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ii On the Evolution of Collective-level Darwinian Properties

Abstract

Life has a nested structure where lower level entities are embedded in higher
level collectives (genes in chromosomes, organelles in cells, cells in organisms,

organisms in eusocial groups). All levels are subject to evolution by natural selec-
tion. This arises from the fact that at each level the focal entities are Darwinian,
that is, they are discrete and vary one to another, they replicate and give rise to
offspring that resemble parental types. The emergence of a new level of organisation
is a relatively rare event in the history of life, and requires the de novo evolution of
level-specific properties that allow the new level of organisation to participate di-
rectly in the process of evolution by natural selection. In this manuscript I explore,
using mathematical models, the idea that Darwinian properties can be exogenously
imposed (scaffolded) by the environment. I show how natural selection can build
upon those scaffolded properties to promote the emergence of endogenous traits
underpinning collective-level reproduction and heredity.
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Introduction

“Il est question ici d’hérédité et de reproduction. Il est
question des transformations qui ont progressivement modifié
la manière de considérer la nature des êtres vivants, leur
structure, leur permanence au fil des générations.”

— François Jacob, La Logique du Vivant: Une histoire de
l’hérédité (1970)

The present manuscript concerns the mechanisms by which collec-
tives of entities become the subject of evolution by natural selection in

their own right. Before getting to this precise question though, it is necessary
to carefully lay out a series of ideas and concepts about the structure of the
“living”, and the nature of evolutionary processes.

That everything changes and nothing stands still is a commonplace ob-
servation at least as old as ancient antiquity. In this context, living systems
differ from inert systems in the way they change, and by the organisation
that results from those changes. In two words: mechanisms and patterns. In
the same way, evolutionary biology is the science that strives to, on the one
hand, reconstruct the history of life and, on the other hand, describe the rules
that govern the long-term dynamics of living systems.

I start by defining life from this point of view. Is considered living any
system that partakes in a specific kind of change —a specific kind of evolution-
ary dynamic. Preventing this statement becoming circular requires a clear
definition of what constitutes “biological” evolutionary dynamics: namely,
evolution by the process of natural selection. Establishing “a recipe for evo-
lution by natural selection” — or, more formally, a set of minimal condi-
tions that must be verified by a collection of objects to partake in evolution
by natural selection — has been at the centre of evolutionary biology from
the onset (Godfrey-Smith, 2009). In the closing paragraph of the Origin of
species, Darwin (1872) advocates that the diversity of the living world is a
consequence of a “struggle for life”, summarized by three key phenomena:
“Growth with reproduction”, “Inheritance” and “Variability”. A modern ver-
sion of these properties comes from a seminal article by Lewontin (1970), one
century later. A population of entities is said to be Darwinian, and thus con-
stitutes a unit of evolution (or unit of selection, depending on the authors),
if it exhibits the following Darwinian properties:

Phenotypic Variation The entities within the populations are different
from one another.

1



2 Introduction

Differential Reproduction The entities are able to produce offspring, the
number of offspring is dependent to some extent on the phenotype.

Phenotypic Heritability The phenotype of the offspring resembles the parental
phenotype.

A critical feature of this paradigm is its abstract nature (Okasha, 2006): it
refers to a collection of objects and properties without explicit requirement on
their material support, either in terms of chemical composition or energetic
balance. Notably, this definition does not rely on genetics: its first formulation
famously predates the discovery of the law of heredity in diploids (Mendel,
1866) or the DNA molecule as a support for heritable information (Watson
and Crick, 1953a). However, those simple concepts alone lead to a very
rich range of falsifiable predictions about the fate of living systems. Above
all, they offer a causal mechanism that explains the apparent purposefulness
observed in the organisation living beings, why they seem adapted to their
environment, to survive and to reproduce: their characteristic of teleonomy
(Monod, 1970). As a consequence, they bring an invaluable contribution to
the study of the emergence of life and the apparition of biological complexity
in the solar system and beyond. If it is near to impossible to predict the
diversity of shapes and metabolisms that life could display somewhere else in
the universe, chances are that it would have to present Darwinian properties
for us to recognise it as such.

Biological life on earth is organised in various, roughly nested scales:
genes, chromosomes, cells, organism, populations, communities. . . All these
entities can manifest to a greater or lesser extent Darwinian properties and
thus participate in the process of evolution by natural selection. Mammals,
for instance, present heritable phenotypic variation in their reproductive out-
put: they undeniably form a Darwinian population. However, this is also the
case for their cells. A major difficulty in studying evolution lies in deciding
(explicitly or implicitly) the relevant units of evolution (i.e., the relevant Dar-
winian population) that explain the observed behaviours, in particular when
conflicts arise between levels (Maynard Smith and Brookfield, 1983). Cell
apoptosis cannot be predicted when considering cells as Darwinian entities,
and requires treating the individual as a whole to explain its evolutionary
origin. Conversely, cancerous cell lineages cannot be conceived when treating
the individual as the Darwinian entity, but are a natural consequence of the
Darwinian nature of the cells. Natural selection acts simultaneously on all
levels of organisation: untangling their effects is complex. However, in most
situations, the gene-centred view that treats genes as the ultimate cause (and
all others levels as by-products) yields robust predictions (Dawkins, 1976).

Naturally following the observation that life is organised in many lev-
els, is the question of their origin. Evolutionary biologists have named the
emergence of these new levels Major Evolutionary Transitions (Szathmáry
and Maynard Smith, 1995) or evolutionary transitions in individuality (Buss,
1987; Michod, 2000). Staple examples include the emergence of chromosomes
from genes, of eukaryotic cells from prokaryotic ancestors and multicellular
organisms from individual cells.

It must be stressed that the problems of the emergence of life and of
the origins of Darwinian properties are essentially the same. It is expected
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that a transition in individuality might more likely arise from an existing
Darwinian population than through abiogenesis: there are more than twenty-
five documented examples of transition to multicellularity, but only one origin
of life. Nonetheless, each major evolutionary transition consists in the rise of
a new “living” population. To illustrate this, consider an entity that presents
some qualities of living systems such as metabolism or growth. If this entity
is incapable of reproduction it cannot be classified as alive (Jacob, 1970). A
bacterial lawn could expand to recover most of the Earth’s surface; it would
still be non-living at the level of the collective of cells. Even if its components
are alive, it lacks the ability to beget collectives in its likeness —a teleonomic
apparatus in the sense of Monod (1970). Overall, without major transitions,
life would not have changed beyond early self-replicating chemistry.

However, recognising the need for the emergence of collective-level Dar-
winian properties does not constitute a mechanism to explain their origin.
Natural selection at the level of collectives cannot be invoked as the initial
cause: it requires the very Darwinian properties that need explaining (Black
et al., 2019). Moreover, it is impossible to assume that Darwinian properties
are simply transferred from the lower to the higher level (Griesemer, 2001).
Indeed, collective-level Darwinian processes rely on mechanisms that are qual-
itatively different from their counterparts at the lower level: for instance, the
reproduction of multicellular organisms involves a developmental process that
cannot be reduced to the simple reproduction of cells. Overall, what requires
explaination is “how Darwinian properties might emerge from non-Darwinian
entities, and therefore by non-Darwinian means” (Black et al., 2019).

To address this issue, this manuscript extensively uses a framework for
the description of Darwinian populations due to Godfrey-Smith (2009) and
centred around the idea that Darwinian properties can be quantified. A
Darwinian population in a minimal sense is “a collection of causally con-
nected individual things in which there is variation of character, which leads
to differences in reproductive output, and which is inherited to some extant”
(Godfrey-Smith, 2009, p. 39). This minimal level is shared by all Darwinian
populations. A subset of those minimal populations define the paradigmatic
populations, corresponding where the Darwinian dynamics is at its clearest,
and giving rise to complex and adapted structures (Godfrey-Smith, 2009,
p. 41). Conversely, at the edge of the minimal concept are the marginal pop-
ulations. Marginal populations do not possess exactly the minimal properties,
but approximate them to some extant. As a consequence, they can exhibit
behaviours resembling the one of minimal Darwinian populations (Godfrey-
Smith, 2009, p. 42). Overall populations can be ordered on a “Darwinian spec-
trum” that goes from non-Darwinian, to marginal, minimal and paradigm.

This distinction alleviates part of the difficulties. If there is a mecha-
nism that can promote the emergence of marginal Darwinian properties at
the collective-level, then natural selection can be invoked as a process for
their further evolution, and potentially their refinement toward paradigm-
level. While, as stated before, simple transfer of Darwinian properties from
lower to higher level is not possible, a first way collectives can gain marginal
Darwinian properties is by co-opting lower level traits. Examples include the
co-option of ancestral cell-cycle regulation mechanisms in volvocine green al-
gae for the formation of groups via cell–cell adhesion (Hanschen et al., 2016),
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and the co-option of ancestral apoptosis mechanisms in the experimentally
derived snowflake yeast for the fragmentation of cell clusters (Ratcliff et al.,
2012). However, co-option might not always be achievable from the onset,
considerably increasing the challenge of a transition.

The main hypothesis explored in this manuscript is a second way collec-
tives can gain marginal Darwinian properties, by having them exogenously
imposed by the environment, a phenomenon called ecological scaffolding (Black
et al., 2019). This process does not a priori require co-opting of existing traits,
but relies first on population structure. Indeed, under specific conditions, that
will be detailed, the existence of resource patches and limited dispersal be-
tween patches can bestow marginal Darwinian properties upon collectives of
unwitting individuals. As a consequence, natural selection can act at the level
of the collectives leading to refinement of collective-level Darwinian proper-
ties, pushing collectives toward the paradigm end of the spectrum.

In this work, I contribute to the search for general mechanisms under-
ling the emergence of new levels of biological organisation in three specific
settings: neutral variation patterns in nested populations, the emergence of
reproduction in early multicellular organisms, and the evolution of heredity
at the level of communities. This is a theoretical work that uses a diversity
of modelling approaches, mainly stochastic processes, Bayesian statistics and
dynamical systems. Nonetheless, I have tried as much as possible to avoid a
purely formal exercise: all models were defined in relation to ongoing devel-
opments in experimental evolution. Experiments conducted by my colleagues
both sparked my questioning, and inspired my answers.

Outline

This manuscript is structured in six chapters, the first two give historical
(Chapter 1) and conceptual (Chapter 2) context. The four remaining chap-
ters describe new results and progress through the Darwinian properties in
order: Variation (Chapter 3), Reproduction (Chapters 4 and 5) and Heredity
(Chapter 6). I end with a brief concluding discussion. The content of the
chapters is detailed below.

• Chapter 1 - Historical Perspectives (p. 7).
This chapter is dedicated to briefly put Darwinian properties in a more
general context. Sketching the genealogy of the ideas of variation, repro-
duction and heredity through time, from the Enlightenment’s concepts
of natural history to the separation of life from non-life and the trans-
formists ideas of the 19th century, and finally the new synthesis of the
20th century and the realisation of the abstract nature of Darwinian
processes.

• Chapter 2 - A Primer on Darwinian properties (p. 15).
This chapter presents in details the conceptual framework used in the
manuscript. Namely, a mechanistic view of evolution, the concept of
Darwinian Properties and their arrangement in a Darwinian space, and
finally, the concept of ecological scaffolding. A toy-model is presented



On the Evolution of Collective-level Darwinian Properties 5

to build intuition about a simple three dimensional Darwinian space
(heredity, selection, competition) and link it to well-known biological
patterns (neutral biodiversity, adaptation, adaptive diversification).

• Chapter 3 - Neutral diversity in experimentally nested popu-
lations (p. 31).

This chapter explores neutral diversity patterns in a metapopulation
structure inspired by ongoing developments in digital millifluidics —a
technology that can be used to implement a nested population struc-
ture for microbial populations and communities in an automated and
high-throughput fashion. The model is composed of particles following
a neutral birth-death-mutation process, embedded into collectives that
themselves undergo discrete non-overlapping generations in the form
of a growth-selection-dilution cycle. Diversity measures are derived for
both single (serial transfer) and splitting collective lineages, and pa-
rameters maximising diversity are explored, using coalescent point pro-
cesses. The advantage of collective-level selection for artificial selection
of neutral mutations is discussed.

• Chapter 4 - Locating Mutations in Collective Genealogies (p. 67).

This chapter proposes a general method to visualise and interpret collective-
level genealogies obtained experimentally by my collaborators working
on Pseudomonas fluorescens. A thought experiment on the ecological
scaffolding of collective-level reproduction is presented, along with the
description of its experimental implementation. A Bayesian-Network
model is used with a belief-propagation algorithm to assign an adaptive-
value (survival probability) to each vertex of the genealogy, and pinpoint
key biological innovations. This model is also used to propagate partial
DNA sequence information to the whole genealogy. A case is made for
this approach that can be used for interpreting past results and planing
new experiments.

• Chapter 5 - From Particles Traits to Collective Demographics
(p. 85).

This chapter uses an adaptive dynamics framework to model the long
term evolutionary dynamics of a nested population under ecological
scaffolding. This approach focuses on trade-offs between survival and
reproduction of collectives. In particular, it explores how the evolution-
ary dynamics of individual traits (with a focus on evolutionary singular
strategies) is constrained by collective-level selection, and in turn how
they shape the evolution of collective-level life history parameters. The
models are inspired by the system presented in Chapter 4 and range
from close to the experimental setup, to close to a thought experiment.
The models allow derivation of simple necessary conditions for ecologi-
cal scaffolding.

• Chapter 6 - An ecological recipe for the emergence of collective-
level heredity (p. 117).
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This chapter presents a model of the evolution of collective-level hered-
ity in a simple two-species communities with density-dependent com-
petition. It starts with the observation that collectives reaching an
evolutionary successful state (i.e., a composition and organisation of
particles that gives rise to numerous of collective-offsprings) can only
subsist for a meaningful amount of time if offspring are able to reliably
reach a fertile state similar to that of the parent. If collectives produce
many low-fidelity offspring that through noise explore the phenotypic
space, some are statistically ensured to reach a fertile state and continue
the lineage (stocastic corrector). Ecological scaffolding is proposed as
a possible scenario for the refinement of this mechanism leading to the
evolution of a proto-developmental programme based on density de-
pendant interactions (developmental corrector), which marks a level of
innovation that delivers a means of ensuring that offspring resemble
parental types.

Finally, the manuscript ends with some brief and general concluding re-
marks (p. 151).
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Chapter 1

Historical Perspectives

“La science d’hier était riche du manque de la science
d’aujourd’hui. La connaissance d’aujourd’hui est riche du
manque de la recherche à venir. Et tout espoir que la science
fera demain de grande découvertes est d’abord l’affirmation de
la certitude de ce qui manque.”

— Jean-Claude Ameisen, Dans la lumière et les Ombres,
Darwin et le Boulversement du Monde (2008)

Delineation of properties necessary and sufficient for entities to
participate in the process of evolution by natural selection — the so-

named Darwinian properties — is a relatively recent development. Regardless
on whether the origin is considered to be Darwin (1872) or Lewontin (1970),
the delineation of Darwinian properties constitutes the last entry in a wide
and tangled web of concepts that have been used for centuries to answer the
fundamental question: “What is life ?”. Laying down the characteristics that
set living entities apart from the rest of the physical world, is a slow and, to
some extent, still ongoing process.

The aim of this chapter is not to offer a summary of the history of biology,
but to broadly sketch the history of how the idea of abstract characteristics of
living individuals emerged. Given the current focus on Darwinian properties,
this chapter addresses more generally concepts of variation, reproduction, and
heredity in western biological thought.

A web of similarities

Up to the Enlightenment, an important part of natural history consisted
in the exegesis of ancient texts such as On the generation of Animals by
Aristotle (1887). The general view at the time was that natural objects have
two components: form (or movement) and matter.

The matter is eternal: when an entity is “created”, it is the form that
emerges, whereas it disappears whenever the object ceases to be (Fresnel
1637 cited in Jacob (1970)). This is true for living organisms as well as
inert objects, and reflects a central feature of the paradigm of this era: the
lack of separation between the living and the non-living. In fact, natural
history recognises three domains: animals, plants and minerals. There is no

7
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Portrait de l’arbre qui
porte des feuilles lesquelles

tombées sur terre se
tournent en oiseaux volants
et celles qui tombent dans

les eaux se muent en
poisson., (Duret (1605),

Gallica/BnF)

category regrouping animals and plants together, setting them apart from
minerals. Animals are generated and not reproduced. The word reproduction
is restricted to the regrowth of severed organs that can be observed in plants
or some taxa of animals (Diderot and d’Alembert, 1751) and was not widely
used in its current meaning until the 19th century.

Thus, species are not defined by genealogy but by shape. The fact that
vastly different organisms cannot produce each other is not clearly established.
Duret (1605) describes at length, with accompanying etchings, the rotting
trees that produce “worms, then living and flying ducks”, goose barnacles
that produces geese and even a specific tree whose leaves turn into fishes (if
they fall in the water) or ducks (if they fall on land). Spontaneous generation
for macro-organisms was refuted as early as the 17th century (Francesco Redi,
1686) but continued to be widespread for smaller organisms until the 19th
century.

Heredity is observed, particularly in cattle and humans, but is restricted
to the immaterial “form”: it has no physical support. In a sense, heredity is
akin to the “artist’s touch” (Jacob, 1970) that makes one’s work identifiable
but is not characteristic of the underlying material. Heredity of traits bridg-
ing over multiple generations (e.g., traits shared by grandparent and their
grandchildren, but not the parents) contradicts this, and must be interpreted
as a failure of the parental form to settle, accompanied by a supposed —and
vague— natural tendency of things to “fall back” on the form of their an-
cestors when that of their parents is unavailable (Aristotle (1887), chapter
3).

Additionally, heredity is limited to sexually reproducing organisms: ani-
mals that mate generate offspring that looks like them. Conversely, animals
that are spontaneously generated do not mate, and do not generate individ-
uals that look like them (Aristotle (1887), chapter 1). This concerns most
pest “generated from putrid matter” such as “snakes, grasshoper, worms,
flies, mouses, bats [and] moles” (Fernel 1637, cited in Jacob (1970)). This
widespread belief in spontaneous generation is a telltale sign of the lack of
the separation between life and non-life.

The extreme diversity of living systems is recognised, but not systemati-
cally studied. Similarities between living objects are observed, but they are
studied for their own sake as similarities and not as the result of similar or
converging processes. Still, diversity and similarities are thought to reveal the
hidden structure of Nature: Lungwort (genus Pulmonaria) was used to treat
pulmonary infection due to its resemblance to ulcerated lungs. This vision of
nature as a wide tapestry of analogies to untangle constitutes the doctrine of
signatures (Foucault, 1966).

“Monsters” are studied with interest as deviations from the usual forms of
organisms. Their status is very different from the study of mutants in current
biology: the concurrent lack of a theory of heredity as well as systematic
experiments prevents those observations to fit in a wider understanding of
life. Texts are replete with description of hybrids between species (Paré,
1641), even though some authors points out, as early as classical antiquity,
that extraordinary hybrids like animal-headed humans are not the product
of cross-breeding, preferring to explain them as a failure of the form against
the matter (Aristotle, 1887).
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Allégorie de la Science,
(Buffon (1829), Gallica/BnF)

Le canard artificiel,
(Vaucanson (1738),

Gallica/BnF)

A fixed collection of species

Slowly, Science distanced itself from the goal of mapping similarities in nature
in order to unveil its secrets. The new reductionist paradigm, illustrated by
the obviousness criterion of Descartes, is rooted in the idea that natural
systems must be separated in parts that are small enough to be understood
simply (Legay, 1997).

The emergence of the concept of the species at the end of the 17th cen-
tury constitutes a true paradigm shift, in which heredity plays a central role.
For the first time, living beings are not categorised by their shape but their
descent, regardless of differences between stages of life (for instance larvae or
imago) or individual variations. This classification method stems from the
observations of naturalists such as Ray (1686). It gained universal adoption
as part of the Linnean system of classification (Linné, 1735).

The Linnean system extends beyond life as it still distinguishes between
minerals, plants and animals. Indeed, for Buffon (1829), the frontier between
the living and non-living is fuzzy: it is possible to “climb down by seamless
steps from the most perfect of creatures to the most shapeless matter, from
the most well-organised animals to the most crude of minerals”. However,
common characteristics of life start to emerge: “A species is nothing else
than a constant succession of similar individuals, that reproduce themselves,
and it is clear that this term should only apply to vegetals and animals [and
it is by mistake that it was used for minerals]” (Buffon, 1882). Nonetheless,
mechanisms of heredity are still out of reach. Buffon imagines an “internal
mould” that constrains not only the external form —as the moulds commonly
used in casting— but that would also determine internal structure of indi-
viduals (Buffon, 1882) but he cannot provide any insight in its mechanism of
action.

On the subject of variation, individuals differences from the ideal mould
of the species are mostly considered as punctual defects without consequence
(Buffon, 1882). It is recognised that some variations are heritable, and possi-
bly stabilised by artificial selection (Maupertuis, 1754). However, generation
of new species by this mechanism is rejected (Buffon, 1882). Since transfor-
mations of species are not yet deployed on the long term to explain the origin
of life’s diversity, biology in the 18th century can be qualified as resolutely
fixist (Jacob, 1970).

A set of evasive living particles

In the 18th century, advances in physics and chemistry open the path for an
in-depth exploration of natural phenomena such as respiration and digestion
(Lavoisier, 1862). Vaucanson (1738) presents to the Académie des Sciences,
an automaton of a duck that “eats, drinks, digests and empty its bowels”.
Even though it illustrates how the phenomenon of life could be imitated
by machines, the artificial duck is first and foremost a feat of mechanical
engineering. The author himself admits that the artificial digestion does
not “produce new blood” or participate in the upkeep of the organism. If
the engineering metaphors are successful in addressing physiology problems,
they are vastly under-equipped to tackle the problems of reproduction and



10 Chapter 1. Historical Perspectives

I think, (Charles Darwin,
Notebook B, Darwin online)

heredity. This epistemological blind spot is jarring, as aptly summarised by
Fontenelle (1912): “You say that beasts are machines as well as watches ?
But put a dog-machine and a bitch-machine next to each other, and it could
result a third small machine. In contrast, two watches would be next to each
other all their life without ever producing a third watch.”

Two main theories govern the generation of living beings at the time:
preformation, and preexistence. Preexistence is the idea that all germs have
been created concurrently with the creation of the world. Preformation is
the complementary idea that all future beings already exist as germs, nested
within the germs of the previous generation, and are just growing (Jacob,
1970). However, those notions bring contradictions that cannot be solved.

Preexistence theory is riddled with contradictions that are aptly pointed
out by the scientists of the 18th century. First, hybrids like the mule are trou-
blesome, because they suppose the blending of preexisting animalcules. The
regrowth of limbs observed in some species is a second contradictory point:
it implies that individuals are either preformed with “spare parts”, or borrow
them from their descent. Finally, using simple mathematical arguments, it
can be shown that preformation of several generations would quickly require
nesting of individuals to absurdly small scales (Buffon, 1884).

Beyond recognition of the identity of the species, that ensures the univer-
sal recurrence of the same shape, a systematic exploration of the heredity of
variants starts to take place. For instance, simple statistics show that observ-
ing several polydactyls people within the same family would be an extremely
uncommon event if this particular defect was distributed uniformly in the
population: it must be hereditary (Maupertuis, 1756).

One of the main problems is the physical support of heredity. There is
no way to distinguish the support of heritable traits from the traits them-
selves. Several mechanisms are proposed. For instance, the theory of “living
particles” postulates that organisms are composed of elements with a mem-
ory. Those elements are transmitted by the seeds and, remembering their
position in the parent, will re-assemble in the same way within the offspring.
The living particles are supposed to come from all over the parent organism,
and are often not distinct from the particles actually composing the body:
the information of the shape is not decoupled from the shape itself. At the
same time though, Maupertuis (1754) inspired by comparison with political
systems, postulates different classes of particles with one dedicated to the
maintenance of the memory while others have a purely functional role.

At the end of the 18th century, the separation between inert and living ob-
jects is acted. “In order to really know what constitute life,” writes Lamarck
(1809), “we have to, first of all, carefully consider the differences between in-
organic materials and living bodies.” He then enumerates nine properties: he
first points out the individuality of organisms. Birth and development from
a germ coming from a similar individual constitute his eighth point, and the
death of organism the ninth.

An ability to change through long periods of time

The 19th century is ripe for the emergence of the theory of biological evolu-
tion. “Biology”, report Levins and Lewontin (1985), “is the last domain of
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Sketch of DNA structure,
(Francis Crick, Wellcome

Collection)

intellectual life to incorporate the evolutionary world view”, after cosmolgy
(with the nebular hypothesis for the formation of planets, formulated by Kant
in 1786 and formalised by Laplace in 1796), geology (with the principle of uni-
formitarism which implies that general laws apply over long periods of times,
attributed to Hutton in 1785 and popularised by Lyell in 1830), thermody-
namics (with Carnot in 1824 and Thomson in 1851) and linguistics (with the
idea that languages have been developed rather than created, which was the
dominant view in 1857 according to Spencer). In natural sciences, the influ-
ence of geological studies cannot be understated, even more so that they were
coherently fitting in with the early transformist theories, as for instance pro-
posed by Lamarck (Mayr, 1991). Darwin himself wrote that Lyell’s Principles
“altered the whole tone of one’s mind” (Ameisen, 2008).

Darwin’s magnum opus about the common descent with modification
(Darwin, 1872) closes with the outline of the characteristics of all living organ-
isms that will become the Darwinian properties: “growth with reproduction”,
“inheritance” and “variability”.

Darwin’s own vision of heredity changes dramatically during his lifetime
(Mayr, 1991). In 1868, he proposes the provisional hypothesis of pangenesis,
which accounts for both heredity and development (Darwin, 1968). In a
manner reminiscent of the living-particles theories from the previous century,
Darwin postulates the existence of gemmules. Gemmules are self-dividing
particles, produced by cells and that can, under the right conditions, develop
into a cell of the same kind as its producer. Gemmules are collected from all
parts of the body to form the sexual elements. Once again, development is
explained by the affinity of particular gemmules to particular types of cells.
Heredity of acquired traits is possible. However, the theory of pangenesis is
quickly disproved by blood transfusion experiments (Galton, 1871). Later,
the first statistical theory of heredity is established by Galton (1894).

Even the scale of the unit of life changes during the 19th century: cell
theory gives to cells the status of the smallest unit presenting all characteris-
tics of life. This is in contrast with the purely structural vision of cells that
can be found earlier (for instance in Lamarck (1809)). From this moment
on, multicellular organisms can be considered as collectives of interacting
cells: every “so-called individual represents a kind of social arrangement of
parts”, writes Virchow (1863) in his lectures about cell phathologies, “an ar-
rangement of a social kind, in which a number of individual existences are
mutually dependant.”

By the end of the 19th century, neo-Darwinist thought came to question
the inheritance of acquired traits (Mayr, 1991). At the center of this rebuttal,
a growing body of evidence shows the separation of germinal and somatic
lines. This theory leaves no room for cytological mechanisms explaining the
transmission of characters from soma to germ (Weismann, 1892).

A complex system

The 20th century opens with the rediscovery of Mendel’s laws of inheritance
and constitute the final nail in the coffin of the theory of blending inher-
itance. These organism-level observations are rapidly correlated with the
movements of chromosomes during meiosis and fecundation. Observations of
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the segregation of both traits and chromosomes in Drosophila firmly establish
chromosomes as the physical support for heredity (Morgan, 1915).

The first quarter of 20th century offers also statistical refinements for
the analysis of heredity, with the spreading of the Analysis of Variance. More
than a technical improvement, those methods pioneered by Fisher constitute a
true epidemiological shift. For the first time, it is indicated clearly that there
may exists many factors influencing a character, even though the scientist
can affect only a handful. The other factors are not ignored in the analysis
but considered as “uncontrolled”. This is the beginning of complex systems
thinking, in clear contrast with the previous criterion of evidence (Legay,
1997). In addition, Fisher is at the centre of the reductionist approach of
evolution, that defines evolution purely in terms of the dynamics of genes
frequency (Mayr, 1991).

Before the middle of the century, the idea that the gene is a molecule is
commonplace. At the meantime, the veil is slowly lifted on the physical mech-
anisms of variation: the spontaneous nature of mutations is demonstrated in
bacteria by the fluctuation test (Luria and Delbrück, 1943). This constitutes
the proof that the source of biological variation is largely independent of the
selective process. Additionally, decisive experiments with X-ray-induced mu-
tatagenesis place the gene-molecule size at about a thousand atoms, and hint
at it being a kind of “aperiodic cristal” (Schrödinger, 1944), or, rather, an
aperiodic polymer. Finally, the discovery of the molecular structure of DNA
(Watson and Crick, 1953b) and, shortly after, the discovery of the genetic
code mark the beginning of the molecular genetics era.

By the middle of the 20th century, the modern evolutionary synthesis
unifies the fields of genetics, systematics and palaeontology that used to be
separated. Heredity and variation play a central role in this unified view. The
synthesis cements and diffuses within the scientific community the concepts of
genotype and phenotype, the idea that the source of variation is spontaneous
mutations, that heredity is not blending and does not concern acquired traits
(Mayr, 1991).

A vehicle for information

The years following the synthesis (from 50s to 70s) see the reaffirmation of the
individual as the object of selection (Mayr, 1991). However, naïve individual-
centred approaches have the shortcoming of not being able to predict, or ex-
plain, neither cooperative behaviours nor control of inter-individual conflict.
In a seminal article, Hamilton (1964) puts forward the concept of inclusive
fitness, a quantity that aims to correct for social context and take into ac-
count the harm and benefits caused by the focal individual on its neighbours,
proportionally to their relatedness. Concurrently, Maynard Smith and Price
(1973) introduce evolutionary game theory as a method to solve the prob-
lem of restraint in animal conflict. These developments participate in the
effort of distinguishing what kind of entities might be subject to evolution
by natural selection, and operate a much-needed clarification of the possible
mechanisms of evolution: the "good-of-the-species" cannot (as seen in Wynne-
Edwards (1962)) be invoked as the evolutionary cause for a behaviour or a
trait. This does not disqualify the plurality of levels of organisation to play
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a role in evolution, but their Darwinian nature has to be justified (May-
nard Smith et al., 1993). In 1966, Williams (2018) states that “only by a
theory of between-group selection could we achieve a scientific explanation
of group-related adaptation.” He classifies mechanisms by their effect on the
individual level (named organic) or beyond (named biotic). Finally, he con-
cludes that biotic selection, if possible in theory, is not potent enough to
be significant in most natural situations and famously states “Group-related
adaptation do not, in fact, exist.”

The 70s mark a turning point in the study of what constitutes the unit of
evolution. Lewontin (1970) puts forward the modern formalisation of the set
of properties that are necessary for evolution by natural selection: phenotypic
variation, differential fitness and heritable fitness. He decouples those neces-
sary properties from the mechanisms of heredity. Natural selection is expected
if these properties are verified, had they arosen from “Mendelian, cytoplasmic
or cultural inheritance”. Pioneered by Williams (2018), and popularised by
Dawkins’ widely influential Selfish Gene (Dawkins, 1976), the gene-centered
view of evolution postulates that the gene is the only entity that really fits
the definition of a unit of evolution. All in all, if the 18th century saw liv-
ing beings as machines made of pumps and furnaces, the metaphor favoured
by the 20th century is the one of information and programme, encoded in
genes. As a prime example, Monod (1970) distinguishes two properties of
living systems: reproductive invariance, (i.e., information transmitted across
generations) and structural teleonomy (i.e., the apparent purposefulness of
living beings to fulfil the programme of invariant reproduction).

A nested structure

The nested organisation of living systems becomes a focus of research in the
last part of the 20th century. The endosymbiosis theory for the origin of the
eukaryotic cell advocated by Margulis (1970) makes manifest the fact that,
even at the cellular level, organisms are the result of the integration of different
components that used to have their own individuality. On the other side of the
spectrum, the field of sociobiology funded by Wilson (1975b) uses Hamilton’s
inclusive fitness to propose an evolutionary theory for social structures.

Jacob (1970) claims that the advances of molecular biology mark, at last,
the merging of physiology and natural history: organisation and evolution,
molecular mechanisms of heredity and teleonomy can finally be treated in a
unified biological framework. As a consequence, the nested organisation of
living beings, composed of layers of integrated sub-units (called integrons),
becomes a consequence of evolutionary processes. In the following years, the
origin of new levels of organisation is treated a general question on its own
right, with for instance the work of Buss (1987) on the evolutionary origins of
individuality. The concept of major transitions in evolution, formalised in the
seminal book of Maynard Smith and Szathmary (1995), applies such ques-
tion across scales, from the origin of chromosomes and cells, to multicellular
organisms and societies.

Despite its apparent dismissal in the 60s, group selection was the subject
of continuous of research until today (Wilson and Wilson, 2007). On the side
of theory, multi-level selection extends Darwinian principles to a hierarchi-
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cal organisation: particles populations nested in a population of collectives
(Okasha, 2006). Two kinds of approaches are distinguished: Multi-level se-
lection 1 (MLS-1) models focusing on particles, where the group structure
of the population is modelled as environment (such as the classic trait-group
model of Wilson (1975a)), and Multi-level selection 2 (MLS-2) models where
collectives are treated as unit of evolution on their own right. On the side
of experiments, a wealth of results confirmed that group-level selection is a
potent force in controlled conditions: successful selection at the level of the
group was performed on hens to select for non-aggressive behaviour (Hesters
et al., 1996). Artificial selection is also possible on whole communities as
shown in floor beetles (Goodnight, 1990b,a) with the selection of population
size and immigration rates. In microbial communities, experiments selecting
for pollutant degradation (Swenson et al., 2000a), selecting plant microbiome
for increased biomass (Swenson et al., 2000b) or flowering time (Panke-Buisse
et al., 2015) opens new perspectives in microbiome “breeding” (Arias-Sánchez
et al., 2019; Xie et al., 2019). In evolutionary microbiology, the influence of
population structure on viral restraint (Kerr et al., 2006) and early multicellu-
larity (Hammerschmidt et al., 2014; Ratcliff et al., 2012) illustrates how some
key phenomena of the history of life can be explained by a nested Darwinian
population structure.

Both Darwinian properties and the concept of evolutionary transition in
individuality are the product of the long process of formalisation of biological
thought. They reflect the current version of a constantly changing framework
for the study of the principles organising the living world. This history of-
fers an example on the long term dynamics of knowledge itself, with paradigm
shifts (Kuhn, 1970) when an explanation emerges and replaces another. Keep-
ing this context in mind, the next chapter focuses on a very contemporary
view of evolutionary processes, based on mechanistic explanations as well as
a quantifiable formalisation of Darwinian properties.



Chapter 2

Darwinian Properties

“There is grandeur in this view of life, with its several powers,
having been originally breathed into a few forms or into one;
and that, whilst this planet has gone cycling on according to
the fixed law of gravity, from so simple beginning endless
forms most beautiful and most wonderful have been, and are
being, evolved.”

— Charles Darwin, On the Origin of Species (1859)

Darwinian properties are characteristics of populations that, to some
extant, constrain their ecological and evolutionary dynamics.

This chapter introduces the core concepts used in the rest of this manuscript.
It starts by building a mechanistic view of eco-evolutionary processes, and re-
introduces the concept of Darwinian properties in this context. Then, the
ordering of Darwinian populations from marginal to paradigm is discussed
in detail, using a simple toy model to build intuition. This toy model al-
lows to qualitative link Darwinian properties and common patterns of eco-
evolutionary dynamics: neutral diversity, adaptation and branching. Finally,
the emergence of collective-level Darwinian properties by ecological scaffold-
ing is described.

Eco-evolutionary Dynamics Are Composed of
Population and Trait Dynamics

Consider a population of individuals in a given environment. Each individual
is a distinct entity, characterised by a set of physical properties: its traits. In
general, a trait can be any characteristic of the individual, from very coarse-
grained properties like biomass or volume, to very information-rich ones like
the nature and position of all the molecules composing the individual. Traits
can also be behavioural characteristics like feeding habits or propensity for
social interactions. Enumerating all traits of individuals is already a near to
impossible task. Practical models of evolution always limits themselves to a
handful of focal traits.

Eco-evolutionary dynamics can be decomposed into two classes of phe-
nomena.

15
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Figure 2.1: Population processes are composed of two kinds of dynamics. Demography, related to the addition
and removal of individuals, and traits dynamics that encodes the change in the internal state of individuals.

The first one is demography: the number of individuals fluctuates through
time via four fundamental events: birth, death, emigration and immigration.
The rate at which these events occur is influenced by a variety of biotic and
abiotic factors. For instance birth and death rates may depend on resource
availability (e.g., phytoplankton blooms resulting from nutrient concentra-
tion fluctuations), and migration rates may be modified by the location and
accessibility of a population (e.g., populations on remote or small islands
experience less immigration). Additionally, interactions between individuals
can have a large effect. For instance, a higher population size may increase
the death rate by crowding competition, or, depending on context, increase
the birth rate by alleviating mate limitation (Allee effect). All those factors
might be modulated by the traits carried by individuals. Overall, there are
two categories of demographic events: the ones that add individuals, gener-
ally called births, (but also including immigration) and the ones that remove
individuals, generally called deaths (but also including emigration).
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Figure 2.2: Darwinian Proper-
ties are conditions that pop-
ulation processes must verify
to undergo evolution by nat-
ural selection. The classical
triptych ”variation, reproduction,
heredity”, can be reformulated as
constraints on trait dynamics and
demography.

The second key phenomenon is traits dynamics: the fluctuation through
time of individual traits values. Individuals do not stay identical during their
lifetime: their chemical composition change, they grow, move, transform and
age. Traits dynamics can also be subdivided into two categories: changes
in traits that occurs during the lifetime of an individual, generally called
development (but also including growth and ageing), and changes that oc-
curs when new individuals are generated from existing ones: generally called
reproduction.

Birth, Death, Development and Reproduction (Figure 2.1) are the four
essential phenomena necessary to model the dynamics of a given population
(with the possible addition of feedback loops between the abiotic environ-
ment and the population). There is a wide diversity of modelling approaches
in evolutionary biology: stochastic or deterministic, discrete or continuous,
mechanistic or phenomenological. However, all models make implicit or ex-
plicit assumptions about those four processes. The next section details how,
with a specific set of assumptions, those dynamics are governed by natural
selection.

Darwinian Properties

The most distinctive feature of the eco-evolutionary dynamics of a Darwinian
population is adaptation by means of natural selection. To restate what was
presented in the introduction of this manuscript, Darwinian properties are
abstract, in the sense that their definition does not refer to the underlying
material composition of the objects. Moreover, since the phenomenon of
evolution by natural selection follows as a consequence of these properties,
they constitute the only known causal explanation for the teleonomic nature
of living entities (i.e., their apparent goal-directedness). Finally, Darwinian
properties might be expressed by different kinds of units throughout nature,
and potentially units at different, nested levels of organisation, which poses
the problem of the origin of those levels as well as their relative relevance in
both historical and current life’s patterns.

The minimal conditions for change by natural selection, spelled by Lewon-
tin (1970), can be transposed to the framework of demography and trait dy-
namics presented in the previous section (Figure 2.2). First, the condition
of phenotypic variation requires that traits can take several values. More
formally, it means that the state-space of individual traits must not be re-
duced to a point. Second, the condition of differential fitness translates to a
dependency between the rate of birth and death events and the trait values
of individuals. Third, the condition of heritable fitness implies that, between
reproduction and development, “like begets like”. More formally, it means
that the distribution of offspring traits (as the product of reproduction and
developmental processes) should not be uniform on trait state-space, but be
somehow centred on the parental traits.

The problem of “summary” approaches to describe Darwinian properties,
such as the one of Lewontin (1970) is that they are the product of a trade-off
between two distinct goals, as aptly pointed out by Godfrey-Smith (2009).
On the one hand, they strive to give “a laterally true description of all the
important features of all cases of [natural selection]” and, on the other hand,



18 Chapter 2. Darwinian Properties

to describe a simple case of natural selection that can be used as the basis for
understanding the phenomenon in its generality (p. 26). To some extent, this
fails on both accounts. For instance, a population can satisfy all three condi-
tions, but be at an evolutionary equilibrium, thus not exhibiting any change
in trait distribution. The conditions are not sufficient for change, they are
not a complete “recipe”. Conversely, Lewontin-like summaries are not pre-
cise enough to constitute a model, but any additional details, for instance
on the mechanism of heredity, tie them to a specific system and limit their
generality. Overall, one cannot hope to achieve simultaneously both goals of
expressing the general nature of natural selection and a mechanistic descrip-
tion of change with a compact, one sentence summary. This is where the
distinction between minimal, marginal and paradigm Darwinian populations
comes into play (Godfrey-Smith, 2009, p. 41).

A population is minimally Darwinian if it exhibits the properties of varia-
tion, differential reproduction and heredity as laid-out by the classical three-
parts summaries such as Lewontin (1970). This minimal level is a starting
point shared by all Darwinian populations (Godfrey-Smith, 2009, p. 41). A
subset of those minimal populations are the paradigm populations. Paradigm
populations display the minimal properties plus others. For instance, Mendelian
inheritance is a characteristic of sexually reproducing population, but not a
minimal property. They correspond to populations where the Darwinian dy-
namics is at its clearest, and that give rise to complex and adapted structures.
Conversely, at the edge of the minimal concept are the marginal populations.
Marginal populations do not possess exactly the minimal properties, but ap-
proximate them to some extant: as a consequence they can display some be-
haviours expected of minimally Darwinian populations. These categories are
useful verbal arguments, but their limits are actually blurry. Consequently,
paradigm and marginal serve best as labels for the two ends of a continuous
spectrum of properties, on which one may order models or real life example.

Once again, Godfrey-Smith (2009) proposes a strategy to deal with the
comparison of level of “Darwinianess” in different populations. Here the term
“level” refers to the intensity of the Darwinian properties, and not the level of
organisation. Nonetheless, it is entirely possible to imagine comparing human
cells as a population with the human population. He establishes a partial list
of features that relates to the distinction between marginal, paradigm and
minimal cases (Table 2.1). Each biological example or model can in theory
be assigned a coordinate in each of those dimensions. The general tendency
being that high values are considered paradigm, whereas lower values are
marginal. He proposes to call the resulting vector space a Darwinian space,
and argues that the associated spacial representation is a powerful conceptual
tool (p. 64).

As a matter of fact, the spatial representation of the Darwinian space is
a powerful tool. However, there is no systematic method to decide which
dimensions are relevant, nor how to place models or biological systems within
them. In the next section, I sketch a simple toy model that can be used
to build intuition about Darwinian properties and their classification from
marginal to paradigm.
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H Fidelity of Heredity
V Abundance of Variation
A Competitive interactions with respect to reproduction
C Continuity, or smoothness of fitness landscape
S Dependence of reproductive differences on intrinsic character

Table 2.1: Some Dimensions of the Darwinian Space (from p. 63 in Godfrey-
Smith (2009))
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Figure 2.3: Simple parametri-
sation of a local to global ef-
fect. Distribution Γ over Θ with
V = 20, µ = 8 for different values
of p. When p = 0, the distribution
is uniform on Θ. When p = 1 it is
an atom in µ.

A toy model to explore the Darwinian space
Let us define a simple toy model of eco-evolutionary dynamics, parametrised
by the dimension of the Darwinian space. The model is described as a stochas-
tic process, meaning that a given initial condition yields a set of different
possible trajectories, associated with a probability. More precisely, it is a
continuous time Markov process, meaning that the population changes via
point events whose propensity is a function of the current state of the pop-
ulation. This reflects the assumption that the description of the population
within the model at any given time is enough to completely define the future
distribution of trajectories. There is no memory of past states, outside what
is encoded in the population state at a given moment in time.

This model will be limited to three evolutionary patterns: neutral diver-
sity distribution, in relation with the H dimension of the Darwinian space,
adaptation, in relation with the S dimension, and adaptive diversification or
branching in relation with the A dimension. Once again, the goal is to build
intuition about those phenomena and properties, the analysis will be kept
short and qualitative.

Simple parameters

The following formalism is used: Each individual i has traits θi ∈ Θ. The
population is described at any point in time by the trait value of all its indi-
viduals. For each individual, births events are given a rate bi, and the death
event rate di. Rates may depend on θi and on the state of the population.
When a birth occurs, a new individual is added with a trait drawn from a
distribution r, that may depend on the parental trait. Development is ig-
nored in this toy-model: the trait value stays constant until the individual is
removed from the population by a death event. This analysis is limited to
parameters that influence b, d and r, the role of initial conditions will not be
systematically explored.

Consider a discrete trait space Θ. There is only a finite number V of
possible trait values. Thus, let Θ = {1, 2, 3, . . . , V }. Let Γ be a distribution
on Θ parametrised by µ and p:

Γ(x, µ, p) =
∑
i∈Z

∫ ib xV c+1

ib xV c
φ

(
s, µ,

1
p0.1 − 1

)
ds

Where x 7→ φ(x, µ, σ) is the Gaussian probability distribution function
with mean µ and standard deviation σ. The parameter µ ∈ Θ controls the
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expected value of the Γ distribution (if p 6= 0), while p ∈ [0, 1] controls its
spread. If p = 0 the distribution is uniform on Θ, whereas if p = 1 the
distribution is a single atom in µ (Figure 2.3). Note that Γ “wraps on the
edges” of the trait space, giving it a torus-like structure.

Neutral diversity pattern

Documenting diversity is a task as old as Natural History. However, biodi-
versity starts to become the subject of mechanistic and quantitative inquiries
with the seminal work on island biogeography by MacArthur and Wilson
(1967). The unified theory of neutral biodiversity (Hubbell, 2001), inspired
by the neutral theory of molecular evolution of Kimura (1983), builds on Is-
land biogeography and describes in more details mechanisms and patterns of
non-adaptive diversity. One of the main results of neutral theory is that the
distribution of variants belong to a family of distribution parametrised by a
single adimensional biodiversity parameter.

Neutral diversity implies that the dimension S (intrinsic effects of traits
on demographic rates) is low, but it still assumes some fidelity of heredity.
Let H ∈ [0, 1] be the one-dimensional parameter representing the fidelity of
heredity in the Darwinian space. H parametrises the trait distribution of
offspring r. A higher H means that the distribution of offspring trait θoff is
more localised around the parental phenotype θpar:

r(θoff |θpar) = Γ(θoff , θpar, 1−H)

Additionally consider that b = 1 for all trait values, and d = N/K, where
N is the number of individuals and K is an arbitrary carrying capacity of the
medium. The initial condition is a monomorphic population of K individuals.

If H = 1, no change occurs and the trait distribution stays constant.
Figure 2.4 presents the pattern of neutral diversity for some other values of
H. If H = 0, the distribution quickly becomes uniform. For H /∈ {0, 1}
the asymptotic distribution (after an infinite duration) also seems uniform.
This can be confirmed by noticing that this model can be approximated by
a diffusion in the trait-space, which has a uniform asymptotic distribution.
However, at intermediate time points, the rank abundance distribution follows
a power law with an increased slope for higher heredity values and lower time
duration. When Heredity is high, the trait abundance distribution shows a
heavy-tail of a few trait values that are shared by numerous individuals. In
addition, the most abundant trait-class is the one that is carried by the lowest
number of individuals. This pattern fits with both empirical observations and
the prediction of neutral diversity theory. However, when the population sit
lower on the Darwinian space, this pattern degrades and is unrecognisable.

Overall, neutral diversity patterns relies on a certain level of fidelity of
trait heredity. Chapter 3 of this manuscript explores further neutral diver-
sity patterns in a structured population. If neutral diversity mechanisms are
pervasive in the living world, they cannot explain complex structures and
functions: an eye cannot emerge from neutral evolution alone. The next
section addresses the question of adaptation.
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Figure 2.4: Neutral diversity patterns along the Heredity axis. Top: Distribution of traits value through time.
Middle: Rank Abundance distribution at four different time points. Bottom: Frequency distribution for the last
time point. V = 300.

.

Adaptation
Adaptation, defined as the fit between an organism to its environment, a result
of the process of evolution by natural selection. Adaptive values (or fitness
measures) are the most common way to quantitatively assess adaptation. A
fitness measure of an individual is proportional to its long term contribution
to the future population. Usually it is measured as an average on a given
sub-population. A common example is the exponential growth factor of the
population (or Malthusian factor, Fisher (1930)). The process of natural
selection is predicted to increase the adaptive value: evolution would act as
an optimising process on this quantity.

While the teleonomic nature of organisms is a commonplace observation,
quantitative, fitness measures are notoriously complex and contentious be-
cause of inherent dependencies on the ecological context of individuals as
well as the measurement protocol. Nonetheless, in a constant, controlled en-
vironment, fitness measures can increase for tens of thousands generations as
demonstrated in the famous Long Term Evolutionary Experiment (LTEE) on
Escherichia coli (Wiser et al., 2013).

If some organisms can be more adapted than others, it implies that their
intrinsic characteristics have an impact on their reproductive output. This
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relates to the dimension S of the Darwinian space. As an example, let S be
a one-dimensional parameter in [0, 1] that parametrises the per-capita birth
rate b. A low S means that all trait values have the same birth rate, while
a higher S means that trait values around an arbitrary optimum θopt = V/3
are favoured:

b(θ) = Γ(θ, θopt, S)

The offspring trait distribution r is the same as previously, with H = 0.9.
As before, the death rate is density dependant d = N/K and the initial
conditions are a monomorphic population of K individuals.
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Figure 2.5: Adaptation along the selection axis Top: Distribution of traits value through time. Bottom: Average
birth rate through time relative to the initial birth rate. V = 300, H = 0.9, θopt = 100.

.

Figure 2.5 presents trajectories and adaptation patterns for different val-
ues of S. When S = 0, the birth rate is independent on the trait value, and
the simulation is identical to the previous section (with H = 0.9). The cor-
responding adaptive value is constant. When the birth rate depends on the
trait value, S 6= 0, the trait distribution changes through time and become
centred around the optimal value θopt = 100. Concurrently, the adaptive
value increases, up to a plateau. The height of the plateau depends on the
maximal value of b, which increases with S (as seen in Figure 2.3). Note that
the speed of the adaptation is higher when the adaptive landscape is steeper
(higher values of S).

Overall, adaptation requires a certain level of dependency between trait
values and demographic rates. The outcome of the adaptive process in terms
of trait value can be predicted using adaptive dynamics (this method will
be used in Chapters 5 and 6). The adaptation pattern presented here is
straightforward, and results in an apparent optimisation of the adaptive value.
While this description is accurate in this specific example, it does not reflect
the diversity of neutral patterns, as exemplified in the next section.
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Branching and Diversification
Treating adaptation as a naïve optimising process misses on a wide class of
ecological and evolutionary feedbacks (Doebeli, 2011). Indeed, when demo-
graphic event rates depend on the trait distribution, individuals with different
traits may have differential effects on their environment or directly inter-
fere with each other. In this situation, named frequency-dependent selection,
adaptation to a constant environment seldom occurs. This can lead to diver-
sification in remarkably different ways than neutral evolution. A particularly
relevant example for the rest of this manuscript is the adaptive diversifica-
tion observed in cultures of Pseudomonas fluorescens (Rainey and Travisano,
1998). In a few days, an unshaken culture of this aerobic bacteria repro-
ducibly diversifies into three phenotypes with complex ecological dynamics.
Among those phenotypes are cells over-producing cellulose, that can form a
mat at the air-liquid interface. Thus, they benefit from an increased oxygen
supply, and increase in frequency with respect to the ancestral planktonic phe-
notype. However, when mat-forming cells are numerous, the ancestral type
is favoured because it can reap benefits of the mat structure, without paying
the cost of the cellulose over-production. It results in coexistence of the two
phenotypes via time-lagged frequency dependant interactions. This adaptive
diversification process is the starting point for the study of collective-level
reproduction found in Chapter 4.

To illustrate this phenomenon in the toy model, demographic rates must
somehow be made dependent on the trait distribution. This relates to the di-
mension A of the Darwinian space. As an example, let A be a one-dimensional
parameter in [0, 1] that parametrises the per-capita death rate d. High values
of A means that competition between individuals is limited to similar traits,
while lower values means that the competition is more diffuse in the trait
space:

d(θ) =
∑
x∈Θ

NxΓ(x, θ, 1−A) (2.1)

Where Nθ is the number of individuals carrying the trait θ. The distribu-
tion of offspring is identical to the previous section (with H = 0.9), as well
as the birth rate (with S = 0.8). The initial condition is a monomorphic
population of K individuals.

Figure 2.6 presents the diversification pattern for increasing values of A.
When A is low and competition is diffuse among the population, the pattern is
not qualitatively different from the previous section, with a trait distribution
centred around the optimal trait value. However, when A increases, the
trait value distribution segregate into two stable sub-populations. This is a
phenomenon known as branching. Adaptive dynamics can be used to find
necessary conditions for branching (Geritz et al., 1998).

Insights from the toy-model
This illustrative toy model, and the basic qualitative analysis conducted in
the previous section is naturally limited in terms of new insights. However,
it clarifies a few important points for the rest of the discussion.
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Figure 2.6: Adaptive diversification along the competition axis. Top: Distribution of traits value through time.
Bottom: Frequency distribution at the end of the simulation. V = 500, H = 0.9, S = 0.8, θopt = 200.

Figure 2.7: Darwinian Space Re-
visited. The orange line follow the
path illustrated in this chapter.

First, it shows that population patterns relevant to evolutionary biology
(such as neutral diversity, adaptation and adaptive diversification) are not
just phenomenological, but result of simple population mechanisms. Those
mechanisms can be formalised in two classes: demography and trait dynamics.
Second, it illustrates the basic corollary of Darwinian properties: it is possible
to imagine a population with both a demography and a trait dynamics that
lacks Darwinian properties (H = 0, S = 0, A = 0), and as a result, does not
present the patterns mentioned above.

More precisely, this model is a way to build intuition about the quantifi-
cation of Darwinian properties, and the concept of Darwinian space. Popula-
tions can be roughly ranked onto several dimensions with a progression from
non-Darwinian, to marginal, minimal and paradigm. Linking this space to
parameters of a mechanistic model is a non-trivial exercise and the avenue
explored in this section should be challenged and improved. This model uses
parameters that control a gradation from uniform to local effects in the trait
space for each Darwinian dimension (illustrated by the function Γ, Figure
2.3). This is conceptually simple, but has shortcomings. For instance, high
values of parameters routinely yields constant trait distribution (H = 1) or
non-viable population (S = 1 if the initial condition does not include θopt in-
dividuals). Nonetheless, this approach is fruitful because it points out which
patterns are expected to be robust in less-than-perfectly Darwinian popula-
tions. Neutral diversity requires high H, adaptation additionally requires a
high S, and adaptive diversification a high A.

Overall, this section can be summarised by a path in Darwinian space
(Figure 2.7). Starting from a non-Darwinian or very marginal case (H =
0, S = 0, A = 0), increasing H leads to neutral diversity pattern. From
there, increasing S allows the existence of adaptation. Finally, increasing A
from this point reveals adaptive diversification. This path is merely didactic
though: nothing in this model implies that it reflects the trajectory of natural
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populations in Darwinian space.

A side note about fitness

At this point of the manuscript, the reader might have noticed the rel-
atively low importance accorded to the concept of fitness compared to
the central role it has in mainstream evolutionary theory. This is a de-
liberate epistemological choice, that I would like to briefly justify here. I
think, building on Doebeli et al. (2017), that the core ingredients of eco-
evolutionary dynamics are demography (births and deaths), and trait
dynamics (reproduction and development), not “fitness”. Of course, fit-
ness measures are important quantities that arise from a variety of mod-
els. They are also derived, information-poor, quantities that obscure
underlying phenomena, like the difference between birth and death, or
context-dependency (such as frequency-dependant selection, except in
specific case, like the invasion fitness of adaptive dynamics). As a re-
sult, I avoid using fitness as a fundamental quantity and rely only on
fitness measures, justified by a stochastic process, where it brings clarity
to an argument.

Now that all the necessary concepts of Darwinian properties have been
laid out for a given level of organisation, the last section turns to multiple
levels, and precisely defines the mechanism for the emergence of collective-
level Darwinian properties that is the subject of this manuscript.

Ecological scaffolding: a mechanism for the emergence
of complexity

Biological life is organised in various, roughly hierarchical, scales: genes, chro-
mosomes, cells, organisms, eusocial populations. . . all these entities manifest
to an extent Darwinian properties and thus participate in the process of
evolution by natural selection. These structures do not emerge from noth-
ing. They are nested in a way that partly recapitulates their history: self
replicating molecules predate cells, in the same way, cells necessarily predate
multicellular organisms, and organisms predate eusocially organised popula-
tions. However, this linear view is a simplification. The emergence of a new
level of organisation is more than a juxtaposition of lower-level entities, with
causality flowing unidirectionally from individuals to collectives. To quote
Levins and Lewontin (1985), “parts makes wholes, and whole makes parts”
(p. 272), both levels are interlocked and the evolution of one partly drives the
other. In other words, multicellular organisms are more than a collection of
unicellular organisms. Untangling the process by which new level of organisa-
tion come to be, a rare event in the history of life, called Major Evolutionary
Transition (Szathmáry and Maynard Smith, 1995) or Evolutionary Transi-
tion in Individuality (Michod, 2000; Godfrey-Smith, 2009) is a challenge for
evolutionary biology.

The crux of the matter is the emergence of a new level of Darwinian
population. To illustrate, consider again the transition to multicellularity.
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Multicellular organisms such as animals are a prime example of paradigm
Darwinian population. They have clear mechanisms ensuring their Darwinian
properties: meiosis and fecundation are mechanisms that ensure the variation,
reproduction and heredity at the level of the multicellular organism. They
are distinct from the mechanism of mitosis that is found at the level of the
cell: they do not come for free as a simple by-product of lower level processes
(Griesemer, 2001).

In evolutionary biology, the causal explanation for complex, adapted teleo-
nomic structures is usually natural selection. The problem is that this mech-
anism necessitates Darwinian properties at the considered level. Thus, it
cannot be invoked from the onset of an evolutionary transition. In order to
avoid circular reasoning, Darwinian properties cannot be used to explain their
own origins. The initiation of a major evolutionary transition is necessarily
the emergence of Darwinian properties in non-Darwinian entities, therefore
it is a non-Darwinian process (Black et al., 2019).

However, these initial Darwinian properties do not need to be paradig-
matic. If there is a mechanism that can promote the emergence of marginal
Darwinian properties at the collective-level, then natural selection can be
invoked as a process for their further evolution, and potentially their re-
finement toward paradigm-level (see Figure 2.8). A first way collectives can
gain marginal Darwinian properties is by co-opting lower level traits. This
means that lower-level mechanisms are used at the higher-level for a different
purpose. This constitutes a prime example of the “tinkering” nature of evolu-
tionary processes (Jacob, 1977). Examples include the co-option of ancestral
cell-cycle regulation mechanisms in volvocine green algae for the formation
of groups via cell–cell adhesion (Hanschen et al., 2016), and the co-option of
ancestral apoptosis mechanisms in the experimentally derived snowflake yeast
for the fragmentation of cell clusters (Ratcliff et al., 2012). However, co-option
might not always be achievable from the onset, considerably increasing the
challenge of a transition.

There is however a mechanism that does not necessitate the a priori co-
option of lower-level traits to give collective marginal Darwinian properties:
ecological scaffolding (Black et al., 2019). Rather, it relies on their exogenous
imposition by the population structure. As a first example, consider a case
where the habitat is structured in patches because of rare resources, the
existence of physical support, or physical boundaries: spatial structure define
collectives. Additionally, suppose that particles composing collectives can,
relatively rarely, disperse to other patches. Finally, consider that either new
patches of resources are introduced in the environment, or that catastrophic
events can lead to the demise of whole collectives, freeing resource patches.

As a consequence, it becomes possible to define a birth-death process
at the level of the collectives. Birth events happen when a new patch is
colonised by particles, and death events when the population of a patch goes
extinct. If migration between patches are limited, it is possible to also define
a genealogy at the level of collectives, by tracking the flow of particle: a
collective is the offspring of the collective from which its funding particles are
originally from. The notion of collective-level genealogy is explored in details
within Chapter 4. In essence, and to use the terms defined at the beginning of
this chapter, this defines a demography at the level of collectives. Similarly,
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Figure 2.8: Ecological recipe for a major evolutionary transition. This two-step scenario for a major evolutionary
transition consist in (1). A population structure phase during which collectives of particles are formed. Collectives
are subject to a birth-death process, bestowing them marginal Darwinian properties. (2). Natural selection can build
up on those marginal Darwinian properties to refine Darwinian properties up to paradigmatic Darwinian collectives.

particle composition is a collective-level trait. The ecology of particles within
the patch of resource defines its development dynamics (in the sense given at
the beginning of this chapter), and conversely, the way of dispersal of particles
defines the collective reproduction mechanism.

This population structure ensures a marginal level of Darwinian properties
at the collective level: collectives may vary in their particle composition,
their demographic dynamics can depend on this composition, and since new
collectives are founded by sampling, particles from the parent collective, the
composition can recapitulate the parental phenotype. This is one of the core
themes of this manuscript: Chapter 3 study how collectives of Darwinian
particles diverge in their composition by neutral evolution. Chapter 5 explores
how collective-level demography can depend on particle composition. Finally,
Chapter 6 explores how particle composition may become more hereditary by
the effect of natural selection.

Figure 2.9 sketches three examples of population structures that lead to
ecological scaffolding. The first consists in meta-population of bacterial mat
at the air-liquid interface structured by ponctual support (e.g., reeds). It is
inspired by extensive studies of such a system in Pseudomonas fluorescens
in relation with the origins of multicellular life (Rainey and Travisano, 1998;
Rainey and Kerr, 2010; Hammerschmidt et al., 2014) that is studied in more
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Figure 2.9: Examples of Ecological Scaffolding. The environment provides boundaries (blue) that highly con-
straint the structure of an underlying Darwinian population (red-orange) bestowing Darwinian properties to the
collectives themselves. Left: Pond scum such as Pseudomonas fluorescens forming mats on reeds at the air-liquid
interface. Middle: Pathogens or parasites colonising human hosts. Right: (Redrawn form Martin and Russell
(2003)) Early biological molecules in an iron sulphide precipitate in a submarine hydrothermal vent.

details in Chapter 4. The second is inspired by the population structure of in-
fectious bacteria where the rate of infection are low enough and the innoculum
small enough so that the population consist in an array of isolated lineages or
clonal clusters (Levin, 1981; Maynard Smith et al., 2000; Feil, 2010). The last
illustrates a well-suported theory for the origins of the cell: three-dimensional
chambers formed by iron sulfide precipitates in hydrothermal vents offer the
literal scaffold for early cell content (Martin and Russell, 2003).

Once marginal Darwinian properties are displayed by the collective, the
second part of the ecological scaffolding mechanism is the refinement of those
properties. Consider a variant collective that would present enhanced (more
paradigm) Darwinian properties such as a more faithful reproduction or an in-
dependence on the scaffold (See the apparition of the plasma membrane, light
blue in figure 2.9). This variant would have an advantage in the collective-
level population, and increase in proportion by the mechanism of natural
selection. Traits improving Darwinian properties at the collective level in-
clude a reproductive division of labor (See Chapter 5) and the emergence of a
reliable developmental programme (See Chapter 6). This process can involve
the co-option of lower-level mechanisms: in the example of bacterial mats
of Pseudomonas fluorescens, the proto-reproductive division of labour co-opt
the existing ability of cells to over-produce cellulose (See Chapter 4).
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Another long-term consequence of major evolutionary transition is the
“De-Darwinisation” of the lower level entites. While cells within multicellular
organisms reproduce, and vary in their reproductive rate, they are arguably
“less paradigm Darwinian”, as cells, than unicellular eukaryotes (Godfrey-
Smith, 2009, p. 124). The single cell bottleneck that constitute the zygote
means that the population of cells within a multicellular organism stands low
on the variation dimension V of the Darwinian space. Additionally, the repro-
ductive fate of cells is mainly controlled by signalling pathways that depend
more on the context than their intrinsic characteristics, such as their position
in relation with other cells. Thus, populations of cells within multicellular
organisms are also relatively low in the S dimension (Godfrey-Smith, 2009,
p. 56). Of course, cells within multicellular organisms have not lost all their
Darwinian properties, they are still at least minimally Darwinian. As a result,
natural selection can still act at the level of the cell, for instance in cancers
or in the adaptive immune system (Godfrey-Smith, 2009, p. 103).

Successful ecological scaffolding in nature is likely rare, given the rela-
tively small number of major evolutionary transitions documented today.
This might come from the relative exceptional nature of the required pop-
ulation structure, but also from the fact that transition in individuality are
not harmonious phenomenon from the onset and many evolutionary con-
flicts must be overcome to see it to completion (Buss, 1987; De Monte and
Rainey, 2014). For instance, division of labour is not an unconditional con-
sequence of a transition: over 23 monophyletic protist groups, 17 of them
display multi-cellularity (thus endogenous collective Darwinian properties)
but only three (plants, animals and fungi) have a meaningful cell differenti-
ation as pointed out by Buss (1987). Conversely, some strains of pathogens
(Salmonella, Stecher et al. (2007)) might display a division of labour without
formal boundaries at the collective level.

To summarise, one can imagine an archetypal ecological scaffolding sce-
nario and use this simplified version as the basis to explain the origins of
Darwinian properties at higher levels of organisation that fuel Major Evo-
lutionary Transitions (Figure 2.10). This scenario is characterised by three
externally imposed constraints: (1) boundaries that insure a complete insula-
tion of the populations (no inter-demic migrations), (2) a collective birth-death
process with non overlapping collective generations, and (3) a collective re-
production mechanism relying on the random sampling of individuals from
the parental collective to fund offspring collectives. One of the prime advan-
tage of such a setup is that it can be readily implemented experimentally in
microbiology. First, tubes or millifluidic compartments provide boundaries to
cultures. Second, the experimenter can implement collective birth and death
of cultures by transferring cells from parent cultures into fresh medium (serial
transfer).

This population structure constitute the initial, non-Darwinian step of the
evolutionary transition in individuality. Once it is effected, natural selection
of more complex teleonomic mechanisms is possible. Overall, this scenario
constitutes the mould from which all models within this manuscript are de-
rived.
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Figure 2.10: The archetypal ecological scaffolding scenario. blue circles: Collectives with well-defined artificial
boundaries (e.g., tubes or millifluidic compartments), small discs: Particles (e.g., bacteria). The three phenomenon
to model are: (1) The intra-collective dynamics or particle ecology (thick orange arrows), (2) the collective birth-
death process (large background lines) and (3) the serial transfer of the particles (red dashed arrows).



Chapter 3

Neutral Diversity in
Experimentally Nested
Populations

“Mais une fois inscrit dans la structure de l’ADN, l’accident
singulier et comme tel essentiellement imprévisible va être
mécaniquement et fidèlement répliqué et traduit, c’est-à-dire à
la fois multiplié et transposé à des millions ou milliards
d’expemplaires. Tiré du règne du pur hasard, il entre dans
celui de la nécessité, des certitudes les plus implacables.”

— Jacques Monod, Le Hasard et la Nécessité (1970)

Experimental evolution is the study of evolutionary dynamics hap-
pening in real time as a response to conditions imposed by the experi-

menter (Kawecki et al., 2012). Microbial populations are widely used because
they offer numerous experimental advantages: large population sizes, easily
manipulable environments, possibility to freeze and store whole populations
indefinitely. . . Experimental evolution requires the set up of many parallel
bacterial cultures that can take several forms from bottles (≈ 101L) to tubes
(≈ 10−3L), to microtater plates (≈ 10−4L), to microfluidic compartments
(≈ 10−9L).

Recently, new techniques for the high-throughput manipulation of bactrial
populations have emerged. For instance digital millifluidics (Cottinet, 2013;
Dupin, 2018; Doulcier, 2019) allows the possibility of producing and imaging
thousands of droplets of culture broth within a carrying fluid. The droplets
amount to around 2×10−6L with a carrying capacity of 105 to 106 cells, in the
current version of the technology (Cottinet, 2013). Droplets can be imaged
and some quantitative measures can be performed (optical density, fluores-
cence signal...) during growth of the bacteria, allowing a high-throughput
monitoring of ecological dynamics.

Nested populations in which both particles and collectives are individ-
uals with their own birth and death events can be readily implemented in
experimental microbiology, for instance, Chapter 4 presents an experiment
performed in tubes. However, the ability of millifluidic devices to monitor
in the order of a thousand of cultures and retrieve some of them for analy-

31
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Description
D Population size
T Cycle duration
n Number of Cycles
K Carrying capacity
c Initial number of particles

Table 3.1: Collective parameters
Description

b Birth rate
d Death rate
r Malthusian parameter (b-d)
δ Survival probability

(at a bottleneck)
θ Mutation rate

Table 3.2: Particles parameters

sis makes them particularly suitable for the experimental implementation of
ecological scaffolding (as presented in Chapter 2).

Neutral diversity in nested populations is the focus of this chapter. The
aim is to build a quantitative understanding of simple diversity patterns
within the experimental setup. First, a model of the device is presented. It re-
lies on the assumption that cells are in constant exponential growth. The op-
timal operating regime parameters of the machine (dilution ratio, duration of
collective growth cycles, carrying capacity...) are derived from characteristics
of the biological material: birth and death rates. Second, a coalescent model
of the population across bottlenecks is proposed and coupled to a neutral
mutation model with infinite alleles. This allows computation of the number
of mutations, and the distribution of allele frequencies within droplets after
several collective growth cycles. It shows that small bottlenecks are required
to maximise diversity in one cycle, but larger bottlenecks are more favourable
for diversification across many cycles. The speed at which diversity accumu-
lates decreases with time. Then, the effect of splitting a droplet into several
lineages is studied by computing the number of mutations accumulated in a
single, or all the droplet lineages. Finally, a simple mutation accumulation
model illustrates the interest of droplet-level selection for artificial selection.

3.1 Modelling Nested Population Dynamics

Consider a device that allows the manipulation of collectives of Darwinian
particles via serial transfers (Figure 3.1). Cells (or particles) are distributed
among a train of D droplets. The birth and death of cells are modelled by a
linear branching process with constant rates b for birth and d for death. The
net birth rate r := b−d is called the Malthusian parameter. After a duration
T , a new train of D droplets is prepared by diluting them 1

δ fold. Hence, for
each dilution event, a cell has a probability δ of being sampled and thus being
present in the new droplet. This procedure is repeated periodically, each new
growth phase followed by a dilution constitutes a cycle of the experiment or
a collective generation.

Birth b and death d rates depend on the biological material used (species,
strain. . . ) as well as the culture medium and are not easily controlled. How-
ever, the duration of the growth phase T , the dilution factor δ and the number
of collectives D can be changed by altering the experimental setup. A model
can help predict the effect of those parameters and find the ones that should
be the focus of engineering efforts.

3.1.1 Optimal Operating Regime
When designing a serial transfer experiment, the operator has three main
parameters that might be controlled: the size of the cultures (and by extension
the carrying capacity of the particles K), the duration of the growth phase
separating two successive transfers T , and the dilution rate δ. Two problems
must be avoided: if populations sizes are too small and dilution too high,
the resulting cultures might be empty. Conversely, if the population sizes are
too large, and dilution too low, the population will spend most of its time in
stationary phase.
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Figure 3.1: Sketch of the experimental setup Darwinian particles following a birth-death process with rates b, d
are distributed in collectives within D droplets. After a growth phase duration T , the content of each droplet is
diluted to form a new collective generation (or cycle). Each particle has a probability δ to be transferred in the next
cycle. Here the serial transfer regime is depicted: each droplet is diluted into exactly a single new droplet in the
next cycle. In the full nested population design, a droplet can be split in several droplets in the cycle, or removed
altogether.

Any dilution event presents the risk of extinguishing the population. When
performing a serial transfer experiment, this must be avoided at all cost be-
cause an empty microcosm signs the end of the experiment (at least for the
given independent lineage). In a nested population design, the presence of
some empty microcosms can be tolerated because empty niches in the popu-
lation can be filled by splitting a single parent droplet into several offspring
droplets in the next generation.

Stationary phase is not desirable in general for several reasons. First, a
population that reach saturation will go through fewer generations than if it
was growing freely, reducing the potential evolutionary dynamics. Moreover,
physiological changes in stationary phase might result in undesired phenotypic
effects on the population. Finally, in the case of millifluidic experiments,
saturating densities are known to increase the risk of cross-contamination
between droplets.
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Figure 3.2: Events in a Linear-
Birth-Death Model. Individuals
give birth to new individuals at a
constant rate b, and die at con-
stant rate d. The process is super-
critical if b > d.

Figure 3.3: Dilution process.
Individual particles are indepen-
dently selected to be transferred to
the next cycle (with probability δ)
or sent to the waste (with proba-
bility 1− δ).

For all these reasons, there is an optimal dilution rate, that keep the
population in exponential phase while maximising the population size, at
which selection experiments should be conducted.

A model of population dynamics can provide a first guess at finding the
optimal range of parameters to conduct a given experiment. In the following,
a stochastic model of particles in exponential growth condition (i.e., super-
critical) with periodic bottlenecks is used to derive the probability of losing a
single particle lineage, or a single collective lineage due to the effect of dilution,
as a function of experimentally accessible parameters. Saturation phenom-
ena are not modelled explicitly as the birth and death rates are considered
independent of population size, but the population dynamics are required to
stay under a carrying capacity threshold.

Survival of a single lineage

A first quantity that can be derived from the linear branching process with
periodic dilution that models the population dynamics is the probability that
a single initial particle has no descent in the population after n cycles.

Proposition 1 (Survival Probability):
Cells within droplets in serial transfers are modelled by a linear birth-
death process with constant parameters b and d, that is subject to periodic
bottlenecks every duration T .

Let sn (respectively s̄n) be the probability that a lineage spawned by a
single cell is not extinct at time nT , just before the n-th dilution (respec-
tively just after the n-th dilution). Then,

sn =1− hQn−1R(0)
s̄n =1− hQn(0)

Where hA is the linear fractional function with coefficient A:

h[a b
c d

](s) = as+ b

cs+ d
(3.1)

And the matrices Q and R are:

Q =
[
δ(p− q) p− δ(p− q)
δ(p− 1) p− δ(p− 1)

]
; R =

[
δ(p− q) q
δ(p− 1) 1

]
p(b, d, T ) q(b, d, T )

Subcritical particles b < d −r
d−berT

d(1−erT )
d−berT

Critical particles b = d 1
1+bT

bT
1+bT

Supercritical particles b > d re−rT

b−de−rT
d(1−e−rT )
b−de−rT

(Proof page 52.)
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Figure 3.4: Survival probability
for one cycle s1 The probability is
presented as a function of the dilu-
tion rate δ for pure birth processes
b > 0, d = 0, T = 1.
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Figure 3.5: Survival probability
for several cycles s̄n The prob-
ability is presented for pure birth
processes b = 1, d = 0, T = 1.
Above the critical threshold δ∗, the
survival probability does not tend
toward 0. Dotted line corresponds
to the limit s̄∞.

Proposition 1 shows that the survival probability of a lineage depends on
the birth b and death d rates of the cells, but is also a function of the dilution
rate δ, duration of the growth phase T and the number of cycles n. When
considering a single cycle (s1, Figure 3.4), the survival probability increases
with δ and b.

The numerical computation of Qn might be problematic because of re-
peated multiplication of the small numbers. However, since the final result
only involves the ratio Qn01/Q

n
11, it is possible to normalise Q to have its

smallest value being 1. Indeed, this ratio does not depend on a multiplicative
scalar on the matrix: ∀α > 0, hQn(0) = hαQn(0). Taking α = 1

δ greatly
improves the numerical stability of the computation.

The limit of this probability when the number of cycles increases gives a
clearer understanding of the long term behaviour of the population:

Proposition 2 (Long Term Survival Probability):
Let s̄n be the survival probability after n cycles of the lineage spawned by
a single cell.

lim
n→+∞

s̄n =
{

0 if b ≤ d or δ < e−(b−d)T

(b−d)(δ−e−(b−d)T )
bδ(1−e−(b−d)T ) otherwise.

(Proof page 54.)

Proposition 2 shows that, in the long run, lineages go extinct with cer-
tainty (s̄∞ = 0) if the death rate of the particle is higher than their birth
rate (i.e., the associated branching process is not super-critical) or if the
sampling-at-dilution probability δ is lower than a threshold that corresponds
to the inverse of the expected growth of the population during one cycle erT
(Figure 3.5).

In the following, only viable super-critical populations with a birth rate
higher than their death rate will be considered (b > d).

Optimal cycle duration and dilution

Saturation of particle dynamics is not desirable, as mentioned earlier. De-
pending on the nature of the particles (species, strain), and of the medium
(pH, nutrient availability, temperature), it is possible to define an experi-
mental carrying capacity K that corresponds to the number of cells that can
be sustained in a droplet without saturation. The simple linear-birth-death
model cannot represent saturating population, thus for the model to be coher-
ent, the duration of the growth phase must be short enough so the population
size does not reach the carrying capacity:
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Figure 3.6: Maximal Cycle Du-
ration T ∗ as a function of the
Malthusian parameter b − d and
the occupancy rate c

K .

Proposition 3 (Maximal Cycle Duration):
Let T ∗ be the maximal cycle duration before reaching saturation. Cells
are following a supercritical birth-death process with rates (b−d) = r > 0,
The carrying capacity is K and the initial number of cells is c :

T ∗ = −
ln( cK )
r

(3.2)

Proposition 3 shows that the optimal duration of the growth phase is linear
with the inverse of the Malthusian parameter r of the population (Figure 3.6),
meaning that a population that grows (on average) twice as fast as another
should be subject to cycles half as long as the other, for a given occupancy
rate c

K .
Additionally, the optimal duration of the growth phase is proportional

to the logarithm of the occupancy rate c
K of the droplet (with a minus sign

since this logarithm is always negative or null as c ≤ K). As a consequence,
multiplying the volume of the droplets by two, or dividing the inoculum size
by two for a given strain will increase the optimal duration of the growth
phase by ln 2

r .
Normalising by the Malthusian parameter (r = 1) shows clearly that dou-

bling the volume of the droplets increases the duration of the experiment by
around two-thirds (≈ ×1.7) which is equivalent to reducing the growth rate
by a third (≈ ×1.5).

This result holds for a single cycle only. For a given dilution rate δ, the
population is shrunk by an expected ratio δ, while for a given cycle duration T ,
the population is expanded by an expected ratio δerT . In order to prevent the
population from saturating for all cycles, the occupancy ratio at the beginning
of each cycle must be constant. This consideration allows discovery of the
optimal dilution rate when the growth phase duration is fixed:

Proposition 4 (Optimal Dilution Rate):
Let δ∗ be the optimal dilution rate for which the expected number of cells
is constant across generations. For cells following a optimal birth-death
process with rates (b− d) = r > 0 and a growth phase duration T :

δ∗ = e−rT (3.3)

If T = T ∗ (Proposition 3),

δ∗ = c

K
(3.4)

(Proof page 54.)
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Proposition 4 shows that the dilution sampling probability should be equal
to the initial occupancy rate when the duration of the cycle is maximal.

To summarise, the optimal operating regime of the experiment can be
expressed from the Malthusian parameter of the population and the initial
occupancy rate of the particles c

K . As a result, the dilution sampling proba-
bility is δ∗ = c

K and duration of a cycle is T ∗ = − log(δ∗)
r . Fixing any two of

(c,K, T, δ) values constrains the other two.
When the experiment is in the optimal regime, the expression of the sur-

vival of a lineage (not including sampling at the last cycle) is simpler:

Proposition 5 (Optimal Regime Survival Rate):
Let s̄∗n be the survival probability of a lineage after n cycles of duration
T and with bottleneck δ∗ = e−rT , where r = b− d > 0 is the Malthusian
parameter of the population.

Then,

s̄∗n = 1
b
rn(1− δ) + 1

(3.5)

(Proof page 55.)

Proposition 5 shows that, in the optimal regime the survival probability
of a lineage decrease in the inverse of the number of cycles and tends toward
zero for a large number of cycles.

Additionally, when taking a finite number of cycles n the survival does
not tend toward zero even for vanishingly small bottlenecks δ. This derives
from the fact that, in the optimal regime, a small bottleneck is compensated
by a long cycle duration T ∗, so vanishingly small bottlenecks correspond to
infinitely long cycles.

Finally, in the case of pure-birth (i.e., d = 0), the survival of a lineage
is independent from the birth rate b. It is certain if there is no bottleneck
(δ = 1), and tends toward 1

2 for one cycle (n = 1) and vanishingly small
bottlenecks (δ → 0).

Overall, once the size of the droplets (which constrains K) and the initial
occupancy rate (which constrains c) have been chosen by the operator, other
parameters of the machine (duration of the growth phase T , dilution rate δ)
can be deduced —and conversely, fixing T and δ constrain K and c. The next
section explores how should one select these parameters when the aim is to
maximise genetic diversity within and between the droplets.

3.2 Modelling Neutral Diversity

Neutral diversity concerns mutations arising in the population of cells that
are assumed to not change their birth or death rates. According to the neutral
theory of molecular evolution (Kimura, 1983), most point mutations in the
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Figure 3.7: Neutral muta-
tions over the coalescent tree.
The neutral mutations (coloured
crosses) are distributed following
a Poisson Process over the (real)
coalescent tree (black). Each indi-
vidual may carry several mutation
distinguishing it from the most re-
cent common ancestor.

DNA follow this dynamics. As seen in Chapter 2, neutral diversity gives rise to
recognisable patterns that can be predicted from a mechanistic model of birth-
death in the population. In experimental evolution, and moreover artificial
selection, it is desirable to increase the diversity within the population because
it allows greater exploration phenotypic space. Indeed, mutations that are
essentially neutral for cells might present an interest for the experimenter, or
be intermediate states toward new phenotypes.

In the following, mutations follow a Poisson Point Process with constant
rate θ over the lifespan of the cells independently of their genealogy. As a
consequence, the time between two mutations along a lineage (regardless of
births and deaths) is exponentially distributed, and thus has no memory:
the conditional expected time to the next mutation will be the same for all
cells, irrespective of their age or the time of the last mutation in the lineage.
This is a simplifying assumption that represents the spontaneous nature of
mutations, while ignoring the existence of mutations that can change the
mutation rate (Sniegowski et al., 1997, 2000).

Coalescent time and Coalescent Point Process

The linear branching process (with constant birth rate b and death rate d)
models the full genealogy of the population (Figure 3.8, left). However, the
standing diversity at a given time in the population is not affected by the
lineages that do not have extant individuals (because their mutations have
been lost), nor ancestor to the most recent ancestor of the population (because
their mutations are shared by all individuals in the population). Knowledge of
the coalescent tree of the population (Figure 3.8, right), which is the genealogy
of the extant individuals up to their most recent common ancestor is enough.

Coalescent Point Processes (Popovic, 2004; Lambert and Stadler, 2013)
are stochastic processes whose realisations are real trees with the same proba-
bility as the coalescent tree of the corresponding branching process. A CPP is
defined by a stopping time t and a branch length distribution fH . The CPP is
the sequence of independent and identically distributed variables (Hi)i=1...N
following fH and stopped at the first element N such that HN > t. Usually
the branch length distribution is expressed in the form of the inverse tail
distribution F :

F (t) := 1
P (H > t) (3.6)

Measuring neutral diversity

Neutral mutations do not affect the genealogy nor the coalescent tree and
can thus be added a posteriori. Consider that mutations appear following
a Punctual Poisson process with constant rate θ over the coalescent tree.
Thus, a mutation is a point on the coalsecent tree as illustrated in Figure 3.7.
Additionally, suppose that reverse mutations are impossible (an assumption
characterising so-called “infinite sites model”), it implies that all individual
standing above the mutation in the coalescent tree (i.e., the descent of the
mutation point) share the mutation (crosses at the top of Figure 3.7). Indi-
viduals may carry zero, one or several mutations.
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Figure 3.8: From Birth-Death Process to Coalescent Point Process. On the left side is a birth-death process
where a number of individual give birth (eggs) and die (skulls) at different point in time. On the right side is the
corresponding continuous coalescent tree. Note that at time C the lineage 3 coalesce with lineage 4 and that at
time B lineage 1 and 2 coalesce. Finally, at time A the lineage (1, 2) coalesce with the lineage (3, 4).

Figure 3.9: Bottlenecks are
modelled by thinning the pro-
cess. A bottleneck at some point
in the past (red bottle) resulted
in the extinction of some lineages
(grey). As a consequence some
branch length are changed (thick
green lines).

The mutational richness of the population M (or total diversity) is the
number of unique mutations found in the population. Its expected value is
proportional to the length of the coalescent tree.

The mutation frequency spectrum (ak)k∈N is another measure of diversity
that counts how many mutations are represented by k individuals in the
population.

All these measures requires some knowledge of the shape of the coalescent
tree of the population. The next paragraph is dedicated to establishing this
for the simple case of serial transfer, while the last paragraph is dedicated to
the case of splitting droplets.

3.2.1 Diversity Within Droplets in Serial Transfer
Establishing the law of the Coalescent Point Process of a lineage within serial
transfer requires identification of the law of the branch length. This law
is well-known for simple branching process such as the Linear Birth-Death
process with parameters (b, d) modelling the population dynamics (Lambert
and Stadler (2013), Proposition 5).

The addition of repeated bottleneck with period T is also possible within
the theory (Lambert and Stadler (2013), Proposition 7) by thinning the origi-
nal process (Figure 3.9). Each bottleneck at time iT , i = 1, . . . , n may remove
independently each branch of the CPP with probability (1− δ) (Grey in Fig-
ure 3.9). Removing a branch in the past (at time iT ) may result in removing
several branches in the present, and requires an adjustment to branch length
(green in Figure 3.9). The number of branches removed, and the adjustment
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to the branch length distribution can be computed from the law of the branch
length H, the sampling probability δ and the period of the bottleneck T . As
a result:

Proposition 6 (Coalescent tree of a lineage):
Let Tn be the random coalescent tree spawned by a single particle with
extant descent just before the n-th dilution cycle. Tn is a Coalescent
Point Process (CPP) stopped in nT .

For super-critical particles (r > 0) and critical dilution (δ∗ = e−rT ).
The inverse tail distribution of Tn is:

F (kT + s) = 1 + b

r

(
ers − 1 + k(erT − 1)

)
(3.7)

With k ∈ N and s < T .

(Proof page 55.)

Proposition 6 gives the cumulative probability function for the branch
length P(H < t) = 1− 1

F (t) (Figure 3.10). Note that this function is defined
by parts for each cycle.

F has no finite limit for increasing times. Thus, the cumulative distribu-
tion function tends toward 1. As a consequence, there is no branch can have
an infinite length (which happen with probability 1− limt→∞H(t)).

The random variable H can be easily sampled from its cumulative prob-
ability function. As illustrated in Figure 3.11, the variance of the branch
length can be large. In this sample, the mean branch length is slightly longer
than the cycle duration T , but the maximal branch length is in the order of
106 cycles. The distribution of long branches (longer than 1) can be fitted by
a power law with parameter −1.

Number of mutations

In order to find the expected number of mutations within a droplet, the
expected size of the full coalescent tree must be considered. This relies on
the branch length distribution, conditioned to be lower than the duration of
the experiment. It results in the following:

Proposition 7 (Number of mutations):
Suppose that a population of D droplets is seeded by independently sam-
pling a proportion δ of K cells. Let Mn be the number of mutation
mutations we expect to observe in the population of droplets with car-
rying capacity K after n cycles of duration T , with optimal dilution
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Figure 3.13: Expected number
of mutations for different bot-
tleneck size. For a single cy-
cle, smaller bottleneck always yield
more mutations. However, if more
than one cycle is performed, there
is a non null optimal bottleneck
size that maximise the expected
number of mutations found in the
population.

δ = δ∗ = e−rT , birth rate of cells b, death rate d, (r = b − d) and
mutation rate θ.

Mn = DθKδsnLn (3.8)

With Ln the average length of the coalescent tree at cycle n of a sur-
viving lineage started by one cell at cycle 0:

Ln = F (nT )
∫ nT

0

1
F (t)dt (3.9)

With F the scale function of the associated CPP.
More precisely, when using the expression of F from Proposition 6:

Ln =
(

1 + b

r
n(erT − 1)

) n∑
k=0

rT − log
(

k(erT−1)+ r
b

(k+1)(erT−1)+ r
b

)
bk(erT − 1)− d (3.10)

(Proof page 57.)

Proposition 7 shows first and foremost that the total expected neutral
diversity in a serial transfer protocol is proportional to the number of droplets
D, the carrying capacity of the droplets K and the mutation rate θ. In other
words, doubling the number of droplets, the mutation rate, or doubling the
droplet size double the expected number of mutations in the whole population.

The expected number of mutations Mn is also proportional to the ex-
pected coalescent tree length of a single extant lineage Ln (weighted by the
proportion of lineages that actually survive sn). This expected coalescent
length is parametrised by the birth and death rates of the particles, but also
the duration of the growth phase T .

Figure 3.12 shows that the expected number of mutations increases in-
definitely with the number of cycles. However, the rate of increase is tied to
the dilution bottleneck and tends to slow down when the number of cycles
increase. Note that for a small number of cycles, the expected number of
mutations increases with a higher dilution: one cycle with a dilution by two
yields less diversity than one cycle with a dilution by one hundred. However,
if ten cycles are performed, a dilution by two yields more diversity. This
illustrates a trade-off between a harsh bottleneck, that allows a great number
of cell divisions (and potentially a lot of mutations) but leads to loss of most
extant mutations (due to founder effects) and a softer bottleneck that allows
for fewer mutations to accumulate each cycle, but compounds more because
fewer mutations are lost.

Figure 3.13 clarifies the link between the expected number of mutations
and the dilution bottleneck. Note that smaller bottleneck sizes are compen-
sated by longer cycles because the experiment is supposed to be performed in
optimal conditions (δ = e−rT ). If there is only one cycle (n = 1), maximal ex-
pected number of mutations is reached when the dilution bottleneck is vanish-
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Figure 3.15: Finding the muta-
tion frequency spectrum. Muta-
tion shared by 3 individuals are the
ones that arose within the orange
region only. This region is delim-
ited by max(Hi+1, Hi+2) < t <
Hi+3.

ingly small (δ → 0) and the cycle length adequately long (T →∞). However,
if there is more than one cycle (n > 1) the expected number of mutations
reaches a maximum value between δ = 0 and δ = 1. This maximum-diversity
dilution bottleneck value increases with the number of cycles (Figure 3.14).
Thus, the dilution bottleneck should be adjusted to the expected duration of
the experiment in terms of cycle number.

Overall, the expected number of neutral mutations accumulated by the
population increases through time and can be optimised by appropriately
choosing a bottleneck size that optimises the trade-off between accumulating
new mutations and not loosing old ones. However, the number of mutations
is an information-poor descriptor of the diversity within the droplets. Indeed,
some of those mutations could be born by a single individual, while others
might be shared by the whole population. The next section address this
problem by exploring the mutation frequency spectrum.

Mutation Frequency spectrum

A more precise assessment of the neutral diversity structure involves differen-
tiating between mutations that are carried by few individuals, and mutations
that are widespread within the population. The mutation frequency spectrum
presents the proportion of mutations that are carried by a given number of
individuals. The expected mutation frequency spectrum of a coalescent point
process can be deduced from the law of branch lengths H (Lambert (2008),
Theorem 2.2). Indeed, the number of mutations carried by i individuals is
proportional to the length of the coalescent tree subtending i leaves (Figure
3.15). As a result:

Proposition 8 (Mutation frequency spectrum):
Consider the Coalescent Point Process Tn, with overlaying mutations fol-
lowing a Punctual Poisson Process with intensity θ.

Let Mf
n be the expected number of mutation fixed in the population,

that is mutations shared by all individuals. Then:

Mf
n = θ

1
1− F (nT )

∫ nT

0

1
1− 1

F (s) + 1
F (nT )

ds (3.11)

Let au be the expected frequency of mutations that are shared by u > 0
individuals in the limit of large sample of the population.

au = θ

∫ nT

0

(
1−

1
F (x) −

1
F (nT )

1− 1
F (nT )

)u−1( 1
F (x) −

1
F (nT )

1− 1
F (nT )

)2

dx (3.12)

(Proof page 59.)

Proposition 8 shows that the mutation frequency spectrum is proportional
to the mutation rate θ meaning that an increasing proportion of individuals
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carry mutations if the rate increase, but that does not change the relative
frequency of the size of groups carrying a given mutation.

Figure 3.16 shows mutation frequency spectra for one and a hundred cy-
cles, and for three different dilution rate. Note that for a single cycle, harsher
bottlenecks (i.e., smaller δ, and correspondingly longer cycle duration T ) in-
crease the tail of the distribution (there are more mutations that are shared
by many individuals). This effect of δ and T is not as simple when considering
several cycles. For n = 100, the distribution is more heavy-tailed when the
bottlenecks are soft (δ = 0.5) than when they are harsh (δ = 0.001). The
information entropy of the mutation frequency spectrum can be used to sys-
tematically explore the effect of δ on the shape of the distribution. Figure 3.17
shows that if more than one cycle are performed, there is a value of δ that
is expected to optimise the information entropy of the mutation frequency
spectrum. This value is different from the value that optimises the number
of mutations (Figure 3.13). Thus, there is a trade-off between accumulating
many mutations, and having a diverse mutation frequency spectrum. The
decision to fix δ in order to optimise one or the other depend on the goal of
the experiment.

To sum up, the neutral diversity found within parallel cultures in serial
transfer depends mainly on the size of the coalescent tree of individuals. In
general, higher dilution rates or longer duration of collective growth cycles
result in longer trees and increased diversity, even though the population
may risk going extinct. Extinction of the population marks the “death” of
the culture, and it is the eventual fate of a serial transfer experiment in the
limit of an infinity of cycles. However, in a nested population design, the
cultures can also “reproduce” and replace the extinct ones. This has far-
reaching consequences on the genealogy of the particles as shown in the next
section.

3.2.2 Diversity in Recently Divided Droplets
Nested populations design differ from simple serial transfer in parallel cultures
by the opportunity for the cultures (droplets, tubes or other compartments)
to be subject to a birth-death process themselves. Each cycle, some cul-
tures may be removed from the experiment, while others can be duplicated,
usually by dispatching samples of the original collective in several new fresh
medium compartments (rather than one in regular parallel serial transfer ex-
periments).

This section focuses on the consequence of imposing a collective-level
birth-death process on the neutral diversity. To this end, consider the simple
scenario (depicted in Figure 3.18) of a pair of droplets that share a common
“droplet ancestor” some cycles ago. The two droplets differs by the initial
sampling performed in their common ancestor, and also by all new mutations
accumulated since they became isolated.

In the following, the particles follow a super-critical linear birth-death
process with parameters b − d = r > 0. The parameters of the population
structure are supposed to be optimal in the sense of section 3.1.1: each cycle
has a duration T ∗ = −r−1 ln (cK−1) and each lineage as an independent
probability of being sampled at a bottleneck of δ∗ = e−rT

∗ .
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Figure 3.18: Collective and Particle nested coalescent trees. Left: coalescent tree of droplets. Right:
coalescent tree of particles. An ancestral droplet lineage (black) is diluted into two offspring droplets (red, blue).
At the time when the droplets are split, the particle lineages within the ancestral droplets are assigned a color (red
or blue) that indicates the droplet in which they were sampled. Mutations appear along the genealogy of particles
(crosses). Some mutations appear before the split (green, yellow, orange) and are found in both droplets (green,
purple) if they were sampled by both droplet lineages, or within a single droplet (yellow) if they were segregated
by the dilution. Other mutations appear after the split (light blue, yellow) and are only found in one of the droplet
lineages

.
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Figure 3.17: Shannon En-
tropy of the mutation fre-
quency spectrum. Defined as
S = −

∑
i ai log(ai)

Figure 3.19: Droplet Splitting
Process. When a droplet is split
in k droplets, individual particles
are independently selected to be
transferred to the next cycle (with
probability δ for each new droplet)
or sent to the waste (with proba-
bility 1− kδ).

Survival probability

First, let us consider the probability that a lineage spawned by a single cell n−
m cycles in the past is not extinct within both droplets. The key to establish
this probability is to recognise that the lineage undergoes a bottleneck with
survival probability δ at each cycle, except the cycle of the droplet split where
each particle has a probability 2δ to survive. Indeed, two inoculation volumes
are concurrently sampled from the ancestral droplet and dispatched into two
offspring (Figure 3.19). Thus:

Proposition 9 (Survival probability - Split droplet):
Cells within droplets in serial transfers are modelled by a linear birth-
death process with constant parameters b and d, that is subject to periodic
bottlenecks every duration T . Additionally, consider that at the m-th
cycle, the dilution procedure is repeated to obtain k new droplets.

Let s̄k,n,m be the probability that lineage spawned by a single cell is
not extinct at time nT just before the n-th dilution.

sk,n,m = 1− hQk,n,m(0),

Where hA the linear fractional function with coefficient A defined in
Equation 3.1. The matrix Qk,n,m is the product:

Qk,n,m = Qm−1
1 QkQ

n−m−1
1 R

with,

∀k ∈ N∗, Qk =
[
kδ(p− q) p− kδ(p− q)
kδ(p− 1) p− kδ(p− 1)

]
; R =

[
δ(p− q) q
δ(p− 1) 1

]
Where δ is the survival probability of a particle at serial transfer, q is

the extinction probability of a lineage during a cycle, and p the geometric
parameter of the size of a non-extinct lineage as defined in Proposition
1.

(Proof page 60.)

Proposition 9 is similar in its conclusion Proposition 1, that treated of
the serial transfer case. However, the expression is considerably less easy to
handle, as the iteration does not simplify in a single matrix power.

Total diversity

As seen in Proposition 7, quantifying the total neutral diversity in an infinitely-
many sites model is a matter of finding the total length of the coalescent tree
(or forest) of the population. Note that the full coalescent tree in Figure
3.20 can be decomposed into a stump, before the splitting of droplets, and
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Figure 3.20: Finding the total
diversity at cycle n of droplets
split at cycle m. All the lineages
(triangles) spawned from the parti-
cles dispatched in one of the k = 2
droplets (here red and blue) have
the same expected length Ln−m.
The bottom part (or stump) of the
tree (black) result from the sam-
pling of a CPP stopped in mT ,
with probability πk,m,n, the proba-
bility that an extant lineage at cy-
cle m will be sampled in one of the
two droplets, and survive until cy-
cle n.

another set of CPP per droplet sampled in one or the other droplet lineage.
As a result:

Proposition 10 (Total Diversity - Split droplet):
Consider an initial population of one droplet, seeded by sampling K cells
with a probability δ. Let a Mk,m,n be the expected number of unique
mutations accumulated at cycle n into k = 1, 2 . . .

⌊ 1
δ

⌋
droplets that result

from the splitting of the initial droplet at cycle m. Then:

Mk,m,n = Kδθsk,m,nLk,m,n

With Lk,m,n the expected length of the coalescent tree of the population
(conditional to survival):

Lk,m,n = Fπk,m,n(mT )
[∫ mT

0

1
Fπk,m,n(s)ds+

∫ (n−m)T

0

F ((n−m)T )
F (s) ds

]

F is the inverse tail distribution of the CPP with bottleneck,
πk,m,n(s) = kδsn−m is the probability that a lineage at cycle m will have
descent at cycle n. Fπ = 1− π + πF is the inverse tail distribution of a
CPP with inverse tail distribution F submitted to sampling with proba-
bility π.

(Proof page 60.)

Private Diversity

In order to assess the divergence between split droplet, one can compute the
expected number of private mutations, i.e., mutations that are only found in
a single of the k split droplets. This number is the sum of all mutations that
occur in the droplet after the splitting time mT , plus all the mutations that
occur before the splitting time but in a lineage that only segregate in a single
droplet. Since all the droplet are interchangeable, this value is identical for
the k droplets. Overall this number is proportional to the red (or blue) part
of the CPP in figure 3.18.

Proposition 11 (Private Mutations - Split Droplet):
Let a single droplet be split into k = 1 . . .

⌊ 1
δ

⌋
at cycle m out of n. Let

M̄k,m,n be the expected number of mutations that are private to one of
the k droplets.

Kδθsk,m,n

[
ψk,m,nL̄k,m,n + 1

k
Fπk,m,n(mT )Ln−m

]
(3.13)
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With L̄k,m,n the expected length of the stump tree (in black in Figure
3.20) and ψ the probability that a mutation occurring before cycle n is only
carried by cells that are found in a single droplet, πk,m,n the probability
that a lineage extant before the dilution mT survives until time nT .

The stump tree is a Coalescent Point Process stopped in mT , with
inverse tail distribution F , sampled with probability πk,m,n at time mT .
Thus, it has an expected number of leaves Fk,m,n(mT ) and an expected
length:

L̄k,m,n = Fπk,m,n(mT )
∫ mT

0

1
Fπk,m,n(t)dt (3.14)

The expression of ψ is:

ψ =
∑
i>1

i−1∑
j=1

1
Fπ(mT )

(
1−

1
Fπ(mT )

)i 1
kj
θ

∫ ∞
0

dx

(
1−

1
Fπ(x)

)j−1 ( i− j − 1
Fπ(x)2 +

2
Fπ(x)

)

With π = πk,m,n.

(Proof page 62.)

Droplet splitting main purpose is to select and duplicate a phenotype of
interest. The last section explores, in the context of artificial selection, the
advantage offered by a droplet-splitting process over the simple screening of
parallel cultures in serial transfer.

3.3 Artificial selection of droplets

A practical application of a device that would allow the manipulation of small
cultures of microbial organisms would be the artificial selection of phenotypes
of interest. Suppose that a given phenotype of interest is reached after the
accumulation of K mutations, and that it is possible to detect the number of
mutation fixed so far, by sequencing or direct observation of the cultures.

To formalise, let D ∈ N∗ be the number of collectives. Each collective i
is assigned a number ei = 1, 2, . . . ,K, corresponding to the number of fixed
mutation. Suppose that the time for a collective to switch from ei = j to
ei = j + 1 is exponentially distributed with parameter pj = ρj

ND . Where
ρi is the rate of invasion of mutation j + 1 (that could be deduced from
Proposition 8), scaled by the number of droplets D and the number of cycles
N . Initial conditions are that the D collectives are in state 0. The only
possible transition is to accumulate a new mutation, no reversion is possible,
as illustrated in Figure 3.21.

In order to assess the advantage of droplet splitting, consider two scenario,
illustrated in Figure 3.22:
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Figure 3.21: Phenotypes. There are K + 1 possible phenotypes. A j-collective
switch to the next phenotype j + 1 with rate pj .
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Figure 3.22: Propagation of mutations. Without collective selection, all the lineage accumulate mutations
independently. With collective selection, once a mutation fixation is first detected, the droplet is split into D
lineages.

1. Without collective selectionD collective lineages are started in state
0 at t = 0 and undergo serial transfer independently of each other.

2. With collective selection D collective lineages are started in state 0
at t = 0, once a mutant is detected in a lineage, all the other collectives
are killed and this lineage is split in D new lineages.

Let Γ (respectively Γ∗) be the random variable encoding the first time
for a lineage to get to the state K ∈ N in the scenario without collective
selection (respectively with collective selection). To compare them, consider
their respective cumulative distribution functions:

Proposition 12 (Cumulative distribution functions):
The cumulative distribution function of Γ∗ is:

P(Γ∗ ≤ x) = 1− e−x
(
K−1∑
u=0

xu

u!

)
(3.15)

The cumulative distribution function of Γ is:

P(Γ ≤ x) = 1− e−x
(
K−1∑
u=0

xu

Duu!

)D
(3.16)

When the number of mutational steps tends to infinity, the two cu-
mulative distribution function are equivalent. However, for any finite
number of mutational steps K, the selective regime is faster than the
serial transfer regime.

(Proof page 63.)
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Figure 3.23: Cumulative proba-
bility distribution of the time to
accumulate K mutations. With
droplet splitting, accumulation of
mutation is faster. D = 100.

Proposition 12 shows that collective level selection, i.e., the process of
splitting a droplet in which an intermediate mutation was fixed, lead to reduce
the time to reach the K-th mutation. Figure 3.23 shows the shape of the
cumulative probability function for both regime, illustrating this advantage.
This constitutes a simple use-case for a device that allow the automated high-
throughput manipulation of numerous cultures, such as the digital millifluidic
analyser currently under development (Boitard et al., 2015).

3.4 Discussion

This chapter has laid the foundation for a theoretical understanding of the
evolution of neutral diversity in massively parallel microbial evolution ex-
periments. It was heavily inspired by ongoing engineering efforts to bring
experimental evolution to digital millifluidics (Cottinet, 2013; Boitard et al.,
2015; Dupin, 2018; Doulcier, 2019).

In experimental microbiology, one desirable feature can be to maximise
the number of mutations accumulated within the cultures, for instance in
order to screen phenotypes of interest. The result presented above showed
that, in an optimal growth setting, where cells are growing with a constant
birth and death rate, without density dependant competition, the popula-
tion should be submitted to cycles whose duration is tailored to compensate
the bottleneck imposed at each serial transfer. The choice of the bottleneck
should be made according to the expected duration of the experiment: in or-
der to optimise the expected number of mutations, small bottlenecks (killing
most of the lineages) should be used when the number of cycles is small, while
larger bottlenecks (lower dilution rate) should be used for long term exper-
iments. Additionally, the expected number of mutations increases linearly
with increasing droplet volume and with increasing number of droplets which
is a matter of technological progress as automation and larger droplet sizes
are under consideration (Dupin, 2018). The mutation rate also increases lin-
early the number of expected mutations and can be manipulated by choosing
mutator lineages or adding mutating chemicals to the culture broth. How-
ever, the potentially deleterious effects of this method might prevent using it
in practical cases.

In long term evolution experiment, serial transfer is imposed by the need
to replenish nutrients available to the cells. It is possible to build devices
ensuring that a continuous flow of nutrient washes over the culture (for large
volumes, see chemostats, or morbidostats (Toprak et al., 2013), in microflu-
idics, see mother machines (Potvin-Trottier et al., 2018)). However, these
methods are usually more prone to contamination. In contrast, periodically
diluting the culture in fresh medium is simple and robust.

The nested population design differs from traditional serial transfer of
parallel cultures because it allows a collective birth-death process at the level
of collective. Serial transfer is pervasive in experimental evolution (Kawecki
et al., 2012), and has received extensive theoretical treatment. The first part
of this Chapter constitute an example of such a study that only focus on
neutral diversity. The problem of beneficial mutation, and the probability
of loosing them because of the repeated bottleneck is well-known for serial
transfer (Wahl and Krakauer, 2000; Wahl et al., 2002; Wahl and Gerrish,
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2001; Wahl and Zhu, 2015) and should be extanded to the nested population
design in the future.

In practice, the collective birth-death process can come from the fact that
some cultures are effectively empty because of high dilutions in the previ-
ous cycle, and may be replaced in the next cycle by cells from a non-empty
culture. The collective birth-death process can also come from as a conse-
quence of the culture technology. Milli and microfluidics compartments are
usually produced in large numbers, while measurements are performed on
all compartments, the retrieval of all the compartments content might not
be practically possible or even desirable when they are too numerous. Fi-
nally, the collective birth-death process may stem from an active effort of the
operator to select some populations based on some characteristics.

The use of a non-saturating population dynamics in this chapter is a sim-
plification that should be carefully taken into account when transposing the
results of this work to the design of experiments. Nonetheless, if the cycle
duration are short enough so that the population is stopped during exponen-
tial phase, the heuristics developed in this chapter should hold. There are
however two phenomena that were not modelled here and that will probably
muddy the neutral pattern that was described. First, the absence of muta-
tions affecting birth and death rates. If most point-mutations can be safely
considered neutral, rare mutations affect the ability to reproduce of the cells.
If the mutation are beneficial, they will increase in proportion within the pop-
ulation, and will change the relative frequency of all neutral mutations, by
favouring the ones bore by the same strand of DNA. This is a well documented
phenomenon known as hitchhiking (Fay and Wu, 2000). Second, horizontal
gene transfer might allow the uncoupling of the mutation transmission from
the genealogy (Dutta and Pan, 2002), muddying the pattern even more.

The nested population design also differs from trait groups (Wilson, 1975a)
or transient compartments (Blokhuis et al., 2018) population structure be-
cause migration between compartments is prevented. As a consequence, it is
possible to construct a non ambiguous genealogy of the cultures —hereafter
refereed to as the collective genealogy and studied in more details in Chapter
4. In practice, serial transfer design offers a natural way to implement the
birth-death process, by diluting some cultures into several new compartments
(the droplet splitting) and discarding other.

Finally, this chapter touches briefly the problem of artificial selection using
a nested population design. This was done by considering the accumulation of
neutral mutation, in a subversion of classical cancer-evolution models (Nowak,
2014), indeed, here the objective is to accumulate mutations as fast as possible
whereas those models are interested in population structures that decrease
the rate of mutation accumulation. A more complete model of artificial selec-
tion would, however, take into account interaction between individuals, and
potentially the selection of whole communities. Chapter 6 present an exam-
ple of such a model, in the literature, community-level selection has been the
subject of both experimental (Swenson et al., 2000a,b; Panke-Buisse et al.,
2015) and theoretical inquiries (Arias-Sánchez et al., 2019; Xie et al., 2019).

Overall, the results presented in this chapter should be considered as a
way to build intuition about the experimental system, while providing a null-
model for diversity that could be compared to the actual patterns. Inevitable
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differences will appear, but the point of comparison that is offered by neutral
evolution will allow a better description of the observed diversity. Focusing on
the part of the patterns that differ from this naive theoretical prediction will
surely be fruitful: it shows that other mechanism than drift must be invoked.
The next chapter continues the exploration of collective-level selection, by
focusing on experimentally established collective-level genealogies.
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Appendix: Proofs

In this section we give the mathematical proofs for the results used in the main text.

Parameters range

Proof (Proposition 1 - Survival Probability):
Let sn be the survival probability at t = nT of a lineage started from a single cell at t = 0.

One cell, one cycle
Consider one cell at time t = 0. This cell follows a Linear Markov Branching Process (Zt)t∈[0,T )

with constant rates b, d until the dilution time T . The branching process goes extinct (Zt = 0)
with probability q(b, d, t) := P(Zt = 0), and conditionally to non-extinction Zt follow a geometric
distribution with parameter p(b, d, t) (P(Zt = k|Zt 6= 0) = p(1− p)k−1).

p(b, d, t) q(b, d, t)
Subcritical particles r < 0 d−b

d−bert
d(1−ert)
d−bert

Critical particles r = 0 1
1+bt

bt
1+bt

Supercritical particles r > 0 (b−d)e−rt
b−de−rt

d(1−e−rt)
b−de−rt

The probability generating function of ZT is:

fZT (s) =
∑
k≥0

P(ZT = k)sk Definition of f

= P(ZT = 0)s0 +
∑
k≥1

P(ZT = k)sk

= P(ZT = 0)s0 +
∑
k≥1

P(ZT 6= 0)P (ZT = k|ZT 6= 0)sk

= q +
∑
k≥1

(1− q)p(1− p)k−1sk Definition of p, q

= q + p(1− q)
1− p

∑
k≥1

((1− p)s)k

= q + p(1− q)
1− p

−1 +
∑
k≥0

((1− p)s)k


= q + p(1− q)
1− p

(
−1 + 1

1− (1− p)s

)
Geometric series, (1− p)s < 1

= q + p(1− q)
1− p

s(1− p)
s(p− 1) + 1

= q + sp(1− q)
s(p− 1) + 1

= s(p− q) + q

s(p− 1) + 1

Notice that, as expected, fZT (1) = 1 and fZT (0) = P (ZT = 0) = q.

Several cycles, including the last bottleneck
At the dilution time t = T , each descendant of this cell is sampled in the new droplet with

probability δ.
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Let (Bi)i≥0 ∼ B be a collection of independent Bernoulli random variables with parameter δ.
The probability generating function of B is fB(s) = 1− δ + δs.

Let UT the number of descent of a cell starting at time t = 0 after one dilution at time t = T :

UT =
ZT∑
i=1

Bi (3.17)

The number of descendant of one cell just after the n-th dilution follow a discrete time branch-
ing process (Yn)n∈N with reproduction generating function fUT .

fUT (s) = fZT ◦ fB (Bi)i≥0 iid.

= (1− δ + δs)(p− q) + q

(1− δ + δs)(p− 1) + 1 = sδ(p− q)− δ(p− q) + p

sδ(p− 1)− δ(p− 1) + p

Thus,

fUT (s) = (s− 1)δ(p− q) + p

(s− 1)δ(p− 1) + p
(3.18)

The survival probability of a lineage after n dilutions, is noted sn and is given by the survival
probability of the discrete branching process (Yi)i=1...n. Thus:

sn = 1− P(Yn = 0) = 1− fnUT (0) where fk(s) = fk−1(f(s)) = f(fk−1(s)).

Note that fUT is linear fractional.
We can associate any linear-fractional function hM with a coefficient matrix M as follow:

M =
[
a b
c d

]
⇔ hM = as+ b

cs+ d

It can be proven by simple induction that hnM = hMn .
We thus have 1− fnUT = 1− hQn with:

Q =
[
δ(p− q) p− δ(p− q)
δ(p− 1) p− δ(p− 1)

]
Thus,

sn = 1− fnUT (0) = 1− hQn(0)

Several cycles, not including the last bottleneck
Let Xn be the number of descendant of one cell just before the n-th cycle. This number is given

by the sum of the descent Di of each of the i = 1...(Yn−1) cells that descent from the ancestor
at the beginning of the n-th cycle. By the branching property the (Di)i=1...Yn are independent of
one another and follow the same law as U1.

Xn =
Yn∑
i=1

Di (3.19)

The survival probability s̄n = P(Xn = 0) is:

s̄n = 1− hQn−1R(0)
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With:

R =
[
δ(p− q) q
δ(p− 1) 1

]

Proof (Proposition 2 - Long Term Survival Probability):
Let us look for the fixed points of fXτ :

fXτ (s) = s⇔ (s− 1)δ(p− q) + p− s((s− 1)δ(p− 1) + p) = 0
⇔ (s− 1)[δ(p− q)− sδ(p− 1)]− (s− 1)p = 0
⇔ δ(p− q)− sδ(p− 1)− p = 0 or s = 1
⇔ sδ(p− 1) = −p+ δ(p− q) or s = 1

⇔ s = p− δ(p− q)
δ(1− p) := s∗ or s = 1

fXτ (s)− s is a second order polynomial for s meaning that fXτ has at most two fixed points.
One of them is 1, in accordance with the definition of characteristic functions. The other is s∗.

s∗ < 1⇔ p < δ(1− q)
Since fXτ is continuous and fXτ (0) ∈ [0, 1], the sequence (un)n≥1 = fXτ (un−1) with u0 = 0

converges toward 1 if p > δ(1− q) and s∗ otherwise.

• In Subcritical regime, p < δ(1− q)⇔ e−rτ < δ, is always false since e−rτ > 1 and δ ≤ 1.

• In Critical regime, p < δ(1 − q) ⇔ 1
1+bτ < δ

(
1− bτ

1+bτ

)
= δ 1

1+bτ , is always false since
δ ≤ 1.

• In Supercritical regime, p < δ(1− q)⇔ e−rτ > δ,

Thus, s∗ > 1 except if b > d and δ < e−rτ . In this case,

s∞ = 1− s∗ = 1− p− δ(p− q)
δ(1− p)

= (b− d)(δ − e−(b−d)T

bδ(1− e−(b−d)T )

Proof (Proposition 4 - Critical dilution):
We define δ∗ as the dilution parameter preventing the number of cells to grow unbounded. More
precisely, we want the expected number of cells to be constant between two dilutions.

Let Xτ be the number of descent just after one dilution (t = τ+) of a cell starting a t = 0
as defined in Eq 3.17. The generating function of Xτ is fXτ as defined in Eq 3.18. Note that
E(Xτ ) =⇔ f ′Xτ (1).

When δ = δ∗, we expect the number of descent after one cycle to be constant, thus E(Xτ ) = 1.

f ′Xτ (1) = δ∗
1− q
p

= 1

δ∗ = p

1− q
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When the particles are supercritical, 0 < d < b:

δ∗ = (b− d)e−(b−d)τ

b− de−(b−d)τ
b− de−(b−d)τ

b− de−(b−d)τ − d(1− e−(b−d)τ )
= e−(b−d)τ

Proof (Proposition 5 - Critical survival Probability):
Let δ = e−rT , r = b− d, r > 0.

Then, the probability of extinction of the branching process is:

q = d(1− δ)
b− dδ

(3.20)

The parameter of the geometric distribution of the number of branches, conditionally to non
extinction is:

q = rδ

b− dδ
(3.21)

Thus:

Q = δ

b− δd

[
δb− d b(1− δ)
−b(1− δ) b(1− δ) + r

]
:= δ

b− δd
R

By induction, we can show that

s∗n = Qn01
Qn11

= Rn01
Rn11

= 1
b
rn(1− δ) + 1

Coalescent Point Processes

Proof (Proposition 6 - Coalescent tree):
Consider the CPP of the population just before the n-th cycle of dilution. The population expe-
rienced n− 1 bottlenecks at times t1 = (n− 1)T, . . . tn−2 = 2T, tn−1 = T .

Let {Hij , (i, j) ∈ N2} be a set of i.i.d. random variables following same law as H, defined by
its inverse tail distribution F (t) = 1

P(H>t) . F is the scale function of the CPP with bottlenecks.
Let F̃ be the scale function of the CPP without bottleneck. Using Proposition 7 in Lambert

and Stadler (2013) with εi = δ and si = iT , t = nT + s, with n =
⌊
t
T

⌋
∈ N and s < T , it is

possible to write F as:

F (t) = δnF̃ (nT + s) + (1− δ)
n−1∑
j=0

δjF̃ (jT )

Just after the sampling, the scale function is Fs:

Fs(t) = 1− δ + δF (t)

The expression of F̃ is known for the most common birth-death processes:
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Parameters Scale function

Pure Birth 0 = d < b F̃ (t) = ebt

Non critical 0 < d 6= b > 0 F̃ (t) = b
r (ert − 1) + 1

Critical 0 < d = b F̃ (t) = bt+ 1

Non critical case r := b− d 6= 0, b > 0, d > 0:

F (nT + s) = δn
[
1− b

r
+ er(nT+s) b

r

]
+ (1− δ)

n∑
j=1

δj−1
[
erjT

b

r
+ 1− b

r

]

= δn
(

1− b

r

)
+ b

r
ers(δerT )n + (1− δ)

(1− b

r

) n−1∑
j=0

δj + b

r
erT

n−1∑
j=0

(δerT )n


= δn
(

1− b

r

)
+ b

r
ers(δerT )n +

(
1− b

r

)
(1− δn) + b(1− δ)

r
erT

n−1∑
j=0

(δerT )j (Geometric series, δ 6= 1)

= 1 + b

r

ers(δerT )n − 1 + (1− δ)erT
n−1∑
j=0

(δerT )j


If δ 6= δ∗ then,

F (nT + s) = 1 + b

r

[
ers(δerT )n − 1 + (1− δ)erT 1− (δerT )n

1− δerT

]
(Geometric series, δ∗erT 6= 1)

Otherwise, if δ = δ∗ = e−rT ,

F (nT + s) = 1 + b

r

(
ers − 1 + n(erT − 1)

)
Pure-birth case d = 0

F (nT + s) = δneb(nT+s) + (1− δ)
n∑
j=1

δj−1ejbT

= ebs(δebT )n + (1− δ)
n−1∑
j=0

δje(j+1)bT

= ebs(δebT )n + (1− δ)ebT
n−1∑
j=0

(
δebT

)j
If δ 6= δ∗ = e−bT , then since δebT 6= 1, we can apply the geometric series expression:

F (nT + s) = ebs(δebT )n + (1− δ)ebT
1−

(
δebT

)n
1− δebT

Otherwise, δebT = 1:

F (nT + s) = ebs + n(ebT − 1)
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Critical case b = d 6= 0

F (nT + s) =δn(b(nT + s) + 1) + (1− δ)
n∑
j=1

δj−1(bjT + 1)

=δn(b(nT + s) + 1) + (1− δ)
n−1∑
j=0

δj(b(j + 1)T + 1)

=δn(b(nT + s) + 1) + (1− δ)

(1 + bT )
n−1∑
j=0

δj + bT

n−1∑
j=0

jδj


=δn(b(nT + s) + 1) + (1− δn)(1 + bT ) + (1− δ)bT

n−1∑
j=0

jδj (Geometric series, δ 6= 1)

=δnb(T (n− 1) + s) + 1 + bT + (1− δ)bT
n−1∑
j=0

jδj

=1 + δnb(T (n− 1) + s) + bT

1 + (1− δ)
n−1∑
j=0

jδj



Proof (Proposition 7 - Length of the coalescent tree):
Let Mn be the expected number of mutations within the serial transfer experiment after n cycles
but before the n− th dilution. With K the carrying capacity of the droplets, and T the duration
of the growth phase. Suppose that δ = δ∗, and that each initial droplet is seeded from diluting a
stock of K cells by 1

delta .
The number of initial lineages within the droplet C is a Binomial random variable with pa-

rameters (δ,K). The expected number of is E(C) = Kδ = Ke−rT .
Each initial lineage survives to cycle n with probability s̄n (see Proposition 1). Since all lineages

are independent the expected number of extant lineages after n cycles is Kδsn.
Each extant lineage after n cycle spawn an independent coalescent tree with expected length

Ln. Each tree contains an expected Poisson number of mutations, with parameter proportional
to the length of the tree. Since the length of the tree and the mutation rate are independent, the
number of mutation accumulated on one tree is θLn

Suppose that there are D droplets, since all droplets are independents, the expted number of
mutations within the experiment is simply:

Mn = Ke−rT s̄nLn (3.22)

Le us now compute Ln.
Let {Hij , (i, j) ∈ N2} be a set of i.i.d. random variables following same law as H, defined by

its inverse tail distribution F (t) = 1
P(H>t) .

Let τn be a CPP with branches H stopped in nT . Let N(τ) be the number of leaves of the
random tree τn. The length of the tree L(τn) is the random variable:

L(τn) = nT +
N(τn)−1∑
j=1

Hj

Where nT is the length of the spine and Hj are the length of the other N(τn)− 1 branches.
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Its expected value is:

Ln = EL(τn) = nT + (E(N(τn))− 1)E(H|H < nT )

Number of leaves: N(τ) is a geometric random variable:

P(N(τ) = k) = P (H > nT )P (H ≤ nT )k−1 = 1
F (nT )

(
1− 1

F (nT )

)k−1

Indeed, if k is the index of the first Hi such that Hi > nT , there are k − 1 branches, plus the
spine, for a total of k leaves.

Thus, the expected number of leaves of τn, is:

E(N(τn)) = F (nT ) (3.23)

Note that if we do not take the spine into account:

E(N(τn − 1)) = F (nT )− 1 =
1− 1

F (nT )
1

F (nT
= P(H < t)

P(H > t) (3.24)

Length of branches:
We recall that for a positive r.v. X, E(X) =

∫ +∞
0 P(X > x)dx.

We can rescale the tail-distribution to take into account the condtional:

P(H > x|H < y) =
{

0 if x > y,
P(H>x)−P(H>y)
P(H>0)−P(H>y) otherwise.

(3.25)

Thus:

E(H|H < nT ) =
∫ +∞

0
P(H > x|H > nT )dx

=
∫ nT

0

P(H > x)− P(H > nT )
1− P(H > nT ) dx

= 1
1− 1

F (nT )

[∫ nT

0

1
F (x)dx−

nT

F (nT )

] (
By definition, P(H > x) := 1

F (x)

)

= F (nT )
F (nT )− 1

[
n∑
k=0

∫ (k+1)T

kT

1
F (x) −

nT

F (nT )

]

Moreover, ∀k ∈ N and ∀s ∈ R, s < T :

F (kT + s) = 1 + b

r
(k(eTr − 1) + ers − 1)

∫ k+1

k

1
F (t)dt =

∫ T

0

1
1 + b

r (k(eTr − 1) + ers − 1)
ds

=
[
rs− log(k(erT − 1) + ers − 1 + r

b )
bn(erT − 1)− b+ r

]T
0

=
rT − log

(
k(erT−1)+ r

b

(k+1)(erT−1)+ r
b

)
bk(erT − 1)− d

Finally,
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Ln = EL(τn) = nT + E(N(τ)− 1)E(H|H < nT )

= nT + P(H < nT )
P(H > nT )E(H|H < nT )

= nT + (F (nT )− 1) F (nT )
F (nT )− 1

[∫ nT

0

1
F (t)dt−

nT

F (nT )

]

= F (nT )
∫ nT

0

1
F (t)dt (3.26)

Replacing the expression of F :

Ln =
(

1 + b

r
n(erT − 1)

) n∑
k=0

rT − log
(

k(erT−1)+ r
b

(k+1)(erT−1)+ r
b

)
bk(erT − 1)− d (3.27)

Proof (Proposition 8 - Mutation Frequency Spectrum):
Fixed mutations

Fixed mutations are the one found between the root of the coalescent tree (t = nT ) and the
first branching. Let Y = nT −X be the random variables encoding this length.

Let H1...Hτn−1 be the branch lengths of the CPP stopped in nT . The variables Hi are inde-
pendent and identically distributed as H, conditioned to be smaller than nT . X is the maximum
of those values:

X = max {H1, H2...HN (τn − 1)} (3.28)

P(X > s) =
{

0 (If s > nT )∑∞
k=0 P(N(τ) = k)P(H > s|H < nT )k (otherwise)

∞∑
k=0

P(N(τ) = k)P(H > s|H < nT )k =
∞∑
k=0

1
F (nT )

(
1− 1

F (nT )

)k−1
( 1
F (s) −

1
F (nt)

1− 1
F (nT )

)k

= 1
F (nT )

(
1− 1

F (nT )

)−1 ∞∑
k=0

(
1

F (s) −
1
nT

)k
= 1

1− F (nT )
1

1− 1
F (s) + 1

F (nT )

E(X) =
∫ ∞

0
P(X > x)dx (3.29)

Full spectrum
For a sample of v individuals in a CPP stopped at time nT , Theorem 2.2 in Lambert (2008)

gives the expression of E(Sv(u)) the expected number of mutant sites that are carried by exactly
1 ≤ u ≤ v − 1.

E(Sv(u)) = θ

∞∑
j=0

(
1− 1

W (x)

)u−1(
v − u− 1
W (x)2 + 2

W (x)

)
dx (3.30)
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With W the inverse tail distribution of the branch length in the stopped CPP.
The expected value of Sv(u) converges toward a limit (Lambert, 2008) when the sample size

increases, provided E(H|H < nT ) <∞, which is the case here, since the CPP is stopped in nT .

lim
v→∞

v−1E(Sv(u)) = θ

∫ ∞
0

(
1− 1

W (x)

)u−1 1
W (x)2 dx (3.31)

W is expressed, for x < nT , as a rescaling of F :

W (x) = 1
P(H > x|x < nT ) =

1− 1
F (nT )

1
F (x) −

1
F (nT )

(3.32)

Thus,

au = lim
v→∞

v−1E(Sv(u)) = θ

∫ nT

0

(
1−

1
F (x) −

1
F (nT )

1− 1
F (nT )

)u−1( 1
F (x) −

1
F (nT )

1− 1
F (nT )

)2

dx (3.33)

Split droplets

Proof (Proposition 9 - Survival Probability (2 drops)):
The proof is the same as the one for Proposition 1 (p. 1) but the survival probability at the end
of cycle m is kδ instead of δ.

Proof (Proposition 10 - Total Diversity (2 drops)):
Let t = nT the duration of the experiment. Let (Zs)s∈[0,t] be the continuous time branching
process encoding the population size. The initial population size is Z0 = 1. The population
is submitted to a sampling with probability δ every period T , i.e. at times (t1 = T, . . . tn−1 =
(n− 1)T )

Number of branches within the tree, without droplet splitting
Let Xm with 1 ≤ m ≤ n, be the random variable encoding the number of extant lineages just

before the m-th bottleneck of a CPP stopped in tm = mT . Conditioned on non extinction, Xm is
geometric with parameter P(H > tm).

Moreover, let Ym,n with 1 ≤ m < n be the random variable encoding the number of extant
lineages just after the m-th bottleneck in a CPP stopped at t = nT . Conditioned on Ym, Ym,n
is binomial with parameter πm = δP(Ztn−m 6=0), the probability that a lineage extant at time tm
will not be extinct at time t. To survive, a lineage have to be sampled (with probability δ) and
survive up to time t.

Thus, for all k > 0 the law of Xm,n can be expressed as:

P(Ym,n = k) = P(Ztm 6= 0)P(Ym,n = k|Ztm 6= 0) (Conditional Probability)

= P(Ztm 6= 0)
∑
j≥1

P(Xm = j|Ztm 6= 0)P(Ym,n = k|Xm = j) (Total Probability)

= P(Ztm 6= 0)
∑
j≥1

P(H > tm)P(H < tm)j−1Ckj (πm)k(1− πm)j−k (3.34)

The expected value is:



Appendix 61

E(Yn,m) = P(Ztm 6= 0) πm
P(H > tm)

There are two ways that leads to have no branches alive at time t0 and time t. First if there
are no branches at time t0, second if all the lineages extant at time t0 went extinct before t:

P(Ym,n = 0) =P(Ztm = 0) + P(Ztm 6= 0)P(Yn,m = 0|Ztm 6= 0) (Total Probability)

=P(Ztm = 0) + P(Ztm 6= 0)
∑
j≥1

P(H > tm)P(H < tm)j−1(1− πm)j (From 3.34, k=0)

=P(Ztm = 0) + P(Ztm 6= 0)(1− πm)P(H > tm)
∑
j≥1

(P(H < tm)(1− πm))j−1

=P(Ztm = 0) + P(Ztm 6= 0) P(H > t0)(1− πm)
1− P(H < tm)(1− πm) (Geometric Series)

Thus, the probability of having at least one branch alive at time tm that has still descent at
time t is given by:

P(Ym,n 6= 0) = 1− P (Yn,m = 0)

= P(Ztm 6= 0)
(

1− P(H > tm)(1− πm)
1− P(H < tm)(1− πm)

)
= P(Ztm 6= 0)πm

1− P(H < t0)(1− πm)

Note that the probability of having at least one extant lineage at cycle m that is still ex-
tant at cycle n is the same as the probability of having at least one extant lineage at cycle n:
P(Ym,n 6= 0) = P(Yn 6= 0). Thus, this probability is independent of m.

Let us partition the expected number of branches by the event Ym,n = 0:

E(Ym,n) = P(Ym,n = 0)E(Ym,n|Ym,n = 0)︸ ︷︷ ︸
=0

+P(Ym,n 6= 0)E(Ym,n|Ym,n 6= 0)

Finally, the expected number of branches at time tm that still have a descent at time t,
conditional to non extinction is:

E(Ym,n|Ym,n 6= 0) = E(Ym,n)
P(Ym,n 6= 0)

=
[
P(Ztm 6= 0)πm
P(H > tm)

] [
1− P(H < tm)(1− πm)

P(Ztm 6= 0)πm

]
= 1− P(H < tm)(1− πm)

P (H > tm)

= 1− πm + πmF (tm)
(
Since F (t) = 1

P(H > t) )
)

Notice that it us the same expression as the expected number of branches of a CPP with inverse
tail distribution F , where the leaves are independently sampled in the present with probability
πm (Lambert and Stadler (2013), Proposition 2).

Number of branches within the tree, with droplet splitting
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Consider now that the droplet was diluted into k droplets at time tm. Let Yk,m,n be the random
variable encoding the number of extant lineages just after the split at time tm that are still extant
at time tn. For k = 1, Yk,m,n follows the same law as Ym,n. For all values of k = 1, 2 . . .

⌊ 1
δ

⌋
, πm

must be substituted by:

πm,k = kδP(Ztn−m 6=0) (3.35)

Tree length
Let Lk,m,n be the random variable encoding the length of the coalescent tree of the population

of particles within k droplets, submitted to a bottleneck δ every T unit of time, where at cycle m,
the population was diluted into k droplets instead of one.

The length of this tree, conditioned on non extinction (Yk,n,m 6= 0) is the sum of the length of
the "stub" Sk,m,n, the tree before tm, and the length of all the Yk,n,m 6= 0 trees spawned by the
lineages that are extant after the dilution at cycle m.

First, the stub is a CPP with inverse tail distribution F submitted to a Bernoulli sampling
πk,m at time tm. Thus, it is a CPP with inverse tail distribution Fπk,m := 1 − πm + πmF . Its
expected length is given by Equation 3.26:

E(Sk,m,n) = Sk,m,n =
∫ mT

0

Fπk,m(mT )
Fπk,m

(3.36)

Additionally, each of the sampled leaves at time tm give rise to a CPP of expected length Lm−n
(Equation 3.26). Finally:

E(L|Ym,n 6= 0) =
∫ mT

0

Fπk,m(mT )
Fπk,m(s) ds+ Fπk,m(mT )

∫ (n−m)T

0

F ((n−m)T )
F (s) ds (3.37)

Proof (Proposition 11 - Private Mutations - Split Droplet):
All mutations that occurs after the droplet split are private to the droplet.

Mutations that occurs before the droplet split (in the "stump", i.e. the black part of Figure
3.20) can be ultimately found in a single or several droplets (as explained in the Figure 3.18). Let
Fπ be the inverse tail distribution of the stump CPP.

Let a single droplet be split into k = 1 . . .
⌊ 1
δ

⌋
at cycle m out of n. Let P be the event that

a mutation occurring on the stump tree is private to a droplet, i.e. that this mutation in only
carried by cells that are found in a single droplet.

Let C be the random variable that encodes the number of individual carrying the focal mu-
tation. Conditional on the value of C = j, the probability of P is the probability that the j
individuals are sampled in the same droplet, namely

( 1
k

)j .
Let Ym,n be the number of leaves of the stump. Conditional on non extinction, it follows a

geometric distribution with parameter 1
Fπ(mT ) .

Conditional on Ym,n, C follow a probability distribution given in Theorem 2.2 of Lambert
(2008). Indeed, if Si(j) is the random variable encoding the number of mutations carried by j
individual in a sample of i individual, then:

P (C = j|Y m, n = i) =
i∑

u=1

P(Si(j) = u)u
i

= E(Si(j))

=θ
∫ ∞

0
dx

(
1− 1

Fπ(x)

)j−1(
i− j − 1
Fπ(x)2 + 2

Fπ(x)

)
Theorem 2.2 of Lambert (2008)
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To sum up:

P(P ) =
∑
j>1

P(C = j)P(P |C = j) (Total Probabilities)

=
∑
i>1

i−1∑
j=1

P(Ym,n|Ym,n 6= 0)P(C = j|Ym,n = i)P(P |C = j) (Total Probabilities)

=
∑
i>1

i−1∑
j=1

1
Fπ(mT )

(
1− 1

Fπ(mT )

)i 1
kj
θ

∫ ∞
0

dx

(
1− 1

Fπ(x)

)j−1(
i− j − 1
Fπ(x)2 + 2

Fπ(x)

)

Artificial Selection of Droplets

Proof (Proposition 12 - Cumulative distribution functions):
Time to accumulate K mutations

Let
(
e

(i,j)
pij

)
i,j∈N2

be independant exponential random variables with parameter pij . Without
collective selection, Γ is the minimum of a set of sum of i.i.d. exponential variables:

Γ = inf
j=1...D

(
K∑
i=0

e
(i,j)
1
D

)
j

With collective selection, Γ∗ is a sum of a minimum of i.i.d. exponential variables, (i.e. a
sum of exponential variables):

Γ∗ =
K∑
i=0

(
inf

j=1...D
e

(i,j)
1
D

)
i

=
K∑
i=0

e
(i)∑D

j=1
1
D

=
K∑
i=0

e
(i)
1

cumulative distribution function of Γ∗ is:

P(Γ∗ ≤ x) = 1− e−x
(
k−1∑
u=0

xu

u!

)

Note that it does not depend on D anymore: if the number of collectives is in the order of one
over the scaled invasion rate, the time to accumulate K mutations with collective selection does
not depend on the invasion rate anymore.

Without collective selection, the cdf of Γ is:
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P(Γ ≤ x) = 1− P(Γ > x)

= 1− P

 D⋂
j=1

( K∑
i=0

e
(i,j)
1
D

)
j

> x


= 1−

P
( K∑

i=0
e

(i,j)
1
D

)
j

> x

D (The lineages are independants)

= 1−

1− P

( K∑
i=0

e
(i,j)
1
D

)
j

≤ x

D

= 1−
[

1− 1 + e−
1
D x

(
k−1∑
u=0

xu

Duu!

)]D
(sum of indep. exp. r.v.)

= 1−
[
e−

1
D x

(
k−1∑
u=0

xu

Duu!

)]D

= 1− e−x
(
k−1∑
u=0

xu

Duu!

)D

Comparison of the two regimes
It boils down to comparing:

fk(x) :=
k−1∑
u=0

xu

u! and hk(x,D) :=
(
k−1∑
u=0

xu

Duu!

)D
Infinite number of mutational steps, if we letK →∞, the time to accumulateK mutation

increase toward infinity (it is not possible to accumulate an infinity of mutation in a finite time).

lim
K→∞

P(Γ∗ ≤ x) = 1− ex−x = 0
(
because

∞∑
u

xu

u! = ex.
)

lim
K→∞

P(Γ ≤ x) = 1− ex
(
e
x
D

)D = 0 (idem).

Moreover, the two cdf are equivalent:

lim
k→∞

hk(x,D)
fk(x) = ex

ex
= 1

Any number of mutations steps
Let us proove that hk(x,D) ≥ hk(x, 1) = fk(x) for all (x,D, k) ∈ R+ × (N∗)2, k ≥ 2,

Case 1, 0 ≤ x ≤ (k − 1)D:

f ′k(x) =
k−1∑
u=1

(u)xu−1

u! =
k−2∑
j=0

xj

j! = fk(x)− xk−1

(k − 1)!
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Let us define A(D) := ln(Dh(x, k, n)) = D ln
(
fk
(
x
D

))
A′(D) = ln

(
fk

( x
D

))
+D

(
fk
(
x
D

))′
fk
(
x
D

)
= ln

(
fk

( x
D

))
− x

D

f ′k
(
x
D

)
fk
(
x
D

)
:= B

( x
D

)

B(x) = ln(fk(x))− xf
′
k(x)
fk(x)

= ln(fk(x))− x+ xk

(k − 1)!fk(x)

Note that B(0) = 0.

B′(x) = f ′k(x)
fk(x) − 1 + kxk−1(k − 1)!fk(x)− (k − 1)!f ′k(x)xk

((k − 1)!fk(x))2

= 1
fk(x)

(fk(x)− xk−1

(k − 1)!

)
− fk(x) + k

xk−1

(k − 1)! −
xk−1

(k − 1)!
x
(
fk(x)− xk−1

(k−1)!

)
fk(x)


= xk

(k − 1)!fk(x)

[
k − 1− x+ xk

(k − 1)!fk(x)

]

Since ∀(x, k) ∈ R+ × N∗,
xk

(k − 1)!fk(x) ≥ 0

x ≤ (k − 1)D ⇒ B′
( x
D

)
≥ 0 and moreover B(0) = 0

⇒ B
( x
D

)
≥ 0

⇒ A′(D) ≥ 0
⇒ hk(x,D) is increasing in D.

Case 2, x ≥ (k − 1)D:

Let (D, k) ∈ (N∗)2, k ≥ 2,

x

D
≥ (k − 1) ≥ 1

xu

Duu! ≥
(k − 1)u

u! (∀u ∈ N, since x 7→ xu increasing ∀x ≥ 1).
k−1∑
u=0

xu

Duu! ≥
k−1∑
u=0

(k − 1)u
u!(

1 +
k−1∑
u=1

xu

Duu!

)D
≥

(
1 +

k−1∑
u=1

(k − 1)u
u!

)D
(Since x 7→ xD increasing ∀x ≥ 1 and D ∈ N).

hk(x,D) ≥
(

1 +
k−1∑
u=1

(k − 1)u
u!

)D



66 Chapter 3. Neutral Diversity in Experimentally Nested Populations

Moreover,(
1 +

k−1∑
u=1

(k − 1)u
u!

)D
≥

(
1 +

k−1∑
u=1

(k − 1)u
u!

)
(Since x ≤ xD increasing ∀x ≥ 1 and D ∈ N).

hk(x,D) ≥ hk(x, 1) = fk(x)



Chapter 4

Locating Mutations in
Collective-level Genealogies

“Voyez-vous cet œuf ? C’est avec cela qu’on renverse toutes les
écoles de théologie et tous les temples de la terre.”

—Denis Diderot, Entretien entre D’Alembert et Diderot
(1769)

Atransition to multicellularity happens when ancestral free living
cells become part of collectives that eventually evolve mechanisms for

autonomous reproduction (Okasha, 2006). It implies the existence of a multi-
cellular life-cycle with its own development and reproduction mechanisms that
can span several life-cycles at the cell level. Multicellular states may be op-
tional for cells, such as in aggregative slime molds (Bonner, 1998), or become
obligate as in metazoans. Overall, multicellularity evolved at least twenty-five
times in the history of life (Bonner, 1998; Grosberg and Strathmann, 2007).
Such a spectacular example of convergent evolution is a potent argument in
favour of the existence of one or several general mechanisms promoting it. For
these reasons multicellular transitions are more accessible to experimental in-
quires than, say, the origin of the eukaryotic cell. Experimental approaches
to the evolution of multicellularity often focus on organisms that already
display some multicellular life cycle (such as social amoeba Dictyostelium,
Bonner (2015) or green algae Volvox, Kirk (1997)) or start from unicellular
organisms (such as budding yeast Saccharomyces cerevisiae, Ratcliff et al.
(2012) or bacteria such as Pseudomonas fluorescens, Hammerschmidt et al.
(2014)) and impose selective conditions thought to favour the emergence of
multicellular structures. At any rate, the problem is to understand how col-
lectives of initially free living individuals become Darwinian entities on their
own right (De Monte and Rainey, 2014), and possibly stay that way thanks
to ratcheting mechanisms (Libby and Ratcliff, 2014) that can culminate with
effective “de-Darwinization” of the individual level (Godfrey-Smith, 2009).

Population structure is a key parameter of ecological and evolutionary dy-
namics: the interplay between local and global populations have far-reaching
consequences for diversity (MacArthur and Wilson, 1967), adaptation (Wade,
2016) and speciation (Wright, 1949, 1982). As such, population structure is

67
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a likely candidate one may consider when looking for the mechanisms un-
derpinning the emergence of multicellularity. Consider a meta population of
individual cells in an environment where the habitat is structured in patches
because of rare resources, the existence of physical support, or boundaries.
Additionally, suppose that the cells have means to colonise new patches by
dispersal. Under specific conditions, this could bestow marginal Darwinian
properties upon collectives of unwitting cells. This would provide the oppor-
tunity for natural selection to effect the transition from marginally Darwinian
collectives to fully integrated, paradigmatic Darwinian organisms. This pro-
cess is called ecological scaffolding (Black et al., 2019).

By experimentally controlling population structure, and any transfer of
matter from one deme to the other, it is possible to put a population of
micro-organisms in close to ideal conditions for ecological scaffolding of mul-
ticellularity. In a very elegant experiment using Pseudomonas fluorescens
Hammerschmidt et al. (2014) showed that collective-level selection could act
on a developmental programme that underpinned a two-phase life cycle in-
volving a collective (soma-like) mat-forming stage and a dispersing (germ
line-like) dispersing phase. A continuation of this experiment, conducted
by Philippe Remigi and Daniel Rexin in Massey University (New Zealand)
followed more precisely the collective-level genealogy of the system. These
experiments have produced a wealth of data including records of population
dynamics and meta genome sequences. Additionally, since samples from all
lineages and time points have been preserved in cold storage, it is possible to
“replay the tape” of evolution and obtain replications of key events. Overall,
synthesising the various data sets and finding relevant measures for quantify-
ing the level of collective level adaptation is a challenge.

The aim of this chapter is to visualise and analyse collective-level genealo-
gies established experimentally with the goal of quantifying collective-level
adaptation through time. This approach involves identification of those places
in the genealogy where collectives improve most with respect to the selective
pressure. The combination of statistical modelling with sequence data helps
shed new light on possible molecular bases of adaptation in this system, and
will help to orient and motivate future experimental research.

4.1 The cheat as first propagule hypothesis

Of all the potential obstacles to the evolution of cooperative structures such
as multicellularity, the emergence of cheating types is maybe the one that re-
ceived the most attention (Michod and Roze, 2001; Strassmann and Queller,
2011). From parasitic types of polymerase (Takeuchi and Hogeweg, 2012) to
cancers (Aktipis, 2016), the idea that a sub population of individuals would
benefit greatly from going rogue, and would eventually bring any collective
structure down is pervasive across evolutionary biology. This apparent para-
dox is studied by a wealth of literature of evolutionary game theory with
ramifications that goes beyond the domain of biology into social sciences
(Hardin, 1968; Axelrod and Hamilton, 1981) and addressed specifically in the
case of structured populations (Ferriere and Michod, 1996; Hochberg et al.,
2008; Garcia et al., 2015). In this chapter however, the focus is resolutely
non-game-theoretic and more in line with multi-level selection of Darwinian
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Figure 4.1: Tragedy of the com-
mons in a microcosm. a. Mu-
tant cells colonise the air-water in-
terface by cooperatively producing
a cellulose mat (“cooperators”).
b. Ancestral phenotype cells can
benefit from the oxygen supply
without paying the cost of cellu-
lose production (“cheaters”). c.
The mat collapses if the cellulose
production is too low compared to
the number of cells (“tragedy”).
This is described in Rainey and
Rainey (2003)

.

populations (Okasha, 2006; Godfrey-Smith, 2009). The thought experiment
of the “pond-scum” is developed and gives a clear illustration of the concept
of ecological scaffolding.

Aerobic bacteria, such as Pseudomonas fluorescens, are limited in their
growth by the supply of oxygen. In this context, colonising the air-liquid
interface brings a marked advantage to any individual because dynamics of
convection and diffusion are more efficient in air than in water to counter-
act the local depletion of oxygen caused by respiration. Individual cells do
not usually stay within the air-liquid interface. However, some mutants are
able to produce an extra-cellular mesh of cellulose that allows formation of a
microbial mat at the air-liquid interface (Rainey and Travisano, 1998; Spiers
et al., 2002; Ardré et al., 2019). These mutants, known as wrinkly spreader
(WS) types on account of their colony morphology on agar plates, have a
longer doubling time compared to cells of the ancestral type. This reduced
growth rate arises as a consequence of the costs associated with cellulose
over-production. Nonetheless, despite costs to individual WS cells, the group
reaps a benefit that individual cells cannot, namely, access to oxygen because
of ability to colonise the air-liquid interface (Figure 4.1a).

The success of WS mutants is attributable to the cooperative interactions
among cells. Theory predicts that cooperating groups are prone to invasion
by cheating types (Hardin, 1968). Such a scenario unfolds in WS groups
propagated for extended periods of time (Rainey and Rainey, 2003). Mu-
tants that lose ability to over-produce cellulose arise within the mat. These
mutants avoid the cost of producing cellulose, yet retain the advantages
that come from access to oxygen via existence at the air-liquid interface.
These mutants, known as smooth (SM) types, grow unchecked among the
WS mats (Figure 4.1b), and as they contribute nothing toward mat strength,
their presence weakens the mat leading to its premature collapse (Figure
4.1c). In a widespread anthropomorphic analogy SM mutants are colloqui-
ally called “cheating” or “defecting” cells, while WS are called “cooperating”
cells (Rainey and Rainey, 2003).

Under certain ecological circumstances the eco-evolutionary dynamics aris-
ing from the frequency dependent interactions among WS and SM types can
generate a life cycle that allows a Darwinian process to unfold at the level of
mats. An example of these circumstances, colloquially named “pond-scum”
scenario, is shown in Figure 4.2. Consider a pond where reeds or other phys-
ical support provide an anchoring for bacterial mats (Figure 4.2.1). In this
context, the collapsing of a mat corresponds to the opening of a niche in the
form of the now free support (Figure 4.2, 1 and 2). Extant collectives may
shed cells in the environment that could colonise those empty niches. SM
mutant cells are more likely to be washed out from their collective and thus
more likely to disperse to new niches, provided that the WS mutation arise
once again in their descent (Figure 4.2, 2 and 3). If the niches are sufficiently
numerous to support the population (see Chapter 5), and distant enough to
be initially colonised by one or a few cells, it is possible to identify parent-
offspring relationship between collectives. Overall, this defines a genealogy of
collectives (Figure 4.2, left) with its own birth events (the colonisation of a
new support) and death events (the collapse of a mat). Ecological conditions
that result in collective-level Darwinian properties being exogenously imposed
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Figure 4.2: The pond-scum scenario. Bacterial cells colonises physical supports (reeds) at the air-liquid interface
of a pond by producing a mat structure. The collapse of such structures can be identified as a collective-death
event while the colonisation of a new support can be identified as a collective-birth. This establishes collective-level
genealogies. Cells can be more adapted to participate in the formation of the mat (soma-like) or in the colonisation
of new niches (germ-like)

on collectives such as the WS mats, has been termed “ecological scaffolding”
(Black et al., 2019).

Thus, SM cells, while imposing on the mat an undeniable strain, also
improve the mat’s reproductive output. This reframing of the phenomenon
from an individual tragedy of the commons to a collective trade-off between
survival and reproduction (Rainey and Kerr, 2010) shifts a major impediment
to the evolution of multicellularity (the presence of cheats) to a solution of an
even greater problem (the reproduction of collectives). It allows to explore
the idea that SM and WS cells form different lineages of a proto-multicellular
organism. WS cells are adapted to the collective function of survival and
constitute a soma-like lineage, while SM cells are adapted to the collective
function of reproduction, constituting a germ-like lineage. The transition
from soma-like to germ-like cells becomes a requirement for the closing the
proto-life cycle of the mat (Figure 4.3). Note that this life cycle requires two
mutation events to be completed (to switch from germ-like phenotype to the
soma-like phenotype, and back) contrary to cell differentiation in metazoan
that relies mainly on epigenetics mechanisms.

4.2 Establishing collective level genealogies

The reality of ecological scaffolding of bacterial mats in nature has yet to
be demonstrated. However, this system can be studied in ideal conditions
in the laboratory. By substituting reeds with microcosms (i.e., tubes) and
by controlling the establishment of new colonies. The artificial boundaries of
this meta population structure discretise the collectives and impose a certain
collective-level individuality. The following presents the general experimental
setup used by Remigi and Rexin, and showcases a new contribution to the
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analysis of this system: the visual display of replacement events as a collective-
level genealogy.

Experimental set-up

Figure 4.4: Experimental collective-selection regime. Each lineage of the population goes repetitively through
two successive selection steps. After a period of 6 days they are tested for the presence of a mat sitting at the
air-liquid interface and germ-like cells. Germ-like cells are collected and inoculate collectives in the next phase.
After a period of 3 days they are tested for the presence of soma-like cells. Extinct collectives are removed from the
population and replaced by new collective seeded with cells from surviving collectives (see main text for details).

Collectives undergo successive cycles comprised of two phases of selec-
tion (Figure 4.4). The first phase is initiated by a single soma-like cell and
ends with the selection for soma-like mats that are both viable (i.e., non col-
lapsed) and fecund (i.e., production of germ-like cells). The second phase
is initiated by placing germ-like cells collected from the previous phase in a
fresh microcosm and ends with the selection for the reversion to the soma
(i.e., production of soma-like cells). On completion of a cycle, a single colony
of the most dominant soma-like cell is transferred to a fresh microcosm. This
constitutes the beginning of the first phase of the next cycle and ensures that
the population goes through a single cell bottleneck.

Ten cycles are performed on 48 parallel cultures. As in the pond-scum
thought experiment, collectives lineages that fail to complete the life cycle and
go extinct provide an opportunity for viable collective lineages to reproduce
by freeing niches. Upon the demise of a particular collective lineage, a viable
lineage is chosen at random and allowed to replace the extinct type (Figure
4.5).

This experiment was repeated for two microcosm diameters, small (S) and
large (L), and for two genotypes. One of the genotypes was recovered from the
end of the Hammerschmidt et al. (2014) experiment (Line 17) and contained
a mutation in the DNA mismatch repair system (mutS) that underpinned a
genetic switch that allowed rapid transition between soma and germ phases,
the second strain is isogenic to the first, with the mutS mutation reverted to
wild type (WT). This gives four combinations (WT-S, WT-L, 17-S,17-L). The
exact biological motivations and conclusion of those different treatments are
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Figure 4.3: A proto life-cycle.
Cell over-producing cellulose (also
known as Wrinkly spreader colony
phenotype, WS or cooperators in
the literature) may be considered
as the proto-soma of a life cy-
cle which also involve non over-
producing strain (Smooth colony
phenotype, SM, or cheaters in the
literature) as a proto germ-line.
Several mutational pathways exists
for the transition from one pheno-
type to the other.

not the focus of this chapter and will only be briefly discussed. The results
will mainly serve as illustration of general statements on the visualisation and
interpretation of the genealogies. This is an ongoing project and the complete
results will be the subject of a future publication.

Visualisation of collective-level genealogies
Each new cycle of the experiment produced a set of complex data: for each
collective, the record of germ and soma-like cell census, of the presence of
a mat, and additionally the record of the collective birth and death events.
Finding a graphical representation that allow to synthesise these data while
not discounting their complexity was required.

Collective-level genealogies are defined as a directed acyclic graph where
vertices represent cultures and edges represent the flow of cells from one
generation to the other. They constitute the natural representation of this
data set that stem from the idea that collectives could be seen as Darwinian
individuals (Figure 4.2). A second advantage of the tree representation is that
edges and vertices can be coloured to denote both qualitative and quantitative
information about the culture. A special purpose interactive visualisation
interface was developed to allow the quick visualisation and cross-referencing
of these rich data sets. Compact static representations are more suited to
the publication of the results and will be presented in the context of this
manuscript.

Figure 4.6 shows the genealogies obtained by analysing the data produced
by Remigi and Rexin for the four different experimental conditions. Ver-
tices are coloured according to the fate of the culture at the end of the
phase (survived, or extinct), and presented in parallel with the proportion
of extinction events represented as staked bar plots. The tree structure is
more information-rich than proportions because it allows fast inspection of
the correlation between the genealogy and the causes of extinction. Indeed,
a first observation is that individuals of the same clutch (sharing the same
parent) seem to share similar fates. Of course, patterns derived from visual
inspection need to be confirmed by statistical analysis, but the benefit of
quick exploration of the data set is that this costly procedure will only be
applied to promising traits. Additionally, highlighting of the coalescent tree
of the population, that is the descent of all extant collectives at the end of
the experiment, paints a vivid picture of the eco-evolutionary dynamics of
the population. For instance the genealogy of wild type cells in large micro-
cosms (WT-L) is completely coalesced by the end of the experiment, meaning
that all collectives are comprised of cells that descend from a single ancestral
collective within cycle 3. In contrast, when using the previously selected lin-
eage (17-S), half of the initial lineages still have a descent at the end of the
experiment. The difference in average mortality can be assessed from the pro-
portion of extinct collectives, but the knowledge of the full genealogy allows
recognition of the heterogeneity between lineages. It is also a first indication
of potential beneficial mutations: it is possible that a lineage that ended up
being fixed in the population might bear genetic differences that enhance its
chance of survival.

Overall, clear visualisation of complex experimental results is a critical
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Figure 4.5: Experimental birth
and death events. Collectives
lineages that fail to either produce
a viable and fecund mat (phase
1) or to revert to soma-like cells
(phase 2) free niches (collective
death). This provides opportuni-
ties for viable collective lineages
to export their success and re-
place the extinct lineage in the
next phase (collective birth). The
total number of niches is constant

first step toward their interpretation. Collective genealogies are rich repre-
sentations that illustrate patterns and act as initial guide for further statistical
analyses, or even additional experiments. The next section presents such an
example of further analysis, and a model for the inference of survival proba-
bility across the whole genealogy.

4.3 Survival probability estimation

Pairing each collective with an adaptive value, or fitness measure, is a com-
plex task but central to any evolutionary interpretation of the system. Dif-
ferent methods exists derived from evolutionary models or from additional
experiments. Model-fitting based methods may extract biologically relevant
parameters from the existing data. In contrast, additional fitness assay may
be performed by repeating the culture from frozen stock sampled from each
collective. The Bayesian-Network model presented in this section aims to be
a flexible method with minimal biological assumptions that allow assignment
to each collective a most probable survival probability. This model is designed
to use the knowledge of the full collective-level genealogy while being able to
incorporate new fitness assay data that may be produced later.

The proposed method relies on a minimal probabilistic model of the obser-
vation of collective survival, and the transmission of the survival probability
from one collective to its collective offspring. The output of the model is both
a list of survival rate for each node of the genealogy, and the fit of a single
mutation rate parameter issued from the most probable configuration of the
model.

As a pre-processing step, the genealogy is split into two data sets. The
two alternating phases involve very different processes and are likely to yield
different survival probabilities. As a consequence, two sub-tree were extracted
of each genealogy, one for the phase one and one for the phase two (Figure
4.7) and analysed separately.

Mathematical model
The goal of the model was to assign to each node a most probable adap-
tive value. In technical terms, the “most probable adaptive value” refers to
a maximum likelihood estimation (MLE) that is a way to assign, under a
defined graphical probabilistic model, a value to a parameter that maximise
the probability of the observed result. The adaptive value is here a hidden
variable: one does not simply observe the adaptive value of a collective, but
performs experiments that provide information on its true value.

This endeavour requires encoding of both the observations and the hidden
characteristics of the collectives in a model, that takes the form of a joint
probability distribution. Second, a method to find the most likely assignation
of an adaptive value to each culture within the genealogy, for a given mutation
rate, will be presented. Conversely, parameter inference allows assignment of
the most likely value of a mutation rate for a given configuration. Finally, the
iterative method of Expectation-Maximisation will be used to concurrently
fit to the data both the adaptive value and the mutation rate.
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Figure 4.6: Experimental collective-level genealogies. The collective-level selection experiment yields a rich
data set of 48 parallel microcosms (the collectives) with associated extinction (colours) and replacement events
(edges). A collective-level genealogy in the shape of a directed acyclic graph (left) offer a synthetic but more
granular visualisation than looking at the proportion of events at each phase (right). See main text for details.
(Data collected by Remigi and Rexin).
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Figure 4.7: Subtree extraction
procedure. Phase 1 (selection for
a somatic mat and germ-like cells)
and phase 2 (selection for the re-
version to soma-like cells) are qual-
itatively different and are treated
separately. In order to acheive this,
each collective genealogy is split
into a phase 1 and a phase 2 tree
that are analysed on their own, and
re-assembled for visualisation.

Figure 4.8: Bayesian Model of
Heredity. In blue P(Xi|Xpi), in
green P(Xi|Xpi)P(Ei = 0|Xi), in
red P(Xi|Xpi)P(Ei = 1|Xi).

Model structure

Each collective genealogy T = (V, E) is a forest containing N numbered ver-
tices: V = 1...N which are the collectives, and an edge linking each collective
i to its parent pi : E = (i, pi)i=1...N .

The model assigns to each collective an observed and a hidden variable.
For a collective i, let Ei be the random variable encoding whether this col-
lective went extinct (Ei = 1) or not (Ei = 0). In the field of probabilistic
graphical models the observed values are called “evidence”

The first assumption of the model is that there exists a hidden random
variable for each collective i, calledXi, representing its survival probability. In
probabilistic terms, this means that the conditional probability of extinction
of a collective i knowing the value of the survival probability xi is exactly the
value of xi:

P(Ei = ei|Xi = xi) =
{
xi if ei = 0
1− xi if ei = 1

(4.1)

The second assumption of the model is that the survival probability of a
collective is transmitted from one collective generation to the next, with an
unbiased small variation. In probabilistic terms it means that if the parent
collective has survival probability xpi , then the survival probability of its
offspring collective follows a truncated Gaussian distribution (between 0 and
1) with mean xpi and standard deviation σ. The value of σ is the only
parameter of the model:

P(Xi ∈ A|Xpi = xpi) = C

∫
A

exp
(
− (x− xpi)2

2σ2

)
dx (4.2)

With A ⊂ [0, 1], and C a scaling factor ensuring that
∫ 1

0 P(Xi = x|Xpi =
xpi)dx = 1.

During the experiment, the values of Ei = ei (extinct or not) are observed
whereas the values of Xi are “hidden”.

Simple Bayesian inference

Consider a collective i with associated survival probability Xi and experimen-
tal outcome Ei. The prior probability distribution of Xi is given by Equation
4.2. Consider for an instant that xpi , the adaptive value of its parent is a
fixed parameter. Bayes’ Theorem gives the expression of the probability of
Xi, conditional on the observed value of Ei:

P(Xi|Ei) = P(Ei|Xi)P(Xi)
P(Ei)

(4.3)

Where P(Xi) is the prior probability of Xi, P(Ei|Xi) is the observation
model from Equation 4.1 and P(Ei) is the probability of the evidence. The
maximum likelihood estimate (or more precisely the maximum a posteriori
estimate, MAP) of the value of Xi is given by taking the value of x that
maximises P(Xi = x|Ei), note that the value of the MAP does not depend on
P(Ei), which is a simple scaling constant. Figure 4.8 shows the consequence
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Figure 4.9: Bayesian Network.
Bayesian network corresponding to
a genealogy of three collectives.
Collective 1 has two offsprings:
collectives 2 and 3. Vertices are
random variables, edges are con-
ditional dependence. The hid-
den variables X encode the sur-
vival probability of the collectives,
while the observed variables E en-
code the outcome of the experi-
ment (survived or not).

of observing the outcome of the experiment (survival or extinction) on the
posterior: the whole distribution (and consequently the MAP) is shifted to-
ward higher values if the collective survived, or lower values if the collective
went extinct.

The problem lies, as often in Bayesian statistics, in the prior probability
of Xi (Efron, 2013). Indeed, in the context of the experiment, this probability
depends on the state of all the ancestors of the collective i. Applying Bayes
theorem to all those interdependent observations quickly becomes a com-
plex undertaking without a proper method. Evidence propagation, presented
hereafter, is this optimal method.

The rest of this section details the technical steps required to find the
most probable values of Xi throughout the genealogy.

Finding the most likely configuration of the genealogy

The configuration of the full genealogy is the knowledge of the state of all ver-
tices. Hence, it is encoded as a joint distribution that maps each configuration
to a probability:

(x, e) 7→ P(X = x,E = e) (4.4)

Where bold letters are used to represent vectors of dimension N , x =
(xi)i∈V , X = (Xi)i∈V , E = (Ei)i∈V , e = (ei)i∈V .

The likelihood of a given set of adaptive values x is defined as the proba-
bility of observing this value, conditional on the state of all collectives:

L(x) = P(X = x|E = e) (4.5)

The maximum a posteriori configuration of the network is given by find-
ing the value of x that maximises L(x). The naïve, brute force method to
find this value is to compute the L for all Card(ω)N possible configurations
(where Card(ω) is the number of possible value of X. If the adaptive value is
discretised in a hundred of values, this gives 10048 computations (in the order
of the number of atom of earth ≈ 1050, and way too much even for modern
computers).

However, the probability distribution can be efficiently factorised thanks
to the definition of conditional probabilities whose structure is represented in
the graph: each pair of nodes not linked by an edge is conditionally indepen-
dent of one another. As an example consider the small network in Figure 4.9.
The factorisation will go like this:
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x∗ = arg max
X

P(X1, X2, X3|E1, E2, E3)

= arg max
X

P(X1, X2, X3, E1, E2, E3)
P(E1, E2, E3)

(Definition of conditional probability)

= arg max
X

P(X1, X2, X3, E1, E2, E3) (Denominator constant with respect tox)

= arg max
X

P(X1)P(E1|X1)P(X2|X1)P(E2|X2)P(X3|X1)P(E3|X3) (Conditional independence)

= arg max
X1

P(X1)P(E1|X1)︸ ︷︷ ︸
φ1(X1)

arg max
X2

(P(X2|X1)P(E2|X2))︸ ︷︷ ︸
φ2(X1)

arg max
X3

(P(X3|X1)P(E3|X3))︸ ︷︷ ︸
φ3(X1)


= arg max

X1
φ1(X1)φ2(X1)φ3(X1) (Variable elimination of X1, X2)

Additionally, the “maximum” operation is distributive, which allows for an
efficient computation of local maxima (φ2, φ3, called messages) that depend
on a single variable. This constitutes the essence of the Max-Product Belief
propagation algorithm (Koller and Friedman (2009), Chapter 13).

Expectation-Maximisation procedure

Now, how can one find the value of the parameters of the model ? The
Expectation-Maximisation (EM) algorithm (Dempster et al., 1977), which
might be one of the most influential advances in modern computational statis-
tics and is widely used in Gaussian Mixtures, and Hidden Markov Models,
provides an iterative solution.

First, note that for any given configuration of the network (values of X and
E), finding the maximum likelihood estimate of the parameter (mutation rate
σ) is a simple matter of computing the value of the parameter that maximises
the likelihood P(X,E)).

Now, starting from an arbitrary value of parameters (say, σ = 1
2 ), one

may compute the Maximum A Posteriori configuration of the network, that
assigns a value to each hidden variable. This constitutes the Expectation (E)
step. Then, a new value of the parameter is computed using the Maximum
of Likelihood estimate. This constitutes the maximisation step (M). The
procedure can be iterated until convergence. This algorithm is guaranteed to
reach a local maximum in likelihood, but may not reach the global maximum.
However, its conceptual simplicity means that it is often the best heuristic
available for practical applications.

Results
The four genealogies were separated into eight phase-trees (p1, p2) and in-
dependently analysed using the expectation maximisation method presented
above. Figure 4.10 shows that the E-M method results in a increase in likeli-
hood. However, the optimisation method resulted in minimising the parame-
ter σ within the limit of the discretisation grid used (200 values linearly dis-
tributed between 0 and 1). As a consequence, the global likelihood maximum
may not have been reached, and it is impossible to interpret the differences
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Figure 4.10: Convergence of the
expectation maximisation algo-
rithm. Top: Value of the param-
eter through EM cycles, the black
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M algorithm is currently limited by
the discretisation grid of the pa-
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in σ from one tree to another. Further analyses are required to refine these
results.

Figure 4.11 presents the trajectory of the four experiments within the
survival value space. Note that the four experiments end up improving the
survival probability in both life-cycle phases. Strain that already underwent
several cycles of selection in the original experiment (17-S and 17-L), present
a lower relative improvement than wild type strains (WT-S, WT-L). Ex-
periment WT-S show large improvement in the phase 2, coupled to initial
decrease in the survival probability in phase 1, this might be the signature
of an underlying trade-off in the biological functions required to survive both
phases. Experiment WT-L presents the most spectacular relative improve-
ment in both phases.
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Figure 4.11: Average Inferred Survival rates through time. Numbers rep-
resent the cycle. Values have been normalised to start in (1,1) and facilitate
comparison.

Figure 4.12 presents the histogram of survival probability change for the
four experiments and the two phases. Note that, at the resolution given by
the current discretisation grid, the typical offspring has the same survival
probability than its parent (the mode corresponds to no changes). Phase one
(selection for a viable mat, and the presence of germ-like cells) seems to be
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more prone to improvement than Phase two (selection for the reversion to
soma-like cells), except in the experiment 17-L where the survival probability
decreased several times.
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Figure 4.12: Distribution of the change in survival probability. The top row concern the phase 1 (selection of
germ-like cells as well as a viable mat), while the bottom row concern the phase two (selection for the reversion to
soma-like cells). The columns represent different treatment. WT: wild type, 17: Lineage 17 from Hammerschmidt
et al. (2014), S: small microcosms, L: large microcosms.

The relative survival improvement can only be really appreciated when
put into the proper context of the collective genealogy. Figure 4.13 shows
an example for the WT-L experiment. Note how the survival probability
improvements are localised in the beginning of the genealogy. The best im-
provements are localised at or before the coalescence of the whole population.
Every collective associated with a decrease in survival probability has no de-
scendent in the last cycle. This shows that “unfit” phenotypes are readily
purged by the collective-level selection procedure.

4.4 Propagating sequencing information to the full
genealogy

Collective genealogies make manifest eco-evolutionary dynamics of collec-
tives. Survival probabilities assigned by the model from the previous sec-
tion are a quantitative measurement of adaptation. However, if they reveal
evolution they do not contribute to explanation for the underlying molecu-
lar mechanisms of adaptation. The genetic mechanisms associated with the
over-production of cellulose and eventually bacterial mats has been traced to
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Figure 4.13: Position of survival probability improvement in the genealogy, color code from Figure 4.12

key mutations, for instance in the wss operon regulating cellulose synthesis
(Bantinaki et al., 2007; McDonald et al., 2009; Lind et al., 2017). Addition-
ally, the lineage improvement in the collective-level selection experiment has
been associated with mutations in the DNA mismatch repair system, increas-
ing mutation rate and thus the ability to complete the proto-life cycle, such
as the one affecting the mutS locus (Hammerschmidt et al., 2014).

A similar effort has been produced by Remigi and Rexin who sequenced
the communities of all endpoints of collective lineages, aligned the genomes
and identified mutations. For instance, 3686 mutations from the ancestral
wild type (WT) have been identified accross all collectives at the end of the
10th cycle of the large-microcosm experiment. The presence of sequenced
genetic mutations is an additional information that may be represented on
the genealogy. Material constraints mean that it is neither cost effective
nor practical to sequence all the microcosms at each cycle. However, when a
mutation is found in several cultures, it might be possible to infer the position
of its first appearance in the collective genealogies. The method should ideally
be a way to point out where in the genealogy additional sequencing should be
focused, and allow seamless incorporation of new data as it becomes available.

The belief propagation algorithm presented in the previous section aptly
fits these requirements. The first step is to change meaning of the hidden
variable Xi from the adaptive value of collective i to the presence (Xi = 1) or
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abscence (Xi = 0) of the mutation within the collective. Then, the observed
variable Ei which encodes “the collective i went extinct” is replaced by a
new conditionally Bernoulli variable Oi encoding the event “the mutation of
interest was found in sequences obtained from collective i” for the collective
that were indeed sequenced. Then, the observation model must be specified:

P(0i = i|Xi = j) =
[

p 1− p
1− q q

]
i,j

(4.6)

Where p and q represent, respectively, the probability of true negative
and true positive reporting. In the following p = q = 1. Finally, the heredity
model is specified as:

P(Xi = i|Xpi = j) =
[
1− µ µ
µr 1− µr

]
i,j

(4.7)

Where µ is probability that the mutation appears within one cycle and µr
the probability of losing the mutation. Ideally, µ and µr could be estimated
from a mechanistic model of mutation (see chapter 3), or fitted using the
expectation-maximisation procedure presented in the previous section. In
the following, arbitrary values of µ = 0.001 and µr = 0.00001 have been
selected.

Figure 4.14 presents the result of the belief propagation for two mutations
of interest within the large microcosm, wild type treatment (WT-L). The two
mutations have been selected for illustrative purpose, and a more systematic
study of the full set of mutation is ongoing.

First, mutation 25 (in green, and red) corresponds to a mutation on the
mutL locus, which encodes a protein necessary for the DNA mismatch repair
system. This mutation is found in all the sequenced cultures at the end of
the experiment. Naturally, the model predicts that it emerged at or before
the most recent common ancestor of the whole population, at cycle 2. New
sequencing effort should be concentrated around this position in the genealogy
to refine this prediction.

Second, mutation 85 (in red) corresponds to a mutation on the wssE
locus, part of the wss operon that regulates cellulose synthesis. Mutation 85
is shared by 22 sequenced collectives and its predicted first appearance within
the genealogy is at cycle 5, in a collective that is concurrently predicted to
have witnessed a significant improvement in survival probability (Figure 4.13).

These promising preliminary results exemplify the interest of combining
sequencing and statistical modelling approaches in order to efficiently exploit
the wealth of data produced by the experimental setup.

4.5 Discussion

This chapter has formalised the concept of collective genealogy and introduced
tools, both graphical and statistical, for their study. This work, motivated
and illustrated by the rich data set produced by Remigi and Rexin’s ongoing
experiment addresses three main points: how to efficiently visualise collective
genealogies, how to estimate a collective-level adaptive value in the context
of these experiments, and finally how to propagate mutational information
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Figure 4.14: Inferring the existence of mutation in the collective genealogy, Opaque vertices are the sequenced
collectives, transparent vertices are inferred by the model. Collectives in green are predicted to bear the point
mutation MUT0025 that corresponds to a point mutation from a T to a G at within gene mutL. Collectives in red
are predicted to additionally bear the point mutation MUT0085 that corresponds to a point mutation from a C to
a T within gene wssE.

.

to the whole genealogy. Collective genealogies are naturally represented as
trees or forests, where the relevant information can be highlighted by vary-
ing the colour and opacity of vertices. A compact layout is preferred for
printed publication (as here) but interactive exploration (developed, but not
presented here) offers real advantages to the practitioner. Graphical proba-
bilistic models (such as Bayesian networks) for statistical inference have been
used in haplotyping of pedegree (Fishelson et al., 2005), gene network in-
ference (Needham et al., 2007) and genetic diseases risk assessment (Nuel
et al., 2017). This flexible method presents several advantages. Firstly, it is
designed to work with partial data: inference can be performed even when
sequence data is missing from collectives at certain time points. Secondly, it
allows the seamless integration of new data points: additional sequencing or
fitness assays may be added to refine the inference. Thus, it provides a means
for feedback between data collection and inference of the next promising ex-
periment according to current knowledge. Finally, the statistical model of
observation and transmission of characters is relatively simple to define and
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can be adjusted for different purposes, as presented for the tracking of muta-
tions or the estimation of survival probability. While the models used above
were minimal in their assumptions, it is possible to consider more complex
mechanistic models when the question requires it.

Preliminary analysis of the experimental results generally confirms the
conclusions of Hammerschmidt et al. (2014) with a new level of granular-
ity. First, adaptation results from imposition of the collective-level selection
regime alternating between selection of mats that are viable (i.e., non col-
lapsed) and fecund (i.e., producing germ-like cells) and selection for the re-
version to soma-like from germ-like cells. Second, these improvements can
be quantified in term of survival probability by our statistical model. Third,
the improvement correlates with, and might originate from, mutations in key
genes in the regulation of cellulose production and DNA mismatch repair
mechanisms.

Characterising, let alone quantifying, collective-level adaptation is a com-
plex problem. If few authors disagree that a group could in theory constitute
units of evolution on their own right, the impact of this process in evolution
in general is still debated. To paraphrase Williams (2018), the question is to
distinguish a collective of adapted bacteria from an adapted collective of bac-
teria. Several theoretical frameworks exist to address this question (Reviewed
in Rose and Rainey, unpublished), but let us limit the discussion to (Nested)
Darwinian Populations (Godfrey-Smith (2009), reviewed in Chapter 2).

In this framework, “a transition in individuality involves the appearance
of a new kind of Darwinian population” (Godfrey-Smith, 2009), meaning
that the collectives themselves must display some minimal level of Darwinian
properties. The level of Darwinian properties can in theory be measured on a
scale that qualitatively goes from marginal to paradigmatic and be defined in
several dimensions. There is no general way to quantify those properties yet,
but this objective already inspired the work that was presented in this chapter.
Two dimensions of the Darwinian Properties Space are of particular interest
when considering a transition in multicellularity: the fidelity of heredity (H)
and the dependence of reproductive differences on intrinsic characters (S).
Without one or the other, an entity may not qualify as Darwinian, and there
is no reason to expect the evolution of adapted trait values by the mean of
natural selection.

A marginal level of heredity (H) proceeds from the population structure
under consideration. Indeed, the protocol prevents any transfer of matter
between collectives. This sidesteps the mixing that may disqualify numerous
biological systems such as genotypes under meiosis (Williams, 2018) or groups
in traits-groups models (Wilson, 1975a). A more complete discussion on how
ecological scaffolding might affect marginal level of heredity and potentially
increase it toward the paradigmatic end of the spectrum is the subject of
Chapter 6.

A marginal level of S is also ensured by the protocol since collective birth
and death events are effected by the experimenter based on phenotype as-
sessment (presence of germ or soma-like cells, presence of a mat). From
this premise, ecological scaffolding theory predicts that the collective level
selection will favour lineages with improved S, meaning that the marginal
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Darwinian properties granted by the population structure may be refined
by natural section itself. Testing this prediction requires a way to assess S.
As mentioned before, there is no general method to do so yet, but by def-
inition, a measurement of S must link intrinsic characteristics of collectives
(i.e., traits) to reproductive differences. The choice of collective traits to as-
sess is a first thorny issue, due to the classical counterargument that they are
mere byproducts of lower level processes (Williams, 2018). However, it has
been established that the fact that collective traits are causally dependant
from individual traits is not an obstacle to the existence of a collective-level
selection process (Okasha, 2012). In a recent development, Rose and Rainey
(Unpublished) propose to turn the problem on its head and only assign a
trait to a level of organisation once it has been proved to be selected at this
given level. The switching rate from germ-like to soma-like cells is a natural
candidate in the experiment under consideration. Once a trait is chosen, it
is necessary to measure its impact on reproductive differences. The propor-
tion of extinct lineages is a good first approximation (Hammerschmidt et al.,
2014). However, fitting a survival probability to each collective, as presented
in this chapter, offers a more granular alternative. Moreover, survival prob-
ability is an unmediated characteristic of demographic events that are the
mechanistic basis of evolutionary trajectory (Doebeli et al., 2017). Overall,
the tools presented in this chapter will help further inquiries by allowing to
easily map traits to collective-level genealogies, while assessing reproductive
success in the population in a single, unified framework.

For all those reasons the establishment and study of experimental collec-
tive genealogies may well be the most exciting short term prospect in the
study of major evolutionary transitions by ecological scaffolding. Microbiol-
ogy experiments are however limited in time: even if they can last decades,
they cannot explore the same time scales as biological life on earth. Conse-
quently, the next chapter presents a model of the long term evolution of the
pond-scum thought experiment with a focus on the trade-off between survival
and reproduction at the collective level.



Chapter 5

From Particles Traits to
Collective-level Demography

“Dans un être vivant, tout est agencé en vue de la
reproduction. Une bactérie, une amibe, une fougère, de quel
destin peuvent-elles rêver sinon de former deux bactéries, deux
amibes, plusieurs fougères ?”

— François Jacob, La Logique du Vivant: Une histoire de
l’hérédité (1970)

A transition in individuality is the evolutionary process by which a
collection of entities (molecules, cells, individuals) get to form a Dar-

winian individual on its own right (cell, multicellular organism, eusocial com-
munity) (Maynard Smith and Szathmary, 1995; Okasha, 2006). An ecolog-
ical starting point for such transitions is ecological scaffolding (Black et al.,
2019). This scenario postulates a metapopulation structure, with patchily
distributed resources, limited migration between patches and a selective pro-
cess at the level of the patches. In this context, evolution by natural selec-
tion is predicted to favour the refinement of collective-level mechanisms of
reproduction and survival, leading to potentially ever-increasing integrated
organisation levels.

As discussed in Chapter 4, artificial selection imposed at the level of collec-
tives can result in adaptive changes that allow the completion of a collective-
level proto-lifecycle. This lifecycle involves the reliable production of a proto-
somatic "mat" structure and associated proto-germ line (phase 1), as well as
the re-establishment of somatic cells from propagules after dispersal (phase
2). This experiment is an instance of a more general thought experiment (the
pond-scum scenario described in section 4.1) that illustrates the emergence
of multicelluarity by ecological scaffolding. In the former, most of the collec-
tive population dynamics is simplified compared to the thought experiment,
in order to offer a clear demonstration of the effects of selection. The main
differences are that in the actual experiment collective population dynamics
is highly simplified, and no selection is imposed on the ability for a collective
to disperse its propagules. First, since collective-level birth and death events
are acted by the experimenter, the population can be held at a constant size,
without risk of extinction by the concurrent death of all collectives. Second,

85
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Figure 5.1: An isolated collec-
tive. Blue discs represent the par-
ticles, the black outline represents
the boundary. In the experiment
from chapter 4 particles are bac-
teria, boundaries are the test-tube
walls.

since selection for dispersal is limited to the sole germ-like cells in phase 2,
there is no competition between collectives for the quantity of propagules pro-
duced. Another feature of the experimental design is that there is no mixing
between collectives, preventing direct competition between cell lineages in a
single tube.

This chapter is focused on the long-term evolutionary dynamics of nested
populations in a pond-scum-like scenario. It clarifies the link between particle
traits, particle eco-evolutionary dynamics, collective life-history traits and
collective eco-evolutionary dynamics.

We start by building a deterministic model of the discrete-generation pro-
cess used in experimental evolution, with fixed collective population size and
colonization of empty demes (follwing collective death) with propagules from a
well-mixed pool (Hammerschmidt et al., 2014). We show that, in the absence
of constrains derived from particle ecology, evolution comes to a halt with the
invasion of "perfect collectives lineages", that never go extinct and therefore
leave no space for further dispersal events. In reality however, particle-level
ecology constrains collective evolution, so that immortal lineages are not prac-
tically achievable. In the follwing, therefore, we explore different hypotheses
on the ecological underpinning of collective functions and examine the cou-
pling between evolutionary trajectory and emergent trade-offs between sur-
vival and reproduction. In a second time, we relax the constraint that the
collective population size is constant, first introduced for adherence to the
experimental system. We modify the model to explicitly take into account
the population dynamics of collectives within a fixed set of environmental
niches. The resulting model shares its basic structure with classical epidemi-
ology models and provides simple conditions on the niche density for the
population to be viable. Finally, we allow the possibility of invasion of cells
from one collective to another. This changes the evolutionary endpoint of the
population, making it more dependent to the density of niches.

5.1 Evolution of collective survival and reproduction

Consider a set of collectives comprised of particles. For instance, a collective
could be the community of cells living attached to a single physical support in
the pond-scum thought experiment or the content of a test tube in an actual
microbiology experiment. As in the evolutionary experiments from chapter
4, each collective occupies a niche that is completely isolated from the others
and undergoes discrete, synchronised generations (Figure 5.2). The number
of collectives is constant through time, and is noted D. At regular intervals of
duration T , the operator assesses a feature of the collective that determines
the probability it will survive (Figure 5.1). Each collective is indexed by a
number i = 1...D. A collective i is marked for extinction and is trashed with
a probability 1− σi ∈ [0, 1], where σi is the survivial probability of collective
i. The probability of extinction is different from one collective to another
and generally depends on both the selection rule (for instance only viable
and fertile mats survive in the experiment from chapter 4) and the composi-
tion of the collective (some collectives might contain cells that produce more
cellulose, resulting in stronger mats, and a higher survival probability).
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Figure 5.2: A model of non-overlapping collective generations. A fixe-size population ofD collectives undergoes
discrete generations of duration T . Each collective i is characterised by a pair of (σi, ρi) life-history traits. At the
end of each generation, a collective may survive with probability σi, and seed its own niche in the next generation
or die with probability 1 − σi. Collectives that survive contribute to a global germ bank with a quantity ρi of
propagules. Niches emptied by the death of a collective are seeded a single propagule particle drawn uniformly from
the germ bank.

The following “collective generation” starts by establishing a new popula-
tion of D collectives. Each new collective is seeded with exactly one particle.
First, each collective that survived seeds a single new collective. Thus, col-
lectives that survive the selection step keep occupying their niches without
interference, even though (just like in the experiment) the composing particles
population is reset to a single cell at each generation. In the perspective of the
collective genealogy (see Chapter 4), survival corresponds to the continuation
of a collective lineage. The empty niches remaining after collective death are
filled randomly, drawing particles from a global germ bank to which every
surviving collective i contributes according to its propagule output ρi. Thus,
the probability of drawing a founding particle originating from such collec-
tive is proportional to ρi normalised by the size of the gene bank (sum of all
propagule outputs for surviving collectives). Note that ρi may depend on the
state of the collective but is not necessarily proportional to the collective size.

In the experiment presented in Chapter 4, there is no competition between
collectives in propagule quantity: as long as a collective is able to produce
even a few germ-like cells during phase 1, it will have the same chance as
any other collective to be selected to fill empty niches in the next generation.
In the formalism of the model, it means that the reproductive output of all
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Figure 5.3: Selective Sweep in
a Population.

surviving collectives i is identical: ρi = 1. Moreover, the model discussed here
does not distinguish between phase 1 and phase 2: each generation consists
in a single round of selection.

In the rest of the chapter ρ is referred to indifferently as reproductive
output, or as propagule production. Propagule production ρ and survival
probability σ are referred to as the life history parameters of the collectives.
Their values are assumed to be deterministic functions of the collective state
(particle composition, particle traits...). In the rest of this section, I consider
the case when life-history traits are generic functions of a collective trait.
In the following section, they will be constrained by trade-offs (section 5.2).
Finally, section 5.3 considers cases when collective life-history traits derive
from specifying the underpinning particle-level ecological model.

Invasion of a mutant collective

Experiments (described in Chapter 4) showed that a lineage that is more
adapted is able to invade and get fixed in the collective population (Figure
5.3). In this simple case one can consider that collective populations are most
of the time monomorphic. It is then possible to establish the conditions for
successful invasion when the relationship between collective life-history traits
(σ, ρ) and particle traits or collective composition are unspecified.

Suppose that the survival probability σ and reproductive output ρ are
deterministic functions of an underlying heritable collective trait θ ∈ Rp. For
instance the collective trait can represent the number of cells in the collective,
or be a more complex function of collective composition such as the proportion
of germ-like cells, or the overall production of structural molecules. In general,
these features are expected to vary along a collective lineage unless they
are highly regulated. As a first step, however, let us suppose that hey are
transmitted from parent to offspring collective. Consider a large population
of D−1 identical collectives, with ”resident” trait value θ. A single ”mutant”
collective has instead a trait value of θ′. The per capita growth rate of the
mutant within this monomorphic population is called its Invasion fitness.
Adaptive dynamics theory is a general framework for modelling adaptation by
natural selection. It supposes that a mutant lineage will replace the resident
if its invasion fitness, the per capita growth rate when mutants replace a
vanishing fraction of the resident population, is positive (Geritz et al., 2002).
By assuming that the population is large enough, it is possible to give an
expression for the invasion fitness as a function of θ and θ′ (Proposition 13).

Proposition 13 (Invasion fitness):
The invasion fitness of rare collectives bearing trait θ′ in a large D >> 1
monomorphic population of collectives bearing trait θ is:

f(θ, θ′) = ln
(
σ(θ′)

[
1 + ρ(θ′) 1− σ(θ)

σ(θ)ρ(θ)

])
(5.1)

(Proof page 111.)
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Figure 5.4: Continuous approxi-
mation of successive invasions.
The canonical equation of adap-
tive dynamics models long-term
evolution as a continuous average
trait value change due to succes-
sive invasion by small phenotypic
mutations.

Proposition 13 shows that if the resident population is composed of im-
mortal collective lineages (σ(θ) = 1), no mutant collective can ever invade
(the invasion fitness is always negative, as ∀θ, σ(θ) ∈ [0, 1] and ∀θ, ρ(θ) > 0).
Furthermore, proposition 13 shows that a mutant lineage that does not pro-
duce any propagule for the germ bank (ρ(θ′) = 0) will always go to extinction
(the invasion fitness will be negative) unless it is immortal (σ(θ′) = 1). In
this case it will survive indefinitely, without being able to invade another
collective population (null invasion fitness).

Knowledge of the invasion fitness allows to predict the long-term evo-
lutionary dynamics as a process of successive substitutions of residents by
successful mutants. This is addressed in the next section.

Evolution of collective traits

Suppose that mutations are rare enough so each new mutant can either dis-
appear or go to fixation before a new mutation arises (Figure 5.4 a). It results
that the long term evolutionary trajectory of the population is a step-wise
trait substitution sequence (Figure 5.4 b). If we additionally consider that
the effect of mutations on the trait θ is small enough, the resulting trait sub-
stitution sequence can be approximated by a continuous trajectory (Figure
5.4 c). This trajectory is modelled by the canonical equation of adaptive
dynamics (Dieckmann and Law, 1996), which predicts that the trait substi-
tution sequence will follow the steepest ascent of the invasion fitness surface,
that determines the local adaptive landscape of the population. Evolutionary
singular strategies are then trait values where the invasion fitness gradient g
is null. Proposition 14 gives the expression of g corresponding to the invasion
fitness defined in Equation 5.1.

Proposition 14 (Invasion fitness gradient):
The invasion fitness gradient around trait θ is:

g(θ) := ∇f(θ′, θ)|θ′=θ = ∇σ(θ)
σ(θ) + ∇ρ(θ)

ρ(θ) (1− σ(θ)) (5.2)

Where ∇ denotes the gradient with respect to the first variable, eval-
uated in θ′ = θ.

(Proof page 111)

The invasion fitness gradient (Equation 5.2) is the sum of two terms,
the first one being the relative increase in survival probability, the second
being the relative increase in contribution to the germ pool, weighted by the
probability of death. The advantage in increased reproductive output (in ρ)
is thus relatively more important when the survival probability is low (1− σ
close to one), than when it is high. In the limit where collective lineages are
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Figure 5.5: Flow induced by the canonical equation of adaptive dynamics in
the absence of evolutionary trade-off between reproduction and survival.
The canonical equation of adaptive dynamics implies that the temporal derivative
of the average trait value in the population is proportional to the invasion fitness
gradient (Equation 5.2). Here the trait is the vector θ = (ρ, σ). Mutations affect
both dimensions independently. The average trait in the population is expected
to follow the flow lines (in blue) as it is changed by successive invasion of mutants.

immortals (σ = 1), the relative advantage in reproductive output is irrelevant,
and the dynamics is independent of ρ.

In order to examine the predictions of Equation 5.2, assume now that
the collective life-history parameters depend on two independently evolving
traits, and that these traits map directly to survival probability and repro-
ductive output: θ = (θ1, θ2), ρ(θ) = θ1 and σ(θ) = θ2. Figure 5.5 shows
the evolutionary flow resulting from the invasion fitness gradient in this sit-
uation. For any meaningful trait value, the local direction of evolution is
toward ever-increasing values of ρ and σ. When the trajectory reaches σ = 1
(immortal collective lineages), the flow is null, and the population is at an
evolutionary endpoint. There, all collective lineages are immortal and no new
variant can invade. On the line σ = 1, reproductive output is neutral. How-
ever, since the flow is positive for small perturbation around σ = 1, stochastic
effects would favour ever-increasing reproductive output: if, for any reason,
a niche was emptied, collectives with the larger propagule output would have
an advantage in the competition to colonise it.

The canonical equation is applicable when the conditions of adaptive dy-
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Figure 5.6: Stochastic simula-
tion of the model without con-
straints. The model is described
in Figure 5.2. Each time a col-
lective is founded, it either inher-
its the life history parameters of its
parent with probability (1− µ), or
mutates with probability µ, Mu-
tations affect either σ or ρ with
equal probability, by a random nor-
mally distributed effect with zero
mean and variance η. The tra-
jectory of the mean ρ and σ on
D collectives is shown for three
different initial conditions and N
generations. The flow induced by
the canonical equation of Adaptive
Dynamics (Figure 5.5) is overlaid
in grey.

namics (rare infinitesimal mutations, heredity of the collective traits) are
verified at the collective level, and positive invasion fitness implies fixation.
However, the results on the trajectory qualitatively holds even if the condi-
tion that mutations are infinitely small is relaxed. For instance, Figure 5.6
shows the result of a stochastic simulation of the model described in Figure
5.2 where each time a collective is founded, it either inherits the parental life
history parameters σ and ρ or mutates one of them by a normally distributed
effect. Note how the trajectory of the average trait value in the population
is in agreement with the flow induced by the canonical equation of adaptive
dynamics (Figure 5.5).

The evolutionary endpoint of this model, consisting in a population of
immortal collectives lineages, is not the most realistic outcome. In the bac-
terial mat experiment, any new cell puts a strain on the structural stability
of the mat, leading inevitably to a rupture. Mechanical constraints prevents
the existence of a mat which is both immortal and contains numerous cells.
The next section introduces a trade-off between survival and reproduction
to account for this kind of phenomenon. For a start, section 5.2 consider
this trade-off to be established directly at the collective level by supposing
a common dependence of life-history parameters on a collective trait. Then,
in section 5.3 the more general case where the trade-off derives from the
properties of the underlying particles is explored.

5.2 Trade-off between survival and reproduction

Collective-level evolution would grind to a halt if the collective lineages were
immortal. In this case, expansion of a lineage would be impossible, and the
collective genealogy would correspond to the parallel serial transfer classically
used in experimental evolution. There are however good reasons to think that
this is an unrealistic limit case. In an experimental setting, immortal lineages
can be avoided by setting the survival criterion accordingly (for instance by
only selecting a fixed proportion of the population, as seen in Chapter 6).
More generally, trade-offs between survival and reproduction are pervasive
across biology (Stearns, 1989), rending immortal collective lineages unlikely.

Evolutionary equilibria require a trade-off

Evolutionary singular strategies (ESS) are traits values for which the invasion
fitness gradient is null. They are the equilibria of the evolutionary dynamics
modelled by the canonical equation. In general, the existence of an evolu-
tionary singular trait value depends on the functional form of the survival
probability σ. Immortal collectives lineages are the consequence of the non-
existence of an “internal” evolutionary equilibrium for θ, i.e., an equilibrium
within the bound σ ∈ (0, 1). For this reason, clarifying the conditions under
which an internal ESS exists is valuable.

The invasion fitness gradient (Proposition 14, Equation 5.2) is a sum of
two terms representing the relative change in σ ans ρ due to the mutation on
θ. Since both σ and ρ are positive, the sign of the two terms of g depends
only on the sign of the derivatives of σ and ρ with respect to θ respectively.
As a consequence, no evolutionary stable strategy (g(θ) = 0) exists within
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the bound σ ∈ (0, 1) for traits that concurrently increases survival (∂θσ > 0)
and reproductive output (∂θρ = α > 0). This is also true for a trait that
would concurrently decrease σ and ρ.

If the propagule output increases and concurrently the collective survival
probability decreases around a trait value, then an internal ESS is possible.
When the system is at such an internal ESS, collectives reproduce both by
re-colonizing their own niche, and by producing dispersing propagules. How
many propagules are produced and how much niches turn over depends on
the specific functional form of the dependence of life-history parameters on
the collective trait.

A simple way to model the constraints acting concurrently on collective
survival and reproduction is to suppose that both life-hystory parameters
depend on a single internal state of the collective, represented by a one-
dimensional trait θ. Suppose that the propagule output is linearly increasing
with the trait value, while the survival probability is a deterministic function
of the trait value: {

ρ = θ 7→ αθ, α > 0
σ = θ 7→ σ(θ)

(5.3)

For instance, θ could be the density or the number of particles composing
the collective. This would mean that a fixed fraction α of particles become
propagules. Conversely, having survival of the collective depend on its size
is a reasonable assumption. For instance, a larger collective-size is known to
reduce the vulnerability to predation of multicellular aggregates such as the
snowflake yeast (Ratcliff et al., 2012). Alternatively, the survival probability
of the bacterial mat from Chapter 4 is thought to first increase with collective
size (there is a minimum number of cells required to form the cooperative
mat), but saturate or even decrease above a given value (as the numerous
cells impose a higher constrain on the cellulose mesh).

A sufficient condition for the existence of an internal ESS can be derived
from Equation 5.2 and Equation 5.3:

Proposition 15 (ESS for linear reproduction):
Let ρ(θ) = αθ, α > 0 and θ > 0.

Evolutionary singular strategies are values θ∗ of θ where:

∂θσ(θ∗) = −σ(θ∗)(1− σ(θ∗))
θ∗

(5.4)

Corollaries:

• There is no internal ESS for σ(θ) = 1− βθ, β ∈ R∗.

• All positive values of θ are ESS for σ(θ) = 1
1+θ .

• There is a single internal ESS θ∗ for σ(θ) = βe−θ, β > 0 and in
this case θ∗ = 1 +W (−βe−1) with W (zez) = z.

(Proof page 112).
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Proposition 15 precises the condition under which an ESS is possible. As
stated before, change in trait value must locally have an opposite effect on
survival and reproduction to qualify as ESS. Equation 5.4 shows that, if the
survival probability is proportional (with coefficient α) to the trait value, the
required (negative) local slope for the survival probability is independent of
the proportionality coefficient α.

A corollary of the condition 5.4 is that linear functional responses, cannot
result in an internal ESS. Moreover, it shows that the inverse decay functional
response is a pathological case where the model predicts neutral evolution.
Indeed, as all trait values are evolutionary singular, the model cannot predict
a favoured direction (increase or decrease in trait value) of successive mutant
invasion. As a consequence, the average trait value is predicted to have the
dynamics of an unbiased random walk in the trait space.

In the case of the exponential decay (Figure 5.7), there is a single internal
evolutionary singular strategy, which is always stable. Numerically solving
the position of the ESS shows that its corresponding trait value decreases
when the maximum survival rate β decreases (Figure 5.8). When immortal
collective are possible (β = 1) the stable trait value corresponds to immor-
tal collectives, and no investment in propagules (θ = 0, hence ρ(θ) = 0 and
σ(θ) = 1). As soon as the maximum survival rate is lower than one, some
niches become available for replacement by propagules each generation, thus
nonzero propagule investment is favoured. This investment increases as β
decreases, and tends toward ρ(θ∗, β = 0) = α. This means that even when
approaching the limit case where no collective can survive for a single gener-
ation β = 0, investment in reproduction does not grow unbounded.

To summarise, the existence of an evolutionary singular trait value corre-
sponding to non-immortal collective lineages (internal ESS) requires a neg-
ative trade-off between survival probability and reproductive output. This
is not a sufficient condition: if the reproductive output is proportional on
the collective trait, linear trade-offs prevent internal ESS while some non-
linear trade-off, such as an inverse decay, have an infinite number of internal
ESSs. However, exponential decay in survival yields an internal ESS, whose
value depends on the maximal survival probability. The next section explores
other non-linear trade-offs between life-history parameters by restricting the
functional forms to explore the effect of the trade-off curvature.

Non linear trade-off

In order to control the non-linearity and curvature of the trade-off, suppose
that survival probability and propagule output are deterministic functions
of a collective state p(θ) ∈ [0, 1], that itself depends on the collective trait
θ. For example, p could be the proportion of cells of a given type. The
reproductive output ρ as well as the survival probability σ are assumed to
follow a power-law of p (or 1 − p). The use of the power-law family implies
that the trade-off is scale independent with respect to p, which is a widespread
pattern in evolutionary biology (Stevens, 2009). The scale constant d controls
the curvature of the trade-off (Figure 5.9), allowing to explore a range of
relationships between survival and reproduction.
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Proposition 16 (ESS in a simple non-linear trade-off):
Let: {

ρ(θ) = p(θ)d

σ(θ) = (1− p(θ))d
(5.5)

with p a continuous function with values in [0, 1] and d ∈ R the non-
linearity factor of the trade-off between survival and reproduction.

Then, evolutionary singular strategies are values of θ where:

g(θ) = 0⇔


∂θp(θ) = 0
or

1− 2p(θ)− (1− p(θ))d+1 = 0
(5.6)

The second condition is always true for p(θ) = 0 and never verified
for p(θ) 6= 0 if the trade-off is convex (d ≤ 1).

(Proof page 112.)

Proposition 16 shows that there are two conditions for a trait to be at
evolutionary equilibrium (Equation 5.6). First, and maybe trivially, if local
changes in the trait have not consequence for the relevant state of the collec-
tive (∂θp(θ, T ) = 0), the adaptive dynamics model predicts no evolutionary
change, and the trait is neutral. The second condition is always true for
immortal collectives that do not disperse (p(θ) = 0). Additionally, this condi-
tion can be satisfied by non-immortal collectives if the trade-off has a strictly
concave shape (d > 1).

Numerically solving the condition in Equation 5.6 for p(θ) gives the ESS
displayed in Figure 5.10. This illustrates that the only stable evolutionary
traits values for convex trade-off (d < 1) are those that result in immortal
collectives (p(θ∗) = 0). Note that immortal collectives are always an evolu-
tionary singular point. However, if the trade-off is concave (d > 1), this value
becomes evolutionary unstable, and a new stable equilibrium appears (there
is a trans-critical bifurcation in d = 1).

To understand this difference, note that concave trade-offs are charac-
terised by a steep slope (higher than −1) around the point (σ, ρ) = (1, 0),
meaning that small mutations in the reproductive output have a compara-
tively larger effect on the survival probability than for a convex trade-off.
Thus, near the point (σ, ρ) = (1, 0) where collective lineages are immortal,
there are more opportunities for propagules-producing collectives (i.e., ρ 6= 0)
to reproduce if the threshold is concave than if it is convex.

The previous results give some general intuition about the consequences
of trade-offs between survival and reproductive output in this system. The
functional form of the life-history parameters is however decoupled from the
particle-level ecology within collectives. It is instead reasonable to expect
particle dynamics to impose constraints on the trade-off exist. The next
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Figure 5.11: Logistic birth-death
events. Particles reproduce at a
constant birth rate b. Particles
die from density dependant inter-
actions, the rate is thus propor-
tional to their squared density.
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Figure 5.12: Logistic population
dynamics. Solution of the differ-
ential equation 5.7.

section is dedicated to explicitly take into account the ecological dynamics
within collectives.

5.3 Particle dynamics

In general, in a nested model the state of a collective depends on the internal
ecological dynamics of their composing particles. For instance, a bacterial mat
slowly grows from a few cells colonising the air-water interface and extends
from a few aggregation spots to the whole vial (Ardré et al., 2019). Hence,
survival and reproduction of collectives are not constant in time: young col-
lectives may be too small to produce a significant number of propagules while
older collectives might be subject to ageing and have a lower survival probabil-
ity. The underlying ecology is in turn governed by the traits of the particles.
The birth rate of particles, as well as the quantity of various molecules they
produce (such as cellulose in the pond scum experiment) influence their popu-
lation dynamics and in fine the collective-level life history parameters. In the
following, we present two simple models of population dynamics for the par-
ticles, and couple them to the evolutionary model presented in the previous
section.

5.3.1 Logistic Particle Dynamics
Consider finite-volume collectives supplied with a constant flux of resources.
The density of particles at time t is noted n. The per capita birth rate of
the cells is governed by the individual trait b. The death rate of the cells is
proportional to their encounter rate, which is proportional to the square of
particle density (without loss of generality the coefficient of proportionality
is set to one). The birth-death rates are summarised in Figure 5.11. A
collective is seeded by a density n0 of particles. Thus, the particle density
within a collective is governed by the following well-known logistic differential
equation: {

dn
dt = n(b− n)
n(0) = n0,

(5.7)

where n0 is the density corresponding to one particle in the volume of
the niche. Note that the population initially grows if n0 is lower than b. In
the following, n0 is assumed to be always smaller than the initial birth rate
b. The solution n(t) of eq. 5.7 describes the variation in time of the particle
population size within a collective from its seeding to the time of reproduction
T .

Isolated collective

Suppose that the collectives have a large lifespan. The particle population will
approach its ecological equilibrium, defined as the asymptotic value of n. In
this model, the asymptotic density is equal to the birth rate (limt→∞ n(t) = b,
Figure 5.12), meaning that increasing the birth rate also increases the carrying
capacity of the niche, as one would expect if the particles use their resources
more efficiently.
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The collective state is thus parametrized by the sole particle-level param-
eter b, whose evolutionary trajectory can be predicted by mutant invasion
analysis:

Proposition 17 (Logistic dynamics in isolation):
Let b be the per capita birth rate of particles, 1 be their per-capita density-
dependent death rate in a collective of lifespan T � 1.

Then, the invasion fitness of any mutant with an increased value of b
is positive (conversely the invasion fitness of a mutation decreasing b is
negative). There is no evolutionary singular strategy.

(Proof page 113).

The consequence of Proposition 17 is that the long-term evolutionary tra-
jectory of the population is an ever-increasing value of b as illustrated in
Figure 5.13. This phenomenon can be empirically observed in long term evo-
lution experiments (Wiser et al., 2013). This arm race for ever faster growing
particle might have deleterious consequences for collective-level survival: for
instance, cancerous tumours emerge from this particle (cell) level selection
within organisms. The next section will put this model back in the con-
text of collective-level selection and show how the evolutionary equilibrium is
modified when collectives have a finite lifespan, and their size detrmines the
life-history parameters.
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Figure 5.13: Invasion by successive mutants in a collective of indefinite lifespan. Left: Pairwise invasibility
plot on b. Right: Population dynamics.

Effect of collective-level selection

Logistic particle dynamics can now be used to constrain evolution at the col-
lective level. In order to do so, we need to express the life-history parameters
of collectives, survival probability and propagule output, as a function of the
state of the particle population.

Consider, in analogy with the pond-scum thought experiment, that the
reproductive output is increasing with the number of cells, as a fraction of
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Figure 5.15: Birth events in the
germ-soma model. Germ cells
(blue) reproduce at a constant per-
capita rate r, and switch to so-
matic cells at rate s. Somatic cells
(orange) reproduce at rate r + a.

them detach from the mat and disperse in the pond. Suppose that fixed
fraction (α > 0) of cells is shed by the collective. Conversely, the survival
probability decreases with the particle density, as the mass of cells increases
and inevitably supersedes surface tension. Since cell density is positive and
potentially unbounded, let us suppose that survival decreases with particle
density, and use the exponential decay trade-off from Proposition 15. The
survival probability tends toward zero for infinitely large collectives, while it
tends toward a maximal probability β for vanishingly small collectives.

A direct consequence of Proposition 15 is that there is an evolutionary
stable population density, noted n∗ that only depends on β, namely when
σ(n∗) = 1 + W (−βe−1). However, the population density n at the time of
selection now depends on the duration of the growth phase T , the initial
density n0, but also the particle birth rate b. In summary:

{
ρ(n(n0, b, T )) = αn(n0, b, T )
σ(n(n0, b, T )) = βe−n(n0,b,T ) (5.8)

With the expression of n(n0, b, T ) given by the solution of Equation 5.7:

n(n0, b, T ) = b

1− (1− bn−1
0 )e−bT

(5.9)

The particle evolutionary trait that we consider is the birth rate b. Nu-
merically solving the position of the ESS by substituting σ, ρ (expressed as
functions of n in Equation 5.8) and n (expressed as function of b in Equation
5.7) in the fitness gradient g (Equation 5.2) shows that a finite evolutionary
stable value of b (noted b∗) exists. This limits the maximum possible size of
the particle population, in contrast with the potentially unbounded increase
in isolation. Thus, imposing collective-level selection changes the evolutionary
dynamics of the particles.

The value of b∗ decreases when the duration between two selective events T
increases, and tends toward a limit value as illustrated in Figure 5.14. Indeed,
the intra-collective dynamics saturates when the time before reproduction
grows larger, so that the collective state becomes largely independent of T .

When the maximal survival probability achievable by collectives β is de-
creased, collectives get bigger. Indeed, the evolutionary stable birth rate b∗,
that is proportional to collective size, increases when β decreases (as pointed
out in Proposition 15). As seen in Proposition 14, the effect of an investment
in reproductive output ρ is weighted by the mortality probability of collec-
tives (1− σ). As a consequence, an increase in birth rate, collective size, and
thus a higher number of propagules, is selected when collective-level selection
is harsher (smaller values of β).

This model relates a simple particle ecological dynamics to the evolution-
ary fate of collectives. However, the ecology neglects the specificity of our
motivating example: the existence of cells that have a propensity to con-
tribute differently to reproduction and survival of collectives. This extension
is discussed in the next section.
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5.3.2 Soma-germ particle dynamics
Division of labour between particles is a hallmark of evolutionary transitions
in individuality. In the pond-scum scenario presented in chapter 4, wrinkly
and smooth cell types have different roles in the life cycle of the collective.
Wrinkly, sticky cells contribute to the structural integrity of the mat, and
form a proto-somatic line, while smooth cells disperse more easily, forming a
proto-germ line. As well as for other fraternal transitions, cells can in prin-
ciple change their role by mutation or epigentic changes (contrasting with
egalitarian transitions, such as to symbiosis where there is no likely muta-
tional path from one type to the other — see Chapter 6). In the following,
we introduce a simple particle-level ecological dynamics that models a two-
type population with contrasting contributions to survival probability and
propagule output.

Two-types "linear" ecology of particles

Let the collective be composed of two kinds of particles, proto-germ and
proto-soma, in a pure birth process depicted in Figure 5.15. Proto-germ cells
give birth at a constant rate r, while soma have a constant birth-rate offset
a ∈ R with respect to the germ cells, called the growth differential (advantage
if a > 0, disadvantage if a < 0). Additionally, germ cells produce soma cells at
a rate s. The proto-germ particles are the only ones that can be transmitted
to the next generation (by self-replacement of surviving collectives or via the
germ bank). Survival of the collective is increasing with the proportion of
soma cells, whereas their reproductive output increases with the number of
germ cells.

Let x(t) = (G,S) be the density of germ and soma cells in the collective
at time t. Since germ cells are the only ones that are transmitted to the
next generation x(0) = (1, 0). The population dynamics follows the ordinary
differential equation:

x(t)
dt

= A x(t), with A =
[
r − s 0
s r + a

]
(5.10)

The internal ecological dynamics of the collective can be derived from
Equation 5.10. It can be equivalently expressed in terms of the dynamics of
germ and soma (G,S) or in terms of total particle density n = G + S and
proportion of germ-like particles p = G

N . This second set of coordinate is used
below.

Proposition 18 (Linear Ecology Trajectory):
The density of particles n(T, r, s, a) and the proportion of germ-like par-
ticles in a collective p(T, s, a) at the time of selection, expressed as func-
tions of the duration of the growth phase T , the switch rate s and the
growth differential of germs particles a are:{

n(T, r, s, a) = s
a+s e

(r+a)T + a
a+s e

(r−s)T

p(T, s, a) = s+a
s e(s+a)T+a

(5.11)



5.3. Particle dynamics 99

0 1
soma

0

1

ge
rm

a

c

b

d

1
pop. size, n

0

1

ge
rm

 p
ro

p.
, p

a
c

b

d

-r 0
Soma growth differential, a

0

r
sw

itc
h 

ra
te

, s

a

c

b

d

Figure 5.16: Qualitative
Regimes of the germ-soma
model. a. Vanishing germ
proportion b. Asymptotic germ
proportion, c. Vanishing germ.
d. Extinction. Black dots are the
initial conditions: S,G = (0, 1) or
n, p = (1, 0).

(Proof page 113.)

Figure 5.16 presents four qualitative ecological trajectories displayed by
the germ-soma model (from Equation 5.11). Within a collective generation,
the initial condition is always one unit of germ and no soma.

If the switch rate is lower than the growth rate (s < r, Figure 5.16 a,
b), the density of germ increases within one generation. Otherwise (s > r,
Figure 5.16 c, d), it decreases. If the density of germ decreases within one
generation, the collective-level population is not viable across several genera-
tions as the number of available propagules will tend toward zero (preventing
both dispersal and self-replacement). If, moreover, the soma as a growth dis-
advantage higher than the growth rate (a < −r, s > r, Figure 5.16 d), the
whole population (germ and soma) asymptotically goes extinct within one
generation.

In the case of a viable population (s < r), the density of germ and soma
grows within one generation. If the soma has a growth advantage or a small
growth disadvantage that is compensated by the production of new soma by
the germ (a > −s, s < r, Figure 5.16 a), the proportion of germ decreases
with time. Conversely, if the soma has a growth disadvantage higher than the
switch rate (a < −s, s < r, Figure 5.16 b), the proportion of soma stabilises
to 1 + s

a .
Overall, this simple pure-birth ecological model hinges on two important

parameters: the switch rate of the germ s, and the growth differential of the
soma a. The next section lays out the respective contribution of germ and
soma to the collective life history parameters.

Effect of collective-level selection

Let us turn to the collective-level dynamics. Suppose now that life-history
traits (ρ, σ) depend on the proportion of germ cells p and soma cells (1 −
p). Using the non-linear trade-offs for survival rate and reproductive output
defined in Equation 5.5, with d = 2:{

ρ = p2

σ = (1− p)2

As a consequence, collective lineages composed solely of soma (p = 0)
are immortal and do not produce propagules (σ = 1, ρ = 0). Conversely,
collective lineages composed solely of germ (p = 1) certainly die (σ = 0).
As mentioned in Proposition 16 and since d > 1, there is an evolutionary
attracting proportion of germs, which is around 0.2 regardless of the internal
ecology of the collective. It must be stressed that this is a direct consequence
of the current assumption that life-history traits depend on the proportion p
and not, for instance, the population size. However, the germ-to-soma switch
rate s required to achieve this proportion depends on the growth differential
of the soma a and the duration of a growth phase T .
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Figure 5.17 shows the position of the evolutionary singular value of s as
a function of the growth advantage of the soma a, for three values of T ,
numerically solved from the invasion fitness gradient in Equation 5.2, Propo-
sition 14. Note that the ESS s∗ decreases when the growth differential of
the soma increases. This means that the faster the soma grows, the smaller
the switch rate required to reach the optimal proportion of germ to soma.
Moreover, increasing the duration of the growth phase T decreases the value
of the evolutionary stable switch rate.

If the growth differential a and growth rate duration T are both small
enough, the ESS of s lies in a region where the population is not viable (Fig-
ure 5.16 c and d). In this case, the model predicts an “evolutionary suicide”:
successive invasions of mutants lead to a population with smaller and smaller
collective size (Figure 5.16 d), or an absence of germ cells (Figure 5.16 c),
leading to a probable extinction of the whole population.

Overall, this section illustrates how the dependence of life-history parame-
ters (ρ and σ) on the ecological dynamics of the particles translates conditions
on the evolutionary outcome imposed by the survival-reproduction trade-off
into relationships among particle-level parameters (birth rate in the logis-
tic model, switch rate in the soma-germ model). If solving the ESS for the
general trade-off (as in section 5.2) allows drawing general conclusion on the
long term evolutionary fate of the system, including the internal ecology of
the collectives reveals new insights, as well as new challenges. The obvious
advantage is to give a more mechanistic interpretation of the survival and
reproduction parameters. However, the ESS might exist in terms of ρ and
σ in the general trade-off, but there might not be any trait value that allow
to reach it, or this trait value might not be viable in the long run. Overall,
not all values of collective life-history parameters and their trade-off may be
attained by tuning the microscopic parameters.

In this section, the case where the collective population might not be viable
arose (for instance when the number of germ cells decreases with each new
generation), but the current model is ill-equipped to tackle this question:
collective population size is fixed. In the next section, the problem of the
viability of the collective-level population is addressed with different model
that includes the collective-level population dynamics.

5.4 Collective Population Dynamics

When designing a time-consuming experiment such as that presented in chap-
ter 4, great care is accorded to avoid both the premature extinction of the
population and its unchecked growth. Thus, it as been decided that the
population size of collective would be kept constant. Such a simplification
is necessary for the sake of the experiment, but simplify considerably the
collective-population dynamics that could arise from a real niche colonization
process. For instance, propagules may fail altogether to reach new niches or
collectives may not reproduce fast enough. The system would therefore miss a
necessary —if slightly obvious— condition for any transition in individuality
by ecological scaffolding: that the collectives do not go extinct.
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Figure 5.18: Birth-death events.
Birth events (rate δρ) occur when
cells from a collective colonise an
empty niche. Death events (rate
µ) occur when a bacterial mat col-
lapses, resulting in the emptying of
the niche.
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This section presents a modified version of the model discussed so far
(Figure 5.2) to take into account a fixed population of niches (for instance the
reeds in the pond scum thought experiment) that can be empty or occupied
by a collective. The key parameter δ controls the density of niches, and allow
deriving conditions for the extinction of the population of collectives. Unlike
the previous models, this is characterised by overlapping generations, so that
some collectives survive longer than others. However, its solution relies on a
separation of time scales between collective and particle dynamics.

Niche occupancy equilibria and extinction of the collective
population

Consider that the environment contains a fixed, large, number D of niches.
Among those niches, a proportion E is empty, and a proportion N is occupied
by collectives. At all time E + N = 1. Each collective may go extinct and
disappear from the population at a rate µ.

Each collective produces a quantity ρ of propagules, that are dispersed
in the environment and form a well-mixed germ-bank. Empty niches are
colonised by propagules from the germ-bank. As a consequence, each collec-
tive colonises new niches at a per-capita rate of ρδE (Figure 5.18), where δ
is a parameter that controls niche density. If δ is high, niches are close to
each other and the colonisation events are more likely, whereas if δ is low the
niches are far apart and the colonisation events are rare. In the limit where
δ = 0, niches are so isolated from each other that there can be no dispersal.

As in the previous sections, let θ be the set of adaptive traits of the resident
population of collectives. To simplify notation we omit the argument "(θ)"
when possible, and note µ = µ(θ), ρ = ρ(θ). The dynamics of niche occupancy
is governed by the following ordinary differential equation:{

dE
dt = µN − δρNE
dN
dt = δρNE − µN

(5.12)

Collective demography depends on life history parameters (µ and ρ) that
in turn derive from collective traits. As long as those traits are inherited
across collective generations, the proportion of niches occupied by collectives
can be obtained by solving Equation 5.12 (Figure 5.19).

Proposition 19 (Equilibria of collective populations):
The ecological equilibrium (E∗, N∗) of the population governed by Equa-
tion 5.12 with E(t) +N(t) = 1, ∀t and E(0) ∈ (0, 1) is:

(E∗, N∗) =
(
µ

δρ
, 1− µ

δρ

)
(5.13)

The population goes to extinction if E∗ ≥ 1, i.e. if µ > δρ.

An immediate consequence of Proposition 19 is that there is a critical
density of empty niches δ∗ = µ

ρ under which the population of collectives
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tinct if δ < µ

ρ

goes extinct (Figure 5.20). µ
ρ is the death-to-reproduction ratio, meaning

that increased death rate or decreased propagule production increases the
minimal density threshold necessary to support the population. Since µ and
ρ are positive, for any trait values there is always a minimum value of niche
density δ below which the collective population is not viable. Conversely, it
is only if collectives are immortal (µ = 0), not isolated (δ > 0) and produce
propagules (ρ > 0) that they colonise the entirety of the niches (N∗ = 1).

In other words, a first condition for a viable population of collectives in
an ecological scaffolding population structure, is that the density of niches is
high enough to support the population. A population of fixed reproductive
output could be driven to extinction if the density of niches in the environment
diminished. In addition, since the minimal density depends on the life-history
parameters of the collectives, a viable population could in principle be driven
to extinction if its death-to-reproduction ratio became, along an evolutionary
trajectory, smaller than the critical niche density. The next paragraph applies
adaptive dynamics to the evolution of a collective trait that determines life-
history parameters, and aims to establish how this affects niche colonisation.

Evolutionary dynamics of niche occupancy

Assuming that life-history parameters depend on an underlying set θ ∈ Rp of
collective traits, the invasion fitness gradient can be derived using the same
method and assumptions as in Proposition 14:

Proposition 20 (Invasion fitness gradient):
The invasion fitness gradient for the trait θ within a population whose
niche dynamics is governed by Equation 5.12 is:

g(θ) = ∇ρ(θ)
ρ(θ) µ(θ)−∇µ(θ) (5.14)

(Proof page 114.)

The structure of this equation is strikingly similar to that obtained for
the previously discussed model with discrete generations and fixed collective
population size (Proposition 14, Equation 5.2). Note that in that model,
niches where never empty (except in the limit case of vanishingly small size
of particle population), as birth and death happened at the end of collective
generations. All niches left empty by the death of collectives were simul-
taneously filled by propagules. Immortal collective lineages had a survival
probability of one in the previous model (σ = 1), and they have a null death
rate in the current model (µ = 0). However, the two parameters are not
exactly equivalent in the two case, since a null survival probability in the
previous model (σ = 0) corresponds to the limit case of infinite death rate
(µ→∞) in the current model. Therefore, the two expressions for the fitness
gradient are not equivalent.
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Figure 5.21: Evolutionary tra-
jectories when the death rate µ
and propagule production ρ evolve
independently. The µ axis is
inverted to keep the convention
from the previous section that im-
mortal collectives are at the top.
The black area represents a region
where the population of collectives
goes to extinction.

The invasion fitness gradient Equation 5.14 is a sum of two terms. The first
concerns the relative change in propagule output, weighted by the mortality
within the resident population. The second term is the change in collective
death rate. Contrary to Equation 14, this second term is not normalised by
the resident death rate: a given increase in death rate has the same effect
on the gradient regardless of the current mortality —a consequence of the
variable size of the collective population in this model. Finally, note that the
invasion fitness gradient is independent of δ, meaning that the evolutionary
trajectory only depends on the niches via the life-history parameters of the
collectives, and not directly via their density.

As in section 5.1, consider that collectives have two traits that map directly
to death rate and reproductive output. That is, θ = (θ1, θ2), µ(θ) = θ1 and
ρ(θ) = θ2. In this case survival and reproduction evolve independently of one
another without trade-offs. Figure 5.21 shows the evolutionary flow resulting
from Proposition 20 in this situation. As expected from the similarities in
equations, the structure of the evolutionary flow is akin to that in the discrete
generation model (Figure 5.5). Both propagule output and survival increase
until immortal lineages invade the population (µ = 0), which is a de facto end-
point for the eco-evolutionary dynamics. Super-imposing to the flow the area
where the collective population is viable (black in Figure 5.21, derived from
Equation 5.13), we can see that some trait regions explored by evolution in
the absence of collective demography should in fact be excluded, because the
collective population can not be sustained. The structure of the flow moreover
prevents the so-called evolutionary suicide: the evolutionary trajectory only
points out of the extinction area. Thus, there is no path of successive invasions
that leads to the extinction of the population.

Just as discussed in the previous sections, the assumption that survival
and reproductive output can evolve independently is unrealistic. The next
paragraph explores a simple functional trade-off between those two life history
parameters.

Simple trade-off and population dynamics

As discussed in section 5.3, here we specify the particle-level ecology that
shapes the collective state, and link both life-history parameters to such
collective state, in such a way that a trade-off exists between survival and
reproduction. Now, though, collective generations are asynchronous and col-
lectives of different age coexist, hence the state of the collective population
at a given time is distributed. Such collective phenotypic diversity can how-
ever be neglected if we suppose that the particle ecological dynamics within
collectives is fast compared to collective demographic events. In this case,
the state of most collectives will be close to the ecological equilibrium, that
is parametrized by particle-level parameters. Functions of particle traits that
provide the rates of propagule production ρ(θ) and collective death µ(θ) can
thus be inverted, so as to find what particle ecology corresponds to a collective
ESS.

Let us illustrate this concept by using the logistic model, Equation 5.7.
The evolvable trait is the maximum birth rate of particles b, and the eco-
logical equilibrium is n∗ = b. The collective life-history parameters must be
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Figure 5.22: Evolutionary sta-
ble birth rate as a function of
niche density when death rate is
exponential µ = eb and propagule
production is linear ρ = b. The
ESS (red line, solution of Equation
5.14) is constant for all values of δ.
The black area represents a region
where the population of collectives
goes extinct (Proposition 19). A:
No collective population is viable
when the density of niches is lower
that e. B: large collectives have
a high µ and are not viable. C:
small collectives have a low ρ and
are not viable.

computed at this equilibrium. Consider a simple exponential trade-off akin
to that used in Proposition 16: production of propagules is proportional to
the density of particles ρ(b) = n(b) = b and collective death rate increases
exponentially with the density of particles µ(b) = en(b) = eb. Replacing these
in the formula for the invasion fitness Equation 5.14 and solving the resulting
expression (g(b) = eb

( 1
b − 1

)
= 0), one obtains that the evolutionary stable

birth rate b∗ is equal to 1.
Figure 5.22 illustrates the ESS for various niche density δ, with superim-

position of the non-extinction condition (Proposition 19). If the niche density
is lower than a threshold (δ < e), the collective population goes extinct for
any value of b (Figure 5.22 A). Above this threshold, there is a range of values
of b for which the population is viable, this range gets wider as the density
of niches δ increases. If the collectives are too large (large b, Figure 5.22 B)
their death rate is too high, and the population goes extinct. Conversely, if
the collectives are too small (small b, Figure 5.22 C) they do not produce
enough propagule to compensate the death and the population goes extinct.
In the white region where collective populations persist, the ESS value b = 1
is constant with respect to the niche density δ.

As in section 5.3, the death-reproduction trade-off imposes an optimal
value for life history parameters, although this value might not be reachable
by the population if it lies in a region of the trait space where the popula-
tion goes extinct. What is adjusted as δ varies is not collective size, but the
occupancy of the niches: if the niches are denser, they also have a higher oc-
cupancy at evolutionary equilibrium (Equation 5.13, with µ

ρ constant). This
is only possible in this model (and not in the model of section 5.3) because
the collective population size is allowed to vary.

Overall, by adding an explicit collective population dynamics, this model
distances itself farther from the experimental setup. This allows deriving
necessary conditions for ecological scaffolding in a more general scenario. This
paragraph showed that if the “scaffolding” structure of niches is too sparse, the
population of collectives cannot be maintained. The next paragraph explores
a consequence of a high density of niches: secondary colonisation events on
an occupied niche.

5.5 Migration between collectives

At the centre of the debate on the existence of collectives as units of evolu-
tion on their own right, lays the question of the individuality of collectives.
A widespread argument against the relevance of collective-level Darwinian
processes is that, in nature, groups are not isolated enough to be treated as
units of evolution (Williams, 2018; Maynard Smith, 1987). This difficulty is
sidestepped in the growing body of work on ecological scaffolding by imposing
single-cell bottlenecks and niche isolation. Clonal growth ensures that there
is no mixing occurring during the lifetime of a collective, so that collectives
have been treated as units of evolution both in experiments (Hammerschmidt
et al. (2014) and Chapter 4) and model design (Black et al. (2019) and pre-
vious sections of the present chapter). As a consequence, collective lineages
remain composed of a single type of particles.
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Figure 5.23: Birth-death events
in a collective population with two
types (resident, blue and mutant,
orange). In order to compute the
rates of change of the respective
proportions, it is necessary to mul-
tiply the rates illustrated here by
the probability of encountering an
empty niche (top two cases) or of
producing a propagule (third and
fourth case).

There are two ways of relaxing this assumption. First, considering that
collective birth events involve multiple particles coming from a single (as
in Chapter 6) or several parental collectives. Second, considering that, even
though colonisation of empty niches happens through dispersal of a single cell,
established collectives can be invaded by propagules from other collectives.
This paragraph explores the second option.

Ecological model

Again, let us focus on the collective demography given a large number of
possible niches. Niches can be occupied either by resident or mutant collec-
tives, that are characterised by different reproductive outputs and mortality
rates. However, now collectives also vary in their ability to take over a niche
already colonised by a collective of different type (Figure 5.23). As previously
assumed, the probability of successfully colonising an empty niche is taken
proportional to the reproductive output via the niche density parameter δ.
The ability of a propagule to invade and replace another extant collective is
measured by an additional collective parameter γ. This invasion rate is ex-
pressed as a function of the trait θ of the resident and θ′ of the mutant, that
separately control life-history parameters of the resident and mutant collec-
tives, respectively. Contrary to the previous model, collective demography
needs to take into account both resident and mutant populations, since sub-
stitution events involve pairs of mutant and resident. Let E be the proportion
of empty niches, N the proportion of niches occupied by collectives with res-
ident traits θ (and derived rates σ(θ), ρ(θ) and γ(θ, θ′)) and M = 1−N −E
the proportion of niches occupied by collectives with mutant traits θ′ (and
derived rates σ′(θ′), ρ′(θ′) and γ′(θ, θ′)). The collective population dynamics
is now described by the following differential equations:

dE
dt = µN + µ′M − δE(ρN + ρ′M)
dN
dt = −µN + δρNE + δ(ργ − ρ′γ′)NM
dM
dt = −µ′M + δρ′ME + δ(ρ′γ′ − ργ)NM

(5.15)

First, consider the ecological equilibrium of such a system. Proposition
21 shows that addying migration events does not change the condition for
extinction of the whole population.

Proposition 21 (Extinction conditions):
The population governed by Equation 5.12 is not extinct, ∀t, if:

δ <
µ

ρ
or δ < µ′

ρ′

(Proof page 114.)

This indicates that a population cannot be rescued by addition of the
capacity to colonise niches that are already occupied.
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Evolution of the collective trait

The invasion fitness gradient of this model can be derived using the same
assumptions as in Proposition 14 and Proposition 20:

Proposition 22 (Invasion fitness gradient):
The invasion fitness gradient for trait θ in the population governed by
Equation 5.15 is:

g(θ) = ∇ρ
ρ

[µ− γ (δρ− µ)]−∇γ(δρ− µ)−∇µ′

(Proof page 114.)

The new invasion fitness gradient contains two additional terms in γ com-
pared to that without secondary invasion (Proposition 20, Equation 5.14).
First, there is a term proportional to the increase in γ, that is weighted by
(δρ− µ). This coefficient is positive whenever the collective population does
not go extinct. Then, there is an additional contribution to the coefficient
multiplying the relative increases in propagule production. Even if collective
lineages are immortal (µ = 0), propagule production is now under selection
because propagules can subvert established collectives.

To proceed, this model should be studied in the context of a three-way
trade-off between death rate µ, propagule production ρ, and the ability to
perform secondary invasion γ. For instance, propagules that are able to invade
existing mats more easily might have a higher death rate. In the case of the
pond-scum scenario, one can imagine a collective with a decreased switch
rate from germ-like to soma-like cells, that could easily take over existing
mats (high γ), but would produce less resilient mats when alone (high µ). The
parallel with the evolution of virulence is striking (see Discussion), suggesting
a path to recruit theoretical and conceptual tools for future inquiries.

5.6 Discussion

The present chapter aimed at building a theoretical understanding of the
long-term evolution within collective populations such as the experimental
collective selection regime (Hammerschmidt et al., 2014) or the more general
pond scum experiment (Rainey and Kerr, 2010). This was achieved by build-
ing deterministic models of the collective ecological dynamics and study them
within the framework of adaptive dynamics. Collectives were characterised by
two life history parameters: survival, and propagule production. The follow-
ing assumptions were made: the population of collectives is large, mutations
are rare enough so the ecological and evolutionary timescales can be readily
separated (evolution is modelled as a succession of invasion by initially rare
mutants). The mutations are small enough in their phenotypic effects that
we only consider continuous evolutionary trajectories (the only evolutionary
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paths considered are of small incremental changes). Under these conditions,
several conclusions can be drawn.

First, if we consider a fixed-size population of collectives, as in exper-
imental biology, natural selection favours collectives of increasing survival
probability and reproductive output. If there is no underlying physical or eco-
logical constraint, the population is inevitably invaded by immortal collective
lineages. Immortal collectives do not provide the opportunity for collective
birth-death anymore, thus selection on other traits (such as propagule pro-
duction) grinds to a halt (and might even be counteracted by intra-collective
selection). More precisely, the advantage of a mutation on propagule produc-
tion (measured by its invasion fitness) is weighted by the current mortality
rate of the population. As a consequence, when designing experimental pro-
tocols to select for propagule production one should keep the mortality rate
as high as possible, while allowing the population to not go extinct with a
reasonable chance, and in any way avoid having immortal collective lineages.

In order to observe evolutionarily stable phenotypes that are not immor-
tal, it is necessary to take into account trade-offs between survival and re-
production. More precisely, the trade-off between survival probability and
propagule production must be negative and non-linear. Two examples of
non-linear trade-offs were considered. In the case of exponential decay of
the survival as a function of the propagule output, an evolutionarily stable
phenotype exists, moreover it is lower than the maximal survival probability
allowed by the trade-off (except if the maximal probability is one). In the
case of the power-law trade-off, a non-immortal evolutionary stable pheno-
type exists if the trade-off is concave. In this situation, immortal collectives
are predicted to be evolutionary unstable: they cannot be reached by a suc-
cession of selective sweeps. The concavity of the trade-off means that when
collectives lineages are close to immortal, the production of a small quantity
of propagule has (relatively) large effects on the survival probability. The
curvature of this kind of trade-off has already been extensively studied in the
context of the evolution of multicelluarity. Michod (2007) predicts that their
shape should be concave in the early stage of the transition —such as our
model.

Those geometric constraints are independent of the underlying ecology
of the particles: the collective process imposes the evolutionary outcome in
terms of survival probability and propagule production. However, mutations
on collective-level life history parameter are ultimately the result of muta-
tions on the particle traits. Studying the evolutionary dynamics of particle
traits in the context of ecological scaffolding requires to explicitly model their
ecology. Indeed, collectives are dynamical objects. If the optimal collective
life history parameters values are known and depend only on the survival-
reproduction trade-off, the path to reach them can be long and windy (or
even non-existent) depending on the behaviour of the particles. To illustrate
this, two ecological models were presented and discussed. First, in a sim-
ple logistic ecology where all particles were identical the evolutionary stable
birth rate is dependent on the duration of the generations. The trade-off
ensures the existence of a stable evolutionary collective size, and other pa-
rameters constrain the actual particle trait value. Second, in a germ-soma
ecology where there exist two phenotypically distinguished particle types, an
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evolutionary stable proportion of germ might exists —even though it can lie
in an unreachable region of parameter space. Depending on other ecological
traits of the particle population such as the growth advantage of the soma,
coexistence between the two phenotype may or may not evolve.

Finally, the model was modified to relax the assumption, required by ex-
perimental work, that the population size of collectives was fixed and that
the collective generations where synchronised. The new model has a struc-
ture remarkably close to the previous one. This allowed to characterise the
conditions upon which one might hope to observe evolution by ecological
scaffolding.

The first condition was of course that the collective population does not
go to extinction. The model pointed out that there is a lower limit in the den-
sity of niches under which the population would go extinct. This threshold
generally depends on the life history parameter values. However, when ne-
glecting collective-to-collective migrations, the evolutionary stable trait value
is independent on the density of the niches provided that the population is
viable. Conversely, for any fixed trait-value, there is a density below which
the population is not viable. The model was applied to a situation where
particle ecology was logistic ecology.

The second obstacle to ecological scaffolding studied here was the existence
of identity-muddying migrations events between collectives. Migrations were
modelled as single cell events, but migrations to existing collectives resulting
in a replacement of one collective by another were allowed. As a consequence,
evolutioanry equilibria may be modified.

It turns out that the last two models have a structure very close to classical
epidemiological models of susceptible and infected individuals. Empty niches
can be seen as susceptible individuals, while colonised niches are infected.
Collective birth is similar to the inoculation of a new host from pathogens
living within an already infected host, collective death is similar to the re-
covery or death of the host. The migration between collective is treated in
the same way as surperinfection (Nowak and May (1994), see Gandon et al.
(2001) for an adaptive dynamics treatment). This similarity has both prac-
tical and conceptual consequences. First, drawing rigorous theoretical links
between the two domains should be possible, and as a consequence there is
hope to make rapid progress by applying results from the vast body of work
in epidemiology to the question of transition in individuality. More concep-
tually, this illustrates how infectious diseases may be subject to ecological
scaffolding. Pathogens are undeniably selected within their host, but also
on the basis of survival and reproduction of the infection among individuals.
For instance, HIV infections are genetically diverse, even if they typically are
founded by a single genotype. Diversification process leads to lineages that
are specific to tissues of the host, and some genotypes are more likely to be
transmitted than others (Joseph et al., 2015). It is tempting to treat infec-
tious diseases as loose multicellar organisms in light of these observations.
Now, diseases are usually not considered as individuals on their own, and
they certainly do not present the same level of integration than multicellu-
lar metazoan for instance. This begs the question whether the conditions
for further integration via ecological scaffolding are not met, or defeated by
opposing physical or evolutionary forces. Multicellular pathogens do exist,
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but to my knowledge, their transition to multicelluarity is not the product of
ecological scaffolding within their current host.

Approximations introduced here for modelling purpose neglect some of
the richness of multi-level eco-evolutionary dynamics.

The adaptive dynamics limit of evolutionary process only informs us about
possible evolutionary paths that integrate successive invasions of small-effect
mutants whereas experiments show (in Chapter 4) that multiple mutations
coexists simultaneously within the population.

A farther reaching consequence of focusing on long-term evolution comes
into light when assuming single-cell bottleneck as well. Indeed, in the models
from this chapter, any small mutant in the particle trait can always appear
and be selected to found a new collective. As a consequence, any direction
in the particle trait space may be explored (within the limits of physics and
genetics). Any direction that can be explored will be explored because there
is a small chance that the particle mutation occurs just before the end of
the generation, and an even smaller chance (but strictly positive) that the
mutant particle would be selected as the propagule for the next generation.
This relies on the fact that drift will supersede selection within collectives: it
is the central assumption behind the shifting balance theory (Wright, 1948).
However, if the single-cell bottleneck ensures that no mutant trait value may
be excluded, the relative time to reach it will vary greatly if the mutant is able
or not to invade the underlying particle population. Overall, it means that
the canonical equation of adaptive dynamics would yield erroneous results in
terms of the speed of transient dynamics. The jump rate form one collective
trait value to the next would require modelling of the underlying events using
results from stochastic approaches (as in Chapter 3 or in Wahl and Gerrish
(2001)) to correct for this effect. A good method to build intuition on this
problem would be to perform stochastic simulations at the particle level, as
presented in Chapter 6.

A burning question that is left unanswered is the origin of the division of
labour between particles. The germ-soma model that was discussed in this
chapter shows an evolutionary path promoting an increasing production of
somatic cells by the germ line even starting from switching rates that are close
to zero. However, this models makes a really strong assumption, namely that
two different soma and germ phenotype exist a priori. An alternative model
of this phenomenon could suppose the preexistence of a phenotypic switch
that would be effectively neutral with respect to the investment in survival
and reproduction of both types. One could then focus on the evolution of a
trait that would govern their actual differentiation. In this hypothesis, the
transition from germ to soma may be purely phenotypical, or rely on an easily
reversible mutation (as seen in Chapter 4).

This chapter gives some insight in what we might expect to be general
properties of ecological scaffolding process, such has the effect of the geometry
in the survival trade-off, or the conditions on the scaffolding structure. In
addition, models point out where the particle eco-evolutionary dynamics –
that is a characteristic of the biological system at hand– might constrain the
collective eco-evolutionary dynamics, and in return be driven by it.

Overall, this part tentatively lifts the curtain on the evolutionary dynamics
of nested Darwinian populations and how collective-level selection can, under
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some conditions, promote the emergence of collective level-adaptation. So
far, the only collectives considered were mostly genetically clonal (thanks to
single cell bottlenecks). In the last part of this manuscript we will relax this
assumption. Having several types of particles within the same collective for
any meaningful amount of time raises an immediate question: what kind of
evolutionary mechanism can maintain the partners within the collective ? The
final part of this manuscript is dedicated to this problem of collective-level
heredity.
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Appendix: Proofs

Proof (Proposition 13 - Invasion fitness):
Consider a monomorphic population of D collectives bearing trait θ, with k mutants collectives
bearing trait θ′.

Each collective generations, there are B free spots:

B = (D − k)(1− σ(θ))︸ ︷︷ ︸
Resident death

+ k(1− σ(θ′))︸ ︷︷ ︸
Mutant death

The relative weight in the gamete pool of a phenotype i represented by ni collectives is
niσiρi∑
j
njσjρj

= niσiρi
W .

In this case: W = (D − k)ρ(θ)σ(θ) + kρ(θ′)σ(θ′).

After one collective generation, there will be k′ collectives with trait θ′.

k′ = σ(θ′)k + kσ(θ′)ρ(θ′)
W

B

= k

[
σ(θ′) + σ(θ′)ρ(θ′)

W
B

]
= kσ(θ′)

[
1 + ρ(θ′) B

W

]
Factoring in the hypothesis of adaptive dynamics, we consider that the mutant is rare k ≈ 0

and the resident is at equilibrium D − k ≈ D.
Hence, B ≈ D(1− σ(θ)) and W ≈ Dρ(θ)σ(θ).

We get the following invasion fitness:

f(s, s′) = ln
(
k′

k

)
= ln

(
σ(θ′)

[
1 + ρ(θ′) 1− σ(θ)

σ(θ)ρ(θ)

])

Proof (Proposition 14 - Invasion fitness gradient):
The proof is presented for a scalar trait θ, but can easily be generalised to a vector-trait. Let us
define h such that f(θ′, θ) = ln(h(θ′, θ)).

g(θ) = d

dθ′
f(θ′, θ)

∣∣∣∣
θ′=θ

=
d
dθ′h(θ′, θ)
h(θ′, θ)

∣∣∣∣∣
θ′=θ

= d

dθ′
h(θ′, θ)

∣∣∣∣
θ′=θ

(h(θ, θ) = 1)

= d

dθ′
σ(θ′)

∣∣∣∣
θ′=θ

+ d

dθ′
σ(θ′)ρ(θ′)

∣∣∣∣
θ′=θ

1− σ(θ)
ρ(θ)σ(θ)

= σ′(θ) + [σ′(θ)ρ(θ) + ρ′(θ)σ(θ)] 1− σ(θ)
ρ(θ)σ(θ)

= σ′(θ)
σ(θ) + ρ′(θ)

ρ(θ) (1− σ(θ))
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Proof (Proposition 15 - Linear reproduction):
Let ρ(θ) = αθ with α ∈ R∗+. Since µ has to be positive to be meaningful, the trait θ is necessary
positive.

Let θ∗ be an evolutionary singular strategy. By definition, g(θ∗) = 0.

g(θ∗) = 0⇔ dσ(θ∗)
dθ

1
σ(θ) + α

αθ
(1− σ(θ)) (5.16)

⇔ dσ(θ∗)
dθ

= −σ(θ∗)(1− σ(θ∗))
θ∗

(5.17)

Since σ ∈ [0, 1] and θ > 0, the slope of σ in the ESS ∂θσ(θ∗) is negative.

Linear. Suppose that σ = θ 7→ 1−βθ. For θ∗ to exists, β must be positive. Then σ′ = θ 7→ −β.
Then Equation 5.17 becomes:

−β = −βθ
∗(1− βθ∗)
θ∗

⇔ βθ∗ = 0 (5.18)

Which corresponds to θ = 0, since β > 0. This corresponds to immortal collective lineages,
and thus is not an internal ESS.

Inverse. Suppose that σ = θ 7→ 1
1+θ . Then, for all values of θ > 0, σ ∈ [0, 1] and σ′(θ) =

−(1 + θ)−2 < 0. Then Equation 5.17 becomes:

− 1
(θ + 1)2 = −1

θ

1
1 + θ

(
1− 1

1 + θ

)
⇔ 1 = 1 (5.19)

Meaning that all values of θ > 0 are ESS.

Exponential. Suppose that σ = θ 7→ βe−θ, 0 < β ≤ 1. Then, for all value of θ > 0, σ ∈ [0, 1]
and σ′(θ) = −(1 + θ)−2 < 0. Then Equation 5.17 becomes:

−βe−θ = −βe
−θ(1− βe−θ)

θ
(5.20)

θ + βe−θ − 1 = 0θ = W (−βe−1) + 1 (5.21)

Where the Lambert W Function is such that W (zez) = z.

Proof (Proposition 16 - Non linear trade-off):
Let p be a continuously derivable function of θ, with values in [0, 1]. Let ρ(θ) = p(θ)d and
σ(θ) = (1 − p(θ))d. With d > 0. Then ρ′(θ) = dp(θ)d−1p′(θ) and σ′(θ) = −d(1 − p(θ))d−1p′(θ)
and:

g(θ) = dp(θ)d−1p′(θ)
p(θ)d

[
1− (1− p(θ))d

]
− −d(1− p(θ))d−1p′(θ)

(1− p(θ))d

= d
p′(θ)
p(θ)

[
1− (1− p(θ))d

]
− d p′(θ)

1− p(θ)

= dp′(θ)
[

1− (1− p(θ))d
p(θ) − 1

(1− p(θ))

]
= dp′(θ)1− 2p(θ)− (1− p(θ))d+1

(1− p(θ))p(θ)
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Thus, if there is θ∗ such that g(θ∗) = 0 then:{
∂∗θp(θ∗) = 0 or
1− 2p(θ∗)− (1− p(θ∗))d+1 = 0

Let f = x 7→ 1− 2x− (1− x)d+1 with x ∈ [0, 1]. Note that f(0) = 0 and f(1) = −1
Then f ′(x) = d+ 1(1− x)d − 2

0 < x < 1
0 < (1− x) < 1
0 < (1− x)d < 1 because d > 0
0 < (d+ 1)(1− x)d < d+ 1
−2 < f ′(x) < d− 1

Hence, if d < 1, f ′(x) < 0 for all values of x ∈ [0, 1]. Thus, if d < 1, f is decreasing on
[0, 1]. Since f(0) = 0, if d < 1, then ∀x ∈ [0, 1], f(x) < 0, meaning that there is no θ∗ such that
g(θ∗) = 0.

Proof (Proposition 17 - Logistic dynamics):
Introducing a mutant m with birth rate b′:{

dn
dt = n(b− n−m)
dm
dt = m(b′ − n−m)

(5.22)

1
m

dm

dt
= b′ − n−m (5.23)

When the resident is at equilibrium (n = b) and the mutant rare (m ≈ 0), the invasion fitness
is:

f(b, b′) = b′ − b (5.24)

Proof (Proposition 18 - Proportion of Germ Cells):
We can diagonalise A:

A = P−1DP =
[
− 1

a
s+1 0
1

a
s+1 1

] [
r − s 0

0 r + a

] [
−1− a

s 0
1 1

]
Thus, since x0 = (1, 0):

x(t, s, a) = P−1eDtPx0 =
[

et(r−s)

s(et(a+r)−et(r−s))
a+s

]
Let p(t, s, a) be the proportion of germ line cells after a time t.

p(t, s, a) = < [1, 0], x(t, s, a) >
< [1, 1], x(t, s, a) >
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Proof (Proposition 20 - Invasion Fitness gradient with overlapping generations):
Introducing a mutant M with traits s′, we note ρ′ = ρ(s′), µ′ = µ(s′).

dE
dt = B − δE(ρN + ρ′M)
dN
dt = −µN + δρNE
dM
dt = −µ′M + δρ′ME

(5.25)

Now we consider a constant niche population size such that B = µN+µ′M and N+M+E = 1.
The Invasion Fitness of the mutant is thus:

1
M

dM

dt
= δρ′E − µ′ (5.26)

If the mutant is rare in a monomorphic population at equilibrium, (E,N,M) = (E∗, N∗, 0) =
( µδρ , 1−

µ
δρ , 0), thus:

f(θ′, θ) = 1
M

dM

dt

∣∣∣∣
E=E∗

=δρ′ µ
δρ
− µ′ (5.27)

=ρ′

ρ
µ− µ′ (5.28)

Fitness gradient:
We note ∇ρ = ∇ρ(θ)

g(θ) = ∂f(θ′, θ)
∂θ′

∣∣∣∣
θ′=θ

=∇ρ
ρ
µ−∇µ′ (5.29)

Proof (Proposition 21 - Extinction condition with secondary invasions):
The Jacobian of the two-dimensional reduction of Equation 5.15 is:[

M (δγ + ρ)− 2Nδρ+ δρ− µ N (δγ + ρ)
M (δγ′ + ρ′) −2Mδρ′ +N (δγ′ + ρ′) + δρ′ − µ′

]
(5.30)

The population is extinct if the equilibrium e1 = (1, 0, 0) is stable. The Jacobian in e1 is:[
δρ− µ 0

0 δρ′ − µ′
]

(5.31)

Whose eigenvalues are δρ− µ and δρ′ − µ′. Thus, e1 is stable if both δρ < µ and δρ′ < µ′ .

Proof (Proposition 22 - Invasion fitness gradient with secondary invasions):
Let us take a constant population size i.e B = µN + µ′M and E +N +M = 1.

Let us take a rare mutant in a monomorphic population at equilibrium, (E,N,M) = (E∗, N∗, 0) =
( µδρ , 1−

µ
δρ , 0).

Thus:
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f(θ′, θ) = 1
M

dM

dt
=ρ′µ

ρ
− µ′ + (ρ′γ′ − ργ)

(
δ − µ

ρ

)
(5.32)

=ρ′
[
µ

ρ
− γ′

(
δ − µ

ρ

)]
− µ′ − ργ

(
δ − µ

ρ

)
(5.33)

Fitness gradient:
We note ∇ρ = ∂ρ(θ′)

∂θ′

∣∣
(θ′=θ)

∂f(θ′, θ)
∂θ′

∣∣
θ′=θ =∇ρ

[
µ

ρ
− γ

(
δ − µ

ρ

)]
−∇γ(δρ− µ)−∇µ′ (5.34)

=∇ρ
ρ

[µ− γ (δρ− µ)]−∇γ(δρ− µ)−∇µ′ (5.35)





Chapter 6

An Ecological Recipe for the
Evolution of Collective-level
Heredity

“Reproduire un être vivant, au contraire, ce n’est pas recopier
le parent tel qu’il est au moment de la procréation. C’est créer
un nouvel être. C’est mettre en route, à partir d’un état initial,
une série d’évènements qui conduisent à l’état des parents.”

— François Jacob, La Logique du Vivant: Une histoire de
l’hérédité (1970)

Thirty years ago, in an article arguing the importance of the “super-
organism”, Wilson and Sober expressed surprise that biologists had not

recognised that communities — in the laboratory — “could be treated as en-
tities with heritable variation and selected accordingly” (Wilson and Sober,
1989). That they might be treated as such stemmed from recognition that
the eukaryotic cell is a tight-knit community of two once free-living microbes
(Margulis, 1970), but also from observations in nature of social insect colonies
(Wilson, 1985), cellular slime molds (Bonner, 1982; Buss, 1982), and espe-
cially of phoretic insect communities (Wilson and Knollenberg, 1987).

Phoretic insect communities comprise a focal organism — often an insect
such as a beetle — that moves between patchily distributed ephemeral re-
sources carrying with it a myriad of associated organisms, including mites,
nematodes and microbes. Communities associated with each insect differ by
virtue of the composite members, with the conceivable possibility that some
associations may harm the carrier insect, while others may benefit the carrier.
Given that the role of dispersal is somewhat analogous to a community-level
reproductive event, Wilson and Sober argued that selection at the level of in-
sect communities was likely to trump within-community selection leading to
communities “becoming organised into an elaborate mutualistic network that
protects the insect from its natural enemies, gathers food, and so on.”

If this might happen in nature, then why might this not be realised even
more potently in the laboratory? Indeed, the logic of Darwinism says it
should. Provided there exists heritable variance in fitness at the level of com-
munities, then communities will participate as units in the process of evolution

117
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by natural selection in their own right. In nature, the necessary conditions
are likely rare (Goodnight and Stevens, 1997), but ecological circumstances
can sometimes conspire to ensure that variation among communities is dis-
crete, that communities replicate and that offspring communities show some
resemblance to parental communities. Phoretic insect communities are an ap-
parent case in point. In the laboratory, however, the experimenter can readily
construct conditions that ensure communities (or any collective of cells) are
units of selection in their own right (Johnson and Boerlijst, 2002; Day et al.,
2011; Xie and Shou, 2018; Xie et al., 2019). A critical requirement is a birth-
death process operating over a time scale longer than the doubling time of
individual cells (Hammerschmidt et al., 2014; Rainey et al., 2017; Black et al.,
2019).

Empirical proof that selection really can shape communities was provided
by Swenson and colleagues who performed two studies in which artificial
selection was imposed on microbial communities from soil (Swenson et al.,
2000a,b). In the first they imposed selection for communities that affected
plant growth. In the second they selected communities for ability to degrade
the environmental pollutant 3-chloroaniline. In both instances communities
at extreme values of community function were repeatedly propagated. In both
studies a significant response was measured at the level of the community.

Although the finding was a surprise to some (Goodnight, 2000), it is con-
sistent with expectations that communities of entities — no matter their
identity — will participate in the process of evolution by natural selection
provided communities are discrete, they replicate and that offspring commu-
nities resemble parental communities (Godfrey-Smith, 2009). Discreteness
is conferred by simply compartmentalising communities via their placement
in independent vessels. Replication is achieved by taking a sample of the
selected communities with transfer to a new vessel. Heredity, however, is
less tangible, especially in the Swenson experiments, where the selected com-
munities were pooled before redistributing into fresh vessels. Nonetheless,
intuition says that heredity becomes established through interactions (Wil-
son and Sober, 1989; Goodnight, 2000). Understanding the mechanistic bases
of community-level heredity and its emergence motivates our study.

We begin by posing a thought experiment realisable via ever improving ca-
pacity to manipulate small volumes of liquid (Baraban et al., 2011; Sackmann
et al., 2014; Cottinet et al., 2016). Consider a millifluidic device that con-
trols the composition of emulsions. Consider thousands of microlitre-sized
droplets each harbouring communities comprised of two types of microbes
that differ solely in the colour of a fluorescent protein: one type encodes a
red fluorescent protein and the other a blue fluorescent protein. Interest is
in the evolution of communities that are of the colour purple (an equal ratio
of red to blue cells). Within each droplet red and blue microbes replicate
with growth rate and interaction rates being subject to evolutionary change.
In the mean time the experimenter, via lasers installed on the device, has
determined the precise colour of each droplet and a priori decided that half
of the droplets furthest from an equal ratio of red-to-blue will be eliminated,
whilst the fraction closest to the colour purple will be allowed to replicate.
Replication involves a dilution step during which nutrients are replenished.
A further round of growth then ensues along with a further round of droplet-
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level selection. The protocol continues thereafter with selection taking place
at the level of communities via a birth-death process. Figure 6.1 depicts the
schema.

One collective generation

growth dilution

particle 
mutation

growth

Time
Particle Birth-DeathCollective Birth-DeathParticle Birth-Death Particle Birth-Death

reproduction

death

Figure 6.1: Nested model of evolution. Collectives (large circles) follow a birth-death process (grey) with
non-overlapping generations. Collectives are composed of particles (small spheres) that also follow a birth-death
process (growth, represented by thick green arrows). Offspring collectives are founded by sampling particles from
parent collectives (dilution, represented by thin green arrows). Survival of collectives depends on colour. Collectives
that contain too many blue or red particles are marked for extinction. The number of collectives is kept constant.
Mutation affects particle traits (see main text for details).

Under this regime communities within droplets are endowed with Darwinian-
like properties (we use this term to convey the fact that removal of the
scaffold leads to, at least initially, complete loss of community-level indi-
viduality). Collective-level variation is discretised by virtue of the bounds
provided by the immiscibility of oil and water (communities are thus con-
fined to droplets). Additionally, the device ensures that droplets engage in
a birth-death process: droplets furthest from the collective-level trait are ex-
tinguished, whereas those closest to the colour purple are diluted and split,
thus effecting collective-level reproduction. Not determined by the device
however is the relationship between parent and offspring droplets. Because
the trait of the parent community depends on properties of the cellular con-
stituents, there is — in the absence of interactions between red and blue cells
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— little chance that purple-coloured communities will reliably give rise to
purple-coloured offspring. This is in part due to the stochastic nature of the
dilution phase (a droplet with an equal ratio of red to blue is unlikely to give
rise to offspring droplets founded with the same equal ratio of types) but also
to within-droplet selection favouring fast growing types. Nonetheless, purple
coloured droplets can in principle be maintained simply by imposing strong
community-level selection in a manner envisioned by the "stochastic corrector"
model (Maynard Smith and Szathmary, 1995; Grey et al., 1995; Johnston and
Jones, 2015). But it is conceivable that repeated imposition of droplet-level
selection might lead to the evolution of interactions among the constituent
cells akin to a developmental process. Such a process would ensure that the
ratio of red to blue cells, no matter their ratio in newly “born” communities,
would, after replication of cells and achievement of “adult” stage, resemble
previous parental community phenotypes.

6.1 Results

6.1.1 A nested model of collective evolution
Our model, based on the schema outlined above and depicted in Figure 6.1,
supposes a population of collectives subject to a birth-death process. Each
collective is comprised of two kinds of self-replicating particles (red and blue)
that together determine collective colour. Colour is important because it is
the phenotype upon which collectives succeed or fail. Collectives that are too
far from an optimal colour face extinction, whereas those within acceptable
bounds persist with the possibility of reproduction. Birth-death at the level
of collectives affects the eco-evolutionary dynamics of particles. We capture
this scenario with a nested model and begin with numerical simulations of
the stochastic, multi-level demographic process. In the next section a deter-
ministic approximation is presented.

In the numerical model (Appendix 6.3), the ecological dynamic of particles
is expressed by a stochastic birth-death process (Champagnat et al., 2006;
Doebeli et al., 2017). Each particle of type i ∈ {0, 1} is characterised by four
traits (hereafter particle traits): colour (ci, red or blue), net maximum growth
rate ri, and two competition parameters (aintrai and ainteri ). At any particular
instant particles either reproduce or die. Particles of type i reproduce with
a constant birth rate ri and die as a consequence of competition. The rate
of death is density-dependent such that each particle of type j increases the
death rate of i-type particles by riaintraj if they share the same colour (cj = ci),
or by riainterj when colours are different (cj 6= ci). All transition rates can be
found in Appendix 6.3 Table 6.3.4.

Mutations are introduced at the level of particles. Mutation affects either
particle maximum growth rate (r) or the inter-colour competition parameter
(ainter) by a small random quantity. In the spirit of adaptive dynamics (Geritz
et al., 1998), the particle type carrying the new set of traits is referred to as
a mutant, and the existing type is designated the resident. Mutations are
assumed to be rare. In order to accelerate numerical simulations one mutant
type is introduced at every extinction event, with the mutant bearing the
same colour as the extinct type.
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Collectives also undergo a birth-death process. The number of collectives
D is constant and collective generations are discrete and non-overlapping.
Each collective generation begins at time t = 0 with offspring collectives con-
taining B founding particles. Particles replicate, interact and evolve accord-
ing to the particle traits. After duration T , collectives attain “adult” stage,
and a fixed proportion of collectives ρ is marked for extinction. This allows
the possibility of selection on collectives based on their properties (the collec-
tive phenotype), which is derived from the composing particles. Our focus is
collective colour, which is defined as the proportion φ of red particles.

Initially, collectives contain red and blue particles in uniformly distributed
ratios. Collectives are subject to evolution under two contrasting regimes: one
neutral and the other selective. Under the neutral regime, the pool of collec-
tives marked for extinction is sampled at random, whereas under the selective
regime, collectives marked for extinction are those whose adult colour departs
most from an arbitrarily fixed optimal colour φ̂. Extinguished collectives are
replaced by offspring from uniformly sampled extant collectives (Figure 6.1).
All other collectives are replaced by their own offspring. Reproduction in-
volves uniformly sampling B particles from the parent collective. Particles
from one collective never mix with particles from any other. This establishes
an unambiguous parent-offspring relationship (De Monte and Rainey, 2014).
The adult colour of offspring collectives depends on the founding frequencies
of particles (whose variance is negatively related to bottleneck size B), and
on ensuing particle-level population dynamics.

6.1.2 Selection on collectives drives the evolution of
particle traits

In the absence of collective-level selection (neutral regime), collectives rapidly
converge to a monochromatic phenotype (Figure 6.2A). Once collectives are
composed of either all-red or all-blue particles, the contrasting colour can-
not be rescued, since colour change by mutation or migration is not possible.
The distribution of collective colour is thus quickly biased toward faster grow-
ing particle types with selection driving particle growth rate (Figure 6.2C).
The inter-colour competition trait (Figure 6.2E) is irrelevant once collectives
become monochromatic (it then evolves by pure drift).

The dynamic is very different once selection is imposed at the level of col-
lectives. By rewarding collectives closest to the colour purple (a fixed φ̂ = 0.5
ratio of red to blue particles) it is possible to prevent fixation of either colour
(Figure 6.2B). Starting, as above, from collectives containing red and blue
particles in uniformly distributed ratios, mean collective colour shifts rapidly
toward red as a consequence of the faster initial growth rate of red parti-
cles, but after a few tens of generations mean collective colour approaches
purple. From generation 1,000, variance of the colour distribution progres-
sively decreases. This is indicative of improvement in the ability of purple
parent collectives to give rise to offspring collectives that resemble parental
types. This is associated with escalating particle growth rate (Figure 6.2D)
and a saturating increase in between-colour competition. The latter reflects
directional selection that moves the average phenotype in the population of
collectives towards an optimal trait value (reached by generation 7,000 see
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Figure 6.2: Evolutionary dynamics of collectives and particles. A population of D=1, 000 collectives was
allowed to evolve for M = 10, 000 generations under the stochastic birth-death model described in the main text
(see Appendix 6.3 for details on the algorithm used for the numerical simulations). Initially, each collective was
composed of B = 15 particles of two types: red (r0 = 6, aintra

0 = 0.8/K, ainter
0 = 0.15/K, c0 = red) and blue

(r1 = 4, aintra
1 = 0.3/K, ainter

1 = 0.15/K, c1 = blue), with K = 1, 500. The proportions at generation 0 were
randomly drawn from a uniform distribution. At the beginning of every successive collective generation, each
offspring collective was seeded with founding particles sampled from its parent. Particles were then grown for a
duration of T = 1. When the adult stage was attained, 200 collectives (ρ = 20%) were extinguished, allowing
opportunity for extant collectives to reproduce. Collectives were marked for extinction either uniformly at random
(neutral regime, panels A, C, E, as well as Appendix 6.3 Figures 6.9A and 6.10A), or based on departure of the
adult colour from the optimal purple colour (φ̂ = 0.5) (selective regime, panels B, D, F, as well as Appendix 6.3
Figures 6.9B and 6.10B). Panels A and B, respectively, show how the distribution of the collective phenotype
changes in the absence and presence of selection on collective colour. The first 30 collective generations (before
the grey line) are magnified in order to make apparent early rapid changes. In the absence of collective-level
selection purple collectives are lost in fewer than 10 generations leaving only red collectives (A) whereas purple
collectives are maintained in the selective regime (B). Selection for purple-coloured collectives drives evolutionary
increase in particle growth rate (D) compared to the neutral regime (C). In the neutral regime, inter-colour evolution
of competition traits are driven by drift (E), whereas with collective-level selection density-dependent interaction
rates between particles of different colours rapidly achieve evolutionarily stable values, with one colour loosing its
density-dependence on the other (F).
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Figure 6.3: Ecological dynamics of particles. A sample of 300 (from a total of 1, 000) collectives were taken
from each of generations 3 (A,C) and 9, 000 (B,D) in the evolutionary trajectory of Figure 6.2. The dynamic of
particles was simulated through a single collective generation (0 ≤ t ≤ T = 1), based on the particle traits of
each collective. Each grey line denotes a single collective. The green area indicates the 1 − ρ = 80% fraction of
collectives in the whole population whose adult colour is closest to φ̂ = 0.5. Single orange lines indicate collectives
whose growth dynamic — number of individual particles — is shown in C and D, respectively. Dotted lines show
the deterministic approximation of the particle numbers during growth (Appendix 6.4 Equation 6.1). Initial trait
values result in exponential growth of particles (C), leading to a systematic bias in collective colour toward fast
growing types (A). Derived trait values after selection yield a saturating growth toward an equilibrium (B) leading
to the re-establishment of the purple colour by the end of the generation, despite initial departure (A).

By affecting particle parameters, selection on colour also modifies dynam-
ics within collectives. Figure 6.3 shows variation of colour within a single col-
lective growth phase at generation 3 and generation 9, 000. Prior to selection
shaping particle traits, both red and blue particle types follow approximately
exponential growth (Figure 6.3C). The resulting adult collective colour is thus
biased towards the faster-growing red type. In contrast, at generation 9, 000
(Figure 6.3B), both particle types reach a saturating steady state that ensures
that adult colour is purple. Initial departures from a 1:1 ratio — caused by the
stochasticity of collective reproduction and / or particle growth dynamics —
are compensated for during the latter part of the growth phase (Figure 6.3D).
Compensation is a consequence of the evolution of inter-colour competition
traits (Figure 6.2F). Population expansion is in turn dependent upon earlier
increases in particle growth rate (Figure 6.2D). Moreover, selection favours
competition traits values for which blue types have no effect on red types:
ainter of blue types is close to zero by generation 5, 000 (Figure 6.2F).

The ability of offspring collectives to correct departures from the optimal



124 Chapter 6. An Ecological Recipe for the Evolution of Collective-level Heredity

colour during the course of growth is akin to a developmental, or canalis-
ing process: irrespective of phenotype of the newborn (which will likely be
different to that of the adult) the child — as it grows to adulthood — de-
velops a phenotype that closely resembles that of the parent. Evidence of
this apparent canalising process can be seen upon removal of collective-level
selection (Figure 6.4). Collectives founded by particles with ancestral traits
become composed of a single (red or blue) colour in less than 10 genera-
tions (Figure 6.4A). In contrast, derived collectives are comprised of particles
whose traits ensure that collectives continue to express phenotypes narrowly
distributed around the optimal (purple) phenotype (as long as mutation is
turned off (Figure 6.4B)). Even when mutation is allowed to drive within-
and between-collective dynamics, stability of phenoytpe holds for more than
200 generations (Appendix 6.3 Figure 6.11).

Figure 6.4: Dynamics of ancestral and derived collectives in the neutral regime. Comparison of the dynamics
of the colour distribution after removing selection (neutral regime). The population of 1, 000 collective is initially
composed of collectives with a colour distribution identical to that at generation 10, 000 in Figure 6.2B. Particle
traits are: (A) as in generation 1 of Figure 6.2; (B) derived after 10,000 generations of collective-level selection
for purple. In both instances, particle mutation was turned off in order to focus on ecological dynamics, otherwise
parameters are the same as in Figure 6.2 A. Appendix 6.3 Figure 6.11 shows the outcome with particle mutation
turned on. The first 10 collective generations are magnified in order to make apparent the initial rapid changes.
The particle traits derived after evolution are such that the majority of collectives maintains a composition close to
the optimum φ̂ even when the selective pressure is removed. This feature is instead rapidly lost in populations of
collectives with the same initial colour, but with particle traits not tuned by evolution.

6.1.3 From particle ecology to collective phenotype
To understand the mechanistic basis of the canalising process, particle traits
must be linked to the evolutionary emergence of collective-level inheritance,
which we define as the capacity of collectives to re-establish the parental
collective colour. Figure 6.5 shows the relationship between the initial colour
of collectives at the moment of birth (the moment immediately following
dilution, t = 0 (the newborn colour)), and collective colour after a single
particle growth cycle (the moment immediately preceding dilution, t = T
(the adult colour)). Figure 6.5A shows this relationship at generation 3 while
Figure 6.5B shows this relationship at generation 9, 000 of the selective regime.
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Figure 6.5: Effect of collective-level selection on newborn-to-adult colour. The adult colour of collectives
as a function of their newborn colour is displayed for collectives of uniformly distributed initial colour. Stochastic
simulations are realized by using particle traits representative of: A) generation 3 and B) generation 9000 (as in
Figure 6.3). Dots indicate the mean adult colour from 50 simulations and its standard deviation. The orange line
depicts the growth function G for the corresponding deterministic approximation (see main text and Appendix 6.4).
The dashed line traces the discrete-time deterministic dynamics of the collective colour, starting from φ = 1

B , and
across cycles of growth and noise-less dilution. For ancestral particle traits (A), collective colour converges towards
the red monochromatic fixed point. After selection for collective colour (B), the growth function is such that the
optimum colour (φ̂) is reliably produced within a single generation for virtually the whole range of possible founding
colour ratios. The latter mechanism ensures efficient correction of alea occurring at birth and during development.

At generation 3, the proportion of red particles increases (within a col-
lective generation), irrespective of the initial proportion. This is because red
particles grow faster than blue and the primary determinant of particle suc-
cess is growth rate (interactions are negligible in exponential growth). Thus,
the only way that purple collectives can be maintained is if the collective phe-
notype is sufficiently noisy, to ensure that some collectives happen by chance
to be purple, due to, for example, stochastic effects at dilution. Even if off-
spring collectives do not resemble their parents, purple colour is maintained
via strong purifying selection that purges collectives that are either too red or
too blue. This mechanism has been referred to as stochastic correction (May-
nard Smith and Szathmary, 1995; Grey et al., 1995; Johnston and Jones,
2015).

This is in marked contrast to the situation at generation 9, 000. After a
single growth cycle, the proportion of red particles increases when the initial
proportion is below, and decreases when it is above the optimal proportion
0.5. Thus at generation 9, 000, irrespective of initial conditions, the adult
colour of any given collective will be closer to φ̂ = 0.5 than it was on founding.
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Accordingly, extreme purifying selection is no longer required to maintain
the parent-offspring relationship. Indeed, offspring collectives return to the
parent phenotype even when the phenotype at birth departs significantly from
the parent (adult) phenotype. This “correction” stems from the ecological
dynamics of the particles and resembles a developmental process. Hereafter
we refer to this correction process as the developmental corrector.

The relationship between newborn and adult colour of collectives shown
in Figure 6.5 can be used to follow the fate of collectives over several cycles
of growth and reproduction, provided the stochastic effects associated with
the dilution phase are momentarily ignored. The iteration using particle trait
values from generation 3 is shown by the dotted line in Figure 6.5A (the adult
colour of a collective is used as the newborn colour for the next cycle, following
a “staircase” geometric procedure). Because red particles grow faster than
blue, it takes just six collective generations for red particles to fix within
collectives. Conversely, after particle trait evolution (Figure 6.5B), the same
staircase approach applied to newborn collectives of any colour shows rapid
convergence to the colour purple (0.5) irrespective of the starting point. The
difference in the relationship between initial and final colour at generation
3 and 9, 000 is evidence of the emergence of a mechanism for developmental
correction.

In order to systematically explore the possible newborn-to-adult colour
map and to understand how it changes through the evolution of particle
traits, we use a deterministic approximation (orange line in Figure 6.5). This
approximation is denoted G or growth function (Appendix 6.4 Definition 1)
and stems from an ordinary differential equation model often referred to as the
competitive Lotka-Volterra system (Appendix 6.4 Equation 6.1). This model
is the limit for vanishing noise of the stochastic particle ecology, and provides
a good approximation of the simulations (Dotted lines in Figure 6.3C-D).
The growth function G captures the outcome of the ecological dynamics (i.e.,
the fraction of red particles) after founding populations are allowed to grow
for a finite time interval T . We note similarity between the G function and
the recently proposed "community-function landscape" (Xie and Shou, 2018).
The shape of G depends on the value of particle traits θ (growth rates r0
and r1, and competition parameters a00 = aintra0 , a10 = ainter0 , a01 = ainter1 ,
a11 = aintra1 ), but also on the bottleneck size at dilution B and the collective
generation duration T . The fixed points of G (i.e., φ such that G(φ) = φ)
are of particular interest: in the deterministic model these represent colours
that are left unchanged during a generation. A fixed point is said stable if the
colours of collectives starting in its neighbourhood all converge to it (φ = 1
in Figure 6.5A, φ = 0.5 in Figure 6.5B), and unstable otherwise (φ = 0 in
Figure 6.5A, φ = 0 and φ = 1 in Figure 6.5B).

Under collective-level selection for colour, T and B are constant and par-
ticle traits evolve so that G eventually has a stable fixed point, corresponding
to the target colour φ̂. Progressive change in shape of the G function across
collective generations in a simulated lineage (Figure 6.2B) is illustrated in Fig-
ure 6.6. Note that these changes are continuous: small mutations in particle
traits reflect as small changes in the shape of G.

The evolutionary trajectory of Figure 6.2B can now be understood in
terms of the progressive evolution of particle traits (see Appendix 6.4 for a
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Figure 6.6: Evolutionary variation of the growth function under collective selection. G function associated
with the resident types for a single lineage of collectives from the simulation of Figure 6.2B, plotted every 20
collective generations from 0 to 9000. The result of iterations of G gradually changes from fixation of the fast
growing particle (Figure 6.7-1) to convergence toward the colour purple (Figure 6.7-4).

detailed description). At the beginning, particles compete mostly during ex-
ponential phase, so that adult colour is biased towards the fast-growing type.
Initial improvement in transmission of colour from parent to offspring arises
as exponential growth rates ri of the particles align. Correspondingly, the G
function approaches linearity. A successive increase in maximal growth rate
separates particle and collective time scales, allowing particles to experience
density-dependent interactions. Eventually, such interactions evolve towards
a regime where the G function is nonlinear and fluctuations are readily com-
pensated, thus developmental correction ensures a reliable colour inheritance.

The G function, which allows characterisation of particle ecology, can now
be used as a guidance to optimize the “life cycle” of growth and dilution that
acts as a scaffold to the evolutionary process. In a typical experiment of
community-level evolution, collective generation duration T and bottleneck
size B are fixed. Some choices of these collective-level parameters are however
likely to lead to collective phenotypes that are so far from the optimum that
collective lineages go extinct under a given selection rule. For instance, if in
the first generation competitive exclusion occurs rapidly, then distinguishing
collectives based on collective colour may be impossible. Intuition suggests
that the closer the fixed point of the G function is to the target colour, the
more efficient will collective-level selection be, and the faster the evolutionary
dynamics. It is thus possible to use the distance between the fixed point of



128 Chapter 6. An Ecological Recipe for the Evolution of Collective-level Heredity

G and the target composition φ̂ as a proxy for the probability that collective
lineages may go extinct before attaining the desired colour. Below, we exam-
ine how the position of the fixed point of G changes as a function of collective
generation duration T and bottleneck size B.

6.1.4 Effect of collective generation duration and
bottleneck size

The growth function G is readily computed from the particle traits and collec-
tive parameters even though it has in general no analytic expression (but see
Appendix 6.4 for limit cases of exponential and saturating particle growth).
There are four possible qualitative shapes of G, that differ in the position
and stability of the fixed points (illustrated in Appendix 6.4 Figure 6.14-1 to
6.14-4).
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Figure 6.7: Stable fixed point of G as a function of collective-level pa-
rameters. Classification of the qualitative shape of the growth function and
dependence on collective parameters B (bottleneck size) and T (growth phase
duration), for the case when particle traits allow coexistence (a01 < a11 and
a10 < a00, r0 > r1, see Appendix 6.4 Figure 6.14 for the other possible cases).
The black line represents the limit of the region of stability of the fixed point of
G, separating the two qualitatively different scenarios illustrated in the inset (see
Appendix 6.4 Proposition 26): for short collective generations and small bottle-
neck size, the faster growing red type competitively excludes the blue type over
multiple collective generations. In order for particle types to coexist over the long
term, growth rate and the initial number of particles must both be large enough
for density-dependent effects to manifest at the time when selection is applied.

The qualitative dependence of G and its fixed points on collective-level
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parameters varies with the underpinning particle ecology, making it easier
for some communities to be starting points for the successful evolution of
inheritance. Particle traits can be classified in four broad classes, based of
the nature of the corresponding ecological equilibrium. For each of theses
classes, and when red particles grow faster than blue r0 > r1, the fixed points
of G are illustrated in Appendix 6.4 Figure 6.14-A to 6.14-D as a function
of the collective-level parameters B and T . Figure 6.7 refers to the relevant
class where inter-colour interaction traits are smaller than the intra-colour
interaction traits. Here, the particle populations converge in the long term to
a coexistence equilibrium, where collective colour is φ∗ = a11−a01

a11−a01+a00−a10
(in

general, different from the optimum). This equilibrium can be approached
within a single collective generation if T and B are large (top right corner).
On the other hand, when T and B are small (red region), the only stable
fixed point are collectives composed solely of fast-growing particles. This
corresponds to cases where individual and collective time scales (quantified
by r−1 and T , respectively) are insufficiently separated, or newborn size is too
small, so that particle demography is essentially exponential and interactions
cannot provide sufficient correction. In order to speed up evolution of purple
colour, thus, the best is for collective generation duration and bottleneck
size to have intermediate values. Knowledge of the exact values requires
however some preliminary measure of the ecological dynamics. Even in the
absence of such information, the diagram in Figure 6.7 can be used to orient
experimental design by revealing intrinsic trade-offs. A decrease in generation
time, necessary for practical reasons, may for instance be compensated by an
increase in bottleneck size, without affecting the average collective phenotype.

Even when collective-level parameters are optimized so that the attractor
of the G function is initially close to the target colour, collective-level selec-
tion will keep acting on the particle traits, and affect phenotypic variability
within the population of collectives. As stability of the fixed point increases,
so does fidelity of phenotype transmission from parent to offspring collectives.
Once collective-level processes are set as to minimize the probability of collec-
tive extinction, the main obstacles to evolving higher inheritance come from
constrains acting on particle traits, that may limit the range of attainable G
functions. Trade-offs on particle ecology indeed may prevent the G function
to attain an internal fixed point. We will discuss two examples on constrained
evolution in the following paragraph.

6.1.5 Constrained trajectories
Thus far we have considered evolution within a four-dimensional parameter
space defined by maximum growth rates and inter-color competition param-
eters. In real systems, however, constrains and trade-offs may limit the range
of achievable variations in particle traits. For instance, even though faster-
growing particles will always experience positive selection, cell replication rate
cannot increase boundlessly. Here we consider two instances of constrained
evolution, where only a subset of particle traits are allowed to mutate.

First, we consider the case where competition parameters are vanishingly
small, so that G has no internal fixed point. Under such conditions, particle
growth rates evolve to be identical (Figure 6.8A). In the absence of interac-
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Figure 6.8: Constrained evolutionary trajectories. Dynamics through time of resident particle traits (black dots,
whose size measures their abundance in the collective population) along simulated evolutionary trajectories of 300
generations, when particle-level parameters are constrained. For both panels D = 1000, φ̂ = 0.5, ρ = 20%, B = 15,
and T = 1. The trajectory of the average resident traits is shown in white. The heatmap represents the value of
G(0.5) as a function of the evolvable traits, and the white dotted line indicates where collective colour is optimum.
A) Particle growth rates evolve and particles do not compete (ainter = aintra = 0). The evolutionary dynamics
leads to alignment of growth rates (r0 = r1). B) Inter-colour competition traits evolve and particle growth rates
are constant (r0 = r1 = 25). The evolutionary dynamics first converge toward the optimality line. In a second
step, asymmetric competition evolves: ainter

1 → 0 and ainter
0 → aintra

0 − aintra
1 . This results in a flatter G function

around the fixed point, providing a faster convergence to optimum colour across collective generations (Appendix
6.4 Figure 6.17). Similar results are obtained for non-identical, but sufficiently high, growth rates.

tions, this is the only available solution to maintain collectives with an equal
number of red and blue type particles. Under these circumstances, G con-
verges to the identity function. In the deterministic approximation, collective
composition remains constant in time, but stochastic fluctuations that cause
colour to deviate from the optimum will be amplified across collective genera-
tions. These deviations are nonetheless corrected in the collective population
by propagating only those collectives whose colour is closest to the optimum.
Such stochastic correction (Maynard Smith and Szathmary, 1995), however,
has a high risk of failure if selection is strong and collective population size
is small.

Second, we consider the case when mutations only affect the two inter-
type competition parameters, while growth rates are held constant (to suf-
ficiently high values, so that particles experience density-dependent effects
in the growth phase). The evolutionary trajectory can be visualized in the
plane of the interaction parameters (a01, a10). Figure 6.8B shows the result
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of a stochastic simulation superimposed to the value of G(0.5). Independent
of the initial values of the interaction parameters, evolution draws the system
to the manifold associated with the optimal proportion φ̂ (white dashed line).
Evolution within this manifold is neutral in the deterministic approximation,
but the presence of stochastic fluctuations drives further improvement of the
fitness landscape. Correction is indeed more efficient and the distribution of
collective phenotypic diversity narrower when the gradient of G in the fixed
point is smaller. The condition on particle traits for the latter to vanish only
depends on the carrying capacities of the two particle types, and corresponds
to the type with smallest carrying capacity having zero interaction rate (see
Appendix 6.4). A similar outcome is observed when, along an evolutionary
trajectory, growth rates stop to influence adult colour 6.2. Developmental
correction thus selects for maximal asymmetry in interactions, whereby one
particle type drives the ecological dynamics of the other type, but is itself
only affected by its own type .

6.2 Discussion

In nature, communities rarely ever qualify as units of selection in the tradi-
tional sense (Lewontin, 1970; Godfrey-Smith, 2009), because communities in
nature rarely manifest heritable variance in fitness. In the laboratory how-
ever, experimenters can exogenously impose (scaffold) Darwinian-like prop-
erties on communities such that they have no choice, but to become units
of selection (Wilson and Sober, 1989; Xie et al., 2019; Black et al., 2019).
This typically involves placement of communities in some kind of container
(pot, test-tube, flask, droplet, etc.) so they are bounded and variation at
the community level is thus discrete. Communities are then allowed time for
individual members to replicate and interact. At the end of the “growth” pe-
riod, community function is assessed based on pre-determined criteria. The
experimenter then effects replication of successful communities while discard-
ing those that under-perform. Replication typically involves transferring a
sample of individuals from a successful community to a new container replete
with a fresh supply of nutrients.

Experimental and theoretical studies demonstrate that artificial selection
on microbial communities results in rapid functional improvement (Swenson
et al., 2000a,b; Goodnight, 2000; Wade, 2016; Xie et al., 2019). This is not
unexpected given that experimental manipulations ensure that communities
engage directly in the process of evolution by (artificial) selection as units
in their own right. However, for such effects to manifest there must exist a
mechanism of community-level inheritance.

Consideration of both the effectiveness of artificial selection and the prob-
lem of heredity led to early recognition that the answer likely lies in inter-
actions (Wilson and Sober, 1989; Swenson et al., 2000a,b; Goodnight, 2000;
Rainey et al., 2017). The intuition stems from the fact that in the absence
of interactions, communities selected to reproduce because of their beneficial
phenotype will likely fail to produce offspring communities with similar func-
tionality. If so, then these communities will be eliminated at the next round.
Consider however, an optimal community in which interactions emerge among
individuals that increase the chance that offspring communities resemble the
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parental type. Such an offspring community will then likely avoid extinction
at the next round: selection at the level of communities is thus expected to
favour the evolution of interactions because inheritance of phenotype is now
the primary determinant of the success of communities (at the community
level). Indeed, simulations of multi-species assemblages have shown that evo-
lution of interaction rates not only improves diversity-dependent fitness, but
also increases collective “heritability”, defined as the capacity of randomly
seeded offspring communities to reach the same dynamical state as their
parents (Ikegami and Hashimoto, 2002; Penn, 2003). Further studies have
stressed the role of the extracellular environment and of specific interaction
networks, pointing out that microscopic constrains can affect the capacity
of communities to participate in evolutionary dynamics at the higher level
(Williams and Lenton, 2007; Xie and Shou, 2018; Xie et al., 2019).

Here, inspired by advances in millifluidics, we have developed a minimal
mechanistic model containing essential ingredients of multi-scale evolution
and within-community competition. We considered collectives composed of
two types of particles (red and blue) that interact by density-dependent com-
petition. By explicitly modelling demographic processes at two levels of or-
ganization, we have obtained mechanistic understanding of how selection on
collective character affects evolution of composing particle traits. Between-
collective selection fuels changes in particle-level traits that feed back to affect
collective phenotype. Selection at the level of communities thus drives the
evolution of interactions among particles to the point where derived commu-
nities, despite stochastic effects associated with sampling at the moment of
birth, give rise to offspring communities that reliably recapitulate the parental
community phenotype. Such is the basis of community-level inheritance. Sig-
nificantly, it has arisen from the simplest of ingredients and marks an impor-
tant initial step in the endogenisation of Darwinian properties: properties
externally imposed stand to become endogenous features of the evolving sys-
tem (Black et al., 2019).

The mechanism by which particles interact to establish community phe-
notype is reminiscent of a development process. We refer to it as the "devel-
opmental corrector". In essence, it is akin to canalisation, a central feature
of development in complex living systems (Buss, 1987), and the basis of in-
heritance (Griesemer, 2002). Developmental correction solves the problem
of implementing specific protocols for mitigating non-heritable variations in
community function (Xie et al., 2019).

The developmental correction can be viewed as an evolutionary refine-
ment of the stochastic corrector mechanism (Maynard Smith and Szathmary,
1995; Grey et al., 1995; Johnston and Jones, 2015). Both the stochastic and
developmental correctors solve the problem of producing enough well-formed
collectives at each successive generation to prevent community-level extinc-
tion. The stochastic corrector mechanism relies on a low-fidelity reproduction
process coupled to high population sizes. Deviations from successful collective
states are corrected by purging collectives that depart significantly from the
optimal collective phenotype. However, in the absence of strong collective-
level selection the optimal community phenotype is rapidly lost. In contrast,
the developmental corrector mechanism ensures that the optimal community
phenotype is maintained without need for hard selection. Regardless of per-
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turbations introduced by demography or low initial particle number, most
collectives reliably reach a successful adult state. In our simulations, we show
that community phenotype is maintained even in the absence of community-
level selection, although ultimately mutational processes affecting particle
dynamics result in eventual loss of the developmental corrector mechanism.

An operationally relevant question concerns the conditions (the initial
state of the population, the nature of the scaffold and of particle-level in-
teractions) for selection on a collective character to result in evolution of
developmental correction. While we did not detail the probability of collec-
tive lineage extinction, it is possible that collectives become monochromatic
before evolution has had time to act on particle traits. In such cases, which
are more likely if particle-level parameters are far from the coexistence equi-
librium, and if time-scales of particle and collective generations are not well
separated, then collective-level evolution will grind to a halt. In all other
cases, provided there are no other evolutionary constraints, selection will
eventually lead the system toward regions of particle parameter space where
the collective phenotype becomes reliably re-established. The efficiency of
this selective process and its transient behaviour depends on collective-level
parameters that control growth and reproduction.

From our models and simulations it is clear that once density-dependent
interactions govern the adult state, then collective-level selection for colour
is promptly effected. This happens provided the intra-collective ecology lasts
long enough for nonlinear effects to curb particle growth. When this is not the
case, for example when the bottleneck at birth is small, or collective-level gen-
eration time too short, evolution of developmental correction will be impeded.
The latter favours rapidly growing particles (Abreu et al., 2019) and offers
little possibility for the evolution of developmental correction. When the eco-
logical attractor within collectives leads to the extinction of one of the two
types, long collective-level generation times are incompatible with the main-
tenance of diversity (van Vliet and Doebeli, 2019). However, in our model,
particle-level evolution changes the nature of the attractor from extinction of
one of the two types to stable coexistence, and concomitantly particle and col-
lective time-scales become separated. Even before developmental correction
becomes established, evolution can transiently rely on stochastic correction
to ensure the maintenance of particle co-existence.

There are two aspects to heredity: resemblance — the extent to which re-
production and development maintain the average offspring phenotype — and
fidelity (or determination) — a measure of its variance (Jacquard, 1983; Bour-
rat, 2017). In our model, resemblance is established once density-dependent
interactions counter the bias toward fast replicating particles: when the G
function has an internal fixed point in φ̂, systematic drift of average col-
lective colour is prevented. The increase in resemblance is associated with
progressive divergence of particle and collective demographic time scales. As
a consequence, the collective phenotype is placed under the control of par-
ticle traits rather than demographic stochasticity. On a longer time scale,
fidelity improves by subsequent changes in interaction parameters under the
constraint that they do not affect average adult colour. The variance of the
phenotype around the optimum is reduced by increasing canalization (flat-
tening of the G function). This is best achieved by a strong asymmetry in the
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competition traits, whereby one type has a logistic, uncoupled, dynamic, and
the second type adjusts its growth to the former’s density. Interestingly, it
is always the type with the lower carrying capacity, regardless of its relative
growth rate, that acts as the driver.

The mechanism of developmental correction is broadly relevant and ex-
tends beyond cells and communities to particles of any kind that happen to
be nested within higher-level self-replicating structures. As such, the mecha-
nism of developmental correction may be relevant to the early stages in each
of the major (egalitarian) evolutionary transitions in individuality (Queller,
1997; Maynard Smith and Szathmary, 1995), where maintenance of particle
types in optimal proportions was likely an essential requirement. For exam-
ple, it is hard to see how protocells cells evolved from lower level components
(Takeuchi and Hogeweg, 2009; Baum and Vetsigian, 2017), chromosomes from
genes (Maynard Smith and Szathmáry, 1993), and the eukaryotic cell from
independent bacterial entities (Martin and Müller, 1998) without some kind
of self-correcting mechanism acting at the collective level.

Beyond these fundamental considerations the mechanism of developmen-
tal correction and the ecological factors underpinning its evolution have im-
portant implications for top-down engineering of microbial communities for
discovery of new chemistries, new functions, and even new organisms. The
minimal recipe involves partitioning communities into discrete packages, pro-
vision of a period of time for cell growth, selective criteria that lead to purging
of sub-optimal collectives and reproduction of optimal collectives to establish
the next generation of collectives. These manipulations are readily achieved
using millifluidic devices that can be engineered to operate in a Turing-like
manner allowing artificial selection on community-level traits across thou-
sands of independent communities. As mentioned above, critical tuneable
parameters beyond number of communities, mode of selection and popula-
tion size, are duration of collective generation time and bottleneck size at the
moment of birth.

The extent to which the conclusions based on our simple abstract model
are generally applicable to the evolution of more complex associations, such
as symbioses leading to new forms of life, will require future exploration
of a broader range of particle-level ecologies. Possibilities to make commu-
nity dynamics more realistic by complexifying mathematical descriptions of
particle-level processes are plentiful (Williams and Lenton, 2007; Zomorrodi
and Segrè, 2016). Of particular interest for the evolution of efficient develop-
mental correction are cases when community ecology has multiple attractors
(Penn and Harvey, 2004), is highly sensitive to initial conditions (Swenson
et al., 2000b), or presents finite-effect mutations sustaining “eco-evolutionary
tunnelling” (Kotil and Vetsigian, 2018). Besides enlarging the spectrum of
possible within-collective interactions, future relevant extensions may explore
the role of physical coupling among particles and of horizontal transmission
between collectives (van Vliet and Doebeli, 2019) in enhancing or hampering
efficient inheritance of collective-level characters.
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6.3 Stochastic Model

This appendix presents an outline for the approximated stochastic simulation of nested population
dynamics described in the main text. We first attend to the case where particle populations are
monomorphic without mutation and then move to consider the role of particle-level mutation.
Full implementation of the model is available as a Python package.

6.3.1 Parameters
First, we list the parameters of the numerical model introduced in the main text. The collective
selection regime is specified by a set of collective-level parameters that are kept constant along
the evolutionary trajectory.

// Parameters
D ← 1000 . Number of collectives
M ← 10, 000 . Number of collective generations
B ← 15 . Bottleneck size
T ← 1.0 . Duration of a collective generation
regime ← selective . Selective or Neutral regime
ρ← 0.2 . Fraction of extinguished collectives
φ∗ ← 0.5 . Optimal collective colour (for selective regime)

Collectives are comprised of two kinds of self-replicating particle (red and blue) that carry a
different set of traits. Traits can mutate (see the mutation section below), and are represented as
global variables.

// Particle traits
// Carried by red particles
r0 . Maximum growth rate
aintra0 . Competition with red particles
ainter0 . Competition with blue particles
// Carried by blue particles
r1 . Maximum growth rate
aintra1 . Competition with blue particles
ainter1 . Competition with red particles

The state variables (DxM matrices) store the adult state of collectives along a trajectory.

// State variables
N0 . number of blue individuals in each collective at each generation
N1 . number of red individuals in each collective at each generation
Φ . proportion of red individuals in each collective at each generation

6.3.2 Initial conditions
Initial conditions consist in defining the number of red and blue particles in each collective at the
beginning of generation 0.

procedure Initial Conditions
x0 ← 0.5 . Initial red-blue ratio
for d from 1 to D do

N0[d, 0]← RandomBinomial(B, x0)
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N1[d, 0]← B −N0[d, 0]

6.3.3 Outline of the main loop
The main loop of the algorithm applies the sequence growth-selection-reproduction for each gen-
eration.

procedure Main loop
for m from 1 to M do

// Particle Growth
for d from 1 to D do

N0[d,m],N1[d,m]← Growth(N0[d,m],N1[d,m], r0, r1, a
intra
0 ainter0 , aintra1 ainter1 )

Φ[d,m]← N1[d,m]/(N0[d,m] + N1[d,m])
// Collective-level selection
parents ← Select_Collectives(Φ[d,m], ρ, φ∗)
// Collective-level reproduction
for d from 1 to D do

N0[d,m+ 1]← RandomBinomial(B,Φ[parents[d],m])
N1[d,m+ 1]← B −N0[d,m+ 1]

6.3.4 Particle-level ecology
The ecological dynamics of particles is expressed by a multi-type birth-death process with a linear
birth rate and a linearly density-dependent death rate. Each type of particle i is characterised
by four traits: colour (ci, red or blue), maximum growth rate ri, and two density-dependent
interaction parameters. Particles of the same colour interact according to aintrai whereas particles
of different colour interact according to ainteri . Interaction terms are in the order of 0.1 and scaled
by a carrying capacity term K. The dynamic is modelled by a continuous-time Markov jump
process with rates:

Each particle of type i . . . With rate. . .
Reproduces (add a particle of type i) ri

Dies (remove a particle of type i) ri

(∑
j δci=cjxja

intra
j K−1 +

∑
j δci 6=cjxja

inter
j K−1

)
Where δi=i = 1 if i = j or 0 if i 6= j. Additionally δi 6=i = 1 if i 6= j or 0 if i = j.
The stochastic trajectory of the system is simulated using a Poissonian approximation used in

the basic τ -leap algorithm (Gillespie, 2001), dt is chosen to be small enough so that population
size never becomes negative.

function growth(n0, n1, r0, r1, a
intra
0 ainter0 , aintra1 ainter1 )

// Stochastic simulation of the population dynamics
while t<T do

birth0 ← RandomPoisson(dt× n0r0)
birth1 ← RandomPoisson(dt× n1r1)
death0 ← RandomPoisson(dt× n0r0(n0a

intra
0 + n1a

inter
1 ))

death1 ← RandomPoisson(dt× n1r1(n0a
inter
0 + n1aintra1 ))

n1 ← n1 + birth1 - death1
n0 ← n0 + birth0 - death0
t ← t + dt

Return n0, n1
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Early tests using an exact stochastic simulation algorithm (Doob-Gillespie SSA, Gillespie
(1976)) did not exhibit qualitative changes in the trajectory, but greatly increased the compu-
tation duration.

6.3.5 Collective-level selection
The collective-level selection phase consists in associating each of the D new collectives from
generation m+ 1 with a single parent at generation m. In the main text we contrast two regimes:
colour-neutral and colour-selective. In both cases a fixed proportion ρ of the collective population
at generation m is marked for extinction. In the neutral regime, collectives to be eliminated are
selected uniformly at random (Appendix 6.3 Figure 6.9A), whereas in the selective regime they are
those that rank the highest in their distance to the optimal colour φ̂ (Appendix 6.3 Figure 6.9B).
Each surviving collective produces offspring. Moreover, the remaining collectives from generation
m+ 1 are generated by a parent chosen uniformly at random from the set of surviving collectives.

Figure 6.9: Collective-level selection regimes. Each ring represents a collective. The blue section
of the ring represents the proportion of blue particles at the adult stage of the collective. Parent and
offspring are linked by a black line. A: One generation of the neutral regime. B: one generation of the
selective regime. In both cases M = 1, D = 40, ρ = 0.4.

function select_collectives(φ, ρ, φ∗, regime)
// Return the indices of the new collectives’ parents
surviving ← empty list . indices of the surviving collectives
reproducing ← empty list . indices of the reproducing collectives
parents ← empty list . indices of the parent collectives
if regime is selective then

threshold ← Percentile((φ− φ∗)2, ρ)
for d from 1 to D do

if (φ[d]− φ∗)2 < threshold then
Add d to surviving

else if regime is neutral then
surviving = RandomMultinomialWithoutReplacement(1...d, n = (1− ρ)D)

// Extinct collectives are replaced by the offspring of a randomly drawn surviving collective
for 1 to D-Length(surviving) do

Add RandomChoice(surviving) to reproducing
// Surviving collectives have at least one offspring, and the population size is kept constant

by additional reproduction events.
parents ← Concatenate(surviving, reproducing)
Return parents
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Other selection procedures can be implemented, such as randomly sampling ρD collectives
with weight based on the colour-deviation to the optimal colour. A non-exhaustive exploration of
other selection rules indicates that the qualitative results of the model are robust to changes in
the selective regime, as long as collectives with an optimal colour are favoured and the collective
population does not go extinct.

Collective reproduction is implemented by seeding an offspring collective with a sample of B
particles drawn according to the proportion of the parent collective. We assume that the final
particle population sizes are big enough so that each reproduction event can be modelled as an
independent binomial sample. Smaller population sizes might require simultaneous multinomial
sampling of all offspring.

6.3.6 Mutation of particle traits
The complete model adds the possibility for particle trait (r, ainter) to mutate. Each collective
contains two variants of each color. Whenever a variant goes extinct, the remaining type is called
the ‘resident’, and a mutant type is created as follows. First, traits of the resident are copied in
one newborn particle, then one of the mutable traits — either the growth rate (r) or the inter-
colour competition trait (ainter) — is chosen at random, and finally a random value is added that
is taken from a uniform distribution over [−ε, ε] (in Figure 6.2, ε = 0.1). Traits are kept positive
by taking the absolute value of the result. This process is in the spirit of adaptive dynamics in
which invasion of a single new mutant is repeatedly assessed in a monomorphic population. We
checked that relaxing this assumption (i.e., allowing more than two types of each colour in each
collective), or waiting for rare mutations to appear did not change the qualitative results. The
pseudo-code outlined above was modified in order to track the trait value of both resident and
mutant types in each collective, rather than having the trait values as global variables.
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Figure 6.10: Example of collective genealogy (Supplement of Figure 6.2) Symbols and colours are
as in Appendix 6.3 Figure 6.9 and extinct lineages are marked transparent. Collective-level parameters
in this simulation areM = 30, D = 20, ρ = 0.1. A. Neutral regime: at the final generation, collectives
are monochromatic and most likely composed of the faster-growing type. B. Selective regime: at the
final generation, collectives contain both red and blue particles.
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Figure 6.11: Particle trait mutations lead to slow loss of optimal collective colour after removal
of collective-level selection. (Supplement of Figure 6.4) Modification of the collective phenotype
distribution when particle traits mutate and no selection for colour is applied, starting from the particle
traits after 10, 000 generations of selection for purple colour (as in Figure 6.4B). Collectives continue
to produce purple offspring for more than 200 generations, before drift of particle traits erodes devel-
opmental correction. In contrast, for the ancestral particle traits lineages become monochromatic in
less than 10 generations (Figure 6.4A).
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6.4 Lotka-Volterra deterministic particle ecology

6.4.1 Model for intra-collective dynamics
The stochastic ecological dynamics of red (N0) and blue (N1) particles within a collective simulated
by the algorithm described in Appendix 6.3 is approximated (see Figure 6.3) by the deterministic
competitive Lotka-Volterra Ordinary Differential Equation:{

dN0
dt = r0N0

(
1− a00

K N0 − a01
K N1

)
dN1
dt = r1N1

(
1− a10

K N0 − a11
K N1

) (6.1)

Here, r = (r0, r1) is the pair of maximal growth rates for red and blue particles. Since
the system is symmetric, we consider only the case where red particles grow faster than blue
particles (r0 > r1). The effect of pairwise competitive interactions between cells are encoded in
the matrix A = (aij)i,j∈{0,1}2 . All competitive interactions are considered harmful or neutral
(0 ≤ aij). No specific mechanism of interaction is assumed so as to explore the space of all
possible interaction intensities, and thus qualitatively different ecological dynamics of the particle
populations. Evolutionary trajectories constrained by particle traits are briefly discussed in the
last section of the Results (main text).

The carrying capacity of a monochromatic collective is K
a00

for red particles and K
a11

for blue
particles. K is a scaling factor for the intensity of pairwise interactions that can be used to rescale
the deterministic system to match the stochastic trajectories. Without loss of generality, we thus
assume that K = 1.

A natural set of alternate coordinates for the system in Equation 6.1 are total population size
N := N0 +N1 and collective colour, defined as the frequency of red individuals x := N0

N . In these
coordinates the deterministic dynamics are the solution to the following ODE.{

dN
dt = Ng(x,N)
dx
dt = x(1− x)h(x,N)

(6.2)

The functions g and h are polynomials in x and N , of coefficients:

Monomial Coefficient in h Monomial Coefficient in g
1 r0 − r1 1 r1
N a11r1 − a01r0 N −a11r1
Nx r1(a10 − a11) + r0(a01 − a00) x r0 − r1

xN r1(2a11 − a10)− r0a01
x2N r0(a01 − a00) + r1(a10 − a11)

Appendix 6.4 Figure 6.12 shows an example of the ODE flow in both coordinate systems. Two
unstable trivial equilibria and a stable coexistence equilibrium are located at the intersection of
the isoclines. Within one collective generation, the dynamics follow such flows for duration T ,
starting from initial conditions on the line N0 = B −N1 (N = B).

Even though Equation 6.1 is more directly related to the individual-based stochastic simulation,
the dynamics of collective colour are understood more easily using Equation 6.2. Therefore, in
the following we will use the latter formulation.

The dynamics of particle types across collective generations are modelled as a piecewise con-
tinuous time change (Appendix 6.4 Figure 6.13), where xm(t) is the fraction of red particles at
time t ∈ [0, T ] during collective generation m.

We focus in particular on the succession Nm(T ), xm(T ) of collective “adult” states at the end
of each successive generation m. In the following we note φm = xm(T ), which is the adult colour
of the collective at the end of the growth phase. At the beginning of each collective generation,
we impose that, regardless of the number of cells in the parent, every collective contains the same
number of cells Nm(0) = B ∈ R∀m. In contrast, the newborn collective colour xm(0) depends
on the colour of the parent. In this deterministic model, we consider that there is no stochastic
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Figure 6.13: Piecewise continuous trajectory. Iterating the deterministic model yields a piecewise
continuous trajectory in the (N0, N1) space. The growth phase (continuous lines) alternates with the
dilution (dotted lines). In (A, B) traits are taken from generation 3 and in (C,D) from generation
9, 000 of the main simulation with selection (Figure 6.2). Successive adult states can be computed
using the Gθ function as a recurrence map (see Figure 6.5 in the main text).
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variation or bias due to sampling at birth, so the collective colour of the newborn is equal to that
of its parent: xm(0) = xm−1(T ) = φm−1. In the first generation (m = 0), the population size is B
in every collective and the fraction of red particles is chosen uniformly at random between 0 and
1.

The proportion of red particles at adult stage φm is obtained from these initial conditions
(B,φm−1) by integrating Equation 6.2. Since these equations are not explicitly solvable, there is
no analytic expression for the result of the transient dynamics. However, having constrained the
initial conditions to a single dimension, the adult colour is a single-valued function of the initial
composition of the collective, defined as follows.

Definition 1 (Growth function):
Given the set of particle traits θ := (r,A) ∈ E := [0,∞)2 × [0,∞)4, the bottleneck size B ∈
(0,∞) and the duration of the growth phase T ∈ (0,∞), the growth function Gθ is defined as the
application that maps an initial proportion of red particles φ to the proportion of red particles after
duration T . Thus, Gθ(φ, T,B) = x(T ), with x(t) is the unique solution to the following Cauchy
problem: 

dN
dt = Ng(x,N)
dx
dt = x(1− x)h(x,N)
N(0) = B

x(0) = φ

(6.3)

To simplify notations in the main text, we set G(φ) = Gθ(φ,B, T ).

6.4.2 Relation with the stochastic evolutionary model
As explained in the main text, the growth function Gθ defines the recurrence relation between the
colour of the newborn offspring and its colour at adulthood. If the reproduction process entails
no stochasticity, the latter also defines the composition of collectives at the next generation. As a
consequence, the iterative application of Gθ approximates the change in time of the adult colour
when a population with a given, fixed, set of parameters and traits is transferred across collective
generations.

The fixed points of this discrete-time system allow understanding and classifcation of be-
haviours observed along stochastic evolutionary trajectories. When mutation rate of particle traits
is sufficiently small and growth rates are not vanishing, collectives approach such fixed points in a
few collective generations by iteration of the Gθ function (Figure 6.5). The evolutionary trajectory
can thus be seen as a succession of fixed points of Gθ. The surface of the fixed points of Gθ as a
function of the particle parameters can be computed numerically, as well as its dependence on the
collective generation duration T and bottleneck size B. A small number of qualitatively different
configurations are possible for the fixed points (illustrated in Appendix 6.4 Figure 6.14 1-4). In
particular, the case in which Gθ possesses an internal, stable fixed point (Appendix 6.4 Figure
6.14) constitutes the optimal solution to constant selection for collective colour, in that it ensures
the highest degree of colour reproducibility, on average, across collective generations.

The parameter values that separate regions with qualitatively different fixed points correspond
to transcritical bifurcations, where one of the monochromatic fixed points changes its stability.
These lines are analytically computed below, thus allowing generalisation of the conclusions drawn
from analysing the representative trajectory of Figure 6.2. In the following, we detail analysis of
how the fixed points of the Gθ function depend on particle- and collective-level parameters.

It is worth stressing here that the deterministic model provides a good quantitative approxima-
tion of the system with particle-level and collective-level stochasticity provided that fluctuations
at both levels are small. This is the case if populations of particles are large (as for instance in the
case of bacterial populations) and if mutations of particle traits are rare and of small magnitude.
However, in the numerical simulations we performed, the conclusions drawn from ensuing analysis
held qualitatively also in the case of large fluctuations.
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Figure 6.14: Qualitative behaviours of the growth function Gθ. Panels 1-4 represent the possible
qualitative shapes, differing in the position and stability of the fixed points, of the growth function
Gθ that approximates the within-collective particle dynamics (orange line in Figure 6.5). 1) φ = 1 is
the only stable fixed point (figure 6.5A), and iteration of the red Gθ function leads to fixation of red
particles. 2) φ = 0 is the only stable fixed point, and iteration of the blue Gθ function leads to fixation
of blue particles. 3) φ = 0 and φ = 1 are two stable fixed points, and iteration of the grey Gθ function
leads to fixation of either red or blue particles depending on initial conditions. 4) φ = 0 and φ = 1
are unstable and there is a stable fixed point between 0 and 1. Iteration of the grey Gθ function leads
to coexistence of both particle types. Panels A-D show that when red particles are the fast growing
types (r0 > r1), the shape of Gθ and the position of its fixed points depend on the collective-level
parameters B (bottleneck size) and T (growth phase duration). Particle interaction traits generically
belong to one of the four intervals A) a01 < a11 and a00 < a10; B) a11 < a01 and a10 < a00; C)
a11 < a01 and a00 < a10 ; D) a01 < a11 and a10 < a00 (qualitative nature of the corresponding
ecological equilibria is indicated in the titles of the panels, see also Appendix 6.4 Table 6.1). Lines
represent the limit of the region of stability of the fixed point of Gθ, as derived by Proposition 26: blue
lines for the "all blue" state φ = 0 and red lines for the "all red" state φ = 1.
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6.4.3 Fixed Points of the Gθ function and their stability
In this paragraph, we list the key properties of the Gθ function, that determine how the asymptotic
collective colour depends on particle and collective parameters. Proofs of the propositions are
provided in the following paragraph.

Proposition 23 (Fixed points of Gθ):
Let θ ∈ E be a set of particle traits, T ∈ (0,∞) the duration of the growth phase and B ∈ (0,∞)
the bottleneck size.

Then, Gθ(0, T, B) = 0, and Gθ(1, T, B) = 1, hence φ = 0 and φ = 1 are fixed point of Gθ
∀θ.

Moreover, if the stability with respect to φ of 0 and 1 is the same, then Gθ has at least one
fixed point φ ∈ (0, 1).

The stability of the monochromatic fixed points with respect to the fraction φ can be numer-
ically assessed. The number and stability of the fixed points as a function of collective-level pa-
rameters B and T are illustrated in Appendix 6.4 Figure 6.14. Four different cases are considered,
corresponding to the four qualitatively different outcomes of particle-level ecology (competitive
exclusion by one or the other type, bistability, coexistence).

The fixed points can be analytically calculated in certain limit cases, corresponding to param-
eter values when within-collective particle dynamics are exponential or saturating.

Proposition 24 (Quasi-exponential growth):
When T is close to 0 and Bamax � 1 with amax = maxij aij the highest element of the
competition matrix A, then Gθ has only two fixed points φ = 0 and φ = 1.

Moreover, the monochromatic fixed point φ = 1, corresponding to a population completely
composed of the (faster) red type of particle, is stable, whereas the fixed point φ = 0, corre-
sponding to a population composed of the slow growing type of particle, is unstable.

Proposition 25 (Saturating growth):
As T → ∞ the fixed points φ∗ of Gθ and their stability correspond to the equilibria x∗ of
Equation 6.1. The following Table 25 lists these equilibria and their stability range.

Red alone Blue alone Coexistence
Equilibrium x∗ 1 0 a11−a01

Tr(A)−CoTr(A)
Stability range a00 < a10 a11 < a01 a11 > a01 and a00 > a10

Here Tr(A) := a00 + a11 is the sum of the diagonal (or trace) of A, and CoTr(A) :=
a10 + a01 denotes the sum of the anti-diagonal elements of A.

By linearising the system in proximity of the fixed points it is possible to find exactly the
bifurcation parameters where one equilibrium changes stability, thus the limit of the region where
there exists an interior fixed point φ∗. The bifurcation values in the space of the collective
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Figure 6.15: Bifurcation diagrams showing the position and stability of the fixed points of Gθ
as a function of the duration of the collective generation T . A-D particle traits are representative
of the scenarios illustrated in Figure 6.7 A-D. Of particular interest is the case illustrated in panel D,
where the Gθ function acquires — for a sufficiently large separation between the particle maximum
division time and the collective generation time — a stable internal fixed point.

parameters T and B delimit the region in Figure 6.7 where the Gθ function has an internal fixed
point.

Even when the fixed point is different from the optimal value φ̂, it can nonetheless provide
a starting point for evolution to optimize collective colour. Extinction of one of the two colours
of particles happens instead very rapidly in the region when the monochromatic fixed points
are stable, so that collectives have a higher risk of being extinct before inheritance-increasing
mutations appear.

Proposition 26 (Bifurcations of the monochromatic fixed points of Gθ):
The stability of 0 changes at (T ∗B , B∗B) and the stability of 1 at (T ∗R, B∗R) such that:

B∗R = e−α1T
∗
R − er0T

∗
R

a00(1− e−α1T∗R)
with α1 = r0r1

a00 − a10

r0a00 − r1a10

B∗B = e−α0T
∗
B − er1T

∗
B

a11(1− e−α0T∗B )
with α0 = r0r1

a11 − a01

r1a11 − r0a01

These results allow understanding of the interplay between time scales of particle-level ecology
and collective reproduction, whose relationship changes along an evolutionary trajectory. Ap-
pendix 6.4 Figure 6.15 illustrates the change of the fixed point of Gθ with the collective generation
duration T for typical particle traits corresponding to the four qualitative classes of asymptotic
equilibria for particle ecology. Of particular relevance for understanding the stochastic trajectory
illustrated in Figure 6.2 is panel D.
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traits. These equilibria correspond to the limit of the fixed points of the Gθ function when particle-
level and collective-level time scales are well separated ( r � 1

T ), derived in proposition 25. Other
interaction parameters are a00 = 0.7 and a11 = 0.8, and the result is independent of growth rates.
The grey area indicates bistability.

When the time scale of exponential particle growth is comparable to T , (such as at the be-
ginning of the evolutionary trajectory displayed in Figure 6.2) Proposition 24 indicates that the
system is expected to converge to an all-red solution (φ = 1 is the only stable equilibrium). How-
ever, when these fast dynamics occur, the growth rates change by mutation. Selection during the
exponential phase generally favours fast growing mutants, which means that particle populations
achieve high-density conditions in a shorter time. The system then effectively behaves as if T had
increased, thus leading selection to ’see’ interaction traits.

When the time scale of collective reproduction is sufficiently slow with respect to the intra-
collective dynamics, the system crosses the bifurcation point T ∗R (Proposition 26), so that the
function Gθ now has an internal fixed point (Figure 6.6). In the stochastic simulations, this means
that more collectives are reproducibly found close to the optimal colour. It takes a relatively short
time to adjust the particle traits so that the fixed point is close to the optimum φ̂. In this case,
the deterministic approximation produces a close to perfect inheritance of the collective colour.
However, fluctuations in particle numbers and in composition at birth still result in a large variance
of colours among collectives in the stochastic system.

Here starts the last and slowest phase of the evolutionary trajectory, which results in colour
variance reduction through improvement of the ability of particles to correct variations in colour.
This is achieved by attaining faster the particle ecological equilibrium, so that fluctuations are
more efficiently dampened by demographic dynamics. As a consequence, the conditions described
by Proposition 25 will be met. This allows identification of a surface in parameter space, where
the fixed point of the Gθ function φ∗ identifies with the ecological equilibrium x∗, that contains
evolutionary equilibria. The ecological equilibrium is displayed in Figure 6.16 as a function of the
cross-colour interaction parameters a01 and a10. In the regime where particle and collective time
scales are well separated (r � 1/T ), then interaction parameters that correspond to the optimal
colour satisfy the following relationship:



148 Chapter 6. An Ecological Recipe for the Evolution of Collective-level Heredity

0 a00 1
a10

0
a11 a00

a11

1

a 0
1

Time

a 1
00

B

a 1
11

a10=0.69

Time

a 1
00

B

a 1
11

a10=0.52

Time

a 1
00

B

a 1
11

a10=0.34

Time

a 1
00

B

a 1
11

a10=0.17

Time

a 1
00

B

a 1
11

a10=0.0

0 a00 a11 a00 1
a10

0

a11

1

a 0
1

Time

a 1
00

B

a 1
11

a01=0.49

Time

a 1
00

B

a 1
11

a01=0.37

Time

a 1
00

B

a 1
11

a01=0.24

Time

a 1
00

B

a 1
11

a01=0.12

Time

a 1
00

B

a 1
11

a01=0.0

Figure 6.17: Asymmetric interaction ensures fastest convergence toward the ecological equi-
librium. Particle population dynamics are illustrated for increasingly asymmetric values of (a01, a10),
keeping the ecological equilibrium fix at x∗ = 0.5 (along white manifold, in the direction of the arrow).
The top panels correspond to cases when the faster-growing particles have a higher carrying capacity
((a00, a11) = (0.7, 0.8)), the bottom panels to the opposite ((a00, a11) = (0.8, 0.5)). In both cases
r0 = 60, r1 = 40, T = 1, B = 0.001.

a00 − a10 +
(

1− 1
x∗

)
(a11 − a01) = 0.

This relation identifies the white dotted line in Appendix 6.4 Figure 6.16 (and in Figure 6.8B).
Once it is attained, mutations cause the deterministic system to move neutrally on this surface.
As the stochastic simulation shows, particle parameters keep evolving directionally so as to reduce
phenotypic variance. This is achieved by making Gθ increasingly flatter in the vicinity of the
fixed point, so that the target colour is not only more stable, but it is reached in fewer collective
generations.

Successive events of mutation and substitution progressively lead to a growing asymmetry in
the ecological relationship between the two types of particles: that with smaller carrying capacity
becomes insensitive to the other colour; the latter instead experiences competition, so that its
growth is curbed and optimal proportion of colours is eventually realized (see Figure 6.3D). As
illustrated by Appendix 6.4 Figure 6.17, this conclusion is independent of what is the maximum
growth rate, that only affects the advantage of one type at initial stages of growth. Indeed, the
position on the intercept between the optimality line and the y axis in Appendix 6.4 Figure 6.16
and Appendix 6.4 Figure 6.17 only depends on the difference between intra-type competition
parameters. A consequence of this is that fast-growing types systematically display, when they
are also those with a larger carrying capacity, a population overshoot.

6.4.4 Proofs
In this section we present the proof of propositions 24 - 26 above.

Proof (Proof of Proposition 23):
In the (N, x) coordinates we have seen that df(t)

dt = g(x(t), N(t)) and that x(t) = 0 and x(t) = 1
are trivial roots of the polynomial g (Equation 6.2). Hence 0 and 1 are always fixed points of Gθ.

Since g and h (from Equation 6.2) are polynomials of (N, x), they are smooth (of Differentia-
bility class C∞) on R2. Thus, the global flow corresponding to the Cauchy problem is also smooth
on R2. Gθ is the partial application of the global flow to the case where N0 = B. Therefore, Gθ
is continuous on [0, 1].
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Moreover, let us suppose that 0 and 1 are both unstable. ThenG′θ(0, T, B) > 1 andG′θ(1, T, B) >
1, with G′θ the derivative of Gθ with respect to its first variable. As a consequence there is an
ε ∈ R such that Gθ(ε, T,B) > ε and Gθ(1 − ε, T,B) < 1 − ε. Since Gθ is continuous, there is at
least one c ∈ [0, 1] such that Gθ(c, T,B) = c by virtue of the intermediate value theorem.

In practice, we never encountered cases when more than one internal fixed point was present.
However multistability is expected to occur if the equations describing particle ecology had higher-
order nonlinearities.

Proof (Proof of Proposition 24):
Since the nonlinear terms in Equation 6.3 are smaller than Bamax, and this is negligible with
respect to 1, particle ecology is approximated by its linearization as long as the population size
remains close to the bottleneck value. Around t = 0, the Cauchy problem can be written as:

dN0
dt = r0Bx
dN1
dt = r1B(1− x)
N0(0) = xB

N1(0) = (1− x)B

In the (N, x) coordinates, the total population size grows exponentially and is decoupled from
the colour. On the other hand, x(t) follows the logistic differential equation:

dx

dt
= d

dt

N0

N0 +N1
= (r0 − r1)x(1− x) (6.4)

which can be integrated.
For T sufficiently small for the population to be in exponential growth phase, the growth map

Gθ can be approximated by the solution G̃θ of Equation 6.4:

Gθ(x, T,B) ≈ 1
1 +

( 1
x − 1

)
e−(r0−r1)T := G̃θ(x, T,B)

This function is strictly convex (or concave) on (0, 1) depending on the sign of r0 − r1:

∂2G̃θ(x, T,B)
∂x2 =

2
[
1− e(r0−r1)t](

xe(r0−r1)t + 1− x
)3

Since 0 < x < 1 and t > 0, ∂
2G̃θ(x,T )
∂x2 is of the same sign as 1−et(r0−r1), that is strictly positive

if r1 > r0, or strictly negative if r0 > r1.
Thus, G̃ is strictly convex on (0, 1) if r1 > r0, and strictly concave on (0, 1) if r0 > r1. In the

first case, red colour x = 0 is an unstable equilibrium and blue colour x = 1 a stable one, and
vice-versa in the second case. Note that the segment s = [(0, 0), (1, 1)] is a chord of G̃. Therefore,
the strictly convex (resp. concave) G̃ do not intersect s except in (0, 0) and (1, 1).

Proof (Proof of Proposition 25):
When the collective generation time T is much longer than the demographic time scale, the
populations within droplets at the adult stage are well approximated by the equilibrium solution
of the Lotka-Volterra Equation 6.1. Solving simultaneously equations dN0

dt = 0 and dN1
dt = 0 (or

equivalently dN
dt = 0, dx

dt = 0) yields the four equilibria listed in table 6.1 in both coordinate
systems. Linear stability analysis allows one to determine the parameter intervals where these are
stable, listed in Appendix 6.4 Table 6.1.
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Name Red alone Blue alone Coexistence Extinction
Position in [N0, N1] [ 1

a00
, 0] [0, 1

a11
] [a11−a01

det(A) ,
a00−a10
det(A) ] [0,0]

Position in [N, f ] [ 1
a00
, 1] [ 1

a11
, 0] [Tr(A)−CoTr(A)

det(A) , a11−a01
Tr(A)−CoTr(A) ] Undefined

Condition for stability a00 < a10 a11 < a01 a11 > a01 and a00 > a10 Never

Table 6.1: Equilibria of the particle populations and their stability. Ecological equilibria of the
Lotka-Volterra system are listed in the two coordinate systems. Here, Tr(A) and CoTr(A) are defined
as in the caption of Table 25.

Proof (Proof of Proposition 26):
We consider the case when the fixed point 0 changes stability. The stability of the fixed point 1
can be studied analogously.

We aim at identifying the values of the collective parameters (T,B) where a fixed point with
x = 0 changes stability through a transcritical bifurcation. The difficulty lies in the fact that one
needs to estimate the dynamics of the second variable N in order to study the stability of the
2-D system. Luckily, this can be done in the limit when the collective contains almost exclusively
particles of one single colour (in this case, blue).

Total population size is in this case decoupled from colour and Equation 6.2 can be integrated
with initial condition (N0x0) = (B, 0), yielding the following trajectory:

Ñ(t, B) = 1
a11 −

(
a11 − 1

B

)
e−r1t

As long as x is small, the time derivative is approximated by the non-autonomous system:
dx

dt
≈ xh(x, Ñ(t, B))

with h as defined in Equation 6.2:

h(0, Ñ(t, B)) = (r0 − r1) + Ñ(t, B)(a11r1 − a01r0)

Solving this equation allows computation of the adult colour as a function of the parameters
T and B. At the bifurcation point (T ∗, B∗), where stability of the 0 fixed point changes, the
newborn colour is the same as the adult colour: x(T ∗, B∗) = x(0, B∗). (T ∗, B∗) are then solutions
of the integral equation:

0 =
∫ T∗

0
h(0, Ñ(s,B∗))ds

0 =(r0 − r1) + (a11r1 − a01r0)
∫ T∗

0
Ñ(s,B∗)ds

0 =T ∗r0

(
1− a01

a11

)
+
(

1− r0

r1

a01

a11

)
ln
(
B∗a11 + e−r1T

∗

B∗a11 + 1

)
Solving for B∗ we get:

B∗ = e−αT
∗ − er0T

∗

a00(1− e−αT∗)
With α = r0r1

a00−a10
r0a00−r1a10

Figure 6.7 shows that this approximation retrieves accurately the numerically computed bifur-
cation lines.



Conclusion

“This account of Darwinism yields a particular picture of the
world. One of the wolrd’s constituents is a great range of
Darwinian populations: paradigm cases and marginal ones,
some clear and other obscures, some powerful and other
suppressed. Some are visible and obvious, other invisible.
Some are inside others. They tread through their Darwinian
behaviors on a great range of different scales in space and
time.”

— Peter Godfrey-Smith, Darwinian Populations and
Natural Selection (2009)

This manuscript aimed to explore the mechanisms by which collectives
of entities might become the subject of evolution by natural selection in

their own right. This objective required definition of a minimal set of prop-
erties a population of entities must exhibit to partake in evolution by natural
selection. These abstract Darwinian properties are the current iteration of
a long-going process of formalising that set apart living beings from inert
matter (Chapter 1). Life is organised in several nested levels that can exhibit
Darwinian properties to a diverse degree. Indeed, Darwinian and non Dar-
winian are not just binary categories, it is possible to formalise a spectrum of
intensity from marginal to paradigmatic Darwinian. Understanding how new
Darwinian levels come to be requires mechanisms that cannot just be reduced
to a simple transfer of Darwinian qualities from the lower to the higher level:
natural selection cannot be invoked as its own cause. One solution to this
apparent difficulty is the exogenous imposition of marginal Darwinian prop-
erties by certain and particular population structures — ecological scaffolding
(Chapter 2).

Ecological scaffolding requires the presence of a nested birth-death pro-
cess: both particles and collectives must have their own intertwined demogra-
phy. This population structure has consequences for neutral diversity. Using
stochastic models of an experimental setup, I showed that the duration of the
collective-level generation as well as the bottleneck size can be tweaked to
optimise the total number of mutations, or other measurements of diversity
(Chapter 3). Moreover, I developed a Bayesian-network approach to help
visualise and interpret collective-level genealogies established in experimental
evolution. This approach can also be used as a tool to plan further, iterative,
experiments (Chapter 4).

Inspired by experimental and theoretical work conducted on the origin
of multicellularity, I used adaptive dynamics to study the trade-off survival-
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reproduction of collectives in nested populations. I illustrated how collective-
level selection can influence the evolutionary dynamics of particles traits.
When I decided to include the demography of collectives within their en-
vironment, I obtained equations with equivalents in classical epidemiological
models, and derived very simple conditions on the minimal niche density that
required by ecological scaffolding (Chapter 5).

Finally, I explored the problem of collective-level heredity when collec-
tives functions are ensured by the presence of two different kinds of organism.
The maintenance of a viable collective composition generation after genera-
tion can be achieved either by producing numerous noisy offspring, some of
which will statistically exhibit the viable composition (stochastic corrector),
or by specific mechanisms (such as particle interactions) ensuring the reliable
re-establishment of the parental state (developmental corrector). I showed
that, within my models, there is an evolutionary path from one to the other.
This constitutes a prime example of ecological scaffolding in the sense that
population structure imposes a marginal level of heredity (noisy offspring),
that can be refined by natural selection into a level-specific developmental
mechanism (Chapter 6).

Overall, I argue that the study of Darwinian properties at different organi-
sational levels, and their potential origin by ecological scaffolding, constitutes
a fruitful entry point in the study of the evolutionary processes. This frame-
work allows formalisation of a wide range of basic questions in the domain of
Major Evolutionary Transitions, from exploring the mechanisms at the origin
of complex integrated structures such as multicellular organisms, to the ori-
gin of life itself. An undeniable strength of this approach is its close relation
to experimental evolution. Observing a major evolutionary transition might
be a daunting task. However, being able to impose in a controlled environ-
ment the conditions that are thought to be necessary to promote them gives
invaluable insight, as illustrated by the many studies cited in this manuscript.

In my opinion, there are many promising directions in which the theo-
retical work presented here could be extended. I present three here. Firstly,
the toy model presented in Chapter 2 could be built upon to try to provide
a mechanistic basis for the quantification of Darwinian properties. Indeed, I
think that there is a need to provide methods to measure and quantify the
dimension of Darwinian space in both experiments and models. Rooting this
method in a mechanistic description of population dynamics would constitute
a solid base for understanding multi-level phenomenon in their complexity.
Secondly, in Chapter 5 I attempted to build an adaptive dynamics treatment
of ecological scaffolding. As outlined in the discussion, my approach is limited
by not taking into account invasion dynamics at the lower level. However,
preliminary computations give me hope that it will be possible to build a
“canonical equation of ecological scaffolding”, that would solve this problem
by altering transition probability at the higher level. Thirdly, I think that the
conditions for ecological scaffolding could be made more precise, both from
the point of view of the nature of the scaffold (number of niches, dispersal
rate, migration mechanisms) and the nature of the internal ecology of collec-
tives (presence of alternative ecological equilibria, time-scale separation with
the higher level). A fascinating example arise when lower-level entities are
not Darwinian, as in the first major evolutionary transition: the origin of life.
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Introduction en Français

Dans ce manuscrit, il est question des mécanismes par lesquels des collectifs
d’entités deviennent sujets à l’évolution par sélection naturelle en tant

que tels. Au préalable, il est nécessaire de rappeler un ensemble d’idées et de
concepts à propos de la structure de ce que l’on appelle le “vivant” et de la
nature des processus évolutifs.

Une observation de sens commun, qui remonte au moins à l’antiquité,
est que “tout change en permanence et rien ne reste en place”. Dans ce
contexte, les systèmes vivants diffèrent des systèmes inertes par la manière
dont ils changent, et par l’organisation qui en résulte. En deux mots: par
des mécanismes et des motifs. Ainsi, la biologie de l’évolution est la science
qui tente simultanément de reconstruire l’histoire du vivant, et de décrire les
règles qui gouvernent sa dynamique sur des temps longs.

Commençons par définir la vie de ce point de vue. Nous considérerons
comme “vivant” tout système qui participe à un type de changements partic-
ulier — une dynamique évolutive particulière. Pour éviter l’écueil du raison-
nement circulaire, il faut définir clairement ce que constitue une dynamique
évolutive “biologique”, c’est-à-dire l’évolution par sélection naturelle. Établir
une “recette pour l’évolution par sélection naturelle” — ou, plus formelle-
ment, un ensemble de conditions minimales qui doivent être vérifiée par une
collection d’objets afin de participer au processus d’évolution par sélection
naturelle — a été au centre de la biologie de l’évolution depuis ses origines
(Godfrey-Smith, 2009). Dans le dernier paragraphe de l’Origine des Espèces,
Darwin (1872) soutient que la diversité du monde vivant est une conséquence
d’une “lutte pour l’existence”, résumée par trois phénomènes clés: “crois-
sance et reproduction”, “héritage” et “variabilité”. Une version moderne de
ces conditions peut être trouvée dans un influent article de Lewontin (1970),
un siècle plus tard. Une population d’entités est dite Darwinienne, et ainsi
constitue une unité d’évolution (ou une unité de sélection, en fonction des
auteurs), si elle présente les propriétés Darwiniennes suivantes:

Variation phénotypique Les entités dans la population sont différentes les
unes des autres.

Reproduction différentielle Les entités sont capables de produire une de-
scendance, et le nombre de leurs descendants dépend de leur phénotype.

Héritabilité phénotypique Le phénotype des descendants ressemble à celui
de leurs parents.

161



162 Bibliography

Un point important de ce paradigme est sa nature abstraite (Okasha,
2006): il se réfère à une collection d’objets et de propriétés sans préciser
leur nature physique, que cela soit en termes de composition chimique ou
de balance énergétique. En particulier, cette définition ne dépend pas de
la génétique: ces premières formulations pré-datent la découverte des lois
de l’hérédité chez les diploïdes (Mendel, 1866) ainsi que de la découverte de
l’ADN comme support de l’hérédité (Watson and Crick, 1953a). Cependant,
ces seules simples idées ont permis de produire une riche diversité de prédic-
tions falsifiables à propos du devenir des systèmes vivants. Avant tout, elles
offrent un mécanisme causal qui explique l’apparent “projet” observé dans
l’organisation des êtres vivants, et pourquoi ils semblent adaptés à leur envi-
ronnement, à leur survie et à leur reproduction: leur caractère téléonomique
(Monod, 1970). Par conséquent, elles apportent une importante contribu-
tion à l’étude de l’émergence de la vie, et de l’apparition de la complexité
biologique dans le système solaire et au-delà. S’il est impossible de prédire la
diversité des formes et des métabolismes que la vie pourrait présenter ailleurs
dans l’univers, il y a de forte chances que celle-ci devrait posséder des carac-
téristiques Darwiniennes pour que nous la reconnaissions comme telle.

Le monde vivant sur Terre est organisé en différents niveaux d’organisation
emboîtés: gènes, chromosomes, cellules, organismes, populations, commu-
nautés. . . Toutes ces entités peuvent manifester les propriétés Darwiniennes
à divers degrés, et donc participer au processus d’évolution par sélection na-
turelle. Les mammifères, par exemple, présentent des variations phénotyp-
iques héritables: sans ambiguïté, ils forment une population Darwinienne.
Cependant, c’est aussi le cas pour leurs cellules. Une difficulté majeure dans
l’étude de l’évolution est de décider (implicitement ou explicitement) quelles
sont les unités d’évolution pertinentes (c’est-à-dire les populations Darwini-
ennes) pour expliquer les phénomènes observés, en particulier quand des con-
flits existent entre niveaux d’organisation (Maynard Smith and Brookfield,
1983). L’apoptose cellulaire ne peut être prédite en considérant la cellule
comme l’entité Darwinienne et nécessite de prendre en compte l’individu dans
son ensemble pour expliquer son origine évolutive. À l’opposé, les lignées de
cellules cancéreuses ne peuvent pas être comprises quand l’individu dans son
ensemble est l’unité Darwinienne, mais sont une conséquence naturelle de la
nature Darwinienne des cellules. La sélection naturelle agit simultanément
sur tous les niveaux d’organisation, Démêler leurs effets respectifs est com-
plexe. Cependant dans la majorité des situations, l’approche fondée sur le
gène, qui considère que les gènes sont la cause ultime des changements (et
que les autres niveaux d’organisation en sont des produits dérivés) donne des
prédictions robustes (Dawkins, 1976).

Une fois que l’on a constaté que la vie était organisée en de nombreux
niveaux emboîtés, la question qui se pose naturellement est celle de leur orig-
ine. Les biologistes de l’évolution appellent l’émergence de ces nouveaux
niveaux des transitions évolutives majeures (Szathmáry and Maynard Smith,
1995) ou transitions évolutives de l’individualité (Buss, 1987; Michod, 2000).
L’émergence des chromosomes à partir de gènes, des cellules eukaryotes à par-
tir d’ancêtres procaryotes et d’organismes multicellulaire à partir de cellules
individuelles en sont des exemples remarquables.

Le problème de l’émergence de la vie et celui des origines des propriétés
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Darwiniennes est essentiellement le même. Bien sûr, une transition de l’individualité
est selon toute vraisemblance plus probable quand le matériau de départ est
une population Darwinienne plutôt que par abiogénèse. En effet, il y a plus de
vingt-cinq exemples connus d’émergence de la multicellularité, mais une seule
origine du vivant. Néanmoins, chaque transition majeure de l’évolution con-
siste en l’émergence d’une nouvelle population “vivante”. Pour illustrer ceci,
prenons l’exemple d’une entité qui présente certaines qualités d’un système
vivant, tel que le métabolisme ou la croissance. Si cette entité est incapable de
se reproduire, elle ne peut pas être considérée comme vivante (Jacob, 1970).
Un tapis bactérien pourrait s’étendre pour recouvrir la majorité de la surface
de la terre, il n’en serait pas pour autant un être vivant en tant que tel. Même
si les cellules qui le composent sont bien vivantes, le collectif ne possède pas la
capacité de produire de nouveaux collectifs qui lui ressemblent — un appareil
téléonomique, au sens de Monod (1970). De manière générale, sans transition
majeure, la vie n’aurait pas beaucoup changé au-delà des systèmes chimiques
auto-réplicatifs primitifs.

Reconnaître que les propriétés Darwiniennes doivent émerger à chaque
niveau d’organisation ne constitue pas pour autant un mécanisme qui en ex-
pliquerait l’origine. Il peut être tentant de considérer que cette émergence
est le fruit d’une adaptation des collectifs. Cependant, la sélection naturelle
à l’échelle des collectifs ne peut pas être invoquée comme en étant la cause
première. En effet, ces mêmes propriétés Darwiniennes sont nécessaires à
l’adaptation par sélection naturelle, (Black et al., 2019). Il est aussi insuffisant
de considérer que les propriétés Darwiniennes des collectifs sont le simple pro-
duit d’un transfert d’un niveau d’organisation au suivant (Griesemer, 2001).
En effet, les processus Darwiniens collectifs font appel à des mécanismes qui
sont qualitativement différent de leur équivalent aux niveaux inférieurs. Par
exemple, la reproduction d’un organisme multicellulaire met en jeu un proces-
sus de développement qui ne peut pas être réduit à une simple reproduction
de cellules. Pour résumer, il nous faut comprendre “comment des propriétés
Darwiniennes peuvent-elles émerger à partir d’entités non-Darwiniennes, et
donc par des moyens non Darwiniens” (Black et al., 2019).

Pour traiter ce problème, ce manuscrit utilise extensivement les outils pour
la description des propriétés Darwiniennes due à Godfrey-Smith (2009), cen-
tré autour de l’idée que les propriétés Darwiniennes peuvent être quantifiées.
Dans ce cadre, une population minimalement Darwinienne est “une collection
d’entités individuelles causalement connectées dans lesquelles on observe une
variation des caractéristiques, qui mène à une différence en succès reproduc-
teur, et qui est héritable dans une certaine mesure”. (Godfrey-Smith, 2009,
p. 39). Ce niveau minimal est partagé par toutes les populations Darwini-
ennes. Un sous-ensemble des populations minimales constitue les populations
paradigmatiques dans lesquelles la dynamique Darwinienne est la plus claire,
et donnant lieu à des structures complexes et adaptées (Godfrey-Smith, 2009,
p. 41). De l’autre côté du spectre, aux limites des populations minimales se
trouvent les populations marginales. Les populations marginales ne possè-
dent pas exactement les propriétés minimales, mais les approximent dans
une certaine mesure. Par conséquent, elles peuvent présenter un comporte-
ment qui ressemblent à celui d’une population minimalement Darwinienne
(Godfrey-Smith, 2009, p. 42). De manière générale, les populations peuvent
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être placées sur un “spectre Darwinien” allant de non-Darwinien, marginal,
minimal jusqu’à paradigmatique.

Cette distinction permet de mieux traiter les difficultés présentées plus
tôt. S’il existe un mécanisme qui permet de promouvoir l’émergence de pro-
priétés Darwiniennes collectives marginales, alors la sélection naturelle peut
être envisagée comme étant le mécanisme de leur évolution future, menant
potentiellement à leur raffinement vers un niveau paradigmatique. S’il n’est
pas possible, comme nous l’avons souligné plus tôt, de considérer que les pro-
priétés Darwiniennes soient simplement transférées d’un niveau à l’autre, un
premier mécanisme qui permet à des collectifs d’obtenir des propriétés Dar-
winiennes marginales est la cooptation de traits d’un niveau inférieur. Par
exemple, chez les algues vertes volvocines, la formation des groupes par adhé-
sion cellulaire co-opte les mécanismes de régulation du cycle cellulaire ances-
tral (Hanschen et al., 2016). De même, les mécanismes ancestraux d’apoptose
sont co-optés pour la fragmentation des amas cellulaires chez la levure “flocon
de neige” issue de la sélection artificielle. (Ratcliff et al., 2012). Cependant,
la co-option de trait n’est pas toujours possible, ou du moins pas dès les
prémisses d’une transition majeure, ce qui complique grandement la tâche.

L’hypothèse principale de ce manuscrit est un second mécanisme qui
permet à des collectifs d’acquérir des propriétés Darwiniennes collectives
marginales, par le résultat d’une contrainte exogène due à l’environnement.
Ce mécanisme porte le nom d’échafaudage écologique (Black et al., 2019). Il
ne nécessite pas de co-option de traits ancestraux à priori, mais est fondé sur
la structure de la population. En effet, sous certaines conditions qui restent
à définir, l’existence de ressources localisées en dèmes et de mécanismes de
dispersion limités entre les dèmes peuvent être suffisants pour imposer des
propriétés Darwiniennes marginales a des collectifs d’individus, sans action
particulière de ces individus. Ainsi, la sélection naturelle peut agir au niveau
des collectifs, promouvant le raffinement de ces propriétés Darwiniennes vers
des niveaux plus paradigmatiques.

Cette thèse constitue ma contribution à la recherche de mécanismes généraux
qui sous-tendent l’émergence de nouveaux niveaux d’organisation à partir
de trois études de cas: la diversité neutre dans les populations emboîtées,
l’émergence de la reproduction dans les organismes multicellulaires prim-
itifs, et l’évolution de l’hérédité au niveau des communautés. Ce travail
est théorique et utilise une diversité d’approches de modélisation, dont des
processus stochastiques, des réseaux Bayésiens et des systèmes dynamiques.
Néanmoins, j’ai tenté autant que possible d’éviter d’en faire un exercice pure-
ment formel: tous les modèles présentés ont été développés en s’inspirant de
systèmes d’évolution expérimentale.
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