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Résumé

Cette thése est consacrée a la modélisation de la propagation des ondes planes dans les
plaques multicouches infinies, dans le cadre de 1’élasticité linéaire. I.’objet du travail est de
trouver une approximation analytique ou semi-analytique des relations de dispersion des
ondes lorsque le rapport de I’épaisseur de la plaque sur la longueur d’onde est petit. Ces
relations de dispersion, liant la fréquence angulaire et le nombre d’onde, fournissent des
informations clés sur les caractéristiques de propagation des différents modes. On propose
dans cette thése deux modélisations : le modéle du Bending-Gradient et la méthode des
développements asymptotiques. La pertinence de ces méthodes est testée en comparant
leurs prédictions & celles des théories de plaques bien connues, et & des résultats de réfé-
rence obtenus par la méthode des éléments finis. Au préalable, dans la premiére partie de
la thése, une justification mathématique de la théorie du Bending-Gradient dans le cadre
statique est réalisée a 'aide des méthodes variationnelles. Il s’agit d’abord d’identifier
les espaces mathématiques dans lesquels les problémes variationnels du Bending-Gradient
sont bien posés. Puis, des théorémes d’existence et d’unicité des solutions correspondantes
sont ensuite formulés et prouvés. La deuxiéme partie est consacrée a la formulation des
équations du mouvement du Bending-Gradient. Des simulations numériques sont effec-
tuées pour plusieurs types d’empilements, permettant ainsi de tester la validité du modéle
pour la modélisation de la propagation des ondes de flexion. La troisiéme partie est dédiée
a 'analyse asymptotique des équations tridimensionnelles du mouvement, menée a bien
grace a la méthode des développements asymptotiques, le petit paramétre étant le rap-
port de I'épaisseur sur la longueur d’onde. En supposant que les champs tridimensionnels
s’écrivent comme des séries en puissance du petit paramétre, on obtient une succession de
problémes a résoudre en cascade. La validité de cette méthode est évaluée par comparaison
avec la méthode des éléments finis.
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Abstract

This thesis is dedicated to the modelling of plane wave propagation in infinite multilayered
plates, in the context of linear elasticity. The aim of this work is to find an analytical or
semi-analytical approximation of the wave dispersion relations when the ratio of the thi-
ckness to the wavelength is small. The dispersion relations, linking the angular frequency
and the wave number, provide key information about the propagation characteristics of
the wave modes. Two methods are proposed in this thesis : the Bending-Gradient mo-
del and the asymptotic expansion method. The relevance of these methods is tested by
comparing their predictions to those of well-known plate theories, and to reference re-
sults computed using the finite element method. Preliminarily, the first part of the thesis
is devoted to the mathematical justification of the Bending-Gradient theory in the sta-
tic framework using variational methods. The first step is to identify the mathematical
spaces in which the variational problems of the Bending-Gradient are well posed. A series
of existence and uniqueness theorems of the corresponding solutions are then formulated
and proved. The second part is dedicated to the formulation of the equations of motion
of the Bending-Gradient theory. Numerical simulations are realized for different types of
layer stacks to assess the ability of this model to correctly predict the propagation of
flexural waves. The third part is concerned with the asymptotic analysis of the three-
dimensional equations of motion, carried out using the asymptotic expansion method, the
small parameter being the ratio of the thickness to the wavelength. Assuming that the
three-dimensional fields can be written as expansions in power of the small parameter, a
series of problems which can be solved recursively is obtained. The validity of this method
is evaluated by comparison with the finite element method.
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Introduction

La propagation des ondes est I'un des phénoménes physiques les plus usuels, dont I'impor-
tance pratique est considérable, étant a la base de la transmission d’informations diverses
dans notre environnement quotidien (propagation de la lumiére, du son, d’ondes radios,
...). C’est un domaine trés vaste ayant des applications dans plusieurs disciplines.

En géophysique par exemple, les tremblements de terre sont détectés en mesurant les
ondes qu’ils créent. Les ondes sont aussi utilisées pour les prospections du pétrole et du
gaz et pour étudier la structure géologique de la Terre.

Une autre application trés commune des ondes est le controle non destructif (CND) visant
a déceler la présence de failles dans une structure sans avoir a altérer les propriétés phy-
siques de celle-ci. Le controle non destructif est capital pour les industries de fabrication
comme l'industrie pétroliére (pipelines, réservoirs, ...), 'aéronautique (ailes d’avion, piéces
moteurs, ...), 'industrie nucléaire (tube d’échangeur de chaleur, générateur de vapeur,...).

Nombreux sont les efforts qui ont été déployés dans le domaine des structures et des
matériaux visant & modéliser correctement la propagation des ondes dans les plaques
élastiques. Cet intérét a été suscité notamment par 'expansion récente de l'utilisation des
matériaux composites dans 1’aéronautique, les constructions navales, le transport auto-
mobile ou dans le batiment, du fait des nombreux avantages qu’ils offrent par rapport
aux matériaux métalliques conventionnels. On cite en premier leur formidable durabilité
et leur bonne résistance a la fatigue, a la corrosion et a la plupart des conditions envi-
ronnementales, ce qui leur permet de garder indéfiniment leurs structures. Les matériaux
composites sont aussi caractérisés par un grand rapport raideur/masse qui permet un
allegement conséquent des structures, notamment recherché dans les domaines précités.
Cependant, leur usage intensif reste limité par la nécessité de localiser les défauts ou les
dégradations lors de leur fabrication et donc de s’assurer de leur intégrité.

Plusieurs sont les paramétres structuraux qui influent sur le comportement mécanique
et dynamique des plaques composites : la nature des matériaux constitutifs (proprié-
tés chimiques, densité), les épaisseurs relatives des différentes couches et leurs séquences
d’empilement. Etant hétérogénes et fortement anisotropes, la caractérisation des proprié-
tés mécaniques des structures composites et la prédiction de leur réponse dynamique
représentent un enjeu important.

Dans ce travail, deux approches principales sont proposées pour étudier la propagation des
ondes élastiques dans les plaques composites infinies. De plus, une évaluation du compro-



mis entre la simplicité et 'exactitude de ces approches pour le probléme de propagation
des ondes est présentée.

La premiére se place dans le cadre de la modélisation du probléme 3D par un probléme 2D
et est basée sur un nouveau modéle de plaque en statique, créé récemment au laboratoire
Navier, connu sous le nom du Bending-Gradient. Ce modéle peut étre considéré comme
une extension aux plaques hétérogénes du modéle de Reissner-Mindlin.

Nous consacrons tout d’abord le chapitre 1 & une justification mathématique détaillée
de la théorie du Bending-Gradient dans le cadre statique par le biais des méthodes va-
riationnelles. Les définitions principales des champs statiques et cinématiques ainsi que
les équations du Bending-Gradient sont expliquées en détail. Dans notre étude, on se
concentre en particulier sur les plaques encastrées et libres. La premiére étape consiste a
expliciter les formulations variationnelles en contrainte et en déplacement du probléme en
se basant sur le principe du minimum de I’énergie potentielle et celui de I’énergie complé-
mentaire. Nous définissons ensuite les espaces fonctionnels appropriés, dans lesquels ces
formulations sont bien posées. Enfin, des théorémes d’existence et d’unicité de la solution
du probléme sont formulés et prouvés.

Le chapitre 2 concerne I’évaluation de la validité de la théorie du Bending-Gradient pour
la modélisation de la propagation des ondes de flexion dans des plaques symétriques,
hétérogénes et anisotropes. Les équations régissant la propagation des ondes dans ces
structures sont formulées en premier en tenant compte des déformations du cisaillement
transverse et en négligeant les effets d’inertie en rotation. Nous détaillons ensuite la réso-
lution et I'implémentation de ces équations. Des simulations numériques sont effectuées
pour plusieurs types d’empilements. La pertinence du modéle est testée en comparant les
résultats obtenus a ceux prédits a partir de la méthode des éléments finis spectraux. Nous
présentons aussi les résultats obtenus pour le modéle de Kirchhoff-Love et la théorie de
déformation en cisaillement du premier ordre.

La deuxiéme approche s’inspire des travaux de Lebée and Sab (2013) et consiste a mettre
en oeuvre la méthode des développements asymptotiques pour ’étude de la propagation
des ondes planes dans les plaques composites élancées.

Le chapitre 3 débute par un rappel des équations tridimensionnelles du mouvement. Les
champs tridimensionnels, solutions de ces équations, sont recherchés sous la forme d’un dé-
veloppement asymptotique en puissance croissante d’un petit paramétre, égal au rapport
de I’épaisseur sur la longueur d’onde. Le probléme initial se décompose alors en une série
de problémes simplifiés dont la résolution permet de déterminer des approximations suc-
cessives de la solution. La performance de la méthode des développements asymptotiques
est évaluée en la comparant a la méthode des éléments finis et aux théories de plaque de
Kirchhoff-Love, de déformation en cisaillement du premier ordre et du Bending-Gradient.

Nous terminons enfin par une conclusion générale qui comporte les résultats essentiels
établis dans ce travail de thése et nous proposons quelques perspectives de recherche.






Chapitre 1

The Bending-Gradient Theory for
Thick Plates : Existence and
Uniqueness Results

Ce chapitre vise a exploiter les méthodes variationnelles afin de donner une justification
mathématique de la théorie du Bending-Gradient en statique. On présente tout d’abord
les définitions des contraintes et des déformations générlisées ainsi que les équations de
compatibilité, les équations d’équilibre et les équations constitutives du Bending-Gradient.
On passe ensuite a formuler les problemes variationnels en déplacement et en contrainte.
Le principe est de montrer [’existence et ['unicité des solutions de ces problémes pour tous
types de conditions aux bords. Ce chapitre a été publié dans la revue Journal of Flasticity
sous la référence Bejjani et al. (2018).

Abstract

This paper is devoted to the mathematical justification of the Bending-Gradient theory
which is considered as the extension of the Reissner-Mindlin theory (or the First Order
Shear Deformation Theory) to heterogeneous plates. In order to rigorously assess the
well-posedness of the Bending-Gradient problems, we first assume that the compliance
tensor related to the generalized shear force is positive definite. We define the functional
spaces to which the variables of the theory belong, then state and prove the existence and
uniqueness theorems of solutions of the Bending-Gradient problems for clamped and free
plates, as well as for simply supported plates. The obtained results are afterward extended
to the general case, i.e., when the compliance tensor related to generalized shear forces is
not definite.



1.1. Introduction

1.1 Introduction

Plates are three-dimensional structures with a small dimension compared to the other
two dimensions. Numerous approaches were suggested in order to replace the three-
dimensional problem by a two-dimensional problem while guaranteeing accuracy of the
three-dimensional fields” information. The passage from the 3D problem to a 2D plate
theory is known as dimensional reduction. It also makes the theory easier to understand
and to deal with. Every two-dimensional plate theory is indeed judged based on how
well its solution approximates the corresponding three-dimensional problem. The most
common dimensionally reduced theories of thin plates are the Kirchhoff-Love and the
Reissner-Mindlin theories. The mathematical justification of these plate theories is hence
interesting and has a long history. It has been a challenging subject to engineers and ma-
thematicians throughout the past centuries. Two distinct ways to justify two-dimensional
plate theories are either by using asymptotic expansions or by using variational techniques.

The Kirchhoff-Love theory, known also as the classical theory of plates, is an extension
of Euler-Bernoulli beam theory. It dates back to 1888 and is based on the assumption
that straight lines normal to the mid-plane of the plate remain normal after deformation.
Morgenstern was the first to prove in 1959 that the Kirchhoff theory is correct for thin
plates, i.e., when the thickness approaches zero (see Morgenstern (1959)). His analysis
was performed using the two-energies principle of Prager and Synge, known also as the
hypercircle theorem (Prager and Synge (1947)). Next, Ciarlet and Destuynder established
rigorous error estimates between the solution of the 3D elastic problem and its limit
(see Ciarlet and Destuynder (1979); G. Ciarlet (1990)). Later on, another mathematical
justification of the Kirchhoff-Love theory was established by Ciarlet using convergence
theorems as the thickness of the plate approaches zero (see G. Ciarlet (1997) for more
details).

Due to its normality assumption, the classical plate theory neglects deformations caused
by transverse shear. This leads to considerable errors when applied to moderately thick
plates. Reissner Reissner (1976), Hencky Hencky (1947) and Bollé Bollé (1947) indepen-
dently developed plate bending formulations trying to eliminate the above-mentioned de-
ficiency of Kirchhoff-Love plate theory and gathered here under the usual denomination
Reissner-Mindlin theories. To this aim, they released Kirchhoft’s normality constraint,
i.e., straight lines normal to the mid-plane of the plate undergo an independent rotation
after deformation. This allowed them to take into account shear deformations through the
thickness of the plate. The Reissner-Mindlin theory is often called the first-order shear
deformation theory (FOSDT). This theory was proved to have a wider range of applicabi-
lity than the Kirchhoff-Love theory particularly for clamped plates of small to moderate
thickness when transverse shear plays a significant role (see Reissner (1985) and Hughes
(2000)). According to Reissner (1985), the Reissner-Mindlin theory is also preferred be-
cause it better represents boundary conditions since it can distinguish between hard and
soft simple support conditions.

There is a vast literature regarding Reissner-Mindlin theory. Indeed, The Kirchhoff-Love
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theory is the limit model of the Reissner-Mindlin theory when the thickness of the plate
goes to 0. This limit behavior enforces a jump of regularity of the solution and the emer-
gence of boundary layers which required specific numerical treatments (see for instance
Arnold and Falk (1996); Alessandrini et al. (1999); Arnold et al. (2002); Braess et al.
(2009). Furthermore, rigorous derivations of the Reissner-Mindlin model as well as proof
of higher-order convergence of the Reissner-Mindlin remain under discussion (see Braess
et al. (2009); Paroni et al. (2007); Neff and Hong (2009) among others).

Reissner-Mindlin’s theory is widely used in applied mechanics since it works well for ho-
mogeneous plates. However, applying it directly to laminated plates leads to discontinuous
transverse shear distributions in addition to incorrect estimation of the deflection com-
pared to exact solutions. In recent decades, many studies have been conducted in order
to try to capture correctly the effects of transverse shear deformations (see M. Whitney
(1972); Reddy (1989); Noor and Malik (2000); Diaz et al. (2001); Carrera (2002)). Re-
cently, motivated and inspired by the ideas and techniques presented in Reissner (1945),
A. Lebée and K. Sab derived a new plate theory called the Bending-Gradient theory
for thick heterogeneous plates (Lebée and Sab (2011)). This theory replaces the classi-
cal Reissner-Mindlin out-of-plane shear force by a generalized shear force related to the
first gradient of the bending moment. The Bending-Gradient theory is hence conside-
red as an extension to laminated plates of the Reissner-Mindlin plate theory. A. Lebée
and K. Sab also demonstrated that the Bending-Gradient theory cannot be reduced to a
Reissner-Mindlin theory unless the plate under consideration is homogeneous (see Lebée
and Sab (2011)). The new theory was compared to the Reissner-Mindlin theory and to
full 3D (Pagano (1969, 1970)) exact solutions in Lebée and Sab (2011). They came up
with the conclusion that their new theory gives good prediction of deflection, shear stress
distributions and in-plane displacement distributions in any material configuration. They
also extended their new theory, which was originally designed for laminated plates, to in-
plane periodic plates and they applied it to sandwich panels (see Lebée and Sab (2012a)
and Lebée and Sab (2012b)), as well as space frames (Lebée and Sab (2013)). Finally,
the Bending-Gradient theory was justified through asymptotic expansions Lebée and Sab
(2013).

We concentrate in this paper on the mathematical justification of this theory by means
of variational methods. The main emphasis is put on clamped and free plates. We are
principally concerned with identifying mathematical spaces in which the corresponding
variational problems are well-defined, in order to formulate existence and uniqueness theo-
rems for the solutions of these problems. For full details on the Bending-Gradient theory,
we refer to Sab and Lebée (2015).

The paper proceeds as follows. Section 3.2 provides a brief review of tensor calculus and
necessary notions that will be needed in this work. Furthermore, it recalls some well-known
definitions in addition to theorems and results which are essential for the problems that
we want to consider. In Section 1.3, we set briefly the 3D elastic problem for a clamped
plate then we summarize synthetically the Bending-Gradient problem.We propose next in
Section 1.4 a proper mathematical framework for the Bending-Gradient theory. Section
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1.4.1 is devoted to the stress formulation of the new plate theory then to the proof of its
well-posedness (Theorem 1). In Section 1.4.3, we present a displacement formulation which
is based on the minimum potential energy principle. In Section 1.5, we study the problem
with free boundary conditions and prove that it admits a unique solution (Theorem 4).
In Section 1.6, we discuss the problem when the plate is simply supported. It should
be underlined that throughout Sections 1.4-1.6, we treat the particular case where the
compliance tensor related to the gradient of the bending moment is positive definite. In
Section 1.7, we extend the obtained results to the general case and provide corresponding
stress and displacement formulations. Section 1.8 is intended to provide a regularization
of the Bending-Gradient problem and to study the convergence of the regularized solution
to the exact solution of the problem in the general case. Finally, we conclude in Section
3.6 with some final remarks.

1.2 Notations and preliminaries

In this section, we introduce our notations and we recall some existing results which are
crucial for our analysis.

1.2.1 Tensors

Throughout this paper, we shall assume that all vector spaces are over R. First, second,
third, fourth and sixth rank tensors are denoted by X, X, X, X, X, respectively. They

comply with specific symmetries detailed in the following. Note that these notations are
used for both 2D and 3D tensors. For tensor components, we use Greek indices to represent
2D tensors («, 5,7v.. = 1,2) and Latin indices to represent 3D tensors (i, j, k.. = 1,2, 3).
For example, (X;;) denotes the 3D tensor X whereas (X,3) designates the 2D tensor X.
For simplicity purposes, we adopt the Einstein summation convention on repeated indices
when manipulating expressions involving tensors.

The transpose operation ‘e is applied to any order tensors as follows : (TX)aB...ww =
Xy, pa- Four symbols are defined : (-), (:), (:) and (i) for contraction on, respectively,
one, two, three and four indices. By convention, the closest indices are successively summed
together in contraction products. Thus, X : Y = (XogysxuYuns) and X - Y = (Xop,Y,)
is different from Y - X = (Y, Xop,).

The identity for 2D vectors is § = (dap3) where 0,5 is Kronecker symbol (605 = 1 if
a = f, 0,3 = 0 otherwise). The identity for 2D symmetric second order tensors is % where

Gafys = %((LW(SM + 00503,). The reader might easily check that ¢ : 1=1, 1i1 = 3/29

NS,
NS

and 414 = 3.

The gradient of a scalar field X writes VX = (X j3) while the gradient of a vector
or a higher-order tensor fields writes X ©« V. = (X,p5,), for instance, where © is the
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dyadic product. The divergence of a vector field or a second order tensor field is noted
X -V = (X,0) and X - V = (X,p3), respectively.

Let R, R and R be the spaces of 2D first, second and third rank tensors which comply
with the following symmetries :

(1.1) R ={X = (Xap) € RY Xop = Xga},

(1~2) R = {X = (Xaﬂv) S RS‘ Xocﬁ'y - Xﬂm}
The spaces R and R are respectively endowed with the following scalar products :
X X' = XaBXég

and
TXEXI = Aafy éﬂy
Any 2D third-rank tensor X in R can be orthogonally decomposed into a spherical part
X°® and a deviatoric ! part X9 as :
X=X+ X

where ]
Zﬁy = § (Xoa/)\(su)\éﬁ'y + X,BV/\dl/)\(Sa'y) .

One can easily check the following properties :
X5:X4=0, X':§=0.
Note that any tensor of the form

(1.3) X =i

XS
>

where X € R, is a purely spherical tensor. Conversely, for any given X € R, there exists
a unique vector X ® extracted from its spherical part such that (1.3) is satisfied for X®.
This vector is given by :

2 2
1.4 X*= X:6=°X":
(1.4) X' =2X:§=2X":4

1. Whereas the spherical and deviatoric part of a second rank tensor is conventional, this denomination
is understood here for the two last indices of a third rank tensor.
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1.2.2 Functional spaces

Let w be a bounded, connected, open subset of R? with a Lipschitz-continuous boundary.
We denote by C*°(w) the space of infinitely differentiable functions on w and by D(w)
the subspace of functions with compact support in w. We further refer to D'(w) as the
space of distributions on w. The fundamental Sobolev space L?(w) is the space of square
integrable functions on w. For each integer m > 1, H™(w) and H}(w) denote the usual
Sobolev spaces. To avoid ambiguity, we will use the tensorial notations as mentioned
in section 1.2.1. Namely, L?(w), L? (w) and L*(w) denote, respectively, the space of
vector fields, symmetric second rank fields and symmetric third rank fields having their
components in L? (w). The associated norms are defined bas :

HQHZLQ(W):/WQ ‘a, “‘~L||22<w>:/w‘~“‘3’ lallzz, Z/MTQEQ

Here, we have used the fact that tensors a of L? (w) are symmetric, i.e., 7@ = a. The well-
posedness of the Bending-Gradient problems relies on some intermediate theorems and
results which we state here as Lemmas. First, Lemma 1 to Lemma 4 have been already
established for three-dimensional tensor fields in Sab et al. (2015) and their straightfor-
ward extension to the case of two-dimensional tensors will not be detailed. Then, Lemma
5 is an original contribution which will be proved below.

Lemma 1. The set defined by
(L.5) H(divw) = {® L’ (w); & -V eL*w)

equipped with the scalar product

(16 (@08, gy = [ @138, (2,9) (8, 9)

w

1s a Hilbert space.

and its associated norm H'”H(dw )

We now give an appropriate sense to the Dirichlet boundary condition related to H (div, w) :
®-n = 0. It is well-known that we can define the trace of H'(w) tensors on dw. However,
the trace of a tensor belonging to L?(w) is not defined. Since ® € H(div,w), it is less
regular than a H'(w) tensor. Nevertheless, we can set its normal trace ® - n to zero in
the following weak sense : Let ® in C*(w) and M in C*(w) be smooth fields, we have :

(1.7) [Mi(@9)+rew)ie= [ Mo n)

~ =

ow

Since (1.7) holds true for any given M on dw, imposing ® - n = 0 is thus equivalent to
imposing :

(18) [M:(@9)+ o9y e =0

for all M € C*(w). The following definition is hence very natural.



1.2. Notations and preliminaries

Lemma 2. The set defined by :
(1.9) H (div,w) = {® € H(div,w); (1.8) holds true for all M € H' (w)}

is a closed subspace of H (div,w) equipped with its norm H'HH( . Hence, H (div,w)

div,w)

endowed with the scalar product (e, 0>H(dw ) 15 a Hilbert space.

Lemma 3. Let (@k)keN* be a sequence of third-rank tensors defined over Ijo(dz'v,w). We
denote by @2 the deviatoric part of ®, . If ®, satisfies

C
H(l)k: 'ZHIN}Z(QJ) + H(I)C;HLQ(W) S T

where C'is a strictly positive constant, then ®, strongly converges to zero in H (div,w).

Lemma 4. There ezists a strictly positive constant C' such that, for oll ® € H (div,w),
there exists a two-dimensional rigid motion vector field r of the form :

(1.10) r(z1,22) = (u — wWTa, v + wxy),
such that :

. 1/2
(1.11) |® —EHL?(w) <C <H‘;) 'ZHQIN;Q(M) + Hi)deQ(w))

Here, (u,v) and w are respectively the in-plane rotation vector and the global out-of-plane
twist of the rigid motion field r, ®% denotes the deviatoric part of ® and ®° is the vector
field associated to the spherical part of ® through (1.4).

Lemma 5. Assume that for each integer k, there exists a vector field v, of the form
(1.10)
T (21, 02) = (up — Wiz, v + WiT1)

and a scalar field Wy in H'(w) such that :

as k goes to infinity. Then, wy, —> 0 and there exists a sequence of real numbers denoted
by 2 such that :

(113) ||Wk + UpT1 + Vo + ZkHHl(w) — 0.
Moreover, if Wy, is in Hy(w) for all k, then (uy,v) — (0,0) and

(1.14) Wl g2y — O
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Démonstration. Let us decompose 7, into two terms r, = z,(cu’v) + r ) with z,(g“’v) =
(ug, vg) and v}’ = (—wg2, wrxy). Then, the limit (1.12) can be written as :

(1.15) Hz;”—i-z(Wk+ukx1+vkx2)|]Lz(w) — 0

Assume first that the origin point (0,0) is inside the domain w. Since w is open, there
exists a disc D, in w of radius p centered at (0,0). We have,
(1.16)
w 2 w 2
ey +V (Wi + upay + vkxg)HLz(w) > ey + V¥V (Wi + ugxy + ka2)||L2(Dp) =

e 02, IV (W + wpwy +opz2) |32, + [ 208 V(Wi 4wz + vys)
L b, L"p,)

P

Integrating by parts the last term in the above right-hand side yields :

/ QE;: . 2 (Wk + upr1 + Ukﬂig) = — / 2 (Ekw . 2) (Wk + upr, + UkSUg)
D, D,
(1.17)

oD,

because r}’ - V = 0 in the bulk and r}’ - n = 0 at the boundary where n denotes the

outer normal to D,. Moreover, by a simple calculus, we obtain that Hz}fHQLz(DP) = Zptwy.

Consequently, by the limit (1.15), we prove that wy — 0 when the origin point is inside
w.

Now, if the origin point (0,0) is not inside the domain w, we can make the change of
variables
(z1,22) = (2, 23) + (c1, ¢2)

where (cq, ¢2) is a point inside the domain w and (x), z,) belongs to the translated domain
w’. Then, we define on the domain w’ the fields :
(@, 75) =14 (21, 22) = (u), — wiwy, v, + wry)
and
Wi (@}, 25) = Wi(z1, 22)
with
(u,, vy, W) = (up — WiC2, Vg + WEC1, Wi).
Then, by construction, the origin point (0, 0) is inside the domain w’. Applying the above

result to the fields r) and W/, we prove that w, — 0 in the general case and, conse-
quently, the limit (1.15) becomes :

(1.18) AU

L= IV (Wi + upxy + ka?)”LQ(w) — 0,

L (w)

10
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Using the well-known Poincaré inequality, we prove that there exists a sequence of real
numbers denoted by zj such that (1.13).

In the special case where W}, is in H}(w) for all k, then using standard integration by
parts gives :

2

(1.19) AU Lo

= I Wil 2, + Hg,(j”’)

2
L*w)

Hence, the limit (1.18) implies (ux, vx) — (0,0) and (1.14) by the Poincaré inequality. [

1.3 The Bending-Gradient problem

In this section, we first set the 3D laminated plate configuration. Then, we provide an
overview of its reduction to a 2D problem according to the Bending-Gradient theory. The
definitions of the generalized stresses and strains of this theory are recalled, as well as the
compatibility conditions, the equilibrium equations and the constitutive equations. We
finally present the variational formulations of this linear problem without specifying the
functional spaces to which must belong the unknown kinematic and static fields.

1.3.1 The 3D configuration

The physical space is endowed with an orthonormal reference (O, e, e,, e ;) where O is
the origin and e, is the base vector in direction i € {1,2,3}. We consider a linear elastic
plate occupying the 3D domain Q = w x |—£, L] where w C R? is the middle surface of
the plate and t its thickness. The boundary of the domain, denoted by 0f2, is decomposed
intro three parts (Figure 2.1) :

09 = Oy U O U003,

1.20 t t t
( ) with 8Qlat:3wx}—§,§{ and aﬁgi:wx{iﬁ}.

where Ow is the boundary of w.

Focusing only on out-of-plane loadings, the plate is subjected to forces per unit surface
on 9Q5 of the form :

(1.21) T~ (21, 22) = (070, %p (w17x2)> )

where p is a given function on w.

In the following, we assume that there are no body forces and that the plate is fully
clamped on its lateral boundary 0€),.

11
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FIGURE 1.1 — The 3D configuration

The fourth-rank 3D elasticity stiffness tensor (Cj;x;) has both the minor and major sym-
metries Cjji = Cjiy = Crii; and it is positive definite. Its inverse is called the 3D elastic
compliance tensor and is denoted by (S;jx). The tensor (S;jx) possesses the same sym-
metries as (Cj;x;) and it is also positive definite.

We suppose that the constitutive material is invariant with respect to translations in the
(21, z2) plane. Therefore, C;ji; does not depend on (x4, z2) and is an even function of x; :

(1.22) Cijii (x3) = Ciju (—3) .
Furthermore, we have that :
(123) Cgagfy — Un333 — 0

In this case, the constitutive material is said to be monoclinic.

The following notations are needed for the partial compliance tensors :

-1
(1.24) S7 = (Saprs), C7 = (§") , 87 = (45a3p3) ,

where S7 corresponds to plane stress compliance, C” to plane stress stiffness and S” to

transverse shear compliance.

The 3D elastic problem is to find in 2 a displacement field u, a stress tensor field g and
a strain tensor field g, solution of the following equations :

(1.25a) (g-V =0 on Q,

(ueV +Vou) on Q,

12
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1.3.2 The Bending-Gradient theory

We now introduce the main definitions and equations of the Bending-Gradient theory,
which main purpose is to replace the full 3D model by a reduced 2D plate theory and to
be able to reconstruct the 3D solution fields from the 2D solution fields.

Following the ideas of Reissner (1945) for homogeneous plates, Lebée and Sab Lebée and
Sab (2011) derived a new plate theory, called the Bending-Gradient theory, suitable for
heterogeneous plates. In this theory, the full gradient of the bending moment is considered
as a generalized shear stress. Note that this theory cannot be reduced to a Reissner-
Mindlin theory in the general case. However, it is turned into a Reissner-Mindlin theory
when the plate under consideration is homogeneous (see Sab and Lebée (2015), Lebée and
Sab (2015), Lebée and Sab (2015) for more details). This shift between theories is directly
related to the positive definiteness of the generalized shear constitutive tensor defined in
the following. In this section and up to Section 1.7 it is assumed that the generalized shear
constitutive tensor is positive definite. Section 1.7 will treat the case when the definiteness
is lost.

1.3.2.1 Generalized stresses

The Bending-Gradient theory generalized stresses are :
— The bending moment tensor M related to the 3D local stress (o;;) by :

M = (Mag) = ({(23045))

where the integration through the thickness is noted (o) : [?, f(z3)dzs = (f). We keep
2
in mind that the second-order tensor M has the following symmetry :

Mg = Mg,

— The generalized shear force, denoted by R and defined as the gradient of the bending
moment :

R=MoV.

In terms of components, this relation is written as R,y =
third-order tensor R,s, complies with the following symmetry :

Note that the 2D

afyy:

Ropy = Rpan-

Remark 1. The usual transverse shear force Q is defined from the 3D stress field g as
follows :

Q = (Qa) = ((0a3))

It is interesting to note that the 3D equilibrium equations enforce the following relation
between Q and R :

(1.26) Q=i:R=M 'V

—~ ~

XS,

13
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which can be written in terms of components as :

(1.27) Qa = Raps = Map,s

1.3.2.2 Generalized displacements

The Bending-Gradient generalized displacements are (VV, i)) The scalar W is called the
out-of-plane displacement of the plate (or deflection) and ® is the generalized rotation
tensor. The 2D third-order tensor ® complies with the following symmetry :

Pagy = Ppay

These displacements are interpreted physically as suitable averages of the 3D displace-
ments over the thickness of the plate. The reader is referred to Sab and Lebée (2015)
(Chapter 5) for corresponding details.

The Bending-Gradient generalized strains, which derive from (VV, CE), and constitute the
dual of the generalized stresses (M , B) are :
— The curvature second-order tensor x defined by :

(1.28) X=®-V or xus=Papy,

=
~

— The generalized shear strain I' given by :
(1.29) E = (l) + g ZW or Fa[gv = q)ocﬁ’y + ia575W5
I is a third-order 2D tensor which comply with the following symmetry :

Lagy = Dgay
Equations (1.28) and (1.29) are called the compatibility conditions on w.

In the following section, we assume clamped boundary conditions. Nevertheless, various
boundary conditions (free, simply supported..) are also considered in this paper (see Sects.
1.5 and 1.6). The clamped boundary conditions on dw read :

(1.30) ®-n=0 and W =0 on OJw.

where n is the outer normal vector to Jw.

Note that the kinematics of the Bending-Gradient theory coincides with the Reissner-
Mindlin kinematics if the deviatoric part of ® is set to zero. We can hence interpret the
Reissner-Mindlin kinematics as the restriction of ® to i-¢, where ¢ designates a rotation

vector.

14
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1.3.2.3 Equilibrium equations

We start by recalling that integrating the 3D equilibrium equation (3.7a) leads to the
well-known Reissner-Mindlin plate equilibrium equations :

M-V =Q
(1.31) =~

Considering that (M , B) are the generalized stresses of the Bending-Gradient theory ins-
tead of (M ,Q ) for the Reissner-Mindlin theory, the above equilibrium equations become :

(1.32a) R-Ms¥V =0,
(1.32b) ii(RoV)+p=0,

in the case when the generalized shear constitutive tensor is positive definite. Otherwise,
the modified equilibrium equations are defined in Section 1.7

Note that using the first equilibrium equation to eliminate R in the second equilibrium
equation gives the equivalent form :

gi(B@)Z)—l—p: i (MeV)eV)+p=Mpas+p=0

1.3.2.4 Constitutive equations

Finally, the Bending-Gradient constitutive equations write :
(1.33)

Here, d is the classical bending compliance fourth-order tensor, inverse of the bending

stiffness fourth-order tensor D. It is given by :

(1.34) d=D" with D= <x§ga> .
Tensors d and D are symmetric positive and definite. They follow both major symmetry
TQ = D and minor symmetry Dag,s = Dgans-

The generalized shear force compliance sixth-order tensor h is given by :

(1.35) h = <T .87 SR>,

=)

Q

15
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where the fourth order tensor s®(x3) is the function of x3 defined by :

136) = [ s it 8V () = 5, (1) d

5

Tensor h has the major symmetry TQ, = h and the minor symmetries hagysec = hparsec- It

is positive but not always definite. Three particular cases should be distinguished when

dealing with h :

— The first one is when the sixth-order tensor is positive definite. In this case, its inverse
is unambiguously defined and denoted by H = Q_l.

— The second case is when the shear force compliance tensor can be written in the following
form :

h=14-h"™.4

RS

where LLRM designates a positive definite symmetric second-order tensor called the
Reissner-Mindlin shear force compliance tensor. In this case, the Bending-Gradient
theory degenerates into a Reissner-Mindlin theory. The existence and uniqueness of the
solution in this case is already established in the literature.

— The third case is an intermediate between the above mentioned cases. It will be studied
in details in Section 1.7.

In the following (except in Section 1.7), it will be assumed that the sixth-order tensor h

~

is positive definite. The Bending-Gradient constitutive equations can thus be inverted :

M=D:x,

(1.37)

1.3.2.5 Summary of the Bending-Gradient plate theory

Finally, the Bending-Gradient problem enables a good approximation of the 3D fields
introduced earlier including the effects of transverse shear. It consists in finding the ge-
neralized displacement (VV, 1)) solution of the following equations :

1.38a
1.38b V
1.38¢) R-MsV =0 and ii(RsV)+p=0,
1.38d) P

(1.38a)
(1.38b)
(
(

It should be emphasized that once we find the solution of the Bending-Gradient problem,
we can reconstruct the 3D stress and displacement fields (see Chapter 5 of Sab and Lebée
(2015) for more details).

16
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Now that we have presented the main features of the Bending-Gradient theory, it is useful
to recall its variational approach as stated in Sab and Lebée (2015). It has to be pointed
out first that generalized displacements (VV, <1>) which satisfy the boundary conditions
(1.38d) are called kinematically compatible fields. Besides, generalized stresses (M ,B)
that comply with equations (1.38¢) are designated as statically compatible fields.

1.3.2.6 Minimum of the potential energy

The principle of the minimum of the potential energy states that the solution (WBG, ‘?BG)
of the Bending-Gradient problem (1.38) renders the potential energy functional £%¢ a
minimum value on the set of kinematically compatible Bending-Gradient displacements.
Here, the potential energy £°¢ is defined as :

(1.39) gre :/wBG (26£> —/pW,

where x and I are the generalized strains related to the generalized displacements (VV, <1>)
through the compatibility equations (1.38a). Furthermore, w®“ is the Bending-Gradient
strain energy density function given by :

1 1
(1.40) wBG<Xa£>:§X193X+§T3Q5£-

1.3.2.7 Minimum of the complementary energy

Similarly, we introduce the complementary energy £**¢ of the Bending-Gradient problem
which is defined as :

(141) g*BG _ / w*BG (Ma B) ’

where w*®¢ represents the Bending-Gradient stress energy density function given by :
. 1 1

(1.42) w*BC’(]\N/I,B):§M:Q:M+§TBEQEE.

The principle of minimum complementary energy states that, among all statically com-
patible stress fields, the complementary energy functional £*®¢ assumes a minimum value
for the stress field (MP®, R®®), solution of the Bending-Gradient problem.

Having set the Bending-Gradient problem, our main concern now is to define the functio-
nal spaces in which we shall seek solutions and introduce norms in order to show that the
corresponding variational problems, namely the stress and the displacement formulations,
are well-posed.

17
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1.4 Mathematical formulation of the Bending-Gradient
problem for a fully clamped plate

We study in this section both stress and displacement formulations of the Bending-
Gradient theory presented in the previous section and show their well-posedness.

1.4.1 Stress formulation

It is based on the principle of the minimum of the complementary energy (Section 1.3.2.7).
Since the bending moment tensor M and the generalized shear force R are related by
the equilibrium equation (2.8a), the complementary energy £*®¢ will be expressed solely
in terms of M. Therefore, it can be equivalently written in the following form :

(1.43) £ (M) = [ (M Mo V) d,

where w*?¢ is defined by (1.42).

We recall that the compliance tensors d and h are positive definite in the sense that there

exists two constants ¢ > 0 and ¢ > 0 such that :
(1.44) VMeR, cM:M<M:d:M<dM:M,
(1.45) VReR, ¢'R:R<'R:

<'R:R.

=

S

Note that relations (1.44) and (1.45) also hold for the stiffness tensors D and H.

Since the generalized stresses (M , B) that comply with equations (1.38¢) are such that :
ii(ReV)=1i(MaV)eV)=(M-V) -V = Magas,

then it is natural to define the space of statically admissible generalized stress fields as
follows :

(1.46) SC(p) = {M € H'(w), Mapas+p=0in the sense of distributions } .

The variational formulation of the Bending-Gradient problem consists in minimizing the
complementary energy £*°¢ (M) with respect to all M € SC(p) :

(1.47) min {e () = [0 (M M), M €00}

18
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1.4.2 Well-posedness of the stress formulation

We now proceed to the study of problem (1.47). We establish the following result :

Theorem 1. Assume that p € H '(w) and that assumptions (1.44) and (1.45) hold.
Then, the minimization problem (1.47) admits a unique solution M®¢ € SC(p). Moreover,
M?®¢ is solution of the following variational problem :

Find M"¢ € SC(p) such that
/[;LigiMBG—i‘ <g®Z)EhE(MBG®Z):0, Vi € SC(0)

~

(1.48)

Démonstration. Let us first show that SC(p) is not empty. Indeed, let m be the unique
solution in Hj(w) of equation Am + p = 0. Then, P defined by P,5 = md,g is obviously
in SC(p). Moreover, any M € SC(p) can be decomposed as the sum of P and p in SC(0).
Namely : N

(1.49) MeSC(p) <= M=P+p, pecSC(0)

We introduce the following symmetric bilinear form on H'(w) x H'(w) :

~

o.M M) = [ M':d: MM oY) s (Mo D)

which enables us to write £*5¢ as :
, 1
£ (M) = Ja. (M, M)

Using the decomposition (1.49), it can be easily seen that the following minimization
problem :

1
(150 win{ o () +a (Bow) . wesco).
is equivalent to problem (1.47).

The space SC(0) equipped with the scalar product (., .) g is actually a Hilbert space as
shown in Appendix A.1.

T
<u,u’> =/u’:u+ (u’®2> i <u®2>-
~ N fse) S, T\ ~

Clearly, thanks to assumptions (1.44) and (1.45), the bilinear form a, (p,p/) is conti-

nuous and coercive on SC(0) and the linear map p — a, (13, u) is continuous on SC(0).

See Appendix A.2. Hence, by the application of the Lax-Milgram theorem on (1.50), we
conclude that the problem (1.47) is well-posed and that its unique solution M®¢ € SC(p)
satisfies

Vi € SC(0), as <H,MBG) =0,

This ends the proof. O
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1.4. Mathematical formulation of the Bending-Gradient problem for a fully clamped plate

1.4.3 Well-posedness of the displacement formulation

Let (W, i)) be a generalized displacement field defined over w. The potential energy £°¢
expressed in terms of (W, <l>) takes the form :

(151) EBG(W,@)z/wBG (@-z,@+g-zvv)—/pw

w w

where w®° is given by (1.40).

Assuming p € H '(w), %€ is clearly well defined for (W, 1)) € KC\y where the space
of the generalized Bending-Gradient displacements which are kinematically compatible
with clamped boundary conditions is the product of Hg(w) with the space H  (div,w)
introduced in Section 1.2.2 :

KCy = Hj(w) x H(div,w).

Note that the space KCjy is a Hilbert space as the product of two Hilbert spaces.

The Bending-Gradient problem with clamped boundary conditions consists in minimizing
the potential energy £°¢ (VV, <l>) over all (VV, <l>) € KCy :

(1.52) min {E¢ (W, ®), (W, ®) € KCp}

where £°¢ is given by (1.51).

In order to show that the minimization problem (1.52) is well-posed, we introduce the
bilinear form a defined on KCy x KCy by
(1.53)

a((W,@),(W’,@’)):/(gz) D (@ V)" (@4 VW) H: (2 +i- VIV

NS
NS

~ )

w

and the linear form b defined on KCy by

(154) b(v.@) = [ o

w

Hence, £8¢ (I/V, i)) can be written as :
£ (W, ) = La (W, @), (W,2)) ~b (W, ).

Clearly, the linear form b is continuous on KCj (see Appendix A.3). Furthermore, the
bilinear form a is symmetric and continuous on KCy x KCy (see Appendix A.4). It thus
remains to prove that a is coercive on KCj.
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1.4. Mathematical formulation of the Bending-Gradient problem for a fully clamped plate

1.4.3.1 Coercivity of the bilinear form «

Let us introduce a new bilinear form denoted by ay and defined on KCy x KCj by :
(1.55)

ox (V.2). (V.8)) = [ (@ 9): (@ 9)+7 (2+1-9W): (2 +i-2W)

w

Since D and H are positive definite, there exists a constant 8 > 0 such that, for all x € R
and all I' € R, we have :

B()N()N(—FTE)g :D:x+T:H:T

2

Hence, the coercivity of a over KCy x KCy directly follows from the below lemma, :

Lemma 6. The bilinear form ay s a scalar product on KCy and the associated norm
denoted by ||e|| is equivalent to the norm ||e|| -

Démonstration. We decompose the proof into two steps.

Step 1. Since the bilinear form ay is symmetric and positive, it only remains to prove that
it is definite on KCj in order to show that it is a scalar product. Consider (W, @) e KC,y
such that

ax (W.®) (W) = 0.
Then, ®-V =0and &+ 3 - VW = 0. We therefore have that AW = 0. This implies

that W = 0, as W € H}(w). Hence, ® = 0. Thus, ay is a scalar product on KC; and
||®|| v defines a norm on KCj.

Step 2. It is important to note that there exists a constant C' such that :

v (W, ®) € KCo, ||W, 2| = ||® 'YHQLZ(UJ) + Hiﬂri 'ZWHQLQ( )

(1.56)
2
<O W, 2|,
In order to show that the norms |-, -[| - and ||+, -[| , are equivalent, we need to prove that
there exists a constant C’ such that
(7 YOV.8) € KOy W], < C 0B

To this aim, we proceed by contradiction. Suppose that for all £ € N, there exists
(Wk, fl)k) € KCy such that :

1
Lo W2y < ¢

(1.58) | W, p

QkHKC@ =
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1.4. Mathematical formulation of the Bending-Gradient problem for a fully clamped plate

Rather than working with the third order tensor ®, it is more useful to work with its
spherical part ®° and its deviatoric part ®°. We define the spherical part ®° by :

(1.59) i@, @

=

P:9

~

[GVI )

XS

where @° is in L? (w). We can therefore write HWk, i)kaV as follows :

2
Wi @, = 12, '2“2132(«)) * H‘l’i T+ 'ZWk“Lz(w>

(1.60) ;
2 2 s
=112, Pl g2, + 1Rl L2 + 5 125+ Y Walg 2
Using (1.58), we have that ||®, 'ZHL2(W) + H(I)ZHLQ(W) < % It follows from Lemma 3

that (®,) strongly converges to zero in H (div,w). Using (1.59), we can assure that ®}
strongly converges to zero in L? (w).

Hence,
1

< —
)~ k
implies that (VW) strongly converges to zero in L? (w). Consequently, (W},) strongly
converges to zero in Hj(w). There is hence in contradiction with ||W, =1 O

|25 +2Wk||L2(w

(f}ikHKCo

1.4.3.2 Existence and uniqueness of the solution to (1.52)

The existence and uniqueness of the solution to the minimization problem (1.52) is directly
inferred from the Lax-Milgram theorem since its assumptions are satisfied. Namely, the
symmetric bilinear form a is continuous and coercive, and the linear form b is continuous.
The main result of this paper is stated in the following theorem :

Theorem 2. Assume that p € H™' (w) and that the stiffness tensors D and H are

symmetric and positive definite. Then the problem (1.52) is well-posed, i.e., there ezists a
unique solution (WBG, @BG) € KCy such that :

(Lo1) o (1% 2%9) (7. 8)) — b (1,2)
for all (W, <1>) € KCy, where a and b are given by (1.53) and (1.54). Moreover, we have
(1.62) jwre @< ellpllg-,

where c is a strictly positive constant.
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1.4. Mathematical formulation of the Bending-Gradient problem for a fully clamped plate

1.4.4 Relation between the stress and the displacement formula-
tions

The above-presented formulations, namely the stress formulation (1.47) and the displace-
ment formulation (1.52), have each respectively a unique solution, as shown respectively
by Theorems 1 and 2. We therefore proceed to show that we can derive the displacement
solution from the stress solution, and vice-versa. We state this in the following theorem :

Theorem 3. Under the assumptions stated in Theorem 2, let (WE ®°Y) be the unique
solution to the minimization problem (1.52). Consider that the generalized strains asso-
ciated to (WBG, @BG) through the compatibility conditions (1.28),(1.29) are given by

=

(163) XBG — (EBG . V ]:BG — (EBG +2 . ZwBG’

~

and that the generalized stress fields associated to (WBG, @BG) by the constitutive equations

(2.7) are

(1.64) M™ =D :x", R =H:I*

B ’ A

Then,
M* € 5C(p),

where SC(p) is defined by (1.46), and
(1.65) R*¢ = M"“sV.

Moreover, M™% is the unique solution to the minimization problem (1.47), where w*® is

defined by (1.42).

Démonstration. Since (WB¢, ®°) € KCy, relations (1.63) yield x*¢ € L? (w) and I'®° €
L? (w). Consequently, due to equations (1.64), we also have that M™® € L?(w) and
R"® € L” (w). According to theorem 2, (W"¢, ") satisfies (1.61). Therefore, we have
that, for all (W, ®) € KCy,

(1.66) /MBG (@ V) +'R™: <¢+g -ZW) = /dew

Restricting (1.66) to (W, ®) € D(w) x D(w) C KCj and considering first the particular
case where W = 0 yields after integration by parts :

1.67 R — M* V. ®) ., —0
(1.67) (F -ex A>12 (@), D(w)

This proves

(1.68) R™ =M™ sV
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1.4. Mathematical formulation of the Bending-Gradient problem for a fully clamped plate

in the sense of distributions.

Considering now the particular case where ® = 0 yields

o (o) o), 0
Hence,
(1.70) (i : BBG) YV 4p=

in the sense of distributions.
Equation (1.68) shows that the bending gradient components are in L*(w). Hence,
M?"¢ ¢ H'(w). Replacing R by M®® ¢V in (1.70) yields :

which means that M"¢ is actually in SC(p). It remains to show that M®“ is the unique
solution to the problem (1.47). Consider any element M € SC(p), and set

M =M — M™.

Clearly, M belongs to SC'(0) and, based on (1.63), (1.64) and (1.68), we have by simple
algebra :
(1.71)

S*BG(M>:8*BG (M/>+E*BG(MBG)+/M/:g:MBG+T<M/®Z>EhE(MBG@)Z)

_ g*BG (M’> 4 £*Ba (MBG)+/M’ : (?BG'Z) "‘T(M,@Z) ; (@BG+£‘ZwBG>

Recalling that the generalized displacements (WBG,QBG) belong to KCj and that the

stress field J\N/I/ belongs to SC(0), integrating by parts implies that the last term of the
right-hand side of (1.71) vanishes. Hence, we have :

£456 (M) — £°7 < M) £ ().

We end the proof by mentioning that £*¢ (]\N/Il) is positive as soon as J\N/I/ does not
vanish. O

Having studied the Bending-Gradient theory for clamped plates, we now introduce this
theory when free boundary conditions are prescribed.
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1.5. Mathematical formulation of the Bending-Gradient problem for a loaded plate with free boundary co

1.5 Mathematical formulation of the Bending-Gradient
problem for a loaded plate with free boundary condi-
tions

In this section, we study the problem with completely free boundary conditions. Since the
shear force compliance tensor is assumed to be positive definite, these conditions write as
follows when the generalized stress fields are regular enough (See Sab and Lebée (2015),
chapter 6) :

(1.72) M =0, (gsg).ﬂ:()on Ow
or in terms of components :
(173) MQB = 0, Raggna =0 on dw

Here, n is the outer normal vector to Ow.

We hence have to find W, @, x, ', M and R solution of (1.28), (1.29), (2.8), (2.7) and
(1.72). This prompts us to introduce a displacement formulation (see (1.82)) then to prove
that the corresponding minimization problem admits a unique solution (see Theorem

4). We finally establish the relation between this formulation and a stress formulation
(Theorem 6).

1.5.1 Formulation of the problem

We introduce the set of the generalized Bending-Gradient displacements which are kine-
matically compatible with free boundary conditions as the quotient space :

KC; = KC/R

where

KC = HY(w) x H(div,w)
and R is the set of the displacements (VV, fl:') in KC such that the generalized Bending-
Gradient strains (X, L‘) are identically null.

Obviously, such displacements verify ® = —3-VIW and ®-V = (=W 43) = 0. Therefore,

W is an affine function of z; and x5 and the set R is defined as follows :
L1)  R={(W®)eKC/W=-a z+p ®=—i-a, amfck]

In components, we have
W(SL’l,iEg) = 1T1 + Qo9 + 5
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1.5. Mathematical formulation of the Bending-Gradient problem for a loaded plate with free boundary co

and

1 1
(@111, Door, Pr21, Pri2, Paoe, @122) (351, 1’2) = (—@1, 0, —5@27 0, —awo, —5041) .

Clearly, the space R is a closed subspace of KC. We can therefore consider the orthogonal
projection of KC on R according to the norm ||e|| . : For any (W, ®) € KC, there exists
a unique II (VV, (P) such that :

0N V)= [0E) - (V)]

Lemma 7. The quotient space KCy, endowed with the scalar product

(Lre) ([ @] @) = (@) -1 (V@) (V.2) -1 &)

KCj >KC ’

where (W, i’) (resp. (W’,‘I")) is any element in [VV, i’} (resp. [W’,‘i’l} ), is a Hilbert

space.

Démonstration. We start by showing that the scalar product (1.76) is well-defined. Consi-
der (W, <l>) and (W*, <1>*) two elements in (W, ‘i>) Since II is a linear operator, we can

write
(W, @) I (W, @) = (W", @)~ (W, @) ~IL (7", @) — (W, )+ (W. @) -1 (W.2)
Now, (W*,®*) — (W, ®) being an element of R yields
(W, @) — (V. @) ~TL(W". @) — (W.®)) =0
We therefore have that :
(W, @) - IL(W*. @) = (W. @) 11 (W, @)
which means that the scalar product (1.76) is well-defined on KC.

We are now left to prove that KCy is a Hilbert space. To this end, let [Wn, én] € KCy,

n € N, be a Cauchy sequence in the norm HoHch. Obviously, (Wn, Qn) —1II (Wn, i’n) is
a Cauchy sequence in KC'. Hence, it converges to an element (WOO, (1)00) such that

I (We,®_) =0

since the operator II is continuous. We now see that

. . 2
[ ,] - e [ =107 @,) — (W @) 11 (7 2,) [
hence [Wn, in} converges to [VT/OO, ioo] in KCy. This ends the proof. O
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1.5. Mathematical formulation of the Bending-Gradient problem for a loaded plate with free boundary co

In the absence of kinematic boundary conditions, the global equilibrium of the plate is
impossible unless the applied transverse load p is self-balanced. Namely,

v (W, 8) € R, b(W,i)):/pW:O.

w

The above equation is equivalent to the following standard conditions stipulating that the
resultant applied force and moments are null :

(1.77) /p =0, /pxl =0 and /pr =0.

We are now in position to introduce a variational formulation on KC;. We introduce the
following linear form :

(1.78) v [W é} e KC, b([W @D — b (W, D) :/pW

where (VV, <1>) is any element in [W, <i>} . This makes sense because equations (1.77) ensure
that the above right-hand side does not depend on the choice of (VV, ‘Q) Assume that p is
in L?(w). Then, the linear form b is continuous on KC, and we have for any [VT/, 5{}} € KOy,

bV @])| =l ((w, @) - 11 (W, )|
(1.79) <C||(w,®)-1I (W&
<c|w.f

M e

We conclude that the linear form b is continuous on KC%. Let us now introduce the
following bilinear form on KCY :

(0] [ 0]) =) 200 - |

(1.80) w N
+T<§+2-ZW)5H5<<1>’+ '-ZW/>

XS

where (W, ®) (resp. (W, ®')) is any element in [W, <i>} (resp. [W’,él}). The bilinear

form a is well-defined on KC because, obviously, all the elements of [VV, i)} have the
same generalized strains ® - V and ® + ¢ - VIW. Moreover, a is continuous on KCf.

Indeed,
(1.81)

i([w.e|. . @) = |a((W.2) ~n (@), (W.@) -1 (W, @))]
<O (W.@) = IL(W, @) | (o | (W', @) — 11 (W', &
<C W, &

) e

W, ®

=

KA

KCy KCy
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1.5. Mathematical formulation of the Bending-Gradient problem for a loaded plate with free boundary co

We consider the following minimization problem :

(1.82) min {73 ([W i)]) [W é} e K(Jf},

P([w.#]) = ga([v.a]. [ir.e]) -5 ([w.4])
The well-posedness of this problem relies on the coercivity of the bilinear form @, which
we will prove in the following paragraph.

where

1.5.2 Coercivity of the bilinear form a
In order to prove the coercivity of @, we will need the following lemma :

Lemma 8. Let [VT/, Ci>] € KCy. There exist two constants ¢ > 0 and ¢’ > 0 such that

v v

W, &

<|w.2],, <<
N KC;

N

where W,ti’HjV = an ((I/V, @),(W, @)), with ay given by (1.55) and (VV, <l>) is any

element in [VT/, é}, defines a norm on KCy .

Démonstration. We decompose the proof into three steps.

Step 1. Since all the elements of [W, <i>] have the same generalized strains ® - V and
® + 3 - VIV, one can define the bilinear form ay on KCy x KCj as :

(1.83) av ([, @], W, &) = av (W, @), (v, @)
where (W, ®) (resp. (W', ®')) is any element in [W, i)] (resp. [W’, i)l}) Since the bili-

near form ay is symmetric and positive, it only remains to prove that it is definite on KC
in order to show that it is a scalar product. Indeed, if we have ay ((W, i’) , (W, QJ)) =0,

then, ®-V =0and ® +1¢- VIV = 0. Hence, (W, i’) € R and [W, é] = 0. Thus, ay is

a scalar product on KCy and ||, || defines a norm on KC}.

Step 2. We first start by proving that there exists a constant ¢ > 0 such that :

W, W, o

>c
KCf

N
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1.5. Mathematical formulation of the Bending-Gradient problem for a loaded plate with free boundary co

Let (VV, <l>) be any element in [VT/, Ci>] . As in Section 1.4.3.1, we decompose the third-order
W,

tensor ® into its spherical part ®° = ¢ - ®° and its deviatoric part &9, Hence,

can be written as follows :

V] v

2
.o =@ w5, +||leri-vw

2
(1.84) L'

3 S
=@ 'ZHINJQ(UJ) + H(I)dHLf(w) + ) [ +ZW“2LQ(W)

Besides, we have :

v v

e =

(1.85) = HW—WRH;(W) ™ HZW—ZWRHQL%)

2
e

(W—-WwF & - &%)

Fol@ - @, + 12, + 12 Tl
where we denote by (W7, ®%) the orthogonal projection of (W, ®) on R, i.e., :
II(W,®)=WFe%) eRrR
We can obviously write :

(AT UL S 2

N | —

(AT AT R S

By convexity of the square function, we obtain the following inequality :

2

% IZW - VWR|* + % |@° - 2% > H% (YW -VWR4+&°— 3R

Noticing that VW 4 ®™ = 0 by the very definition of R, then equation (1.85) and the
above inequalities yield :

v v

1
|2° + YWz, + 122, + 12 27, 2 5

v o2 1

(1.86) HW <1>H >
Koy — 4

Step 3. We are left with proving that there exists a constant ¢ > 0 such that :

(1.87) HW@H <
KC;

N

This is equivalent to the continuity of the injection of KC} equipped with the norm ||e||
into KC'y equipped with the norm H‘Hch- Considering a sequence [Wk, i)k] € KUy, keN
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1.5. Mathematical formulation of the Bending-Gradient problem for a loaded plate with free boundary co

such that H Wi, ‘i’kH — 0 as k goes to infinity, we have to prove that H W , QH —0
N KCj
as k goes to infinity.

Using (1.84), we can see that

(1.88) |25+ ¥ Wil 7,2, — 0
and that
(1.89) ||‘1’k 'ZHzQ(w) + H‘I’Z”z?(w) —0

According to Lemma 4 and the above limit, for each %, there exists a vector field r , of
the form (1.10)
T (71, 12) = (up — WiTo, V& + WiT1)

such that :
It follows from equations (1.88) and (1.90) that :

Then, according to Lemma 5, w, — 0 and there exists a sequence of real numbers
denoted by z, such that :

(1.92) Wi + upy + vgzs + ZkHHl(w) —0

In turn, wy — 0 and (1.90) implies that

1.93 |3~ 0

( ) =k Z k L2(w) —
where 7 ") = (uy, vz ). Using the definition of the norm o/ ko, and (Vi, ®,) in R defined
by :

(Vi, ®,) = (—ukxl — Upy — 2k, 8 -z,ﬁ“’”)

we have :

1o it <l ()] o
thanks to equations (1.92) and (1.93) together with (1.89). This ends the proof. O
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1.5. Mathematical formulation of the Bending-Gradient problem for a loaded plate with free boundary co

1.5.3 Well-posedness of the minimization problem for free boun-
dary conditions

We have shown in the previous sections that the bilinear form a is continuous and coercive
on the Hilbert space KC;. Moreover, we have proved that the linear form b is continuous
on KCj. As all the assumptions of the Lax-Milgram theorem are verified, we have the
following result :

Theorem 4. Assume that :
~ the transverse load p € L*(w) is such that (1.77) are satisfied ;
— the symmetric stiffness tensors D and H are positive definite.

Then, the minimization problem (1.82) has a unique solulion denoted by [WBG,Ci)BG}
which s also the unique solution of the following problem :

1.95 Find [WBG7 iBG} € KC; such that
(1.95) i ([, 2] . a]) =i ([i.2]). v[W.# e nc,

Our objective now is to build from [VT/BG, ‘iJBG] a solution to the problem formed by the

equations (1.28), (1.29), (2.8), (2.7) and (1.72). To this end, we introduce the set SCy(p)
of statically compatible moment fields which are in equilibrium (2.8) with the external
load p and with free boundary conditions (1.72), in the weak sense :

o0 s =M. [orw)ww- [ov wweneo).

Indeed, using integration by parts, it easily seen that if M € SCy(p) is regular enough,
then the equations (2.8) and (1.72) will hold true in the strong sense with R = M e V.

Theorem 5. Suppose that the transverse load p and the stiffness tensors D and H sa-

tisfy the assumptions of Theorem (4) and let [I/T/BG, EIEBG} denote the unique solution to the

v BG

minimization problem (1.82). Let (WBG7<1>BG) be any element in [WBG,@' } The gene-

ralized strains associated to (W™, ®%) through the compatibility conditions (1.28),(1.29)
are given by

(197) )NCBG — @BG . Z and ;[\\BG — QBG + 2 . ZWBGa

and the generalized stress fields associated to (WBG,CEBG) by the constitutive equations
(2.7) are

(1.98) M?®¢ =D :x" and R°° = H : I'"°.

~ ~
~ ~
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Then,
(1.99) M?®¢ € SCy(p) and R®*® = M “a V.

Moreover, the above fields do not depend on the choice of (WBG, @BG) mn [VT/BG, i)BG].

Démonstration. The proof is similar to that of Theorem (3). Since [WBG, ‘iBG] satisfies

v BG

(1.95) (we refer to Theorem (4)), we have that, for all [WBG, ® } € KCy,

=

(1100 [ (@ow) e me s (2 ioww) - [

where (WBG, QBG) is any element in [WBG, éBG} and (VV, 1’) is any element of KC'. By

arguments similar to those used in the proof of Theorem 3, we obtain (1.99). O

1.5.4 Equivalence to a stress formulation

We have built in Theorem 5 the generalized stress fields (M®¢, R"“) solution to the pro-
blem with free boundary conditions. Moreover, we have proved that M®¢ € SCy(p) and
that R = M"“ V. We have the following result :

Theorem 6.

Adopting the assumptions of Theorem 4 and the notations of Theorem 5, the stress field
M?®¢ defined in Theorem 5 is the unique solution to the problem :

(1.101) min {S*BG :/w*BG (M, M&V)dw, M € SCo(p)}
where w*®¢ is defined by (1.42).

Démonstration. For a proof, we follow in close lines the second part of that of Theorem
3, where SCy(p) is substituted to SC(p). Consider any element M € SCy(p), and set

M =M - M.

Simple algebraic transformations lead to :

£495 (M) = g5 (M/>+5*BG (MBGH/ M @BG.ZHT(M/@Z)E(@B% ..ZWBG)

RS

Using that M/ € SCy(0), integrating by parts leads to the fact that the last term in the
above equation vanishes. We hence obtain that :

g*BG (M) — g*BG (M ) + S*BG (MBG)

We end the proof by mentioning that £**¢ (M) is positive as soon as M does not
vanish. ]
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1.6 Simple Support Boundary Conditions

We have already presented the Bending-Gradient theory for clamped plates (section 1.4)
as well as for free plates (section 1.5) and proved its well-posedness in both cases. Never-
theless, other types of boundary conditions can also be imposed on dw. In this section,
we discuss the simple support boundary conditions.

According to Sab and Lebée (2015), the soft simple support boundary conditions of the
Bending-Gradient theory set to zero both the moment tensor M and the transverse
displacement W. Namely :

(1.102) M=0and W=0 on OJw.

Hence, these boundary conditions are a mixed between the clamped and the free boundary
conditions. We can generalize the results established for the displacement formulation in
Sect. 1.5, namely Theorems (1), (2) and (3) to the case of the mixed boundary conditions
(1.102) as follows :

— The space KC,, of kinematically compatible generalized displacement fields with mixed
boundary conditions is defined as :

KC,, = Hy(w) x H(div,w).

Note that :
KCy, Cc KC,, C KC.

— The transverse load p is assumed to be in H~!(w).
— The space SC,,,(p) of statically compatible generalized stress fields with mixed boundary
conditions is defined as :

SCr(p) = {M € }NIé(w), Mapap +p =0 in the sense of distributions } .

Note that :
SCo(p) C SCy(p) C SC(p).

— The compliance tensors d and h are positive definite in the sense of (1.44) and (1.45).

— Theorem (1) holds true if SC,,(p) and SC,,,(0) are respectively substituted for SC(p)
and SC(0) in (1.47) and (1.48). The proof is exactly the same.

— Theorem (2) holds true if KC,, is substituted for KCj in problem (1.52). The proof is
mainly the same but we need to prove that there exists a constant C” such that :

(1.103) V(W ®) € KC,,  |[W, @], <C"|W, @,

To this aim, we proceed by contradiction as usual. Suppose that for all £ € N, there
exists (Wk, @k) € KC,, such that :

1
LW, <t

(1.104) | W2, ’

(l)kHKCm -
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1.7. Formulation of the Bending-Gradient theory in the general case

The expression of ||Wj, @kHN is given by (1.59) and (1.60). From (1.104), we obtain
(1.88) and (1.89). According to Lemma 4 and the limit (1.89), for each k, there exists a
vector field =, of the form (1.10) such that (1.90). Then, (1.91) follows from equations
(1.88) and (1.90) and, according to Lemma 5 with W}, € H}(w), we obtain the conver-
gences T, — 0 and W), — 0 in H{(w). Hence, (Wy, ®,) — 0 in KC,, which is in
contradiction with ||Wk, i)kHKCm =1

— Theorem (3) which states the equivalence between the static and the kinematic ap-
proaches for clamped boundary conditions can be easily extended to prove the equiva-
lence of these approaches for the mixed boundary conditions (1.102).

As mentioned earlier (see Sect. 1.3.2.4), the sixth order tensor h is positive but not definite

on whole R in the general case. Sections 1.4-1.6 were devoted to the well-posedness of the

Bending-Gradient problems when h is positive definite. It is time now to extend these

results to the general case. Only clamped boundary conditions will be studied to avoid

lengthening the paper.

k

1.7 Formulation of the Bending-Gradient theory in the
general case

Since the sixth-order tensor h is not definite on whole R in the general case, Sab and
Lebée Sab and Lebée (2015) orthogonally decomposed the vector space R, endowed with
the scalar product "X : X' = Xapy X4, into S and its orthogonal /C :

R=SoK
where & is the image of the sixth-order shear force compliance tensor h :
‘§ = {Q : *X? X € @}7

and IC denotes its kernel :
K={XeR|

))3‘

: X = 0).

Let PS and PK denote, respectively, the orthogonal projection operator onto S and IC.
It can be easﬂy verified that any third-order tensor X can be written as :

(1.105) X =X+ X"

with

~

X'=P:XeS X =P:Xek 'X%:X"=0

It is useful to notice that we always have :
(1.106) X:h:X="X%h:X"

In other words, the shear force compliance tensor h is definite only on the subspace S.
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1.7. Formulation of the Bending-Gradient theory in the general case

The subspace 8 contains all the spherical third-order tensors of the form (1.3) as shown
by Sab and Lebée (2015). Hence, we have the following interesting property :

(1.107) P:ii=13:P% =14,

ZZS

and the dimension of & is at least two. Actually, it is exactly two for homogeneous
plates and in this case the Bending-Gradient theory degenerates into the Reissner-Mindlin
theory. When h is definite and therefore invertible, S is equal to R of dimension six. In
this case, I:S is the identity operator. So, the dimension of & is between two and six,
depending on the elastic properties of the plate.

In order to take into account the possible non-definiteness of h, both generalized rotation
tensor ® and generalized shear force tensor R are enforced to belong to &. The first
equilibrium equation states that R is actually the projection of the bending gradient
M « ¥V on 8. Moreover, using property (1.107), expressing the fact that S contains all
the spherical third-order of the form (1.3), shows that 4} (R® ¥ ) = Mugs s in the general

case, and hence the second equilibrium equation remains the same. Finally, since h may
be not invertible, H will denote its Moore-Penrose pseudo inverse in the general case.
In summary, the Bending-Gradient problem for clamped plates is to find W and ® € S
solution of the following system of equations :

(1.108a) (x=® 'V and I'=®+3i VIV,

(1.108Db) M=D:x and R=H:T,

(1.108c) R—-P°:(MaV)=0 and ii(ReV)+p=0,
(1.108d) (®-n =0 and W=0 on Ow.

Note that since @ is in & and the spherical third-order tensors of the form (1.3) are also
in &, then I will be also in S.

In general, the Bending-Gradient theory cannot be reduced to the Reissner-Mindlin
theory. However, it was demonstrated that the Bending-Gradient theory coincides with
the Reissner-Mindlin theory if, and only if, the shear force compliance tensor A has the
following form :

h =

ZZS

- B

where ™ denotes a positive definite second-order tensor called the Reissner-Mindlin
shear force compliance tensor. This is exactly the case for homogeneous plates where h is

given by :
h = Ez S7 .
=~ 5t= 7

and S7 = (45,3p3) denotes the out-of-plane transverse shear compliance tensor.

Indeed, when h is of the above form, then S coincides with the set of spherical third-order
tensors of the form (1.3). Hence, we have necessarily

=19
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1.7. Formulation of the Bending-Gradient theory in the general case

where ¢ is a 2D vector representing rotations,

2
R=P%: (MoV)=3i

and all the equations of the Reissner-Mindlin theory are retrieved.

We now define the proper functional spaces in which the stress formulation and the
displacement formulation turn out to be well-posed in the general case where h may
not be definite.

1.7.1 Stress formulation

Let (M , B) be a generalized stress field defined over w. We recall that the complementary
energy £*P¢ and the stress energy density w*®“ are respectively defined by (1.41) and
(1.42). Assume that the shear force compliance h is positive. Let S be its image and P
the orthogonal projection operator on 8. Assume that (1.107) holds true. Then, the set
of statically admissible generalized stress fields is defined as follows :

(1109) SC*(p) = {(M.R) € I*xL*/ R=P%:(M¥) and ii(Re¥)+p=0},

where the equilibrium equations are in the sense of distributions, i.e., for all (VV, <I>) €
D(w) x D(w)

(1.110) /M: (P°:®) V) +"R: (<1>+g-zw) :/dew

Note that the above definition of SC®%(p) coincides with definition (1.46) of SC(p) if b is
definite and, hence, ES is the identity operator.

The variational formulation of the Bending-Gradient problem consists in minimizing the
complementary energy £*P¢ (M, B) with respect to all (M> B) € SC®%(p) :

(1.111) min {5*%‘ (M,R) = /w*BG (M,R), (M.R)ec SC'BG(p)},
The following theorem states the well-posedness of the above minimization problem. Its

proof is very similar to that of Theorem (1).

Theorem 7. Assume that : p € H(w), the bending compliance tensor d is positive defi-

nite and the shear force compliance h is positive. Let S be the image of b and assume that
(1.107) holds true where I:S is the orthogonal projection operator on 8. Then, the mi-

nimization problem (1.111) admits a unique solution (M"°, R*®) € SC®¢(p). Moreover,
(MBG,BBG) satisfies the following variational formulation :

Find (MP°, R*) € SC®%(p) such that

(1.112) | |
/H:Q;MBG#E;Q@BG:O, v (1p) € SC™(0)
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1.7. Formulation of the Bending-Gradient theory in the general case

1.7.2 Displacement formulation

Let (W, ®) be a generalized displacement field defined over w. We recall that the potential
energy £°¢ and the strain energy density w® are respectively defined by (1.39) and (1.40).
Because h is definite only on & , the generalized rotation third-order tensor ® must lie
in H (div,w) while satisfying ®(z;,72) € S almost everywhere in w. In other words,
I:K :® = (0 where I:K is the orthogonal projection operator on the kernel of h. We hence
introduce the set Y C H (div,w) defined by :

Y ={®c H(div,w)] P*:®=0}

Y is obviously a closed subspace of H (div,w) equipped with the norm H'”H(dw )"
Therefore, T endowed with the scalar product (e) H (divw) is a Hilbert space.

As in section 1.4.3, W should belong to the Hilbert space Hj(w). Always assuming that
p € H'(w), £ introduced in (1.39) is well-defined for (W, ®) € H{(w) x X. We consider
the minimization problem

(1.113) min {°¢ (W, @), (W, ®) € Hy(w) x Y}

The following theorem states the well-posedness of the above minimization problem. Its
proof is very similar to that of Theorems (2) and Theorem (3).

Theorem 8. Under the assumptions of Theorem (7), the minimization problem (1.113)
15 well-posed. Its unique solution is denoted by (WBG, @BG) and satisfies

(1.114) HWBG’ (l)BGHHg(w)ij(dw,w) ¢ HpHH—l(w)

where ¢ is a strictly positive constant.

Moreover, the associated generalized stresses (M, Ij) obtained from (WBG, QBG) Via equa-
tions (1.108a,b) are the unique solutions (M, R*®) of the minimization problem (1.111).

We have seen in this section that when dealing with the Bending-Gradient problem in the
general case, one has to introduce the kinematic constraint lzK : ® = (0 when minimizing
the potential energy. Another alternative is to regularize the shear force compliance tensor
by adding to it a positive multiple of the identity operator. Indeed, the regularized tensor
will be always definite and its inverse will be unambiguously defined. Hence, no need to
introduce the kinematic constraint. The question that arises and that will be treated in
the following section is the convergence of the regularized solution to the exact solution
as the regularizing parameter goes to zero.
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1.8. Regularization of the shear force compliance tensor

1.8 Regularization of the shear force compliance tensor

1.8.1 The regularized problem

Since the sixth-order tensor h is always positive, its definiteness is ensured by adding a
positive multiple of the identity. The regularized tensor is denoted by h_and defined by :

hE:Q+5£

where ¢ > 0. Clearly, h_is always positive definite. Hence, in virtue of Section 1.4, the
regularized minimization problem for clamped boundary conditions

(1.115) min {& (M), M e C(p)},

where

admits a unique solution M _ € SC(p). Furthermore, we denote B_= M_« V. We know
that there exists an unique (WE, @6) € KCy such that :

(1.116) M =D:x, R=H:T k6 x =%V, I =& +i V.

A ~e =€

XS

where H _is the inverse of h .

1.8.2 Convergence of the regularized solution

The following theorem states the main result of this section :

Theorem 9. Under the assumptions of Theorem (7), there exists a unique solution of
the minimization problem (1.111) denoted by (M"°, R*). Assume that M"® belongs to
H'(w). Then, M _, the solution of the regularized problem (1.115), converges in L*(w) to
M*®¢ and Bf converges in L*(w) to R"® when ¢ tends to zero. Here, R_= M _oV and
the notation (1.105) is used. Moreover, we have the convergence of the energies :

(1117) ll_{%gg* (ME) — g*BG (MBGa-BBG)
and that :
(1.118) lir?_%lp HB?HLQ(W) < ||P*: (MBG®Z)HL2(W)

In addition, let (Wg,@s) € KCy be associated to M _ through (1.116). Then, (Wé’(l)s)
converges in KCy to (WBG, QBG), the solution of the minimization problem (1.113), when
€ tends to zero.
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1.8. Regularization of the shear force compliance tensor

Démonstration. The hypothesis M®® € H'(w) guarantees that M"° is in SC(p), and
hence £ (M) < & (M) which can be written :
1

1
(1.119) §/J\N/IBG;g:MBG+T(MBG®Z)sQ%(MBG®Z)
+e' (M ™oV ): (M™eV).

By (1.106), we have that :

and
(M™eV):ih: (M™eV)="(P°:(M*sV)):h: (P°:(M™*aV)).

~ = ~ _— = ~

Recalling that

equation (1.119) can be written as :

1
5[ M.di MR BB SR R, <
(1.120) %/MBG :d: M"+'R* :h: R

+e (M™ oV ): (M™ V).
Similarly, (Ma, ij) € SCP9(p) yields :

1 ‘ C 1 T
(1.121) §/MBG:Q:MBG+TBBGstIjEG<— M_:d:M_+ R’:h:R°.

— ~e TR T TR e
2 Jo

Comparing inequalities (1.120) and (1.121) leads to the following inequality :

1 1 ,
(1122 3 [RiR <5 [Fareew) oy,
Simplifying by ¢, we obtain that :
BG

(1.123) 1B 2, SIM* eV g2, < C.
The above equation implies that :

1 T
(1.124) — [ R iR — 0.

2 w £ € 50
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1.8. Regularization of the shear force compliance tensor

Then, taking the limsup of inequality (1.120) and the liminf of inequality (1.121), as €
goes to zero, results in the convergence of the energies (1.117) and in :

1 , ‘ 1
(1.125) —/MBG:d;MBG+TRBGsthBG:hm— M :d:M +'R°:h:R°
2)," ~ TN - == 0 L e R e ~e TR
Because (MP®¢, R®®) achieves the minimum of the complementary energy (1.111), we
conclude that M _ converges to M"® in L*(w) and that Bf converges to R®® in L*(w).

Finally, using the orthogonal decomposition (1.105), equation (1.123) can be written as :
(1120) [ BS] + IR o, < 12 0% o) e+ 2 (0% o)

As
i |85 2, = 1B g, = 1B 0% )|

e—0

then, we obtain (1.118).
Now, according to Lemma 6, the convergence of (WE, (198) to (WBG, (QBG) in KCj is equi-
valent to :

(1.127) lim x =x"¢ lim ' =TI"9

e—0 ~e e—0

where the limits are, respectively, in L?(w) and L*(w), and x®¢ and I'® are given by :

(1128) XBG — Q\)BG . 27 ]:BG — ‘;BG _|_g . szG‘

~

The first limit in (1.127) follows from the convergence M_= D : x to M"® = D : x*°.

~ ~e ~

It remains to prove the second limit. We will use the following properties of H 6 which
can be easily established by performing the singular value decomposition of h and H L

(1.129) lim h:H =P° 'X:H

0 —~ A ~e

X = ' X": X5, VX €eR

From the convergence of Bf to R"¢, we have :

(1.130) lim h:(R’—R") =Ilim h:H :T —T" =lm I’ - =0

e—=0 & e—0 & ~e& 7 e—=0 7

where the limits are in L*(w)-norm. To end the proof, we notice that :

1 1
(1.131) 5;*(1\4&):5 Ma:g:M€+TBEsQEEBE:§/>N< :D:x +T_:H_:T,

and hence,
1
(1.132) £ (M) > 5/5—1115;1:5.

Then, using convergence (1.117) and the above inequality, we obtain the convergence to
zero of I'™ in L*(w), and finally the second convergence in (1.127). O
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1.9 Conclusion

In this paper, a detailed mathematical justification for the recent theory of the Bending-
Gradient elasticity was provided. Using variational methods, a series of existence and
uniqueness theorems were formulated and proved. Since the shear force compliance tensor
is not always definite, our study was divided into two parts. In the first part, we conside-
red the particular case where the sixth-order tensor is positive definite. In this context,
we defined the functional spaces to which the variables of the Bending-Gradient theory
belong. Thereafter, using results established by Sab et al. (2015), we rigorously proved
that the stress and displacement minimization problems are well-posed when the plate
under consideration is clamped or free. A brief discussion was then conducted concerning
the simple support boundary conditions.

The second part of the paper was devoted to the extension of our findings to the general
case. Some additional considerations had to be made when choosing the functional spaces.
We investigated only the case of a clamped plate. The main conclusion is the existence
and uniqueness of the solution to the Bending-Gradient problem.

An important point is that, in general, the Bending-Gradient theory cannot be reduced
to a Reissner-Mindlin theory. However, when the plate is homogeneous, the Bending-
Gradient theory corresponds to a Reissner-Mindlin theory. This case falls in the situations
where the generalized shear force stiffness is not definite and was covered in Section 1.7.

It is worthwhile to point out that adding a positive multiple of the identity operator to
the shear force compliance tensor renders it definite. Indeed, in this case, the regularized
problem admits a unique solution. Our main concern was to prove that the regularized
solution converges to the exact solution of the Bending-Gradient in the general case. We
managed to establish this fundamental result by assuming that the gradient of the exact
solution to the Bending-Gradient stress problem is a square integrable function.
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Chapitre 2

The Bending-Gradient theory for
flexural wave propagation in composite
plates

Ce chapitre est consacré a tester la validité de la théorie du Bending-Gradient pour la
modélisation de la propagation d’ondes planes dans des plaques symétriques infinies, hé-
térogénes et anisotropes. Aprés un rappel des variables et des équations en statique, nous
introduisons deuz projections du Bending-Gradient sur un modéle de Reissner-Mindlin.
Le tenseur de cisaillement généralisé du Bending-Gradient n’étant pas toujours défini, une
méthode de réduction est proposée visant a calculer son inverse. Dans une deuxieme par-
tie, nous formulons les équations de mouvement du Bending-Gradient dans le cas général
et suivant les projections déja introduites. Nous expliquons ensuite comment obtenir nu-
mériquement les relations de dispersion traduisant la réponse de la plague a la présence de
perturbations. Une vérification de la méthode est effectuée par comparaison des résultats
obtenus o ceuz de la méthode des éléments finis. Ce chapitre a été publié dans la revue
International Journal of Solids and Structures sous la référence Bejjani et al. (2019).

Abstract

This paper is concerned with the prediction of the propagation of flexural waves in aniso-
tropic laminated plates with relatively high slenderness ratios by means of refined plate
models. The study is conducted using the Bending-Gradient theory which is considered
as an extension of the Reissner-Mindlin theory to multilayered plates. Two projections of
the Bending-Gradient model on Reissner-Mindlin models are also explored. The relevance
of the proposed models is tested by comparing them to well-known plate theories and to
reference results obtained using the finite element method.
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2.1 Introduction

Owing to their lightweight and advanced high strength, composite plates are widely used
in the civil, marine, aerospace and automotive industries. Due to their anisotropic and
heterogeneous nature, the accurate prediction of their structural behavior is a challenging
problem that has stimulated considerable research interest. Several plate theories have
been proposed in the literature. The most well-known and simplest are the Kirchhoff-
Love theory (or Classical Plate Theory) for thin plates (Kirchhoff, 1850a,b; Love, 1838)
and the Reissner-Mindlin theory (or First Order Shear Deformation Theory) for thin
to moderately thick plates (Reissner, 1945; Mindlin, 1951). The Kirchhoff-Love and the
Reissner-Mindlin models provide very satisfactory results when the constitutive material
is homogeneous (Ciarlet and Destuynder, 1979; G. Ciarlet, 1990, 1997). However, the
extension of these models to heterogeneous plates leads to discontinuous out of plane
shear distributions and incorrect estimation of the deflection compared to exact solutions
(Yang et al., 1966; M. Whitney and J. Pagano, 1970). Limitations of the Kirchhoff-Love
and Reissner-Mindlin models induced the development of higher order models in order
to capturing correctly the effects of out of plane shear deformations (M. Whitney, 1972;
Reddy, 1989; Noor and Malik, 2000; Carrera, 2002).

In the light of the ideas presented by Reissner, Lebée and Sab (2011) have recently derived
a new model, known as the Bending-Gradient theory, dedicated to thick and anisotropic
plates. Here, the classical Reissner-Mindlin out-of-plane shear forces are replaced by the
generalized shear force related to the first gradient of the bending moment. Furthermore,
six rotations are introduced instead of two. This is why the Bending-Gradient theory
is considered as an extension of the Reissner-Mindlin theory to laminated plates. The
reader is referred to Sab and Lebée (2015) for thorough details. It was demonstrated
that the Bending-Gradient model cannot be reduced to a Reissner-Mindlin model un-
less the constitutive material of the plate is homogeneous (Lebée and Sab, 2011). For
this reason, these authors searched for an approximation of the Bending-Gradient mo-
del by a suitable Reissner-Mindlin model (Lebée and Sab, 2015). Several projections of
the Bending-Gradient model were discussed and their relevance was tested (Sab and Le-
bée, 2015). Comparisons with the Reissner-Mindlin theory and the full three-dimensional
exact solutions (Pagano, 1969, 1970) showed that the Bending-Gradient theory gives good
prediction of deflection, shear stress distributions and in-plane displacement distributions
in any material configuration. Originally designed for laminated plates, the Bending-
Gradient theory was extended to in-plane periodic plates, sandwich panels (Lebée and
Sab, 2012a,b), space frames (Lebée and Sab, 2013) and applied to cross laminated timber
panels (Perret et al., 2016).

In recent papers, the Bending-Gradient theory was justified through asymptotic expan-
sions (Lebée and Sab, 2013) as well as variational methods and a series of existence and
uniqueness theorems were formulated and proved (Bejjani et al., 2018). Having mathe-
matically justified this theory, the central aim of this work is to test its validity regar-
ding plane wave propagation in symmetrical anisotropic heterogeneous plates. Since plane
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waves propagate in unbounded elastic continua, the plate is considered to be infinite in
the direction of wave propagation, away from boundary conditions and loadings. While
the classical plate theory agrees well with the finite element solutions when the wave-
length A is very large with respect to the thickness h, our results show that it becomes
invalid when the thickness-wavelength (h/)\) ratio is greater than 0.05 approximately. In
this paper, we go further in the approximation and focus on wavelengths that are about
two times the laminate thickness (h/A = 0.5). It is expected that the Bending-Gradient
theory will fail to give acceptable results beyond this limit. In fact, modelling a plate as
a two-dimensional domain and ignoring the contributions in the transverse direction is
not valid when the wavelength is about or less than the plate thickness. In what follows,
we seek to relate the wave number and the angular frequency for the sake of predicting
dispersion curves of flexural waves, i.e waves whose displacements are perpendicular to
the direction of propagation.

Analytical solutions for the wave propagation problem in composite materials are difficult
to determine. One of the most used methods to solve such problems is the Finite Element
Analysis. Different methodologies have been developed over the years, the foremost being
the Semi-Analytical Finite Element method (SAFE) Kausel (1986); Datta et al. (1988).
Recently, Gravenkamp et al. (2012) presented a formulation of the wave propagation pro-
blem based on the Scaled Boundary Finite Element Method (SBFEM). Mention may also
be made of Renno et al. (2013), who described the Wave Finite Element (WFE) approach
which besides being simple in application, provides accurate results at low computational
cost. In order to verify the relevance of the Bending-Gradient model and its projections on
Reissner-Mindlin models, a comparative study between our results and those obtained by
the finite element analysis of the three-dimensional problem detailed in Margerit (2018)
is conducted.

The paper proceeds as follows. In Section 3.2, we introduce tensor notations and algebraic
manipulations that are used throughout this paper. Section 2.3 concisely provides the main
definitions and equations of the Bending-Gradient model for anisotropic heterogeneous
plates. The particular case of homogeneous plates is also discussed and projections of the
Bending-Gradient theory on a Reissner-Mindlin plate theory are presented. Section 3.3
is concerned with the derivation and the implementation of the plane waves dispersion
curves either in 3D or from a plate model. Finally, in Section 3.5, we verify the accuracy
of the proposed method by comparing results from the classical plate theory (CPT), the
first order shear deformation theory (FOSDT), the Bending-Gradient theory (BG) and
the proposed projections (SSP and SCP) to results computed using the finite element
method. Conclusions are given in Section 3.6.

2.2 Notations

In this paper, we use Greek indices for 2D tensors («, 3, v..= 1,2) and Latin indices for
3D tensors (i, j, k..= 1,2, 3). For example, (X,3) represents the 2D tensor while (X};)
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2.3. The Bending-Gradient Model for the equilibrium of thick plates

denotes a 3D tensor . Index notation also provides another advantage : the number of
indices indicates the order of the tensor. For example, (X;;) denotes a second-rank tensor
whereas (X)) denotes a fourth-rank tensor. To simplify expressions including tensors,
we shall make use of the Einstein summation convention according to which all indices
appearing twice within an expression are to be summed.

The identity for 2D vectors is (0,3) where d,4 is Kronecker symbol (0,5 = 1if a = 3, 0o =
0 otherwise). The identity for 2D symmetric second order tensors is iap,5 where iop,5 =
%(&wém + 0as08,). The reader might easily check that ing sisyne = lapne, lagrslisyse =
3/25040 and l'agmgl'(;%ga = 3.

The gradient of a scalar field X writes (X 3) while the gradient of a vector or a higher-
order tensor fields writes (X,g.), for instance. The divergence of a vector field or a second
order tensor field is noted (X,,) and (X, 3), respectively.

h
Finally, the integration through the thickness is noted (o) : [2, f(x3)dzs = (f).
2

2.3 The Bending-Gradient Model for the equilibrium
of thick plates

2.3.1 The 3D plate configuration

The physical space is endowed with an orthonormal reference frame (O, e, e,, e 5) where
O is the origin and e; is the base vector in direction i € {1,2,3}. We consider a linear
elastic plate occupying the 3D domain V = § X }—37%[, where S C R? is the middle
surface of the plate and h its thickness. The boundary of the domain, denoted by 0V, is
decomposed intro three parts (Figure 2.1) :

OV = Vi UOVSH U OV,
(2.1)

with Vg = 9S x } —g, g{ and OViF =S x {ig}
where 05 is the boundary of S.

Focusing only on out-of-plane loadings, the plate is subjected to forces per unit surface
on OV5" of the form :

(2.2) (Tl,Tg,Tg)i (x1,m0) = (0,0, %p (:zsl,xg)) ,

where p is a given function on S.
We suppose that the constitutive material is invariant with respect to translations in the
(21, x2) plane. Therefore, the fourth-rank 3D elasticity stiffness tensor (Cjjr) does not
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2.3. The Bending-Gradient Model for the equilibrium of thick plates

FIGURE 2.1 — The 3D configuration

depend on (z1,x2). The plate is assumed to be symmetric with respect to its mid-plane
S, hence Cjj;i; is an even function of w3 :

(2.3) Cijii (23) = Cijir (—x3) .
This is the so-called mirror symmetry. Furthermore, we have that :
(24) C3a5-y = Ca333 =0.

In this case, the constitutive material is said to be monoclinic.

To make the presentation self-contained, we now briefly recall the main definitions of
the kinematic and static fields of the Bending-Gradient theory as well as the governing
equations established by Lebée and Sab (2011). For more details concerning the Bending-
Gradient theory, the reader is referred to Lebée and Sab (2011), Lebée and Sab (2011),
Lebée and Sab (2015), Lebée and Sab (2015), Sab and Lebée (2015) and Bejjani et al.
(2018).

2.3.2 The Bending-Gradient equations

The Bending-Gradient generalized displacements are (Us, ®,3,) where Us is the out-of-
plane displacement of the plate (or deflection) and (®,s,) is the generalized rotation
tensor with ®,5, = Pgq-

The Bending-Gradient generalized strains, which derive from (Us, ®,3,) are (xag,Lasy)-
(Xap) is the curvature second-order tensor with x.s = Xga, and (I'y,) is the generalized
shear strain verifying I'o3, = ['34,. The generalized strains are obtained through the
following compatibility conditions on S :

(2.5a) { Xag = Pagyy;

(25b) Pa,@'y - (I)aﬁ'y + ia675U3,6'
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2.3. The Bending-Gradient Model for the equilibrium of thick plates

The Bending-Gradient generalized strains (xag, ['ag,) constitute the dual of the Bending-
Gradient generalized stresses (M,s, Ragy). The second-order tensor (M,g) is the conven-
tional bending moment tensor (M,s = Mjp,) related to the 3D local stress (o;;) by :

(2.6) Map = (23008) -

The third-order tensor (R.g,) represents the generalized shear force which complies with
the following symmetry : R,3, = Rgay. The Bending-Gradient constitutive equations
write as :

(27&) { Xaﬂ = dagA/gM(;w

(27b) Faﬁ’y = haﬁ’y5eCRC€57

where (dogys) and (hagysec) represent compliance tensors which are explicitly expressed in
terms of the elastic components through the thickness of the plate (Sab and Lebée, 2015).
dags designates the classical bending compliance fourth-order tensor, inverse of the ben-
ding stiffness fourth-order tensor D,g.s. Both tensors are positive definite and symmetric.
The generalized shear compliance tensor hogysec is symmetric and positive but it is defi-
nite only its image Im A whose dimension is between two and six, depending on the elastic
properties of the plate. More details about the subspace Im h are given in 3.6. The gene-
ralized shear stiffness tensor (Hogsec) is the Moore-Penrose pseudo inverse of (hqgysec)-
The Bending-Gradient equilibrium equations are given by :

(2.8a) { Ra,@'y - Po?ﬁ'yéeCMCEvé =0,
(2.8b) laprsRoypa +p=0.

where Pfﬁweg designates the orthogonal projection operator onto Im h.
We note that, regardless of the positive definiteness of the shear compliance tensor
(hagysec), one can derive the conventional shear force Q, = (0,3) from R,z by :

(2.9) Qo = Ropp-

Hence, equation (2.8)b can be restated as :

(2.10) Qoo +p=0.

2.3.3 Homogeneous plates

It was shown in Lebée and Sab (2015), Lebée and Sab (2015), Sab and Lebée (2015) that
the Bending-Gradient theory cannot be reduced to a Reissner-Mindlin theory in general.
However, when the plate under consideration is homogeneous, the two theories coincide.
In this case, the generalized shear tensor (hqgysec) can be expressed as :

(211) haﬂfy&( = ioa,@'ynffei%zs(a
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2.3. The Bending-Gradient Model for the equilibrium of thick plates

where (f)) is a positive definite symmetric second-order tensor called the Reissner-
Mindlin shear compliance tensor. Furthermore, in this case, the generalized rotation tensor
(®apy) is of the form :

(212) (I)aﬁv = iaﬁ'ﬁ@év

where () is a 2D vector representing rotations. The generalized shear force (R,s,) can
be as well expressed as :

2
Ragy = Ztapno Moy -

3
It follows that equations (2.8) become :
(2.13a) Qo — Mapgs =0,
(2.13b) Qo +p=0,

which constitute the well-known Reissner-Mindlin equilibrium equations.

2.3.4 Projection of the Bending-Gradient plate model

As previously mentioned, the Bending-Gradient theory is considered as an extension of the
Reissner-Mindlin theory to laminated plates. It is hence interesting to try to approximate
the Bending-Gradient model through an appropriate Reissner-Mindlin’s model. In this
section, we present two means to project the Bending-Gradient model on a Reissner-
Mindlin model : the shear compliance projection (SCP) and the shear stiffness projection
(SSP). These projections are discussed in full-detail in (Sab and Lebée, 2015).

2.3.4.1 The Shear Compliance Projection (SCP)

Consider a Bending-Gradient model with shear compliance tensor (hagysec) and let (f5")
denote the corresponding Reissner-Mindlin compliance. The first approach consists in
considering the following projection of (hagysec) :

( = g (Ri11111 + higgoo1 + 2hi11221)
(2.14) = for = g (Pa11121 + hi11222 + Pagioor + haoasor)
\ 2 = g (haga222 + hi121121 + 2h121922) -
This projection is equivalent to assuming R.g, = %iaﬁvnQn in the expression of the

Bending-Gradient shear stress energy density (Sab and Lebée, 2015).

In the framework of this projection, an evaluation of the distance between the Bending-
Gradient plate model and the Reissner-Mindlin model was suggested (Lebée and Sab
(2011), Lebée and Sab (2011)). Indeed, when the plate is homogeneous, the distance
between the two models is equal to zero.
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2.3. The Bending-Gradient Model for the equilibrium of thick plates

2.3.4.2 The Shear Stiffness Projection (SSP)

We now study the Shear Stiffness Projection which consists in supposing that the Reissner-
Mindlin’s shear stiffness tensor (F_§") associated to the Bending-Gradient shear stiffness
tensor (Hupysec) is of the form :

Fii™ = Hin + Higgoor + 2H 111901,
(2.15) Fip™ = Fof™ = Hipnor + Hinigeo + Higioor + Hagooor,
Fys™ = Hazgo + Hio1121 + 2H 121290
Using this projection is equivalent to assuming that the generalized rotation is of the form

D5y = lapyeps in the expression of the Bending-Gradient shear strain energy density (Sab
and Lebée, 2015), where (¢s) is a Reissner-Mindlin rotation vector.

It should be strongly emphasized that, unless for homogeneous plates, the shear stiffness
projection and the shear compliance projection lead to different approximations. Hence,
(F,5") is not the inverse of (f,5") in the general case (Sab and Lebée, 2015).

2.3.5 Kelvin Notations

Expressing the Bending-Gradient equations involves tensors with up to six indices which
can be somehow cumbersome. This is why we introduce in this section Kelvin notation
which allows us to express any order tensor in the form of a matrix. Contractions products
are hence turned into conventional matrix products. In the following, brackets [e] are used
to denote that a tensor is considered in a matrix form. Thus, [e] is a linear operator real-
locating tensor components. For example, the bending moment (M,3) and the curvature
tensor (xap) can be expressed as :

M, X11
(2-16) [M] = Myo ) [X] = X22
\/§M12 \/§X12

The fourth-order tensor (D,g,s) is obtained through :
(2.17) [D] = (x3[C7T),

Ca,@33 C’y§33

where Cf5 5 = Capys — corresponds to the plane stress stiffness. [D] and [C7]

. - Cis33
take the following matrix form :

Dy Djonq \/§D1211
(2-18) [D] = Doy D322 \/§D1222
\/§D1211 \/§D1222 2D1212
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2.3. The Bending-Gradient Model for the equilibrium of thick plates

The constitutive equation M,g = Dagys : X5y becomes a vector-matrix product :
(2.19) [M]=[D]-[x].

Shear static unknowns are reallocated in a vector form as :

Ry N Qypy
Rooy [91 Doy
(2.20) R] V2R3 = V2l @)= V2815
Ry [112 ISED)
Rago [o2o Po20
i V2R3 | i V2l | i V212 |

The third-order tensor (ing,sUss) is expressed in Kelvin notation by :

(2.21) [i - VU3 = Usy [J'] + Us2 [J7],

where

(2.22) [Jl]T—[looo() 1} [J"’]T—{OO ! 001]
. - s Yy Yy Yy 7\/§ ) - I 7\/§a ] .

The Bending-Gradient shear compliance and stiffness tensors (hagysec) and (Hapqoec) are
turned into a 6 X 6-matrix :

hllllll h111122 \/§h111121 h111211 h111222 \/§h111221
h221111 h221122 \/§h221121 h221211 h221222 \/§h221221
\/§h121111 \/§h121122 2h121121 \/§h121211 \/§h121222 2h121221
h112111 h112122 \/§h112121 h112211 h112222 \/§h112221
h222111 h222122 \/§h222121 h222211 h222222 \/§h222221
| \/§h122111 \/§h122122 2h122121 \/§h122211 \/§h122222 2h122221

(2.23) [h] =

Note that we use the same letter for tensor and matrix components. However, two indices
represent matrix components whereas six indices designate tensor components. For ins-
tance, hooy121 is the tensor component of (hag sec) Whereas hog = V/2h9o1121 1S the matrix
component of [h].

As already indicated, the shear compliance tensor hqgqse¢c is not always invertible. A new
feature of our work is the reduction method, presented and detailed thereafter, in order
to calculate the shear stiffness tensor.
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2.3. The Bending-Gradient Model for the equilibrium of thick plates

2.3.6 The reduction method

The reduction method consists in introducing the constraint (®,s,) € Im h when the di-
mension of Im A is strictly lower than six (see 3.6). The first step consists in computing the
pseudo inverse (Hagysec) through the Singular Value decomposition (SVD). Accordingly,
the real-valued compliance matrix [h] is factored into :

(2.24) [h] = [N].[a] . [N]",

where [a] is a 6 X 6 diagonal matrix :

a 0 0 0 0 0

0 aa 0 0 0 0

0 0 az 0 0 0
(2.25) la] = ,

0 0 0 ai 0 0

0 0 0 0 a5 0

00 0 0 0 a

and [N] is an orthogonal 6 x 6 matrix with [N]" = [N]™", where [N]" denotes the transpose
of [N].
The Moore-Penrose pseudo inverse (H,gysec) is hence obtained through :

(4, 0 0 0 0 0 |
0 A 0 0 0 0
. 0 0 A 0 0 0 i
(2.26) [H] = [N].[A].[N]" = [N]. [NT,
0 0 0 A 0 0
0 0 0 0 A 0
0 0 0 0 0 A

WithAk:Oifak:OandAk:aikifakgéO.

Sab and Lebée (2015) demonstrated that the projection operator (Pys. 5..) can be expres-
sed in the form of a matrix as :

(2.27) [P*] = [H] - [1] = [n] - [H].
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2.3. The Bending-Gradient Model for the equilibrium of thick plates

Substituting [h] and [H] by their expressions (2.24) and (2.26), we obtain that :

[ ap 0 0 0 0 O ]
0 ao O O 0 O
e2s) [P =L = o0 Yy
0O 0 0 a0 0O O
0O 0 0 0 a O
I 0O 0 0 0 0 o |

where aj, = 0 if ap = 0 and o = 1 if a;, # 0. In practice, assuming oy are sorted in
decreasing order, if oy, < 1073, then ay = 0.

Let (P, 5.) denote the projection operator onto Ker h (see 3.6). (P15 5.) has the follo-
wing form :

(5, 0 0 0 0 0|
0 B, 0 0 0 O
e20)  [P=m = | 00 T
00 0 B 0 0
0O 0 0 0 B5s O
I 0O 0 0 0 0 pBs |

where 8, = 1if a;, = 0 and Sy = 0 if a; # 0.
As stated earlier, the condition I'ys, € Imh is equivalent to ®,5, € Im h since i,3,5Us 5
always belongs to Im h. This implies that

(2.30) [PX] - (@] = [P*] - 11T,
and
(2.31) [PX] - [i-VUs] = 0.

Combining equations (2.7)b, (2.29) and (2.30) yields :

232)  [P¥]-[®] = [PX]- 1) = [N]- 8] [N)" - [N] - o] - [NT" - [R] = 0

since we have that :

(2.33) [N]-INT" =[] and [f]]a] =0.

Introducing the change of variable [®] = [N] - [®*] in equation (2.32) grants :
@31)  [PN]-[0] = [N]-[8)- [N]" - [0] = [N] - 8] - [&] = 0 <= [3] - [&"] =0,
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2.4. Propagation of plane waves in an anisotropic plate

which means that (®,4,) € Imh if, and only if, ®; = 0 for all ¢ such that a;, = 0.

In brief, the reduction method consists in making the change of variable
(2.35) (@] = [N] - [@]

in the Bending-Gradient equations (2.5), (2.7) and (2.8), and imposing ®; = 0 for all i
such that a; = 0. This allows us to write the reciprocal relationship of equation (2.7)b :

(236) Raﬂw = Ha57564F<E5, Faﬁﬁ € Imh.

2.4 Propagation of plane waves in an anisotropic plate

In this section, we first study the propagation of waves in anisotropic plates in the fra-
mework of the three-dimensional elasticity theory. Our main purpose is to accurately
predict the dispersion curve associated to long flexural waves, which is conventionally
approximated by the finite element method.

Good approximations of the static 3D solutions can be obtained from the Bending-
Gradient plate model (Sab and Lebée, 2015). It is hence worth to also estimate the
dispersion relation through the Bending-Gradient equations of motion. We also suggest
using the Reissner-Mindlin models obtained by projections of the Bending-Gradient model
as explained in Section 2.3.4.

In this part, we consider a symmetrical plate with the same configuration as Section 2.3.
Assuming the plate is infinite in directions 1 and 2, no boundary conditions need to be
applied on 0Vi,;;. We particularly focus attention on waves propagating in direction 1.

2.4.1 Exact dispersion curves for guided waves

2.4.1.1 Three-dimensional equations of motion

For plane waves propagating in direction 1, the displacement vector u; is a function of the
coordinates (z1,x3) and of the time ¢ :

U; = Ui(l'l,xg),t), 1= 1,273.

The basic equation of motion is obtained by relating the stress o;; to the motion of the
particles in the plate using Newton’s second law. Let p denote the density (mass per unit
volume). In the absence of body forces, the Momentum equation writes :

(237) Uij,j — pul = O,

where the double dot indicates a second derivative with respect to time <m = %).
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2.4. Propagation of plane waves in an anisotropic plate

Wave propagation in infinite anisotropic elastic plate is governed by the full set of equa-
tions of the three-dimensional theory of elasticity, namely :

(2.38a) (0455 — pil; =0,
(2.38Db) 0ij — Cijra(x3): ey, = 0,
1
(2.38c) €ij — E(u” + u;:) = 0,
h
\

Additionally, the stresses 0,3 and the displacements u; must be continuous at the interfaces
between the different layers of the plate.

For harmonic waves propagating in direction 1 at time ¢, the displacements w;, solution
to (2.38), can be described using :

(239) ui(xl, Ts, t) =R (711 (I‘3) €j(wtikml)) s 1= 1, 2, 3,

where (;);—123 are amplitudes of the displacement components, w is the angular fre-
quency, k # 0 is the wave number and j the imaginary unit. The symbol R(z) is used to
designate the real part of the complex number z. We denote by A the wavelength and ¢
the wave velocity. We recall that the wave number is related to the wavelength through :

2.40 A
( ) )\7

and that the phase velocity ¢ is expressed as :

w
241 - =

(241) ="

The problem is to find a relation between the angular frequency w and the wave number k

which ensures the existence of a non-zero vector (u;);—1 2,3, satisfying the three-dimensional
equations of motion (2.38).

Reference solutions of the 3D problem (2.38) can be computed via the finite element
method whose procedure is presented next.

2.4.1.2 Resolution by means of Finite Element Analysis

Injecting the plane wave displacement (3.8) in the local equations (2.38) leads to the
formulation of a quadratic eigenvalue problem in both wavenumber k and frequency w
that has to be solved. In the case of homogeneous isotropic plates, it can be reduced to the
well known Lamb modes transcendental equation (Lamb, 1917). The case of laminated
plates has been first investigated by T. Thomson (1950), who expressed the inter-lamina
continuity conditions with the help of transfer matrices. As a consequence of the numerical
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2.4. Propagation of plane waves in an anisotropic plate

instability of the method (Haskell, 1953), several reformulations has been proposed in the
following decades (Schmidt and Tango, 2007; Nayfeh, 1991; Rokhlin and Wang, 2002).

Alternatively, the variationnal formulation of the problem (integral equations) can be
used (Dong and B. Nelson, 1972; Datta et al., 1988; Xi et al., 2000). The finite element
approach then leads to the following eigenvalue problem :

(2.42) (K2 [ + ik [Ka) + [Ko] = w? (M) [U] =0,

where [K;], i = 1,2,3 and [M] are symetric hermitian matrices and [U] is the vector of
nodal displacements. This formulation is usually referred as the Spectral Finite Element
Method (J. Shorter, 2004; Barbieri et al., 2009) (SFEM) or Semi-Analytical Finite Ele-
ment method (Bartoli et al., 2006) (SAFE). The preceding eigenvalue problem is solved
more easily by searching the eigenfrequencies related to a given wavenumber. However, it
is often more convenient to search for the wavenumber solutions corresponding to a fixed
frequency ; this can be performed by the resolution of the associated quadratic eigenva-
lue problem, giving both real and imaginary solutions (resp. denoting propagating and
evanescent waves).

This method has been implemented here to compute reference solutions to the problem
of wave propagation in anisotropic plates. Linear elements were used since the problem
is one-dimensional in z3. We used three degrees of freedom per node to take account of
the three components of the displacement field. In the wavelength range of interest, it has
been observed that 10 elements by layer was sufficient to avoid convergence issues.

2.4.2 Plate models dispersion curves
2.4.2.1 Bending-Gradient equations of motion

In this section, we study wave propagation in anisotropic media using the Bending-
Gradient model. We first provide the formulation of the Bending-Gradient equations of
motion for heterogeneous plates. Then, we explain how to find numerically the correspon-
ding dispersion curves. Finally, the classical dispersion relation for the Reissner-Mindlin
and the Kirchhoff-Love model are retrieved.

The formulation of the wave propagation problem is based on Mindlin’s paper (Mind-
lin, 1951), in which a comparison was made between the exact solution of the three-
dimensional equations and the solution obtained using the CPT. It was shown that the
CPT deviates significantly from the three-dimensional theory whether the rotatory inertia
correction is added or not. However, when taking into consideration the effects of trans-
verse shear deformation solely, the obtained solution is very close to the three-dimensional
solution. Thereby, the Bending-Gradient equations of motion are formulated by conside-
ring that the only inertia forces are those due to the transverse translation of the plate
elements, and hence neglecting rotatory effects. In this case, the transverse load p given

95



2.4. Propagation of plane waves in an anisotropic plate

by :

where p = (p). In the following, we assume that the shear compliance tensor hag,se¢ is
definite. In this case, Pfﬂwsc is the identity operator. Hence, the generalized shear force
R, s, is the gradient of the bending moment M.
Wave propagation in anisotropic plates in the absence of body forces is thus modelled by :
Raﬁ'\/ - MOLB,’}/ - 07
(2.44) Qo = Rapp,
Qa,a = USﬁ
Using constitutive equations (2.7) and compatibility conditions (2.5), equations (2.44) are
restated in terms of the generalized displacements (Us, ®op3,) (21,1) as :

(245&) { Haﬁ’y(?e( ((I)Ceé + iCE5T]U3,77> - D@§.96®69§7§7 = O’
(2.45b) Happsec (Peesa + icenUsna) = Usp.

We point out that when the sixth-order tensor h,g,sc¢ is not definite, it suffices to make
the change of variables (2.35) in equations (2.45) as detailed in Sect. 2.3.6.

For waves propagating in direction 1, the generalized displacements (Us, ®q3,) (21,1),
solution to (2.45), can be described using :

(2.46a) Us(z1,) = R (Ugeﬂwt—’mﬂ) ,
(246]3) éaﬁv(l‘h t) = 3% <(i>a576j(wt_lml)> s

where Us; and <f>a57 are arbitrary constants. Indeed, all derivatives with respect to xy are

equal to zero, since the displacements Uz and @4, are functions of x. Thus, substituting
(2.46) into (2.45) yields :

(2.47a) Hopgysec (‘i’gefs — jk‘igeMU:a) + k*Dopoc®egr 01, = 0,
(247b) Hl/gﬁ(;gc <—j]{3(i)<65 — k2i455103> + wszg,é = 0.

Finding the dispersion relation associated to flexural waves requires using a mathematical
computing software such as Matlab. The implementation of equations (2.47) is presented
in the following section.

2.4.2.2 Implementation of plate dispersion equations

Suppose that the shear compliance tensor hagysec is definite. Using Kelvin notation intro-
duced in Section 2.3.5, equation (2.44)a writes :

(2.48) [R] — [M ® V] =0,
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2.4. Propagation of plane waves in an anisotropic plate

where [M ® V] represents the gradient of the bending moment expressed by :

My,
M1
\/§M12,1
0
0
0

Using compatibility conditions (2.5)b, [R] is defined by :
(2.50) [R] = [H] - ([®] + [i - VUs])

(2.49) (M e V] =

The third-order tensor [i - VUs] is expressed in Kelvin notation by :
(2.51) [i - VUs) = Usy [JY] = —jkUs [JY].
Using compatibility conditions (2.5)a, we have :
My 111,11 Q11
(2~52) M22,1 - [D] ’ @221,11 = —k? [D] ) Dyoy
V2Mis, V2019111 V2P12

Making use of the notations described above, wave propagation equations (2.47) can be
written as a matrix-vector product :

(2.53) 4] - 6] = 0,

where [0] is a vector representing the generalized displacements (Ug, <i>a57> :

(254) [6]T = US; cj:)1117 (i)2217 \/§(i)1217 (i)112a (i)2227 \/§(i)122] )

and [A] is a symmetric 7 X 7 matrix given by :

Aun Az Az Al Az Ae Air
A2 Hy +k*Dyy Hip+k*Dyy His+k*Dyy Hy Hys Hig
Ais Hy + KDy Hoyy + k*Dyy Hys + k*Dys Hay Has  Hag
(2.55)  [Al=| A Hs +k*Ds;y Hsp+ k*Dsy His+k®Dss Hsy Hss Hsg |

Ais Hy Hys Hys Hyy Hys Hiye
Aig Hs, Hso Hs; Hsy Hss; Hsg
Az He, Heo Hes Hey Hes Heo
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2.4. Propagation of plane waves in an anisotropic plate

with
1
A = w2ﬁ — k? (Hu + \/§H61 + §H66) )

Aip = —jk | Hiy + _H16> ;
Ays = —jk | Hio + —Hog
(2.56) Ay = —jk | His + —Hse

Ao = —jk | His + ——Hse

Ais = —jk | Hiy + _H46> )

. V2
Ay = —jk | Hig + ——Hes | -

\

The problem (2.53) can either be seen as a linear eigenvalue problem in w?, for a given
wave number k, or as a quadratic eigenvalue problem in k, for a given w. The focus of the
present work being on propagating waves travelling in elastic plates, the first formulation
is used, with real wave numbers k as input. As a consequence, evanescent waves (i.e with
an imaginary wave number) are discarded from the results.

The existence of non-trivial solutions to equation (2.53) implies the vanishing of the
determinant of the square matrix [A] :

(2.57) det[A] = 0.

The analytical expression of the determinant of [A], being very lengthy, is omitted here.
Nevertheless, it can be noticed that det[A] is a second degree polynomial in w of the
form aw? + b, where a and b are functions of the wave number k. Therefore, equation

b
(2.57) admits only two roots whose nature is determined by the sign of the quantity ——.
a

: : : . b .
It appears through numerical calculations using Matlab that the quantity —— is always
a

positive, and that the two roots of equation (2.57) are purely real and correspond to the
forward and backward flexural waves.

We shall not go into details concerning the case when h,gysec is not definite, but we
note that the dispersion relation is obtained by setting to zero the determinant of a
(m 4+ 1) x (m + 1) matrix, where m denotes the dimension of Im h, with 2 < m < 6. For
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calculation and implementation details in the case of a single layer of anisotropic material,
the reader is referred to 3.6.

For ease of computing the Bending-Gradient flexural dispersion curves, a code was created
using the Matlab programming language. Kindly refer to Bejjani (2019) for further details.
The code is simple to use in the sense that it provides the desired results just by inputting
the constitutive material properties.

2.4.2.3 Reissner-Mindlin and Kirchhoff-Love plate models

Let us recall that when the Bending-Gradient shear compliance tensor hqgysec is of the
form (2.11), the Bending-Gradient model is turned into the Reissner-Mindlin model with

op s shear forces compliance. In this case the flexural branches of the dispersion curve
may be written as (see 3.6) :

(2.58) o — g [FU (Dini Doty = Diyyy) + KD (FY S — (F13)?)
p ((F1R1 + k2D1111) (F3 + k2Da1or) — (F5 + k2D2111)2)

where FJ; is the shear stiffness tensor, inverse of the shear compliance tensor f7s.

Finally, the Kirchhoff-Love theory is obtained setting hogysec = 0. This leads to the
classical result :

Dllll

p

(2.59) w==+ K>,

2.5 Numerical Results and Verification

Having presented the wave propagation problem and the derivation of its solution, we are
now in position to evaluate the effectiveness of the Bending-Gradient theory and of the
shear compliance and shear stiffness projections. Generally, this evaluation is performed by
comparing obtained results to reference results. The natural reference for such an assess-
ment is the solution of the three-dimensional dynamic problem, which can be computed
using the finite element method (FEM) as detailed in Section 3.3.1.2. In the following,
reference results are compared to those obtained using the Classical Plate Theory (CPT),
the Bending-Gradient theory (BG) as well as the Shear Compliance (SCP), the Shear
Stiffness (SSP) projections and the first order shear deformation theory (’{—;—FOSDT).

Simulations reported in the present paper were performed using the calculation software
Matlab. The proposed numerical method applies to any stack of layers whether the shear
compliance tensor is definite or not. If the latter is the case, the reduction method pre-
sented in Section 2.3.6 is used in the calculations.
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2.5. Numerical Results and Verification

TABLE 2.1 — Elastic properties of the laminate, £ and G in Pa, p in kg/m?

Er Exn=FEr Grnv=0Grr Grn VIN =VrLr =VrN P

1.72e+11 6.89e¢+09  3.45e+09  2.75e+09 0.25 2260

The analytical models presented throughout this work were applied to various laminate
configurations. Below we present numerical simulations realized for a laminate whose
material properties are listed in table 3.1 (Lebée and Sab, 2015; Pagano, 1969) :

The symbols E, G, v and p respectively denote the Young’s modulus, the shear modulus,
Poisson’s ratio and the density of the material. The indices L, T and N correspond res-
pectively to the longitudinal, transversal and normal directions. Each ply of the laminate
is made of unidirectional fiber-reinforced material oriented at 6 relative to the bending
direction x1. All plies have the same thickness h = 0.01 mm and are perfectly bounded. In
the following, symmetric laminates are designated by the sequence of fiber orientations,
from the outermost ply till the midplane, enclosed by brackets subscripted with an s. For
instance [0°,90°], denotes a 4-ply laminate with [0°,90°,90°, 0°].

In the figures below, the z-axis indicates the thickness-wavelength ratio (h/\). The y-axis
corresponds to the ratio (C/Cg), where ¢ is the wave velocity and Cg denotes a normaliza-
tion factor defined by Mindlin (1951) :

G
Cg = LN.
P

In Figs. 2.2, 2.3 and 2.4 are illustrated the dispersion curves for a [0°,90°]; ply, a [—30°, 30°],
ply and a [0°, —45°,90°, 45°], ply respectively. We mention that the shear compliance ten-
sor hagysec of both 4-layer laminates is not definite and that the dimension of Im#h is
equal to 4. However, when considering the 8-layer laminate, the sixth-order tensor h,gysec
is definite and therefore dimImh = 6.

The relative error is computed as follows :

Ca —C em
(2.60) g, = Japp _ Vlem
Cfem

where C,pp, and Ceem respectively denote the approximate value and the reference value of
the the wave velocity. The relative errors with respect to reference solutions computed
with the finite element method (FEM) are shown in Table 2.2 for a thickness-wavelength
ratio h/A = 0.3.

It is worth noting that dispersion relations generally depend on the angle of wave pro-
pagation . Taking into account 1 in the computations consists in rotating the entire
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FIGURE 2.2 — Comparison of the dispersion curves for a [0°,90°], ply
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FIGURE 2.3 — Comparison of the dispersion curves for a [—30°,30°], ply
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FIGURE 2.4 — Comparison of the dispersion curves for a [0°, —45°,90°,45°]5 ply

laminate by —. In the following, calculations on the [0°, —45°, 90°, 45°], ply are perfor-
med for several values of 1 (+15° +22° and +45) and the related relative errors are set
out in Table 2.3.

TABLE 2.2 — Relative error of plate models compared to finite element results with h/\ =
0.3

Laminate KL = FOSDT BG SCP  SSP

[0°,90°] 1.044 -0.035 -0.038 -0.091 -0.015

[—30°,30°]5 0.896 -0.002 -0.041 -0.046 -0.211

[0°, —45°,90°,45°]s 0.917 -0.045 -0.006 -0.037  0.008

As is seen from Figs. 2.2, 2.3 and 2.4, when the wavelength becomes less than 10 times the
plate thickness, the Kirchhoff-Love theory (KL) fails to correctly predict the dispersion
curve of the flexural mode. In fact, relative errors noticed for h/A = 0.3 are greater than
80%. This is expected since the rotatory inertia and the transverse shear deformations
are supposed to be negligible (Love, 1888).

In the case of a [0°,90°]s ply, one can observe on Fig. 2.2 that the results obtained with
the shear stiffness projection (SSP) agree well with the reference results (FEM). Indeed,
the SSP wave velocity is lower than the reference value by 1.5% approximately. The Shear
stiffness projection (SSP) is clearly more efficient than the shear compliance projection
(SCP), which nevertheless gives a satisfactory approximation of the solution with an error
|E;| that does not exceed 9.1%.
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2.5. Numerical Results and Verification

TABLE 2.3 — Relative error of plate models compared to finite element results for a
[0°, —45°,90°,45°]s ply with h/A = 0.3

¢ KL T FOSDT BG SCP  SSp

+15°  0.935 -0.046 -0.005 -0.037 0.0029

+22° 0.960 -0.042 0.024 -0.036 0.005

+45° 1.064 0.0006 -0.024 -0.014 0.054

When considering a [—30°,30°]; ply, Fig. 2.3 shows a very good accordance between the
shear compliance projection (SCP) and the finite element method (FEM). In this case,
the shear stiffness projection (SSP) underestimates the dispersion curve of the flexural
mode by 21.1%.

For the [0°, —45°,90°,45°]; ply, it is evidently seen on Fig. 2.4 that the curve obtained
by the shear compliance (SCP) and the shear stiffness projections (SSP) match very well
the solution computed with the finite element method (FEM). The relative error |, | has
a minimum value of 0.5% and a maximum value of 5% for both projections in case of all
measurements (see Tables 2.2 and 2.3).

The conformity between the ’{—;—FOSDT and the reference results is very good according
to Figs. 2.2, 2.3 and 2.4 with a relative error that reaches a maximum of about 4.6% in
absolute value for the considered examples.

Tables 2.2 and 2.3 show that the the relative error |£,| of the Bending-Gradient model
ranges from 0.5% to 4.1%. Such small errors result in precise approximation of the wave
dispersion relation, which is illustrated in Figs. 2.2, 2.3 and 2.4.

More numerical simulations were carried out to assess the validity range of the Bending-
Gradient model and the Reissner-Mindlin models suggested in Section 2.3.4. For instance,
we considered a multilayered plate consisting of alternate layers of the same thickness
h = 1 mm of epoxy-glass woven composite and aluminium whose elastic properties are
respectively set down in Tables 3.2 and 3.3. The sequence is [ GFRP, Al, GFRP, Al |,
and the GFRP material directions L, N are aligned with Directions 1 and 2.

TABLE 2.4 — Elastic properties of epoxy-glass fiber composite material Renno et al. (2013),
FE and G in Pa, p in kg/m3

Ep = Er Ey Grr Gy =Gry  vir VN =UrnN P

5.40e+10 4.80e+09 3.16e+09  1.78e+09  0.06 0.31 2000
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TABLE 2.5 — Elastic properties of aluminium material Liu et al. (2016), £ and G in Pa,
p in kg/m?

E G v p

7.20e+10 2.67e+10 0.35 2700

0.6
U‘f_’e
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/ --- SSP — =__FOSDT KL
0 | | | |
0 0.1 0.2 0.3 0.4 0.5

Thickness-wavelength ratio (h/\)
FIGURE 2.5 — Comparison of the dispersion curves for a [GFRP, Al, GFRP, Al |, ply
The obtained dispersion curves are depicted in Fig. 2.5. The relative errors with respect

to finite element (FEM) solutions are given in Table 2.6 for a thickness-wavelength ratio
h/X\ =0.3.

TABLE 2.6 — Relative error of plate models compared to finite element results with h/\ =
0.3 for a [0°,0°,90°,0°]s ply

Laminate = FOSDT BG  SCP  SSP

[0°,0°,90°,0°], -0.134 -0.065 -0.069 -0.031

According to Fig. 2.5, the agreement between the %—FOSDT and the reference results is
poor. For a thickness-wavelength ratio h/\ = 0.3, the relative error |&,| is around 13%.

It can be seen that the Bending-Gradient model (BG) and the shear compliance projection
(SCP) provide good approximations of the flexural dispersion curves. The relative error
|E;| is lower than 7% as stated in Table 2.6.
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2.6. Conclusion

The computed results reveal the better approximation from the shear stiffness projection
(SSP) in this case. The relative error |E,| is equal to 3.1% for h/A = 0.3.

Whereas Reissner-Mindlin approximations (SCP, SSP, %—FOSDT) may give very accurate
estimates of the dispersion curve in some specific cases, it appears that the Bending-
Gradient approximation is the most robust one. Indeed, in all cases, reasonable estimates

of the wave velocity is provided.

2.6 Conclusion

In this paper, we addressed the problem of flexural wave propagation in anisotropic la-
minated plates by using the Bending-Gradient theory. The Bending-Gradient problem
was briefly recalled and two projections on a simplified Reissner-Mindlin model were
introduced : the shear compliance projection and the shear stiffness projection. The par-
ticular case of homogeneous plates, in which the Bending-Gradient model is turned into
a Reissner-Mindlin model, was also discussed.

Inspired by Mindlin’s paper, the dynamic problem was formulated by taking into ac-
count transverse shear deformations and neglecting rotatory inertia effects. The solution
of these equations enabled the derivation of the dispersion relation connecting the angular
frequency and the wave number. The analytical models were verified by comparing them
to finite element solutions considered as reference solutions. Numerical simulations were
conducted and it was shown that the Reissner-Mindlin models obtained by projections
may yield accurate estimations of the solution in some cases. Nevertheless, it was clear
that the numerical results obtained by the Bending-Gradient theory are more robust and
less sensitive to the ply configuration. Though the Bending-Gradient theory seems more
complicated than the Reissner-Mindlin theory, a practical, easy-to-use and publicly ac-
cessible Matlab code was created for obtaining the Bending-Gradient flexural dispersion
curves.
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Chapitre 3

On asymptotic expansions for modelling
wave propagation in composite plates

Ce chapitre traite de la propagation des ondes dans les plaques composites infinies par le
moyen de la méthode des développements asymptotiques. Cette méthode fait appel & 'uti-
lisation d’un petit parametre associant ’épaisseur de la plaque a la longueur d’onde. Les
équations tridimensionnelles sont en premuier adimensionnalisées. La solution du probléme
est ensuite recherchée sous forme d’un développement asymptotique en puissance crois-
sante du petit parametre. On présente en détails la démarche utilisée pour la résolution
du probléme et ['obtention des relations de dispersion des trois modes de Kirchhoff-Love.
En vue de vérifier la pertinence de la méthode des développements asymptotiques, nos
résultats sont enfin comparés a ceux des théories de Kirchhoff-Love, de Reissner-Mindlin,
du Bending-Gradient et de la méthode des éléments finis. Ce chapitre a été soumis dans
la revue Journal of Elasticity.

Abstract

This paper addresses the problem of plane wave propagation in composite plates. It ex-
plores the asymptotic expansion method and assesses its suitability and functionality. The
3D problem is first recalled and scaled by using a parameter defined as the ratio of the
plate’s thickness to the wave length. Assuming that the mechanical fields can be written
as expansions in power of this parameter, a series of problems which can be solved recur-
sively is obtained. Numerical results are computed and compared to those of classical and
refined plate models as well as reference results obtained using the finite element method.
It is found that the asymptotic expansion method can accurately predict the flexural,
compressional and in-plane shear wave modes, even for large thickness-wavelength ratio,
when higher orders in the expansion are used.
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3.1 Introduction

Owing to their lightweight and high-performance, composite plates are being increasingly
used in many engineering applications. Understanding the dynamic characteristics of such
structures have hence aroused the interest of researchers over the last decade. Important
investigations have been conducted by many authors such as Green (1839), B. Christoffel
(1970), Rayleigh (1888), Lamb (1917) and many others.

An important tool for the analysis of wave propagation are the dispersion curves. For
isotropic structures, these curves are accessible through the literature (see, e.g., Lamb
(1917); Lowe (1993); Graft (1991); Miklowitz (1978); Chimenti (1997); D. D. Achenbach
(1974); Mindlin (1960)). However, for composite plates, anisotropy makes the calculations
more difficult and time-consuming. The simplest approaches for estimating dispersion
curves of three-dimensional waves are the classical plate theory (CPT) and the first order
shear deformation theory (FOSDT) which both assume that the laminate is in a state of
plane stress.

The classical plate theory (CPT) is based on Kirchhoff’s proposition whereby straight
lines normal to the mid-plane of the plate remain straight and normal after deformation
(Kirchhoff, 1850a,b; Love, 1888). The classical plate theory gives reasonably accurate
results in the low frequency range, when the wavelength A is much larger than the plate
thickness h. However, enormous discrepancies with the three-dimensional solution were
reported in the higher frequency range due to neglecting rotatory inertia and transverse
shear effects (N. Reddy (1984), Turvey and Osman (1989, 1990, 1991)).

Reissner (1945) and Mindlin (1960) were the two pioneers to improve the estimation
of transverse shear stresses by dropping Kirchhoff normality assumption. The Reissner-
Mindlin theory, referred to as the first order shear deformation theory (FOSDT), assumes
that the displacement field is linear within the domain and leads to a constant distribution
of the transverse shear stresses across the thickness. This is inexact since the transverse
shear stress function is known to be at least quadratic through the thickness. Improving
the accuracy of shear stress prediction thus requires the use of a shear correction factor,
which is usually set to g or ’{—; as proposed by Reissner and Mindlin respectively; the
first being derived from static considerations, and the second being related to the out-of-
plane shear wave mode cutoff frequency. For highly anisotropic plates, the shear correction
factor is not always simply determined since it depends on the loadings and the stacking

of the laminate (Whitney, 1991).

A vast amount of literature exists on the analysis of wave propagation in composite plates.
Aiming to improve the Reissner-Mindlin model predictions, higher-order shear deforma-
tion theories were proposed by many researchers such as M. Whitney and J. Pagano
(1970); Whitney and Sun (1973, 1974), Gautham and Ganesan (1992) and others Am-
bartsumyan (1970); Nelson and Lorch (1974); Lo et al. (1977a,b); N. Reddy (1984). The
dynamic behavior of laminated plates was studied by N. Reddy (1987); Reddy (1989);
N. Reddy (1997), Liu et al. (1990). In 1991, Nayfeh (1991) obtained dispersion relation
curves of elastic waves propagating in anisotropic media by developing a transfer matrix
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technique. Detailed review on the propagation of waves in anisotropic laminates was later
given by Liu et al. (2002). In a recent work (Bejjani et al., 2019), the propagation of
flexural waves in composite plates was studied using a new model, known as the Bending-
Gradient theory, which is considered as an extension of the Reissner-Mindlin theory to
laminated plates (Lebée and Sab, 2011). The equations of motion of the Bending-Gradient
theory were formulated and dispersion relations connecting the angular frequency and the
wave number were derived. Numerical results were obtained and compared to finite ele-
ment results. It was shown that the Bending-Gradient theory gives a robust estimate of
the dispersion curve regardless of the type of stacking and material of the laminate.

Obtaining exact analytical solutions of differential equations is often very challenging
and impracticable. A common mathematical tool to solve such problems in plate-like
structures is the asymptotic expansion method. This technique consists in constructing
approximations to the solutions of equations through the successive terms of a power
series with respect to a small parameter. Asymptotic expansions date back to the time
of Poincaré (1886) and have since then received significant attention, as exemplified by
the papers and books of Friedrichs and Dressler (1961), Goldenveizer (1962, 1966), Reiss-
ner and Synge (1963), G. Ciarlet (1990, 1997), Le Dret (1991) and many others. The
asymptotic expansion method can be applied to both static and dynamic problems in the
framework of linear and non linear elasticity aiming to find solutions for plate structures,
derive 2D plate models or justify classical and refined plate theories (Arnold and Falk,
1996; G. Ciarlet, 1997; Arnold et al., 2002; Lebée and Sab, 2013).

In this paper, we use the formal asymptotic expansion method to approximate disper-
sion relations waves propagating in symmetrical composite plates with relatively high
slenderness ratios. It is well known that the first terms in the expansions lead to the
Kirchhoff-Love theory (G. Ciarlet, 1997; Dauge et al., 2017) which does not incorporate
the effect of shear forces. Thus, seeking higher orders is necessary to improve the esti-
mation of the three modes of propagation predicted by the Kirchhoff-Love theory, which
are called the compressional, the in-plane shear and the flexural modes (Graff, 1991).
The wavelength being much greater than the thickness of the plate, a small parameter
associating both quantities is introduced. The asymptotic expansion method is based on
scaling the three-dimensional problem so as to be defined on a fixed domain. The solution
is then written as a series of powers of the small parameter and inserted in the general
equilibrium equations. This yields a cascade of problems at different orders whose solving
determines the successive approximations of the solution. The validity of the present ap-
proach is assessed by comparing the numerical results to reference results obtained by the
finite element method (Margerit, 2018).

The paper begins with the notations adopted in this study (Section 3.2). In Section 3.3 are
recalled the three-dimensional equations of motion for a composite plate and is presented
the finite element analysis of the problem. The derivation of the plane waves dispersion
curves through the asymptotic expansion method is detailed in Section 3.4. Numerical
results are exploited in Section 3.5 and compared to those from the Kirchhoff-Love theory
(KL), the first order shear deformation theory (FOSDT), the Bending-Gradient theory
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(BG) and the finite element method (FEM). Finally, the conclusion is given in Section
3.6.

3.2 Notations

We respectively denote by X , X, X, é(, X first, second, third, fourth and sixth rank real

tensors. Indicial notation allows us to differentiate between 2D and 3D tensors. We use
Greek indices for 2D tensors («, 3, v..= 1,2) and Latin indices for 3D tensors (i, j, k..=
1,2,3). For example, (X,3) represents the 2D tensor X while (X;;) denotes the 3D tensor
X. Index notation also provides another advantage : the number of indices indicates the
order of the tensor. For example, (X;;) denotes the second-rank tensor X whereas (X;u)
denotes the fourth-rank tensor X. To simplify expressions including tensors, we shall

make use of the Einstein summation convention according to which all indices appearing
twice within an expression are to be summed.

The transpose operation “e is applied to any order tensors as follows : (TX)aﬂmww =
Xwy..pa- Four symbols are defined : (-), (), (:) and (i) for contraction on, respectively,
one, two, three and four indices. By convention, the closest indices are successively summed
together in contraction products. Thus, X : Y = (Xogy6xuYuns) and X - Y = (Xo5,Y,)
is different from Y - X = (Y, Xu3,).

The identity for 2D vectors is § = (da.5) where d,5 is Kronecker symbol (0,5 = 1 if
a = 3, dap = 0 otherwise). The identity for 2D symmetric second order tensors is 7 where

lafys = %(&wé&; + 6a603,). The reader might easily check that ¢ : g = g, g : g =3/2¢

andg'%g:?).

The gradient of a scalar field X writes VX = (X 3) while the gradient of a vector
or a higher-order tensor fields writes X © V. = (X,g,), for instance, where @ is the
dyadic product. The divergence of a vector field or a second order tensor field is noted

X -V = (Xa0) and X -V = (X,p5), respectively.

3.3 Propagation of plane waves in composite plates

3.3.1 Exact dispersion curves for guided waves
3.3.1.1 Three-dimensional equations of motion

The physical space is endowed with an orthonormal reference frame (O, e, e,, e3) where

O is the origin and e, is the base vector in direction i € {1,2,3}. We consider an unboun-
h h

ded composite elastic plate occupying the 3D domain V = R? x }—5, 5 [, where h is the
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3.3. Propagation of plane waves in composite plates

thickness of the plate. The composite plate is assumed to be symmetrical with respect to
the midplane.

In this work, we consider the propagation of waves in direction 1. The displacement vector,
denoted by u, is thus a function of the coordinates (z1,x3) and of the time ¢ :

(3.1) u = (Ui)i:1,2,3 = H(%Jsi)-

The displacement vector u satisfies the basic equation of motion in the absence of body
forces, which writes :

(3.2) gV —p(r3)it =0 or oy, —p(r3)i; =0,

where o designates the stress tensor and p the density (mass per unit volume). The
two dots above a variable are used to denote the second derivative with respect to time

. 2
(&= 2%).
We denote by C' the stiffness tensor which describes the properties of the constitutive

material at every point £ = (1, x2,23). In the following, each layer of the composite
plate is considered to be monoclinic. Namely,

Csapy = Cagsz = 0.

Due to plane symmetry, the fourth order tensor C' and the density p are even functions

of z3 :

(3.3) Q(—:vs) =C(z3) and p(—x3) = p(zs).

We recall that the tensor C obeys minor (Cjju = Cjim = Ciju) and major (Cyjr = Chuij)
symmetries. The elasticity tensor is positive definite and its inverse, denoted by S, is

called the compliance tensor. S follows the same classical symmetries as C.

The constitutive equation which connects the stress g to the strain € may be written as :
(3.4) g—C(z3): €=0.
The strain-displacement relations read :

(3.5) e-;(uedV+Veou)=0.

N | —

To complete the description, we must associate boundary conditions on the top and
bottom boundaries of the plate :

h
(3.6) q-g:()atx;g::l:§
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3.3. Propagation of plane waves in composite plates

In addition, the stress vector g - es and the displacement vector u must be continuous
at the interfaces between the different layers of the plate.

In summary, the three-dimensional equations of motion for an infinite composite elastic
plate are :

(3.7a) (0-V —p(z3)d =0,
(3.7b) g—Cl(x3): =0,
1
(3.7¢) e-;weV+Vau)=0,
h
(3.7d) g-es =0 at $3:j:§.
x

Particular solutions to the above equations are plane waves, which are of peculiar im-
portance since it can be shown that any other solution to (3.7) can be described as a
superposition of plane waves. The displacement u at a time ¢ and a distance x; due to a
plane wave can be mathematically described in exponential form as :

(3.8) u = (u)iz123 = w (21, 23,t) = R (@ (z3) WF)

where @@ = (4;);=12,3 is a vector associated to the amplitudes of displacement, w is the
angular frequency, k # 0 is the wave number and j the imaginary unit. The symbol }(z) is
used to designate the real part of the complex number z. We denote by A\ the wavelength
and c the wave velocity. We recall that the wave number is related to the wavelength
through :

and that the phase velocity c is expressed as :

w
3.10 c=—.

(3.10) .

Our main purpose is to relate the angular frequency w to the wave number &k such that
there exists a non-zero vector @ satisfying the three-dimensional equations of motion
(3.7). This relationship between w and & is commonly displayed in graphs called dispersion
curves. These curves supply key information on the propagation characteristics of wave
modes.

One of the most popular tools for modelling wave propagation in elastic media is the finite
element method (FEM) whose procedure is detailed below. The corresponding numerical
results are considered as reference solutions of the 3D problem (3.7).
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3.3.1.2 Resolution by means of Finite Element Analysis

Injecting the plane wave displacement (3.8) in the local equations (3.7) leads to the
formulation of a quadratic eigenvalue problem in both wavenumber k& and frequency w
that has to be solved. In the case of homogeneous isotropic plates, it can be reduced to the
well known Lamb modes transcendental equation (Lamb, 1917). The case of laminated
plates has been first investigated by T. Thomson (1950), who expressed the inter-lamina
continuity conditions with the help of transfer matrices. As a consequence of the numerical
instability of the method (Haskell, 1953), several reformulations has been proposed in the
following decades (Schmidt and Tango, 2007; Nayfeh, 1991; Rokhlin and Wang, 2002).

Alternatively, the variationnal formulation of the problem (integral equations) can be
used (Dong and B. Nelson, 1972; Datta et al., 1988; Xi et al., 2000). The finite element
approach then leads to the following eigenvalue problem :

(3.11) (K2 [5a) -+ ik [K3] + [K] — w* M) U] = 0,

where [K;], i = 1,2,3 and [M] are symetric hermitian matrices and [U] is the vector of
nodal displacements. This formulation is usually referred as the Spectral Finite Element
Method (J. Shorter, 2004; Barbieri et al., 2009) (SFEM) or Semi-Analytical Finite Ele-
ment method (Bartoli et al., 2006) (SAFE). The preceding eigenvalue problem is solved
more easily by searching the eigenfrequencies related to a given wavenumber. However, it
is often more convenient to search for the wavenumber solutions corresponding to a fixed
frequency ; this can be performed by the resolution of the associated quadratic eigenva-
lue problem, giving both real and imaginary solutions (resp. denoting propagating and
evanescent waves).

This method has been implemented here to compute reference solutions to the problem
of wave propagation in composite plates. Linear elements were used. In the wavelength
range of interest, it has been observed that 10 elements by layer was sufficient to avoid
convergence issues.

3.4 The asymptotic expansion method

3.4.1 The asymptotic expansion framework

In this section, we perform the asymptotic analysis (Sanchez-Palencia, 1980) of the dy-
namic problem (3.7). Simplifications due to material and geometrical symmetries of the
plate are first investigated. The three-dimensional equations (3.7) are then scaled and the
properties of the new dimensionless fields are presented. We thereafter develop asymptotic
expansions of the fields in powers of a small parameter introduced in the following.
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3.4.1.1 Scaling

In order to apply the asymptotic expansion method, we need first to scale system (3.7) so
that all computed quantities are of relatively similar magnitudes. It is hence convenient
to make the following change of variables

xs3

(3.12) @= ZE [—1 1]

22
According to this change of variables, the stiffness tensor can be rewritten as :

C(ws) = C(h'xs) = C(2),

where C is a function of z.

Furthermore, from the field @ = (4;);—123, we define the non-dimensional field v =
(Ui)izl,zg as follows :
T3

= k’ly(%) =k v (2).

1S3

(3.13)

The following non-dimensional parameter is naturally introduced :

2
(3.14) k' = hk = %h

Using (3.13) and injecting (3.8) into equation (3.7)c, simple algebraic manipulations yield :

(3.15) e =R (E(z)e"™ M)
where € is expressed in terms of the non-dimensional field v and the parameter £~
through
—iv1(2) —3ivg(2)  —3ivs(2) + sk 0 (2)
(3.16)  £(2) = —Livy(2) 0 sk1vh(2)
—%iU3(2> + %k*’lv'l(z) %k*’lvé(z) k*'vs(2)

Here, f designates the derivative of the function f with respect to z (f' = 4).
g dz

Similarly, we obtain through equation (3.7)b that the stress tensor g can be written as :
(3.17) g = R (5(2)e ),
where & is given by :

(3.18)

Q>

(2) = C(2): €(2).
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3.4. The asymptotic expansion method

Finally, the equations of motion (3.7) can be restated in terms of the parameter k* and
the fields v;, é;; and 6;; as follows :

3.19a (—i611(2) + k'604(2) + pc*vi(2) = 0,

13
(3.19Db) —i612(2) + k' 6h3(2) + pcPva(2) = 0,
3.19¢ —id13(2) + k60 (2) + pcPus(2) = 0,

33

(3.19d) G(2) = C(2): &(2),
(3196) 811(2) = —ivl(z),

1
(319f) ém(Z) = —iiUQ(Z),

) 1. 1.
(3.19g) €13(2) —5“23(2) + Ek “i(2),
1
(3.191) €93(2) = Ek*_lvé(z),
(3.19j) €33(2) = k" 'vy(2),
1

(3191{) K613:&23:&33—0at Z::l:§

It is crucial to note that 6,3 and v;, ¢ = 1,2,3, must be continuous at the interfaces
between the different layers of the plate.

The fields C and p being given, the problem consists in expressing the phase velocity
squared c? in terms of the normalized wave number k* in order to approximate the solution
of the problem (3.19).

3.4.1.2 Expansion

We now proceed to perform an asymptotic analysis (Sanchez-Palencia, 1980; Sanchez-
Hubert and Sanchez-Palencia, 1992) of the scaled problem (3.19). To this aim, the dis-
placement v, the strain € and the stress & are expanded in terms of the parameter k* as
follows :

y :k*71271+ k*020+k*121+---
(3.20a) €= kg + ke + ..

é:: k*oqﬂ‘i_k‘*lél‘i_u.
where v?, €” and 67, p = —1,0,1,2... are functions of z which have the following proper-
ties :

e vi, 0t4 and £, are null for even p and even in z for odd p.

e VP

o

AP <D -~ ~p 3
06 033, Eqg and €55 are null for odd p and odd in z for even p.
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3.4. The asymptotic expansion method

The series are started from the order £*~' for v and from the order £*° for € and . We
note that the choice of the value of the starting order has no influence on the final results.

With that said, it is interesting to highlight that by making the change of variables
k* — —k*, v3 — —vs, (v1,v2) — (v1,v2), equations (3.19) still hold true with the same
value of the phase velocity c¢. This means that ¢, v; and vy are even functions of k*, and
v is an odd function of k*.

Consequently, the in-plane strain é,3 and stress 7,4, the normal strain £33 and stress 733
are even in k*, whereas the transverse shear strain £,3 and stress 7,3 are odd in k*.
Using the above properties, we can express the phase velocity squared 2, the out-of-plane
displacement v3 and the in-plane displacements v, in terms of k* respectively as :

(3.21) = ag + ak™ + agk™ + .,
(3.22) vy = v3 kKT FuskT sk 4+ L
and

(3.23) Vo = Vo k™ + 2K + ol k™ + ...

. 2p—1
In the above equations, agp, v

determined in the following.
It obviously follows from equations (3.22) and (3.23) that for any p > 0, the displacement
fields v?*~' and v * can be expressed as :

,v p = 0,1,2.., designate unknown constants to be

0 vy
(3.24) =1 0 [T = vy
(Ui 0

3.4.2 Cascade resolution

The asymptotic expansion method leads to a sequence of differential problems which we
are about to solve order by order (Caillerie and Nedelec, 1984; Lewinski, 1991).

Since the series are started from the order £ for €, we indeed have :
(3.25) €°=0 and €'=0.
Equation (3.25) implies that :

(3.26) és5 = (v3") =0,
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3.4. The asymptotic expansion method

and
o 1. 1
(3.27a) €3 = —52'031 + 5'0? =0,
1
(3.27b) & = 508 = 0.

From (3.26), it is deduced that v;' is a uniform function of z. We write :
ot =V

Here and in the following, capital letters are used to indicate uniform functions of z.
Equations (3.27)a and (3.27)b respectively imply :

(3.28) v =V +iVy 2,
and
(3.29) 0=V,

Hence, v ~! and v° can be written as :

0 VP +iVi 'z
(3.30) vi'i=| 0 [, v'= vy
2% 0

In order to study the dynamic equations (3.19)a, (3.19)b and (3.19)c, we start by expan-
ding the expressions of c?v, and c*vs using (3.21), (3.22) and (3.23) :

(331) CPvq = k7 (pv?) + k2 (vl 4 agv?) + k™ (aqv?, + cov? + agvd) + ...
‘ vy = k" (agug?) + k7 (gt + agud) + k7 (aqust + vy + agud) + .

Injecting the above expressions in equations (3.19)a, (3.19)b and (3.19)c leads for p =
0,1,2.. to:

(3.32a) —i67h 4+ (655 + p (agpth) + agp ot} + ..+ agui?) = 0,
(3.32b) —i655 + (625 + p (Qpvl + agp_9¥3 + ... + agu3?) = 0,
(3.32¢) —i65 7+ (635) 4 p (anpv3t + gy ot + ...+ Uit ™t) = 0.
We also have that :

(3.33a) (el = —iv}?,
(3.33b) 267 = —ivd?,
(3.33c) 26 = —ju ' + (V)
(3.33d) £ =0,
(3.33e) 26 = (v,
(3.33f)

(

(

~2p 2p+1\/
(o5"™)",

€33 = (U3

A~

2p __
€ =0,

)
3.33h) et = =0,
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3.4. The asymptotic expansion method

Integrating equations (3.32) with respect to z and using boundary conditions (3.19)k, we
obtain :

(3.34a) —iNTT + gy (pu]) + ...+ ag (i) =0,
(3.34b) —iNT5 + gy (pvg) + ... + g (pv3) =0,
(3.34¢) —iQr + azp (pu") + .+ g o) =
where (o) is used to denote the integration with respect to z : f f )dz, NZB is

the normalized membrane stress defined as :
Nap = (6205)
and Q?*~' is the normalized shear force given by :
Q= (52).
Multiplying equation (3.32)a by z and integrating with respect to z yield :
(3.35) —iMi — Q1" + gy (pz0]) + ... + ag (po)") =0,
where Mffﬁ represents the normalized bending moment defined as :
Mgy = (2635) -
Substituting p for p + 1 in equation (3.34)c yields :
(3.36) —iQ7 ™ + agpyo (p3t) + .o 4 ap (puiTt) = 0.

By multiplying equation (3.35) by the imaginary unit ¢ and equation (3.36) by —1, then
we obtain after summation :

(337) M + i (p08) + .. + it (p26) — Qe (prg") — .. — o (pU3™) = 0.
Gathering equations (3.34)a, (3.34)b and (3.37), integrability conditions write :

(3.38a) ( —iN¥ + gy (pvl) + ... + g (pvi¥) =0,
(3.38b)q —iNT5 + gy (pU3) + ... + g (pv3’) =0,
(3.38¢) U MY + iy, (pzv]) + ... +iag (pzvi”) — agpia (pu3t) — .. — ag (puy¥™) = 0.

It is important to note that for p = 0, equation (3.34)c implies that
(3.39) aoVy! = 0.

Therefore, it can be easily seen through (3.32)c that
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3.4. The asymptotic expansion method

Using boundary conditions (3.19)k, we deduce that :
5‘33 - 0.

Since 004 = 035 = 0, the plate is in plane stress at the order 0. In this case, the constitutive
law at this order writes :

~

_ o ~0
Gap = Caprscnss

Coa,833633'y§

where Cj 5.5 = Capys — denotes the plane-stress elasticity tensor.

Cs333
Moreover, we have that :

—i(VP Ve t) —divg

—1iVy 0

_ EO + ZXO-
Here, E° represents the plate in-plane strain field given by :
—iVe  —iVy

(3.41) E° = ,
—3iVy 0

and x° designates the curvature strain field given by :

(3.42) X' =

In terms of components, the plate constitutive law has the following form :

N, Ay Az 0 BN
(3.43) Ny | =] As A 0 || 2EY, |

M3, 0 0 Dn X1
where

A A _ (Cir)  (Clir2)

Az Ass (CTi12)  (Clara) |
and

Dn = <ZQCT111> .

In view of equation (3.39), one can deduce that either ap # 0 and V' = 0 or oy = 0 and
V5t # 0. Both cases are treated in the sequel.
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3.4. The asymptotic expansion method

3.4.2.1 The case of in-plane membranal waves : oy # 0 and V5" =0

Zeroth-order problem (p = 0).

For p = 0, system (3.38) writes :

(3.44a) —INY, + g (pv}) =0,
(3.44b) —iNJy + o (pvg) = 0,
(3.44c¢) M7, + iy (pzv)) — ag (pv3) = 0.

Equations (3.44)a and (3.44)b can be written as an eigenvalue problem :

Ay A VP W
(3.45) R "l =a (p) !
A1z Asg vy vy

Being symmetric and positive definite, the matrix A has two eigenvalues A; and Ay which
are real and strictly positive. Moreover, there exists two associated eigenvectors X; and
X, forming an orthonormal basis in R*. Two cases arise from (3.45) :

A A
(3.46) ap = — or ag = —

(p) (p)

In the remainder of the paper, we shall assume that oy = %, the other case follows
0
analogously. As a consequence, the vector V' ° = ! is collinear to the eigenvector
‘/'20
21
Recalling that 65; = 0, the constitutive law implies :
Ch133 C1as3
3.47 €y = ———&); — 2—=£)
(3.47) 33 Cigs 1! Ciagas 12

Using equation (3.33)f, it can be found that the displacement field v} has the following
form :

(3.48) vy =T+ V3,
where 73 is given by :
(3.49) vy =P (£3,).

Here, P(f) designates the unique primitive of the function f such that (P(f)) = 0 (see

Appendix 3.6 for computational details). As for V3!, it can be determined through equation
(3.44)c :

(3.50) U M g (pzut) — ao (o)
3 Qp <P>
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3.4. The asymptotic expansion method

The density p being even in z implies that
(pzu) =0,

as we have that v} = V). Hence,

(3.51) V) =—

Equations (3.32)a and (3.32)b allow us to write :
(3.52) (352 = 3%, — pagel.

Thus, using the boundary conditions 6@(:&%) = 0, the transverse shear stresses 04 are
given by :

(3.53) a3 = Q(i0Y, — povy)
where Q (f) = / f(y)dy (see Appendix 3.6 for computational details).
The constitutive law and equation (3.33)c yield :

2&213 - 4831316;%,1 + 482331&%3
(3.54) oL N

= 13 + (Ul) )
which implies that :

v = B (28}, +0}) + V7 +i2V;

3.55
(3.55) =07 + Vi’ +i2V5.

Likewise, we write :

Al Al A1
2&?23 = 4823310'31 + 4823230'23

3.56
350 - (3.
Therefore,

=us+ V5.

Determining the unknown constants V2 requires solving the first-order problem (p = 1).
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3.4. The asymptotic expansion method

First-order problem (p = 1).

It is easy to check that through boundary conditions 63;(+3) = 0, equation (3.32)c reduces
to :

(3.58) 63 = Q (5}, — pagu})

For p = 1, system (3.38) writes :

(3.59a) —iN7; + @z (pvy) + ag (pvi) =0,
(3.59b) —iNTy + @z (puy) + ag (pv3) =0,
(3.59¢) M}, +iay (pzu]) 4 iag (pzvt) — ay {pug) — ag (pv3) = 0.

To make notations clear, we write :

(3.60a) e = —ivy = —ivy] — iV + 2V =& + Efy 4 2xdy,

Hence, o7, are expressed as :

. . R Cia33 .
010 = CT110611 + 2CT 10670 + 503
(3.61) 1 111a€11 1a12€12 Casss 33
= Cl11a (Ef +2x31) + ClaamEfQ + 6%047
with
—2 _ o =2 o —2 Cla33 A2
(3-62) 010 = Cl11a811 T 2C] 419810 + 5 033-
Cs333
Therefore,
N? A A — V2 N2
(363) 11 _ 11 13 . 1 4 _11 :
N3, Az Asg —iVy N7y
where
(3.64) Ni, = (1) -

Using short notation, equations (3.59)a and (3.59)b can be rewritten as :
(3.65) AV —a(pV =a(pV"+U",
where U are given by :

(3.66) U2 = —iN7, + ag (pv2) .
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3.4. The asymptotic expansion method

Recalling that (& , &) forms an orthonormal basis in R?, the vector V' can be expres-
sed as a linear combination of X; and X3 :

V= a1 Xy +ax Xy, ap,a; €R
Injecting the above expression in equation (3.65) yields :
ay (A — A1) Xe = (p) V" +U>.

It follows that the right side term of equation (3.65) and V * are collinear to X, . Conse-
quently, as is given by :

(Q27X1)
3.67 ay= ==L
200 =T WX
and V ? is expressed as :
1 1 (Q27X1)
3.68 V= V°+U U?— ———LVv?
( ) —_ A2 Al( 2<p>— —) A2 Al ( (KO,&)—>7

where (-, ) denotes the usual scalar product of R?.
Since || X3 ||= 1, we clearly have that :

VO
) — =X;.
Thus, V * writes :
1
(3.70) Vie g lU-U X)X

Normal strains é3; are obtained through the constitutive law and equation (3.33)f :

3y = é
(3.71) I R e
= (v3)"

Consequently, the displacement field v} writes as :

A2
o o Cs311 Cs312
2 33 2 _9 &2

(3.72) v = P (&) + Vi = 3+ 5,
where the constant V3 is determined from equation (3.59)c

M) +iag (pzvi) — ag (puz) — ao (p03)

(3.73) Ve = T
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3.4. The asymptotic expansion method

From equations (3.32)a and (3.32)b and the boundary conditions 624(+1) = 0, it follows
that :

(3.74) 52 = Qi — p(asvt + agrl))
Since €2 are expressed in terms of 62, as :

equations (3.33)c and (3.33)f yield :

(3.76a) vy =) + V' + V3,
(3.76b) vy = Uy + V3,

where v, are given by :

(3.77a) { vy =P (2635 4 103),
(3.77b) =P (2,),

and V! are obtained by going one order higher in the expansion (p = 2).

Higher-order problems (p > 2).

It is clearly possible to carry out a recursive approximation of the solution to higher or-
ders. This section is dedicated to suggest a computational algorithm for evaluating the
unknown fields v?7, vy’™", o, and 634 for any order p > 2.

Using (3.32)c and boundary conditions 635(+3) = 0 yields :

(3.78) o5 = Q (1075 — p(op—2v3 + ... + agvy’™)).

Equations (3.38)a and (3.38)b write :
(3.79) A V7 —ag(p) V" =0 (p) V" +U™,
where U2 is given by :

(3.80) U = —iNT2 + gy (pU2) + ... + ap (p07) .

Following the same procedure as the previous section, as, and V * are respectively given
by :

U™ X4)

(3.81) Qp = _W7
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3.4. The asymptotic expansion method

and
1

(3.82) Vve= g U - (UTX. X))

Equation (3.33)f together with the constitutive law imply :

1 Cii3s Cia33
A2p A~ 2p A2p ~2p
€3 = 5—035 — 5—¢&1] — 2 €
(3.83) B Cazzz P Cazas 1 Cassz
= (v5"™)".
Consequently, the displacement field v3"™" writes as :
(3.84) VI = P () 4 VI = g 4 U

V7™ is determined through equation (3.38)c by :

2p+1>

M2+ iagy—s (p203) + .+ g (p20) — gy {pu) — .. — g (T
Qg <P>

(3.85) V=

Let us now determine 62%"'. Using (3.32)a and (3.32)b and the boundary conditions
625" (£3) = 0, we obtain :

(3.86) o = Q(i07, — p (agpue, + ... + ui?)) .
p+1

Through the constitutive law, the transverse shear strains €. write :
(3.87) 2870 = 4835305
Thus, we have that :

(3.88a) D RO R oyt
(3'88b) v;“ﬂrl) — 17;“’“) + ‘/22(z7+1>7

where 027+ are known and given by :

(3.89) { P = P (28385 4ot
(3.89]1)) =2(p+1) __ =P (2&:31?1) .

In order to determine V> we need to go further in the expansion.

3.4.2.2 The case of flexural (or bending) waves : ap =0 and V; ' # 0

Zeroth-order problem (p =0).
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3.4. The asymptotic expansion method

For p = 0, equations (3.38) become :

3.90a N =0,
11
3.90b —iN7y =0,
12
(3.90¢) M7, — aVit (p) = 0.

Equations (3.90)a and (3.90)b can be rewritten as :

Ay A w
(3.91) n A ) 1 _o
A1z Asg vy

Since A is positive definite, we obtain that :

Ve 0
(3.92) -

vy 0
Equation (3.90)c can be written as :
(3.93) (D11 —az{p)) V5" =0

for any V5" # 0. We hence have that :

Dll
(3.94) a = 75

In view of equation (3.33) and the constitutive law, the normal strain £, is expressed as :

é§3 = (Ué)/
(3.95) _ Cs311 4

Ell.

C3333

It is therefore deduced that :
(3.96) vy = U5+ V3,

where v3 = P(£93) and V3 is a constant to be determined in the following.

According to equations (3.32)a and (3.32)b for p = 0, transverse shear stresses ¢, are
given by :

(397) 5-a3 = Q(lé-ga)
Transverse shear strains ¢, are then obtained through :
(3.98) 28,3 = 480383053
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3.4. The asymptotic expansion method

By identification with (3.33)c and (3.33)e, we get :

(3.99a) v; =07 + V7P + 2V,
(3.99Db) vy =05+ V3,

where ¥? are given by :

(3.100a) 0] =P (2615 + iv3) ,
(3.100Db) vy =P (265,),

and V? are constants identified afterwards.

First-order problem (p = 1).

The stress field 63, is obtained through equation (3.32)c :
(3.101) 053 = Q(i013 — aaVy'p).
Equations (3.38)a and (3.38)b write as :

Ay A V2 —iN?
(3.102) PR ) = =
A13 A33 Vv22 —ZN122

The constants V. are easily obtained through equations (3.102).

oy is derived using equation (3.38)c :

My + iy (pzuf) — Vi (p0y)
Vi (p)

Due to (3.94), oy can be clearly computed regardless of the value taken by V3. This also
applies to the rest of the cascade, which means that we can calculate g, whatever the
value taken by Vi*~' for any order p. In fact, taking arbitrary values of V™', p > 1 in
our Matlab code Bejjani (2019) does not affect the final results. For this reason, we shall

assume hereafter that V5*~" is equal to zero for all p > 1.

(3.103) ay =

Likewise the previous section, the field vi writes :
(3.104) vy = 03 = P(€3).
Equations (3.32)a and (3.32)b imply that :

(3.105) 62 = Q (i6%, — pastl) .
The fields o7 fully identified, the strains &2, write :

(3.106) 265, = 48393605,
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3.4. The asymptotic expansion method

By identification with (3.33)c and (3.33)e, we obtain the expression of v :
(3.107) vy =V, + Vi,

where U} are given by :

(3.108a) { vy =P (2635 4+ iv3),

(3.108b) =P (2,),

and V! are determined by solving the second-order problem (p = 2).

Higher-order problems (p > 2).

One of the advantages of the asymptotic expansion method is that it allows to obtain the
expressions of 635, V2, agpy0, 0377 and v for any order p from computed fields for

orders ¢ ranging from 0 to p — 1.

Equation (3.32)c enables the derivation of the stress fields 634 :
(3.109) o35 = Q1675 " — p(ag Vs + ..+ auy”)).

Exactly as for the zeroth and first-order problems, the expressions of V* follow from using
equations (3.38)a and (3.38)b and thus solving :

(3110) AH Alg . Vlzp _ —Zfo + Qg <pU(1)> + ...+ Qo <pvf’”’2)

A13 A33 ‘/2217 —ZNIQS + Ozgp <p1)3> + ...+ (0] <pU;p72>

Making use of equation (3.38)c gives :

2p—1>

MY +icg, (pz0)) + ... 4 iag (pzv"™?) — agy (pv3) — ... — an (pvj

3.111 =
( ) Q2p+2 ‘/51 <p>

We now proceed to obtain the expression of v3"*" using equation (3.33)f which writes :

(3.112) & = (o

, and the constitutive law :

. 1 . Css11 . Cs312 .
3.113 g = — 5% — gw —2 &%,
( ) 53 Cs333 53 Cs333 1 Cs333 2
It follows that :
(3.114) vt =0 =P (€3) .
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Finally, we aim to determine v7**. By equations (3.32)a and (3.32)b ,we can write :

(3.115) Oy = Qi675, — p(Q2pvg + Qzp2v] + ... + a2V 7))

Using the constitutive law, the strain fields €2 are given by :

(3.116) 287 = 4Sa3536gg“.
Hence, we have :

(3.117) v =T VI,

«

where 027? write :

(3.118a) { o =P (26" i),
(3.118) o =P (26",

and V?**? are obtained sequentially.

We draw the reader’s attention that a code allowing the computation of the dispersion
curves, corresponding to the three wave modes, through Matlab is available at Bejjani
(2019).

3.5 Numerical results

We now turn to explore the capability of the constructed expansion in providing good ap-
proximations of dispersion relations of the longitudinal, in-plane shear and flexural wave
modes propagating in composite plates. To this aim, comparisons between the asymp-
totic expansion method, the Kirchhoff-Love theory and the finite element method are
established with the help of the mathematical calculation software MATLAB. Flexural
dispersion curves are particularly compared to the Bending-Gradient theory (Appendix
3.6) and the First Order Shear Deformation theory corrected by the factor %

Numerical simulations presented hereafter are realized for a [0°,90°]s ply, a [—30°,30°]s
ply and a [0°,—45°,90°, 45°]; ply. The index S, for symmetric, means that the angles
between square brackets correspond to half of the stack, the other half being symmetrical
with respect to the midplane of the plate. All plies have the same thickness and they are
perfectly bounded. The constitutive material of the laminates is characterized by :

The symbols E, GG, v and p respectively denote the Young’s modulus, the shear modulus,
Poisson’s ratio and the density of the material. The indices L, T and N correspond res-
pectively to the longitudinal, transversal and normal directions. Each ply of the laminate
is made of unidirectional fiber-reinforced material oriented at € relative to the bending
direction x;.
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3.5. Numerical results

TABLE 3.1 — Elastic properties of the laminate, £ and G in Pa, p in kg/m? (Lebée and
Sab, 2015; Pagano, 1969)

Er Ex=Er Ginv=Gprr Grn VIN =VrLr =VrN P

1.72e+11 6.89e¢+09  3.45e+09  2.75e+09 0.25 2260

TABLE 3.2 — Elastic properties of epoxy-glass fiber composite material, £ and G in Pa,
p in kg/m?® (Renno et al., 2013)

Ep = Er En Grr Gy =Gry vir VIN=Vrn P

0.40e+10 4.80e+09 3.16e+09  1.78e+09  0.06 0.31 2000

Further simulations are performed for a multilayered plate consisting of alternate layers
having the same thickness of epoxy-glass woven composite and aluminium whose elastic
properties are respectively set down in Tables 3.2 and 3.3. The sequence is | GFRP, Al
GFRP, Al |, and the GFRP material directions L, N are aligned with directions 1 and 2.

In the figures below, the z-axis indicates the thickness-wavelength ratio (h/\). The y-axis
corresponds to the ratio (C/Cg), where ¢ is the wave velocity and Cg denotes a normaliza-
tion factor defined by Mindlin (1951) :

Cg = Gin .
0

The Kirchhoff-Love, the Bending-Gradient and the finite element curves are plotted as
solid lines. The blue "x" markers are used to show the first-order shear deformation theory
(%—FOSDT) results. The asymptotic approximations are described by dashed lines.

3.5.1 Flexural waves

Flexural dispersion curves are obtained by solving the sequence of problems for ag = 0. A
comparison between calculated values and reference values showed that the convergence
radius of the asymptotic expansion (3.21) is small enough. It can be clearly seen on figure
3.1 for example that the asymptotic series clearly diverges for h/A > 0.06. Interestingly,
this problem was solved as follows. Using Lagrange (1770) inversion theorem (see Appen-
dix 3.6 for more details), we expressed the Taylor expansion of k*? in terms of ¢ from
the knowledge of the Taylor expansion of ¢? in terms of £** which is given through the
asymptotic expansion method. Then we checked the convergence of the Taylor expansion
of £ in terms of ¢? for all our numerical applications. Finally, we took the inverse func-
tions of the truncated series as approximations of the flexural dispersion curves and we
plotted them in figures 3.2, 3.3, 3.4 and 3.5.
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3.5. Numerical results
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FIGURE 3.1 — Comparison of the flexural dispersion curves for a [0°,90°], ply
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FIGURE 3.2 — Comparison of the flexural dispersion curves for a [0°,90°], ply
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3.5. Numerical results
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FIGURE 3.3 — Comparison of the flexural dispersion curves for a [—30°,30°], ply
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3.5. Numerical results
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FIGURE 3.4 — Comparison of the flexural dispersion curves for a [0°, —45°,90°,45°]5 ply
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3.5. Numerical results
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FIGURE 3.5 — Comparison of the flexural dispersion curves for a [GFRP, Al, GFRP, Al |,
ply
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3.5. Numerical results

TABLE 3.3 — Elastic properties of aluminium material, F and G in Pa, p in kg/m? (Liu
et al., 2016)

E G v p

7.20e+10 2.67e+10 0.35 2700

We check on figures 3.2, 3.3, 3.4 and 3.5 that the asymptotic expansion method with p = 0
coincides with the Kirchhoff-Love plate model which shows significant discrepancies with
the reference solution for all plate configurations. Thus, solving higher-order problems
(p > 1) is a must for the improvement of the asymptotic estimations.

Flexural velocities computed for p = 1 and p = 2 show minor improvement compared to
Kirchhoff-Love solutions as depicted in figures 3.2, 3.3, 3.4 and 3.5. Thus, they do not
yield accurate enough predictions.

It can be noticed that going further in the expansion allows refining the approximate
solution. In fact, the computed results for a [0°,90°]; ply reveal a good approximation of
the solution for an order p = 16. When considering a [—30°, 30°]; and a [0°, —45°,90°,45°|,
ply, figures 3.3 and 3.4 show a good accordance between the asymptotic expansion method
and the finite element results for p = 15. According to figure 3.5, the computed results
reveal great estimations of the flexural dispersion curve for a [GFRP, Al, GFRP, Al |, ply
for p = 6.

Asymptotic expansions provide increasingly better approximations of flexural dispersion
curves as the order p increases. However, one is inclined to carry calculations to quite high
orders (up to a power of 32 of the parameter k) to get a good degree of accuracy.

It should be pointed out that the asymptotic expansion method converges for much larger
values of the small parameter (k* > 3) when the Lagrange inversion theorem is used.
Referring to Bejjani et al. (2019), the Bending-Gradient approach offers more rapidity
and flexibility to compute the desired results in comparison with the asymptotic analysis.

3.5.2 In-plane membranal waves

By choosing oy # 0 and V5 ' = 0, we can derive dispersion curves corresponding to the
in-plane modes. In this case, oy = % or ap = % as stated in Section 3.4. The greatest
value between A; and A, is the one that corresponds to longitudinal waves which are
known to propagate faster than shear waves.

In figures 3.6, 3.7, 3.8 and 3.9 are depicted the longitudinal dispersion curves. Those of
the in-plane shear mode are plotted in figures 3.11, 3.12, 3.13 and 3.14.
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3.5. Numerical results
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FIGURE 3.6 — Comparison of longitudinal dispersion curves for a [0°,90°], ply

3.5.2.1 Longitudinal waves

It is seen on figures 3.6, 3.7, 3.8 and 3.9 that a great approximation of the reference solution
is acquired for p = 1. In fact, one can clearly observe slight variations of the longitudinal
velocities. The asymptotic expansion method does not hence bring a drastic improvement
of the approximation of in-plane dispersion curves compared to the Kirchhoff-Love model,
which coincide with the zeroth-order approximations.

It is important to note that simulations were presented only for thickness-wavelength
ratios smaller than 0.15 since in this case Poisson’s effect can be neglected. For higher
thickness-wavelength ratios, it is expected that the asymptotic expansion method will fail
to provide accurate results. This is illustrated in figure 3.10 for example where a strong
dispersion of the longitudinal mode is observed for 0.15 < A < 0.5 in the case of a [GFRP,
Al, GFRP, Al |, ply.

3.5.2.2 In-plane shear waves

As for the case of flexural waves, the simulations presented hereafter are obtained using
Lagrange (1770) inversion theorem (Appendix 3.6).

For a [0°,90°], ply, figure 3.11 shows that the in-plane shear curve obtained by the asymp-
totic expansion method for p = 0 is practically identical to the Kirchhoff-Love and the
finite element solution.

As shown in figure 3.12, the approximation of the dispersion curve is considerably close
to the reference solution for p = 11 in the case of a [—30°,30°]s ply.
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FIGURE 3.7 — Comparison of longitudinal dispersion curves for a [—30°,30°], ply

4.6

cs

Normalization factor

—FEM—KL---p=0

381, y

Longitudinal wave velocity _ .

| | | | |
0 2.1072-107%-10"%-10"2 0.1 0.12 0.14
Thickness-wavelength ratio (h/\)

FIGURE 3.8 — Comparison of longitudinal dispersion curves for a [0°, —45°,90°, 45°], ply
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3.5. Numerical results
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FIGURE 3.10 — Comparison of longitudinal dispersion curves for a [GFRP, Al, GFRP, Al
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3.5. Numerical results
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FIGURE 3.12 — Comparison of in-plane shear wave dispersion curves for a [—30°, 30°]s ply
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FIGURE 3.13 — Comparison of in-plane shear wave dispersion curves for a

[0°, —45°,90°,45°], ply

It is observed on figure 3.13 that the predicted dispersion curve is well correlated with
the finite element solution for p = 3 in the case of a [0°, —45°,90°, 45°], ply.

According to figure 3.14, the in-plane shear dispersion curve is accurately captured for
p = 1 compared to the finite element results for a [GFRP, Al, GFRP, Al |, ply.

Through the asymptotic expansion method and the Lagrange inversion theorem, we were
able to estimate the dispersion curves of only three of all the wave modes obtained through
the finite element method. What is interesting is that the domain of validity of the method
is not limited to the vicinity of zero.

Using asymptotic expansions to model the propagation of flexural waves turns out to be
complicated in comparison with the Bending-Gradient theory. Surprising is the fact that
using Lagrange inversion theorem and carrying out calculations to high orders is a must
to obtain good approximations of the flexural dispersion relations, as those obtained with
the Bending-Gradient theory. Based on the obtained results, the domain of application of
the asymptotic expansion method is clearly limited to the in-plane modes.

3.6 Conclusion

This paper is concerned with the prediction of the propagation of waves in composite plates
by means of the asymptotic expansion method. In its initial version, this method exploits
the existence of a small parameter corresponding to the thickness-to-wavelength ratio.
The displacement, the strain and the stress solutions of the wave propagation problem
are searched under the form of power series of the small parameter. Inserting these series
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FIGURE 3.14 — Comparison of in-plane shear dispersion curves for a [GFRP, Al, GFRP,
Al | ply

in the original problem and gathering terms which correspond to the same power of the
small parameter yields an infinite sequence of problems to be solved recursively.

To assess the asymptotic expansions capability for estimating dispersion relations, nume-
rical calculations were carried out. It was shown that the asymptotic expansion method
provides identical solutions with the Kirchhoff-Love theory solutions for the zeroth-order.
The Kirchhoff-Love theory gives results far from the actual ones when the thickness-to-
wavelength ratio increases. Seeking higher orders in the expansion was hence a must to
obtain better predictions of the flexural, compressional and in-plane shear wave modes. It
was also shown that the convergence of the dispersion curves calculated as Taylor series
of the thickness-to-wavelength ratio was limited to small values of this ratio (less than
0.06). In order to enhance the convergence, the Lagrange’s inversion theorem has been
used leading to convergence of the series for all the considered values of the thickness-
to-wavelength ratio (up to 0.5). This is an important theoretical result indicating that
the asymptotic expansion method can be sometimes applied even when the assumed small
parameter is not so small.

Numerical results were compared to the finite element method for verification purposes.
The in-plane shear mode was accurately estimated in general. Good approximations of the
longitudinal mode were obtained, yet in a limited range of thickness-wavelength ratios.

The approximations of the flexural dispersion curves were in particular compared to the
Bending-Gradient theory and to the first-order shear deformation theory (%—FOSDT).
Good agreement between the calculated results, the reference results and those of the
Bending-Gradient and %—FOSDT was found. Unexpectedly, it was necessary to take into
consideration much higher order terms of the expansion in order to achieve a similar ac-

curacy as that of plate models. In addition, the procedure is somehow cumbersome and
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3.6. Conclusion

complicated which means that the asymptotic expansions lack effectiveness in approxi-
mating flexural dispersion curves.
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Conclusions et perspectives

Ce travail de thése s’inscrit dans le cadre de ’étude de la propagation des ondes dans les
plaques multicouches hétérogenes et anisotropes, un sujet qui a été abordé largement dans
la littérature. Toute la problématique est de trouver une bonne estimation analytique ou
semi-analytique des relations de dispersion décrivant I’évolution de la fréquence angulaire
en fonction du nombre d’onde. Les équations qui régissent ce type de problémes sont bien
connues et peuvent étre résolues numériquement. On cite par exemple la méthode des
éléments finis qui, malgré le fait qu’elle permet de représenter facilement des domaines
de géométrie compliquée, s’avére complexe de point de vue mise en oeuvre et cotliteuse en
temps de calcul et en mémoire.

Dans ce contexte, deux approches ont été proposées pour l’estimation des relations de
dispersion des ondes se propageant dans une plaque symétrique infinie dans le cadre de
I’élasticité linéaire : la théorie du Bending-Gradient et la méthode des développements
asymptotiques. Le présent document est une évaluation du compromis entre la simplicité
et 'exactitude de ces méthodes pour le probléme de la propagation des ondes.

Avant de réponde au probléme posé, il semblait pertinent de commencer par une justi-
fication mathématique du modéle du Bending-Gradient dans le cadre statique (Chapitre
1). Aprés avoir explicité les formulations en déplacement et en contrainte, nous avons
défini les espaces fonctionnels auxquels appartiennent les variables du modéle. Ceci nous
a permit d’établir et de prouver I'existence et I'unicité de la solution du probléme dans le
cas ot la plaque est encastrée ou libre. Une bréve discussion a été menée pour les plaques
dont le bord est simplement appuyé.

Le Chapitre 2 a été consacré a tester la validité de la théorie du Bending-Gradient pour
la propagation des ondes de flexion dans les plaques composites. Les équations du mou-
vement ont été formulées en tenant compte des déformations du cisaillement transverse
et en négligeant les effets d’inertie rotatoire. Nous avons montré que, pour retrouver les
relations de dispersion, il suffit d’annuler le déterminant d’une matrice dont on a explicité
les composantes. Dans ce cadre, nous avons créé un code permettant d’obtenir facilement
ces relations en utilisant le langage de programmation Matlab. Le code est simple a utili-
ser et a été mis a la disposition des étudiants et des chercheurs. Les résultats obtenus par
la méthode des éléments finis ont servi de référence pour la vérification de la pertinence
de la théorie du Bending-Gradient. Nous avons comparé nos résultats aussi a ceux des
modéles de Kirchhoff-Love et de Reissner-Mindlin. Le résultat principal de ce chapitre sti-
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pule que les résultats obtenus par le Bending-Gradient sont les plus robustes et les moins
sensibles a la configuration de la plaque. Il serait intéressant de pouvoir adapter la théorie
du Bending-Gradient afin de permettre la caractérisation du comportement dynamique
des plaques composites non nécessairement symétriques.

Le Chapitre 3 s’est attaché a tester I'efficacité de la méthode des développements asymp-
totiques pour modéliser le comportement dynamique linéaire des plaques multicouches
infinies, avec le rapport épaisseur sur longueur d’onde comme petit paramétre. Aprés
avoir exprimé les champs solutions sous forme de séries en puissance du petit parameétre,
nous les avons injectés dans le probléme initial. En rassembant les termes de méme puis-
sance, nous avons obtenu une cascade de problémes dont la résolution a ’ordre zéro nous a
permis d’obtenir les trois modes de compression, de cisaillement dans le plan et de flexion
du modéle de Kirchhoff-Love. La comparaison des résultats avec ceux de la méthode des
éléments finis montre une bonne approximation du mode de cisaillement dans le plan
en général et du mode de compression dans un domaine limité de rapports épaisseur-
longueur d’onde. Un bon accord entre les résultats obtenus, ceux du Bending-Gradient et
des éléments finis est indiqué pour les ondes de flexion. Cependant, il s’avére nécessaire
de prendre en compte des termes d’ordres supérieurs pour améliorer la précision de la so-
lution. La méthode des développements asymptotiques, bien que rigoureuse, semble étre
compliquée a mettre en oeuvre en comparaison a la théorie du Bending-Gradient.
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Annexe A

In the sequel we use the symbol "c" to denote a generic positive constant. In other words,
the constant c takes different values at successive occurrences, even in the same equation.

A1l

We denote by [|e]| g the norm associated with the scalar product (e, e) . Let poc
SC(0),n € N be a Cauchy sequence in the norm |[e[|g, ). Then, (H’n) is a Cauchy
sequence in L?(w) and <Bn®2) is a Cauchy sequence in L*(w). Therefore, there exists
7S L*(w) and R € L*(w) such that p and p oV converge to p in L*(w) and to
R in L*(w), respectively. We thus have that p converges to g in D' (w). Consequently,
p oV converges to po V in D'(w). Since p oV also converges to R in D'(w), then

~Mn

we have that R = pe V. This proves that p is in H'(w). We are left with proving
that ¢ : ((H,@Z) ®2> = 0. As the gradient operator is continuous, then <Hn®2> oV
converges to (;NL@)Z) ® V in the sense of distributions. We also have that po< SC(0).
Therefore, 1 (([NL ®Z) ®Z> = 0. We have proved that SC(0) equipped with the scalar

product (e, '>SC(0) is hence a Hilbert space.

A.2

Let (M, M’) be in H'(w) x H'(w). Then, using properties (1.44) and (1.45) and the
Cauchy-Schwarz inequality, we have that :

0y (M, M) < (

/WMliM‘JF /WT(M’@Z)?(M@Z)D

! !
< c (1M1 Mg, + I o T o 1Mo T g2, )
9 ) 1/2 1/2
! ! 2 2
< (I Vg, + 1%, ) (1M1 + 1Mo )
< ! 1
<M g, IMI g,

We thus have proved that the bilinear form a, is continuous on SC'(0) and the linear map
p — as(P, p) is also continuous on SC(0).
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A.3

We have :
b (W, ®)| =

[

<Pl -1y Wl 13 )
< Pl -1 HW’(l)HKco

Consequently, the linear form b is continuous on KCj.

A4

Using properties (1.44) and (1.45) then the Cauchy-Schwarz inequality leads to

[@2) D@ v

a((m.2). (v.2))| < | [
/w(‘l’-Z) : (‘1"-2)‘+

<<(

= (Hi} Vg 12Vl g, + HQ T 'EW’

(El_i_izwl

L’ ) L’ )

Since H;L ZW‘

2
LQ(W) - % HZWHQL?(@; using the Poincaré inequality yields :

ja (W.2), (W, @))| < c|[W, @], [W, &

This ends the proof.
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Annexe B

B.1

Let R be the space of 2D third order tensors which comply with the following symmetries :
(1) ]R - {(Xaﬁfy) S R8| Xaﬂ'y - Xﬁav} :

Sab and Lebée (2015) orthogonally decomposed the vector space R, endowed with the

scalar product XagWX&m, into Im A and its orthogonal Ker A :

R =Kerh®Imh,

where @ is the direct sum operator (Section 3.2), Imh is the image of the sixth-order
shear force compliance tensor hqgysec :

Imh = {hapyoec Xces, Xees € R},
and Ker h denotes its kernel :
Kerh = {)(01/3,Y eR ’ ha,B’y&sCX(ezS = 0}

Sab and Lebée (2015) have proved that the shear force compliance tensor hqgysec is definite
only on the subspace Im h whose dimension is between two and six, depending on the
elastic properties of the plate. When the plate is homogeneous, the dimension of Im A is
exactly two and in this case the Bending-Gradient theory degenerates into the Reissner-
Mindlin theory. When h,g scc is definite and therefore invertible, Im A is equal to R of
dimension six.

B.2

For the particular case of homogeneous plates, we recall that the Bending-Gradient shear
compliance tensor hogsec is of the form (2.11). Contracting three times the left and the
right of both sides of the above equation with %iaﬁwg, we obtain the expression of fJ; in
terms of hagsec (see equation (2.14)). In view of the positive definiteness of f5;, we define
its inverse F 5.

Propagation of elastic waves is governed by the equations of the Bending-Gradient theory,
which for homogeneous plates write :

@) Qo — Mag s =0,
Qa,oz = Udﬁ
In terms of displacements (Us, ¢, ), the above equations are revised as :
(3a) Fog (ps + Usg) — Dapennes = 0,
(3b) Fos (08,0 + Usga) = Usp.
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The displacements (Us, ¢a) (21,1), solution to the wave equations (3), have the general
following form :

(4a) Us(xy,t) =R (Ugej(‘”t*kxl)> 7
(4b) SOa(171, t) =R (@aej(wt—kxl)) ’

where Us and $q are constants. Plugging these functions into equations (3), it follows
that :

(5a) s (@ﬂ - jk5ﬂlﬁ3> + k*Da11q@y = 0,
(5b) Fly (— ks — k205103 ) + w20y = 0.
We denote by [0"] the vector of dimension 3 representing the generalized displacements :
(6) [5h]T = [037951,%52} .
Equations (5) can be rewritten as :
(7) 8] - [6"] =0,
where [B] is a 3 x 3 matrix identified as :
w?p — K*FR —JkF —JkF}
(8) 8] = —JkFY  FR 4+ KDy FYy+ E Dy

— 1k F3 F} + k*Doryy F3 + k*Dojoy

The dispersion relation of flexural waves for homogeneous plates is deduced from solving :
(9) det[B] = 0,
which yields
o _ KOF} (D1 Do — Digy) + K Diany (15155 — (F15)%)

p ((F + k2Dii11) (F3y + k2Daror) — (Ff + k‘2D2111)2) '
The tensors Fj; and D,gys, being positive definite respectively imply that :

Fiyi>0, FRES—(F3)?>0

(10) w

and
2
Di111 >0,  Di111Dai2r — Dy > 0.

Fi+ k* D111 Fi + k*Da111
F1R2 + k2D2111 F2R2 + k2D2121

is positive definite. Therefore, its determinant is always positive. Namely,
2
(Ffi 4+ k*Diint) (Fy + k° Do) — (Ffs + k*Darir)” > 0.

As a consequence, equation (10) admits two real roots corresponding to the forward and
backward flexural waves.

Furthermore, the wavenumber k being real implies that the matrix
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Annexe C

C.1

In this section, we present the numerical computation of the functions P and Q introduced
previously in Sect. 3.4.

Let f denote a function defined on the interval [—3, 3] and {z;}7, a sequence of n + 1

2
increasing numbers in [—3, 1] with
1

(11) 930:—5, $n:§, Tk41 :$k+5-

The following notation is used for clarity purposes :

Let g =Q(f) = f(y)dy. The discretized function of g is expressed as :

N

1 fee1+ f

(13) 90=0, grr1=gx+— , k=0,1,...,n—1.
n 2

The definite integral I, of g on [—1, 1] writes :

n—1

- : - L grv1+ g
(14) I, = /_ g(t)dt = Z S

n
k=0

NI

We recall that P(g) designates the unique primitive of the function g such that (P(g)) = 0.
We have that :

(15) P(g) =g — 1.
The discretized function of P(g) is given by :

(16) g —1,, k=0,1,..,n.

C.2

Lagrange (1770) inversion theorem reads as follows :
Suppose that Y = f(X), X € R, is a real smooth function which admits a power series
expansion

(17) Y= X +aX>+ ... +a, X"+ ...
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where the coefficients aq, as, a,, ... are known real numbers and a; # 0. Then, it is possible
to express X in terms of powers of Y by :

(18) X =bY +bY2 4+ . 4D, Y" + ...

where the coefficients b, are given by the explicit formula :

1 [dvt 1 "
(19) b, = — .
n! | dxe™ ! \a; +as X + ... +a, X! X=0

for any order n.
More details on the Lagrange inversion theorem can be found in G. De Bruijn (1958).
When considering flexural waves (o = 0), we have that :

Y=¢, and X =k,

whereas for in-plane shear waves, oy # 0 yields :

Y =c"—0ap and X =Fk"2

C.3

Inspired by ideas from Reissner (1945), Lebée and Sab (2011) suggested a new plate mo-
del, known as the Bending-Gradient theory, dedicated to thick and heterogeneous plates.
This theory replaces the classical Reissner-Mindlin out-of-plane shear forces by the gene-
ralized shear force related to the first gradient of the bending moment. Furthermore, six
rotations are introduced instead of only two. This is why the Bending-Gradient theory is
considered as an extension of the Reissner-Mindlin theory to laminated plates. In general,
the Bending-Gradient model cannot be replaced by a Reissner-Mindlin model unless the
constitutive material of the plate is homogeneous. In this case, the two models strictly
coincide. For further details on the Bending-Gradient theory, the reader may refer to Le-
bée and Sab (2011), Lebée and Sab (2013), Lebée and Sab (2015), Lebée and Sab (2015),
Sab and Lebée (2015) and Bejjani et al. (2018).

In a recent paper (Bejjani et al., 2019), the validity of the Bending-Gradient theory regar-
ding plane wave propagation in composite plates was tested. Numerical simulations were
carried out on different plate configurations and it was shown that the Bending-Gradient
approximation of the dispersion curve associated to flexural waves is the most robust one
and the less sensitive to the ply configuration.

Wave propagation in an infinite composite plate is governed by the full set of equations
of the Bending-Gradient theory, which write :

(20a) R-P° (M®V)=0, Q=i:R and Q -V =Usp,
(20Db) x=d:M and I'=h:R,
(20c) x=®-V and I'=®+1:¢-VU
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Equations (20)a, (20)b and (20)c respectively designate the equations of motion, the
constitutive equations and the compatibility conditions.

Us is the out-of-plane displacement and @ is the Bending-Gradient generalized third-order
rotation tensor.

The second order tensor x is the curvature tensor, while the third-order tensor I' is the
Bending-Gradient generalized shear strain.

The second-order tensor M and the vector Q designate the conventional bending moment
tensor and shear force respectively, related to the 3D local stress (0i;) by :

(21) Ma,@ = <x30a5> and Qa = <0a3> :

The third-order tensor R represents the Bending-Gradient generalized shear force.

Here, d is the classical bending compliance fourth-order tensor, always positive and defi-
nite. The sixth-order tensor h is the generalized shear compliance which is positive but
definite only on its image Im h. The projection operator onto Im h is denoted by 1:5 .
Finally, p is given by :

NIy

(22) /3—/_ p(x3)dxs.

h
2

The derivation and the implementation of the Bending-Gradient equations of motion is
wholly described in Bejjani et al. (2019).
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