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Abstract

With the recent advancement in image capturing devices, High-Resolution (HR) images
have become quite prevalent under diverse application settings. Fields such as Remote-
Sensing (RS) or High Dynamic Range Imaging (HDRI) have been reproducing HR images
for past few decades and demand automatic techniques for effectively processing them
with least human intervention. Deep Learning has revolutionized these fields owing to
parallel processing of a complete batch of HR images in one forward pass. In this thesis we
discuss four different application scenarios that can be broadly grouped under the larger
umbrella of Analyzing and Processing HR images using deep learning techniques. The first
three chapters encompass processing RS images which are captured either from airplanes
or satellites from hundreds of kilometers away from the Earth. We start by addressing a
challenging problem related to improving the classification of complex aerial scenes through
a deep weakly supervised learning paradigm. We showcase as to how by only using the image
level labels we can effectively localize the most distinctive regions in complex scenes and
thus remove ambiguities leading to enhanced classification performance in highly complex
aerial scenes. In the second chapter we deal with refining segmentation labels of building
footprints in aerial images. We effectively perform this by first detecting errors in the initial
segmentation masks and correcting only those segmentation pixels where we find a high
probability of errors. The next two chapters of the thesis are related to the application of
Generative Adversarial Networks. In the first one, we build an effective Cloud-GAN model
to remove thin films of clouds in Sentinel-2 imagery by adopting a cyclic consistency loss.
This utilizes an adversarial loss function to map cloudy-images to non-cloudy images in a
fully unsupervised fashion, where the cyclic-loss helps in constraining the network to output
a cloud-free image corresponding to the input cloudy image and not any random image in
the target domain. Finally, the last chapter addresses a different set of HR images, not
coming from RS domain but instead from HDRI application. These are 32-bit images which
capture the full extent of luminance present in the scene. Our goal is to quantize them to
8-bit Low Dynamic Range (LDR) images so that they can be projected effectively on our
normal display screens while keeping the overall contrast and perception quality similar

to that found in HDR images. We adopt a Multi-scale GAN model that focuses on both




coarser as well as finer-level information necessary for HR images. The final tone-mapped
outputs have a high subjective quality without any perceived artifacts.

Keywords: High Resolution Images, Deep Learning, Convolutional Neural Networks,
Generative Adversarial Networks, Aerial Scene Classification, Building Footprint extraction,

Cloud Removal, High Dynamic Range Imaging, Tone Mapping.




Résumé

Grace aux récents progres des dispositifs de capture d’images, les images haute résolution
(HR) se sont répandues dans plusieurs domaines. En outre, la télédétection (RS) ou
I'imagerie a gamme dynamique élevée (HDRI) produisent des images HR depuis quelques
décennies et exigent des techniques automatiques pour les traiter efficacement avec le
minimum d’intervention humaine. L’apprentissage profond a révolutionné ces domaines
grace au traitement parallele d'un lot complet d’images HR en une seule passe. Dans cette
these, nous discutons de quatre scénarios d’application différents qui peuvent étre rassemblés
dans le cadre plus général de I’analyse et du traitement des images HR par apprentissage
profond. Les trois premiers chapitres portent sur le traitement des images RS captées soit
par avion, soit par satellite & des centaines de kilometres de la Terre. Nous commencons
par la classification des scénes aériennes complexes, et nous placons dans le cadre de
I’apprentissage profond faiblement supervisé. Nous montrons comment, en n’utilisant que
les étiquettes d’altitude des images, nous pouvons localiser efficacement les régions les
plus distinctes. Cela élimine toute ambiguité et conduit a de meilleures performances de
classification. Ceci permet d’éliminer les ambiguités et menent a une meilleure performance
de classification. Dans le deuxieme chapitre, nous traitons de I'affinement des étiquettes de
segmentation des plans du batiments, toujours pour les images aériennes. Pour ce faire,
nous détectons d’abord les erreurs dans les masques de segmentation initiaux et corrigeons
uniquement les pixels de segmentation ou nous trouvons une forte probabilité d’erreurs.
Les deux prochains chapitres de la these portent sur I'application des Réseaux Adversaires
Génératifs. Dans le premier, nous construisons un modele efficace, appelé Cloud-GAN, pour
éliminer les couches minces de nuages dans 'imagerie Sentinel-2 en adoptant une fonction de
perte cyclique. La fonction de perte cyclique contraint le réseau a produire une image sans
nuage correspondant & 'image nuageuse d’entrée, de fagcon non supervise. Enfin, le dernier
chapitre traite d'un ensemble différent d’images HR, ne provenant pas du domaine RS mais
plutot de application HDRI. Ce sont des images 32 bits qui capturent toute 1’étendue
de la luminance présente dans la scéne. Notre objectif est de les quantifier en images
LDR (Low Dynamic Range) de 8 bits afin qu’elles puissent étre projetées efficacement sur

nos écrans d’affichage normaux tout en conservant un contraste global et une qualité de




perception similaires & ceux des images HDR. Nous adoptons un modele GAN multi-échelle
qui met ’accent a la fois sur les informations fines et grossieres. Les images générées sont
qualitativement remarquables, sans artefacts pergus.

Mots clés: Images a haute résolution, apprentissage profond, réseaux neuronaux
convolutifs, réseaux adversaires génératifs, classification de scénes aériennes, extraction
d’empreinte de batiments, suppression de nuages, imagerie a haute dynamique, cartographie

des tons.
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Chapter 1

Introduction

Deep Learning has gained immense popularity in the recent past owing to its significant
improvement in precision accuracies compared to traditional methods for wide variety
of computer vision tasks be it large scale image recognition [63, 82], detecting objects of
interests [57) [140], pixel level scene segmentation [26 [46] or image processing tasks like image
super-resolution [32], [79], de-noising [164], [I75], colorization [23], [184] or inpainting [180].
With the availability of high performance Graphics Processing Units (GPUs) and large-scale
datasets, it is now possible to train giant models with millions of parameters without any
over-fitting, conditioned that the model can easily fit on the GPU memory. This has
been a huge boon especially for researchers working with high resolution images in fields
such as Remote Sensing (RS) or High Dynamic Range Imaging (HDRI) where applying
hand-crafted processing tools on full scale image is both time consuming and scene specific.

RS is the science of observing the earth remotely, either through satellites or from an
aircraft, and generating meaningful information from the acquired data. This data can be
captured in varied forms, be it Radar, Lidar, MultiSpectral or Hyperspectral depending
upon the task at hand. For eg. Synthetic Aperture Radar (SAR) images can be used to
produce precise Digital Elevation models of a place [83] or Multi-spectral imagery can
be used to detect deforestation [25], examine health of indigenous plants and crops [85],
or predict the prospects of minerals [48]. In the last few years, we have seen explosion of
petabytes of high resolution dataset freely made available either by government-funded
space research programs such as Landsat [I58] and Sentinel [43], or through the advent of
private players such as Digital Globe and Planetlabs launching their own nano-satellites. In
order to deal with such humongous amount of high-resolution satellite/ aerial imagery, there
is a dire need for resolving to deep-learning techniques which can easily automatize wide
variety of computer vision tasks specific to RS imagery be it land-use classification [I8] O8],
building [162] / road detection [116], aerial scene classification [66], SAR despeckling [167],
hyperspectral classification [107], etc.




2 1. INTRODUCTION

HDRI is the technique of capturing full dynamic range of luminance and contrast
present in a scene, similar to what is experienced by the human visual system [ [I91]. The
human eye, continuously adapts itself, through the aperture of the iris, both to high and low
exposure regions in the image. However, this isn’t the case in standard capturing devices,
where the captured scene is finally quantized within the range of 0-255 pixel luminance
value for display purposes. HDRI would be highly desirable for vision applications [137],
particularly in cases of autonomous driving or surveillance where both darkest as well
brightest regions hold equal importance while detecting objects of interest. Though there
has been several advancements in the past in terms of HDR scene capture [10, [154], HDR
display devices are still quite expensive for normal use. With the availability of large-scale
high resolution HDR datasets, captured either from high-end HDR cameras or less expensive
mobile devices, it is now possible to utilize them for variety of HDR oriented task such as
effective quantization (Tone Mapping) [110], Inverse Tone Mapping [39, [41], De-ghosting /
Denoising of HDR image [67], etc.

High Resolution can have different interpretations depending on if we are talking about
RS or HDRI data. Spatial Resolution in RS imagery largely implies the coverage of ground
for each individual pixel in the image. So in a sense a high spatial resolution of 30 cm
implies that a particular pixel in the image represents 30 x 30 c¢m area on ground. Such
a high resolution makes it easier to easily distinguish finer objects such as individual
houses or vehicles on ground. A coarser resolution, effectively covering larger area per pixel
on ground, makes it difficult to identify clearly such individual objects. The concept of
resolution in HDRI is related to the number of pixels per inch. Thus a high resolution HDR
image contains larger number of pixels in an image irrespective of the scene area captured.

This thesis, focuses broadly on high resolution images captured either from RS sensors
or from HDRI cameras, thus trying to process them by applying various deep learning
techniques. In the case of RS imagery, we try to utilize different kinds of deep learning
algorithms to solve computer vision tasks such as Aerial Scene Classification, Building
Footprint detection as well as removal of thin clouds. For HDRI, we try to address a widely
addressed problem of Tone-Mapping but using a deep-learning focused methodology. In
the next section, we would briefly discuss about the context and objectives of this thesis,

and then finally talk about the larger contributions and the overall structure of the thesis.

Context and Objective

This thesis is broadly focused on three different aspects of computer vision problems in high
resolution RS images namely Aerial scene Classification, Building Footprint extraction and

Cloud Removal which we try to address by using deep learning methods. Finally we also try
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to address image processing tasks in another kind of high resolution images, namely HDR
images, by proposing a novel deep learning tool for tone mapping them to a low dynamic
range. We hereby illustrate the context and objective of each of the above mentioned task
in further details.

Remotely observing the earth can be quite interesting as well as challenging due to the
wide spectrum of captured areas of interest (AOI). Compared to natural real world scenes,
RS images have much more distinctive objects captured in its AOI. Classification of a scene
generally involves, capturing the important regions in a scene, followed by drawing the
underlying relationship between these objects which is then used to distill out a meaningful
abstract representation of the scene which helps in classifying it. Complex aerial scenes are
characterized by large number of such discriminative regions that tend to draw ambiguity
in the decision making while classifying them. Annotating these important regions by hand
is both time consuming and tedious tasks even for RS experts. To this end, in this thesis,
we first try to resolve this confusion with respect to aerial scene classification by proposing
a novel deep weakly supervised learning method that automatically localizes the important
regions and makes a classification decision using only those regions.

Classifying scene is important as it helps in automatically segregating those class of
images from a large dataset which are required for our specific task. For eg. in order to
detect buildings in an image, we first need to separate images belonging to building class.
Once this has been attained, we move on to segmentations of buildings footprints in such
scenes which is highly desirable for wide variety of end goals such as Urban scene planning,
monitoring of green cover in an area and emergency relief operations in times of floods,
Tsunamis, Earthquakes, etc. With tonnes of satellite imagery available either through
google or other sources, it is quite impossible to manually label the building footprints
in these images. Recently Open Street Maps have gained huge attraction, however the
annotations are error prone and need correction in terms of registration. We try to resolve
this task of automatic segmentation of building footprints, by modeling the underlying
relationship existing in the joint space of input image and the output segmentation mask.
To this end, we propose to detect errors in initial segmentation masks and try to correct
them through a replacement technique, both of which are trained end-to-end in a supervised
fashion.

Other than recognizing footprints in buildings, RS images are pivotal in wide range of
other objectives such as detecting changes in temporally apart scenes, extracting roads in
multiple terrains, classification of land cover or land usage. However it quite often happens
that these scenes are plagued by films of clouds that partially or completely obstruct the
scene. This becomes quite annoying for RS experts especially for cities where the cloud

cover is persistent for majority of the year. Thus in order to resolve this, we propose in
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this thesis a novel cyclic consistent Generative Adversarial Network model, that generates
affectively cloud free images from their cloudy counterparts.

Finally we shift our focus from high resolution RS imagery to processing a fairly different
kind of high resolution data, namely the HDR images. We know that our normal display
screens are accustomed to project only low dynamic range (LDR) images with 8-bits per
pixel (bpp). Thus, in order to display a 32-bpp HDR image on an LDR screen, we require
some sort of efficient quantization that can effectively preserve both the overall contrast as
well as finer details in bright and dark regions. This technique of mapping HDR content
to LDR content while preserving all the desired details is called Tone Mapping. While
different sets of Tone Mapping Operators (TMOs) have been designed in the past, their
roles have been specific for a particular scene content. We try to utilize freely available
HDR images of a wide variety of scene content, to effectively learn a TMO that can yield
the most aesthetically pleasing and perceptually good looking tone mapped output through

a Conditional Generative adversarial model.

Background on Deep Learning

Deep Learning is a special subset of machine learning which has the capability to learn from
observations over a wide variety of dataset (both structured as well as unstructured). These
sets of algorithms allow computational models (that are composed of multiple layers of
neurons) to learn representations of data with multiple levels of abstraction. While training,
these models aims to build a mapping of the intricate structure in large datasets by using the
back propagation algorithm [78]. In a way, the back-propagation algorithm allows the flow
of gradients backward through the network layers, thus indicating how a machine should
change its set of internal parameters to build distinctive representations. These layers are
formulated in a sequential fashion such that the representation in each layer is built on top
of the representations from the previous layer. Based on the type of learning strategy, deep
learning techniques can be broadly classified into 3 major categories: supervised learning,
unsupervised learning and reinforcement learning. There are also others which fall at the
intersection of supervised and unsupervised learning namely semi-supervised learning,
self-supervised learning and weakly supervised learning. In the following subsections, I

would introduce each of these in further details.

Supervised Learning Supervised Deep Learning has gained enormous momentum since
the seminal paper of Krizhevsky et. al. [82] which showcased a significant boost in image
classification task on a large-scale dataset (Imagenet) using deep convolutional neural

networks trained on a GPU. Since than, these techniques have been vastly explored in
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several domains of computer vision [I81], remote sensing [147] as well as medical image
analysis [142], to name a few. Supervised learning can be defined as a class of problem
where the goal is to learn a mapping between input samples and the target variables, by
training the model with some well-annotated examples together with their corresponding
ground truths. Several problems such classification, regression, segmentation and object

localization can be formulated in a supervised setting.

Unsupervised Learning Unlike supervised learning where input and target is known,
unsupervised learning represents a class of problem where a model is learnt that can
effectively describe or extract relationships within the data. Several algorithms such as K-
means clustering, Restricted Boltzmann machines (RBMs) [146], deep Boltzmann machines
[145], Deep belief networks (DBNs) [64] have been explored within the unsupervised

framework to automatically learn the representation of the underlying data.

Reinforcement Learning Reinforcement learning represents another class of problem
where the goal is to take suitable action so as to maximize reward in a given situation.
Reinforcement learning starkly differs from the supervised learning. While in supervised
learning, the training data contains the ground truth label for each input sample to train the
model, for reinforcement learning, there is no exact ground truth but rather a reinforcement
agent which decides the action for a given task at hand. When there is training dataset,
the model is bound to learn from its experience. Reinforcement learning has been explored
for a variety of problems including control policy making in gaming such as Atari and
AlphaGO [117].

Semi-Supervised Learning Semi-supervised algorithms are particular class of algo-
rithms where the model is able to learn from partially labeled data sets. In this setting, the
model uses the unlabeled data as input and aim to gain more understanding of the inherent
structure in general and build representations. With slow advancement in unsupervised
learning, research have made a lot of progress in semi-supervised learning by using tons of

dataset from the internet including texts, images, time-series [115].

Self Supervised Learning Self supervised learning is another class of algorithms which
drive both from unsupervised and supervised learning. Particularly in this class of techniques,
the goal is to convert an unsupervised learning problem into a supervised learning problem
by simply creating some pseudo labels from the unlabeled training dataset. In recent
literature, these specific class of methods have been getting tremendous attention as they
are believed to counter one major limitation of supervised machine learning i.e.curating

large amount of labelled training data. One recent example of self supervised learning is in
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[73] where authors have been able to estimate the relative depth from geometric constraints
between the motion of the camera and motion field of the scene, by simply using motion
segmentation algorithm. Another example [55], tries to estimate the amount of rotation

done as a pre-processing step on the input sample.

Weakly Supervised Learning In deep learning, weakly-supervised learning is per-
formed in those set of problems where the data is noisy, limited, or is collected from an
imprecise source. In such conditions, the model is designed to use such weak data to provide
supervisory labels for a considerably large amount of training data. Such weakly-labelled
learning frameworks have shown great potential in estimating object localization using

only image level labels [186].

Contributions

In this thesis, I attempt to solve major computer vision and image processing problems in
a broader umbrella of high resolution images that encompass both RS imagery as well as

HDR images. The following contributions are presented in this thesis:

1. We present a novel deep weakly supervised learning technique that automatically
localizes the most distinctive regions in aerial scenes with image labels. By simply
using these important regions, it gains significant improvement in the overall accu-
racy compared with classification over complete scenes. This contribution has been
presented in the following article:

P. Singh, N. Komodakis, Improving recognition of complex aerial scenes using a deep
weakly supervised learning paradigm (IEEE Geoscience and Remote Sensing Letters,

2018)

2. We refine the predicted building segmentation masks from a fully convolutional deep
learning model, by detecting and replacing pixels with high probability of errors.
This is done in an end to end fashion and helps in effectively learning the underlying
structure of building footprints thus boosting in the overall Precision and IOU of
segmentation labels. This contribution has been presented in the following article:
P. Singh, N. Komodakis, Effective Building Extraction by Learning to Detect and
Correct Erroneous Labels in Segmentation Masks, IGARSS 2018 (Oral Presentation)
P. Singh, N. Komodakis, Refining segmentations of buildings and roads through a
novel deep structured prediction methodology (to be submitted to Computer Vision

and Image understanding Journal)
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3. We remove thin clouds in Sentinel-2 imagery by utilizing a cyclic consistent Generative
adversarial Network. This we do without any infrared cloud penetrating source (for eg.
SAR imagery) or any synthetically generated cloudy-cloud free dataset. We showcase
considerable improvement over PSNR values for our own synthetic dataset when
performing cloud removal with our technique. This contribution has been presented
in the following article:

P. Singh, N. Komodakis, Cloud-GAN: Cloud Removal For Sentinel-2 Imagery using
a Cyclic Consistent Generative Adversarial Networks, IGARSS 2018 (Oral Presenta-
tion)

P. Singh, N. Komodakis, Removing thin cloud cover in Sentinel-2 imagery using
Cyclic Generative Adversarial Networks. (submitted to IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing)

4. We design a novel TMO that can effectively tone map wide range of HDR scenes
in order to produce high resolution perceptually good looking LDR outputs. This is
done by using a Multi-scale GAN architecture that learns to pay attention to both
the global image level details as well as the local finer details. This contribution has
been presented in the following article:

P.Singh*, A.Rana*, G. Valenzise, F. Dufaux, N. Komodakis, A. Smolic: Deep Tone
Mapping for High Dynamic Range Scenes (submitted to IEEE Transactions on Image

Processing)

Structure of the thesis

This thesis is structure into 6 chapters. Each chapter comprises of material from original
papers (edited minimally) preceded by a brief summary giving an overview of the following

work.

1. Chapter [2 discusses broadly about scene complexity in the perspective of RS images.
It gives insights about how complex aerial scenes have large number of discriminative
regions some of which might cause confusion to the overall classification of aerial
scenes. It lays down technique of how by making the network to learn to select the
most important regions in the image can remove this ambiguity and help in improving
classification accuracy in complex aerial scenes. It showcases a nice visualizing tool
to check for which are the important areas where network lays more weight while

classifying a particular scene.

2. Chapter |3]is a step further from classification, as here we talk about semantic scene

segmentation for a single class, which in our case is building footprints. The chapter
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talks about past techniques and how they are ineffective in generalizing to a wide
variety of aerial scenes due to falling short of imposing a well defined structure in
their output predictions leading to blobby effects. It henceforth talks about a novel
Resnet Detect-Replace model, that while catering to this underlying relationship
existing in the joint space of input and output variables, detects the erroneous labels

and replaces them with correct segmentation masks.

. Chapter [4 addresses quite frequent problem in RS imagery, which is of cloud detection
and removal. It illustrates first as to how the past techniques either utilize a cloud
penetrating Synthetic Aperture Radar imagery (SAR) or paired sets of synthetically
generated cloudy-cloud-free images. It elaborates that while SAR is difficult to
interpret and of low resolution, synthetically generated cloudy images are far from
real. Henceforth it proposes to remove these cloud and in-paint them with the

underlying ground structure using a Cyclic Consistent Generative Adversarial Model.

. Chapter [5| elaborates a different set of high resolution images, namely HDR images
and demonstrates a novel technique for tone mapping them to their LDR counterpart.
The chapter shows how past Tone mapping operators have effectively been hand-
crafted for specific scene types and require additional parameter tuning. Thus it
highlights, how by learning this underlying mapping between HDR and ground-truth
LDR images, we are able to yield subjectively superior and aesthetically pleasing high
resolution tone mapped outputs. It also showcases how a multi-scale GAN model
is able to correct unnecessary artifacts such as blurring or tiling which are quite

common in past deep learning based HDR imaging techniques.

. Finally the thesis ends with Chapter [6] dedicated to concluding remarks and future

works.




Chapter 2

Improving recognition of complex
aerial scenes using a deep weakly

supervised learning paradigm

Aerial Scene Classification (ASC) is the fundamental building block for various complex
aerial computer vision tasks such as building detection, semantic scene labeling or vehicle
localization. Categorizing highly complex aerial scenes is quite strenuous due to the presence
of detailed information with large number of distinctive objects. Recognition happens by
first deriving a joint relationship within all these distinguishing objects, distilling finally to
some meaningful knowledge that is subsequently employed to label the scene. However,
something intriguing is whether all this captured information is actually relevant to classify
such a complex scene. What if some objects just create uncertainty with respect to the
target label, thereby causing ambiguity in the decision making. We hereby investigate these
questions and analyze as to which regions in an aerial scene are the most relevant and
which are inhibiting in determining the image label accurately. However, for such Aerial
Scene Classification task, employing supervised knowledge of experts to annotate these
discriminative regions is quite costly and laborious; especially when the dataset is huge.
To this end, we propose a Deep Weakly Supervised Learning (DWSL) technique. Our
classification-trained Convolutional Neural Network (CNN) learns to identify discriminative
region localizations in an aerial scene solely by utilizing image labels. Using the DWSL
model, we significantly improve the recognition accuracies of highly complex scenes, thus
validating that extra information causes uncertainty in decision making. Moreover, our
DWSL methodology can also be leveraged as a novel tool for concrete visualization of the
most informative regions relevant to accurately classify an aerial scene. Lastly our proposed

framework yields state-of-the-art performance on all the existing ASC datasets.
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2.1 Introduction

Low Complexity Mid Complexity High Complexity

Figure 2.1 — Scenes representing various levels of complexity. (From top to bottom) For low com-
plexity : meadow, bareland, forest; mid complexity: mountain, stadium, parking; high
complexity: airport, dense residential, center.

Scene Classification is of paramount importance in remote sensing community to
automatically categorize images for further scrutiny. These images are later on utilized
by expert annotators for varied roles, including detection or segmentation of objects of
interests. For e.g.in order to detect building footprints in a dataset of images captured
for a city, one primarily needs to recognize scenes that have building structures such as
residential or industrial places.

One characteristic feature that holds Remote Sensing (RS) scenes distinctively apart
from natural scenes is the widespread scale at which the area of interest is captured.

Consequently, the extent of distinctive objects captured in a RS scene are also quite large,
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even though, we might not be able to visualize the fine-grained details as it is possible in
a natural scene. One of the challenges encompassing RS scene recognition is the added
complexity when these discriminative objects are present simultaneously in multiple scenes.
One such example is shown in Fig. where a scene of Mountain has distinctive patches
of arid-land (similar to scene of Bareland) and grasslands (similar to scene of Meadow)
however the most representative parts of the scene are the white snowy tracts as would be
illustrated in section Similarly we have dense trees which are found common in both
the scenes of Center and Forest.

Recently deep learning models have shown significant improvement in performance
for varied remote sensing tasks such as aerial scene segmentation [0, [165], hyper-spectral
classification [90] or change detection [99]. Inspired by architectures of the primate visual
cortex [69], these models interpret simultaneously various complex concepts which were
lacking in conventional hand crafted methods [178].

The Human Vision is a highly sophisticated system, where a scene is first observed,
followed by fetching of relevant information and then formulating an abstract representation.
Based upon this understanding, [89] defined scene complexity, based upon how much
attention a person devotes to understand a particular scene. For e.g.in Fig. low
complexity scenes such as Bareland or Meadow are easy to interpret while comparatively
more complex scenes like Mountain or Center have much more detailed information that
needs to be distilled effectively and hence requires fairly larger period of attention.

However, instead of pivoting simply on greater attention for more complex scenes [89], we
rather propose an alternate strategy. We argue that by limiting the amount of information
gathered from a scene, we tend to minimize the ambiguity at the time of knowledge
distillation and thus yield higher performance. Earlier we had seen that the amount of
information to be processed differs from scene to scene, with highly complex aerial scenes
exhibiting more number of distinctive regions. We postulate that only some of these regions
are relevant for characterizing an aerial scene while the other regions are either redundant
or irrelevant or inhibit in the recognition performance. This is specifically pertinent in the
case of more complex scenes where the number of distinctive regions are significantly large
and often lead to confusion in the final decision of a network. We, therefore, propose to
remove this ambiguity using a novel methodology which allows the network to learn to
choose the most and least relevant regions in a scene that aids in improving the overall
recognition accuracy.

Nevertheless, selecting important discriminative regions in aerial scenes is a tedious task.
This is mainly because images are of very high resolution and require an expert annotator.
We choose to automatize the task of selecting relevant regions by introducing an end-to-end

deep weakly supervised learning model in the context of aerial scene classification. Precisely,
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we make the network learn to select the most relevant regions in a scene that can predict
the scene label with higher accuracy. Since we leverage only the class labels for localizing
important regions in our aerial scene without object bounding box annotations, we call
it weakly supervised. With further investigation, we also empirically showcase that RS
scene recognition using this weakly supervised paradigm is much more beneficial for more
complex scenes, thus substantiating our previous hypothesis of ambiguity removal.

In a way, our proposed methodology is a relaxation of the prominent Multiple Instance
Learning (MIL) [3I] technique where an image is characterized as a bag of instances
(region). These bags or images are assigned a label: positive if it contains at least one
positive instance and negative if all the instances are negative (Negative Instances in
Negative bag or NiN). NiN is a fairly strong assumption simply because for e.g.absence of
tennis court label doesn’t imply that it is absent in the actual scene as seen in Center scene
(extreme bottom right) in figure It simply implies that the person who labeled the
scene based his judgment upon the most predominant region in the scene. Thus, relaxing
on the NiN presumption, our network tries to maximize the prediction of the correct cl