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Abstract

With the recent advancement in image capturing devices, High-Resolution (HR) images

have become quite prevalent under diverse application settings. Fields such as Remote-

Sensing (RS) or High Dynamic Range Imaging (HDRI) have been reproducing HR images

for past few decades and demand automatic techniques for effectively processing them

with least human intervention. Deep Learning has revolutionized these fields owing to

parallel processing of a complete batch of HR images in one forward pass. In this thesis we

discuss four different application scenarios that can be broadly grouped under the larger

umbrella of Analyzing and Processing HR images using deep learning techniques. The first

three chapters encompass processing RS images which are captured either from airplanes

or satellites from hundreds of kilometers away from the Earth. We start by addressing a

challenging problem related to improving the classification of complex aerial scenes through

a deep weakly supervised learning paradigm. We showcase as to how by only using the image

level labels we can effectively localize the most distinctive regions in complex scenes and

thus remove ambiguities leading to enhanced classification performance in highly complex

aerial scenes. In the second chapter we deal with refining segmentation labels of building

footprints in aerial images. We effectively perform this by first detecting errors in the initial

segmentation masks and correcting only those segmentation pixels where we find a high

probability of errors. The next two chapters of the thesis are related to the application of

Generative Adversarial Networks. In the first one, we build an effective Cloud-GAN model

to remove thin films of clouds in Sentinel-2 imagery by adopting a cyclic consistency loss.

This utilizes an adversarial loss function to map cloudy-images to non-cloudy images in a

fully unsupervised fashion, where the cyclic-loss helps in constraining the network to output

a cloud-free image corresponding to the input cloudy image and not any random image in

the target domain. Finally, the last chapter addresses a different set of HR images, not

coming from RS domain but instead from HDRI application. These are 32-bit images which

capture the full extent of luminance present in the scene. Our goal is to quantize them to

8-bit Low Dynamic Range (LDR) images so that they can be projected effectively on our

normal display screens while keeping the overall contrast and perception quality similar

to that found in HDR images. We adopt a Multi-scale GAN model that focuses on both
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coarser as well as finer-level information necessary for HR images. The final tone-mapped

outputs have a high subjective quality without any perceived artifacts.

Keywords: High Resolution Images, Deep Learning, Convolutional Neural Networks,

Generative Adversarial Networks, Aerial Scene Classification, Building Footprint extraction,

Cloud Removal, High Dynamic Range Imaging, Tone Mapping.



Résumé

Grâce aux récents progrès des dispositifs de capture d’images, les images haute résolution

(HR) se sont répandues dans plusieurs domaines. En outre, la télédétection (RS) ou

l’imagerie à gamme dynamique élevée (HDRI) produisent des images HR depuis quelques

décennies et exigent des techniques automatiques pour les traiter efficacement avec le

minimum d’intervention humaine. L’apprentissage profond a révolutionné ces domaines

grâce au traitement parallèle d’un lot complet d’images HR en une seule passe. Dans cette

thèse, nous discutons de quatre scénarios d’application différents qui peuvent être rassemblés

dans le cadre plus général de l’analyse et du traitement des images HR par apprentissage

profond. Les trois premiers chapitres portent sur le traitement des images RS captées soit

par avion, soit par satellite à des centaines de kilomètres de la Terre. Nous commençons

par la classification des scènes aériennes complexes, et nous plaçons dans le cadre de

l’apprentissage profond faiblement supervisé. Nous montrons comment, en n’utilisant que

les étiquettes d’altitude des images, nous pouvons localiser efficacement les régions les

plus distinctes. Cela élimine toute ambigüıté et conduit à de meilleures performances de

classification. Ceci permet d’éliminer les ambigüıtés et mènent à une meilleure performance

de classification. Dans le deuxième chapitre, nous traitons de l’affinement des étiquettes de

segmentation des plans du bâtiments, toujours pour les images aériennes. Pour ce faire,

nous détectons d’abord les erreurs dans les masques de segmentation initiaux et corrigeons

uniquement les pixels de segmentation où nous trouvons une forte probabilité d’erreurs.

Les deux prochains chapitres de la thèse portent sur l’application des Réseaux Adversaires

Génératifs. Dans le premier, nous construisons un modèle efficace, appelé Cloud-GAN, pour

éliminer les couches minces de nuages dans l’imagerie Sentinel-2 en adoptant une fonction de

perte cyclique. La fonction de perte cyclique contraint le réseau à produire une image sans

nuage correspondant à l’image nuageuse d’entrée, de façon non supervise. Enfin, le dernier

chapitre traite d’un ensemble différent d’images HR, ne provenant pas du domaine RS mais

plutôt de l’application HDRI. Ce sont des images 32 bits qui capturent toute l’étendue

de la luminance présente dans la scène. Notre objectif est de les quantifier en images

LDR (Low Dynamic Range) de 8 bits afin qu’elles puissent être projetées efficacement sur

nos écrans d’affichage normaux tout en conservant un contraste global et une qualité de
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perception similaires à ceux des images HDR. Nous adoptons un modèle GAN multi-échelle

qui met l’accent à la fois sur les informations fines et grossières. Les images générées sont

qualitativement remarquables, sans artefacts perçus.

Mots clés: Images à haute résolution, apprentissage profond, réseaux neuronaux

convolutifs, réseaux adversaires génératifs, classification de scènes aériennes, extraction

d’empreinte de bâtiments, suppression de nuages, imagerie à haute dynamique, cartographie

des tons.
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Chapter 1

Introduction

Deep Learning has gained immense popularity in the recent past owing to its significant

improvement in precision accuracies compared to traditional methods for wide variety

of computer vision tasks be it large scale image recognition [63, 82], detecting objects of

interests [57, 140], pixel level scene segmentation [26, 46] or image processing tasks like image

super-resolution [32, 79], de-noising [164, 175], colorization [23, 184] or inpainting [180].

With the availability of high performance Graphics Processing Units (GPUs) and large-scale

datasets, it is now possible to train giant models with millions of parameters without any

over-fitting, conditioned that the model can easily fit on the GPU memory. This has

been a huge boon especially for researchers working with high resolution images in fields

such as Remote Sensing (RS) or High Dynamic Range Imaging (HDRI) where applying

hand-crafted processing tools on full scale image is both time consuming and scene specific.

RS is the science of observing the earth remotely, either through satellites or from an

aircraft, and generating meaningful information from the acquired data. This data can be

captured in varied forms, be it Radar, Lidar, MultiSpectral or Hyperspectral depending

upon the task at hand. For eg. Synthetic Aperture Radar (SAR) images can be used to

produce precise Digital Elevation models of a place [83] or Multi-spectral imagery can

be used to detect deforestation [25], examine health of indigenous plants and crops [85],

or predict the prospects of minerals [48]. In the last few years, we have seen explosion of

petabytes of high resolution dataset freely made available either by government-funded

space research programs such as Landsat [158] and Sentinel [43], or through the advent of

private players such as Digital Globe and Planetlabs launching their own nano-satellites. In

order to deal with such humongous amount of high-resolution satellite/ aerial imagery, there

is a dire need for resolving to deep-learning techniques which can easily automatize wide

variety of computer vision tasks specific to RS imagery be it land-use classification [18, 98],

building [162] / road detection [116], aerial scene classification [66], SAR despeckling [167],

hyperspectral classification [107], etc.
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HDRI is the technique of capturing full dynamic range of luminance and contrast

present in a scene, similar to what is experienced by the human visual system [8, 191]. The

human eye, continuously adapts itself, through the aperture of the iris, both to high and low

exposure regions in the image. However, this isn’t the case in standard capturing devices,

where the captured scene is finally quantized within the range of 0-255 pixel luminance

value for display purposes. HDRI would be highly desirable for vision applications [137],

particularly in cases of autonomous driving or surveillance where both darkest as well

brightest regions hold equal importance while detecting objects of interest. Though there

has been several advancements in the past in terms of HDR scene capture [10, 154], HDR

display devices are still quite expensive for normal use. With the availability of large-scale

high resolution HDR datasets, captured either from high-end HDR cameras or less expensive

mobile devices, it is now possible to utilize them for variety of HDR oriented task such as

effective quantization (Tone Mapping) [110], Inverse Tone Mapping [39, 41], De-ghosting /

Denoising of HDR image [67], etc.

High Resolution can have different interpretations depending on if we are talking about

RS or HDRI data. Spatial Resolution in RS imagery largely implies the coverage of ground

for each individual pixel in the image. So in a sense a high spatial resolution of 30 cm

implies that a particular pixel in the image represents 30 × 30 cm area on ground. Such

a high resolution makes it easier to easily distinguish finer objects such as individual

houses or vehicles on ground. A coarser resolution, effectively covering larger area per pixel

on ground, makes it difficult to identify clearly such individual objects. The concept of

resolution in HDRI is related to the number of pixels per inch. Thus a high resolution HDR

image contains larger number of pixels in an image irrespective of the scene area captured.

This thesis, focuses broadly on high resolution images captured either from RS sensors

or from HDRI cameras, thus trying to process them by applying various deep learning

techniques. In the case of RS imagery, we try to utilize different kinds of deep learning

algorithms to solve computer vision tasks such as Aerial Scene Classification, Building

Footprint detection as well as removal of thin clouds. For HDRI, we try to address a widely

addressed problem of Tone-Mapping but using a deep-learning focused methodology. In

the next section, we would briefly discuss about the context and objectives of this thesis,

and then finally talk about the larger contributions and the overall structure of the thesis.

Context and Objective

This thesis is broadly focused on three different aspects of computer vision problems in high

resolution RS images namely Aerial scene Classification, Building Footprint extraction and

Cloud Removal which we try to address by using deep learning methods. Finally we also try
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to address image processing tasks in another kind of high resolution images, namely HDR

images, by proposing a novel deep learning tool for tone mapping them to a low dynamic

range. We hereby illustrate the context and objective of each of the above mentioned task

in further details.

Remotely observing the earth can be quite interesting as well as challenging due to the

wide spectrum of captured areas of interest (AOI). Compared to natural real world scenes,

RS images have much more distinctive objects captured in its AOI. Classification of a scene

generally involves, capturing the important regions in a scene, followed by drawing the

underlying relationship between these objects which is then used to distill out a meaningful

abstract representation of the scene which helps in classifying it. Complex aerial scenes are

characterized by large number of such discriminative regions that tend to draw ambiguity

in the decision making while classifying them. Annotating these important regions by hand

is both time consuming and tedious tasks even for RS experts. To this end, in this thesis,

we first try to resolve this confusion with respect to aerial scene classification by proposing

a novel deep weakly supervised learning method that automatically localizes the important

regions and makes a classification decision using only those regions.

Classifying scene is important as it helps in automatically segregating those class of

images from a large dataset which are required for our specific task. For eg. in order to

detect buildings in an image, we first need to separate images belonging to building class.

Once this has been attained, we move on to segmentations of buildings footprints in such

scenes which is highly desirable for wide variety of end goals such as Urban scene planning,

monitoring of green cover in an area and emergency relief operations in times of floods,

Tsunamis, Earthquakes, etc. With tonnes of satellite imagery available either through

google or other sources, it is quite impossible to manually label the building footprints

in these images. Recently Open Street Maps have gained huge attraction, however the

annotations are error prone and need correction in terms of registration. We try to resolve

this task of automatic segmentation of building footprints, by modeling the underlying

relationship existing in the joint space of input image and the output segmentation mask.

To this end, we propose to detect errors in initial segmentation masks and try to correct

them through a replacement technique, both of which are trained end-to-end in a supervised

fashion.

Other than recognizing footprints in buildings, RS images are pivotal in wide range of

other objectives such as detecting changes in temporally apart scenes, extracting roads in

multiple terrains, classification of land cover or land usage. However it quite often happens

that these scenes are plagued by films of clouds that partially or completely obstruct the

scene. This becomes quite annoying for RS experts especially for cities where the cloud

cover is persistent for majority of the year. Thus in order to resolve this, we propose in
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this thesis a novel cyclic consistent Generative Adversarial Network model, that generates

affectively cloud free images from their cloudy counterparts.

Finally we shift our focus from high resolution RS imagery to processing a fairly different

kind of high resolution data, namely the HDR images. We know that our normal display

screens are accustomed to project only low dynamic range (LDR) images with 8-bits per

pixel (bpp). Thus, in order to display a 32-bpp HDR image on an LDR screen, we require

some sort of efficient quantization that can effectively preserve both the overall contrast as

well as finer details in bright and dark regions. This technique of mapping HDR content

to LDR content while preserving all the desired details is called Tone Mapping. While

different sets of Tone Mapping Operators (TMOs) have been designed in the past, their

roles have been specific for a particular scene content. We try to utilize freely available

HDR images of a wide variety of scene content, to effectively learn a TMO that can yield

the most aesthetically pleasing and perceptually good looking tone mapped output through

a Conditional Generative adversarial model.

Background on Deep Learning

Deep Learning is a special subset of machine learning which has the capability to learn from

observations over a wide variety of dataset (both structured as well as unstructured). These

sets of algorithms allow computational models (that are composed of multiple layers of

neurons) to learn representations of data with multiple levels of abstraction. While training,

these models aims to build a mapping of the intricate structure in large datasets by using the

back propagation algorithm [78]. In a way, the back-propagation algorithm allows the flow

of gradients backward through the network layers, thus indicating how a machine should

change its set of internal parameters to build distinctive representations. These layers are

formulated in a sequential fashion such that the representation in each layer is built on top

of the representations from the previous layer. Based on the type of learning strategy, deep

learning techniques can be broadly classified into 3 major categories: supervised learning,

unsupervised learning and reinforcement learning. There are also others which fall at the

intersection of supervised and unsupervised learning namely semi-supervised learning,

self-supervised learning and weakly supervised learning. In the following subsections, I

would introduce each of these in further details.

Supervised Learning Supervised Deep Learning has gained enormous momentum since

the seminal paper of Krizhevsky et. al. [82] which showcased a significant boost in image

classification task on a large-scale dataset (Imagenet) using deep convolutional neural

networks trained on a GPU. Since than, these techniques have been vastly explored in
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several domains of computer vision [181], remote sensing [147] as well as medical image

analysis [142], to name a few. Supervised learning can be defined as a class of problem

where the goal is to learn a mapping between input samples and the target variables, by

training the model with some well-annotated examples together with their corresponding

ground truths. Several problems such classification, regression, segmentation and object

localization can be formulated in a supervised setting.

Unsupervised Learning Unlike supervised learning where input and target is known,

unsupervised learning represents a class of problem where a model is learnt that can

effectively describe or extract relationships within the data. Several algorithms such as K-

means clustering, Restricted Boltzmann machines (RBMs) [146], deep Boltzmann machines

[145], Deep belief networks (DBNs) [64] have been explored within the unsupervised

framework to automatically learn the representation of the underlying data.

Reinforcement Learning Reinforcement learning represents another class of problem

where the goal is to take suitable action so as to maximize reward in a given situation.

Reinforcement learning starkly differs from the supervised learning. While in supervised

learning, the training data contains the ground truth label for each input sample to train the

model, for reinforcement learning, there is no exact ground truth but rather a reinforcement

agent which decides the action for a given task at hand. When there is training dataset,

the model is bound to learn from its experience. Reinforcement learning has been explored

for a variety of problems including control policy making in gaming such as Atari and

AlphaGO [117].

Semi-Supervised Learning Semi-supervised algorithms are particular class of algo-

rithms where the model is able to learn from partially labeled data sets. In this setting, the

model uses the unlabeled data as input and aim to gain more understanding of the inherent

structure in general and build representations. With slow advancement in unsupervised

learning, research have made a lot of progress in semi-supervised learning by using tons of

dataset from the internet including texts, images, time-series [115].

Self Supervised Learning Self supervised learning is another class of algorithms which

drive both from unsupervised and supervised learning. Particularly in this class of techniques,

the goal is to convert an unsupervised learning problem into a supervised learning problem

by simply creating some pseudo labels from the unlabeled training dataset. In recent

literature, these specific class of methods have been getting tremendous attention as they

are believed to counter one major limitation of supervised machine learning i.e.curating

large amount of labelled training data. One recent example of self supervised learning is in
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[73] where authors have been able to estimate the relative depth from geometric constraints

between the motion of the camera and motion field of the scene, by simply using motion

segmentation algorithm. Another example [55], tries to estimate the amount of rotation

done as a pre-processing step on the input sample.

Weakly Supervised Learning In deep learning, weakly-supervised learning is per-

formed in those set of problems where the data is noisy, limited, or is collected from an

imprecise source. In such conditions, the model is designed to use such weak data to provide

supervisory labels for a considerably large amount of training data. Such weakly-labelled

learning frameworks have shown great potential in estimating object localization using

only image level labels [186].

Contributions

In this thesis, I attempt to solve major computer vision and image processing problems in

a broader umbrella of high resolution images that encompass both RS imagery as well as

HDR images. The following contributions are presented in this thesis:

1. We present a novel deep weakly supervised learning technique that automatically

localizes the most distinctive regions in aerial scenes with image labels. By simply

using these important regions, it gains significant improvement in the overall accu-

racy compared with classification over complete scenes. This contribution has been

presented in the following article:

P. Singh, N. Komodakis, Improving recognition of complex aerial scenes using a deep

weakly supervised learning paradigm (IEEE Geoscience and Remote Sensing Letters,

2018)

2. We refine the predicted building segmentation masks from a fully convolutional deep

learning model, by detecting and replacing pixels with high probability of errors.

This is done in an end to end fashion and helps in effectively learning the underlying

structure of building footprints thus boosting in the overall Precision and IOU of

segmentation labels. This contribution has been presented in the following article:

P. Singh, N. Komodakis, Effective Building Extraction by Learning to Detect and

Correct Erroneous Labels in Segmentation Masks, IGARSS 2018 (Oral Presentation)

P. Singh, N. Komodakis, Refining segmentations of buildings and roads through a

novel deep structured prediction methodology (to be submitted to Computer Vision

and Image understanding Journal)
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3. We remove thin clouds in Sentinel-2 imagery by utilizing a cyclic consistent Generative

adversarial Network. This we do without any infrared cloud penetrating source (for eg.

SAR imagery) or any synthetically generated cloudy-cloud free dataset. We showcase

considerable improvement over PSNR values for our own synthetic dataset when

performing cloud removal with our technique. This contribution has been presented

in the following article:

P. Singh, N. Komodakis, Cloud-GAN: Cloud Removal For Sentinel-2 Imagery using

a Cyclic Consistent Generative Adversarial Networks, IGARSS 2018 (Oral Presenta-

tion)

P. Singh, N. Komodakis, Removing thin cloud cover in Sentinel-2 imagery using

Cyclic Generative Adversarial Networks. (submitted to IEEE Journal of Selected

Topics in Applied Earth Observations and Remote Sensing)

4. We design a novel TMO that can effectively tone map wide range of HDR scenes

in order to produce high resolution perceptually good looking LDR outputs. This is

done by using a Multi-scale GAN architecture that learns to pay attention to both

the global image level details as well as the local finer details. This contribution has

been presented in the following article:

P.Singh∗, A.Rana∗, G. Valenzise, F. Dufaux, N. Komodakis, A. Smolic: Deep Tone

Mapping for High Dynamic Range Scenes (submitted to IEEE Transactions on Image

Processing)

Structure of the thesis

This thesis is structure into 6 chapters. Each chapter comprises of material from original

papers (edited minimally) preceded by a brief summary giving an overview of the following

work.

1. Chapter 2 discusses broadly about scene complexity in the perspective of RS images.

It gives insights about how complex aerial scenes have large number of discriminative

regions some of which might cause confusion to the overall classification of aerial

scenes. It lays down technique of how by making the network to learn to select the

most important regions in the image can remove this ambiguity and help in improving

classification accuracy in complex aerial scenes. It showcases a nice visualizing tool

to check for which are the important areas where network lays more weight while

classifying a particular scene.

2. Chapter 3 is a step further from classification, as here we talk about semantic scene

segmentation for a single class, which in our case is building footprints. The chapter
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talks about past techniques and how they are ineffective in generalizing to a wide

variety of aerial scenes due to falling short of imposing a well defined structure in

their output predictions leading to blobby effects. It henceforth talks about a novel

Resnet Detect-Replace model, that while catering to this underlying relationship

existing in the joint space of input and output variables, detects the erroneous labels

and replaces them with correct segmentation masks.

3. Chapter 4 addresses quite frequent problem in RS imagery, which is of cloud detection

and removal. It illustrates first as to how the past techniques either utilize a cloud

penetrating Synthetic Aperture Radar imagery (SAR) or paired sets of synthetically

generated cloudy-cloud-free images. It elaborates that while SAR is difficult to

interpret and of low resolution, synthetically generated cloudy images are far from

real. Henceforth it proposes to remove these cloud and in-paint them with the

underlying ground structure using a Cyclic Consistent Generative Adversarial Model.

4. Chapter 5 elaborates a different set of high resolution images, namely HDR images

and demonstrates a novel technique for tone mapping them to their LDR counterpart.

The chapter shows how past Tone mapping operators have effectively been hand-

crafted for specific scene types and require additional parameter tuning. Thus it

highlights, how by learning this underlying mapping between HDR and ground-truth

LDR images, we are able to yield subjectively superior and aesthetically pleasing high

resolution tone mapped outputs. It also showcases how a multi-scale GAN model

is able to correct unnecessary artifacts such as blurring or tiling which are quite

common in past deep learning based HDR imaging techniques.

5. Finally the thesis ends with Chapter 6 dedicated to concluding remarks and future

works.



Chapter 2

Improving recognition of complex

aerial scenes using a deep weakly

supervised learning paradigm

Aerial Scene Classification (ASC) is the fundamental building block for various complex

aerial computer vision tasks such as building detection, semantic scene labeling or vehicle

localization. Categorizing highly complex aerial scenes is quite strenuous due to the presence

of detailed information with large number of distinctive objects. Recognition happens by

first deriving a joint relationship within all these distinguishing objects, distilling finally to

some meaningful knowledge that is subsequently employed to label the scene. However,

something intriguing is whether all this captured information is actually relevant to classify

such a complex scene. What if some objects just create uncertainty with respect to the

target label, thereby causing ambiguity in the decision making. We hereby investigate these

questions and analyze as to which regions in an aerial scene are the most relevant and

which are inhibiting in determining the image label accurately. However, for such Aerial

Scene Classification task, employing supervised knowledge of experts to annotate these

discriminative regions is quite costly and laborious; especially when the dataset is huge.

To this end, we propose a Deep Weakly Supervised Learning (DWSL) technique. Our

classification-trained Convolutional Neural Network (CNN) learns to identify discriminative

region localizations in an aerial scene solely by utilizing image labels. Using the DWSL

model, we significantly improve the recognition accuracies of highly complex scenes, thus

validating that extra information causes uncertainty in decision making. Moreover, our

DWSL methodology can also be leveraged as a novel tool for concrete visualization of the

most informative regions relevant to accurately classify an aerial scene. Lastly our proposed

framework yields state-of-the-art performance on all the existing ASC datasets.
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2.1 Introduction

Low Complexity Mid Complexity High Complexity

Figure 2.1 – Scenes representing various levels of complexity. (From top to bottom) For low com-
plexity : meadow, bareland, forest; mid complexity: mountain, stadium, parking; high
complexity: airport, dense residential, center.

Scene Classification is of paramount importance in remote sensing community to

automatically categorize images for further scrutiny. These images are later on utilized

by expert annotators for varied roles, including detection or segmentation of objects of

interests. For e.g.in order to detect building footprints in a dataset of images captured

for a city, one primarily needs to recognize scenes that have building structures such as

residential or industrial places.

One characteristic feature that holds Remote Sensing (RS) scenes distinctively apart

from natural scenes is the widespread scale at which the area of interest is captured.

Consequently, the extent of distinctive objects captured in a RS scene are also quite large,
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even though, we might not be able to visualize the fine-grained details as it is possible in

a natural scene. One of the challenges encompassing RS scene recognition is the added

complexity when these discriminative objects are present simultaneously in multiple scenes.

One such example is shown in Fig. 2.1, where a scene of Mountain has distinctive patches

of arid-land (similar to scene of Bareland) and grasslands (similar to scene of Meadow)

however the most representative parts of the scene are the white snowy tracts as would be

illustrated in section 2.4. Similarly we have dense trees which are found common in both

the scenes of Center and Forest.

Recently deep learning models have shown significant improvement in performance

for varied remote sensing tasks such as aerial scene segmentation [6, 165], hyper-spectral

classification [90] or change detection [99]. Inspired by architectures of the primate visual

cortex [69], these models interpret simultaneously various complex concepts which were

lacking in conventional hand crafted methods [178].

The Human Vision is a highly sophisticated system, where a scene is first observed,

followed by fetching of relevant information and then formulating an abstract representation.

Based upon this understanding, [89] defined scene complexity, based upon how much

attention a person devotes to understand a particular scene. For e.g.in Fig. 2.1, low

complexity scenes such as Bareland or Meadow are easy to interpret while comparatively

more complex scenes like Mountain or Center have much more detailed information that

needs to be distilled effectively and hence requires fairly larger period of attention.

However, instead of pivoting simply on greater attention for more complex scenes [89], we

rather propose an alternate strategy. We argue that by limiting the amount of information

gathered from a scene, we tend to minimize the ambiguity at the time of knowledge

distillation and thus yield higher performance. Earlier we had seen that the amount of

information to be processed differs from scene to scene, with highly complex aerial scenes

exhibiting more number of distinctive regions. We postulate that only some of these regions

are relevant for characterizing an aerial scene while the other regions are either redundant

or irrelevant or inhibit in the recognition performance. This is specifically pertinent in the

case of more complex scenes where the number of distinctive regions are significantly large

and often lead to confusion in the final decision of a network. We, therefore, propose to

remove this ambiguity using a novel methodology which allows the network to learn to

choose the most and least relevant regions in a scene that aids in improving the overall

recognition accuracy.

Nevertheless, selecting important discriminative regions in aerial scenes is a tedious task.

This is mainly because images are of very high resolution and require an expert annotator.

We choose to automatize the task of selecting relevant regions by introducing an end-to-end

deep weakly supervised learning model in the context of aerial scene classification. Precisely,
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we make the network learn to select the most relevant regions in a scene that can predict

the scene label with higher accuracy. Since we leverage only the class labels for localizing

important regions in our aerial scene without object bounding box annotations, we call

it weakly supervised. With further investigation, we also empirically showcase that RS

scene recognition using this weakly supervised paradigm is much more beneficial for more

complex scenes, thus substantiating our previous hypothesis of ambiguity removal.

In a way, our proposed methodology is a relaxation of the prominent Multiple Instance

Learning (MIL) [31] technique where an image is characterized as a bag of instances

(region). These bags or images are assigned a label: positive if it contains at least one

positive instance and negative if all the instances are negative (Negative Instances in

Negative bag or NiN). NiN is a fairly strong assumption simply because for e.g.absence of

tennis court label doesn’t imply that it is absent in the actual scene as seen in Center scene

(extreme bottom right) in figure 2.1. It simply implies that the person who labeled the

scene based his judgment upon the most predominant region in the scene. Thus, relaxing

on the NiN presumption, our network tries to maximize the prediction of the correct class

labels by utilizing not only the top K instances (green bounding box in figure 2.8) but even

the Bottom M instances supporting the absence of a class (red bounding box in figure 2.8).

Recent work such as [66] has focused upon visualizing the underlying convolutional

feature maps of deep learning models by various past techniques like [106]. Through our

proposed technique, we also highlight a mechanism to visualize the prediction scores by

highlighting the most discriminative regions which help to correctly classify any aerial

scene. In a way, it furnishes us with a nice interactive tool to visualize the most important

regions in a scene as simple as in a single forward pass through our network. An example is

shown in Figure 2.8, where for an Airport scene, the most discriminative regions (runway

intersections) are highlighted in green boxes while red boxes indicate negative evidence

(fields around) since they confuse it to be a scene of a Farmland.

Lastly, we compare our proposed methodology on all the existing aerial scene classifica-

tion datasets [173, 178, 192] as well as on a fairly new and challenging one [172], utilizing

two prominent deep learning architectures namely Vgg-16 and Resnet-101. Experimental

results clearly exhibit our Deep Weakly Supervised Learning (DWSL) method giving

state-of-the-art results both with Resnet-101 and Vgg-16 architecture. We also note that

Resnet performs notably better than Vgg primarily because of preservation of spatial

information throughout the network. This results in much more meaningful information

present in discriminative regions of Resnet compared to Vgg.

In a nutshell,

1. We propose the first deep weakly supervised learning technique for aerial scene

classification that automatically localizes most prominent regions using scene labels.



2.2. Proposed Framework and Methodology 13

2. Our model removes ambiguity in complex aerial scenes by selecting only the most

important objects out of a large number of distinctive objects that usually confuse

the network in overall decision making.

3. We outperform SoA scene classification methods using only few relevant regions thus

eradicating the need of utilizing entire scene as done in the past.

4. We present a compact tool for visualizing the most discriminative regions, thus giving

us a better understanding of where network focuses upon while classifying a scene.

2.2 Proposed Framework and Methodology

As illustrated in Fig. 2.2, our proposed Deep Weakly Supervised Learning (DWSL) pipeline

consists of 3 major steps:

1. Feature Extraction using a VGG16 or Resnet-101 deep learning architecture.

2. Weakly Supervised Learning to select the most discriminative regions and jointly

pooling them.

3. Object Bank Strategy to concatenate features from multiple scales and training an

SVM classifier on top for ASC.

We discuss each of the steps in more detail in following subsections.

2.2.1 Feature Extraction Module

Feature extraction module is employed to compute a fixed-size feature representation from

the input image. We first perform a random scaling of the input image to a size between

[224, 244]. This is followed by cropping the image to a fixed size of 224× 224. We perform

several other data-augmentation strategies like horizontal and vertical flip or rotation by

a small angle theta to avoid over-fitting. The resulting image is then passed through the

convolution layers of either Resnet-101 or Vgg-16 (whichever is being used for training).

Both models have been pre-trained on large scale Imagenet dataset. In Resnet-101 model,

the final convolution layer results in an output of size 2048× 7× 7 which can be treated as

the first block of the Weakly Supervised Learning Module (WSL) (see figure 2.3). In case

of Vgg-16, the output from the final convolutional layer is of size 512× 14× 14 which is

then fed to WSL module as input.
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Figure 2.2 – Overall Pipeline

2.2.2 Weakly Supervised Learning Module

Motivated from past works [38, 122, 187] our WSL consists of two major components: Ws1

and K-max M-min Pooling (represented as s(.) in figure 2.3). The Ws1 layer is similar to

the fully connected layers and is often witnessed as terminal layers in most deep learning

architectures. The only difference is that here we have used them in the form of multiple

fully convolutional layers each of size 1× 1. Further, these layers are applied individually to

each of the p× p cells (as shown by the curved arrow) of the previous block. This operation

yields us a p× p block but with a depth size equal to the class number c.

Now, we treat the new output block as stacked heatmaps for each individual class with

dimension of c× 7× 7 (corresponding to an input image of size 224). These class heatmaps

are then fed to a K-max M-min Pooling layer s(.) which (a) selects the top-K scoring

regions in a particular class heatmap (highlighted by green cells in figure 2.3, (b) caters to

lowest-M scoring regions in the heatmap (highlighted by red cells).

Both top and lowest scoring activations are projected onto the original image and

visualized as green and red bounding boxes in Figure 2.8. Finally, these cells are aggregated
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Figure 2.3 – Deep Weakly Supervised Learning (DWSL) network architecture

Figure 2.4 – Scenes from playground and stadium categories

individually for each of the c class heatmaps using s(c) which is given as: s(c) = stop(c) +

sbottom(c). The components stop(c) and sbottom(c) are formulated as: stop(c) =
∑K

k=1 tk(c)

and sbottom(c) =
∑M

m=1 lm(c). The tk(c) represents the kth top-scoring activation value for

cth class heatmap. Similarly, lm(c) is the mth lowest-scoring activation value for the same

cth class heatmap. We set K = 3 and M = 3 as default settings for our DWSL model based

on emperical results. At the end after applying s(.) operation, we obtain one c× 1× 1 layer

representing the classification scores for each class.

2.2.3 Object Bank Strategy

As a final step, we adopt an object bank strategy as highlighted in Fig. 2.2. Similar to [38],

we concatenate features computed from multiple scales of the input followed by training a

support vector machine (SVM) classifier on top. This trained SVM model is then used to

classify scenes from test dataset thus yielding final aerial scene classification score.

The top-K and bottom-M scoring regions are equivalent to the positive and negative

evidences of a Multiple Instance Learning paradigm [31]. At the time of training, the

K-max M-min pooling trains the network weights to accurately localize both the most

discriminative regions (positive instances) that can correctly classify the scene plus those
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Instances % OA Resnet-DWSL (without object bank)

k=3,m=0 92.56 ± 0.22

k=3,m=3 93.02 ± 0.57

Table 2.1 – Accuracies without(m=0) & with(m=3) negative instances.

regions which have no correlation with the class (negative evidences). We call it weakly

supervised learning since the localization is learned only using the global scene variables

rather than actual supervised bounding box annotations. Both the dominant regions and

the regions supporting the absence of a class can easily be visualized in the overlaid class

heatmaps in figure 2.8.

Dataset Arch. Baseline DWSL % Gains

AID [172] VGG 91.33 ±0.46 95.06 ±0.35 4.11

AID [172] Resnet-101 95.44 ±0.26 96.96 ±0.34 1.52

WHURS19 [173] Resnet-101 96.94 ±0.92 98.67 ±0.61 1.73

RSSCN7 [192] Resnet-101 94.48 ±0.33 96.19 ±0.50 1.71

UCMerced [178] Resnet-101 97.24 ±0.35 97.81 ±0.26 0.57

Table 2.2 – Results comparing baseline with our DWSL method over varied datasets marking state
of the art results in all cases. For AID dataset, we have showcased results with both
VGG and Resnet architecture, while for all the other datasets we use Resnet architecture
due to its higher performance.

The reason for choosing negative instances is that some classes which have small

inter-class variability (Playground and stadium class in Fig. 2.4) might result in high

classification scores for both by only using positive instances, while classifying a scene lets

say of stadium class. This is due to the fact that there is presence of positive instances

( playground field and stadium roof tops respectively) for both the classes. In such a

scenario, negative instances provide with complementary information (stadium roof giving

clear evidence of absence of playground class) thus resulting in correct classification of the

scene as stadium. This is elucidated empirically for with and without negative instances

for our Resnet-DWSL model without object bank strategy (table 2.1). Boost in overall

classification score clearly highlights the necessity of using negative instances.

2.3 Training and Implementation Details

2.3.1 Datasets

We conduct our experiments on 4 different datasets namely, AID[172], UCMerced[178],

WHURS19 [173], RSSCN7 [192]. AID is a fairly recent large scale dataset composed of



2.3. Training and Implementation Details 17

10000 images coming from 30 different classes, drawn from Google imagery captured using

multiple imaging source. An additional level of complexity arises from the larger intra-class

variations as each sample is collected from different locations over varied time period and

seasons. The other well known datasets UCMerced[178], WHURS19 [173] and RSSCN7

[192] are limited in number and somewhat saturated in terms of performance.

Method Overall Accuracy (%)

Pretrained GoogLeNet [172] 85.84 ±0.92

Hierarchical Coding [171] 86.4 ±0.7

Pretrained VGG-VD-16 [172] 87.18 ±0.94

Pretrained CaffeNet [172] 88.25 ±0.62

Deep filter banks [170] 90.4 ±0.6

Two-stage deep feature fusion [94] 92.37 ±0.72

Our DWSL method 96.19 ± 0.50

Table 2.3 – Performance Comparison Over RSSCN7

2.3.2 Training

Our experimental setup is somewhat similar to [172]. We randomly draw 50% of our dataset

as training set and rest is kept for testing. We repeat this step thrice to avoid the influence

of randomness and compute precision accuracy for each run. We report overall mean

and standard deviation over all runs in table 2.2. We perform training on two different

architectures namely VGG-16 and Resnet-101 as mentioned in section 2.2.

Method Overall Accuracy (%)

Pretrained GoogLeNet [172] 86.39 ±0.55

Pretrained CaffeNet [172] 89.53 ±0.31

Pretrained VGG-VD-16 [172] 89.64 ±0.36

salM3LBP − CLM [14] 89.76 ±0.45

Combining 2 FC Layers [19] 91.87 ±0.36

Two-stage deep feature fusion [94] 94.65 ±0.33

Our DWSL method 95.06 ± 0.35

Table 2.4 – Performance Comparison Over AID dataset

For the baseline models (VGG-16 and Resnet-101), we first clip the final softmax

layer + fully connected layer. Then, we add a fully connected layer with outputs equal to
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the number of classes present in the target dataset, finally appended with a softmax layer.

Additionally, for baselines, we first pre-train the aforementioned models on ImageNet and

then, fine-tune them on target dataset.

For proposed DWSL models, we clip the last max pooling layer (just after convolution

layers) + all the fully connected layers including soft max layer. Moreover, we simply add

the Ws1 layer followed by K-max M-min pooling for Resnet-101 model. In case of VGG-16,

an additional convolution layer of 7× 7× 2048 convolutions is added before the Ws1 layer.

We add a softmax layer at the end for both the models. Our training loss is a log loss

function which depends on the probabilities computed by softmax layer.
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Figure 2.5 – Overall Test Accuracies for different levels of complexities for VGG-16 architecture.
Comparisons between VGG-16 (baseline) and VGG-DWSL (our method) clearly show
larger scale of improvement in case of mid and high complexity classes

2.3.3 Quantitative Results

We compare the performance of our proposed model (DWSL) with the baseline model

through overall mean accuracy over all runs as reported in Table 2.2. Our weakly-supervised

learning technique outperforms the current baselines by a considerable margin over all

datasets. Especially in the case of VGG architecture, we witness a significant performance

gain over the much recent AID [172] dataset.

To effectively fine tune our networks, we utilize a dampening factor layer (with dt=10)
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to divide the back-propagating gradient just before it reaches the feature extraction module.

This is mainly to assure that the pre-trained feature extraction weights are not tampered

much. We train our models using Adam optimization technique [80] which computes

adaptive learning rates for each parameter over the course of iteration. We set the initial

learning rate to 1e− 4. Each run consists of 50 epochs and we choose the best epoch based

upon the test accuracy.
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Figure 2.6 – Class-wise accuracies for VGG-16 (baseline) and VGG-DWSL (our method) for the
AID dataset. We can clearly see significant difference of improvement in mid and high
complexity scenes such as bridges, parking, mountain, stadium, airport and dense
residential.
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2.4 Results and Discussions

Additionally for completeness, we also show comparisons with other state-of-the-art methods

on AID and RSSCN7 benchmark datasets where we outperform all other hand-crafted

as well as deep-learning methods by considerable margin. Our results are summarized in

tables 2.3 and 2.4. Our method is superior to second best results by a margin of 3.8% and

0.4% on RSSCN7 and AID datasets respectively

Hence, the results clearly emphasize that learning to pay attention to few discriminative

regions in a scene and thus learning a correlation between these regions is more beneficial

than recognizing by visualizing the entire scene. Another conclusion that can be drawn here

is since the design of Resnet architecture naturally preserves spatial information throughout

the network, it tends to learn more meaningful discriminative regions as compared to VGG

network thus contributing to better performance.

Since Resnet architecture gives state of art performance on [172] which is a fairly

challenging dataset, therefore, we stick to Resnet to demonstrate the effectiveness of our

method for all other well known datasets.

Next, we study the recognition accuracies from the perspective of scene complexities

as depicted in Figure 2.5. We observe that enhancement in performance is significantly

higher in case of medium (5.66 point) and high complexity (3.22 point) regions than in

case of low-complexity (2.88 point) regions. Thus we can fairly conclude that our weakly

supervised methodology broadly assists in minimizing ambiguity while recognizing more

complex scenes where there is the presence of much more distinctive regions or what can

be simply perceived as richer information.

Delving deeper into class-wise predictions (in figure 2.6), we witness huge improvements

in recognizing mid-level or high level complexity scenes such as Bridges (6.66 points),

Parking (6.33 point), Mountain (12 point), Stadium (9 point), Airport (12.66 point) and

Dense Residential (5.66 point).

Complex aerial scenes are characterized by large number of distinctive objects or

detailed image regions and many a times it happens that two or more classes might occur

simultaneously in one scene (as illustrated in section 2.1). Thus it becomes quite challenging

for a neural network to distinctively identify the correct class to which the scene belongs.

Our model removes this ambiguity by making the network to learn to choose the most

and the least relevant regions in the scene that are distinctive enough in order to correctly

identify a particular class.

An important point to note here is for the accuracy test results for high complexity

scenes, we find that most of them have, on an average gain of at least 1.3 - 2 percentage

points which is quite significant considering that for many of them the baseline performance
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Figure 2.7 – Scenes from Center and Viaduct categories

is already quite high. Only in two of the cases, i.e.for center and viaduct the performance

becomes comparable. In case of Center class (Fig. 2.7), we observe that most of the scenes in

this category have one big roof structure in the center of the image instead of large number

of scattered objects throughout the scene. Thus it is more straightforward to classify a

scene from the complete image rather than selecting few relevant regions. Similarly in case

of viaduct, there are large-scale loopy structures located in the center of image which again

makes both our method and baseline that uses full image competing enough.

2.4.1 Qualitative Results

Figure 2.8 demonstrate qualitative results for our methodology by depicting aerial scenes

(column 1), most and least distinctive regions marked by green and red boxes respectively

(column 2) and the overlaid resulting heatmaps (column 3). It is quite evident that the

network selects only those relevant regions which are characteristic feature of a particular

class. At the same time it also picks up insignificant regions which best demonstrate the

absence of a class.

For eg. in case of the bridge scene, a neural network might confuse it with a river if

overlooking at the entire scene. However by providing a weak localization supervision using

image labels in our method, we tend to make the network decide on which are the most

representative regions in a scene that best describe a scene. Similarly in case of mountain

scene, the network, by looking at the entire scene, might interpret it to be a Bareland

or Forests or Meadows, however by focusing on just the snow covered regions it tends

to correctly classify it as Mountains. Thus we can intuitively interpret that making the

network to localize distinctive regions and only focusing upon them for recognizing the
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scene, considerably removes the ambiguity caused while visually inspecting the complete

scene.
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Original Image Distinctive Regions Overlay Results

Figure 2.8 – Qualitative Results from top to bottom for Airport, Bridge, Dense Residential, Moun-
tain, Parking and Stadium. In the first column we have the original image, in the
second column we have the most (green boxes) and the least (red boxes) discriminative
regions in the original scene, the third column is a visualization by overlaying per-class
heatmap over the original image.
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2.5 Conclusions

In this chapter, a deep weakly supervised technique is proposed in the perspective of

aerial scene classification. We illustrate how a network can learn to localize the most

predominant regions in an image simply from the scene labels. We also conclude that

using these discriminative regions instead of the entire scenes results in state-of-the-art

performance while at the same time providing meaningful interpretable information that

allows one to elucidate better the decision of a network. We substantiate empirically as to

how, by adopting our weakly supervised paradigm, we tend to remove ambiguity in more

complex aerial scenes, resulting in a boost in their performance. In addition to this, our

experimental results also underline that Resnet architectures suits much better to our task

due to its characteristic feature of spatial information preservation. Finally we showcase a

nice visualization tool to highlight most relevant regions in aerial scenes.
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Chapter 3

Effective building extraction by

learning to detect and correct

erroneous labels in segmentation

mask

In the last chapter we saw how choosing the most distinctive regions in a scene helps in

removing ambiguity and improves in complex aerial scene classification. While classifying

such scenes is important to determine which aerial images are relevant for a particular

task at hand (for e.g.to extract building footprints, we need to first classify urban images),

the ultimate task is to label the objects of interest in the scene. Thus, semantic scene

segmentation is one of the most pivotal features for remote sensing image analysis. Al-

though existing segmentation techniques perform well on similar landscape images, their

generalization capability on an entirely different landscape is extremely poor. One of the

primary reasons is that they partially or wholly, neglect the underlying relationship that

exist in the joint space of input and output variables. Thus, effectively they lack to impose

structure in their output predictions which is necessary for successful segmentation. In

this chapter, we address this problem and propose a novel solution by modeling the joint

distribution of input-output variable which in turn enforces some structure in the initial

segmentation mask. To this end, we first detect erroneous labels, in the form of Error maps,

in the initial building masks. These Error maps are then used to correct the corresponding

erroneous labels through a replacement technique. We evaluate our methodology on the

benchmark Inria Aerial Image Labeling dataset, which is a large scale high resolution

dataset for building footprint segmentation. In contrast to previous methods, our predicted

segmentation masks are much closer to ground truth, owning to the fact that they are able
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to effectively correct both the large errors as well as the blobby effects. We lastly perform

at par with other state-of-the-arts, validating the efficacy of our technique.

3.1 Introduction

Recently, we have witnessed an explosion of petabytes of high-resolution remote sensing

datasets such as Sentinel 1-5 [43], SpaceNet [27] and Inria Aerial Image Labeling dataset

[105]. Till now, these datasets have been manually annotated by experts. However, with

the availability of such an enormous amount of high-resolution data, it is truly herculean

to label all of them by hand. This necessitates the automatic segmentation of these remote

sensing images to quickly and effectively detect varied points of interest such as roads,

buildings, forests in an image for tasks such as urban scene planning, green cover monitory

and other emergency relief operations such as floods, forest fires and cyclones. Deep learning

methods have recently shown significant improvements on automatic semantic labeling

tasks for classical datasets such as Vaihingen or Potsdam. [4, 5] fused semantic maps from

multiple sources through a residual correction technique. Whereas, [103] corrected shifts in

OSM maps through an iterative refinement technique using Recurrent Neural networks. In

addition, [112] used boundary detections to improve the semantic segmentation and report

impressive performance on Vaihingen dataset.

Interestingly, [105] showcased the drawback of models trained over such classical datasets,

by highlighting their lack of generalization capability to other cities that are captured

under different conditions. They, henceforth build a new dataset covering a much larger

surface of the earth including both densely populated urban landscape as well as sparse

alpine regions under varied illumination conditions. Subsequently, they split their train and

test data such that they come from different cities. Finally they also addressed problem of

blobby-predictions i.e.curvy edges of building masks. By fusing feature maps from different

levels of convolution network, both [105] and [104] combine low level edge information

with high level semantic rich information. For the same task, [15] uses a multi-task loss in

order to approximate the distance transform and the semantic maps.

Lately, most of the aforementioned techniques have partially or fully neglected the idea

of enforcing structure in the output label space. This mainly results in these blobby effects

due to naive up-sampling during the segmentation masks prediction. On the contrary, a

few of those that do enforce structure, either do it through a novice human assumptions

about the structure of the output label space (in the form of hand engineered CRF pairwise

potentials as in [103]). Or they rely on semantic maps from other sources to refine the

initial predicted labels [4, 5]. However, these refinements through residual correction can

only correct small errors (such as on the boundaries) while leaving major segmentation
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(a) Input Image (b) FCN-MLP (c) Resnet50FCN (d) ResnetDR (e) GT

Figure 3.1 – Here we showcase predicted segmentation masks for different techniques along with
the final ground truth (GT). We can clearly see Resnet50FCN drastically improving
over FCN-MLP [105]. Our method (ResnetDR) further improves the fuzzy or ”blobby”
effects of Resnet50FCN (caused due to naive up-sampling) by simply enforcing the
underlying structure of building footprint shapes through learning an error detection
and replacement network.

errors intact.

Built on these observations, we argue that we need to learn a joint structure of input and

output variables that can effectively predict the replacements for major segmentation errors

and thus rectify them. Adapted from [54], we henceforth, propose a joint input-output

model which segments the building footprints in high resolution imagery. Our proposed

method is build up of two steps. Firstly, our model predicts an error map EM based upon

the input image X and initial segmentation S. We then update the labels in regions of

high error probabilities with a new label prediction which in turn relies on X, S and EM

for its decision. Through the error map EM , we learn a joint distribution between input

and output variables which further helps in enforcing structure in the final label prediction.

As shown in Figure 3.1, our model refines the blobby effect by learning the underlying

structure of the building footprints which is enforced using the error maps. Finally, this

leads our method to perform at par with existing state-of-the-art on Inria Image Labeling

dataset [105].

3.2 Related Work

Various techniques have evolved in the recent past for segmentation as well as refinement of

building footprints in satellite images. While some employed information from lower-order

statistic, others have used Conditional Random Fields (CRF) Potentials or Recurrent

Neural Networks to refine the finally generated Segmentation maps. There have also been

works utilizing Priors for building shapes or using other open sources for refinement.

First Order Statistics Works falling under this category generally use first order

statistics information from an image to train a deep network for the task of semantic

segmentation. Bishke et al. [15] showed how by utilizing signed distance as an auxiliary
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loss in addition to prediction of segmentation maps, they are effectively able to incorporate

geometric information into the internal representation learned by a network. In a way, they

were able to preserve the semantic boundary information while predicting the segmentation

masks. Maggiori et al. [105] compounded information from all layers of the networks

(starting from the first till the last layer), thus utilizing both low level information as well

as high level abstract representation to predict the semantic maps.

CRF Potentials or RNN’s Works under this category use higher order potentials

which generally add smoothing constraints in the form of neighborhood clique’s to refine

the segmentation maps. Vakalopoulou et al. [162] optimized an MRF model built on top of

deep learning features computed over very high resolution imagery. Similarly Maggiori et

al. [103] trained a recurrent neural network in the form of an iterative refinement process

to correct the segmentation maps over several passes.

Prior Regarding Polygon Shapes Works falling under this category have tried to

solve building detection as a problem of predicting the polygonal representation of earth

objects. PolyCNN [56] directly learns to predict the coordinates of the geometric shape of

an object (vectorial representation) instead of first predicting per pixel labels followed by

vectorization. [157] on the other hand try to assign binary labels to the mesh triangles by

utilizing the prior knowledge of building edges meeting at right angles as a regularization.

Using other sources for refinement This last category includes works which utilize

open street maps (OSM) as a noisy segmentation label for learning to predict aerial scene

segmentation. While [76] only relies on OSM for training its deep learning model, [5] fuses

representation learnt from OSM and from optical imagery to better predict the aerial

segmentation maps. Even though with noise, OSM’s provide a useful additional source of

guiding tool for the network to make much refined predictions.

3.3 Proposed Framework and Methodology

Lets assume our initial input image to be X = xC×H×Wi=1 , where C, H and W are the

channel, height and width of X respectively. Similarly, S = sC×H×Wi=1 , be the initial

segmentation map. Our technique aims to model a joint relationship between input X

and output variables (S) to rectify and produce a much more refined version of S. This

can be formulated as S′ = G(X,S) where S′ denote the updated segmentation mask after

replacing erroneous labels with new labels.

As shown in Figure 3.2, our proposed methodology comprises of two major steps. First,

we predicts errors (EM) occurring in the initial building segmentation mask S with the
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Figure 3.2 – The Network Architecture.

help of input image X. Next, we utilizes these error maps to correct those erroneous labels

in S, whose error probability is large enough (in EM) by replacing them with predicted

labels. In the following, we explain these two steps in detail.

3.3.1 Error Detection

The error detection component (Ged) computes the probability map (EM) to detect the

erroneous labels in the initial segmentation mask S, stated as:

EM = Ged(X,S). (3.1)

In other words, Ged learns from the joint input output space of X & S to predict an error

probability score between 0 and 1. In other words, it predicts whether or not a particular

label si is erroneous, if so, si gets replaced with a correct label in the next step. Ged can

be easily formulated as a deep neural network which requires as such no explicit auxiliary

loss and can be learnt under a single umbrella of one loss between corrected segmentation

and ground truth segmentation.
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3.3.2 Erroneous Label Replacement

The updated label S’ is a convex combination of the initial segmentation mask S and

updates from the replacement component denoted by Gelr. It is given as:

S′ = EM �Gelr(X,S,EM) + (1− EM)� S. (3.2)

The error map EM generated from Ged acts as a gateway to restrict Gelr so as to just

focus on the erroneous labels of S and replace them with the predicted ones. Similar to

Ged, Gelr can also be modeled using any deep learning architecture. If we restrict the EM

probability maps to 0 and 1, the forward pass of Replacement happens as:

S′ =

S, if Ged(X,S) = 0

Gelr(X,S,EM), if Ged(X,S) = 1.
(3.3)

This shows that only erroneous labels are being replaced while the non-erroneous labels

remain intact. For the back-propagation of gradients we have:

dL

dGelr(.)
=

0, if Ged(X,S) = 0

dL
dS′ , if Ged(X,S) = 1.

(3.4)

In a way, the gradients update Gelr only for those regions where erroneous labels are

found in S, thus restricting Gelr to pay attention and predict replacements only for these

particular regions. Additionally, passing Error maps to the Gelr component, helps it to rely

on the correct labels to predict replacements for the new erroneous labels. Altogether, Gelr

improves and makes correction of these erroneous labels, by jointly reflecting upon the

Error maps, the input X and the initial segmentation S.

3.4 Training and Implementation Details

3.4.1 Dataset

We evaluated our method on the Inria Aerial Image Labeling Dataset [105] which consists

of Satellite imagery of urban settlement over the United States and Austria. The entire

dataset consists of two classes namely, building and not building. All the images are of

size 5000 × 5000 and have a resolution of 30 cm with RGB bands. First 5 images from

each class were chosen for validation, while the rest were used for training. For testing, we

submit our test predictions to the project webpage online https://project.inria.fr/

aerialimagelabeling/.

https://project.inria.fr/aerialimagelabeling/
https://project.inria.fr/aerialimagelabeling/
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3.4.2 Network Architecture

We initially train a Fully Convolutional Network [149] (FCN) adapted to Resnet-50 [63]

architecture to generate our initial segmentation mask S. This model, which we name as

Resnet50FCN, is trained to reconstruct ground truth segmentation masks with a given

input image X and ground truth labels. We henceforth treat Resnet50FCN as our baseline.

For detection, Ged is implemented by using 5 convolutional layers (except last one, each

is followed by batch-norm and Relu). The last conv. layer is followed by a soft-max, thus

yielding us EM between 0 and 1. To follow the input image size, we add an up-sampling

layer on top of the Error map EM .

For replacement, Gelr is implemented through compression block (compresses to 1/64

of the input resolution) and decompression block (decompresses to 1/4 of input resolution).

These are essentially residual blocks with parameterized skip connection between symmetric

layers in decompression and compression blocks respectively.

For additional implementation details of detection and replacement modules, we refer

the reader to Section 3.2 of [54].

3.4.3 Training

Using an L1 loss between ground truth and predicted output S′, we optimize using an

Adam solver [80], with β1 = 0.9 and β2 = 0.99. The learning rate starting from 10−3 is

decreased to 3× 10−4 at 12, 10−4 at 18, 3× 10−5 at 24 and finally 10−5 at 28 epochs. We

continue training until 32 epochs. Each epoch consists of 500 batch iterations and each

batch consists of 16 training samples where each sample is of size 1024 × 1024.

Method Austin Chicago Kitsap Co. West Tyrol Vienna Overall

FCN-MLP [105]
IoU 61.20 61.30 51.50 57.95 72.13 64.67
Acc. 94.20 93.43 98.92 96.66 91.87 94.42

Multi-Task [15]
IOU 76.76 67.06 73.30 66.91 76.68 73.00
Acc. 93.21 99.25 97.84 91.71 96.61 95.73

Resnet50FCN
IoU 88.12 81.21 83.62 88.15 87.07 86.46
Acc. 97.02 93.04 99.3 98.28 94.65 96.46

ResnetDR
IOU 89.42 83.56 84.57 89.07 88.30 87.90
Acc. 97.37 94.03 99.34 98.42 95.12 96.87

Table 3.1 – Evaluation results on validation set
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Method Bellin. Blooming. Inns. S.Fo Tyrol-E Overall

FCN-MLP [105]
IoU 56.11 50.40 61.03 61.38 62.51 59.31
Acc. 95.37 95.27 95.37 87.00 96.61 93.93

Resnet50FCN
IoU 63.34 63.20 76.07 74.91 77.58 72.07
Acc. 95.90 96.61 97.18 91.67 98.01 95.78

ResnetDR
IOU 64.27 65.85 77.10 75.86 78.68 73.30
Acc. 95.99 96.52 97.30 92.01 98.11 95.99

Table 3.2 – Evaluation results on test set.

3.5 Experimental Results and Discussions

3.5.1 Quantitative Results

We show the quantitative results in Table 3.1 and Table 3.2 on both the validation and test

dataset respectively, where we compare our method (ResnetDR) with the baseline (Resnet

50FCN) and other previous best performing results namely, MLP [105] and Multi-Task

Loss [15]. In both tables, we report the Intersection over Union (IoU) and Accuracy score

(Acc.) of correct pixels in the segmentation mask 1. As shown in Table 3.1, we outperformed

the previous best method [15] on the validation set by a margin of 14.90% on IoU. While

on our own baseline Resnet50FCN, we improve by a margin of 1.44%. On the test set too,

we outperformed [105] by 14% and our own baseline by 1.22%.

3.5.2 Qualitative Results

For qualitative analysis, we report our results in Figure 3.3 where green patch represents

predictions for each model, red represents ground truth while yellow represents the overlay

of ground truth and predictions. We observe that while a major improvement is seen

from FCN-MLP to Resnet50FCN, it still is not able to perfectly correct the blobby effects.

ResnetDR improves upon these blobby effects by not only refining the boundaries of the

segmentations but also regularizing them to better reflect structure of building footprints.

For e.g.in Figure 3.3, in the Chicago image, we note that for the overhead tunnel (bigger

circle), ResnetDR yields a more structured output in the form of parallel edges throughout

the length of the tunnel. Similarly in case of Tyrol image, in the smaller circle in the middle,

predictions overshooting outside the roofs of the houses for Resnet50FCN are constrained

in case of ResnetDR to follow the edges of the roof. Finally we see in Vienna image, in the

middle circle, for the rooftops of the stands of the playground, ResnetDR enforces some

structure by predicting a more rectangular pattern following the building edges.

All these cases proves that our technique learns the underlying structure of building

1Due to the unavailability of the results on test-set by [15], we haven’t reported them in Table 3.2
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footprints in the form of regularized and well-defined shapes with straight edges. Hence,

it learns to predict error maps that somewhat refine these initial segmentation masks to

enforce these rules governing building footprint structures.
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Figure 3.3 – Qualitative Results. The ground truth and predictions are overlaid on top of input
image in the last three rows. Red segments are the ground truth, green segments
are the predictions and yellow segments represent the overlap of ground truth and
predictions. The blue circles highlight the important regions where some significant
changes have been found as reported in Section 3.5.2
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3.6 Conclusions

We present a novel technique for structured semantic segmentation of high resolution

satellite imagery. To this end, we propose to learn the joint space of input-output variables.

Subsequently, our method enforces structure in the form of predicting a much more

regularized building footprint and hence, resolves to a large extent the problem of blobby

effects as reported in the past methods. We compare our technique with other state-of-the-

art methods on the benchmark Inria aerial image labeling dataset, where we perform at

par with other state of the art methods.
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Chapter 4

Cloud-GAN: Cloud removal for

Sentinel-2 Imagery using a cyclic

consistent Generative Adversarial

Network

In the previous two chapters, we saw how aerial scene classification and building footprint

detection is important for remote sensing image analysis. However, it is often the case that

presence of clouds in satellite images makes these computer vision tasks near to impossible,

needing an additional image pre-processing at the preliminary level. Cloud cover is a serious

impediment in land-surface analysis of Remote-Sensing images causing either complete

loss of information due to thick clouds or blurry effects and contrast-reduction in case of

semi-transparent thin clouds. While thick clouds require complete pixel replacement with

in-painting the underlying surface, thin cloud removal is complex owing to the inter-twining

of atmospheric and land-cover information. In this paper, we address this problem and

propose a Cloud-GAN model to learn the corresponding mapping between cloudy and its

cloud-free images. We employ an adversarial-loss function, that constrains the distribution

of generated images to be close enough to the underlying distribution of the non-cloudy

images. An additional cycle-consistency-loss is employed to further restrain the generator

to predict cloud-free images of the same scene as reflected in the cloudy input image. Our

method not only rejects the necessity of any paired training dataset (cloud and its cloud-free

counterpart) but also avoids the need of any additional spectral source of information such

as Synthetic-Aperture-Radar or Near-Infrared imagery which are cloud penetrable. We

demonstrate the efficacy of our technique by training on an openly available and fairly

new Sentinel-2 Imagery dataset consisting of real clouds. We validate our model design
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by comparing with different variations in the loss function, normalization layer, batch

size and the input noise. We lastly compare with other state-of-the-art methods both

qualitatively and quantitatively on real as well as synthetic datasets where we witness

significant improvement in performance and visual quality, thus validating the competency

of our methodology.

4.1 Introduction

Satellites are human eyes in the sky that capture geological, topological and climatic

information remotely from hundreds of kilometers away from the Earth. Remote Sensing

(RS) images captured by them are pivotal for a wide variety of challenging problems such

as recognizing footprints of buildings [105, 153], detecting changes in temporarily apart

scenes [99, 152] or semantic segmentation in aerial scenes [3].

Such images are often plagued by films of clouds that partially or completely obstruct

the scene. Cloud cover causes significant distortion in visual satellite data by altering

either the chrominance or luminance of the satellite image. This can be quite annoying for

RS experts performing scene analysis, especially while observing a city like Paris which

witnesses cloudy weather for a major part of the year. Thus, it clearly necessitates the

requirement for an automatic technique that detects and removes the cloudy regions in a

scene and replaces them with the correct background details.

Predicting a scene beneath a cloud is an under-constrained problem. Without any prior

information, it is largely quite complex to replace clouds with correct underlying details.

A way out has been by using multi-temporal images of the same region as done by [176]

through a Multi-Temporal Dictionary Learning. Images from different time-period provide

complementary information. However, these methods work only under the assumption that

the scene hasn’t changed substantially over that period. Authors in [68] use other spectral

sources such as Synthetic Aperture Radar (SAR) Imagery, owing to the fact that it can

easily penetrate through the clouds. However, SAR imagery has some major drawbacks: a)

due to difficulty in its interpretation, and b) having a lower spatial resolution compared to

RGB imagery. Additionally, [150, 177] have also studied the thin cloud removal problem

in the literature, though, they are based on conventional hand-crafted methods and are

limited in terms of performance.

Generative Adversarial Networks (GANs) [59, 72] have gained immense popularity

owing to their remarkable capability in modeling the mapping function between input

and output domains. Using an adversarial loss, the GAN’s can be trained to produce

fake images which are indistinguishable from the real images of target domain. Recently,

authors in [42] used McGANs to predict cloud-free RGB images as well as cloud masks
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Figure 4.1 – Cloud-GAN can effectively remove clouds from thin cloudy satellite imagery without supervi-
sion using ground truth

Figure 4.2 – Physical Model of a satellite image capture while transmitting through atmospheric clouds

from the input cloudy image. The authors train their model using pairs of cloud-free and

synthetically produced cloudy images. Additionally, they also utilize Near-Infrared (NIR)

imagery, which is closer to visible-range and possess partial cloud penetration capabilities.

However, their are few associated problems with their methodology. Firstly, synthetically

generated clouds are not very realistic and differ significantly from real clouds. Secondly,

near infrared images do not provide the complete hidden information behind the clouds as

it can only partly penetrate through clouds. Most importantly, composing a large dataset

of real clouds and their cloud-free counterparts for training deep-learning models is quite a

herculean task.

In this paper, we overcome this hurdle, by improvising upon a novel technique, which

after incorporating both the adversarial loss and cycle-consistent loss [188] converts the

thin cloudy images to their cloud-free image counterparts. Having a cycle-consistency loss

essentially constrains our problem, such that if a satellite image coming from a cloudy
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Figure 4.3 – Overall Pipeline of our Cloud-GAN framework

domain is mapped to the cloud-free domain and then transformed back to the cloudy-

domain, it should look alike to the original image. An additional advantage of our method

is that it liberates us from the requirement of an explicit paired cloudy/cloud-free dataset.

Moreover, our methodology doesn’t require any sort of cloud-penetration sources of imagery

such as either SAR or NIR. We therefore, simply utilize visible range imagery from a

fairly new and open source dataset (Sentinel-2) to report impressive qualitative results

on both real and synthetically generated datasets clearly showcasing the efficacy of our

results. Due to availability of ground-truth, we also report quantitative results for cloud

removal of synthetic cloudy images, showcasing a significant improvement compared to

other state-of-the-art methods.

Apart from proposing a novel cloud removal technique, we validated the design of our

model by conducting an extensive study, discussing the effects of 1) altering the loss function,

2) modifying the type of Normalization layer used within the model, 3) size of input batch

and 4) lastly the influence of noise as input to the model. We also draw comparisons with

other past openly available state-of-the-art methods, outperforming both on qualitative

and quantitative results including considerable improvement in computation-time required

for processing a single cloudy-image.

In a nutshell, We:

1. propose a novel technique, to remove thin filmy cloud regions and reconstruct effec-

tively the underlying background in Sentinel-2 imagery.

2. draw extensive comparisons in terms of loss functions, batch-sizes, network-normalization

as well as influence of input noise in the form of dropouts to validate our Cloudy-GAN
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model design.

3. evaluate our proposed method against the past state-of-the-art methodologies, where

we outperform them both in terms of (a) qualitative results on real and synthetically

generated images and (b) quantitative results only synthetic due to availability of

ground-truth. We additionally also hold comparisons with them for processing time

of a single cloudy-image.

4. highlight the limitations of our current GAN approach and give possible directions

for future work in improving their efficacy for this specific problem setting.

The paper is organized as follows. In Section 4.2, we provide a brief outline of past

related works. In Section 4.3, we detail physical model of satellite image capturing under

atmospheric clouds. We elaborate our proposed methodology in Section 4.4. We provide

training details about dataset, network architectures and other implementation details

in Section 4.5. We present the validation of our model design along with experimental

results and evaluations with other methods in Section 4.6. Finally, conclusions are drawn

in Section 4.7, along with future research directions.
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(a) Forward cycle consistency loss x −→ Q(x) −→ R(Q(x)) ≈ x

(b) Backward cycle consistency loss y −→ R(y) −→ Q(R(y)) ≈ y

Figure 4.4 – Network Architecture: GeneratorX2Y and GeneratorY 2X represent mapping function Q :
X −→ Y & R : Y −→ X respectively. Discriminator X and Discriminator Y represent DX

and DY respectively.
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4.2 Related Work

Cloud removal methods can be broadly categorized into two major classes:

1. Multi-model techniques, that remove clouds utilizing underlying information from

multi-spectral or multi-temporal input data.

2. Uni-Model techniques, that remove clouds using only single input data source.

In the following subsections, we initially discuss various state-of-the-art cloud removal

methodologies falling broadly under the above two categories. Then, we finally illustrate

more recent CNN-based approaches including those using GANs in the context of Cloud

Removal.

4.2.1 Multi-Model Techniques

While multi-temporal approaches capture sequence of images of the same scene at different

instances in time, multi-spectral utilize the sensitivity of wide variety of sensors, each

encapsulating information over a specific wavelength.

Multi-temporal approaches [21, 182, 190] have gained immense popularity for range

of tasks be it detecting changes in green cover for deforestation, populating explosion in

urban landscapes, crisis management in times of earthquakes/tsunamis or cloud removal

over a particular regional area. However, a very fundamental assumption for using such

techniques is that their wouldn’t be a considerable change in the overall scene topography

during the time-period over which these images have been captured [60]. Specifically for

cloud-removal, multi-temporal approaches rely on coherence both spatially as well as over

time for the underlying captured scene. Though this scene might not change substantially,

we do see wide variabilities in the cloud structures over an extended period of time, which

effectively makes the task of cloud detection/removal quite challenging [166].

Multi-spectral approaches [131, 132, 135, 150] are increasingly being utilized for a range

of practical operations like detecting forest fires, estimating chlorophyll content in plant

leaves or mapping mineral deposits. They primarily rely on complementary information

captured by each spectral-band independently from each other. In other words, while some

bands, might be more sensitive for e.g.to green cover in plants, the other might be more

efficient in penetrating through the clouds as in case of infrared band. The final signal is

thus a fusion of all these diverse sets of interpretations which is much more richer in its

overall content. However, these are generally more expensive due to the additional sensors

used and at the same time, need way more capacity for storage and transmission.
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4.2.2 Uni-model Techniques

Removing clouds using a single image is extremely difficult due to the lack of additional

information present in the image behind clouds. Most of the past techniques working on

single image cloud removal [97, 101, 143, 163] fill the missing voids by either in painting

or interpolation using surrounding pixel information, or adopting various noise removal /

image enhancement strategies. They incorporate both high level contextual or structural

knowledge as well as low level texture or color information to effectively predict the

underlying background of these omitted regions. However, absence of a credible information

source in the cloud affected regions limit these techniques for ubiquitous use in removing

thin clouds.

Various noise attenuation methods [62, 96, 185], be it either for fog or haze removal

have also aided in removing thin films of clouds. Though a major shortfall of such methods

is that they treat clouds with uniform distribution over the image plane. This is quite

a strong assumption considering the fact that satellites have a larger region-of-interest

covering a wide variety of cloudy patterns in terms of there thickness, structure, overall size

or texture. Recent works [91, 147] have constructed distinctive priors to model the cloud

and background based on statistical gradient disparities between cloud-free and cloudy

images. However, designing such priors require complex understanding of the different

features of clouds as well as the background aerial imagery which in turn demands some

expert knowledge.

4.2.3 Generative Adversarial Networks

GANs are presently being used for wide varieties of tasks be it vehicle categorization [11],

cross-view aerial image synthesis [138], or for hyperspectral image classification [189]. One

inherent feature that allows GANs to stand distinctively apart is their ability to effectively

model the underlying target distribution. This capability allows them to generate high

quality outputs which are visually indistinguishable from the ground-truth dataset. One of

the initial works of GAN’s [134] improved the stability in training GANs by imbibing a

very simplistic CNN model with batch-normalization.

More recent works, either supervised [72] or unsupervised [188] imbibe conditional-

GANs (cGANs) [114] for their task of image-to-image translation. They generate outputs

conditioned on a specific input image instead of using random noise. Many works [127, 183]

have crafted cGANs to solve particularly image restoration tasks or rain and snow removal

from natural images. One most related work [42], incorporate RGB as well as NIR images,

to remove thin filmy clouds in satellite images. Our approach is fundamentally different from

theirs, as firstly we don’t require any synthetic paired dataset for training, and secondly
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we perform removal solely in a unimodal fashion i.e.using single source of RGB image.
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(a) Generator architecture

(b) Discriminator architecture

(c) Residual block

Figure 4.5 – Generator and Discriminator architectures including residual blocks.
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4.3 Physical Cloud Model

We herein describe the physical cloud model [95] which has been often used for defining

prior models for both the overlaying cloud and the background image in various past haze

removal techniques [92, 132].

As shown in Fig. 4.2, image signal I(x, y) (x, y representing coordinates of a particular

pixel in the image I) goes through various levels of atmospheric obfuscations before being

captured by the satellite. It starts from illumination L radiating from the sun, which after

traveling through the atmosphere gets attenuated by a factor ”a”. Further on, it reaches the

ground, where it gets reflected, resulting in signal a ∗ r(x, y) ∗ L. This signal than makes

its way, either directly to the satellite, or gets obstructed by clouds with a transparency

t(x, y). Some part of the illumination gets scattered from the cloud itself without reaching

the ground, resulting in L(1− t(x, y)). Hence the final cloudy image degradation model

can be described for regions within thin films of clouds with the the equation:

I(x, y) = ar(x, y)t(x, y)L+ L(1− t(x, y)) (4.1)

Cloud removal can be defined as the process of completely obliterating the second term

in equation 4.1, which is responsible for reflection from the clouds, while at the same time

nullifying the impact of transparency t(x, y) in the first term from the light getting reflected

from the ground.

Instead of modeling both these terms using prior functions as done in the past [147],

we propose a Cloud-GAN model that effectively learns a mapping from the original cloudy

image I(x, y) to a cloud-free version that has been reflected from the ground (ar(x, y)L). In

the next section, we illustrate in further details, our Cloud-GAN model by first explaining

the overall pipeline and then delving deeper into each individual component.

4.4 Proposed Framework

Overall pipeline of the proposed framework is shown in Fig. 4.3. Our Cloud-GAN model

is composed of two components, a) forward cycle consistency and b) backward cycle

consistency. Both components, while learning on the training dataset, model a mapping

function that effectively translates one form of images to another form. While the forward

cycle consistency generates cloud-free images from cloudy images, the backward component

maps the cloud-free images to cloudy images. We first introduce various terminologies

associated with our training set and elaborate the different kinds of Generators and

Discriminators incorporated in our model. We, then describe both the forward and backward

components in detail.
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Assuming cloudy images belong to domain X and cloud-free images to domain Y, we

define two mapping functions Q : X −→ Y and R : Y −→ X which are modeled using

two generator networks, GeneratorX2Y and GeneratorY 2X , respectively, as illustrated in

Fig. 4.4. Training dataset is composed of {xi}Ni=1 and {yj}Mj=1 samples, where xi ∈ X and

yj ∈ Y and pdata(x) and pdata(y) are their data distributions respectively. For simplicity,

we will omit use of mathematical format i, j in xi and yj and only use x and y in our future

notations. As shown in Fig. 4.4, both GeneratorX2Y and GeneratorY 2X take as inputs x

and y to yield a corresponding output Q(x) and R(y) respectively. Additionally, we have

two Discriminator networks, namely Discriminator X (DX) and Discriminator Y (DY ) that

distinguish between real data (x and y) and adversaries generated by the two Generators

i.e. Q(x) and R(y).

Both the Generators and Discriminators effectively play a game; the Generator tries

to fool the Discriminator by generating as realistic looking images as possible while the

Discriminator tries to identify whether the generated images are real or fake. Hence, in a

way the Generators and the Discriminators compete with each other until they reach to a

nash equilibrium. At this instant, the Generator is effectively able to match the distribution

of generated images (Q(x) & R(y)) to the distribution of targeted images (pdata(x) &

pdata(y) respectively).

We specifically utilize Least Square GAN’s (LSGAN’s) [111], which have shown to

generate higher quality images with a much more stable learning process compared to

regular GANs. The adversarial objective function is formulated as:

min
DY

LLSGAN (DY , X, Y ) = Ey∼pdata(y)[(DY (y)− 1)2]+

Ex∼pdata(x)[(DY (Q(x)))2]

(4.2)

min
Q

LLSGAN (Q,X, Y ) = Ex∼pdata(x)[(DY (Q(x))− 1)2] (4.3)

As shown in equation 4.2, DY , having a softmax at its end layer, is effectively trained

to yield outputs close to 1 for real images (first term) and 0 for fake images generated by

the Generator (second term). On the other hand, the loss function for Q, learns to yield

outputs that can trick the Discriminator to reproduce value close to 1; thus asserting that

the generated output is quite close to real image.

Similarly, for Discriminator DX and mapping function R, we have objectives given by:

min
DX

LLSGAN (DX , Y,X) = Ex∼pdata(x)[(DX(x)− 1)2]+

Ey∼pdata(y)[(DX(R(y)))2]

(4.4)
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Figure 4.6 – Synthetic Dataset generation using Perlin noise (a) Reference Image, (b) Cloud Mask (c)
Synthetically generated image

min
R
LLSGAN (R, Y,X) = Ey∼pdata(y)[(DX(R(y))− 1)2] (4.5)

However, in our kind of problem setting, using an adversarial objective alone is quite

under-constrained as the same cloudy image can be mapped to any random permutation

of non-cloudy images. Thus, we additionally use a cycle-consistency loss which restrains

the Generator to map a given input xi to a desired output yi. In Fig. 4.4 (a), this

cyclic-loss constrains the final generated output Cyclic X to match Input X i.e.x −→
Q(x) −→ R(Q(x)) ≈ x, which is called as forward consistency loss. Similarly, for backward

consistency loss in Fig. 4.4 (b), we have y −→ R(y) −→ Q(R(y)) ≈ y. We formulate this

cycle consistency objective as:

min
Q,R
Lcyc(Q,R) = Ex∼pdata(x)[‖ (R(Q(x))− x‖1]+

Ey∼pdata(y)[‖ (Q(R(y))− y‖1]
(4.6)

Combining the Generator objectives from equations 4.3, 4.5 and the above mentioned

cyclic-consistency loss, our final Generator objective can be formulated as:

min
Q,R
LGen(Q,R) = LLSGAN (Q,X, Y )+

LLSGAN (R, Y,X) + λLcyc(Q,R)

(4.7)

where λ is a regularizing factor that weights the cyclic term with respect to Generative

term of the adversarial objective function and is set to its default value 10.
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4.5 Training and Implementation

4.5.1 Dataset

We build our training and test dataset by downloading high resolution Sentinel-2 images

from Copernicus Open Access Hub (https://scihub.copernicus.eu/). Sentinel-2 is a

constellation of two Earth observation satellites (Sentinel-2A and Sentinel-2B) launched by

European Space Agency, and is part of the European Commission’s ambitious Copernicus

Earth observation program. This program is the most exhaustive Earth Observation

program ever created, providing observations related to land, ocean, and atmosphere by

revisiting each location on the Earth’s surface every 5 days. Sentinel-2 data is quite suitable

for various land mapping applications be it urban planning, forestry or agriculture.

The Earth images so captured under Sentinel-2 mission have a resolution ranging

between 10-60 meters per pixel while covering a field of view of 290 km in 13 bands

including visible and infrared. These images are duly processed to Level-1C, i.e.they are

ortho-rectified, map-projected images containing top-of-atmosphere reflectance data. Each

of the 13 spectral bands of the multi-spectral dataset are stored as separate image. For our

experiments, we choose images only from visible bands i.e. Blue (B2), Green (B3), Red

(B4) all of which have 10 meters of spatial resolution.

We utilized Medusa toolbox from Onera [121] to download a stack of Sentinel-2 images

from Jan 2015 to August 2017 over an urban region of Paris whose geo-coordinates are

provided as a geojson file. The toolbox provides with an efficient python script using which

we can define the % of cloud-cover in each downloaded image. We select 0-5% cloud cover

for cloud-free images, while for cloudy images we chose a range anywhere between 10 to

100%. We download images over Paris as it is easy to get quite a range of cloudy cover

above it. Out of the total downloaded images, we choose 20 cloudy and 13 cloudless images.

We then extract 512× 512 patches from these images using a running window over each

image. After filtering the unwanted ones, we extract a total of 1677 training patches for

each cloud and cloud-free dataset while for testing we had 837 patches. For computational

efficiency and GPU memory limitation, we resize them to 256× 256 at the time of training.

Although we use real cloudy images for training, we cannot perform quantitative

evaluation on them due to the absence of a freely available paired cloudy cloud-free image

database. Hence, we constructed our own dataset of synthetic images in order to further

validate the performance of our network by comparing it to other methods. Previous

studies [33, 42] have utilized Perlin noise [129] to generate clouds due to its characteristic

feature of procedural texture generation. We first generate thin films of cloud masks by

using Perlin noise and then overlay them onto the reference image using alpha blending

as shown in Fig. 4.6. The reference image (Fig. 4.6(a)) is blended using the cloud mask

https://scihub.copernicus.eu/
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Table 4.1 – Comparisons for variability in model design in terms of loss function, normalization
layer, batch size, and input noise over Synthetic dataset

Type Euclidean Distance

CloudGAN without LSGAN (standard GAN) 10710.57
CloudGAN without Cyclic-consistency loss (λ=0) 5023.56

CloudGAN with BatchNorm 5500.36
CloudGAN with batchsize=1 10659.61

CloudGAN with noise (Dropout) 9447.06
Cloud-GAN (Our model) 4767.94

Table 4.2 – Quantitative Results showcasing Average PSNR, SSIM and RMSE scores on Synthetic
Dataset

Methods PSNR SSIM RMSE

Jobson [74, 124] 9.79 0.26 143.09
He [62] 16.27 0.64 68.71

Tarel [155, 156] 17.35 0.79 70.85
Berman [12, 13] 15.95 0.66 59.98

Ren [141] 19.89 0.75 44.84
Cloud-GAN 27.56 0.80 18.62

(Fig. 4.6(b)) to yield our synthetically generated image (Fig. 4.6(c)).

4.5.2 Network Architectures

We imbibe the architecture and naming convention similar to what have been used by [188].

Our Generator architecture is in the form of an encoder-decoder layer where we first down-

sample the input to a compressed representation and then up-sample it to the same size as

the input. As shown in Fig. 4.5 (a), the Generator architecture starts with down-sampling

using a 7× 7 Convolution + Instance Normalization (Instance-Norm) [161] + Relu layer

having stride 1 resulting in 64 output feature maps. We will show the efficacy of using

Instance-Norm instead of Batch-Norm [70] in Section 4.6. Not using Normalization in

the Generator layers results in inferior results. The next two layers are 3 × 3 Conv +

Instance-Norm + Relu layers with 128 and 256 filters and stride 2 respectively. This is

followed by 9 residual blocks (as shown in Fig. 4.5 (b)), each containing 3× 3 convolution

filters resulting in same output layers for both. As detailed in Section 4.6, we additionally

try to test the addition of noise to the Generator architecture in the form of dropouts inside

the residual blocks. Next, we perform up-sampling using 2 transposed convolution layers

along with Instance-Norm and Relu having 128 and 64 filters and stride 2 respectively. The

last layer is a 7× 7 convolution layer that yields final 3-channel output from the generator.

Note that before each convolution, we use reflection padding on the boundaries for artifact

correction.



54
4. Cloud-GAN: Cloud removal for Sentinel-2 Imagery using a cyclic

consistent Generative Adversarial Network

Table 4.3 – Computation Times for different methods

Methods Time (seconds)

Jobson [74, 124] 0.5813
He [62] 0.3722

Berman [12, 13] 0.1847
Tarel [155, 156] 0.4733

Ren [141]1 0.5140
Cloud-GAN 0.045

The Discriminator architecture on the other hand resembles a 70× 70 PatchGAN [72]

architecture, classifying 70×70 patches as real or fake data. Compared with a discriminator

working on full-scale images, ours can effectively be applied to any input size image with

significantly lesser number of parameters. The architecture starts with a layer with 4× 4

Convolution + Leaky-Relu of slope 0.2 which is applied to the input image to yield a

64-channel feature map. This is followed by 3 convolution + InstanceNorm + Relu layers of

filter size 128, 256 and 512 respectively having a stride 2. In the end, we apply a convolution

layer resulting in a 1-dimensional feature vector followed by a Sigmoid function.

4.5.3 Implementation Details

Our network is trained using a 12 Gb NVIDIA Titan-X GPU on an Intel Xeon e7 core

i7 machine using Pytorch [125] as the deep learning framework. Initialization of weights

was done through a Gaussian distribution with mean 0 and standard deviation 0.02.

Optimization was carried out using ADAM [80], with a batch size of 4 and λ = 10 as

default value for all experiments. We perform training from scratch using a learning rate of

0.0002 up-to 200 epochs. The learning rate was kept constant for the first 100 epochs after

which it linearly decays to zero until the last epoch. Also, as illustrated in [188] model

oscillations are avoided by using a history of generated images (50) rather than only one.

4.6 Results and Evaluation

We validate our model by comparing it with other possible variations in its input batch-size,

normalization layers, noise as input, replacing LSGAN with a standard-GAN or removing

cyclic-consistency loss from overall objective function. Consequently, we test this verified

architecture against different state-of-the-art methods both on real and synthetic images.

While for real dataset, we show only qualitative results owing to lack of ground truth, for

synthetic images we compare both qualitatively as well quantitatively with other methods.

1Run on a separate Intel Core i7 windows machine with NVIDIA GEForce MX150 Graphics card (2GB
memory), though we assume the performance to be much faster if run on a Titan-X GPU as used in our
case.
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Figure 4.7 – Qualitative Results on Real Cloud Dataset. The first row is the input cloudy image while last
row is the output from our Cloud-GAN model. All other rows represents results from other
state-of-the-art methods.
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Figure 4.8 – Comparison of various cloud removal techniques for two synthetically generated scenes. For
quantitative evaluation, we show PSNR values which are computed for each image starting
from Input and all other methods against the Ground-Truth.

Lastly, we also hold comparisons for computation time required to process an image for all

the methods.

4.6.1 Validation of model design

As described in Section 4.4 and 4.5, in our Cloud-GAN model, we employ LSGAN together

with a Cyclic-loss as the loss function, Instance-Norm as normalization layer within the

network, batch size is set to 4 and inputs for GeneratorX2Y and GeneratorY 2X are either

Cloudy or Cloud-free images without any random noise. In order to showcase the efficacy

of our model, we compare it with 5 possible design variations in the end loss function,

normalization layer, batch size, addition of noise and removal of cyclic-loss (λ=0).

As illustrated in Table 4.1, we use euclidean distance to evaluate cloud-removal results

from different design variations. Clearly, a lower value of Euclidean distance indicates better

performance. All the comparisons are drawn with our self generated synthetic dataset

where we have ground-truths available for each corresponding cloud-free image generated

by the models.

As can be seen, our model using LSGAN results in a higher performance compared to

standard GAN [59]. This is mainly because LSGAN, compared with standard GAN, do not

have a log-loss function for the discriminator. This effectively results in penalizing those

data-points which are far-off in distance from the decision boundary, thus yielding smooth

and non-saturating gradients for discriminator.

Removing cyclic-loss term by setting λ=0 also further degrades the performance of

our network. This implies that cyclic-loss is quintessential for mapping input cloudy /
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non-cloudy image to its corresponding cloud-free / non-cloudy image in both the forward-

consistency and backward-consistency components. The reason is quite evident as without

the cyclic term, the network maps the input image to any randomly chosen sample from

the target space which results in poor performance.

Next we see that instance-norm (our model) gives better performance compared to

when using batch-norm (normalizing over entire batch). This is primarily due to satellite

images present in a batch have wide-scale illumination variation and thus, they need to be

effectively normalized independently than in a batch for stable training.

We also see that our model with batch size = 4 yields better performance than one

trained with batch size=1. This can be reasoned as the Generator architecture tend to

have larger variability in samples with a larger batch size than a smaller one when learning

a mapping from cloudy / cloud-free images to cloud-free/cloudy images. Thus effectively

at each gradient descent step, it tries to minimize the adversarial loss by generating wider

range of cloudy/cloud-free image. Note that batch size = 4 is the maximum we could take

due to limitation of our GPU memory.

Lastly, to avoid smoothness in the predicted outputs (Fig. 4.9) and introduce some

stochasticity in the output predictions, we tried to add random noise using dropouts in the

generator layers. However, what we see is an overall drop in the performance as introducing

such noise also impacts other images with clean outputs and leads to deterioration of

structures in those images.

Hence, finally we conclude that our model design with LSGAN and cyclic loss as loss

function, instance-norm, batch-size=4 and without using any noise performs the best among

all possible design variations that we test. Next, we use this model for comparisons with

other state-of-the-art methods.

4.6.2 Comparison with state-of-the-art methods

We herein present comparisons of results obtained using our Cloud-GAN model with other

openly available methods such as He [62], Jobson [74, 124], Tarel [155, 156], Ren [141]

and Berman [12, 13] both on real-cloudy images and synthetic-cloudy images. We first

demonstrate qualitative results over real-cloudy images and then draw comparisons both

quantitatively and qualitatively over synthetically generated cloudy images. Note that

we do not provide comparison with some more recent works [42, 132, 147], due to the

unavailability of their code and dataset.
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Comparison with Real-Images

Fig. 4.7 shows comparisons for real-cloudy inputs with different variations in cloud cover.

While our method (row VII) is able to remove both thick (to some extent) as well as thin

cloudy films, Jobson, Berman and Ren in rows II, V and VI respectively are unable to

completely recover thick cloudy regions. This is owing to the fact that dense saturated

regions cannot be solely treated with image enhancement based methods and require

additional image in-painting methods [97, 101] to recover the background. In case of Jobson,

we additionally witness over-enhanced contrasts which isn’t desirable while removing clouds.

For He and Tarel (rows III and IV respectively), we see that they can remove these dense

cloud-covers to large extent, however, they suffer from diminished contrast and dark regions.

Our Cloud-GAN model (row VII), without learning using any kind of Cloud-Free

cloudy pair images, efficiently removes thin clouds and small thick-cloudy regions spread

throughout a scene. More interestingly, it effectively detects small cloudy patches and

replaces them with the underlying ground details, as depicted in scene-1. At the same time,

it can retain finer details like patches of urban settlements, rivers, fields (scene-3) while

getting rid of the thin cloudy film. In some cases such as scene-1, the generated image

from our method is more natural and visually much more pleasing than the original image

which is another byproduct feature of using Cloud-GAN. Additionally, we neither witness

any over-enhancement/diminishing contrast problem as reported in other methods, nor

any kind of dark patches or global illumination degradation.

Comparisons with Synthetic-Images

We cannot report any quantitative results on the real dataset since we lack paired cloudy-

cloud-free images. However, to compensate that, we report results on synthetic scenes,

which were composed by addition of Perlin noise to cloud free images as elaborated in

Section 4.5.

In Fig. 4.8 we show results with different cloud removal methods including ours over

two synthetically generated cloudy scenes together with their corresponding Peak Signal-

to-Noise-Ratio (PSNR) values. For the last column-VIII, being a ground-truth image, we

do not report its PSNR value. We see that in terms of PSNR values, our model performs

considerably better than even the best performing method which is Ren (column VI).

On visually inspecting the results, we find similar patterns as found in real-dataset. We

typically see that Jobson, Berman and Ren (Columns II, V and VI respectively) are unable

to remove the cloudy cover completely. While Jobson overly enhances the contrast (resulting

in lower PSNR), He and Berman (Column III,IV and V resp.) compress the contrast.

Next, we report quantitative results in Table 4.2 using three popular metrics namely
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(a) Cloudy Cloud-Free (b) Cloudy Cloud-Free

Figure 4.9 – Failure Cases: Over-smoothening or completely fail to produce images for overly clouded
images

PSNR, structural similarity (SSIM) [169] and Root Mean Square Error (RMSE) to compare

difference in variability’s over all synthetic scenes. For PSNR value, we find that on an

average all methods perform approximately 8-18 points below our model. Specifically for

Jobson, we see very-low PSNR values due to extreme over-enhancement of contrast which

hugely deteriorates the overall perceptual quality of the image. For SSIM index, which in

a way measures both structural information and perceptual quality, we see that Jobson,

He and Bermen perform quite poorly compared to our method due to extreme changes

in the luminance and contrast of their corresponding outputs. For Tarel and Ren, the

results are quite comparable to ours. Similarly for RMSE, we notice that Jobson has the

maximum absolute error, due to again per-pixel large changes between the target image

and its output. Overall our method outperforms the best one (Ren) by a margin of 26

points.

4.6.3 Computation-time

We additionally show comparisons for computational time taken to remove clouds over a

single satellite image in table 4.3. On an average our method is 10 times faster compared

to other past methods. While He [62] takes 0.37 seconds, for Tarel [155, 156] it takes 0.47

seconds and for Jobson [74, 124] it is 0.58 seconds. The fastest of them all Berman [12, 13]

is still 4 times slower than our Cloud-GAN. Note that due to platform constrains for

their code, Ren [141] was run on a separate Intel Core i7 windows machine with NVIDIA

GEForce MX150 Graphics card (2GB memory). Though running on this configuration

their algorithm takes 0.51 seconds, we assume the performance to be much faster if run on

a Titan-X GPU as used in our case.

4.6.4 Results with Dense cloud cover

We show some special instances of thick clouds (Fig. 4.9) where our model fails to yield

credible results. In Fig. 4.9 (a), we see that the model generates an overly-smoothed image
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when the clouds are too opaque. In Fig. 4.9 (b), the model fails completely to produce an

image as the clouds have occupied most of the visible area. One of the plausible reasons is

that the network finds no closest sample in the target dataset associate with such thick

cloudy cover and hence, predicts a spatially smooth region under the cloud or some random

noise when the cloud cover is over large parts of the image.

A possible way to address this is by the addition of an extra source such as SAR imagery

which can penetrate through these clouds and give us information about the underlying

ground details. Note that we checked with NIR imagery too, however, they are themselves

partially plagued by cloud cover and could not help much. Moreover, curating only those

regions which are present beneath a cloud and leaving other non-cloudy regions as such is

another future area of research. This problem can possibly be addressed by using some

form of masking mechanism as has been utilized for refining building segmentation results

in one of the more recent works [153].

4.7 Conclusions and Discussions

We have proposed a novel technique to remove thin filmy clouds from Sentinel-2 imagery.

Our cloud removal technique is employed without using any explicit dataset of paired

Cloudy/Cloud-Free images as performed in the past. In a way, it nullifies the requirement

of creating and training on synthetic dataset which is not truly realistic. Our input sources

are purely visible range images without any prerequisite for other spectral sources such as

NIR, SAR or other cloud-penetration sources. We legitimize the design of our model over

wide-range of variabilities in terms of loss function, normalization layers, batch size and

input noise. Lastly, we report significant improvement over state-of-the-art methods in both

qualitative as well as quantitative results on synthetic images as well qualitative results on

real images, validating the efficacy of our results. In terms of computation time too, our

model performs considerably better than other past techniques, effectively allowing real

time processing of cloudy-images. However, presence of thick clouds do necessitate need

of an additional high wavelength imagery to gain some knowledge about the underlying

ground information which we leave as a topic of future research. Additionally, it would also

be interesting to see how the model performs while testing it on cities other than Paris

where the cloud cover is lesser or more as compared to it.



Chapter 5

Deep Tone Mapping for High

Dynamic Range Scenes

In the last three chapters, we discussed various applications of deep learning for processing

high resolution satellite images. A high spatial resolution in EO data simply implies having

smaller area to cover for each pixel, thus effectively being able to distinguish finer details on

ground from the imagery. In this chapter, we are going to drift towards effectively processing

another set of high resolution images, which is broadly focused on high dynamic range

content or popularly termed as HDR images. Contrary to EO data, a high spatial resolution

in HDR imagery largely concerns with larger number of pixels per inch irrespective of the

captured area in the scene. A computationally fast tone mapping operator (TMO) that

can quickly adapt to a wide spectrum of HDR content is quintessential for visualization on

varied low dynamic range (LDR) output devices such as movie screens or standard displays.

Existing TMOs can successfully tone-map only a limited number of HDR content and

require an extensive parameter tuning to yield the best subjective-quality tone-mapped

output. In this chapter, we address this problem by proposing a fast, parameter-free and

scene-adaptable deep tone mapping operator (DeepTMO) that yields a high-resolution and

high-subjective quality tone mapped output. Based on conditional generative adversarial

network (cGAN), DeepTMO not only learns to adapt to vast scenic-content (e.g.outdoor,

indoor, human, structures, etc.) but also tackles the HDR related scene-specific challenges

such as contrast and brightness, while preserving the fine-grained details. We explore

4 possible combinations of Generator-Discriminator architectural designs to specifically

address some prominent issues in HDR related deep-learning frameworks like blurring, tiling

patterns and saturation artifacts. By exploring different influences of scales, loss-functions

and normalization layers under a cGAN setting, we conclude with adopting a multi-scale

model for our task. To further leverage on the large-scale availability of unlabeled HDR
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data, we train our network by generating targets using an objective HDR quality metric,

namely Tone Mapping Image Quality Index (TMQI). We demonstrate the results both

quantitatively and qualitatively, and showcase that our DeepTMO generates high-resolution,

high-quality output images over a large spectrum of real-world scenes. Finally, we evaluate

the perceived quality of our results by conducting a pair-wise subjective study which

confirms the versatility of our method.

5.1 Introduction

Tone mapping is a prerequisite in the high dynamic range (HDR) imaging [58, 100,

123] pipeline to print or render HDR content for low dynamic range displays. With the

unprecedented demands of capturing/reproducing scenes in high-resolution and superior

quality, HDR technology is growing rapidly [36, 113]. Although HDR display systems have

advanced in the last few decades (for e.g.Sim2, Dolby Vision, etc), they still necessitate some

sort of tone mapping operation because of limited technical capabilities of the materials

used in these displays. Additionally, due to high manufacturing costs of the rendering

mediums, the absolute majority of displays/screens still has limited dynamic range and

relies largely on Tone Mapping Operators (TMOs) for desired top-quality rendering.

Several TMOs have been designed over the last two decades, promising the most faithful

representation of real-world luminosity and color gamut for high-quality output. However,

in practice, such TMOs are limited to successfully tone map only limited number of HDR

images due to their parametric sensitivity [40, 86]. For instance, a TMO capable of mapping

a bright daytime scene might not map the dark or evening scenes equally well. In fact, one

needs to manually tweak in an extensive parametric space for every new scene in order to

achieve the best possible results while using any such TMO. Thus, the entire process of

finding the most desirable high-resolution tone-mapped output is not only utterly slow,

tedious and quite expensive, but is almost impractical with a large variety of HDR content

being generated daily from different capturing devices.

This raises a natural question whether a more adaptive tone mapping function can be

formulated which can quickly alter itself to wide variability in real-world HDR scenes to

reproduce the best subjective quality output without any perceptual damage to its content

under a high-resolution rendering. With the recent success of deep learning [82] and wide

scale availability of HDR data, it is now quite possible to learn a model with such complex

functionalities for effective tone mapping operation.

In this chapter, we propose an end-to-end deep learning (DL) based tone-mapping

operator (DeepTMO) for converting any given HDR scene into a tone-mapped LDR output

which is of high resolution [1024x2048] and superior subjective quality. Based upon a
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(a) L1-loss (b) Deep-TMO (Single-Scale)

Figure 5.1 – Comparison between CNN (encoder-decoder) with L1-loss and DeepTMO (single-scale).
Inlets in row 2 show that DeepTMO yields sharp and high resolution output, whereas
the CNN results in blurred outputs.
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conditional generative adversarial network (cGAN) [59, 114], the DeepTMO model directly

inputs 32-bit linear HDR content and reproduces a realistically looking tone-mapped image,

aiming to mimic the original HDR content under a limited range [0-255]. DeepTMO is

trained to cater a wide range of scenic-content for e.g.indoor/outdoor scenes, scenes with

structures, human faces, landscapes, dark and noisy scenes, etc.

The motivation for generative adversarial network (GAN) in the DeepTMO design

stems from the poor performance of conventional convolutional neural networks (CNNs)

explored in past HDR studies [40, 41, 52] where the images resulted with spatially blurred

out pixels by using a simple L1/L2 loss function. Essentially, such models are not ideal for

our tone-mapping problem where the goal is to obtain output images that are: artifact-

free, superior-quality and high-resolution. Furthermore, instead of optimizing parameters

for a given TMO for one particular scene [29, 100], our objective is to design a model

which is adaptable to different scenes-types (such as day/night, outdoor/indoor, etc.), thus

encompassing all the desired characteristics for those scenes. Altogether, this is difficult for a

naive loss-function to satisfy. Moreover, designing such a cost function is quite complex, and

needs expert knowledge. Therefore, we overcome this challenge by learning an ‘adversarial

loss’ that encapsulates all the desired features from all ideal tone-mapped images by using

the underlying training data; thereby eradicating the need of manually handcrafting such a

loss function.

GANs are capable to generate better quality images compared to the state-of-the-art

models, however, there are still some prominent issues such as tilling patterns, local blurring

and saturated artifacts (see Fig. 5.6 (a)). To handle these problems in a high-resolution

output image, we explore the DeepTMO architectural design by comparing the single-scale

and multi-scale variants of both generator and discriminator. We subsequently showcase

how a multi-scale version of the generator-discriminator architecture helps in predicting

artifact-free tone mapped images, which are both structurally consistent with input HDR

and simultaneously preserve fine-grained information recovered from different scales.

The DeepTMO model is effectively a multi-scale architecture having a 2-scale generator

and a 2-scale discriminator, both of which are conditioned on the linear HDR input. Both

generator and discriminator compete with each other. The generator is trying to fool

discriminator by producing high subjective quality tone mapped images for the given

input HDR, while the discriminator trying to discriminate between real and synthetically

generated HDR-LDR image pairs. Our basic discriminator architecture is similar to Patch-

GAN [87, 88] which classifies patches over the entire image and averages over all of them

to yield the final image score. Similarly our basic generator architecture comprises of an

encoder-decoder network where the input HDR is given first to an encoder resulting in

a compressed representation which is then passed to the decoder yielding finally a tone
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(a) Lp-loss (b) Deep-TMO (Single-Scale)

Figure 5.2 – Comparison between CNN (encoder-decoder) with Lp-loss and DeepTMO (single-scale).

mapped image.

To train our model, we accumulate our dataset from freely available HDR image sources.

Ideally, the training dataset should be created through a subjective evaluation considering

all possible tone mapping operators for all available HDR scenes. However, conducting

such a subjective evaluation is highly cumbersome and unfeasible. Thus, it necessitates

the requirement of an objective quality assessment metric which can quantify the tone

mapping performance of each TMO for any given scene. For our task, we select a well

known metric namely Tone Mapped Image Quality Index (TMQI). We first rank 13 widely

used TMOs using the TMQI metric for each HDR input. We then select the topmost

scoring tone-mapped image as our target output.

In a nutshell, we

1. propose a fast, parameter-free DeepTMO, which can generate high-resolution and

foremost subjective quality tone-mapped outputs for a large variety of linear HDR

scenes, including indoor, outdoor, person, structures, day and night/noisy scenes.

2. explore 4 possible cGANs network settings: (a) Single-scale-Generator (Single-G)

and Single-scale-Discriminator (Single-D), (b) Multi-scale-Generator (Multi-G) and

Single-D, (c) Single-G and Multi-scale-Discriminator (Multi-D), (d) Multi-G and

Multi-D, thus discussing the influence of scales and finally adopting a multi-scale

generator-discriminator model for our problem.

3. detail the impact of different loss functions and normalization layers while elaborating

how each step helps in improving the overall results by tackling different artifacts.
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Figure 5.3 – DeepTMO Training Pipeline.

4. provide quantitative and qualitative comparison of our model with best tone mapped

outputs over 105 images and also validate our technique through a pair-wise subjective

study.

5.2 Related Work

HDR imaging technology has been a subject of interest over the past decades, inspiring to

capture and reproduce a wide range of colors and luminous intensities of the real world on

a digital canvas. Normally, the information stored in HDR content is represented using

a 32-bit floating point format. But to cope with conventional rendering mediums, such

scenes are often tone-mapped to an LDR format with available TMOs. A great variety of

TMOs addressing different perceptual objectives have been proposed in the past years. In

the following, we give a quick review of the tone mapping literature and then would touch

upon various deep learning techniques for HDR imaging.

5.2.1 Tone Mapping Operators for HDR Content

TMOs have been widely explored in the literature, principally based upon how they handle

the contrast, color and luminosity in a given HDR image [9]. However, they have been

classified into several categories under different sets of criteria [36, 113]. Primarily, they

have been grouped into global and local approaches, relying on how these mapping functions

operate on an image. The global methods such as [35, 84, 148] apply the same compression

function to all the pixels of an image. For the local techniques such as [24, 128, 159], a
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(a) Generator (Single Scale).

(b) Discriminator (Single Scale).

(c) Residual Blocks

Figure 5.4 – DeepTMO (single-scale) generator and discriminator architecture. The generator in
(a) is an encoder-decoder architecture. Residual blocks in (c) consist of two sequential
convolution layers applied to the input, producing a residual correction. Discriminator
in (b) consists of a patchGAN [71, 87, 88] architecture which is applied patch wise
on the concatenated the input HDR and tone mapped LDR pairs. More details in
Appendix section.
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tone-mapped pixel depends on the values of its neighboring pixels. Even though global

approaches are faster to compute, their resulting LDR outputs do not maintain adequate

contrast in the images; thus the scene appears somewhat washed out. The local tone

mapping functions, conversely, do not face these issues and are generally capable enough of

handling contrast ratios, meanwhile preserving local details. However, these operators result

in some prominent ‘halo’ effects around the high frequency edges, thereby giving unnatural

artifacts in the scenes. Another category of TMOs [37, 47, 109] includes designs which are

inspired from the human visual system, can models the attributes such as adaptation with

time, and can discriminate at high contrast stimuli and gradient sensitivities. Nonetheless,

all these existing TMOs have been designed to target independently, multiple different

objectives [40, 113], such as simulating human visual properties, honest reproduction of

scenes, best subjective preference or even for computer vision applications [137]. However,

in our work, we mainly focus towards designing a TMO aiming for “best subjective quality

output”.

Several small scale perceptual studies have been performed using varied criteria such

as with reference or without reference [17, 86, 179] to compare these classical and newly

developed TMOs for different perceptual objectives. Even though these subjective studies

are ideal to analyze TMO’s performance, the process is bounded to use a limited number

of content and TMOs due to practical considerations. As an alternate solution, objective

metrics such as [118, 179] have been proposed to automate the evaluation. TMQI is a

state-of-the-art objective metric and has been widely used for several TMO optimization

studies [29, 100]. It assesses the quality of images on 1) structural fidelity which is a multi

scale analysis of the signals, and 2) naturalness, which is derived using the natural image

statistics. Both these crucial properties of human perception are combined to define a

subjective quality score.

Learning-based methods Parametric sensitivity of hand-crafted TMOs is a well-known

phenomenon which impacts the subjective quality of the resulting output. As a result,

this emphasizes ‘scene-dependence’ of such tone mapping designs i.e.for a given subjective

quality task, TMOs have to be fine tuned for each individual scene type. To this end,

some optimization based tone mapping frameworks [29, 100] have been designed where the

parameters of a specific TMO are optimized for a given image. However, the parameter

fine-tuning process for each scene separately is time consuming and limits its real-time

applicability. Additionally, it somehow questions the ‘automatic’ nature of tone mapping [40]

for their applicability on a wide variety of real-world scenes.
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Figure 5.5 – DeepTMO multi-scale generator architecture. While the finer generator Go has the
original image as its input, the input to Gd is a 2× down-sampled version.

5.2.2 CNNs for HDR Scenes

Recently, CNNs have been utilized extensively for multiple HDR imaging tasks such as

reconstructing HDR using a single-exposure LDR [39], predicting and merging various

high and low exposure images for HDR reconstruction [41] or yielding HDR outputs from

dynamic LDR inputs [77]. CNNs have also been modeled to learn an input-output mapping

as done for de-mosaicking and de-noising by [52] or learning an efficient bilateral grid for

image enhancement [20]. [53] have recently proposed a deep bilateral tone mapper, but it

works only for 16-bit linear images and not for conventional 32-bit HDR images. A recent

work [65] addresses the end-to-end tone mapping problem where the model is trained for a

given scene. This is somewhat similar approach to parameter-tuning where the model is

calibrated for only one given scene at a time. Therefore, the problem of designing a fast,

parameter-free, end-to-end TMO which can effectively tone map wide variety of real-world

high-resolution content for high quality rendering in real time, still holds relevance.

As observed in the past CNN studies, the quality of resulting output depends heavily

on the choice of the loss function. Formulating a loss function that constrains the CNN to

yield sharp, top quality tone-mapped LDR from their corresponding linear-valued HDR is

complex and an ill posed problem. Our work doesn’t encounter such an issue as we utilize

a GAN based architecture.
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5.2.3 Generative Adversarial Networks

GANs [59] have attended lots of attention owing to their capability of modeling the

underlying target distribution by forcing the predicted outputs to be as indistinguishable

from the target images as possible. While doing this, it implicitly learns an appropriate

loss function, thus eliminating the requirement of hand crafting one by an expert. This

property has enabled them to be utilized for wide variety of image processing tasks such

as super-resolution [87], photo-realistic style-transfer [75] and semantic image in-painting

[180].

For our task, we employ GANs under a conditional setting, commonly referred as

cGANs [114], where the generated output is conditioned on the input image. One distinctive

feature of cGANs framework is that they learn a structured loss where each output pixel is

conditionally dependent on one or more neighboring pixels in the input image. Thus, this

effectively constrains the network by penalizing any possible structural difference between

input and output This property is quite useful for our task of tone-mapping where we

only want to compress the dynamic range of an HDR image, keeping the structure of the

output similar to the input HDR. For this specific reason, cGANs have been quite popular

for image-to-image translation tasks, where one representation of a scene is automatically

converted into another, given enough training pairs [71] or without them under unsupervised

settings [93, 160, 188]. However, a major limitation of using cGANs is that it is quite hard

to generate high resolution images due to training instability and optimization issues. The

generated images are either blurry or contain noisy artifacts such as shown in Fig. 5.6 (a).

In [22], motivated from perceptual loss [75], the authors derive a direct regression loss to

generate high-resolution 2048× 1024 images, but their method fails to preserve fine-details

and textures. In [168], authors have recently shown significant improvement on the quality

of high-resolution generated outputs through a multi-scale generator-discriminator design.

A similar work for converting HDR to LDR using GANs [126] has also appeared recently

where authors oversimplifies the tone-mapping problem by testing only on small 256x256

image crops. Essentially such an approach may not substantially capture the full luminance

range present in HDR images thereby overlooks the basic goal of TMO by working on full

dynamic range scenes. We however showcase our findings using their adopted architectures

from [71] on 1024× 2048 HDR images in the Appendix section.

In summary, we motivate the DeepTMO design with these given findings, and discuss

the impact of scales for both generator and discriminator, while showcasing their ability to

generate high-resolution tone-mapped outputs.
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(a) Single-D & Single-G (b) Multi-D & Single-G

(c) Single-D & Multi-G (d) Multi-D & Multi-G

Figure 5.6 – Impact of Multi-scale Discriminator and Generator.
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5.3 Algorithm

5.3.1 Problem Formulation

We propose a fast DeepTMO model with the prime objective of producing high-resolution

and high-quality tone-mapped images for vast variety of real-world HDR images. Ideally,

our model should automatically adapt for each scene without any external parameter

tuning. To this end, we propose to imbibe different desired tone mapping characteristics

depending upon scene type, content, brightness, contrast etc., to yield high perceptual

quality output. In the following paragraphs, we will briefly discuss the formulation of our

DeepTMO model.

Linear Domain Input For our models, we directly work on linear values. We performed

the scaling to [0,1] with very high-precision, thereby, not impacting the overall output

brightness. Additionally, we also experimented with log-scaling the input HDR before

performing the tone mapping operation, specifically to test for halo-effects in high-exposure

regions such as the sun in Fig.5.15.

Color Reproduction Most classical TMOs perform the dynamic range compression

in the luminance channel only and the colors are then reproduced in the post processing

stage. This partially accounts to ease the computational complexity of the tone-mapping

operation. We follow a similar paradigm, employing the common methodology for color

reproduction [148] given as Cout = Cin
Lin
· Lout, where Cout and Lout are output color and

luminance images while Cin is the input HDR color image.

Motivation for GANs To achieve the desired TMO, one solution is to use a simple L1

or perceptual (Lp) loss function [75] with an encoder-decoder architecture as utilized in

the past by various inverse-TMOs for generating HDR scenes from single-exposure [39]

or multi-exposure [41] LDR images. However, such naive loss functions suffer from either

overall spatial blurring (evident in L1 loss in Fig. 5.1) or over-compression of contrast

(evident in Lp loss in Fig. 5.2). This is quite trivial mainly because a CNN architecture

learns a mapping from all possible dynamic range values available in the wide variability of

training-set scenes to a range [0,255]. Thus, the trained model effectively predicts a fairly

mean luminance value for most of the pixels in output images to minimize the overall loss

function. Another simple idea could be to use TMQI directly as loss function. However,

due to the mathematical design of TMQI’s naturalness component and characteristic

discontinuity, TMQI cannot be directly used a loss function for back-propagation in a

DL framework. In fact, the alternate methodology proposed by authors in [100], which
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(a) without VGG and FM Loss (b) without VGG loss

(c) without FM Loss (d) with VGG and FM loss

Figure 5.7 – DeepTMO (single-scale) with/without FM and VGG Loss.
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optimizes a given TMO using TMQI, is also impossible to be imbibed into an end-to-end DL

pipeline, as it treats both SSIM and naturalness separately using two different optimization

strategies.

Given the goal of our TMO, designing an effective cost function manually for catering

to wide variability of tone-mapping characteristics under different scenic-content is quite a

complex task. An alternate solution could be to learn such a loss function. The use of GAN

is an apt choice here, as it learns an adversarial loss function by itself (the loss being the

discriminator network), that encapsulates all the desired features for an ideal TMO encoded

in the underlying training data, thereby eradicating the need of manually designing a loss

function. Another added advantage of GANs is that they can easily hallucinate a richer

contrast of pixel luminance values in the tone-mapped outputs compared to reproducing

closer to mean luminance values in case of ordinary L1 / Lp loss functions.

Aiming an artifact-free high-resolution tone-mapped output, we begin investigating the

choice of architecture from single-scale to its multi-scale variant for both generator and

discriminator in the following sections.

(a) With Instance Norm (b) With Batch Norm

Figure 5.8 – Batch Normalization vs. Instance Normalization.

5.3.2 DeepTMO (Single-Scale)

Fig. 5.3 depicts an overview of our training algorithm. For our DeepTMO model, we

basically employ a cGAN framework [114] which implicitly learns a mapping from an

observed HDR image x to a tone mapped LDR image y, given as: G : x −→ y. The

architecture is composed of two fundamental building blocks namely a discriminator (D)
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and a generator (G).

The input to G consists of an H ×W × C size HDR image normalized between [0, 1].

We consider C = 1 i.e.only the luminance channel is given as an input. Its output is a

tone-mapped image (top row of fake pair in Fig. 5.3) of same size as the input. D on the

other hand, takes luminance channels of HDR and tone mapped LDR images as input

pairs, and predicts whether they are real tone-mapped images or fake. It is trained in a

supervised fashion, by employing a training dataset of input HDR and their corresponding

target tone-mapped images (real-pair in Fig. 5.3). We detail the complete methodology to

build our target dataset in Section 5.4. An additional advantage of conditioning on an HDR

input is that it empowers D to have some pre-information to make better reasoning for

distinguishing between a real or fake tone mapped images, thus accelerating its training.

Next, we discuss the architectures for single-scale generator (Single-G) and single-scale

discriminator (Single-D) which are our adaptations from past studies [75, 188] which show

impressive results for style transfer and super-resolution tasks on LDR images. Further on,

in the subsequent sections, we will reason as to why opting for their multi-scale versions

aids in further refining the results.

Generator Architecture (Single-G) The Single-G architecture is an encoder-decoder

architecture as shown in Fig. 5.4a. Overall, it consists of a sequence of 3 components: the

convolution front end G(Front), a set of residual blocks G(Res) and the deconvolution back

end G(Back). G(Front) consists of 4 different convolution layers which perform a subsequent

down-sampling operation on their respective inputs. G(Res) is composed of 9 different

residual blocks each having 2 convolution layers, while G(Back) consists of 4 convolution

layers each of which up-samples its input by a factor of 2. During the down-sampling,

G(Front) compresses the input HDR, thus keeping the most relevant information. G(Res)

than applies multiple residual corrections to convert the compressed representation of input

HDR to one that of its Target LDR counterpart.

Finally, G(Back) yields a full size LDR output from this compressed representation

through the up-sampling operation.

Discriminator Architecture (Single-D) The Single-D architecture resembles a 70×70

PatchGAN [71, 87, 88] model, which aims to predict whether each 70×70 overlapping image

patch is real or fake, as shown in Fig. 5.4b. Note that the input to D is a concatenation of

the HDR and its corresponding LDR image. The Single-D, working on patches, effectively

models the high-frequency information by simply restricting its focus upon the structure in

local image regions. Moreover, it contains much less parameters compared to a full-image

size discriminator, and hence can be easily used for any-size images in a fully convolutional
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manner. The Single-D is run across the entire image, and all the responses over various

patches are averaged out to yield the final prediction for the image.

Although the Single-G and Single-D architecture yields high-quality reconstructions

at a global level, yet it results in noisy artifacts over some specific areas such as bright

light sources as shown in Fig. 5.6a. In a way, it necessitates modifying both single-scale

versions of G and D to cater not only to coarser information, but at the same time, paying

attention to finer level details, thus resulting in a much more refined tone-mapped output.

5.3.3 DeepTMO (Multi-Scale)

While generating high resolution tone-mapped images, it is quite evident now that we need

to pay attention towards low-level minute details as well as high-level semantic information.

To this end, motivated from [168], we alter the existing DeepTMO (single-scale) model,

gradually incorporating step-by-step a multi-scale discriminator (Multi-D) and a multi-scale

generator (Multi-G) in the algorithmic pipeline. Different from [168], our adaptation (a)

utilizes a 2-scaled discriminator, (b) incorporates a different normalization layer in the

beginning given by (x−xmin)
(xmax−xmin)

, scaling pixels between [0,1] with high precision, (c) inputs

specifically a single luminance channel input with 32-bit pixel-depth linear HDR values.

In the following, we detail the multi-scale versions of G and D. More interestingly,

we showcase the impact through step-wise substitution of the Single-D with its Multi-D

variant, and then the Single-G as well with its Multi-G counterpart.

Multi-D As shown in Fig. 5.6a and 5.6c, classifying effectively a high-resolution tone-

mapped output as real or fake is quite challenging for Single-D. Even though an additional

loss term effectively removes noisy artifacts at a global scale in the image (illustrated later

in Section 5.3.4), we still witness repetitive patterns in specific localized regions such as

around high illumination sources (for e.g.inside/outside the ring of table lamp in Fig. 5.6a

and on the ring of the lamp in Fig 5.6c). One easy way to tackle this problem is by focusing

the discriminator’s attention to a larger receptive field which is possible either through a

deeper network or larger convolution kernels. However, it would in turn demand higher

memory bandwidth, which is already a constraint while training high resolution HDR

images. Thus, we basically retain the same network architecture for the discriminator as

used previously, but rather apply it on two different scales of input i.e.the original and the

2× down-sampled version, calling the two discriminators Do and Dd respectively.

Both Do and Dd are trained together to discriminate between real and synthetically

generated images. Dd, by working on a coarser scale, focuses on a larger area of interest in

patches throughout the image. This feature subsequently aids G to generate more globally

consistent patch-level details in the image. Do on the other hand, operating at a much finer
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scale than Dd, aids in highlighting more precise finer nuances in patches, thus enforcing

G to paying attention towards very minute details too at the time of generation. This

is elaborated in Fig. 5.6b (where the noisy patterns observed in Single-D & Single-G of

Fig. 5.6a, are suppressed to a large extent) and in Fig 5.6d. We still witness minor traces

of these artifacts in Fig. 5.6b, due to Single-G’s very own limitations, thus compelling us

to switch to Multi-G. Contrary to Single-G, Multi-G reproduces outputs taking notice

of both coarser and finer scales. Thus the resultant output having information over both

scales, yields a more globally consistent and locally refined artifact-free image as shown in

Fig. 5.6b.

Multi-G Fig. 5.5 illustrates the design of Multi-G. It mainly comprises of two sub-

architectures, a global down-sampled network Gd and a global original network Go. The

architecture for Gd is similar to Single-G with the components, convolutional front-end, set

of residual blocks and convolutional back-end being represented as: G
(Front)
d , G

(Res)
d , G

(Back)
d ,

respectively. Go is also similarly composed of three components given by: G
(Front)
o , G

(Res)
o

and G
(Back)
o .

As illustrated in Fig. 5.5, at the time of inference, while the input to Go is a high

resolution HDR image (2048× 1024), Gd receives a 2× down sampled version of the same

input. Go effectively makes tone-mapped predictions, paying attention to local fine-grained

details (due to its limited receptive field on a high resolution HDR input). At the same time,

it also imbibes from Gd, a coarser prediction (as its receptive field has a much broader view).

Thus, the final generated output from G
(Back)
o encompasses local low-level information and

global structured details together in the same tone-mapped output. Hence, what we finally

obtain is a much more structurally preserved and minutely refined output which is free

from local noisy-artifacts, as seen in Fig. 5.6d.

To summarize, we showcase 4 different cGAN designs where the:

1. Single-D & Single-G architecture encounters noisy patterns due to not paying attention

to finer-level details.

2. Multi-D & Single-G architecture is able to suppress to some extent patterns observed

in the previous case, though not completely mainly due to limited generalization

capabilities of Single-G.

3. Single-D & Multi-G architecture removes patterns throughout the image, however

some very localized regions still face artifacts due to the limited capacity of Single-D.

4. Multi-D & Multi-G architecture finally yields us superior quality artifact-free images.
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Figure 5.9 – Comparison between our DeepTMO outputs and outputs from top-2 ranked tone-
mapped scenes on TMQI metrics for a variety of real-world scenes including indoor,
scenes with structures, landscape, dark/noisy scenes. In brackets we show corresponding
TMQI scores.
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5.3.4 Tone Mapping Objective Function

The ultimate goal of G is to convert high resolution HDR inputs to tone mapped LDR

images, while D aims to distinguish real tone-mapped images from the ones synthesized by

G. We train both the G and D architectures in a fully supervised setting. For training, we

give a set of pairs of corresponding images {(xi, yi)}, where xi is the luminance channel of

the HDR input image while yi is the luminance output of the corresponding tone-mapped

LDR image. Next, we elaborate upon the objective function to train our DeepTMO (both

single-scale and multi-scale).

The basic principle behind cGAN [114] is to model the conditional distribution of real

tone-mapped images given an input HDR via the following objective:

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex[log(1−D(x,G(x)))], (5.1)

where G and D compete with each other; G trying to minimize this objective against

its adversary D, which tries to maximize it, i.e. G∗ = arg minG maxD LcGAN (G,D).

Since the Multi-D architecture consists of Do and Dd, our objective for the same is:

G∗ = arg min
G

max
Do,Dd

∑
s=o,d

LcGAN (G,Ds) (5.2)

We append to the existing cGAN loss, an additional regularization term in the form of a

feature matching (FM) loss LFM (G,Ds) (similar to perceptual loss [34, 51]), given by:

LFM (G,Ds) = E(x,y)
M∑
i=1

1

Ui
[||Di

s(x, y)−Di
s(x,G(x))||1], (5.3)

where Di
s is the ith layer feature extractor of Ds (from input to the ith layer of Ds), M is

the total number of layers and Ui denotes the number of elements in each layer. In short, we

extract features from each individual D layer and match these intermediate representations

over real and generated images. Additionally, we append a perceptual loss LP as used in

[75], which constitutes of features computed from each individual layer of a pre-trained

19-layer VGG network [151] given by: LLP
(G) =

∑N
i=1

1
Vi

[||F (i)(y)− F (i)(G(x))||1]
where F (i) denotes the ith layer with Vi elements of the VGG network. The VGG

network had been pre-trained for large scale image classification task over the Imagenet

dataset [144]. Henceforth, our final objective function for a DeepTMO can be written as:
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G∗ = arg min
G

max
Do,Dd

∑
s=o,d

LcGAN (G,D)+

β
∑
s=o,d

LFM (G,Ds) + γLLP
(G)

(5.4)

β and γ controls the importance of LFM and LLP
with respect to LcGAN and both are

set to 10 based on emperical validation. We illustrate the impact of both these terms in

the following paragraph.

Impact of Feature Matching and Perceptual Loss term Both LFM and LLP
loss

terms act as guidance to the adversarial loss function, thereby preserving overall natural

image statistics. As can be seen in Fig 5.7, training without both the terms results in

inferior quality throughout the image. After observing Fig. 5.7b and 5.7d, we notice that the

VGG-term checks for global noisy repetitive patterns in the image and helps in suppressing

them. While being applied on the full generated image, the VGG network captures both

low-level image characteristics (e.g.fine edges, blobs, colors etc,) and the high level semantic

information through its beginning-level and later-stage network layers respectively. Based

upon these features, VGG effectively detects the corresponding artifacts as a shortcoming

in the overall perceptual quality of the generated scene and hence guides to rectify them,

yielding a more natural image. The FM loss term on the other hand, caters to more localized

quality details like keeping a watch on illumination conditions in each individual sub-region

(e.g.it effectively tones down over-exposed regions of windows in the building as deciphered

after observing Fig. 5.7c and 5.7d)). This is ideally done by utilizing various feature layers

of D, which are trained by focusing upon 70× 70 localized image patches. Finally, as shown

in Fig. 5.7d, together both VGG and FM loss terms help in yielding a high quality overall

contrast and local finer-details preserved output image.
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Figure 5.10 – Comparison between DeepTMO and targets, highlighting the zoom-ins with the
corresponding HDR-linear input.
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5.4 Building the HDR Dataset

In order to design a deep CNN based TMO, it is essential to obtain a large scale dataset

with a wide diversity of real-world scenes and cameras. To this end, we gather all the

publicly available HDR datasets. For training the network, a total of 698 images are

collected from various different sources, listed in the Appendix section. From the HDR

video dataset sources, we select the frames manually so that no two chosen HDR images are

similar. All these HDR images have been captured from diverse sources which is beneficial

for our objective i.e.learning a TMO catering a wide variety of real-world scenes.

To further strengthen the training, we applied several data augmentation techniques

such as random cropping and flipping, which are discussed briefly in section 5.5. We

considered 105 images from the [45] for testing purposes.

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50
DeepTMO
TargetTMOs

Figure 5.11 – Quantitative performance comparison of best performing DeepTMO with the target
TMOs.

5.4.1 Target Tone Mapped Images

Selecting a ‘target’ tone mapped image for an HDR scene is a crucial step in designing

the DeepTMO. Although several subjective studies [9] built on different hypotheses have

attempted to answer this question, yet they have been conducted only for very small

databases of sizes upto 15-20 scenes. Such subjectively evaluated databases are limited

in number and cannot be effectively used as training dataset for our DeepTMO model.

Additionally, these databases have been evaluated under varying evaluation setups i.e.by

using different sets of TMOs and reference or no-reference settings. Hence, similar to [126],

we resorted to a widely used objective-metric known as TMQI [179] to ensure a fixed target
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selection criterion for our problem.

As discussed in Section 2, literature of TMOs is quite extensive and practically difficult

to span. Therefore, to find the target tone mapped image for each training HDR scene,

we selected 13 classical TMOs: [2, 24, 35, 37, 47, 84, 109, 128, 139, 148, 159] and gamma

and log mappings [9]. The selection of these tone mappings is inspired from the subjective

evaluation studies [17, 86, 100, 179] which highlight the distinctive characteristics of

mapping functions, which we aim to inculcate into the learning of our DeepTMO model.

For each HDR scene, we initially rank the obtained tone-mapped outputs from all

the 13 TMOs using the TMQI metric. Then, the best scoring tone mapped output is

selected as the ‘target’ for the corresponding HDR scene. Since tuning the parameters of

13 considered TMOs is a daunting task for a large set of training images, we used their

default parameter settings throughout this paper. Though we acknowledge that fine-tuning

TMO parameters can further boost overall performance, the process however, is almost

impractical considering the large amount of training images and the vast parameter-space

of the TMOs.

5.5 Training and Implementation Details

The DeepTMO training paradigm is inspired by the conventional GANs approach, where

alternate stochastic gradient descent (SGD) steps are taken for D followed by the G. We

specifically utilize Least Square GANs (LSGANs), which have proven to yield [111] a much

more stable learning process compared to regular GANs. For the multi-scale architecture,

we first train Gd separately, and then fine tune both Gd and Go (after freezing the weights of

Gd for the first 20 epochs). For both D and G, all the weights corresponding to convolution

layers are initialized using zero mean Gaussian noise with a standard deviation of 0.02,

while the biases are set to 0.

Instance Vs. Batch Norm

We use instance normalization [161], which is equivalent to applying batch normalization [70]

using a batch size equal to 1. The efficacy of the instance-norm is showcased in Fig. 5.8,

where applying the plain batch-norm yields non-uniformity in luminance compression.

While the instance normalization is trained to learn mean and standard deviation over a

single-scene for the purpose of normalizing, the batch-norm learns over a full batch of input

images. Thus, its mean and standard deviation is computed spatially for each pixel from a

much wider range of high dynamic luminance values over the entire batch leading to uneven

normalization. Absence of batch-norm/instance-norm prevents the G/D to train properly

and results in poor generation quality, thus necessitating the need for a normalization layer.
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Table 5.1 – Quantitative Results. Mean TMQI scores on the test-set of 105 images.

TMOs TMQI

Tumblin [159] TMO 0.69 ±0.06
Chiu [24] TMO 0.70 ±0.05
Ashikh [2] TMO 0.70 ±0.06
Ward [84] TMO 0.71 ±0.07

Log [9] TMO 0.72 ±0.09
Gamma [9] TMO 0.76 ±0.07

Pattnaik [128] TMO 0.78 ±0.04
Schlick [148] TMO 0.79 ±0.09
Durand [37] TMO 0.81 ±0.10
Fattal [47] TMO 0.81 ±0.07
Drago [35] TMO 0.81 ±0.06

Reinhard [139] TMO 0.84 ±0.07
Mantiuk [109] TMO 0.84 ±0.06

DeepTMO (Single G - Single G) 0.79 ±0.06
DeepTMO (Single G - Multi D) 0.81 ±0.05
DeepTMO (Multi G - Single D) 0.80 ±0.07
DeepTMO (Multi G - Multi D) 0.88 ±0.06

All the instance normalization layers are initialized using Gaussian noise with mean 1 and

0.02 standard deviation.

Implementation

All training experiments are performed using the Pytorch [125] deep learning library with

mini-batch SGD, where the batch size is set to 4. For multi-scale, we use batch-size 1 due

to limited GPU memory. We utilize an ADAM solver [80] with initial learning rate fixed at

2× 10−4 for the first 100 epochs and then, allowed to decay to 0.0 linearly, until the final

epoch. Momentum term β1 is fixed at 0.5 for all the epochs. Hyper-parameters have been

set to their default values and aren’t manipulated much due to GANs training complexity.

We also employ random jitters by first resizing the original image to 700× 1100, and then

randomly cropping to size 512× 512. For multi-scale, we resize to 1400× 2200 and crop to

size 1024× 1024. All our networks are trained from scratch.

For all the other handcrafted TMOs, we used the MATLAB-based HDR Toolbox [9]

and Luminance HDR software 1. For each TMO, we enabled the default parametric setting

as suggested by the respective authors. Training is done using a 12 Gb NVIDIA Titan-X

GPU on a Intel Xeon e7 core i7 machine for 1000 epochs and takes a week.

1http://qtpfsgui.sourceforge.net/
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Figure 5.12 – Subjective Test Results. Preference probability of our DeepTMO over best performing
target TMOs for 15 scenes representing 5 different scene categories.

5.6 Results and Evaluation

In this section, we present the potential of our DeepTMO on a wide range of HDR scenes,

containing both indoor and outdoor, human and structures, as well as day and night views.

We compare our results with the best subjective outputs obtained from wide range of tone

mapping methods [2, 24, 35, 37, 109, 128, 139, 148] on 105 images of test dataset [45], both

qualitatively and quantitatively. In addition, we briefly discuss the specific characteristics

of the proposed model, including their adaptation to content or sharpness in rendering

high-resolution tone mapped outputs. Finally, we present a subjective evaluation study to

access the perceived quality of the output. The size for each input image is kept fixed at

1024× 2048.

Note that test scenes are different from the training set and are not seen by our model

while training.

5.6.1 Comparison with the Best Quality Tone-Mapped Images

We begin the comparison of our DeepTMO model against the best quality tone mapped

test images to assess the overall capability to reproduce high-quality images over a wide

variety of scenes. To obtain the target test image, we follow a similar paradigm as provided

in Section 5.4.1.

In Fig. 5.9, we demonstrate qualitative comparisons of our model with the two top

scoring TMOs obtained using TMQI ranking, which includes methods like Mantiuk [109],

Reinhard [139], Fattal [47], Durand [37], Drago [35], Pattnaik [128] TMO, over 7 real-world

scenes representing indoor/outdoor, with humans and structures, in day/night conditions.

These sample scenes depict the exemplary mapping of linear HDR content using DeepTMO,

where it successfully caters a wide variety of scenes as well as competes with the respective
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best quality outputs in terms of overall contrast preservation and visual appeal. In scene-1,

a scene with human in indoor conditions, we observe that our DeepTMO competes closely

to the target output while preserving details in under/over exposed areas such as human

face, areas under the table or outside the window. Another indoor scene-2, having shiny

surfaces (indoor) and saturated outside regions (windows) demonstrate the effectiveness of

our model by preserving details in these regions, yielding a high-quality output. Similar

observations can be made in outdoor scenes with structures i.e.in scene-3 and 4, where

we notice that our DeepTMO model effectively tone-maps sharp frequency regions in

overly exposed areas such as the dome of the building, the clouds in the sky or the cow’s

body. Landscape scene-5 has similar observations in the rising sun and dark forest regions.

Although multi-scale DeepTMO design pays attention to the global and minute sub-regional

information, the preservation of illumination and details in dull and overly bright regions is

also due to the presence of the FM-loss term, which in turn utilizes features from different D

layers. Since D is focused on localized image-patches, the FM-term implicitly understands

how to compress or enhance luminance in specific regions.

More interestingly, we observe that DeepTMO suppresses noisy disturbances (i.e.above

the Waffle House store) in dark scene-6, which appears more pronounced in the two best

performing tone-mapped images. This can be reasoned owing to the addition of VGG

and FM-loss terms which guides the network to handle the noisy repetitive patterns and

dark sensor-noise while preserving the natural scene statistics. Furthermore, we showcase a

night time high-contrast scene-7, where our DeepTMO competes closely with the two best

quality outputs while preserving the overall contrast ratio. However, we do observe the

images obtained with our method have more saturated colors which we discuss later in

Section 5.7.1.

Though in most cases our DeepTMO competes well with target images, in some cases

we observe that it even outperforms them with respect to TMQI scores. Fig. 5.10 compares

two exemplary HDR scenes from the test dataset that are mapped using the DeepTMO

and their corresponding target TMOs in day and evening time-settings. In the first row,

DeepTMO successfully preserves the fine details in the sky along with the waterfall and

the mountains in the background. For a darker evening scene in second row, DeepTMO

compensates the lighting and preserves the overall contrast of the generated scene. Even

though we observe a halo ring around sun using our method (which we analyze later in

Section 5.7.1), our TMQI score is considerably higher mainly because the TMQI metric is

color-blind.

Quantitative Analysis To further demonstrate the high-quality mapping capability of

DeepTMO models on all the 105 real world scenes, in Fig. 5.11, we show a distribution plot
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Figure 5.13 – Computation time in seconds.

of the number of scenes against the TMQI Scores. For completeness, we also provide scores

achieved by target tone-mapped outputs. The curves clearly show that the generated tone

mapped images for DeepTMO compete closely with the best available tone mapped images

on the objective metrics with DeepTMO fairing the best amongst all.

We provide quantitative analysis in Table 5.1, to showcase the performance of our

proposed model with the existing approaches. For each method, the TMQI scores are

averaged over 105 scenes of the test dataset. The final results show that our proposed tone

mapping model adapts for the variety of scenes and hence, achieves highest score. Please

note that standard TMOs were applied with default parameter settings and hence results

may improve for them by parameter optimization. Still performance of our fully automatic

approach is highly competitive.

Computation Time Inference is performed on test-images of size 1024×2048 and takes

on an average 0.0187 sec. for single-scale and 0.0209 sec. for multi-scale designs, as shown

in Figure 5.13.

5.6.2 Quality Evaluation

We performed a subjective pairwise comparison to validate the perceived quality of our

tone-mapped images. 20 people participated in this subjective study, with age range of

23-38 years, normal or corrected-to-normal vision.

Test Environment and Setup

The tests were carried out in a room reserved for professional subjective tests with ambient

lighting conditions. A Dell UltraSharp 24 Monitor (DELL U2415) was used for displaying

images with screen resolution 1920× 1200 at 59 hz. The desktop background window was

set at 128 gray value.

Each stimuli included a pair of tone mapped images for a given scene, where each

pair always consisted of an image produced by DeepTMO and the other one obtained

using the best-performing tone mapping functions based on the TMQI rankings. To cater
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(a) (b)

(c) (d)

Figure 5.14 – Top TMQI scoring TMOs showing not-so-visually desirable outputs. (a) DeepTMO
output, (b), (c) and (d) are 3 top ranking TMO output.
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a wide variety of content, we selected 15 scenes from 105 test-set images, representing 5

different categories (3 scenes per category) namely, i) Humans, ii) Dark/Noisy, iii) Indoor,

iv) Structures, and v) Landscapes.

Procedures

We conducted a pair-wise subjective experiment where the observer was asked to choose an

image by showing a pair of images side-by-side. The option same was not included to force

users to choose one of the stimuli. Each participant was asked to select an image which is

more realistic and appealing to him/her. Participants were provided with unlimited time to

make their decision and record their choice. The experiment was divided into a training and

test session, where training involved each participant being briefed to familiarize with the

subjective quality evaluation task. Each observer compared a pair of image twice, having

each tone-mapped image displayed on both sides (e.g.DeepTMO vs. first-best tone mapped

and first-best tone mapped vs. DeepTMO).

Results

In order to quantify the results of pairwise subjective tests, we scaled the winning frequencies

of the model to the continuous quality-scores using the widely known Bradley-Terry (BT)

model in [16]. The scaling is performed using the statistical analysis proposed in [61]

to determine whether the perceived visual quality difference of the compared models is

statistically significant. The preference probability for our method Pref − Prob(DeepTMO)

is mathematically given as:

Pref − Prob(DeepTMO) =
wDeepTMO

N
+

t

2 ·N
(5.5)

where wDeepTMO is the winning frequency of our proposed model, t is the tie frequency

and N is the total number of participants. The statistical model relies on the hypothesis

that each compared TMO in the pairwise test shares equal probability of occurrence i.e.0.5

and hence, follows a Binomial distribution. Based on the initial hypothesis, a Binomial

test was performed on the collected data and the critical thresholds were obtained by

plotting the cumulative distribution function of the Binomial distribution. By setting 95%

as the level of significance, if we receive 13 (B(13, 20, 0.5) = 0.9423) or more votes for

our proposed method, we consider our tone-mapped image to be significantly favored in

terms of subjective quality. Similarly, by setting 5% as the significance level, if we receive 6

(B(6, 20, 0.5) = 0.0577) or less votes for our proposed method, we consider our tone-mapped

image to be least favored in terms of subjective quality.

The results of the pair-wise subjective quality experiment are shown in Fig. 5.12. The
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(a) (b)

(c) (d)

Figure 5.15 – Halo effect. (a) DeepTMO output, (b) DeepTMO trained with log-scaled values, (c)
and (d) 2 top ranking TMO outputs.
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two lines (blue and red) mark probabilities of high (13/20 = .65) and low (6/20 = .30)

favor-abilities respectively. Looking at the results, we observe that DeepTMO images have

been significantly preferred over best TMQI rated tone mapped images for most of the

scenes, for different possible categories. In general, we observed that subjects preferred

our tone-mapped LDR scenes which preserve the contrast well. Based on some informal

post-experiment interviews, we found that best TMQI rated target images, preserving fine

details were least realistic and more like paintings to observers. A small set of images used

in subjective tests is shown in Fig. 5.9.

5.7 Conclusion, Limitations and Future work

Designing a fast, automated tone-mapping operator that can reproduce best subjective

quality outputs from a wide range of linear-valued HDR scenes is a daunting task. Existing

TMOs address some specific characteristics, such as overall contrast ratio, local fine-details

or perceptual brightness of the scene. However, the entire process of yielding high-quality

tone-mapped output remains a time-consuming and expensive task, as it requires an

extensive parameter tuning to produce a desirable output for a given scene.

To this end, we present an end-to-end parameter-free DeepTMO. Tailored in a cGAN

framework, our model is trained to output realistically looking tone-mapped images, that

duly encompass all the various distinctive properties of the available TMOs. We provide

an extensive comparison among various architectural design choices, loss functions and

normalization methods, thus highlighting the role that each component plays in the final

reproduced outputs. Our DeepTMO successfully overcomes the frequently addressed blurry

or tiling effects in recent HDR related works [40, 41], a problem of significant interest for

several high-resolution learning-based graphical rendering applications as highlighted in [40].

By simply learning an HDR-to-LDR cost function under a multi-scale GANs framework,

DeepTMO successfully preserves desired output characteristics such as underlying contrast,

lighting and minute details present in the input HDR at the finest scale. Lastly, we validate

the versatility of our methodology through detailed quantitative and qualitative comparisons

with existing TMOs.

5.7.1 Limitations and Future Work

Target Selection Though DeepTMO successfully demonstrates versatility in addressing

wide variety of scenes, its expressive power is limited by the amount of available training

data and quality of its corresponding ‘target’. As noted in Section 5.1, due to unavailability

of subjectively annotated ‘best tone mapped images’ for HDR scenes, we resort to an

objective TMQI metric to build the corresponding target LDR. However, the metric itself
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(a) DeepTMO (b) s=0.5 (c) s=0.3

Figure 5.16 – Color Correction. (a) DeepTMO, (b) and (c) are the color corrected DeepTMO
controlled by parameter s from [108].

is not as perfect as the human visual system. We illustrate this point in Fig. 5.14. The

images ranked lower by TMQI metric in column 3 and 4 are somehow more interesting

than their best-ranked counterpart in column 2. Such samples can eventually restrict the

generation power of our model.

Another specific case includes ‘Halo’ artifacts or rings around high illumination regions

such as the sun shown in Fig. 5.15, where DeepTMO (column 1) is compared with the top

TMQI scoring outputs in column 3 and column 4. This is mainly due to the inadequate

amount of training data consisting of such samples, and the presence of their overly

saturated ‘target’ counterparts. As a result, D has very little information about effectively

tone-mapping such regions, and thus is unable to guide G to effectively eradicate such

effects at generation time. To handle such artifacts, we additionally experimented using a

log-scale input (column 2) where we observe that even log-scale values do no rectify such

effects, thus necessitating the need of adequate training samples.

Color Correction Color is an important aspect while rendering high quality subjective

tone-mapped outputs. Our proposed method has been trained for efficient luminance

compression in HDR scenes and uses the classical color ratios to produce the resulting

tone-mapped outputs. Although it provides best subjective quality outputs in most cases,

it sometimes can result into overly saturated colors which might look unnatural and

perceptually unpleasant. One simple solution could be to simply plug-in existing color

correction methods [108] to obtain the desired output. An example is shown in Fig. 5.16,

where color correction has been carried out using the method as proposed in [108], which is

given by Cout = ((Cin
Lin
− 1) · s+ 1) ·Lout, where s is the color saturation control. Alternately,

another interesting solution could be to learn a model to directly map the content from

HDR color-space to an LDR color tone mapped output.
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5.8 Appendix

5.8.1 DeepTMO (Single-Scale) Architecture

In this section we specify the detailed architectural details of basic single-scale generator

and discriminator.

Generator Architecture

G(Front) has first a convolution layer consisting of 64 filters kernels (or output channels)

each of size 7 × 7 applied with a stride of (1,1) and padding (0,0). Next, there are four

convolution layers with 128, 256, 512 and 1024 filter kernels respectively each with a size

3 × 3 and stride (2,2) and padding (1,1). Each of these four layers are followed by the

batch norm with batch size = 1 (also called instance normalization [161]) and Relu [119].

Following this, we have G(Res) which is a set of 9 residual blocks, each of which contains

two 3× 3 convolutional layers, both with 1024 filter kernels. Next, for G(Back) there are

four de-convolutional or transposed convolution layers with 512,256,128,64 filter kernels,

each having a filter size of 3× 3 and fraction strides of 1
2 . Both these layers have instance

normalization and Relu added after the convolution. Finally, there is another convolution

layer of size 7× 7 and stride 1 followed by a tanh activation function at the end.

Discriminator Architecture

Discriminator architecture consists of 4 convolution layers of sizes 4× 4 and stride (2,2).

From first to the last, the number of filter kernels is 64, 128, 256 and 512 respectively. Each

of the convolutional layer is appended with an instance normalization (except the first layer)

and then leaky ReLU [102] activation function (with slope 0.2). Finally, a convolutional

layer is applied at the end to yield a 1 dimensional output which is followed by a sigmoid

function.

5.8.2 DeepTMO-R With/Without Skip Connections

We additionally explored the cGAN based network from [71] for our tone-mapping task

and name it as DeepTMO-R. The generator architecture of DeepTMO-R is shown in 5.17.

We use the same discriminator as of DeepTMO single-scale. DeepTMO-R design is altered

by adding skip-connections between each layer i and layer n− i, n being the total number

of encoder-decoder layers and called as DeepTMO-S, which as a result concatenates all

the channels at layer i with layer n− i. Various past HDR reconstruction methods, have

used skip connections [142] for generating HDR scenes from single exposure [40] or multi-

exposure [41] LDR images. The basic idea had been that since, both LDR and HDR
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Figure 5.17 – DeepTMO-R and DeepTMO-S generator architecture.

scenes are different renderings of the same underlying structure, at a particular scale, their

structures are also more or less aligned. Hence, it is possible to effectively transmit low-level

details from input to output scenes,circumventing the bottleneck of the encoder-decoder

architecture.

Experimentation

We performed the training and testing for both, DeepTMO-R and DeepTMO-S in a similar

fashion to that of DeepTMO and also on the high-resolution images of size 1024× 2048. In

Fig. 5.18, we show a simple case of a daytime natural scene where the three architectures

provide results with some prominent visible effects. From the cropped insets, we see that

DeepTMO-R results in blurry effect on the textured bark of the tree, similar to previous

example. DeepTMO-S on the other hand, doesn’t produce any blurriness, but instead,

we notice pronounced repetitive checkerboard artifacts. Such artifacts have been recently

discussed in deep-learning based image rendering problems [50, 120] and are mainly caused

due to no direct relationship among intermediate feature maps generated in de-convolutional

layers. Nevertheless, it is still an open problem. DeepTMO, on the other hand, gives us

sharper and checkerboard free images while preserving the fine-details too.

5.8.3 DeepTMO (Multi-Scale) Architecture

Multi-Scale Generator Architecture

G
(F )
1 here consists of 5 convolution layers, with the number of output channels from first

till last being 64,128,256,512,1024 respectively. G
(R)
1 has 9 residual blocks each having 1024
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DeepTMO-R DeepTMO-S DeepTMO

Figure 5.18 – While the DeepTMO-R simply results in blurred outputs in the bark of tree, the
DeepTMO-S tries to refine them but is faced by checkerboard artifacts [50, 120]. The
DeepTMO provides best results amongst the three methods while preserving the fine
details, contrast and sharpness in the image.



96 5. Deep Tone Mapping for High Dynamic Range Scenes

0
20
40
60
80

100
120
140
160
180
200
220
240

N
u
m
b
e
r
 
o
f
 
I
m
a
g
e
s

W
ar

d

E
xp L
og

G
am

m
a

A
sh

ik
hm

in

D
ur

an
d

T
um

bl
in

D
ra

go

Sc
hl

ic
k

R
ei

nh
ar

d

Fa
tta

l

C
hi

u

M
an

tiu
k

Figure 5.19 – Distribution of best tone mapped output on training dataset of 700 Images.

as the number of output channel. For G
(B)
1 , we have 5 transposed convolution layers with

output channels 512,256,128,64 and 1. All the component layers have similar nomenclature

as used in the component layers of G, including the first layer of G
(F )
1 and the last layer in

G
(B)
1 .

G
(F )
2 has two consecutive convolution layers, with output channels 32 and 64 respectively.

The last feature map of G
(B)
1 (with 64 output channels) is then element-wise summed with

the output feature map of G
(F )
2 , to provide corresponding input to the residual block G

(R)
2 .

G
(R)
2 consists of 3 residual blocks each with 64 output channels. Following this we have

two deconvolution layer in G
(B)
2 with 32 and 3 output channels respectively. Again the

structure of all the component-wise layers is similar to G.

5.8.4 Training dataset

We provide the training distribution of target tone-mapped images on training dataset

in Fig. 5.19 considering 13 TMOs. Note that while training we have used several data

augmentation techniques. These target tone-mapped scenes have been selected using the

default parametric settings.
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5.8.5 Dataset Source

Dataset is collected from the following sources: [1, 7, 28, 30, 44, 49, 81, 130, 133, 136, 174]
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Chapter 6

Conclusion and future work

6.1 Summary

This thesis presents various applications of deep learning techniques for processing high-

resolution RGB images. The application scenarios are broadly categorized into a) Remote-

Sensing imagery and b) High Dynamic Range Imaging. Underneath, we highlight the four

major contributions of this thesis:

• We first address the problem of scene complexity in Aerial scene Classification. We

argue that complex aerial scenes consist of large number of distinctive objects, many of

which cause ambiguity in the overall decision making of the neural network. Thus we

adopt a deep weakly supervised learning technique to automatically select, simply by

using the image-level labels, the most relevant regions in the aerial scene which helps

in improving the overall performance of the network. We showcase both quantitatively

and qualitatively, how this methodology helps in increasing the classification accuracy

for more complex scenes, thus proving our hypothesis.

• Next, we deal with another challenging yet highly relevant problem of building-

footprint extraction in aerial images. Most of the past works dealing with building

segmentation rely on refining the segmentation masks either using conditional-random-

fields using hand-crafted priors or using other sources such as open-street-maps. We

instead propose to refine the initial segmentation prediction by relying on the joint

distribution of input and output variables. We effectively do this, by predicting the

error probability maps of initial segmentation mask given the input image. Further

on, our model replaces only those pixels in the segmentations which have a high error

probability score in the previously generated error probability maps. Not only do we

see quantitative improvement compared to benchmark results, the qualitative results

also assert that the model is better able to learn the underlying structures of building
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footprints and hence is able to effectively refine them.

• Subsequently, we deal with the problem of removal of thin clouds in satellite images.

We adopt a novel-technique utilizing GANs to map the cloudy-images to their non-

cloudy counterpart particularly for Sentinel-2 RGB images over the region of Paris.

Since, we lack a proper ground-truth of cloud-free images for the cloudy counter-parts,

we tackle the issue by learning the mapping in an unsupervised fashion. Apart from

the adversarial loss, we additionally utilize a cyclic loss, that constrains the model

to generate cloud-free image which respects the input image and not reproduce

any random image from the target domain. We compare our results qualitatively

with other methods that use single image haze removal where we show huge gain in

producing cloud-free images. Due to lack of ground-truth, we compare quantitatively

on synthetically generated images, where our method yields much higher PSNR and

SSIM scores compared to other methods.

• Lastly, we tackle a slightly different problem settings, dealing with tone mapping of

High Dynamic Range Imaging in order to yield high resolution and high subjective

quality LDR images over a wide variety of scenes. We do this, by adopting 4 different

conditional GAN settings to model the tone mapping function and conclude that a

multi-scale generator discriminator network design is the best suitable for reproducing

high resolution and high subjective quality tone mapped outputs. Due to lack of

ground truth tone mapped dataset, we generate the targets using the objective TMQI

metrics. We finally showcase quantitative as well as subjective tests compared to other

tone mapping operators, thus proving the superiority of our tone-mapped outputs.

6.2 Future Research Directions

We propose several future research directions as an extension of our past work. We discuss

some of them below.

Aerial scene segmentation using weakly supervised learning Generating ground

truth pixel-based labels for aerial scenes is highly challenging and tedious task. Moreover

it requires expert knowledge and often suffers from insufficient captured information

depending upon the sensor. Under such a setting, it is quite relevant to perform such

labeling, either in an unsupervised or weakly supervised fashion by using only image-level

labels. This would also be relevant for correction of Open street maps where we can easily

notice registration errors between the segmentation mask and the underlying RGB imagery.
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Cloud Removal for effective Land-Cover Classification Classifying Land-cover is

an important task for estimating green-cover or amount of urbanizing or water sources

in an region. However they are often plagued by clouds that inhibit in clearly visualizing

the underlying region. The work presented in this thesis can effectively help in removing

thin cloud-cover in an unsupervised fashion using the Cloud-GAN model that we discussed

in Chapter-3. For thick cloud-cover we can condition the GAN network on an additional

cloud-penetrating source, thus giving us rich information about the underlying region.

Tone mapping of HDR scenes for color images Tone mapping performed using

our DeepTMO has two major issues in the current training pipeline. The first is that the

TMQI metrics which has been used to rank tone mapping operators is color blind. Hence a

TMO which has a better color image might be ranked below one which has an inferior color

output. Thus an interesting future research direction can be to design a metrics which can

rank the color images instead of luminance scale. Second issue is that, our model at times,

yields saturated color outputs as well as halo artifacts, as it has been trained for luminance

channel and not for all RGB channels. Thus another future work can be to design a model

which can predict color outputs addressing these two issues.
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