [57], [67], [97] and [105]) will be adopted to validate the modelling 

propositions: GCS drift, (Galerie de Conception Souple / Flexible), lined by yieldable concrete 

wedges; and GED drift (Galerie Expérimentale Deux), supported by sliding arches installed every 

meter. Both are conceived to have a flexible support, yieldable according to rock deformations 

([7], [60]) (e.g., Figure 1.5a and Figure 1.5b). 

 

Figure 1.3 : plan of the Andra URL at the Centre Meuse-Haute Marne and principal stress directions [93]. 
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                          (a)                                                     (b)                                                  (c) 

Figure 1.4 : excavation methods for the URL drifts reported in Figure 1.3. From (a) to (c), pneumatic 

hammering [17], road header [93] and road header under shield machine [42].  

 

 

(a)                                                                           (b) 

Figure 1.5 : support systems for GCS (a) and GED (b) drifts. (from [42] and [93]). Supports are mainly 

composed of radial bolts (HA25 of 3 m length), with a ~15 cm of fibres shotcrete and welded mesh.  

 

Extensive surveys have been executed to investigate the fractured zone around galleries, as the 

GCS and GED drifts. Geological insights from 3d scan, at the front and sides, allowed to map the 

excavation-induced structures within the claystone and to produce statistical data on the fracture 

pattern ([7], [9]). In the next page, the scan procedure with some interpretation of discontinuities 

formed around galleries’ perimeters is reported in Figure 1.6. Resin-injection tests have also been 

executed, on radial core-drillings: the setup adopted for these experiments is detailed Armand et 

al. and Noiret et al. ([9], [60]). Figure 1.7 reports the estimated fractures density and Figure 1.8 a 

3d model of the fractures pattern, for the drifting direction parallel to σH. In-situ observations from 

similar tests conducted on micro-tunnels confirms a certain repeatability of fractures’ patterns in 

relation to the borehole diameter. In general, two types of fractures can be distinguished: shear 

fractures (mode II) and tensile fractures (mode I). Shear fractures are preponderant and expand 

longer and deeper in the rock, with low dip discontinuities. They are often called Chevron or 

herringbone fractures, due to the resulting geometrical structure [9]. Extensional fractures 

(spalling) are concentrated near the drift’s wall with a more heterogeneous dip and strike [92].  
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                                                                                (a)                                                                (b)  

Figure 1.6 : 3d scan analyses around inside galleries at Andra URL. Results for a front gallery along σH 

(up) and σh (low) in (a). Results at the gallery lateral wall along σH in (b) (modified from [9], [66]). 

 

 

Figure 1.7 : estimated fractures density, moving radially from GCS drift’s wall (modified from [9]). 

 

 

Figure 1.8 : conceptual model for extensional and shear (Chevron) fractures’ pattern for the drift GCS (a) 

together with detected fracture planes on the radial direction (b) (modified from [9]). 
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According to Figure 1.7, the average density is around 6 fractures per meter in the sidewall of the 

GCS drift, but it varies greatly along the radial direction. The number of fractures is greater 

between 0.30 and 1.80 m, corresponding to the heterogeneous area of highly interconnected 

fractures, in mode I and II (EDZ). Density increases again between 3.20–4.60 m from the wall, 

in the area where discontinuities appear more homogeneous, forming the Chevron structures 

(EdZ). Here, two families of fractures may be noticed, having the same strike, perpendicular to 

the axis of the drift, but an opposite dip, as illustrated in Figure 1.8. From this model, it can be 

remarked that these families distinguish a lower system of Chevron fractures from an upper 

system, both generated by normal shear. In the horizontal plan, lower Chevrons are curved while, 

in the vertical at the middle of the face tunnel, the strike of fractures is perpendicular to drift axis. 

On the borders of drift’s faces and walls, the strike is oblique, oriented toward the unexcavated 

zone, while their dip is oriented toward the excavation. Upper Chevrons have the same curve in 

horizontal plane, but their dip is oriented toward the unexcavated zone. The spalling or bulge 

structures, localized in the middle of the drift’s face (Figure 1.8a), corresponds to a fractures 

system generated by extension [9]. For drifts parallel to the direction of σh, shear Chevron 

fractures generated ahead of the tunnel front during excavation, with a fracture dip is around 45°. 

Extension of the Chevron zone ahead of the excavation face is between 0.5 and 1 drift diameter 

(~4 m). They develop beyond the drifts, with a dip oriented at a lower angle (10–30°) with respect 

to the wall. This fracture system was identified only in drill cores from the sidewall. For these 

drifts, unloading tensile fractures are identified all around the excavations (sidewall, ceiling and 

floor). Most fractures are parallel to the drift wall, partially connected together [9]. More than 

fractures’ initiation, their development around the excavations is related, among other reasons, to 

the orientations of the principal in-situ stresses and to material anisotropies. The shape of the areas 

including fractures differs between the two directions, because of the different initial stress state. 

For drifts excavated along σH, the initial stress state is quasi-isotropic in the cross section plane, 

but the extent of the system EDZ-EdZ is higher on the horizontal direction. Therefore, short-term 

evolution of this zone may be mainly driven by the intrinsic claystone anisotropy. On the other 

hand, along σh, anisotropy of the in-situ stresses should play a key role in the vertical development 

of the EDZ-EdZ.  Table 1.1 reports the average extension, related to the gallery’s radius ra, of 

fractured zones for both excavation directions. 

Table 1.1 : average extensions of extensional and shear fraction around the drifts at Andra URL as function 

of the gallery radius ra, according to Armand et al. [9]. 

Drift direction parallel to:  
Extensional fractures Shear fractures 

ceiling floor lateral ceiling floor lateral 

σH 0.2∙ra 0.2∙ra 0.4∙ra - - 1.6∙ra 

σh 0.6∙ra 0.8∙ra 0.2∙ra 1.2∙ra 1.6∙ra - 
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Based on data from in-situ surveys, Figure 1.9 reports the conceptual models for the fractures 

structures previously described, for drifts along σH (Figure 1.9a) and σh (Figure 1.9b). Extension 

and shape for the estimated EDZ-EdZ area, including the fractures families, on the cross section 

of the two types of drift, is also illustrated in two dimensions. 

It may be confirmed that the formation of this fractured area is essentially due to the drifting 

action, causing immediate and short-term mechanical perturbations in the surrounding material. 

Irreversible phenomena corresponding to damage and plastic effects concur, together, to the 

material yielding, eventually, to the coalescence of discontinuities causing fractures. Nonetheless, 

some post-excavation analyses do not exclude desaturation effects (e.g. tunnel ventilation) at the 

drifts perimeter and, in the long-term, deformations due to creep [66]. Two examples of modelling 

proposition for a 2d prediction of the EDZ-EdZ are reported in the following, according to the 

works of and Pardoen & Collin [69], in Figure 1.10a, and Mánica et al. [57], in Figure 1.10b. On 

the left, a cross-anisotropic elastic-visco-plastic material is adopted and the total deviatoric strain 

60 days after the excavation are displayed. Strain localisation develops preferentially in the 

horizontal thanks to a variable material cohesion providing an anisotropic failure criterion, aiming 

to predict the Chevrons’ main structure occurring around the GCS drift. The modelling for strains 

localisation is detailed in the related thesis’ works [66]. On the right, an estimation of the damaged 

zone for the same gallery is plotted by the cumulative plastic multiplier contours [57]. Even in 

this case, according to the authors, anisotropy of the geological formation should be accounted in 

the elastic-visco-plastic model. 

 

                                                                               (a)                                                     (b) 

Figure 1.9 : 3d conceptual models for fractures patterns around drifts at the URL, together with the 2d 

simplification of the system EDZ-EdZ. In (a), models for the drift GCS along σH and, in (b), for the drift 

GED, along σh (modified from [66]). 
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                                   (a)                                                                                    (b)  

Figure 1.10 : (a), development of shear bands around GCS drift according to the total deviatoric strain at 

60 days from excavation [66] and (b), contours of the cumulated plastic multiplier at the end of the 

excavation [57]. 

 

Another type of geological surveys, adopted in this work to validate the proposed models, is 

constituted by in-situ measures and estimations of drifts’ convergences and displacements 

occurring in the rock massive around the excavations. An exhaustive modelling exercise to 

reproduce short and long-term convergences around drifts at the Andra URL is reported in the 

thesis’ works of Guayacán-Carrillo [42]. Convergence measurements show an anisotropic 

closure, which depends on the drifts' orientations and confirms the observations already provided 

for the failure zones evolution. In particular, a different horizontal to vertical average convergence 

ratio can be derived for drifts along both directions. This ratio is about 0.5 to for drifts following 

the direction of σH and 4 for those excavated along σh [8]. Vertical and horizontal convergences 

measured in GCS and GED drift are reported in Figure 1.11 and show a displacement rate 

significantly higher during about 100 days after the excavation and the installation of the 

acquisition systems. Nonetheless, it can be remarked a residual convergence rate which is not 

null, in general, for measures in Figure 1.11a. In Figure 1.11b, vertical convergence shows a 

residual rate further than 1000 days after the excavation: here, vertical convergence coincides 

with the principal direction of failure evolution. 

 
                                                (a)                                                                          , (b)  

Figure 1.11 : horizontal (blue) and vertical (orange) convergences evolution in GCS drift, excavated along 

σH (a), and in GED drift, excavated along σh (b). Modified from [42].  
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It is underlined that convergences measurements, previously shown, derive from instrumentation 

placed after the tunnel face passage at the investigation sections. Thus, it is often important not to 

neglect hydro-mechanical effects induced in the medium ahead of the front gallery, before the 

excavation front transition. Indeed, when describing the fractures pattern for the main drifts’ 

directions, it has been specified that fractures may be generated already ahead of the tunnel front 

during excavation. For this reason, the mine-by test technique has been employed at the URL to 

investigate hydro-mechanical effects induced in the COx claystone before the tunnel face 

transition ([8], [91] and [93]). In particular, many data from hydro-mechanical mine-by tests for 

drift GCS are available, as pore over-pressures and displacements induced in the material located 

in the area including / surrounding the forthcoming excavation. Installations where conducted 

from a service tunnel parallel and 30 m distant from GCS, according to the set-up reported in 

Figure 1.12. Figure 1.13 shows a reanalyse of total horizontal displacements, Ux, from mine-by 

tests extensometers at different radial distances from the wall of GCS drift. The data processing 

allowed to separate the instantaneous part of displacements (Figure 1.13a) from the time-

dependent (Figure 1.13b). 

 
Figure 1.12 : Mine-by test concept for GCS, modified from [93]. 

 

 
Figure 1.13 : instantaneous and differed displacements around GCS from mine-by tests, modified from 

[93]. Data are originally published in [8].  
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                                   (a)                                                                                    (b) 

Figure 1.14 : horizontal displacements prediction in drift GCS, reported in Guayacán–Carrillo and 

compared to the original results from Armand et al. [8]. Instantaneous in (a) and differed displacements in 

(b).  

 

In both diagrams of Figure 1.13, the dotted line PM identifies the excavation chronogram while 

the two vertical dotted lines indicates the transition of the front at the instrumented section (green 

dotted line) and the successive front location corresponding to zero rate of instantaneous 

displacement (purple dotted line). Two significate observations enrich the database already 

provided by convergences in Figure 1.11: firstly, the survey point closest to the drift’s wall 

(OHZ1501_DF0_01 in Figure 1.13a) detects a displacement of about 4 mm occurring in the 

section before the tunnel front transition. Then, according to the excavation chronogram detailed 

in Noiret [60], the purple dotted line indicates a distance of about 2 times the drift’s diameter, 

from the considered section, where no further instantaneous displacement are esteemed. 

According to the reanalyses of rough data, Figure 1.13b confirms the existence of time-dependent 

displacements immediately after the front transition at the instrumented section: in particular, an 

almost constant rate of time-dependent displacement can be remarked during the advancing of 

the front up to 2 time the tunnel diameter, with a successive decreasing. As mentioned before, 

extensive analyses to model instantaneous and differed displacements in the Andra URL drifts is 

comprehended in the thesis’ works of Guayacán-Carrillo [42]. Figure 1.14 reports the horizontal 

displacements reproduction, by modelling, for the instrumented point closest to the drift’s 

perimeter previously illustrated in Figure 1.13 (instantaneous displacements in Figure 1.14a and 

differed one in Figure 1.14b). 

In the following, the last content of this current section is presenting a characterization of the 

Callovo-Oxfordian formation. Eventually, the conclusion of the section will report the general 

outline of this manuscript, specifying the main contents of each chapter. 
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1.1.2   The Callovo-Oxfordian claystone formation 

The geological area of the Paris East Basin, formed by an accumulation of sedimentary deposits, 

includes the argillaceous formation of Callovo-Oxfordian claystone (COx). A simplified 

geological map of arising formations in the North-Eastern France, together with the location of 

the Andra URL at the Centre Meuse-Haute Marne, is reported in Figure 1.15 [122]. In 

Meuse/Haute-Marne department, the formation has a variable depth (around 420 and 550 m) and 

it is interbedded between Dogger limestone (below) and Oxfordian limestone formations (above). 

The local geological stratification is reported in Figure 1.16. Callovo-Oxfordian claystone is 

included among the well-known soft rock / hard soils formations widely studied in the European 

contest for nuclear waste repository, as the Boom Clay, in Belgium, and Opalinus Clay, in 

Switzerland (e.g. [13], [50]). The mineralogical composition of COx includes mainly illite and 

smectite clay minerals, quartz, and carbonate [84]. At the main level of the research laboratory (-

490 m), clay minerals composition in COx is almost constant with 55 % I/S (illite–smectite 

interstratified minerals), 30% illite and 15% kaolinite and chlorite. The overall mineralogy is 

reported in Table 1.2 [121]. 

Table 1.2 : mineralogical composition at the main level of the URL [121]. 

Tectosilicates 20% 

Carbonates 20 – 25% 

Clay minerals 50 – 55% 

Subordinate pyrites and iron oxides 3% 

 

 
Figure 1.15 : simplified chart of the Paris East Basin and location of the Andra URL at the CMHM (IRSN 

[122], courtesy of Stéphane Jungers). 
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Microstructural analyses reveal a mean pore diameter of about 20 nm ([26], [87]), leading to very 

low permeability values. The average claystone porosity at -490 is equal to 18±1% (e.g. [8]) and 

natural water contents of core samples ranges between 5 and 8% (e.g. [42]). An anisotropic 

behaviour is featured by the material, mainly due to its mode of deposition: a layered structure is 

observed due to the sedimentary nature of the formation. Over time, such a geological structure 

develops further its vertical cross-anisotropy due to the increasing overburden vertical stress 

[113]. Eventually, Callovo-Oxfordian claystone presents a double anisotropy, on the hydro-

mechanical properties and on in-situ stress state. For instance, different Young moduli’s values 

exist changing from the parallel to the perpendicular direction relatively to the horizontal bedding 

planes. Uniaxial compressive strength of the material also depends on the considered orientation 

to the main loading direction. In the next page, Table 1.3 collects some typical values of material 

properties concerning microstructure and hydraulic and mechanical parameters. 

 

Figure 1.16 : vertical section of the local geology at the site of the Andra CMHM [121]. 
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Table 1.3 : summary of basic properties of Callovo-Oxfordian claystone according to different literature 

databases ([8], [26], [37], [87], [114] and [121]). Single values must be considered as average estimations. 

Microstructure properties 

Mean pore diameter [nm] 20 

Void ratio, e [-] 0.22 

Density, ρ [kg/m3] 2300 - 2400 

Mechanical and  

hydraulic properties  

Young modulus, E [MPa] 3500 - 8000 

Poisson’s ratio, ν [-] 0.2 - 0.35 

Biot’s coefficient, b [-] 0.6 

Friction angle, φ [°] 20 

Cohesion, C [MPa] 3 - 7 

Uniaxial compressive strength, σ0 [MPa] 17 - 25 

Uniaxial tensile strength, σR [MPa] 1.5 

Water content, w [-] 0.05 - 0.08 

Permeability, Kw [m2] 5∙10-20 - 5∙10-21 

 

In general, Young moduli’s anisotropy may vary from 1.2 up to 2, defined as the parallel to 

perpendicular values ratio, with respect to the horizontal material stratification [8]. The variation 

of material failure resistance, in term of uniaxial compressive strength, σ0, as function of the 

bedding orientation, gives the variability reported in Table 1.3. Also the tensile strength shows a 

weak dependency on the material orientation.  

The stress-strain and failure behaviour of the Callovo-Oxfordian claystone has been widely 

studied, taking into account coupled thermic and hydraulic phenomena, at the material point scale 

as well as the drifts’ one (e.g. [8], [12] and [57]). For the short-term response, triaxial compression 

(TXc) and extension (TXe) tests have been performed to analyse the COx deformation behaviour 

together with the failure resistance. Examples of these aspects are, respectively, reported in Figure 

1.17a and b, showing results of TXc tests. A linear response is observed under low deviatoric 

stress, before the resistance peak, particularly for reduced values of confining pressures, pC. A 

discussion focusing on the variation of material stiffness (i.e. the Young modulus), remarked in 

different literature sources, is provided in Chapter 2. In particular, the imposed rate of axial 

strains, in triaxial shear stage, seems a fundamental parameter to be checked while testing, to 

assure if the estimated stiffness parameters correspond to an undrained or drained response [12]. 

Brittle failure of the samples is observed under low pC values, which is confirmed by the formation 

of inclined shear bands. This implies a strong reduction of material resistance in final, or residual, 

conditions. An increase of the confinement pC determines, naturally, higher resistance values in 

triaxial conditions, σ0(pC). This is a common observation in laboratory testing on geomaterials.  



Introduction and Context of the Research 

19 

 

                                               (a)                                                                                         (b) 

Figure 1.17 : stress-strain behaviour under different lateral stresses, pC and principal stresses plot at failure 

with a Hoek-Brown failure criterion interpolation [10]. 

 

Meanwhile, a higher confinement corresponds to a change in the claystone post-failure behaviour, 

which reveals to be more and more ductile, with respect to the very fragile response in uniaxial 

conditions. The stress-strain diagrams in Figure 1.18 show an example of this yielding behaviour 

transition under five different pC values. The same numerical simulations mentioned above will 

focus also on this aspect. In the fourth chapter, a discussion on the physical aspects of material 

yielding and their implications on the employment of the proposed numerical model predicting 

the excavations’ behaviour will be provided. Eventually, it has been observed that the claystone 

presents a rather brittle behaviour under tensile loading [42]. Concerning the long-term aspects, 

creep of the COx has already been investigated and included in some proposed models based on 

elastic-plasticity, for the behaviour prediction to excavations. Useful references for the 

description and analyses of time-dependent behaviour of the material can be found in the works 

of Guayacán-Carrillo et al. ([41] and [42]), Mánica et al. [57] and Zhang et al. [117]. 

 

Figure 1.18 : TXc tests showing a transition from the fragile post-peak response under uniaxial conditions 

(pC = 0) to the almost perfect yielding under high confining pressure (pC = 20 MPa) [8]. 
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As anticipated, an outline of the manuscript is reported hereby. Previously, the context of deep 

geological repository (DGR) for nuclear waste has been presented. Then, Andra facilities at the 

Centre Meuse-Haute Marne have been presented, together with real-scale observations and 

current modelling proposals for the host rock behaviour to excavations. A presentation of the 

material has followed. The second part of Chapter 1 recalls some significant benchmarks for 

failure analyses around boreholes, with published works related to other DGR contexts for nuclear 

waste. Then, two existing analytical solutions are introduced: firstly, in elasticity, then, 

considering perfect failure conditions (in plasticity). The rest of the manuscript is structured as 

follows: 

- Chapter 2:   presentation of the main Finite Element (FEM) code adopted and basic material 

models. Simulation of circular excavations in perfect and softening yielding conditions. 

Discussion on the post-failure predictions, changing from plasticity to damage yielding. 

Upgrade of the elastic-damage model to be employed for successive numerical analyses. 
 

- Chapter 3: adoption of the upgraded model to validate the short-term failure for a drift along 

σH at the Andra URL. Focus of the axial stress’ influence on 2d numerical simulations in 

plane strain hypothesis. First implementation of anisotropies for the failure criterion and the 

elastic stiffness tensor. Prediction of failure at the URL main level, around two perpendicular 

drifts, for different boundary conditions. Revision of the failure criterion to neglect the axial 

stress in the resistance calculation and numerical testing. 
 

- Chapter 4: second modification of the stiffness tensor, based on a damage dissipation 

affecting the shear component of the elastic-damage matrix. Further improvement of the 

anisotropic failure criterion and proposition of the final elastic-damage model for drifts’ 

analyses following both the main horizontal stresses (σH and σh) at Andra URL. Introduction 

of the brittle-ductile transition of the COx post-failure behaviour and considerations on 

drained or undrained testing conditions for stiffness parameters’ choice. Final numerical 

simulations for 2d failure around circular openings. 
 

- Chapter 5: simplification of fractures patterns around drifts at Andra URL and approximation 

to a 2d axisymmetric problem for numerical purposes. Presentation of the damage-based 

cohesive model for the interfaces and numerical FEM discretisation with joint elements. 

Numerical testing analysing a single-fracture opening. Then, introduction of multi-fractures 

simulations and numerical implementation of the excavation process. Discussion on the 

results obtained, focusing on the fractures length and mutual distance of occurrence.  
 

- General conclusions and outlooks to the thesis’ works, with perspectives for possible 

forthcoming researches. 
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Numerical modelling proposed throughout the whole manuscript is logically arranged following 

two main research axis. This subdivision depends on the choice for the 2d analyses approach of 

a typical 3d problem in geomechanics and geotechnical engineering, as illustrated in Figure 1.19. 

This double approach has physical and numerical correspondences, described in the following.  

- From Chapter 2 to Chapter 4, 2d plane strain simulations of failure in the cross-section of 

circular galleries are presented. They contribute to the short-term modelling of the system 

EDZ-EdZ, for drifts at the Andra URL, along σH and σh (i.e. different boundary conditions). 

Finite Element (FEM) approach constitutes the suitable tool for the numerical investigation 

of generation and evolution of the EDZ-EdZ, intended as a continuous, “diffused” failure 

system. 

 

- In Chapter 5, 2d axisymmetric simulations describing fracturing around galleries are 

presented. Here, short-term failure is intended as a discontinuous system. Boundary 

conditions correspondent to in-situ stresses, will remain, in general, constant. This second 

part of numerical analyses differs also on some of the numerical tools. As previously 

introduced, linear elements (joint elements, e.g. [39]), reproducing discontinuities in a FEM-

based displacements field, will be included. At the same time, these works offer the chance 

to study different numerical implementations simulating a tunnelling excavation. 

 
Figure 1.19 : illustration of the proposed analyses’ concept for failure description and numerical modelling 

(original figures modified from [60] and [93]).  

3d failure problem around drifts

1: continuous failure area 

on the gallery section 

2: discontinuous failure as 

fractures along the gallery axis



Chapter 1 

22 

1.2 Some aspects of failure around deep excavations 

Failure around boreholes, tunnels and drifts constitutes a wide theoretical topic in geomechanics 

and, sometimes, an engineering challenge for practitioners. A brief summary, with some 

significant references, is discussed in the following.  

Phenomenological, analytical and numerical analyses focusing on boreholes stability and failure 

reunite research works and applications lasting for decades. In particular, localized failures around 

openings, often defined breakouts or exfoliations, constitute a serious matter for the progress of a 

drilling process. Significant deviatoric stresses acting in the section plane, at great depth, enhance 

the stress concentrations around the borehole and lead to its deterioration. As reported in 

Vardoulakis et al. [109], failure is not a strict material property but depends on the stress path and 

boundary conditions of the system. According to the authors, two types of failure modes can be 

identified: extension rupture and shear banding. Figure 1.20 provides a scheme of these possible 

failure modes. Multiple failure possibilities introduce the concept of bifurcation of the solution. 

In case of the breakouts, an instable phenomenon occurs. These concepts are recalled in Chapter 

2, when significant aspects on numerical results shown in Section 2.2 will be discussed. 

Nonetheless, a deep focus on these topics exceeds the scopes of this thesis. Rigorous mathematical 

formulation for instability analyses and determination of the critical bifurcation stress, around a 

circular borehole, are detailed in the exhaustive work of Vardoulakis & Papanastasiou [109]. 

Related numerical applications, concerning the localization and post-bifurcation treatment by 

regularization methods (e.g., Cosserat continuum) can be found in Papanastasiou & Vardoulakis 

[63] and, recently, in Papanastasiou & Zervos [65]. Similar analyses, based on observed failure 

mechanisms, are reported in Crook et al. [28]: local instability often occurs as a borehole breakout 

(cross-sectional elongation of the initial geometry) and evolves, later, towards a more stable 

elliptical shape. Observations of the two mechanisms are illustrated in Figure 1.21.  

 

(a)                                                             (b) 

Figure 1.20 : failure modes, as reported in Vardoulakis et al. [109]. Exfoliation (a), shear-banding (b). 
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(a)                                               (b) 

Figure 1.21 : axial-splitting in sandstone (a) and shear failure in limestone (b), reported in Crook et al. [28]. 

A correspondence can be noticed with the conceptual schemes in Figure 1.20 and similarities with failure 

patterns around drifts in Andra URL can be remarked. 

 

At the laboratory scale, analogue failure modes have been observed in hollow cylinder tests on 

Opalinus Clay and Boom Clay (Labiouse et al. [49], Labiouse & Vietor [50]), under specific 

hydro-mechanical controlled boundary conditions. As previously mentioned, these materials are 

considered as host geological formations for other feasibility studies of nuclear waste DGR in 

Europe, respectively at the sites of Mont Terri (Switzerland) and Mol (Belgium). In particular, 

bedding plane splitting and buckling in the indurated and brittle Opalinus Clay occurred (in 

analogy with Figure 1.20a and Figure 1.21a), while a predominance of shear failure along 

conjugated planes was observed in the more ductile Boom Clay (similarly to Figure 1.20b and 

Figure 1.21b). It is worth underling that the failure area, referred as Excavation Damaged Zone 

in the mentioned publications ([49] and [50]), corresponds to the system denoted as EDZ-EdZ, in 

this manuscript.  For the case of Boom Clay, numerical simulations, based on hollow cylinder 

experiments, revealed a damage zone geometrically similar to in-situ evidences at the Andra URL. 

The elliptical failure obtained in numerical simulations agreed with laboratory testing, as reported 

in François et al. [36] and illustrated in Figure 1.22.   

 
(a)                                                                   (b) 

Figure 1.22 : qualitative comparison of the shape of the excavation damaged zone between (a) numerical 

prediction and (b) X-ray tomography scan after hollow cylinder testing. Modified from François et al. [36]. 
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As COx claystone, Boom Clay exhibits some anisotropic properties and, according to the authors, 

they contribute to the formation of an eye-shaped EDZ-EdZ. In Figure 1.22a, the numerical 

simulation, showing the shape and distribution of total deviatoric strains, provides a correct 

prediction of the failure extension in the medium, subjected to hollow cylinder testing. 

Besides failure modes, failure extension around an excavation is a fundamental assessment 

required for the drifting process and the retaining structures. When dealing with DGR for nuclear 

waste storage, this concern becomes a priority to prevent radionuclides transport, along the system 

EDZ-EdZ, from the geological barrier used for isolation [71]. The stress-induced yield of hard 

rock at depth combines different mechanisms where tensile damage and confinement reduction 

also play important roles. To the extreme, tensile micro-cracking, influenced by low confinement 

conditions near excavations, leads to the material slabbing (e.g. [33], [38]). It corresponds to the 

same instable failure type previously introduced (breakout). For brittle rocks, as the Callovo-

Oxfordian formation, the strength envelope can be represented by the multiphase diagram in 

Figure 1.23. This envelope is the result of the mechanics of tensile fracture accumulation and 

propagation corresponding to a reduction of the yield surface as confining stresses are relaxed. 

These mechanisms are well identified by a damage-type energy dissipation. As a certain damage 

threshold is exceeded, acoustic emissions are observed and micro-crack damage accumulates, 

leading to cracks interaction and, eventually, coalescing in a macro-scale shear failure, if the 

confinement level is sufficiently high (shear-banding). Moving to the low confinement zone 

(Spalling Failure in Figure 1.23), individual cracks can propagate differently, leading to 

macroscopic axial splitting or spalling normal to the minor principal stress (denoted σ3).  

 

Figure 1.23 : failure envelope for brittle failure, showing four failure mechanisms: no damage, shear 

failure, spalling, and unravelling. Axis are normalized to the UCS, σ0. Modified after Diederichs [33]. 

0σ

0σ
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As a result, the rock strength, in-situ, is likely lower than the correspondent prediction from 

laboratory tests, as fewer cracks (i.e. material damage) are required for failure [33]. If the effects 

of tensile damage and resistance, amplified by elevated sensitivity to low confinements, are 

neglected, erroneous predictions of rock yield can be performed. In this work’s analyses, even if 

failure is traditionally evaluated considering the contribution of confinement in the criterion 

formulation, the damage-based mechanics is privileged and investigated, rather than a better-

known approach in plasticity. Continuum damage mechanics (CDM) approaches have been 

already reported, in scientific literature, as successful analysis tools to take into account the 

inhomogeneous redistribution of material properties and stresses in the vicinity of the boreholes 

[86]. Hard rock formations such as Berea or Tablerock sandstone appear, sometimes, even more 

appropriate to exploit the potentiality of damage modelling, in particular for stress-driven failure 

at boreholes, due to stress concentrations, developing in breakouts (e.g. [28], [86]).  

This review, concerning non-linearities and irreversible aspects of materials surrounding 

boreholes at different scales, had the objective to draw a general bibliographic context for the 

specific issues related to observations at the Andra URL. Without the intention to deeply focus 

on each mentioned reference, an attempt to collocate the thesis’ subject in a determined 

geomechanics topic has been made. In the following, it seems suitable to include three sub-

sections describing some basic mathematics to approach the problem of excavation in pre-

compressed media. Thus, the stress’ solutions around a circular cavity will be shown, firstly, in 

elasticity and, lastly, accounting for a simplified failure condition. In both cases, the analytical 

solutions are exposed. Then, simple conditions for localization of failure at a cavity wall will be 

presented. 

 

1.2.1   2d stress solution for tunnel cross section in case of elasticity 

Assuming a linear elastic material, the analytical solution for the calculation of the stress field 

around a circular borehole exists. For sake of simplicity, a change from the Cartesian reference 

system to a cylindrical coordinate system is assumed, in general, for mechanical problems 

concerning circular boreholes, i.e. showing axial symmetries. A cylindrical gallery with the cross 

section perpendicular to the direction z is considered, as illustrated in Figure 1.24a. In Figure 

1.24b, the cross section on the plane defined in Cartesian coordinates (x ; y) is reported together 

with the local reference in cylindrical coordinates, (r ; θ). The coordinate r = ra identifies the 

gallery radius. In cylindrical coordinates, for stress fields around a circular borehole, the tensorial 

form of classical equilibrium equations without body forces, in Eq.1.1 are written according to 

Eq. 1.2a and b:  



Chapter 1 

26 

                                                                    0 σ                                                                 (1. 1) 

                                      0







rr

rrrr 
     ;       02

1











rrr

rr  




                (1. 2a-b)  

Cylindrical equilibrium in Eq. 1.2a and b includes the hypotheses of plane strain, i.e. εzz = 0. The 

solution of the stress components in elasticity, valid for the entire domain on (x ; y) or (r ; θ) 

according to Figure 1.24b, can be obtained starting from Eq. 1.2a and b and applying the boundary 

conditions correspondent to the fair-field conditions (r → ∞) and to the gallery perimeter (r = ra). 

The simplest formulation, accounting for a circular gallery with a retaining structure providing a 

support equal to p0, refers to an isotropic pre-compressed medium (e.g. a deep rock formation). 

The tensor describing an isotropic in-situ stress state, for every point of the domain and 

considering the third direction correspondent to the axis of symmetry z, writes: 

                                                       )33()0(,,,,   Iσσ  zrzyx                                             (1. 3) 

According to Eq. 1.3, the initial, or in-situ, stress tensor depends only on the initial stress 

component, σ∞,(0), which multiplies the (3x3) identity matrix. This boundary conditions, together 

with the condition imposed by the internal pressure at r = ra, provides the solution of the radial 

and orthoradial stress components, derived from Eq. 1.2a and b. They write, respectively: 
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                              (a)                                                                                    (b)  

Figure 1.24 : axial symmetry of a 3d borehole problem (a) and plane of reference for the analysis of stress-

strain fields on a gallery cross-section (b).  
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Under the assumption of complete excavation with no support linings and focusing on the zone 

coincident with the tunnel perimeter, i.e. r = ra, Eq. 1.4 and 1.5 can be significantly simplified: 

                                                            00 , 0  prr arr                                                      (1. 6) 

                                                        )0(,0 20 ,   prr a
                                                (1. 7) 

In particular, if a failure condition for the material was considered, Eq. 1.7 would represent the 

value to be compared to the uniaxial compressive strength (UCS), σ0 in this work. The elastic 

solution, for whatever radial direction, of the planar components σrr and σθθ, is illustrated in Figure 

1.25. To trace the graphic, it is assumed: 

- Gallery radius ra = 2.5 m and no internal support, i.e. p0 = 0. 

- Initial isotropic stress σ∞,(0) = −12 MPa.       

 

It is necessary to clearly define the signs convention, defining when the state variables considered 

in analytical and numerical works, presented throughout the entire manuscript, assume a positive 

or negative value. According to a common practice of rock mechanics and oppositely to the soil 

mechanics reference, positive values for stresses and forces define, here, tensile actions.  Negative 

values define, on the contrary, stresses and forces correspondent to compressive actions. For 

instance, for a stress tensor component σij, one writes: 
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Concerning kinematic variables, positive strains and displacements assume positive values when 

corresponding to elongations along the coordinates’ versus of the reference system adopted. 

 

Figure 1.25 : analytical elastic solution for cylindrical stress components acting in the cross section gallery 

with reference to Eq. 1.4 and 1.5. ra = 2.5 m and σ∞,(0) = −12 MPa. 
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The solution reported above shows that, on a radial direction, whatever increment of one stress 

component corresponds to an equal decreasing of the other; formally: 

                                                                rrr      ,                                                          (1. 9)  

The validity of Eq. 1.9 above is easily verified even in presence of an internal pressure p0 

correspondent to a lining structure, according to Eq. 1.4 and 1.5. From a physical point of view, 

if the ensemble of the hypothesis above is true, the excavation of a circular tunnel induces an 

increasing of the deviatoric part, s, of the initial stress tensor σ(0). Thus, the material is subjected 

only to distorsional deformations (changes in shape), without development of spherical 

deformations (changes in volume). In particular, this is true not only for every point in the cross 

section, but also within the entire space (x ; y; z) or (r ; θ; z). This corresponds to the plane strain 

hypotheses (εzz = 0) in the cylindrical equilibrium (Eq. 1.2a and b), which allows stating an 

eventual condition on the axial stress σzz, in purely elastic behaviour: zz= 0. With respect to an 

initial value, coincident with in-situ stress state or imposed as boundary condition in numerical 

modelling, no variation occurs in the initial value σzz,(0). In particular, according to the system of 

Figure 1.24b, if no initial value for σzz is defined a priori as boundary condition, σzz,(0) is directly 

obtained by the plane strain condition:    

                                0 
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 rr
zz

zz
EE

  →   )0(,)0(,)0(,   rrzz
                         (1. 10) 

E is the Young’s modulus and ν the Poisson ratio. Eq. 1.9 and the right condition of Eq. 1.10, 

together, show the validity of the boundary condition zz = 0. In many numerical analyses 

presented in the successive chapters, the initial condition σzz,(0) will be determined according to 

Eq. 1.10. In the following, failure conditions are introduced and modifications of the elastic 

solution will be analysed, under some simplicity assumptions. 

 

1.2.2   A 2d stress solution for tunnel cross section in case of elasticity - perfect plasticity 

With a linear elastic and perfect yielding behaviour, it is possible to evaluate the extension of the 

failure zone rp as well as and the stress variables in every point of the radial direction. As 

commonly adopted in literature (e.g. [48]), failure is modelled by the development of plastic 

deformations. According to the same cylindrical symmetry in 3 dimensions, (Figure 1.26a), for 

every point of the 2d domain in Figure 1.26b, a cylindrical coordinate system may be assumed. 

Again, the coordinate perpendicular to the plane is the axial coordinate z. The following 

hypothesis are considered:    

- Mohr-Coulomb failure criterion [51] not depending on σzz. 
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- Purely frictional material, φ > 0 while C = 0. 

- Perfect plasticity after the elastic limit. 

- Isotropic stress state in the cross section described by σ∞,(0). 

- Plane strain conditions: εzz = 0. 

According to a Mohr-Coulomb approach with no cohesion, the criterion in cylindrical coordinates 

writes: 

                                                           sinrrrr                                                  (1. 11) 

σθθ at failure must respect the equation: 
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Kp is the passive earth pressure coefficient. For the radial equilibrium equation (Eq. 1.2a): 
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The partial differential equation is resolved as follows: 
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With the coefficient A:  
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Since it is necessary to satisfy the failure condition: 

                                                                  
rrPK                                                               (1. 16) 

                    

                                 (a)                                                                             (b)  

Figure 1.26 : axial symmetry of a 3d borehole problem (a) and plane of reference for the study of the stress 

field with a circular failure extension on a gallery cross-section (b). 
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Eventually, for ra ≤ r ≤ rp, the two stress variables write: 

                                          

 1

0















PK

a

rr
r

r
p    and    

 1

0















PK

a

Prr
r

r
pK                       (1. 17a-b) 

If the classical elastic solution for σθθ and σrr writes: 
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The elastic solution, in presence of a failure zone ra ≤ r ≤ rp, writes (for r > rp): 
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It is necessary to define the radial stress component at the failure plastic limit, σP,rr. If, in elasticity 

only, it is possible to write:   

                                                          0)0(,2 prr a  
                                                   (1. 22) 
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In presence of a failure zone extending for ra ≤ r ≤ rp: 
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According to the solution within the failure zone and to respect the criterion, at r > rp: 
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The extension of the failure zone rP can be also derived: 
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In the following, the plot of σθθ and σrr with r for a weak internal pressure (compression) of −1 

MPa is reported. It is superposed with the same plot for a further reduction of this internal 

confinement down to −0.5 MPa, assuming an excavation in its final phase. According to the 

hypothesis, no cohesion is assumed. The friction angle φ = 20° and σ∞,(0) = −12 MPa. The tunnel 

radius corresponds to ra = 2.5 m.  First of all, it is necessary to point out that the plot shows an 

unrealistic situation with respect to tunnelling conception and design in the engineering practice: 

a deep rock formation presents, in general, decent cohesion values C to provide a higher failure 

resistance than the one correspondent to the situation shown in Figure 1.27. Moreover, the internal 

retaining structures must be conceived to limit the gallery convergences: for instance, a 

preliminary design method will refer to the so called rock-support interaction diagram [20]. The 

intersection between the curve of the radial displacement (Ground Response Curve) with the 

support reaction line will determine the internal pressure p0 requested to maintain a convergence 

threshold. Then, once the tunnel support has been dimensioned, numerical simulations (e.g. Finite 

Element Method) can be performed to provide more detailed force-displacement and stress-strain 

analyses. On the other side, the plot is significant to evaluate some differences between the stress 

conditions in the failure zone and the elastic conditions still valid for r > rP: here, each positive 

increment of the orthoradial stress corresponds to a negative increment of the radial one. As 

previously shown, the axial stress σzz remains constant to its initial value ν∙(σrr,(0) + σθθ,(0)) or, in 

the principal (Cartesian) coordinate system, ν∙(σxx,(0) + σyy,(0)). In the failure zone ra ≤ r ≤ rp, this is 

no longer valid: Δσzz ≠ 0.  

 

Figure 1.27 : σθθ and σrr along a radial direction for internal pressures of 1 MPa (continuous lines) and 0.5 

MPa (dotted lines). 
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If an elastic-plastic behaviour at failure is assumed, the finite and incremental formulations of 

total strains write: 

                                                    PE
εεε     and    PE

εεε                                          (1. 31a-b) 

According to the general flow rule in plasticity for a strain component εP
ij, we can write the 

incremental form of the plastic strain along z: 
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Two of the hypothesis enounced in this paragraph are recalled: the failure criterion does not 

depend on σzz [51] and the excavation problem is treated in 2d plane strains, εzz = 0. For the first 

hypothesis, the plastic deformations component zz
Pε must be null and no plastic deformations 

along z are generated. Considering the second hypothesis, also the elastic deformation component 

along z must remain null. The elastic stress solution is still valid for Δσzz, according to Eq. 1.10, 

but ǀΔσrrǀ ≠ ǀΔσθθǀ, meaning Δσzz ≠ 0. In the failure zone, a finite increment of the orthoradial and 

radial stresses can be evaluated from Eq. 1.17a-b, for a fixed variation of the internal pressure: 
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As a consequence, for every reduction of the internal confinement p0, both σθθ and σrr, within the 

failure zone ra ≤ r ≤ rp: ǀΔσrrǀ < 0 and ǀΔσθθǀ < 0. Considering Eq. 1.10, a finite increment of σzz 

respects the condition: 
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The equation above implies that, for a reduction of the internal pressure ǀΔp0ǀ < 0, within the 

failure zone ra ≤ r ≤ rp, a reduction of the axial stress component must correspond: ǀΔσzzǀ < 0. In 

Figure 1.28, the radial evolution of σθθ and σrr (according to Figure 1.27) are superposed to the 

radial evolution of σzz for the same reduction of internal pressure, assuming a Poission’s ratio ν = 

0.2. The role of σzz in the failure analyses around tunnels and relative criterion formulations has 

been a debated topic, even in relatively dated publications (e.g. [81]). Considering a failure 

criterion also depending on σzz, plastic strains are possible along z and analytical solutions reported 

above are no longer valid. This will be discussed again in Section 2.1 with numerical analyses 

considering perfect elastic-plasticity and a Drucker-Prager failure criterion (f depending also on 

σzz). Some discrepancies between plasticity and damage will be encountered, as well as important 

differences in the post-failure phase, if a softening yielding is considered instead of a material 

exhibiting perfect yielding. 
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Figure 1.28 : σθθ, σrr and σzz along a radial direction for internal pressures of 1 MPa (continuous lines) and 

0.5 MPa (dotted lines). 

In the final part of this discussion, two possibilities for the failure localisation around a circular 

borehole are shown. They cover a relevant interest because of their correspondences with in-situ 

evidences and the Andra URL. In the next chapters, numerical results presented, including 

softening post-failure analyses, often reproduce the failure initiation conditions shown in the 

following. 

 

1.2.3   Two simple cases of failure localization around a circular borehole 

According to the reference schemes for 2d, plane strain analyses proposed in Figure 1.24 and 

Figure 1.26, the homogeneous failure condition corresponds to a simultaneous verification of the 

failure criterion at every point of the perimeter r = ra, i.e. f = 0,  θ. On the contrary, localization 

of failure occurs if the criterion is verified only at certain points around the gallery perimeter: 

failure is not simultaneous θ and, in general: f ≤ 0,  θ.   

A first case of failure localisation is a stress state, in the cross section, characterized by anisotropy 

and not defined by a unique component σ∞,(0). Referring to the scheme illustrated in Figure 1.29, 

the tensor correspondent to the initial stress state σ(0) in the cross section plane Γ is characterized 

by the principal vertical component higher than the horizontal, i.e. σxx,(0) < σyy,(0). With no internal 

pressure, the radial and orthoradial stresses along these directions, write:  

                                                                      0rr                                                                 (1. 35) 

                                
)0(,)0(,3)A( xxyy     and  

)0(,)0(, 3)B( xxyy                    (1. 36a-b) 

Eq. 1.35 is valid for every point at the perimeter. According to Eq. 1.36a-b, with σxx,(0) < σyy,(0): 
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Figure 1.29 : localisation of failure at the point A (and its symmetric along x) due to an anisotropic in-situ 

stress on the section plane Γ. 

                                                      

                                                               )B()A(                                                            (1. 37) 

It is evident that, if the same uniaxial compressive strength (UCS) can be offered by the material, 

the anisotropic σ(0), where anisotropy directions coincide with the principal ones, induces a 

delayed failure between points A and B (and their symmetric ones along these directions). In 

particular, failure initiation will localize firstly at A.  

The second condition for localized failure is illustrated by Figure 1.30. In this case, the 

inhomogeneous response of the material at the perimeter is determined by the UCS, σ0, due to an 

anisotropy characterizing the medium itself (e.g. for inherent anisotropy or induced by 

diagenesis). For a 2d, plane strain problem with an isotropic initial stress state on the plane Γ, 

described by the only value σ∞,(0), the same component σθθ exists, θ at r = ra, with or without an 

internal pressure p0. Nonetheless, since f (r = ra) = 0 when σθθ (r = ra) = σ0, failure will firstly 

localize at the point A. In fact, here the material exhibits a lower value of UCS than, for instance, 

the same at the point B, on the vertical direction. 

 
Figure 1.30 : localisation of failure at the point A (and its symmetric along x) due to different local values 

of UCS σ0 around the perimeter. 
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The analytical stress solutions and the simple analyses for failure localization previously reported 

conclude the second section of this chapter, dedicated to a general framework for the problem of 

boreholes failure. Chapter 2 is presenting the first numerical analyses for failure, comparing 

damage and plasticity yielding conditions. Particularly in Section 2.2, numerical results are 

described in detail, referring to some theoretical contents already mentioned before. These 

discussions constitute the fundamentals for damage-based numerical modelling of failure around 

drifts at the Andra URL, presented throughout the entire manuscript.  
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       Conclusion 

This initial chapter intended to provide, at first, the industrial implications for this study, 

corresponding to the mission of Andra for the development of a DGR facility for nuclear waste 

disposal in France. The Andra Underground Research Laboratory (URL), the site for real scale 

feasibility studies, was presented together with related research and thesis works constituting a 

framework and reference for the current one. A characterisation of the Callovo-Oxfordian 

claystone properties has been included in the first section. This reported, eventually, the main 

outlines of the manuscript, describing the logical structure of the entire research work and the 

approaches chosen for modelling of the short-term failure around the excavations at the URL, 

based on damage mechanics.  

   A literature review for some significant contributions, covering a particular interest for the 

thesis’ topic, has been included in the second section, together with some examples of similar 

excavation-induced effects on other geological formations selected as host media for nuclear 

waste disposal. A successive review and discussion on analytical solutions for the stress 

distributions around deep circular boreholes and an analyses of failure localisations concluded the 

second section. 

   After the presentation of the research motivations and background, the forthcoming chapter 

presents, at first, the code adopted to process FEM numerical models simulating failure around 

boreholes in 2d plane strain conditions. In general, Chapter 2 is intended to provide the theoretical 

motivations and basic implications for a mechanical modelling based on damage, in particular 

accounting for the material’s reduction of strength during yielding. 
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In this chapter, an initial presentation of the principal Finite Element code adopted, POROFIS 

(Pouya, 2015 [72]), is presented and some of its characteristics and structure are detailed. Then, 

mathematical formulations of constitutive models to describe the response of a softening medium 

induced by a circular gallery excavation are provided. A first application to validate similarities 

on an isotropic unloading of a 2d circular cavity in perfect yielding conditions together with mesh-

size analyses is performed. 

   Subsequently, fragile characteristics of the Callovo-Oxfordian claystone post-failure response 

for low confinements are recalled before performing numerical analyses of unloading of circular 

cavities in isotropic and anisotropic conditions when softening occurs. Significant differences 

between results in brittle plasticity and brittle damage will be shown. A focus on the concept of 

instable damage propagation and enhanced bifurcation phenomena when failure occurs in damage 

condition will be discussed. 

   Eventually, an upgrade to the basic softening damage model will be introduced and physical 

motivations will be discussed. The model upgrade will constitute the basis of successive 

numerical analyses of failure propagation around galleries in Andra URL. New mesh-size 

sensitivity analyses, now accounting for softening conditions, will conclude the last Section of 

the current chapter. 
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2.1 Presentation of the FE code and constitutive laws formulation 

Numerical simulations further presented in this chapter are performed adopting the Finite Element 

(FEM) code POROFIS ([72], http://mecharock.net/). As mentioned at the end of Section 1.2, 

results by FEM simulations presented also in Chapter 3 and Chapter 4 employ the code POROFIS. 

In Chapter 5, numerical analyses adopt POROFIS and, in parallel, the analogue FEM code 

software DISROC. POROFIS is a 2d Finite Element code derived from DISROC, which is 

developed by the software development company Fracsima (http://www.fracsima.com/). 

POROFIS is conceived for modelling coupled Thermo-Hydro-Mechanical (THM) and Chemical 

phenomena in POROus FISsured media. POROFIS is designed for research-oriented applications 

and includes a large variety of non-linear constitutive laws and coupling models for various THM 

phenomena. In general, it is possible to assign one or more materials in the pre-processing phase 

of the numerical simulation by choosing the constitutive laws already existing in POROFIS. For 

this work’s purposes, the code structure allows the user to develop customized constitutive laws 

based on the pre-defined subroutines: the enrichment of constitutive laws is based on theoretical 

and physical assumptions which will be discussed in these sections and in the following chapters, 

passing through the two main research axis discussed in Section 1.2: 2d plane-strain numerical 

study for the continuous failure (damaged), zone around a circular gallery and 2d axisymmetric 

numerical study for the generation and evolution of fractures during the advancing of the 

excavation front. POROFIS is hence employed as a processor to solve the FEM problem 

according to assigned characteristics defined in the pre-processing phase: materials, boundary 

conditions (BCs), initial conditions (ICs) and spatial 2d discretisation (mesh). For every numerical 

simulation, the pre- and post-processing phases (visualisation and analyses of the results) are 

operated by means of the pre- and post-processor interface GiD (https://www.gidhome.com/). 

For this research, two of the subroutines (modules) constituting the structure of POROFIS have 

been modified according to physical and numerical needs and assumptions for the different 

simulations: as the whole code, they are implemented in FORTRAN90 and included in two 

separated files: Utilizer.f90 and Hydmec.f90. In the module Utilizer.f90, user-defined constitutive 

laws can be written and compiled in order to assign a new material in the numerical model. A 

general constitutive law – as those adopted in this work – is structured in Utilizer.f90 in three 

main parts: 

1. Definitions of the necessary variables for the failure criterion, f: resistance parameters and 

stress tensor components acting in the failure criterion. In general, every failure criterion 

employed is based on stress rather than strain. This first part ends with the explicit expression 

of the failure criterion and it is checked, for each element (at its Gauss point), if the current 

stress state overcomes f.  

http://mecharock.net/
http://www.fracsima.com/
https://www.gidhome.com/
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2. If, for one or more mesh elements, f = 0 within a selected tolerance, the dissipation (yielding) 

law is written and solved in order to actualize the internal variable(s) χ at the Gauss points of 

the dissipating elements. 

3. The third and last part includes the resolution of the current stress-strain state according to 

the pre- or user-defined elastic stiffness tensor.  

In Appendix A, Figure A.1, an example of the subroutine structure containing the FORTRAN 

implementation the basic constitutive laws, later presented in this section, is provided, with an 

indication of the three main parts described above. Such a subdivision of the entire constitutive 

law defining the σ : ε relation, at each Gauss point, constitutes a practical advantage, if one (or 

more) of the three parts are intended to be singularly modified. It will be the case when the 

upgrades to the basic elastic-damage law are introduced, in particular accounting for the material 

anisotropies. These aspects will be detailed in Section 2.3 and Chapter 3 and Chapter 4. Figure 

2.1 shows a diagram of the procedures composing the step-by step resolution of the σ : ε relation 

for a Gauss point according to its structure in the module Utilizer.f90. 

Another useful feature of the module Utilizer.f90, for user-defined purposes, consists in an 

internal subroutine which allows tracing a specific contour plot for one or more selected state 

variables (σ, ε, χ, f, etc…) for the GiD post-processing phase. This is possible for a particular 

computation step as well as for multiple steps, in order to visualize the evolution of the selected 

problem variable(s).  

 

Figure 2.1 : procedures composing the step-by step resolution of the σ : ε relation for a classical constitutive 

law in Utilizer.f90. 
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The second accessible module, Hydmec.f90, allows - in relation to this work’s purposes - to 

operate interventions on the step-by-step solution of the FE problem according to the specific 

needs of the simulation. For instance, in the 2d plane strain simulations, an internal subroutine 

included in Hydmec.f90 allows to operate on the BCs of the gallery realisation phase. It takes into 

account a partial unloading of the pre-confining (in situ) stress state up to the limit elastic 

conditions, simulating a linear unloading, at the gallery wall, in isotropic or anisotropic 

conditions. In a similar way, another subroutine allows a time-dependent modifications of BCs 

along the gallery side for the 2d axisymmetric simulations in Chapter 5, to reproduce the 

advancement of an excavation front at a constant drift speed. These procedures will be detailed 

in the relative chapters and sections. 

In the following, Figure 2.2 reports the general working scheme for a FEM problem in POROFIS. 

The processor itself, composed by a part of internal subroutines plus those accessible by the user, 

Utilizer and Hydmec. According to Figure 2.2, for a generic Project file created in GiD, these 

files are accepted by POROFIS as input: 

- The Project input file itself, containing the mesh connectivity matrix, the nodes coordinates, 

the material types and the BCs; 

- The Project.param file, containing the computation parameters for the numerical solution; 

- If necessary, the Project.rep file, containing the final conditions (in term of state variables) 

of a previous stage, and used as initial conditions (ICs) for the simulation stage. 
 

As reported in [72], POROFIS may account for potential discontinuities in the FEM model (e.g. 

rock interfaces, fractures, drying cracks) with hydro-mechanical couplings between a matrix 

(intact material) and discontinuities themselves. For instance, discontinuities in the displacement 

field may exist with the relative stress values that verify the constitutive laws at the integration 

(Gauss) points. Similarly, a network of potential discontinuities in a FEM model reproducing a 

clayey soil may generate fractures due to drying-out effects. Fruitful applications of POROFIS in 

cracking modelling may be found in the Phd thesis of Nguyen [61] and Vo [111]. 

 

Figure 2.2 : general structure of the FE processor POROFIS: code core, i/o files and related subroutines 

(http://www.fracsima.com/). 

http://www.fracsima.com/
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Based on already known numerical approaches [39], POROFIS is able to process a FEM mesh 

containing a network of pre-oriented or random discontinuities adopting interfaces or joint 

elements. A numerical tool developed by Fracsima, DISCRAC, allows for this procedure, starting 

from a normal FEM mesh. In general, it is possible either to insert discontinuities directly in the 

geometry definitions, tracing them in the same way as a boundary element, or transform the sides 

of whatever number of surface elements in a network of discontinuities. A joints-enriched finite 

element numerical model (JFEM) is eventually obtained; an example of this pre-processing 

procedure is shown in Figure 2.3, where each side of surface (2d) triangular elements are 

transformed in potential discontinuities and assigned with the material Fracture (elastic, elastic-

plastic or elastic-damage). In Chapter 5, numerical models with pre-defined discontinuities 

assimilated with joint elements will be employed. Moreover, DISCRAC assigns automatically 

new nodes for each joint element side, which can move independently, according to boundary 

conditions, materials, etc. This is necessary to overcome the FEM imposition of infinitesimal 

strain (i.e. a continuous and derivable displacement field).  

For non-linear and dissipative behaviours, POROFIS performs, for each calculation increment, a 

local check at each Gauss point based on one Newton-Raphson iteration. This check is intended 

to verify, globally (for the entire mesh), if the displacements convergence and the failure criterion 

tolerance - according to the consistency law f = f = 0 - are respected. An accepted verification 

implies an advancement to the forward calculation step, while a rejected verification forces the 

code to execute again, locally, a new Newton-Raphson iteration. This procedure applies to surface 

elements as well as to interface joint elements. In Appendix A, Figure A.2, a scheme of the 

described computational procedure is reported. 

 

Figure 2.3 : materials assignment and mesh creation in GiD, followed by insertion of a discontinuities 

network based on the original mesh through DISCRAC. 
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After a general presentation of the principal numerical tool adopted, the two basic mechanical 

models for the material behaviour in the initial simulations are introduced. According to the 

statement in Section 1.1, their main task is the simulation of a fragile behaviour after failure, 

characterized by softening of the material: a progressive reduction of its resistance when the 

elastic limit is firstly reached. A linear decreasing of the uniaxial resistance occurs after the first 

failure at the elastic limit and it is followed by a residual constant resistance when a certain 

deformation threshold is reached. The same behaviour in uniaxial compression is treated within 

the frameworks of elastic-plasticity and elastic-damage, according to two formulations pre-

defined in POROFIS, to obtain the same stress-strain curve under monotonic uniaxial loading, 

according to Figure 2.4 ([77]; [78]). Here, the fundamental difference in the reversible unloading-

reloading path between plasticity and damage is shown: if dissipation in plasticity corresponds to 

an increase of irreversible (plastic) deformations (without any change in the material stiffness), 

damage dissipation reduces progressively the material stiffness (e.g. Young modulus E, for a 

uniaxial compression test), without any accumulation of irreversible deformations. For an 

unloading/reloading path, 0f and f = 0, Figure 2.4 shows that, while the branch P is parallel to 

the first elastic one, implying the formation of a residual plastic deformation εP if σ = 0, the branch 

D returns to the axis origin, corresponding to a Young modulus’ reduction with respect to the 

initial one. This is equal to the ratio between the stress and strain at the elastic limit, σ0 and ε0: 

                                                                     E
0

0




                                                                 (2. 1) 

Young modulus in Eq. 2.1 is one of the models’ parameters to be inserted as input for numerical 

simulations. The two elastic-softening models, as defined in POROFIS, include a total of 6 

parameters to define, respectively, the elastic behaviour, the failure resistance and the yielding 

conditions, as reported in Table 2.1. Each parameter is described subsequently. 

Table 2.1 : set of parameters for the basic elastic-plastic and elastic-damage material laws in POROFIS. 

Elasticity parameters Failure parameters Yielding (softening) parameters 

Young modulus, E  [MPa] ;   Poisson ratio, ν  [-]  sinα  [-]  ;   K  [MPa] β  [-] ;    ηr  [-] 

 



 r

r
P 

D 

 
Figure 2.4 : same stress-strain curve under monotonic uniaxial loading and different unloading-reloading 

paths with elastic-plasticity (P) or elastic-damage (D) mechanical model. 
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Parameters E and ν reported in Table 2.1 establish the Hooke’s linear elastic law according to Eq. 

2.2 in the following, where λ and μ are the Lamé coefficients. As a 2d FE code, POROFIS allows 

for plane strain, plane stress or axisymmetric simulations. Eq. 2.2 will be differently written in its 

tensorial and incremental form to distinguish between elastic-plasticity and elastic-damage.  
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Failure resistance for the softening models is implemented adopting the Drucker-Prager criterion, 

reported in Eq. 2.3 ([2]; [34]). According to the common practice for failure in geomaterials, shear 

resistance, expressed in Eq. 2.3 with the deviator stress second invariant J2, is increased by the 

contribution of the mean stress. It is expressed with the total stress first invariant, I1. It is 

underlined that the criterion is implemented oppositely than soil mechanics’ signs convention: 

here, compression stresses are negative and tensile stresses are positive. Thus, while J2 is always 

positive, I1 assumes a negative value for a compressive mean stress state.  Eq. 2.3 contains also 

the yielding law g(χ): the internal variable changes as function of the model’s choice, according 

to either a plastic or a damage dissipation. As detailed in Section 1.2, a transition from uniaxial 

to triaxial loading constitutes the main condition for the most common failure mechanisms around 

galleries, moving from the cavity interface: in general, according to the signs’ convention 

adopted, I1 ≤ 0 for the material surrounding the cavity. For these conditions [2], the failure 

parameters in Table 2.1 are written according to Eq. 2.4a-b. The first is related to the friction 

angle only, φ (Eq. 2.4a), the second to both φ cohesion C (Eq. 2.4b). 

                                                       0 sin3 12   gKIJ                                                (2. 3) 
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In Table 2.1, β and ηr constitutes the last couple of parameters to be presented. They define the 

slope of the linear decrease of the uniaxial compressive strength between the elastic limit 

condition and the residual conditions (σ0 and σr in Figure 2.4). While β is function of the strains 

correspondents to these conditions, ηr corresponds to the ratio between the two limit stresses, 

according to Eq. 2.5a and b in the following:  
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2.1.1   Elastic-plastic softening model 

In the following, the incremental stress-strain law and the Drucker-Prager failure criterion as 

implemented in the pre-defined POROFIS constitutive model are reported, together with the 

consistency law: 

                                                               PεεCσ   :                                                              (2. 6) 

                                                  1 sin3),( 12 KIJf σ                                             (2. 7) 
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C is the linear elastic isotropic tensor defined by E and ν (Eq. 2.2). The failure criterion in Eq. 2.7 

recalls Eq. 2.3, with g(ξ)= (1 − ξ) and ξ, defined as the plastic internal variable. At the elastic 

limit, f(σ, ξ = 0) ≤ 0 and, for uniaxial compression (for instance, along the vertical direction y), 

the stress tensor writes: 

                                                            



















000

00

000

yyσ                                                             (2. 9) 

From Eq. 2.7 and 2.8 at the elastic limit, it is possible to derive the limit condition for the vertical 

stress not to initiate material failure: 

                                              0 sin)0,(  Kf yyyy σ                                          (2. 10) 

According to compression conditions, σyy < 0 while the uniaxial compressive strength (UCS, σ0) 

is always defined positive. It can be expressed only as function of the input failure parameters in 

Table 2.1 (Eq. 2.12): 
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The yielding softening law corresponds to the incremental expression of the internal variable, ξ 

and it is function of the rate of the plastic deformation norm: 
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The evolution of ξ  is written in order to respect the shape of the uniaxial stress-strain curve in 

Figure 2.4 and distinguish the linear softening from the residual resistance conditions:       
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If |ξ| < η (linear softening branch), the consistency law in Eq. 2.8 is directly related to the rate of 

plastic deformations norm: 
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ǁ ε Pǁ is updated together with the current stress state σ at each code iteration when failure occurs 

according to the plastic yielding law in Eq. 2.14a-b. Here, besides the parameters already 

introduced, we identify η: this is complementary to the ratio between σr and σ0 : η = 1 − ηr . It can 

be noticed that, if |ξ| < η, the relation between the internal variable and the plastic strains norm is 

linear according to a constant plastic coefficient, denoted A in Eq. 2.14a. It reproduces the linear 

softening behaviour for ε0 < ε ≤ εr. Under residual constant conditions, no further plastic strains 

may be cumulated. For a very ductile material, the asymptotic tendency moves towards the 

condition of perfect yielding; according to the proposed parametrization it writes ηr → 1 and           

β → ∞. On the other hand, for very brittle materials, both parameters will tend to 0. From a 

physical point of view, a ductile behaviour must correspond to a low rate of ǁεPǁ: after failure, the 

material dissipates slowly the elastic energy. On the contrary, a high ǁεPǁ rate corresponds to a 

brittle behaviour and a rapid dissipation of the elastic energy. Since the plastic coefficient A in 

Eq. 2.14a governs the rate of plastic deformations, it is evident that it must increase for ηr → 0 

and β → 0, while it must decrease for ηr → 1 and β → ∞, as graphically explained in Figure 2.5. 

Recalling Eq. 2.10 and 2.12, if |ξ| > 0, σ0, is variable and writes: 
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Eq. 2.16 describes – under the simplification of uniaxial loading – the decreasing of the material 

UCS in the linear softening phase, among the limit values σ0(ξ = 0) and σr = ηr∙σ0. 

 

 

Figure 2.5 : Plastic coefficient A in Eq. 2.14a, as a function of softening parameters β and ηr. 
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2.1.2   Elastic-damage softening model 

As for the previous case, the elastic-damage model assumes linear isotropic elasticity and a linear 

plus residual softening phase as failure occurs. Eq. 2.17 below writes the incremental stress-strain 

constitutive law in presence of damage D, the model internal variable. In this case, D becomes 

the independent variable in the yielding function g(χ) = g(D), included in the Drucker-Prager 

failure criterion (Eq. 2.18). Each increment of damage D and the stress state σ must respect the 

consistency law in Eq. 2.19. As mentioned previously and according to Figure 2.4, the dissipation 

mechanism (yielding) in this model do not include any irreversible deformation. The irreversible 

aspect of a purely damage-based modelling, as expressed in Eq. 2.17, consists in the progressive 

reduction of material stiffness when yielding, by the variation of D between 0 and 1. It is 

underlined that the Young modulus E only is reduced by D during the loading process, while the 

Poisson ratio ν remains constant. 
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Following the same calculations reported for the elastic-plastic case, when )0,( Df σ , it is 

possible to demonstrate the validity of Eq. 2.12 to express σ0 at the elastic limit: thus, it is 

necessary to introduce the damage law:  
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Again, Eq. 2.20a and b reproduce the softening behaviour with a linear to constant transition, 

where D = Dm corresponds to the threshold value, as represented in elastic-plasticity by |ξ| = η. In 

particular, by Eq. 2.20a, it can be derived that g(D) is equal to 1 when D = 0, while in Eq. 2.20b 

it assumes the value of the ratio ηr between σr and σ0. Thus, the variable σ0 between the limit values 

σ0(D = 0) and σr = ηr∙σr write: 
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The value assumed by β may differently influence g(D)[0 ; ηr]. According to Figure 2.6a and b, 

it can be noticed how the variation of g(D) remains linear or quasi-linear if β ≤ 1 (εr = 2∙ε0, Figure 

2.4), while it is highly non-linear, for instance, for β = 10. In this case, the material may initially 

develop more damage without modifying significantly its intact σ0.     
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                                             (a)                                                                           (b)  

Figure 2.6 : variation of the damage function g(D) with damage, for the same representative values for the 

parameter β. In (a), it is assumed ηr = 0.3, while in (b) ηr = 0.7.  

The softening models, previously introduced, have been employed to perform some first FEM 

simulations in POROFIS, to calculate the isotropic unloading of a 2d circular cavity. These 

calculations are performed assuming plane strains condition. This approach is adopted for every 

simulation discussed in the current chapter, in Chapter 3 and Chapter 4. Under the hypothesis of 

a long tunnel without deviations, the assumption of plane strains is generally used in galleries 

concept and design practice (e.g. [3], [15], [20], [25], [40], [112]). According to the Cartesian 

reference system already adopted in Section 1.2 for stresses analytical solutions, we define with 

the axis z the axial direction, perpendicular to the tunnel cross section. This one lays on the plane 

(x ; y). In such a reference system, the plane strains assumption writes εzz = 0 and, for the 3d 

principal stress tensor in the Cartesian system, the following equation is verified:  
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Stress initial and boundary conditions for the numerical analyses presented in this section respect 

the condition in Eq. 2.22. In particular, the initial stress state σ(0) is defined as isotropic within the 

tunnel section and, consequently, writes: 
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σ∞,(0) is the in-situ isotopic stress on (x ; y).  In presence of a yielding material with linear elasticity 

before failure, it is possible to optimize the calculation time and perform a partial unloading in 

only one calculation step. The stress values simulating the partial unloading will be set according 

to the imposed failure parameters, K and sinα, and boundary conditions. Then, when the elastic 
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limit is attained, POROFIS can process as input the previous elastic calculus (Figure 2.2) and 

perform a fixed number of iterations for the next partial unloading (when failure occurs). For a 

circular opening, the scheme is reported in Figure 2.7. At the beginning the material is undisturbed 

and the pressure at the internal boundary of the future gallery is equivalent to the in-situ stress 

state σ(0) (numerically, − σ(0) must be set if σ(0) is defined positive). Then, a one-step unloading is 

applied at the tunnel wall to reach the elastic limit 0f . This will be firstly attained around the 

gallery interface (r = ra). The second stage includes the multiple-steps unloading for the yielding 

phase, either in plasticity or in damage. The numerical excavation procedure in Figure 2.7 is 

applied for every 2d plane strain simulations of circular galleries excavations, both in case of an 

isotropic or an anisotropic σ(0). It is important to underline that the in-situ stress state may be 

anisotropic within the gallery section on the plane (x ; y), meaning σxx,(0) ≠ σyy,(0). In this case, the 

internal pressure at each point i of the gallery perimeter is defined according to the Cauchy’s 

stress theorem: 

                                                     nσT  )0(i
    ,      T sincosn                             (2. 24a-b) 

In Eq. 2.24b, α is the angle formed by the unit outward normal vector n to the gallery perimeter 

at the point i. In the numerical model, each point i on the gallery perimeter corresponds to the side 

of a finite element. The local normal and tangential unit vectors are evaluated at the geometrical 

centre of its side.  In Appendix A, Eq. A.1 and A.2 report the 2d local stresses evaluation, for a 

defined σ(0), (according to the Cauchy’s stress theorem). In Appendix A, Figure A.3, the local 

system for a certain inclination α to the horizontal is detailed, according to the coordinates’ 

reference as implemented in POROFIS and DISROC.  

In Figure 2.8, the geometry and mesh for the isotropic unloading of a circular gallery are reported. 

In the GiD pre-processor, a squared domain with a 44 m side is defined for a circular tunnel with 

a 2 m internal radius, ra. In Figure 2.8a, the geostatic stage is defined according to the scheme 

below, with −σ∞,(0) = −12 MPa displacements boundary conditions are reported. A unique material 

MATRICE is defined for the entire geometry and meshed by the GiD meshing tool (Figure 2.8b). 

The minimum size for the surface elements at the tunnel wall is set equal to 25 cm. 

 

Figure 2.7 : numerical implementation steps for a circular gallery excavation for plane strains simulations. 
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                                            (a)                                                                          (b)  

Figure 2.8 : geometry for the first FE numerical model of a circular gallery excavation. Stress and 

displacements BCs in (a); domain dimensions and material assignment in (b).  

When the geostatic stage (applying stress BCs in Figure 2.8a) is obtained, the first excavation up 

to the elastic limit is calculated, applying a positive radial (normal) stress at the circular perimeter, 

+Δσ∞,(0). This stage is followed by the second unloading +(1−Δ)∙σ∞,(0), following the scheme in 

Figure 2.7. If, at the beginning of the calculus, the radial stress at the circular perimeter (r = ra) 

must be equal to −σ∞,(0), at the end it is null for every orthoradial coordinate θ :  

                                    0)(01 )0(,)0(,)0(,   arr rr                           (2. 25) 

In the following, contour plots of internal variables (respectively, ǁεPǁ and D) are reported, in 

Figure 2.9a and Figure 2.10a, to compare the elastic-plastic case to the elastic-damage. The plots 

correspond to the last stage at p0 = 0 and parameters are listed in Table 2. 2. Both softening plastic 

and damage models reproduce a perfect yielding behaviour if ηr = 1 is assumed, in Figure 2.4 and 

Eq. 2.5b. Since the object of this numerical simulations is a first comparison between the results 

provided by the two models, not every parameter among those in Table 2. 2 is necessarily 

representative for in-situ conditions or Callovo-Oxfordian claystone. Concerning the extension of 

the failure zone, either in plasticity or in damage, it can be noticed that, as expected, no significant 

differences in term of shape and extension are found: particularly, in both cases, a circular shape 

is obtained, with an approximate 2 m extension, equal to ra. Nonetheless, even if Figure 2.9a and 

Figure 2.10a induce to conclude that no differences between the two models exist in perfect 

yielding conditions, Figure 2.9b and Figure 2.10b report the final contour plots of the axial stress 

component σzz: substantial differences can be noticed, moving from plasticity to damage. 

Table 2. 2 : set of parameters adopted for the first elastic-plastic and elastic-damage numerical simulations 

with perfect yielding. 

E  [MPa] ν  [-] sinα  [-] K  [MPa] β  [-] ηr  [-] 

6000 0.25 0.25 15.0 1.0 1.0 
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Figure 2.11 reports the values of σzz(r) for whatever radial direction beginning from r = ra. It is 

numerically found that, if plastic deformations occur, the axial stress will increase its compression 

effect on the failure zone in the cross section. On the other side, if damage in the material occurs, 

the axial stress in compression will reduce within the same zone. Formally, we write, for                  

ra ≤ r ≤ rP: 

                                                  000  zzp  , in plasticity                                         (2. 26) 

                                                   000  zzp  , in damage                                          (2. 27) 

According to Eq. 2.27, damage failure implies a reduction of σzz, while, if calculated in perfect 

plasticity, its absolute value increases (Eq. 2.26) The local inversion of the general trend, around 

r = 0.4 m, is simply due to local numerical effects depending on the mesh discretisation. It is 

reminded that the Drucker-Prager failure criterion depends also on the axial stress component 

(Eq. 2.3, 2.7 and 2.18) and, while yielding, plastic dissipation allows the development of plastic 

deformations along the axial direction z: 
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On the contrary, with a criterion not depending on σzz (e.g. Mohr-Coulomb), no plastic 

deformations along z would be possible, as seen in Chapter 1, Section 1.2: 
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The possibility to develop plastic deformations along z, in plane strain, gives ε P
zz = − ε E

zz. On the 

contrary, under the same hypothesis in elastic-damage, since no plastic deformations may be 

developed in any direction, the condition εE
zz = ε E

zz = 0 is still valid.  

 

 

                                            (a)                                                                          (b)  

Figure 2.9 : extension of plastic deformations (a) and axial stress σzz (b), for a total unloading (p0 = 0), in 

perfect elastic-plasticity 
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                                            (a)                                                                          (b)  

Figure 2.10 : extension of the damage variable (a) and axial stress σzz (b), for a total unloading (p0 = 0) in 

perfect elastic-damage. 

 

Figure 2.11 : values of the axial stress σzz , for p0 = 0, along a radial direction of Figure 2.9b and Figure 

2.10b. Outside the failure zone, the elastic solution σzz = 2ν∙σ∞,(0) is found. 

As a completion of the current section, the code POROFIS has been tested for a mesh sensitivity 

analysis of perfect yielding conditions. The elastic-plastic case according to Figure 2.9, with the 

same boundary conditions and parameters reported in Table 2. 2, is considered for this analysis. 

The mesh reported in Figure 2.8a is chosen as the intermediary one and is compared with other 

two meshes, one less and one more refined. The same circular section tunnel with a 4 m diameter 

in a square domain where the side measures 44 m constitutes the problem geometry. Each mesh 

accounts for a progressive reduction of the average elements size of three times the previous one, 

in an area ≈ 6r around the circular opening (Figure 2.12). Figure 2.13 reports the contour plot for 

plastic deformations at the end of the tunnels unloading, where the result at the centre of the figure 

corresponds to Figure 2.9a. At a first view, it is possible to notice approximately the same circular 

extension of the failure (plastic) zone, but a more detailed analysis is provided for a radial 

direction in Figure 2.14. Here, it can be seen that the mesh previously adopted constitutes an 

acceptable numerical choice since the extension of the plastic radius and values assumed by are 

almost the same for the refined mesh. On the other side, a less refined mesh (on the left) would 

not be a reliable option. This exercise is intended to provide an indication of a suitable mesh size 
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to be adopted for the next simulation. Table 2.3 reports the exact extension of each plastic radius 

for the meshes in Figure 2.12 (from left to right, Mesh 1, 2 and 3), with an estimation of the 

relative error due to the finite elements approximation, evaluate as: 
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Figure 2.12 : three meshes adopted to perform the mesh sensitivity analyses in elastic-perfect-plastic 

conditions.   

 

 

Figure 2.13 : extension of the plastic deformations for the three meshes reported in Figure 2.12. 

 

 

Figure 2.14 : plastic radius evolution for the three meshes reported in Figure 2.12. 
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Table 2.3 : extension of plastic radius for each of the results reported in Figure 2.13. From left to right, 

Mesh 1, 2 and 3. 

 Mesh1 Mesh 2 Mesh 3 Avg. error (%) 

Average rP  [m] 1.95 1.69 1.66 17.1% 

 

2.2 Main differences between plasticity and damage in softening 

This section will discuss numerical results considering the COx claystone brittleness, at yielding. 

In Section 1.1, in the general presentation of the material, the decrease of shear resistance under 

uniaxial or triaxial conditions has been cited to be its typical post-peak behaviour, for low 

confinements. This has been experimentally observed and reported by several authors and 

research groups (e.g. [9], [14], [46], [57] and [117]). In the previous section, a first difference 

between elastic-plasticity and elastic-damage has already been introduced and showed the change 

of the axial stress σzz according to the dissipation mechanism chosen for numerical simulations in 

perfect yielding conditions. Nonetheless, the shape and extension of the failure zone, either in 

plasticity or damage, maintained the same geometric characteristics (Figure 2.9a and Figure 

2.10a). Here, softening characteristics of the material are accounted in the models presented, with 

the assumption of the parameter ηr < 1 (Eq. 2.5b, Table 2.1). Two examples of experimental 

results, previously cited, are shown (Figure 2.15). The failure response of the claystone, for 

confinements (pC) limited up to pC ~ 6 MPa, presents the typical compressive strength, 

σ0(pC),  included in an interval between 20 and 30 MPa (21 MPa for the uniaxial compressive 

strength, σ0; e.g. [8]). This uniaxial or triaxial compressive strength, corresponding to the elastic 

limit, decreases during yielding down to an eventual residual value and can be simulated referring 

to the model in Figure 2.4. On the other hand, it is important to state that the considered plastic 

and damage models (in particular, Eq. 2.14a-b and 2.20a-b) cannot reproduce a yielding behaviour 

characterized by a hardening stage, occurring after the elastic limit and, eventually, followed by 

the softening. In fact, if data show a reduction of the resistance for zero or low confinements, 

similarly, an initial hardening response at yielding, f = f  = 0, has been observed in the laboratory 

experiences for higher confinements. The mechanical response of the COx, when pC reaches a 

value of 10 or 12 MPa, presents a first increase of the resistance up to a strength peak which, in 

this case, will not coincide with the elastic limit (f ≤ 0). Figure 2.15, cited before, presents two 

typical examples of this softening to hardening transition of the claystone mechanical response 

for an increasing confinement applied during a the shear stage of a triaxial compressive test (TXc). 

Focusing on Figure 2.15a, a linear behaviour before the resistance peak is observed for pC not 

overcoming 7 MPa. This can be compared to the reversible elastic phase, followed by a significant 

resistance decrease down to a residual value. 
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                                       (a)                                                                                     (b)  

Figure 2.15: triaxial stress-strain data, reported in [117] (a) and [9] (b). In (b), to be noted the hardening 

yielding before the softening phase shown for a confinement of 12 MPa. 

This σ : ε behaviour corresponds to the model plotted in Figure 2.4. A similar response is 

confirmed in Figure 2.15b, unless the pC does not overcome 6 MPa. Then, at 12 MPa, the eventual 

softening is anticipated by a hardening phase where failure already occurs in the material. Based 

on some selected triaxial compression data [9], a validation of the failure and softening post-

failure behaviour, calculated with POROFIS, is provided in Figure 2.16, both for the elastic-

plastic and elastic-damage softening models. Consequences of the model’s choice on the post-

peak behaviour will be further discussed in this section. They present significant implications on 

the numerical modelling of the failure zone shape, developed around a circular opening, in plane 

strains. 

In the following, an application of the two softening models is presented for the failure zone 

evolution due to a circular excavation, on the cross section plane x ; y, in plane strains. Table 2.4 

reports the set of 6 parameters obtained from the triaxial compression specimens calibration in 

Figure 2.16 and assigned to the elastic-plastic and elastic-damage materials for these simulations 

(to be noted, ηr < 1). The excavation is simulated through a homogeneous isotropic unload 

according to Figure 2.7. Same geometry, initial/boundary conditions and mesh reported in Figure 

2.8 have been assumed for both numerical models.  

 

Figure 2.16: POROFIS validation of the elastic-softening models based on triaxial test data from [10]. 
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Figure 2.17a shows the plastic deformations norm ǁεPǁ, for p0 = 0, with the softening elastic-plastic 

material. Figure 2.17b shows, for the same final step, the distribution of damage, D, for the 

softening elastic-damage material. The results reported in Figure 2.17 constitute an important 

difference among the softening elastic-plastic and elastic-damage approaches, for a circular 

excavation in isotropic conditions (i.e. homogeneous stress and material). In Figure 2.17a, a 

circular failure zone appears if the material dissipates in plasticity and a unique plastic radius, rP, 

can be assigned to this area, qualitatively similar to the numerical results obtained for perfect 

yielding conditions in Figure 2.9a. On the contrary, in Figure 2.17b, a softening behaviour to 

describe the material yielding affects the regularity of the failure zone, if damage dissipation is 

assumed. The numerical model reproduces a pattern of localisations around the gallery, instead 

of the circular damage expansion obtained in Figure 2.10, under perfect yielding conditions.  

It is remembered that, at the current state of the work, the aim is to focus more on the implications 

of a damage-based modelling applied to the problem of a (circular) excavation in a softening, pre-

compressed and dissipative medium. In Chapter 3 and Chapter 4, particularly, presented works 

will be addressed more and more to propose an elastic-damage softening model for the failure 

zones encountered at the Andra Underground Research Laboratory (URL), taking into account 

some specific material characteristics. Discussions will move from the general and theoretical 

background proposed in the sections of this chapter to the specific research applications. Thus, 

results presented in this section are not specifically intended to be realistic of in-situ observations.  

Table 2.4 : parameters obtained by elastic-plastic and elastic-damage softening calibration (Figure 2.16). 

E  [MPa] ν  [-] sinα  [-] K  [MPa] β  [-] ηr  [-] 

2500 0.2 0.3 15.0 0.7 0.7 

 

 

                                             (a)                                                                    (b)  

Figure 2.17: plastic deformations (a) and damage variable D (b) for an isotropic gallery excavation with 

elastic-plastic and elastic-damage materials, respectively. Parameters reported in Table 2.4. 
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On the contrary, they are meant to better provide an interpretation of differences between a plastic 

and a damage failure system, characterized by a progressive decrease of the material resistance. 

In this context, it can be questioned if whatever change of the conditions imposed for the results 

in Figure 2.17 can modify substantially the results themselves. These conditions may be any 

numerical input set before the processing of the FE model, i.e. the material parameters, the 

boundary conditions (BCs) and the initial conditions (ICs). In particular, other two simulations, 

respectively in elastic-plasticity and elastic-damage, are performed, decreasing significantly the 

parameter K of the material: physically, this corresponds to a less cohesive material. Every other 

condition is not modified (e.g. BCs, ICs, geometry, and mesh) and every other parameter value 

remains correspondent to those reported in Table 2.4. Only the value of K is decreased from 15 

to 6 MPa. The extension of the plastic deformations and the pattern assumed by the damage 

variable are shown, respectively, in Figure 2.18a and b. If, in general, it is possible to imagine 

that a wider failure zone is obtained in presence of a weaker material, the elastic-plastic result 

confirms this statement. The size of the plastic radius around the circular opening is at least twice 

the rP length reported in Figure 2.17a. In an elastic-damage softening medium, the length of 

damage localizations, or lobes, has significantly increased with respect to Figure 2.17b. On the 

contrary, their quantity is almost one half of the precedent. A number of 7 lobes can be clearly 

seen in the previous case, with the likely initiation of other two localizations on the right side of 

the circular cavity. In Figure 2.18b, numerical results show that, for a less cohesive material under 

the same external conditions, the elastic-damage softening model reproduces a higher dissipation 

which develops in a lower number of localizations. When the internal pressure vanishes, 4 damage 

lobes can be observed. Nonetheless, small zones of damage exist in the proximity of the circular 

perimeter, approximately on the same position of localizations shown in Figure 2.17b. These 

correspond to zones of damage initiation when the failure at the tunnel wall has been attained. 

Then, during the unloading process, only some of these failure initiation zones continue to 

develop up to the formation of the elongated lobes in Figure 2.18b.  

 
                                             (a)                                                                   (b)  

Figure 2.18: plastic deformations (a) and damage variable D (b) for the same numerical models reported 

in Figure 2.17. The only exception is the value of K = 6 MPa.  
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This recalls a significant topic of geomaterials failure. The concepts of instability and bifurcation 

already mentioned in Chapter 1, Section 1.2, in the context of localizations and breakouts 

analyses around boreholes, constitute some reference keywords. These subjects cover an 

extremely wide source of references, from early fundamental works to recent developments (e.g. 

[65], [83]). As already stated; an exhaustive review would go beyond the scopes of this work. 

Nonetheless, it is worth introducing here some related concepts and ideas. This is intended to 

explain the choice of a damage-based mechanical approach. 

In geomechanics, the concept of instability refers to the Lyapunov’s theoretical works upon the 

stability of the solids’ motion [53] and the evolution over time of a defined perturbation in a given 

mechanical system. A mechanical system is stable if a small disturbance of its initial conditions 

corresponds to a finite, time-limited, response. A mechanical system is unstable if, given the same 

small perturbation of its initial conditions, the effect generated evolves with a virtually infinite 

response. Physically, a little disturbance of the initial conditions, in a stable system, will not 

increase with time. Bifurcation refers to the loss of uniqueness of the solutions of a given 

boundary problem: in particular, for mechanical boundary problems, the bifurcation point 

identifies a state of the system where the stress-strain response may follow more than one (unique) 

evolution. A very solid presentation of these notions can found in the works of Chambon et al. 

[23] and Sulem [98]. Of course, these notions may refer to a mechanical system with defined 

boundary and initial conditions: a circular opening in a pre-compressed medium constitutes a 

typical example, where instabilities and bifurcations can be induced by inhomogeneous stress and 

strain states. To discern between the two terms, with a perspective on this work, Figure 2.18 can 

provide a useful indication: in particular, the plastic radius evolution during the unloading of the 

internal pressure p0 in Figure 2.18a, is traced in Figure 2.19. A discontinuous development of rP 

is shown: for certain unloading intervals (
0p < 0), the system does not evolve (

Pr = 0), while, for 

some instants, (
0p → 0) the system evolves instantaneously (

Pr > 0).  

 
Figure 2.19: evolution of the plastic radius rP during the unloading (normalized) of the opening in Figure 

2.18a. Values are traced for a normalized unloading > 0.5 since, for lower values, failure did not occur. 
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It is important to specify that the diagram of rP evolution is traced following the development of 

the plastic deformations ǁεPǁ as nodal average on the FEM model: otherwise, if the local variable 

at the Gauss point was considered, numerical discontinuities would be obtained, induced by the 

domain discretisation. Each instant of rapid development of the plastic radius can be identified 

with an instability, in a global sense: whatever the radial direction considered, the same evolution 

is observed. For a boundary mechanical problem, this corresponds to the absence of bifurcation 

in the solution. Hence, it is possible to observe the existence of instabilities without bifurcations. 

On the contrary, if the analysis of the same boundary problem moves from plastic to the damage 

configuration, the observation of differences between Figure 2.17b and Figure 2.18b is sufficient 

to clarify the notion of bifurcation. For a certain threshold of material resistance, is it possible to 

notice already that the energy dissipation does not cover a full circular area around the opening. 

It develops with some lobes, assuming localized characteristics within the domain of the boundary 

problem. If the resistance threshold of the material is decreased (or, similarly, a further unloading 

can be applied at the perimeter), the zone of dissipation assumes a different localized pattern. 

These numerical results show an example of the existence of instabilities, in a local sense: at the 

scale of the boundary problem, bifurcations of the solutions occur. Similar results can also be 

obtained when the system is limited to a specimen, a representative material volume in a 

homogeneous state of stress and strain [98]: it is worth citing the occurrence of shear bands as a 

well-known type of instability as bifurcation in geomaterials. The works of Rice (e.g. [83]) 

provide an exhaustive background for shear bands mathematical formalism, clarifying the term 

loss of ellipticity, often encountered in literature, related to the non-uniqueness (bifurcation) of 

the solution. Particularly for uniaxial or triaxial compression conditions, the loss of uniqueness 

might result in the development of shear bands among the possible types of solutions, at the 

bifurcation point. These boundary conditions cover a strong interest in the current work because, 

as already mentioned, they correspond to the mechanical solicitations induced by tunnelling. 

In laboratory, at a specimen scale, shear bands occur as localized areas of energy dissipation and 

reduction of material resistance in softening state. Outside the area included in the shear band, an 

elastic unloading is observed. The post-peak behaviour varies in function of the softening degree 

of the material and strong discontinuities correspond to very thin bands ([66], [99]). The peak of 

resistance individuates the bifurcation point: in Figure 2.20, the post-peak behaviour shows the 

solution non-uniqueness, in softening, and the implications on the shear band thickness, from a 

qualitative point of view. Concerning the numerical applications discussed in this section, two 

examples of post-bifurcation are introduced for the same specimen under uniaxial compression. 

In Figure 2.21a, the same stress-strain uniaxial response is reported for an elastic-plastic and an 

elastic-damage specimen, according to the series of model validation already reported in Figure 

2.16 (where both uniaxial and some triaxial conditions are treated).  
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Figure 2.20: Post-peak behaviour and related to the shear band thickness for a specimen under uniaxial 

compression evolution ([66], [99]). 

In Figure 2.21b, we observe the post-peak, or post-bifurcation, response, of the specimen in case 

of plasticity (on the left) and damage (on the right). These responses correspond, at a lower scale, 

to the numerical results, respectively, of Figure 2.18a and b (or Figure 2.17a and b). In the 

specimen dissipation zone, f = f = 0, the same stress-strain response is observed, but the 

dissipation assumes different geometric configurations with respect to plasticity and damage. 

With reference to Figure 2.20, if a diffused failure is observed for the first, a localized failure – 

in form of a shear band – is observed for the second. In presence of small anisotropies in the 

geometry and loads, damage-based approaches can contribute to the reproduction of possible 

dissymmetry in the failure zones, as numerically shown also at the gallery scale in isotropic 

conditions (e.g. Figure 2.17 and Figure 2.18). Symmetry breakage can be shown because of the 

instability of the failure evolution mainly due to brittle damage ([77], [78]). This is the same 

concept of instability present in buckling phenomenon of beams and shells. One peculiarity of 

this type of instability is to break the symmetry of the initial shape.     

   

                             (a)                                                                                (b)  

Figure 2.21: uniaxial response of specimen compression simulated in POROFIS. The same stress-strain 

diagram is obtained for elastic-plastic and elastic-damage model (a). In (b), the plastic diffused dissipation 

(on the left) and the localized damage dissipation (on the right) are reported. 
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For cylindrical structures submitted to radial forces, the instability can result in a loss of the axial 

symmetry, even if the initial problem is based on the symmetries of geometry, loading and 

material properties ([18], [104]). For instance when a cylindrical tube buckles under an external 

pressure exceeding some critical value, the deformed shape presents different buckling modes 

which have no more the circular symmetry [95]. Of course, this symmetry breakage occurring 

here for elastic buckling can occur also for cylindrical structures in dissipative materials, with the 

origin of different failure branches (Figure 2.22).  

In a framework of perfect-brittle stress-strain behaviour, the possible instability encouraged by a 

damage-based approach can be explained in a physical way. For sake of simplicity, it can be 

assumed that, in an isotropic rock formation, where a circular gallery is excavated, the failure 

obeys to the Mohr-Coulomb criterion. The initial stress of the rock formation is isotropic, σ∞,(0), 

corresponding to the stress boundary condition. Another simplification is introduced: the perfect 

brittle behaviour implies zero material strength after a material zone has reached failure, either in 

plastic or in damage conditions. Figure 2.23 reports the uniaxial compressive behaviour 

described: referring to the diagram in Figure 2.4, the limit case of β = 0 → ε0 ≡ εr and ηr = 0 →    

σr = 0 is considered. For a gallery cross section, the excavation can be, as usual, modelled with a 

uniform unloading of the internal pressure at the perimeter (Figure 2.7). If the final configuration 

coincides with a null internal pressure, p0 = 0, the elastic solution in cylindrical stress components 

at the perimeter (r = ra), for a certain unloading fraction Δ, writes: 

                                                                )0(,Δ1   rr
                                                       (2. 31) 

                                                          )0(,)0(, Δ1Δ2   
                                             (2. 32) 

The failure occurs when the deviator q =  − rr reaches the critical value of the rock 

compression strength, for a certain value of Δ. It writes: 

                                                            )0(,Δ2   rrq                                                (2. 33) 

 

                        

Figure 2.22: possible bifurcated configuration of failure zone in n branches, around a cylindrical structure, 

on a cross-section plane. 
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Of course, this limit can be simultaneously attained around the perimeter of the circle 

corresponding to a trivial solution: an annular failure zone will develop. Nonetheless, due to 

possible bifurcations, the shape of the deformed section at the elastic limit may develop, for 

instance, in an ellipse, elongated on the horizontal, according to Figure 2.24. At this point, it 

becomes necessary to recall the constitutive relations for stress and strains in elastic-plasticity and 

elastic-damage, respectively Eq. 2.6 and 2.17. In plasticity, according to Eq. 2.6, even in presence 

of strong plastic deformations, the elliptical shape in Figure 2.24 corresponds to the plastic failure 

zone. In any case, the material stiffness tensor, C, remains unchanged (e.g. the Young modulus E 

does not decrease). On the contrary, if a damage-based approach is considered, with the material 

response illustrated in Figure 2.23 the damage variable correspondent to the failure zone assumes 

the value D = 1. This implies a completely damaged stiffness tensor C according to Eq. 2.17, i.e.  

C = 0. Physically, this situation corresponds to a material which is not capable to develop any 

further stress and the damaged failure zone can be replaced with a new gallery section, having the 

same elliptical shape, where the minor semi-axis is equal to the initial radius ra, and a major semi-

axis ra’ > ra.  

 

Figure 2.23: elastic-perfect brittle behaviour as a particular case for of the uniaxial compressive behaviour 

in Figure 2.4 (β = 0). 

 

Figure 2.24: elliptical-shaped gallery deformation at the elastic limit, derived from an initial circular gallery 

perimeter. Modified from [77]. 
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In this case, the elastic solution at the point A around the deformed section in Figure 2.24, where 

f ≤ 0, writes: 

                                                              )0(,
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According to Eq. 2.33, the deviator is equal to: 

                                                          )0(,

'
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r
q                                             (2. 36) 

For symmetry to the point A, the same solution is valid at the left side of the gallery, on the 

horizontal. In this case, Eq. 2.36 shows that the stress deviator at this point increases because      

ra’ > ra, and so the failure will continue to progress at this point leading to greater dissymmetry 

ratio ra’/ra for the elliptical section. Therefore, the elliptical-shape of the evolution of the section, 

which is a possible solution, reveals to be instable. This shows the existence of a potential 

instability phenomenon affecting the circular shape of the gallery in a brittle material due to 

damage, correspondent to the physical phenomenon of boreholes breakouts (e.g. [28], [38]). 

Thus, with respect to elastic-plastic conditions, a damage-based dissipation induces structural 

anisotropies, which play a fundamental role in a different redistribution of the stress field in the 

elastic zone, subjected to incipient failure. In this simplified analysis, the ratio ra’/ra would 

increase to infinity. In reality, geomaterials are not perfectly brittle and, after failure, maintain a 

residual strength, possibly increasing with the lateral confinement. In addition, a real deformation 

process in deep rock formations includes plasticity, creep or other irreversible phenomena than 

pure damage, and this limits the extension of the failure zone and the dissymmetry ration ra’/ra.    

A numerical example of the stronger anisotropy induced by localized damage compared to a more 

diffused plastic zone is given for a weak initial 2d anisotropic stress state. The same geometry 

and mesh in Figure 2.8 are employed, with the boundary conditions reported in Table 2.5 and 

shown in Figure 2.25. Material parameters are those of Table 2.4. Because of the anisotropy of 

the stress state in the plane x ; y, the numerical unloading procedure in Figure 2.7 is implemented 

according to Eq. 2.24a and follows the scheme in Appendix A, Figure A.3. For a complete 

unloading (p0 = 0), the elastic-plastic failure zone develops, as it could be expected, along the 

direction corresponding to the lower initial stress component, in this case σyy,(0), as illustrated in 

Figure 2.26. To analyse this, a cylindrical coordinates system to define each local stress-strain 

response at the gallery perimeter, shown in the schemes for analytical solutions in Section 1.2, 

can be considered. The global Cartesian coordinates system defines, as usual, σ(0).  
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Table 2.5 : initial stress state components for the geometry reported in Figure 2.25. 

σxx,(0)  [MPa] σyy,(0)  [MPa] σzz,(0)  [MPa] 

-14.0 -12.0 ν(σxx,(0)+ σyy,(0)) 

 

 

Figure 2.25: initial and boundary conditions on the same geometry of Figure 2.8, with an anisotropic 2d in 

the gallery cross section. 

     

                                            (a)                                                                       (b)  

Figure 2.26: plastic deformations in (a) and damage variable D in (b) for a complete unloading of the 

circular gallery. 

According to the elastic limit conditions discussed in Section 1.2, the initiation of failure must 

occur where the local deviator stress q reports the maximal value around the gallery perimeter      

r = ra. The failure is attained along the direction y of the principal coordinates system, for the 

local cylindrical coordinates θ =
2


 and 

2

3
π.                             

It is worth showing other two series of simulations providing interesting connections with the 

theoretical framework described above, based on numerical results. To conclude this section, a 

brief discussion concerning the correct values’ interval for Young modulus, in the context of 

short-term, purely mechanical analyses, is included. For numerical simulations, a new, circular 

mesh is adopted to avoid numerical effects induced by the corners of the previous squared-shape 

domain: new reference geometry and mesh are reported in Figure 2.27: boundary conditions of 
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the plane strain analyses to define initial stresses and to simulate the excavation are reported in 

Figure 2.27a and b. The central contoured rectangle identifies the zoomed area including the 

contour plots. In this excavation, a perfect-brittle behaviour as described by Figure 2.23 is 

reproduced, with a parameter choice compatible with calibration (Table 2.4) and computational 

needs: numerically, setting β = ηr = 0 would imply a non-convergence of the simulation. 

Parameters are reported in Table 2.6 (β = 10-2 to simulate the ideal stress-strain diagram in Figure 

2.23). The mesh employed maintains, around the circular gallery, the same finite elements size of 

the one in Figure 2.8. Failure zones are reported in Figure 2.28. 

Table 2.6 : parameters to reproduce a perfect-brittle yielding response for failure zone in Figure 2.28. 

E  [MPa] ν  [-] sinα  [-] K  [MPa] β  [-] ηr  [-] 

2500 0.2 0.3 15.0 0.01 0.7 

 

      
                                             (a)                                                                                  (b)  

Figure 2.27: circular geometry adopted for numerical simulations further presented. In (a), imposition of 

the geostatic stress state. In (b), excavation procedure according to Figure 2.7. 

 

        
                                            (a)                                                                         (b)  

Figure 2.28: plastic deformations in (a) and damage in (b) for a complete unloading of the circular gallery 

according to BCs and geometry in Figure 2.27 and parameters in Table 2.6. Contour plots are shown in the 

deformed mesh configurations. 
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In Figure 2.28, the deformed configurations, for a complete excavation (p0 = 0), are reported: 

plastic zone in Figure 2.28a and damage zone in Figure 2.28b. Compared to the annular plastic 

zone, the correspondence between the displacements and failure development, with damage, can 

be remarked. Figure 2.28b shows also a relation with the phenomenological model of an elliptic 

failure zone in very brittle conditions as Figure 2.24 illustrates. Nonetheless, the direction of the 

localization is arbitrary: initial stress state and material properties are isotropic inside the cross-

section analysed. In FEM analyses, dependencies on the mesh pattern must also be considered. 

A second numerical analysis is presented, showing an example of softening damage contribution 

for particular failure shapes. They constitutes, for instance, a well-known type of failure in the 

petroleum engineering research domain (wellbores sand production, e.g. [28]). A detailed 

discussion with experimental evidences and numerical examples can be found in the works of 

Van den Hoek et al. ([106] and [107]) on artificial sandstone. The aim of the simulation presented 

is not a quantitative prediction of an artificial sandstone post-peak behaviour: it provides only an 

idea of the correlation between the phenomena studied in this work and another application in 

tunnelling-induced failure in geomaterials, under the assumptions of damage-based mechanics. 

The same initial and boundary stress-displacements conditions shown in Figure 2.27 are 

maintained. Some material parameters have been changed, considering: 

- An increase of the material stiffness (i.e. Young modulus E); 

- A decrease of the material cohesion C. 

These modifications characterize, qualitatively, the elastic and failure behaviour of a sandstone, 

showing higher stiffness than a claystone and reduced cohesion. Moreover, a lower cohesion 

(related to parameter K; Eq. 2.4b) reduces material strength and allows a wider development of 

the damaged failure zone. Material parameters are reported in Table 2.7. Different shapes of the 

failure zone simulated by changing the parameters and/or the boundary conditions are supported 

by experimental evidences [77]. The failure zone calculated in Figure 2.29 reports a localized 

damage pattern with 8 elongated lobes. It shows clear similarities with the experiment and 

simulation in Figure 2.30. This last one reports the failure zone around an artificial sandstone 

cavity, discussed in Van den Hoek et al. ([106] and [107]), as previously cited. According to the 

authors, the failure prediction in Figure 2.30b has been modelled with friction hardening and 

cohesive softening Mohr-Coulomb criterion. 

Table 2.7 : parameters employed for the failure zone calculus in Figure 2.29. 

E  [MPa] ν  [-] sinα  [-] K  [MPa] β  [-] ηr  [-] 

6000 0.2 0.3 6.0 0.7 0.7 



Chapter 2 

68 

 
Figure 2.29: 8 lobes – shaped failure zone after complete unloading. 

                            
                                           (a)                                                                            (b)  

Figure 2.30: spiral shear bands in artificial sandstone. Experiments (a) and simulation (b) on artificial 

sandstone ([106] and [107]). 

 

This type of response is evident in cavity inflation experiments for material such as Berea and 

Castlegate sandstones. It is consistent with the theoretical application of Coulomb failure to a 

cylindrically loaded borehole (e.g. [28]). As for sandstones, this shear type failure mode may be 

expected also in dilatant soft rocks as the Callovo-Oxfordian claystone formation.  

Young modulus’ value in Table 2.7 will be adopted, as average E, in numerical analyses presented 

in the forthcoming chapters, as indicative for the short-term, undrained behaviour of Callovo-

Oxfordian claystone. Data from in-situ borehole tests confirms a mean E = 6000 MPa, for natural 

samples with high saturation (>95%) and located in the geological unit of COx claystone 

correspondent to the main level of the Andra URL [10]. In fact, performing purely mechanical, 

undrained analyses (no hydraulic couplings are present in any simulation), it was questioned if 

the estimated Young modulus from calibration in Figure 2.16 (E = 2500 MPa) was truly 

representative for this type of behaviour. A review on some hydro-mechanical tests’ results on 

COx claystone (e.g. [14], [43], [46], [57], [114] and [119]) revealed a misunderstanding 

concerning the correct strain rate imposed, for instance, in TXc drained tests to distinguish these 

conditions. This could have led to possible errors when providing indications on 

drained/undrained stiffness parameters. In the following, a brief discussion debating this aspect 

is reported, considering the simple hydro-mechanical problem in Figure 2.31: a Terzaghi’s mono-
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dimensional consolidation along y. The problem considers a fully saturated, porous medium, in 

oedometric mechanical conditions. The final governing equation corresponds, under assumptions 

widely reported in literature (e.g. [32]), to the diffusion equation: 
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Δpw is the pore over-pressure immediately generated in the specimen after a vertical stress 

increment. The coefficient A corresponds to the consolidation coefficient, cv, and depends on the 

material’s hydraulic conductivity kw, oedometric modulus Eoed and water specific gravity γw (Eq. 

2.37b). kw = 4.5∙10-13 m/s is calculated based on the indications of material’s permeability, Kw, 

reported in Belmokhtar et al. [12], where the authors show the remarkable decreasing of 

consolidation’s time for COx, if lateral drainage is allowed, in triaxial compression (TXc). 

Concerning the oedometric modulus, Eoed = 2500 MPa can be assumed, according to Mohajerani 

et al. [59], where the same conditions for a top-drained specimen in TXc test are described (lateral 

compression at pc = 12 MPa). A value cv ≈ 1.1∙10-9 m2/s is obtained for the consolidation 

coefficient (Eq. 2.37b). With H = 78 mm (standard TXc specimen, e.g. [12]), a complete 

dissipation of Δpw occurs between 50 and 60 days, according to the following equation: 
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Eq. 2.38 adopts the Terzaghi normalized time factor T, for a consolidation ratio between 0.9 and 

1. Allowing drainage also on the lateral specimen’s surface would increase significantly the 

process speed, with almost 3 days of consolidation corresponding to an equivalent drainage length 

H ≈ 20 mm [12]. In conclusion, only an imposed strain rate not exceeding ~7∙10-8 s-1 would 

guarantee real drained condition in TXc tests, with Young modulus’ estimations consistent with 

the original value E = 2500 MPa (Figure 2.16).  

 
Figure 2.31: scheme of hydraulic boundary conditions for a specimen in a 1d consolidation problem; pw = 

pore water pressure, qw = pore water flux per unit area, 
yU  = imposed rate of vertical displacements. 
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2.3 An anisotropic upgrade of the elastic-damage softening model 

In this section, only the stress-strain elastic-damage constitutive law is considered and a first 

modification, referring to Eq. 2.17-2.21, is presented. In this part of the work, galleries excavated 

along the major horizontal stress σH are considered. In particular, GCS drift is studied and in-situ 

observations will be used to validate the model. It is excavated along the orientation N155°E and 

it disposes of a various dataset from geological, geotechnical and geophysical monitoring (e.g. 

[8], [9], and [60]). In its cross section, stresses in the principal (Cartesian) system coincides with 

the vertical and horizontal components, meaning σxx = σh and σyy = σv. As already reported in 

Chapter 1, Section 1.1, for the description of Andra’s URL site, the following components 

describe the undisturbed stress state: σh ≈ 12.4 MPa, σv ≈ 12.7 MPa and σH ≈ 16.2 MPa ([7], [113]). 

This stress components generally constitutes the boundary conditions for the calculations further 

discussed. It is remembered that these values correspond to average estimations from in-situ 

measurements: small fluctuations can be considered, for numerical purposes. For the drift studied, 

the stress component σH corresponds to the axial stress, according to the reference system adopted 

for numerical calculations, meaning σH = σzz. The predictive elastic-damage model upgrades 

discussed in this section, in Chapter 3 and Chapter 4 answer to the first research axis main 

question: the simulation of an excavation-induced area, in short term, around the drifts at Andra 

URL, according to a 2-dimensional approximation on the drifts’ cross section. It is important to 

recall, in fact, that tunnelling constitutes a typical 3-dimensional geotechnical problem. 2d 

approaches, as well as failure conceptual models, must be considered with caution according to 

their level of approximation. The elastic-damage model modification accounts for a damage 

expansion which can be called cross-anisotropic. In the next Figure 2.32, the conceptual model 

of failure expansion in two-dimension is illustrated, for tunnels excavated along the main 

horizontal stress σH. In particular, it refers to the case study of GCS drift. It provides details for 

different aspects of the failure zone description, such as the expansion, in metrics, on the cross 

section (a) and the different types of fractures generated (b). This figures are shown in several 

publications and thesis works related to the Andra’s context of investigation (e.g. [9], [42], [57] 

and [66]).  

According to the principle of a predictive model of the area where, mathematically, f = f  = 0 in 

the drifts transverse section, D is made evolve inside the plane containing this section itself. 

According to the adopted references, this plane is identified by the global Cartesian coordinates 

x and y and it is perpendicular to the direction of axis z. 
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                                  (a)                                                                                      (b)  

Figure 2.32: in (a) conceptual model and geometrical characteristic of the 2d excavation-induced zone 

referring to the observation for GCS drift. In (b), indication of the type of fractures included in the EDZ 

and EdZ on the same 2d numerical model. 

 

Figure 2.33 reports a scheme the model upgrade proposition. The damage variable D may assume 

positive values, i.e. D [0 ; 1], only within the plane of the cross section, Γ. Damage reduces the 

material stiffness along these same directions. It is remembered that, for the moment, the Young 

modulus is the same for every direction, corresponding to isotropic elasticity. With this model 

formulation, the axial stress variable σzz, still included in the failure criterion (Eq. 2.18), is not 

directly influenced by damage. The entity of the axial (or out-of-plane, as referred sometimes in 

literature) stress component, σzz, appears to be fundamental in stabilizing (or not) the expansion 

of the damage failure (e.g. [81]). This aspect is later clarified and confirmed by numerical 

simulations in the next chapter. In general, it is underlined that a three-dimensional stress state 

influences the results of the damaged zone simulated on a two-dimensional geometry. Thus, the 

upgrade of the basic elastic-damage model is also intended to limit the contribution of the out-of-

plane direction z to the development of the damage variable within the gallery cross-section.  

In 2d plane strains conditions, meaning εzz = 0, Eq. 2.39 in the following corresponds to the stress-

strain constitutive law for the basic elastic-damage model. Contrarily to Eq. 2.17, it is written in 

terms of the compliance matrix C-1:  
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The explicit expression of C-1 remarks that the coefficient (1−D)−1 is applied to the entire matrix. 

To develop the cross-anisotropic elastic-damage model, the mathematical formulation of the final 

stiffness matrix C starts indeed from the correct definition of its compliance matrix C-1 

considering that the axial (or out-of-plane) direction z is not affected by damage.  
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Figure 2.33: scheme of the implemented anisotropic damage expansion in the reference coordinates. 

Each terms Cij has been later implemented in POROFIS. In Eq. 2.40, the stress-strain constitutive 

law defined with the modified compliance matrixC
~

for the model upgrade is reported: 

                  































































































)1(

)1(2
000

0
1

0
)1(

1

)1(

0
)1()1(

1

~
   ,    :

~

2

11

DE

EEE

EDEDE

EDEDE

xy

zz

yy

xx

xy

zz

yy

xx

























CC                  (2. 40) 

It can be noticed that the coefficient (1−D)−1 multiplies separately the compliance tensor 

components 1~

ijC satisfying the condition:  

                                                           4 ; 2 ; 14 ; 2 ; 1  ji                                                   (2. 41) 

The compliance component 1

44

~C  corresponds to the shear compliance 1~

xy  in the cross section 

plane Γ (Figure 2.33) and it is, as well, affected by damage. The condition in Eq. 2.41 shows that 

only the compliance components depending on direction z are not multiplied by (1−D)−1. The new 

compact stress-strain constitutive law, in terms of the stiffness matrix C, can be written for the 

new cross-anisotropic elastic-damage model, according to Eq. 2.42: 

                                                                   εCσ :
~

D                                                             (2. 42) 

The developed model will be identified by the notation 2d_ED when recalling it in the sequel, 

meaning that it describes, for the elastic-damage basic model (ED), a bi-dimensional (2d) damage 

expansion, according to the principal reference directions x and y. The explicit expression of the 

modified stiffness matrix for the 2d_ED model is reported in the following and writes: 

z
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Once the mathematical formulation established, as introduced, each component
ijC

~
of the modified 

stiffness matrixC
~

(D) in Eq. 2.43 has been implemented in a FORTRAN subroutine, based on the 

initial elastic-damage model. In particular, referring to the material subroutine structure in 

Appendix A, Figure A.1, the part correspondent to the variables definition identifying the stiffness 

matrix components has been modified. According the structure of the code POROFIS, described 

in Section 2.1, the subroutine has been coded as a new, user-defined constitutive law in the open-

access file Utilizer.f90 (Figure 2.2).  

As previously stated, the next objective consists in providing a first realistic predictive model of 

the excavation-induced damage in proximity of a gallery excavation, respecting the direction of 

development. It is important to remember that the rock/claystone surrounding the proximities of 

the cavity interface are subjected to a (quasi) uniaxial stress state. The deviator assumes, here, 

values very close to the uniaxial compressive strength σ0 and the low confinement induces very 

brittle post-peak behaviours. In particular, ideal conditions for the phenomena of rock spalling 

and breakouts around the wall, are satisfied. Thus, at least for Callovo-Oxfordian claystone, these 

conditions appears extremely suitable for an instantaneous mechanical damage response. The first 

results on the case study drift GCS are shown in the next chapter, with the employment of the 

2d_ED model described here. To conclude this section and chapter, a mesh sensitivity analyses 

for softening conditions in POROFIS is presented in the following. The 2d_ED model is 

compared to the response of the other basic model used in this chapter, in elastic-plasticity. The 

same numerical discretization adopted at the end of Section 2.1, reported in Figure 2.12 (from left 

to right, Mesh 1, 2 and 3) are employed here. The same parameters are maintained, but a quite 

strong softening is assumed by changing the residual to initial strength resistance ratio, ηr, 

implying important accumulation of plastic deformations and/or damage bifurcations. In fact, it 

must be underlined that every constitutive law adopted corresponds to a local definition of the 

mechanical stresses, strains and internal variables. Numerically, the response at each Gauss point 

of the FE domain is consequence of the constitutive law defined at the same Gauss point only. 

Hence, in principle, if bifurcation phenomena occur, they may be numerically subjected to the 

biases of mesh discretisation level ([63], [65]). As done in the first section, this analysis is 

performed only to provide an indication of an affordable mesh size to be adopted in the following. 
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At the same time, limitations of local mechanical models in softening conditions are shown in 

quantitative terms. To simulate a circular opening, the same boundary conditions reported in 

Figure 2.8 are adopted, with FE discretization illustrated in Figure 2.12, applying the same mesh 

size reduction. Table 2.8 reports the parametrization for both the elastic-plastic and the 2d_ED 

models. Results of the plastic deformations extension for the complete unloading are reported in 

Figure 2.34, while damage evolution is reported in Figure 2.35. As done for the perfect-yielding 

behaviour, the radial expansion of failure is quantitatively analysed. It can be noticed that an 

estimation of the plastic radius for each result in Figure 2.34 can be easily provided. Concerning 

the damage development, bifurcation occur for the fines mesh (Figure 2.35, on the right).  

In any case, for the 2d_ED model, an approximation of each failure zone with an annular area 

around the circular opening can be traced. In particular, the result shown in the central contour 

plot of Figure 2.35 easily allows an approximation to a circular area. In terms of elements’ 

minimum size around the gallery, it corresponds to the same mesh in Figure 2.8. This is the one 

adopted for results presented in Sections 2.1 and 0. 

Table 2.8 : parameters for the softening mesh size sensitivity analyses. 

E  [MPa] ν  [-] sinα  [-] K  [MPa] β  [-] ηr  [-] 

6000 0.25 0.25 15.0 1.0 0.4 

 

 

Figure 2.34: mesh size sensitivity analyses in softening plasticity. Boundary condition are reported in in 

Figure 2.8, FE discretization in Figure 2.12 and parameters in Table 2.8. 

 

Figure 2.35: mesh size sensitivity analyses in softening damage with the 2d_ED model. Boundary 

condition are reported in in Figure 2.8, FE discretization in Figure 2.12 parameters in Table 2.8. 
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Even after the change from a squared to a circular external perimeter of the FE domain (Figure 

2.27) the same mesh size in the area surrounding the gallery, interested by failure, is maintained. 

Thus, this mesh size can be considered suitable to avoid extreme and unlikely bifurcation 

phenomena as, for instance, shown in the right contour plot of Figure 2.35. In Figure 2.36, 

respectively (a) and (b) plastic and damage (approximate) radius extensions are reported for each 

of the previous results discussed. In particular, to approximate the second one, for each contour 

plot in Figure 2.35 the same 6 radial directions are considered to compute locally the radial 

extension of the failure zone, corresponding to the existence of values of D(0 ; 1]. Each plastic 

and estimated damage radius extensions are reported in Table 2.9 with an the average error due 

to the mesh discretization levels, as already done in perfect yielding conditions, according to Eq. 

2.30.     

                       
                                                (a)                                                                          (b) 

Figure 2.36: extension of the failure radius in softening plasticity (a) and softening 2d_ED model (b). The 

second one corresponds to an average smoothed on the same distinct radial directions for each mesh. 

 

Table 2.9 : extension of plastic radius for each of the results reported in Figure 2.34 and Figure 2.35. 

Average errors of numerical discretization, calculated according to Eq. 2.30. 

 Mesh1 Mesh 2 Mesh 3 Average error (%) 

Average rP  [m]  

(softening plasticity) 
2.81 2.48 2.33 19.3% 

Average rP  [m]  

(softening damage) 
1.31 1.17 0.97 28.6% 
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       Conclusion 

The main features of POROFIS, the FEM processor employed for the major analyses presented 

in this manuscript, have been described and some validation examples of simulations have been 

presented. Two fundamental softening mechanical constitutive laws have been presented, 

corresponding to distinct hypotheses of plasticity and damage dissipation. After a first modelling 

approach in perfect yielding conditions, the softening and fragile response of the material 

simulating a circular opening is analysed showing the main contributions/differences offered by 

a dissipative approach based on damage, if compared to a more traditional approach in plasticity. 

The analyses presented have already been included in some conference proceedings listed in this 

manuscript’s references ([77], [78]).  

   It is important to remember to the reader that, in this work, a damage-based approach is intended 

as a complement / integration of a wide framework of models based on elastic-plasticity, possibly 

with creep effects already proposed for the problem of the failure zone generation and evolution 

for drifts at Andra URL.  

   At last, the anisotropic elastic-damage softening (2d_ED) model, its mathematical formulation 

and its physical motivations have been presented. In particular, it seemed significant to introduce 

a modification on the elastic-damage tensor neglecting the influences of damage evolution along 

the direction perpendicular to a drift cross section. This constitutes, in fact, the selected area where 

the study of the failure evolution is performed. Numerical results presented in Chapter 3 will be 

based on the 2d_ED model formulation. As a completion of this chapter’s last section, mesh-size 

sensitivity analyses, accounting for softening conditions, have been presented.
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In this chapter, numerical analyses aiming the reproduction of the failure system, defined EDZ-

EdZ in Chapter 1, are proposed. A brief recall of the 2d conceptual models provided by Andra 

(e.g. [9], [93]) and based on in-situ observations at the Underground Research Laboratory (URL) 

in Bure (e.g. [7], [60]) is provided throughout the chapter before the analyses’ presentation. An 

initial approach focuses on the reproduction of the failure zone (EDZ) for one of the two main 

drifts’ directions. The elastic-damage stiffness tensor, employed for the forthcoming analyses, is 

based on the model formulation defined 2d_ED and presented in Chapter 2, Section 2.3.  

   After an evaluation on the effects of the initial axial stress imposed on the drifts’ sections, some 

upgrades to the 2d_ED model are presented and formalized in mathematical terms, taking into 

account the anisotropic characteristics of the Callovo-Oxfordian formation. Discussions of the 

results obtained, for one or both the main drifting directions at the Andra URL, are reported to 

evaluate the upgrades’ contribution to the overall modelling exercise for the simulation of failure 

expansion and displacements’ estimation around drifts. 

   An analyses of the failure conditions accounting a certain material anisotropy, at the same time, 

for the two drifts’ directions (implying, numerically, different boundary value problems), is 

reported in the last section of this chapter: in fact, a model validation is required for both 

horizontal directions of excavation at the URL. Discussions reported at the end of the chapter 

provide a summary to link the contents of this part of research to the forthcoming numerical 

analyses, for 2d failure in plane strain conditions, presented in Chapter 4. In this chapter, several 

references to the Appendix B occur, where the mathematical formalisms of the implemented 

anisotropic model are detailed. 
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3.1 Failure analysis with a 2d global damage model  

In this section, a first application of 2d_ED model introduced at the end of Chapter 2 is presented 

to model the failure shape and extension around drifts along the major horizontal stress σH at the 

Andra URL, with a focus on the EDZ only. This corresponds to the damaged area included in the 

inner dotted line (heterogeneous shear and extensional fractures) of Figure 3.1 (e.g. [93]). Along 

the horizontal (x), its major extension measures 1.1 – 1.4 m, as already illustrated in Chapter 1 

(Table 1.1, Section 1.1). Boundary and initial stress components, according to in-situ estimations, 

are reported in Table 3.1. 

A total of 6 parameters for the 2d_ED model must be defined. In the next analyses, parameters 

for linear elasticity E and ν are respectively equal to 6000 MPa and 0.2 (e.g. [10], [37], [43]). The 

Young modulus is considered as the average undrained value for the considerations on the short-

term response in terms of total stresses discussed in Section 2.2. Concerning the unconfined 

compressive strength σ0 (UCS) a range of 17 – 25 MPa is reported in Chapter 1 (Table 1.3, Section 

1.1). Sometimes, it is possible to find in literature also a wider range defined around an average 

UCS value, giving 21±7 MPa (e.g. [8], [9]). With respect to Table 2.4 in Section 2.2, a prudential 

value is assumed for the following calculation: σ0 = 17 MPa. Friction angle φ = 20°, according to 

the average value for the Callovo-Oxfordian (COx) formation (Table 1.3, Chapter 1, Section 1.1; 

e.g. [8]). The softening (post-failure behaviour) parameters, denoted in POROFIS by β and ηr and 

described in Section 2.1 (Figure 2.4 and Eq. 2.5a-b), are assumed both equivalent to 0.7 according 

to the calibration in Figure 2.16, in the same chapter (Section 2.2). Table 3.2 contains a summary 

of the 6 model parameters.    

 

Figure 3.1 : 2d conceptual model for the system EDZ-EdZ for a drift excavated along stress σH at the Andra 

URL (e.g. [7], [9], [60] and [94]). 

 

Table 3.1 : boundary and initial stress components for the numerical analyses of EDZ shape and extension 

(inner heterogeneous failure) reported in Figure 3.1. 

σxx,(0)  [MPa] σyy,(0)  [MPa] σzz,(0)  [MPa] 

−12.0 −13.0 −16.0 

 

y

x

EDZ limit

EdZ limit
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Table 3.2 : numerical values for the parametrization of the 2d_ED model adopted in the following. 

Elastic parameters Failure parameters Softening parameters 

E  [MPa] ν  [-] φ  [°] σ0  [MPa] β  [-] ηr  [-] 

6000 0.2 20 17.0 0.7 0.7 

 

Figure 3.2a illustrates the numerical model together with the boundary conditions applied, 

referring to the drift GCS, discussed as a reference case in Section 1.1 and adopted as one of the 

two case studies throughout the entire thesis work. The internal radius ra = 2.6 m, indicated as the 

theoretical radius length designed in the excavation phase and adopted in other works and 

publications (e.g. [42], [43]). The imposed axial stress σzz,(0) is indicated by the symbol in 

Figure 3.2a. The linear decreasing of the initial stress state σ(0) (Table 3.1), which boundary 

conditions applies according to Figure 3.2b, follows the procedure presented for 2d plane strain 

simulations in Section 2.1 (Figure 2.7). Contour plots in Figure 3.3 and Figure 3.4 show, 

respectively, the expansion of damage variable D and the horizontal and vertical displacement 

field. 

 
                                               (a)                                                                               (b) 

Figure 3.2 : numerical model, initial conditions (a) and excavation boundary conditions (b) for the 

numerical analyses presented in the current section. 

 

 
Figure 3.3 : contour plot for the damage D, at the end of the excavation, with its the horizontal extension. 
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                                           (a)                                                                      (b) 

Figure 3.4 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b). 

 

A discussion on the results illustrated in Figure 3.4 show can be provided considering the very 

initial values for the total displacements measured at the perimeter of GCS drift by extensometers 

installed around the excavation and reported in Figure 3.5. Here, short-term displacements 

induced by the excavation process can be extrapolated by total measurements (lasting several 

hundreds of days) according to excavation chronograms available for drift GCS [60]. An interval 

of about 1 month corresponds to an advancement of 2 times the drift’s diameter from the studied 

cross-section, which can be assumed the limit time lap including the short-term response induced 

by the excavation. Nonetheless, it must be underlined that creep effects in the COx formations 

may occur immediately after a mechanical perturbation and even “short-term” observations from 

laboratory or real-scale experiments should be careful handled. Includes a comparison between 

estimated values intervals for Ux and Uy at the drift’s wall together with computed values. 

 
Figure 3.5 : total horizontal (red line) and vertical displacements (blue line), measured at the GCS drift’s 

perimeter, with a focus on the initial values likely to correspond to the excavation-induced response. 

Modified from [93]. 

Table 3.3 : comparison between estimated intervals and computed values for short-term Ux and Uy. 

 |Ux|  [mm] |Uy|  [mm] 

in-situ measures (interval) [20 ; 30] [10 ; 15] 

calculated (max. value) 27.7 18.2 

y

x

24.9

19.4

13.8

8.4

2.8
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– 8.1
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– 19.2

– 27.7

[mm]  xU

y

x

[mm]  yU

17.3
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                                 (a)                                             (b)                                            (c) 

Figure 3.6 : increasing of D expansion with the decreasing of σzz,(0) imposed as axial boundary/initial 

conditions (a) σzz,(0) = −10 MPa; (b) σzz,(0) = −8 MPa; (b) σzz,(0) = −5 MPa. σxx,(0) and σyy,(0) as in Table 3.1. 

 

Comparison provided in Table 3.3 show a good agreement of the model’s calculations, which are 

included within the intervals obtained from in-situ monitoring.  

An analyses on the effects of the imposed value of the initial axial stress, σzz,(0), concludes this 

section. Indeed, the choice of considering (or not) the axial stress for this type of boundary value 

problems, simplified in 2d, is a debated topic in the related scientific literature (e.g. [80], [81]). 

Here, since the adopted failure criterion bases on a Drucker-Prager model and includes σzz, it 

seemed worth mentioning this aspect to underline that it can constitute a crucial boundary/initial 

condition when dealing with numerical simulation to predict excavation effects due to tunnelling. 

As it may be logically expected, according to the damage contour plots in Figure 3.6, the damage 

expansion along the horizontal doubles if the initial value σzz,(0) is reduced than one half. For the 

results presented in Figure 3.6, obtained from numerical model and excavation in Figure 3.2b, the 

same parameters reported in Table 3.2 were maintained for the 2d_ED model. This analyses 

concludes the section. 

 

3.2 Modelling the anisotropic failure response 

In the previous section, the variability of the unconfined compressive strength (UCS) has been 

mentioned. As already reported in the material presentation (Section 1.1), this variability 

corresponds to the anisotropic characteristic of the COx formation at the microscale. The variation 

of the material resistance with the inclination to the main load directions concurs to the 

localization of failure, together with possible anisotropies of the initial stress state on the drift’s 

cross-section, denoted as Γ in the reference scheme in Figure 3.7. Here, with the simplification of 

a 2d stress state on a plane, a horizontally-stratified material is represented, with the local stresses 

response at the gallery perimeter, in a polar coordinates system (r; θ). In particular, for a volume 

element around the gallery perimeter, the orthoradial component σθθ corresponds to the uniaxial 

compressive strength (UCS or σ0), if the effect of retaining structures is neglected (σrr = 0).  
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Figure 3.7 : reference scheme of the excavation problem in a 2d stress state simplification with the global 

(Cartesian) and local (polar) coordinates systems. 

 

In this section, the variability of UCS is considered through the implementation of an anisotropic 

failure formulation based on the Drucker-Prager criterion previously adopted. In particular, a 

second (II) order rotation tensor describing the anisotropic response as function of the inclination 

angle of the material “structure” to the main loading directions, is presented and formalized. It is 

to be integrated in the Drucker-Prager failure criterion in the model 2d_ED. Because of the 

numerical works remain in a framework of 2d, plane strain analyses, the introduced rotation tensor 

does not affect the axial component σzz, which is anyway accounted in the failure criterion 

according to the Drucker-Prager formulation. The formalisation of the anisotropic criterion 

includes initially the definition of the normal unitary vector n to the material stratification 

(bedding), and the angle ω included between n and the horizontal (i.e. x). n and the II order 

anisotropic rotation tensor write: 
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Figure 3.8 : conceptual model for the implementation of the anisotropic Drucker-Prager failure criterion. 
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In Eq. 3.1b, h is defined as anisotropic scaling coefficient and it quantifies the material anisotropy, 

as shown later. Whatever stress state can be evaluated for failure attainment (i.e. f = 0), with 

anisotropic conditions of material strength, by modifying the original stress tensor σ with M: 

                                                               MσMσ  T~                                                             (3. 3) 

Eq. 3.3 above (explicated in Appendix B.1) provides a modified or equivalent stress tensor,σ~ , 

including in its formulation the anisotropic characteristics of the material.  
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This stress tensor is finally adopted for whatever failure evaluation by the adoption of its stress 

variable in the original Drucker-Prager failure criterion: 

                                                   0
~

 sin
~

3 12  KDgIJf                                               (3. 5) 

                                                         jiij ssJtrI ~~

2

1~
     ;     ~~

21  σ                                          (3. 6a-b) 

The scheme illustrated in Figure 3.8 has a particular case for the Callovo-Oxfordian stratification 

at the main level of the URL, where the excavation directions are parallel to the material bedding. 

Here, the material stratification, or bedding, is equivalent to the scheme reported for the volume 

elements in Figure 3.7 and the axis of transverse anisotropy coincides with the vertical axis y. 

With these conditions, because of the in-situ material characteristics, it is possible to write ω = 

90°. To describe the anisotropic resistance of the material, two parameters are defined for the 

UCS, denoted also σ0, discerning between the quantity perpendicular to the stratification, σ0,90°, 

and the one parallel to the stratification (for a loading perpendicular to a y), indicated with σ0,0°. 

Their ratio allows the definition of the anisotropy scaling factor h: 

                                                               1
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h                                                             (3. 7) 

The entire derivation of Eq. 3.7 is reported in the Appendix B.1. Here, the expressions for the two 

UCS values are reported: 
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In Eq. 3.8, σ0 for ω = 0° (parallel to the bedding) maintains the original formulation of the isotropic 

criterion. It is underlined that the condition σ0,0° = σ0,90°, consequently h = 0, would also correspond 

to the original isotropic criterion. Numerical employment of the failure function in Eq. 3.5 

requires the identification of the parameters sinα, K, h. According to Eq. 3.8 and 3.9, once a set 

of reference values for the friction angle φ, for σ0,0° and σ0,90° is fixed, the parameters reported 

above can be obtained analytically, as follows: 

- sinα is determined from φ (according to Eq. 2.4a in Chapter 2).  

- K is determined from σ0,0° and sinα according to Eq. 3.8.  

- h is determined, for instance, from σ0,0° and σ0,90° according to Eq. 3.7. 
 

The 2d_ED model accounting for the anisotropic Drucker-Prager failure criterion, as 

implemented in POROFIS, includes 8 parameters. ω and h are the new parameters, with respect 

to the set of 6 parameters in the initial elastic-damage formulation (Table 2.1, Chapter 2, Section 

2.1). Through the invariants
1

~
I  and 

2

~
J  (Eq. 3.6a-b), whatever stress state, represented by the tensor

σ~ in Eq. 3.4, can be reproduced. An example providing the mathematical validity of the proposed 

model is reported, in Figure 3.9, showing numerical simulations of unconfined or confined 

compression tests, in plane strain. In particular, in Figure 3.9b, the variability of the compressive 

strength with ω is traced for different level of confining stress, pC, and compared to an analogue 

anisotropic model [91] already proposed for COx claystone. Here, the material’s resistance varies 

monotonically with ω, showing maximal values for compressions occurring parallel to the 

bedding and minimum values for compressions perpendicular to the stratification. It is underlined 

that, in the comparison model, the angle describing the material’s orientation to the main loading 

directions is the complementary to ω, i.e. the angle between the normal n to the bedding and the 

vertical (y), meaning (π/2 – ω) in Figure 3.8. Compressive strength, varying with ω and pC, is 

denote by σ0(pC),ω. 

 
                                                        (a)                                                        (b) 

Figure 3.9 :simulation of confined compression tests with sinα = 0.28, K = 5.3 MPa and h = 0.3. Original 

failure parameters: φ = 22° and C = 2.5 MPa. 

x

y




















MPa  12

MPa  8

MPa  4

      0

xx

% 5.2yy

π / 2 − ω [ ]

σ
0
(p

C
),

ω
[M

P
a]

0

4

8

12

pC [MPa]



 General Damage-Based Modelling on Drifts Section 

87 

Numerical analysis presented hereby is intended to reproduce the entire failure system EDZ-EdZ 

for the drift GCS, already considered in Section 3.1, by means of the 2d_ED model integrated by 

the anisotropic Drucker-Prager criterion presented above. To perform its parametrization, a 

general variability of UCS between 17 – 25 MPa (Table 1.3, Chapter 1) can be considered, even 

if a wider range is indicated around an average UCS value, 21±7 MPa (e.g. [8], [9]). The 

anisotropic criterion has been employed firstly to consider a monotonic variation of the failure 

resistance under uniaxial or triaxial conditions, respectively σ0,ω and σ0(pC),ω. Few available data 

on triaxial tests (TXc) at failure, for different orientations, suggested that resistance is, in general, 

higher when parallel to the material bedding: σ0(pC),0° > σ0(pC),90° ,  pC. This is consistent with 

the reviewed model adopted for the comparison in Figure 3.9b. Available indications on 

compressive strength for COx along the directions parallel and perpendicular to the bedding are 

resumed inTable 3.4. To define a unique set of failure parameters for the 2d_ED model with the 

anisotropic Drucker-Prager criterion, a series of numerical simulations, based on the boundary 

conditions in Figure 3.9a, has been performed according to the following procedure: 

- φ = 20° was assumed for the friction angle (as average value already reported in Table 1.3, 

Section 1.1) to fix the parameter sinα; 

- an initial set of failure parameters (K ; h) was chosen and employed to simulate, numerically, 

failure in uniaxial (pC = 0) or TXc tests (pC = 12 MPa); 

- for every uniaxial and TXc tests at failure, each simulation returned a criterion error, f ≠ 0, on 

the computed value; 

- according to the failure stress points (pC ; σ0(pC),ω) in Table 3.4, a Least Squares Method 

procedure was executed, minimizing the sum of (f)2 by means of a numerical solver to 

estimate a unique set of parameters (K ; h).  

 

Adopting the numerical specimen model in Figure 3.9a and the parameters in Table 3.5, diagrams 

in Figure 3.10 of confined compression at pC = 12 MPa (TXc test) are obtained, with ω = 0° and 

90°. These results, showing the vertical stress at failure, i.e. σyy = σ0(pC),ω, confirm the variability 

reported in Table 3.4 

Table 3.4 : summary of σ0,ω and σ0(pC),ω (e.g. Table 1.3, Chapter 1; [8], [9]; Andra database) employed for 

calibration of the anisotropic Drucker-Prager criterion. 

 ω = 0   ║ ω = 90   ┴ 

pC = 0 [25 ; 28] [14; 17] 

pC = 12 MPa [41; 46] [35; 41] 

 



Chapter 3 

88 

 
Figure 3.10 : numerical results simulating a confined compression at pC = 12 MPa with the anisotropic 

Druger-Prager criterion, for loading perpendicular (blue line) and parallel (red line) to an horizontally-

stratified material. 

 

Table 3.5 : parametrisation for stress-strain diagrams in Figure 3.10 and for the next numerical failure 

analysis around GCS drift. 

Elasticity Failure Softening Anisotropy 

E  [MPa] ν  [-] φ  [°] σ0,0°  [MPa] β  [-] ηr  [-] h [-] ω [°] 

6000 0.2 20 25.0 0.7 0.7 0.25 90 

 

 

Table 3.6 reports the components of the initial stress state σ(0) constituting initial and boundary 

conditions for the following excavation analysis. With respect to Table 3.1, the components of 

σ(0) were modified for the following reasons: 

- Referring to the scheme in Figure 3.7, a unique value for the components σxx,(0) and σyy,(0), on 

the cross-section plane Γ, has been chosen. This value of −12.5 MPa corresponds to the 

average between the correspondent ones in Table 3.1 and is intended to focus more on the 

anisotropy of the failure criterion as the determining cause for failure localization leading to 

the shape and extension in Figure 3.1. 

- Compared to the in-situ, undisturbed value of −16.2 MPa [113], an axial effect of the tunnel 

front, completely excavated, behind the drift section analysed, was considered. Hence, the 

value σzz,(0) = −8 MPa was assumed, equal to the half of the correspondent component adopted 

in Table 3.1.  

In order to simulate the entire failure zone  in Figure 3.1, a wider numerical model was employed, 

adopting quadrilateral finite elements with one Gauss point for each element, n, and linear 

interpolating shape functions at the nodes, N. The numerical model with the imposed boundary 

conditions and excavation procedure (linear unloading at the circular drift’s perimeter) are 

illustrated, respectively, in Figure 3.11a and b.  
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Table 3.6: σ(0) components for the next numerical failure analysis around GCS drift. 

σxx,(0)  [MPa] σyy,(0)  [MPa] σzz,(0)  [MPa] 

−12.5 −12.5 −8.0 

 
 

 
                                               (a)                                                                                (b) 

Figure 3.11 : initial/boundary conditions (a) and excavation procedure (b); ra = 2.6 m, corresponding to  

the theoretical radius designed before the excavation for the GCS drift section. 

 

The calculated failure geometry in Figure 3.12 shows a coherent orientation: in particular, the 

horizontal extension equal to 3.2 m is in agreement with the 2d model in Figure 3.1 and similar 

to the average lateral extension of the area including a distinct system of homogeneous shear 

fractures (EdZ), as discussed in Section 1.1 (Table 1.1). In Figure 3.13, the deformed mesh, 

showing the results of horizontal and vertical displacements fields (Ux and Uy), indicates that 

localization of failure (and its elongation) coincides with localizations of horizontal 

displacements. 

After the presentation of numerical results for drift GCS, the same model and the relative 

parametrization has been tested to verify if in-situ evidences for perpendicular drifts, excavated 

along the major horizontal component σH. The instrumented drift GED, already discussed in the 

introduction, provides another set of useful failure observations: a contemporary reference to both 

drifts, in fact, allows a validation of modelling propositions according to a strong change in initial 

(i.e. undisturbed) conditions of whatever boundary value problem. In Figure 3.14, the 2d 

conceptual model for the excavation-induced failure around GED drift is reported [9] (an 

analogue 2d model was presented when describing failure evidences at the URL in Figure 1.9b 

(Section 1.1). Here, the theoretical radius for excavation corresponds to ra = 2.3 m. Numerical 

analyses are based on the same model and unloading procedure in Figure 3.11. Again, Table 3.5 

contains the parameters for the 2d_ED model with Drucker-Prager anisotropic criterion.  
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Figure 3.12 : contour plot for the damage D, at the end of the excavation. 

 

 
(a)                                                                   (b) 

Figure 3.13 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b). 

 

 
Figure 3.14 : 2d conceptual model for GED drift [9], with a theoretical radius conceived before the 

excavation ra = 2.3 m. 

 

Since the drift is excavated along the minor stress component σh, boundary conditions 

corresponding to the initial stress state σ(0) (indicated in Figure 3.11a)  have been modified 

according to the in-situ components at the Andra URL (Section 1.1) as follows: 

- For this type of drift, horizontal and vertical principal stresses acting on the section Γ 

correspond, respectively, to the components σH and σv at the Andra URL, estimated equal to 
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16.2 and 12.7, in compression. In the the numerical model in Figure 3.11a, σxx,(0) = −16 MPa 

and σyy,(0) = −13 MPa were assumed as initial stresses on Γ. 

- The axial stress σzz corresponds to the component σh = −12.4 MPa at the main level of the 

URL. Under the same assumption for drift GCS (Figure 3.12 and Figure 3.13), which 

considers a reduction of the undisturbed value of the axial component due to the pre-

excavation behind the section, σzz,(0) has been set equal to −6 MPa. 

At the end of the excavation, contours of the damage D for GED drift in Figure 3.15 do not 

reproduce the vertical orientation in Figure 3.14. Similarly to the numerical result in Figure 3.12, 

even in this case, failure is attained firstly on the horizontal around the drift perimeter and 

develops a damaged zone along this direction. To comment displacements’ results in Figure 3.16, 

the same consideration on the short-term response at the drift’s perimeter are accounted, as done 

for GCS drift in the previous section (referring to Figure 3.5). In Figure 3.17, total convergences 

on the horizontal and vertical directions are reported for GED drift (modified from [91]). It is 

underlined that horizontal and vertical convergences are defined, respectively, as 2·Ux and 2·Uy, 

being respectively the horizontal and vertical displacements, measured at the wall. 

 

Figure 3.15 : contour plot for the damage D, at the end of the excavation. 

 

 

        (a)                                                                    (b) 

Figure 3.16 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b). 
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Figure 3.17 : total horizontal (red line) and vertical convergences (blue line), measured at the GED drift’s 

perimeter, with a focus on initial values likely to correspond to the excavation-induced response. Modified 

after [91]. 

 

In the following, Table 3.7 reports a summary of the maximal short-term values for horizontal 

and vertical displacements components at both drifts’ perimeter, measured respectively on the 

horizontal and vertical direction, i.e. θ = 0° and 90° on the plane Γ (e.g. Figure 3.7). In-situ 

estimations are compared with calculated values above, for both simulations of drifts GCS and 

GED. Calculated values show a general inconsistency to simulate the displacements occurring at 

the drifts’ perimeter. In particular, an overestimation of about 70% is observed for |Ux| in GED 

drift and a very important underestimation is observed, in general, for |Uy|. Only |Ux| calculated 

for GCS tunnel, along the horizontal, respects the variability according to in-situ estimations.  

The discrepancy in displacements’ calculation has been treated with the implementation of an 

anisotropic elastic-damage tensor, based on the 2d_ED model presented in Section 2.3. This 

formulation, presented in the next section of the current chapter, is capable to improve 

displacements’ simulation only for GCS drift, which constitutes a strong limitation to the model 

proposed. Concerning GED drift, the problem of the failure zone orientation must be treated at 

first. This discussion, regarding the conditions for failure localization and the mathematical 

modelling for the anisotropic failure criterion, constitutes the final section of this chapter. 

Table 3.7: calculated maximal values of |Ux| and |Uy| around GCS and GED perimeters, on the horizontal 

and vertical direction, based on results in Figure 3.13 and in Figure 3.16. Comparison with in-situ surveys 

from extensometers. 

 GCS drift GED drift 

 |Ux|, θ=0° [mm] |Uy|, θ=90° [mm] |Ux|, θ=0° [mm] |Uy|, θ=90° [mm] 

in-situ measures  [20 ; 30] [10 ; 15] ~ 10 ~ 40 

calculated at drifts’ wall 28.4 5.4 17.7 5.2 
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3.3 Transverse-isotropic elasticity 

Accounting for anisotropic elasticity in transverse isotropic materials would require, in general, 

the definition of 5 independent parameters. In Figure 3.18, the scheme of a stratified element 

volume for the Callovo-Oxfordian formation, oriented as the in-situ conditions and identified by 

the main Cartesian coordinates’ system, is reported.  According to this conceptual model, 

horizontal Young moduli, parallel to the stratification, are equal and both differ from the vertical 

Young modulus, Ey: vertical directions corresponds to the anisotropy axis. Data for COx claystone 

(e.g. [10], [118] and [119]) indicate lower stiffness along the anisotropy axis, y in Figure 3.18. 

Formally, according to the scheme, it is possible to write: Ex = Ez > Ey. The variability of E due 

to the implications of micro-structural anisotropy of COx formation was already discussed in 

Chapter 1, presenting the material (e.g. Section 1.1, Table 1.3). In Figure 3.18, the classical 

definition of cross-anisotropic elasticity would account also for the parallel and perpendicular 

Poisson’s ratios, and a shear modulus, μ, normal to the plane of isotropy. Nonetheless, it is 

possible to propose a model for anisotropic elasticity considering the particular in-situ stress state 

at the main level of Andra URL with respect to the coordinates’ system in Figure 3.18, i.e. the 

main loading directions correspond to the axis describing the transverse isotropy in three 

dimensions. 

According to the transverse isotropic properties defined above for the volume element in Figure 

3.18, the compliance matrix C-1 writes:                       
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In case of 2d problem (εxz = εyx = 0): 

 
Figure 3.18 : conceptual model of an horizontally stratified geological formation to formalize and 

implement the anisotropic elasticity. 

x

z

xE

y

yE

xz EE 



Chapter 3 

94 

                                               

































1

111

111

111

1

000

0

0

0

xyxy

xxxxxxyyxxzz

xxyyyyyyxxyy

xxzzxxyyxxxx

C

CCC

CCC

CCC

C
                                            (3. 11) 

Eq. 3.10 and 3.11 include the 5 independent parameters of transverse isotropic elasticity, as 

mentioned before. At this point, the volume element in Figure 3.18 can be considered as a medium 

where the horizontal stratification corresponds to a series of parallel discontinuities within the 

matrix, with a thickness e0 negligible with respect to their distance d, i.e. e0/d →0. The definition 

of the stiffness tensor C, for this type of medium, corresponds to the formulation of an equivalent 

continuum mechanical elastic tensor, with homogenised stiffness parameters, according to the 

proposition of Pouya et al. [75] (2013). In Figure 3.18, thanks to the property e0/d →0, whatever 

deformation along the direction j due to a compression along i, (i.e. a deformation tensor 

component εij), leads to the same evaluation for the Poisson’s ratio. Formally, it is possible to 

reduce the initial 5 independent variables in Eq. 3.10 and 3.11, writing: 

                                                                   11   xxzzxxyy CC                                                            (3. 12) 

Even if characterized by a negligible thickness e0, parallel discontinuities providing the transverse 

anisotropy to the medium own a normal and shear stiffness modulus, respectively Knn and Ktt. 

After the reduction expressed in Eq. 3.12, the 4 independent parameters to define the elastic 

anisotropy, according to a simple homogenisation theory, write [75]: 
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Among these equations, only Eq. 3.14 and 3.16 correspond to homogenised stiffness parameters, 

including both stiffness characteristics of the medium matrix and included discontinuities. The 

couple of parameters Young and shear modulus, E and µ, is indicated, respectively, EHOM ; μHOM 

and EMAT ; μMAT, when referred to the homogenised medium or the matrix only. Eq. 3.13-3.16 can 

be rewritten as follows, also as function of the distance d between discontinuities: 
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Introducing the ratio κ = Ktt / Knn, the shear modulus µ can be expressed as function of E and ν 

according to the classical elastic formulation, Knn can be explicitly indicated in Eq. 3.18 and Eq. 

3.20 can be rewritten. The following equations summarize the procedure: 

- From Eq. 3.17 and 3.18:                   
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- From Eq. 3.20 and 3.21:                    
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- From Eq. 3.20, 3.21 and 3.22:            
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Based on the formulation in Eq. 3.11, the compliance elastic matrix for the anisotropic volume 

element, oriented according to the conceptual scheme in Figure 3.18, writes: 
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                                (3. 24) 

The compliance matrix in Eq. 3.24 defines entirely the anisotropic elasticity to be modelled, with 

4 independent parameters, but it does not include the damage internal variable constituting the 

dissipation mechanism for the failure around drifts. In fact, adopting the series of equations 

presented in this section, the integration of this specific elastic anisotropy must be included in the 

original 2d_ED damage-based mechanical model already presented. Adopting the compliance 

formulation with isotropic elasticity presented in the previous chapter (Section 2.3, Eq. 2.40), the 

final matrix relating ε to σ, in the 2d_ED model accounting for elastic anisotropy, writes: 
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C
~

indicates a modification to an original elastic-damage tensor considering damage evolution also 

along the axial direction z. The inversion of the tensor in Eq. 3.25 provides the final stiffness 

matrixC
~

. As done for the stiffness tensor defining the isotropic 2d_ED model, each component 

ijC
~

has been implemented in a FORTRAN subroutine, structured according to the illustration in 

Appendix A, Figure A.1. The explicit expression of C
~

obtained by numerical inversion of Eq. 

3.25 is detailed in Appendix B.4. 

This transverse-isotropic formulation for the 2d_ED elastic-damage tensor was tested on the 

numerical model of drift GCS drift. The same values of parameters reported in Table 3.5 were 

adopted, with the exception of those describing the anisotropic elasticity presented before. 

According to published data for COx (e.g. [37], [118]) and numerical modelling describing elastic 

anisotropy (e.g. [42], [43]), a ratio of 1.4 was chosen for the parallel to perpendicular values of 

Young modulus, assuming as average value E = 6000 MPa for isotropic (undrained) elasticity in 

Section 3.2. Poisson’s ratio did not vary than ν = 0.2 in Table 3.5. Based on this value, an isotropic 

shear modulus µ = 2500 MPa is obtained, resulting in a ratio µ/E = 0.4. This value was assumed 

for the ratio κ among shear and normal stiffness of horizontal inclusions (i.e. discontinuities) in 

the volume element Figure 3.18. Parameters of transverse-isotropic elasticity are reported in Table 

3.8. Concerning stress initial conditions, FEM domain discretisation and excavation procedure, 

this analysis refers to Table 3.6, Figure 3.11a and b.  

With respect to the horizontal extension of the failure zone, representing the system EDZ-EdZ in 

Figure 3.12, contour plot of D, in Figure 3.19, show a slight reduction, possibly due by the 

increased stiffness in the horizontal direction.  

Table 3.8:  elastic parameters accounting for transverse isotropy, adopted in the next numerical analysis. 

Ex  [MPa] Ey  [MPa] κ = Ktt / Knn 

7000 5000 0.4 

 

 
Figure 3.19 : contour plot for the damage D, at the end of the excavation; a shorter failure extension is 

observed compared to Figure 3.12. 
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                                             (a)                                                                    (b) 

Figure 3.20 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b). 

 

Table 3.9 :  calculated maximal values of |Ux| and |Uy| around GCS perimeters, compared with in-situ 

surveys from extensometers. 

 |Ux|, θ=0° [mm] |Uy|, θ=90° [mm] 

in-situ measures  [20 ; 30] [10 ; 15] 

calculated at drifts’ wall 25.6 10.5 

 

Concerning displacements results illustrated in Figure 3.20, calculated values are consistent with 

admissible intervals from extensometers around the perimeter of GCS drift. Maximal values 

calculated on the horizontal and vertical directions are reported in Table 3.9 and confirm the 

horizontal to vertical displacement ratio, |Ux|/|Uy|, indicated as the average value of 2 (e.g. [41], 

[42]). As mentioned at the end of Section 2.2, anisotropic elasticity implemented in the 2d_ED 

model improves displacements’ estimations for GCS even if, at the same time, reduces the 

extension of the calculated failure zone, identified as the system EDZ-EdZ. Nonetheless, it cannot 

be applied to improve results for GED drift, because, in this case (Figure 3.15 and Figure 3.16), 

damage localises firstly on the horizontal, in contrast with in-situ evidences. Accounting for 

anisotropic elasticity would not resolve this problem; on the other hand, a revision of the failure 

criterion seems to be a more efficient solution to follow. This aspect constitutes the last discussion 

for failure modelling around drifts in this chapter. 

 

3.4 Non-monotonic failure anisotropy in two dimensions 

The orientation of failure zone is strongly dependent on the initial damage localisation, i.e. the 

area around the drift perimeter where failure conditions are firstly attained. From the numerical 

point of view, in the context of FEM analyses, this area corresponds to the finite element(s) where 

failure criterion f, calculated at Gauss points, firstly satisfies the condition f = 0. Coupled 

anisotropic conditions derived from in-situ stress and the material constitutive model lead to 
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different failure localisations around the gallery during the unloading path that simulates the 

excavation process. Even if the implementation of anisotropic elasticity may solve the problem 

related to the convergence/displacements calculations for the GCS drift, in this case, the imposed 

anisotropy for the failure criterion is the main responsible for the damage localisation on the 

horizontal.  With the same failure criterion conditions, a stronger anisotropy of the initial stress 

state is not capable to induce a vertical-oriented damage zone for the drift GED (Figure 3.15). 

According to results obtained for both boundary value problems, in the latter case, only a change 

of the monotonic failure criterion previously defined would induce, possibly, a damage initiation 

developing along the vertical direction. For the stratified material (which constitutive modelling 

must be common to both drifts), the conditions for their boundary value problems on the cross 

section (plane Γ), together with the expected failure zone (i.e. EDZ-EdZ), are reported in Figure 

3.21. Based on this conceptual scheme, in the following it is reported a simple analysis of failure 

localisation at the perimeter (r = ra) according to numerical values of in-situ stress components 

(e.g. σv, σh, and σH at the main level of Andra URL). Considering firstly GCS drift, for a complete 

excavation without any internal support, a horizontal failure localization implies: 

                                                          0,090,0 BA  
                                            (3. 26a) 

                                                  
  0,090,0 33  vhhv
                                        (3. 26b) 

                                                         
 

4

0,090,0  



 hv

                                                  (3.  26c) 

 

Figure 3.21 : conceptual 2d scheme for failure localisation of drifts GCS and GED, with the relative stress 

boundary conditions. The global (Cartesian) and local (polar) coordinates systems are also reported. 
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According to boundary conditions for stress components σv, σh in Figure 3.21, the conditions 

expressed in Eq. 3.26c is always satisfied: as indicated also in Section 3.2, data on material 

anisotropy satisfy the condition σ0,0° > σ0,90°. An analogue discussion can be made for GED drift: 

                                                          0,090,0 BA  
                                             (3. 27a) 

                                                
  0,090,0 33  vHHv
                                        (3. 27b) 

                                                       
 

4

90,00,0  



 vH

                                                   (3. 27c) 

In these case, the condition expressed in Eq. 3.27c is satisfied only based on the difference 

between σ0,0° and σ0,90°. Following the approach based on the former analytical scheme, in the 

forthcoming simulations the failure criterion does not account the axial stress component σzz, even 

if it continues to exist as boundary value and stress variable in the numerical problem. It is 

possible to write a new anisotropic failure criterion based on the 2d conceptual model for a 

stratified material in Figure 3.22. Here, the unitary vector n normal to bedding substitutes the 

expression in Eq. 3.1a (Section 3.1). Redefining n, the anisotropic rotation tensor M, previously 

expressed according to Eq. 3.1b, can be written as reported in the following Eq. 3.28 for a 2d 

stress tensor. 
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Applying Eq. 3.2 to modify the original stress tensor, eventually, it is possible to write, in two 

dimensions: 
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Figure 3.22 : conceptual model for the implementation of the anisotropic 2d failure criterion in Eq. 3.30. 
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Adopting the modified stress tensor previously defined, the following Mohr-Coulomb type 

criterion can be defined: 

                                        KDgDf yyxxxyyyxx )(~~sin~4~~,~ 22
 σ                         (3. 30) 

In Eq. 3.30, the friction angle φ and K appears explicitly as failure parameters, while the 

anisotropy scaling coefficient h is implicitly present in the modified stress component
ij~ . K, 

depending on φ, as well as on the cohesion C, can be written as function of the UCS, in case of 

unconfined compression along y and parallel to the material bedding (ω = 0°, e.g. Eq. 3.8):  

                                                                   sin10,0  K                                                             (3. 31) 

From the mathematical point of view, the failure function f in Eq. 3.30 was analyzed to verify its 

employment in the simulation of a non-monotonic criterion, as function of the inclination of 

material stratification. In particular, it was possible to define analytically the explicit expressions 

for compressions strengths, in case of uniaxial or confined loadings, respectively σxx = 0 ; σyy ≠ 0 

and |σxx| = pC ; σyy ≠ 0. For the first case, the modified stress tensor σ~ in Eq. 3.29 writes: 
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Adopting the matrix in Eq. 3.32 to rewrite the anisotropic f in Eq. 3.30, the analytical formulation 

for UCS, as function of the stratification angle ω, is eventually expressed as follows: 

                                                            

sphdev

0,
CC 


K

                                                         (3. 33) 

Eq. 3.33 is also defined through coefficients Cdev and Csph: they are respectively denoted deviatoric 

and spherical because related to the deviatoric and hydrostatic part of Eq. 3.30. Their complete 

expressions are reported in the Appendix B.2. In case of axial loading along y with a confinement 

pC along x (according to the scheme in Figure 3.22), the confined material strength as function of 

ω, σ0(pC),ω, is analytically found as the positive solution of a second order polynomial function, 

which complete formulation is again described in the Appendix B.2. Linear and radar graphics of 

σ0,ω and σ0(pC),ω as function of ω are reported, respectively, in Figure 3.23a and b. For the confined 

compressive strength, a value of pC = 12 MPa was assumed. The functions show a periodicity of 

the strength values in ω = [0; 180°] and, focusing on Figure 3.23b, it is possible to state that the 

II order tensor M in Eq. 3.28 define an elliptical anisotropy for f in Eq. 3.30. These functions’ 

periodicity allows to consider a non-monotonic behaviour at failure, limiting ω in the physical 

interval between 0 and 90°, as evidenced in Figure 3.24 for uniaxial compression already shown 

in  Figure 3.23. Hence, ω corresponds to the inclination of minimal resistance. 
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                                                  (a)                                                                   (b) 

Figure 3.23 : plots of σ0,ω (red) and σ0(pC),ω confined at 12 MPa (blue), for φ = 20°, K = 15 MPa, h = 0.2. 

In (a), linear plot for [0; 360 ] showing the functions’ periodicity on [0; 180 ]. In (b), radar plot 

representation. 

 
Figure 3.24 : σ0,ω for φ = 20°, K = 15 MPa, h = 0.2. Dotted line represents a monotonic variation between 

0° and 90°, while the continuous line shows a resistance with its minimum for a loading inclined at 45°. 

 

New available data for failure of COx specimens, sampled with different orientations and derived 

from TXc tests confined at 12 MPa [91], showed indeed that a different interpolating function for 

the criterion may better reproduce the material anisotropic response, with a minimum between 0 

and 90°. Table 3.10 reports the over mentioned data in terms of deviator q at failure. 

Table 3.10 : data for σ0(pC),ω with pC = 12 MPa [91], on specimens sampled with different inclinations and 

approximately the same initial water content. 

ω  [°]   q at pC = 12 MPa  [MPa] 

0 45.9 

0 40.9 

12 38.4 

45 27.0 

50 41.0 

75 39.6 

77 35.3 
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Figure 3.25 : non-monotonic calibration strength in specimen confined at 12 MPa [91]; q reported as 

function of ω. Data interpretation with minimum of σ0(pC) at ω = 52°. 

 

An interpretation of data in Table 3.10 for a non-monotonic variation of the material failure are 

reported in Figure 3.25, where the minimum of the shear strength is set at ω = 52°. At the same 

time, σ0,0° > σ0,90°. This failure criterion configuration has been tested on the geometry in Figure 

3.11, for both drifts GCS and GED, respectively with ra = 2.6 and 2.3 m. Parametrization of the 

2d_ED model corresponds to the same values reported both in Table 3.2 and Table 3.5, regarding 

the parts Elasticity (E and ν) and Softening (β and ηr). It is remembered that, in these analyses, the 

model accounts for isotropic elasticity. According to the model calibration based on deviator q, 

at failure, in Figure 3.25, Table 3.11 contains the criterion parameters and correspondent UCS 

values in case of: compression parallel to the bedding (ω = 0°), along the direction of minimal 

resistance (ω = 52°) and perpendicular to the bedding (ω = 90°). Boundary and initial conditions, 

applied on the domain in Figure 3.11, are described as follows: 

- Stress components acting on the drifts’ cross section were imposed according to the 

conditions reported for the plane Γ, in Figure 3.21. 

- Axial stress, σzz, is neglected in the calculation of failure openings during drifts’ unloading at 

the internal perimeter (e.g. Eq. 3.28 and 3.30). For this reason, in these numerical analyses, 

no hypothesis were made on the initial value σzz,(0). It assumes automatic value calculated by 

POROFIS and derived for the plane strain condition: 

 

                                                   )0,()0,()0,(0 yyxxzzzz                                            (3. 34) 

To summarize, the imposed stress components are listed in Table 3.12. Numerical excavation 

procedure is the same applied before, based on Figure 3.11b, already described in Section 2.1. 

Results for both GCS and GED drifts are illustrated in the following: shape and extension of the 

internal variable D is reported, respectively, in Figure 3.26 and Figure 3.28, while the contour 

plots for horizontal and vertical displacement fields are reported in Figure 3.27 and Figure 3.29. 

 



 General Damage-Based Modelling on Drifts Section 

103 

Table 3.11 : model parameters for the anisotropic failure criterion in Eq. 3.30, calibrated in Figure 3.25. 

ω [°] h [-] σ0,0°  [MPa] σ0,ω   [MPa] σ0,90°  [MPa] 

52 0.25 21.0 16.0 18.4 

 

Table 3.12 : numerical values for components σxx,(0), σyy,(0) as reported in Figure 3.21. Values for σzz,(0) are 

calculated according to Eq. 3.31, with ν = 0.2 (e.g. Table 3.2). 

σxx,(0)  [MPa] σyy,(0)  [MPa] σzz,(0)  [MPa] 

−12.4 −12.7 −5.02 

−16.2 −12.7 −5.78 

 

 
Figure 3.26 : contour plot for the damage D, GCS drift. 

 

 
                                            (a)                                                                     (b) 

Figure 3.27 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b), 

GCS drift. 

 

An inclined failure localization, with respect to the horizontal, is shown in Figure 3.26. 

Nonetheless, even if damage is firstly attained and localises around a polar coordinate 0 < θ < 90° 

(e.g. Figure 3.21), it should be expected to develop towards the horizontal (or the vertical, 

according to initial boundary conditions, i.e. σ(0)), during the unloading process, reproducing the 

in-situ observation at the URL. Moreover, considering the symmetry of the problem geometry 
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and the horizontal stratification of the material in every point of the domain, failure does not 

develop symmetrically. With a direct reference to Figure 3.26, since material anisotropy must be 

overall homogeneous, the inclined damage lobes shown should have, for symmetry, a specular 

development with respect to axis x. For the calculated displacements, the horizontal component 

Ux (Figure 3.27a) results underestimated, with respect to measurements at the drift’s perimeter 

(e.g. Table 3.7). Results reported in Figure 3.28 and Figure 3.29 for drift GED confirm, in general, 

the same modelling defects previously described. An absence of complete symmetry for the 

damage development around the excavation is revealed in Figure 3.28 and displacements’ 

underestimation occurs in correspondence of failure localisation.  

At the current state of numerical analyses, improvements of 2d modelling for continuous failure 

(e.g. Chapter 1, Section 1.1) were required, to overcome the following problems: 

- The absence of symmetry around the circular opening when failure conditions are (locally) 

attained. 

- The direction (orientation) of damage expansion, evolving towards the horizontal or vertical 

direction as function of the initial and boundary stress, improving, possibly, the estimation of 

displacements in correspondence of failure. 

 
Figure 3.28 : contour plot for the damage D, GED drift. 

 

 
                                             (a)                                                                   (b) 

Figure 3.29 : contour plots for horizontal (Ux) displacement (a) and vertical (Uy) displacements field (b), 

GED drift. 
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       Conclusion 

With respect to the framework provided in Chapter 2, to justify the interest of a damage-based 

modelling approach, this chapter was dedicated to the 2d modelling of failure localizations and 

damage evolution for drifts at the Andra URL. Two drifts excavated along the horizontal principal 

stress direction were considered, to test the proposed modelling exercises with different boundary 

and initial conditions. The formation of the failure zone generated by the excavation, for one of 

the main horizontal directions, was discussed, with a model providing a consistent estimation of 

displacements at the wall. The effect of the imposed axial stress in numerical simulation has been 

also considered. 

   A first proposition to account the anisotropic response at failure, exhibited by the Callovo-

Oxfordian formation at the laboratory scale, was formulated. Considering the horizontal 

stratification of the material, a monotonic variation of the compressive strength was proposed and 

its effects on damage and displacements calculations shown. Meanwhile, anisotropic elasticity, 

based on the homogenised model in Section 3.3, was introduced, showing its capacity to improve 

the calculation of perimeter’s displacements for a drift along σH at the URL. Nonetheless, the 

failure attainment and orientation for a drift along σh still remained an unsolved issue. 

   In the last section, a revision of failure localisation conditions was discussed, adopting a 

simplified approach which neglects the contribution of σzz in the criterion’s function. At the same 

time, laboratory data from compression tests showed the possibility to consider a non-monotonic 

variation of material’s resistance. These data were used to calibrate a failure model accounting 

for this non-monotonic variation. Final numerical tests were performed based on in-situ stresses 

of both drifts’ direction. They show the impossibility, for the current modelling, to reproduce 

correctly the observations, in particular concerning symmetry and orientation of failure. 

   In the overall manuscript’s structure, this chapter was intended to provide indications on 

possible modelling difficulties considering anisotropic characteristics of the material. Modelling 

exercises presented here provide useful indications and constitute the transition to the final 

damage-based constitutive framework presented in Chapter 4 for the first axis of this research. 
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The final numerical analyses for the 2d plane strain damage evolution around drifts at the Andra 

URL are discussed hereby. Chapter 4 concludes, in fact, the first axis of research, constituting the 

major part of this thesis’ works. In the first section, the proposition for a new elastic-damage 

stress-strain law, based on some principles already considered for the formalization of the 2d_ED 

model, is presented. In particular, damage evolution along the axial coordinate z is still neglected. 

The new elastic-damage law is further tested and considerations on the influence of a fragile or 

ductile softening post-peak behaviour are provided. 

   The second section is dedicated to a series of excavation analyses for the experimental drift 

considered (Trivellato et al., 2018 [102]), where the proposed elastic-damage stiffness matrix is 

employed in presence of a very fragile softening material with monotonic anisotropic failure, 

according to the II order modelling formalized in Chapter 3, Section 3.2. 

   To overcome the antisymmetric failure localizations, discussed through numerical examples at 

the end of the previous chapter, the third section describes the synthesis of a second anisotropic 

rotation tensor providing a failure criterion capable to resolve the problem encountered. A 

calibration, based on more recent triaxial compression data, is further operated to set the failure 

parameters adopted in the last analyses. Afterwards, Section 4.4 described a proposition of 

numerical treatment of the increasing ductile behaviour of Callovo-Oxfordian claystone, in its 

post-peak phase under confined compression.  

   The conclusive Section 4.5 reports and describes numerical results of the analyses performed, 

where a reduced geometry, including one fourth of the circular symmetric domain represented 

before. A mesh refinement is applied to the discretization of the numerical model, corresponding 

to the area, surrounding the drifts’ perimeter, potentially subjected to damage-based failure. 
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4.1 Shear-damage elastic model for 2d plane strain problem  

In this section, the final numerical analyses covering the failure expansion around galleries at the 

Andra URL during their excavation are introduced. Here, it is worth reporting the 2d conceptual 

models of failure constituting the analyses’ targets, in Figure 4.1. In particular, this section 

presents the last type of elastic-damage constitutive law applied in 2d plane strain numerical 

simulations. The new model includes the 2d_ED presented in Chapter 2, as it neglects every 

damage of the axial stiffness (along z). At the same time, it reproduces a damage-based 

degradation affecting only the shear component of the material’s stiffness in the plane (x ; y), 

often denoted Γ, i.e. the gallery cross section. From the physical point of view, the basic idea is a 

reduction of the cohesive properties of the damaged material: it becomes progressively granular, 

when D increases, and maintains, at the same time, its frictional properties. The correspondent 

strain response requires the material bulk modulus, K, would not be affected by damage. Only the 

shear modulus µ, in Γ, is degraded by the internal variable D [34]. 

 
Figure 4.1 : bi-dimensional schemes of the extension of EDZ-EdZ around the studied drifts, along σH and 

σh, at the Andra URL (modified after [9]). 

 
Figure 4.2 : conceptual model of the damage mechanism occurring in the material at failure. 
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According to the scheme reported in Figure 4.2, this model can be described by the equations 

reported hereby. Firstly, a division of the stress-strain constitutive law, discerning the volumetric 

from the deviatoric part, is considered: 

                                               







 εε trδtrδσ ijijijij

3

1
2

3

1
K3                                      (4. 1) 

In Eq. 4.1, the hydrostatic or volumetric part of the stress tensor σ corresponds to: 

                                                           εtrδIδ ijij 
3

1
K3

3

1
1

                                                   (4. 2) 

While the second term constitutes its deviatoric part: 

                                                     ijijij etrδs 







  2

3

1
2 εε                                            (4. 3) 

In Eq. 4.2 and 4.3, K is the bulk modulus and µ the shear modulus. In this type of modelling, the 

damage coefficient (1−D) affects only the stiffness coefficient relating the deviatoric strain and 

stress tensors, respectively e and s (i.e. eij and sij in their indicial forms). Meanwhile, the formalism 

of the elastic-damage stiffness matrix, to be implemented in the correspondent FORTRAN 

subroutine in POROFIS (e.g. Appendix A, Figure A.1), is based on the following a compliance 

law conceived for a 2d, plane strain problem, i.e. εzz = 0: 
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The final elastic-shear-damage law, as implemented in POROFIS, corresponds to Eq. 4.5a: 
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In the previous equation, the coefficient A writes:  

                                                          
   2112

A



E                                                                (4.5b) 

Eq. 4.5a respects symmetry conditions C
~

ij = C
~

ij. Every component i = z or j = z, or both, is not 

affected by the damage coefficient (1−D). This model, defined elastic shear-damage model, will 

be denoted 2d_ESD. The entire formulation describing the 2d_ESD constitutive model is an 

internal POROFIS code, developed and implemented in its most recent version [34]. 
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After the elastic-damage model’s introduction, this section is dedicated to some preliminary 

numerical simulations with boundary conditions corresponding to the stress conditions for GCS 

(ra = 2.6 m) and GED drifts (ra = 2.3 m) on their cross-section, according to the values in Table 

4.1. The geometry reported in Figure 3.11, Section 3.2 was employed and the same numerical 

procedure for the excavation was performed. It is worth reporting hereby the linear softening plus 

residual stress-strain curve initially shown in Section 2.1. Even with the 2d_ESD model, it remains 

the reference curve describing the material response in uniaxial compression. Again, the softening 

post-peak response is described by the parameters β and ηr (Figure 4.3). It is important to 

underline that the analyses presented in this chapter’s section do not aim to reproduce the 

evidences at the Andra URL (e.g. Figure 4.1) and the parametrization of softening behaviour is 

not entirely representative for the Callovo-Oxfordian formation (COx). Parameters’ choice wants 

to show the influence of a drastic difference of the stress-softening ratio, ηr, in the employment 

of the 2d_ESD model. Parameters describing the linear isotropic elasticity, E and ν, were chosen 

equal to 4500 MPa and 0.2, respectively (e.g. [8], [43]). The uniaxial compressive strength (UCS) 

σ0 and the softening strain coefficient β, in Figure 4.3, are equal to 17 MPa (admissible value 

according to Table 1.3 in Section 1.1) and 0.5. Two series of numerical analyses were performed, 

imposing the boundary and initial conditions as indicated in Table 4.1. In the first series, ηr = 0.9, 

corresponding to a weakly brittle material. In the second, under the hypothesis of strong fragility, 

ηr = 0.2. In the following pages, the results’ presentation concludes this first section. Comparisons 

of the damaged failure zone, between boundary conditions corresponding to drifts GCS and GED, 

are reported in Figure 4.4 and Figure 4.7. Contour plots in Figure 4.5, Figure 4.6 and Figure 4.8, 

Figure 4.9 reports, respectively, the horizontal and vertical displacements fields for ηr = 0.9 and 

ηr = 0.2. 

Table 4.1: σ(0) components for the next numerical excavation analysis around GCS and GED drifts. 

drift σxx,(0)  [MPa] σyy,(0)  [MPa] σzz,(0)  [MPa] 

GCS −12.4 
−12.7 ν∙(σxx,(0) + σyy,(0)) 

GED −16.2 

 

 
Figure 4.3 : model stress-strain curve under monotonic uniaxial loading and damage unloading-reloading  
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                                     (a)                                                                                   (b) 

Figure 4.4 : damage extensions according to boundary and initial conditions in Table 4.1 of GCS in (a) and 

GED drifts in (b), after complete excavation. ηr = 0.9. 

 

 
(a)                                                                 (b) 

Figure 4.5 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions 

in Table 4.1 of GCS drift (Figure 4.4a). ηr = 0.9. 

 

 
                                             (a)                                                                    (b) 

Figure 4.6 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions 

in Table 4.1 of GED drift (Figure 4.4b). ηr = 0.9. 
 

With ηr = 0.9 (almost perfect-yielding material), it is possible to notice that damage distributes 

concentrically around the circular opening, if the quasi-isotropic initial stress condition for GCS 

are applied. Similarly, no stress localisations appears around the drift (Figure 4.5a-b). On the 

contrary, the initial stress anisotropy existing in the GED drift’s cross-section, governs the 

anisotropic damage repartition on the vertical direction, confirmed by displacement’s localisation. 
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                                      (a)                                                                                 (b) 

Figure 4.7 : damage extensions according to boundary and initial conditions in Table 4.1 for GCS in (a) 

and GED drifts in (b), after complete excavation. ηr = 0.2. 

 

 
(a)                                                                 (b) 

Figure 4.8 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions 

in Table 4.1 of GCS drift (Figure 4.7a). ηr = 0.2. 

 

 
                                            (a)                                                                    (b) 

Figure 4.9 : horizontal (a) and vertical (b) displacements fields according to boundary and initial conditions 

in Table 4.1 of GED drift (Figure 4.7b). ηr = 0.2. 
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shape assumes a clear horizontal direction, since σxx,(0) < σyy,(0). In Figure 4.7b, the vertical 

expansion of D is enhanced up to reaching the finer mesh limit conceived in the geometry design 

to delimit the potential failure zone. The corresponding Ux and Uy contour plots confirm the 

direction of damage, on either the horizontal or the vertical, with important localisations. 
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Numerical exercises presented in this section underline the significant contribution of ηr in the 

failure evolution. Experimentally, as introduced in Chapter 1 (The Callovo-Oxfordian claystone 

formation, 1.1.2), a homogeneous value of the stress-softening ratio throughout the entire domain 

would not be realistic of the material’s response, under the mechanical conditions induced by a 

gallery excavation. Section 4.4 is introducing this subject, considering a variable ηr in the 

analyses’ domain. In the next section, significant results including the anisotropy of the failure 

criterion with the 2d_ESD constitutive law are discussed.  

 

4.2 Preliminary results with monotonic failure anisotropy 

The modelling of the material’s response at failure is accounted with the criterion introduced in 

Section 3.2 and then simplified in Section 3.4, to neglect the contribution of the axial component 

σzz (e.g. Eq. 3.28-3.30 and Figure 3.22). In the following, the basic equations formalizing the 

criterion are recalled: 

                                               nnMn  hδij     ;     sincos
T

                                   (4. 6a-b) 

n is the normal unit vector to the material stratification, inclined with ω to the horizontal. The II 

order anisotropic rotation tensor M allows for the definition of a modified 2d stress tensor σ~ , to 

simulate the variation of the local material resistance according to ω and the anisotropy scaling 

factor h (e.g. Eq. 3.7 in Section 3.2). 

                                                                   MσM ~T                                                                (4. 7) 

                                        KDgDf yyxxxyyyxx )(~~sin~4~~,~ 22
 σ                              (4. 8) 

Adopting the 2d_ESD model, with the anisotropic failure criterion in Eq. 4.8, a first series of 

analyses is performed to investigate if this model can reproduce both failure zones in Figure 4.1, 

depending on the respective boundary conditions, reported in Table 4.1 [102]. Parametrization 

for these analyses does not differ, in general, from the one imposed for results in Section 4.1, 

particularly those in Figure 4.7, Figure 4.8 and Figure 4.9. Linear elasticity and softening 

parameters are reported in Table 4.2.  

Table 4.2: values of linear elastic and softening parameters adopted for the 2d_ESD model applied to the 

following simulation, referring to Figure 4.3. 

Elastic parameters Softening parameters 

E  [MPa] ν  [-] β  [-] ηr  [-] 

4500 0.2 0.5 0.2 
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Focusing on the softening stress ratio, ηr, the previous section showed the importance of its choice 

as a numerical parameter influencing the results of the modelling proposed. The value adopted 

(ηr = 0.2) is justified by the material stress-strain behaviour in uniaxial loading: Figure 4.10 shows 

a very brittle post-peak response in softening conditions, without confinement stress (pC = 0). 

These stress-strains diagrams [8] were already presented in Chapter 1, in the general introduction 

of COx formation’s mechanical properties (Section 1.1, Figure 1.18). In the analyses hereby, 

anisotropic failure’s parameters are based on the same constant friction angle, φ = 20°. Figure 

4.11 reports a monotonic interpretation of data in Table 3.10, (Section 3.4). It illustrates the 

deviator values, q, at failure, as a function of the bedding inclination ω. Hence, calibration 

reported in Figure 4.11 is assumed for the anisotropic failure criterion (Eq. 4.6-4.8) adopted in 

the following analyses. Numerical model of the geometry with the initial and boundary conditions 

to simulate the in-situ stress state (σ(0) defined by values in Table 4.1) and the excavation 

procedure are illustrated in Figure 4.12. Since this modelling exercise is based on a strong 

softening behaviour (ηr = 0.2, e.g. Figure 4.3), results obtained from the geometry in Figure 4.12 

are compared with an analogue analysis performed to the finer mesh employed in Section 4.1 and 

illustrated in Figure 3.11, Section 3.2. 

 

Figure 4.10 : uni- and triaxial compression tests (TXc) on COx specimens, focusing on the fragile response 

in uniaxial compressions. Modified after [8]. 

 

Figure 4.11 : monotonic interpretation of data in Table 3.10 (Section 3.4), according to the failure criterion 

in Eq. 4.8. 
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This is intended to perform a mesh-size sensitivity analyses, with the finer mesh’s elements 3 

times smaller, in surface, than those in Figure 4.12, in the area potentially failing around the 

circular opening [102]. 

 
                                                (a)                                                                              (b) 

Figure 4.12 : Figure 3.2 : numerical model, initial conditions (a) and excavation boundary conditions (b) 

for the numerical analyses presented. 

           
(a)                                                           (b)                                                    

Figure 4.13 : damage extensions according to boundary and initial conditions in Table 4.1 of GCS drift. 

Coarse mesh reported in Figure 4.12 in (a) and fine mesh reported in Figure 3.11, Section 3.2. 

        
                                                 (a)                                                            (b) 

Figure 4.14 : horizontal (a) and vertical (b) displacements fields according to boundary and initial 

conditions in Table 4.1 of GCS drift, with the coarse mesh reported in Figure 4.12. 
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                                                 (a)                                                            (b) 

Figure 4.15 : horizontal (a) and vertical (b) displacements fields according to boundary and initial 

conditions in Table 4.1 of GCS drift, with the fine mesh reported in Figure 3.11, Section 3.2. 

These results confirm a correct localisation of the damage variable, D, even if the length does not 

to reach the extension of 4.5 m as indicated in Figure 4.1 for GCS drift. The model is able to 

reproduce a failure zone comprehended between the EDZ and EdZ, which does not show a 

significant dependence by the mesh size. Displacements at the perimeter are consistent with the 

observations reported, for GCS drift, in Figure 3.5 and Table 3.3 (Section 3.1). 

           
                                                (a)                                                             (b)                                               

Figure 4.16 : damage extensions according to boundary and initial conditions in Table 4.1 of GED drift. 

Coarser mesh reported in Figure 4.12 in (a) and finer mesh reported in Figure 3.11, Section 3.2. 

         
                                                 (a)                                                            (b) 

Figure 4.17 : horizontal (a) and vertical (b) displacements fields according to boundary and initial 

conditions in Table 4.1 of GED drift, with the coarse mesh reported in Figure 4.12. 
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                                                (a)                                                              (b) 

Figure 4.18 : horizontal (a) and vertical (b) displacements fields according to boundary and initial 

conditions in Table 4.1 of GED drift, with the fine mesh reported in Figure 3.11, Section 3.2. 

 

For the analyses of GED drift, the failure zone calculated in Figure 4.16, with the coarse mesh (a) 

is almost able to attain the upper vertical extension reported in Figure 4.1. Nonetheless, the GED 

conceptual model for failure zone shows a different extension on the vertical, between the 

development at the ceiling and at the base of the tunnel; in particular, the latter is extended up to 

1 m more. This difference cannot be overcome by the modelling proposed, which reproduces, on 

the other hand, a vertical failure zone symmetrical with respect to the axis x. Again, no significant 

differences are noticed concerning the mesh-size dependency for D. Horizontal and vertical 

displacements are in accordance with measured values, referring to Figure 3.17 and Table 3.7 for 

GED drift (Section 3.2). For every gallery, relative errors of displacement components (Ui) due 

to the mesh-size dependence are resumed in Table 4.3 and Table 4.4, respectively for GCS and 

GED. This error is evaluated according to Eq. 4.9, with Ui calculated at the perimeters; in Eq. 4.9, 

“FM” refers to the finer mesh, while “CM” to the coarser (Figure 4.12). Table 4.3 and Table 4.4 

reports also, for every mesh, the horizontal to vertical displacements’ ratio |Ux| / |Uy|. In particular, 

for GCS and GED drift, the finer mesh is able to provide a consistent estimation, according to the 

values reviewed in literature, respectively: ~2 and ~0.25 (e.g. [42], [60] and [66]). 
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Table 4.3 : GCS drift, mesh-size sensitivity on displacements at the perimeter. 

 |Ux|  max. [mm] |Uy|  max. [mm] |Ux| / |Uy|  [-] 

Coarse mesh                  (Figure 4.12) 20.0 12.5 1.64 

Fine mesh  (Figure 3.11, Section 3.2) 21.6 10.9 1.98 

Max. error (%)          (absolute value) 8 % 12.8 % 20.7 % 
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Table 4.4 : GED drift, mesh-size sensitivity on displacements at the perimeter. 

 |Ux|  max. [mm] |Uy|  max. [mm] |Ux| / |Uy|  [-] 

Coarse mesh                  (Figure 4.12) 18.2 40.3 0.45 

Fine mesh  (Figure 3.11, Section 3.2) 15.2 44.6 0.34 

Max. error (%)          (absolute value) 16.5 % 10.6 % 24.4 % 

 

These analyses have shown, generally, a symmetric repartition of damage around the circular 

openings. Even if the final results are correct, it must be underlined that this symmetry is due by 

the particular interpretation of anisotropic failure data in Figure 4.11. It provides, in numerical 

analyses, the correct failure localizations for every drift considered. Nonetheless, if a non-

monotonic interpretation (i.e. failure parameters’ calibration) of these data occurred, symmetric 

damage localization would not be reproduced around the entire drift perimeter, θ[0; 2π], as 

discussed in details at the end of Section 3.4. This problem was overcome developing the 

anisotropic failure model described in the following section. 

 

4.3 Fourth-order modelling of non-monotonic failure anisotropy 

In this section, a second proposition for the implementation of an anisotropic failure criterion is 

detailed. This criterion is also neglecting the axial stress σzz, according to Eq. 4.8. To solve the 

problem of the dissymmetry in the failure localization for θ  [0; 2π] around the circular perimeter 

of a gallery, the fourth (IV) order rotation tensor H is formalized in Eq. 4.11, as function of the 

unit vectors m and n in Eq. 4.10, respectively parallel and perpendicular to the material’s 

stratification, as reported in Figure 4.19 : 

                                          T sincosn      ;      T cossin m                           (4. 10a-b) 
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Figure 4.19 : conceptual model for the implementation of the new anisotropic 2d failure criterion. 
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hn and hs are defined, respectively, the normal and shear anisotropic scaling factors. It is possible 

to demonstrate that, if hn = hs = 1, H is a IV order identity matrix, i.e. δijhk. As done in Section 3.2 

for the II order tensor M, in this case, the anisotropic rotation tensor H serves to provide an 

equivalent stress tensor for a variable failure threshold. This is function of the inclination between 

the material’s stratification and the main loading direction, ω (Figure 4.19). 

                                                                     σHσ ~                                                               (4. 12) 

In indicial notation, it writes: 

                                                                  
hkijhkij σHσ ~                                                          (4. 13) 

Since Eq. 4.10-4.13 apply to a stress tensor in two dimensions (the axial stress component σzz is 

always neglected in the failure evaluation), the explicit formulation of Eq. 4.13 considers the 

indexes i and j corresponding to x or y only: 
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H can be directly written as a 3x3 matrix, sinceσ~ xy =σ~  yx and σxy = σxy, and it is defined symmetric, 

as the II order tensor M presented in the previous chapter. The entire formulation of H, 

particularly the definition of its components Hij, is detailed in the Appendix B.3. As introduced, 

the anisotropic rotation tensor H replaces the tensor M, by employing the components of the 

modified or equivalent stress tensor σ~  in Eq. 4.14 for the evaluation of anisotropic failure (Eq. 

4.8). This model is capable to resolve the dissymmetry previously encountered in the failure 

localisations and shown at the end of Chapter 3 in Figure 3.26 and Figure 3.28. In fact, if failure 

around the gallery cross-section (plane Γ) firstly localizes at a certain coordinate θ[0 ; π/2], the 

same physical condition must be respected symmetrically both to the axes x and y, according to 

the scheme illustrated in Figure 4.20. According to this scheme, it can be deduced that numerical 

analyses may be performed also on a reduced geometry correspondent to one fourth of the whole 

cylindrical-symmetric domain, reduced to a circumference in 2d. Damaged zones reported in 

Figure 4.21 have the only scope to show, on the entire circular domain, the symmetric 

localizations of failure around the opening. Nonetheless, initial and boundary conditions 

corresponding the two main drifting directions, following σH and σh (e.g. Table 4.1), the Andra 

URL were imposed, respectively in Figure 4.21a and Figure 4.21b.  

As done with the previous modelling of material’s strength anisotropy, the failure criterion in Eq. 

4.8 can be written for uniaxial or laterally-confined stress states, respectively σxx = 0 ; σyy ≠ 0 and 

|σxx| = pC ; σyy ≠ 0. For the first case, the uniaxial compressive strength (UCS) as a function of ω, 
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σ0,ω, can be analytically defined, in analogy with the formulation presented in Section 3.4, Eq. 

3.33. In case of monotonic compression, the modified stress tensor (e.g. Eq. 4.14) writes: 

                                                          
yy

yyyyxyyy

xyyyxxyy
σ

HH

HH









σ~                                                   (4. 15) 

The stress state described in Eq. 4.15 is detailed in Appendix B.3, related to the mathematical 

formalism of this anisotropic failure criterion. With this stress condition, failure is expressed as 

follows: 

                       0sin4,~ 22
 KHHHHHDf yyyyyyxxyyyyxyyyyyyyxxyy σ                (4. 16) 

It is remembered that, when failure is firstly attained, D = 0 → g(D) = 1. Since |σyy| = −σyy and 

−σyy = σ0,ω, the UCS writes:  
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Figure 4.20 : scheme of failure localization at a coordinate 0 < θ < π/2 (in this case, π/4), symmetric to both 

axis x and y on the cross-section plane Γ. 

              
                                         (a)                                                                    (b) 

Figure 4.21 : numerical simulations validating the symmetric failure attainment calculated with the 2d 

anisotropic criterion modified by H. Boundary stress conditions are equivalent to GCS drift in (a) and GED 

in (b) (e.g. Table 4.1). 
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In Figure 4.22, a comparison between the UCS as a function of ω is provided, between the 

modelling with the II order tensor M and this one. Values of σ0,ω with M are equivalent to those 

presented at the end of Chapter 3 (Figure 3.23), assuming failure parameters φ and K respectively 

equal to 20° and 15 MPa. Values of σ0,ω with H are traced to obtained the same UCS values for 

monotonic compressions parallel and perpendicular to the bedding, i.e. ω = 0° and 90°. In the 

case of the tensor H, it is important to underline that the scaling factors hn and hs correspond only 

to calibration parameters: they modify the model’s shape according to a certain dataset of strength 

values at failure, measured in specimens differently inclined to the load direction. None of these 

two parameters is related with the anisotropic scaling factor h, comparing in the definition of the 

tensor M and quantifying the anisotropy between ω = 0° and 90°. The function of σ0,ω modelled 

with the tensor H shows, again, a periodicity of its values in ω = [0; 180°].  

      
                                                     (a)                                                             (b) 

Figure 4.22 : σ0,ω modelled with H (red line) and M (dotted line). φ = 20°, K = 15 MPa. hn = hs = 1.44 with 

H. h = 0.2 with M. Linear representation in (a), radar representation in (b). 

                   
                                                   (a)                                                              (b) 

Figure 4.23 : σ0,ω variation according to, separately, hn (a) and hs (b). φ = 20°, K = 15 MPa. Comparison 

with the case of constant UCS (hn = hs = 1) and UCS modelled with the II order tensor M (h = 0.2). 
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Figure 4.23 focuses on the interval [0; 90 ], providing some examples of the possible values’ 

range for parametrisation of failure localization (e.g. Figure 4.20). In this interval, the scaling 

factor hn fixes the function’s extremity at ω = 90° (Figure 4.23a), determining, for a constant 

value of the scaling factor hs, a monotonic or non-monotonic trend. Similarly, this can be also 

defined by the variation of hs, with the extremes at ω = 0 and 90° fixed by a constant value of hn 

(e.g. Figure 4.23b). It is possible to notice that for hn = hs = 1, a constant σ0,ω (UCS) is found:   

                                                            



sin1

000,




K
                                                     (4. 18) 

Eq. 4.18 is the UCS parallel to the stratification, coinciding with the simple case of constant 

material strength, ω, if hn = hs = 1. Radar plot in Figure 4.22b provides an intuitive example to 

understand that the weakest material’s strength is localised around ω = π/4 + n∙π/2 (n =1, 2, 3…). 

In case of isotropic stress state on the cross-section Γ, this condition provokes failure localisation 

in the correspondent orthoradial coordinate, θ, according to the scheme in Figure 4.20. The 

analytic explicit formulation of material’s strength exists also in case of confined compression. 

With these boundary conditions, the stress tensor writes: 
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Stress components of the modified tensor σ~ , based on Eq. 4.14, assume the following forms:              

                                                        
yyxxyyCxxxxxx σHpHσ ~                                                   (4. 20a) 

                                                        
yyyyyyCyyxxyy σHpHσ ~                                                   (4.20b) 

                                                        
yyxyyyCxyxxxy σHpHσ ~                                                    (4.20c) 

The failure criterion (i.e. Eq. 4.8) writes: 
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Based on Eq. 4.21, imposing |σyy| = σ0(pC),ω, the analytical expression of the latter can be found 

as function of hn and hs, pC and ω. The explicit function of σ0(pC),ω is detailed in Appendix B.3. 

The formulation of this anisotropic failure modelling was established in parallel with the 

availability of a new, consistent dataset of deviator values for Callovo-Oxfordian specimens at 

failure (Andra internal database). Sampled with different inclinations with respect to the 

stratification (i.e. ω), they were sheared under different values of confinement, in TXc tests, in 

particular pC = 2, 5 and 12 MPa.  



Shear Damage-Based Modelling on Drifts Section 

125 

Table 4.5: calibration of the Mohr-Coulomb type anisotropic criterion (i.e. Eq. 4.8) defined with σ~ (H). 

φ  [°] K  [MPa] hn  [-] hs  [-] 

20 17 1.15 1.25 

 

   
                              (a)                                                    (b)                                                   (c) 

Figure 4.24 : calibration of the Mohr-Coulomb type anisotropic criterion (i.e. Eq. 4.8) defined withσ~ (H). 
 

Through the expression of σ0(pC),ω, for these values of confinement, it was possible to define a 

unique set of failure parameters, assuming φ = 20 . The adaptation of the deviator’s function 

shape, q(ω) = σ0(pC),ω − pC, was compared varying K, hn and hs. Figure 4.24 illustrates the 

calibrations of q(ω), for every confinement level, according to the available data. The final failure 

parameters are reported in Table 4.5 and are adopted for the definition of anisotropic failure 

criterion implemented in the 2d_ESD model routine employed for the final numerical analyses 

for damage expansions around GCS and GED drifts (results in Section 4.5). 

 

4.4 Modelling the softening brittle-ductile transition  

This section concerns the numerical treatment, within the analyses domain, of the change in the 

softening post-peak behaviour experimentally shown by the COx formation, when a higher lateral 

confinement occurs in the material. The stress-strains curves in Figure 4.10 [8] provide a clear 

example of a different response after failure, observed at the laboratory scale, experiencing an 

increasing ductility of the softening up to an almost perfect yielding when confinement pC is equal 

to 20 MPa. Other data showing the progressive ductile response of COx claystone with the lateral 

confinement are illustrated in Figure 4.25 and Figure 4.26, from reviewed reports and publications 

on laboratory testing ([14], [46]). In general, these data confirm a brittle to ductile transition of 

the claystone softening behaviour under a more confined loading. For the problem of a circular 

excavation, referring to the elastic solution (e.g. Section 1.2) it is possible to assume that the 

increasing radial stress σrr may correspond, for 2d analyses, to the increasing confinement. 
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Figure 4.25 : deviator stress vs. axial strain for TXc tests confined at 1 MPa (left) and 10 MPa (right). 

Modified from [14]. 

 
Figure 4.26 : stress-strain curves in TXc tests with different confining stresses [46]. 

If Figure 4.3 represents the unconfined stress-strain curve, at the material point scale, the same 

confined specimen, with an increasing pC, reproduces the behaviour reported in Figure 4.27a. As 

the confined (or triaxial) compressive strength σ0(pC) increases, the residual strength σr also arises.  

Even this is a necessary condition to describe the confinement effect, it is not sufficient: referring 

to the experimental results previously illustrated, in numerical analyses, it should be accounted 

also that the ratio between σr and a correspondent σ0(pC) must increase, when pC increases. In 

other terms, extending the definition of the softening stress ratio ηr (e.g. Figure 4.3) also to the 

ratio between the residual and peak compressive strength, with pC > 0, ηr increases with pC and 

does not remain constant. Without any modification to the structure of the 2d_ESD model, it 

appeared necessary the definition of different zones, concentrically distributed around a circular 

opening, where the level of residual strength would increase for a certain upper threshold of 

confinement, identified by the radial stress component σrr. With the model in Figure 4.3, the 

numerical technique immediately available to reproduce the brittle-ductile transition was the 

increase of the softening parameters β and ηr in every annular zone around the drift, as reported 

in Figure 4.27b. In this work, these zones are called transition zones, denoted TZ in the following. 

From the numerical point of view, this method, applied to the final analyses presented in Section 

4.5, includes the definition of one softening 2d_ESD material for every TZ, with the same elastic 

and failure parameters, and different values for β and ηr. 
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                                        (a)                                                                   (b)                  

Figure 4.27 : conceptual model for the subdivision of concentrically brittle-ductile transition zones in the 

area potentially subjected to damage. 

Once the “numerical-geometrical” technique accounting for the brittle-ductile transition was 

established, a method to assign numerical values to the softening parameters for each TZ was 

needed. For simplicity, a revision of triaxial compression (TXc) data on COx claystone was 

performed (e.g. [10], [57] and [117]) in order to calculate, for every stress-strain path, the 

softening parameters β and ηr and establish a unique function with the confining pressure pC, for 

each parameter. It is important to notice that this is an approximation, in relation to the condition 

previously stated, i.e. ηr increases with pC when defined as σr/σ0(pC), because softening parameters 

of the 2d_ESD model correspond, by definition, to the uniaxial compressive behaviour. It would 

be necessary a stress-strain constitutive model capable to account, eventually, for a softening-

hardening post-peak transition, according to the confinement on the material point or, similarly, 

the first invariant I1. Nonetheless, according to the method in Figure 4.27, the reviewed data of 

TXc test where processed, identifying, in every curve of the shearing phase, the peak and residual 

strength. Axial deformations corresponding to these stress values were also recorded and, for 

every stress-strain curve, a couple of softening parameters β and ηr was obtained and correlated 

to the confinement pC. Figure 4.28a and b reports; respectively, the calculated values of β and ηr, 

versus pC, for every TXc tests considered in the review, including the sources previously 

mentioned. The legend in Figure 4.28 includes the publications where the TXc stress-strain series 

to calculate β and ηr were recorded. Each plot reports also a curve interpolating the values of β 

and ηr in order to provide a function with the confinement, to be employed later in their 

assignment on the numerical model’s geometry (e.g. Figure 4.27b). Figure 4.28a calculated values 

for β show a relatively elevated dispersion. Since this parameter depends on strains, this 

variability may be due to the different displacement rate while shearing, even if the 70% of 

available data confirms an increasing tendency of β with the testing confinement. 
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                                             (a)                                                                                  (b)                  

Figure 4.28 : values of softening parameters β and ηr (respectively, in (a) and (b)) calculated from TXc 

data recorded in various bibliographic references (i.e. [8], [10], [12], [14], [46], [57] and [117]). 

For data confirming an increasing trend of β with pC, a linear correlation was established and the 

relative fitting curve is reported in Figure 4.28a. On the other hand, data on peak and residual 

strength in TXc tests, used to calculate ηr, show a clearer relation with the confining stress. 

Eventually, it was possible to propose the following equations for the interpolating curves of 

Figure 4.28, assuming pC = σrr for their employment in numerical analyses of circular drifts’ 

excavation: 

                                                         rrrr   03.015.0                                                     (4. 22) 

                                                          5.02.01.0 rrrrr                                                        (4. 23) 

σrr in Eq. 4.22 and 4.23, assimilated to the TXc confinement pC in Figure 4.28, is approximated 

with its elastic solution under the hypothesis of a completely excavated gallery, i.e. p0 = 0. In 

anisotropic conditions of initial stress acting on the main directions (vertical and horizontal) on 

the gallery’s cross-section Γ, the radial stress component writes, for p0 = 0 (e.g. [48]): 
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Following the scheme in Figure 4.29, for each circular TZ around the drift’s perimeter, the 

representative stress σrr corresponds to the elastic solution, according to Eq. 4.24, at the internal 

radial coordinate of the same TZ. This approach can be justified assuming that, since failure 

propagates from the previous (inner) zone, elastic conditions (f ≤ 0) are firstly encountered at the 

internal radial coordinate of the following (outer) TZ. In the further numerical modelling of drifts 

at the Andra URL, the extension of this partitioned circular area, from the perimeter r = ra, was 

set to (r − ra) = 6 m, considered as the potentially damaged area according to Figure 4.1. 
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Figure 4.29 : scheme of the approach to select σrr representing every transition zone for the variation of 

softening parameters in the post-peak simulation of COx claystone behaviour. 

 

In this area, 3 or 6 transition zones were identified, with a respective thickness of 2 and 1 m. Two 

series of numerical simulations were performed, according to the boundary conditions 

representing either GCS or GED drift, to test the existence of possible differences between the 

first and the second choice. Adopting the relations in Eq. 4.22 and 4.23, the diagrams in Figure 

4.30 and Figure 4.31 were plotted, respectively for the elastic solution of σrr in GCS and GED, 

and employed to set the couple of parameters β and ηr, representative for every TZ. Considering 

Figure 4.30a and Figure 4.31a, the relation β(σrr) is traced, and the values of β are reported on the 

left vertical axis. Similarly, Figure 4.30b and Figure 4.31b report the relation ηr(σrr). In the same 

graphics, the elastic solutions for σrr(θ = 0) and σrr(θ = π/2) are traced as a function of the radial 

coordinate (r − ra), represented on the right vertical axis. The stress values appear on the 

horizontal axis. As described in Figure 4.29, the reference coordinate to define σrr for a certain 

transition zone is the internal one, for TZ. To provide an example, for the first TZ encountered 

ahead of the drift perimeter, the inner side corresponds to the perimeter itself, i.e. (r − ra) = 0. 

Similarly, for the case of 3 concentrically TZs, the inner side for the external one corresponds to 

(r − ra) = 2 m, ahead of the drift’s perimeter. In every diagram, once the radial coordinate (r − ra) 

is selected, for a certain transition zone, two σrr solutions are found, at θ = 0 and θ = π/2. Based 

on a prudential choice, the lowest value of radial stress is considered to choose the correspondent 

softening parameters β and ηr, i.e.: 
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Every diagram, according to σrr in Eq. 4.25, provides the value β and ηr for a certain TZ. The 

symbol * identifies β and ηr at the intersection between the parameter’s function and the 

representative σrr stress for every TZ (delimited by the horizontal dotted lines). 
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                                         (a)                                                                                 (b)                  

Figure 4.30 : diagrams for the definition of β (a) and ηr (b) in the transition zones defined in the geometry 

of numerical modelling for GCS drift. 

 
                                         (a)                                                                                (b)                  

Figure 4.31 : diagrams for the definition of β (a) and ηr (b) in the transition zones defined in the geometry 

of numerical modelling for GED drift. 

 

This section concludes the discussion of mathematical and numerical aspects of the modelling for 

the final 2d plane strain excavation analyses, focusing, successively, on the stress-strain elastic-

damage constitutive law (i.e. 2d_ESD stiffness tensor), the evaluation of anisotropic failure and 

the variable softening post-peak behaviour. 

 

4.5 Final results for plane strain damage around the URL drifts 

In the following, numerical results of the FEM analyses performed with the 2d_ESD anisotropic 

model are presented and discussed. Together with the description of the different parts forming 

the whole modelling adopted hereby, the correspondent parametrization was presented. Here, it 

must be mentioned only the choice of the isotropic elasticity parameters, E and ν, respectively 

equal to 6000 MPa 0.25. With respect to the previous E = 4500 MPa imposed this chapter’s works, 

6000 MPa results more representative for the short-term (undrained) response of the highly 
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saturated material in-situ, as discussed in Section 2.2. (e.g. [10]). The Poisson’s ratio corresponds 

to an average from values reported in published hydro-mechanical analyses accounting for COx 

anisotropy ([42] and [58]) and corresponds to its interval of variation (e.g. [8], [9]). Parameters 

for anisotropic failure are included in Table 4.5, for the anisotropic failure criterion described in 

Section 4.3, and softening parameters accounting for the brittle-ductile transition are identified in 

the diagrams of Figure 4.30 and Figure 4.31 in Section 4.4. Eventually, the 2d_ESD, considering 

the introduced anisotropies and the brittle-ductile transition, includes 9 parameters for each 

transition zone (TZ), around the excavation. E and ν for the 2d_ESD stress-strain elastic-damage 

matrix, φ and K for the failure criterion, the stratification’s angle (ω = 90°, horizontal bedding) 

and the coefficients hn and hs, and couple of softening parameters (β; ηr). Numerical models of 

geometry and boundary conditions defining the in-situ stress state and reproducing the excavation 

phase are illustrated in Figure 4.32, with ra = 2.6 m for the drift GCS and 2.3 m for GED. The 

initial values of the principal stress components on the cross section Γ are reported in Table 4.1. 

Figure 4.32a reports the equation of the automatic calculus of the initial σzz,(0) value due to the 

condition εzz = 0. Results of every numerical analysis present the expansion of the damaged zones 

and, on the correspondent contour plot, both the extensions of the EDZ and EdZ failure areas are 

indicated, based on the dotted lines in the 2d scheme in Figure 4.1, depending on the drift 

considered. Afterwards, for the same analysis, the field of displacements norm, ||U||, is shown. It 

is obtained from the horizontal and vertical components according to Eq. 4.26. Eventually, the 

distribution plot of the principal stress component σij, correspondent to the direction of damage 

expansion (horizontal or vertical) is illustrated. 

                                                               22

yx UUU                                                          (4. 26) 

Numerical results previously introduced are distinguished for the type of drift, GCS or GED, and 

the quantity of brittle-ductile transition zones defined in the geometry numerical model: for every 

drift, a subdivision of 3 or 6 TZ was simulated. In the first case, every zone, concentrically defined 

around the circular opening, has a thickness of 2 m. In the second case, each zone is 1 m thick. 

Includes the following results’ illustrations, detailing the subdivision of TZ and the correspondent 

drift. 

Table 4.6: contour plots of the analyses’ results, according to the boundary conditions and imposed division 

of transition zones. 

  transition zones 

  3 6 

drift 
GCS Figure 4.33, Figure 4.34 Figure 4.35, Figure 4.36 

GED Figure 4.37, Figure 4.38 Figure 4.39, Figure 4.40 
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                                      (a)                                                                                (b)                  

Figure 4.32 : numerical model, initial conditions (a) and excavation boundary conditions (b) for the last 2d 

plane strain numerical analyses. 

 

In Figure 4.23, the area surrounding the drift’s perimeter with a finer mesh, 6 m thick, corresponds 

to the potentially damaged area divided in brittle-ductile transition zones. The external area, 

included up to the external boundary (r = 12∙ra) was assigned with a purely elastic material (E = 

6000 MPa and ν = 0.25). Results’ reported in Table 4.6 are now illustrated, listed for every case. 

 

- GCS drift, 3 brittle-ductile transition zones: Figure 4.33 shows the contours for the internal 

variable D, which extends around the central coordinate between the EDZ and EdZ, very 

localized on the horizontal. Figure 4.34a shows the correspondent norm of principal 

displacements components (Eq. 4.26), with a significant concentration at the perimeter for θ 

= 0. The maximal calculated value, ~55 mm at x ≡ r = ra, largely overestimates the short-term 

displacements induced by excavation (e.g. Figure 3.5 and Table 3.3, Section 3.1). The area 

highly damaged, in the short-term, by the excavation, may be also identified as the zone where 

stress component is highly reduced, for the case of horizontal damage, the correspondent 

component is shown. Figure 4.34b shows the distribution of the horizontal stress σxx. 

           
Figure 4.33: distribution of the damage variable D for a complete unloading of the GCS drift with 3 brittle-

ductile transition zones. 
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                                  (a)                                                                               (b) 

Figure 4.34: distribution of displacements’ norm (a) and horizontal stress (b) for a complete unloading of 

the GCS drift with 3 brittle-ductile transition zones. 

 

- GCS drift, 6 brittle-ductile transition zones: Figure 4.35 shows the contours of  D, extending 

beyond the EDZ limit, but still far from the internal EdZ. In this case, it is possible to notice 

an area, included between the damaged zone and the perimeter, where elastic conditions are 

still maintained. Physically, it can be considered rigid block potentially subjected to a 

translation inside the galleries. Its existence recalls in-situ observations showing locally a less 

damaged area, at the galleries perimeter, surrounded by a diffusely fractured medium, in the 

EDZ [60]. In Figure 4.35, damage is attained at θ > 0 (because of the non-monotonic failure 

calibration in Figure 4.24) and reaches, before the end of excavation, the horizontal. Figure 

4.36a shows the correspondent norm of principal displacements’ norm components. The 

localization in correspondence of the perimeter deformation confirms the failure initiation at 

θ > 0 and the reported value is very consistent with short-term measures. In particular, for the 

drift GCS, an interesting work of analysis of the short-term displacements were performed 

and discussed in some publications (e.g. [8] and [41]), to discern the “immediate” mechanical 

response, due to the excavation, from displacements associated to creep phenomena, naturally 

occurring in the COx formation, even at the short-term.  

 

         

Figure 4.35: distribution of the damage variable D for a complete unloading of the GCS drift with 6 brittle-

ductile transition zones. 
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                                  (a)                                                                               (b) 

Figure 4.36: distribution of displacements’ norm (a) and horizontal stress (b) for a complete unloading of 

the GCS drift with 6 brittle-ductile transition zones. 

To quantify the mentioned effects, it is reported that, at a distance of about 4ra from the cross-

section analyzed, the “immediate” mechanical response of the material does not occur in any 

further change. Particularly for GCS drift, at an instrumented section with mine-by surveys 

(Section 1.1) an Ux ≈ 4 mm was measured, at r = ra, just before the drift’s front transition. 

Adding this value to the material’s displacements recorded afterwards, processed to separate 

the “immediate” response from the creep, a Ux ≈ 15 mm was estimated [8], consistent with 

the value of 14.1 mm calculated at the perimeter. Concerning the contour of σxx in Figure 

4.36b, an almost null radial stress is calculated in the damaged area. 

 

- GED drift, 3 brittle-ductile transition zones: here, the vertical extension of D appears more 

important with respect to numerical analyses for GCS and it almost reaches the internal EdZ 

extension (Figure 4.37). Nonetheless, crossing the external EDZ, it tends to develop with a 

horizontal lobe, likely due to the calibration performed on the failure criterion’s anisotropy. 

In the following, Figure 4.38a and b illustrates respectively ||U|| and σyy, which vanishes for 

quite an extended area up to the external EDZ. At θ = π/2, a concentration of vertical 

displacements, comparable to in-situ surveys (e.g. Section 3.2, Figure 3.17), is calculated. 

 

Figure 4.37: distribution of the damage variable D for a complete unloading of the GED drift with 3 brittle-

ductile transition zones. 
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                                  (a)                                                                               (b) 

Figure 4.38: distribution of displacements’ norm (a) and vertical stress (b) for a complete unloading of the 

GED drift with 3 brittle-ductile transition zones. 

Nonetheless, for this drift, a reduced quantity of data does not permit a discussion similar to 

the previous one for GCS, in terms of separation between “immediate” material response and 

creep effects. 

 

- GED drift, 6 brittle-ductile transition zones: Figure 4.39 illustrates the contour plot for D and 

Figure 4.40a and b those for ||U|| and σyy respectively. With a finer subdivision of the entire 

brittle-ductile zone, subjected to failure, the numerical result of damage may be qualitatively 

compared to Figure 4.35. In this case, the stronger anisotropy of the initial σ(0) provokes 

failure localization at θ < π/2. Then, the internal variable evolves towards the vertical and 

joins the symmetric damage lobe, in a unique failure zone crossing the upper limit of the 

EDZ. Eventually, an area of about 1 m remains in elastic conditions and translates rigidly 

towards the drift’s perimeter. Further the EDZ limit, in the area upper delimited by the EdZ, 

damage produces another horizontal localizations, smaller the one in Figure 4.37 but likely 

governed by the same phenomena of stresses’ redistribution around the area where 0 < D < 1 

and f = 0. Concerning vertical displacements localized at the failure initiation, the calculation 

(~23 mm) results in an underestimations of the measures by extensometers (~ 40 mm). 

 

Figure 4.39: distribution of the damage variable D for a complete unloading of the GED drift with 6 brittle-

ductile transition zones. 
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                                  (a)                                                                               (b) 

Figure 4.40: distribution of displacements’ norm (a) and vertical stress (b) for a complete unloading of the 

GED drift with 6 brittle-ductile transition zones. 

Before moving to the conclusion of this chapter, in the following, two last numerical analyses are 

presented, respectively for GCS and GED drift, identical to those previously reported, for the case 

of 6 transition zones distributed around the circular opening. Hereby, the only difference 

corresponds to value chosen for the parameter β (deformation softening coefficient) in the 

2d_ESD model. In particular, as mentioned already in the relative Section 4.4, it can be stated that 

the trend adopted to relate β to σrr would not be as precise as the one for ηr, due to the higher 

dispersion of the values obtained by the reviewed data (e.g. Figure 4.28a and b). The linear fitting 

curve proposed in Eq. 4.22 is based on the 70% of the considered data, to provide a relation that 

indicates an increasing β with σrr, consistent with the analogue relation of ηr in Eq. 4.23 and the 

conceptual model in Figure 4.27. Here, the case of a constant β = 0.4 for every transition zone is 

analysed. This value correspond to the mathematical average of the values obtained from the TXc 

tests reviewed and reported in the plot in Figure 4.28b and, this time, this average includes every 

data from TXc. The radial variation of the stress softening ratio, ηr, is exactly equal to the former 

analyses (Table 4.6). Results illustrated from Figure 4.41 to Figure 4.44 are listed in the following: 

 

- GCS drift, 6 brittle-ductile transition zones, β = 0.4: 

 

Figure 4.41: distribution of the damage variable D for a complete unloading of the GCS drift with 6 brittle-

ductile transition zones and β = 0.4, everywhere assigned. 
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                                  (a)                                                                               (b) 

Figure 4.42: distribution of displacements’ norm (a) and horizontal stress (b) for a complete unloading of 

the GCS drift with 6 brittle-ductile transition zones and β = 0.4 everywhere assigned. 

 

- GED drift, 6 brittle-ductile transition zones, β = 0.4: 

           
Figure 4.43: distribution of the damage variable D for a complete unloading of the GED drift with 6 brittle-

ductile transition zones and β = 0.4, everywhere assigned. 

      
                                  (a)                                                                               (b) 

Figure 4.44: distribution of displacements’ norm (a) and vertical stress (b) for a complete unloading of the 

GED drift with 6 brittle-ductile transition zones and β = 0.4, everywhere assigned. 

 

In analogy with every case of 6 transition zones and β variable, the elastic limit is attained neither 

along the horizontal direction (x) nor along the vertical (y). Because of the failure criterion’s 

calibration (Figure 4.24), damage variable D initiates along an inclined direction between the 

horizontal and vertical: θ > 0 for GCS and θ < π/2 for GED. Particularly evident in Figure 4.41, a 
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sub-horizontal damage lobe or band, is produced at r = ra, for θ > 0, and develops beyond the 

external EDZ. Then, it evolves towards the horizontal and joins, for symmetry, an equivalent 

damage zone located at θ < 0. Analogue considerations can be done for the excavation analysis 

of GED and, eventually, in both cases, an elastic zone at r = ra, θ = 0 (GCS) or r = ra, θ = π/2 

(GED) is calculated. Concerning the shape and extension of the failure zone, results in Figure 

4.41 and Figure 4.43 can be compared to the corresponding ones, respectively, in Figure 4.35 and 

Figure 4.39. More precisely, if β = 0.4 constant in the entire domain, the final contour plots of 

damage D attain an extension, on the horizontal or vertical according to the boundary conditions, 

relatively higher than assuming β = β(σrr). In any case, compared to GCS, the shape and extension 

of D in GED covers better the area included in the EDZ-EdZ system, illustrated in the 2d 

conceptual model in Figure 4.1. In the following, Table 4.7 summarizes the computed 

displacements at every drift’s perimeter. It seemed more appropriate to define them as sub-

horizontal and sub-vertical, instead of horizontal and vertical, because of the cases where the 

most important localizations do not occur exactly at θ = 0 or θ = π/2. In the same Table, estimated 

values from extensometers or mine-by tests at the Andra URL are reported. In particular, the 

interval of admissible values for GCS sub-horizontal displacements is reduced, for instance, with 

respect Table 3.7 in Section 3.2 for the availability of data and analysis from mine-by tests, with 

the separation of excavation-induced from creep effects. Logically, a finer discretization of 

transition zones would allow finer calculations, to avoid overestimations as in Figure 4.34a 

(GCS). Nonetheless, Figure 4.38a shows a better estimation of Uy(θ ≈ 90 ) with 3 transition zones 

(GED). The integration of a damage law g(D) accounting for a post-peak transition from softening 

to hardening seems the logical consequent upgrade to the model, not to the monotonic unconfined 

compression (i.e. Figure 4.3) as the only experimental observation to simulate the stress-strain 

material’s behaviour. 

Table 4.7: summary of sub-horizontal and sub-vertical displacements calculated around GCS and GED 

drifts’ perimeter (r = ra), specifying the number of transition zones TZs, with the short-term estimations at 

the Andra URL ([8], [41], [42], [91] and [93]).  

  |Ux|, θ ≈ 0 [mm] |Uy|, θ ≈ 90° [mm] 

  calculation measures calculation measures 

GCS, 3 TZs Figure 4.34a 54.7 

[15 ; 20] 

11.6 

~ 10 
GCS, 6 TZs 

Figure 4.36a 14.1 8.7 

Figure 4.42a 25.5 10.8 

GED, 3 TZs Figure 4.38a 14.6 

~ 10 

42.7 

~ 40 
GED, 6 TZs 

Figure 4.40a 11.4 23.1 

Figure 4.44a 14.5 29.2 
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       Conclusion 

With this chapter, finite element analyses on 2d plane strain models for damage-based diffused 

failure around drifts at the Andra URL are concluded. The final mathematical and numerical 

upgrades are presented to improve the modelling propositions in Chapter 3, based on the 

framework introduced in Chapter 2. The elastic-damage constitutive law, formalized through the 

2d_ED model at the end of the second chapter and adopted in the third, was substituted with the 

2d_ESD model, available in the most recent version of POROFIS.  

   With respect to the failure criterion in Chapter 3, a formulation based on a IV order anisotropic 

rotation tensor was presented here to overcome the dissymmetry of damage attainment around 

the excavations’ perimeter, initially encountered in numerical analyses. In parallel, an arbitrary 

quantity of concentrically distributed areas was defined within the analysis’ domain before 

simulations: this “geometrical-numerical” procedure is proposed to consider the progressive 

ductility in the material’s softening behaviour, shown by Callovo-Oxfordian specimens under 

confined compression. 

   The chapter is concluded with the discussion and presentation of the excavations’ numerical 

analyses for the considered drifts at the Andra URL, according to the respective boundary 

conditions (quasi-isotropic or anisotropic initial stress state in the drift’s cross-section). Short-

term shape and extension of calculated damaged areas develop according to the conceptual 

models from in-situ surveys ([9], [60], [91] and [93]), covering mostly the part denoted as EDZ, 

even if they are not capable to cover the entire EDZ-EdZ failure system. A finer discretization for 

the brittle-ductile transition of the material provides a damage distribution more diffused around 

the perimeter, instead of localizing along one of the main directions (e.g. the horizontal, for GCS). 

At the end of the excavation, the formation of an elastic block is calculated, in the proximity of 

the perimeters, on either the horizontal or the vertical, moving as a rigid body within the 

surrounding damaged formation.  

   Concerning displacements’ analyses, they are generally consistent with in-situ measurements, 

even if under- or over-estimations are obtained. With the 2d_ESD constitutive law, a re-

implementation of anisotropic elasticity may improve the displacements prediction. For this type 

of deep galleries, coupling an instantaneous and fragile phenomenon as damage with visco-

plasticity effects may constitute an interesting perspective to this work. This type of consideration 

constitutes the object of a more detailed discussion in the thesis’ conclusions and perspectives. 
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The last chapter presenting Finite Element analyses concerns the modelling of fractures patterns 

around drifts at Andra Underground Research Laboratory (URL). The problem is approximated 

in 2d axisymmetric conditions for the simulations’ purposes; moreover, this part of analyses 

introduces also, for geometry discretization, linear joint elements (e.g. [39]) in order to reproduce 

discontinuities in a FEM-based numerical model. Unloading effects around drifts and 

localizations of shear strains in the geological formation of Callovo-Oxfordian claystone lead to 

the formation of discontinuous structures, induced by the excavation, often named Chevron or 

herringbone fractures, constituting the subject of this chapter. 

   As described in Chapter 1, the forthcoming numerical analyses constitutes a second axis of 

research within the thesis’ works. It must be underlined that it is not studied as deeply as the first 

axis of research, discussed through Chapter 2, 3 and 4. This topic is more intended as 

complementary for the investigation of the short-term failure initiation and evolution for drifting 

at the Andra URL and constitutes a transition from a continuous to a discontinuous mechanical 

approach. In particular, while the calculated fractures’ length is discussed from a quantitative 

point of view, in relation with in-situ measurements, the possibility of a periodical appearance of 

fractures along the drift’s perimeter is limited to a qualitative discussion, related to the numerical 

methodology to simulate a gallery excavation. 
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5.1 Problem definition with constitutive and numerical modelling 

This section opens describing the mechanical problem to simulate real scale observations of 

fractures’ occurrences at the Andra URL, detailed in Chapter 1, Section 1.1. Concluding that 

section, the division of the thesis in two axis of research was discussed. The first, main part, 

dealing with plane strain analyses of the excavation around drifts’ cross-section, assumed failure 

as “diffused” in a calculated damaged zone (where failure criterion f = 0). This second part, driven 

by 2d axisymmetric simulations, constitutes a complementary approach to the description of a 

damage-based, short-term failure around galleries at the Andra URL, according to Figure 5. 1 - 

with the specific case of GCS drift in Figure 5. 1b. Analyses presented hereby consider failure as 

a discontinuous system of excavation-induced fractures: numerical simulations treat the 

occurrence of distinct fractures, often called Chevron or herringbone fractures (e.g. [9], [55] and 

[60]), described in Section 1.1. Failure localizations, considered in the previous chapters as a 

continuous system, collapse in fractures, creating displacements’ discontinuities, which thickness 

becomes negligible compared to the initial localization. Existing publications (e.g. Lisjak et al., 

2014 [54]) discuss analogue approaches from continuum to discontinuum mechanics, related to 

the drifting action in claystones and shales.  

 
                                    (a)                                                                                        (b) 

Figure 5. 1: conceptual model of the 3d geomechanical problem in (a) and proposed simplification of 2d 

axisymmetric modelling of discontinuities in (b). Original figures modified from [60] and [93]. 
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Figure 5. 2: 3d scan structural survey for the interpretation of shear Chevrons’ structure, in (a), and 

excavation-induced fractures in drill core, in (b). Modified from [9]. 
 

Focusing on the specific case of Andra URL, several drifts show systematic fracturing in the area 

defined as EDZ-EdZ in Chapter 1. Section 1.1 describes with more details these cracking 

occurrences, which interpretation and conceptual models are illustrated from Figure 1.6 to Figure 

1.9. Figure 5. 2a reports a 3d scan interpretation in a pilot drift to reconstruct the pattern of 

excavation-induced fractures (Upper and Lower Chevron fractures) in a perpendicular gallery at 

the Andra URL, while Figure 5. 2b shows a drill core where shear fractures were observed at a 

radial coordinate r ~ 2.4 m from the sidewall [9]. The numerical treatment of the 2d axisymmetric 

problem in Figure 5. 1b is executed with both the FEM code POROFIS [72] and DISROC 

(http://www.fracsima.com/), introduced in Chapter 2, Section 2.1. These FEM codes allow the 

processing of Finite Elements models with the inclusion of linear joint elements (e.g. [39]) in the 

mesh. They adopt the modulus DISCRAC (http://www.fracsima.com/) to include joint elements, 

creating Joints-Enriched Finite Element numerical models (JFEM). Discontinuities in the 

displacement field may exist with the relative stress values verifying the constitutive laws at the 

integration points (e.g. Gauss points) of the linear joints. Figure 5. 3 reports a schematisation of 

the geomechanical problem at the different analysis’ scales: from the left, the same conceptual 

model for 2d axisymmetric simulations shown in Figure 5. 1b is reported, describing shear 

Chevron fractures (FCh) as a system of parallel discontinuities, with a certain inclination to the 

drift sidewall. This illustration refers to the specific case of GCS drift, adopted throughout the 

entire chapter as case study gallery. It is preferred when performing 2d axisymmetric analyses, 

because, according to the Cartesian system (x, y, z) and the stress state σ(0) in Table 5. 1, it is 

possible to write: 

                                                            
)0(,)0(, yyxxvh σσσσ                                                 (5. 1) 

~ 5 m

Excavation

(a)

(b)

file:///C:/Users/edoardo.trivellato/Desktop/MANUSCRIT-thèse/IMPRESSION/sources
file:///C:/Users/edoardo.trivellato/Desktop/MANUSCRIT-thèse/IMPRESSION/sources
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Table 5. 1 : description of σ(0) for GCS drift (e.g. [9], [60], [113]). 

σh = σxx,(0)  [MPa] σv = σyy,(0)  [MPa] σH = σzz,(0)  [MPa] 

−12.4 −12.7 −16.2 

 

For numerical analyses presented in this chapter, boundary conditions assume σxx,(0)  = σyy,(0). In 

general, an average value of σxx,(0) = σyy,(0) = −12.5 MPa is imposed in numerical analyses, while 

σzz,(0) = −16.2 MPa. In Figure 5. 3, the problem simplification focuses on two variables describing 

the system of parallel FCh: their (finite) length of propagation, L , and mutual spacing s , i.e. the 

distance separating two consecutive fractures. In particular, these variables constitute the targets 

of the forthcoming numerical analyses: for sake of simplicity, L can be assumed as the horizontal 

average extension of the failure system EDZ-EdZ around GCS drift (e.g. Table 1.1, Chapter 1). 

In general, it can be approximated to an average value ~1.6∙ra, where ra = 2.6 m is the design GCS 

radius. Nonetheless, according to the 2d schematization in Figure 5. 3, the single FCh, included 

in the area corresponding to the system EDZ-EdZ, presents a certain inclination α with respect to 

the drift’s perimeter, estimated from in-situ measurements within an interval α [30°; 40°] (e.g. 

[60]). Thus, with respect to the EDZ-EdZ horizontal extension ~1.6∙ra, the effective extension L

of the single fracture, taking into account tan(α), would include an interval included between 5 

and 7 m. Concerning the variable s , this is typically assessed from resin-injection tests on radial 

core-drillings [9]. From Figure 1.7 in Section 1.1, an average density of 5-6 fractures per meter at 

the side of GCS drift is esteemed, but a great variation along the radial direction may occur. 

Concerning this variable, the principal objective in the performed analyses is to control if a certain 

fracturing periodicity can be obtained. Referring to the sequence of FCh assimilated with joint 

elements (Figure 5. 3), fracturing periodicity means the simulation of one activated sequence of 

joints (i.e. open fracture) every finite quantity n. While L  can be studied even with a single-

fracture model (presented in Section 5.2), for spacing s , a multi-fractures approach is needed (i.e. 

JFEM models with multiple sequences of parallel joints, presented in Section 5.3).  

 
Figure 5. 3: multi-scale scheme for 2d axisymmetric simulations. From the left: simplified geometry at the 

drift scale, numerical implementation of potential fractures with joint elements and definition of the 

discontinuities’ constitutive law (modified from [76]). 
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Figure 5. 4: schematization of a cohesive zone model for crack evolution. Modified from [47]. 

The ultimate level of the modelling approach in Figure 5. 3 concerns the definition of the 

constitutive law for joints. From the mechanical point of view, potential fractures are modelled 

according to the cohesive fracture approach. In a cohesive zone model, a narrow band of 

vanishing thickness, the cohesive zone, is assumed ahead of a crack tip to represent the fracture 

process zone, as reported in Figure 5. 4 [47]. The upper and lower surfaces of this band are defined 

cohesive surfaces and are yieldable following a constitutive law that relates the stress state σ with 

the relative displacements u among the surfaces themselves. In a bi-dimensional modelling, both 

σ and u have two components, normal and tangential.  Crack growth occurs when the separation 

at the tail of the cohesive zone (physical crack tip) reaches a critical value according to a defined 

failure criterion, for one or more failure mechanisms. The advantage of a cohesive zone modelling 

is the absence of stress singularities at the crack tip, present in classical fracture mechanics (e.g. 

LEFM, Linear Elastic Fracture Mechanics) [47]. As done in the previous chapters for FEM 

numerical models of continuous failure, a damage dissipation constitutes the unique yielding 

mechanism governing the constitutive law evolution that relates σ and u. Damage mechanics 

describes the phenomena of progressive degradation of strength and stiffness in the rock, 

eventually leading to fractures. In the constitutive model adopted, material damage as yielding 

process is integrated in the cohesive fracture framework proposed by Pouya and Bemani [76]. 

Damage internal variable D corresponds to the measure of the degradation occurring in every 

potential discontinuity, numerically assumed as a joint element. After first yielding (D = 0), this 

may be damaged up to a complete failure of the cohesive zone, corresponding to the fracture 

activation (D = 1), with the occurrence of a discontinuity in the surrounding displacements’ field, 

according to the scheme in Figure 5. 5. 

 
Figure 5. 5: damage degradation of the single joint cohesive zone (http://mecharock.net/). 
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Figure 5. 5 illustrates, in the initial and fully damaged configurations of the interface, tangential 

and normal components of σ and u, respectively, [τ  σn]
T and [ut  un]

T. According to the modelling 

framework (e.g. [34], [76]), the damage-based constitutive law relating kinematic with static 

variables, writes: 

                                            uuKσ 
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u                           (5. 2a-b) 

s is defined as a binary contact parameter, i.e. s = 0 in absence of contact between the fracture’s 

surfaces and s = 1 if contact occurs. From the physical point of view, s = 1 corresponds to 

compressive behaviour, e.g. fracture closing, un ≤ 0: the damage cohesive model respects the 

condition of non-penetration of the surfaces, meaning un > −e0, where e0 is the joint aperture. The 

tensor K identifies the stiffness of intact material, degraded by the internal variable D at yielding: 
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In Eq. 5.2a, a residual stiffness k0 of the discontinuity’s cohesive surfaces is accounted even with 

D = 1, when contact occurs between the surfaces, i.e. s = 1: 
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The term aij = a22 in Eq. 5.4 corresponds to a residual constitutive parameter in presence of normal 

loading, already described by the hyperbolic-shaped model proposed by Bandis et al. [11]. 

Concerning the formalisms of the criterion describing failure of the cohesive zone, the model 

implies a hyperbolic yield surface, which shape assures a smooth transition from the pure normal 

or shear mode failure to mixed modes, according to the model in Figure 5. 6a, for D = 0 [76]. This 

type of yield surface follows a series of analogue criteria, as the formulation proposed in Carol et 

al. [21], where two limit situations may be distinguished for crack initiation:  

- cracking under pure tension with zero shear stresses, i.e. mode I, when the yield surface is 

reached along the horizontal axis in Figure 5. 6a;  

- cracking under shear and very high compression, when the surface is reached in its asymptotic 

region, where the hyperbola approaches a Coulomb criterion (i.e. asymptotic mode II). 

As mentioned, at yield fractures may also develop in a mixed mode included between the former 

threshold modes. Cohesive fracture’s failure criterion, in the proposition of Pouya and Bemani 

[76] is expressed as function of tangential and normal stresses, τ and σn, and damage, D, writing: 
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                                                 (a)                                                                     (b) 

Figure 5. 6: cohesive fracture’s yield surface, in (a), modified from [76]. Damage law g(D), for different 

values of the yielding parameter β. 

                                           22222 2tan, CDgDgDF cnn  σ                                (5. 5) 

In Eq. 5.5, φ represents the friction angle, still acting as unique failure parameter in residual 

condition, i.e. damaged joint with D = 1. C and σR are, respectively, the cohesion and the tensile 

resistance of the intact joint (D = 0); in particular, C represents its shear strength under zero 

normal stress. The yield surface in Figure 5. 6a implies also the condition C > σR ∙ tan φ. σc is an 

auxiliary constant parameter, related the strength parameters previously mentioned, writing: 
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                                                           (5. 6)  

As illustrated in Figure 5. 6a, the parameter σc may be geometrically interpreted in relation to the 

shape of the yield surface: if the perpendicular to the yield surface is traced at a pure shear stress 

state (σn = 0, τ = C), this line intersects the σn axis at the point σn = −σc. Eq. 5.5 includes the 

damage yielding law, g(D), function of the internal damage variable, defined within [1; 0]. Its 

behaviour varies according to a parameter, β that describes the hardening/softening yielding 

process after cracking initiation. Figure 5. 6a reports, for a certain choice of failure parameters 

(e.g. C = 5 MPa and σR = 4 MPa), the evolution of the yield surface f when damage increases. In 

particular, if D = 1, f turns into a Mohr-Coulomb failure criterion (purely frictional joint). This is 

confirmed mathematically in Eq. 5.5, due to the definition of the extreme values of g(D):  

                                                       01          10  DgDg                                               (5. 7) 

The following and final part of Section 5.1 describes the definition of the g(D) (Figure 5. 6b), 

playing a crucial role in the evolution of fractures numerically simulated and presented in the next 

sections. From a physical point of view, cracking and damage may initiate before the maximum 

stress is attained on the stress-displacement curve, when the potential discontinuity is solicited. 
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Even if damage always produces a decrease of the elastic stiffness, an immediate decrease of the 

stress is not necessarily implied. On the contrary, an initial hardening phase may occur in the 

material. Again, in less recent models, the ultimate damage state is usually attained for a finite 

strain; nonetheless, experimental data show that, for shear deformation under high compressive 

stresses, the shear stiffness maintains a finite residual value even after great displacements [76]. 

The cohesive model adopted overcomes this limitation defining the damage variable evolution by 

an exponential function of the relative displacement. It is supposed that, under a normal tensile 

stress on the cohesive fracture, D remains equal to zero up to a displacement value un(0), 

representing the elastic limit, and then D increases with un > un(0): 
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This evolution is governed by the parameter β, which increases as the cohesive zone ductility. 

Progressive modifications to the internal variable D depend on the consistency law f = f = 0 

during damage process:  
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The analytical determination of g(D) is possible considering a simple case of monotonic loading, 

when, at yielding, f = f = 0. Under a pure increasing tensile stress σn, with τ = 0, the cohesive zone 

starts to dissipate at a normal stress σn = σR, the tensile strength. According to this yielding 

condition, the criterion in Eq. 5.5 writes: 

                        2222222 tantan, CDgDgCDgDF RRnnRnn  σ             (5. 10a) 

                                          0tan22   RnRn CDgDg                                       (5. 10b) 

Eq. 5.10b vanishes when the elastic limit is reached for the first time, meaning f = 0 with D = 0. 

According to g(D) thresholds in Eq. 5.7 and the yield surface’s shape, from Eq. 5.10b, one writes: 

                               RnRRn DgCDg           0tan  ,  1  ,  222                        (5. 11) 

The last condition in Eq. 5.11, replaced in Eq. 5.10b when the monotonic loading increases, 

implies: 

                                    22222 tantan RRnRn CDgCDgDg                      (5. 12) 

Since C > σR ∙ tan φ for the yield surface’s geometry, Eq. 5.12 must respect the condition f = 0 

only if [σn − g(D)σR] remains equal to zero (e.g. Eq. 5.11) during the entire loading process and 

not only at the elastic limit. 
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During this monotonic process, the normal relative displacement can be explicitly written from 

Eq. 5.8: 

                                                        Duu nn  1ln1)0(                                                     (5. 13) 

un(0) is defined as the elastic limit displacement, equal to σR / Knn. At the same time, the following 

stress-displacement relation describes the monotonic loading, according to the constitutive law in 

Eq. 5.2a: 

                                                               nnnn uD K1                                                         (5. 14) 

Referring to Eq. 5.13 and 5.14, the final condition in Eq. 5.11 corresponds to: 
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Eventually, Eq. 5.15 provides the analytical formulation of the damage function: 

                                                       DDDg  1ln11)(                                                (5. 16) 

g(D) in Eq. 5.16 is traced in Figure 5. 6b, for different values of β. In particular, for β > 1, a 

hardening phase, characterized by an increasing stress, exists. It includes an expansion of the yield 

surface, before the second phase characterized by softening, which is always present. This damage 

law, integrated in the failure criterion (Eq. 5.5), allows the actualization of the damage variable 

D for whatever loading process of the cohesive zone, between the limit conditions in mode I and 

asymptotic mode II, after the elastic limit, according to the consistency in Eq. 5.9.  

 

5.2 Single-fracture numerical analyses 

This section presents the analyses for a single fracture evolution induced during a drift excavation, 

with evaluations of the length of propagation, L . Figure 5. 7 reports boundary and initial 

conditions for numerical simulations: in (a), the in-situ stress state is defined for a 2d 

axisymmetric problem according to stresses Table 5. 2 and, in (b), the excavation procedure is 

shown. In analogy with the unloading the 2d plane strain problems on the drifts’ cross-sections, 

in Figure 5. 7b, a fraction Δ of the total unloading is firstly applied to attain a stress state close to 

the elastic limit. Then, the complementary part (1–Δ) corresponds to the second boundary 

condition to simulate the rest of the excavation when failure occurs (f = 0 on joint elements).  

Table 5. 2 : σ(0) as initial/boundary conditions for 2d axisymmetric simulations. 

σxx,(0)  [MPa] σzz,(0)  [MPa] σyy,(0)  [MPa] 

−12.5 −16.2 σyy,(0) = σxx,(0)   
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                                      (a)                                                                                                  (b) 

Figure 5. 7: boundary/initial conditions (a) and excavation procedure (b) for 2d axisymmetric simulations 

in single fracture numerical analyses.  
 

A simple parametrisation corresponding to a linear elastic material with E = 5000 MPa and ν = 

0.25 (e.g. [42] and Table 1.3, Section 1.1) is assigned on surface (triangular) elements in Figure 

5. 7, for the intact Callovo-Oxfordian (COx) claystone. Concerning the cohesive fracture model 

for joints, numerical parametrisation of a discontinuity may not be as simple as for surface 

elements, due to more complex procedures in laboratory testing for measurements on fractures. 

Relatively to the analyses in this section, in presence of a singular discontinuity, the initial 

stiffness was imposed to define a sequence of joint elements with no mechanical influence on the 

geostatic stress state (e.g. Table 5. 2), meaning the intact stiffness tensor K >> K (elastic bulk 

modulus) and E. In particular, K = 3∙106 MPa/m (Knn = Ktt), assuming a bulk modulus K ≈ 3300 

MPa from E and ν defined on the surface elements. Concerning the initial joint thickness e0, this 

parameter can be only supposed based on the radial core-drilling evidences, with the hypothesis 

that the sampling operations had not excessively damaged the medium surrounding the original 

FCh fracture generated during the excavation. If evidences in Figure 5. 2b are considered (drill-

core reported on a centimetre scale, e.g. [9]), the final aperture of the fracture is around an order 

of 1 mm: the initial joint thickness was assumed equal to 10-4 m = 0.1 mm. Failure parameters 

and damage law coefficient β are reported in Table 5. 3. Values of the failure parameters were 

chosen lower than those reported in Table 1.3, Section 1.1. This initial attempt was intended to 

obtain a propagation length L verifying if the fracture did not propagate for the entire joints 

sequence, to confirm the validity of the numerical model.  
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Table 5. 3 : failure and damage yielding parameters for the first single fracture numerical simulation. 

σR  [MPa] φ  [°] C  [MPa] β  [-] 

1.0 20 2.0 1.0 

 

For the coefficient β, it must be underlined that no available data on laboratory analyses of 

cracking in COx claystone exist to determine it. The arbitrary value β = 1 was imposed as the 

upper limit of a pure softening behaviour for the cohesive zone, after the elastic limit (Figure 5. 

6b). A similar absence of laboratory data exists also for the residual stiffness parameters k0t and 

k0n; it is possible, at the end of the cracking process, an existing contact among the cohesive 

surfaces, with the possibility of a free relative tangential displacement among them. Thus, 

numerical parametrisation for the residual joints’ stiffness correspond to k0t = 0 and k0n = 3300 

MPa/m = K, the bulk modulus for the linear elastic surface elements (i.e. the surrounding 

claystone). 

Two different steps of the fracture opening are reported in Figure 5. 8; deformations and 

displacements are magnified for graphic purposes. Figure 5. 8a illustrates the fracture initiation, 

for a certain value of the steady-state unloading +(1–Δ)∙σxx,(0) (e.g. Figure 5. 7b) applied at the 

drift’s sidewall. A brittle activation occurs, meaning that several consecutive joint elements reach 

D = 1 simultaneously. Physically, this corresponds to an instantaneous dissipation of the elastic 

energy stored within the discontinuity, i.e. the fracture’s energy dissipation rate G attains its 

critical value GC along several joints, at the same computing time step. Then, fracture propagates 

with a stable evolution, with only one joint element opening for a certain unloading increment. 

Figure 5. 9a reports the complete diagram of fracture’s evolution: almost at the 20% of the second 

unloading +(1–Δ)∙σxx,(0), the discontinuity is activated for a joints’ sequence covering a length of 

6.5 m. Afterwards, four successive single-joint openings (D: 0 → 1) are calculated during the rest 

of the unloading, which openings are graphically reported in Figure 5. 9b.  

 
Figure 5. 8: initial unstable fracture opening (a), followed by a progressive joint-by-joint (stable) cracking 

(b). 
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                                                    (a)                                                             (b) 

Figure 5. 9: diagram of the fracture evolution in (a) and a zoom on every consecutive joint opening in (b), 

during the final stable propagation. 

Figure 5. 9a shows that a constant unloading is required to activate the joint elements 

correspondent to the fracture’s increases (ii), (iii) and (iv), reported in Figure 5. 9b. In fact, far 

from the perimeter, where in-situ stress conditions are almost restored, the activation of equal 

cohesive zones (i.e. joint elements with the same length) corresponds to the same release of elastic 

energy. At the end of the stable evolution, a final L = 8.13 m is calculated (Figure 5. 9a). This 

constitutes an overestimation, relatively to in-situ observations: as mentioned previously, if the 

fracture inclination α to the sidewall is accounted, an extension between 5 and 7 m should be 

attended from numerical simulations. Nonetheless, this extension confirms the validity of the 

joints’ sequence length (20 m, e.g. Figure 5. 7). Figure 5. 10 illustrates the stress path (σn ; τ) of 

the joint element at the intersection with the drift’s perimeter: starting from the pre-excavation 

stress state, which values depend on the fracture’s inclination to the principal stresses’ (Table 5. 

2 and Figure 5. 7), the calculated stress path attains the hyperbolic criterion, at D = 0, with mixed 

mode I + II attainment. Shear mode results the preponderant, as the stress path intersect the yield 

surface towards the asymptotic Mohr-coulomb yielding, where f (D = 0) is parallel to f (D = 1). 

 
Figure 5. 10: stress path for the joint element intersecting the drift’s sidewall. 
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To conclude this section, an increase of failure parameters is imposed for a second single-fracture 

unloading, with σR = 1.5 MPa and C = 5 MPa (admissible values from Table 1.3, Section 1.1). 

Similar values were adopted in other publications concerning failure analyses on COx claystone 

(e.g. [43]). A contour plot of the final fracture opening and the diagram of fracture’s evolution 

with the unloading, compared with the previous analysis, are reported respectively in Figure 5. 

11a and Figure 5. 11b. In this case, L ≈ 6 m, an admissible value for the mentioned interval, 

concerning FCh fractures’ length (5 and 7 m). Figure 5. 12a reports the horizontal displacement 

field (Ux), corresponding to the radial direction in the cross-section (i.e. r ≡ x). A plot of Ux 

calculated along z, at the sidewall, is traced in Figure 5. 12b: a radial displacement between 20 

and 10 mm is obtained on a distance z ≈ 3 m. These values are consistent with the short-term 

horizontal displacements for drift GCS, mentioned presenting the results for excavation analyses 

on the cross-section (e.g. Figure 3.5 and Table 3.3, Chapter 3 and Table 4.7, Chapter 4).  

                 
                                    (a)                                                                                   (b) 

Figure 5. 11: analogue fracture initiation, increasing the cohesive zone strength, in (a) and comparison 

between the cracking length evolutions for the two single fracture simulations in (b). 

          
                                           (a)                                                                                 (b) 

Figure 5. 12: horizontal displacement field in (a) and radial displacement of the drift’s perimeter along z 

in (b), increasing the cohesive zone strength. 
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5.3 Multi-fractures numerical analyses with drifting simulations  

In this last section, multi-fractures axisymmetric analyses on JFEM numerical models are 

presented. Without focusing in particular on the distance of FCh shear cracks assessed from 

geological surveys at the Andra URL, these modelling exercises focus mainly on the possibility 

to simulate, numerically, the appearance of one fracture every finite number of potential 

discontinuities (e.g., variable s , Figure 5. 3) while the excavation moves forward. Moreover, the 

simulation of the drifting action offers an opportunity to study different methods of numerical 

implementations in the FEM codes employed, modifying the boundary conditions correspondent 

to the undisturbed stress state in the material. Results discussed in the following paragraphs 

present and describe, every time, the numerical technique performing the drifting action.  

 

5.3.1   Excavation method 1 

At first, the simulation of the drift’s excavation implied the elimination, from the initial mesh, of 

finite elements representing the material to be excavated. Figure 5. 13a reports the numerical 

model with the initial stress components σij,(0) according to Table 5. 2, while, in Figure 5. 13b, an 

example of the successive excavation steps on new geometries, eliminating the elements inside 

the excavation, is reported. In the numerical model, a distance between every discontinuity, i.e. 

sequence of joint elements, is equal to 0.2 m, along an excavation length Ha = 6 m. With a system 

of parallel discontinuities, the initial stiffness of cohesive joints (e.g. Eq. 5.3), distributed in a 

matrix modelled as a linear elastic material, can be imposed according to the homogenization of 

parameters E (Young modulus) and μ (shear modulus): 
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To simplify, the elastic parameters assigned to the matrix (MAT) may be imposed equal to the 

homogenized values (HOM), while Knn and Ktt may be increased about 2 or 3 orders of magnitude 

(e.g. K ≈ 106 or 107 MPa/m), in analogy with the initial stiffness for joint elements in the single 

fracture analyses. With a distance d between potential discontinuities on an order of magnitude 

equal to [1 ; 10-1] m, this parametrization guarantees E/EHOM ≈ μ/μHOM → 1. For the simulation 

presented hereby, the assignment of the other parameters for cohesive joints is based on the 

previous single fracture analyses (e.g. Table 5. 3, Figure 5. 8 and Figure 5. 11). According to 

Figure 5. 13, this method implies the solution of a FEM steady-state problem, which outputs - in 

terms of σ and ε fields - are applied as initial conditions to the next excavation advancement.  
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                          (a)                                                                                             (b) 

Figure 5. 13: initial conditions in (a) and modified geometries corresponding to the drift’s advancements 

in (b), for the excavation method 1.  

 

           
                                        (a)                                                                                    (b) 

Figure 5. 14: results of fracture’s occurrence after the first excavation step, as reported in Figure 5. 13b. In 

(a), damage calculated at joint elements and, in (b), horizontal displacements’ field. 

 

In Figure 5. 14, an example of fracture occurrence after the first excavation step (Figure 5. 13b) 

is reported. Immediately, it was realized that the solution of multiple steady-state problems where 

σ and ε fields, calculated at the step n, become initial conditions for the step (n+1), may reproduce 

unrealistic stress concentrations at the corner of the excavation front with the drift sidewall. In 

Figure 5. 14a, the activation of one joint elements’ sequence at the area of stress concentration is 

reported, with partially damaged joints around the calculated fracture. Nonetheless, horizontal 

displacements, in accordance with in-situ monitoring for drift GCS, are obtained at the sidewall 

surrounding the fracture (e.g. Figure 5. 14b). Eventually, the spacing s  calculated by this method 

can be strongly dependent on the partial excavation length imposed at every new step, i.e. the 

number of finite elements eliminated along the drift axis z.   
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5.3.2   Excavation method 2 

This second series of multi-fractures analyses simulates the drifting action by means of a 

degradation of stiffness and initial stress state σ(0) in surface elements inside the excavation. They 

are not eliminated from the original geometry but, defining a specific excavation function, they 

become ineffective for the calculation of the stress-strain response in the FEM problem. For this 

method, the numerical model with boundary/initial conditions is reported in Figure 5. 15a, while 

Figure 5. 15b describes the geometry’s dimensions. The equations presented in the following, 

related to the excavation’s numerical procedure, were implemented in an iterative cycle in the 

POROFIS module hydmec.f90 (e.g. Chapter 2, Section 2.1). The excavation function for drifting, 

d(z, t), is defined along the longitudinal axis, z, and in a virtual time, t, related to the numerical 

process. In other terms, while the previous analyses were performed in steady state conditions, 

multi-fractures simulations, from this paragraph, are executed with transient simulations, defined 

between a time offset t0 and a final time tf. The function d(z, t) is formulated to degrade the elastic 

properties of the FE mesh surface elements within the drift, as well as their initial stress tensor, 

σ(0). For the material in correspondence of the excavation, the following σ : ε law was defined: 

                                                      εCσσσ :
~
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~σ and D

~
 can be defined as a modified initial stress tensor and a modified damage variable, both 

related to d(z, t), formalized as follows: 
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                                        (a)                                                                          (b) 

Figure 5. 15: numerical model for the excavation method 2, with boundary conditions in (a) and geometry’s 

dimensions in (b).  
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Eq. 5.20 is set to vary asymptotically in the interval [0; 1], from t = t0 to t = tf. The parameters z0, 

V and LN represent, respectively, the optional excavation offset, the constant velocity of 

excavation and a coefficient related to the size of finite elements within the drift or at the sidewall. 

In particular, LN calibrates the smoothness of the function tanh and, after analytical verifications, 

it was set LN = 0.1∙l, if l is the main dimension of finite elements. For the numerical purposes, this 

function corresponds to the transition of an excavation front, at a certain (computing) time t and 

for a certain coordinate z of the excavation axis. Since, in the transient numerical process with a 

duration t = tf, the excavation occurs with a constant velocity V, the product V∙tf must correspond 

to z = Ha, the total drift length. Every parameter with a dependence on the computing time, in 

transient numerical applications, has no physical time unit: since the simulation’s process is user-

defined, these variables may be set on an arbitral time-scale. Concerning the simulation of a 

drifting process, according to drift GCS excavation’s chronogram (e.g. [60]), a reference time 

scale based on several days may be assumed: for instance, one week. Figure 5. 16a and b 

represent, respectively, Eq. 5.20 as function of the space (z) and time (t), assuming an excavation 

length Ha = 60 m, similar to GCS drift, an excavation front moving at V = 2 (m/week, e.g. [60]), 

t0 = 0 and tf = 30 (weeks). Reconsidering the stress-strain law in Eq. 5.19, the current stress tensor 

σ, at t = tf, vanishes only if 
)0(

~σ = σ(0) and D
~

 → 1. For the first term, POROFIS required its time-

derivative implementation, in the module hydmec.f90, to resolve the incremental form of Eq. 5.19 

for every time step Δt. This was performed according to the following mathematical formulation: 
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By the derivation of Eq. 5.20, it is possible to prove that the following equations are correct: 
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                                           (a)                                                                           (b) 

Figure 5. 16: excavation function d(z, t), as a function of space in (a) and of time in (b). V = 2 m/week and 

Ha = 60 m (e.g. [60]) and tf = 30 (weeks, chosen as reference only for the transient numerical process). 
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To define D
~

, Eq. 5.20 was modified to avoid numerical instabilities when D
~

 → 1, specifically to 

verify D
~

(t = tf) = (1− ζ), with ζ set as an infinitesimal tolerance value (e.g. ζ → 0): 
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According to Eq. 5.23, D
~

(t = t0) = 0 and D
~

(t = tf) = (1− ζ). Figure 5. 17 reports a result of the 

implementation of the numerical technique previously described, on the geometry in Figure 5. 15: 

in particular, it shows the contour plot, for d(z, t) and D
~

(z, t), of a drifting at t = 0.5∙ tf, when half 

of the total drift length Ha has been already excavated. Results of fractures’ occurrences, from 

geometry in Figure 5. 15, are shown in Figure 5. 18, based on the parametrization for joint 

elements and excavation function reported, respectively, in Table 5. 4 and Table 5. 5. Initial and 

residual stiffness for joints (tensors K and k0) are set similarly to the numerical analyses presented 

in the previous paragraph (e.g. Figure 5. 14).      

 
Figure 5. 17: contour plot illustrating the binary values assumed by d(z, t) during a drifting numerical 

process, with the modified damage variable for elements inside the excavation. 

Table 5. 4 : failure parameters for joint elements, based on previously simulations and values in Chapter 1 

(Table 1.3). 

e0  [mm] σR  [MPa] φ  [°] C  [MPa] β  [-] 

0.1 1.5 20 4.0 1.0 

 

Table 5. 5 : parameters for the numerical excavation procedure. 
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(a)                                                        (b) 

Figure 5. 18: contour plot of damage on joint elements, adopting the excavation method 2, showing 

fractures’ occurrences and spacing. Total geometry displayed in (a) and detail on fractures’ opening in (b). 

 

Results in Figure 5. 18 show a periodicity of fractures’ opening characterized, at every occurrence, 

by two consecutive joints’ activations. In general, one of these overcomes a length of 4 m (e.g. 

Figure 5. 18b) and approximates the average horizontal extension of the failure system EDZ-EdZ 

for GCS drift at the Andra URL. 

 

5.3.3   Excavation method 3 

Numerical implementation of the drifting action is hereby presented according to another 

technique, based on the excavation function d(z, t) in Eq. 5.20. This approach does not require the 

presence of surface elements within the area of the material to be excavated: practically, it allows 

the adoption of a geometrical model representing the final configuration of the excavation, a mesh 

with no finite elements in the drift area, as illustrated in Figure 5. 19a, where the imposed 

boundary conditions are described (e.g. [100], [101]). In this numerical modelling, Eq. 5.20 is 

adopted to implement a procedure implying a progressive degradation on the boundary conditions 

set at the tunnel sidewall, according to the scheme in Figure 5. 19b. In fact, at t = t0, a normal 

stress equal to the correspondent geostatic component, σxx,(0), acts on the gallery interface, z, to 

reproduce the pre-drifting conditions. Numerical modification of σxx,(0), during the advancing of 

the excavation front, is integrated in the code similarly to the degradation of initial stress state 

σ(0), in Eq. 5.21 and 5.22, for material elements within the drift’s area (e.g. Figure 5. 17). The 

following relation was introduced as a transient boundary condition at the gallery wall, for the 

excavation:      
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                                                 (a)                                                                          (b) 

Figure 5. 19: numerical model for the excavation method 3. In (a), geometry’s dimensions and boundary 

conditions and, in (b), a schematization of the numerical procedure applied for the excavation. 
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According to Eq. 5.20 and Eq. 5.24, σxx(z, t = t0) = 0 and σxx(z, t = t0) = − σxx,(0), for every z at the 

sidewall. In transient conditions, the implementation of the time-derivative, xx was required:  
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From Eq. 5.25, the variable boundary condition at the sidewall writes:   
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Figure 5. 20 shows the results based on numerical model with boundary conditions in Figure 5. 

19a-b, respectively for the initial stress state and the excavation procedure [101]. Parameters for 

potential discontinuities as joint elements and for excavation function are equal to those applied 

for numerical analyses illustrated in Figure 5. 18 (i.e. Table 5. 4 and Table 5. 5). The obtained 

length of fractures is around 4 m, consistent with the horizontal extension of GCS drift’s failure 

system, and a bi-periodical fractures’ occurrence is calculated. At the sidewall, along the 

longitudinal axis z, the average horizontal displacement Ux, between the values and the cracking 

initiation and the areas still in elastic conditions, is calculated around 17 and 18 mm, 

approximating correctly the measurements of short-term sidewall’s displacements for the 

instrumented drift. 
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                                                      (a)                                                   (b) 

Figure 5. 20: contour plots for opened fractures, in (a), and horizontal displacements, in (b), calculated 

with the excavation method 3. 

 

With respect to results in Figure 5. 18, a smaller fraction of activated (damaged) discontinuities 

was calculated, corresponding to 20% of the imposed joints’ sequences. The spacing s varies 

between the values of 2.5 and 8 m, along the entire length Ha = 60 m. Differently from Figure 5. 

18, a bimodal fracture’s spacing is calculated with this excavation method showing that, 

concerning the adopted processors for FEM problems, the numerical technique of implementing 

a transient excavation may influence the results.  
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       Conclusion 

These modelling exercises have formed the second research axis of numerical works presented in 

this manuscript. Within the cohesive fracture’s framework proposed by Pouya and Bemani [76], 

a softening, damage-based constitutive model was employed for linear discontinuities to 

reproduce the occurrence of Chevron fractures (FCh) at the Andra URL, according to their length 

in the EDZ-EdZ failure system, for the instrumented drift GCS. In axisymmetric, joint elements 

were introduced by the module DISCRAC (http://www.fracsima.com/), obtaining a series of 

joints-enriched finite element models (JFEM), to study either the initiation and propagation of a 

single fracture or the periodicity of cracking occurrence with an advancing excavation front. 

   Single-fracture analyses showed, more in detail, the cohesive fracture’s evolution, under a 

monotonic, steady-state unloading at the drift sidewall. According to a typical fragile, damage 

behaviour, a significant part of the total propagation length occurs in the initiation phase, when 

the cohesive yield surface, at the initial joint element, satisfies failure conditions. A mixed mode 

I+II of fracture’s activation was calculated. Then, under the residual unloading of the steady-state 

process, a stable fracture propagation is observed, with the activation of one joint element (i.e. 

damage D = 1) at regular unloading intervals (e.g. [100], [101]). Eventually, a set of failure 

parameters, consistent with data for Callovo-Oxfordian claystone (COx), allowed the calculation 

of a 6 m length, in accordance with the extension of FCh fractures surrounding GCS drift, 

considering their inclination to the longitudinal drift axis z.  

   In the last part, a qualitative analysis of the periodicity of cracking occurrences was performed 

with multi-fractures models, under transient unloading conditions, to simulate an excavation front 

[101]. This choice offered also the study and comparison of some proposed techniques for the 

drifting implementation: a different periodicity of fractures was calculated, in equal numerical 

models, by changing the implementation method. If the modelling proposed seems to simulate 

correctly the length of fractures with multiple discontinuities, further researches are still required 

to provide quantitative considerations concerning spacing/periodicity. Considering data on the 

tenacity (i.e. the critical stress intensity factor at the fracture tip) of COx formation, a better 

assessment of the cohesive zone’s parameters can be provided, to obtain calculations for fractures’ 

periodicity with more reliable, physically-based results. Eventually, mesh size or structure 

geometry dependencies should be considered.
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Plane section modelling of the failure zone 

This section is dedicated to the general summaries and outlines concerning the continuous failure 

analyses around deep excavations, at the Andra Underground Research Laboratory (URL) in Bure 

(Figure 1.3, Chapter 1). This part treated the mechanical problem with a bi-dimensional, plane 

strain approach and constitutes the preponderant subject of this dissertation, forming the first axis 

of the research proposed. Related numerical analyses were presented and discussed from Chapter 

2 to Chapter 4. In Chapter 1, in-situ references for the studies were illustrated, discerning two 

categories of drifts at the Andra URL, due to different boundary stress conditions in their cross-

sections. The instrumented drifts GCS and GED offered two evidences of excavation-induced 

failure zones, with unequal shapes and extensions, both mechanically driven by the effects of a 

double anisotropy. In fact, on their cross-sections, different stress states act in the same geological 

formation, the Callovo-Oxfordian claystone (COx), characterized by intrinsic anisotropic 

properties. Failure’s shape and extension for GCS drift results in a horizontally-oriented zone. On 

the contrary, excavation-induced failure around GED drift, with a stronger anisotropic stress state, 

exhibits a vertical extension (Figure 1.9, Chapter 1). The proposed modelling describes this zone 

as the area where material’s failure criterion is attained, neglecting the effect of retaining 

structures after the excavation. With a null internal pressure at the drifts’ perimeter, numerical 

FEM analyses were addressed to the description of a short-term, mechanically-driven failure, 

characterized by a constant or variable brittle response of the material. At yielding, its dissipation 

is purely based on damage mechanics, modelled by a damage variable D, increasing from 0 to 1 

and degrading the initial elastic stiffness. Indeed, laboratory observations at the volume element 

scale suggest, for reduced levels of lateral confinement, a fragile response of COx claystone at 

failure (Figure 1.18, Chapter 1). While plastic dissipation may correspond to more ductile, time-

independent response of this material after the elastic limit, it is possible to consider damage as 

the dominant failure mechanism occurring in uniaxial conditions, or under very low 

confinements. If the same discussion is reported from the laboratory scale to the structure scale, 

for underground excavations, even the 2d elastic solution shows a vanishing lateral confinement, 

on the surrounding material, towards the drift’s perimeter. On the other hand, lateral confinement 

(i.e. the radial stress) increases with the distance from the gallery (e.g. Figure 1.23, Chapter 1). In 

this context, it is possible to state that the analyses presented propose a valid modelling, if certain 

fundamental aspects are verified:  

- The object of investigation is a short-term failure, almost instantaneous, or in any case limited 

to a time scale based on some days/few weeks after the excavation. Otherwise, in particular 

when dealing with COx claystone, any proposition of geotechnical modelling should account 

for time-dependent effects due to creep or hydraulic diffusion. 
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- The area of study should be relatively limited to the structure’s proximity, where low-

confined conditions are favourable to a fragile dissipation, modelled by a sharp softening. In 

the previous chapters, this area was denoted as the continuous failure system EDZ-EdZ, even 

if it is necessary to precise that EDZ only is more subjected to the mentioned type of failure. 

Accounting for this reduction of strength at yielding (i.e. softening), some implications for a 

mechanical modelling based on damage were provided in Chapter 2, with numerical analyses of 

circular excavations, comparing damage softening with plastic softening. A homogeneous 

unloading, in isotropic stress’ and material’s conditions, showed significant differences between 

plasticity and damage, even from a qualitative point of view. In particular, adopting simple 

numerical FEM models, softening plasticity exhibits, in isotropic conditions, a homogeneous 

response represented by a symmetric, overall circular failure zone. Softening damage, on the 

contrary, seems to amplify the effect of possible failure localizations around the circular opening 

(Figure 2.17 and Figure 2.18, Chapter 2). In general, if failure can localize for whatever reason 

(simply numerical or induced even by weak anisotropies), softening damage leads to a different 

redistribution of stresses around the failure zone and seems to provoke, locally, phenomena 

characterized by a partial/temporary instability, causing a progressive failure-induced anisotropy. 

A simple, analytical stress redistribution for a purely fragile behaviour after the elastic limit 

(Figure 2.23 and Figure 2.24, Chapter 2), showed the unstable nature of such a phenomenon, 

when a total damaged material (D = 1) replaces, instantaneously, the material in intact conditions 

(D = 0). The main body of Chapter 2 was intended to define important theoretical considerations 

before introducing the damage numerical modelling addressed to the specific problem of failure 

around the Andra URL drifts. Here, intrinsic anisotropies of COx formation must be accounted 

for the synthesis of a valid model describing the mechanical behaviour.  

An initial upgrade was introduced, leading to the elastic-damage model named 2d_ED, neglecting 

the influence of damage evolution along the axial direction z, perpendicular to the drifts’ cross 

section (Section 2.3, Chapter 2),. The main task of the analyses, a planar failure expansion limited 

to the cross-section, in two dimensions, justifies this mathematical implementation. After a test 

of the proposed model, showing a good estimation of the EDZ geometries and the convergences 

for GCS drift (Figure 3.3 and Figure 3.4, Chapter 3), a first proposition of anisotropic failure 

criterion was formulated, reproducing a monotonic variation of the compressive strength (Section 

3.2, Chapter 3). In parallel, a modification of the 2d_ED model’s elastic-damage stiffness tensor 

was inserted, accounting for the transverse-isotropy of the elastic behaviour of COx formation, 

horizontally layered at the Andra URL site (Section 3.3, Chapter 3). These upgrades improved 

displacements’ calculations of GCS stress conditions, together with consistent estimations of the 

horizontal EDZ-EdZ failure, mainly driven by the anisotropy of the failure criterion (Figure 3.12 
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and Figure 3.20, Chapter 3). On the contrary, the failure zone obtained for GED drift was not in 

good agreement with observations: this gap was estimated to be partially due by the anisotropic 

expression introduced in the constitutive model (Figure 3.21, Chapter 3). Afterwards, a 

physically-based upgrade of the 2d_ED model was proposed, to consider a shear damage 

modifying only the deviatoric component of the elastic-damage stiffness tensor, written for a 

plane strain problem. This mathematical proposition, named 2d_ESD model, represents a damage 

yielding where a cohesive material, subjected to mechanical degradation, assumes eventually 

purely frictional characteristics (Figure 4.2, Chapter 4). Adopting this implementation and a 

compressive strength varying monotonically, a correct calculation of the failure zone plus an 

overall consistent estimation of sidewall’s displacement is obtained for every stress condition, i.e. 

GCS and GED drift (Figure 4.13 to Figure 4.18, Chapter 4).  

Considering the anisotropic failure response, a wider dataset of experimental evidences on COx 

formation revealed a non-monotonic variation of material’s resistance, in unconfined or confined 

conditions. Thus, together with the upgrades to the initial elastic-damage stiffness tensor, the 

model had to be improved by this failure behaviour: a second formulation of an anisotropic 

criterion was proposed to reproduce easily triaxial evidences on COx specimens, tested under 

different orientations (Figure 4.21 to Figure 4.23, Chapter 4). A last improvement, in terms of 

FEM numerical model, consisted in the assumption of concentrically distributed areas, around the 

circular drifts, to simulate the increasing material’s ductility at yielding, moving radially from the 

perimeter (Figure 4.27, Chapter 4). This phenomenon, named brittle-ductile transition, led to the 

proposition of the diagrams in Figure 4.28, overall useful for numerical simulations, relating the 

level of confinement (e.g. the radial stress calculated in elasticity) with the parameters describing 

the fragility/ductility of the stress-strain curve in the 2d_ESD model. The final results for GCS 

and GED drifts are presented and described in Section 4.5, on FEM models characterized by a 

finer mesh and representing a quarter of the entire circular geometry. Overall, short-term shape 

and extension of calculated failure areas is consistent with the reference conceptual models and 

displacements at the sidewall are capable to estimate the in-situ measurements, even if some 

under- or overestimations are obtained according to differences introduced in the numerical 

implementation of the procedure previously described (Table 4.7, Chapter 4). 

Theoretical analyses and numerical modelling, previously summarized, arise some indications for 

the excavations’ behaviour, referring to the study cases of Andra URL, together with possible 

perspectives for future researches. First of all, in the context of a purely mechanical modelling 

based on a total stress’ response, the choice of elastic parameters must be handled with attention: 

according to the simulations presented, likely undrained conditions correspond to a Young 

modulus overcoming 4000 ÷ 4500 MPa for COx claystone. These indicative values are provided 
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not only considering the analyses discussed in this work, but also according to some recent 

publications related to laboratory applications (Section 2.2, Chapter 2). Afterwards, according to 

the last numerical results (Table 4.7, Chapter 4), a re-implementation of an anisotropic elasticity 

may improve the displacements’ calculus with the 2d_ESD constitutive law. In particular, the 

increase of the horizontal stiffness, parallel to the stratification, seems suitable and physically 

consistent with the material microstructure. This definition of elasticity can be also integrated by 

short-term poro-mechanical effects, like an anisotropic pore-pressure redistribution by a total 

stress change, due to the excavation. Concerning the material at failure, a valid and realistic 

formulation for the criterion must consider a non-monotonic variation of material’s resistance 

around the excavation, for unconfined or confined stress states.  

This work, consisting in a physical/numerical modelling entirely based on short-term, damage 

mechanics, may be intended as a proposal to integrate this behaviour, peculiar for certain stress 

conditions at failure, with a wider framework of models based on elastic-plasticity, already 

proposed in the context of drifts’ analyses at the Andra URL. In particular, a further development 

of a coupled plastic-damage model can be provided if plasticity is assumed to be the dominant 

dissipation mechanism at some distance from the sidewall, where greater confining stresses 

modify the post-failure response turns from brittle to ductile. At the same time, an extended 

modelling proposal, starting from a fragile damage dissipation, should include the time-dependent 

and long-term aspects of COx behaviour, already known from laboratory evidences as well as 

already considered in some precedent works. This could lead to a predictive model describing an 

instantaneous fragile behaviour around galleries, mainly governed by damage, with a plastic 

softening-hardening transition, eventually accounting for viscous effects.
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Discrete modelling of fractures occurrence 

The system of excavation-induced failure around drifts in COx claystone includes diffused 

damage/plastic effects occurring in the geological formation. At the same time, a clear pattern of 

localisations, coalescing in tensile and shear fractures, is observed. Numerical simulations in 

Chapter 5 were mainly intended to provide a complementary vision of the problem of excavation-

induced fractures around deep drifts, with an adequate mechanical and numerical approach. 

Focusing on the Chevron of herringbone shear fractures (FCh), failure studies can be also driven 

with a discontinuous or discrete mechanical model. Another axis of research was started to 

investigate these failure aspects, thanks to the numerical tools employed, capable to perform 

Finite Element analyses with the insertion of potential discontinuities, assimilated with joint 

elements (Figure 2.3, Chapter 2). Numerically, they allow for the separation of surface mesh 

elements, to reproduce, from the physical point of view, the occurrence of mechanical 

discontinuities in the solicited medium. This study, based again on a bi-dimensional approach, 

assumed the hypothesis of axial symmetry, considering one of the two principal drifting directions 

at the Andra URL, where the in-situ stress state is estimated quasi-isotropic in the drift’s section 

(e.g. GCS drift). With this assumption, the study was focused on the simulation of fractures’ 

occurrence along the gallery’s axis. Geometric models consisted in a representation of the case-

study drift on its elongation, instead of its cross-section (Figure 5. 1 and Figure 5. 3, Chapter 5). 

In accordance with the mechanical modelling adopted for short-term failure, the dissipation 

mechanism chosen to analyse fractures’ evolution is based on damage, represented by the same 

internal variable, D, described in the previous section. Deformability of discontinuities and their 

failure limit were evaluated according to a cohesive fracture constitutive law and criterion, based 

on the model proposed by Pouya and Bemani (2015) [76]. After the attainment of the yield 

surface, the model implies the degradation of the cohesive zone’s stiffness with a decrease of its 

strength up to purely frictional conditions, reproducing a softening behaviour. At first, the 

initiation and propagation of a single fracture was tested and analysed (Section 5.2, Chapter 5), 

moving afterwards to a qualitative study of the periodicity of fractures’ appearance, considering 

the transition of an excavation front at the drift’s sidewall (Section 5.3, Chapter 5). 

The first series of numerical analyses focused on a quantification of the propagation length, 

together with the mechanisms of initiation and evolution. The total stress path calculated at the 

origin of the discontinuity, in the undamaged configuration, showed a mixed mode I+II of 

fracture’s activation (Figure 5. 10, Chapter 5). Instantaneously, a very fragile behaviour was 

calculated, with a significant fracture propagation for an infinitesimal unloading rate, named 

unstable initiation. Then, a stable evolution was calculated, at finite unloading intervals, 
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corresponding to similar quantities of elastic energy’s release at every failure attainment, 

extremely reduced compared to the amount of energy dissipated during the unstable initiation 

(Figure 5. 9, Chapter 5). The final length of propagation, for a complete unloading at the drift’s 

sidewall, resulted consistent with in-situ measurements and conceptual models provided by Andra 

(Figure 5. 11, Chapter 5).  

The study of fractures’ periodicity, i.e. the activation of one undamaged discontinuity every finite 

quantity n, was then performed on multi-fractures numerical models, including several sequences 

of joint elements. For these analyses, the implementation of a transient process to simulate the 

passage of an excavation front was proposed. It consisted in modifying progressively the initial 

stress state conditions at the drift’s sidewall (Figure 5. 16, Chapter 5). Once the basic expression 

for this transient boundary condition was mathematically formulated, it was applied according to 

different numerical procedures, described in Section 5.3. These simulations calculated a fractures’ 

length analogue with the horizontal extension of the failure system EDZ-EdZ, for the case-study 

considered, and a certain periodicity was obtained (Figure 5. 18 and Figure 5. 20, Chapter 5). 

Nonetheless, by varying the numerical procedure to implement the excavation front, the 

calculated values of fractures’ periodicity changed. In a general context of numerical simulations, 

these results show that possible differences in the implementation techniques of a same 

physical/real process, can lead to discrepancies in the final calculations. The implementation 

method to model the excavation action remains an open issue. 

Concerning these simulations, the next researches should privilege, at first, a quantitative study 

for fractures’ periodicity. Further developments may account for other propositions to implement 

the excavation, as well as sensitivity analyses on parameters describing the drifting action and 

mesh-size dependencies. At the end of the last modelling presented, a numerical technique 

implying the degradation of the current stress state, at a computing time t, seemed more precise 

than the degradation of the initial stress state, which remains constant during the entire process. 

At the same time, a study based on data for fractures’ tenacity can be scheduled, relatively to the 

COx claystone, providing less uncertainties on cohesive joints’ parametrisation.  

As concluded for brittle-damage modelling on drifts’ plane sections, future upgrades for 

constitutive laws of potential fractures should include plastic dissipative mechanisms as well as 

time-dependent aspects, to provide a complete mechanical modelling, before the consideration of 

further multi-physical coupled phenomena. 
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  Appendices         

A – Details on the FEM codes  

In Figure A.1, following: as mentioned in Chapter 2, Section 2.1, the structure model of a typical 

subroutine for a constitutive law implementation in POROFIS is reported. In particular, the three 

main parts that constitute respectively the failure criterion definition, the update of the damage or 

plastic law with their internal variables and the linear elastic relation σ : ε are highlighted.  

In Figure A.2, next page: the computing procedure executed by POROFIS for a local Newton-

Raphson integration of the constitutive law when failure (or non-linearities) occurs. It is shown 

then, globally, the verification of the consistency law f = f = 0 according to an imposed tolerance, 

ζ. If the consistency law verification is rejected, a new Newton-Raphson iteration will be executed 

for each Gauss point. The same local-global-local iterative scheme applies for displacements 

convergence for each calculation step. It refers to Chapter 2, Section 2.1. 

In Figure A.3, next page: illustration of the local reference system as defined in POROFIS and 

DISROC is reported, for whatever inclination with respect to the Cartesian reference of axis. For 

a stress tensor σ(0), the tangential and normal components, τ and σn, of the stress state Ti at the 

local point i on the gallery perimeter are written according to Eq. A.1 and A.2. 

 
Figure A.1 : procedures composing the step-by step resolution of the σ : ε relation for a classical 

constitutive law in Utilizer.f90. 
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Figure A.2 : local-global-local iterative procedure for yielding correction with global verification of the 

consistency law. The failure criterion f is represented as function of the internal variable(s), χ. 

                                                          nσtTt  )0(

T

i

T                                                    (A. 1) 

                                                        nσnTn  )0(

T

i

T

n                                                  (A. 2) 

 

Figure A.3 : normal and tangential local coordinates system in POROFIS and DISROC, for the evaluation 

of the stress state at i. σ(0) is the (initial) stress tensor defined in the principal coordinates system. 
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B – Anisotropies in failure criteria and damage-elasticity 

Section B of the Appendix reports the explicit formulations for mathematical modelling of 

transverse isotropy (failure and elasticity) in the Callovo-Oxfordian claystone, implemented 

numerically in POROFIS.  

B.1   Drucker-Prager failure criterion based on a second (II) order rotation tensor   

         (including the axial stress component σzz)  

Here, the criterion’s formulation as reported in Chapter 3, Section 3.2, is illustrated, together with 

the step-by-step procedure to derive the anisotropy scaling factor, h. 

By the unitary normal vector n, a second order rotation tensor M accounting for material 

anisotropy is defined and applied to the original stress tensor σ: 

                                     nnMn  hδij     ;     0sincos
T

                              (B. 1a-b) 

                                                            MσMσ  T~                                                               (B. 2) 
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Eq. B.2 is explicitly written: 
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Adopting the tensor in Eq. B.4, a modified Drucker-Prager failure criterion can be defined: 
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Figure B.1: volume element scheme for the anisotropic Drucker-Prager failure criterion. 

x

y

z





















0

sin

cos





n





 

186 

For uniaxial compression along the vertical axis y (σxx = σzz = σxy = 0): 
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                (B. 6) 

If the uniaxial compression occurs parallel to bedding (ω = 0 in Figure B.1): 
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At the elastic limit, D = 0 → g(D) = 1 and f = 0: 

                                    0sinsin~ 2  KKf yyyyyyyy σ                             (B. 8) 

The unconfined compression value providing f = 0 is the uniaxial compressive strength (UCS), 

σ0. In particular, this corresponds to the UCS for ω = 0, writing σ0,0°. In general, UCS for a generic 

inclination, σ0,ω, is defined positive for every ω. Because of the rock mechanics’ convention on 

variables signs (tensile stresses are positive and compressive stresses are negative), σyy < 0 in Eq. 

B.8. If it represents a uniaxial compression state at failure, |σyy| = −σyy and, for what previously 

stated, σ0,0° = −σyy. Eq. B.8 can be rewritten as follows: 

                     0sinsinsin 0,00,0   KKK yyyyyyyy                  (B. 9) 

Eventually, UCS for ω = 0 writes: 
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Eq. B.10 corresponds to the classical UCS for an isotropic Drucker-Prager criterion. But, if the 

unconfined compression occurs again along y, for ω = 90° (perpendicular to bedding in Figure 

B.1), the modified stress tensor (Eq. B.6) writes: 
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At the elastic limit: 
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In analogy with σ0,0°, the UCS at ω = 90° writes: 
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It is finally possible to write the expression for the anisotropy scaling factor, h, as a function of 

the ratio between UCS at 0° and 90°, as reported in Chapter 3, Section 3.2: 
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B.2   Mohr-Coulomb type failure criterion based on a second (II) order rotation tensor 

        (neglecting the axial stress component σzz)  

In the following, this anisotropic criterion, as reported in Chapter 3, Section 3.4, is detailed and 

its analytical expressions derived from the failure function f are provided, for the cases of 

unconfined loading and loading confined with a stress pC. 

The unit normal vector n defines the second order rotation tensor M accounting for material 

anisotropy, as done in the previous 3d criterion: 

                                          nnMn  hδij     ;     sincos
T

                           (B. 15a-b) 

Similarly, a modified stress tensor σ~  to identify the stress components at failure is written as: 

                                                                 MσMσ  T~                                                            (B. 16) 

Formalizing the 2d tensor M:  
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Figure B.2: volume element scheme for the anisotropic Mohr-Coulomb type failure criterion. 
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The final expression of σ~ in two dimensions writes: 
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Adopting every component in Eq. B.18, the bi-dimensional failure criterion writes:  

                                      KDgDf yyxxxyyyxx )(~~sin~4~~,~ 22
 σ                         (B. 19) 

For uniaxial compression along the vertical axis y (σxx = σxy = 0): 
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The modified stress tensor writes:  
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In this configuration, the criterion when failure is firstly attained (D = 0, g(D) = 1) writes: 
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When f = 0, again, it is possible to write |σyy| = −σyy and σ0,ω  = −σyy (σ0,ω ≡ unconfined compressive 

strength UCS, ω). The analytical expression of σ0,ω writes:   
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In Eq. B.23, these coefficients are defined: 
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as a deviatoric coefficient, and: 

  22222

sph sin1cossinsinC  hh                                                                                (B. 25) 

as a spherical coefficient. 
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The function of σ0,ω, periodical with ω, is, traced in Figure B.3 for φ = 20°, K = 15 MPa and h = 

0.2. It is possible to select an appropriate interval of variation covering 90°, to evaluate different 

combinations of σ0,ω evolution with the bedding inclination (e.g., monotonic or not). 

Back to Eq. B.19, a compression along vertical axis y with a confinement along x is now 

considered: σxx = pC, σyy > 0, σxy = 0. The stress tensor writes: 
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The modified stress tensor writes: 
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With (applying Eq. B.16): 
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The criterion at initial yielding (D = 0, g(D) = 1) writes: 

           

        
    

       0sin1cossincos1sin

sin1cos1cossin4

sin1cossincos1~

2222222

222222

22222222







Khphph

hphh

hphphf

yyCyyC

yyC

yyCyyC





σ

     (B. 31) 

It is possible to rewrite the criterion above separating, each time, respectively for pC and σyy, their 

coefficients, expressed as function of h and ω: 

 

 
Figure B.3: σ0,ω, as a function of ω, with φ = 20°, K = 15 MPa and h = 0.2. 
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In the following, the coefficients in Eq. B.33 are expressed: 

   22222 cossincos1A hh       ;      22222 sin1cossinB  hh                        (B. 34a) 

  2cos1cossin2C hh      ;      2sin1cossin2D hh                                             (B. 34b)             

   22222 cossincos1E hh      ;      22222 sin1cossinF  hh                          (B. 34c) 

Since the confinement pC is a constant boundary condition, it is possible to write again: 

const.AA  Cp                                                                                                                  (B. 35a) 

const.CC  Cp                                                                                                                  (B. 35b) 

const.EEsin  Cp   ;   const.FFsin                                                                       (B. 35c) 

As a function of the vertical load, σyy, only, the criterion writes: 

                                       Kf yyyyyyyy   FEDCBA
22

                              (B. 36a) 

                                            yyyyyy K  FEDCBA
22

                                   (B. 36b) 

From Eq. B.36b, one derives: 

                       222222
FFE2EFEDCBA yyyyyyyyyy KKK               (B. 37) 

It is possible, eventually, to reduce the entire equation to a second order polynomial: 

                         0ECAFEDCBA2FDB
2222222  KK yyyy                    (B. 38) 

Since, at failure, σ0(pC),ω  = −σyy, the criterion writes: 

                                                 0302

2

01  apapa CC 
                                             (B. 39a) 

with the following coefficients: 

 222

1 FDB a                                                                                                                 (B. 39b) 
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Figure B.4: σ0(pC = 12 MPa),ω as a function of ω, with φ = 20°, K = 15 MPa and h = 0.2. 

  FEDCBA22  Ka                                                                                                     (B. 39c) 

  222

3 ECA  Ka                                                                                                         (B. 39d) 

According to the analytical solution for second order polynomials, the expression of σ0(pC),ω 

writes:   

                                                  
1

31

2

22

0
2

4

a

aaaa
pC





                                             (B. 40) 

witH 01 a . In particular, it is possible to verify that, to obtain positive values of σ0(pC),ω, the 

unique solution corresponds to: 

                                                  
1

31

2
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0
2
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a

aaaa
pC





                                             (B. 41) 

Similarly to σ0,ω, the function  σ0(pC),ω is periodical with ω. It is traced in Figure B.4 for the same 

failure parameters adopted in Figure B.3, with a confinement σxx = pC = 12 MPa. Again, in this 

case, an interval of inclination ω, covering a variation of 90°, can be chosen to describe a 

monotonic or non-monotonic trend for σ0(pC),ω, according to confined compression data at failure.  

 

B.3   Mohr-Coulomb type failure criterion based on a fourth (IV) order rotation tensor     

         (neglecting the axial stress component σzz)  

 
Figure B.5: volume element scheme for the IV order anisotropic Mohr-Coulomb type failure criterion. 
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The last anisotropic criterion proposed (Chapter 4, Section 4.3), is detailed here and its analytical 

expressions derived from the failure function f are provided, for unconfined loading and loading 

confined with a stress pC. By the unit vectors n and m (Figure B.5), the fourth order rotation tensor 

H accounting for material anisotropy is defined as: 

                                          T sincosn     ;       T cossin m                        (B. 42a-b) 
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2

                        (B. 43) 

hn and hs are defined, respectively, the normal and shear anisotropic scaling factors. The  modified stress 

tensor σ~  is written as: 

                                                                    σHσ ~                                                             (B. 44) 

Eq. B.44 is explicitly formalized for a generic 2d stress state:  
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Since σ~ xy = σ~ yx and σxy = σyx , several simplifications occur in H in Eq. B.45, in particular, 

referring to the matrix components, H33 = H44 = H34 = H43. Moreover, the matrix is overall 

symmetric, i.e. Hij = Hji, i, j. Thus, Eq. B.45 can be reduced to write H as a 3x3 matrix as reported 

in Chapter 4, Section 4.3. According to Eq. B.42-B.43, the terms Hijhk are written: 

 2244

11 cossin2sincos snxxxx hhHH                                                                 (B. 46a) 

 2244

22 cossin2sincos snyyyy hhHH                                                               (B. 46b) 

   2222

2112 cossin2cossin1 snyyxxxxyy hhHHHH                                       (B. 46c) 

   





4sin
4

cossinsincos

cossincossin2
2

cossinsincos

33

2233

41311413

s
n

s
n

yxxxxyxxxxyxxxxy

h
h

h
h

HHHHHHHH







                                      (B. 46d) 

   



 2233

42322423

sincoscossin2
2

sincoscossin s
n

yxyyxyyyyyyxyyxy

h
h

HHHHHHHH

 



 

193 

 4sin
4

sincoscossin 33 s
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h
h                                                                               (B. 46e) 
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                  (B. 46f) 

It is possible to demonstrate that, if hn = hs = 1, H is a IV order identity matrix, i.e. δijhk. Neglecting 

the axial component σzz, the bi-dimensional failure criterion writes:  

                                       KDgDf yyxxxyyyxx )(~~sin~4~~,~ 22
 σ                            (B. 47) 

For uniaxial compression along the vertical axis y (σxx = σxy = 0), the modified stress tensor writes: 
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σ~                                 (B. 48) 

Eq. B.47 when failure is firstly attained (D = 0, g(D) = 1) writes: 

                             KHHHHHDf yyyyyyxxyyyyxyyyyyyyyyxxyy   sin4,~ 2222
σ  

                                0sin4
22

 KHHHHH yyyyyyxxyyyyxyyyyyyyxxyy                           (B. 49) 

Since it is possible to replace |σyy| with −σyy and σ0,ω  with −σyy (σ0,ω ≡ unconfined compressive 

strength UCS, ω). The analytical expression of σ0,ω writes:   

                                

   yyyyxxyyxyyyyyyyxxyy HHHHH

K





 

sin4
22

,0
                                  (B. 50) 

In Eq. B.50, as done in Paragraph B.2, Eq B.23-B.25, two coefficients can be defined:  

  22

dev 4C xyyyyyyyxxyy HHH                                                                                                   (B. 51) 

as a deviatoric coefficient, and: 

 yyyyxxyy HH  sinCsph
                                                                                                            (B. 52) 

as a spherical coefficient. Eq. B.50, defined with these coefficients, allows to trace easily the 

periodical function of σ0,ω in the interval [0 ; π]. It is plotted in Figure B.6 for φ = 20°, K = 15 

MPa and hn = hs = 1.44. The scaling coefficients were set to this value to obtain, for ω = 0 and 

90°, the same σ0,ω values reported in Figure B.3 for the previous model for 2d anisotropic failure, 

based on the definition of the II order tensor M. In the latter case, it was necessary the selection 

of an interval within 90° to reproduce a monotonic or non-monotonic behaviour. Here, it is 

possible to calibrate directly the scaling coefficients to hn and hs, for the same interval covering 
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90°, to evaluate different combinations of σ0,ω evolution with the bedding inclination (e.g., 

monotonic or not). 

The analytic expression of material strength with ω exists, similarly, if the compression along 

vertical axis y occurs with a confinement along x, i.e. σxx = pC, σyy > 0, σxy = 0. The stress tensor 

writes: 
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The modified stress tensor writes: 
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With (applying Eq. B.45 and Eq. B.46a-f): 

                                                        
yyxxyyCxxxxxx HpH  ~                                                  (B. 55) 

                                                        
yyyyyyCyyxxyy HpH  ~                                                   (B. 56) 
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                                                  (B. 57) 

The criterion at yielding (D = 0, g(D) = 1) writes: 
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As done for the precedent failure criterion, Eq. B.58 is rewritten to separate pC from σyy: 
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Figure B.6: σ0,ω, as a function of ω, with φ = 20°, K = 15 MPa and hn = hs = 1.44. 
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To simplify the notation in Eq. B.59: Hxxxx = a; Hyyyy = b; Hxxyy = Hyyxx = c; Hxyxx = d; Hxyyy = e. It 

is rewritten as follows:  

                               
        
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The left part of Eq. B.61 can be re-adjusted as: 

                                  yyCyyC pp  de8bcca2e4bcd4ca 222222
                 (B. 62) 

Confinement pC is a constant boundary condition; new coefficients are defined for Eq. B.62: 

   Ad4ca 222
 Cp                                                                                                            (B. 63a) 

   Be4bc 22
                                                                                                                 (B. 63b) 

    Cde8bcca2  Cp                                                                                                    (B. 63c) 

Eq. B.61 can be rewritten as: 
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With: 

                                    CpK casinK         ;       bcsinD                                (B. 65a-b) 

The right part of Eq. B.64 can be developed and the entire equation, replacing σyy with σ0(pC),ω, is 

re-adjusted as: 

                                       
      0KADK2CDB

DK2DKCBA

222

2222





yyyy

yyyyyyyy


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                                 (B. 66) 

Eq. B.66 corresponds to a second order polynomial with the following coefficients: 

 
Figure B.7: σ0(pC = 12 MPa),ω as a function of ω, with φ = 20°, K = 15 MPa and hn = hs = 1.44, compared 

with the precedent σ0,ω, with no confinement (e.g. Figure B.6). 
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 2

1 DBb                                                                                                                           (B. 67a) 

 DK2C2 b                                                                                                                       (B. 67b) 

 2

3 KA b                                                                                                                           (B. 67c) 

It is verified, to obtain positive values of σ0(pC),ω, that the solution of Eq. B.66 corresponds to: 
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Again, the function σ0(pC),ω is periodical with ω. It is traced in Figure B.7 for the same failure 

parameters adopted in Figure B.6, with a confinement σxx = pC = 12 MPa. In Figure B.7, the plot 

of σ0(pC),ω is compared with the precedent, for unconfined loading. 

 

B.4   Elastic-damage stiffness tensor with no damage expansion along z accounting for a    

        horizontal Young modulus Ex = Ez > Ey (vertical Young modulus). 

This formulation is based on the homogenisation of stiffness parameter related to solicitations 

along the axis of transverse isotropy, i.e. axis y Figure B.8. The horizontal stratification 

corresponds to a sequence of discontinuities with negligible thickness and equidistant d within 

the medium (matrix), which is characterized by isotropic elastic parameters EMAT = Ex and ν. 

Normal and shear stiffness of horizontal inclusions are identified by Knn and Ktt. The ratio Ktt/Knn 

is indicated by κ. Elastic-damage stiffness tensor is defined starting from the correspondent 

compliance matrix, for a 2d, plane strain problem including the axial stress σzz normal to Γ in 

Figure B.8, where damage D may occur. Based on the formulation proposed by Pouya et al. [75], 

the following compliance matrix can be written: 

 

Figure B.8: 3d model for stratified formation behind the section Γ for 2d plane strain excavation problem. 
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In Eq. B.69, according to the approach described in Chapter 3, Section 3.3, the explicit parameters 

describing material’s anisotropy for elasticity are Ex and Ey. Both Ey and the homogenized shear 

modulus µHOM are related to Knn and Ktt according to the following equations: 
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From Eq. B.70: 
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Eq. B.71 can be rewritten as: 
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From Eq. B.69 and B.73, the anisotropic elastic-damage compliance matrix, with damage on Γ, 

writes: 
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C                    (B. 74) 

The inversion of matrix in Eq. B.74, performed numerically, provides the elastic-damage stiffness 

tensor C
~

 in Eq. B.75 and B.76a-g. These have been implemented in a FORTRAN subroutine, 

structured according to the procedure in Figure A.1, and processed in POROFIS. 
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In the following, each coefficient Aij is reported: 
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                                                                                                                  (B. 76c) 

   DEA y  1112                                                                                                      (B. 76d) 

 yx EEA  13                                                                                                              (B. 76e) 

   132 yEA                                                                                                                  (B. 76f) 

        
     1121

122111 22

44









yx

yxy

EED

DDEDEED
A                                     (B. 76g) 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 


