
HAL Id: tel-02916945
https://pastel.hal.science/tel-02916945

Submitted on 18 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Décompositions tensorielles pour la complétion de bases
de connaissance

Timothée Lacroix

To cite this version:
Timothée Lacroix. Décompositions tensorielles pour la complétion de bases de connaissance. Intelli-
gence artificielle [cs.AI]. Université Paris-Est, 2020. Français. �NNT : 2020PESC1002�. �tel-02916945�

https://pastel.hal.science/tel-02916945
https://hal.archives-ouvertes.fr

UNIVERSITÉ PARIS-EST

Mathématiques & Sciences et Technologies

de l’Information et de la Communication

Thèse de doctorat

Traitement du Signal et des Images

TIMOTHÉE LACROIX

TENSOR DECOMPOSITIONS FOR

KNOWLEDGE BASE COMPLETION

Thèse soutenue le 3 juillet 2020

Jury :
Renaud Marlet École des Ponts ParisTech Directeur de thèse

Guillaume Obozinski Swiss Data Science Center Co-Directeur de thèse

Nicolas Usunier Facebook AI Research Co-Directeur de thèse

Anthony Nouy Centrale Nantes Rapporteur - Président du jury

Pierre Comon Université de Grenoble Alpes Rapporteur

Ryota Tomioka Microsoft Research Cambridge Rapporteur

Thomas Hofmann ETH Zürich Examinateur

Mikaella Keller Université de Lille Examinatrice

Résumé

Dans cette thèse, nous abordons le problème de prédiction de liens dans des tenseurs

binaires d’ordre trois et quatre contenant des observations positives uniquement. Ce

type de tenseur apparait dans les problèmes de recommandations sur le web, en

bio-informatique pour compléter des bases d’interactions entre protéines, ou plus

généralement pour la complétion des bases de connaissances. Ces dernières nous

permettent d’évaluer nos méthodes de complétion à grande échelle et sur des types de

graphes relationels variés.

Notre approche est parallèle à celle de la complétion de matrice. Nous résolvons

un problème non-convexe de minimisation empirique régularisé sur des tenseurs de

faible rangs. Dans un premier temps, nous validons empiriquement notre approche

en obtennant des performances supérieures à l’état de l’art sur de nombreux jeux de

données.

Ces performances ne peuvent néanmoins être atteintes que pour des rangs trop

élevés pour que cette méthode soit applicable à l’échelle de bases de connaissances

complètes. Nous nous intéressons donc dans un second temps à la décomposition

Tucker, plus expressive que la paramétrisation de faible rang, mais plus difficile à

optimiser. En corrigeant l’algorithme adaptatif Adagrad, nous arrivons à optimiser

efficacement des décompositions Tucker dont le tenseur coeur est aléatoire et fixé.

Ces méthodes nous permettent d’améliorer les performances en complétion pour une

quantité faible de paramètres par entités.

Finalement, nous étudions le cas de base de connaissances temporelles, dans

lesquelles les prédicats ne sont valides que sur certains intervalles de temps. Nous

proposons une formulation de faible rang et une régularisation adaptée à la structure

du problème, qui nous permet d’obtenir des performances supérieures à l’état de l’art.

Mot clés: Apprentissage automatique, Base de connaissance, Décomposition

tensorielles

3

Abstract

In this thesis, we focus on the problem of link prediction in binary tensors of order

three and four containing positive observations only. Tensors of this type appear in

web recommender systems, in bio-informatics for the completion of protein interaction

databases, or more generally for the completion of knowledge bases. We benchmark

our completion methods on knowledge bases which represent a variety of relationnal

data and scales.

Our approach is parallel to that of matrix completion. We optimize a non-convex

regularised empirical risk objective over low-rank tensors. Our method is empirically

validated on several databases, performing better than the state of the art.

These performances can however only be reached for ranks that would not scale to

full modern knowledge bases such as Wikidata. We focus on tensor factorization in

the Tucker form which is more expressive than low-rank parametrizations but also

harder to optimize. By fixing the adaptive algorithm Adagrad, we obtain a method to

efficiently optimize over tensors in Tucker form with a fixed random core tensor. With

these methods, we obtain improved performances on several benchmarks for limited

parameters per entities.

Finally, we study the case of temporal knowledge bases, in which the predicates

are only valid over certain time intervals. We propose a low-rank formulation and

regularizer adapted to the temporal structure of the problem and obtain better

performances than the state of the art.

Keywords: Machine learning, Knowledge base, Tensor decompositions

4

Acknowledgments

I would like to thank the members of the committee - Pierre Comon, Anthony Nouy,

and Ryota Tomioka - for taking the time to review this manuscript.

Guillaume, ta clarté et ta patience ont mené à de longues explications au tableau

desquelles je ressortais toujours plus instruit. Ton goût pour le détail et la précision

auront évité l’écriture de bien des âneries pendant cette thèse. Merci aussi pour ta

maîtrise du vspace négatif qui aura su calmer mes paniques de mise en page à l’approche

des soumissions. Enfin, merci pour cette superbe opportunité d’enseignement au

Rwanda, durant laquelle j’ai probablement autant appris que nos élèves.

Nicolas, tu m’as lentement mais sûrement sorti de mes fantasmes combinatoires

pour me guider vers des questions aux réponses envisageables et surtout des solutions

qui marchent. Pendant ces trois années, je t’ai sans cesse abreuvé de questions sur

des domaines allant de la sparsité en scipy à la calibration de perte sans jamais te

mettre en défaut. Merci d’avoir aussi volontairement partagé ton savoir, que ce soit

au bureau, dans le métro ou dans des bars.

Les frustrations et les joies d’une thèse auraient été autrement plus dures à

supporter hors des murs douillets de Facebook Paris. Sans la délicieuse cuisine de

Pini, la nourriture spirituelle de la thèse n’aurait pas suffit à me sustenter. Un grand

merci aux autres thésards de Facebook, anciens comme nouveaux, pour l’ambiance

chaleureuse du bureau ainsi que le partage des succès et échecs au quotidien. Merci

aussi à tout les joueurs de Baby-Foot qui m’auront permis d’exorciser mes frustrations

à travers de nombreuses gamelles et railleries de bon goût.

En dehors de Facebook, merci aux Ronds pour leur amitié infaillible, les nombreux

week-ends, soirées, projets et vacances toujours aussi remplis en fou rires et activités.

Merci à mes parents et à ma famille d’avoir su acérer mon sens critique au fil des ans,

et d’avoir été un havre de repos, de paix et de randonnées pendant les trois années de

la thèse. Enfin, merci Lauriane d’avoir égayé ces trois années en partageant mon goût

pour les jeux, la nourriture et le repos bien mérité.

6

Contents

1 Introduction 11

1.1 Link Prediction . 12

1.2 Context . 14

1.3 Contributions . 15

1.4 Future research directions . 18

1.5 Organization of the thesis . 18

2 Related Work 21

2.1 Framework . 22

2.1.1 Metrics . 23

2.1.2 Unobserved Triples . 24

2.1.3 Losses . 24

2.2 Tensor parametrizations . 27

2.2.1 Low-rank parametrization . 27

2.2.2 Tucker parametrization . 29

2.3 Link prediction in knowledge bases 29

2.4 Optimization . 32

2.5 Matrix and Tensor regularizers . 33

2.5.1 Matrix norms and associated guarantees 34

2.5.2 Tensor norms and guarantees 38

3 Canonical Tensor Parametrization for Knowledge Base Completion 41

3.1 Introduction . 42

7

3.2 Tensor Factorization of Knowledge Bases 43

3.2.1 Link Prediction in Relational Data 44

3.2.2 Tensor Factorization for Link Prediction 44

3.2.3 Training . 46

3.3 Related Work . 48

3.3.1 Link Prediction in Relational Data 48

3.3.2 Regularization for Matrix Completion 48

3.3.3 Tensor Completion and Parametrizations 49

3.4 Nuclear p-Norm Regularization . 50

3.4.1 From Matrix Trace-Norm to Tensor Nuclear Norms 50

3.4.2 Weighted Nuclear p-Norm . 52

3.5 A New CP Objective . 53

3.6 Experiments . 55

3.6.1 Datasets and Experimental Setup 55

3.6.2 Reimplementation of the Baselines 57

3.6.3 Standard vs Reciprocal . 57

3.6.4 Frobenius vs Nuclear 3 . 58

3.6.5 Effect of Optimization Parameters 58

3.7 Conclusion and Discussion . 59

4 Constrained Tucker parametrization 61

4.1 Introduction . 62

4.2 Link prediction in knowledge bases 64

4.2.1 Learning setup . 64

4.2.2 Related work . 65

4.3 Interpolating between CP and Tucker 68

4.4 Optimization issues with CPT and PCP 70

4.4.1 Control experiment: Unitary 𝑃1 and 𝑃3 in PCP 70

4.5 A rotation invariant AdaGrad: Adaimp 71

4.5.1 Two equivalent parametrizations of PCP 72

8

4.5.2 Implicit optimization of PCPfull: Adaimp 73

4.5.3 Alternatives to Adaimp . 75

4.5.4 Complexity . 75

4.6 Projected ComplEx . 76

4.7 Experiments . 76

4.7.1 Datasets . 77

4.7.2 Results . 77

4.8 Conclusion . 79

5 Temporal Tensor Completion 81

5.1 Introduction . 82

5.2 Related Work . 83

5.3 Model . 85

5.3.1 Non-Temporal predicates . 86

5.3.2 Regularization . 87

5.3.3 Smoothness of temporal embeddings 87

5.3.4 Nuclear 𝑝-norms of tensors and their variational forms 88

5.3.5 Experimental impact of the regularizers 89

5.4 A new dataset for Temporal and non-Temporal Knowledge Base Com-

pletion . 91

5.5 Experimental Results . 92

5.5.1 Experimental Set-Up . 92

5.5.2 Results . 93

5.6 Qualitative study . 94

5.7 Conclusion . 95

6 Conclusion 97

A Appendix for chapter 3 99

A.1 DistMult on hierarchical predicates 99

A.2 Proofs . 100

9

A.3 Best Published results . 101

B Appendix for chapter 4 103

B.1 Tensor parametrizations . 103

B.1.1 CP-Tucker . 103

B.1.2 Tucker2 with CP-Tucker . 103

B.1.3 HolEx and Latent factor model 104

B.2 The Adagrad algorithm . 105

B.2.1 Projected Adagrad update . 105

B.2.2 The two Full Adagrad updates and the quality of approximations

of the Diag versions . 106

B.2.3 Complete PComplEx Algorithm 107

B.2.4 Adam - Implicit . 108

B.3 Experiments . 108

B.3.1 Dataset statistics . 108

B.3.2 Adarow . 108

B.3.3 Variance of PComplEx . 109

B.3.4 FB15k datasets . 110

B.3.5 Experimental details . 110

B.3.6 Grid Search . 111

B.3.7 Convergence speed . 112

B.3.8 Running times . 112

C Appendix for chapter 5 115

C.1 Tensor norms . 115

C.1.1 Unfolding and the CP parametrization 115

C.1.2 Temporal regularizer and Nuclear norms 115

C.1.3 Nuclear norms on unfoldings 116

C.2 Experiments . 117

C.2.1 Dataset statistics . 117

C.2.2 Grid Search . 117

10

Chapter 1

Introduction

The focus of this thesis is link prediction for multi-relational data. Given a fixed set of

entities and a set of graphs over these entities the goal of link prediction is to provide

a ranking of entities as potential candidates to be neighbors of a node in any of these

graphs.

Such link prediction can be useful in various settings, from web scale recommender

systems to bioinformatics. Moreover, the link prediction problem can be used as a

proxy to learn latent representations of entities (so-called entity embeddings) which

can be used for various downstream tasks. Such embeddings summarize the observed

connectivity patterns of entities in a single vector and can have good properties with

respect to classification or algebraic transformations. For example, word embeddings

are obtained by solving a link prediction problem over word co-occurences and can

then be re-used for many natural language processing applications [27, 107, 42, 48].

We will go into potential applications of link prediction systems further in Section 1.1.

In this thesis, we focus on applications to the completion of Knowledge Bases, as they

provide a variety of benchmarks, both in terms of scale and in terms of the relational

systems they represent.

Our approach is based on classical low-rank or low-multirank tensor parametriza-

tions. We focus on the regularization and optimization of such parametrizations in

the context of knowledge base completion.

Some research has focused on finding the best structural constraints to model the

11

underlying relational data, while other has strived to include external, non-relational

data into the learning process. We review the context in which this thesis was

written in Section 1.2. This context justifies the direction of research that we followed

throughout the thesis and which lead to the contributions which we quickly present in

Section 1.3. This thesis established a strong method for link prediction in knowledge

bases. This method obtains state of the art results on all benchmark considered and

provides the basis for the development of two other contributions. The first one is a

method that allows for reduced memory footprint, which is made possible by a careful

study of the optimization process. The second contribution is the addition of temporal

information in the context of knowledge base completion.

Finally, in Section 1.4, we describe the state of the art after this thesis, and the

important research directions remaining. We believe that along this thesis, we have

outgrown popular benchmarks, on which the algorithms we propose obtain state of the

art results in a matter of minutes. Our last contribution suggests a new benchmark,

with 5 times as many entities and 7 times as many training examples as the largest

knowledge base benchmark currently in use. This allows for the study of larger scale

methods, both for the reduction of the models memory footprint, but also for the added

computational cost of making predictions at that scale. Even this increased dataset

size should only be a beginning, since most web-scale databases can be expected to

have hundreds of millions of entities. Another research direction is the inclusion of

other data sources on top of the method we proposed. As it is, our approach without

external data performs better than any published result that uses external data. We

made a step in that direction by adding temporal metadata, but have yet to address

the variety of external data that can be used for this purpose. For example, since the

Wikidata knowledge base has its entities linked to Wikipedia pages whenever possible,

one could use the data in these pages to inform learning on Wikidata.

1.1 Link Prediction

Link prediction can prove useful in diverse settings:

12

Recommender Systems In many web applications, users will interact with each

others, or with items in different ways. Being able to predict the neighborhood of

a user for each type of interactions can help make recommandation systems better.

Exploiting a variety of interactions helps making prediction for valuable but sparse

interactions. For example, a user might view many more items than they will buy.

Predicting the “buy” signal however, is more valuable. Note that in this setting, no

negative (user,item) pair can be observed (since the interaction would not happen).

Thus, we work in the so-called positive-unlabeled [34] setting, where all the observed

edges are positive examples and any other edge is considered either missing or negative.

Bioinformatics Many interaction networks are available. These networks can

represent protein-protein interactions [84, 24] or medicine side-effects when taken

jointly [69]. By jointly modeling the proteins appearing in medicines, their interactions

and observed side-effects [128], one could predict potential adverse side-effects for new

pairs of medicines despite lack of experimental evidence. Such predicted pairs could

then reduce the experimental search space and help build a more comprehensive list

of medicine side-effects. This setting was also used as an example application of the

positive unlabeled setting in Elkan and Noto [34].

Knowledge Bases There have been many efforts to compile available knowledge

about the world in so-called Knowledge Bases [44, 120, 82]. These databases contain

triples (subject, predicate, object) that encode true facts. These facts have either been

obtained via crowd sourcing or automatic extraction from crawling the web or a mix of

both. However, despite their growing size (Wikidata [120] has 60𝑀 entities and over

700𝑀 statements at the time of writing), these knowledge bases are still incomplete.

Being able to provide good quality candidates for incomplete triples such as (Barack

Obama, Married to, ?) can prove instrumental both as a helper for human curators,

or for automatic systems who can use it to score the likelihood of an automatically

extracted fact being true. Similarly to the recommender setting, no negative edge is

observed in this setting.

13

Representation Learning Independent of the underlying data source, we can view

the observed connectivity pattern as the manifestation of a latent signal. The best

known application of this idea is word2vec [85]. As made explicit by Levy and Goldberg

[73], word2vec learns latent factors of a transformed co-occurence matrix between

words. These so called “word embeddings” contain rich semantic information about

the words and can be used for applications ranging from language evolution studies

[48] to text classification [58]. The success of word embeddings have popularized the

concept of learning entity embeddings from various sources, including relational data,

in order to use these embeddings for other tasks.

In this thesis, we focus on Knowledge Bases, which provide rich benchmarks with

various scales and underlying data sources. Our benchmarks include the Wordnet

ontology [86] which represents 18 mostly hierarchical relations between 40𝑘 English

words. We also study a dataset sampled from Freebase [44] which includes various

entities from the real world (actors, presidents, institutions, etc...) and over a thousand

relations between these entities. In order to deal with such diversity, we design generic

methods to deal with sparse positive unlabeled tensors and do not include any apriori

knowledge on properties of the underlying relational system.

1.2 Context

Link prediction in graphs or social networks consists in assigning scores 𝑠(𝑥, 𝑦) to

potential neighbors of a node 𝑥. For multi-relational data, the problem is similar,

but the score to be computed then depends on the relation considered : 𝑠(𝑥, 𝑟, 𝑦).

Computing such scores can be done without learning, by computing similarity metrics

between the nodes 𝑥 and 𝑦. Liben-Nowell and Kleinberg [75] provides an overview and

benchmark of such methods on a subset of the Arxiv [83] citation network, comparing

metrics such as the shortest distance between 𝑥 and 𝑦, or the Jaccard’s coefficient

(intersection over union) of their neighborhoods. These methods do not provide explicit

embeddings of the entities. This can be beneficial since these methods can work at

very large scales without memory requirements beyond storage of the network itself. A

14

natural generalization of such methods is to compute many features for potential node

pairs (𝑥, 𝑦) and learn a classifier on top of this feature vector. This is the approach

of the path ranking algorithm [71] in multi-relational graphs, which learns to classify

vectors of bounded-length path types between nodes.

In this thesis, we focus on methods that learn embeddings of entities. These meth-

ods are more general, as they don’t require handtuned similarity features. Moreover,

the learned embeddings can be useful in other applications. The generic approach for

link prediction with learned entity embeddings is to parameterize the score function

for triples (subject, predicate, object) with vectorial representations of these three

elements. For example, TransE [13] uses 𝑑(𝑖, 𝑗, 𝑘) = ‖𝑢𝑖 + 𝑣𝑗 − 𝑢𝑘‖22, for vectors

𝑢𝑖, 𝑣𝑗, 𝑢𝑘 ∈ R𝑑 and ranks potential neighbors according to this distance. A variety

of other methods have been proposed, some re-using the translation idea [90, 80],

others based on classical tensor parametrizations [91, 118, 126] or on ideas from

deep-learning [93, 30]. All these methods focused on building the right amount of

“interactions” between entity and predicate parameters in order to encode priors about

the relationships naturally found in knowledge bases. However, priors such as the

translation based scoring function of TransE lead to models with limited expressivity

[61].

Noting that low-rank tensor parametrizations are lagging far behind competing

methods [93] at the beginning of this thesis, we decided to explore the reasons for this

performance gap. We thus study the use of classical low-rank tensor parametrizations

for link prediction.

1.3 Contributions

Noticing the favorable impact that trace-norm regularizers had on matrix completion

compared to pure low-rank methods [114, 37, 66], we decided in this thesis to take

a parallel approach: use generic tensor parametrizations and use tensor norm based

regularizers to ensure generalization. This approach leads to conceptually simple

methods with only two hyperparameters: the rank and the regularization weight.

15

Since regularization is independent from all other factors, the rank can be set a priori

to the maximum rank allowed by the hardware.

In our first work described in Chapter 3 we describe a simple method for knowledge

base completion based on the low-rank parametrization [53]. This work lead to a

publication at the ICML conference in 2018:

∙ Timothee Lacroix, Nicolas Usunier, Guillaume Obozinski. Canonical Tensor

Decomposition for Knowledge Base Completion. In Proceedings of the 35th

International Conference on Machine Learning volume 80 pages 2863-2872,

2018.

We first note that any knowledge base completion method should be invariant

to the inclusion of a predicate or its reciprocal in the training data. For example,

the predicates has_played_in_movie rather than has_actor represent the same

connectivity data, and the choice of including one or the other in the knowledge base

should not affect the outcome of the learning algorithm. Bailly et al. [5] address

this issue for classical tensor factorization algorithm, giving conditions under which

an algorithm will be “semantically invariant”. Other methods such as [12, 126, 118]

optimized two losses at once: one where the right-hand side of positive triples is

considered as missing, and one where the left-hand side is considered as missing. In

our work, we add reciprocal predicates to the training set. Doubling the number of

predicates in the dataset allows us to only predict missing objects. It also makes the

training procedure invariant to the inclusion of a predicate or its reciprocal in the

dataset. We propose to optimize a multiclass logistic loss, rather than a pairwise

ranking loss to solve the link prediction problem. Indeed, computing the softmax

over all entities can be done efficiently on modern gpus. Finally, we show that the

usual weight-decay penalty cannot be related to a tensor norm and is non-convex over

tensors, we propose to use instead a variational form of the tensor nuclear 3-norm. Our

experiments show that our method applied to the ComplEx tensor parametrization

[118] leads to large gains over the state of the art on all benchmarks considered.

The best solutions found by the previous method use many parameters per entity.

16

This can become a problem when dealing with modern knowledge bases such as

Wikidata [120], which contains 60𝑀 entities. Indeed, storing embeddings of each

entity for this knowledge base over 100 floats leads to a memory usage of 24𝐺𝐵

which is impractical on most GPUs available today. In order to address this memory

limitation, it is natural to turn to the Tucker parametrization [119] which provides

richer interactions between entities and predicates via a core-tensor. However, learning

this parametrization is difficult, as exemplified by the use of deep-learning heuristics

in [7]. In Chapter 4 , we show that these difficulties stem from the use of adaptive

algorithms such as Adagrad [32] which apply a diagonal rescaling to the learning rate.

We propose a new algorithm for the optimization of a constrained version of Tucker

which implicitely applies the rescaling in a higher dimensional space, before projecting

the embeddings on a fixed lower dimensional subspace. The resulting Tucker-style

extension of ComplEx obtains similar best performances as ComplEx, with substantial

gains on some datasets under constraints on the number of parameters.

Finally, we apply our methods to temporal relational data in Chapter 5, published

at the ICLR conference in 2020:

∙ Timothee Lacroix, Guillaume Obozinski, Nicolas Usunier. Tensor Decomposi-

tions for temporal knowledge base completion. In International Conference on

Learning Representations (ICLR), 2020.

Facts in multi-relational databases can often be associated with temporal metadata.

For example, the timestamp of a certain user-item interaction, or the validity interval

for a triple such as (François Hollande, spouse, Ségolène Royal). In order to deal

with this metadata, we discretize time, and add a 4-th mode to the tensor we try

to complete. We justify new regularization schemes and present an extension of

ComplEx that achieves state-of-the-art performance. Additionally, we propose a

new dataset for knowledge base completion constructed from Wikidata, larger than

previous benchmarks by an order of magnitude, as a new reference for evaluating

temporal and non-temporal link prediction methods.

All of the results in this thesis can be reproduced with the code available at

17

https://github.com/facebookresearch/kbc.

1.4 Future research directions

Current benchmarks for knowledge base completion use under 100𝑘 entities, which is

far from the scale at which these algorithms are meant to be applied. One of the issue

that needs to be addressed in order to be able to deal with larger benchmark such as

the one we propose in Chapter 5 is the issue of approximating the cross-entropy loss

for millions of entities. There is a rich literature in natural language processing on this

topic, and a thorough study of the application of these methods to large knowledge

base completion would be beneficial. Even equipped with a fast loss computation

method, the issue of model size remains. Our work of Chapter 4 allows us to get closer

to a usable Tucker parametrization. Finally, all our attempts at using feed-forward

neural networks to predict the score of a triple have lead to similar or worse results than

the tensor based methods of this thesis. These failures likely stem from a lack of proper

regularization but also from similar optimization problems than those highlighted in

Chapter 4. Understanding and fixing those issues would likely have impact beyond

knowledge base completion, but can easily be studied in this setting, with the strong

baselines provided in this work.

1.5 Organization of the thesis

In Chapter 2, we describe the framework for knowledge base completion in greater

detail and introduce the two tensor parametrizations that we will be working with.

We review related work on link prediction for knowledge base completion. Finally, we

discuss previous results on matrix and tensor completion, which inspired the methods

in this thesis.

In Chapter 3 we present a method for knowledge base completion based on low-rank

tensor parametrization with regularizers inspired from tensor nuclear norms. With

this method, we obtain state of the art results on popular knowledge base completion

18

https://github.com/ facebookresearch/kbc

benchmarks.

In Chapter 4, we study difficulties associated with learning a Tucker parametrization.

We design a simple experiment that exhibits the failure of the diagonal rescaling in

Adagrad [32]. We formulate a solution which allows us to train a constrained version

of the Tucker parametrization adapted to ComplEx [118]. This formulation matches

the state of the art on all datasets and obtains better performances in the low-memory

regime.

In Chapter 5, we show how our approach can be generalized to deal with temporal

metadata. By discretizing the time, we include it as a 4-th mode in our tensors and

develop extensions of ComplEx [118] with adapted regularizers. We obtain state-

of-the-art results on current temporal knowledge base completion benchmarks and

propose a new larger-scale dataset based on Wikidata [120].

19

20

Chapter 2

Related Work

Coming back to where you started is

not the same as never leaving.

Terry Pratchett

In this thesis, we study tensor parametrizations for link prediction at scale. We

focus on an application to knowledge bases because it provides a number of benchmarks

with associated literature. We begin this chapter with a definition of the link prediction

problem for knowledge bases. In Section 2.1, we describe the learning set-up and the

metrics we optimize for. We also discuss the various losses used in the literature to

optimize these metrics.

Ultimately, our goal is to learn a tensor �̂� that assigns scores to all potential

triples (subject, predicate, object). We approach the learning of this tensor through

low-rank or low-multirank parametrizations. In Section 2.2, we discuss two important

parametrizations, the low-rank parametrization which expresses a tensor as a sum of

rank-1 tensors and the Tucker parametrization.

We then briefly review the various approaches to knowledge base completion in

Section 2.3, but do not focus too much on approaches that are tailored to the problem

of knowledge base completion which we only use as a benchmark.

Finally, we discuss in greater details the previous results on matrix and tensor

completion which inspired the methods we study in this thesis.

21

2.1 Framework

Notations Matrices and tensors will be denoted by uppercase letters and lowercase

letters will be used for scalars and vectors. The order of the objects will always

be clear from context. For a matrix 𝑋, we use 𝑋𝑖 to denote its 𝑖-th row treated

as a column vector and 𝑋:,𝑗 to denote its 𝑗-th column. No matter the order of the

object considered, the dot-product notation ⟨·, ·⟩ is always to be understood as the

dot-product of the vectorization of the objects. That is, for order-three tensors :

⟨𝑋, 𝑌 ⟩ =
∑︁
𝑖,𝑗,𝑘

𝑋𝑖,𝑗,𝑘𝑌𝑖,𝑗,𝑘.

The tensor product will be denoted ⊗ and the Hadamard product (or elementwise

product) ⊙. Uses of ⊗ for the Kronecker product will be made clear in the text.

All norms will be written ‖ · ‖ and identified by a subscript. Working on knowledge

bases, we assume a fixed set of entities 𝐸 and predicates (or relations) 𝑃 . Given a

knowledge base containing true triples (subject, predicate, object), we split this set

uniformly at random into a training set 𝑆, a validation set and a test set. We denote

by 𝑋 the tensor such that 𝑋𝑖,𝑗,𝑘 = 1 if and only if the triple (𝑖, 𝑗, 𝑘) is a true fact and

𝑋𝑖,𝑗,𝑘 = 0 otherwise. We learn a tensor �̂� such that �̂�𝑖,𝑗,𝑘 represent the score of the

triple (𝑖, 𝑗, 𝑘).

In Chapter 5, we consider temporal knowledge bases with a fixed set of timestamps

𝑇 . These timestamps will lead us to introducing tensors of order 4 in which 𝑋𝑖,𝑗,𝑘,𝑡

will be 1 if and only if the triple (𝑖, 𝑗, 𝑘) is true at timestamp 𝑡.

In the next subsection 2.1.1, we define the metrics that we will optimize for

and report in our experiments. In the following subsection 2.1.2 we discuss some

assumptions on the observed triples and their consequences on the learning objective.

Finally, in subsection 2.1.3, we present and compare the three main losses that have

been used in the knowledge base completion literature so far.

22

2.1.1 Metrics

The practical use we optimize for is that of queries by human users looking for the

completion of incomplete triples in a knowledge base. For example, a user might want

to query the knowledge base looking for presidents of the United States. We formalize

this query as (United States, has president, ?). Notice that such queries will always

admit at least one correct completion. We dismiss non-sensical partial queries such

as (Table, has president, ?) since they are not part of our query framework. Given

an incomplete triple, we want our system to output a ranked list of entities that are

likely to be valid completion of the query. Let 𝑟𝑎𝑛𝑘(�̂�𝑖,𝑗,:; 𝑘) be the rank of �̂�𝑖,𝑗,𝑘 in

the sorted list of values of �̂�𝑖,𝑗,:. We consider the following definition of rank

𝑟𝑎𝑛𝑘(�̂�𝑖,𝑗,:, 𝑘) =
∑︁
𝑘′∈𝐸

1(�̂�𝑖,𝑗,𝑘′ ≥ �̂�𝑖,𝑗,𝑘). (2.1)

This definition is not a true rank when there are ties. However, since all the methods

assume "lower rank is better", this definition of rank yields a pessimistic evaluation of

performance.

Following previous work, we focus on the Mean Reciprocal Rank [93] and Hits@K

[13] metrics:

𝑀𝑅𝑅(�̂�) =
1

|𝑆|
∑︁

(𝑖,𝑗,𝑘)∈𝑆

1

𝑟𝑎𝑛𝑘(�̂�𝑖,𝑗,:; 𝑘)
𝐻@𝜅(�̂�) =

1

|𝑆|
∑︁

(𝑖,𝑗,𝑘)∈𝑆

1(𝑟𝑎𝑛𝑘(�̂�𝑖,𝑗,:; 𝑘) ≤ 𝜅).

(2.2)

The Mean Reciprocal Rank focuses mainly on having true triples at the top of the

ranking list. A change that affects triples around the 𝑘-th position will have an effect

of the order of 1/𝑘2 on the metric. Similarly, the hits at 𝑘 metrics only requires proper

ranking until position 𝑘. This is common in information retrieval where only a limited

amount of information can be displayed to the user and only the relevance of the

displayed information matters.

In these definitions, we deviated slightly from the literature by only focusing on

one type of fibers from the estimated tensor �̂� whereas Bordes et al. [12] considers

ranking in both �̂�𝑖,𝑗,: and �̂�:,𝑗,𝑘. We argue in Chapter 3 that reciprocal predicates

23

should be included in the training set, which allows us to answer queries of the form

(?, stars in movie, Alien) with the reciprocal query (Alien, has actors, ?). Finally, we

use a filtered version of these metrics using the filtered rank 𝑟𝑎𝑛𝑘. For a query (𝑖, 𝑗, ?)

there might be multiple positive answers which we denote by 𝐾𝑖,𝑗. The filtered ranks

ignore these positive answers in its computation. Formally, we have :

𝑟𝑎𝑛𝑘(�̂�𝑖,𝑗,:; 𝑘) =
∑︁

𝑘′∈(𝐸∖𝐾𝑖,𝑗)

1(�̂�𝑖,𝑗,𝑘′ ≥ �̂�𝑖,𝑗,𝑘).

Since our computation of the rank is pessimistic, all of the metrics we report based

on the rank are also pessimistic. However, the models we consider should not produce

ties, and thus, should not be affected by these considerations.

2.1.2 Unobserved Triples

Unobserved triples can either be true triples that haven’t been observed, or triples that

do not hold. This setting is called positive-unlabeled and has been previously studied

[34, 8]. A typical result in positive-unlabeled learning is that the posterior probabilities

for the problem of separating positive and unlabeled examples and the problem of

separating positive and negative examples lead to the same rankings [34, 10].

These results and the metrics defined in Equation (2.2) lead us to to consider all

unlabeled examples as negatives. This is not to be misunderstood with the formal logic

interpretation of knowledge bases which contrasts the closed-world (all unlabeled triples

are negative) or open-world (unlabeled triples may either be positive or negative)

assumptions. In order to learn a proper ranking of triples under the open-world

assumption, namely that triples that are unlabeled are either negative or positive, we

are allowed to consider missing triples as negative in our training objective.

2.1.3 Losses

As previously discussed, we aim to provide a correct ranking of entities for incomplete

queries (𝑖, 𝑗, ?). We find three categories of loss that aim to do this in the knowledge

24

base completion literature :

Logistic loss According to the previous discussion, we consider all observed triples

as positive examples and all unobserved triples as negative ones. This leads to the

optimization of the following loss, where 𝑁 and 𝑃 are the numbers of entities and

predicates:

ℒ(�̂�) =
1

𝑁2𝑃

⎛⎝ ∑︁
(𝑖,𝑗,𝑘)∈𝑆

log(1 + exp(�̂�𝑖,𝑗,𝑘)) +
∑︁

(𝑖,𝑗,𝑘)̸∈𝑆

log(1 + exp(−�̂�𝑖,𝑗,𝑘))

⎞⎠ . (2.3)

In order to minimize this loss for large tensors, the stochastic gradient descent algorithm

[99] can be used. Previous work [118] produces a stochastic estimate of the loss (2.3)

by sampling a “negative set” �̃� for each positive triple (𝑖, 𝑗, 𝑘) to act as a set of

negative samples. Larger sets �̃� lead to better estimation of the negative part of the

loss, but longer computations. In order to obtain more “informative” negative sets,

previous work obtain negative sets using perturbed version of true triples (𝑖, 𝑗, 𝑘) by

sampling either a new object or subject [13, 118, 30, 61]. Since we consider dataset

with added reciprocal relations, this simplifies to only sampling new objects. Thus,

the instantaneous stochastic loss these authors optimize for a given true triple (𝑖, 𝑗, 𝑘)

and negative set �̃� is:

ℒ(�̂�; (𝑖, 𝑗, 𝑘);𝐾) = log(1 + exp(�̂�𝑖,𝑗,𝑘)) +
∑︁
𝑘′∈�̃�

log(1 + exp(−�̂�𝑖,𝑗,𝑘′)).

This loss is similar in spirit to the negative sampling loss used for learning word

embeddings in [85]. Note that in this loss, an implicit weight is given to negatives,

since |�̃�| negatives are sampled for each positive. This can be interpreted as the

negative weighting scheme suggested in [34]. A normalizing factor 𝛼/|�̃�| in front of

the loss associated to negative samples would allow to decouple this weighting from

the computing budget but is often forgotten in practice.

25

Triplet loss Triplet losses have been successful for large scale learning to rank

applications [123, 25]. Consider the definition of the rank in Equation (2.1). It can

be interpreted as an expectation over the negative triples for a single positive triple

(𝑖, 𝑗, 𝑘). Then, by sampling a negative triple in a similar fashion as in the previous

paragraph, one can obtain a convex surrogate of the rank by replacing the indicator

function in Equation (2.1) with a hinge loss. Such a margin-based ranking criterion

has been used in [14, 13, 126, 93]. For 𝛾 the margin parameter of the hinge-loss, we

minimize for a positive triple (𝑖, 𝑗, 𝑘) and sampled negative entity 𝑘′ :

ℒ(�̂�; (𝑖, 𝑗, 𝑘); 𝑘′) = max(0, 𝛾 − (�̂�𝑖,𝑗,𝑘 − �̂�𝑖,𝑗,𝑘′)). (2.4)

Intuitively, we want the score of a positive triple to be greater than the score of

negative triples by at least 𝛾 to incur no loss. Note that in this formulation, there

is no implicit weighting associated to the number of sampled negatives. The loss

in Equation (2.4) will minimize the average rank. In order to put more importance

on higher ranks, the authors of [123] use a different sampling scheme along with a

weighting of the loss. The impact of such re-weighting of the loss (2.4) has not been

evaluated in the knowledge base completion setting to the best of our knowledge.

Another alternative to the ranking loss in Equation (2.4) would be to use the binary

cross-entropy in order to obtain a surrogate for the rank. We have not found this

loss used in the knowledge base completion literature, despite this option removing

the margin parameter in the hinge loss. Early experiments with this loss showed

no improvements over the hinge loss surrogate, and didn’t perform as well as the

cross-entropy loss we present next.

Cross-Entropy Considering the observed neighborhood of a subject 𝑖 for a certain

predicate 𝑗 as a sampling from a multi-class distribution 𝑃𝑖,𝑗 justifies the minimization

of the cross-entropy:

ℒ(�̂�; (𝑖, 𝑗, 𝑘)) = −�̂�𝑖,𝑗,𝑘 + log

(︃∑︁
𝑘′∈𝐸

exp(�̂�𝑖,𝑗,𝑘′)

)︃
. (2.5)

26

This formulation has been deemed impractical due to the high computational complex-

ity of computing the leftmost term of Equation (2.5). This has lead to approximations

being used in [117, 60, 59]. However, considering the small size of current knowledge

base completion benchmark, we use the complete cross-entropy to obtain state-of-the-

art results as described in Chapter 3. This approach has the benefits of removing the

𝛾 parameter of margin-based approaches, as well as the number of negative samples

(and/or negative weights) for sampling based approaches, reducing the experiment

space. Moreover it is computationally efficient for the models considered in Chap-

ter 3,4,5, since computing scores over batch of fibers can be done via matrix-matrix

products.

2.2 Tensor parametrizations

In order to enable learning of the score tensor �̂�, we write this tensor as a small

sum of simple components. This motivates a review in this section of two tensor

parametrizations. Despite most of our work being with order 3 tensors, we present

in this section the parametrizations for any order. This will be useful in Chapter 5

where we work with tensors of order 4.

A matrix 𝑋 can be parameterized as a sum of rank 1 matrices : 𝑋 =
∑︀

𝑟 𝑢𝑟⊗ 𝑣𝑟 =

𝑈𝑉 ⊤. In a similar way, tensors can be written as a sum of pure (ie, rank 1) tensors,

which we call the low-rank parametrization presented in subsection 2.2.1. Another

parametrization however, the Tucker parametrization, may allow for more compact

tensor representation. We present this second parametrization in subsection 2.2.2.

Our presentation is limited to what is strictly necessary for the understanding of this

thesis. For a detailed description of tensor operations and parametrizations, the reader

is referred to the survey by Kolda and Bader [64].

2.2.1 Low-rank parametrization

Similar to the parametrization of matrices as sum of rank 1 matrices, we can write

a tensor 𝑋 as a sum of rank 1 tensors : 𝑋 =
∑︀

𝑟 𝑢
(1)
𝑟 ⊗ · · · ⊗ 𝑢

(𝑑)
𝑟 . The minimum

27

number of terms in this parametrization for a fixed tensor 𝑋 is called the tensor

rank. Contrary to the matrix rank, this rank can decrease if the factorization is done

over C rather than over R [28]. Another difference is that computing the rank of a

tensor is NP-hard [52]. Despite these difficulties, this parametrization has been used

in practice with non-minimal number of factors [50, 22] in which case it is dubbed

CANDECOMP/PARAFAC. Note that the individual elements of 𝑋 can be written as

the multilinear product

𝑋𝑖1,··· ,𝑖𝑑 =
∑︁
𝑟

∏︁
𝑘

𝑈
(𝑘)
𝑖𝑘,𝑟

def
= ⟨𝑈 (1)

𝑖1
, · · · , 𝑈 (𝑑)

𝑖𝑑
⟩.

In this thesis, we will consider the problem of learning low-rank parametrizations

of tensors. In accordance with the terminology in the knowledge base completion

literature, we will use the term CP parametrization even when the number of factors

is higher than the tensor rank.

In order to easily manipulate this parametrization, some vocabulary is needed.

Leaving only one index free in a tensor 𝑋: 𝑋𝑖1,··· ,𝑖𝑘−1,:,𝑖𝑘+1··· ,𝑖𝑑 we obtain the mode-𝑘

fibers. Symetrically, fixing only one index and leaving all others free : 𝑋:,··· ,:,𝑖𝑘,:,··· ,:,

we obtain the mode-𝑘 slices. The fibers are always vectors, and in the specific case

of order 3 tensors which are important to the work in this thesis, the slices will be

matrices. Unfolding is the operation of joining multiple modes by considering the

Cartesian product of their indices. We will make use of unfoldings on tensors of order 4

in Chapter 5. A tensor of size (3, 4, 5, 6) becomes a tensor of size (3, 20, 6) by unfolding

mode 2 and 3 together. Taking this unfolding as an example, note that

𝑋𝑖1,(𝑖2,𝑖3),𝑖4 = ⟨𝑈 (1)
𝑖1

, 𝑈
(2)
𝑖2
⊙ 𝑈

(3)
𝑖3

, 𝑈
(4)
𝑖4
⟩.

We can write this more conveniently with the Kathri-Rao [106] product ∘ (which is

the columnwise Kronecker product) as :

𝑋𝑖1,(𝑖2,𝑖3),𝑖4 = ⟨𝑈 (1)
𝑖1

, 𝑈
(2,3)
(𝑖2,𝑖3)

, 𝑈
(4)
𝑖4
⟩ where 𝑈 (2,3) = 𝑈 (2) ∘ 𝑈 (3).

28

This shows that under a CP parametrization, a tensor can easily be unfolded by taking

the Kathri-Rao product of its modes.

2.2.2 Tucker parametrization

The Tucker parametrization uses a core tensor 𝐺 of dimensions 𝑝1, · · · , 𝑝𝑑. The score

of one element in 𝑋 can then be written:

𝑋𝑖1,··· ,𝑖𝑑 =
∑︁

𝑎1,··· ,𝑎𝑑

𝐺𝑎1,··· ,𝑎𝑑

∏︁
𝑘

𝑈
(𝑘)
𝑖𝑘,𝑎𝑘

= ⟨𝐺,𝑈
(1)
𝑖1
⊗ · · · ⊗ 𝑈

(𝑑)
𝑖𝑑
⟩.

The Tucker parametrization can be written with the shorthand 𝑋 = [[𝐶;𝑈, . . . ,𝑊]]

[65]. It should be noted that for the identity 𝐺 such that 𝐺𝑖,··· ,𝑖 = 1 and 0 everywhere,

the Tucker parametrization reduces to a CP parametrization of same rank. In that

case, we use the shorthand 𝑋 = [[𝑈 (1), . . . , 𝑈 (𝑑)]]. However, for arbitrary 𝐺, the

expressions of 𝑋𝑖1,··· ,𝑖𝑑 becomes richer which could lead to tensors being decomposed

with much lower ranks in the Tucker parametrization than in the CP parametrization

[64]. In Chapter 4 we learn a Tucker parametrization by exploiting its links with a

CP parametrization that has low-rank factors [17, 18].

2.3 Link prediction in knowledge bases

In this section, we present the various approaches to predicting links in knowledge

bases.

Stochastic Block Model An important model in statistics is the Stochastic Block

Model for binary matrices. Under this model, entities are grouped into clusters (or

communities), and the graph from nodes of clusters 𝑎 to nodes of cluster 𝑏 is an Erdös-

Rényi graph of parameter 𝜂(𝑎, 𝑏). Precisely, edges from cluster 𝑎 to 𝑏 are independent

samples from a Bernoulli distribution of parameter 𝜂(𝑎, 𝑏). In this framework, the

main goal is to recover the clusters, given the observed connectivity matrix. This

model exhibits sharp thresholds for recovery [29] which have been studied in details

29

[1]. A multi-relational, non-parametric version of this model has been proposed in

Kemp et al. [62].

Low-rank parametrizations RESCAL [91] is a special case of a Tucker parametriza-

tion : �̂�𝑖,𝑗,𝑘 = 𝑈⊤
𝑖 𝑅:,:,𝑗𝑈𝑘 and is a relaxed version of the DEDICOM parametrization

[49]. Entity embeddings are shared for subjects and objects. Relations are expressed

via a bi-linear product with matrices 𝑅:,:,𝑗 which allows to model non-symmetric

relationships. In Bordes et al. [14], two models are suggested, linear and bi-linear.

The first (linear) models write �̂� as a sum of interactions between left-hand side and

relation, relation and right-hand side or left-hand side and right-hand side. The second

(bilinear) models are similar to RESCAL, but express the matrices 𝑅:,:,𝑗 as a linear

combination of fewer matrices and adds biases. Jenatton et al. [56] parameterize the

relation matrices, as a sum of few rank-1 matrices which are shared across relations.

Yang et al. [126] simplified RESCAL further by learning diagonal relation matrices in

a model called DistMult. This restriction however, limits the expressivity of the model,

since the slices of �̂� along the predicate mode are now symmetric. Despite its limited

expressivity, this model has shown experimental success on popular benchmarks [60].

Trouillon et al. [118] introduced complex embeddings in a parametrization called

ComplEx in order to model non-symmetric relationships with a model complexity

similar to that of DistMult. More recently, attempts have been made at learning

a Tucker3 parametrization of �̂�. Balazevic et al. [7] imposes no restriction on the

parameters, and uses deep-learning techniques such as dropout and batch-norm to

learn this parametrization. Wang et al. [121] imposes a sparsity constraint on the

core tensor of the Tucker parametrization they learn, in order to make it closer to the

core tensors of the CP or ComplEx parametrization. Kazemi and Poole [61] uses a

CP parametrization and similarly to our work in Chapter 3, introduces the use of

reciprocal relations.

Translation based approaches Bordes et al. [13] model the score of a triple �̂�𝑖,𝑗,𝑘

as ‖𝑒𝑖 + 𝑟𝑗 − 𝑒𝑘‖22 in a method called TransE. Such translation based scoring have lead

30

to many variants [90, 80, 76, 36]. These methods add extra parameters to TransE

by adding relation-dependent linear transforms to modify the left-hand side and

right-hand side entities. Another direction in which TransE has been modified is by

changing the geometry in which the distance is computed. TorusE [33] embeds this

computation on a Torus, whereas MurP [7] uses hyperbolic spaces. It has been argued

in Kazemi and Poole [61] that translation based methods may not be able to represent

all relational systems.

Other approaches Socher et al. [108] proposes to add a triplet interaction to a

neural network’s linear layer. They use a classification loss over randomly sampled

(but type accurate) triples rather than a ranking loss. Another method based on

neural networks favors higher number of layers, but only uses concatenations of entity

and relation embeddings [31]. Holographic Embeddings [93] uses circular correlation

between embedding entities before taking the dot product with the relation embeddings.

This method, which performs faborably against the method of Dong et al. [31], was

shown to be equivalent to ComplEx [118]. More recently, Dettmers et al. [30] used

convolutional filters on a tiling of entity and relation embeddings in a neural network

model called ConvE.

Discussion Bayesian methods do not scale to larger benchmarks such as FB15k and

thus have largely been abandoned for knowledge base completion. Tensor parametriza-

tions such as RESCAL [91] or CP showed poor performances on FB15k [13]. In

order to reduce the potential overfitting [13, 93] of these methods, the community

focused on designing models that were less expressive, adding prior knowledge through

the constrained parameterizations of the models. For example, Bordes et al. [13]

attempted to focus on hierarchical relationships by modeling the different relations

as translations. The simpler parametrization lead to better performance and many

variations of the method [90, 80, 76, 36]. Constrained parametrization of the CP

parametrization, with shared factors for object and subject lead to DistMult [126] and

ComplEx [118] which obtained better performances than translation based methods on

31

the FB15k benchmark. Currently, state of the art results are obtained with ComplEx

parametrizations (see Chapter 3) for large number of parameters. Interest is growing

in studying Tucker parametrizations which provides a natural way to reduce the size of

the embeddings (see Chapter 4, [7, 121]). Research into constrained parametrization

has broadened its scope with a study of the embeddings base space [33, 6], motivated

by the success of hyperbolic embeddings [94] for modeling hierarchies.

2.4 Optimization

In order to learn the tensor parametrizations considered in this thesis, we will optimize

an objective that can be written as a finite sum of losses (eg. multiclass logistic loss)

over the positive examples :

min
𝜃

∑︁
(𝑖,𝑗,𝑘)∈𝑆

ℓ(𝑖, 𝑗, 𝑘; 𝜃).

This problem can be approached for general ℓ with batch or stochastic gradient

descent (SGD) [99]. The descent direction in these methods is either the gradient of the

entire objective or an unbiased estimate of this gradient. Some optimization methods

adapt this descent direction to account for the curvature of the parameter space.

Newton-Raphson or L-BFGS [77] use the inverse of the Hessian or an approximation

for this adaptation. The heavy-ball method [96] uses an exponential moving average

of the descent directions and has proved successful for the practical optimization

of deep neural networks. For large datasets, modern approaches favor stochastic

gradient descent methods rather than batch [16]. Moreover, gradients for stochastic

updates in our case are sparse, leading to efficient SGD steps. Adagrad [32] only uses

first-order information to rescale the descent direction coordinate-wise. This algorithm

is described in detail in Chapter 4 of this manuscript. Adam [63] combines ideas from

the heavy-ball method and Adagrad and has been widely adopted by deep-learning

practitioners. Previous work on knowledge base completion used Adagrad [93, 118]

or Adam [7]. Our own experiments confirmed that adaptivity of the optimization

32

algorithm is crucial as stochastic gradient descent fails to efficiently escape the saddle

point at the origin or diverges.

A frequent approach in the tensor literature to deal with large tensors is to compress

them first with a higher order singular value decomposition (HOSVD) [23, 17], then

work on the compressed tensor. However, the HOSVD finds the best Frobenius

approximation of a tensor, which is ill-adapted to the losses we optimize in this thesis,

presented in section 2.1.3.

2.5 Matrix and Tensor regularizers

We aim at learning a tensor �̂� from incomplete or partial informations: the observed

relationships. This cannot be done without assumptions on �̂� (such as low rank or low

norm) to bound the complexity of the model space. For matrix completion, as in the

popular Netflix Prize [9], trace-norm regularization has been very successful. In fact,

bounding a non-convex variational form of the trace-norm, introduced in section 2.5.1,

rather than the rank of the model was used in the winning method for the Netflix

Prize [66]. In order to understand the success of this method, and properly generalize

it to tensors, we review in the next subsection the bounds and guarantees that can be

obtained for learning matrices. Notably, we will see the importance of the sampling

distribution of observations and how it affects the norm to penalize [110].

Several norms have been defined over tensors and in particular the matrix trace

norm has been generalized to tensor norms in many ways [78, 105, 39, 116]. In section

2.5.2 we will define the tensor trace norm considered in [127, 38], also called tensor

nuclear norm which we will use throughout this manuscript.

In the next subsection, we introduce two matrix norms and associated PAC-bounds

as well as review some results and assumptions from the exact recovery literature. Then

we will see how these results were adapted to higher order tensors using matricization.

Finally, we will define and discuss some properties of the tensor nuclear norm and its

differences with the matricization-based norms when it comes to exact recovery.

33

2.5.1 Matrix norms and associated guarantees

Before describing higher order tensor norms, we describe in this section some related

results on matrices. We follow the the analysis framework of Srebro [109]. For a

fixed elementwise loss(𝑋𝑖,𝑗;𝑌𝑖,𝑗), we define for 𝑋 and 𝑌 of size 𝑛×𝑚 and 𝑆 a set of

observed indices :

𝒟(𝑋;𝑌) =
1

𝑛𝑚

∑︁
𝑖,𝑗

loss(𝑋𝑖,𝑗;𝑌𝑖,𝑗) 𝒟𝑆(𝑋;𝑌) =
1

|𝑆|
∑︁
𝑖,𝑗∈𝑆

loss(𝑋𝑖,𝑗;𝑌𝑖,𝑗)

𝒟 is the true average overall error, while 𝒟𝑆 is the average error over the observed

entries. Note that this setting does not fit with the ranking or cross-entropy losses

that were discussed in section 2.1.3. Matrix completion has been theoretically studied

for elementwise squared error or logistic loss.

Low-rank PAC-bounds Let 𝑌 be a target sign-matrix, 𝑌 ∈ {±1}𝑛×𝑚 and 𝑋 ∈ 𝒳
an estimate of 𝑌 . Consider the sign-agreement loss : loss±(𝑎, 𝑏) = 1(𝑎𝑏 ≤ 0). Noting

that the errors for this loss 𝒟± only depend on the sign-pattern of 𝑋, the authors of

[112] consider the number of sign-patterns in set 𝒳 . Consider :

𝑓(𝒳) =
⃒⃒
{sign𝑋 ∈ {−, 0,+}𝑛×𝑚 | 𝑋 ∈ 𝒳}

⃒⃒
.

The following inequality holds with probability 1 − 𝛿 over the choice of 𝑆 for any

1 ≥ 𝛿 > 0 [112] :

∀𝑋 ∈ 𝒳 𝒟(𝑋;𝑌) ≤ 𝒟𝑆(𝑋;𝑌) +

√︃
log 𝑓(𝒳)− log 𝛿

2|𝑆| . (2.6)

In order to bound 𝑓(𝒳) for real low-rank matrices, Srebro et al. [112] use the following

proposition:

Proposition 1. [3] The number of −/0/+ sign configurations of 𝑟 polynomials, each

of degree at most 𝑑, over 𝑞 variables, is at most (8𝑒𝑑𝑟/𝑞)𝑞 (for 𝑟 > 𝑞 > 2).

Let 𝒳 𝑘
𝑛,𝑚 be the set of real matrices of size 𝑛×𝑚 and rank at most 𝑘. Then for

34

any 𝑋 ∈ 𝒳 𝑘
𝑛,𝑚, there exists 𝑈 ∈ R𝑛×𝑘, 𝑉 ∈ R𝑚×𝑘 such that ∀𝑖, 𝑗 𝑋𝑖,𝑗 = ⟨𝑢𝑖, 𝑣𝑗⟩. Thus,

𝑓(𝒳 𝑘
𝑛,𝑚) is the number of −/0/+ sign configurations of 𝑛×𝑚 polynomials of degree

at most 2 over 𝑘(𝑛 + 𝑚) variables. According to Proposition 1 :

𝑓(𝒳 𝑘
𝑛,𝑚) ≤

(︂
8𝑒.2.𝑛𝑚

𝑘(𝑛 + 𝑚)

)︂𝑘(𝑛+𝑚)

≤
(︂

16𝑒𝑚

𝑘

)︂𝑘(𝑛+𝑚)

.

Together with inequality (2.6), we have for any 𝛿 > 0, with probability 1− 𝛿 :

∀𝑋 ∈ 𝒳 𝒟(𝑋;𝑌) ≤ 𝒟𝑆(𝑋;𝑌) +

√︃
𝑘(𝑛 + 𝑚) log 16𝑒𝑚

𝑘
− log 𝛿

2|𝑆| .

A matching lower-bound can be obtained for matrices by considering arrangements of

hyperplanes in R𝑘 [109]. Proposition 1 can be used to yield similar upper bounds on

the sign-configurations of low-rank tensors. Matching lower-bounds for CP or Tucker

parametrizations however do not follow from the same proof as the one used in [109].

Trace-norm We denote the trace-norm (or nuclear-norm) of a matrix 𝑀 by ‖𝑀‖*.
The following definitions, where 𝑈 and 𝑉 are always full-rank matrices, are all

equivalent [111] :

‖𝑀‖* = inf
𝑀=𝑈𝑉 ⊤

1

2

(︀
‖𝑈‖22 + ‖𝑉 ‖22

)︀
‖𝑀‖* = inf

𝑀=𝑈𝑉 ⊤
‖𝑈‖2‖𝑉 ‖2

‖𝑀‖* = ‖𝜎‖1 where 𝑀 has SVD 𝑀 = 𝑈Diag(𝜎)𝑉 ⊤

The trace-norm provides a convex surrogate for the rank [35, 113]. Let us define

the margin sign-agreement loss as loss𝛾(𝑎, 𝑏) = 1(𝑎𝑏 ≤ 𝛾). Srebro et al. [113] provide

the following PAC-bound for matrices of low trace-norm :

Theorem 1. [113] For all target matrices 𝑌 ∈ {±1}𝑛×𝑚 and sample sizes |𝑆| > 𝑛 log 𝑛

(with 𝑚 ≤ 𝑛), and for a uniformly selected sample 𝑆 of |𝑆| entries in 𝑌 , with probability

1− 𝛿 over the sample selection, the following holds for all matrices 𝑋 ∈ R𝑛×𝑚 and all

35

𝛾 > 0:

𝒟±(𝑋, 𝑌) ≤ 𝒟𝛾
𝑆(𝑋;𝑌) + �̃�

(︃
‖𝑋‖*
𝛾
√
𝑛𝑚

√︃
(𝑛 + 𝑚)

|𝑆|

)︃
+

√︃
ln(4/𝛿)

2|𝑆|

where �̃� is the soft-O notation ignoring log-factors in 𝑛, 𝑚, 𝛾 and ‖𝑋‖*.

Note that in this bound, the rank has completely disappeared, leaving all capacity

control to the trace-norm. More strikingly, minimizing the trace-norm allows for exact

recovery of matrices, with only a fraction of observed entries: an unknown rank 𝑟

matrix 𝑌 of low coherence with the canonical basis (that is, the singular vectors of 𝑌

are not aligned with the canonical basis) can be recovered with high-probability from

|𝑆| > 𝐶(𝑛 + 𝑚)𝑟 log2(𝑛 + 𝑚) entries, where 𝐶 depends on the coherence [21, 97, 45].

As discussed in subsection 2.5.2, the tensor nuclear-norm enables extensions of

these matrix recovery results. However, generalizing the PAC-bound would require

a tensor version of the result in Seginer [103] which is not available at the time of

writing.

Max-norm Whereas the trace-norm penalizes the average magnitude of entries

in the singular value decomposition, the max-norm only penalizes the maximum

row-norm of the singular factors :

‖𝑀‖max = inf
𝑀=𝑈𝑉 ⊤

(︁
max

𝑖
‖𝑈𝑖‖2

)︁(︁
max

𝑖
‖𝑉𝑖‖2

)︁

A matrix of bounded max-norm 1 has a natural interpretation. One can see the

rows of 𝑈 as points to classify on the hypersphere, and interpret the rows of 𝑉 as

normal vectors to the classifying hyperplanes. Srebro et al. [113] provides the following

PAC-bound for matrices of low max-norm:

Theorem 2. [113] For all targer matrices 𝑌 ∈ {±1}𝑛×𝑚 and sample sizes |𝑆| >
𝑛 log 𝑛, and for a uniformly selected sample 𝑆 of |𝑆| entries in 𝑌 , with probability

1− 𝛿 over the sample selection, the following holds for all matrices 𝑋 ∈ R𝑛×𝑚 and all

36

𝛾 > 0:

𝒟±(𝑋, 𝑌) ≤ 𝒟𝛾
𝑆(𝑋;𝑌) + �̃�

(︃
‖𝑋‖max

𝛾

√︃
(𝑛 + 𝑚)

|𝑆|

)︃
+

√︃
ln(4/𝛿)

2|𝑆|

where �̃� is the soft-O notation ignoring log-factors in 𝑛, 𝑚, 𝛾 and ‖𝑋‖*.

Noting that the maximum is greater than the average shows ‖𝑋‖*/
√
𝑛𝑚 ≤ ‖𝑋‖max,

which explains the difference in scaling between the PAC-bounds for each norm.

Generalizing this bound to tensors of arbitrary order can be done via multilinear

extensions of the Grothendieck inequality such as Equation 12.67 in Blei [11].

Max-norm vs Trace-norm : sampling distributions Uniform sampling of

entries is unlikely to hold in many link prediction settings. For example, different

users will have different propensities to rate movies online, or some entities in a

knowledge base will have more of their positive edge labels than others due to some

public interest around them. The bounds in Theorem 1 and Theorem 2 only hold for

uniformly selected samples. However, the former generalizes to samples from arbitrary

distributions, for a generalization error measured accordingly:

𝒟±
𝒟(𝑋, 𝑌) = E𝒟[loss(𝑋𝑖,𝑗;𝑌𝑖,𝑗)].

In order to obtain bounds for non-uniform samples with the trace-norm, weighting is

required [110, 37]. The weighted trace-norm is defined for a sampling distribution 𝒟
with marginals over rows 𝑝𝑟 and columns over 𝑝𝑐 as:

‖𝑋‖*,𝒟 = ‖Diag(𝑝𝑟)
1/2𝑋Diag(𝑝𝑐)

1/2‖*. (2.7)

Bounding the weighted trace-norm with the empirical (smoothed) marginals allows

Foygel et al. [37] to bound the generalization error under arbitrary sampling distri-

bution. Interestingly, practical penalties on the weighted trace-norm are obtained

37

naturally with stochastic gradient descent formulations of the form:

min
�̂�=𝑈𝑉 ⊤

1

|𝑆|
∑︁
𝑖,𝑗∈𝑆

loss(𝑋𝑖,𝑗, �̂�𝑖,𝑗) + 𝜆
(︀
‖𝑈𝑖‖22 + ‖𝑉𝑗‖22

)︀
.

This formulation was used by the winning entry to the Netflix Prize [66]. A weighting

according to the empirical row and column marginals naturally arises from this

formulation and is equivalent to a penalty on the weighted trace-norm as defined in

Equation (2.7).

Assuming that results qualitatively similar to the results in this section hold in

our setting, we use the same weighting of the norm in Chapters 3 and 5.

2.5.2 Tensor norms and guarantees

The results we discussed for matrices are enabled by powerful tools in linear algebra

and spectral theory for random matrices. In this section, we describe available results

for tensors. Moving into the multi-linear world, we lose many of these tools. We first

discuss how this was circumvented by working with matricized tensors [78, 105, 39, 116]

to obtain computable convex penalties using previous work on matrices. We then

describe results for tensor recovery using the NP-hard tensor nuclear-norm [127], which

generalizes matrix recovery results and obtains better sample complexity than the

penalties based on matricization.

Matricization based norms Given a tensor 𝑋 of order 𝐾, with 𝑋(𝑘) the mode-𝑘

matricization (that is, the columns of 𝑋(𝑘) are the mode-𝑘 fibers of 𝑋), define the

norm :

‖𝑋‖SNN =
1

𝐾

𝐾∑︁
𝑘=1

‖𝑋(𝑘)‖*

Minimizing this Sum of Nuclear Norms (SNN) leads to tractable convex programs

over tensors, which explains its success and studies [78, 105, 39, 116]. However, the

recovery guarantees for this norm (|𝑆| 𝒪(𝑟𝑛𝐾−1)) are only as good as the requirements

of recovery for a tensor that is only low-rank along one mode [87]. This is due to

38

matricization leading to the recovery of 𝑟 singular vectors of size 𝑛𝐾−1. Another

convex penalty has been suggested and its recovery guarantees studied [79], but it

also requires measurements of the order of 𝑛𝐾−1, which is impractical in our case.

Tensor nuclear norm The spectral 𝑝-norm for tensors (of order 3 for notational

simplicity) can be defined similarly to the matrix spectral norm :

‖𝑋‖𝑝 = max
‖𝑢1‖𝑝=‖𝑢2‖𝑝=‖𝑢3‖𝑝=1

⟨𝑋, 𝑢1 ⊗ 𝑢2 ⊗ 𝑢3⟩ where ⟨𝑋, 𝑌 ⟩ =
∑︁
𝑖,𝑗,𝑘

𝑋𝑖,𝑗,𝑘𝑌𝑖,𝑗,𝑘.

The dual-norm to this norm is the tensor nuclear 𝑝-norm : ‖ · ‖𝑝* which can also be

defined as an atomic norm over pure tensors [38] :

‖𝑋‖𝑝* = inf
𝑅

inf
𝜎,𝑈,𝑉,𝑊

{︁
‖𝜎‖1

⃒⃒⃒
𝑋 =

𝑅∑︁
𝑟=1

𝜎𝑟𝑈:,𝑟 ⊗ 𝑉:,𝑟 ⊗𝑊:,𝑟,

∀𝑟 ‖𝑈:,𝑟‖𝑝 = ‖𝑉:,𝑟‖𝑝 = ‖𝑊:,𝑟‖𝑝 = 1
}︁
.

As shown in Yuan and Zhang [127], the recovery requirements when minimizing the

nuclear 2 norm for tensors 𝑋 ∈ R𝑛×𝑛×𝑛 of low-coherence are of order 𝒪(𝑟(𝑛 log 𝑛)3/2)

(where the CP-rank of 𝑋 is in [𝑟, 𝑟2]). This result is more attractive than the guarantees

for matricization based norms, since half an order is gained on the larger dimensions

𝑛 (compare 3/2 to 2). However, the tensor nuclear norm is not computationally

tractable [38]. Approximation schemes [26] have been developped only for minimizing

the nuclear norm under a squared loss data-fitting error. In Chapter 3,4 and 5, we use

non-convex variational forms of the nuclear 𝑝-norm with good experimental results.

39

40

Chapter 3

Canonical Tensor Parametrization for

Knowledge Base Completion

In the midst of chaos, there is also

opportunity.

Sun Tzu

The problem of Knowledge Base Completion can be framed as a 3rd-order binary

tensor completion problem. In this light, the CP parametrization (CP) [50] seems like

a natural solution; however, current implementations of CP on standard Knowledge

Base Completion benchmarks are lagging behind their competitors. In this work, we

attempt to understand the limits of CP for knowledge base completion. First, we

motivate and test a novel regularizer, based on tensor nuclear 𝑝-norms. Then, we

present a reformulation of the problem that makes it invariant to arbitrary choices

in the inclusion of predicates or their reciprocals in the dataset. These two methods

combined allow us to beat the current state of the art on several datasets with a CP

parametrization, and obtain even better results using the more advanced ComplEx

model.

41

3.1 Introduction

In knowledge base completion, the learner is given triples (subject, predicate, object)

of facts about the world, and has to infer new triples that are likely but not yet

known to be true. This problem has attracted a lot of attention [92, 89] both as an

example application of large-scale tensor factorization, and as a benchmark of learning

representations of relational data.

The standard completion task is link prediction, which consists in answering queries

(subject, predicate, ?) or (?, predicate, object). In that context, the low-rank tensor

parametrization (also called CANDECOMP/PARAFAC or CP) [53] is known to

perform poorly compared to more specialized methods. For instance, DistMult [126],

a particular case of CP which shares the factors for the subject and object modes, was

recently shown to have state-of-the-art results [60]. This result is surprising because

DistMult learns a tensor that is symmetric in the subject and object modes, while the

datasets contain mostly non-symmetric predicates.

The goal of this paper is to study whether and how CP can perform as well as its

competitors. To that end, we evaluate three possibilities.

First, as Kadlec et al. [60] showed that performances for these tasks are sensitive

to the loss function and optimization parameters, we re-evaluate CP with a broader

parameter search and a multiclass log-loss.

Second, since the best performing approaches are less expressive than CP, we

evaluate whether regularization helps. On this subject, we show that the standard

regularization used in knowledge base completion does not correspond to regularization

with a tensor norm. We then propose to use tensor nuclear 𝑝-norms [38], with the

goal of designing more principled regularizers.

Third, we propose a different formulation of the objective, in which we model

separately predicates and their inverse: for each predicate pred, we create an in-

verse predicate pred−1 and create a triple (obj, pred−1, sub) for each training triple

(sub, pred, obj). At test time, queries of the form (?, pred, obj) are answered as

(obj, pred−1, ?). Similar formulations were previously used by Shen et al. [104] and

42

Joulin et al. [59], but for different models for which there was no clear alternative, so

the impact of this reformulation has never been evaluated.

To assess whether the results we obtain are specific to CP, we also carry on the

same experiments with a state-of-the-art model, ComplEx [118]. ComplEx has the

same expressivity as CP in the sense that it can represent any tensor, but it implements

a specific form of parameter sharing. We perform all our experiments on 5 common

benchmark datasets of link prediction in knowledge bases.

Our results first confirm that within a reasonable time budget, the performance

of both CP and ComplEx are highly dependent on optimization parameters. With

systematic parameter searches, we obtain better results for ComplEx than what was

previously reported, confirming its status as a state-of-the-art model on all datasets.

For CP, the results are still way below its competitors.

Learning and predicting with the inverse predicates, however, changes the picture

entirely. First, with both CP and ComplEx, we obtain significant gains in performance

on all the datasets. More precisely, we obtain state-of-the-art results with CP, matching

those of ComplEx. For instance, on the benchmark dataset FB15K [13], the mean

reciprocal rank of vanilla CP and vanilla ComplEx are 0.40 and 0.80 respectively, and

it grows to 0.86 for both approaches when modeling the inverse predicates.

Finally, the new regularizer we propose based on the nuclear 3-norm, does not

dramatically help CP, which leads us to believe that a careful choice of regularization

is not crucial for these CP models. Yet, for both CP and ComplEx with inverse

predicates, it yields small but significant improvements on the more difficult datasets.

3.2 Tensor Factorization of Knowledge Bases

We describe in this section the formal framework we consider for knowledge base

completion and more generally link prediction in relational data, the learning criteria,

as well as the approaches that we will discuss.

43

pr
ed

ica
tes

su
bj

ec
ts

objects

i

j

k

∑︀𝑅
𝑟=1 𝑢

(1)
𝑟,𝑖 · 𝑢(2)

𝑟,𝑗 · 𝑢(3)
𝑟,𝑘

pr
ed

ica
tes

which subject : ℓ(3)

which object : ℓ(1)

pr
ed

ica
tes

which
subject which object

rec
ipr

oc
als

Figure 3-1: (a) On the left, the link between the score of a triple (i,j,k) and the tensor
estimated via CP. (b) In the middle, the two type of fiber losses that we will consider.
(c) On the right, our semantically invariant reformulation, the first-mode fibers become
third-mode fibers of the reciprocal half of the tensor.

3.2.1 Link Prediction in Relational Data

We consider relational data that comes in the form of triples (subject, predicate,

object), where the subject and the object are from the same set of entities. In

knowledge bases, these triples represent facts about entities of the world, such as

(𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛, 𝑐𝑎𝑝𝑖𝑡𝑎𝑙_𝑜𝑓, 𝑈𝑆𝐴). A training set 𝒮 contains triples of indices 𝒮 =

{(𝑖1, 𝑗1, 𝑘1), ..., (𝑖|𝒮|, 𝑗|𝒮|, 𝑘|𝒮|)} that represent predicates that are known to hold. The

validation and test sets contain queries of the form (?, 𝑗, 𝑘) and (𝑖, 𝑗, ?), created from

triples (𝑖, 𝑗, 𝑘) that are known to hold but held-out from the training set. To give

orders of magnitude, the largest datasets we experiment on, FB15K and YAGO3-10,

contain respectively 15𝑘/1.3𝑘 and 123𝑘/37 entities/predicates.

3.2.2 Tensor Factorization for Link Prediction

Relational data can be represented as a {0, 1}-valued third order tensor 𝑌 ∈ {0, 1}𝑁×𝐿×𝑁 ,

where 𝑁 is the total number of entities and 𝐿 the number of predicates, with 𝑌𝑖,𝑗,𝑘 = 1

if the relation (𝑖, 𝑗, 𝑘) is known. In the rest of the paper, the three modes will be

called the subject mode, the predicate mode and the object mode respectively. Tensor

factorization algorithms can thus be used to infer a predicted tensor �̂� ∈ R𝑁×𝐿×𝑁 that

approximates 𝑌 in a sense that we describe in the next subsection. Validation/test

queries (?, 𝑗, 𝑘) are answered by ordering entities 𝑖′ by decreasing values of �̂�𝑖′,𝑗,𝑘,

whereas queries (𝑖, 𝑗, ?) are answered by ordering entities 𝑘′ by decreasing values of

44

�̂�𝑖,𝑗,𝑘′ .

Several approaches have considered link prediction as a low-rank tensor learning

problem. These models then differ only by structural constraints on the learned tensor.

Three models of interest are:

CP. The low-rank parametrization, also called CANDECOMP/PARAFAC [53],

represents a tensor 𝑋 ∈ R𝑁1×𝑁2×𝑁3 as a sum of 𝑅 rank one tensors 𝑢
(1)
𝑟 ⊗ 𝑢

(2)
𝑟 ⊗ 𝑢

(3)
𝑟

(with ⊗ the tensor product) where 𝑟 ∈ {1, ..., 𝑅}, and 𝑢
(𝑚)
𝑟 ∈ R𝑁𝑚 :

𝑋 =
𝑅∑︁

𝑟=1

𝑢(1)
𝑟 ⊗ 𝑢(2)

𝑟 ⊗ 𝑢(3)
𝑟 .

A representation of this parametrization, and the score of a specific triple is given in

Figure 3-1 (a). Given 𝑋, the smallest 𝑅 for which this decomposition holds is called

the canonical rank of 𝑋.

DistMult. In the more specific context of link prediction, it has been suggested in

Bordes et al. [12], Nickel et al. [91] that since both subject and object mode represent

the same entities, they should have the same factors. DistMult [126] is a version of

CP with this additional constraint. It represents a tensor 𝑋 ∈ R𝑁×𝐿×𝑁 as a sum of

rank-1 tensors 𝑢
(1)
𝑟 ⊗ 𝑢

(2)
𝑟 ⊗ 𝑢

(1)
𝑟 :

𝑋 =
𝑅∑︁

𝑟=1

𝑢(1)
𝑟 ⊗ 𝑢(2)

𝑟 ⊗ 𝑢(1)
𝑟 .

ComplEx. By contrast with the first models that proposed to share the sub-

ject and object mode factors, DistMult yields a tensor that is symmetric in the

object and subject modes. The assumption that the data tensor can be prop-

erly approximated by a symmetric tensor for Knowledge base completion is not

satisfied in many practical cases (e.g., while (𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛, 𝑐𝑎𝑝𝑖𝑡𝑎𝑙_𝑜𝑓, 𝑈𝑆𝐴) holds,

(𝑈𝑆𝐴, 𝑐𝑎𝑝𝑖𝑡𝑎𝑙_𝑜𝑓,𝑊𝑎𝑠ℎ𝑖𝑛𝑔𝑡𝑜𝑛) does not). ComplEx [118] proposes an alternative

where the subject and object modes share the parameters of the factors, but are com-

plex conjugate of each other. More precisely, this approach represents a real-valued

45

tensor 𝑋 ∈ R𝑁1×𝑁2×𝑁3 as the real part of a sum of 𝑅 complex-valued rank one tensors

𝑢
(1)
𝑟 ⊗ 𝑢

(2)
𝑟 ⊗ 𝑢(1)

𝑟 where 𝑟 ∈ {1, ..., 𝑅}, and 𝑢
(𝑚)
𝑟 ∈ C𝑁𝑚

𝑋 = Re
(︀ 𝑅∑︁

𝑟=1

𝑢(1)
𝑟 ⊗ 𝑢(2)

𝑟 ⊗ 𝑢(1)
𝑟

)︀
,

where 𝑢(1)
𝑟 is the complex conjugate of 𝑢(1)

𝑟 . This parametrization can represent any

real tensor [118].

The good performances of DistMult on notoriously non-symmetric datasets such

as FB15K or WN18 are surprising. First, let us note that for the symmetricity to

become an issue, one would have to evaluate queries (𝑖, 𝑗, ?) while also trying to answer

correctly to queries of the form (?, 𝑗, 𝑖) for a non-symmetric predicate 𝑗. The ranking

for these two queries would be identical, and thus, we can expect issues with relations

such as 𝑐𝑎𝑝𝑖𝑡𝑎𝑙_𝑜𝑓 . In FB15K, those type of problematic queries make up only 4% of

the test set and thus, have a small impact. On WN18 however, they make up 60% of

the test set. We describe in appendix 8.1 a simple strategy for DistMult to have a

high filtered MRR on the hierarchical predicates of WN18 despite its symmetricity

assumption.

3.2.3 Training

Previous work suggested ranking losses [13], binary logistic regression [118] or sampled

multiclass log-loss [60]. Motivated by the solid results in Joulin et al. [59], our own

experimental results, and with a satisfactory speed of about two minutes per epoch

on FB15K, we decided to use the full multiclass log-loss.

Given a training triple (𝑖, 𝑗, 𝑘) and a predicted tensor 𝑋, the instantaneous multi-

46

class log-loss loss𝑖,𝑗,𝑘(𝑋) is

loss𝑖,𝑗,𝑘(𝑋) = loss(1)𝑖,𝑗,𝑘(𝑋) + loss(3)𝑖,𝑗,𝑘(𝑋) (3.1)

loss(1)𝑖,𝑗,𝑘(𝑋) = −𝑋𝑖,𝑗,𝑘 + log
(︀∑︁

𝑘′

exp(𝑋𝑖,𝑗,𝑘′)
)︀

loss(3)𝑖,𝑗,𝑘(𝑋) = −𝑋𝑖,𝑗,𝑘 + log
(︀∑︁

𝑖′

exp(𝑋𝑖′,𝑗,𝑘)
)︀
.

These two partial losses are represented in Figure 3-1 (b). For CP, the final tensor is

computed by finding a minimizer of a regularized empirical risk formulation, where

the factors 𝑢
(𝑑)
𝑟 are weighted in a data-dependent manner by 𝑤

(𝑑)
𝒮 , which we describe

below:

min
(𝑢

(𝑑)
𝑟)𝑑=1..3

𝑟=1..𝑅

∑︁
(𝑖,𝑗,𝑘)∈𝒮

loss𝑖,𝑗,𝑘
(︁ 𝑅∑︁

𝑟=1

𝑢(1)
𝑟 ⊗ 𝑢(2)

𝑟 ⊗ 𝑢(3)
𝑟

)︁

+ 𝜆
𝑅∑︁

𝑟=1

3∑︁
𝑑=1

‖𝑤(𝑑)
𝒮 ⊙ 𝑢(𝑑)

𝑟 ‖22 , (3.2)

where ⊙ is the entry-wise multiplication of vectors. For DistMult and ComplEx, the

learning objective is similar, up to the appropriate parameter sharing and computation

of the tensor.

As discussed in Section 3.3.2, the weights 𝑤
(𝑑)
𝒮 may improve performances when

some rows/columns are sampled more than others. They appear naturally in op-

timization with stochastic gradient descent when the regularizer is applied only to

the parameters that are involved in the computation of the instantaneous loss. For

instance, in the case of the logistic loss with negative sampling used by Trouillon et al.

[118], denoting by 𝑞𝑑𝑖 the marginal probability (over 𝒮) that index 𝑖 appears in mode

𝑑 of a data triple, these weights are 𝑤
(𝑑)
𝒮,𝑖 =

√︀
𝑞𝑑𝑖 + 𝛼 for some 𝛼 > 0 that depends on

the negative sampling scheme.

We focus on redefining the loss (3.1) and the regularizer (3.2).

47

3.3 Related Work

We discuss here in more details the work that has been done on link prediction in

relational data and on regularizers for tensor completion.

3.3.1 Link Prediction in Relational Data

There has been extensive research on link prediction in relational data, especially in

knowledge bases, and we review here only the prior work that is most relevant to this

paper. While some approaches explicitly use the graph structure during inference [71],

we focus here on representation learning and tensor factorization methods, which are

the state-of-the-art on the benchmark datasets we use. We also restrict the discussion

to approaches that only use relational information, even though some approaches have

been proposed to leverage additional types [67, 80] or external word embeddings [117].

We can divide the first type of approaches into two broad categories. First, two-way

approaches score a triple (𝑖, 𝑗, 𝑘) depending only on bigram interaction terms of the

form subject-object, subject-predicate, and predicate-object. Even though they are

tensor approximation algorithms of limited expressivity, two-way models based on

translations TransE, or on bag-of-word representations [59] have proved competitive

on many benchmarks. Yet, methods using three-way multiplicative interactions, as

described in the previous section, show the strongest performances [12, 40, 93, 118].

Compared to general-purpose tensor factorization methods such as CP, a common

feature of these approaches is to share parameters between objects and subjects modes

[91], an idea that has been widely accepted except for the two-way model of Joulin

et al. [59]. DistMult [126] is the extreme case of this parameter sharing, in which the

predicted tensor is symmetric in the subject and object modes.

3.3.2 Regularization for Matrix Completion

Norm-based regularization has been extensively studied in the context of matrix

completion. The trace norm (or nuclear norm) has been proposed as a convex

relaxation of the rank [114] for matrix completion in the setting of rating prediction,

48

with strong theoretical guarantees [21]. While efficient algorithms to solve the convex

problems have been proposed [see e.g. 20, 55], the practice is still to use the matrix

equivalent of the nonconvex formulation (3.2). For the trace norm (nuclear 2-norm),

in the matrix case, the regularizer simply becomes the squared 2-norm of the factors

and lends itself to alternating methods or SGD optimization [98, 66]. When the

samples are not taken uniformly at random from a matrix, some other norms are

preferable to the usual nuclear norm. The weighted trace norm reweights elements of

the factors based on the marginal rows and columns sampling probabilities, which

can improve sample complexity bounds when sampling is non-uniform [37, 88]. Direct

SGD implementations on the nonconvex formulation implicitly take this reweighting

rule into account and were used by the winners of the Netflix challenge [see 110,

Section 5].

3.3.3 Tensor Completion and Parametrizations

There is a large body of literature on low-rank tensor parametrizations [see 64, for a

comprehensive review]. Closely related to our work is the low-rank decomposition of a

tensor (also called CANDECOMP/PARAFAC or CP) [53], which solves a problem

similar to (3.5) without the regularization (i.e., 𝜆 = 0), and usually the square loss.

Several norm-based regularizations for tensors have been proposed. Some are based

on unfolding a tensor along each of its modes to obtain matricizations, and either

regularize by the sum of trace norms of the matricizations [116] or write the original

tensor as a sum of tensors 𝑇𝑘, regularizing their respective 𝑘th matricizations with

the trace norm [124]. However, in the large-scale setting, even rank-1 approximations

of matricizations involve too many parameters to be tractable.

Recently, the tensor trace norm (nuclear 2-norm) was proposed as a regularizer for

tensor completion Yuan and Zhang [127], and an algorithm based on the generalized

conditional gradient has been developed by Cheng et al. [26]. This algorithm requires,

in an inner loop, to compute a (constrained) rank-1 tensor that has largest dot-product

with the gradient of the data-fitting term (gradient w.r.t. the tensor argument). This

algorithm is efficient in our setup only with the square error loss (instead of the

49

multiclass log-loss), because the gradient is then a low-rank + sparse tensor when

the argument is low-rank. However, on large-scale knowledge bases, the state of

the art is to use a binary log-loss or a multiclass log-loss [118, 60]; in that case, the

gradient is not adequately structured, thereby causing the approach of [26] to be too

computationally costly.

3.4 Nuclear p-Norm Regularization

As discussed in Section 3.3, norm-based regularizers have proved useful for matrices.

We aim to reproduce these successes with tensor norms. We use the nuclear 𝑝-norms

defined by Friedland and Lim [38]. As shown in Equation (3.2), the community

has favored so far a regularizer based on the square Frobenius norms of the factors

[126, 118]. We first show that the unweighted version of this regularizer is not a tensor

norm. Then, we propose a variational form of the nuclear 3-norm to replace the usual

regularization at no additional computational cost when used with SGD. Finally, we

discuss a weighting scheme analogous to the weighted trace-norm proposed in Srebro

and Salakhutdinov [110].

3.4.1 From Matrix Trace-Norm to Tensor Nuclear Norms

To simplify notation, let us introduce the set of CP parametrizations of a tensor 𝑋 of

rank at most 𝑅:

𝒰𝑅(𝑋) =
{︁

(𝑢(𝑑)
𝑟)𝑑=1..3

𝑟=1..𝑅

⃒⃒⃒
𝑋 =

𝑅∑︁
𝑟=1

𝑢(1)
𝑟 ⊗ 𝑢(2)

𝑟 ⊗ 𝑢(3)
𝑟 ,∀𝑟, 𝑑, 𝑢(𝑑)

𝑟 ∈ R𝑁𝑑

}︁
.

We will study the family of regularizers defined for 𝑢 ∈ 𝒰𝑅(𝑋) by:

Ω𝛼
𝑝 (𝑢) =

1

3

𝑅∑︁
𝑟=1

3∑︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖𝛼𝑝 .

Note that with 𝑝 = 𝛼 = 2, we recover the familiar squared Frobenius norm regularizer

used in (3.2). Similar to showing that the squared Frobenius norm is a variational

50

form of the trace norm on matrices (i.e., its minimizers realize the trace norm,

inf𝑀=𝑈𝑉 𝑇
1
2
(‖𝑈‖2𝐹+‖𝑉 ‖2𝐹) = ‖𝑀‖*), we start with a technical lemma that links our

regularizer with a function on the spectrum of our parametrizations.

Lemma 1.

min
𝑢∈𝒰𝑅(𝑋)

1

3

𝑅∑︁
𝑟=1

3∑︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖𝛼𝑝 = min

𝑢∈𝒰𝑅(𝑋)

𝑅∑︁
𝑟=1

3∏︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖𝛼/3𝑝 . (3.3)

Moreover, the minimizers of the left-hand side satisfy:

‖𝑢(𝑑)
𝑟 ‖𝑝 = 3

⎯⎸⎸⎷ 3∏︁
𝑑′=1

‖𝑢(𝑑′)
𝑟 ‖𝑝.

Proof. See Appendix A.2.

This Lemma motivates the introduction of the set of 𝑝-norm normalized tensor

parametrizations:

𝒰𝑝

𝑅(𝑋) =
{︁

(𝜎𝑟, (�̃�𝑟))𝑟=1..𝑅

⃒⃒⃒
𝜎𝑟 =

3∏︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖𝑝, �̃�(𝑑)

𝑟 =
𝑢
(𝑑)
𝑟

‖𝑢(𝑑)
𝑟 ‖𝑝

,∀𝑟, 𝑑, 𝑢 ∈ 𝒰𝑅(𝑋)
}︁
.

Lemma (3.3), shows that Ω𝛼
𝑝 behaves as an ℓ𝛼/𝐷 penalty over the CP spectrum for

tensors of order 𝐷. We recover the nuclear norm for matrices when 𝛼 = 𝑝 = 2.

Using Lemma (3.3), we have :

min
𝑢∈𝒰𝑅(𝑋)

Ω2
2(𝑢) ≤ 𝜂 ⇐⇒ min

(𝜎,�̃�)∈𝒰2
𝑅(𝑋)

‖𝜎‖2/3≤ 𝜂3/2 (3.4)

We show that the sub-level sets of the term on the right are not convex, which

implies that Ω2
2 is not the variational form of a tensor norm, and hence, is not the

tensor analog to the matrix trace norm.

Proposition 2. The function over third order-tensors of R𝑁1×𝑁2×𝑁3 defined as

|||𝑋||| = min
{︁
‖𝜎‖2/3

⃒⃒⃒
(𝜎, �̃�) ∈ 𝒰2

𝑅(𝑋), 𝑅 ∈ N
}︁

is not convex.

51

Proof. See Appendix A.2.

Remark 1. Cheng et al. [26, Appendix D] already showed that regularizing with the

square Frobenius norm of the factors is not related to the trace norm for tensors of order

3 and above, but their observation is that the regularizer is not positively homogeneous,

i.e., min𝑢∈𝛼𝒰𝑅(𝑋) Ω2
2(𝑢) ̸= |𝛼|min𝑢∈𝒰𝑅(𝑋) Ω2

2(𝑢). Our result in Proposition 2 is stronger

in that we show that this regularizer is not a norm even after the rescaling (3.4) to

make it homogeneous.

The nuclear 𝑝-norm of 𝑋 ∈ R𝑁1×𝑁2×𝑁3 for 𝑝 ∈ [1,+∞], is defined in Friedland

and Lim [38] as

‖𝑋‖*,𝑝 := min
{︁
‖𝜎‖1

⃒⃒⃒
(𝜎, �̃�) ∈ 𝒰𝑝

𝑅(𝑋), 𝑅 ∈ N
}︁
.

Given an estimated upper bound on the optimal 𝑅, the original problem (3.2) can

then be re-written as a non-convex problem using the equivalence in Lemma (3.3):

min
(𝑢

(𝑑)
𝑟)𝑑=1..3

𝑟=1..𝑅

∑︁
(𝑖,𝑗,𝑘)∈𝒮

loss𝑖,𝑗,𝑘
(︁ 𝑅∑︁

𝑟=1

𝑢(1)
𝑟 ⊗ 𝑢(2)

𝑟 ⊗ 𝑢(3)
𝑟

)︁
+

𝜆

3

𝑅∑︁
𝑟=1

3∑︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖3𝑝 . (3.5)

This variational form suggests to use 𝑝 = 3, as a means to make the regularizer

separable in each coefficients, given that then ‖𝑢(𝑑)
𝑟 ‖3𝑝 =

∑︀𝑛𝑑

𝑖=1

⃒⃒
𝑢
(𝑑)
𝑟,𝑖 |3.

3.4.2 Weighted Nuclear p-Norm

Similar to the weighted trace-norm for matrices, the weighted nuclear 3-norm can be

easily implemented by keeping the regularization terms corresponding to the sampled

triplets only, as discussed in Section 3.3.2. This leads to a formulation of the form

min
(𝑢

(𝑑)
𝑟)𝑑=1..3

𝑟=1..𝑅

∑︁
(𝑖,𝑗,𝑘)∈𝒮

[︁
loss𝑖,𝑗,𝑘

(︀ 𝑅∑︁
𝑟=1

𝑢(1)
𝑟 ⊗𝑢(2)

𝑟 ⊗𝑢(3)
𝑟

)︀
+

𝜆

3

𝑅∑︁
𝑟=1

(︁⃒⃒
𝑢
(1)
𝑟,𝑖 |3 +

⃒⃒
𝑢
(2)
𝑟,𝑗 |3 +

⃒⃒
𝑢
(3)
𝑟,𝑘|3

)︁]︁
.

For an example (𝑖, 𝑗, 𝑘), only the parameters involved in the computation of �̂�𝑖,𝑗,𝑘

are regularized. The computational complexity is thus the same as the currently

52

used weighted Frobenius norm regularizer. With 𝑞(1) (resp. 𝑞(2), 𝑞(3)) the marginal

probabilities of sampling a subject (resp. predicate, object), the weighting implied by

this regularization scheme is

‖𝑋‖*,3,𝑤 = ‖(3
√︀

𝑞(1) ⊗ 3
√︀
𝑞(2) ⊗ 3

√︀
𝑞(3))⊙𝑋‖*,3

We justify this weighting only by analogy with the matrix case discussed by [110]: to

make the weighted nuclear 3-norm of the all 1 tensor independent of its dimensions

for a uniform sampling (since the nuclear 3-norm grows as 3
√
𝑀𝑁𝑃 for an (𝑀,𝑁,𝑃)

tensor).

Comparatively, for the weighted version of the nuclear 2-norm analyzed in Yuan

and Zhang [127], the nuclear 2-norm of the all 1 tensor scales like
√
𝑁𝑀𝑃 . This

would imply a formulation of the form

min
(𝑢

(𝑑)
𝑟)𝑑=1..3

𝑟=1..𝑅

∑︁
(𝑖,𝑗,𝑘)∈𝒮

loss𝑖,𝑗,𝑘
(︁ 𝑅∑︁

𝑟=1

𝑢(1)
𝑟 ⊗ 𝑢(2)

𝑟 ⊗ 𝑢(3)
𝑟

)︁
+

𝜆

3

𝑅∑︁
𝑟=1

3∑︁
𝑑=1

‖
√︀
𝑞(𝑑) ⊙ 𝑢(𝑑)

𝑟 ‖32 .

Contrary to formulation (3.4.2), the optimization of formulation (3.4.2) with a

minibatch SGD leads to an update of every coefficients for each mini-batch considered.

Depending on the implementation, and size of the factors, there might be a large

difference in speed between the updates of the weighted nuclear {2, 3}-norm. In our

implementation, this difference for CP is of about 1.5× in favor of the nuclear 3-norm

on FB15K.

3.5 A New CP Objective

Since our evaluation objective is to rank either the left-hand side or right-hand side

of the predicates in our dataset, what we are trying to achieve is to model both

predicates and their reciprocal. This suggests appending to our input the reciprocals

of each predicates, thus factorizing [𝑌 ;2 𝑌] rather than 𝑌 , where [;2] is the mode-2

concatenation, and 𝑌𝑖,𝑗,𝑘 = 𝑌𝑘,𝑗,𝑖. After that, we only need to model the object fibers

53

Dataset N P Train Valid Test
WN18 41k 18 141k 5k 5k

WN18RR 41k 11 87k 3k 3k
FB15K 15k 1k 500k 50k 60k

FB15K-237 15k 237 272k 18k 20k
YAGO3-10 123k 37 1M 5k 5k

Table 3.1: Dataset statistics.

of this new tensor 𝑌 . We represent this transformation in Figure 3-1 (c). This

reformulation has an important side-effect: it makes our algorithm invariant to the

arbitrary choice of including a predicate or its reciprocal in the dataset. This property

was introduced as "Semantic Invariance" in Bailly et al. [5]. Another way of achieving

this invariance property would be to find the flipping of predicates that lead to the

smallest model. In the case of a CP parametrization, we would try to find the flipping

that leads to lowest tensor rank. This seems hopeless, given the NP-hardness of

computing the tensor rank.

More precisely, the instantaneous loss of a training triple (𝑖, 𝑗, 𝑘) becomes :

loss𝑖,𝑗,𝑘(𝑋) =−𝑋𝑖,𝑗,𝑘 + log
(︀∑︁

𝑘′

exp(𝑋𝑖,𝑗,𝑘′)
)︀

(3.6)

−𝑋𝑘,𝑗+𝑃,𝑖 + log
(︀∑︁

𝑖′

exp(𝑋𝑘,𝑗+𝑃,𝑖′)
)︀
.

At test time we use �̂�𝑖,𝑗,: to rank possible right hand sides for query (𝑖, 𝑗, ?) and

�̂�𝑘,𝑗+𝑃,: to rank possible left hand sides for query (?, 𝑗, 𝑘).

Using CP to factor the tensor described in (3.6), we beat the previous state of

the art on many benchmarks, as shown in Table 3.2. This reformulation seems to

help even the ComplEx parametrization, for which parameters are shared between

the entity embeddings of the first and third mode.

54

Model WN18 WN18RR FB15K FB15K-237 YAGO3-10

MRR H@10 MRR H@10 MRR H@10 MRR H@10 MRR H@10

P
as

t
SO

TA CP 0.08 0.13 - - 0.33 0.53 - - - -
ComplEx † 0.94 0.95 0.44 0.51 0.70 0.84 0.25 0.43 0.36 0.55
DistMult * 0.82 0.94 0.43 0.49 0.80 0.89 0.24 0.42 0.34 0.54
ConvE * 0.94 0.95 0.46 0.48 0.75 0.87 0.32 0.49 0.52 0.66
Best Published⋆ 0.94 0.97 0.46 0.51 0.84 0.93 0.32 0.49 0.52 0.66

St
an

da
rd

CP-N3 0.20 0.33 0.12 0.20 0.46 0.65 0.33 0.51 0.38 0.65
ComplEx-N3 0.95 0.96 0.47 0.54 0.80 0.89 0.35 0.54 0.49 0.68

R
ec

ip
ro

ca
l CP-FRO 0.95 0.95 0.46 0.48 0.86 0.91 0.34 0.51 0.54 0.68

CP-N3 0.95 0.96 0.47 0.54 0.86 0.91 0.36 0.54 0.57 0.71
ComplEx-FRO 0.95 0.96 0.47 0.54 0.86 0.91 0.35 0.53 0.57 0.71
ComplEx-N3 0.95 0.96 0.48 0.57 0.86 0.91 0.37 0.56 0.58 0.71

Table 3.2: *Results taken as best from Dettmers et al. [30] and Kadlec et al. [60].
†Results taken as best from Dettmers et al. [30] and Trouillon et al. [118].⋆ We give
the origin of each result on the Best Published row in appendix.

3.6 Experiments

We conducted all experiments on a Quadro GP 100 GPU. The code is available at

https://github.com/facebookresearch/kbc.

3.6.1 Datasets and Experimental Setup

WN18 and FB15K are popular benchmarks in the Knowledge Base Completion

community. The former comes from the WordNet database, was introduced in Bordes

et al. [14] and describes relations between words. The most frequent types of relations

are highly hierarchical (e.g., hypernym, hyponym). The latter is a subsampling

of Freebase limited to 15k entities, introduced in Bordes et al. [13]. It contains

predicates with different characteristics (e.g., one-to-one relations such as capital_of

to many-to-many such as actor_in_film).

Toutanova and Chen [117] and Dettmers et al. [30] identified train to test leakage

in both these datasets, in the form of test triplets, present in the train set for the

55

https://github.com/facebookresearch/kbc

reciprocal predicates. Thus, both of these authors created two modified datasets:

FB15K-237 and WN18RR. These datasets are harder to fit, so we expect regularization

to have more impact. Dettmers et al. [30] also introduced the dataset YAGO3-10,

which is larger in scale and doesn’t suffer from leakage. All datasets statistics are

shown in Table 3.1.

In all our experiments, we distinguish two settings: Reciprocal, in which we use the

loss described in equation (3.6) and Standard, which uses the loss in equation (3.1).

We compare our implementation of CP and ComplEx with the best published results,

then the different performances between the two settings, and finally, the contribution

of the regularizer in the reciprocal setting. In the Reciprocal setting, we compare

the weighted nuclear 3-norm (N3) against the regularizer described in (3.2) (FRO).

In preliminary experiments, the weighted nuclear 2-norm described in (3.4.2) did

not seem to perform better than N3 and was slightly slower. We used Adagrad [32]

as our optimizer, whereas Kadlec et al. [60] favored Adam [63], because preliminary

experiments didn’t show improvements.

We ran the same grid for all algorithms and regularizers on the FB15K, FB15K-237,

WN18, WN18RR datasets, with a rank set to 2000 for ComplEx, and 4000 for CP.

Our grid consisted of two learning rates: 10−1 and 10−2, two batch-sizes: 25 and

100, and regularization coefficients in [0, 10−3, 5.10−3, 10−2, 5.10−2, 10−1, 5.10−1]. On

YAGO3-10, we limited our models to rank 1000 and used batch-sizes 500 and 3000,

the rest of the grid was identical. We used the train/valid/test splits provided with

these datasets and measured the filtered Mean Reciprocal Rank (MRR) and Hits@10

(Bordes et al. [13]). We used the filtered MRR on the validation set for early stopping

and report the corresponding test metrics. In this setting, an epoch for ComplEx with

batch-size 100 on FB15K took about 110𝑠 and 325𝑠 for a batch-size of 25. We trained

for 100 epochs to ensure convergence, reported performances were reached within the

first 25 epochs.

All our results are reported in Table 3.2 and will be discussed in the next subsections.

Besides our implementations of CP and ComplEx, we include the results of ConvE

and DistMult in the baselines. The former because Dettmers et al. [30] includes

56

performances on the WN18RR and YAGO3-10 benchmarks, the latter because of

the good performances on FB15K of DistMult and the extensive experiments on

WN18 and FB15K reported in Kadlec et al. [60]. The performances of DistMult on

FB15K-237, WN18RR and YAGO3-10 may be slightly underestimated, since our

baseline CP results are better. To avoid clutter, we did not include in our table of

results algorithms that make use of external data such as types [67], external word

embeddings [117], or using path queries as regularizers [47]. The published results

corresponding to these methods are subsumed in the "Best Published" line of Table 3.2,

which is taken, for every single metric and dataset, as the best published result we

were able to find.

3.6.2 Reimplementation of the Baselines

The performances of our reimplementation of CP and ComplEx appear in the middle

rows of Table 3.2 (Standard setting). We only kept the results for the nuclear 3-norm,

which didn’t seem to differ from those with the Frobenius norm. Our results are

slightly better than their published counterparts, going from 0.33 to 0.46 filtered MRR

on FB15K for CP and 0.70 to 0.80 for ComplEx. This might be explained in part

by the fact that in the Standard setting (3.2) we use a multi-class log-loss, whereas

Trouillon et al. [118] used binomial negative log-likelihood. Another reason for this

increase can be the large rank of 2000 that we chose, where previously published results

used a rank of around 200; the more extensive search for optimization/regularization

parameters and the use of nuclear 3-norm instead of the usual regularization are also

most likely part of the explanation.

3.6.3 Standard vs Reciprocal

In this section, we compare the effect of reformulation (3.6), that is, the middle and

bottom rows of Table 3.2. The largest differences are obtained for CP, which becomes

a state of the art contender going from 0.2 to 0.95 filtered MRR on WN18, or from

0.46 to 0.86 filtered MRR on FB15K.For ComplEx, we notice a weaker, but consistent

57

1-1 m-1 1-m m-m
CP Standard 0.45 0.71 0.24 0.44
CP Reciprocal 0.77 0.92 0.71 0.86
ComplEx Standard 0.87 0.92 0.59 0.81
ComplEx Reciprocal 0.88 0.92 0.71 0.87

Table 3.3: Average MRR per relation type on FB15K.

improvement by using our reformulation, with the biggest improvements observed

on FB15K and YAGO3-10. Following the analysis in Bordes et al. [13], we show

in Table 3.3 the average filtered MRR as a function of the degree of the predicates.

We compute the average in and out degrees on the training set, and separate the

predicates in 4 categories : 1-1, 1-m, m-1 and m-m, with a cut-off at 1.5 on the average

degree. We include reciprocal predicates in these statistics. That is, a predicate with

an average in-degree of 1.2 and average out-degree of 3.2 will count as a 1-m when we

predict its right-hand side, and as an m-1 when we predict its left-hand side. Most of

our improvements come from the 1-m and m-m categories, both on ComplEx and CP.

3.6.4 Frobenius vs Nuclear 3

We focus now on the effect of our norm-based N3 regularizer, compared to the

Frobenius norm regularizer favored by the community. Comparing the four last

rows of Table 3.2, we notice a small but consistent performance gain across datasets.

The biggest improvements appear on the harder datasets WN18RR, FB15K-237 and

YAGO3-10. We checked on WN18RR the significance of that gain with a Signed Rank

test on the rank pairs for CP.

3.6.5 Effect of Optimization Parameters

During these experiments, we noticed a heavy influence of optimization hyper-

parameters on final results. This influence can account for as much as 0.1 filtered

MRR and is illustrated in Figure 3-2.

58

0 20 40 60 80 100
Epochs

0.2

0.3

0.4

0.5

M
R

R

mini-batch size = 100
mini-batch size = 25

0 20 40 60 80 100
Epochs

0.6

0.7

0.8

0.9

M
R

R

mini-batch size = 100
mini-batch size = 25

Figure 3-2: Effect of the batch-size on FB15K in the Standard (left) and Reciprocal
(right) settings, other parameters being equal. The difference is large even after 100
epochs and the effect is inverted in the two settings, making it hard to choose the
batch-size a priori.

3.7 Conclusion and Discussion

The main contribution of this paper is to isolate and systematically explore the effect

of different factors for large-scale knowledge base completion. While the impact of

optimization parameters was well known already, neither the effect of the formulation

(adding reciprocals doubles the mean reciprocal rank on FB15K for CP) nor the

impact of the regularization was properly assessed. The conclusion is that the CP

model performs nearly as well as the competitors when each model is evaluated in its

optimal configuration. We believe this observation is important to assess and prioritize

directions for further research on the topic.

In addition, our proposal to use nuclear 𝑝-norm as regularizers with 𝑝 ̸= 2 for

tensor factorization in general is of independent interest.

The results we present leave several questions open. Notably, whereas we give

definite evidence that CP itself can perform extremely well on these datasets as long

as the problem is formulated correctly, we do not have a strong theoretical justification

as to why the differences in performances are so significant.

59

60

Chapter 4

Constrained Tucker parametrization

When it is obvious that the goals

cannot be reached, don’t adjust the

goals, adjust the action steps.

Confucius

The leading approaches to tensor completion and link prediction are based on

low-rank parametrization of tensors (CP). While these approaches were originally

motivated by low rank approximations, the best performances are usually obtained for

ranks as high as permitted by computation constraints. For large scale factorization

problems where the factor dimensions have to be kept small, the performances of

these approaches tend to drop drastically. The other main tensor factorization model,

Tucker parametrization, is more flexible than CP for fixed factor dimensions, so we

expect Tucker-based approaches to yield better performance under strong constraints

on the number of parameters. However, as we show in this paper through experiments

on standard benchmarks of link prediction in knowledge bases, ComplEx, [118], a

variant of CP, achieves similar performances to recent approaches based on Tucker

parametrization on all operating points in terms of number of parameters. In a

control experiment we show that the adaptive optimization algorithms based on

diagonal rescaling, such as Adagrad, may be too slow for practical application of

Tucker parametrization to large-scale tensor completion. We present a new algorithm

61

for a constrained version of Tucker which implicitly applies Adagrad to a CP-based

model with an additional projection of the embeddings onto a fixed lower dimensional

subspace. The resulting Tucker-style extension of ComplEx obtains substantial gains

on some datasets under constraints on the number of parameters.

4.1 Introduction

The problems of representation learning and link prediction in multi-relational data

can be formulated as a binary tensor completion problem, where the tensor is obtained

by stacking the adjacency matrices of every relations between entities. This tensor can

then be intrepreted as a "knowledge base", and contains triples (subject, predicate,

object) representing facts about the world. Link prediction in knowledge bases aims

at automatically discovering missing facts [12, 91, 13, 92, 89].

State of the art methods use low-rank parametrization of tensors [53] or variants of

it [118, 61, 70]. While initially motivated by low-rank assumptions on the underlying

ground-truth tensor, the best performances are obtained by setting the rank as high

as permitted by computational constraints, using tensor norms for regularization [70].

However, for large scale data where computational or memory constraints require

ranks to be low [72], performances drop drastically.

Tucker parametrization is another multilinear model which allows richer interactions

between entities and predicate vectors. A special case of Tucker parametrization is

RESCAL [91], in which the relations are represented by matrices and entities factors

are shared for subjects and objects. However, an evaluation of this model in Nickel

et al. [93] shows that RESCAL lags behind other methods on several benchmarks of

interest. Recent work have obtained more competitive results with similar models

[7, 121], using different regularizers or deep learning heuristics such as dropout and

label smoothing. Despite these recent efforts, learning Tucker parametrizations remains

mostly unresolved. Wang et al. [121] does not achieve state of the art results on

standard benchmarks, and we show (see Figure 4-4) that the performances reported

by Balazevic et al. [7] are actually matched by ComplEx [118, 70] optimized with

62

Adam, which has less hyperparameters.

In this work, we overcome some of the difficulties associated with learning a

Tucker model for knowledge base completion. Balazevic et al. [7] use deep-learning

mechanisms such as batch normalization [54], dropout [115] or learning-rate annealing

to address both regularization and optimization issues. Our approach is different:

We factorize the core tensor of the Tucker parametrizations with CP to obtain a

formulation which is closer to CP and better understand what difficulties appear. This

yields a simple approach, which has a single regularization hyperparameter to tune

for a fixed model specification.

The main novelty of our approach is a more careful application of adaptive

gradient techniques. State-of-the-art methods for tensor completion use optimization

algorithms with adaptive diagonal rescaling such as Adagrad [32] or Adam [63].

Through control experiments in which our model is equivalent to CP up to a fixed

rotation of the embeddings, we show that one of the difficulties in training Tucker-style

parametrizations can be attributed to the lack of invariance to rotation of the diagonal

rescaling. Focusing on Adagrad, we propose a different update rule that is equivalent

to implicitely applying Adagrad to a CP model with a projection of the embedding to

a lower dimensional subspace.

Combining the Tucker formulation and the implicit Adagrad update, we obtain

performances that match state-of-the-art methods on the standard benchmarks and

achieve significanly better results for small embedding sizes on several datasets.

Compared to the best current algorithm for Tucker parametrization of Balazevic

et al. [7], our approach has less hyperparameters, and we effectively report better

performances than the implementation of ComplEx of Lacroix et al. [70] in the regime

of small embedding dimensions.

We discuss the related work in the next section. In Section 4.3, we present a

variant of the Tucker parametrization which allows to interpolate between Tucker and

CP. The extreme case of this variant, which is equivalent to CP up to a fixed rotation

of the embedding, serves as control model to highlight the deficiency of the diagonal

rescaling of Adagrad for Tucker-style parametrizations in experiments reported in

63

Section 4.4 . We present the modified version of Adagrad in Section 4.5 and present

experimental results on standard benchmarks of knowledge base completion in Section

4.7.

4.2 Link prediction in knowledge bases

Notation Tensors and matrices are denoted by uppercase letters. For a matrix 𝑈 ,

𝑢𝑖 is the vector corresponding to the 𝑖-th row of 𝑈 . The tensor product is written ⊗
and the Hadamard product (i.e., elementwise product) is written ⊙.

4.2.1 Learning setup

A knowledge base consists of a set 𝑆 of triples (subject, predicate, object) that represent

(true) known facts. The goal of link prediction is to recover facts that are true but

not in the database. The data is represented as a tensor �̃� ∈ {0, 1}𝑁×𝐿×𝑁 for 𝑁 the

number of entities and 𝐿 the number of predicates. Given a training set of triples, the

goal is to provide a ranking of entities for queries of the type (subject, predicate, ?)

and (?, predicate, object). Following Lacroix et al. [70], we use the cross-entropy as a

surrogate of the ranking loss. As proposed by Lacroix et al. [70] and Kazemi and Poole

[61], we include reciprocal predicates: for each predicate 𝑃 in the original dataset, and

given an item 𝑜, each query of the form (?, 𝑃 , 𝑜) is reformulated as a query (𝑜, 𝑃−1,

?), where 𝑜 is now the subject of 𝑃−1. This doubles the effective number of predicates

but reduces the problem to queries of the type (subject, predicate, ?) only.

For a given triple (𝑖, 𝑗, 𝑘) ∈ 𝑆, the training loss function for a tensor 𝑋 is then

ℓ𝑖,𝑗,𝑘(𝑋) = −𝑋𝑖,𝑗,𝑘 + log
(︁∑︁

𝑘′ ̸=𝑘

exp(𝑋𝑖,𝑗,𝑘′)
)︁
. (4.1)

For a tensor 𝑋(𝜃) parameterized by 𝜃, the parameters 𝜃 are found by minimizing

64

the regularized empirical risk with regularizer Λ:

𝜃 = argmin
𝜃

1

|𝑆|
∑︁

(𝑖,𝑗,𝑘)∈𝑆

ℓ𝑖,𝑗,𝑘(𝑋(𝜃)) + 𝜈Λ(𝜃). (4.2)

This work studies specific models for 𝑋(𝜃), inspired by CP and Tucker parametrizations.

We discuss the related work on tensor parametrizations and link prediction in knowledge

bases below.

4.2.2 Related work

CP and variants

The low-rank parametrization (CP) of a tensor 𝑋 is defined entrywise by

∀𝑖, 𝑗, 𝑘, 𝑋𝑖,𝑗,𝑘 = ⟨𝑢𝑖, 𝑣𝑗, 𝑤𝑘⟩ :=
𝑑∑︁

𝑟=1

𝑢𝑖𝑟𝑣𝑗𝑟𝑤𝑘𝑟.

The smallest value of 𝑑 for which this parametrization exists is the rank of 𝑋. Each

element 𝑋𝑖,𝑗,𝑘 is thus represented as a multi-linear product of the 3 embeddings in R𝑑

associated respectively to the 𝑖th subject, the 𝑗th predictate and the 𝑘th object.

CP currently achieves near state-of-the-art performances on standard benchmarks

of knowledge base completion [61, 70]. Nonetheless, the best reported results are

with the ComplEx model [118], which learns complex-valued embeddings and sets the

embeddings of the objects to be the complex conjugate of the embeddings of subjects,

i.e., 𝑤𝑘 = �̄�𝑘. Prior to ComplEx, Dismult was proposed [126] as a variant of CP

with 𝑤𝑘 = 𝑢𝑘. While this model obtained good performances [60], it can only model

symmetric relations and does not perform as well as ComplEx. CP-based models

are optimized with vanilla Adam or Adagrad and a single regularization parameter

[118, 60, 70] and do not require additional heuristics for training.

65

Tucker Parametrization and its variants

Given a tensor 𝑋 of size 𝑁×𝐿×𝑁 , the Tucker parametrization of 𝑋 is defined

entrywise by

∀𝑖, 𝑗, 𝑘, 𝑋𝑖,𝑗,𝑘 = ⟨𝑢𝑖 ⊗ 𝑣𝑗 ⊗ 𝑤𝑘, 𝐶⟩

:=

𝑑1∑︁
𝑟1=1

𝑑2∑︁
𝑟2=1

𝑑3∑︁
𝑟3=1

𝐶𝑟1,𝑟2,𝑟3𝑢𝑖𝑟1𝑣𝑗𝑟2𝑤𝑘𝑟3 .

The triple (𝑑1, 𝑑2, 𝑑3) are the rank parameters of the parametrization. We also use

a multilinear product notation 𝑋 = [[𝐶;𝑈, 𝑉,𝑊]], where 𝑈, 𝑉,𝑊 are the matrices

whose rows are respectively 𝑢𝑗, 𝑣𝑘, 𝑤𝑙 and 𝐶 the three dimensional 𝑑1 × 𝑑2 × 𝑑3 core

tensor. Note that the CP parametrization is a Tucker parametrizatioin in which

𝑑1 = 𝑑2 = 𝑑3 = 𝑑 and 𝐶 is the identity, which we write [[𝑈, 𝑉,𝑊]]. With a non-trivial

core tensor, Tucker parametrization is thus more flexible than CP for fixed embedding

size. In knowledge base applications, we typically have 𝑑 ≤ 𝐿 ≪ 𝑁 , so the vast

majority of the model parameters are in the embedding matrices of the entities 𝑈

and 𝑊 . When constraints on the number of model parameters arise (e.g., memory

constraints), Tucker models appear as natural candidates to increase the expressivity

of the parametrization compared to CP with limited impact on the total number of

parameters.

While many variants of the Tucker parametrization have been proposed in the

literature on tensor factorization [see e.g., 64], the first approach based on Tucker for

link prediction in knowledge bases is RESCAL [91]. RESCAL uses a special form of

Tucker parametrization in which the object and subject embeddings are shared, i.e.,

𝑈 = 𝑊 , and it does not compress the relation matrices. In the multilinear product

notation above, a RESCAL model is thus written as 𝑋 = [[𝐶;𝑈, 𝐼, 𝑈]]. Despite some

success on a few smaller datasets, RESCAL performances drop on larger datasets [93].

This decrease in performances has been attributed either to improper regularization

[91] or optimization issues [125]. Balazevic et al. [7] revisits Tucker parametrization

in the context of large-scale knowledge bases and resolves some of the optimization

66

and regularization issues using learning rate annealing, batch-normalization and

dropout. It comes at the price of more hyperparameters to tune for each dataset (label

smoothing, three different dropouts and a learning rate decay), and as we discuss in

our experiments, the results they report are not better than ComplEx for the same

number of parameters.

Two methods were previously proposed to interpolate between the expressivity

of RESCAL and CP. Xue et al. [125] expands the HolE model [93] (and thus the

ComplEx model [51]) based on cross-correlation of embeddings to close the gap in

expressivity with the Tucker parametrization for a fixed embedding size. Jenatton et al.

[56] express the relation matrices in RESCAL as low-rank combination of a family of

matrices. We describe the link between these approaches and ours in Appendix B.1.3.

None of these approach however studied the effect of their formulation on optimization,

and reported results inferior to ours.

Other approaches

(Graph) neural networks for link prediction Several methods have introduced

models that go beyond the form of Tucker and canonical parametrizations. ConvE

[30] uses a convolution on a 2D tiling of the subject and relation embeddings as input

to a 2-layer neural net that produces a new embedding for the pair, then compares to

the object embedding. Graph neural networks [101, 95, 74, 19] have recently gained

popularity and have been applied to link prediction in knowledge bases by Schlichtkrull

et al. [102]. This model uses a graph convolutional architecture to generate a variant

of CP.

Poincaré embeddings Poincaré embeddings have been proposed as an alternative

to usual tensor parametrization approaches to learn smaller embeddings when the

relations are hierarchical [94]. The method has recently been extended to link predic-

tion in relational data with very good performance trade-offs for small dimensional

embeddings on the benchmark using WordNet [6], which contains relationships such as

hypernyms and hyponyms which are purely hierarchical. However, such good results

67

do not extend to other benchmarks.

Approximate adaptive optimization methods

The Adagrad [32] optimization algorithm is used in practice only in its diagonal

approximated form. This scheme is particularly efficient when large embedding tables

are involved, since sparse gradients are naturally handled. In this paper, we start

from the diagonal approximation of Adagrad and make it invariant to an arbitrary

rotation of the parameters. However, other efficient approximations of Adagrad have

been proposed that are naturally robust to such rotations. Krummenacher et al. [68]

suggests to use low-dimensional random sketches of the gradient and Agarwal et al. [2]

only uses a small window of gradients to compute the preconditioning. These updates

scale with the full number of parameters even for sparse updates. On the contrary,

our algorithm remains as efficient in practice for very sparse gradients. Gupta et al.

[46] has memory requirements which scale with the square of the number of entities,

which is not applicable in our case.

4.3 Interpolating between CP and Tucker

In order to better understand the underlying difficulties in learning (variants of)

Tucker parametrizations compared to CP, our analysis starts from a Tucker model

in which the core tensor is itself decomposed with CP. Given a 𝑁 × 𝐿×𝑁 tensor, a

fixed 𝑑 and assuming a (𝑑, 𝑑, 𝑑) Tucker parametrization to simplify notation, a Tucker

model where the core tensor is itself decomposed with a rank-𝐷 CP can be written as

(details are given in Appendix B.1.1):

𝑋𝑖𝑗𝑘 = ⟨𝑢𝑖 ⊗ 𝑣𝑗 ⊗ 𝑤𝑘, 𝐶⟩ = ⟨𝑃1𝑢𝑖, 𝑃2𝑣𝑗, 𝑃3𝑤𝑘⟩

or equivalently 𝑋 = [[𝑈𝑃⊤
1 , 𝑉 𝑃⊤

2 ,𝑊𝑃⊤
3]],

where 𝑃1, 𝑃2, 𝑃3 are all 𝐷 × 𝑑 matrices. Since most knowledge bases have much fewer

predicates than entities (𝐿≪ 𝑁), the dimension of the predictate factors has little

68

impact on the overall number of model parameters. So in the remainder of the paper,

we always consider 𝑃2 = 𝐼. Learning matrices 𝑈, 𝑉,𝑊, 𝑃1, 𝑃3 of this parametrizatioin

simultaneously leads to the following model, which we call CP-Tucker (CPT):

(CPT) 𝑋𝑖𝑗𝑘 = ⟨𝑃1𝑢𝑖, 𝑣𝑗, 𝑃3𝑤𝑘⟩

𝑢𝑖, 𝑤𝑘 ∈ R𝑑, 𝑣𝑗 ∈ R𝐷, 𝑃𝑖 ∈ R𝐷×𝑑.

The CPT model is similar to a CP model except that the embedding matrices 𝑈 and

𝑊 have an additional low-rank constraint (𝑑 instead of 𝐷). We say that the model

interpolates between CP and Tucker because for 𝐷 = 𝑑 it is equivalent to CP (as long

as 𝑃1 and 𝑃3 are full rank), whereas for 𝐷 = 𝑑2 we recover a full Tucker model because

the matrices 𝑃1 and 𝑃3 can be chosen such that ⟨𝑃1𝑢𝑖, 𝑣𝑗, 𝑃3𝑤𝑘⟩ = 𝑢𝑖Mat(𝑣𝑗)𝑤
𝑇
𝑘 , where

Mat is the operator that maps a 𝑑2 vector to a 𝑑× 𝑑 matrix (see Appendix B.1.2).

CPT is similar to CANDELINC [23], except that in CANDELINC the factors 𝑈 ,

𝑉 and 𝑊 are fixed and used to compress the data in order to efficiently learn the

𝑃𝑖. Closer to CPT, Bro and Andersson [17] first learn a Tucker3 parametrization of

𝑋 before applying CANDELINC using the learned factors. These methods are only

applicable to least-square estimation, and for tensors of smaller scale than knowledge

bases.

Fixed projection matrices: The Constrained Tucker (PCP)

Parametrization In order to clarify the difficulty that arise when learning a CPT

model compared to a CP model, we study a simpler model in which the matrices 𝑃1

and 𝑃3 are not learned but rather fixed during training and taken as random matrices

with orthonormal columns. We call the resulting model the constrained tucker (PCP)

parametrization, since 𝑃1, 𝑃3 project the embeddings of dimension 𝑑 into a higher

dimension 𝐷:

(PCP) 𝑋𝑖𝑗𝑘 = ⟨𝑃1𝑢𝑖, 𝑣𝑗, 𝑃3𝑤𝑘⟩

𝑢𝑖, 𝑤𝑘 ∈ R𝑑, 𝑣𝑗 ∈ R𝐷, fixed 𝑃1, 𝑃3 ∈ R𝐷×𝑑

69

101 102 103

Parameters per entities

0.250

0.275

0.300

0.325

0.350

M
R
R
(h
ig
he
r
is
b
et
te
r)

CP (Adagrad)

CPT (Adagrad)

PCP (Adagrad)

PCP (Adaimp)

(a) Performances on FB15K-237 in the con-
trol experiments for 𝐷 = 𝑑, i.e., when PCP
is a reparameterization of CP. We observe
that PCP and CPT with vanilla Adagrad,
which are variants of Tucker, underperform
compared to CP. As expected in this case
𝐷 = 𝑑, our modification of the Adagrad up-
date leads to the same performances for PCP
as for CP.

0 200 400
Sorted Adagrad coefficients

10−7

10−6

V
al
ue

(l
og

sc
al
e)

PCP Adagrad

CP

(b) Adagrad coefficients for subject/object
embedding matrices in the control experi-
ments (𝐷 = 𝑑) for CP and PCP, averaged
by columns (i.e., embedding dimension) and
sorted by values. Adagrad coefficients decay
exponentially for CP, but the values are simi-
lar across most dimensions in PCP: the fixed
unitary transform in PCP removes the benefit
of Adagrad.

Figure 4-1: Results of the control experiment of Section 4.4.

When 𝐷 = 𝑑 the matrices 𝑃𝑖 are then fixed unitary transformations. The PCP (or

CPT) model in this case 𝐷 = 𝑑 is then equivalent to a CP model, up to a fixed

invertible transformation of the embeddings. The capacity of the model grows beyond

that of CP as 𝐷 increases up to 𝑑2.

4.4 Optimization issues with CPT and PCP

As discussed in the related works, previous results suggest that Tucker models are

more difficult to train than CP models. The goal of this section is to isolate an issue

faced with CPT/PCP models when trained with vanilla adaptive gradient methods

such as Adagrad or Adam.

4.4.1 Control experiment: Unitary 𝑃1 and 𝑃3 in PCP

When 𝐷 = 𝑑 in PCP, the model becomes equivalent to CP. Indeed, the matrices 𝑃1

and 𝑃3 are unitary (𝑃1𝑃
⊤
1 = 𝑃3𝑃

⊤
3 = 𝐼) and so [[(𝑈𝑃1)𝑃

⊤
1 , 𝑉, (𝑊𝑃3)𝑃

⊤
3]] = [[𝑈, 𝑉,𝑊]].

There is no practical interest in considering this degenerate case of PCP, we only use

70

it in the following toy experiment to exhibit one of the difficulties encountered when

training PCP.

We perform a simple control experiment in which we take one of the standard

benchmarks of link prediction in knowledge bases, called FB15K-237, and train a CP

model for different values of the rank 𝐷 and a PCP model with 𝐷 = 𝑑 with vanilla

Adagrad. The full experimental protocol, including hyperparameter tuning, is similar

to our main experiments and is described in Section 4.7.2. Figure 4-1a plots the

performances in terms of the standard metric mean reciprocal rank (higher is better)

as a function of 𝐷 of CP (blue curve) and PCP (red curve, called PCP (Adagrad)).

We observe that, after a fixed amount of epochs, CP obtains significantly better

performances than CPT for larger embedding dimension 𝐷. Since in this toy ex-

periment CP and PCP can represent exactly the same tensors and have equivalent

regularizations, the only difference between the algorithms that can explain the differ-

ence in performances is in how the optimization is carried out, namely the diagonal

rescaling performed by Adagrad: Adagrad adapts the learning rate on a per-parameter

basis, depending on previous and current gradients, and is therefore not invariant by

the addition of the matrices 𝑃1 and 𝑃2 even if these are unitary (we provide the formal

justification in the next section). This is shown experimentally in Figure 4-1b where

we plot the average Adagrad coefficients for each embedding dimensions (i.e., adagrad

coefficients of subject/object embedding matrices averaged by column). The addition

of the random 𝑃1 and 𝑃2 flattens the Adagrad weights, which in turn removes all the

benefit of the adaptive rescaling of the algorithm.

For reference, we also tried to directly learn all parameters including 𝑃1 and 𝑃3

(i.e., learn a CPT model) with vanilla Adagrad. The performances obtained are also

lower than those of CP, as shown in Figure 4-1a (orange curve).

4.5 A rotation invariant AdaGrad: Adaimp

In this section, we study the optimization problem in more details, and more precisely

the effect of the diagonal rescaling performed by Adagrad. As a remainder, given a

71

Diag

Diag

P1
<latexit sha1_base64="sgy0lmzz8ip/LF8mY/tS+5Q4IIQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh0bf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHP/418</latexit>

P>
1<latexit sha1_base64="kGlYJkBsRV2g68bWNAkSe6J7gM8=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKzucZxwP6IDJULBKFqpXe95D12Mk16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezeyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMn2e9IXmDOXYEsq0sLcSNqSaMrQRFW0I3uLLy6RZrXjnlerdRbl2ncdRgGM4gTPw4BJqcAt1aAADCc/wCm/Oo/PivDsf89YVJ585gj9wPn8ArM6Puw==</latexit>

P>
1<latexit sha1_base64="kGlYJkBsRV2g68bWNAkSe6J7gM8=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKzucZxwP6IDJULBKFqpXe95D12Mk16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezeyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMn2e9IXmDOXYEsq0sLcSNqSaMrQRFW0I3uLLy6RZrXjnlerdRbl2ncdRgGM4gTPw4BJqcAt1aAADCc/wCm/Oo/PivDsf89YVJ585gj9wPn8ArM6Puw==</latexit>

g(t)i
<latexit sha1_base64="OFZ+S2hOQ47XhClkM97snXc9mbU=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhDiJexGQY9BLx4jmIcka5idTJIhM7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXGAtu0PO+nZXVtfWNzdxWfntnd2+/cHDYMFGiKavTSES6FRLDBFesjhwFa8WaERkK1gxHN1O/+cS04ZG6x3HMAkkGivc5JWilh0GXP6YlPJt0C0Wv7M3gLhM/I0XIUOsWvjq9iCaSKaSCGNP2vRiDlGjkVLBJvpMYFhM6IgPWtlQRyUyQzg6euKdW6bn9SNtS6M7U3xMpkcaMZWg7JcGhWfSm4n9eO8H+VZByFSfIFJ0v6ifCxcidfu/2uGYUxdgSQjW3t7p0SDShaDPK2xD8xZeXSaNS9s/LlbuLYvU6iyMHx3ACJfDhEqpwCzWoAwUJz/AKb452Xpx352PeuuJkM0fwB87nD2MTkCI=</latexit>

G(t)
i

<latexit sha1_base64="1HuM+5OW1Ut3nJIjqMW6F6gdMEU=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BItQL2W3CnosetBjBfsh7VqyabYNTbJLMiuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LBDbjut5NbWV1b38hvFra2d3b3ivsHTRMlmrIGjUSk2wExTHDFGsBBsHasGZGBYK1gdD31W09MGx6pexjHzJdkoHjIKQErPdz0+GNahtNJr1hyK+4MeJl4GSmhDPVe8avbj2gimQIqiDEdz43BT4kGTgWbFLqJYTGhIzJgHUsVkcz46ezgCT6xSh+HkbalAM/U3xMpkcaMZWA7JYGhWfSm4n9eJ4Hw0k+5ihNgis4XhYnAEOHp97jPNaMgxpYQqrm9FdMh0YSCzahgQ/AWX14mzWrFO6tU785Ltassjjw6QseojDx0gWroFtVRA1Ek0TN6RW+Odl6cd+dj3ppzsplD9AfO5w8xk5AC</latexit>

g(t)i
<latexit sha1_base64="OFZ+S2hOQ47XhClkM97snXc9mbU=">AAAB8HicbVDLSgNBEOz1GeMr6tHLYhDiJexGQY9BLx4jmIcka5idTJIhM7PLTK8QlnyFFw+KePVzvPk3TpI9aGJBQ1HVTXdXGAtu0PO+nZXVtfWNzdxWfntnd2+/cHDYMFGiKavTSES6FRLDBFesjhwFa8WaERkK1gxHN1O/+cS04ZG6x3HMAkkGivc5JWilh0GXP6YlPJt0C0Wv7M3gLhM/I0XIUOsWvjq9iCaSKaSCGNP2vRiDlGjkVLBJvpMYFhM6IgPWtlQRyUyQzg6euKdW6bn9SNtS6M7U3xMpkcaMZWg7JcGhWfSm4n9eO8H+VZByFSfIFJ0v6ifCxcidfu/2uGYUxdgSQjW3t7p0SDShaDPK2xD8xZeXSaNS9s/LlbuLYvU6iyMHx3ACJfDhEqpwCzWoAwUJz/AKb452Xpx352PeuuJkM0fwB87nD2MTkCI=</latexit>

G(t)
i

<latexit sha1_base64="1HuM+5OW1Ut3nJIjqMW6F6gdMEU=">AAAB8HicbVBNSwMxEM3Wr1q/qh69BItQL2W3CnosetBjBfsh7VqyabYNTbJLMiuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMC2LBDbjut5NbWV1b38hvFra2d3b3ivsHTRMlmrIGjUSk2wExTHDFGsBBsHasGZGBYK1gdD31W09MGx6pexjHzJdkoHjIKQErPdz0+GNahtNJr1hyK+4MeJl4GSmhDPVe8avbj2gimQIqiDEdz43BT4kGTgWbFLqJYTGhIzJgHUsVkcz46ezgCT6xSh+HkbalAM/U3xMpkcaMZWA7JYGhWfSm4n9eJ4Hw0k+5ihNgis4XhYnAEOHp97jPNaMgxpYQqrm9FdMh0YSCzahgQ/AWX14mzWrFO6tU785Ltassjjw6QseojDx0gWroFtVRA1Ek0TN6RW+Odl6cd+dj3ppzsplD9AfO5w8xk5AC</latexit>

P>
1<latexit sha1_base64="kGlYJkBsRV2g68bWNAkSe6J7gM8=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKzucZxwP6IDJULBKFqpXe95D12Mk16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezeyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMn2e9IXmDOXYEsq0sLcSNqSaMrQRFW0I3uLLy6RZrXjnlerdRbl2ncdRgGM4gTPw4BJqcAt1aAADCc/wCm/Oo/PivDsf89YVJ585gj9wPn8ArM6Puw==</latexit>

Adagrad in Rd
<latexit sha1_base64="Nx3XjrIW1FIfiZLd3leM08vqg2M=">AAACCXicbVC7TgMxEPTxDOF1QEljESFRRXcBCcoADWVA5CElIfL5nMSK7TvZe4jodC0Nv0JDAUK0/AEdf4PzKCBhpJVGM7va3QliwQ143rezsLi0vLKaW8uvb2xubbs7uzUTJZqyKo1EpBsBMUxwxarAQbBGrBmRgWD1YHA58uv3TBseqVsYxqwtSU/xLqcErNRxcQvYA2iZnoekp0mIucJZSxLoB0F6k92FHbfgFb0x8Dzxp6SApqh03K9WGNFEMgVUEGOavhdDOyUaOBUsy7cSw2JCB6THmpYqIplpp+NPMnxolRB3I21LAR6rvydSIo0ZysB2jm40s95I/M9rJtA9a6dcxQkwRSeLuonAEOFRLDjkmlEQQ0sI1dzeimmfaELBhpe3IfizL8+TWqnoHxdL1yeF8sU0jhzaRwfoCPnoFJXRFaqgKqLoET2jV/TmPDkvzrvzMWldcKYze+gPnM8f64maeA==</latexit>

projection to Rd
<latexit sha1_base64="49s6HNdmbfBSVl6lDJUbLmAu1CM=">AAACDHicbVC7TsMwFHV4lvIqMLJYVEhMVVKQYKxgYSyIPqQmVI7jtKa2E9kOooryASz8CgsDCLHyAWz8DU6bAVqOZOnonHvle44fM6q0bX9bC4tLyyurpbXy+sbm1nZlZ7etokRi0sIRi2TXR4owKkhLU81IN5YEcZ+Rjj+6yP3OPZGKRuJGj2PicTQQNKQYaSP1K1VXkwcteRrL6I7gXIQ6gpnLkR76fnqd3QZmyq7ZE8B54hSkCgo0+5UvN4hwwonQmCGleo4day9FUlPMSFZ2E0VihEdoQHqGCsSJ8tJJmAweGiWAYSTNExpO1N8bKeJKjblvJvMb1ayXi/95vUSHZ15KRZxoIvD0ozBhedy8GRhQaQpgY0MQltTcCvEQSYS16a9sSnBmI8+Tdr3mHNfqVyfVxnlRRwnsgwNwBBxwChrgEjRBC2DwCJ7BK3iznqwX6936mI4uWMXOHvgD6/MHC56cOw==</latexit>

Adagrad in RD
<latexit sha1_base64="o+JYCsmKrkOmEZ+FEr+qrd3aiIU=">AAACCXicbVC5TsNAEF2HK4TLQEmzIkKiiuyABGU4CsqAyCHFIVqvN8kq67W1O0ZEllsafoWGAoRo+QM6/obNUUDCk0Z6em9GM/P8WHANjvNt5RYWl5ZX8quFtfWNzS17e6euo0RRVqORiFTTJ5oJLlkNOAjWjBUjoS9Ywx9cjPzGPVOaR/IWhjFrh6QneZdTAkbq2NgD9gAqTM8C0lMkwFzizAsJ9H0/vcnuLjt20Sk5Y+B54k5JEU1R7dhfXhDRJGQSqCBat1wnhnZKFHAqWFbwEs1iQgekx1qGShIy3U7Hn2T4wCgB7kbKlAQ8Vn9PpCTUehj6pnN0o571RuJ/XiuB7mk75TJOgEk6WdRNBIYIj2LBAVeMghgaQqji5lZM+0QRCia8ggnBnX15ntTLJfeoVL4+LlbOp3Hk0R7aR4fIRSeogq5QFdUQRY/oGb2iN+vJerHerY9Ja86azuyiP7A+fwC7CZpY</latexit>

projection to Rd
<latexit sha1_base64="49s6HNdmbfBSVl6lDJUbLmAu1CM=">AAACDHicbVC7TsMwFHV4lvIqMLJYVEhMVVKQYKxgYSyIPqQmVI7jtKa2E9kOooryASz8CgsDCLHyAWz8DU6bAVqOZOnonHvle44fM6q0bX9bC4tLyyurpbXy+sbm1nZlZ7etokRi0sIRi2TXR4owKkhLU81IN5YEcZ+Rjj+6yP3OPZGKRuJGj2PicTQQNKQYaSP1K1VXkwcteRrL6I7gXIQ6gpnLkR76fnqd3QZmyq7ZE8B54hSkCgo0+5UvN4hwwonQmCGleo4day9FUlPMSFZ2E0VihEdoQHqGCsSJ8tJJmAweGiWAYSTNExpO1N8bKeJKjblvJvMb1ayXi/95vUSHZ15KRZxoIvD0ozBhedy8GRhQaQpgY0MQltTcCvEQSYS16a9sSnBmI8+Tdr3mHNfqVyfVxnlRRwnsgwNwBBxwChrgEjRBC2DwCJ7BK3iznqwX6936mI4uWMXOHvgD6/MHC56cOw==</latexit>

(Adagrad) ũt+1
i = ũt

i � ⌘

(Adaimp) ut+1
i = ut

i � ⌘
<latexit sha1_base64="sjjTJHGJQd44CPnggjNOx9sCiLE=">AAACcHicbVHRShtBFJ1dbauxrdG8CFqcNrSoxbAbhYpQUHzpo4JRIRvD3dmbODg7u8zcLQ3LPvf/+taP6Eu/oJMYIY1eGDicc++ZO2fiXElLQfDb8xcWX7x8tbRcW3n95u1qfW39ymaFEdgRmcrMTQwWldTYIUkKb3KDkMYKr+P7s7F+/R2NlZm+pFGOvRSGWg6kAHJUv/5zJyL8QVaUpwkMDSTVbnQckVQJlkXVl7clfQ4r/ukrnyWJ7/MICaKoNjtf3ZYyzScOhU7QjJead5kTHp369WbQCibFn4JwCppsWuf9+q8oyUSRoiahwNpuGOTUK8GQFAqrWlRYzEHcwxC7DmpI0fbKSWAV/+iYhA8y444mPmFnJ0pIrR2lsetMge7svDYmn9O6BQ2OeqXUeUGoxcNFg0Jxyvg4fZ5Ig4LUyAEQRrpdubgDA4LcH9VcCOH8k5+Cq3YrPGi1Lw6bJ0fTOJbYJvvAdljIvrAT9o2dsw4T7I/X8La8d95ff8Pf9t8/tPredKbB/it/7x8e47zW</latexit>

(Adagrad) ũt+1
i = ũt

i � ⌘

(Adaimp) ut+1
i = ut

i � ⌘
<latexit sha1_base64="sjjTJHGJQd44CPnggjNOx9sCiLE=">AAACcHicbVHRShtBFJ1dbauxrdG8CFqcNrSoxbAbhYpQUHzpo4JRIRvD3dmbODg7u8zcLQ3LPvf/+taP6Eu/oJMYIY1eGDicc++ZO2fiXElLQfDb8xcWX7x8tbRcW3n95u1qfW39ymaFEdgRmcrMTQwWldTYIUkKb3KDkMYKr+P7s7F+/R2NlZm+pFGOvRSGWg6kAHJUv/5zJyL8QVaUpwkMDSTVbnQckVQJlkXVl7clfQ4r/ukrnyWJ7/MICaKoNjtf3ZYyzScOhU7QjJead5kTHp369WbQCibFn4JwCppsWuf9+q8oyUSRoiahwNpuGOTUK8GQFAqrWlRYzEHcwxC7DmpI0fbKSWAV/+iYhA8y444mPmFnJ0pIrR2lsetMge7svDYmn9O6BQ2OeqXUeUGoxcNFg0Jxyvg4fZ5Ig4LUyAEQRrpdubgDA4LcH9VcCOH8k5+Cq3YrPGi1Lw6bJ0fTOJbYJvvAdljIvrAT9o2dsw4T7I/X8La8d95ff8Pf9t8/tPredKbB/it/7x8e47zW</latexit>

P>
1<latexit sha1_base64="kGlYJkBsRV2g68bWNAkSe6J7gM8=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKzucZxwP6IDJULBKFqpXe95D12Mk16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezeyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMn2e9IXmDOXYEsq0sLcSNqSaMrQRFW0I3uLLy6RZrXjnlerdRbl2ncdRgGM4gTPw4BJqcAt1aAADCc/wCm/Oo/PivDsf89YVJ585gj9wPn8ArM6Puw==</latexit>

P1
<latexit sha1_base64="sgy0lmzz8ip/LF8mY/tS+5Q4IIQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh0bf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHP/418</latexit>

-1/2

-1/2
P>
1<latexit sha1_base64="kGlYJkBsRV2g68bWNAkSe6J7gM8=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKzucZxwP6IDJULBKFqpXe95D12Mk16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezeyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMn2e9IXmDOXYEsq0sLcSNqSaMrQRFW0I3uLLy6RZrXjnlerdRbl2ncdRgGM4gTPw4BJqcAt1aAADCc/wCm/Oo/PivDsf89YVJ585gj9wPn8ArM6Puw==</latexit>

P1
<latexit sha1_base64="sgy0lmzz8ip/LF8mY/tS+5Q4IIQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh0bf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHP/418</latexit>

P>
1<latexit sha1_base64="kGlYJkBsRV2g68bWNAkSe6J7gM8=">AAAB73icbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGC/YA2ls120y7dbOLuRCihf8KLB0W8+ne8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKzucZxwP6IDJULBKFqpXe95D12Mk16p7FbcGcgy8XJShhz1Xumr249ZGnGFTFJjOp6boJ9RjYJJPil2U8MTykZ0wDuWKhpx42ezeyfk1Cp9EsbalkIyU39PZDQyZhwFtjOiODSL3lT8z+ukGF75mVBJilyx+aIwlQRjMn2e9IXmDOXYEsq0sLcSNqSaMrQRFW0I3uLLy6RZrXjnlerdRbl2ncdRgGM4gTPw4BJqcAt1aAADCc/wCm/Oo/PivDsf89YVJ585gj9wPn8ArM6Puw==</latexit>

P1
<latexit sha1_base64="sgy0lmzz8ip/LF8mY/tS+5Q4IIQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh0bf65crbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4bWfCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8Slq1qndRrd1fVuo3eRxFOIFTOAcPrqAOd9CAJjAYwjO8wpsjnRfn3flYtBacfOYY/sD5/AHP/418</latexit>

projection to

Im(⇧1) 2 RD
<latexit sha1_base64="pVuswnhaa9GmCEnxuuuzzHiMuRw=">AAACJ3icbZDLSgMxFIYz9VbrrerSTbAodVNmqlBXUtCF7qrYC3RqyaRpG5tkhiQjlmHexo2v4kZQEV36JmbaItp6IPDz/+eQcz4vYFRp2/60UnPzC4tL6eXMyura+kZ2c6um/FBiUsU+82XDQ4owKkhVU81II5AEcY+Rujc4TfL6HZGK+uJaDwPS4qgnaJdipI3Vzp7su5rca8mjQPq3BCcu1H7supmf5ILHebdC284BdKmALke673nRVXxz1s7m7II9KjgrnInIgUlV2tkXt+PjkBOhMUNKNR070K0ISU0xI3HGDRUJEB6gHmkaKRAnqhWN7ozhnnE6sOtL84SGI/f3RIS4UkPumc5kRzWdJeZ/WTPU3eNWREUQaiLw+KNuyAwImECDHSoNGjY0AmFJza4Q95FEWBu0GQPBmT55VtSKBeewULw8ypVLExxpsAN2QR44oATK4BxUQBVg8ACewCt4sx6tZ+vd+hi3pqzJzDb4U9bXN1IapiM=</latexit>

Figure 4-2: Comparison of the updates in Adaimp and Adagrad.

sequence of stochastic gradients 𝑔(𝑡) of ℒ and denoting 𝐺(𝑡) = 𝜖𝐼 +
∑︀𝑡

𝜏=1 𝑔
(𝜏)𝑔(𝜏)

⊤, the

(practical) AdaGrad update is:

𝜃(𝑡+1)
𝑝 = 𝜃(𝑡)𝑝 − 𝜂𝑔(𝑡)𝑝 /

√︁
𝐺

(𝑡)
𝑝𝑝 or equivalently

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂Diag(𝐺(𝑡))−1/2𝑔(𝑡)

where Diag(𝐺) is the diagonal matrix obtained by extracting the diagonal elements of

𝐺.

4.5.1 Two equivalent parametrizations of PCP

The following parametrization is equivalent to PCP, but its embeddings are expressed

in R𝐷:

(PCPfull) 𝑋𝑖,𝑗,𝑘 = ⟨𝑃1𝑃
⊤
1 𝑢𝑖, 𝑣𝑗, 𝑃3𝑃

⊤
3 𝑤𝑘⟩

with 𝑢𝑖, 𝑣𝑗, 𝑤𝑘 ∈ R𝐷, fixed 𝑃1, 𝑃2 ∈ R𝐷×𝑑.

Note that with 𝑢𝑖 = 𝑃⊤
1 𝑢𝑖 and 𝑤𝑘 = 𝑃⊤

3 𝑤𝑘, we go from PCPfull to PCP. The practical

differences between PCP and PCPfull are that PCPfull learn embeddings in the high-

dimensional space, maintaining the low-rank structure of the overall entity embeddings

through the orthogonal projections 𝑃1𝑃
𝑇
1 and 𝑃3𝑃

𝑇
3 . The practical interest of PCPfull

is not in terms of modeling but rather from the optimization perspective with Adagrad

because it has a structure that is closer to that of CP.

72

Algorithm 1 Step of PComplEx training
(𝑖, 𝑗, 𝑘)← sample from 𝑆
𝑔𝑖, 𝑔𝑗, 𝑔𝑘 ← gradients in (𝑃𝑢𝑖, 𝑃𝑢𝑗, 𝑤𝑘)
𝑢𝑖, �̃�𝑖 ← Adaimp (𝜂, 𝑢𝑖, 𝑔𝑢, �̃�𝑖, 𝑃)
𝑢𝑗, �̃�𝑗 ← Adaimp (𝜂, 𝑢𝑗, 𝑔𝑗, �̃�𝑗, 𝑃)
𝑤𝑘, 𝐺𝑘 ← AdaGrad(𝜂, 𝑤𝑘, 𝑔𝑘, 𝐺𝑘)

Algorithm 2 Adaimp

Input: 𝜂, 𝑥(𝑡), 𝑔(𝑡), �̃�(𝑡−1), 𝑃
𝑔(𝑡) ← 𝑃 (𝑃⊤𝑔(𝑡))
�̃�(𝑡) ← �̃�(𝑡−1) + 𝑔(𝑡) ⊙ 𝑔(𝑡)

𝑥(𝑡+1) ← 𝑥(𝑡) − 𝜂𝑃⊤Diag(�̃�(𝑡))
−1/2

𝑔(𝑡)

return 𝑥(𝑡+1), �̃�(𝑡)

Figure 4-3: The two algorithms used in the training of PComplEx

Indeed, for 𝑑 = 𝐷, 𝑃1 and 𝑃3 disappear in PCPfull, so that optimizing a PCPfull

model with Adagrad is equivalent to optimizing a CP model with Adagrad. This

property suggests an alternative to the vanilla PCP + Adagrad algorithm, which we

call implicit Adagrad :

Implicit Adagrad: Adaimp The approach we propose is to effectively optimize

PCPfull with Adagrad. However, when 𝑑 < 𝐷, which is the interesting case for PCP,

we notice that we do not need to maintain embeddings in R𝐷. Our approach, called

Adaimp, computes the gradients and Adagrad coefficients with respect to 𝑢𝑖, 𝑤𝑘 ∈ R𝐷,

but the full dimension factor matrices 𝑈 and 𝑊 are never explicitly stored in memory.

Rather, we store 𝑢𝑖 = 𝑃⊤
1 𝑢𝑖 and 𝑤𝑘 = 𝑃⊤

3 𝑤𝑘 ∈ R𝑑, which is all that is required for any

model computation in PCPfull since 𝑃1 and 𝑃3 are fixed. Overall, the effective model

parameters are exactly the same as in PCP, and we call this approach PCP +Adaimp.

An Adaimp update is described in Algorithm 2. While PCP +Adagrad and PCP

+Adaimp work with the same number of model parameters, the fundamental difference

is the computation of Adagrad coefficients. Since Adaimp effectively applies Adagrad

to PCPfull, we need to maintain the Adagrad coefficients in R𝐷 even when 𝑑 < 𝐷: the

overall update is first computed in R𝐷 and projected back to R𝑑 after the application

of Adagrad rescaling. In constrat, in vanilla PCP +Adagrad, the gradient is projected

to R𝑑 before Adagrad rescaling.

4.5.2 Implicit optimization of PCPfull: Adaimp

In this section, we discuss more formally the Adaimp updates, and how they compare

to PCP +Adagrad. In the following, �̃� , �̃� are in R𝑁×𝑑, whereas 𝑈, 𝑉 and 𝑊 are

73

in R𝑁×𝐷. Using 𝑑 ≤ 𝐷, 𝑃1, 𝑃3 ∈ R𝐷×𝑑, and we use the notation Π1 = 𝑃1𝑃
⊤
1 and

Π3 = 𝑃3𝑃
⊤
3 .

The empirical risk ℒ can be expressed as a function of three matrices 𝑀 (1), 𝑀 (2)

and 𝑀 (3) corresponding to factors of a CP parametrization. We study the following

problems :

(PCP) argmin
�̃� ,𝑉,�̃�

ℒ(�̃�𝑃⊤
1 , 𝑉, �̃�𝑃⊤

3)

(PCPfull) argmin
𝑈,𝑉,𝑊

ℒ(𝑈Π⊤
1 , 𝑉,𝑊Π⊤

3)

We focus on a step at time (𝑡) on vectors �̃�𝑖 and 𝑢𝑖. We assume that at this time

𝑡, the tensor iterates are the same, that is �̃� = 𝑈𝑃⊤
1 (resp. �̃� = 𝑊𝑃⊤

1) so that

[[�̃�𝑃⊤
1 , 𝑉, �̃�𝑃⊤

3]] = [[𝑈Π⊤
1 , 𝑉,𝑊Π⊤

3]]. In this case, the gradient ∇
𝑀

(1)
𝑖
ℒ is the same in

both optimization problems, we denote it by 𝑔
(𝑡)
𝑖 . Let 𝐺

(𝑡)
𝑖 = 𝜖𝐼𝑑 +

∑︀𝑡
𝜏=1 𝑔

(𝜏)
𝑖 𝑔

(𝜏)
𝑖

⊤
.

The updates for (PCP) are:

�̃�𝑡+1
𝑖 = �̃�𝑡

𝑖 − 𝜂Diag(𝑃⊤
1 𝐺

(𝑡)
𝑖 𝑃1)

−1/2𝑃⊤
1 𝑔

(𝑡)
𝑖 . (4.3)

Note that due to the presence of 𝑃1 inside the Diag operator, the update (4.3) is not

rotation invariant. Moreover, for random 𝑃1, the matrix 𝑃⊤
1 𝐺

(𝑡)
𝑖 𝑃1 will be far from

diagonal with high probability, making its diagonal meaningless. This is visualized in

Figure 4-1b.

Similar updates can be derived for (PCPfull):

𝑢𝑡+1
𝑖 = 𝑢𝑡

𝑖 − 𝜂Diag(Π⊤
1 𝐺

(𝑡)
𝑖 Π1)

−1/2Π⊤
1 𝑔

(𝑡)
𝑖 . (4.4)

As a sanity check, clearly, for 𝑑 = 𝐷 and Π1 = 𝐼, the update (4.4) is equivalent to the

Adagrad update for the CP model. In the general case 𝑑 ≤ 𝐷, in order to avoid storing

𝑈 ∈ R𝑁×𝐷, we apply these updates implicitly with Adaimp, by storing 𝑢
(𝑡)
𝑖 = 𝑃⊤

1 𝑢
(𝑡)
𝑖

in R𝑑. We compare the updates in Figure 4-2.

Going back to our control experiment, we note on Figure 4-1a that PCP +Adaimp

74

matches the performances of CP+Adagrad for all 𝐷, indicating that we fixed this

optimization issue. Further experiments on the convergence speed of Adaimp for other

datasets are available in Appendix B.3.7.

Convergence guarantees Note that the tensor iterates obtained by applying

Adaimp are exactly those that we would obtain by applying Adagrad on the PCPfull

formulation. Thus, theoretical guarantees for our algorithm are exactly the same as

those of Adagrad.

4.5.3 Alternatives to Adaimp

Another solution would be to use Adagrad projected on the column space of Π, but we

show in Appendix B.2.1 that even with the diagonal approximation, this is impractical.

Note that the version of Adagrad which uses the full matrix 𝐺(𝑡) is rotation invariant

(see Appendix B.2.2 for details), but it cannot be used at the scale of our problems.

It could be argued that the strength of the AdaGrad algorithm in our context

mostly comes from its adaptation to the different frequencies of updates of each

embedding. In fact, this is one of the examples chosen in Duchi et al. [32] to display

the advantages of AdaGrad compared to stochastic gradient descent. A version of

AdaGrad that would only keep one coefficient per embedding (we call this version

Adarow) would be invariant to unitary transforms by design and would adapt to the

various update frequencies of different embeddings. In fact, this version of AdaGrad is

used to save memory in Lerer et al. [72]. We test this algorithm in Appendix B.3.2.

The difference in performances shows that this adaptation is not sufficient to recover

the performances of the finer diagonal AdaGrad in our setting.

4.5.4 Complexity

The time complexity of our Adaimp update for a batch of size 𝐵 is 𝒪(𝐷 · 𝑑 ·𝐵) which

is similar, up to constants, to the complexity of updates for the AdaGrad algorithm.

We do not notice any runtime differences between our algorithm applied in dimensions

75

(𝑑,𝐷) and a CP parametrization of rank 𝐷 (see Section 4.7). The runtime for large

enough 𝐷 is dominated by the matrix product (𝒪(𝐷2 ·𝐵)) required to compute the

cross-entropy in Equation (4.1).

4.6 Projected ComplEx

As the state-of-the-art variant of CP is ComplEx [118, 70], we propose the following

alternative to PCP base on ComplEx with Adaimp in practice. Given the ComplEx

parametrization 𝑋 = 𝑅𝑒([𝑈, 𝑉, 𝑈]), a low-rank parametrization of the entity factor 𝑈

as 𝑃�̃� leads to the model PComplEx we use in the experiments of Section 4.7:

(PComplEx) 𝑋𝑖𝑗𝑘 = 𝑅𝑒
(︀
⟨𝑃𝑢𝑖, 𝑣𝑗, 𝑃𝑢𝑘⟩

)︀
= 𝑅𝑒

(︀
⟨𝑢𝑖, 𝑃

⊤Diag(𝑣𝑗)𝑃, 𝑢𝑘⟩
)︀

𝑢𝑖, 𝑤𝑘 ∈ C𝑑, 𝑣𝑗 ∈ C𝐷, fixed 𝑃 ∈ R𝐷×𝑑

PComplEx is similar to ComplEx but with interactions described by full matrices of

rank 𝐷 that share a same basis. We learn this parametrization with Algorithms 1 and

2.

4.7 Experiments

In this section, we compare ComplEx optimized with AdaGrad and PComplEx

optimized with Adaimp. We optimize the regularized empirical risk of Equation (4.2).

Following Lacroix et al. [70], we regularize ComplEx with the weighted nuclear-3 norm,

which is equivalent to regularizing ‖𝑢𝑖‖33 + ‖𝑢𝑗‖33 + ‖𝑤𝑘‖33 for each training example

(𝑖, 𝑗, 𝑘). For PComplEx based models, we regularize ‖𝑃𝑢𝑖‖33 + ‖𝑣𝑗‖33 + ‖𝑃𝑢𝑘‖33 by

analogy.

We conduct all experiments on a Quadro GP 100 GPU. The code for PComplEx and

Adaimp is available in the supplementary materials, experiments on ComplEx use the

76

code1 from [70]. We include results from TuckER [7], DRT and SRT which are the two

models considered in Wang et al. [121], ConvE [30], HolEx [125], LFM [56] and MurP

[6] without re-implementation on our parts. All the parameters for the experiments are

reported in Appendix B.3.6. Variance of performances in PComplEx due to random

choice of 𝑃 is similar to the variance of ComplEx. We present experiments on the

WN18 dataset for 5 different seeds in Appendix B.3.3.

4.7.1 Datasets

WN18 [13] is taken from the Wordnet database which contains words and relations

between them. WN18RR [30] is a filtering of this dataset which removes train/test

leakage. YAGO3-10 [30] is taken from the eponymous knowledge base. Finally, SVO

[56] contains observations of Subject, Verb, Object triples. All statistics for these

datasets can be found in Appendix B.3.1. Experiments on the FB15K and FB15K-237

datasets are deferred to Appendix B.3.4.

4.7.2 Results

We report the filtered Mean Reciprocal Rank [93] on Figure 4-4. For SVO, we report

the only figure available in previous work which is the filtered hits at 5% [56]. These

measures are detailed in Appendix B.3.5. Only the grid-search parameters were given

for LFM, so we were not able to obtain a precise number of parameters for the number

they report.

On WN18, SVO and YAGO3-10 we observe sizable performance gains for low

embedding sizes : up to 0.14 MRR points on WN18, 0.05 MRR points on YAGO and

0.03 H@5% points on SVO.

The TuckER [7] model performs similarly to PComplEx and ComplEx except

on FB15K and WN18 where it underperforms (see Appendix B.3.4). We expect

this discrepancy to come from a less extensive grid-search rather than any intrinsic

differences in the models that are both based on the Tucker parametrization. The

1https://github.com/facebookresearch/kbc

77

https://github.com/facebookresearch/kbc

101 102 103

params per entities

0.72

0.74

0.76

0.78

0.80

0.82
H
it
s
at

5%

SVO

101 102 103

params per entities

0.10

0.20

0.30

0.40

0.50

0.60

M
R
R

0.47 // 0.51

0.34 // 0.39

YAGO3-10

101 102 103

Parameters per entities

0.4

0.6

0.8

1.0

M
R
R

WN18

ComplEx

PComplEx

TuckER

MurP

LFM

D/SRT

101 102 103

Parameters per entities

0.25

0.30

0.35

0.40

0.45

0.50

M
R
R

WN18RR

Figure 4-4: MRR as a function of #floats / entities (see Appendix B.3.5) on four
knowledge bases. We plot the convex envelope of various operating points we tested,
varying 𝐷 for several values of 𝑑. For some datasets (WN18, WN18RR), Adam
[63] is beneficial, in which case we use the implicit adaptation of Adam detailed in
Appendix B.2.4.

consistency on all operating points of our method with ComplEx shows an advantage

of our method, which enjoys the same learning rate robustness as AdaGrad, and does

not require choosing a learning-rate decay, leading to easier experiments with only

the regularization strength to tune. The MurP model [6] provides good performances

for low embedding sizes on WN18RR, but underperforms on FB15K-237 (see Ap-

pendix B.3.4). All other models fail to match the performances of ComplEx and

PComplEx with equivalent number of parameters (see Appendix B.3.5 for details on

the number of parameters for each methods).

The Tucker parametrization seems well adapted to the SVO dataset since this is

where our approach is most beneficial, even allowing us to outperform ComplEx for

high dimensions.

78

4.8 Conclusion

We use a formulation of the Tucker parametrization expressed as a CP parametrization

with low-rank factors. A controlled experiment shows that a fixed random core

tensor is detrimental to the speed of Adagrad. We propose a faster rotation-invariant

algorithm which stores learning rates in the uncompressed space. Our model, despite

using a fixed random core tensor, provides better performances than ComplEx in the

low-rank regime, and matches its performances in the other regimes. On the SVO

dataset, where ranking is done on the uncompressed mode, our method yields better

performances in all regimes, allowing us to outperform ComplEx and previous state

of the art.

79

80

Chapter 5

Temporal Tensor Completion

The easiest way to solve a problem is

to deny it exists.

Isaac Asimov

Most algorithms for representation learning and link prediction in relational data

have been designed for static data. However, the data they are applied to usually

evolves with time, such as friend graphs in social networks or user interactions with

items in recommender systems. This is also the case for knowledge bases, which contain

facts such as (US, has president, B. Obama, [2009-2017]) that are valid only at certain

points in time. For the problem of link prediction under temporal constraints, i.e.,

answering queries such as (US, has president, ?, 2012), we propose a solution inspired

by the CP parametrization of tensors of order 4. We introduce new regularization

schemes and present an extension of ComplEx [118] that achieves state-of-the-art

performance. Additionally, we propose a new dataset for knowledge base completion

constructed from Wikidata, larger than previous benchmarks by an order of magnitude,

as a new reference for evaluating temporal and non-temporal link prediction methods.

81

5.1 Introduction

Link prediction in relational data has been the subject of interest, given the widespread

availability of such data and the breadth of its use in bioinformatics [128], recommender

systems [66] or Knowledge Base completion [92]. Relational data is often temporal,

for example, the action of buying an item or watching a movie is associated to a

timestamp. Some medicines might not have the same adverse side effects depending

on the subject’s age. The task of temporal link prediction is to find missing links in

graphs at precise points in time.

In this work, we study temporal link prediction through the lens of temporal

knowledge base completion, which provides varied benchmarks both in terms of the

underlying data they represent, but also in terms of scale. A knowledge base is a

set of facts (subject, predicate, object) about the world that are known to be true.

Link prediction in a knowledge base amounts to answer incomplete queries of the

form (subject, predicate, ?) by providing an accurate ranking of potential objects.

In temporal knowledge bases, these facts have some temporal metadata attached.

For example, facts might only hold for a certain time interval, in which case they

will be annotated as such. Other facts might be event that happened at a certain

point in time. Temporal link prediction amounts to answering queries of the form

(subject, predicate, ?, timestamp). For example, we expect the ranking of queries

(USA, president, ?, timestamp) to vary with the timestamps.

As tensor factorization methods have proved successful for Knowledge Base Com-

pletion [92, 118, 70], we express our Temporal Knowledge Base Completion problem

as an order 4 tensor completion problem. That is, timestamps are discretized and

used to index a 4-th mode in the binary tensor holding (subject, predicate, object,

timestamps) facts.

First, we introduce a ComplEx [118] parametrization of this order 4 tensor, and link

it with previous work on temporal Knowledge Base completion. This parametrization

yields embeddings for each timestamps. A natural prior is for these timestamps

representation to evolve slowly over time. We are able to introduce this prior as a

82

regularizer for which the optimum is a variation on the nuclear 𝑝-norm. In order to deal

with heterogeneous temporal knowledge bases where a significant amount of relations

might be non-temporal, we add a non-temporal component to our parametrization.

Experiments on available benchmarks show that our method outperforms the state

of the art for similar number of parameters. We run additional experiments for larger,

regularized models and obtain improvements of up to 0.07 absolute Mean Reciprocal

Rank (MRR).

Finally, we propose a dataset of 400𝑘 entities, based on Wikidata, with 7𝑀 train

triples, of which 10% contain temporal validity information. This dataset is larger

than usual benchmarks in the Knowledge Base completion community and could help

bridge the gap between the method designed and the envisaged web-scale applications.

5.2 Related Work

Matrices and tensors are upper case letters. The 𝑖-th row of 𝑈 is denoted by 𝑢𝑖 while

it’s 𝑗 − 𝑡ℎ column is denoted by 𝑈:,𝑗. The tensor product of two vectors is written ⊗
and the hadamard (elementwise) product ⊙.

Static link prediction methods Standard tensor parametrizations have lead to

good results [126, 118, 70, 7] in Knowledge Base completion. The CP parametrization

[53] is the tensor equivalent to the low-rank parametrization of a matrix. A tensor 𝑋

of canonical rank 𝑅 can be written as:

𝑋 =
𝑅∑︁

𝑟=1

𝑈:,𝑟⊗𝑉:,𝑟⊗𝑊:,𝑟 = [[𝑈, 𝑉,𝑊]] ⇐⇒ ∀(𝑖, 𝑗, 𝑘), 𝑋𝑖,𝑗,𝑘 =
𝑅∑︁

𝑟=1

𝑢𝑖,𝑟𝑣𝑗,𝑟𝑤𝑘,𝑟 = ⟨𝑢𝑖, 𝑣𝑗, 𝑤𝑘⟩

Setting 𝑈 = 𝑊 leads to the Distmult [126] model, which has been successful, despite

only being able to represent symmetric score functions. In order to keep the parameter

sharing scheme but go beyond symmetric relations, Trouillon et al. [118] use complex

parameters and set 𝑊 to the complex conjugate of 𝑈 , 𝑈 . Regularizing this algorithm

with the variational form of the tensor nuclear norm as well as a slight transformation

83

to the learning objective (also proposed in Kazemi and Poole [61]) leads to state of

the art results in Lacroix et al. [70].

Other methods are not directly inspired from classical low-rank tensor parametriza-

tions. For example, TransE [13] models the score as a distance of the translated subject

to an object representation. This method has lead to many variations [57, 90, 122],

but is limited in the relation systems it can model [61] and does not lead to state of

the art performances on current benchmarks. Finally Schlichtkrull et al. [102] propose

to generate the entity embeddings of a CP-like tensor parametrization by running

a forward pass of a Graph Neural Network over the training Knowledge Base. The

experiments included in this work did not lead to better link prediction performances

than the same parametrization (Distmult) directly optimized [60].

Temporal link prediction methods Sarkar and Moore [100] describes a bayesian

model and learning method for representing temporal relations. The temporal smooth-

ness prior used in this work is similar to the gradient penalty we describe in Section 5.3.3.

However, learning one embedding matrix per timestamp is not applicable to the scales

considered in this work. Bader et al. [4] uses a tensor parametrization called ASALSAN

to express temporal relations. This parametrization is related to RESCAL [91] which

underperforms on recent benchmarks due to overfitting [93].

For temporal knowledge base completion, Goel et al. [43] learns entity embeddings

that change over time, by masking a fraction of the embedding weights with an

activation function of learned frequencies. Based on the Tucker parametrization,

ConT [81] learns one new core tensor for each timestamp. Finally, viewing the time

dimension as a sequence to be predicted, Garcia-Duran et al. [41] use recurrent neural

nets to transform the embeddings of standard models such as TransE or Distmult to

accomodate the temporal data.

This work follows Lacroix et al. [70] by studying and extending a regularized CP

parametrization of the training set seen as an order 4 tensor. We propose and study

several regularizer suited to our parametrizations.

84

DE-SimplE 2𝑟 ((3𝛾 + (1− 𝛾))|𝐸|+ |𝑃 |)
TComplEx 2𝑟(|𝐸|+ |𝑇 |+ 2|𝑃 |)
TNTComplEx 2𝑟(|𝐸|+ |𝑇 |+ 4|𝑃 |)

Table 5.1: Number of parameters for each models considered

5.3 Model

In this section, we are given facts (subject, predicate, object) annotated with times-

tamps, we discretize the timestamp range (eg. by reducing timestamps to years) in

order to obtain a training set of 4-tuple (subject, predicate, object, time) indexing

an order 4 tensor. We will show in Section 5.5.1 how we reduce each datasets to

this setting. Following Lacroix et al. [70], we minimize, for each of the train tuples

(𝑖, 𝑗, 𝑘, 𝑙), the instantaneous multiclass loss :

ℓ(�̂�; (𝑖, 𝑗, 𝑘, 𝑙)) = −�̂�𝑖,𝑗,𝑘,𝑙 + log

(︃∑︁
𝑘′

exp
(︁
�̂�𝑖,𝑗,𝑘′,𝑙

)︁)︃
. (5.1)

Note that this loss is only suited to queries of the type (subject, predicate, ?, time),

which is the queries that were considered in related work. We consider another

auxiliary loss in Section 5.6 which we will use on our Wikidata dataset. For a training

set 𝑆 (augmented with reciprocal relations [70, 61]), and parametric tensor estimate

�̂�(𝜃), we minimize the following objective, with a weighted regularizer Ω:

ℒ(�̂�(𝜃)) =
1

|𝑆|
∑︁

(𝑖,𝑗,𝑘,𝑙)∈𝑆

[︁
ℓ(�̂�(𝜃); (𝑖, 𝑗, 𝑘, 𝑙)) + 𝜆Ω(𝜃; (𝑖, 𝑗, 𝑘, 𝑙))

]︁
.

The ComplEx [118] parametrization can naturally be extended to this setting by

adding a new factor 𝑇 , we then have:

�̂�(𝑈, 𝑉, 𝑇) = Re
(︀
[[𝑈, 𝑉, 𝑈, 𝑇]]

)︀
⇐⇒ �̂�(𝑈, 𝑉, 𝑇)𝑖,𝑗,𝑘,𝑙 = Re (⟨𝑢𝑖, 𝑣𝑗, 𝑢𝑘, 𝑡𝑙⟩) (5.2)

We call this parametrization TComplEx. Intuitively, we added timestamps em-

bedding that modulate the multi-linear dot product. Notice that the timestamp

85

can be used to equivalently modulate the objects, predicates or subjects to obtain

time-dependent representation:

⟨𝑢𝑖, 𝑣𝑗, 𝑢𝑘, 𝑡𝑙⟩ = ⟨𝑢𝑖 ⊙ 𝑡𝑙, 𝑣𝑗, 𝑢𝑘⟩ = ⟨𝑢𝑖, 𝑣𝑗 ⊙ 𝑡𝑙, 𝑢𝑘⟩ = ⟨𝑢𝑖, 𝑣𝑗, 𝑢𝑘 ⊙ 𝑡𝑙⟩.

Contrary to DE-SimplE [43], we do not learn temporal embeddings that scale with

the number of entities (as frequencies and biases), but rather embeddings that scale

with the number of timestamps. The number of parameters for the two models are

compared in Table 5.1.

5.3.1 Non-Temporal predicates

Some predicates might not be affected by timestamps. For example, Malia and

Sasha will always be the daughters of Barack and Michelle Obama, whereas the “has

occupation” predicate between two entities might very well change over time. In

heterogeneous knowledge bases, where some predicates might be temporal and some

might not be, we propose to decompose the tensor �̂� as the sum of two tensors, one

temporal, and the other non-temporal:

�̂� = Re
(︀
[[𝑈, 𝑉 𝑡, 𝑈, 𝑇]] + [[𝑈, 𝑉, 𝑈,1]]

)︀
⇐⇒ �̂�𝑖,𝑗,𝑘,𝑙 = 𝑅𝑒

(︀
⟨𝑢𝑖, 𝑣

𝑡
𝑗 ⊙ 𝑡𝑙 + 𝑣𝑗, 𝑢𝑘⟩

)︀
(5.3)

We call this parametrization TNTComplEx. Goel et al. [43] suggests another

way of introducing a non-temporal component, by only allowing a fraction 𝛾 of

components of the embeddings to be modulated in time. By allowing this sharing of

parameters between the temporal and non-temporal part of the tensor, our model

removes one hyperparameter. Moreover, preliminary experiments showed that this

model outperforms one without parameter sharing.

86

5.3.2 Regularization

Any order 4 tensor can be considered as an order 3 tensor by unfolding modes together.

For a tensor 𝑋 ∈ R𝑁1×𝑁2×𝑁3×𝑁4 , unfolding modes 3 and 4 together will lead to tensor

�̃� ∈ R𝑁1×𝑁2×𝑁3𝑁4 [64].

We can see both parametrizations ((5.2) and (5.3)) as order 3 tensors by unfolding

the temporal and predicate modes together. Considering the parametrization implied

by these unfoldings (see Appendix C.1.1) leads us to the following weighted regularizers

[70]:

Ω3(𝑈, 𝑉, 𝑇 ; (𝑖, 𝑗, 𝑘, 𝑙)) =
1

3

(︀
‖𝑢𝑖‖33 + ‖𝑢𝑘‖33 + ‖𝑣𝑘 ⊙ 𝑡𝑙‖33

)︀
(5.4)

Ω3(𝑈, 𝑉 𝑡, 𝑉, 𝑇 ; (𝑖, 𝑗, 𝑘, 𝑙)) =
1

3

(︀
2‖𝑢𝑖‖33 + 2‖𝑢𝑘‖33 + ‖𝑣𝑡𝑗 ⊙ 𝑡𝑙‖33 + ‖𝑣𝑗‖33

)︀
The first regularizer weights objects, predicates and pairs (predicate, timestamp)

according to their respective marginal probabilities. This regularizer is a variational

form of the weighted nuclear 3-norm on an order 4 tensor (see subsection 5.3.4 and

Appendix C.1.3 for details and proof). The second regularizer is the sum of the nuclear

3 penalties on tensors [[𝑈, 𝑉 𝑡, 𝑈, 𝑇]] and [[𝑈, 𝑉, 𝑈]].

5.3.3 Smoothness of temporal embeddings

We have more a priori structure on the temporal mode than on others. Notably,

we expect smoothness of the application 𝑖 ↦→ 𝑡𝑖. In words, we expect neighboring

timestamps to have close representations. Thus, we penalize the norm of the discrete

derivative of the temporal embeddings :

Λ𝑝(𝑇) =
1

|𝑇 | − 1

|𝑇 |−1∑︁
𝑖=1

‖𝑡𝑖+1 − 𝑡𝑖‖𝑝𝑝. (5.5)

We show in Appendix C.1.2 that the sum of Λ𝑝 and the variational form of the nuclear

𝑝 norm (5.6) lead to a variational form of a new tensor atomic norm.

87

5.3.4 Nuclear 𝑝-norms of tensors and their variational forms

As was done in Lacroix et al. [70], we aim to use tensor nuclear 𝑝-norms as regularizers.

The definition of the nuclear 𝑝-norm of a tensor [38] of order 𝐷 is:

‖𝑋‖𝑝* = inf
𝛼,𝑅,𝑈(1),...,𝑈(𝐷)

{︃
‖𝛼‖1 | 𝑋 =

𝑅∑︁
𝑟=1

𝛼𝑟𝑈
(1)
:,𝑟 ⊗ · · · ⊗ 𝑈 (𝐷)

:,𝑟 , ∀𝑟, 𝑑 ‖𝑈 (𝑑)
:,𝑟 ‖𝑝 = 1

}︃
.

This formulation of the nuclear 𝑝-norm writes a tensor as a sum over atoms which

are the rank-1 tensors of unit 𝑝-norm factors. The nuclear 𝑝-norm is NP-hard to

compute [38]. Following Lacroix et al. [70], a practical solution is to use the equivalent

formulation of nuclear 𝑝-norm using their variational form, which can be conveniently

written for 𝑝 = 𝐷:

‖𝑋‖𝐷* =
1

𝐷
inf

𝑋=[[𝑈(1),...,𝑈(𝐷)]]

𝐷∑︁
𝑑=1

𝑅∑︁
𝑟=1

‖𝑈 (𝑑)
:,𝑟 ‖𝐷𝐷. (5.6)

For the equality above to hold, the infimum should be over all possible 𝑅. The

practical solution is to fix 𝑅 to the desired dimension of the parametrization. Using

this variational formulation as a regularizer leads to state of the art results for order-3

tensors [70] and is convenient in a stochastic gradient setting because it separates over

each model coefficient.

In addition, this formulation makes it easy to introduce a weighting as recom-

mended in Srebro and Salakhutdinov [110], Foygel et al. [37]. In order to learn

under non-uniform sampling distributions, one should penalize the weighted norm :

‖
(︁√

𝑀 (1) ⊗
√
𝑀 (2)

)︁
⊙𝑋‖2*, where 𝑀 (1) and 𝑀 (2) are the empirical row and column

marginal of the distribution. The variational form (5.6) makes this easy, by simply

penalizing rows 𝑈
(1)
𝑖1

, . . . , 𝑈
(𝐷)
𝑖𝐷

for observed triple (𝑖1, . . . , 𝑖𝐷) in stochastic gradient

descent. More precisely for 𝐷 = 2 and 𝑁 (𝑑) the vectors holding the observed count of

each index over each mode 𝑑:

1

|𝑆|
∑︁

(𝑖,𝑗)∈𝑆

‖𝑢𝑖‖22+‖𝑣𝑗‖22 =
∑︁
𝑖

𝑁
(1)
𝑖

𝑆
‖𝑢𝑖‖22+

∑︁
𝑗

𝑁
(2)
𝑗

𝑆
‖𝑣𝑗‖22 =

∑︁
𝑖

𝑀
(1)
𝑖 ‖𝑢𝑖‖22+

∑︁
𝑗

𝑀
(2)
𝑗 ‖𝑣𝑗‖22.

88

In subsection 5.3.3, we add another penalty in Equation (5.5) which changes the

norm of our atoms.In subsection 5.3.2, we introduced another variational form in

Equation (5.4) which allows to easily penalize the nuclear 3-norm of an order 4 tensor.

This regularizer leads to different weighting. By considering the unfolding of the

timestamp and predicate modes, we are able to weight according to the joint marginal

of timestamps and predicates, rather than by the product of the marginals. This can

be an important distinction if the two are not independent.

5.3.5 Experimental impact of the regularizers

We study the impact of regularization on the ICEWS05-15 dataset, for the TNTCom-

plEx model. For details on the experimental set-up, see Section 5.5.1. The first effect

we want to quantify is the effect of the regularizer Λ𝑝. We run a grid search for the

strength of both Λ𝑝 and Ω3 and plot the convex hull as a function of the temporal

regularization strength. As shown in Figure 5-1, imposing smoothness along the time

mode brings an improvement of over 2 MRR point.

The second effect we wish to quantify is the effect of the choice of regularizer Ω. A

natural regularizer for TNTComplEx would be :

∆𝑝(𝑈, 𝑉, 𝑇 ; (𝑖, 𝑗, 𝑘, 𝑙)) =
1

𝑝

(︀
2‖𝑢𝑖‖𝑝𝑝 + 2‖𝑢𝑘‖𝑝𝑝 + ‖𝑣𝑡𝑗‖𝑝𝑝 + ‖𝑡𝑙‖𝑝𝑝 + ‖𝑣𝑗‖𝑝𝑝

)︀
.

We compare ∆4, ∆3 and ∆2 with Ω3. The comparison is done with a temporal

regularizer of 0 to reduce the experimental space.

∆2 is the common weight-decay frequently used in deep-learning. Such regularizers

have been used in knowledge base completion [91, 93, 118], however, Lacroix et al.

[70] showed that the infimum of this penalty is non-convex over tensors.

∆3 matches the order used in the Ω3 regularizer, and in previous work on knowledge

base completion [70]. However, by the same arguments, its minimization does not

lead to a convex penalty over tensors.

∆4 is the sum of the variational forms of the Nuclear 4-norm for the two tensors

of order 4 in the TNTComplEx model according to equation (5.6).

89

10−7 10−4 10−1 102

Temporal regularizer

0.65

0.66

0.67

M
R
R

TNTComplEx

10−5 10−3 10−1

Embedding regularizer

0.61

0.62

0.63

0.64

0.65

M
R
R

∆4

∆3

∆2

Ω3

Figure 5-1: Impact of the temporal (left) regularizer and embeddings (right) regularizer
on a TNTComplEx model trained on ICEWS05-15.

Detailed results of the impact of regularization on the performances of the model

are given in Figure 5-1. The two regularizers ∆4 and Ω3 are the only regularizers that

can be interpreted as sums of tensor norm variational forms and perform better than

their lower order counterparts.

There are two differences between ∆4 and Ω3. First, whereas the first is a variational

form of the nuclear 4-norm, the second is a variational form of the nuclear 3-norm

which is closer to the nuclear 2-norm. Results for exact recovery of tensors have been

generalized to the nuclear 2-norm, and to the extent of our knowledge, there has

been no formal study of generalization properties or exact recovery under the nuclear

𝑝-norm for 𝑝 greater than two.

Second, the weighting in ∆4 is done separately over timestamps and predicates,

whereas it is done jointly for Ω3. This leads to using the joint empirical marginal as a

weighting over timestamps and predicates. The impact of weighting on the guarantees

that can be obtained are described more precisely in Foygel et al. [37].

The contribution of all these regularizers over a non-regularized model are summa-

rized in Table 5.3. Note that careful regularization leads to a 0.05 MRR increase.

90

5.4 A new dataset for Temporal and non-Temporal

Knowledge Base Completion

A dataset based on Wikidata was proposed by Garcia-Duran et al. [41]. However, upon

inspection, this dataset contains numerical data as entities, such as ELO rankings of

chess players, which are not representative of practically useful link prediction problems.

Also, in this dataset, temporal informations is specified in the form of “OccursSince”

and “OccursUntil” statements appended to triples, which becomes unwieldy when a

predicate holds for several intervals in time. Moreover, this dataset contains only 11𝑘

entities and 150𝑘 which is insufficient to benchmark methods at scale.

The GDelt dataset described in Ma et al. [81], Goel et al. [43] holds many triples

(2𝑀), but does not describe enough entities (500). In order to adress these limitations,

we created our own dataset from Wikidata, which we make available at dataseturl.

Starting from Wikidata, we removed all entities that were instance of scholarly

articles, proteins and others. We also removed disambiguation, template, category

and project pages from wikipedia. Then, we removed all facts for which the object

was not an entity. We iteratively filtered out entities that had degree at least 5 and

predicates that had at least 50 occurrences. With this method, we obtained a dataset

of 432715 entities, 407 predicates and 1724 timestamps (we only kept the years). Each

datum is a triple (subject, predicate, object) together a timestamp range (begin, end)

where begin, end or both can be unspecified. Our train set contains 7𝑀 such tuples,

with about 10% partially specified temporal tuples. We kept a validation and test set

of size 50𝑘 each.

At train and test time, for a given datum (subject, predicate, object, [begin, end]),

we sample a timestamp (appearing in the dataset) uniformly at random, in the range

[begin, end]. For datum without a temporal range, we sample over the maximum

date range. Then, we rank the objects for the partial query (subject, predicate, ?,

timestamp).

91

dataseturl

5.5 Experimental Results

5.5.1 Experimental Set-Up

We follow the experimental set-up in Garcia-Duran et al. [41], Goel et al. [43]. We use

models from Garcia-Duran et al. [41] and Goel et al. [43] as baselines since they are the

best performing algorithms on the datasets considered. We report the filtered Mean

Reciprocal Rank (MRR) defined in Nickel et al. [93]. In order to obtaiqn comparable

results, we use Table 5.1 and dataset statistics to compute the rank for each (model,

dataset) pair that matches the number of parameters used in Goel et al. [43]. We also

report results at ranks 10 times higher. This higher rank set-up gives an estimation of

the best possible performance attainable on these datasets, even though the dimension

used might be impractical for applied systems. All our models are optimized with

Adagrad [32], with a learning rate of 0.1, a batch-size of 1000. More details on the

grid-search, actual ranks used and hyper-parameters are given in Appendix C.2.2.

We give results on 3 datasets previously used in the literature : ICEWS14,

ICEWS15-05 and Yago15k. The ICEWS datasets are samplings from the Integrated

Conflict Early Warning System (ICEWS)[15]1.Garcia-Duran et al. [41] introduced two

subsampling of this data, ICEWS14 which contains all events occuring in 2014 and

ICEWS05-15 which contains events occuring between 2005 and 2015. These datasets

immediately fit in our framework, since the timestamps are already discretized.

The Yago15K dataset [41] is a modification of FB15k [13] which adds “occursSince”

and “occursUntil” timestamps to each triples. Following the evaluation setting of

Garcia-Duran et al. [41], during evaluation, the incomplete triples to complete are of

the form (subject, predicate, ?, occursSince | occursUntil, timestamp) (with reciprocal

predicates). Rather than deal with tensors of order 5, we choose to unfold the

(occursSince, occursUntil) and the predicate mode together, multiplying its size by

two.

Some relations in Wikidata are highly unbalanced (eg. (?, InstanceOf, Human)).

For such relations, a ranking evaluation would not make much sense. Instead, we only

1More information can be found at http://www.icews.com

92

http://www.icews.com

ICEWS14 ICEWS15-05 Yago15k
TA 0.48 0.47 0.32
DE-SimplE 0.53 0.51 -
ComplEx 0.47 (0.47) 0.49 (0.49) 0.35 (0.36)

TComplEx 0.56 (0.61) 0.58 (0.66) 0.35 (0.36)
TNTComplEx 0.56 (0.62) 0.60 (0.67) 0.35 (0.37)

Table 5.2: Results for TA [41] and DE-SimplE [43] are
the best numbers reported in the respective papers. Our
models have as many parameters as DE-SimplE. Numbers
in parentheses are for ranks multiplied by 10.

Reg. MRR

No regularizer 0.62
∆2 0.63
∆3 0.63
∆4 0.64
Ω3 0.65

Ω3 + Λ4 0.67

Table 5.3: Impact
of regularizers on
ICEWS05-15 for
TNTComplEx.

compute the Mean Reciprocal Rank for missing right hand sides, since the data is such

that highly unbalanced relations happen on the left-hand side. However, we follow

the same training scheme as for all the other dataset, including reciprocal relations in

the training set. The cross-entropy loss evaluated on 400𝑘 entities puts a restriction

on the dimensionality of embeddings at about 𝑑 = 100 for a batch-size of 1000. We

leave sampling of this loss, which would allow for higher dimensions to future work.

5.5.2 Results

We compare ComplEx with the temporal versions described in this paper. We report

results in Table 5.2. Note that ComplEx has performances that are stable through a

tenfold increase of its number of parameters, a rank of 100 is enough to capture the

static information of these datasets. For temporal models however, the performance

increases a lot with the number of parameters. It is always beneficial to allow a

separate modeling of non-temporal predicates, as the performances of TNTComplex

MRR NT-MRR T-MRR
ComplEx 0.45 0.48 0.29

TComplEx 0.42 0.45 0.30
TNTComplEx 0.44 0.47 0.32

Table 5.4: Results on wikidata for entity dimension 𝑑 = 100.

93

show. Finally, our model match or beat the state of the art on all datasets, even at

identical number of parameters. Since these datasets are small, we also report results

for higher ranks (10 times the number of parameters used for DE-SimplE).

On Wikidata, 90% of the triples have no temporal data attached. This leads to

ComplEx outperforming all temporal models in term of average MRR, since the Non-

Temporal MRR (NT-MRR) far outweighs the Temporal MRR (T-MRR). A breakdown

of the performances is available in table 5.4. TNTComplEx obtains performances

that are comparable to ComplEx on non-temporal triples, but are better on temporal

triples. Moreover, TNTComplEx can minimize the temporal cross-entropy (5.7) and

is thus more flexible on the queries it can answer.

Training TNTComplEx on Wikidata with a rank of 𝑑 = 100 with the full cross-

entropy on a Quadro GP 100, we obtain a speed of 5.6𝑘 triples per second, leading to

experiments time of 7.2 hours. This is to be compared with 5.8𝑘 triples per second

when training ComplEx for experiments time of 6.9 hours. The additional complexity

of our model does not lead to any real impact on runtime, which is dominated by the

computation of the cross-entropy over 400𝑘 entities.

5.6 Qualitative study

The instantaneous loss described in equation (5.1), along with the timestamp sampling

scheme described in the previous section only enforces correct rankings along the

“object” tubes of our order-4 tensor. In order to enforce a stronger temporal consistency,

and be able to answer queries of the type (subject, predicate, object, ?), we propose

another cross-entropy loss along the temporal tubes:

ℓ̃(�̂�; (𝑖, 𝑗, 𝑘, 𝑙)) = −�̂�𝑖,𝑗,𝑘,𝑙 + log
(︁∑︁

𝑙′

exp
(︀
�̂�𝑖,𝑗,𝑘,𝑙′

)︀)︁
. (5.7)

We optimize the sum of ℓ defined in Equation (5.1) and ℓ̃ defined in Equation (5.7).

Doing so, we only lose 1 MRR point. However, by adding the loss ℓ̃ we make our

model better at answering queries along the time axis. Computing the macro area

94

1980 1990 2000 2010 2020
Year

7.5

10.0

12.5

15.0

Sc
or
e

Jacques Chirac

Nicolas Sarkozy

François Hollande

Emmanuel Macron

Figure 5-2: Scores for triples (President of the French republic, office holder, {Jacques
Chirac | Nicolas Sarkozy | François Hollande | Emmanuel Macron}, [1980, 2020])

under the precision recall curve gives a score of 0.92 for a TNTComplEx model learned

with ℓ alone and 0.98 for a TNTComplEx model trained with ℓ + ℓ̃.

We plot in Figure 5-2 the scores along time for train triples (president of the

french republic, office holder, {Jacques Chirac | Nicolas Sarkozy | François Hollande

| Emmanuel Macron}, [1980, 2020]). The periods where a score is highest matches

closely the ground truth of start and end dates of these presidents mandates which is

represented as a colored background. This shows that our models are able to learn

rankings that are correct along time intervals despite our training method only ever

sampling timestamps within these intervals.

5.7 Conclusion

Tensor methods have been successful for Knowledge Base completion. In this work, we

suggest an extension of these methods to Temporal Knowledge Bases. Our methodology

adapts well to the various form of these datasets : point-in-time, beginning and endings

or intervals. We show that our methods reach higher performances than the state

of the art for similar number of parameters. For several datasets, we also provide

performances for higher dimensions. We hope that the gap between low-dimensional

and high-dimensional models can motivate further research in models that have

increased expressivity at lower number of parameters per entity. Finally, we propose a

large scale temporal dataset which we believe to be more realistic than the current

benchmarks. We give performances of our methods for low-ranks on this dataset.

95

We believe that, given its scale, this dataset could also be an interesting addition to

non-temporal knowledge base completion.

96

Chapter 6

Conclusion

The starting point of this thesis was the transfer of methods that worked well for single

relation recommender systems [66] to multi-relational link prediction. As shown in

Chapter 3, our use of the CP parametrization and a variational form of the weighted

nuclear 3-norm have lead to large improvements on standard benchmarks. However,

best results are not obtained for “low ranks”: on benchmarks with 15𝑘 entities, we

use ranks up to 2000 in order to obtain our best results. Such ranks cannot be used

at scales of hundreds of millions of entities, which are the scales of large relational

databases such as Wikidata [120].

In order to obtain better performances for low ranks, we turn to the more expressive

Tucker parametrization. As we show in Chapter 4, this parametrization is difficult

to learn when using Adagrad with a diagonal rescaling of the learning rates. Using

links between the Tucker parametrization and a CP parametrization with low-rank

but high-dimensional factors, we design a control experiments on which we can study

the failures of this diagonal rescaling. This leads to a new algorithm, with which we

obtain improved results on several datasets with low embedding sizes.

Finally, the last Chapter 5 shows the flexibility of our approach. Adding timestamps

to the data is easily interpreted as a new mode in the tensor, leading to a straightforward

generalization of ComplEx. This model beats the previous state of the art in temporal

knowledge base completion. By adding a component for non-temporal predicate, we

obtain even better performances. Searching for regularizers that are variational forms

97

of weighted nuclear norms leads to improved performances of these models.

In this thesis, we advanced the state of the art on various knowledge base completion

benchmarks by combining ComplEx [118] with a variational form of the tensor nuclear

norm. This variational form is versatile and can be easily adapted to other problems,

as we show by adding a temporal mode to our models. Our approach is conceptually

simple and has few hyper-parameters. The rank of the model can be set to the

computational limits, and all capacity control defered to the regularization coefficient.

On all benchmarks currently in use in the knowledge base completion community, our

method reaches the state of the art in a matter of minutes. However, these benchmarks

are not representative of the difficulties of working with web-scale multi-relational

data, with millions of entities and billions of positive examples. Future research should

be focused towards learning on these larger scale datasets. Two issues arise with larger

scale, first, the linear growth of model size makes the operational points investigated

in our work inaccessible. Second, computing the full cross-entropy over all entities for

each positive example becomes infeasible. The trade-offs of approximations of this

loss or pairwise ranking loss have not yet been sufficiently investigated at these scales

to yield a clear solution. The dataset we released with our latest work can be used

to benchmark advances in these two directions, since its scale makes our approach

more difficult (with training times of about 7 hours for small embedding sizes) but

not impossible.

98

Appendix A

Appendix for chapter 3

A.1 DistMult on hierarchical predicates

In this section, we justify the observed performances of the Distmult algorithm when

used on the hierarchical Wordnet dataset.

Suppose we are trying to embed a single hierarchical predicate 𝑝 which is a 𝑛-ary

tree of depth 𝑑. This tree will have 𝑛𝑑 leaves, 1 root and 𝐾𝑑
𝑛 = 𝑛𝑑−𝑛

𝑛−1
∼ 𝑛𝑑−1 internal

nodes. We forget any modeling issues we might have, but focus on the symmetricity

assumption in Distmult.

Leaves and the root only appear on one side of the queries (𝑖, 𝑝, 𝑗) and hence won’t

have any problems with the symmetricity. We now focus on an internal node 𝑖. It

has 𝑛 children (𝑐𝑖𝑘)𝑘=1..𝑛 and one ancestor 𝑎𝑖. Assuming 𝑛 > 2, the MRR associated

with this node will be higher if the query (𝑖, 𝑝, ?) yields the ranked list [𝑐𝑖1, ..., 𝑐
𝑖
𝑛, 𝑎𝑖].

Indeed, the filtered rank of the n queries (𝑖, 𝑝, 𝑐𝑖𝑘) will be 1 while the filtered rank of

the query (𝑎𝑖, 𝑝, 𝑖) will be 𝑛 + 1.

Counting the number of queries for which the filtered rank is 1, we see that they

far outweigh the queries for which the filtered rank is 𝑛 + 1 in the final filtered MRR.

For each internal nodes, 𝑛 queries lead to a rank of 1, and only 1 to a rank of 𝑛 + 1.

For the root, 𝑛 queries with a rank of 1, for the leaves, 𝑛𝑑 queries with a rank of 1.

99

Our final filtered MRR is :

𝑚𝑟𝑟 =
𝑛𝑑 + 𝑛 + 𝐾𝑑

𝑛
1

𝑛+1
+ 𝐾𝑑

𝑛𝑛

𝑛𝑑 + 𝑛 + (𝑛 + 1)𝐾𝑑
𝑛

= 1−𝐾𝑑
𝑛

𝑛/(𝑛 + 1)

𝑛𝑑 + 𝑛 + (𝑛 + 1)𝐾𝑑
𝑛⏟ ⏞

∼ 1
2𝑛

→ 1

Hence for big hierarchies such as hyponym or hypernym in WN, we expect the filtered

MRR of DistMult to be high even though its modeling assumptions are incorrect.

A.2 Proofs

Lemma 2.

min
𝑢∈𝒰𝑅(𝑋)

1

3

𝑅∑︁
𝑟=1

3∑︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖𝛼𝑝 = min

𝑢∈𝒰𝑅(𝑋)

𝑅∑︁
𝑟=1

3

⎯⎸⎸⎷ 3∏︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖𝛼𝑝 .

Moreover, the minimizers are the same and satisfy:

‖𝑢(𝑑)
𝑟 ‖𝑝 = 3

⎯⎸⎸⎷ 3∏︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖𝑝.

Proof. First, we characterize the minima :

min
{︁

Ω𝛼
𝑝 (𝑢)

⃒⃒⃒
𝑢 ∈ 𝒰𝑅(𝑋)

}︁
= min

{︁
Ω𝛼

𝑝 (�̃�)
⃒⃒⃒
�̃�𝑑
𝑟 = 𝑐𝑑𝑟𝑢

𝑑
𝑟 , 𝑢 ∈ 𝒰𝑅(𝑋),

3∏︁
𝑑=1

𝑐𝑑𝑟 = 1
}︁

= min
{︁1

3

𝑅∑︁
𝑟=1

3∑︁
𝑑=1

(|𝑐𝑑𝑟 |‖𝑢(𝑑)
𝑟 ‖𝑝)𝛼

⃒⃒⃒
�̃�𝑑
𝑟 = 𝑐𝑑𝑟𝑢

𝑑
𝑟 , 𝑢 ∈ 𝒰𝑅(𝑋),

3∏︁
𝑑=1

𝑐𝑑𝑟 = 1
}︁

We study a summand, for 𝑐𝑖, 𝑎𝑖 > 0 :

min∏︀3
𝑑=1 𝑐

𝑑=1

1

3

3∑︁
𝑑=1

(𝑐𝑑𝑎𝑑)
𝛼

Using constrained optimization techniques, we obtain that this minimum is obtained

100

for :

𝑐𝑖 =

3

√︁∏︀3
𝑑=1 𝑎𝑑

𝑎𝑖

and has value (
∏︀3

𝑑=1 𝑎𝑑)
𝛼/3, which completes the proof.

Proposition 3. The function over third order-tensors of R𝑁1×𝑁2×𝑁3 defined as

|||𝑋||| = min
{︁
‖𝜎‖2/3

⃒⃒⃒
(𝜎, �̃�) ∈ 𝒰𝑅(𝑋), 𝑅 ∈ N

}︁
is not convex.

Proof. We first study elements of R2×2×1, tensors of order 3 associated with matrices

of size 2× 2. We have that⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎛⎝1 0

0 0

⎞⎠⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒ =

⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒
⎛⎝0 0

0 1

⎞⎠⃒⃒⃒⃒⃒⃒
⃒⃒⃒⃒
⃒⃒
⃒⃒⃒⃒
⃒⃒ = 1

Let 𝐴 = 1
2
𝐼2, the mean of these two matrices. Identifying 𝐴 with a 2× 2× 1 tensor

𝐴 to obtain the decomposition (𝜎, 𝑢) yielding |||𝐴|||, we have that the matrix 𝐴 can

be written as
∑︀𝑅

𝑟=1 𝜎𝑟𝑢
(1)
𝑟 ⊗ 𝑢

(2)
𝑟 . This comes from the fact that 𝑢

(3)
𝑟 is a normalized

1 × 1 vector, so its only entry is equal to 1. We then write that trace Tr(𝐴) =∑︀𝑅
𝑟=1 𝜎𝑟 Tr(𝑢

(1)
𝑟 ⊗ 𝑢

(2)
𝑟) ≤ ∑︀𝑅

𝑟=1 𝜎𝑟 by Cauchy-Schwarz. Hence ‖𝜎‖1 ≥ Tr(𝐴) = 1.

Moreover, we have ‖𝜎‖2/3 ≥ ‖𝜎‖1 with equality only for 𝜎 with at most one non-zero

coordinate. Since 𝐴 is of rank 2, its representation has at least 2 non-zero coordinates,

hence |||𝐴||| = ‖𝜎‖2/3 > 1, which contradicts convexity. This proof can naturally be

extended to tensors of any sizes.

A.3 Best Published results

We report in Table A.1 the references for each of the results in Table 2 in the article.

101

Model Metric Result Reference

WN18 MRR 0.94 Trouillon et al. [118]
H@10 0.97 Ma et al. [80]

WN18RR MRR 0.46 Dettmers et al. [30]
H@10 0.51 Dettmers et al. [30]

FB15K MRR 0.84 Kadlec et al. [60]
H@10 0.93 Shen et al. [104]

FB15K-237 MRR 0.32 Dettmers et al. [30]
H@10 0.49 Dettmers et al. [30]

YAGO3-10 MRR 0.52 Dettmers et al. [30]
H@10 0.66 Dettmers et al. [30]

Table A.1: References for the Best Published row in Table 3.2

102

Appendix B

Appendix for chapter 4

B.1 Tensor parametrizations

B.1.1 CP-Tucker

We have 𝑋 = [[𝐶;𝑈, 𝑉,𝑊]] and 𝐶 = [[𝑃1, 𝑃2, 𝑃3]]. For all 𝑖, 𝑗, 𝑘, we have:

𝑋𝑖,𝑗,𝑘 =
𝑑∑︁

𝑟1,𝑟2,𝑟3

𝐶𝑟1,𝑟2,𝑟3𝑈𝑖,𝑟1𝑉𝑖,𝑟2𝑊𝑘,𝑟3

=
𝑑∑︁

𝑟1,𝑟2,𝑟3

(︃
𝐷∑︁
𝑠=0

[𝑃1]𝑟1,𝑠[𝑃2]𝑟2,𝑠[𝑃3]𝑟3,𝑠

)︃
𝑈𝑖,𝑟1𝑉𝑖,𝑟2𝑊𝑘,𝑟3

=
𝐷∑︁
𝑠=0

(︃
𝑑∑︁
𝑟1

𝑈𝑖,𝑟1 [𝑃1]𝑟1,𝑠

)︃(︃
𝑑∑︁
𝑟2

𝑉𝑗,𝑟2 [𝑃2]𝑟2,𝑠

)︃(︃
𝑑∑︁
𝑟3

𝑊𝑘,𝑟3 [𝑃3]𝑟3,𝑠

)︃
= ⟨𝑃1𝑢𝑖, 𝑃2𝑣𝑗, 𝑃3𝑤𝑘⟩

B.1.2 Tucker2 with CP-Tucker

Let for all 1 ≤ 𝑟 ≤ 𝑑, 𝑀 (𝑟) be a matrix of zeros except its 𝑟 − 𝑡ℎ column which is

all one. Let 𝑃1 be the vertical concatenation of all (𝑀 (𝑟))𝑟=1..𝑑 and 𝑃2 the vertical

concatenation of 𝑑 identity matrix in R𝑑. Remember that for all 𝑘, 𝑤𝑘 is an element of

R𝑑2 . For all 0 ≤ 𝑟 < 𝑑, let 𝑤𝑟
𝑘 be the restriction of 𝑤𝑘 to its [𝑟𝑑, (𝑟 + 1)𝑑] coordinates.

103

Then 𝑃1 and 𝑃2 are elements of R𝑑2×𝑑 and we have for all 𝑖, 𝑗, 𝑘:

⟨𝑃1𝑢𝑖, 𝑃2𝑣𝑗, 𝑤𝑘⟩ =
𝑑∑︁

𝑟1=1

⟨𝑀 (𝑟1)𝑢𝑖, 𝐼𝑑𝑣𝑗, 𝑤
𝑟1
𝑘 ⟩

=
𝑑∑︁

𝑟1=1

𝑢𝑖,𝑟1⟨𝑣𝑗, 𝑤𝑟1
𝑘 ⟩ by definition of 𝑀 (𝑟1)

=
𝑑∑︁

𝑟1=1

𝑢𝑖,𝑟1

(︃
𝑑∑︁

𝑟2=1

𝑣𝑗,𝑟2𝑤𝑘,𝑟1𝑟2

)︃
by definition of 𝑤𝑟1

𝑘

= 𝑢⊤
𝑖 Mat(𝑤𝑘)𝑣𝑗

B.1.3 HolEx and Latent factor model

HolEx

The HolEx model [125] writes 𝑋𝑖,𝑗,𝑘 =
∑︀𝑅

𝑟=1⟨(𝑐𝑟 ⊙ 𝑢𝑖) ⋆ 𝑢𝑗, 𝑤
𝑟
𝑘⟩, where ⋆ denotes the

circular correlation1. Exploiting the equivalence between HolE and ComplEx [51],

denoting by ℱ the discrete Fourier transform (with values in C), we can write for

embeddings of size 𝑑:

𝑅∑︁
𝑟=1

⟨(𝑐𝑟 ⊙ 𝑢𝑖) ⋆ 𝑢𝑗, 𝑤
𝑟
𝑘⟩ =

1

𝑑
𝑅𝑒

(︃
𝑅∑︁

𝑟=1

⟨ℱ(𝑐𝑟 ⊙ 𝑢𝑖),ℱ(𝑢𝑗),ℱ(𝑤𝑟
𝑘)⟩
)︃

=
1

𝑑
𝑅𝑒

(︃
𝑅∑︁

𝑟=1

⟨ℱ(𝑐𝑟) ⋆ ℱ(𝑢𝑖),ℱ(𝑢𝑗),ℱ(𝑤𝑟
𝑘)⟩
)︃

For all vectors, we write �̂�𝑖 = ℱ(𝑢𝑖) ∈ C𝑑. We can re-write the circular correlation

ℱ(𝑐𝑟) ⋆ℱ(𝑢𝑖) as 𝐶𝑟�̂�𝑖 where 𝐶𝑟 ∈ C𝑑×𝑑 is the circulant matrix associated with 𝑐𝑟 ∈ R𝑑.

We have :
𝑅∑︁

𝑟=1

⟨(𝑐𝑟 ⊙ 𝑢𝑖) ⋆ 𝑣𝑗, 𝑤
𝑟
𝑘⟩ =

1

𝑑
𝑅𝑒

(︃
𝑅∑︁

𝑟=1

⟨𝐶𝑟�̂�𝑖, �̂�𝑗, �̂�
𝑟
𝑘⟩
)︃
.

1[𝑎 ⋆ 𝑏]𝑘 =
∑︀𝑑−1

𝑖=0 𝑎𝑖𝑏(𝑖+𝑘) mod 𝑑.

104

Finally, with 𝐶1 = [𝐶1, . . . , 𝐶𝑅] ∈ R𝑅𝑑×𝑑 the vertical stacking of all 𝐶𝑟, 𝐶2 =

[𝐼𝑑, . . . , 𝐼𝑑] and �̂�𝑘 = [�̂�1
𝑘, . . . , �̂�

𝑅
𝑘]:

𝑅∑︁
𝑟=1

⟨(𝑐𝑟 ⊙ 𝑢𝑖) ⋆ 𝑢𝑗, 𝑤
𝑟
𝑘⟩ =

1

𝑑
𝑅𝑒
(︀
⟨𝐶1�̂�𝑖, 𝐶

2�̂�𝑗, �̂�𝑘⟩
)︀

HolEx with embeddings of size 𝑑 is close to the CPT with 𝐷 = 𝑅𝑑, allowing for two

different complex matrices to act on left and right hand side embeddings.

Latent Factor model

The latent factor model defines the score for a triple (𝑖, 𝑗, 𝑘) as:

𝑋𝑖,𝑗,𝑘 = ⟨(𝑠𝑖 + 𝑧), 𝑅𝑗(𝑜𝑘 + 𝑧′)⟩, with 𝑅𝑗 =
𝐷∑︁
𝑟=1

𝛼𝑗
𝑟𝑢𝑟𝑣

⊤
𝑟 .

Removing the bias terms 𝑧 and 𝑧′ and gathering 𝑢𝑟 and 𝑣𝑟 into matrices 𝑃1 and 𝑃3

leads to the model CPT. In the PCP model, we fix 𝑃1 and 𝑃3 instead of learning them.

We do not use a sparsity inducing penalty on 𝛼 but rather a variational form of the

nuclear norm on the whole tensor.

B.2 The Adagrad algorithm

In subsections B.2.1 and B.2.2 where we discuss the Adagrad algorithm, we do so in a

general setting, where we study, for fixed 𝑃 with orthonormal columns, the problem

min𝜃 𝑓(𝑃𝜃).

B.2.1 Projected Adagrad update

Let 𝐷 denote Diag(𝐺)1/2 for the classical version of Adagrad and 𝐺1/2 itself for the

“full” version of the update. When the parameter 𝜃 is constrained to a set Θ, the

update proposed in Eq.(1) in [32] the one obtained by solving

min
𝜃∈Θ

(𝜃 − 𝑧)⊤𝐷(𝜃 − 𝑧) with 𝑧 = 𝜃(𝑡) − 𝜂𝐷−1𝑔(𝑡)

105

To enforce the constraint that 𝜃 = 𝑃𝜃, we can consider the Lagrangian

ℒ(𝜃, 𝜃;𝜆) = (𝜃 − 𝑧)⊤𝐷(𝜃 − 𝑧)− 𝜆⊤(𝜃 − 𝑃𝜃)

whose stationary points satisfy 𝐷(𝜃−𝑧) = 𝜆 and 𝑃⊤𝜆 = 0. So this entails 𝑃⊤𝐷(𝜃−
𝜃(𝑡)) = 𝜂𝑃⊤𝑔(𝑡) and finally using 𝜃 = 𝑃𝜃 we obtain an update in 𝜃 as follows

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂(𝑃⊤𝐷𝑃⊤)−1𝑃𝑔(𝑡).

Clearly, 𝑃𝐷𝑃⊤ is in general non-diagonal whether 𝐷 is diagonal or not, and so this

approach does not provide a computationally efficient update.

If 𝐷 = 𝐺1/2, then since 𝑃𝐺1/2𝑃⊤ = (𝑃𝐺𝑃⊤)1/2 the update is the same as the full

Adagrad update (B.1) that we derive in the following section and replacing (𝑃𝐺𝑃⊤)1/2

by its diagonal approximation recovers update (4.3).

B.2.2 The two Full Adagrad updates and the quality of ap-

proximations of the Diag versions

If we consider the full versions of the Adagrad updates then (letting again Π = 𝑃𝑃⊤)

its application to 𝜃 ↦→ 𝑓(𝑃𝜃) and 𝜃 ↦→ 𝑓(Π𝜃) yield respectively

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂 𝑃
(︀
𝑃⊤𝐺(𝑡)𝑃

)︀−1/2
𝑃⊤𝑔(𝑡) and (B.1)

𝜃(𝑡+1) = 𝜃(𝑡) − 𝜂 Π
(︀
Π𝐺(𝑡) Π

)︀−†/2
Π 𝑔(𝑡), (B.2)

where 𝑀 † notes the pseudo-inverse of a matrix 𝑀 . As it turns out, the two updates

are equivalent:

Indeed, first (Π𝐺Π)1/2 = 𝑃 (𝑃⊤𝐺𝑃)1/2𝑃⊤ because 𝑃⊤𝑃 = 𝐼 implies that

𝑃 (𝑃⊤𝐺𝑃)1/2𝑃⊤𝑃 (𝑃⊤𝐺𝑃)1/2𝑃⊤ = Π𝐺Π,

and the p.s.d. squareroot is unique. Second, taking the pseudo-inverse of this identity,

106

we have

(Π𝐺Π)†/2 =
(︀
𝑃 (𝑃⊤𝐺𝑃)1/2𝑃⊤)︀† = 𝑃 (𝑃⊤𝐺𝑃)−1/2𝑃⊤. (B.3)

because, if 𝐻 = (𝑃⊤𝐺𝑃)1/2 is an invertible matrix, then (𝑃𝐻𝑃⊤)† = 𝑃𝐻−1𝑃⊤ given

that 𝑃𝐻𝑃⊤ 𝑃𝐻−1𝑃⊤ = 𝑃𝑃⊤. Finally multiplying both sides of Eq. (B.3) by Π shows

that

Π(Π𝐺(𝑡)Π)†/2Π = 𝑃 (𝑃⊤𝐺(𝑡)𝑃)−1/2𝑃⊤.

This shows that although Adagrad is not invariant for any invertible 𝑃 , it is

invariant for any 𝑃 such that 𝑃⊤𝑃 = 𝐼. Eq.(B.1) seems in general simpler than (B.2),

but note that if 𝐷 = 𝑑, then Π is the identity and (B.2) shows that both full updates

are in that case actually equivalent to the full update of Adagrad applied to plain CP.

Finally, the equivalence of the full updates discussed above strongly suggests that

if our proposed update performs better than the naive application of Adagrad to

PCP, it is because 𝑃Diag(Π𝐺(𝑡)Π)−1/2𝑃⊤ is a better approximation of (𝐺(𝑡))−1/2 than

Diag(𝑃𝐺(𝑡)𝑃⊤)−1/2 while not being much more computationally expensive.

B.2.3 Complete PComplEx Algorithm

Let 𝑈 ∈ C𝑁×𝑑 be the the entity embedding matrix and 𝑉 ∈ C2𝐿×𝐷 be the predicate

embedding matrix. Let 𝒫 : R𝑁×𝑑 ↦→ R𝑁×𝐷 such that 𝒫(𝑈𝑖) = 𝑃𝑈𝑖. Let 𝐺𝑈
𝑡 , 𝐺𝑉

𝑡 be

the stochastic gradients with respect to 𝑈 , 𝑉 at time 𝑡.

Algorithm 3 PComplEx optimized with Adaimp

Input: learning rate 𝜂, (random) matrix 𝑃 with orthogonal columns, 𝜖
𝐶𝑈 , 𝐶𝑉 ← 0
while 𝑈, 𝑉 not converged do

�̃�𝑈
𝑡 ← 𝒫(𝐺𝑈

𝑡)
𝐶𝑈 ← 𝐶𝑈 + �̃�𝑈

𝑡 ⊙ �̃�𝑈
𝑡

𝐶𝑉 ← 𝐶𝑉 + 𝐺𝑉
𝑡 ⊙𝐺𝑉

𝑡

𝑈 ← 𝑈 − 𝜂 · 𝒫⊤(�̃�𝑈
𝑡 /(
√
𝐶𝑈 + 𝜖))

𝑉 ← 𝑉 − 𝜂 ·𝐺𝑉
𝑡 /(
√
𝐶𝑉 + 𝜖))

end while
return 𝑈

107

B.2.4 Adam - Implicit

Algorithm 4 Adam𝑖𝑚𝑝 applied to 𝑈

Input: 𝜂, 𝛽1, 𝛽2,𝒫 , 𝜖
𝑚0, 𝑣0, 𝑡← 0
while 𝑈 not converged do

𝑡← 𝑡 + 1
�̃�𝑡 ← 𝒫(𝐺𝑡)
𝑚𝑡 ← 𝛽1 ·𝑚𝑡−1 + (1− 𝛽1) · �̃�𝑡

𝑣𝑡 ← 𝛽2 · 𝑣𝑡−1 + (1− 𝛽2) · �̃�𝑡 ⊙ �̃�𝑡

�̂�𝑡 ← 𝑚𝑡/(1− 𝛽𝑡
1)

𝑣𝑡 ← 𝑣𝑡/(1− 𝛽𝑡
2)

𝑈 ← 𝑈 − 𝜂 · 𝒫⊤(�̂�𝑡/(
√
𝑣𝑡 + 𝜖))

end while
return 𝑈

For WN18RR, we used the ideas presented in this paper, but adapted to the Adam

[63] optimization algorithm. Similar to Adaimp, first and second moment estimates

are accumulated in R𝐷 and we project back to R𝑑 only for the parameter update. For

simplicity, we present in algorithm 4 the dense version of the algorithm applied to the

entity embeddings 𝑈 ∈ R𝑁×𝑑. Let 𝒫 : R𝑁×𝑑 ↦→ R𝑁×𝐷 such that 𝒫(𝑈𝑖) = 𝑃𝑈𝑖. Let

𝐺𝑡 be the stochastic gradient with respect to 𝑈 at time 𝑡.

B.3 Experiments

B.3.1 Dataset statistics

B.3.2 Adarow

For the same control experiment as in Section 4.5, we observe the performances of

Adarow which is rotation invariant by design.

108

Dataset N P Train

FB15K 15k 1k 500k
FB15K-237 15k 237 272k

WN18 41k 18 141k
WN18 41k 11 141k

YAGO3-10 123k 37 1M
SVO 30k 4.5k 1M

Table B.1: Dataset statistics.

101 102 103

Parameters per entities

0.250

0.275

0.300

0.325

0.350

M
R
R

CP Adagrad

CP Adarow

Figure B-1: Adarow vs AdaGrad on FB15K-237.

B.3.3 Variance of PComplEx

We run 5 grid search and plot the 5 associated convex-hulls on the WN18 dataset.

Note that despite the added randomness of the choice of 𝑃 , there is not more variance

in PComplEx than in ComplEx.

0 20 40 60 80 100
params per entities

0.2

0.4

0.6

0.8

M
R
R

Variance of PComplEx on WN18

ComplEx

PComplEx

109

B.3.4 FB15k datasets

We use two subsets of the Freebase knowledge base : FB15K [13] and FB15K-237

[117]. FB15K-237 is a harder version of FB15K, where some triples have been removed

to avoid leakage between the train and test set. There is no difference of performances

between PComplEx and ComplEx on these datasets.

101 102 103

Params per entities

0.4

0.6

0.8

M
R
R

FB15K

ComplEx

PComplEx

TuckER

HolEx

101 102 103 104

Params per entities

0.275

0.300

0.325

0.350

M
R
R

FB15K-237

TuckER

D/SRT

MurP

ConvE

B.3.5 Experimental details

Metrics Let 𝑟𝑎𝑛𝑘(�̂�𝑖,𝑗,:; 𝑘) be the rank of �̂�𝑖,𝑗,𝑘 in the sorted list of values of �̂�𝑖,𝑗,:.

We report the MRR for most datasets :

𝑀𝑅𝑅(𝑋) =
1

|𝑆|
∑︁

(𝑖,𝑗,𝑘)∈𝑆

1

𝑟𝑎𝑛𝑘(𝑋𝑖,𝑗,:; 𝑘)
.

For SVO, the task is slightly different as the ranking happens on the predicate mode.

The metric reported in Jenatton et al. [56] is Hits@5% defined as :

𝐻@5%(𝑋) =
1

|𝑆|
∑︁

(𝑖,𝑗,𝑘)∈𝑆

1(𝑟𝑎𝑛𝑘(𝑋𝑖,:,𝑘; 𝑗) ≤ 227).

The metrics we report are filtered by ignoring other true positives when computing

the ranks, as done in Bordes et al. [13].

Number of parameters per entities We count the number of floats in the model,

and divide by the number of entities in the dataset. For different methods, the number

110

of parameters are :

∙ ComplEx: 2 · 𝑑 · (𝑁 + 2𝐿)

∙ PComplEx: 2 · 𝑑 ·𝑁 + 2 ·𝐷 · 2𝐿 + 𝑑 ·𝐷

∙ TuckEr: 𝑁 · 𝑑𝑒 + 𝐿 · 𝑑𝑝 + 𝑑2𝑒 · 𝑑𝑝

∙ MurP: 𝑁 · (𝑑 + 1) + 2 · 𝐿 · 𝑑

∙ ConvE: taken from Dettmers et al. [30]

∙ D/SRT: taken from Wang et al. [121]

∙ HolEx: 𝑑 · (𝑁 + 𝐿)

B.3.6 Grid Search

Grid Search For SVO:

∙ For Complex vary 𝑑 in [5, 25, 50, 100, 500, 1000, 2000]. For PComplEx, we vary 𝑑

in [5, 25, 50, 100, 500].

∙ The strength of the regularizer, 𝜈 varies in [5𝑒−4, 1𝑒−3, 5𝑒−3, 1𝑒−2, 5𝑒−2, 1𝑒−1].

∙ Finally, for PComplEx, we vary the dimension 𝐷 in [5, 25, 50, 100, 500, 1000, 2000, 4000, 8000].

For all other datasets :

∙ For FB15K and FB15K-237, we vary 𝑑 in [5, 25, 50, 100, 500, 1000, 2000]. For

YAGO3-10, WN18 and WN18RR, we add ranks 8 and 16 to that list.

∙ The strength of the regularizer, 𝜈 varies in [5𝑒−4, 1𝑒−3, 5𝑒−3, 1𝑒−2, 5𝑒−2, 1𝑒−1].

∙ Finally, for PComplEx, we vary the dimension 𝐷 in [5, 25, 50, 100, 500, 1000, 2000].

Other details Batch-size is fixed to 1000, the learning-rate is 1𝑒 − 1 both for

Adagrad and for Adaimp, we run 100 epochs to ensure convergence. The best model

based on validation MRR is selected and we report the corresponding test MRR.

111

B.3.7 Convergence speed

We run a grid-search on learning rates in [10, 5, 1, 0.5, 0.1, 0.05] and select the best final

performance for each model and each method. For each model, we plot in log-scale

the difference between the loss and the best final loss.

0 10 20 30 40 50
Epoch

10−3

10−1

101

∆
M
R
R

Convergence on YAGO

PComplEx AdaImp

PComplEx Adagrad

PCP AdaImp

PCP Adagrad

0 50 100 150 200
Epoch

10−4

10−3

10−2

10−1

100

∆
M
R
R

Convergence on SVO

PComplEx AdaImp

PComplEx Adagrad

PCP AdaImp

PCP Adagrad

0 20 40 60 80 100
Epoch

10−5

10−3

10−1

∆
M
R
R

Convergence on FB237

PComplEx AdaImp

PComplEx Adagrad

PCP AdaImp

PCP Adagrad

B.3.8 Running times

We give here the running times of each method per epoch, on the WN18RR dataset

for comparable dimensionalities and run on a P100 GPU. We use the original imple-

112

mentation for MurP [6] and TuckEr [7]. For ComplEx, we use the implementation

from Lacroix et al. [70].

∙ ComplEx (𝑑 = 200) : 4s/epoch.

∙ PComplEx (𝑑 = 𝐷 = 200, Adaimp) : 5s/epoch.

∙ MurP (𝑑 = 200): 38s/epoch.

∙ TuckEr (𝑑𝑒 = 200, 𝑑𝑟 = 200): 24s/epoch

Note that these running times are implementation dependent. In the figure below, we

give the learning-curves of MurP, TuckEr, ComplEx and PComplEx for one operating

point on the WN18RR dataset. The convergence speed of these methods is given in

the figure below at an operating point on WN18RR where all methods are close in

final performances.

100 200 300 400 500
Epoch

0.35

0.40

0.45

0.50

M
R
R

Convergence on WN18RR

MurP

TuckEr

ComplEx

PComplEx

113

114

Appendix C

Appendix for chapter 5

C.1 Tensor norms

C.1.1 Unfolding and the CP parametrization

Let 𝑋 = [[𝑈, 𝑉,𝑊, 𝑇]], that is 𝑋𝑖,𝑗,𝑘,𝑙 = ⟨𝑢𝑖, 𝑣𝑗, 𝑤𝑘, 𝑡𝑙⟩. Then according to Kolda

and Bader [64], unfolding along modes 3 and 4 leads to an order three tensor of

decomposition �̃� = [[𝑈, 𝑉,𝑊 ∘ 𝑇]]. Where ∘ is the Khatri-Rao product [106], which is

the column-wise Kronecker product : 𝑊 ∘ 𝑇 = (𝑊:,1 ⊗ 𝑇:,1, . . . ,𝑊:,𝑅 ⊗ 𝑇:,𝑅).

Note that for a fourth mode of size 𝐿: (𝑊 ∘ 𝑇)𝐿(𝑘−1)+𝑙 = 𝑤𝑘 ⊙ 𝑡𝑙. This justifies

the regularizers used in Section 5.3.2.

C.1.2 Temporal regularizer and Nuclear norms

Consider the penalty:

Ω(𝑈, 𝑉,𝑊, 𝑇) =
1

4

(︀
‖𝑈‖44 + ‖𝑉 ‖44 + ‖𝑊‖44 + ‖𝑇‖44 + 𝛼‖𝑇1: − 𝑇:−1‖44

)︀
Let us define a new norm on vectors:

‖𝑡‖𝜏4 =
(︀
‖𝑡‖44 + 𝛼‖𝑡1: − 𝑡:−1‖44

)︀1/4
115

‖ · ‖𝜏4 is a norm and lets us rewrite:

Ω(𝑈, 𝑉,𝑊, 𝑇) =
𝑅∑︁

𝑟=1

1

4

(︀
‖𝑢𝑟‖44 + ‖𝑣𝑟‖44 + ‖𝑤𝑟‖44 + ‖𝑡𝑟‖4𝜏4

)︀
.

Following the proof in Lacroix et al. [70] which only uses homogeneity of the norms,

we can show that Ω(𝑈, 𝑉,𝑊, 𝑇) is a variational form of an atomic norm with atoms :

𝒜 = {𝑢⊗ 𝑣 ⊗ 𝑤 ⊗ 𝑡 | ‖𝑢‖4, ‖𝑣‖4, ‖𝑤‖4 ≤ 1 and ‖𝑡‖𝜏4 ≤ 1}

C.1.3 Nuclear norms on unfoldings

We consider the regularizer :

Ω𝑁3(𝑈, 𝑉, 𝑇 ; (𝑖, 𝑗, 𝑘, 𝑙)) =
1

3

(︀
‖𝑢𝑖‖33 + ‖𝑢𝑘‖33 + ‖𝑣𝑘 ⊙ 𝑡𝑙‖33

)︀
.

Let 𝐷subj (resp. obj, pred/time) the diagonal matrix containing the cubic-roots of

the marginal probabilities of each subject (resp. obj, pred/time) in the dataset. We

denote by ∘ the Kathri-Rao product between two matrices (the columnwise Kronecker

product). Summing over the entire dataset, we obtain the penalty:

1

|𝑆|
∑︁

(𝑖,𝑗,𝑘,𝑙)∈𝑆

Ω𝑁3(𝑈, 𝑉, 𝑇 ; (𝑖, 𝑗, 𝑘, 𝑙)) =
1

3

(︀
‖𝐷subj𝑈‖33 + ‖𝐷obj𝑈‖33 + ‖𝐷pred/time(𝑉 ∘ 𝑇)‖33

)︀
.

Dropping the weightings to simplify notations, we state the equivalence between

this regularizer and a variational form of the nuclear 3-norm of an order 4 tensor:

inf
[𝑈1,𝑈2,𝑈3,𝑈4]=𝑋

1

3

(︃
𝑅∑︁

𝑟=1

‖𝑢(1)
𝑟 ‖33 + ‖𝑢(2)

𝑟 ‖33 + ‖𝑢(3)
𝑟 ⊗ 𝑢(4)

𝑟 ‖33

)︃
= inf

[𝑈1,𝑈2,𝑈3,𝑈4]=𝑋

1

3

(︃
𝑅∑︁

𝑟=1

4∏︁
𝑑=1

‖𝑢(𝑑)
𝑟 ‖3

)︃
.

The proof follows Lacroix et al. [70], noting that ‖𝑢(3)
𝑟 ⊗ 𝑢

(4)
𝑟 ‖33 = ‖𝑢(3)

𝑟 ‖33‖𝑢(4)
𝑟 ‖33.

Note that for 𝐷pred/time = 𝐷pred𝐷time, there would also be equality of the weighted

norms. However, in the application considered, time and predicate are most likely not

116

independent, leading to different weightings of the norms.

C.2 Experiments

C.2.1 Dataset statistics

Statistics of all the datasets used in this work are gathered in Table 3.1.

ICEWS14 ICEWS05-15 Yago15k Wikidata
Entities 6869 10094 15403 432715
Predicates 460 502 102 814
Timestamps 365 4017 170 1726
|S| 72826 368962 110441 7224361

Table C.1: Dataset statistics

C.2.2 Grid Search

For ICEWS14, ICEWS05-15 and Yago15k, we follow the grid-search below :

Using Table 5.1 to compute the number of parameters and the dataset statistics in

Table 3.1, we use the following ranks to match the number of parameters of DE-SimplE

in dimension 100:

ICEWS14 ICEWS05-15 Yago15k
DE-SimplE 100 100 100

ComplEx 182 186 196
TComplEx 174 136 194
TTComplEx 156 128 189

117

118

Bibliography

[1] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic
block models: Fundamental limits and efficient algorithms for recovery. In 2015
IEEE 56th Annual Symposium on Foundations of Computer Science, pages
670–688. IEEE, 2015.

[2] Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan, Karan Singh, Cyril
Zhang, and Yi Zhang. The case for full-matrix adaptive regularization. arXiv
preprint arXiv:1806.02958, 2018.

[3] Noga Alon. Tools from higher algebra. Handbook of combinatorics, 2:1749–1783,
1995.

[4] Brett W Bader, Richard A Harshman, and Tamara G Kolda. Temporal analysis
of semantic graphs using asalsan. In Seventh IEEE international conference on
data mining (ICDM 2007), pages 33–42. IEEE, 2007.

[5] Raphaël Bailly, Antoine Bordes, and Nicolas Usunier. Semantically Invariant
Tensor Factorization. 2015.

[6] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Multi-relational poincaré
graph embeddings. In Advances in Neural Information Processing Systems,
pages 4465–4475, 2019.

[7] Ivana Balazevic, Carl Allen, and Timothy Hospedales. Tucker: Tensor factoriza-
tion for knowledge graph completion. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages
5188–5197, 2019.

[8] Jessa Bekker and Jesse Davis. Learning from positive and unlabeled data: A
survey. arXiv preprint arXiv:1811.04820, 2018.

[9] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD
cup and workshop, volume 2007, page 35. New York, NY, USA., 2007.

[10] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Semi-supervised novelty
detection. Journal of Machine Learning Research, 11(Nov):2973–3009, 2010.

119

[11] Ron Blei. The Grothendieck inequality revisited, volume 232. American Mathe-
matical Society, 2014.

[12] Antoine Bordes, Jason Weston, Ronan Collobert, and Yoshua Bengio. Learn-
ing structured embeddings of knowledge bases. In Conference on artificial
intelligence, 2011.

[13] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and
Oksana Yakhnenko. Translating Embeddings for Modeling Multi-relational
Data. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26,
pages 2787–2795. Curran Associates, Inc., 2013.

[14] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic
matching energy function for learning with multi-relational data. Machine
Learning, 94(2):233–259, 2014.

[15] Elizabeth Boschee, Jennifer Lautenschlager, Sean O’Brien, Steve Shellman,
James Starz, and Michael Ward. Icews coded event data. Harvard Dataverse,
12, 2015.

[16] Léon Bottou, Frank E. Curtis, and Jorge Nocedal. Optimization methods
for large-scale machine learning. Siam Reviews, 60(2):223–311, 2018. URL
http://leon.bottou.org/papers/bottou-curtis-nocedal-2018.

[17] Rasmus Bro and Claus A Andersson. Improving the speed of multiway algorithms:
Part ii: Compression. Chemometrics and intelligent laboratory systems, 42(1-2):
105–113, 1998.

[18] Rasmus Bro, ND Sidiropoulos, and GB Giannakis. A fast least squares algorithm
for separating trilinear mixtures. In Int. Workshop Independent Component and
Blind Signal Separation Anal, pages 11–15, 1999.

[19] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral
networks and locally connected networks on graphs. In International Conference
on Learning Representations (ICLR2014), 2014.

[20] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value thresh-
olding algorithm for matrix completion. SIAM Journal on Optimization, 20(4):
1956–1982, 2010.

[21] Emmanuel J Candès and Benjamin Recht. Exact matrix completion via convex
optimization. Foundations of Computational Mathematics, 9(6):717, 2009.

[22] J Douglas Carroll and Jih-Jie Chang. Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of “eckart-young” decomposition.
Psychometrika, 35(3):283–319, 1970.

120

http://leon.bottou.org/papers/bottou-curtis-nocedal-2018

[23] J Douglas Carroll, Sandra Pruzansky, and Joseph B Kruskal. Candelinc: A
general approach to multidimensional analysis of many-way arrays with linear
constraints on parameters. Psychometrika, 45(1):3–24, 1980.

[24] Andrew Chatr-Aryamontri, Bobby-Joe Breitkreutz, Rose Oughtred, Lorrie
Boucher, Sven Heinicke, Daici Chen, Chris Stark, Ashton Breitkreutz, Nadine
Kolas, Lara O’Donnell, et al. The biogrid interaction database: 2015 update.
Nucleic acids research, 43(D1):D470–D478, 2014.

[25] Gal Chechik, Varun Sharma, Uri Shalit, and Samy Bengio. Large scale online
learning of image similarity through ranking. Journal of Machine Learning
Research, 11(Mar):1109–1135, 2010.

[26] Hao Cheng, Yaoliang Yu, Xinhua Zhang, Eric Xing, and Dale Schuurmans.
Scalable and sound low-rank tensor learning. In Artificial Intelligence and
Statistics, pages 1114–1123, 2016.

[27] Ronan Collobert and Jason Weston. A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of the
25th international conference on Machine learning, pages 160–167. ACM, 2008.

[28] Vin De Silva and Lek-Heng Lim. Tensor rank and the ill-posedness of the
best low-rank approximation problem. SIAM Journal on Matrix Analysis and
Applications, 30(3):1084–1127, 2008.

[29] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová.
Asymptotic analysis of the stochastic block model for modular networks and its
algorithmic applications. Physical Review E, 84(6):066106, 2011.

[30] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel.
Convolutional 2D knowledge graph embeddings. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[31] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault:
A web-scale approach to probabilistic knowledge fusion. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 601–610. ACM, 2014.

[32] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(Jul):2121–2159, 2011.

[33] Takuma Ebisu and Ryutaro Ichise. Toruse: Knowledge graph embedding on a
lie group. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[34] Charles Elkan and Keith Noto. Learning classifiers from only positive and unla-
beled data. In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 213–220. ACM, 2008.

121

[35] Maryam Fazel, Haitham Hindi, Stephen P Boyd, et al. A rank minimization
heuristic with application to minimum order system approximation. In Proceed-
ings of the American control conference, volume 6, pages 4734–4739. Citeseer,
2001.

[36] Jun Feng, Minlie Huang, Mingdong Wang, Mantong Zhou, Yu Hao, and Xi-
aoyan Zhu. Knowledge graph embedding by flexible translation. In Fifteenth
International Conference on the Principles of Knowledge Representation and
Reasoning, 2016.

[37] Rina Foygel, Ohad Shamir, Nati Srebro, and Ruslan R Salakhutdinov. Learning
with the weighted trace-norm under arbitrary sampling distributions. In Advances
in Neural Information Processing Systems, pages 2133–2141, 2011.

[38] Shmuel Friedland and Lek-Heng Lim. Nuclear norm of higher-order tensors.
Mathematics of Computation, 87(311):1255–1281, 2018.

[39] Silvia Gandy, Benjamin Recht, and Isao Yamada. Tensor completion and low-n-
rank tensor recovery via convex optimization. Inverse Problems, 27(2):025010,
2011.

[40] Alberto Garcia-Duran, Antoine Bordes, Nicolas Usunier, and Yves Grandvalet.
Combining two and three-way embedding models for link prediction in knowledge
bases. Journal of Artificial Intelligence Research, 55:715–742, 2016.

[41] Alberto Garcia-Duran, Sebastijan Dumančić, and Mathias Niepert. Learning
sequence encoders for temporal knowledge graph completion. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing,
pages 4816–4821, 2018.

[42] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for
large-scale sentiment classification: A deep learning approach. In Proceedings
of the 28th international conference on machine learning (ICML-11), pages
513–520, 2011.

[43] Rishab Goel, Seyed Mehran Kazemi, Marcus Brubaker, and Pascal Poupart.
Diachronic embedding for temporal knowledge graph completion. arXiv preprint
arXiv:1907.03143, 2019.

[44] Google. Freebase data dumps. https://developers.google.com/freebase/
data, 2019.

[45] David Gross. Recovering low-rank matrices from few coefficients in any basis.
IEEE Transactions on Information Theory, 57(3):1548–1566, 2011.

[46] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned
stochastic tensor optimization. In 35th International Conference on Machine
Learning, ICML 2018, pages 2956–2964. International Machine Learning Society
(IMLS), 2018.

122

https://developers.google.com/freebase/data
https://developers.google.com/freebase/data

[47] Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs in
vector space. In Proceedings of the 2015 Conference on Empirical Methods in
Natural Language Processing, pages 318–327, 2015.

[48] William L Hamilton, Jure Leskovec, and Dan Jurafsky. Diachronic word em-
beddings reveal statistical laws of semantic change. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 1489–1501, 2016.

[49] Richard A Harshman. Models for analysis of asymmetrical relationships among
n objects or stimuli. In First Joint Meeting of the Psychometric Society and the
Society of Mathematical Psychology, Hamilton, Ontario, 1978, 1978.

[50] Richard A Harshman et al. Foundations of the parafac procedure: Models and
conditions for an" explanatory" multimodal factor analysis. 1970.

[51] Katsuhiko Hayashi and Masashi Shimbo. On the equivalence of holographic
and complex embeddings for link prediction. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 2: Short
Papers), pages 554–559, 2017.

[52] Christopher J Hillar and Lek-Heng Lim. Most tensor problems are np-hard.
Journal of the ACM (JACM), 60(6):45, 2013.

[53] Frank L. Hitchcock. The expression of a tensor or a polyadic as a sum of
products. Studies in Applied Mathematics, 6(1-4):164–189, 1927.

[54] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep
network training by reducing internal covariate shift. In International Conference
on Machine Learning, pages 448–456, 2015.

[55] Martin Jaggi, Marek Sulovsk, and others. A simple algorithm for nuclear norm
regularized problems. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 471–478, 2010.

[56] Rodolphe Jenatton, Nicolas L Roux, Antoine Bordes, and Guillaume R Obozinski.
A latent factor model for highly multi-relational data. In Advances in Neural
Information Processing Systems, pages 3167–3175, 2012.

[57] Guoliang Ji, Shizhu He, Liheng Xu, Kang Liu, and Jun Zhao. Knowledge
graph embedding via dynamic mapping matrix. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 687–696, 2015.

[58] Armand Joulin, Édouard Grave, Piotr Bojanowski, and Tomáš Mikolov. Bag of
tricks for efficient text classification. In Proceedings of the 15th Conference of
the European Chapter of the Association for Computational Linguistics: Volume
2, Short Papers, pages 427–431, 2017.

123

[59] Armand Joulin, Edouard Grave, Piotr Bojanowski, Maximilian Nickel, and
Tomas Mikolov. Fast linear model for knowledge graph embeddings. arXiv
preprint arXiv:1710.10881, 2017.

[60] Rudolf Kadlec, Ondrej Bajgar, and Jan Kleindienst. Knowledge base completion:
Baselines strike back. In Proceedings of the 2nd Workshop on Representation
Learning for NLP, pages 69–74, 2017.

[61] Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction
in knowledge graphs. In Advances in Neural Information Processing Systems 31,
pages 4289–4300. 2018.

[62] Charles Kemp, Joshua B Tenenbaum, Thomas L Griffiths, Takeshi Yamada, and
Naonori Ueda. Learning systems of concepts with an infinite relational model.
In AAAI, volume 3, page 5, 2006.

[63] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
In International Conference on Learning Representations (ICLR), 2015.

[64] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.
SIAM review, 51(3):455–500, 2009.

[65] Tamara Gibson Kolda. Multilinear operators for higher-order decompositions.
Technical report, Sandia National Laboratories, 2006.

[66] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. Computer, 42(8), 2009.

[67] Denis Krompass, Stephan Baier, and Volker Tresp. Type-constrained represen-
tation learning in knowledge graphs. In International Semantic Web Conference,
pages 640–655. Springer, 2015.

[68] Gabriel Krummenacher, Brian McWilliams, Yannic Kilcher, Joachim M Buh-
mann, and Nicolai Meinshausen. Scalable adaptive stochastic optimization using
random projections. In Advances in Neural Information Processing Systems,
pages 1750–1758, 2016.

[69] Michael Kuhn, Ivica Letunic, Lars Juhl Jensen, and Peer Bork. The sider
database of drugs and side effects. Nucleic acids research, 44(D1):D1075–D1079,
2015.

[70] Timothée Lacroix, Nicolas Usunier, and Guillaume Obozinski. Canonical ten-
sor decomposition for knowledge base completion. In Proceedings of the 35th
International Conference on Machine Learning (ICML-18), pages 2863–2872,
2018.

[71] Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and
learning in a large scale knowledge base. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 529–539. Association
for Computational Linguistics, 2011.

124

[72] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. Pytorch-biggraph: A large-scale graph embedding
system. arXiv preprint arXiv:1903.12287, 2019.

[73] Omer Levy and Yoav Goldberg. Neural word embedding as implicit matrix
factorization. In Advances in neural information processing systems, pages
2177–2185, 2014.

[74] Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard Zemel. Gated graph
sequence neural networks. In International Conference on Learning Representa-
tions (ICLR), 2016.

[75] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social
networks. Journal of the American society for information science and technology,
58(7):1019–1031, 2007.

[76] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning
entity and relation embeddings for knowledge graph completion. In Twenty-ninth
AAAI conference on artificial intelligence, 2015.

[77] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large
scale optimization. Mathematical programming, 45(1-3):503–528, 1989.

[78] Ji Liu, Przemyslaw Musialski, Peter Wonka, and Jieping Ye. Tensor completion
for estimating missing values in visual data. IEEE transactions on pattern
analysis and machine intelligence, 35(1):208–220, 2012.

[79] Canyi Lu, Jiashi Feng, Yudong Chen, Wei Liu, Zhouchen Lin, and Shuicheng
Yan. Tensor robust principal component analysis: Exact recovery of corrupted
low-rank tensors via convex optimization. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 5249–5257, 2016.

[80] Shiheng Ma, Jianhui Ding, Weijia Jia, Kun Wang, and Minyi Guo. Transt:
Type-based multiple embedding representations for knowledge graph completion.
In Joint European Conference on Machine Learning and Knowledge Discovery
in Databases, pages 717–733. Springer, 2017.

[81] Yunpu Ma, Volker Tresp, and Erik A Daxberger. Embedding models for episodic
knowledge graphs. Journal of Web Semantics, page 100490, 2018.

[82] Farzaneh Mahdisoltani, Joanna Biega, and Fabian M Suchanek. Yago3: A
knowledge base from multilingual wikipedias. 2013.

[83] Gerry McKiernan. arxiv. org: the los alamos national laboratory e-print server.
International Journal on Grey Literature, 1(3):127–138, 2000.

[84] Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian, Marc
Vidal, Joseph Loscalzo, and Albert-László Barabási. Uncovering disease-disease
relationships through the incomplete interactome. Science, 347(6224):1257601,
2015.

125

[85] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[86] George A Miller. Wordnet: a lexical database for english. Communications of
the ACM, 38(11):39–41, 1995.

[87] Cun Mu, Bo Huang, John Wright, and Donald Goldfarb. Square deal: Lower
bounds and improved relaxations for tensor recovery. In International conference
on machine learning, pages 73–81, 2014.

[88] Sahand Negahban and Martin J Wainwright. Restricted strong convexity and
weighted matrix completion: Optimal bounds with noise. Journal of Machine
Learning Research, 13(May):1665–1697, 2012.

[89] Dat Quoc Nguyen. An overview of embedding models of entities and relationships
for knowledge base completion. arXiv preprint arXiv:1703.08098, 2017.

[90] Dat Quoc Nguyen, Kairit Sirts, Lizhen Qu, and Mark Johnson. Stranse: a
novel embedding model of entities and relationships in knowledge bases. In
Proceedings of NAACL-HLT, pages 460–466, 2016.

[91] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model
for collective learning on multi-relational data. In Proceedings of the 28th
International Conference on Machine Learning (ICML-11), pages 809–816, 2011.

[92] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. A
Review of Relational Machine Learning for Knowledge Graphs. Proceedings of
the IEEE, 104(1):11–33, 2016.

[93] Maximilian Nickel, Lorenzo Rosasco, Tomaso A Poggio, et al. Holographic
embeddings of knowledge graphs. 2016.

[94] Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierar-
chical representations. In Advances in Neural Information Processing Systems,
pages 6338–6347, 2017.

[95] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convo-
lutional neural networks for graphs. In International Conference on Machine
Learning, pages 2014–2023, 2016.

[96] Boris T Polyak. Some methods of speeding up the convergence of iteration
methods. USSR Computational Mathematics and Mathematical Physics, 4(5):
1–17, 1964.

[97] Benjamin Recht. A simpler approach to matrix completion. Journal of Machine
Learning Research, 12(Dec):3413–3430, 2011.

[98] Jasson DM Rennie and Nathan Srebro. Fast maximum margin matrix factor-
ization for collaborative prediction. In Proceedings of the 22nd International
Conference on Machine Learning, pages 713–719. ACM, 2005.

126

[99] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[100] Purnamrita Sarkar and Andrew W Moore. Dynamic social network analysis using
latent space models. In Advances in Neural Information Processing Systems,
pages 1145–1152, 2006.

[101] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE Transactions on
Neural Networks, 20(1):61–80, 2009.

[102] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan
Titov, and Max Welling. Modeling relational data with graph convolutional
networks. In European Semantic Web Conference, pages 593–607. Springer,
2018.

[103] Yoav Seginer. The expected norm of random matrices. Combinatorics, Probability
and Computing, 9(2):149–166, 2000.

[104] Yelong Shen, Po-Sen Huang, Ming-Wei Chang, and Jianfeng Gao. Implicit
reasonet: Modeling large-scale structured relationships with shared memory.
2016.

[105] Marco Signoretto, Lieven De Lathauwer, and Johan AK Suykens. Nuclear norms
for tensors and their use for convex multilinear estimation. Submitted to Linear
Algebra and Its Applications, 43, 2010.

[106] Age Smilde, Rasmus Bro, and Paul Geladi. Multi-way analysis: applications in
the chemical sciences. John Wiley & Sons, 2005.

[107] Richard Socher, Cliff C Lin, Chris Manning, and Andrew Y Ng. Parsing natural
scenes and natural language with recursive neural networks. In Proceedings of the
28th international conference on machine learning (ICML-11), pages 129–136,
2011.

[108] Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reason-
ing with neural tensor networks for knowledge base completion. In Advances in
Neural Information Processing Systems, pages 926–934, 2013.

[109] Nathan Srebro. Learning with matrix factorizations. 2004.

[110] Nathan Srebro and Ruslan R Salakhutdinov. Collaborative filtering in a non-
uniform world: Learning with the weighted trace norm. In Advances in Neural
Information Processing Systems, pages 2056–2064, 2010.

[111] Nathan Srebro and Adi Shraibman. Rank, trace-norm and max-norm. In
International Conference on Computational Learning Theory, pages 545–560.
Springer, 2005.

127

[112] Nathan Srebro, Noga Alon, and Tommi S Jaakkola. Generalization error bounds
for collaborative prediction with low-rank matrices. In Advances In Neural
Information Processing Systems, pages 1321–1328, 2005.

[113] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix
factorization. In Advances in neural information processing systems, pages
1329–1336, 2005.

[114] Nathan Srebro, Jason Rennie, and Tommi S Jaakkola. Maximum-margin matrix
factorization. In Advances in Neural Information Processing Systems, pages
1329–1336, 2005.

[115] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. Dropout: A simple way to prevent neural networks from
overfitting. Journal of Machine Learning Research, 15:1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

[116] Ryota Tomioka, Kohei Hayashi, and Hisashi Kashima. Estimation of low-rank
tensors via convex optimization. arXiv preprint arXiv:1010.0789, 2010.

[117] Kristina Toutanova and Danqi Chen. Observed versus latent features for knowl-
edge base and text inference. In Proceedings of the 3rd Workshop on Continuous
Vector Space Models and their Compositionality, pages 57–66, 2015.

[118] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume
Bouchard. Complex embeddings for simple link prediction. In International
Conference on Machine Learning, pages 2071–2080, 2016.

[119] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis.
Psychometrika, 31(3):279–311, 1966.

[120] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledge
base. 2014.

[121] Yanjie Wang, Samuel Broscheit, and Rainer Gemulla. A relational tucker decom-
position for multi-relational link prediction. arXiv preprint arXiv:1902.00898,
2019.

[122] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph
embedding by translating on hyperplanes. In Twenty-Eighth AAAI conference
on artificial intelligence, 2014.

[123] Jason Weston, Samy Bengio, and Nicolas Usunier. Large scale image annotation:
learning to rank with joint word-image embeddings. Machine learning, 81(1):
21–35, 2010.

[124] Kishan Wimalawarne, Masashi Sugiyama, and Ryota Tomioka. Multitask
learning meets tensor factorization: task imputation via convex optimization.
In Advances in Neural Information Processing Systems, pages 2825–2833, 2014.

128

http://jmlr.org/papers/v15/srivastava14a.html

[125] Yexiang Xue, Yang Yuan, Zhitian Xu, and Ashish Sabharwal. Expanding
holographic embeddings for knowledge completion. In Advances in Neural
Information Processing Systems, pages 4496–4506, 2018.

[126] Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. Embed-
ding entities and relations for learning and inference in knowledge bases. arXiv
preprint arXiv:1412.6575, 2014.

[127] Ming Yuan and Cun-Hui Zhang. On tensor completion via nuclear norm
minimization. Foundations of Computational Mathematics, 16(4):1031–1068,
2016.

[128] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy
side effects with graph convolutional networks. Bioinformatics, 34(13):457–466,
2018.

129

	Introduction
	Link Prediction
	Context
	Contributions
	Future research directions
	Organization of the thesis

	Related Work
	Framework
	Metrics
	Unobserved Triples
	Losses

	Tensor parametrizations
	Low-rank parametrization
	Tucker parametrization

	Link prediction in knowledge bases
	Optimization
	Matrix and Tensor regularizers
	Matrix norms and associated guarantees
	Tensor norms and guarantees

	Canonical Tensor Parametrization for Knowledge Base Completion
	Introduction
	Tensor Factorization of Knowledge Bases
	Link Prediction in Relational Data
	Tensor Factorization for Link Prediction
	Training

	Related Work
	Link Prediction in Relational Data
	Regularization for Matrix Completion
	Tensor Completion and Parametrizations

	Nuclear p-Norm Regularization
	From Matrix Trace-Norm to Tensor Nuclear Norms
	Weighted Nuclear p-Norm

	A New CP Objective
	Experiments
	Datasets and Experimental Setup
	Reimplementation of the Baselines
	Standard vs Reciprocal
	Frobenius vs Nuclear 3
	Effect of Optimization Parameters

	Conclusion and Discussion

	Constrained Tucker parametrization
	Introduction
	Link prediction in knowledge bases
	Learning setup
	Related work

	Interpolating between CP and Tucker
	Optimization issues with CPT and PCP
	Control experiment: Unitary P1 and P3 in PCP

	A rotation invariant AdaGrad: Adaimp
	Two equivalent parametrizations of PCP
	Implicit optimization of PCPfull: Adaimp
	Alternatives to Adaimp
	Complexity

	Projected ComplEx
	Experiments
	Datasets
	Results

	Conclusion

	Temporal Tensor Completion
	Introduction
	Related Work
	Model
	Non-Temporal predicates
	Regularization
	Smoothness of temporal embeddings
	Nuclear p-norms of tensors and their variational forms
	Experimental impact of the regularizers

	A new dataset for Temporal and non-Temporal Knowledge Base Completion
	Experimental Results
	Experimental Set-Up
	Results

	Qualitative study
	Conclusion

	Conclusion
	Appendix for chapter 3
	DistMult on hierarchical predicates
	Proofs
	Best Published results

	Appendix for chapter 4
	Tensor parametrizations
	CP-Tucker
	Tucker2 with CP-Tucker
	HolEx and Latent factor model

	The Adagrad algorithm
	Projected Adagrad update
	The two Full Adagrad updates and the quality of approximations of the Diag versions
	Complete PComplEx Algorithm
	Adam - Implicit

	Experiments
	Dataset statistics
	AdaRow
	Variance of PComplEx
	FB15k datasets
	Experimental details
	Grid Search
	Convergence speed
	Running times

	Appendix for chapter 5
	Tensor norms
	Unfolding and the CP parametrization
	Temporal regularizer and Nuclear norms
	Nuclear norms on unfoldings

	Experiments
	Dataset statistics
	Grid Search

