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Intégration de Connaissances aux Modèles

Neuronaux pour la Détection de Relations Visuelles

Rares

François Plesse

Résumé

Les données échangées en ligne ont un impact majeur sur les vies de milliards
de personnes et il est crucial de pouvoir les analyser automatiquement pour en
mesurer et ajuster l’impact. L’analyse de ces données repose sur l’apprentissage de
réseaux de neurones profonds, qui obtiennent des résultats à l’état de l’art dans de
nombreux domaines. En particulier, nous nous concentrons sur la compréhension
des intéractions entre les objets ou personnes vivibles dans des images de la vie
quotidienne, nommées relations visuelles.

Pour cette tâche, des réseaux de neurones sont entraînés à minimiser une fonction
d’erreur qui quantifie la différence entre les prédictions du modèle et la vérité terrain
donnée par des annotateurs.

Nous montrons dans un premier temps, que pour la détection de relation vi-
suelles, ces annotations ne couvrent pas l’ensemble des vraies relations et sont, de
façon inhérente au problème, incomplètes. Elle ne sont par ailleurs pas suffisantes
pour entraîner un modèle à reconnaître les relations visuelles peu habituelles.

Dans un deuxième temps, nous intégrons des connaissances sémantiques à ces
réseaux pendant l’apprentissage. Ces connaissances permettent d’obtenir des an-
notations qui correspondent davantage aux relations visibles. En caractérisant la
proximité sémantique entre relations, le modèle apprend ainsi à détecter une rela-
tion peu fréquente à partir d’exemples de relations plus largement annotées.

Enfin, après avoir montré que ces améliorations ne sont pas suffisantes si le
modèle annote les relations sans en distinguer la pertinence, nous combinons des
connaissances aux prédictions du réseau de façon à prioriser les relations les plus
pertinentes.

Mots Clefs

Vision par Ordinateur, Interprétation Sémantique, Apprentissage Pro-
fond, Réseaux de Neurones Convolutifs, Détection de Relations Visuelles,
Biais de Sélection, Connaissances Externes, Modélisation Sémantique,
Pertinence
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Knowledge Integration into Neural Networks for

the purposes of Rare Visual Relation Detection

François Plesse

Short abstract

Data shared throughout the world has a major impact on the lives of billions of
people. It is critical to be able to analyse this data automatically in order to measure
and alter its impact. This analysis is tackled by training deep neural networks, which
have reached competitive results in many domains. In this work, we focus on the
understanding of daily life images, in particular on the interactions between objects
and people that are visible in images, which we call visual relations.

To complete this task, neural networks are trained in a supervised manner. This
involves minimizing an objective function that quantifies how detected relations
differ from annotated ones. Performance of these models thus depends on how
widely and accurately annotations cover the space of visual relations.

However, existing annotations are not sufficient to train neural networks to detect
uncommon relations. Thus we integrate knowledge into neural networks during
the training phase. To do this, we model semantic relationships between visual
relations. This provides a fuzzy set of relations that more accurately represents
visible relations. Using the semantic similarities between relations, the model is
able to learn to detect uncommon relations from similar and more common ones.
However, the improved training does not always translate to improved detections,
because the objective function does not capture the whole relation detection process.
Thus during the inference phase, we combine knowledge to model predictions in
order to predict more relevant relations, aiming to imitate the behaviour of human
observers.

Keywords

Computer Vision, Image Understanding, Deep Learning, Convolutional
Neural Networks, Visual Relation Detection, Human Reporting Bias, Ex-
ternal Knowledge, Semantic Modelling, Relevance
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Intégration de Connaissances aux Modèles

Neuronaux pour la Détection de Relations Visuelles

Rares

Résumé substantiel en Français
Grâce à de récents progrès qui augmentent considérablement la puissance de

calcul, la vitesse de transfert [3] et le stockage de données ainsi que la diminution du
prix des processeurs graphiques (GPU) [1], la quantité de données disponible croît
très rapidement. 400 heures de vidéos étaient envoyées à YouTube chaque minute en
2015 et 300 millions d’images sont envoyées à Facebook chaque jour [4]. Ces données
ont un impact majeur sur la vie de milliards de personnes. Il est par conséquent
crucial de les analyser pour être en mesure de comprendre les changements sociétaux
qui en résultent, de recommander du contenu pertinent ou d’étudier des marchés
potentiels.

Le domaine dédié à l’aggrégation, au traitement et à l’analyse de ces données
est appelé pour ces raisons "Big Data". Nous nous intéressons dans cette étude à
cette dernière, plus particulièrement à l’analyse d’images. Celle-ci repose, de façon
croissante depuis 2012, sur l’utilisation de réseaux de neurones profonds. En effet,
Krizhevsky et al. [72] proposèrent un réseau de neurones, appelé AlexNet, atteignant
une erreur top-5 de 15.3% sur ImageNet [27], 10.8 points inférieure à l’état de l’art.

Cette avancée a suscité de très nombreuses recherches dans le domaine de l’ap-
prentissage profond, pour la recommendation de contenus multimedia [21], la prise de
décision, le marketing en ligne, la traduction automatique, l’extraction de contenu,
etc. De nombreux champs de recherche en explorent l’utilisation pour la décou-
verte d’interaction protéine-protéine [138], la génération de vidéos [20], le contrôle
d’agents capables de jouer à des jeux de plateau, où les humains restaient jusqu’alors
invaincus [129] ou encore de contrôler des voitures autonomes [11]...

Ces dernières avancées apportent par ailleurs une meilleure compréhension du
contenu des images, avec la classification d’images [72], la détection d’objets [118,
120], la réponse aux questions sur des images [39] et la génération de légendes [157].
Toutefois, les tâches nécessitant des raisonnements haut niveau resistent aux mo-
dèles profonds [94]. Des applications telles que l’analyse de contenus provenant de
réseaux sociaux ou la conduite autonomes pourraient bénéficier de telles capacités
de raisonemment. En effet, la reconnaissance d’actions réalisées par des piétons pour
prévoir leur comportement ultérieur nécessite davantage que la détection des objets,
comme illustré sur la Figure 0.0.1. Ces actions peuvent être déterminées notamment
en tenant compte de leurs positions relatives et l’évolution de celles-ci au cours du
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Figure 0.0.1 – La prédiction des futures positions des piétons nécessite de les dé-
tecter, comprendre leurs directions, leurs intéractions avec ce qui les entoure.

temps, ainsi que du contexte de la scène.
Dans cette thèse nous nous concentrons sur la compréhension de ces intérac-

tions entre objets ou personnes présents dans une images, et plus généralement, aux
relations qui les lient.

Definition 0.0.1 Une relation décrit la manière dont deux personnes ou objets sont
connectées ; les effets d’une personne ou d’un objet sur un(e) autre.

Les graphes sont des représentations naturelles de l’ensemble des relations d’une
image, les relations étant les arêtes reliant les noeuds representant les objets visibles
de l’image. Nous proposons donc d’extraire les relations sous la forme d’un graphe
de scène, comme illustré Figure 0.0.2.

L’exécution de cette tâche requiert l’extraction automatique de concepts abs-
traits à partir d’informations visuelles. Les différences d’angle de vue et de contexte,
les possibilités d’occlusion ainsi que les différentes appellations, avec différents ni-
veaux d’information, d’un même objet visuel sont la source d’une grande diversité

Figure 0.0.2 – Image extraite du Visual Genome [71] et le graphe de scène associé.
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de représentations d’un même concept. Cela rend l’extraction de ces concepts diffi-
cile. L’extraction de relations est d’autant plus ardue que leur représentation dépend
non seulement de celles des objets, mais aussi de leurs positions respectives. De plus,
certaines relations sont polysémiques et synonynmiques entre elles, ce qui augmente
la diversité de leurs représentations visuelles.

Dans cette thèse, nous nous intéressons particulièrement à l’extraction de re-
lations par des réseaux de neurones profonds. Ces réseaux sont entraînés par ap-
prentissage supervisé. Celui-ci consiste à optimiser une fonction qui caractérise la
différence entre les prédictions du réseau et des annotations réalisées par des annota-
teurs humains. Les performances de modèles entraînés dépendent ainsi de la qualité
de ces annotations, de leur nombre et de la part de l’espace des possibilités qu’elles
couvrent et de la précision

Nous montrons que les annotations disponibles pour l’apprentissage de modèles
d’extraction de relations ont tendance à être très déséquilibrées. Cela est la consé-
quence de plusieurs phénomènes. Tout d’abord, ce problème est de nature combina-
toire, le nombre de relations possibles dans chaque image augmentant quadratique-
ment par rapport au nombre d’objets présents. Cela rend l’annotation exhaustive
d’images très chronophage. Ainsi, les annotateurs doivent choisir des relations parmi
l’ensemble des relations possibles. Ces choix ne sont pas complètement aléatoires,
car ils dépedent des tailles, distances et positions des objets dans l’image, ainsi que
des types d’objets concernés.

Motivés par ces observations, nous étudions l’impact de ce déséquilibre et mon-
trons qu’il rend l’apprentissage de certaines classes difficile. Il limite par ailleurs
l’évaluation des modèles entraînés, ne rendant pas compte de leur capacité à détec-
ter l’ensemble des relations considérées. Pour y remédier, nous proposons de dimi-
nuer le besoin en exemples annotés en modélisant les relations sémantiques entre les
classes de relations. Cette modélisation permet de caractériser la proximité séman-
tique entre relations et profiter des exemples d’une relation plus largement annotée
pour apprendre à détecter une relation moins bien dotée. Enfin, la détections de
paires d’objets à annoter est un aspect important de la génération du graphe de
scène. Nous proposons d’entraîner un classifieur et de pondérer les scores de rela-
tions par le résultat de ce classifieur, résultat que nous appelons "pertinence" de la
relation. Nous montrons que cela augmente la précision de la détection de relation,
augmentant le nombre de vraies relations pour un faible nombre de prédictions.

Pour évaluer les modèles de détection de relations, nous les comparons sur plu-
sieurs benchmarks : VRD [89], VG-IMP [158] et deux benchmarks que nous propo-
sons, dérivés de Visual Genome [71]. Ceux-si sont notés VG-Large, avec plus de
10 000 classes de relations et VG-RMatters, que nous décrivons plus bas. Nous
considérons deux tâches. La première, la classification de graphes de scène (SGCls),
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consiste à classifier des régions d’une image et de détecter leurs relations. La seconde,
la classification de relations (RelCls) consiste à détecter les relations à partir de
régions déjà dotées de classes d’objets. La métrique utilisée est le rappel@k (R@k),
où k est un nombre fixé de relations par image.

Biais de sélection de relations

Lors d’une première contribution, nous étudions le déséquilibre des classes de
relation dans le benchmark le plus couramment utilisé, Visual Genome [71]. Nous
montrons que ce déséquilibre (i) peut-être relié au processus d’annotation (ii) im-
pacte l’apprentissage du réseau, entraînant un déséquilibre des relations prédites,
très concentrées sur un faible nombre de classes (iii) empêche l’évaluation des mo-
dèles de rendre compte de leurs performances dans le cas général.

Nous proposons un réseau de référence, inspiré par plusieurs travaux [41, 166,
170] qui obtient des résultats compétitifs et permet d’évaluer l’impact de ce dés-
équilibre. L’extraction de relations est réalisée en plusieurs étapes. Un réseau de
neurones convolutif extrait la représentation visuelle de régions correspondant à des
détections d’objets et de paires d’objets. Les boîtes englobant les objets sont par
ailleurs utilisées pour définir un masque binaire correspondant à la région de l’objet
dans l’image, avec la valeur 1 à l’intérieur de la boîte et 0 à l’extérieur. Un nouveau
réseau convolutif extrait ensuite la représentation de la configuration spatiale de
chaque paire d’objet. Enfin, à partir des représentations visuelles des objets, de la
paire d’objet et sa représentation spatiale, quatre branches sont entraînés à prédire
des scores correspondant à chaque relation du vocabulaire.

L’apprentissage du réseau, c’est-à-dire la sélection des paramètres, est réalisé en
optimisant la fonction ci-dessous par descente de gradient stochastique :

θ = arg max
θ
L(θ,D)

= arg max
θ
Lo(θ,D) + Lr(θ,D) (1)

où Lo et Lr sont les fonctions d’erreur pour la classification des objets et relations,
définies par l’entropie croisée entre la sortie du réseau et les annotations d’appren-
tissage.

Enfin, la génération de graphe de scène est réalisée en sélectionnant les k relations
avec le plus grand score, défini par le produit des probabilités de classes d’objets et
de relations.

Evalué sur Visual Genome, nous mettons en évidence que le rappel des classes
plus rares est très faible, et que cela n’est pas reflété dans le rappel global élevé
(88.7%). Nous proposons d’évaluer les modèles sur une métrique supplémentaire :
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le rappel macro par classe, où le rappel est calculé séparément pour chaque classe
puis moyenné. Enfin, nous proposons une nouvelle partition du Visual Genome, VG-
RMatters, qui augmente la diversité de classes. L’extraction de relations sur cette
partition est plus difficile et permet de mieux évaluer les performances des modèles
dédiés à cette tâche. La Table 0.0.1 compare la diversité des relations entre la parti-
tion de Visual Genome la plus courante, VG-IMP, et VG-RMatters. La diversité
de relations est mesurée par la proportion d’exemples de la classe majoritaire ainsi
que l’entropie moyenne des relations par paire de catégories d’objets.

Partition Proportion de la majorité Entropie moyenne

VG-IMP [158] 0.62 0.55
VG-RMatters 0.44 0.68

Table 0.0.1 – Proportion d’exemples de la relation majoritaire et entropie dans
VG-IMP [158] and VG-RMatters pour les 50 paires d’objets les plus fréquentes.
VG-RMatters a une plus grande diversité de relations.

Modélisation sémantique pour l’apprentissage de re-

lations rares

Dans une deuxième contribution, nous relaxons une hypothèse couramment faite
dans l’apprentissage de modèles de détection de relations. Dans de nombreux travaux
récents [58, 84, 154, 158, 164, 166, 170], les relations sont supposées mutuellement ex-
clusives de façon implicite. Ainsi nous proposons plusieurs méthodes pour apprendre
la représentation de relations en considérant leur relations entre elles.

Plus particulièrement, nous entraînons dans un premier temps un réseau dédié
à l’extraction de représentations de relations dans un espace métrique, c’est-à-dire
un espace doté d’une notion de distance. Contrairement aux travaux qui réalisent
l’apprentissage en calculant l’entropie croisée entre deux relations, nous quantifions
l’adéquation entre les prédictions du modèle et les données par la distance entre deux
paires d’objets correspondant à une même relation. Ainsi nous pouvons relaxer les
contraintes imposées au réseau et définir un espace dans lequel les paires d’objets
correspondant à des relations similaires sont proches, comme illustré Figure 0.0.3

Cela nous permet par ailleurs de montrer les limites de la représentation apprise,
car la différence entre deux relations peut-être due à une différence de configuration
spatiales, d’objets, de contexte, etc...

Nous comparons cette méthode à des méthodes utilisant des données textuelles
externes. Pour cela, un réseau de neurones est entraîné à respecter une contrainte
sémantique. Cette contrainte est définie à partir de représentations de mots, et
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(a) Relations similaires (b) Relations spatiales différentes

(c) Actions différentes

Figure 0.0.3 – Représentation t-SNE [141] des relations dans l’espace métrique
appris. Les croix correspondent à des relations de l’ensemble de test ; les cercles
(mois opaques) représentent des relations stockées pendant l’apprentissage. Notre
modèle est capable de regrouper des instances de la même relation, particulièrement
les relations bien séparées, telles que "above" et "below".

quantifie la proximité entre deux classes de relations. Ainsi le modèle est entraîné à
attribuer des probabilités similaires pour des classes apparaissant dans des contextes
similaires. Nous montrons la pertinence de cette approche sur un dataset avec un
très grand nombre de classes de relations, VG-Large et montrons qu’elle permet
d’augmenter le rappel d’une approche de référence de 32%. La Table 0.0.2 résume
ces résultats avec la comparaison de notre approche à deux approche à l’état de l’art
sur deux benchmarks : VG-Large et VG-RMatters.

Pertinence de relations

Dans une dernière contribution, nous faisons l’observation que de nombreuses
paires d’objets sont connectées par des relations non pertinentes, parce qu’elles
sont trop courantes (par ex : un arbre a de l’écorce) ou peu intéressantes, car elles
concernent des objets petits, distants, etc... Par ailleurs, la faible diversité des rela-
tions prédites par les modèles de détection de relation, due au déséquilibre de classes,
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Benchmark Approche RelCls

R@100 R@100 Macro

VG-Large IMP 32.7 -
VG-Large Sémantique (Contribution) 43.4 -

VG-RMatters MotifNet 87.8 46.6
VG-RMatters Sémantique (Contribution) 88.2 50.3

Table 0.0.2 – Résultats avec notre approche de modélisation de relations séman-
tiques. Notre contribution présente le plus d’intérêt, augmentant signficativement le
rappel pour un très grand nombre de classes, tel que VG-Large, et pour les classes
rares, comme pour VG-RMatters.

nous motive à concentrer les prédictions sur les relations pertinentes de l’image, pour
en augmenter la diversité.

La prédiction de la pertinence d’une relation est difficile, car elle dépend de
nombreux facteurs connus (taille, distance, objets ...) et inconnus (liés au processus
d’annotation de l’ensemble d’images, liés à l’annotateur ...). Nous proposons donc
d’utiliser un classifieur de pertinence, correspondant à la probabilité qu’au moins une
relation est annotée. Le score du classifieur est par suite moyenné à un potentiel basé
sur des données statistiques mesurées sur l’ensemble d’apprentissage. Ce potentiel
permet d’utiliser les relations entre variables dans les prédictions du modèle mais
augmente les biais du modèle.

Cette contribution augmente de façon significative le rappel ainsi que le rappel
macro de classe, comme le rapporte la Table 0.0.3

SgCls RelCls

R@20 R@20 R@20 macro

MotifNet [166] 38.0 58.4 19.8

Pertinence (Contribution) 41.0 62.3 23.9

Table 0.0.3 – Résultats avec pertinence de relation sur VG-RMatters. Le rappel
est mesuré sur des graphes de scène avec 20 détections de relation.

VG-RMatters est un benchmark difficle, avec des relations variées pour chaque
paire d’objets. Pour les images de celui-ci, notre modèle est capable de prédire une
plus grande diversité de relations que les modèles à l’état de l’art et d’accroitre le
nombre de vraies relations détectées.
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Conclusion

La détection de relations visuelles est une étape importante pour comprendre
et analyser automatiquement des images. Elle dépend fortement de la qualité de
la répresentation des relations. Celles-ci dépendent de la qualité de représentations
des objets, ainsi que des dépendances entre représentations visuelles, spatiales et
sémantiques. Elles nécessitent donc un grand nombre d’exemples annotés pour les
différencier dans des contextes similaires.

Cependant, la nature combinatoire du problème et le biais de sélection de rela-
tions rendent le nombre d’annotations déséquilibré en faveur d’un faible nombre de
classes. Cela biaise les modèles appris sur ces données et ne permet pas d’évaluer
les performances d’un modèle appliqué à de nouvelles images. Par ailleurs, la faible
quantité d’annotation pour un grand nombre de relations ne permet pas d’apprendre
à détecter ces relations.

Nous proposons une approche permettant d’intégrer des connaissances externes
aux réseaux de neurones profonds, permettant de modéliser les relations entre classes
de relations. Le modèle appris est ainsi capable de séparer les relations dans des ré-
gions prenant en compte ces similarités et d’utiliser un plus grand nombre d’exemples
pour l’apprentissage de chaque classe.

Nous avons par ailleurs montré que la présence de la relation dans l’image n’est
pas la seule information à considérer lors de la génération de graphes de scènes.
Nous proposons d’intégrer la pertinence de cette relation au processus de génération
des graphes de scènes. Ce processus se rapproche ainsi davantage au comportement
humain. Par ailleurs, la diversité des relations prédites dans les graphes ainsi généres
augmente, concentrant les prédictions sur les relations les plus pertinentes. Cela a
pour effet d’augmenter le rappel des classes les plus rares, surpassant les méthodes
à l’état de l’art sur plusieurs datasets.

Ces contributions obtiennent des résulats compétitifs, comme le montre la Table
0.0.4. La modélisation de relations sémantiques est la plus pertinente dans le cas
d’un grand nombre de classes, où chaque classe est très similaire à un grand nombre
d’autres classes, permettant d’apprendre chaque classe à partir d’un nombre d’exemples
beaucoup plus important. Par ailleurs, l’intégration de la pertinence dans la géné-
ration de graphes de scènes est l’approche la plus impactante, soulignant le fait que
les modèles de l’état de l’art ne capturent pas ou peu cette information.
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Benchmark Tâche Etat de l’Art Contribution Résultats Gain

Rappel
VRD-set [89] RelCls R@20 81.9 [165]* Sémantique 80.8 -1%
VG-IMP [158] SGCls R@20 37.6 [166] Semantique 37.2 -1%
VG-IMP [158] RelCls R@20 66.6 [166] Pertinence 66.7 0%

VG-Large RelCls R@50 22.7 [158]** Semantique + 45.2 99%Pertinence
VG-RMatters SGCls R@20 38.0 [166]** Pertinence 41.0 8%
VG-RMatters RelCls R@20 58.4 [166]** Pertinence 62.3 7%

Rappel Macro
VG-IMP [158] RelCls R@100 37.9 [166] Pertinence 44.4 17%
VG-RMatters RelCls R@20 46.6 [166]** Pertinence 52.6 13%

Table 0.0.4 – Principaux résultats de la thèse. * sont des réimplémentations et
** sont calculées avec des implémentations mise à disposition par les auteurs. La
modélisation de relations sémantiques est la plus pertinente dans le cas d’un grand
nombre de classes. L’intégration de la pertinence dans la génération de graphes de
scènes est l’approche la plus impactante dans la majorité des cas. Cela souligne le
fait que les modèles de l’état de l’art ne capturent pas ou peu cette information.



Knowledge Integration into Neural Networks for

the purposes of Rare Visual Relation Detection

François Plesse

Abstract

Thanks to recent advances in computational power with a steep decrease in the
price of Graphical Processing Units and increase in computations per second, data
transfer speeds and data storage, more and more data is available. 400 hundred
hours of video were uploaded to YouTube every minute in 2015 and 300 million
images to Facebook every day. This data has a major impact on the day to day
lives of billions of people, and it is critical to understand it in order to comprehend
social changes, to recommend relevant content or recognize market opportunities.
However, the amount of data makes it impossible for humans to manually extract
information out of this content.

This thesis focuses on the automatic analysis of images. Recent advances in
object detection have resulted in a sky-rocketting number of applications that rely
on understanding the content of an image. However, a thorough comprehension
of image content demands a complex grasp of the interactions that may occur in
the natural world. The key issue is to describe the visual relations between visible
objects. We tackle here the detection of such relations. We call this task Visual
Relation Detection (VRD). Many existing methods tackle this task by training
deep neural networks with annotated images. This approach is hindered by the gap
between visual and semantic representations, whereby visual and spatial represen-
tations of one relation have high variability. Indeed these representations depend
on the angle of view of the image, the context, lighting and especially the objects
involved in the relation. Additionally, synonymy and polysemy of relations increases
this variability.

In light of these issues, we argue that visual information is not sufficient to
learn to discriminate between relations. By considering the additional knowledge
of relation similarities and focusing on relevant relations, they can be alleviated.
Specifically, the major contributions of this work are as follow:

— Human reporting bias in VRD datasets: We show that VRD datasets
have exploitable biases that are not apparent due to the used evaluation met-
rics. These biases come mostly from a high imbalance in available annotated
examples, and a high dependency between objects involved in the relation
and the corresponding relation class. We show how this impacts the detec-
tions of a competitive baseline and propose a metric as well as a new dataset

13
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to better evaluate the performance of existing methods.
— Overcoming Relation Imbalance with Semantic Modelling: a VRD

model is trained so that relations that are similar have similar probabilities.
Two methods are proposed: the first method relies on a k Nearest Neighbor
approach to train a deep neural network, in order to improve uncommon re-
lation classification and take into account the structure of relations. For the
second, the standard supervision is augmented with additional constraints
from text data, in order to reduce the model bias and increase model gener-
alization.

— Relations Relevance: A new scene graph construction method is intro-
duced, integrating a learnt relevance criterion. In the absence of annotations
for this criterion, two methods are proposed in order to focus on object pairs
frequently related in similar contexts. The first relies on self-supervision and
the second on high-level dependencies between concepts. The impact of these
methods is analyzed showing that the constructed scene graphs contain more
uncommon relations while keeping a high overall recall and thus reduces the
impact of the reporting bias. Furthermore, we find that this additional factor
allows our model to predict relations on fewer and more relevant object pairs.
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1.1 Motivation

Thanks to recent advances in computational power, with a steep decrease in the
price of Graphical Processing Units (GPUs) [1], in data transfer speeds [3] and data
storage, more and more data is available. For instance, four hundred hours of video
were uploaded to YouTube every minute in 2015 and 300 million images to Facebook
every day [4]. This data has a major impact on the day to day lives of billions of
people, and it is critical to understand it in order to comprehend social changes, to
recommend relevant content [21] or recognize market opportunities.

Thus deep learning models have been adopted in many different sectors, such
as recommendations for multimedia services or electronic stores. They are also
increasingly used for decision making, online marketing, automatic translation, con-
tent extraction. Many research fields explore their use for protein-protein interaction
[138], video generation [20], agents able to play games [129], to control self-driving
cars [11] and so on.

However, these models present several noticeable flaws. Indeed, deep learning
models are much less efficient at generalization and learning complex rules than
humans, as shown in [76, 77], requiring hundreds of labeled examples to learn new
concepts. In [94], Marcus shows that models trained by reinforcement learning have
a very shallow understanding of the space with which the agent interacts. After
being trained for several hundred hours on a single game, their performance can
be thoroughly undermined with small perturbations. Furthermore, when it comes
to text understanding, recurrent neural networks do not adapt well to differences
in test and training test that require compositional skills. This is in part due to
the representation of sentences as word sequences whereas language is intrinsically
hierarchically structured, as argued by linguist Noam Chomsky [19].

These limitations are symptoms of the fact that deep learning models are very
good at finding correlations between variables, whether these variables are features
of images, text documents or sound... However, these correlations are not always
always related causally, i.e. one variable is not the cause of the other and vice
versa. For example, Ribeiro et al. [121] show evidence that, when trained on a
small dataset with pictures of wolves and huskies, the wolf classifier only learns
to detect snow. Features associated with snow textures are the most statistically
distinguishing feature but this relationship is not causal.

Furthermore, recent studies [31, 45] suggest that some non-causal relationships
learnt by deep learning models arise from a phenomenon whereby models latch on
high-frequency information. They show that a model is able to recognize images
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passed through a high-pass filter, recognizing images that are nearly invisible to
humans. This makes it sensitive to additive high-frequency noise, which explains
why adversarial examples are so efficient at fooling deep neural networks.

The latter limitations can be tackled by adversarial training, while the former,
i.e. learning spurious correlations between low-frequency features, mainly have im-
plications in specific settings. Such settings tend to have small datasets or strongly
differing training and testing distributions (e.g. if all wolves in train are in snowy
contexts but not in test). With the advent of large datasets such as ImageNet
[27] and transfer learning techniques [106], the drawbacks of small datasets can be
mitigated. Many solutions have been proposed accordingly, on the one hand by
integrating external knowledge, in the form of class attributes for zero-shot learn-
ing [78, 108, 155] and on the other hand by bringing together symbolic and neural
modelling. The latter works involve discrete operations with neural models [101],
use a combination of reinforcement learning that learns to translate sentences into
symbolic programs and supervised learning to learn scene representations [92] for
Visual Question Answering.

Thus, despite large strides in image understanding with tasks such as image
classification and object detection, neural models perform poorly at tasks that do
not only require recognition but also higher level reasoning [94]. Applications such
as autonomous driving and social media analysis for purposes of epidemiology or
market analysis could benefit such reasoning. To recognize the action in which
pedestrians are engaged in, or how many people are smoking in a picture, one needs
not only detect all visible objects but also how they interact. These interactions
depend on the relative positions of objects and people and their respective parts, as
well as the context around them.

1.2 Basic Concepts and Issues related to Visual Re-

lation Detection

Let us introduce several basic concepts on which this work is based.

Definition 1.2.1 A concept is a general and abstract idea of a concrete or abstract
object made by a human mind, allowing it to connect to it perceptions and organize
knowledge.

This definition adapted from Larousse Dictionary underlines the important con-
nection between perception and knowledge that are necessary to understand the



Basic Concepts and Issues related to Visual Relation Detection 27

world. Concepts can be partitioned in several categories: objects, actions, scenes
and so on, as shown in Figure 1.2.1.

Figure 1.2.1 – Several types of concepts may be extracted from one image. Here:
objects: man, frisbee, actions: throwing frisbee, scene: outdoor sports.

The detection of a type of high-level concepts which describes interactions, rel-
ative spatial configurations and possession, which we call relations, is the object of
this dissertation.

Definition 1.2.2 A relation describes the way in which two people or things are
connected; the effect of a person/thing on another.

Relations are the description of how objects interact, thus graphs are natural
representations of these high-level concepts. Hence, we propose to extract such
relations from still images in the form of scene graphs. Scene graphs are graphs
comprised of object nodes, representing objects visible in the image and relation-
ship edges, representing true relationships between the objects of the image. Two
examples of such graphs are represented in Figure 1.2.2.

Tackling this task requires the automatic extraction of concepts from visual
information. As mentioned in [6], this raises the problem of the semantic gap, which
characterizes the differences between a concept and its representations in different
modalities. Visual representations of a concept have high variability due to multiple
factors: membership to different sub-concepts, angle of view, occlusion, context,
lighting and so on. This is especially true when it comes to the relations between
objects because their representations vary depending on perspective and especially
depend on the involved objects.
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Figure 1.2.2 – Two images from Visual Genome [71] and their respective annotated
scene graphs.

Figures 1.2.3 and 1.2.4 show how this gap manifests for spatial relations (e.g.
on the left of ) (resp. actions (e.g. fish in)) with different viewpoints (resp. differ-
ent object pairs). In these examples the underlying relation concept remains the
same while both low level visual representation and spatial configurations are very
different.

This semantic gap manifests in a second way as shown in Figure 1.2.5 due to the
polysemy of relations.

Definition 1.2.3 Polysemy is the phenomenon whereby a single word form is as-
sociated with two or several related senses.

Polysemy of relations increases this gap by increasing the variability of the visual
representation of relations. For example, with relation "in", the shape of the object
one is "in" will imply very different spatial configurations as illustrated in Figure
1.2.5.
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(a) parking meter on the left of skier (b) boy in red on the left of boy in black

Figure 1.2.3 – Relation "on the left of " for different viewpoints, i.e. where the
photographer is behind the object pair (a) or in front of the object pair (b). The
spatial configuration of the relation depends on the of position of the photographer
relative to the objects.

(a) person fishing in sea (b) bear fishing in river

Figure 1.2.4 – Relation "fish in" for different object pairs. The visual representation
of one relation is highly influenced by that of the involved objects.

(a) dog in car (b) dog in shirt (c) woman in hat (d) woman wearing hat

Figure 1.2.5 – On the one hand, a polysemous relation can have several meanings
and thus have a high intra-variability, as in (a), (b) and (c). On the other hand,
in several contexts, different relations can have the same meaning and have similar
visual representations, as in (c) and (d): they are synonymous.

Definition 1.2.4 Synonymy is the phenomenon whereby two different words are
associated with the same sense.

Synonymy does not participate in the semantic gap but increases the confusion
between relations and directly ties into the problem of polysemy as relations can be
synonymous in some contexts and have different meanings in others. For example
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the relation "in" in dog in shirt is synonymous to "wear". However with the pair
(dog, car), this synonymy does not hold anymore.

1.3 Problem statement

Having defined these concepts, we formally define the task of Visual Relation
Detection. We consider the problem of scene graph labelling, i.e. of defining a
function that takes as input a real valued image and outputs a scene graph with
labeled nodes and edges. Let f be a graph labelling function

f : RhI×wI → Seq({0, 1}nC)× Seq({0, 1}nR) (1.1)

where Seq(X) denotes the spaces of finite sequences in X and hI and wI are the
dimensions of input images. The number of object and relations classes are referred
to as nC and nR, respectively.

Given an image I,

f : I 7→ ({v1, . . . ,vn}, {e1,1, . . . , en,n−1}) (1.2)

is a labeling of I and for all i ∈ [1 . . . n] and k ∈ [1 . . . nC]

vi,k =

1 if ck is a label for object i

0 otherwise.
(1.3)

and for all h, t ∈ [1 . . . n], h 6= t, k ∈ [1 . . . nR]

eh→t,k =

1 if rk is a label for edge (h, t)

0 otherwise.
(1.4)

This allows the mapping to assign multiple labels to one node or edge leading to
a multi-label classification. We make this choice because several relations may be
true for one pair of objects, especially spatial relations and actions, or different
compatible actions as in Figure 1.3.1.

Furthermore, for each object pair (h, t), one relation may be true without being
annotated by a human. Thus we propose to distinguish two tasks, with different
challenges, which we explore in depth in this work:

1. Relevance Classification is the task consisting in predicting whether at
least one relation is annotated, i.e. there exists k ∈ [1 . . . nR] such that
eh→t,k = 1
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2. Relation Classification consists in predicting what relation is true, given
that at least one is annotated

Figure 1.3.1 – Image example from Visual Genome [71]. Several relations are true
between the selected objects: (person, right of, frisbee), (person, holding, frisbee),
(person, throwing, frisbee), (person, with, frisbee)...

1.4 Report Outline and Contributions

The obstacles presented in Section 1.2 and Chapter 3 are the main motivation
for the contributions of this work, summarized as follows.

— In a first Chapter, we study how several limitations of Deep Neural Net-
works impact these networks and how they pertain to the issues related to
VRD. Then we show how they can be tackled and how they can be applied
in the context of VRD.

— In a second Chapter, we show some limitations to existing VRD methods.
We show that, due to the human reporting bias, the evaluation of the loss
function does not accurately represent the true relation distribution and thus
models do not generalize to new images. Furthermore, we show that the loss
function does not correlate with performance on the target metric. Finally,
having shown that evaluation of existing models on imbalanced datasets does
not completely capture their performance, we propose a new metric and a new
split of the most studied VRD dataset, in order to highlight these limitations.
The definition of this split has been submitted to WACV 2020.

— The foremost limitation is the poor performance of the detection of rarer
relations, which we tackle in a third Chapter by modelling semantic re-
lationships between relation classes. We integrate semantic knowledge into
the network during the training phase in order to improve the accuracy of
the relation distribution estimation. We propose two methods for modelling
semantic relations, which respectively bring a 13% and 33% relative increase
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in recall averaged over classes (resp. images). These results have been pre-
sented in two separate publications [113, 114] and in an extended publication
submitted to MTAP 2019.

— Finally, in a fourth Chapter, we show that the scene graph generation pro-
cess is critical to the performance of our VRD model. Knowledge is here
combined to the model predictions during inference, in order to tackle prob-
lems that are not captured by the training objective. Introducing a new
relevance classifier, we can significantly increase the recall of relations, espe-
cially that of rarer relations, increasing the recall averaged over all classes by
13%. This contribution was introduced in our publication [113] and further
proof of its impact is shown in our work submitted to WACV 2020.
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This chapter consists of a survey of the Visual Relation Detection (VRD) field.
However, this is a very young field, therefore many existing methods that have
been proposed in related fields such as object detection, image classification, few-
shot learning, have not been applied to VRD. As all VRD competitive methods
make use of Deep Neural Networks. Before diving into this task, we give a broader
introduction of the training process of Deep Neural Networks and present some of
these methods.

2.1 Neural Networks

Our goal is to extract from a still image a scene graph. To achieve this, we aim
to define an image labeling function that takes as input any image and outputs this
scene graph. This function can then be evaluated by several measures, such as the
fraction of true relations in the output graph, the fractions of true relations in the
image that are present in the graph and so on.

This task is part of a greater set of problems which can be described as finding
a mapping f : X → Y between an input vector space X of dimension din and an
output space Y . This mapping should satisfy a set of constraints. For example,
in the case of VRD, the input space X is the set of possible images, Y the set of
possible scene graphs.

Constraints on f would be that for each I in X and (o1, r, o2) in f(I), objects o1

and o2 are present in I and the relationship triplet (o1, r, o2) is true. In this work, we
consider relations between detected objects. Thus a relation between two objects is
true if and only if

1. both objects are correctly classified

2. the relation between the objects holds true

2.1.1 Definition

When considering tasks such as image or text understanding, input and output
spaces have several thousand dimensions. For images, this is due to the number of
pixels and for texts, to the number of possible word combinations. In recent years,
both the quantity of available data and computational power has increased very
rapidly, making supervised learning approaches competitive in the task of deriving
such mappings. These methods are based on training parametric models with an-
notated data so that the models are able to reliably predict labels for unanotated
data.
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Supervised Learning LetD, a dataset comprised of input pairs {(x1, y1), . . . , (xn, yn)}
where for each i ∈ [1 . . . n], (xi, yi) ∼ p is drawn independently and identically dis-
tributed with a distribution p : (X, Y )→ R+.

Supervised learning is a subset of Machine Learning algorithms. The aim of
these algorithms is to find a mapping over a specified space of mappings F that best
fits the training data. The space F is defined as {fθ| θ ∈ Rd}: a set of parametric
functions, parameterized by a vector of parameters θ.

For this, an objective function φ is defined to quantify the fit between a given
sample (xi, yi) ∈ D and the output ỹi = f ∗(xi). Thus f ∗ is defined as

f ∗ = arg min
f∈F

E(x,y)∼p[φ(f(x), y)] (2.1)

The search of this mapping is called training. As mentioned in [53], this makes train-
ing models different from optimization problems, where the performance measure is
directly optimized. In contrast, neural networks are evaluated on another metricM .
However, its optimization is usually not tractable, which is why a different object
function is optimized, in the hope that it improves M .

In Equation 2.1, the mapping is defined as the function that minimizes the risk.
In practice, this expectation is usually not available so the experimental risk is
optimized instead:

f ∗ = arg min
f∈F

1

n

∑
(x,y)∈D

φ(f(x), y) (2.2)

While the standard error of this estimation is equal to σ√
n
where σ is the standard

deviation of {φ(f(x), y)}(x,y)∈D and decreases with the number of examples n, the
computation of the gradient for equation 2.2 is linear with respect to n. in D. For
very large datasets, this becomes intractable and thus motivates the use of Stochastic
Gradient Descent [67, 122], where the gradient of the function is estimated using a
sample of the training set, called a minibatch.

Finally, the training process differs from the optimization process because of
early stopping. Since the objective function is different from the target metric, an
additional criterion is used to select a stopping point for the optimization process,
typically evaluating the target metric M on a validation set defined beforehand.

As most competitive methods that tackle computer vision tasks, VRD included,
are based on Neural Networks, we study in this section this class of mappings. They
do not require to manually define a representation of the input data but instead
directly use its raw representation. can be defined as the composition of a number of
parametric functions such as affine functions and activation functions as illustrated
on Figure 2.1.1. From this, we can define:
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Inputs
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Figure 2.1.1 – Schema of Neural Network with two layers, taking a 6-dimensional
input and outputting a two-dimensional vector. Each layer is defined as the compo-
sition of a parametric and activation function. Here both parametric functions are
affine functions summing a weighted sum of inputs and a bias. They are followed
by one activation function.

A Neural Network is a parametric mapping f defined as the composition of
parametric functions and activation functions optimized to minimize an experimen-
tal risk on a set of inputs.

2.1.2 Classifiers

We specifically focus on the task of classifing inputs (e.g. images) into a set
of classes Y = {1, . . . , nc}. Thus we consider classifiers, i.e. a class of mappings
from a vector space X to a discrete finite space. To use Deep Neural Networks as
classifiers, they are usually defined such that an intermediate representation of the
input, noted x′, is extracted. Then the last layer of the neural network is set as the
affine function:

x′ → ỹ = W · x′ + b (2.3)

where W ∈ Rd′×nc and d′ is the dimension of x′. The conditional probability of class
i is then computed with the softmax function

q(y = i|θ, x) =
exp ỹi∑nc

k=1 exp ỹk
(2.4)
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where θ is the set of parameters. The model parameters are then defined as the
parameters maximizing the log likelihood function:

θ∗ = arg max
∑

(x,y)∈D

log q(y|θ, x) (2.5)

= arg max
∑

(x,y)∈D

nc∑
j=1

p(y = j|x) log q(y = j|θ, x) (2.6)

= arg max−H(p, q) (2.7)

= arg minH(p, q) (2.8)

where H is the cross-entropy function.

2.1.3 Convolutional Neural Networks

Having defined how the output distribution is extracted, we now study how the
intermediate representation is extracted. In this work, where the input is an im-
age, this representation is extracted by convolutional layers. Indeed, Convolutional
Neural Networks have reached competitive results when processing images, due to
several properties which we explain after describing how these layers process inputs.

Convolutional Neural Networks (CNNs) are a class of neural networks where
the parametric function are kernels which are convoluted over their input. Let f a
convolution layer.

f(I)(i, j) =
∑
m

∑
n

I(i−m, i− n)K(m,n) (2.9)

where K is a two-dimensional kernel.
As mentioned in [53], the motivation behind these convolutional layers is inter-

action sparsity, parameter sharing and representation equivariance to trans-
lation. The first refers to the smaller size of the kernel when compared to the input,
decreasing the number of parameters and the number of operations. The second
refers to the sharing of parameters between different image positions. Contrary to
feed-forward layers, the output of a single channel is parameterized by a single kernel
for all image locations. Finally, equivariance to translation means that if the input
is translated by a given amount, then the output is translated by the same amount.

Thus these networks are efficient with respect to the number of used parameters
and are well adapted to large grid-structured inputs which is why they are very
widely-used for image processing tasks.
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2.1.4 Object detection

Object Detection is the first step towards VRD, as it is required to define the
nodes in the image scene graph. An object detector is a mapping from an image
input space X into the set of finite object sequences Y = Seq(R4 × C), where for
each y = (b, c) ∈ Y , b corresponds to the coordinates of the object bounding box
and c is in C = {0, 1, . . . , nc}, a finite set of object classes.

Finding a mapping that minimizes a given objective function is a task that can
not be solved by the same architectures as image classifiers as the number of outputs
changes depending on the input. A naive approach would rely on first extracting
a set of regions of interest then processing each part of the image bounded by a
box and classify the presence of an object. However, this process is inefficient in
computation time as well as memory as the number of necessary proposals to obtain
a high detection score would be too high.

Regions with CNN features (R-CNN) To bypass this problem, Girshick et
al. [48] proposed R-CNN, a model taking as input a set of 2,000 region proposals
extracted with Selective Search [140], which extracts a representation of each region
by passing them through a pre-trained CNN, and taking the output of a dense layer,
then classifying each one using binary SVMs. Furthermore, a linear regression is
trained to predict more accurate bounding box coordinates. The main drawback of
this method are the processing of a high number of regions of interest by a neural
network, resulting in a 47s average processing time per image.

Fast R-CNN This drawback is addressed by Girshick et al. [47] with the Fast
R-CNN model. It is able to extract a representation of each region proposal by
processing the image once using ROI-pooling with the same region proposals as in
[48]. ROI-pooling consists of extracting a fixed-sized grid representation of each
region proposal, by pooling the maximum value at each grid location. Since the
ROI-Pooling operation is differentiable, the network can be trained from end-to-
end, after a pre-training, which allows Fast R-CNN to outperform R-CNN from
62.4 to 65.7 mean Average Precision (mAP) on VOC 2012 [32] while decreasing the
processing time from 47s to 2.3s per image at test time.

Faster R-CNN The last method has two drawbacks: the region proposal method
is still separated from the object detection model, which makes errors at the proposal
level impossible to correct. Furthermore, most of the processing time comes from the
high number of region proposals of Fast R-CNN (2,000). Instead of using Selective
Search, Ren et al. [120] define a sub-network called RPN (Region Proposal Network).
A grid is defined over the extracted feature map of the image with a set of 9 anchors
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at each point of the grid. After removing duplicate detections with Non Maximum
Suppression (NMS), the number of region proposals is decreased to 300. They then
define an error function to evalutate the quality of each object region detection used
to update the model parameters. For each selected anchor, an objectness score and
bounding box coordinates are output by a softmax classifier and the same regressor
as in Fast R-CNN. The object detection is then used witht the same network as
in Fast R-CNN, sharing convolutional layers with the RPN. With their proposed
training procedure, the mAP increases from 65.7% to 67.0% without additional
training data, and 75.9% with pre-training on MS COCO and Pascal VOC 07 [32],
with a decreased processing time of 0.2s per image [120].

You Only Look Once You Only Look Once (YOLO) [119] changes the paradigm
of object detection by removing the need of region proposals. Instead, the image
is divided into a grid of fixed dimensions and the network predicts two bounding
boxes at each grid location with a confidence score and class probabilities at this
point, independently from the bounding box and in only one forward pass. Thus the
whole image impacts the detection at each point and any predicted bounding box
will have the most probable class of the corresponding grid point. This also makes
the object detection much faster. Their final version [118] decreases the processing
time to 0.025s per image with a mAP of 78.6%, higher than Faster R-CNN.

Method AP

Faster R-CNN [120] 34.9
Yolov3 [118] 33.0

Table 2.1.1 – Object Detection Results on MS-COCO [86]

Table 2.1.1 shows results for object detection on MS-COCO [86]. Faster R-CNN
is slower than YOLO but outperforms it on the task of object detection. We focus on
Faster R-CNN because they have been shown to provide representations of images
that can be used in diverse tasks (see Section 2.3.1, at the cost of processing speed.

2.1.5 Caption generation

The task of caption generation, which consists of finding a mapping from an
image space to the space of finite sequences of words has garnered interest with
applications from image retrieval [160] to automatic image description for visually
impaired people [90]. It is similar to Visual Relation Detection, as both tasks consist
in extracting higher order descriptions than detecting objects. The outputs of Cap-
tion Generation models however are unstructured, contrary to those of VRD models.
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This makes captions more flexible but also less readily usable for downstream tasks,
such as image retrieval.

Competitive models are comprised of two successive neural networks. One is a
CNN acting as image encoder, representing the image in a much lower dimensional
space. The second is a recurrent neural network decoding the encoded image into
a set of sentences. Vinyals et al. [145] propose to use a CNN pre-trained as an
image classifier on ImageNet [49] and an LSTM (Long Short-Term Memory) [60]
network taking as context the image encoding and the previously predicted words.
The network is then trained to maximize the log likelihood of the correct word. This
method is extended in [159] with an attention mechanism (see Section 2.4.5) that
attributes higher weights to parts of the image for the prediction of each word.
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2.2 Metric learning

2.2.1 Motivation

The purpose of maximum likelihood classifiers as described in Section 2.1.2 is to
find a set of hyperplanes that for each class separates instances of that class from
instance of other classes. Recently, a change of paradigm has been proposed in order
to enable the scaling of models to a high number of classes, learn from few examples
and use distance-based methods. These methods aim to define a distance on the
input space so that the distance between similarly labeled instances class is smaller
than between instances with different labels.

2.2.2 Mahalanobis distance learning

The Mahalanobis distance between two random vectors of the same distribution
with covariance matrix S is defined as dS(x, y) =

√
(x− y)TS−1(x− y). When de-

composing the matrix S as S = LTL, the Mahalanobis distance can be reinterpreted
as the Euclidean distance between two linearly transformed vectors: dS(x, y) =√

(x− y)TLTL(x− y) =
√

(Lx− Ly)T (Lx− Ly).
Xing et al. [156] made the observation that clustering algorithms are reliant on

having a good metric to find a meaningful set of clusters. They propose to learn
this metric by using a family of Malanahobis distances parametrized by a matrix
and minimize the distance between similarly labeled instances with regard to the
matrix parameter. This method was expended upon by relaxing the constraint on
the distances and removing the symmetric pseudo-definite constraint [127], by op-
timizing the leave-one-out error of a stochastic nearest neighbor classifier [51] or
minimizing the distance between neighbours while keeping distance between non-
neighbours greater than a margin [153]. However these optimization problems be-
come intractable when dealing with a high-number of constraints which makes them
inefficient for problems with many data points.

2.2.3 Triplet loss

When the number of samples becomes too high, the metric space described
above becomes hard to learn, due to the high number of constraints. To remedy
this, Weinberger et al. [153] introduce a triplet loss, which enforces instances of
the same class to have a smaller distance than instances of different classes, by a
margin. Contrary to Mahalanobis Metric Learning, this model does not require that
the input distribution be normal or unimodal. Thus the network parameters are set
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as
θ∗ = arg min

θ

∑
(x+,y+)∈D

∑
(x−,y−)∈D|y− 6=y+

max(α− ‖x+ − x−‖, 0) (2.10)

They show improved performance on several tasks such as face recognition when
compared to SVMs but also other kNN classifiers with common dimensionality re-
duction methods such as PCA [110] and LDA [37].

2.2.4 Deep Metric Learning

This change has been adapted to Deep Neural Networks to learn from few ex-
amples [132, 146] and even zero examples of a given class [65], aiming to learn
representations that group together elements of the same classes.

Schroff et al. [126] train a network to output similar representations of the face of
the same person in different settings. They extract the L2-normalized representation
of a person’s face. At training time, negative samples that are more distant than
positive example are used in order to avoid a collapsed model (when all points are
aggregated near the origin). For fine-grained recognition, Cui et al. [22] select
anchors by K-Means after metric learning and have them vote on the class of new
images based on their distance to the image. Furthermore, the classification loss
from these anchors is incorporated during the training phase. Sohn [134] makes
the observation that deep neural networks trained with a triplet margin loss have a
slow convergence and get unstable towards the end of training. They attribute these
problems to the comparison of each sample to a single negative example, which have
a high probability of yielding a zero loss. They propose to instead select a fixed set
of N negative samples, each of a different class, for each set of batch samples. Each
batch sample has only one positive sample and the positive pair is then compared to
the N−1 negative pairs instead of one. Similarly, in [135], Song et al. train a model
to embed images from different perspectives with a high similarity by comparing
each pair of images of the same object to several hard negatives.

Finally, Kaiser et al. [65] define a memory containing keys and values for each
class. This set is updated during the training phase to represent the whole set
of training samples. The closest negative and positive keys are used to compute
the model loss. This keeps the set of examples small and defines a set of class
representatives, even with few examples per class, that new samples are compared
to.

At the intersection between Metric Learning and Hierarchical Modelling (Section
2.3.4), Nickel and Kiela [105] enforce constraints between WordNet [34] concepts by
embedding them in a hyperbolic space. They show that similarities between concepts
are learned directly from hierarchies and that it is possible to predict links between
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Method Description

FaceNet [126] Face recognition with soft hard negatives

Anchor classification [22] K-means on image embeddings
and classifiation from centroids

N-pair [134] One negative example per class

Lifted Structured Embedding [135] Several hard negatives per pair
of objects from the same class

Rare Events [65] Prototypes represent classes from which
Positive and Hard Negative are drawn

Poincaré Embeddings [105] Embed concepts in a hyperbolic space

Table 2.2.1 – Deep metric learning

unseen concepts reliably, requiring a lower space dimension than euclidean distances.
Table 2.2.1 summarizes the several strategies for learning a metric space. The

main area of focus is the example selection, especially since pairs of samples are
compared to each other and the selection of the pairs will have a strong impact on
the resulting space.

2.2.5 Metric Learning for few-shot learning

Due to some specificities of the available data, shown in Chapter 3, we study
specifically the performance of networks trained to learn with few examples. For
this, we compare several methods that classify images from how similar they are to
annotated images. For this, they compare raw pixels, train a model to discriminate
whether two examples come from the same class [70], to predict attention to exam-
ples from a support set [147] and to extract memory keys representing annotated
classes [65]. Table 2.2.2 shows the comparison of these methods on Omniglot [75], a
dataset with hand-drawn characters from 50 different alphabets with few examples
per class. k-way N-shot classification means that a model is given a query from an
unseen class and a support set S. S contains N examples each from k different classes
and must recognize which set of examples the query sample belongs to.

Method 20-way 1-shot 20-way 5-shot

Pixels Nearest Neighbor 26.7% 42.6%
Convolutional Siamese Net [70] 88.0% 96.5%
Matching Network [147] 93.8% 98.5%
ConvNet with Memory Module [65] 95.0% 98.6%

Table 2.2.2 – Few-shot learning on Omniglot

Results on few-shot learning suggest that ConvNet with Memory Module pro-
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vides promising results to learn from few examples, by defining examples designed
to summarize classes.

2.2.6 Conclusion

Metric learning is a promising avenue of research, allowing classification of inputs
into a large number of classes. Hyperbolic spaces in particular have garnered a lot
of attention lately but require changes in gradient computations, and we did not
manage to reproduce similar results on VRD.

Furthermore, VRD could benefit from few-shot learning approaches, as being
able to learn from few examples is a useful feature for tasks where annotated exam-
ples are highly skewed.

However, for complex and high-dimensional inputs such as everyday life images,
these techniques first require the extraction of an intermediate, lower-dimensional
representation. Training models to extract representations that capture the differ-
ences between classes and generalize to new samples requires high amounts of data,
not always available for studied benchmarks. Thus we focus in the next Section on
how to train such models by using data from other sources, which we call External
Data.
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2.3 Learning with external data

As described in Section 2.1, most machine learning tasks can be formulated as
finding a mapping from a vector space X to an output space Y that maximizes an
objective function. However, this space is directly learned from the training data
which is not always sufficient. This occurs in two cases. First, when the amount of
available data is not enough to evaluate the objective function on a space similar
to the real data distribution. Second, when the dimensions of the input and output
space are high when compared to the size of the dataset. These conditions result
in the difference between the experimental risk and the true risk being too high.
In these cases, the model does not generalize well to new samples. The amount of
data necessary to train the model depends on the dimension of both spaces, what
objective function is used, how the model parameters are initialized, etc... In this
section we study methods proposed to train a model with low amounts of data. For
this, knowledge is integrated in neural networks through a variety of ways, from
model initialization to training and inference.

2.3.1 Transfer Learning

Transfer learning refers to the training of a parametric model on a source dataset
and task, then using part of the model weights in a new model to be trained on a
target dataset, potentially for a different task. There exist several strategies con-
cerning how the trained weights are updated during the second training, whether
they are completely frozen or updated with a smaller learning rate. This has been
shown to improve performance when the target dataset is too small to learn repre-
sentations of the input that generalize well on the test set. In computer vision, the
most commonly used source dataset used for transfer learning is ImageNet [49], a
dataset with 1.2 million images and 1000 image classes.

Oquab et al. [106] show that training an AlexNet [72] network on Image Net
[49] and using the weights of all but the last layers allows the model to learn to
complete various tasks, such as object and action classification. Xu et al. [159]
show that training on Flickr30k for image caption generation improves the BLEU
score by 4 points on Flickr8k. However, transfer learning has limitations when the
source and target datasets have very dissimilar data distributions. For example,
training a caption generation model on the greater MS-COCO dataset [86] degrades
the BLEU score on Flickr8k as the words are drawn from dissimilar vocabularies.

Hong et al. [61] explore transfer learning in the context of weakly-supervised
learning. They use transfer learning in two different ways: the first to train an
image encoder on ImageNet. For the second, with the encoded image as input, they
train a two branch network: the first branch for image classification and the second
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one to produce a segmentation mask. The target dataset is the Pascal VOC [32]
which provides only image level labels. During training, the MS COCO dataset is
used to train the segmentation branch on the same image representation as Pascal
VOC, in the hope that it generalizes well on that same dataset. This provides
a significant improvement when compared to weakly-supervized methods, and is
comparable to semi-supervized settings, where the full annotations are available for
only a subset of samples. Many recent works [17, 24, 43, 85, 88, 173] instead pre-
train on MS-COCO [86] as it provides consistent improvement on the scene parsing
task, as shown in Table 2.3.1. The Intersection over Union (IoU) metric is defined,
for a bounding box prediction and its related ground truth boxe, as the ratio of
areas of the intersection and union of both boxes.

Method Description Mean IoU

TransferNet [61] Weakly-supervized 51.2
No Pretraining Trained on Pascal VOC [32] 70.8
Mid-Level representations [106] Pre-trained on ImageNet [49] 82.8
Pyramid Network [173] Pre-trained on ImageNet [49] 82.6
Pyramid Network [173] Pre-trained on MS-COCO [86] 85.4

Table 2.3.1 – Performance of Transfer Learning on Pascal VOC 2012 [32]

Since our task shares similar aspects to the scene parsing task we pre-train
networks on MS-COCO [86].

2.3.2 Multimodal Learning

The previous section showed how annotated images and data from a similar
domain can be used to train a classifier on pre-trained representations that generalize
well and can compensate lack of data on the target class. Here, we explore a similar
method, that makes use of data on the same domain but on a different modality.
These methods are especially useful when the target domain is far from more studied
domains but has easily available data in other modalities, such as image text, sound,
etc...

Coordinated Representations Multimodal learning is the process of jointly
learning the representation of data from different modalities. This can alleviate
the difficulty of learning how to represent classes with a low number of training
examples. Baltrušaitis et al. [7] show many of the challenges that this poses as
different modalities have different levels of noise and examples from different modal-
ities do not always match. Multimodal data can be combined several ways, but we
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focus on the separate representation of data from different modalities, coordinating
them through constraints, called coordinated representations.

In DeViSE by Frome et al. [38], text and image data are abundant but paired
text-image data is scarced. Thus DeViSE is first pre-trained to learn visual and
textual representations separately. Second, for examples with paired textual and
visual data, a similarity constraint is enforced between the two modalities, as in
2.2. Socher et al. [133] enforce similarity constraints between paired captions and
images. Captions are processed by a dependency tree RNN which extracts a repre-
sentation where words contribute based on their position in the dependency tree.

Structured coordinated representations are learnt with additional con-
straints on the multimodal space. To make use of existing hierarchical relations
between concepts, Vendrov et al. [144] enforce order relations between hypernym,
concept, compound concepts and images corresponding to these concepts. This
allows them to predict entailment between sentences, and to rank captions corre-
sponding to new images and vice versa, increasing image recall@1 from 31% to 38%
on MS-COCO [86]. Zhao et al. [172] enable open vocabulary learning by enforcing
the same order constraints on hypernyms and the visual features of detected objects
and show that hierarchical metrics (Wu-Palmer similarity) show more semantically
consistent predictions. The F-score metric is improved from a softmax-based for
Zero-shot scene parsing from 0.53 to 0.62.

Method Description

DeViSE [38] Similarity constraint between text and image
GCS [133] Similarity between sentence root node and image
Order relations [144] Order constraints on compound concepts and images

Open Vocabulary [172] Order constraints on object features
and concept hypernyms

Table 2.3.2 – Multimodal learning

Table 2.3.2 summarizes these methods. Multimodal learning requires paired data
which is not always available, and the different levels of noise make the exploitation
of both challenging.

2.3.3 Knowledge Graphs

Many sources of external knowledge such as semantic networks, synonym dictio-
naries, knowledge bases, contain valuable information that can complement datasets.
In order to increase the generalization power of concept representations extracted
by the network, an additional loss is added to the training objective of the network.
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This loss quantifies to what degree the output of the network satisfies constraints
based on the external knowledge. Thus Deng et al. [26] define a hierarchy and
exclusion (HEX) graph, and integrate this knowledge into their model by defining
its output as a Conditional Random Field. They show that it can be applied to
diverse domains such as scenes, objects, actions... For object detection, knowledge
graphs (KG) bring additional information in the form of relations between object
classes. They can be integrated to neural networks to produce detections consistent
with these relations. For this, information is shared among nodes of the graph using
LSTM networks [95] or Graph Convolutional Networks (GCN) [150], or estimating
the relatedness of objects with a random walk on the graph [33].

Table 2.3.3 shows the methods advantages and drawbacks. In the context of
visual relation detection, knowledge graph can be straight-forwardly extracted from
datasets and provide common-sense knowledge. HEX-Graphs [26] are not adapted
for this use case but the three other methods can be used to improve semantic
consistency among predictions on each image.

Method Advantage Drawbacks

HEX Graph [26] Diverse application domains No probabilistic relations

KG-GCNet [33] Adapted to large-scale Low improvements
knowledge graphs on simple scenes

LSTMs [95] Improved detection Highly dependent
of small objects on KG quality

GCN [150] Robust to noise in KG Information Dilution

Table 2.3.3 – Knowledge Distillation

Knowledge grapĥs garner increasing attention but they are hard to exploit, as
they need to be well crafted or used with very robust models. In the context of
image processing, it is disambiguating textual concepts related to visual concepts in
semantic networks (e.g. disambiguating "arm" between a weapon and a body part)
such as WordNet [34] or ConceptNet [137] is an avenue of research itself. In order to
use more readily available data, we did not focus our study on this particular source
of data.

2.3.4 Hierarchical Semantic Modelling

In Section 2.3.2, several methods defining a space in which visual concepts are
represented have shown that enforcing constraints between semantic concepts helps
the model learn representations of unknown concepts consistent with their place in
the hierarchy of concepts.
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Deng et al. [25] note that there exists a trade-off between predicting object
labels with high accuracy and high specificity, and that a model should balance
between both in case of uncertainty. They define an algorithm that maximizes the
information gained (by predicting lower-level labels in the WordNet [34] hierarchy)
while maintaining an arbitrarily high accuracy.

Ordonez et al. [107] build on [25] and combine image content estimation with
a "naturalness" function that measures a trade-off between selection of concepts on
varying levels in the WordNet [34] hierarchy and their n-Grams frequency in the
Google 1T corpus [12].

Finally, Zhu et al. [175] augment WordNet with affordances (actions that can
be performed on objects) and object attributes such as weight, size, color, texture...
They learn a knowledge base (KB) using a Markov Logic Network and use the
knowledge base to predict affordances on new objects.

Method Description

DARTS [25] Trade-off between accuracy and information gain
NaturalNess [107] With word frequency
Affordances [175] Learn KB with attributes and Markov Logic Network

Table 2.3.4 – Hierarchical Semantic Modelling

The three methods summarized in Table 2.3.4 use external data to adapt pre-
dictions to their frequency and likelihood in the additional data. Thus they are well
adapted when the data distribution of the training set is either hard to estimate or
is very different from the expected test distribution.

2.3.5 Conclusion

Transfer learning is a well established approach to extract representations of im-
ages or regions that can be used in different datasets, allowing the input space of
downstream networks to be significantly smaller, dividing by 100 the space dimen-
sion. Multimodal learning, knowledge graphs and hierarchical semantic modelling
suffer from the differences in distributions and levels of noise between the textual
and visual modalities. They require methods that are robust to this noise. How-
ever, many presented methods show promising results, especially in the context of
zero-shot learning.

For VRD-set and Visual Genome [71], relation boundaries are fuzzy. Additionally
to the ambgiuity of classes of objects, we focus not on binary relationships between
concepts but instead on more fuzzy data, such as similarity relationships.

Approaches presented in this section targeted limitations that models encounter
when Internal Data, i.e. data from the target training set, is insufficient to accu-
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rately estimate the true risk. We showed that this can be targeted by introducing
knowledge into the network. However, this sometimes also stems from the fact that
the model is not able to capture the whole signal from the training set, due to vari-
ance, noise, architecture limitations, and so on. For this reason, in the next section,
we present approaches aimed at better capturing this signal from the training data
itself.
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2.4 Learning with internal data

In many cases, the model under study is not able to learn for the target task, due
to too high variance, noise or too little data. However, domain knowledge can help
devise new features, examples, from the already available data in order to decrease
the parameter space or to improve the estimation of the objective function..

2.4.1 Data augmentation

The purpose of data augmentation is to use knowledge of invariants that a
given model should preserve. This knowledge is used to generate a set of exam-
ples {(x′1, y′1), . . . , (x′n, y

′
n)} for each sample (x, y). Let a mapping f ∗ defined as in

Equation 2.1. The goal is thus to define a new dataset D′ such that

|E(x,y)∼p[φ(f(x), y)]− R̃(D′)| < |E(x,y)∼p[φ(f(x), y)]− R̃(D)| (2.11)

where R̃(D) = 1
n

∑
(x,y)∈D φ(f(y), x) is the empirical risk on dataset D.

In [72], patches and their horizontal reflexions are extracted from each image
and used with the same label as the original image, which multiplize the size of
the dataset by 2048. Furthermore, they alter the pixel values by adding values
based on the eigenvectors and eigenvalues of the covariance matrix of the R,G and
B variables and a random variable drawn at each image. By this, they enforce the
network outputs to be invariant to changes in intensity and color of the illumination.
Dosovitskiy et al. [30] perturb images with cropping, affine transformations, rotation
and contrast alterations and aim to classify the perturbed images as the same class
as the original one.

2.4.2 Knowledge distillation

Knowledge distillation was introduced by Hinton et al. [59]. They note that en-
semble models provide predictions with higher accuracy than single models. Indeed,
in [28], Dietterich shows that training and aggregating the predictions of different
models

— reduces the risk of choosing the wrong classifier
— provides a better approximation of the true unknown optimal function
— expands the space of representable functions

But these methods require to keep a set of models at test time which is compu-
tationally heavy in the case of neural networks. Instead, Hinton et al. propose to
train a "student" model to reproduce the output of the ensemble method, called the
teacher model. This output is thus considered as a soft label instead of the hard
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labels that are used in conventional supervised settings.
Let v = {v1, . . . , vn} the logits of an ensemble model, i.e. the aggregation of logits

of several neural networks. The corresponding probability distribution is computed
with the softmax function with temperature τ :

qτ (y = i|x) =
exp(vi

τ
)∑

j exp(
vj
τ

)
(2.12)

The student network is trained to minimize the weighted average:

L(θ, y|x) = λl(qθ, y) + (1− λ)l(qτ , y) (2.13)

where qθ is the student output distribution, l is the cross-entropy loss and λ is a
weight chosen empirically. This method has been extended to the context of training
a student model from a single teacher model. The underlying intuition is that the
teacher network discovers relationships between the different classes that are used
to increase the stability of training.

Gupta et al. [56] train a network on ImageNet and use it as teacher for a student
network with image depth input on paired RGB/depth images. Li et al. [81] train a
teacher network on a small and clean dataset, with confidence propagated through
a knowledge graph and train the student model on a dataset with noisy labels.
Radosavovic et al. [116] train an ensemble model where each simple model is trained
from scaled and flipped data and train the student network on unlabeled data with
the output of the ensemble model. Yim et al. [163] train the student model to
reproduce aggregations of intermediate feature maps of the teacher model instead
of its final output. The student model is shown to outperform and converge faster
than models trained with transfer methods. Chen et al. [16] train a student network
for object detection by distilling knowledge both for bounding box regression and
object classification, weighing object and background classes with different weights
and bounding the student regression by the teacher regression output. Furthermore,
they show that additionally distilling intermediate features maps helps reduce under-
fitting, improving training and testing accuracy. On Pascal [32], the distillation of
a VGG16 network increase the mean Average Precision from 59.8 to 63.7.

Methods presented in Table 2.4.1 show applications of knowledge distillation on
various tasks, showing that this technique is useful in many contexts and allows the
model to better capture relations between features. Furthermore, they also allow
smaller models to be trained and thus decrease computation costs.
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Method Description

Supervision transfer [56] Student and teacher in different modalities
Noisy Labels [81] Teacher trained on small clean dataset
Omni-Supervised Learning [116] Ensemble of models on transformed data
Feature Map Distillation [163] Aggregate and distill intermediate feature maps
Object detection [16] Distill regression and multi-class classification

Table 2.4.1 – Knowledge distillation

2.4.3 Rule distillation

Rule distillation, introduced by Hu et al. [62], is similar to knowledge distillation,
aiming at improving model generalization. The distinguishing factor from knowledge
distillation is the use of additional knowledge of the domain under study, especially
in the case of limited annotated data. Specifically, they show that neural networks
can be trained to respect manually defined constraints. These constraints can come
from external knowledge, that will supplement the available training data and make
the model follow a set of rules that are difficult to learn from a low amount of data.

Let us consider a neural network with parameters θ that outputs a conditional
probability distribution pθ(y|x) of output y ∈ Y given input x ∈ X. Hu et al. [62]
define a corrected probability distribution function q(y|x) as

q = arg min
qy|x∈P

KL(qy|x||pθ)− λEqy|x(log f(x, y)) (2.14)

where P is the set of conditional probability distributions. Thus q is defined as
the projection of pθ on a subspace verifying constraints defined by a function f :

(X, Y ) 7→ [0, 1]. For (x̃, ỹ) ∈ X × Y , the more (x̃, ỹ) respect these constraints,
the closer f(x̃, ỹ) is to 1. KL(q||pθ) is the Kullback-Leibler divergence from pθ to
q and Eqy|x(f(x, y)) is the expectation of f(x, y) when the conditional probability
distribution of y|x qy|x.

In the same vein as Knowledge Distillation, the objective function is a weighted
average of the cross-entropy with the ground truth and the cross-entropy with the
new corrected (teacher) distribution. Hu et al. [62] show significant improvement
on several text-related tasks when compared to other regularization methods by
enforcing simple logic rules on the model output. For example, on sentiment clas-
sification, the accuracy increase from 87.2% with a CNN to 89.3% with the same
network trained with only one logical rule. Furthermore, contrary to other meth-
ods such as data augmentation, this method is able to adapt to the distribution
of the data under study, as it takes into account the difference between the target
distribution and the output distribution.
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2.4.4 Self-supervised learning

In the context where available annotated data is not sufficient to train a model
in a fully-supervized way, there exist methods that build upon the unannotated data
and produce a training set. This makes it possible for a model to learn represen-
tations of data and extract pattern useful for downstream tasks. The important
difference between this and data augmentation stems from the training of the model
which is defined for task different from the target task whereas data augmentation
adds additional data to training on the target task.

Doersch et al. [29] train a model to predict the relative positions of two sampled
patches from the same image. By pretraining a model on this task with a relatively
small dataset then training it on that same dataset for the target task (object
detection), they improve the quality of learnt representations and of detections.
Zhang et al. [171] use decolorized images and train a network to predict the two
color channels. Pathak et al. [109] pre-train a model to predict the appearance of
a patch removed from the image. Finally, Giradis et al. [44] show that training a
model to recognize the rotation that has been applied to an image forces it to learn
semantic features that improve its ability to perform various tasks such as object
classification, detection and segmentation in an unsupervized setting.

Self-supervision methods can also learn useful representations in videos by pre-
dicting if a video is in the correct order [98], finding the shuffled sequence [36],
predicting whether a video is played backward or forward [152].

Sentences describing images can also provide self-supervision. Modelling topics
of an image has been proposed as a way to add self-supervision and improve the
performance on various vision tasks. Mao et al. [93] infer image topics from captions
with Latent Dirichlet Annotation [10]. They train a model to predict a latent topic
from visual features and use it as a prior for image caption generation. For object
detection, the same self-supervision from image topics has been shown to improve
image classification, when compared to other self-supervized methods [52].

Similarly to knowledge distillation, Table 2.4.2 shows that self-supervision is
helpful in many different contexts. The additional task constrains the representa-
tions learnt by the network, as they need to preserve information that does not
directly correlate with data from the target task. Thus, without need for additional
data, the network is able to better generalize. However these methods provide lower
improvements than other transfer techniques such as transfer learning. For exam-
ple, topic self-supervised models from Gomez et al. [52] reach 55.4% mean Average
Precision on Pascal VOC 07 [32] where a model pre-trained on ImageNet reaches
73.6%. Results with self-supervision and transfer learning are not reported and
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Method Description

Context Prediction [29] Relative positions of image patches
Colorization [171] Colorize images
Context Inpainting [109] Appearance of missing patch
RotNet [46] Rotation of images

Shuffle and learn [98] Verify frame order
Odd-One-Out [36] Find out-of-order sequence
Arrow of Time [152] Playing forward or backward

TextTopicNet [52] LDA for Image classification
Caption Generation [93] LDA Topics as priors

Table 2.4.2 – Self-supervised learning

further research is necessary to validate topic self-supervising.

2.4.5 Attention

In order to correctly predict an output for a given input, some parts of the
input may hold less relevance than others. For example in the context of image
captioning, only a fraction of the image may be relevant to predict the next word
in the caption. This method is a form of self-supervision whereby the model learns
to predict what parts of the input are relevant to the current context. Thus the
attention mechanism makes the assumption that elements of the input should have
a greater contribution in the final output of the mapping. Given a query or context
vector q, the attention mechanism will attribute different weights to each element,
quantifying to which extent each element is relevant to the query or context. The
different types of attention mechanisms can be divided based on what those elements
are:

1. Instance attention: when a mapping takes several vectors (x1, . . . , xn) as
input, the attention mechanism attributes a different weight to each vector.
For i ∈ [1, n], wi = att(xi, q). The mapping function can then be reformulated
as:

f : (x1, . . . , xn)→ f ′
( ∑
i∈{1...n}

wi · xi
)

(2.15)

2. Feature attention: in the case of a single input, a weight is attributed to each
dimension of the input. Let an input x = (z1, . . . , zp), for each i ∈ {1 . . . p},
let wi = att(x, zk, q), then f can be written as

f : x→ f ′
(
(w1z1, . . . , wpzp)

)
(2.16)

The attention weights usually come from the output of a fully connected layer taking



Learning with internal data 56

as input the vector to be weighed. This output is passed into a softmax layer to
produce a probability mass over each vector (soft attention). In order to reduce
noise however, it is sometimes beneficial to threshold these scores to obtain a sparse
vector (hard attention).

The attention mechanism was introduced first in [5] in the context of a Neural
Machine Translator (NMT), which encodes an entire sentence in a single context
vector. Before that, when dealing with long inputs, the context vector was inade-
quate to capture all the information required to translate the sentence. Allowing the
model to search for relevant parts for the prediction of a word eases the information
bottleneck at the context vector. Similarly, in image processing, attention allows
to capture details in an image in order to generate captions [159]. More recently,
Vaswani et al. [143] have shown that recurrent layers can be entirely replaced by a
multi-headed self-attention.

In classification tasks, feature attention allows the model to focus on specific
regions of the image as shown by Girdhar and Ramanan [46], improving the accuracy
of an action recognition model. Specifically, each action class is considered as a
different query. They combine bottom-up attention, conditioned only by the image
features and top-down attention, conditioned by each action class. They obtain the
score for each action by globally pooling the image representation f(I) multiplied
by the attention weights:

si =
∑

0≤x≤W

∑
0≤y≤H

axyf(I)xy (2.17)

Method Description

NMT [5] Attention over word vectors
Multi-head Self-Attention [143] NMT with Multi-Head Attention

Hard-Attention [159] Hard attention over image locations
Attentional Pooling [46] Product of top-down and bottom-up attention

Table 2.4.3 – Attention

2.4.6 Conclusion

Data Augmentation is the most widely used approach among the previous meth-
ods, especially due to the easy implementation, as they usually involve adding several
samples for each training sample. Several data augmentations can be used together,
making the model preserve several invariants. Knowledge distillation requires two
consecutive training but is straightforward. However, we do not aim at reducing
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model size thus will focus instead on other methods aimed at increasing generaliza-
tion of the model without external data, such as rule distillation and self-supervised
learning. The attention mechanism is very useful in order to aggregate inputs from
different sources, such as objects, words, image regions... and improves model ex-
plainability, hence its wide use, especially in Natural Language tasks.

Finally, for both external and internal data, if the training data is very different
from the test distribution, the trained model risks not generalizing. Indeed, in such
cases, the evaluation of the loss function is biased and its optimization will not yield
good results on the test set. Thus, after studying how best to learn to model input
samples with external and internal data, we study how to learn from biased datasets.
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2.5 Learning from biased Datasets

Highly skewed datasets, comprised of a high number of a small set of classes, can
be a hurdle, preventing the model from correctly classifying instances into the less
frequent classes. Furthermore, tasks that require matching pairs of examples have a
very high number of negative matches and a naive selection is not enough to learn
discriminant features. Buda et al. [13] divide these methods as follows.

2.5.1 Resampling

Skewed class distributions in training data have adverse effects on the learning
process, as the sum of errors on rarer (minority) classes is far outweighed by that of
the most frequent (majority) ones, and in the case of overlapping distributions, the
trained model becomes biased towards the majority classes. Resampling consists of
rebalancing the class distribution. Resampling methods fall into three groups:

— Over-sampling: creating new examples from minority classes.
— Under-sampling: discarding examples of the majority classes.
— Hybrid resampling is the combination of both methods

Over-sampling Synthetic Minority Over-sampling Technique (SMOTE) [15] and
Adaptive Synthetic (ADASYN) [57] generate new samples of the minority classes by
interpolation. ADASYN focuses on examples that are misclassified by a K-Means
algorithm while SMOTE uniformly weighs examples.

Under-sampling Random under-sampling removes samples from the majority
classes at random. Tahir et al. [139] propose to create a set of subsets of the
training data where the majority class is severely undersampled, to the point of
becoming the minority, called Inverse Random Under Sampling (IRUS). Training
one classifier on each set, they use ensembling techniques to combine their votes.

Method Description

SMOTE [15] Example generation by interpolation
ADASYN [57] Weighted example generation by Interpolation

IRUS [139] Minority to Majority + Ensembling

Table 2.5.1 – Resampling

2.5.2 Example selection and weighing

To train SVMs, Hard Example Mining was introduced as a two-step process,
alternating between updating the model parameters and updating the set of "hard"
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examples. These hard examples are the examples that do not respect the margin
constraint and are the only ones that contribute to the loss function [35]. Simo-Serra
et al. [130] select hard negatives for a given pair of matching patches: non-matching
patches with the highest loss. Wang and Gupta [149] select the K examples with the
highest loss when training a model to match patches of a video representing the same
entity. Shrivastava et al. [128] introduce Online Hard Example Mining (OHEM)
and train an object detection model with two passes through the network: first, each
proposed ROI is passed through the network in order to compute the associated loss
and regions with the highest loss are added to the current mini-batch.

Lin et al. [87] propose a focal cross-entropy loss, changing the cross-entropy loss.
Let p be the estimate probability that the class y associated to an input is equal
to 1. The cross-entropy loss is computed as CE(pgt) = − log(pgt) where pgt = p if
y = 1 and pgt = 1 − p otherwise. The proposed focal loss is defined as FL(pgt) =

−(1− pgt)γ log(pgt). This increases the weight of examples that the model classifies
with a lower confidence and decreases the weight of examples classified with a high
confidence, especially negative examples, which in the case of tasks such as object
detection, account for the majority of examples. They observe higher accuracy
increase than Online Hard Example Mining, increasing the average precision from
31.8 to 36.0 on COCO [86].

2.5.3 Conclusion

Resampling and example selection are two widely used methods aimed at improv-
ing the estimation of the objective function. They are useful when this estimation
would be biased with the original distribution of training data. In the case of ex-
isting VRD benchmarks [71, 82], since the train and test sets are drawn from the
same distribution, this does not provide improvements on the test set. On the other
hand, due to the very low proportion of positive object pairs - i.e. object pairs with
at least one positive relation - detecting positives is a hard task. Example selection
is a promising avenue toward learning what separates positive and negative object
pairs.

The three previous Sections have shown how to better evaluate the objective
function, using External and Internal data or artificially modifying the training
distribution. Some of these methods have been applied to the case of Visual Relation
Detection. We study in the next Section how they impact VRD models and how
the issues we raised can be targeted.
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2.6 Visual Relation Detection

In this section, we study existing methods proposed for VRD and show how they
improve models designed for this task. Then we compare them with other existing
methods and, after proposing several criteria, select what methods to explore in this
work.

2.6.1 Standard Visual Relationship Detection architectures

Most standard Visual Relation models [23, 58, 102, 158, 161, 164, 165, 166]
execute the following steps as shown in Figure 2.6.1.

1. Detect objects in the image. Using a Faster R-CNN model [120] (see Section
2.1.4) object detections are extracted in the form of bounding boxes.

2. Extract representations of both objects and relation using ROI-pooling [120]
(see Section 2.1.4). The region corresponding to the relation is the minimum
bounding box around the pair of objects.

3. Classify head and tail feature maps into object classes and relation feature
maps into relation classes. head and tail may have different feed-forward
layers or share the weights.

4. Generate the image scene graph by taking the top k scoring triplets, where
each score is the product of class probabilities.

In the following chapter, works proposing variations from the described steps,
especially step 4., will be studied in light of the issues associated with the task of
Visual Relation Detection as stated in Section 1.2 and below.

As has been studied by Zellers et al. [166], with the existing benchmark datasets,
the correct relation class is relatively easy to predict given a set pair of objects.
Indeed, given the correct head and tail classes, the correct relation can be determined
with a 97% accuracy by predicting the most frequent relations for this pair in under

Figure 2.6.1 – Common VRD pipeline.
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5 guesses. However, with an average of 21 objects per image in the Visual Genome,
the detection of related object pairs is of paramount importance. Thus we study
both aspects of Visual Relation Detection separately, first the classification of an
object pair into a set of true relations; second, the estimation of the relevance of the
object pair, which is a less studied aspect of VRD, i.e. its ability to detect whether
two objects are related and how relevant these relations are.

2.6.2 Relation Separability and Classification

Visual relations have a high intra-class appearance variability as their appearance
is highly dependent on the objects involved. For example the relation ’sit’ will involve
a person with legs in a certain position but the legs of a sitting cat may not be visible.
Similarly, visual relations show a high degree of inter-class similarity as two different
relations with similar pairs of objects will share a lot of common features, making
it hard to learn the discriminant ones, as illustrated Figure 2.6.2.

(a) Cow standing on grass (b) Cow eating grass

Figure 2.6.2 – Examples from Visual Genome. Visual representations of relations
are highly dependent on involved objects and different relations may be very visually
similar.

Low level dependencies The appearance of objects is affected by the relations
between them. For example the relation class "sit on" conditions the appearance
of a person sitting on a sofa, the pose of this person. Based on this observation,
several works propose to model these dependencies.

Information is passed from relation elements at different levels of abstraction of
object and relation representations. First Dai et al. [23] iteratively refine head, tail
and relation representation using feed-forward layers connecting each element of the
relation. Li et al. [80] pass messages between elements at different points of the
network, between feature maps before ROI-pooling (see Section 2.1.1) and between



Visual Relation Detection 62

Figure 2.6.3 – The appearance of legs is conditioned by the relation class "sit", but
they may be folded for a human and not visible for a cat.

high-level representations after ROI-pooling. Another differentiating factor of this
work is the fact that the feature maps before ROI-pooling are different between
head, tail and relation because a different convolutional network is used for each.
Yin et al. [164] directly pair information from relation elements with a spatially-
aware context module. For relation features, each element is de-ROI pooled into a
grid of fixed size representing the whole relation. Thus the head and tail features
are equal to zero outside of their bounding box. Then for each (head, tail), (head,
relation), (tail, relation) pair, channels from both elements are fused before being
passed into the following convolutional layers at two points of the network. Thus
the model is able to learn spatial relationships between features of the head, tail
and relations.

Xu et al. [158] take a similar approach, called Iterative Message Passing (IMP),
using a message passing framework. Instead of considering each triplet separately,
information is propagated through the whole scene graph at each iteration, from
nodes (objects) to edges (relations) and from edges to nodes (in the dual scene
graph). Thus information about one pair of objects can influence the prediction of
other object classes and relations. For example, the presence of a horse and a barrier
can be correlated to the presence of a person riding the horse.

Newell and Deng [102] learn these interdepencies by learning to iteratively refine
feature maps taking the whole context into account. A stacked hourglass network
[103] learns to combine local and global information and reason over the full image.
Two heatmaps are output by the model: one quantifying the likelihood of presence of
an object and the other the presence of a relation. Objects and relations are decoded
at the most probable locations. They improve especially the recall on smaller scene
graphs, reaching state of the art performance on Relation Classification Recall@50
at 82.0%, increasing by 83% when compared to IMP [158].
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High level dependencies Here we study methods which directly model interpen-
dencies between relation elements at a high level, i.e. at the concept level, contrary
to the previous methods which learn how lower-level features of each element influ-
ence the high-level concepts.

Liang et al. [84] train an agent to iteratively produce nodes and edges for the
scene graph of an image with reinforcement learning. At each time step, the agent
chooses to predict either an object, relation between two objects or an attribute.
They are chosen among the set of relations and attributes that have been encoun-
tered in the training set for the current object. Thus inter-dependencies between
relation elements are enforced directly at inference time instead of learned by the
network.

Yu et al. [165] use the rule distillation method from [62] described in Section
2.4.3. During the training phase, the network learns to predict high scores for
relations which are likely for a given pair of objects by integrating a constraint
that penalizes low probabilities. On VRD-set, knowledge distillation increases the
Recall@100 on Relationship Classification from 84.9% to 87.0% on the base network,
to 89.4% on the corrected distribution and 94.7% on the combination of both.

Liang et al. [83] introduce a structural ranking framework, with a triplet loss
aiming to increase the score difference between positive triplets (relations that hold
true) and negative triplets. They adopt an adaptive margin for this loss, which
increases the more likely the positive relation class is and the less likely the negative
one is. Thus, missing or incorrectly predicting frequent relations are more penalized.
Similarly, Sarullo and Mu [124] weigh the loss of relation mis-classifications using
the relative frequencies of the two classes. For relation classes j and k ∈ C, they
define the cost of misclassifying an example of class j into class k by

wjk = (1− δjk) max(1, log
Nk

Nj

) (2.18)

where Nk and Nj are the number of examples of each class and δjk = 1 if j = k and
0 otherwise. They show that this increases the number of detections of uncommon
classes. On VRD-set, this translates to an increase on Relationship Classification
from 90.6% with a softmax loss to 93.2% with a structural ranking loss.

Hybrid In contrast to the above works, where high-level dependencies are used
during training as an additional constraint that the mapping must respect while
minimizing an objective function, Herzig et al. [58] use high-level information as in-
put to the network in the same vein of low-level dependencies modelling. Indeed, the
output of a pre-trained Visual Relation Detection is used as input to the new model,
namely the probability distributions for each object and relation in the image. This



Visual Relation Detection 64

departs from the previous works where the input was the raw image. Furthermore,
using relation predictions from a pre-trained model enables the model to add a pre-
trained embedding of the most probable relation. This approach mostly focuses on
predicting relations and objects with uncertain object detections. Thus, they reach
state of the art performance on the Scene Graph Classification task reaching a recall
of 50.8% (from 46.6% [166]).

Similarly, Wang et al. [148] use a memory module that iteratively refines ob-
ject and relation predictions. For this, they combine probability distributions with
visual features by adding the outputs of convolution and feed-forward layers. This
information is then stored into a memory layer and updated using GRU cells [18].
It is then passed through an inverse ROI-pooling function in order to put it back
into its spatial position and used as the visual feature for the next update. They
show that the association among relations is important and learning which relations
are often associated enhances recall. However, the added memory is mostly helpful
to retrieve the more common relations as it is necessary to have enough examples in
order to extract similar patterns. This improves their baseline on Relation Classifi-
cation with graph constraints from 48.9% to 57.9% Recall@100, below state of the
art methods at 71.0%.

Increasing separability with additional information Visual relations are
very similar when similar objects are involved. Thus additional features have been
proposed to increase their separability.

Spatial Features As shown in Figure 2.6.4, a large number of relations are
spatial relations, such as ’on’, ’behind’, ’near’... Thus, adding spatial features that
represent the spatial configuration of the object pair is a natural step towards learn-
ing separable relation representations. Peyre et al. [112] propose to encode the box
size ratios, translations, aspect size ratios and overlap:

fspat(o1, o2) =
[x2 − x1√

w1h1

,
y2 − y1√
w1h1

,

√
w2h2√
w1h1

,
o1 ∩ o2

o1 ∪ o2

,
w1

h1

,
w2

h2

]
(2.19)

where xj, yj, wi, hi are respectively the x and y coordinates, width and height of
object j, o1 ∩ o2 o1 ∪ o2 are the areas of the intersection and unions of the bounding
boxes of o1 and o2. Furthermore, to take into account the multimodal nature of
some relations such as ’next to’, this vector is discretized into bins. For this, the
spatial configuration is summed to be generated from a mixture of k Gaussian and
a Gaussian Mixture Model is fit to the training pairs.

Several works [23, 166] adopt an end-to-end approach by training the network to
learn directly the representation of the spatial configuration. They instead extract
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Figure 2.6.4 – Relation distribution in Visual Genome. Spatial relations represent
58% of the annotated relations.

a binary mask for each object, where the image is represented by a grid of fixed
size. At each location (i, j) of the grid, the value is 1 if (i, j) is inside the object
bounding box and 0 otherwise. Then, the masks of both head and tail are consid-
ered as channels of an image and passed into a convolutional network to extract the
representation of the object pair.

Woo et al. [154] take an intermediate method and use learned spatial represen-
tations by plunging the relative location and scale information vector into a higher
dimensional space:

fspat(o1, o2) = W
(x2 − x1

w1

,
y2 − y1

h1

, log
w2

w1

, log
h2

h1

)
+ b (2.20)

where W and b are learned weights and biases.

Semantic features Many of the previous works [58, 166] use pre-trained word
embeddings [97] concatenated to the visual representations of objects.

Contextual information In [58], contextual features are concatenated to the
representation of each object. They are comprised of the number of larger and
smaller objects in the images, the number of objects to the left, right and above,
below as well as the number of objects with higher and lower confidence.
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Learning Under-represented classes with Semantic Modelling Lu et al.
[89] integrate language priors into a language ranking module, combining both visual
and language modules at test time. For this, a mapping projects pairs of pre-trained
word vectors into the relation space where each coordinate corresponds to a score for
the given pair of object classes. This mapping is trained to optimize two objective
functions. The first quantifies how different the distances are between relations
in the pre-trained vector space and in the learnt space. The second encourages
higher scores for more frequent relations. Learning to preserve distances from the
pre-trained space helps the network learn from similar relations and improve visual
relations detection.

In a similar fashion, Zhang et al. [169] integrate language priors into the visual
space. They define two different multimodal space: one to represent objects and
the other to represent relations. In the same vein as Kiros et al. [69], they use a
triplet loss (see Section 2.2) to enforce visual representations of different object (resp.
relation) classes to have a higher distance than a given margin. This enables the
network to make use of language priors to learn a consistent visual representation
and correctly classify examples of relations from the tail of the distribution (with
fewer than 1024 examples), increasing the top10 accuracy from 7.7% to 28.1% on
VG80k.

Yin et al. [164] adopt a hierarchical approach, defining two trees organizing
both object and relation classes. At the lowest level, object and relation classes are
taken as they are. On the first level, each object and relation class is filtered and
normalized using a part-of-speech tagger and lemmatizer. For objects, the last level
is added by clustering labels with a Leacock-Chodorow [79] distance under a set
threshold. For relations, classes with the same preposition are clustered together in
the ’spatial’ partition while classes with the same verb are clustered together in the
’action’ partition of the hierarchy. Thus for both objects and relations, the model is
trained to output three probability distributions, one for each level of the hierarchy
and the losses for each level are added.

2.6.3 Relation Detection and Relevance Classification

Supervised Relevance Classification The number of object pairs for each im-
age is equal to n(n − 1) where n is the number of detected objects. Computing
the representation of each object pair is computationally heavy. Thus Yang et al.
[161] train a Relation Proposal Network that prunes the scene graph by learning
a scoring function and taking the top K ranking edges. For this, the model learns
two projections from the object representation to a vector space, one for the head
of the relation, the other for the tail. The pair score is defined as the dot prod-
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uct of those vectors. After the scene graph has been pruned, each remaining edge is
classified using an attention mechanism propagating information between connected
nodes. Similarly, Sarullo and Mu [124] learn a binary classifier that takes each object
pair representation as input and outputs, using a sigmoid function, the probability
that the relation is not a "background" relation. The resulting scene graph is then
pruned from pairs where this probability is lower than 0.5. Results on most methods
improve the F1 score on most methods but due to the incompleteness of the task,
precision measurement are very inaccurate. Furthermore this approach deteriorates
class macro recall, which is an important metric, as we argue in Chapter 3. Thus the
impact of this method would require further study on more complete annotations.

Weakly-supervised Relation Detection With the observation that the com-
binatorial nature of the problem makes the annotation of images inherently incom-
plete, Peyre et al. [112] propose a weakly supervised model that learns to detect
relations from image-level labels. For this, they make the hypothesis that each
image-level relation annotation has a latent assignment to a pair of objects. Thus
the model is training to both minimize the error of each relation classification with
a given relation-object assignment and to minimize this error with respect to the
assignments. They show that when all objects detections and their classes are given,
the precision of relation classification only drop from 50.4% to 46.8%.

Self-supervised Relation Detection Woo et al. [154] integrate contextual in-
formation by relational embedding. Each object feature is defined as a concatenation
of image and object visual features as well as object classes. They are then refined
using an attention mechanism over all objects, called relational embedding. They
show that this embedding coincides with ground truth relations and represents the
inter-dependencies between objects. Relation probabilities are computed with after
addition relational embedding, using one-hot object encodings, the output object
representations and the union bounding boxe features. They reach state of the art
results on most tasks with graph constraints, reaching 68.5% on Relation Classifi-
cation from 67.1% of MotifNet.

2.6.4 Summary of Visual Relation Detection methods

The presented methods tackle issues related to the task of Visual Relation De-
tection, we summarize what differentiate them in Table 2.6.1. Before analysing their
respective advantages and drawbacks, and proposing directions to tackle the iden-
tified issues, we present existing benchmarks available to evaluate the performance
of Visual Relation Detection models.
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Method Description

Relation Classification

Low-level dependencies
DR-Net [23] Message passing after ROI-pooling
ViP-CNN [80] Message Passing before and after ROI-pooling
SCA-M [164] De-ROI pooling for spatially consistent fusion
IMP [158] Message Passing through dual Scene Graphs
Pixels2Graphs [102] Local and global information through hour glass

High-level dependencies
Variation-structured RL [84] Enforce dependencies at interference
Rule Distillation [165] Train model with high-level constraints
Structural Ranking [83] Penalize frequent rel. for missing or false positives
Class Imbalance [124] Weigh mis-classification with frequencies

Hybrid

Mapping Images to SG [58] High-level features input and
message passing with neighbour attention

Additional Features
Weakly-supervised [112] Spatial features fit into GMM
CNN Spatial Features [23, 166] Learnt representation from object binary masks
Spatial Embedding [154] Plunge spatial features into high dimension space
Word embeddings [58, 166] Concatenate word embedding representation
Context information [58] Position of other objects and rankings

Semantic Modelling

Language Priors [89] Preserve dist. from pre-trained to
trained relation space

Zoom-Net [164] Predict classes at different hierarchy levels
Large-scale VRD [169] Triplet loss in two multimodal spaces

Relation Detection

Fully-supervised
Triplet NMS [80] Filter triplets with high overlap
Graph R-CNN [161] Model relevance by dot product
Pixels2Graphs [102] Relations detected at Heatmap maxima
Background filtering [124] Remove edges under a threshold

Weakly-supervised
Weakly-supervised [112] Learn latent object-relation assignments
Self-supervised
Relational Embedding [154] Attention on object pairs quantifies relevance

Table 2.6.1 – Visual Relation Detection methods
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2.7 Evaluation and experimental datasets

2.7.1 Datasets

Stanford 40 actions [162] is a dataset with 40 actions performed by humans. It
contains 9,532 images with 180 to 300 images per action class. Actions can have an
object, such as ’cutting_vegetable’ or no object, such as ’applauding’ as shown in
Figure 2.7.1

(a) Applauding (b) Cutting vegetables

Figure 2.7.1 – Images from Stanford 40 actions dataset [162].

VRD-set [89] is comprised of 5000 images, split into 4000 train images and 1000
for test. Ground truth object bounding boxes and classes are provided along with
relation annotations for a set of object pairs for each image, with around 35,000
annotated relationships with 100 object classes and 70 relation classes.

(a) (cat, on, luggage) (b) (person, hold, umbrella)

Figure 2.7.2 – Images from the VRD-set dataset [89] with one relation example.

Visual Genome [71] has 108,077 images. We focus on the split defined by Xu et
al. [158], restricted to 150 object classes and 50 relation classes with an average of
22 relationships annotations per image. 70% of images are used for train and 30%
for test.

There does not exist an official split for Visual Genome, thus several different
splits have been proposed with different number of selected classes:
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Figure 2.7.3 – Images from Visual Genome [71].

Dataset Source Train Test Object classes Relationship classes

VG [158] 73,800 25,800 150 50
VG [167] 73,800 25,800 200 100
VG [164] 86,460 21,600 5,319 1,957
VG [169] 99,900 4,800 53,300 29,000

Table 2.7.1 – Characteristics of existing splits of Visual Genome

UnRel [112] To evaluate the ability of the model to generalize to and detect new
relation triplets, Peyre et al. [112] generated a new dataset by querying a search
engine. Then each retrieved image is annotated with object bounding boxes and
relations the corresponding to each of the selected queries. Thus UnRel contains
1,000 images with 76 triplet queries.

OpenImages [74] has recently been augmented with visual relation annotation.
It contains 9 million images with 10 relation classes and 600 object categories.

HICO [14] has 47,000 images with 117 common human-object actions covering
600 action-object pairs such as (ride, bike) and 80 object categories. Thus the main
difference with previous datasets is the exclusion of relations where the subject is
not a human. Furthermore images are only annotated with image-level labels and no
bounding boxes for objects. Thus images in the dataset are less cluttered with only
one salient human-object pair. This makes the detection of relation less important
and focuses mainly on their classification. Finally, by decreasing the number of pairs
under consideration, annotations are more complete.

Actions in videos Many benchmarks such as HMDB [73], UCF101 [136], Mo-
ments in Time [100] and Kinetics [66] focus on action classification in videos with ac-
tions such as human-object and human-human interactions, body-motions or sports.

Conclusion We focus on visual relation detection on two datasets: VRD-set [89]
and Visual Genome [71] as they are widely studied image datasets with annotated
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object bounding boxes and relations. Furthermore, because of the high number
and diversity of images and relations in Visual Genome, the evaluation of models
on this benchmark gives accurate estimates on the performance of models on daily
life images. Finally, Visual Genome has more cluttered images which provides a
challenging problem due to the resulting high number of possible relations per image
and incompleteness of annotations.

2.7.2 Evaluation tasks and metrics

Scene Graph Detection and Classification Annotations of visual relations are
inherently incomplete. This is due to the combinatorial nature of the problem and
to the large quantity of information in images, which makes it necessary for humans
to focus on specific regions. The lack of comprehensive annotations negatively im-
pacts the quality of the evaluation of VRD models and makes precision metrics too
pessimistic. Hence most works on VRD [23, 58, 102, 158, 161, 164, 165, 166] measure
the recall@k : the fraction of ground truth annotations among the top k candidates,
as proposed by Lu et al. [89]. Setting a maximum number of relations per images
allows to take the precision of the model into account and keep the number of false
positives low.

This metric is used for the following tasks:
— Relation Classification (RelCls): ground truth object bounding boxes

and classes are given and the model is evaluated on the quality of relation
prediction.

— Scene Graph Classification (SGCls): only ground truth bounding boxes
are given and we evaluate the quality of object and relation classification.

— Scene Graph Generation (SGGen): The model is evaluated on its per-
formance on object detection and relation classification. An object detection
is correct if the ratio of intersection area over union area (IoU) is a least 0.5.

However, both SGCls and SGGen heavily punish misclassification of objects
or relations. Indeed, for each (subject, relation, object) triplet, an error in the label
of any of the three elements will result in a false positive. Thus, for scene graphs
where a few nodes are connected to several others, an error in the classification of
center nodes will result in missing all relations with these nodes. To remedy this
while keeping the accent on object classification, contrary to RelCls, Yang et al.
[161] propose to instead compute the combined recall of object, relation classes and
relation triplets :

SGGen+ =
C(O) + C(R) + C(T )

N
(2.21)

where C(O) (resp. C(R), C(T )) is the number of correctly classified objects (resp.
relations, triplets) divided by the sum of annotations of each type. C(T )
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Graph Constraints Finally, setting a number of predictions for each object pair
balances the emphasis on the quality of relation detection or relation classification.
Many works have focused on using ’graph constraints’ which limits the model to
one class prediction per object and per object pair. This focus ensures a high
precision but severely limits the recall. Furthermore, it also decreases the emphasis
on relation detection, as predicting one relation for the wrong object pair is less
penalized than predicting several for that pair. On the other hand, several relations
may be true for each object pair. For example, the relation ’(cat, sleep on, bed)’
implies ’(cat, on, bed)’ thus it makes sense to predict several for the pair ’(cat, bed)’.
However, for images with fewer objects or with fewer likely related object pairs,
increasing the number of predictions per pair allows the model to predict several
false positives without being penalized. Thus several works [102, 161, 164, 166]
measure the previous metrics with k predictions per object pair with k = 1, 10 or
70.

On Figure 2.7.4, outputs of our baseline are displayed with and without graph
constraints. Without graph constraints, the number of annotated pairs decreases.
While some relevant pairs might be missed, irrelevant pairs are also removed, allow-
ing more true predictions on a single object pair, such as (car, street).

These observations lead to the conclusion that is important to allow the predic-
tion of several relations per object pair, with a low number of predictions on the
image, in order to keep a high precision.
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(a) Input image

(b) Ground truth

(c) Scene graph with graph constraints: at most one relation is predicted per object pair.

(d) Scene graph without graph constraints: the pair (people, sidewalk) has three true
predicted relations.

Figure 2.7.4 – Image input with ground-truth annotations (top) and output annota-
tions from our baseline (see Chapter 3) with (middle) and without (bottom) graph
constraints.
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Zero-Shot learning To evaluate the ability of the Visual Relation Detection mod-
els to generalize, several works [84, 89, 112] evaluate their performance on previously
unseen ’(subject, relation, object)’ triplets, filtering out every seen triplet from the
test set. This highlights the ability of the model to recognize relations in spite of
uncommon paired objects, which helps show whether the model learnt spurrious
correlations or relies too much on the object classes.

2.7.3 Impacts of Methods on results on VG and VRD-set

We report the impact of the proposed methods on the task of Visual Relation
Detection on both Visual Genome and VRD-set datasets.

Method RelCls

IMP [158] 72.6
DR-Net [23] 81.9
Rule Distillation [165] 81.9
Zoom-Net [164] 90.6
DSR [83] 93.1

Table 2.7.2 – Visual Relation Detection Results on VRD-set with no graph con-
straints

Method SGCls RelCls

VRD-set [89] 14.1 35.0
IMP [158] 24.4 53.0
Pixels2Graph [102] 22.6 55.4
NeuralMotifs [166] 36.5 67.1
SGP [58] 38.8 66.9
Memory [151] 29.5 57.9

Table 2.7.3 – Visual Relation Detection Results on VG with graph constraints

Method SGCls RelCls

IMP [158] 29.2 58.2
Graph R-CNN [161] 31.8 59.1
Pixels2Graph [102] 30.0 75.2
NeuralMotifs [166] 47.7 88.3

Table 2.7.4 – Visual Relation Detection Results on VG with no graph constraints
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On Visual Genome, which most recent works focus on, Neural Motifs [166] is the
best performing model for the relation classification task, thanks to an improved
pre-processing and negative example selection, which they show improves the per-
formance of several other methods and the addition of a recurrent model to take
into account dependencies among relations of a single image.



2.8 Analysis

In Table 2.8.1 targeted criteria and issues of supervised learning in general and
VRD in particular are shown for the previously described methods. All aspects and
issues are formulated so that + refers to an advantage of the method and − is a
drawback. Relation and Relevance Classification are defined in Section 1.3.

— Reduced impact of noise/variance in Class variable: ClsNoise

— Helps scaling to a large number of classes: Scale

— Reduced under-fitting without additional annotated data: Fit

— Less Susceptible to dataset Bias or Differences in Domain Data Distributions:
Bias

— Less Susceptible to distribution differences: DistDiff

— Decreased Annotation requirements: AnReq

— Improved Relation Classification: RCls. This refers to models that are able
to classify an object pair

— Improved Relevance Classification: ReleCls

Method ClsNoise Scale Fit Bias AnReq RCls ReleCls

Data re-balancing + + -
Regularization + -
Transfer Learning + +

Knowledge distillation + +
Rule distillation + + + + +
Data Augmentation + + + +
Multimodal learning + + - +
Self-supervised learning + + + +
Knowledge graphs + + -

Metric learning +

Low-level dependencies + + +
High-level dependencies + + - +
Semantic features + + - + +

Relevance estimation - - +
Relevance prediction - - +
Structural Ranking + + - - +
Relation filtering + +

Table 2.8.1 – Visual Relation Detection methods

First and foremost, all studied VRD methods except [112] are fully-supervised
methods where the model is trained with annotated images which provide for ground-
truth relations with bounding boxes during the training phase. This conditions the
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methods used but fully-supervised learning is a very efficient training method when
sufficient data is available.

Second, as most methods, we focus on improving the estimation of the loss
function, instead of improving its optimization. As we show in Chapter 3, due
to the Human Reporting Bias, relation classes are heavily biased. Furthermore
they have a high variance, thus many methods propose to use internal or external
knowledge, which smooth estimated distributions consistently with the training data
and external knowledge, and hence improve their estimation.

Relation Classification In order to improve Relation Classification, we aim to
better fit the relation classifier. For this, external data is available in the form
of word embeddings [97], synonym dictionaries and knowledge graphs. We show
that Rule Distillation enforces rules on our model such that predicted relations
are more consistent to the used external data which improves the estimation of
the objective function. Furthermore, we explore Metric Learning in the context
of relation classification, to make the representation of relations generalize better
and decrease the number of examples required to learn one relation. We adapt the
method introduced by Kaiser et al. [65] in order to take into account the polysemy
and synonymy of relations.

Relevance Classification For Relevance Classification, the amount of available
external data is very low as it requires additional relations on pair of objects in order
to extract a probability distribution on the relevance of the pair. Furthermore, the
relevance variable is hard to capture due to a high level of noise because of the Human
Reporting Bias and the annotation process. Thus methods which are susceptible
to underfitting are excluded. Finally, we lack external data on the ground-truth of
relation relevance, which could be acquired by asking human annotators to annotate
additional relations and rate relevance. This leads us to the conclusion that learn-
ing to detect relevant relations requires the integration of internal knowledge into
the network. Among existing methods, only Relational Embedding [154] takes this
fact into account when predicting relevance. Similarly to them, we explore self-
supervised learning methods because they do not require additional data and
have been proven useful in many different settings. We also explore high-level de-
pendencies, in the form of statistics-based potentials, which helps capture relations
between variables.



Conclusion and Contributions 78

2.9 Conclusion and Contributions

In light of the issues related to the task of Visual Relation Detection and to the
broader task of training deep neural networks on real world datasets, we argue that
visual information is not sufficient to discriminate between relations. By considering
the additional knowledge of relation similarities and focusing on relevant relations,
this issue can be alleviated. Specifically, the major contributions of this work are as
follow:

— Human reporting bias in VRD datasets: Similarly to the Wolf/Husky
classification [121], we show that VRD datasets have exploitable biases that
are not apparent due to the used evaluation metrics. These biases come
mostly from a high imbalance in available annotated examples, and a high
dependency between objects involved in the relation and the corresponding
relation class. We show how this impact the detections of a competitive
baseline and propose a metric as well as a new dataset to better evaluate the
performance of existing methods.

— Overcoming Relation Imbalance with Semantic Modelling: This
chapter focuses on the integration of knowledge intro a VRD model dur-
ing training. This model is trained so that relations that are semantically,
visually and spatially similar have similar probabilities. Two methods are
proposed: the first method relies on a k Nearest Neighbor approach to train
a deep neural network, in order to improve uncommon relation classification
and take into account the structure of relations. For the second, external
knowledge is used to improve the accuracy of the risk estimation during the
training phase, aiming to increase the generalization capabilities of the model.

— Relations Relevance: In this chapter, we explore the inference phase and
aim to tackle one aspect not directly tackled while training the model. A
new scene graph construction method is introduced, integrating a learnt rele-
vance criterion. In the absence of annotations for this criterion, two methods
are proposed in order to focus on object pairs frequently related in similar
contexts. The first relies on self-supervision and the second on integrating
high-level dependencies between concepts into the model predictions. The im-
pact of these methods is analyzed showing that the constructed scene graphs
contain more uncommon relations while keeping a high overall recall. Fur-
thermore, we find that this additional factor allows our model to predict
relations on fewer and more relevant object pairs.
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In this Chapter, we first show that Visual Genome [71], the benchmark dataset on
which most recent works are evaluated, exhibits several biases which makes training
and evaluation of these works a difficult task. This will be a defining element
throughout this work and will motivate our choices. Furthermore, we propose to use
an additional evaluation metric highlighting the ability of the model to detect less
frequent relations. Finally, we propose a new split of Visual Genome [71] in order
to reduce the impact of this bias in the model evaluation.

3.1 Definition and Evidence in Visual Genome

The task of extracting a scene graph is a combinatorial problem, as the number of
object pairs increases quadratically with respect to the number of objects and each
pair can usually be described by several relations. Furthermore, images are very
rich sources of information. Moreover, as pointed in [99], much of this information
is not considered relevant by humans as it is redundant with prior knowledge. This
makes people tend not to mention parts of them when describing images, omitting
attributes that are "obvious or typical". For example, in Figure 3.1.1, several hun-
dred relations are true, among which "bed in front of wall", "bed near wall", "doctor
has jacket", "doctor in shirt", "picture below picture", "pen hanging from jacket".
However in Visual Genome [71], the annotated relations are "man ON bed", heart
on picture, "picture on wall", "pants on man", "shirt on man", "diagram of heart",
"doctor wearing lab jacket", "picture has heart", "man laying on table", "man cov-
ered with sheet", "doctor wearing shirt", "pictures on xray wall", "man pointing at
skeleton", "man wearing shirt" and "light hanging over xray board".

Figure 3.1.1 – Image example from Visual Genome. Several hundred relations are
true but provide little understanding of the image.

In this section, we define the human reporting bias. We show that it impacts
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the data distribution in Visual Genome. The resulting distribution prevents existing
models from detecting several classes of relations. Furthermore, it prevents the eval-
uation of these models from reflecting how they generalize to unseen images. Then
we propose a competitive baseline model and show the impact of this phenomenon
on this model.

3.1.1 Definition

The reporting bias was introduced in [142]:

Definition 3.1.1 Reporting bias is the phenomenon whereby the likelihood that
situations of a certain type are described in text does not correspond to their relative
likelihood in the world.

In our case, due to reporting bias, relation concepts that are visible in images are
not always mentioned by humans describing said images. The combinatorial na-
ture of Visual Relation Detection is an amplifier of this phenomenon, as the very
high number of possible annotations for a single image makes the frequency of true
relations much higher than that of annotated relations. On the other hand, the
difficulty to separate relations is amplified by this bias, as many true relations will
not be annotated. Similarly, the under representation of many relation classes is a
consequence of this bias, as humans tend to annotate a small set of concepts which
creates the long tail distribution of both objects and relations examples per class.

In the case of relation annotations, this results in two types of imbalance:

1. Importance imbalance: Several relations are true for one object pair but are
not annotated because they are not considered relevant in the current context.

2. Concept imbalance: Humans tend to use the same class of relations, even
though many are true.

These two phenomena drive choices in this work. In this chapter, we show that
they prevent models from learning representations that separate irrelevant relations
and different relations between them. Furthermore, they prevent the assessment of
existing datasets from reflecting how they would perform on new images.
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3.1.2 Reporting Bias in Visual Genome

Visual Genome [71] is a recent dataset involved in the most recent works on
VRD [58, 82, 154, 158, 165, 166, 170]. Here we show that annotations from Visual
Genome are impacted by the reporting bias.

In Visual Genome, annotated relations are influenced by the annotation process.
This process is defined as follows. First, annotators are asked to annotate regions of
the image with a description in natural language, which we call Human Description
Labels (HDL). Then one annotator extracts from each region the objects mentioned
in it. Finally, annotators are presented with region descriptions and the correspond-
ing objects and are asked what relations connect the objects, called Human Relation
Labels (HRL), based on the region description. This introduces an important bias
(which we quantify in the next Section) of which we show examples in Figure 3.1.2.
Image (a) shows an example where a region was annotated on the pair (woman,
tennis) and a relation was extracted from this pair. Image (c) shows a similar situa-
tion where the relation was not extracted from the region description. This suggests
that the choice of relation to annotate is impacted not only by object characteristics
but also by many factors which are hard to identify. The chosen regions, words and
relations can be affected not only by the context of the object pair, their positions
in the image, their sizes, but also the annotator vocabulary, knowledge, biases and
so on.
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(a) Woman is holding tennis racket.
HDL HRL Visual

holding 3 3 3

(b) Young man playing tennis.
HDL HRL Visual

holding 7 7 3

(c) Man holding a racket.

HDL HRL Visual
holding 3 7 3

(d) Hands holding tennis racket.

HDL HRL Visual
holding 3 3 3

Figure 3.1.2 – Human Description Labels (HDL) and Human Relation Labels (HRL)
capture only some concepts visible in the image. Descriptions and relations do not
always coincide. In all images, the concept holding is present in the image. In
(a), (b) and (d) holding is mentioned in description. In (a) and (d), holding
is mentioned in relation labels, however, in (d), the extracted relation is (hands,
holding, tennis racket) instead of (man, holding, tennis racket). In (c), holding
is mentioned in a region description but not in a relation label. In (b), a similar
situation is described as young man playing tennis and the concept holding is not
mentioned.
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3.2 VRD Models Evaluation

3.2.1 Relation Imbalance

To show the impact of the reporting bias, we show how it impacts the relation
distribution and creates a relation imbalance. Results on existing methods [23, 58,
80, 89, 102, 158, 164, 166, 170] trained on Visual Genome [71] have shown that most
predictions of the model are on and has relations. One reason for this comes from
the distribution shown in Figure 3.2.1, considering examples for the 20 most frequent
relations in VG. We study the most used split of Visual Genome, introduced in [158],
called VG-IMP.

Figure 3.2.1 – Proportion of examples in VG with the VG-IMP split [158] sorted by
proportion in Train.

First, for both train and test sets, the relation on is the most frequent relation,
with around 30% of all annotated relations. Furthermore, the number of exam-
ples decreases rapidly, and only 14 classes are represented by more than 1% of the
dataset. This raises an important consideration, related to the observation that
for many tasks, neural networks are able to learn correlations between features but
not causal relations. In this case, training VRD models on these skewed datasets
results in biased models which will tend to predict the most common relation. On
the one hand, this is not necessarily a drawback, as these interactions tend to occur
frequently in general cases and these biases can be interpreted as a form of common
sense knowledge, e.g. for the pair (person, car) relations in and drive are most likely.
However, on the other hand, these biases may prevent learning the representation
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of less frequent relations and what makes them distinct. Furthermore, the 4 most
frequent relations represent together two thirds of annotations and the 11 most fre-
quent ones represent together more than 90% of them. This makes the retrieval of
the other relations have a very low impact on the evaluation of models.

This bias is more visible at the level of object pairs. To study this, we extract a set
of object categories associated with each object class from WordNet [34] hypernyms.
The proportion of relations is measured for each pair of categories in Figure 3.2.2.
It shows that for most pairs, the most frequent relation holds a large majority of
examples.

Distributions differ for a given pair of categories between train and test splits.
The category with the most differing distributions is vehicle - artifact for which the
relation on is the majority in the train set while it is the relation has in the test
set. However, for all other object pairs, the majority class remains the same be-
tween splits. This makes predicting the most frequent relation for the given pair an
efficient strategy, as pointed in [166], where authors show that predicting the most
frequent relations of the object pair under study is enough to predict the correct
relation 75% of the time. It is correct 95% of the time when predicting the 5 most
frequent relations. For images with few objects, this alone will provide a good recall
at 100 predictions.

Thus, in order to keep a high precision, the main difficulty of this task becomes
the reliable detecting of object classes and selection of which object pairs to annotate,
i.e. the selection of object pairs relevant to a human observer. In this work, we
mainly consider the task of relation classification, assuming perfect object detectors.
Thus, we focus on the tasks of detecting and classifying relevant relations with a
high precision, especially of rarer relation classes.

Finally, this also shows another aspect of the reporting bias. Indeed, these
category pairs have the advantage of removing relation polysemy: for a given object
pair, one relation class always keeps the same meaning. Thus, for the pair person
- clothing, the four most common relations wearing, has, in and wears have the
same meaning even though they belong to different classes. When modelling these
separately, this introduces a high amount of noise into the network, making learning
to separate these relations difficult.

3.2.2 Evaluating Relation Diversity

To take into account the specificity of the problem, such as the inherent in-
completeness of available annotation, we measure the recall@k as in [89]. Thus we
measure the fraction of ground truth annotations among the top k relations retrieved
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Figure 3.2.2 – Relation distribution by pair of object categories in both train and
test sets of VG-IMP [158]. For most pairs, the most frequent relation holds a large
majority of examples. Furthermore, the most frequent relations remains the same
between train and test sets in all cases but (vehicle-artifact).

by the model. Most recent works [23, 58, 80, 89, 102, 158, 164, 166, 170] focus on
the model performance on the image macro recall, which takes the average recall
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over each image:

ImMacro R@k =
1

|D|
∑
I∈D

R@kI (3.1)

where R@kI is the recall for image I.
However, the ability of the model to generalize also depends on the diversity of

retrieved relations, which is not captured by the previous metrics due to dataset
imbalance. Indeed, the relation ‘on‘ represents 30% of the annotated relational
phrases in Visual Genome. Furthermore, retrieving uncommon relations is neces-
sary for many applications where important classes have a low number of training
examples. To complement this evaluation, we propose to also use class macro recall,
which averages the recall over each relation class:

ClsMacro R@k =
1

|R|
∑
r∈R

R@kr (3.2)

where R@kr is the recall of relations of class r. The underlying intuition here, is
that by averaging on every example, the image macro recall exhibits the ability of
the network to reliably retrieve most relations. Our focus here is for our network
to both reliably retrieve most relations but also focus on relations that occur more
infrequently and differentiate images from another.

3.3 Visual Relation Detection

In this section, we present a model able to detect visual relations using an an-
notated dataset and show how the previously described relation imbalance impacts
its outputs and performance.

3.3.1 Object and relation classification

We follow the same steps as in Section 2.6.1. A Convolutional Neural Network
(CNN) is used to extract image representation and object region proposals as dis-
played in Figure 3.3.1. For each pair of objects, region representations are extracted
from the image feature map using ROI-Pooling [120] (a). Following [166], we add the
visual representation of the union bounding box to spatial features extracted from
the binary masks using a two-later CNN (b). Then the representations of head,
tail and union bounding box are passed through two feed-forward layers. They are
noted fh, f t and fh→t.

For object classification, the parametric probability distribution function poθ is
defined as

poθ : f → softmax(W vis
o f) (3.3)
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Similarly to [41, 170], for relation classification, four different streams contribute
to each class score. Indeed, [41] noted that the head and tail streams help focus on
surrounding objects and human body parts to disambiguate relations. Thus, the
head, tail, spatial and visual streams are trained to predict relation scores (logits).
These scores are then summed and passed through a softmax layer. The relation
probability distribution function is defined prθ:

yvish→t = W vis
t f t +W vis

h fh +W vis
e [fh,f

vis
h→t,f t]

yspath→t = W spat
r f spath→t

prθ : (yvish→t,y
spat
h→t, vh, vt)→ softmax

(
yvish→t + yspath→t + logψ(vh, vt)

)
(3.4)

where W vis and W spat weights project the head, edge and tails of the relation into
the relation space. All vectors are then summed and the softmax function is applied
to the sum to compute the probability over the set of relations, including the null
relation ∅. Similarly to the semantic bias used in [166], ψ(vi, vj) is a prior potential
computed by measuring the frequency of each relation for each pair of object classes
in the training dataset:

ψ(vh, vt) =

(∑
I

∑
i 6=j 1[vi = vh, vj = vt, ei→j = r]∑
I

∑
i 6=j 1[vi = vh, vj = vt]

)
r∈R

(3.5)

Thus, in equations 3.3 and 3.4, object and relation classes are assumed exclusive.
These probability distributions are used as object and relation classifiers. In

order to translate these probabilities into a Scene Graph, the most probable labels
for nodes and edges are selected. However, with one selected label per node and
edge, the number of annotated relations in image I would be equal to n(n− 1). On
Visual Genome, the average number of objects is 21.2. An image with 21 objects
has 420 object pairs. Thus annotating the most probable relation for all these pairs
would not be useful to a human and create many false negatives, as the average
number of relations per images is 17.7. Therefore, the choice for most recent works
[23, 58, 154, 158, 166] is to select the top k scoring relations. This score is computed
as

poθ(vh,k|fh) ∗ p(eh,t,m|fh,t) ∗ p(vt,l|f t) (3.6)

for k, l ∈ [1 . . . nC], m ∈ [1 . . . nR], h, t ∈ [1 . . . n], h 6= t. This ranking process
has drawbacks, such as outputting scene graphs with a fixed-size for every image,
contrary to a threshold-based method. We use the same method to be able to
compare with existing methods and leave the study of threshold-based methods for
further research. These methods could increase the precision of the studied models
by taking into account the amount of information visible in each image.
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3.3.2 Training

Objective function The model parameters are defined as

θ = arg max
θ
L(θ,D) (3.7)

= arg max
θ
αLo(θ,D) + βLr(θ,D) (3.8)

where α and β are weights, set to 1 following [166]. The object classification loss
Lo(θ,D) is defined as

Lo(θ,D) =
∑

(I,y)∈D

nI∑
i=1

nC∑
k=1

δk(yi) log poθ(vi,k|x) (3.9)

where poθ(vi,k|x) is computed using branches in (e), δk(yi) = 1 if yi = k and 0

otherwise and nI is the number of sample object annotations.
The relation classification loss Lr(θ,D) is defined similarly as

Lr(θ,D) =
∑

(I,y)∈D

nI∑
h=1

nI∑
t=1,t6=h

nR∑
k=1

δk(yh,t) log prθ(vh,t,k|x) (3.10)

Implementation details In the sequel, we present in details how several hyper-
parameters are chosen.

— Object sample selection: During training, 256 regions of interest (ROI) are
selected. Among them
— 25% are positive annotation: either

— a ground truth object annotation
— a region with IOU (intersection over union) with a ground truth object

within two thresholds
— 75% are negative annotations, with IOU outside those thresholds

— Relation sample selection: Similarly, at most 256 object pairs are selected,
with 25% positive relations sampled from object pairs with at least one an-
notated relation and 75% negative relations sampled from object pairs with
no annotated relations.

— For this work, we focus on the relation classification branch thus we use
a standard object detection and classification framework. To provide fair
comparisons to existing works, the Faster R-CNN [120] framework is used
with a VGG network [131] for object detection and the extraction of region
representations by ROI-pooling. It is pre-trained on MS-COCO [86] and
during training for VRD, all convolutional layers are frozen.

— Training is done by Stochastic Gradient Descent, as described in Section 2.1
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with Momentum [115], with momentum factor equal to 0.9.

3.3.3 Model evolution during Training

In this Section, we study the optimization of the training loss on VG-IMP [158]
and how the evolution of the loss translates into the target metric. To prevent over-
fitting, training is stopped when a criterion has stopped increasing. The criterion
used in existing works is the SGCls (as defined in Section ) recall at 100 proposi-
tions, R@100. It is evaluated on a validation set of 5,000 images. In Figure 3.3.2,
the evolution of the cross-entropy loss over 100 iterations is shown in blue, red dots
are averages over each epoch and yellow dots the standard deviation over the last
epoch. After 2 epochs, the average training loss remains constant, and its standard
deviation does not decrease after four epochs.

Figure 3.3.2 – Cross-entropy loss for the baseline over 9 epochs. Blue points are the
average over the last 100 iterations and red dots are the average loss over the last
epoch (9600 iterations).

The constant standard deviation and mean suggest that the network is not able
to fully capture the variance of the data.

Results Variance To show the limits of this training procedure, performance of
the model on all three splits (i.e. train, validation and test) are measured. Since
the number and distribution of samples vary between each dataset, we also study
whether those results are statistically significant. However, iterating over all mini-
batches of VG-IMP [158] once takes around 60 minutes. Thus, testing the variance
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of results by training several models with different parameter initialization would be
very time consuming. Thus, it is instead tested by bootstrapping on the set under
study:

1. Sample 80% of the set by randomly choosing an image with replacement.

2. Compute the Recall over all selected images.

Each step is done 1,000 times. The motivation behind this is to estimate the vari-
ability of results for a single model on sets with similar distributions to the test set.
The limits to this method is that different training processes of the model would
increase this variability.

Figure 3.3.3 shows the performance of the model after each epoch on the whole
train dataset. Contrary to existing works which evaluate only the SGCls perfor-
mance to select when to stop the training, we use RelCls instead. These results
contrast with the cross-entropy loss shown in 3.3.2. They show that the network is
unable to capture the variance of relations, but also that the performance on relation
classification deteriorates after epoch 4. This shows that the SGCls performance
does not reflect the ability of the model to generalize on the task of RelCls and
that using it as a stopping criterion results in overfitting. Thus we use RelCls.

Figure 3.3.3 – RelCls performance of the baseline on the train set of VG-IMP [158]
at the end of each epoch. Both performance metrics deteriorate after 4 epochs. This
shows that the optimization of the objective function does not result in increased
performance on the target task.

This highlights that the cross-entropy loss does not correlate with the target task
performance. Results on the validation and test splits are displayed in Figures 3.3.4
and 3.3.5. They show similar trends with decreasing performance. Indeed, in Table
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3.3.1 results for different numbers of epochs are all but the first contained in the
95% confidence interval.

Figure 3.3.4 – SGCls (blue and right), Micro (red and left) RelCls performance
of the baseline on the Validation set at the end of each epoch. Performance on the
two tasks are not directly correlated.

Figure 3.3.5 – Validation and Test performance of the baseline at the end of each
epoch. The performance on each split suggest that they follow similar distributions
as they follow similar trends after 6 epochs where each slightly decreases.
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Micro R@k 2.5% Median 97.5%
50 80.4 80.8 81.1
100 87.8 88.05 88.3

Table 3.3.1 – Median, 97.5 and 2.5 centiles for RelCls R@k on the train dataset of
the baseline after 3 epochs.

Figure 3.3.6 – Histogram of probability that any relation is true: 1− pθ(R = ∅) for
object pairs with at least one annotated relation (top) and no annotated relation
(bottom).

Relation Detection Figure 3.3.6 shows the probability that any relation is an-
notated given an object pair. The top graph shows this distribution for pairs where
at least one relation has been annotated, which we call relevant, and the bottom
one where no relation has been annotated. We notice that the majority of relevant
relations have a probability lower than 0.5 of being annotated. Filtering out relation
where p(R = ∅) < 0.05 would remove most of the irrelevant relation but also remove
a high number of relevant ones, resulting in high precision but low recall outputs.
Moreover, this shows that the network does not learn to reliably predict whether an
object pair holds a relevant relation.

In Figure 3.3.7, output probabilities for the annotated relations of six classes
are displayed. For probabilities of all classes, please refer to Appendix A. For most
relations, the maximum probability density is reached between 0 and 0.1, except
for relation wearing. Rarer classes such as at, mounted on and eating are rarely
detected by the network. More frequent classes such as has, on and wearing have a
significantly higher mean and by ranking relations by their respective probabilities
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makes the model classify into those much more frequently than uncommon ones.
For smaller scene graphs, these rarer relations have a very low probability of being
predicted.

Finally, Figure 3.3.8 shows the confusion matrix of our Baseline. The top
matrix represents the normalized confusion matrix. We notice that the model fails
to detect most relations and classifies them as background (i.e. ∅ relation), except
relations on and wears. This is a second piece of evidence which suggests that the
model is unable to detect relevant relations.

On the bottom figure, we display the confusion matrix without considering back-
ground class and instances. Instances of most relations are mis-classified as on, has
or wears. This does not completely capture how the model detects relations because
the test setting ranks classification scores instead of taking the maximum score for
each pair of object. However, this suggests that the reporting bias has a negative
impact on relation detection, as the most detected relations are the most frequent
relations in Visual Genome.
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at mounted on

eating has

on wearing

Figure 3.3.7 – Distribution of baseline output probabilities for object pairs annotated
with relations.
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Figure 3.3.8 – Confusion Matrix of our Baseline. The matrix on top shows that
most object pairs are classified as background and suggests that the model is unable
to detect relevant relations. The matrix at the bottom suggests that the reporting
bias has a negative impact on relation detection, as instances of most relations are
mis-classified as "on", "has" or "wears".
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Generated Scene Graphs Figures 3.3.9 and 3.3.10 show examples of images
from Visual Genome. On Figure 3.3.9, due to the low number of objects, and
to the correct estimation that the pair (man, board) is the more likely to hold a
true relation, the network is able to predict all groud truth relations for this pair:
holding, with, carrying. However, this also allows the prediction of false positives
such as riding and on.

However, for images with many objects such as Figure 3.3.10, all predicted edges
are labelled with relations on or wearing. Furthermore pairs with annotated re-
lations, such as (hand, man) (top) and (fence, street) (bottom) have no predicted
relation.

Conclusion While this method does not provide a definitive proof that the net-
work does not learn beyond the first epoch, the decrease in performance on the
training test after the fourth epoch is statistically significant. The stable loss sug-
gests that the data variance is too high and that the network is underfitting; however
the drop in RelCls performance would suggest that it is instead overfitting. These
two hypotheses can be compatible, with the network overfitting on a region of the
input space and underfitting on a different region of this space, where the model is
not able to capture the variance of data.

1. The model performance on test deteriorates after several epochs.

2. Validation SGCls and Test RelCls are not correlated.

3. Model performance on the target measure, where the scene graph is con-
structed by selecting the top k relations does not correlate with the cross-
entropy loss.

4. The model does not learn to detect uncommon relations and highly favors
more common ones.
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Ground truth

Baseline Output

Figure 3.3.9 – Ground truth annotations and outputs of our baseline on one images
from Visual Genomes.
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Ground truth

Baseline Output

Ground truth Baseline Output

Figure 3.3.10 – Ground truth annotations and outputs of our baseline on two images
from Visual Genomes.
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3.3.4 Comparative study

In Table 3.3.2, we compare our proposed method to state of the art approaches.
Pixel2Graph [102] iteratively refines object and relationship heatmaps with a
stacked hourglass network making use of global context. Message Passing [158]
iteratively learns to refine relationship and object representation by passing mesages
through the scene graph. MotifNet [166] captures higher order correlations be-
tween objects and relationships using LSTM layers. SGP [58] is a permutation
invariant graph predictor that refines predictions from MotifNet using attention
over linguistic and visual neighbor features. The notable differences between our
baseline and MotifNet are the absence of LSTM layers, the added addition of
logits from four branches (Figure 3.3.1 (c)).

SgCls RelCls

Micro Micro

R@100 R@100

Pixel2Graph [102] 38.4 86.4
Message Passing [158] 47.2 83.6
SGP [58] 50.8 88.2
MotifNet - No Context [166] 46.3 86
MotifNet [166] 47.7 88.3

Baseline (Ours) 47.2 [46.7 - 47.7] 88.7 [88.4 - 88.9]

Table 3.3.2 – Results on VG. Recalls are in % and evaluated without scene graph
constraints. Numbers between brackets correspond to the 95% confidence interval.

Table 3.3.2 shows that our baseline is competitive with the state of the art
method and outperforms MotifNet - No Context [166] by 2.7 points even
though it has a lower number of parameters. We attribute this first to the removal
of the outer product described in [166] between object semantic representations and
relation visual representation, which provides a 2 points increase. Second, the added
predictions for relations based on head, tail and spatial features are responsible for a
0.7 point increase. The performance of simple model is indeed deteriorated by this
product, which we hypothesize results in too much information loss in the visual
representation. For this reason, we keep only the visual and spatial representation
of the union region, as shown in Figure 3.3.1. However, MotifNet performs better
on SgCls. This suggests that passing messages between object and relation classes
is necessary to take into account the relations between constituents of the relations
and their respective uncertainties.
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3.4 Making the R in VRD matter

3.4.1 Motivation

In the same vein as Goyal et al. [55] who observe that the output of Visual
Question Answering models is much more dependent on text priors than visual cues,
we noted for existing models, that relation predictions are conditioned more by the
object categories than by their relations in a specific image. This is not directly
apparent in results as text distributions in Visual Genome [71] are heavily skewed.
Figures 3.4.3a and 3.4.3b display the distribution of relations on Visual Genome
for the most frequent pairs of object categories. They are computed by grouping
object classes by manually defined hypernyms. They show that the majority relation
for each pair often represents from 50% to 75% of the examples. This makes the
predictions of models biased towards these relations and the evaluation does not
reflect that. To make the image macro recall more sensitive to how the model
generalizes on the task of relation classification, we propose a new split of Visual
Genome [71] called VG-RMatters.

This contribution follows the same motivation as many recent works in Natural
Language Processing that point out limitations in existing methods that are not
directly apparent. They show that focusing on standard splits may result in Type-I
errors [54], that annotating processes may introduce annotator bias and result in
overestimation of model performance on several datasets [42] and that models tend
to make use of language biases, ignoring visual information [55] or adopt heuristics
valid in some case but not all [8, 96].

3.4.2 Dataset Definition

This split is defined such that predicting the most common relation of each pair
of object categories is not a viable strategy. Thus the dataset should be such that
the majority relation of each pair of object categories is different between the train
dataset and the test dataset. The main difficulty towards this goal stems from
the fact that mini-batches and thus splits are defined by grouping sets of images
together instead of processing arbitrary sets of relations. Thus if an image contains
one uncommon relation and a set of common relations, it will offset the distribution
of all object pairs in the image, not only the one with the uncommon relation, as
shown in Figure 3.4.1. This difficulty makes the distribution of relations in both sets
hard to balance and, for a given dataset, this bounds the proportions of examples
of each class.
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Figure 3.4.1 – Example image with uncommon relation (person, riding bicycle).
Adding this image to the test dataset also adds (bicycle, on, pavement), (green
leaves, on, tree), (bike rider, wearing, a white shirt), (bike rider, wearing, shirt),
(tree, on side of, road), (bush, on, street), increasing the number of wearing and on
relations.

3.4.3 Dataset Statistics

In order to quantify the differences between datasets, we measure two quanti-
ties: the average proportion of the majority relation class and the average entropy
for each pair of object categories. Table 3.4.1 shows the differences of those quan-
tities between VG-IMP and VG-RMatters splits. For a uniform distribution, the
entropy is 1.71 and majority proportion is 0.02. This shows that the distribution is
very far from a uniform distribution but due to data limitations and object affor-
dances (what actions can be performed on/with objects), it is not a realistic goal.
Both metrics show that the diversity of relations for the VG-RMatters split is
higher.

Split Majority Proportion Average Entropy

VG-IMP [158] 0.62 0.55
VG-RMatters 0.44 0.68

Table 3.4.1 – Entropy and proportion of the majority relation in VG-IMP [158]
and VG-RMatters for the top 50 pairs of object categories (81% of examples).
VG-RMatters shows a greater diversity of relations for the most frequent object
pairs.

In Figure 3.4.3, the distributions of both splits are compared for the top 50
object categories and show that even though the most common relation does not
necessarily change between both, relations are more varied for most categories. The
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differences in distribution shown in Figure 3.4.3 and Table 3.4.1 suggest that this
split tests the model’s ability to generalize and will provide a better understanding
of the model performance.

Figure 3.4.2 – Comparison of distributions of relation classes in the test sets of
VG-IMP [158] and VG-RMatters (Ours)

The number of test images was reduced so as to keep a high proportion of
uncommon relations, so the proportion of images in the split is set at 85%/5%/10%
from 70%/5%/25% in [158].

Figure 3.4.3 shows the differences in distribution between both splits for the most
frequent category pairs. For all pairs, the proportion held by the majority class is
much lower in our split. In Figure 3.4.2, the test distribution is shown independently
from object categories for both splits. The proportion of the most common relations
decreases in the new split. However relation on remains very frequent with 25% of
all examples.
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(a) Relation train distribution in VG-IMP [158]

(b) Relation test distribution in VG-IMP [158]

(c) Relation test distribution in VG-RMatters (ours)

Figure 3.4.3 – Distribution of relations for each object category on VG-IMP [158]
and VG-RMatters
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3.4.4 Comparative study

Table 3.4.2 shows performance of three models on both datasets: Freq Base-

line predicts the most frequent relation given the class of each object in each pair.
MotifNet [166] captures higher order correlations between objects and relation-
ships using LSTM layers. Baseline corresponds to the model shown in Figure
3.3.1.

SgCls RelCls

ImMacro ImMacro ClsMacro

R@20 R@100 R@10 R@20 R@100 R@10 R@20 R@100

VG-IMP
Freq Baseline 31.0 43.9 39.3 52.9 80.0 6.4 11.2 33.7
MotifNet [166] 37.6 47.7 52.5 66.6 88.3 9.6 15.8 38.1
Baseline (Ours) 37.1 47.2 52.6 66.7 88.7 10.6 17.6 41.3

VG-RMatters
Freq Baseline 28.4 50.9 25.9 40.7 77.4 7.6 14.2 42.7
MotifNet [166] 38.0 55.5 39.6 58.4 87.8 11.8 19.8 46.6
Baseline (Ours) 38.5 56.3 40.3 58.9 88.3 12.6 21.1 47.8

Table 3.4.2 – Performance differences between VG-IMP and VG-RMatters. Re-
calls are in % and evaluated without scene graph constraints.

The differences in performance of FreqBaseline between VG-IMP and VG-
RMatters on RelCls, which deteriorates from 39.3% to 25.9% shows that pre-
dicting the most frequent relation is a less viable strategy. This is most visible for
small scene graphs, on R@10 and R@20, where the performance of all models drops
by more than 10 and 8 points respectively. Figure 3.4.4 shows that correct relation
is still in the top 2 relations of each given object pair 75% of the time and 87% of the
time in the top 3 relations, thus our dataset does not significantly change the scores
in the setting of R@100. For reference, there are in average 2.5 relation predictions
per object pair for MotifNet. Therefore we focus on the R@10 and R@20 settings
which are more demanding considering the structure of example annotations.

Furthermore, we see a better correspondence between high image and class macro
recalls, hence it is important to measure this score in order to better understand
how the model generalizes.
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Figure 3.4.4 – Probability of guessing the correct relation in VG-RMatters by
predicting the top k relations given an object pair.

3.5 Conclusion

We have shown that Visual Genome exhibits a significant bias, which hinders the
training of the model. It biases the model towards the most frequent relations and
hinders training due to the resulting high variance of the annotated relation. We
have proposed a competitive relation detection baseline with similar performance
on the RelCls task on both Micro and Macro recalls when compared to existing
state-of-the art methods. This baseline is able to correctly retrieve most common
relations but does not learn to detect rarer ones. To reflect this, we proposed to
study the macro recall, averaged over each class.

Furthermore, performance on train, validation and test splits at each training
epoch shows that the model does not improve in relation detection after the fourth
epoch and that its performance on the train split deteriorates. This shows that the
loss used to train the model is not directly correlated to the performance on the
VRD test setting. Furthermore, performance on the two tasks SGCls and RelCls

are also not directly correlated, which motivates us to use the latter as a criterion
for early stopping, instead of the former.

Finally, we proposed a new split of Visual Genome designed so that in the test
set each object pair has a more evenly balanced distribution of relation classes.
We showed that RelCls should be evaluated on smaller scene graphs, as simple
baselines perform relatively well on larger ones. With this new setting, being able
to reliably detect which relations are true is made more important than in previous
settings where predicting common relationships is a more viable solution.
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4.1 Motivation

In this chapter, we develop and compare two training methods both aimed at
tackling the imbalance of relation data. By this, we aim to improve the estimation
of the true relation distribution, and thus decrease the difference between the ex-
perimental and true risks. State-of-the-art models are trained with the assumption
that relations are mutually exclusive and that available data is sufficient to learn
accurate classifiers. Our approach removes the exclusivity assumption and aims to
take into account semantic relations between relation classes.

We tackle one consequence of the reporting bias described in 3: the imbalance in
the number of example per relation class. This imbalance has strong consequences: it
biases predictions towards the most frequent ones, preventing uncommon relations
from being learned or retrieved at test time. This is illustrated by the confusion
matrix in Figure 4.1.1, which shows that many relations are not learnt and are
instead classified as one of the most frequent relations, such as has, on, in.

Figure 4.1.1 – Confusion Matrix of our Baseline without the background class. Many
relations, such as above, attached to, parked on, walking on, are rarely detected and
are miscategorized as either has, on or in.

Boundaries between relations are fuzzy as different relations have the same mean-
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ing in specific cases. Learning representations where each relation class is separated
from other classes requires a high number of examples. This is especially true in
the case of relations which describe object pairs at different semantic levels. For ex-
ample, in Figure 4.1.2, relations on, above and standing on are true for the selected
pair. In order to be able to separate them, it is necessary to have examples in many
different situations, so as to successfully separate them when these relations do not
overlap.

Figure 4.1.2 – Example from Visual Genome. Several true relations describe the
elected pair at different semantic levels.

Furthermore, this makes training hard by provoking under-fitting, i.e. preventing
the model from capturing the high variance of the data. Finally, standard methods
for supervised learning are reliant on a high number of examples to be able to learn
each class.

To remedy this, we define two methods that alleviate the need in annotations
for each class and are able to learn and retrieve rarer classes. These methods differ
from each other by how they require external knowledge and how the assumption
that relations are exclusive is relaxed.

— The objective is to better learn rarer relations by learning representations
aimed at keeping small distances between instances of the same relation
classes. This allows the model to embed similar relation classes in the same
local spaces, instead of defining hyperplanes that separate the relation space.

— Knowledge is integrated into the model during the training phase by enforcing
model outputs to respect a set of constraints. These constraints are defined
from external knowledge to quantify how the estimations of a model conform
to external knowledge, such as synonymy or semantic similarity. During the
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training phase, a loss term is added to the relation classification loss so as to
train the model to respect these constraints.

4.2 Learning relation Prototypes

In the next Section, we first present works directly related to modelling the
distances between instances, how some of these methods have been adapted in the
context of VRD. Second, we propose a method that extends a work by Kaiser et
al. [65] to the context of classification, relaxing the constraint that relations are
exclusive during the training phase. We show that it enables the classification of
relations while taking into account their polysemy and synonymy.

4.2.1 Approach extended to VRD

Here we aim to take into account the semantic relationships between relations
and thus propose a method robust to the high level of noise in relation annotations.
This method, built upon the work of Kaiser et al. [65], is adapted to a classification
setting, contrary to the few-shot setting of [65]. Consequently, the inference process
needs to be different from the trained model very different from the original setting.

This method relies on a small number of relation prototypes. These prototypes
are defined such that each relation is summarized by a few references. Using a triplet
loss with margin, we train our network to extract representations of relations that
capture their diversity of meanings and group together instances of similar meaning,
such as wearing clothes and in clothes. We show that the learnt representation makes
use of visual, spatial and semantic information to group together relations with
similar meanings, such as person ride horse and person ride elephant. At test time,
relations are classified by using the cosine similarity with the defined prototypes. In
the subsequent section, we compare the implicit modelling of synonyms with two
methods that adapt the network objective function making use of a set of synonyms.
The first is a data augmentation method. The second is inspired by Hu et al. [62].
It constrains the output of the network to a space where synonym detection scores
are similar.

4.2.2 Relation representations

This model learns to embed relations in a metric space. These parametric repre-
sentations are defined as the concatenation of the representations from three modal-
ities: visual, semantic and spatial. We add the semantic representation as the word
vectors are defined in a metric space, which makes them useful for our purpose.
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For spatial, we change from the previously described representation in order to de-
crease the number of parameters to learn and use a simpler representation, as the
convolutional representation provided worse performance.

Spatial representations We extract the spatial features of the object pair (o1, o2)

in image I from the bounding box coordinates, as well as the size of the image, as
described and shown to be discriminative of relations in [174].

fs(o1, o2) =

[
f coord(o1, o2, I),fdist(o1, o2, I),f area(o1, o2, I)

]
(4.1)

where
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fdist(o1, o2, I) =
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(4.3)

f area(o1, o2, I) =

[
A(o1)
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,
A(o1 ∩ o2)

A(o1)
,
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A(o2)
,
A(o1 ∪ o2)

A(sup12)

]
(4.4)

(x∗,1, y∗,1) and (x∗,2, y∗,2) are the coordinates of the bottom left and top right corners
of the bounding boxes. w∗ and h∗ denote the width and height of the object bounding
box or image. x∗,c and y∗,c are the coordinates of the center of the bounding box. A
denotes the area, o1∩o2 and o1∪o2 are the intersection and union of both bounding
boxes and sup12 is the smallest bounding box enclosing both o1 and o2.

Thus, we make use of three spatial inputs: f coord for the positions and dimensions
of the bounding boxes, fdist for the distances between objects and f area for the
relative areas of objects, and how much they overlap.

Semantic Representation For the semantic inputs, we use pre-trained word
vectors to represent ground truth object classes. The visual and semantic feature
vectors [97] are concatenated together with the spatial features and passed through
a new fully connected layer in order to get a single representation of the object pair.
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Figure 4.2.1 – Processing pipeline of our model at test time. Visual, semantic
and spatial feature vectors are extracted and concatenated and the dimension is
reduced using a single fully connected layer. The relation is represented in a space
populated by relation prototypes. Then, the closest prototypes are retrieved and the
corresponding relation triplets are combined to produce a probability distribution
over the space of relations.
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4.2.3 Learning Prototypes

To learn relation representations, inspired by [65], we defineM = {µ1, . . . , µn},
a set of n prototypes where each prototype µi is a vector of dimension d and is
associated to a relation vi. During the training phase, M is updated so that, for
each batch and each training sample x of the batch:

arg min
µ∈M
‖x− µ‖ ∈ Mr (4.5)

where r is the relation class associated to x and Mr is the set of prototypes of
class r. Each relation may have several different prototypes to allow for the possible
differences in visual representations and the polysemy of the relation (e.g. "in"
describes different interactions in (man, in, shirt) and (man, in, car)). To allow
for synonyms between relations, we relax equation (4.5). Instead of the closest
prototype, we enforce that at least one of the p nearest prototypes of x has class r (p
is determined experimentally). Prototypes are sorted by decreasing cosine similarity
to x: {µi1 , . . . , µin} and their associated relations are {ri1 , . . . , rin}. Let ipos and ineg
the smallest indices, such that ripos = r and rineg 6= r. The loss function is

L(x, r,M) =
[
x · µineg − x · µipos + α

]
+

(4.6)

where [.]+ = max(., 0) and α > 0 is a margin, beyond which the distance between
both prototypes is large enough.

Prototype updates During the training phase, if a sample does not verify Equa-
tion 4.5, an existing prototype is replaced with this sample, in order to keep the
same number of prototypes. We select prototypes that have been updated the least
recently, as they are more likely to be outliers and are associated to a low number
of training samples. Thus, each prototype is associated to an age value (a1, . . . an)

that is incremented during each iteration. This value is updated based on the values
of {ri1 , . . . , rip}, the classes of the prototypes closest to x.

— Case ipos ∈ {1, . . . , p}: the closest prototype of class r is in the p nearest
prototypes, then we simply update the vector representation of the prototype:

µipos ←
µipos + x

‖µipos + x‖
, aipos ← 0 (4.7)

— Case ipos /∈ {1, . . . , p}: a new prototype needs to be added to represent x.
Here x is added to the set of prototypes and µi is updated:

µi ← x, ri ← r, ai ← 0 (4.8)
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where i = arg maxi∈{1,...,n} ai.

Learnt prototypes To further explore the learnt representation space, we per-
form a k-Means [91] on the set of prototypes and for each cluster, we list the (subject,
relation, object) triplets corresponding to each point. Some clusters are highly con-
sistent both in the concepts for the subject and object role as well as the relations,
which are synonyms. One such cluster is comprised of only (person/animal, cloth-
ing) pairs with relations in, wear, with, hold or has as shown in Figure 4.2.2. Figure
4.2.3 shows a cluster where relations all entail a close proximity between subject and
object, often implying that the subject belongs to the object (on, of, with, wear,
for, belong) with more varied subjects and objects.

(a) Subject classes (b) Relation classes (c) Object classes

Figure 4.2.2 – Word cloud of a cluster with relations (person, clothing) pairs.

(a) Subject classes (b) Relation classes (c) Object classes

Figure 4.2.3 – Word cloud of a cluster with relations entailing close positions, espe-
cially possession: on, of, for, wear, belong, part...

(a) Subject classes (b) Relation classes (c) Object classes

Figure 4.2.4 – Word clouds a cluster with (animal/person, flat surface) pairs.

This suggests that these clusters could be used to extract synonymy relations be-
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tween relation classes when involved with the type of objects of the cluster. However,
we also denote two other types of clusters:

1. Comprised of subjects and objects with bounding boxes of similar shapes and
in similar configurations. Thus, the visual relations are similar, but the text
relations have very different meanings. For example in the cluster with the
classes in Figure 4.2.4, with triplets such as (person, stand on, beach) and
(zebra, cross, road).

2. Comprised of either very semantically similar subjects (resp. objects), with
varying objects (resp. subjects) and relations, such as (sign, in front of, wall)
and (umbrella, behind, wall).

This observation suggests that the similarities of visual, semantic and spatial are
taken into account. However, allowing triplets with different relations to be close
not only takes into account the synonymy of relation but tends to also decrease the
separability of relations classes involving the same pairs of objects. Indeed, when
some object pairs can have multiple different relations, such as person and skateboard
and unlike person and hat, they will have similar visual and spatial features and the
model will not be penalized when the closest relation to the relation (person, carry,
surfboard) is on. Furthermore, this suggests that the distance between semantic,
spatial and visual features is not sufficient to learn that some relations are common
for a given object pair (e.g. cross for (zebra, road)) but not for another similar pair
(person, beach)).

Finally, these results highlight the trade-off that comes with introducing the
visual and semantic features of both objects. This helps the model learn correlations
between types of objects and relations that are common for these objects, such as
ride or wear and thus introduces a form of common-sense knowledge. However this
also increases the dimension of the space of representation and makes it harder to
determine which features can really separate relations with high intra-class diversity,
such as on and near.

Figure 4.2.5 shows the distribution of relation triplets by relation classes. First,
our model is able to group instances of the same relation class, especially for well
separated spatial relations, such as in Figure 4.2.5a where we observe some well
defined clusters. However the pair (below, in front of ) is not well separated. Since
spatial relations depend on the perspective of the photographer and objects, the
modes of different classes can coincide (e.g. in front of translates into very different
configurations depending on where a person looks), thus these classes are harder to
separate. Indeed, we find that on VRD-set, spatial relations have a lower recall than
actions (respectively 79% and 88%).

Finally, in Figure 4.2.6, in and wear have well defined clusters and also three
classes share two common cluster, which shows that our model learns to cluster
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semantically close examples, such as (person, relation, clothes) triplets. In all cases,
the distribution of test examples coincides with that of prototypes, which shows
that the model successfully learns a generalizable representation of the relation and
stores prototypes that correctly represent the class.
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(a) Spatial relations

(b) Diverse semantic relations

Figure 4.2.5 – t-SNE [141] embedding of relation representations learnt by ProtoNN
for relation classes of VRD-set. Crosses correspond to test relations and circles (less
opaque) to prototypes stored during the training phase. Our model is able to group
instances of the same relation class, especially for well separated spatial relations
such as above and below. For most relations, we notice well defined clusters but also
mixed clusters. This suggests that the model learns not only to group semantically
close relations (e.g. hold and with), but also relations with visually close relations,
which hinders performance.
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Figure 4.2.6 – t-SNE [141] embedding of relation representations learnt by ProtoNN
for relation classes of VRD-set. Crosses correspond to test relations and circles (less
opaque) to prototypes stored during the training phase. Our model learns to cluster
semantically close examples, such as (person, relation, clothes) triplets.
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Figure 4.2.7 shows that word vectors play an important role in the generalization
capabilities of our model as it learns to cluster relations with semantically similar
objects. On the first line, the closest relations to (person, horse) involve the pair
(person, bear) even though the bear and horse are visually different. The second line
represents a relation between objects similar to those of the first line. However the
retrieved relations are different to those of the first due to differing visual and spatial
information. The third example shows a failure case where the closest neighbours
have similar spatial relations and objects are semantically similar. Due to the rarity
of relation "touch", the correct relation is not retrieved. Fourth example shows an
example of correct classification where the closest relation (with the most similar
spatial configuration) is incorrect but the correct relation is retrieved by voting.

4.2.4 Inference

In the following, we compare performance on two different inference strategies.
The first is based on comparison with prototypes, similarly to how Kaiser et al.
[65] made use of memory keys. The second relies on the comparison with previously
seen training samples, which has the advantage of also allowing the comparison with
object classes from these examples.

Instance to prototype comparison At test time, the probability of relation rk
being true for an object pair (h, t) is computed as:

p(eh→t,k) ∝
∑

i∈[1,n]|ri=r

x · µi (4.9)

where x is the representation of the object pair (h, t).

Instance to instance comparison After the training phase described in Section
4.2, we store the representations of all annotated train relations. At test time, given
image I, the learnt representation of all object pairs is extracted using ground truth
object bounding boxes and classes. For each pair, the top k nearest neighbors from
the train set are retrieved with their distance to the query, as illustrated in Figure
4.2.1. The similarity between each neighbor xi, i ∈ {1, . . . , k} and the query q is
computed with a softmax function:

sim(q, xi) =
e−d(q,xi)

2∑k
j=1 e

−d(q,xj)2
(4.10)

Semantic consistency. To increase the consistency of the predictions, the similar-
ity is multiplied by a semantic consistency factor: consistency(q, xi) = sem(sq, sxi) ·
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sem(oq, oxi) where hq, hxi are the classes of the head objects, tq, txi are the classes of
the tail objects and sem(., .) is the scalar product of word embeddings [97]. Finally
the weight associated to relation ri is:

wi =
sim(q, xi) · consistency(q, ri)∑k
j=1 sim(q, xj) · consistency(q, xj)

(4.11)

Thus the probability of relation v being true is the sum of the weights of all relations
annotated with relation v.

4.2.5 Experiments

Implementation details The maximum number of relation prototypes n, which
are represented in a d = 512 dimensional space, is set to 8192 as in [65], which enables
network training convergence and keeps at least one prototype of each class. p is
experimentally set to 5, as we found that performance is not improved beyond that.
To train the network, the sum of the triplet loss (Section 4.2) and the cross-entropy
loss for object classification is optimized with an Adam optimizer with learning rate
1.10−3. Finally, on VG, we use an approximate similarity search [63] in order to
speed up computations.

Comparative study We compare our method to state of the art methods on the
VRD-set and VG datasets on the RelCls task. DSR - SR [83] is trained with
a Structural Ranking loss to increase the relevance of predicted annotations and
DSR - CE with cross-entropy. KD [165] is a network trained with a loss function
augmented with knowledge from the dataset statistics, and KD - no stat is the
same network trained without this knowledge. Pixel2Graph [102] is a recent scene
graph prediction model that iteratively refines object and relation heatmaps. DG

[158] iteratively refines relation representations using a Message Passing framework,
without using spatial features as input. Zoom-Net [164] integrates a message pass-
ing framework between objects and object pair regions at a lower representation level
and makes use of a concept hierarchy to train the network to produce semantically
consistent predictions.

Furthermore, a relation classifier Baseline is trained with a cross-entropy loss
using all inputs. ProtoNN is a network trained with a prototype triplet loss that
classifies relations based on the distance to the closest prototypes. TrainNN is a
classifier based on the distance to the nearest train relations, trained with cross-
entropy CE or prototype triplet loss PL. For the Baseline, the relation represen-
tation is the concatenation of the output of the fc8 layer, word vectors and spatial
features. This baseline provides poorer performance than the network shown in
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Chapter 3, because of the absence of spatial convolutional representation and the
differences in negative example sampling. Therefore, we focus our study on the
comparison between baseline and prototype learning. Further comparison with an
updated baseline would be required to provide further proof.

R@50 R@100
KD - no stat [165] 72.3 84.9
KD [165] 85.6 94.7
DSR - CE [83] 79.2 89.2
DSR - SR [83] 86.0 93.2
Zoom-Net [164] 89.0 94.6
Baseline (Ours) 77.0 86.3
ProtoNN (Ours) 73.1 83.9
TrainNN - CE (Ours) 69.8 79.4
TrainNN - PL (Ours) 78.6 87.6

Table 4.2.1 – RelCls results on VRD-set. Classification with prototypes has limi-
tations that do not appear in the one-shot setup of [65]. Classification with Nearest
Neighbors and prototypes (TrainNN-PL) outperforms our Baseline but is out-
performed by several state of the art methods.

The object detection system is supposed to be perfect thus we used the word
embeddings of the ground truth object classes at test time. This however makes the
comparison with some state of the art methods more difficult.

Classification with prototypes Table 4.2.1 shows that on VRD-set, Baseline

using all inputs outperforms ProtoNN. Classification with prototypes has limita-
tions that do not appear in the one-shot setup of [65], where the classification is done
by comparing the query to a small number of examples of various classes, whereas
here the query is compared to a high number of prototypes to overcome the problem
of synonymy between relations.

Classification with nearest neighbors To overcome this, we rely on the
annotations of the training set as described in Section 4.2.4. Retrieving a high
number of neighbors increases the bias of our classifier. The classification setup
with nearest neighbor TrainNN and Baseline is largely outperformed by the
same network with triplet loss TrainNN - PL, as the former is not trained to
group representations of relations but to define a space where classes are linearly
separable. TrainNN - PL obtains better performance on datasets where train and
test distributions are similar.
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R@50 R@100
DG [158] 45.3 58.2
DSR - SR [83] 69.1 74.3
Pixel2Graph [102] 82.0 86.4
SGP [58] 80.8 88.2
MotifNet [166] 81.1 88.3
Baseline (Ours) 73.9 82.5
ProtoNN (Ours) 72.2 81.5
TrainNN - PL (Ours) 67.9 76.0

Table 4.2.2 – RelCls results on VG-IMP. Classification with prototypes shows
poorer performance on VG-IMP than our Baseline, which highlights the limita-
tions of our representation. Relation representations group together visually and
spatially similar relationships but these do not necessary correspond to the same
relation.

4.2.6 Discussion

Table 4.2.2 shows that on VG-IMP, ProtoNN outperforms Pixel2Graph [102]
with a recall of 81.4% but is outperformed by the more recent works. Here Pro-

toNN is outperformed by Baseline (R@100 = 82.5%) but outperforms ProtoNN
- PL (R@100 = 76.0%). Furthermore, the study of prototype representations high-
lights the trade-off between relying on visual and semantic representations to predict
relations among a set of possible relations and relying on spatial information to pre-
dict relations outside the most common relations. Indeed, the network learns which
features correlate the most with each relation. However, visual and semantic fea-
tures may highly correlate to a set of relations without this relation being true, due
to the spatial configuration of objects. Due to the high imbalance in relation class
for each object pair and to the similarity metric which weighs each feature equally,
the model is not able to correctly separate them.

4.2.7 Conclusion

We presented a new visual relation detection model that embeds relation in-
stances into a space populated with relation prototypes, where similar relations are
clustered together. Results show that prototype learning is very promising, when
it comes to predicting a larger variety of relations while maintaining a high average
recall. However, the classification process at test time requires further exploration.
Indeed our setting is not able to reliably classify relations among a higher number of
classes than the few-shot learning setting. The structure of the learnt space shows
that the model learns to cluster semantically close relations, and stores prototypes
that correctly represent relation classes but that the defined clusters also define
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clusters of object pairs, which hinder relation classification.

4.3 Learning rarer classes with External Knowledge

In the previous section, we modelled relation similarity by learning a metric space
populated with prototypes and by enforcing that object pairs encountered during
training are close to a prototype of the same relation class. The model learns to
group similar relations. However, the similarity is impacted if relation instances
share similar objects which biases the model as shown in Figure 4.2.4.

In the following sections, we investigate the impact of training a model to ex-
plicitly consider the synonymy between relations classes and their similarities. We
classify these methods as Explicit Semantic Modelling (which rely on external
semantic data), as opposed to the prototype learning method described in Section
4.2, classified as Implicit Semantic Modelling. Furthermore, we compare two
different methods of modelling synonymy between relations: data augmentation
with synonyms (Section 4.3) and rule distillation (Section 4.3.4).

4.3.1 Related Work

In [40], Galleguillos et al. show that knowledge, in the form of statistics measured
on the studied dataset, can be integrated into the formulation of a Conditional
Random Field. This makes outputs more consistent with the whole set of training
samples and thus increases its predictive power. Knowledge may also be integrated
during the training phase of a model. Rohrbach et al. [123] show that external
knowledge on attributes enables the detection of classes without training samples.
They connect classes with attributes and use attributes common to several classes
to recognize instances of unseen classes. Specifically on Visual Relation Detection,
knowledge has been integrated in the form of semantic modelling of relations [89,
117].

External knowledge may be integrated into neural networks using rule distillation
as shown by [62] (see Section 2.4.3) and more recently by [165], where internal
and external knowledge are used to improve relation classification. However, one
drawback of [165] is that it is not possible to extract significant knowledge for each
relation when considering a context of several thousand classes, which we aim to
tackle here. To overcome such limitations, we introduce a different semantic rule
distillation scheme that is capable of treating a wider range of classes and increases
scalability by limiting the burden of directly using large external corpora.



Learning rarer classes with External Knowledge 126

4.3.2 Sources of External Knowledge

In this section, we explore the use of two different kinds of knowledge. The
first one is a set of synonyms, describing the fact that a true relation implies that
several other relations are true. The second one quantifies how semantically similar
relations tend to occur in similar contexts.

Synonym Dictionaries Let S = {(ri1, rj1), . . . , (rin, rjn)} a dictionary of syn-
onyms, where for each k ∈ [1, n], rik, rjk ∈ R and (rik, rjk) ∈ S if and only if
relation rjk is a synonym of relation rik. The synonymy relation is not considered
symmetrical to conform with the used synonym dictionary.

To define S, we use ConceptNet [137]. ConceptNet (CN ) is a set describing
relationships between concepts. S is thus defined such that, for each pair of relation
classes ri, rj, (ri, rj) ∈ S iff (ri, ’Synonym’, rj) ∈ CN .

Furthermore, ConceptNet provides a weight associated to each relationship,
quantifying the confidence in the relationship (e.g. edges from WordNet have a
weight of 2 while an assertion by one person in Open Mind Common Sense is asso-
ciated to 1).

Semantic Similarity Similarly to 4.2.2, embeddings are vector representations of
words, computed such that words that frequently appear in the same context have
embeddings with cosine similarity close to 1.

4.3.3 Data Augmentation with synonymy-compatible distri-

butions

Here, we aim to increase the completeness of annotations in a usual supervised
classification setup, where the goal is to obtain a maximum likelihood estimator.
Indeed, several annotations can be inferred from an existing relation using synonym
dictionaries.

Thus, for D a set of images, where for each I ∈ D with nI objects and RI =

{(oh, rh→t, ot)|h 6= t ∈ nI}, the set of true relations in I. To obtain a maximum
likelihood estimator, the cross entropy between the ground truth distribution pdata
and the model distribution pΘ is minimized and the model parameters Θ are defined
as:

θ = arg maxEpdata [− log pθ] (4.12)

= arg max
∑
I∈D

∑
oh,ot∈I

∑
r∈R

−pdata(r|oh, ot) log pθ(r|oh, ot) (4.13)
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Since the parameters of object and relation detection are separate, we consider only
the relation probabilities and the corresponding model parameters. When augment-
ing data, the parameters are optimized in order to maximize the log likelihood of an
augmented data distribution. For oh, ot ∈ I and r ∈ R, the probability distribution
of relations is defined as:

pdata+(r|oh, ot) =
∑
r′∈R

δI(r
′|oh, ot) · f(r, r′) · δS(r′, r) (4.14)

where f(r, r′) is the frequency of relation r in the set of all relations synonymous to
r′:

f(r, r′) =
nr
nS(r′)

(4.15)

where nr is the number of relation triplets with relation r in D and nS(r′) is the
number of relations synonymous to r′ in D: nS(r′) =

∑
r′′∈S(r′) nr′′

Let δS the indicator function of S. If the relation triplet (oh, r
′, ot) is true in

image I, the function pdata+(.|oh, ot) is a probability mass function (PMF):∑
r∈R

pdata+(r|oh, ot) =
∑
r∈R

δI(r
′|oh, ot) · f(r, r′) · δS(r′, r) (4.16)

= δI(r
′|oh, ot)

∑
r∈S(r′)

nr
nS(r′)

= δI(r
′|oh, ot) = 1

The underlying intuition is that, in order to generalize to the test examples, the
expected frequency for each relation should remain the same as with the maximum
likelihood estimator. For r in R

freqdata+(r) =
1

nrel
Epdata+ [1r] =

∑
I∈D

∑
oh,ot∈I

pdata+(r|oh, ot) (4.17)

=
∑
I∈D

∑
oh,ot∈I

∑
r′∈R

pdata(r|oh, ot) · f(r, r′)δS(r′, r) (4.18)

=
∑
I∈D

∑
oh,ot∈I

pdata(r|oh, ot) (4.19)

= freqdata(r) (4.20)

4.3.4 Rule distillation

The previous approach has two major drawbacks. First, it is highly dependent
on the quality of the synonym dictionary. Second, relation classes are polysemous,
which makes the direct of use of synonyms inadequate. These synonymy relations
do not always hold true, depending on the object pair under study. To mitigate
these drawbacks, we make use of a rule distillation process, in the same vein as [62].
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Instead of changing ground truth annotations, external knowledge is integrated into
the network during training by using an additional loss term that quantifies the
extent to which a model follows a set of rules.

Definition Let a neural network with parameters θ that outputs a conditional
probability distribution pθ(Y |X) of output variable Y given input variable X. As
in [62, 165], we define q such that

q = arg min
q∈P

KL(q(Y |X)||pθ(Y |X))− λEq(Y |X)f(X,Y )) (4.21)

where P is the set of PMF over R and q is the projection of pθ on a subspace
verifying constraints defined by f . The more (X,Y ) respects these constraints, the
closer f(X,Y ) is to 1. KL is the Kullback-Leibler divergence. As shown in [62],
the closed form solution of Equation 4.21 is q(Y |X) ∝ p(Y |X)eλf(X,Y ).

This new projected probability is added to the original network loss during the
training:

L(x,y,θ) =(1− π(t)) · l(y, pθ(Y |x))+

π(t) · l(q(Y |x), pθ(Y |x)) (4.22)

where l(y, pθ(Y |x)) is the network loss, corresponding to the cross-entropy between
the ground-truth label and the output distribution pθ(Y |x). π(t) is the weight of
the distillation loss at iteration t.

At the beginning of the training, since pθ(y|x) is far from the expected distribu-
tion, a large weight on the distillation loss would harm the training process, therefore
π(t) is set close to 0 and increases during the training phase.

Rule Distillation for VRD Instead of defining rules that the model should follow
given the structure of its input, these rules are instead defined based on the expected
output. Thus the formulation of 4.21 becomes

q = arg min
q∈P

KL(q(Rh→t|I)||pθ(Rh→t|I))− λEq(Rh→t|I)[f(Rh→t, R̃h→t)] (4.23)

where f : R2 → R is a function quantifying the degree to which a constraint is
respected. Rh→t is the relation output variable and R̃h→t is the target relation.
Thus q is defined such that, the relation classes r with high values of f(r, r̃) have a
high probability q(Rh→t = r|I).

Given the closed form solution of this equation, we model f as

f(r, r̃) = logPK(r|r̃) (4.24)
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where PK(r|̃(r)) is a the probability that r is true given that r̃ is, according to some
external knowledge K. Thus, since q(R|I) ∝ pθ(R|I) expλf(R, R̃), we have

q(R|I) ∝ pθ(R|I)PK(R|R̃) (4.25)

Synonymy Distillation Using the synonym dictionary, we make the hypothesis
that the probability that relation r is true depends on the weight of the synonymy
relationship in CN . We aim in this section to reward the model when synonymous
relations have similar probabilities. For I ∈ D, oh, ot in I and r, r̃ ∈ R, such that
(oh, r̃, ot) ∈ I, we define Pk as

PK(r|r̃) = softmaxS(r̃)(T ∗ wr,r̃) (4.26)

where wr,r̃ is the weight of the synonym between r and r̃, given by the synonym dic-
tionary, S(r̃) is the set of synonyms of relation r̃ and T is a temperature parameter.
This formulation allows us to set the influence of the weight levels on the constraints.
The lower T is, the higher the entropy and the closer the distribution is to a uniform
distribution. T is set to 2, allowing an object pair to have between 1 and 5 probable
relations (i.e. P (r|r̃) ≥ 0.1). However this might not be an optimal value, and can
be done through a parameter search, which we leave for further research.

Relation semantic similarity Here, we aim to use the knowledge of relation
semantic similarities by rewarding the model when semantically close relations have
similar probabilities. We characterize the semantic similarity between relations by
the cosine similarity between their word vectors. We use the GloVe embeddings
defined in [111]. Since these vectors are trained such that the dot product is equal
to the log probability of co-occurence, relations that are semantically similar will
be relations that appear in similar contexts. Hence in a given context, i.e. a given
object pair, the probabilities of different relations to describe this pair are related
to their semantic similarity.

Similarly to synonymy distillation, we model PK(r|r̃) by

PK(r|r̃) = softmax(T ∗ sim(r, r̃)) (4.27)

where sim(r, r̃) is the cosine similarity between embeddings of r and r′.
As illustrated in Fig. 4.3.1, the projected distribution has increased probabili-

ties for the relations closest to the ground truth relation and inversely for further
relations. This formulation differs from the constraints expressed in [62] as we use
the ground truth value to project the output distribution. The loss gradient would
be less stable if it was based on the output relation instead of the ground truth.
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Figure 4.3.1 – Semantic knowledge is distilled into the network by projecting the
output distribution under the constraint that relations semantically similar to the
selected relation have high probabilities.

Furthermore, it also reduces computations as the constraints can be computed be-
forehand.

Internal knowledge distillation Finally, we compare the previous distillations
with internal knowledge distillation, presented by Yu et al. [165]. The purpose of
their method is to restrict the outputs to a subset of relations that are the most
probable for a given pair of objects.

f(Rh→t, I) = logPdata(Rh→t|Vh, Vt) (4.28)

where f is the constraint function and Pdata(R|Vh, Vt) is the pre-computed distribu-
tion of relations given pairs of object classes.

Similarly to Section 4.23, the goal is to reward relations frequently associated
with the current context. For semantic knowledge distillation, this context was
given by the annotated relation. Besides, relations were represented by vectors
precomputed over a large text corpus, requiring fewer annotations but missing the
specificities of image contexts. For internal distillation, the context is given by the
object pair and since the relation distribution is computed on the training annotation
set, it is more accurate but requires more data to cover the whole space.
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4.3.5 Experiments

We evaluate the performance of our model for relation classification on two
datasets. Several setups are compared and show that representations learnt by our
model using triplet loss give an improvement over a classical classification scheme.

Implementation details The set of synonyms S and the associated weights
used in Equation 4.26 come from ConceptNet [137], a semantic network with more
than 8 million nodes and 21 million edges, aggregating several common sources of
knowledge: Commonsense Computing projects, contributors to Wikimedia projects,
Games with a Purpose, Princeton University’s WordNet, DBPedia, OpenCyc, and
Umbel.

For synonym knowledge distillation, both losses are weighed as in [62], where
the π(t) increases during the training from 0 to 0.05. Other intervals for π were
tested: [0, 0.15], [0, 0.25], [0, 0.5] and performance remains stable in this interval.
The temperature parameter in equation 4.26 is set to 2.

RelCls
ImMacro ClsMacro

R@50 R@100 R@100
VRD-set

Baseline (Ours) 77.0 86.3 40.3
SynAugment (Ours) 73.9 83.1 24.5
SynDistill (Ours) 74.0 83.5 34.6
ProtoNN (Ours) 73.1 83.9 41.7

VG-IMP
Baseline (Ours) 73.9 82.5 31.4
SynAugment (Ours) 70.7 79.1 28.0
SynDistill (Ours) 73.2 82.2 29.9
ProtoNN (Ours) 72.2 81.5 35.4

Table 4.3.1 – Results of Explicit and Implicit models of synonyms on VRD-set and
VG-IMP. ProtoNN is outperformed by our Baseline for ImMacro but outper-
foms all methods for ClsMacro. This suggests that keeping at least one prototype
for each relation and modelling their relationships increases the recall of rarer rela-
tions.

Explicit and implicit synonym modelling Table 4.3.1 shows the impact of the
proposed synonym modelling methods on both datasets. SynAugment refers to the
network trained with data augmentation presented in Section 4.3.3. SynDistill

refers to synonym data augmentation (see Section 4.3.4). Baseline is a simpler
baseline than the one presented in Chapter 3, with only 1 stream and without
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spatial convolutions. We notice that the same tendencies hold from one dataset to
another. In both, SynAugment has the lowest performance in micro recall, with
83.1% in VRD-set, compared to CE at 86.3%. On VG, it reache 79.1% recall, 3
points lower than Baseline at 82.6%. For macro recall, the results of both methods
that explicitly model synonymy, that is SynAugment and SynDistill, show that
completing the existing annotations with synonyms hurts the average relation recall.

Semantic Similarity for a large number of classes To further show the impact
of our setup for semantic similarity distillation, we study results on a larger dataset:
VG-Large. It is defined by taking all examples from object and relation classes with
two or more examples. This version contains 20,000 object classes, 10,000 relation
classes and 1.8 million relation annotations, 2.5 times more relations than VG-IMP
and VG-RMatters For both VG-Large and VG-IMP, we use the training and
test split defined by Xu et al. [158].

IK+ stands for internal knowledge distillation [165] and SK for semantic knowl-
edge distillation. We note that for IK+, to tackle the challenge of the long tail
distribution of object classes, we regroup them by common words using a parser
and a context free grammar to get the head word of a noun phrase.

On the VG-Large dataset (Table 4.3.2) both semantic similarity and inter-
nal distillations bring significant improvements to the prediction task. A 10.5%

and 10.7% increase of the R@100 over the original dual graph network is observed,
corresponding to 32.1% and 32.7% relative gains. Both distillations bring similar
improvements overall. Internal distillation gives slightly better results on the filtered
VG and VRD-set while semantic distillation outperforms the latter on Large VG.
This shows the value of the presented semantic knowledge distillation, which incor-
porates knowledge from precomputed word representations into the neural network
and can easily be applied to other benchmarks without requiring any additional
data.
However results with both distillations combined provide smaller improvements than

SGCls RelCls
R@50 R@100 R@50 R@100

Dual Graph [158] 8.6 11.2 22.7 32.7
IK+ 9.8 12.6 33.1 43.2
SK (Ours) 9.8 12.6 33.3 43.4
SK - IK (Ours) 9.9 12.7 33.0 43.0

Table 4.3.2 – Results of Semantic and Internal Distillations on VG-Large. Both
distillations significantly improve the training of the model in the case of a large
number of classes.
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SGCls RelCls
R@50 R@100 R@50 R@100

Region model [174] N/A N/A 51.5 51.5
IMP [158] 34.6 41.9 60.9 72.6
IK+ 43.5 50.5 71.3 81.9
SK (Ours) 41.2 48.7 71.0 80.8

Table 4.3.3 – Results of Semantic and Internal Distillations on ImMacro on VRD-
set. In the case of fewer relation classes, internal distillation defines rules that
generalize better than semantic distillation.

either separately. This might come from the added constraints, which result in a
biased estimation of the relation distribution.

Results on VRD-set (Table 4.3.3) show that with the same underlying network
(IMP), both semantic distillation and internal knowledge distillation outperforms
the network without distillation by a significant margin (resp. 6.8 and 8.6 points
on RelCls). However, internal knowledge distillation outperforms semantic dis-
tillation, as the number of relations is much smaller, making the estimation of the
relation probability given two objects more accurate.

Similarly, for VG-IMP (Table 4.3.4) and VG-RMatters (Table 4.3.5), we notice
small differences between the baseline and SK for ImMacro, which we attribute to
the small number of relations and fewer similar classes. We also note that we were
not able to obtain competitive results with IK+ on both sets, keeping a similar imple-
mentation, which is especially surprising on VG-IMP. We have not found convincing
explanations for this result and leave it for further research. However, SK improves
ClsMacro, especially on VG-RMatters. This is due to the increased entropy of
the corrected distribution used in the training loss defined in Equation 4.22, which
results in an increased entropy of the output distribution. Since theImMacro scores
change in a small amount, this suggests that the semantic constraints are consistent
with the inter-dependencies between relations.
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SGCls RelCls
ImMacro ImMacro

R@20 R@50 R@100 R@20 R@50 R@100
Pixels2Graph [102] - 35.7 38.4 - 82.0 86.4
IMP [158] - 43.4 47.2 - 75.2 83.6
SGP [58] - 45.5 50.8 - 80.8 88.2
MotifNet [166] 37.6 44.5 47.7 66.6 81.2 88.3
Baseline (Ours) 37.1 44.0 47.2 66.7 81.3 88.7
IK+ 36.7 43.6 46.9 65.7 80.2 87.5
SK (Ours) 37.2 44.2 47.4 66.5 81.2 88.6

RelCls
ClsMacro

R@20 R@50 R@100
MotifNet [166] 15.7 27.5 37.9
Baseline (Ours) 17.6 30.2 41.3
IK+ 15.3 27.6 39.0
SK (Ours) 17.2 30.5 42.3

Table 4.3.4 – Results with Semantic Distillation on VG-IMP. In the case of fewer
relation classes, semantic distillation does not improve recall. This suggests that the
resulting bias does not outweigh improved learning of rarer relations in the general
case. However, ClsMacro recall is improved, which shows the pertinence of our
approach for uncommon relations.

SGCls RelCls
ImMacro ImMacro

R@10 R@20 R@100 R@10 R@20 R@100
MotifNet [166] 26.3 38.0 55.5 39.6 58.4 87.8
Baseline (Ours) 26.7 38.5 56.3 40.3 58.9 88.3
IK+ 26.1 37.7 55.7 39.4 57.5 87.2
SK (Ours) 26.9 38.8 56.2 40.0 58.5 88.2

RelCls
ClsMacro

R@10 R@20 R@100
MotifNet [166] 11.8 19.8 46.6
Baseline (Ours) 12.6 21.1 47.8
IK+ 11.4 19.1 47.2
SK (Ours) 13.4 21.5 50.3

Table 4.3.5 – Results with Semantic Distillation on VG-RMatters. Results on
VG-IMP translate to VG-RMatters with increased ClsMacro and slightly de-
teriorated ImMacro.
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Figure 4.3.2 – Relation recall by the number of train examples in Visual Genome
and trends for Baseline, ProtoNN and SynDistill. ProtoNN is able to de-
tect with increased recall relations with fewer examples but is outperformed by our
Baseline on the most frequent ones. SynDistill outperforms both approached
for rarer relations, but its performance shows no correlation to the number of ex-
amples and performs especially poorly on the most frequent ones. This makes this
model unreliable and suggests that it trains with a very inaccurate estimation of the
loss function.
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4.3.5.1 Result analysis

In Figure 4.3.2, for Baseline, SynDistill and ProtoNN, we display the
performance of the model by the number of training samples for each relation of
VG. SynAugment is not displayed as the performance are very similar to if lower
than CE. ProtoNN has higher performance at a lower number of examples and
is able to detect significantly more examples of the rarer classes than CE. Figure
4.3.3 shows the performance for the 30 most frequent relations in VG, sorted by
decreasing frequency in the training set. We note that classes under, at, against
and watch are significantly less detected by ProtoNN. This is explained by a study
of the prototypes, where clusters with these relations are populated with relation
triplets with similar object pairs but have a low diversity of relations, which makes
retrieving the less frequent ones less likely. Interestingly, SynDistill has a much
higher performance for several rarer relations. However, the performance on the
most frequent relations are very low, which explains the difference in macro recall.
We found no correlation between the number of synonyms of a relation and its recall.
However, we notice that most relations with a high recall are actions whereas most
actions with a much lower recall than the baseline are spatial actions.

Finally, Figure 4.3.4 displays the confusion matrix of SK and the difference be-
tween normalized confusion matrices of SK and our baseline. Positive numbers mean
that the number of classified examples is greater in SK and negative for Baseline.
The class with the most positive changes is riding, which has the highest value at
the diagonal , which is explained by Figure 4.3.5. This matrix shows the probability
distribution for each relation, as defined in 4.27, from which we have set the diago-
nal to zero, as it is much higher than other values. The semantic similarity between
riding and other relations is close to zero.
Two other relations have many more predicted examples: near and holding. For
class near, this is not directly explained by the relation similarities, as many rela-
tions have more examples classified as near. This is also apparent by the fact that
no more examples of relation at are classified as looking at, which is the relation
with the highest probability given that at has been classified (due to the presence
of at in looking at). This highlights one drawback of using similarity between word
embeddings. However, it also shows that this approach is robust to noisy relation-
ships as this similarity does not impact the performance on this class. Relation
holding, however, is an example where the semantic similarity is useful, as many the
similarity between relations carrying and holding results in more correctly predicted
holding, as well as several examples of relation carrying classified as holding, which
is implied by carrying.
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Figure 4.3.3 – Results of Baseline, ProtoNN and SynDistill on Visual Genome
for the 30 most frequent relations, sorted by decreasing frequency in the training set.
ProtoNN significantly increases recall for the rarest classes, by more than 100%
for "stand on", "park on", "belong to" with slight decreases for the most frequent
classes. However SynDistill strongly deteriorates recall for the most frequent
classes which negatively impact the overall recall.
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Figure 4.3.4 – Confusion matrix of SK (top) and difference with the Baseline con-
fusion matrix (bottom).
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Figure 4.3.5 – Similarity matrix between relations in VG
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4.3.6 Discussion

The results of models which use explicit synonymy modelling show that actions,
which share more objects than spatial relations benefit more from comprehensive
annotations. This suggests that existing models are capable of using correlations
between object types and relations to correctly predict actions but struggle to predict
spatial relations independently from object classes.

Furthermore, as shown by the prototype representations, due to the polysemy
of relations, relations are synonymous only in a set of cases. Thus using a rigid
dictionary independent of the involved objects introduces a bias in the relation
distribution estimation.

Finally, distillation-based methods have proven less effective on datasets with
fewer relations. Several hypotheses can explain these limitations. The first is the dif-
ferences between semantic and visual similarities. With word embeddings, relations
behind and in front of have high cosine similarity because of a high co-occurence
rate but they are very visually different. Similarly, standing on and crossing are
usually true at the same time, but they are not synonyms. This makes less robust
methods such as data augmentation not adequate for the task. Rule distillation
proves more useful and robust in this case, as the added loss term depends on the
output distribution and thus, relationships between classes which do not translate
to the visual domain have less impact on the trained model.

4.4 Conclusion

We studied three methods defined with the purpose of removing the assumption
that relations are exclusive. The first by defining a metric space in which relations
are embedded. This allowed us to study the defined relation representations and
highlight a trade-off between using only visual data and adding external knowledge
in the form of object similarities, which helps the model learn common sense, pre-
dicting common relations for given object pairs. However, this also biases the model
toward common relations and makes it harder to determine which features can re-
ally separate relations with high intra-class diversity, such as on and near. Results
show that prototype learning is promising, when it comes to predicting a larger
variety of relations while maintaining a high average recall. The comparison with
two methods of explicit modelling of synonyms highlights that implicit modelling
of synonyms (with prototypes) has the advantage of being adapted to the visual
domain, where visual relations have many different meanings and are not synonym
to the same relations as text relations.

Finally we showed that it is possible to use external knowledge in order to improve
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the recall of rare relations. Rule distillation based on semantic similarities between
relations helps improve the recall of uncommon relations. This is especially useful
where relations are less restricted, as is the case for VG-Large. Indeed, in VG-

large relations can be comprised of several words and thus are related to many
other classes. We showed that semantic and internal distillation obtain similar
results on both VG-Large and VRD-set, with the caveat that internal distillation
requires additional pre-processing for large numbers of classes and that is better
adapted to datasets with more restricted classes. This approach also provided very
good results on VG-RMatters, improving the macro recall@10 from 12.6% to
13.4%, with a slightly lower micro recall however. This shows that this approach is
relevant in the case of a more balanced dataset, improving the estimated relation
distribution and the recall of several relations, and decreasing the bias toward the
most common ones.



Chapter 5

Relation Relevance

142
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5.1 Context

5.1.1 Motivation

Existing methods are able to retrieve a high number of relations, However, be-
cause they are trained on annotations from existing datasets, they are heavily pe-
nalized when these relations are missed and will favor them above rarer ones. As
shown in Section 3, existing methods have significant biases. This results in a very
low recall for the latter relations. In Section 4, we tackled the imbalance between
relation classes, aiming to improve the representation of rarer classes by using the
relationships between rare and common classes and learning from the latter, which
provides many more examples to learn from.

However, the observation of a few images of Visual Genome showed that existing
models tend to predict one relation per object pair. Furthermore, the study of the
confusion matrix with the background class shows that the model is not able to
detect whether a relation should be annotated: the background class (the leftmost
class) has nearly always a higher probability than other relations.

This makes Visual Relation Detection different from object detection, because
the relevance of a relation depends on a large variety of criteria. First of all, it de-
pends on characteristics of the objects, such as their size, saliency, distance. Second,
it depends on the nature of the relation: if it is too typical, then the relation might
not be mentioned, unless the objects are central in the image, the image has a low
number of objects... In the case of Visual Genome; the relevance of a relation is
harder to estimate, because it depends on whether a region of the image has been
described by a previous annotator, as shown in Figure 3.1.2. Finally, relation anno-
tations depend on the knowledge of the annotator, their previous experiences and
so on... Figure 5.1.2 illustrates this, where the relation (tree, has, bark) is true in
both images but is not annotated in the rightmost image.
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Figure 5.1.1 – Confusion matrix of our Baseline on VG-RMatters

Figure 5.1.2 – Examples from Visual Genome. The relation (tree, has, bark) is
annotated in leftmost image but not in the rightmost image.
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For humans, it is important to be able to filter out sensory information, as people
who are not able to do so have trouble processing all the available information. Thus
some parts of image may be ignored without conscious decisions. We argue that a
model able to better detect relevant object pairs and relations will result in a higher
diversity of predicted relations. Furthermore, it will predict more relations relevant
to a human observer and also learn to filter out information that a human would
ignore. We propose a method to train a relevance estimator between objects. This
method directly targets one of the obstacles discovered in Chapter 3, namely the
fact that the objective function and target metric do not correlate. While Chapter
4 targeted the evaluation of the experimental risk, related to the objective function,
this Chapter is dedicated to improving the inference process.

In this Chapter, we aim to improve performance on relation classification by
prioritizing object pairs that are the most relevant, i.e. which are the most likely
to be annotated by a human annotator and we show two complementary ways to
achieve this goal.

Contributions Our contributions are summarized as follows:

1. Latent topic modelling of visual relations. To exploit the dependencies be-
tween annotated relations and image content, we propose to use relations as
text documents to extract high-level information in the form of latent topics
with Latent Dirichlet Allocation [10]. We show that adding a topic predic-
tion layer improves the relevance of predicted relations. We use an attention
mechanism to aggregate relation features in order to predict image topics and
to use this attention as a factor in the relevance score.

2. Relevance classifier with Prior Potentials We propose a simple new method
to generate scene graphs with guided proposals using a relevance score and
statistics-based priors, aiming to increase the diversity of predicted relations.

5.1.2 Related Work

Concept Relevance refers to the phenomenon whereby the probability of that
a concept is visible is different from the probability that it is annotated by a human.
Berg et al. [9] showed that objects either far from the center of an image or small
are less likely to be mentioned. Unsual objects and people however, tend to be men-
tioned more often. Misra et al. [99] tackle this discrepancy by separately modelling
the presence of an object and its relevance so that the model may simultaneously
predict a high probability of presence and a low relevance.

The selection of the relationship proposals was studied by Zhang et al. [168]
where they point out the difficulty of choosing relation proposals (i.e. object pairs
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to be annotated) when the number of object proposals grows, as the number of
possible relations grows quadratically. They learn a relation proposal network based
on visual and spatial features and they evaluate this network on Visual Genome [71]
and show that the visual compatibility score is more important than the spatial
compatibility score.

Finally, Zellers et al. [166] show that, in contexts where ground truth object
detections are not given, a baseline predicting the most frequent relation outperforms
existing methods such as [89, 102, 158] by filtering out object pairs that do not
overlap.

5.1.3 Formulation

Both contributions rely on the following decomposition of scene graph probabil-
ity:

P (G) =
∏
i

P (Vi)
∏
j 6=i

P (Ri→j, Zi→j|Vi, Vj) (5.1)

This formulation takes into account the presence of a relation with Ri→j and its
relevance to a human observer with Zi→j. Taking into account the observation that
many true relations should not be mentioned, this makes the prediction of the model
focus on a smaller number of object pairs and extract more relevant relations from
an image. Here, we make the assumption that they are independent variables. In
this Chapter, we describe how the relation distribution Pvis(Ri→j|Vi, Vj) and human
relevance distribution, Phuman(Zi→j|Vi, Vj) are computed.

5.2 TopicNet: Learning Relation Representations

with Attention to Topic

We present our model for extracting scene graphs from images using Topic Mod-
elling and Attention to relations, called TopicNet.

5.2.1 Motivation

In Chapter 3, we showed that the model struggles to reliably retrieve all rele-
vant classes. To improve the pair selection process, we propose to take inspiration
from other self-supervized methods described in Section 2.4.2. Indeed, as previously
mentioned, human observers tend to not mention objects that are typical, too small
and so on. From this observation, we make the hypothesis that relations are con-
sidered relevant if they involve objects that are relevant to the image topic. We
call topic latent variables that condition the probability of visible objects. Thus if a
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given relation helps to predict the image topic, then it involves relevant objects and
therefore is considered as relevant.

5.2.2 Related Work

Relations are annotated not in isolation, but are all drawn from a distribution
conditioned by the image they describe, which not only conditions which relations
are true, as has been noted in [158], but also their relevance. Hence, we assume that
they are drawn from a distribution conditioned by the same latent variable, which we
call the topic of the image. This topic is estimated by Latent Dirichlet Allocation, by
Blei, Ng and Jordan [10], where the documents are the set of relations of each image.
Furthermore, we show that the relation between each object pair and the image topic
carries a significant role in predicting how important the pair is for understanding
the image content and thus how likely it is to be relevant to a human. For this, we
train a network to predict the image topics using an attention mechanism and show
that, at test time, this attention prediction can be used as an indicator of object
pair relevance.

Image context is highly influential on whether an object will be mentioned by a
human viewer, as was shown by Berg et al. [9]. We aim to show that this is also
true for the relations that a human viewer chooses to focus on, as this information is
critical for the estimation of the relevance of a relation in the given image. Further-
more, as the number of possible pairs to annotate is quadratic with respect to the
number of objects, it is vital to focus on important object pairs. For Visual Relation
Detection, this information (in the form of scene labels for example) is usually not
directly available. However, with the available relation annotations, we have for
each image a set of (head, relation, tail) triplets. In the same vein as Gomez et
al. [52], we use the Latent Dirichlet Allocation (LDA) by Blei et al. [10] to model
topics of images using relation phrases. Gomez et al. [52] show that the added
self-supervision from LDA topics enables the network to learn visual features that
provide performance comparable to supervised methods on downstream tasks, such
as object classification and multi-modal image retrieval.

5.2.3 Describing images with latent topics

Formulation Given a vocabulary of words w = (w1, . . . , wV ) and topics z =

(t1, . . . , tK) and a corpus D consisting ofM documents each of length Ni, LDA with
parameters α and β assumes the following generative process for document di

— Choose θi ∼ Dir(α)

— Choose φ ∼ Dir(β)

— For each position k in di:
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— Choose a topic t ∼ Multinomial(θi)

— Choose a word w ∼ Multinomial(φz)

After inference, two distributions P (w|t) and P (t|d) are available.

Pair annotations as documents An object being in a different role than usual
might be an indicator of a different image topic. Thus, to train the LDA, we use
the object pairs of the image relations as the sentences of the image document. For
instance, the relational phrase (rider, on, horse) becomes ’rider horse’. Once the
documents have been defined, we first train the LDA and use the detected topics as
topic ground truth during the training of the neural network.

Figure 5.2.1 displays, for three different topics, the images with highest proba-
bility of each topic to be drawn for the image. Topics describe classes of objects
that interact frequently and are highly interpretable. A correct topic prediction is
an indicator for the ability to determine relevant object pairs in the image.
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(a) Subjects: boot, coat, glove, hat, helmet, jacket, mountain, pant, ski, snow. Objects:
person, ski, skier, snow, track.

(b) Subjects: bike, cat, people. Objects: bike, cat, paw, people.

(c) Subjects: arm, banana, hand, head, logo, number, player. Objects: banana, cap, glove,
hat, helmet, logo, number, player, sock.

Figure 5.2.1 – Top associated objects and images of two topics inferred with Latent
Dirichlet Annotation. Topics are consistent, although we note that some contain
semantically contrasting words, such as ‘cat‘ and ‘bike‘, which will increase the
likelihood that relations between the two will be predicted.
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5.2.4 Visual Relation Detection with Attention to topic

We present the steps taken from the extraction of the representation of relational
phrases to the prediction of topic and the phrase itself. The process is described in
Figure 5.2.2. In the following section, we will refer to learned weights and biases as
W ∗ and b∗.

Topic prediction with Attention Our goal here is to show that image topics
can be inferred from relation representations. For that, we use an attention model
relying on the image representation, as shown in Figure 5.2.2, inspired by recent
works on visual question answering [2] that rely on a query to determine which
object detections are important to finding the answer. The underlying intuition is
that the image context itself can be used as a query to determine which relation is
important for the topic classification. The model learns which object pair and image
features have a high correlation and how they correlate with the different topics.

For each object pair (h, t), we define:

qh,t =
(
W rel · fh,t + brel

)
�
(
W im · f visI + bim

)
(5.2)

where f vis corresponds to the image features extracted by the CNN and � is the
element-wise product operation. Thus qh,t is the query defined from the relation and
image features, from which the attention to the relation is defined as follows. The
attention weight ah,t is defined for each object pair (h, t) from the query q(h,t):

αh,t = W att · qh,t + batt (5.3)

ah,t =
eαh,t∑

k,l∈[1,NI ] e
αk,l

(5.4)

Finally, the image topic embedding is defined as a weighted sum of each object
pair representation:

x̃topicI =
∑

h,t∈[1,N ]

ah,tq(h,t) (5.5)

The topic distribution on I, noted pΘ(T |I), is predicted using a fully connected
layer followed by softmax operation on x̃topicI as shown in Figure 5.2.2. weights are
learnt by minimizing a binary cross-entropy loss between LDA topics and predicted
distribution:

Ltopic(Θ, I, plda) =
1

K

∑
t∈T

plda(t) log pΘ(t) +
(
1− plda(t)) log(1− pΘ(t)

)
(5.6)

For conciseness considerations, we abbreviate p(T = t|I) by p(t).
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Relation prediction from object pair representation To predict the relations
of object pair (oh, ot), the same relation embedding is passed into a feed-forward
layer and added to the spatial and object logits, as for our Baseline shown in Figure
3.3.1. Then a softmax operation outputs the probability distribution over the set
of relation classes R. This branch is trained with a cross-entropy loss Lrel between
the ground truth distribution and the output distribution.

At training time, the following weighted loss is optimized

L = αLrel + βLobj + γLtopic (5.7)

where α, β, γ are determined experimentally.

Relevance prediction from object pair representation Following Section
5.2, we have extracted attention weights over each visual relation, which indicate
how much a relation correlates to the image topic distribution. Thus, we model this
relevance as the attention that the model estimates to predict image topic:

P (Zh,t) = log ah,t (5.8)

5.2.5 Experiments

We evaluate the performance of our model for relation classification on the VG-
IMP [158] and VG-RMatters splits.

Implementation details We use the loss defined in Equation 5.7 with α = β =

1, γ = 5 selected among values 1, 5, 10, 20, 30. All TopicNet variations are trained
with 90 topics, chosen experimentally (performance is stable throughout the tested
configurations, from 10 to 100 topics).

We study the impact of TopicNet with two different underlying networks. The
first is comprised of one stream for relation classification, the more usual VRDmodel,
as shown in Figure 5.2.2. The second corresponds to our baseline, with four streams,
as in Figure 3.3.1. All weights are initialized using normal Xavier intialization [50].

Comparative results In Table 5.2.2, we compare our proposed method to state of
the art approaches. Pixel2Graph [102] iteratively refines object and relationship
heatmaps with a stacked hourglass network making use of global context. IMP [158]
iteratively learns to refine relationship and object representation by passing mesages
through the scene graph. MotifNet [166] captures higher order correlations be-
tween objects and relationships using LSTM layers. SGP [58] is a permutation
invariant graph predictor that refines predictions from MotifNet using attention
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over linguistic and visual neighbor features. AR (Attention Relevance) is the rele-
vance factor defined in Section 5.2.4.

For one and four streams, we notice the same trend: TopicNet slightly deteri-
orates performance on image macro recall. Furthermore, attention relevance is even
more detrimental for this metric. However, with one stream, class macro recall is
signficantly improved by both TopicNet and AR, from 36% to 41%. This does not
translate to four streams, however. On VG-RMatters, results have small varia-
tions between the three configurations with no identifiable trend, as shown in Table
5.2.1. Tests with one stream were done without the change to the early stopping pre-
sented in chapter 3, thus this suggests that the improvements brought in this case
may not be statistically significant. New tests with 1 stream could help confirm
this hypothesis. However, we conclude here that this approach to the estimation of
relevance is not conclusive.

SgCls RelCls

ImMacro ImMacro ClsMacro

R@10 R@20 R@10 R@20 R@10 R@20
MotifNet [166] 26.3 38.0 39.6 58.4 11.8 19.8

Ours - 4 streams
Baseline 26.7 38.5 40.3 58.9 12.6 21.1
TopicNet 27.1 38.8 40.0 58.5 12.3 20.1
TopicNet - AR 27.1 38.8 40.8 58.7 12.4 20.3

Table 5.2.1 – Results with 4 streams on VG-RMatters. Recalls are in % and
evaluated without scene graph constraints. TopicNet provides slight improvements
over our baseline on SgCls and RelCls ImMacro but results are inconclusive.
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SgCls RelCls

ImMacro ImMacro

R@20 R@50 R@100 R@20 R@50 R@100

Pixel2Graph [102] - 35.7 38.4 - 82.0 86.4
IMP [158] - 43.4 47.2 - 75.2 83.6
SGP [58] - 45.5 50.8 - 80.8 88.2
MotifNet-NoCtxt [166] 36.4 43.1 46.3 64.6 78.8 86
MotifNet [166] 37.6 44.5 47.7 66.6 81.2 88.3

Ours

1 stream
Baseline 36.9 43.7 46.9 64.9 79.4 86.7
TopicNet 36.6 43.6 47.1 64.7 79.4 86.9
TopicNet - AR 34.9 42.5 46.2 60.5 75.8 84.4

4 streams
Baseline 37.1 44.1 47.2 66.7 81.3 88.7
TopicNet 36.9 43.8 47.1 66.3 81.0 88.3
TopicNet - AR 35.7 43.1 46.5 64.0 79.5 87.3

RelCls

ClsMacro

R@20 R@50 R@100

MotifNet [166] 15.7 27.5 37.9
Ours

1 stream
Baseline 15.7 26.6 36.0
TopicNet 17.1 29.2 40.0
TopicNet - AR 18.0 30.3 41.0

4 streams
Baseline 17.6 30.2 41.3
TopicNet 16.1 28.8 39.9
TopicNet - AR 15.4 27.7 38.5

Table 5.2.2 – Results of TopicNet with 1 and 4 streams, tested on VG-IMP.
Recalls are in % and evaluated without scene graph constraints. TopicNet is
outperformed by our Baseline in the 4-stream. Estimation of relevance with topics
is not conclusive.



TopicNet: Learning Relation Representations with Attention to Topic 155

5.2.6 Discussion

From the previous observations, we make two conclusions:
— Improvement in classification brought by the 4 streams makes it less neces-

sary to predict several relations per pair. We verify this by comparing the
confusion matrices between 1 and 4 streams in Figure 5.2.3. Classification
of the following classes is improved (as shown by the increased proportion
in the diagonals): at, behind, eating, covered in, holding, in front of, of, rid-
ing, under, watching. This is one explanation for the reduced improvement
brought by TopicNet-AR, which is aimed at increasing the performance of
rarer relations.

— Either the attention to each relation for the image topic is not correlated
to its relevance or the network is unable to correctly learn which relation to
focus on. To verify this, we tested the results on topic classification. For
this, measure the recall when predicting the top k scoring topics, shown in
Figure 5.2.4. Since several topics are associated to similar objects, the top
1 recall does not completely reflect the performance on topic classification.
At 6 predictions, the recall reaches 91%. We conclude that the network
learns to classify the image topic. Hence, this suggests that relevance and
predicted attention are not correlated. Further study of images among the
different topics distribution would be helpful in confirming or invalidating
this argument.
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(a) 1 stream

(b) 4 streams

Figure 5.2.3 – Confusion matrices for relation classification with one stream (top)
and four streams (bottom). Increased performance between 1 and 4 streams for at,
behind, eating, covered in, holding, in front of, of, riding, under, watching is a first
explanation for reduced performance of TopicNet.
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Figure 5.2.4 – Top k recall for topic classification among 90 topics. Due to the
redundancy between topics, we focus on recall after several predictions. At 6 pre-
dictions, the recall is at 91%. We conclude that the network learns to classify the
image topic.
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5.2.7 Conclusion

To sum up, we presented a novel relation detection method based on topics
extracted from images according to the visual relations that occur in them. A deep
neural network is trained to predict topics in unseen images by aggregating context
from each visual relation. For that, an attention mechanism weighs the contribution
of each relation to the context and thus to the topic of the image. As the network
learns to pay attention to specific relations in the image, it learns to determine which
features correlate the most to the image topics

We have proven that the network is able to predict the topic of the image.
However, when the relation classification reaches a threshold of accuracy, integrating
the estimated relevance of each object class does not provide any improvement to the
global recall. We concluded that the estimated attention, used in order to predict
the image topic, is not correlated to the relevance of the object pair.

Thus, in the next section, we explore how to model the relevance and improve
results on the 4-stream network.
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Most probable words from detected
topics:

——— subjects: building, bus,
street

— objects: door, windshield,
car, wheel, bus, window,
tire
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Figure 5.2.5 – Extracted scene graphs for MotifNet (top) and TopicNet (bot-
tom). True relation predictions are green and false positives red. TopicNet is able
to identify some relations to focus on using relevance prediction.
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5.3 Focused VRD with Prior Potentials

5.3.1 Motivation

We previously showed that adding a relevance factor helps improve the class
macro recall on a less performing classifier. However, this relevance failed to provide
improvements on a better performing one. In this Section, we explore a different
approach, aiming to train a relevance classifier. However, in existing datasets, a high
number of relations are true in each image, and because of the previously described
phenomena, only a small fraction of them are annotated. This makes it hard for
supervised models to extract relation representations and boundaries that separate
relevant and irrelevant relations.

5.3.2 Relevance Estimation with Prior Potentials

In the same vein as the semantic bias, introduced by Zellers et al. [166] and
defined in Section 3.3.1, we model the relation relevance using two terms: a relevance
classifier and a prior potential.

Phuman(Zh→t|vh, vt) = pθ(Z|vh, vt) + φ(vh, vt) (5.9)

where pθ(Zh→t|vh, vt) is a trained relevance classifier and φ is a binary prior
potential. Thus, as shown in Figure 5.3.1 (d), the relation is estimated using both
relation content as well as dataset statistics.
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Relevance Classifier We model the relevance classification as the probability
that any relation is annotated on the given object pair:

pθ(Z|vi, vj) = 1− pθ(Ri→j = ∅) (5.10)

The underlying intuition is that most overlapping pairs of objects are related, with
at least one spatial relation being true. Thus if the pair has not be annotated, then
the true relations are not relevant. Thus, taking the contrapositive, the probability
that these relations are relevant is greater than the probability that at least one is
annotated, which corresponds to the probability in Equation 5.10.

Prior Potential of Relevance The relation potentials ψ and φ are inspired by
[166, 170] where authors use a semantic module defined as the empirical distribu-
tion of relations given two objects, noting that the number of probable interactions
between two object is limited. Similarly, the likelihood that two objects will share
a relevant relation can be estimated by the frequency at which they interact in the
training set.

This potential is used in addition to the relevance classifier because the relevance
of relations in the training set has a high level of noise which makes the training of
this classifier very unstable. This risks biasing the model predictions but makes use
of identifiable trends in relation relevance which improves the relevance estimation.

The binary potential φ is computed by counting the number of co-occurences of
both objects and the number of times they are in a share relation.

φ(vh, vt) = 1− Pdata(Ri→j = ∅) (5.11)

=

∑
I

∑
r∈R 1(vh, r, vt)∑
I 1(vh, vt)

(5.12)

We note that the use of unary potentials, where the frequency of relations are
measured for each object separately does not provide any improvements, which
suggests that this distribution adds too much noise. For example the pair (man,
horse) has a much more limited range of possible relations than man alone, which,
in the studied data, is paired more often with pieces of clothing.
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5.3.3 Experiments

Comparative results In Tables 5.3.1, we compare our method to state of the art
approaches on the VG-IMP split [158]. Pixel2Graph [102] iteratively refines object
and relationship heatmaps with a stacked hourglass network making use of global
context. IMP [158] refines relation and object representation by passing mesages
through the scene graph. MotifNet [166] captures higher order correlations be-
tween objects and relationships using LSTM layers. SGP [58] is a permutation
invariant graph predictor that refines predictions from MotifNet using attention
over linguistic and visual features of neighbors. RelDN [170] is not included be-
cause of different evaluation protocols, as object pairs without relations are filtered
out. We aim to improve the precision of VRD and produce more relevant relations,
therefore we focus on results with few relations. Table 3.4.2 displays results for 10,
20 and 100 predictions per image.

First, on VG-IMP [158], FocusedVRD provides a significant improvement in
the class macro recall, from 37 9% to 44.4% and a 3 points improvement over
our baseline. However, this does not translate into the image macro recall, where
we notice a drop from 88.7% to 87.7% for R@100 but a similar recall for fewer
predictions. This suggests that the number of selected pairs is too low for a high
number of predictions.

On VG-RMatters The last two columns show the number of pairs in the output
Scene Graph at 10 and 20 predictions. Our model is able to keep a competitive recall
with fewer selected pairs, which shows that it is able to more reliably choose which
pairs to annotate than MotifNet.

Figure 5.3.2 shows the differences in recall per class of relation for MotifNet

[166] and FocusedVRD on VG-RMatters sorted by decreasing frequency in the
training set. It shows that the increase in class macro recall is caused by the increase
in recall of most classes, especially for uncommon relations.
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SgCls RelCls

ImMacro ImMacro

R@20 R@50 R@100 R@20 R@50 R@100
Freq Baseline 24.0 31.0 43.9 52.9 69.8 80.0
Pixel2Graph [102] - 35.7 38.4 - 82.0 86.4
IMP [158] - 43.4 47.2 - 75.2 83.6
SGP [58] - 45.5 50.8 - 80.8 88.2
MotifNet [166] 37.6 44.5 47.7 66.6 81.2 88.3
Baseline (Ours) 37.1 44.1 47.2 66.7 81.4 88.7
FocusedVRD (Ours) 36.8 43.8 47.0 66.6 81.0 87.7

RelCls

ClsMacro

R@20 R@50 R@100
MotifNet [166] 15.8 27.7 38.1
Baseline (Ours) 17.6 30.2 41.3
FocusedVRD (Ours) 18.8 32.3 44.4

Table 5.3.1 – Recall of FocusedVRD on VG-IMP. The relevance factor increases
the ClsMacro recall at all sizes of scene graphs but slightly decreases the Im-
Macro recall.
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Figure 5.3.2 – Recall per relation class for MotifNet [166] and FocusedVRD
(Ours) on VG-RMatters. By focusing predictions on most important object pairs,
FocusedVRD is able to predict a more diverse set of relations thus increasing the
recall of rarer relations while keeping a competitive global recall. Relations are
ordered by decreasing frequency in the training set.
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Ablation study Table 5.3.2 shows the results of our model on VG-RMatters

and the influence of Relevance Modeling, with a Relevance Classifier (RC) and
Binary Potential (BP). The network without RC or BP is the Baseline described in
Chapter 3. Additionally, we compare them to our baseline with a relevance randomly
sampled from a uniform distribution on [0, 1]. By adding a relevance factor to the
Scene Graph extraction algorithm, class and image macro recalls of smaller scene
graphs improve. This shows the importance of selecting relevant object pairs and
that the improvement brought by the model is greater than by applying a random
score to each object pair. The combination of both factors acts as ensembling
by improving the selection of object pairs. The decrease in performance at 100
predictions, with RC or BP, shows that both methods are necessary to select most
relevant pairs.

SgCls RelCls

ImMacro ImMacro

R@10 R@20 R@100 R@10 R@20 R@100

Freq Baseline 18.5 28.4 50.9 25.9 40.7 77.4
Rand. Relevance 25.9 37.1 49.2 38.5 55.9 85.4
MotifNet [166] 26.3 38.0 55.5 39.6 58.4 87.8

RC BP

26.7 38.5 56.3 40.3 58.9 88.3
X 27.8 39.8 56.4 44.2 62.3 87.7

X 28.9 40.3 56.2 43.2 61.4 87.9
X X 29.4 41.0 56.4 44.0 62.3 88.3

RelCls N pairs

ClsMacro

R@10 R@20 R@100 10 20

Freq Baseline 7.6 14.2 42.7 9.3 17.1
MotifNet [166] 11.8 19.8 46.6 8.6 14.6

RC BP

12.6 21.1 47.8 8.6 14.6
X 14.5 24.0 52.6 7.4 11.5

X 14.2 23.4 51.7 7.8 12.6
X X 14.3 23.9 52.4 7.6 12.1

Table 5.3.2 – Ablation study on VG-RMatters. In the more balanced dataset,
the relevance factor increases both ClsMacro and ImMacro recalls, especially for
smaller scene graphs.
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Figure 5.3.3 shows the output of FocusedVRD with RC and BP compared
to the baseline and the ground truth. It shows the model’s ability to detect and
focus on important object pairs, removing the false relation (flower, on, chair).
However, this also increases the risk of predicting false relation, such as (chair,
sitting on, table). Removing these false positives would require a better classification
of relations and/or probability thresholding. Other examples of ouptut with and
without relevance are shown in Appendix B.

Figure 5.3.4 shows the histogram of estimated relevance, with Relevance Clas-
sification, Binary Potentials and the average, for object pairs with an annotated
relation (top) and without (bottom). Since predictions are made by selecting top
scoring relations, it is important to study the differences in scores between positive
and negative relations. For RC, the ratio between the mean relevance probability
for positive and negative relations is around 10, whereas it is around 4 for BP. This
explains why fewer pairs are annotated when using RC.

In the case of RelCls, this allows the model to predict several relations for the
most relevant pairs even for small scene graphs and thus increase recall, however it
also increases the risk of missing less relevant pairs in the case of big scene graphs,
where we see that RC has a lower recall than BP.

For SgCls, we observe the reverse phenomenon, which suggests that for smaller
graphs, it is more important to have predictions less focused on a small number of
pairs, in order to increase the probability to annotate pairs with the correct object
classes.
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Figure 5.3.3 – Image example from VG and associated scene graph (top right), with
extracted scene graphs of our baseline (bottom left) and FocusedVRD (RC+BP)
(bottom right).
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(a) RC (b) BP

(c) RC+BP

Figure 5.3.4 – Estimated Probabilities that any relation is annotated from Relevance
Classifier, Prior Potential and the combination.
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5.3.4 Discussion

The task of predicting the relevance of a relation is made difficult by the noise
of the relevance ground truth, as it depends on many factors, such as the size,
location, distances, salience of objects and the annotator.... Indeed, only 47% of
the descripted regions of VG [71] are annotated with a relation, which suggests that
the relations deemed relevant to a human being can be very different to another
human being and makes the signal during training very noisy. Hence our choice to
augment the learned classifier with binary potentials. Results in Tables 5.3.1 and
5.3.2 show that our method provides significant improvement to the class macro
recall. These improvements translate into significant improvement of the image
macro recall in the case of balance datasets such as VG-RMatters, especially for
small scene graphs. Therefore the choice of incorporating this factor to the scene
graph generation algorithm depends on the nature of the dataset under study. The
differences in class macro Recall show that in both cases, when relevant classes are
rare, e.g. in the case of limited training data, it improves relation detection. Finally,
the small difference in performance for the frequency baseline between both splits
at 100 predictions suggests that allowing bigger scene graphs provides a limited
understanding of the model capabilities.

5.4 Conclusion

To sum up, we presented a novel relation detection method based on the esti-
mation of the relevance of relations. A deep neural network is trained to predict the
relevance of an object pair using annotated data. This relevance classifier is added
to a statistics-based prior potential, measured on the training set. We integrate this
new factor to the scene graph generation problems, which focuses predictions on
fewer relevant pairs. We show that this allows the neural network to significantly
increase the recall of uncommon relation classes, as the recall of several relations is
increased by more than 100%, such as across, painted on, on back of. Our model
with a modified scene graph generation process is able to better handle the diversity
of relations than MotifNet, increasing the class macro R@20 by 21% and the im-
age macro R@20 by 7%. This is especially true for smaller scene graphs, and helps
decrease the output noise by making smaller scene graphs more exhaustive. This
validates the proposed approach, showing that it is able to estimate the relevance
of on object pair.



Chapter 6

Conclusion and perspectives

171



Main Contributions and Associated Perspectives 172

We conclude this work by summarizing the main contributions of this work,
highlighting their advantages and limititations, then propose directions for further
research in this field.

6.1 Main Contributions and Associated Perspectives

Visual Relation Detection is an important step in image understanding and de-
pends highly on the quality of relation representations. This representation in turn
depends on the quality of object representations as well as how their spatial, vi-
sual and semantic representations interact. As we showed in Chapter 1, relations
representations are highly dependent on the visual representations of objects. In
addition to this, the dependencies between relation classes makes a large number of
training examples necessary for reliable classification and detection in the context
of supervised learning.

Benchmark quality In Chapter 3, we showed that the combinatorial nature of
VRD and a phenomenon which we call the Human Reporting Bias, make the num-
ber of available examples very low for a high number of classes and highly skewed
towards a small number of classes. This prevents State of the Art models from
being able to reliably detect uncommon relations. Furthermore, this also prevents
existing benchmarks from estimating models how these models would perform on
other benchmarks, because the trained models are over-exposed to a small number
of possibilities. Hence we proposed a new metric on which to evaluate these models,
focusing on the ability of the model to detect a large variety of relations. Finally,
we proposed a new split of Visual Genome, which increases the variety of relations
the most frequent pairs of objects.

Proposed approaches We have extended several methods used for semantic
modelling to the case of Visual Relation Detection. We showed that modelling the
semantic relationships between relations alleviates the need in training examples,
improving the recall of rarer classes.

Finally, we proposed two novel approaches to modelling the relevance of a re-
lation. We showed that integrating a new relevance factor into the Scene Graph
generation process makes predictions more varied, increasing the recall of uncom-
mon classes.

These contributions achieve competitive results on several datasets as shown on
Table 6.1.1.
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Dataset Task State of Art Contribution Results Gain

VRD-set [89] RelCls R@20 81.9 [165]* SK 80.8 -1%
VG-IMP [158] SGCls R@20 37.6 [166] SK 37.2 -1%
VG-IMP [158] RelCls R@20 66.6 [166] Baseline 66.7 <0.1%
VG-Large RelCls R@50 22.7 [158]** SK + Relevance 45.2 99%

VG-RMatters SGCls R@20 38.0 [166]** Relevance 41.0 8%
VG-RMatters RelCls R@20 58.4 [166]** Relevance 62.3 7%

ClsMacro
VG-IMP [158] RelCls R@100 38.1 [166] Relevance 44.4 17%
VG-RMatters RelCls R@20 19.8 [166] Relevance 23.9 21%

Table 6.1.1 – All metrics are computed on scene graphs without graph constraints.
* are reimplementations of existing works. ** are computed using implementations
made available by authors.

6.1.1 Human Reporting Bias in Relation Annotations

Contribution Humans choose to annotate some object pairs with some relations
in a manner which tends to favor pairs of object categories as well as relations
over others. This hinders the training of VRD models by increasing variance and
making relation examples highly skewed. This motivated us to focus the study of the
performance of our proposed models on less common relations. For this, we proposed
a competitive VRD baseline and showed limitations of the standard training method
of VRD models. We proposed a new metric that equally weighs all relation classes
and a new split of Visual Genome, aimed at focusing on uncommon relations. We
showed that an increase in this metric translated into better overall results on the
latter split. Finally, we showed that performance on large scene graphs makes the
task too easy as simple baselines are able to get competitive results, thus we focus
on results with smaller ones.

The proposed baseline outperformed the current State of the Art method on Rel-

Cls, MotifNet [166], by 0.5% on VG-IMP [71, 158] and 1.3% on VG-RMatters

(Ours).

Perspectives The interaction between the semantic, visual and spatial modalities
has been studied by concatenating the three representations or, as in our Baseline,
similarly to [41, 170], using early fusion. These modalities have varied importance
for the studied relation classes, and further exploration of how they interact and how
each feature is relevant to given relation instances could help learning to separate
those classes. An attention mechanism could be applied to the extracted features,
in the same vein as in [58, 154, 158].

Decreasing the cross-entropy loss does not correlate with improved performance
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on the test metrics, which require that relations be ranked by the combined scores
of several classification branches. Several works [82, 84] have tackled this problem
by proposing new methods, based on Reinforcement Learning or training with a
ranking-based loss. One avenue of research would consist of providing more complete
annotations, for potentially fewer images, proposing several relations for each object
pair and changing the evaluation metric to mean Average Precision.

Finally, given a more balanced test set, such as VG-RMatters, several methods
aimed at learning in imbalanced settings could be used in order to improve the
training of uncommon relations, such as negative example sampling or focal loss
[87].

6.1.2 Overcoming Relation Imbalance with Semantic Mod-

elling

Contributions The traditional classification framework is hindered by the previ-
ously mentioned issues. Learning representations of relations in a metric space has
proven beneficial. Indeed, they result in more interpretable models, which showed
further limitations of the joint modelling of the three modalities and the trade-off
between common-sense knowledge and visual data. Furthermore, it enabled predic-
tions based on previously seen relations and semantic consistency. Finally it proved
very promising in predicting a larger variety of relations. This improved the recall
by 1.5% on VRD-set when compared to our baseline and the class macro recall by
12.7%.

The comparison with two methods of explicit modelling of synonyms highlights
that implicit modelling of synonyms has the advantage of being adapted to the visual
domain, where visual relations have many different meanings and are not synonym
to the same relations as text relations. The rule distillation method presented by
[62], for which we have devised rules based on the similarity between pre-trained
word embeddings (SK), has been proven beneficial on this task, allowing the model
to use external text data in a robust way, ignoring data that does not coincide with
visual data. This had a significant impact on the dataset with a large number of
relations, VG-Large, improving the recall by 33%.

Perspectives. Our work on Semantic Modelling, motivated by the need to
forgo the assumption that relations are exclusive, is related in this way to other
works which completely change the training process [84, 89, 165, 169]. Modelling hi-
erarchical relations between object and relation classes is a natural step and has been
shown beneficial in [164], but it was limited to what could be translated to data aug-
mentation. This could be further studied by integrating it into Graph Convolutional
Networks [68, 125]. Furthermore, other advances made in metric learning, such as
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hyperbolic embeddings [104], have shown to allow effective prediction of missing
links in knowledge graphs, such as WordNet [34] and could either allow completing
semantic networks or allow representations of relations to be more consistent with
these networks.

6.1.3 Relation Relevance

Contributions The observation that humans naturally filter out sensory infor-
mation in order to focus on the most relevant pieces of information motivated us
to propose a new scene graph generation process. This process introduces the new
relevance factor which weighs relations and helps filter out irrelevant ones. Estimat-
ing the relevance of a relation is difficult because it depends on a large variety of
factors, from object dependent to annotator dependent factors. Our first new ap-
proach, which aimed to estimate this using self-supervision with image topic did not
provide significant improvements on Visual Genome. We then proposed to estimate
this relevance with the trained "background" classifier of the model and average it
with a statistics-based potential. This potential leverages the available data from
the training set and smooths the relevance estimation. This has proven very effective
at increasing the recall of small scene graphs and the variety of predicted relations,
increasing the Image Macro recall by 7% and the Class Macro Recall by 13%. On
VG-Large, we note that the combination of Relevance and Semantic Distillation
bring a 99% improvement in recall when compared to IMP [158], the state of the
art method at the times. This shows the relevance of both approaches, but we note
that this dataset has not been widely studied, which also explains the large differ-
ence. The highest improvements in this work are brought about by this approach.
This highlights the importance on focusing on the Scene Graph generation process,
a facet of Visual Relation Detection which has been scarcely studied.

Perspectives Several methods could be used to reduce the impact of the noise in
the relevance variable. The first, following [99], would consist in jointly modelling
the relevance variable and the concept variable. Similarly to relation classification,
relation detection is hard due to the high imbalance between negative and positive
examples. This could be targetted by methods aimed at tackling this problem such
as example sampling (Section 2.5) or knowledge distillation (Section 2.4.2).

Furthermore, given a dataset with several annotated relations per object pair,
we could train a regression model that estimates the number of relations to predict
for each object pair, given their spatial, semantic and visual representations. While
TopicNet has not proven effective at modelling the relevance of relations, Woo
et al. [154] showed an attention mechanism between objects is able to capture the
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presence of a relevant object pair. Further comparisons between this work and our
relevance estimation could provide new avenues of research.

6.2 Future Directions

Chapter 5 has proven the impact of the scene graph generation process on the
performance of the model. The differences between the training and inference eval-
uations have received little attention, except in [84] which learns which object pairs
to annotated by Reinforcement Learning, and to a lesser extent in [82]. The esti-
mation of the relation relevance has received an important focus in this work but
remains an open question, as the results show limitations. Furthermore, instead of
a ranking-based process, sampling relations from the estimated distribution could
be introduced into the training process, tackling the inadequacy of the training loss
for the current test setting.

Furthermore, while our proposed methods have provided improvements on the
relation classification on several datasets, we still lack understanding of how the
features of the spatial and visual modalities interact and how they impact the model
predictions. As discussed in the Introduction of this work, this issue is an important
one, because models tend to latch onto spurious correlations [8, 31, 45, 121] . This
might be reinforced by the intrinsic biases of the data, where a limited number of
relations can be true for a given object pair. Our work on metric learning for VRD
allowed us to get a better interpretation of the model but our understanding is still
lacking.

Finally, Visual Genome has opened the research in supervised learning, by pro-
viding a large number of annotated images. However, this dataset is imbalanced
and limited to a small number of relations with sufficient examples. The annota-
tion of such a dataset would be very time consuming, thus existing datasets such
as Visual Genome and VRD-set could be complemented with web content, which
is more noisy. The commonly used metrics also provide a limited understanding
of model capabilities. We suggest that the test setting in itself might not be the
most adapted setting to evaluate VRD predicate models. Indeed, the combinatorial
nature of the problem makes it very hard to obtain complete annotations. Thus,
as in [64], we suggest to evaluate them on more downstream tasks, such as image
retrieval, image generation, caption generation, Visual Question Answering, which
could also contribute in showing the impact of this task on other applications.
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above across

against along

and at

attached to behind

belonging to between

carrying covered in

covering eating

flying in for

from growing on

hanging from has

Figure A.0.1 – Output Probability distribution of our baseline for each ground truth
annotation in the test split.
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holding in front of

in laying on

looking at lying on

made of mounted on

near of

on back of on

over painted on

parked on part of

playing riding

says sitting on

Figure A.0.2 – Output Probability distribution of our baseline for each ground truth
annotation in the test split.
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standing on to

under using

walking in walking on

watching wearing

wears with

Figure A.0.3 – Output Probability distribution of our baseline for each ground truth
annotation in the test split.
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(a) Baseline Scene graph

(b) Ground truth (c) Scene graph with relevance

Figure B.0.1 – The relevance factor removes several (clothing, person) relations,
increasing the number of synonyms of wear for (person, clothing)
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(a) Baseline Scene graph

(b) Ground truth

(c) Scene graph with relevance

Figure B.0.2 – The relevance factor removes some (artifact, room) relations and
adds the relation (pot, above, table).
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(a) Baseline Scene graph

(b) Ground truth

(c) Scene graph with relevance

Figure B.0.3 – The relevance factor removes a true positive: (lamp, on pole).
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