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Résumé

Les structures de type coque permettent de couvrir de larges espaces de
façon élégante et efficace. Les maillages de quadrangles sont des motifs
naturels pour représenter ces objets surfaciques, qui peuvent aussi servir
à appliquer d’autres motifs. Les motifs pour ces coques, voûtes, résilles
et autres réseaux peuvent representer une materialisation de la structure,
un équilibre des efforts ou une carte de la surface. La topologie de ces
motifs contraint qualitativement et quantitativement la liberté de modéli-
sation pour l’exploration geométrique. À moins de réaliser une exploration
topologique.

La conception paramétrique supportant l’exploration et l’optimisation de
la geométrie des structures se répand au sein de la communauté de con-
cepteurs et bâtisseurs. Malheureusement, la conception topologique est à
la traîne, malgré des stratégies orientées vers l’optimisation pour des ob-
jectifs de conception spécifiques. Des stratégies, algorithmes et outils pour
l’exploration topologique sont nécessaires pour s’attaquer aux multiples ob-
jectifs de l’architecture, de l’ingenierie et de la construction pour la con-
ception de structures à l’échelle architecturale. La tâche de la conception
des structures est riche et complexe, nécessitant des algorithmes interact-
ifs orientés vers la co-conception entre l’humain et la machine. Une telle
approche est complémentaire et renforcée par les méthodes éxistantes pour
l’exploration geométrique et l’optimisation topologique.

Le travail présenté introduit la recherche topologique pour l’exploration ef-
ficace de l’espace de conception topologique. Cette thèse repose sur trois
stratégies pour la recherche topologique de singularités dans des motifs de
maillages de quadrangles, présentées de l’approche la plus haut niveau à
celle la plus bas niveau.
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L’exploration encodée par des objets geométriques repose sur la décompo-
sition d’une surface par des patches à quatre côtés à l’aide de son squelette
topologique, incluant des points et courbes attributs. Ces paramètres ge-
ométriques peuvent provenir d’heuristiques de conception à intégrer dans la
conception, liées au système statique ou la courbure de la coque, par exem-
ple.

L’exploration encodée par des graphes de connectivité repose sur les bandes
topologiques dans les maillages de quadrangles. Une grammaire de règles
permet l’exploration de cette structure de bandes pour explorer l’espace de
conception. Un algorithme de recherche informé par la similarité trouve
des structures avec différents degrés de similarité topologique. Des struc-
tures optimisées pour des objectifs uniques peuvent informer ce processus
de génération pour obtenir des structures offrant différents compromis entre
plusieurs objectifs. Un algorithme de recherche de deux-colorabilité trouve
des structures qui remplissent un critère de maillage deux-colorable. Cette
propriété topologique permet une partition des éléments du motif, que né-
cessite de nombreux systèmes structurels.

L’exploration encodée par des chaînes de caractères repose sur la traduc-
tion des règles de grammaire en des operations alphabétiques, changeant
l’encodage d’un maillage phénotypique à une chaîne de caractères génotyp-
ique. Des modifications, ou mutations, de la chaîne transforment le géno-
type et change le phénotype de la structure. L’encodage en une chaîne,
ou un vecteur, ouvre la voie à l’utilisation d’algorithmes d’exploration et
d’optimisation, comme l’optimisation linéaire, les algorithmes génétiques ou
l’apprentissage automatique.

Mots-clefs: conception structurale, exploration topologique, motifs, mail-
lages de quadrangles, singularités, recherche de topologie, coques, résilles.
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Abstract

Shell-like structures allow to elegantly and efficiently span large areas. Quad
meshes are natural patterns to represent these surface objects, which can
also serve for mapping other patterns. Patterns for these shells, vaults, grid-
shells or nets can represent the materialised structure, the force equilibrium
or the surface map. The topology of these patterns constrains their qualita-
tive and quantitative modelling freedom for geometrical exploration. Unless
topological exploration is enabled.

Parametric design supporting exploration and optimisation of the geometry
of structures is spreading across the community of designers and builders.
Unfortunately, topological design is lagging, despite some optimisation-ori-
ented strategies for specific design objectives. Strategies, algorithms and
tools for topological exploration are necessary to tackle the multiple objec-
tives in architecture, engineering and construction for the design of struc-
tures at the architectural scale. The task of structural design is rich and
complex, calling for interactive algorithms oriented towards co-design be-
tween the human and the machine. Such an approach is complementary and
empowered with existing methods for geometrical exploration and topology
optimisation.

The present work introduces topology finding for efficient search across the
topological design space. This thesis builds on three strategies for topology
finding of singularities in quad-mesh patterns, presented from the most high-
level to the most low-level approach.

Geometry-coded exploration relies on a skeleton-based quad decomposition
of a surface including point and curve features. These geometrical parame-
ters can stem from design heuristics to integrate into the design, related to
the statics system or the curvature of the shell, for instance.
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Graph-coded exploration relies on the topological strips in quad meshes. A
grammar of rules allows exploration of this strip structure to search the de-
sign space. A similarity-informed search algorithm finds design with differ-
ent degrees of topological similarity. Designs optimised for single objectives
can inform this generation process to obtain designs offering different trade-
offs between multiple objectives. A two-colour search algorithm finds de-
signs that fulfil a two-colouring requirement of two-colouring. This topolog-
ical property allows a partition of the pattern elements that many structural
systems necessitate.

String-coded exploration relies on the translation of the grammar rules into
alphabetical operations, shifting encoding from a phenotype mesh to a geno-
type string. Modifications, or mutations, of the string transform the geno-
type and change the phenotype of the design. String or vector encoding
opens for the use of search and optimisation algorithms, like linear pro-
gramming, genetic algorithms or machine learning.

Keywords: structural design, topological exploration, patterns, quad meshes,
singularities, topology finding, shells, gridshells.
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Chapter 1

Context

’What matters is pattern and its connectivity.’
Cecil Balmond

in Informal

’Topology is the science of fundamental pattern and structural relationships
of event constellations.’

Richard Buckminster Fuller
in Operating Manual for Spaceship Earth

Architecture, structure, connectivity, topology and pattern are synonyms
to describe the arrangement between elements. Patterns are ubiquitous in
design, including architectural, structural design and appear in the design
of different structural systems. For shell-like structures such as shells, vaults
or gridshells, represented as a surface or a mesh, the pattern can represent
the arrangement between beams, blocks or forces.

This chapter presents the context for structural design of patterns. Sec-
tion 1.1 presents computational structural design. Section 1.2 highlights
how patterns come into play in structural design. Section 1.3 lists the dif-
ferent design aspects of patterns. Section 1.4 sets the focus of this thesis on
the structural design of quad meshes and their singularities.

1.1 Computational structural design

Structural design lies at the interface of architecture and engineering, be-
tween architectural design and structural analysis. Designing a structure re-
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quires theoretical knowledge on geometry and mechanics, applied knowledge
on fabrication technologies and construction codes, and a sense of aesthetics.
Structures as a whole are not mass-produced, contrary to the automotive
industry, for instance. A structure stems from a design process with spe-
cific design intents, engineering requirements and construction constraints.
This rich and intense process is highly non-linear to achieve a design that
meets all objectives and constraints. Hand drawing and physical modelling
are insightful processes for the design of structures but were replaced by
digital modelling to efficiently perform an iterative search. Computer-aided
design empowers designers to improve the design process, save time, energy
and money, or even make a project feasible. Indeed, computer-aided design
allows rapidly exploring and evaluating a large number of designs to search
for the most suitable ones, before physical prototyping and testing.

1.1.1 Design exploration

Computational models represent the geometry and the connectivity of the
structure, on which the designer can run mechanical and other analyses. To
benefit from such models beyond numerical analysis, building parametric
models enables efficient and interactive design exploration via the modifica-
tion of the parameters that describe the model.

1.1.1.1 Parametric design

Setting a parametric model allows interactive design through the modifi-
cation of values. Grasshopper3D for Rhino3D or Dynamo Studio by Au-
todesk provide such parametric environments, for instance. Regarding a
truss, whose pattern is the beam layout, two simple parameters can be the
span and the height, as in Figure 1.1a. Thereby, the designer can explore the
geometry and the density of the truss. The models are re-generated when
changing these values instead of re-drawing the model. The parameters de-
fine the flexibility of the model and therefore, the boundaries of the design
space. A flexible parametric model of a truss can consider each coordinate of
each node as a parameter to allow free-form shapes and not only rectangular
ones, as in Figure 1.1b. However, the higher the number of parameters, the
higher the dimension of the corresponding design space. And therefore, the
more complex the exploration for the search for an optimal design. How
much does adding a specific parameter enrich the design space? The defi-
nition of a parametric model is a trade-off between richness and complexity
and must be carefully determined.
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Parametric design enables geometric exploration but not a full explo-
ration of a computational model. The geometry-related parameters are de-
pendent on the connectivity of the structure that defines the organisation
between its elements. An extended approach is required to embrace full
exploration, which includes connectivity design of structures.

(a) Limited parametric
design

(b) Flexible parametric
design

(c) Trans-parametric
design

Figure 1.1 – Parametric and trans-parametric design spaces for a truss.

1.1.1.2 Trans-parametric design

Beyond parametric design, trans-parametric design uses discrete parameters,
as opposed to continuous-valued parameters. Trans-parametric explores the
connectivity of a design and traverses different parametric spaces, also called
meta-parametric design by Harding [Harding et al., 2012, Harding and Shep-
herd, 2017]. These discrete parameters can define the layout of the beams
of a truss, as in Figure 1.1c with different bracing configurations. The com-
binatorial nature of these parameters does not allow to directly enumerate
them to define the dimension of the design space. Parametric design ex-
plores geometrical design spaces. On the contrary, trans-parametric design
tackles topological design spaces, encapsulating multiple geometrical spaces.
The parameters that perform the topological modifications must be carefully
determined as well, as it defines the topological space to explore.

Density parameters, which can control the number of bracing elements
in a truss, for instance, change the connectivity quantitatively but not qual-
itatively. The exploration of the density parameters is not combinatorial.
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Although density parameters are not continuous but discrete, the finite set
of density parameters enrich the parametric model.

The design space derives from the selected continuous parameters and
discrete parameters. The higher the number of these, the larger the design
space. However, exploring larger design spaces is more complex without
ensuring to find more suitable designs. Interactive methods must support
and guide the designer.

1.1.2 Design interactivity

Defining parametric and trans-parametric models can result in the compu-
tation of rich design spaces that exceed in size what a designer can com-
prehend. Nevertheless, the interaction between the human and the machine
using specific search algorithms allows the designer to appreciate the design
space and find the most relevant designs. These designs should respect the
project constraints and optimise the design metrics.

1.1.2.1 Constrained design

Not all and not even most designs in the design space are relevant. Instead of
finding optimal designs in the general design space, constraining exploration
to the relevant design subspaces allows finding their optimal designs more
efficiently. Figure 1.2a illustrates this opposition between the general design
space in white and the specific subspace in red.

A first example is constraining exploration to compression-only networks
in equilibrium with a given load case [Block and Ochsendorf, 2007] and then
finding the one with the minimum load path that relates to the structure of
minimum volume [Liew et al., 2019].

A second example is constraining exploration to structures with planar
faces for flat panel fabrication [Mesnil et al., 2017e] and then performing
structural optimisation [Mesnil et al., 2018b].

This constrained exploration approach drives the designer towards sub-
spaces that contain the most relevant designs. These constraints can be of
architectural, structural or constructive nature.

A structure often has to comply with multiple constraints. Constrained-
exploration strategies can be combined to search for a potential intersection
between the different subspaces to respect these multiple constraints. In Fig-
ure 1.2b, the intersection in red of the two subspaces further reduces the size
of the space to explore. However, this intersection between subspaces may
not exist. Nevertheless, a hierarchy usually exists between constraints. For a
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steel and glass gridshell, a designer may favour affordable planar panels over
compression-only equilibrium, although wishing to be close to such an equi-
librium. For a stone vault, a design may on the contrary favour compression-
only equilibrium over voussoir planarity, although wishing to have almost
planar faces. Based on the constraint hierarchy, exploration can be con-
strained to the designs in the primary subspaces. Among these designs,
exploration should favour the ones close to the secondary subspaces. In Fig-
ure 1.2c, not all designs of the primary subspace have the same relevance —
the closer to the secondary subspace, the more relevant, as visualised with
a white-to-red gradient.

GENERAL SPACE

SUBSPACE

TARGET DESIGNS

(a) Unique
subspace

GENERAL SPACE

SUBSPACE INTERSECTION

TARGET DESIGNS

(b) Intersecting
subspaces

PRIMARY
SUBSPACE

SECONDARY
SUBSPACE

GENERAL SPACE

TARGET DESIGNS

(c) Disjoint
subspaces

Figure 1.2 – Constraining exploration of the general design space based on
one or several subspaces that correspond to primary or secondary constraints
to meet. The most relevant design space areas are highlighted in red.

1.1.2.2 Informed design

Even constrained to a subspace, finding an optimal or heuristic design is
challenging. Performance can be assessed during the search through the
design space using mechanical and environmental analysis, for instance.
Searching for efficient designs can be performed in an enumerative manner.
Alternatively, the performance of tested designs can inform the generation
of more efficient ones, following the judgement of the designer or using op-
timisation algorithms.

These computational approaches can apply to the design of patterns,
which find many applications in the realm of structural design, including
the design of shell-like structures.
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1.2 Patterns in structural design

A pattern can represent different structural elements, like beams, walls or
slabs. The focus of this thesis lies on the design of large-span discrete or
continuous shell-like structures – or surface structures – like shells, vaults or
gridshells. Shell-like structures can span large areas thanks to their double
curvature, which provides geometrical stiffness. For their design, these large-
scale structures become discrete patterns of smaller elements. The nature
of these patterns can be of different types with different purposes.

1.2.1 Materialising elements

Patterns can be used to materialise the elements of the load-bearing and
cladding system to fabricate and assemble. The elements of the pattern
can represent nodes, beams or ribs, panels or voussoirs. Figure 1.3 features
some of these patterns: a set of GFRP composite beams to form an elastic
gridshell from a flat grid layout (Figure 1.3a); a tessellation of limestone
voussoirs to form a compression-only stone vault (Figure 1.3b); a steel cable
net to serve as flexible formwork for a concrete shell (Figure 1.3c); an as-
sembly of timber beams to form a nexorade-like gridshell braced with panels
(Figure 1.3d). The design of these material patterns relates to structural
performance, fabrication, assembly and construction requirements, which
relate to ecological and economic costs. The material pattern can represent
the structure or the envelope alone if the two are decoupled [Mesnil, 2018].

1.2.2 Modelling equilibria

Patterns can be used to model the equilibrium between a set of forces in
the structure, such as thrust networks [Block and Ochsendorf, 2007], load
paths [Liew et al., 2018] or struts-and-ties [Schlaich and Schafer, 1991].
These force patterns can be used to find structures in pure compression or
pure tension, for instance. They can also be used to confirm or infirm the
structural safety of a design following simplified hypotheses, thanks to the
lower-bound theorem in yield design [Heyman, 1997, Schlaich and Schafer,
1991]. A force pattern can become a material pattern like cable-net elements,
which directly carry the forces. Alternatively, the force pattern can inform
the design of a material pattern like masonry-vault voussoirs, whose normals
should be as orthogonal as possible to the compressive forces to prevent
sliding failure vaults [Rippmann and Block, 2018].
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(a) Beam grid of the Ephemeral Cathe-
dral in Créteil, France
[Du Peloux et al., 2015]
(Photo credits: thinkshell.fr)

(b) Voussoir tessellation of the Ar-
madillo Vault in Venice, Italy
[Rippmann et al., 2016]
(Photo credits: Iwan Baan)

(c) Cable layout of the prototype for
the NEST HiLo roof in Dübendorf,
Switzerland
[Méndez Echenagucia et al., 2018]
(Photo credits: Naida Iljazovic)

(d) Beam network of a shell-nexorade
hybrid at École des Ponts, Champs-
sur-Marne, France
[Mesnil et al., 2018a]
(Photo credits: Romain Mesnil)

Figure 1.3 – Examples of material patterns of shell-like systems like
gridhsells, vaults, nets and nexorades.

1.2.3 Parameterising surfaces

Patterns can apply to the parameterisation of surfaces. The pattern forms
a digital discretisation of a continuous shell. They do not represent element
or force distributions but provide a map of the surface. Parameterisation
patterns can be used as control mesh for surfaces of NURBS or BREP
[Pottmann et al., 2007a] to construct an underlying smooth surface. Pa-
rameterisation patterns can apply to form finding [Mesnil et al., 2018b], iso-
geometric analysis [Längst et al., 2017], continuous topology optimisation
[Bendsøe and Sigmund, 2013] or finite element analysis. Moreover, folds
[Mesnil et al., 2017a], corrugations [Norman et al., 2009] or perforations
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[Schlaich, 2018] can be integrated. These parameterisation patterns allow
storing any discrete data on the surface, like vector fields or cross fields, a
natural manner of storing information in digital processing.

Patterns in structural design can be differentiated whether they relate
to material, equilibrium or data. Nevertheless, the same aspects must be
taken into account when designing these patterns.

1.3 Design aspects of patterns

The two main design aspects of a pattern are its geometry and its topology.

1.3.1 Geometrical aspects

The geometry of a pattern consists of the position of its vertices, the three
coordinates x, y and z in the 3D space. A pattern with n vertices has thus
3n geometrical degrees of freedom. These degrees of freedom are continuous
parameters enabling the use of continuous algorithms for design and optimi-
sation [Hojjat et al., 2014]. Grouping these parameters can bring coherence
and constraints while reducing the size of the design space to search. Ei-
ther implicitly using data analysis or explicitly using geometrical objects like
curves or surfaces on which to constrain the vertices. Geometrical design
methods aim at computing these parameters to fulfil specific goals. Such
approaches usually assume a fixed topology.

1.3.2 Topological aspects

In this thesis, the topology of a pattern refers to the connectivity between
its vertices. The topology is a rich combinatorial problem controlled by a
flexible number of discrete parameters. On the contrary, geometrical pa-
rameters consist of a fixed number of continuous parameters. The topology
is embedded in the geometry. Indeed, two patterns with the same geometry
entail that they have the same topology. However, two patterns with the
same topology do not necessarily have the same geometry. Two patterns
have the same topology if they can have the same geometry using a con-
tinuous, reversible geometrical transformation, known as homotopy. Such
a transformation does not tear the shape or break the pattern. A square
and a rectangle do not have the same geometry but have the same topology,
whereas a disc and a sphere do not have the same geometry nor the same
topology.
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The design of the topology of a pattern can be decomposed into sub-
problems to understand its regularity and irregularity.

(a) The frame network of the stadium
and the Voronoi grid of the pool of the
2008 Beijing Olympic Games
(Source: structurae.info)

(b) Polytope pattern of the courtyard
roof of the Dutch Maritime Museum in
Amsterdam, The Netherlands
(Source: wbarchitectures.be)

(c) Timber gridshell with a semi-reg-
ular, Kagome pattern of the Centre
Pompidou in Metz, France
(Source: damienguillou.fr)

(d) Triangulated pattern of the
geodesic dome of the Zeiss-Planetar-
ium in Jena, Germany
(Source: zendome.de)

Figure 1.4 – Non-structured patterns, non-regular patterns and regular pat-
terns with some irregularities in structural design.

1.3.2.1 Tessellations

The field of tessellations is a rich world that describes the fundamental mod-
ule in a pattern [Grünbaum and Shephard, 1987]. Tessellations have logic,
and therefore, are structured, characterised with high regularity. Tessella-
tions are opposed to unstructured patterns where the types of and adjacency
between elements are irregular. The applications of unstructured patterns
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in structural design are rare. Figure 1.4 presents some examples with the
Voronoi pattern and the network of curved beams of the Olympic swimming
pool and stadium in Beijing, China, in Figure 1.4a, the Dutch Maritime Mu-
seum in Amsterdam, The Netherlands, in Figure 1.4b.

The logic of the tessellation of a pattern describes its repeated module.
Regular tessellations are the ones where each polygon is identical. There
are only three for the plane: tessellations of regular quads, triangles and
hexagons, as shown in Figure 1.5. In each of these tessellations, faces have
the same number of vertices, edges have the same length and vertices have
the same number of neighbours.

Figure 1.5 – The three regular tessellations of the plane.

Figure 1.6 – The eight semi-regular tessellations of the plane. The colours
represent the polygons with the same number of edges.

Semi-regular tessellations resort to two or more regular polygons. There
are eight semi-regular tessellations for the plane, combining quads, triangles
and hexagons, as well as octagons and dodecagons, as shown in Figure 1.6.
Each vertex is adjacent to the same sequence of polygons. The regular and
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semi-regular tessellations are different for the 3D space or non-Euclidean
spaces like the sphere. The polygons of these tessellations are distorted on
curved surfaces, with edges of different lengths. Mapping from the plane to
the surface entails a loss in geometrical regularity. Nevertheless, they have
the same topological regularity. The timber gridshell of the Centre Pompi-
dou in Metz, France, shown in Figure 1.4c or the Yas Mall in Abu Dhabi,
the United Arab Emirates, are based on such semi-regular tessellations con-
sisting of hexagons and triangles, and quads and triangles, respectively.

The geodesic dome in Jena, Germany in Figure 1.4d is a particular ex-
ample. The faces of the beam pattern are triangles with the same geometry.
They can map the curved surface of a sphere thanks to a few irregular nodes
that are adjacent to five faces instead of six, locally breaking the regular-
ity of the tessellation. This specific organisation stem from a discretised
icosahedron mapped to the sphere.

In construction, regularity in both geometry and topology matters [Mes-
nil et al., 2017b]. Different patterns can provide different properties. For
instance, Kagome patterns have the same node complexity with shorter
beams compared to quad meshes, offering interesting properties regarding
fabrication and buckling [Mesnil et al., 2017b]. Nevertheless, the lack of
modelling and design approach that tackles a large variety of tessellations
is an obstacle for their exploration and implementation in structural de-
sign. The application of non-fully regular patterns in structural design as
in Figures 1.4b and 1.4c are rare and regular patterns are preferred as in
Figure 1.4d. The lack of a general topological design approach with tools
that encapsulate the larger family of tessellations and structured patterns
can explain their rarity. Nevertheless, some work in this direction resort to
tessellation operators for the design of space frames [Koronaki et al., 2017].

1.3.2.2 Density

The density of a pattern relates to the global number of elements. For a
regular quad tessellation, the number of elements in each of the two grid
directions characterises the density. The density parameters is a finite set of
discrete values to explore when designing a pattern, as opposed to geometry-
related continuous parameters.

1.3.2.3 Singularities

Patterns and tessellations are synonyms of regularity. However, singular
vertex or face elements can be included, locally breaking the pattern reg-
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(a) Waffle slab without singularities
(source: HOLEDECK)

(b) Ribbed slab with singularities
(source: Pier Luigi Nervi)

Figure 1.7 – Slab systems with different geometrical and topological regu-
larities due to singularities in the patterns.

ularity. The tessellation of the geodesic dome in Figure 1.4d consists of
regular triangles with regular nodes connecting six beams, except for some
irregular nodes connecting five beams. These singular nodes are necessary
to map the sphere.

In a quad pattern, regular faces and vertices have four edges, whereas
irregular or singular vertices have a valency – a number of edges – differ-
ent from four. These local irregularities have a global influence as the flow
and the relation between elements are modified. In structural design, it re-
lates to modifying the layout of structural and cladding elements in material
patterns, the force layout in force patterns or the edge layout in parame-
terisation patterns. Figure 1.7 opposes two slab systems. The waffle slab
in Figure 1.7a is highly regular to ease fabrication and assembly. Although,
this pattern does not take the static system into account and reinforcement
is necessary to avoid the columns to punch through due to shear forces.
The ribbed slab of Pier Luigi Nervi in Figure 1.7b includes singularities to
follow statics considerations and steer the beams towards the columns. This
structural efficiency comes at a cost on pattern complexity, regarding topol-
ogy and geometry, which impacts the fabrication process. Developments
in digital fabrication with technologies like 3D printing provide new flex-
ibility in the fabrication of complex structures. These technologies apply
to a varied range of scales and set of materials, like the sand 3D-printed
floor prototype of the Block Research Group [Rippmann et al., 2018]. The
general work towards mass-customisation ease the integration of singular
elements in the fabrication process. The design of the geometry and the
topology is a dialogue with the many project-specific design aspects. These
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influential aspects include aesthetics, statics, fabrication, assembly, as well
as sustainability and cost.

Changing singularities in a quad mesh induces a different flow and re-
lation between elements, as shown in Figure 1.8. In this thesis, the sin-
gularities in quad meshes are highlighted in pink, and the successive edges
stemming from them are highlighted in black. The singularities in the quad
meshes are vertices with an irregular valency, meaning different from four
edges off the boundary and three on the boundary. From the quad mesh
with four singularities in Figure 1.8a to the mesh with two additional ones in
Figure 1.8b, the quantitative number of elements and their qualitative rela-
tion differ. The independent density parameters A to F along the boundary
indicate these differences.

Takayama et al. [Takayama et al., 2014] present a set of quad-mesh
patterns with different singularities for N-sided patches with a prescribed
number of subdivisions on each side. Matching the prescribed number of
subdivisions and the length of the sides allows to obtain quad meshes with
a regular distribution of the boundary edges thanks to the singularities as
in Figure 1.8.

B

A

A

B

(a) Two density parame-
ters

BAC C

E E

BA D F

F D

(b) Six density parameters

Figure 1.8 – Different singularities in a quad mesh induce qualitatively dif-
ferent relations between its elements. The singularities are highlighted in
pink and the successive edges stemming from them are highlighted in black.

These topological singularities occur also in the meshes used for Finite
Element Analysis. However, they are different from the field singularities,
which occur in the stress field, for instance, where the values do not converge
and therefore the field is not defined.

Among the families of patterns, quad meshes are of particular interest
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in structural design of shell-like structures thanks to their flexibility to map
surfaces and represent different structural systems. Moreover, their singu-
larities appear as a particularly influential design aspect.

1.4 Structural design of quad-mesh patterns

Quad-mesh patterns find a large set of applications in structural design of
shell-like structures. Mechanical, fabrication and construction aspects must
inform the design of their geometry and topology.

1.4.1 Quad-mesh patterns

Surfaces can be discretised using any pattern. However, surfaces are two-
dimensional objects, naturally described with two parameters. Therefore,
quad meshes and their bidirectional nature correspond to this natural de-
scription of surfaces.

Moreover, integration of cross fields on a shell yield quad meshes with
correspondence of the two parameterisation directions. Principal curvature
directions and principal stress directions are such cross fields, which archi-
tects and engineers are familiar with and use to interpret to understand their
design. For instance, Nervi’s floors [Nervi, 1965] are elegant and efficient ex-
amples of interpretation of principal stress directions to form a ribbed slab,
as shown in Figure 1.7.

Furthermore, quad meshes can serve as an underlying representation of
many structural systems. The structure stems either directly or indirectly
from the quad-mesh elements, as illustrated in Figure 1.9 with continuous
beams, corrugation patterns and staggered bricks.

Quad-mesh patterns offer other design options with different pros and
cons to triangular-mesh patterns. As expressed by Schlaich and Schober
[Schlaich and Schober, 2005, Schober, 2015], quad meshes for steel and glass
gridshells are more transparent and have simpler nodes than a triangulated
mesh. However, quad-mesh structures rely on member and node bending
stiffness, especially against in-plane shear, whereas triangular-mesh struc-
tures rely on member axial stiffness, thanks to the stability of triangles.
Moreover, a triangle is by definition planar, on the contrary to a quad,
which can be curved. Stiff nodes or braced panels compensate for the lack
of structural stability. Pre-or post-rationalisation strategies tackle the prob-
lem of panel curvature [Schober, 2015, Mesnil et al., 2017a, Liu et al., 2006].
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(a) Axis of beams (b) Map of corrugations (c) Frame of bricks

Figure 1.9 – Quad meshes in dashed red and blue lines representing different
structural systems in black and grey.

1.4.2 Geometrical design

Geometrical exploration aims at designing efficient and feasible structures by
modifying the position of the mesh vertices to meet some requirements and
optimise objectives. Form-finding methods can be force-based to guarantee
membrane equilibrium, like Force Density Method [Schek, 1974], Dynamic
Relaxation [Barnes, 1999], Thrust Network Analysis [Block and Ochsendorf,
2007] or Update Reference Strategy [Bletzinger and Ramm, 1999], or technology-
based to ease fabrication and construction, like Scale-Trans Surfaces [Glymph
et al., 2004] or Marionette Meshes [Mesnil et al., 2017e]. These strategies
constrain design exploration to the relevant subspaces. These methods can
be combined with optimisation strategies to further search these subspaces
[Bletzinger and Ramm, 1993, Mesnil et al., 2018b]. Optimisation algorithms
for architectural geometry allow rationalising forms based on multiple ob-
jectives, like ShapeOp [Deuss et al., 2015], based on projective dynamics
[Bouaziz et al., 2014]. Nevertheless, the earlier the integration of design
constraints, the easier the design process, which motivates the use of pre-
rationalisation versus post-rationalisation [Mesnil et al., 2017a].

Yet, topology matters for exploration. Indeed, the topology of the pat-
tern sets the bounds of the available geometrical design space within the
more general design space. This available geometrical design space repre-
sents all the possible geometries for a given topology.
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Figure 1.10 – The central singularity of the concrete shell of the CNIT in
La Défense, France make the design feasible by orientating the stiffening
corrugation pattern towards the supports (source: defense-92.fr).

1.4.3 Topological design

Exploring different configurations of singularities modifies the flow of edges.
These edges can represent the orientation of elements, the flows of forces or
the directions of parameterisations. The definition of the geometry and the
density depend on the singularities. As the most upstream design aspect,
singularities define all the other downstream degrees of freedom and are
therefore the most influential one. A poor topology will not yield efficient or
even feasible geometrical designs. For instance, the CNIT shown in Figure
1.10 and designed by Nicolas Esquillan is a concrete shell that spans the
concrete-shell world record of 218 meters thanks to stiffening corrugations
[Motro and Maurin, 2011]. The central singularity directs the pattern be-
tween the supports. Thereof, the corrugations stiffen the shell in the proper
direction, making such an achievement possible.
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Many design objectives relate to geometry, like panel planarity or compression-
only equilibrium. However, some topological properties, like maximum node
valency, play an important role in structural design, independently from ge-
ometry. For instance, the CNIT can not be corrugated in both directions;
otherwise, a resulting eggbox pattern would weaken both directions instead
of reinforcing one. The condition for non-self-crossing corrugations depends
on the singularities in the quad mesh and is not systematically guaranteed.

Figure 1.11 opposes the pattern of the CNIT in Figure 1.11a to another
one that is not efficient nor feasible in Figure 1.11b. The pattern topology
in Figure 1.11b does not allow to orientate the elements directly to the
support. Moreover, it creates three groups of non-overlapping elements due
to the central three-valent singularity. One group can not be chosen to form
stiffening corrugations all over the surface. On the contrary, the pattern
topology in Figure 1.11a integrates these requirements.

This example illustrates that the pattern, its topology and the related
geometrical space may not contain efficient or even feasible designs if poorly
designed.

(a) Efficient and feasible pattern
topology

(b) Inefficient and unfeasible pattern
topology

Figure 1.11 – Two different quad-mesh pattern topologies for a structure sup-
ported on three corners only, represent by black arrows. Efficiency comes
from directing the continuous coloured elements towards the supports. Fea-
sibility comes from the existence of one coloured group of non-overlapping
continuous elements to introduce stiffening corrugations all over the surface.
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1.5 Summary

Quad meshes can be used to model different objects for the design of struc-
tures. Significant work in architectural geometry, form finding and shape
optimisation enable geometrical design of these patterns. Unfortunately,
similar approaches are missing regarding the topology of these patterns,
which has a strong influence on all design aspects. Exploring the topol-
ogy of quad-mesh patterns necessitate a trans-parametric design approach,
beyond parametric design. Among the different topological aspects, the
singularities in the pattern have the most influence.

The next chapter presents the current strategies related to topological
designs of patterns in general, with their benefits and their limitations, and
complementary background on the topology of shapes and meshes.
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Chapter 2

Literature review

The design of singularities in quad meshes is a critical aspect in structural
design of patterns for shell-like structures. Additional background to archi-
tectural geometry and form finding is necessary to grasp the specific chal-
lenges of topological design of such objects.

Section 2.1 clarifies the pros and cons of current structural design ap-
proaches for the topology of quad meshes. Section 2.2 shows how rule-based
design can be applied to topological trans-parametric design. Section 2.3
introduces the field of topology with graph theory. Section 2.4 presents the
specific concepts and properties of quad meshes.

2.1 Design of patterns for structures

The current structural design approaches for the topology of quad-mesh
patterns, both in practice and research, present several interests but different
levels of limitations as well. The main approaches are presented, starting
from the most simple ones.

2.1.1 Trimming grids

A first approach is to design a regular quad-mesh grid on a large initial
surface. Then, trimming along the boundary of the shell fits the pattern to
a landscape or existing buildings, for instance. No singularities occur off the
boundary of the shell, but the boundary includes a series of irregular vertex
and face elements due to the trimming.
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(a) The trimmed quad-mesh pattern of
the Cabot Circus Shopping Centre roof
in Bristol, England [Schober and Jus-
tiz, 2012]

(b) The sculpted triangulated quad-
mesh pattern of the New Trade Fair in
Milan, Italy [Schlaich et al., 2005]

(c) The statics-integrated quad-mesh
pattern of the zoology lecture hall at
the University of Freiburg, Germany
[Antony et al., 2014]

(d) The topology-optimised quad-mesh
pattern of the building bridge for the
Zendai competition, China [Beghini
et al., 2014]

Figure 2.1 – Projects with quad-mesh patterns following different structural
design strategies.

The roof of the shopping centre of the Cabot Circus in Bristol, Eng-
land, shown in Figure 2.1a, is a gridshell with a quad-mesh pattern of steel
beams and glass panels. The design follows the geometry of a trans-scale
surface to guarantee planar quad panels [Schober and Justiz, 2012]. The
boundary of the surface is trimmed to follow the edge of the adjacent build-
ings. The pattern does not reflect the boundary and support conditions.
Trimming induces irregular elements to fabricate and assemble, such as tri-
angular or pentagonal faces or very short edges along the boundary. Trim-
ming also interrupts the force flow carried by the beams, driving the loads
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to the boundary to be carried by stiffer beams. Trimming is standard for
such strategies where the designer does not entirely control the boundary
[Schlaich and Schober, 1997, Schober, 2015]. These considerations are simi-
lar when trimming the quad-mesh patterns for elastic gridshells generated on
a target surface thanks to the compass method [Otto et al., 1974, Du Peloux
et al., 2013]. The compass method yields a Chebychev net, a quad mesh
with equal-length edges, which eases the planar layout operation before the
erection process. However, the method initiates from an intersection point
between two guide curves on the surface and does not take into account the
boundaries.

A quad mesh requires singularities to fulfil boundary alignment without
trimmed elements, which influences structural and construction aspects. An
example of beneficial influence is yielding membrane equilibrium in funicular
form finding through alignment to unsupported boundary [Panozzo et al.,
2013].

2.1.2 Sculpting meshes

Designers can sculpt meshes manually or semi-automatically following some
heuristic rules in a trial-and-error approach. Sculpting coarse meshes be-
fore densification and application of different operators is an efficient design
paradigm [Bhooshan et al., 2018]. Nevertheless, this approach relies on the
experience and skill of the designer and still requires some manual labour
that is not straightforward to transpose from one project to another.

The roof of the New Trade Fair in Milan, Italy, shown in Figure 2.1b
is a steel and glass gridshell [Schlaich et al., 2005]. The structural pattern
derives from a quad mesh with additional diagonals for triangulation of
the quad faces in curved areas. Thanks to specific mesh modifications, the
singularities provide a smooth transition from the top areas to the funnel
areas. However, in the development of ad hoc modifications, the decisions
are specific to the project context with limited application to other design
problems.

2.1.3 Optimising layouts

Opposed to linear programming, which applies to continuous parameters,
integer programming enables discrete optimisation [Schrijver, 1998]. The
connectivity within a set of fixed vertices like the bar layout of a truss
can be optimised using such solvers with heuristic methods like genetic al-
gorithms. The problem is classically parameterised with point indices to
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define the extremities of the bars [Suzuki and Knippers, 2017] or edge in-
dices to the define the bar in a ground structure [He and Gilbert, 2016].
Shea and Cagan apply simulated annealing on shape grammars – or shape
annealing – for optimisation of geodesic dome patterns [Shea and Cagan,
1997]. Bielefeldt et al. use genetic algorithms for topology optimisation of a
bar layout [Bielefeldt et al., 2019a]. Including the position of the points in
the optimisation process mixes discrete and continuous parameters, which
can be tackled using mixed integer linear programming.

2.1.4 Integrating fields

Integration of cross fields for structural design allows generating informed
patterns for different objectives. Integration of principal stress directions
guarantees mechanical efficiency [Michell, 1904, Rozvany and Prager, 1976],
while the integration of principal curvature directions ensures fabrication
properties like panel planarity [Liu et al., 2006]. Heuristic rules can in-
form the design of a custom field. The integration of such fields provides a
pattern that respects these heuristic rules, like boundary and feature align-
ment [Panozzo et al., 2013]. Quad-mesh generation following a cross-field is
a complex problem. Although efficiently-formulated algorithms manage to
yield high-quality meshes regarding geometrical quality and feature align-
ment rapidly [Kälberer et al., 2007, Bommes et al., 2009, Jakob et al., 2015].

The cross-field defines the geometry and topology of the resulting quad
mesh. More specifically, the singularities have the position and the connec-
tivity of the ones of the cross-field. A singularity in a field is a point where
the field is not defined. Therefore, depending on the numerical precision
and the processing scheme, they can appear directly in the output mesh or
indirectly as dual faces resulting from the integration of surrounding curves.

Concrete plates and shells reinforced with ribs were made popular by
the work of Pier Luigi Nervi [Nervi, 1965, Halpern et al., 2013]. The slab
of the zoology lecture hall at the University of Freiburg, Germany, designed
by Hans-Dieter Hecker [Hecker, 1969] and shown in Figure 2.1c is stiffened
by a pattern of concrete ribs derived from the integration of the principal
bending directions. The ribs provide structural efficiency but necessitate
custom formwork, which can be hard and expensive to implement. Never-
theless, this system can compete with other ones, like hollow concrete slabs
and prestressed concrete slabs, regarding sustainability assessment [Antony
et al., 2014].

However, the design comes as a single result from the integration scheme.
The topology of the quad mesh is not directly controlled, and post-processing
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may be needed. Indeed, mild or substantial modifications of the topology
in further design steps would allow integrating other requirements that the
cross-field does not take into account.

The curvature analysis of the roof of the Visconti Courtyard for the
department of Islamic Arts at the Louvre in Paris, France, yields a quad-
dominant mesh [Zadravec et al., 2010, Wallner and Pottmann, 2011]. Even
though all panels fulfil the planarity requirement for economical fabrication,
the topology does not provide freedom for the optimisation procedure to
fulfil the other requirements and constraints.

Schiftner and Balzer [Schiftner and Balzer, 2010] compare two designs
for the steel and glass pattern on the geometry of the British Museum Great
Court Roof, which was analytically defined by Williams [Williams, 2001].
The two quad-mesh patterns differ by their singularities, which stem from
two different cross fields: the principal stress directions and the principal
curvature directions. The former performs better regarding structural stiff-
ness and the later regarding panel planarity, as shown in Figure 2.2. Both
design aspects can be tackled simultaneously by form finding a shape that
aligns the two cross fields [Kilian et al., 2017, Pellis and Pottmann, 2018].
However, this approach requires freedom in the design of the shape, and
more project-specific design aspects must still come into play.

2.1.5 Concentrating distributions

Mechanical topology optimisation based on mechanical compliance yields
both the geometry and the topology of the pattern as well [Bendsøe and
Sigmund, 2013]. Continuous topology optimisation progressively removes
the lower-stressed material in a continuous domain for given loading condi-
tions, as for the bridge-building in Figure 2.1d. Discrete topology optimi-
sation progressively removes the lower-stressed bars in a dense network for
given loading conditions. Theoretically, the resulting ideal pattern should
follow the principal stress lines and yield a quad-dominant mesh as in cross-
field integration [Michell, 1904, Rozvany and Prager, 1976, He and Gilbert,
2016].

A topology-optimisation process returns highly optimised patterns re-
garding mechanical considerations for a specific load condition. Neverthe-
less, structures at the architecture scale must strike a compromise between
the very varied combinations of load cases, such as dead loads, live loads,
snow loads, wind loads, seismic loads. Moreover, these patterns are not
necessarily feasible regarding construction considerations [Borgart, 2010].
In practice, the pattern is unstructured and does not even correspond to a
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Figure 2.2 – Two pattern designs revisiting the British Museum roof. The
topology at the top performs the best regarding the requirement on the
right on minimising mechanical compliance. The topology at the bottom
performs the best regarding the requirement on the left on minimising panel
planarity [Schiftner and Balzer, 2010]. The singularities in a quad mesh,
highlighted in pink, influence its efficiency and affordability, highlighting
the importance of their design for the challenge of meeting trade-offs in
multi-objective structural design.
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mesh, which could be directly further processed.
However, optimisation approaches like field integration and topology op-

timisation can be used as a starting design for further exploration, and as a
collaboration means between architects and engineers for integrated design
[Beghini et al., 2014]. Such initial results can inform the designer, who could
be empowered by the possibility of editing these results and combining them
for multi-objective design.

Complementary to these main strategies, a rule-based design approach
can be considered for the topological design of patterns for structures for
shell-like structures, as used in many applications.

2.2 Exploration of topological spaces

Topological spaces do not have the same structure as geometrical spaces.
Geometrical spaces rely on continuous parameters. Rule-based design and
grammars compensate for this lack of continuous parameters to perform
topological exploration.

2.2.1 Non-parametric spaces

Spaces are differentiated whether they have a metric or not.

2.2.1.1 Parametric spaces

A set of independent continuous-valued parameters defines a parametric
space. For instance, the set of the vertex coordinates describe the geometry
of a mesh. Exploring these parameters within their defined ranges allows
describing all the objects in the design space. Continuous optimisation al-
gorithms can apply through the computation of these parameters.

For the fields of architectural and structural design, among others, Rhino’s
Grasshopper, or Autodesk’s Dynamo, enable an active community of stu-
dents, practitioners and researchers to perform parametric design. The pa-
rameters can be interactively modified while visualising the resulting design.
Mechanical, light, thermal or acoustic analysis, a variety of form-finding and
shape-optimisation algorithms or BIM software can provide additional in-
formation. Thanks to an open-source approach, hundreds of plugins with
hundreds of thousands of downloads can be browsed through in food4Rhino,
contributing to knowledge transfer [food4Rhino, 2019].
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Parametric spaces are metric spaces because canonical metrics based on
the n parameters x = [x0, ..., xn−1]T can be defined such as the L2 distance
d:

d(x, y) =

√√√√n−1∑
i=0

(xi − yi)2, (2.1)

which allows evaluating the distance – or similarity – between two ob-
jects. In the 2D or 3D Euclidean space, three coordinates describe each
point, and the L2 distance is the Euclidean distance, the length of the
straight line between the two points.

Metrics – or distances – must verify several properties:

• the distance between any two objects is positive;

• if the distance between two objects x and y is zero, then x and y are
identical, and reciprocally: d(x, y) = 0 ⇐⇒ x = y;

• the distance is symmetric: the distance from an object x to an object
y is the same as the distance from y to x: d(x, y) = d(y, x);

• the distance, respects the triangle inequality: the distance between
two objects x and z is equal or smaller than the one between x and
any object y plus the one between y and z: d(x, z) ≤ d(x, y) + d(y, z).

2.2.1.2 Topological spaces

However, some design spaces do not have such parameters, like the beam
layout of a truss. For such topology-related spaces, parametric exploration
is not possible as a finite set of continuous parameters is missing. Indeed, a
combinatorial nature characterises such spaces.

Moreover, the definition of a canonical metric, based on continuous pa-
rameters, is not possible.

However, an alternative approach to parametric design enables topolog-
ical exploration based on grammars of rules.

2.2.2 Rule-based design

Parametric design applies to continuous parameters. On the contrary, rule-
based design applies topological modifications based on a set of rules grouped
in a grammar. Rule-based design goes beyond parametric design and into

46



the field of trans-parametric design [Harding et al., 2012, Harding and Shep-
herd, 2017]. Thinking about topological design at an early stage of the
design process unleashes new design possibilities in structural applications.
For instance, Deleuran et al. [Deleuran et al., 2016] perform topological
exploration of form-active hybrid structures using rules that modify the
connectivity of a network of splines and cables.

2.2.3 Design grammars

Rule-based design encapsulates different approaches with design grammars
that can apply to language, form and structure, through different levels of
complexity, starting with formal grammars.

2.2.3.1 Formal grammars

Chomsky introduces in the 1950s generative design applied to language us-
ing formal grammars [Chomsky, 1956, Chomsky, 1959]. A finite set of formal
grammar rules apply modifications on a finite set of words, enabling the gen-
eration of an infinite set of sentences. The design rules define the language
– or design space – to which these sentences – or designs – belong.

L-systems extend formal grammars for the generation of geometries.

2.2.3.2 L-systems

Lindenmayer introduces in 1968 L-systems as a type of formal grammars
to algorithmically describe the growth of plants, as shown in Figure 2.3
[Lindenmayer, 1968, Prusinkiewicz and Lindenmayer, 2012]. A set of rules
applies to a string of characters that come from an alphabet. The inter-
pretation of the string generates the corresponding shape, in the manner
of turtle graphics [Goldman et al., 2004]. The rules are applied iteratively
to generate different level of growth of the shape. The shape depends on
the starting string axiom and the different parameters, in the case of para-
metric rules. L-systems can also describe the generation of patterns such as
fractals.

L-systems can apply to structural design as parameterisation strategies
for the generation of designs. The combination of L-systems and genetic
algorithms provides a means for topology optimisation for the search for
statics-optimised designs [Kobayashi, 2010, Bielefeldt et al., 2019a].

Shape grammar do not modify a string but directly a geometry and found
many applications for exploration and design of general geometries.
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Figure 2.3 – L-systems are a specific type of formal grammars interpreted by
turtle graphics designed for algorithmic generation of plants [Prusinkiewicz
and Lindenmayer, 2012]. Here, the designs stem from a different number of
iterations n, a different branching angle δ, a starting string axiom and one
or several rule to iteratively apply.

2.2.3.3 Shape grammars

Stiny and Gips introduce in 1971 shape grammars for the generation of
shapes in painting and sculpting [Stiny and Gips, 1971]. Subsequently, shape
grammars found a large set of applications in many fields of design and engi-
neering [Stiny, 2006, Knight and Stiny, 2015, Cagan, 2001]. A classification
can be found in [Garcia, 2017].

Shape grammars at the architectural scale develop into architectural
grammars.

Architectural grammars Architectural grammars include a variety of
applications, such as Palladian villas [Stiny and Mitchell, 1978], Frank Lloyd
Wright’s prairie houses [Koning and Eizenberg, 1981], Queen Anne Houses
[Flemming, 1987], Yingazo Fashi Chinese buildings [Li et al., 2001] or Siza’s
houses in Malagueira [Duarte, 2005]. The grammar decodes each architec-
tural style, formalised and structured into a set of rules to generate multiple
other designs that share the same characteristics. Design grammars also
apply at other scales than the building. Urban shape grammars tackle the
district, like the Medina of Marrakesh [Duarte et al., 2006], or the city,
like Praia in Cabo Verde [Beirão et al., 2011]. Product shape grammars
tackle specific styles of chairs [Knight, 1980], coffeemakers [Agarwal and Ca-
gan, 1998] cars [McCormack et al., 2004] or tableware [e Costa and Duarte,
2013], for instance, allowing mass customisation. An architectural grammar
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for housing rehabilitation takes into account the varied information like new
usage, among others, instead of decoding a design style [Eloy and Duarte,
2011].

Even though architectural grammars focus on the arrangement of shapes,
grammars can include functional aspects other than geometry.

Functional, structural and force grammars Shape grammars evolve
into functional and structural grammars to include non-geometrical data re-
lated to structures. This data can include structural-behaviour and construction-
technology requirements. Engineering applications include houses [Mitchell,
1991], towers [Baldock et al., 2005, Baldock, 2007], halls [Geyer, 2008],
bridges, [Mueller, 2014] or trusses [Shea et al., 1997]. Figure 2.4 highlights
an application to a shell-like system with a grammar applied to the design
of geodesic domes [Shea and Cagan, 1997, Shea and Cagan, 1999]. Some ap-
plications are specific to a fabrication technology, like CNC machines [Sass,
2006, Ertelt and Shea, 2009], instead of a structural system. Force grammars
describe the organisation between forces, opposed to the one between spaces
or elements, which can later materialise into a structure. Force grammars
for graphic statics are introduced by Lee et al. applied to 2D edge networks
[Lee et al., 2016b] and 3D cell decompositions [Lee et al., 2016a].

(a) Grammar (b) Examples (c) Designs

Figure 2.4 – Grammar for rule-based design of triangulated meshes for
geodesic domes [Shea and Cagan, 1997].
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The exploration of the topology of patterns and meshes resulted in the
development of several operations, sometimes also framed as grammar rules,
which are not specific to architecture and structures.

2.2.3.4 Mesh grammars

The large range of applications of meshes sparked the design of very different
sets of rules tuned for specific objectives, mainly for aesthetics purpose.

Ornamental design Hansmeyer and Dillenburger [Hansmeyer and Dil-
lenburger, 2013] introduce a mesh grammar following a formal grammar
approach that modifies the density and the geometry of meshes to generate
highly-detailed ornamental shapes. This grammar focuses on shape. Indeed
the pattern and its singularities are not modified.

Visual optimisation In the field of computer graphics, quad-mesh gram-
mars modify the topology to improve the regularity of dense and unstruc-
tured meshes [Daniels et al., 2008, Daniels II et al., 2009, Tarini et al.,
2010, Peng et al., 2011]. This regularity for modelling and representation
concerns both geometry and topology. These quad-mesh grammars consist
of a set of local rules that preserve the quad-mesh constraint, unlike other
grammars for triangulated meshes for instance. Figure 2.5 illustrates some
of these rules [Tarini et al., 2010].

edge collapse doublet removaldiagonal collapseedge rotatevertex rotate

Figure 2.5 – A grammar rules for quad mesh visual-quality optimisation
[Tarini et al., 2010].

Another family of quad-mesh grammars does not consist of rules but
different patterns [Nasri et al., 2009, Takayama et al., 2014, Peng et al.,
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2014]. The patterns feature different singularities to patch N-sided polygons
with a prescribed number of subdivisions on each side. Combining these
patterns allows completing the mesh of different shapes.

These rules apply to meshes for the field of computer graphics, animation
and rendering. These rules have little use in the context of architectural
and structural design where design does not start with a dense unstructured
mesh and where many more objectives come into play.

Tessellation exploration The Conway operators constitute a grammar
developed by John H. Conway for the description of polyhedra [Conway
et al., 2016]. Applying these operators modifies the tessellation and the den-
sity. However, these operators preserve singularities. Figure 2.6 illustrates
some of the different tessellations a seed quad mesh can yield. The kis, ambo
and gyro Conway operators yield a doubly-triangulated, a dual diagonal and
a pentagonal pattern, respectively. The new patterns have equivalent vertex
or face singularities, highlighted in pink. The five-valent singular vertices
become ten-valent singular vertices, five-valent singular faces and five-valent
singular vertices, respectively.

Therefore, Conway operators can be applied to translate one tessellation
into another, already applied for the optimisation of space frame structures
[Shepherd and Pearson, 2013, Koronaki et al., 2017]. Indeed, tessellations
present different structural and fabrication properties worth investigating
[Malek and Williams, 2013, Jiang et al., 2015, Mesnil et al., 2017b].

Developing grammars for the different types of tessellation does not make
sense. Instead, a pattern grammar can combine a quad-mesh grammar and
the Conway tessellation grammar. Consequently, quad-mesh grammars can
modify the singularities in other patterns. The four pentagonal tilings in
Figure 2.7 stem from quad meshes with different singularities. The singu-
larities induce different distortions when mapped to the same disc surface.
The faces around the equivalent vertex singularities are highlighted in pink.

Solid modelling Heisserman [Heisserman, 1994] presents a grammar on
the boundary of solids represented by meshes for modelling of architectural
spaces or volumetric objects. Modifications of the topology result from
modifications of the geometry. When a movement modifies the adjacency
or creates an overlap, the topology is updated. This grammar explores the
topology of the shape, the underlying mesh being only a representation for
computation.

Applying rule-based exploration to quad meshes must comply with spe-
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(a) Quad mesh (b) Kis quad mesh

(c) Ambo quad mesh (d) Gyro quad mesh

Figure 2.6 – Applying Conway operators on a seed quad mesh generates
patterns with different tessellations but equivalent vertex or face singularities
in pink.

cific topological constraints, which general graphs encoding the connectivity
between objects do not have.

2.3 Topology and graph theory

Patterns for representing structural elements, for describing force equilibria
or for morphing surfaces can all be described by meshes. Work in geometrical
processing of meshes came naturally into structural design, framed as con-
structive geometry [Sakarovitch, 2009] or architectural geometry [Pottmann
et al., 2007a]. Beyond meshes, graphs are more general objects that de-
scribe a set of edges, as opposed to a set of faces. A graph is an efficient
object to store high-dimension, non-Euclidian data, as opposed to vectors
and matrices. Graphs have found applications for problem encoding and
solving in very varied fields. Graph focus on connectivity, or topology, in-
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(a) From one pole (b) From two
two-valent singularities

(c) From one eight-, four
three-and four two-va-
lent singularities

Figure 2.7 – Pentagonal tilings stemming from quad meshes with different
singularities inducing different distortions when mapped to the same disc
surface. The faces around the equivalent vertex singularities are highlighted
in pink.

stead of geometry. Nevertheless, graphs can also describe a geometry, like a
spatial network of forces in equilibrium [Schek, 1974, Block and Ochsendorf,
2007]. This thesis explores the connectivity of patterns, which calls to the
rich theory on topology and graph objects.

The two domains of topology and graph theory are historically con-
nected.

2.3.1 Origin

In 1741, Leonhard Euler asked and answered a question about the city of
Königsberg, today’s Kaliningrad [Euler, 1741]. Königsberg had four districts
separated by the Pregel River and connected by seven bridges, as shown in
Figure 2.8a. Can someone walk such as to cross each bridge exactly once
and finish at the starting point? This question relates only to the topology.
Indeed, the solution is independent on the location or size of the districts,
only on their connectivity.

Euler proved that no such loop exists. To solve this practical question,
Euler abstracted the problem into a graph data structure as in Figure 2.8b.
Each graph vertex represents a district of the city, and each graph edge rep-
resents a bridge connecting two districts. The graph encodes the necessary
data of the problem to provide an answer.

The problem of the seven bridges of Königsberg gave birth to topology
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(a) Map of the city [Euler, 1741].

C

A

B

D

(b) Graph encoding

Figure 2.8 – The problem of the seven bridges of the city of of Königs-
berg, encoded by Leonhard Euler in a graph, where each vertex represents
a district and each edge represents a bridge between two districts.

and graph theory that are today ubiquitous in our daily lives. Indeed, graphs
can abstract and encode many problems.

2.3.2 Data structure
The data in a graph consists of two elements. Vertices – or nodes – and
edges connecting pairs of vertices. The vertex and edge elements can store
attributes that are relevant for the problem considered. For a network of
people, the graph vertices represent the persons, and the graph edges repre-
sent the relations. Vertex attributes can provide information on the persons
(like the name or the age), and edge attributes can provide information on
their relation (like the type of relation or the beginning of the relation).

2.3.3 Applications
The development of a large body of research on algorithms for different
graph-based problems flourished since Euler [Gondran and Minoux, 1984],
triggered by a large number of applications. Indeed, many problems are
structured as such as they can not be represented using multi-dimensional
matrices. Graphs better conceptualise such problems, with additional at-
tributes stored on the vertices and edges. Applications for graph vertices and
edges include social networks as people and connections; map colouring as
countries and borders; airport connections as airports and connecting flights;
molecules as atoms and bonds; neural networks as neurons and synapses.
And the topology of patterns for structural design.
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2.3.4 From graphs to meshes
A mesh is an adaptation of a graph. A mesh data structure is also based on
vertices but replaces edges by faces to define the connectivity between these
vertices. The edges in a mesh are secondary elements that result from the
faces. Meshes have a more specific structure and are more suitable to define
surfaces or manifolds. Similarly to graph data structures, vertices, faces and
edges store attributes such as node coordinates, panel thicknesses or beam
profiles, for construction applications.

Meshes can be seen as hybrids between graphs and surfaces as they share
some properties with both.

2.4 Topology of quad meshes

Beyond geometrical properties, meshes, and more specifically quad meshes,
have different topological properties. These properties exist at the level of
the shape and the pattern. Moreover, theorems connect these two levels
together and relate them to geometry.

2.4.1 Shape topology
Two shapes have the same topology, and therefore the same shape topolog-
ical properties, if they are homeomorphic. Homeomorphism means that one
surface can deform into the other one by continuous and reversible mapping.
Stretching is allowed but not tearing. For instance, a doughnut and a mug
have the same topology, more formally called torus, but a sphere, a torus
or a double torus are topologically different, due to the different number of
handles, as illustrated in Figure 2.9.

A classification sorts shapes according to their shape topological proper-
ties, which do not depend on a choice of mesh representation and their local
properties. However, a mesh representation may be necessary to compute
these global properties.

2.4.1.1 Classification of shapes

Figure 2.10 summarises the main properties for topological classification of
a shape. The shape can be:

1. manifold or not;

2. if so, compact or not;
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Figure 2.9 – Continuous and reversible deformation of a shape into another
implies that they have the same shape topology. A sphere, a torus and
double torus have different topologies. (Inspired from: learner.org)

3. if so, orientable or not.

NON-MANIFOLD NON-COMPACT NON-ORIENTABLE

MANIFOLD ORIENTABLECOMPACT

SHAPE

Figure 2.10 – Topological classification of shapes.

Manifold versus non-manifold Yamaguchi [Yamaguchi, 1997] classi-
fies manifold and non-manifold shapes based on adjacency between vertex,
edge, face and regions. The more general the shape, the more advanced the
necessary data structures for representation and modelling:

• manifolds are shapes on which every point is locally homeomorphic
to a disc (Figure 2.11a). Manifolds can be represented by a halfedge
data structure (the least general one) [Mäntylä, 1988];

• rigid-set solids are single connected closed sets with a volume (Fig-
ure 2.11b). Rigid-set solids can be represented by a halfwedge data
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structure [Requicha, 1977];

• cell decompositions are generic models of shapes with closed and open
cells (Figure 2.11c). Cell decompositions can be represented by a
feather data structure (the most general one) [Yamaguchi and Kimura,
1995].

A non-manifold shape is caused by edges with more than two adjacent
faces, by faces with both sides adjacent to the same region, or by vertices
adjacent to several non-connected fans of faces.

(a) Manifold (b) Rigid-set solid (some
points are not homeo-
morphic to a disc)

(c) Cell decomposition
(some cells are open and
a volume is not defined)

Figure 2.11 – Manifold and non-manifold shapes.

Compact versus non-compact A manifold shape can be compact or
non-compact. A compact shape has a finite area, meaning triangulation is
possible with a finite number of elements [Rowland, 2019]. A sphere or a
torus are compact manifolds. However, the infinite plane, the infinite cylin-
der and the other shapes in Figure 2.12 have an infinite area and are there-
fore non-compact. Further classification of non-compact manifolds without
and with boundaries can be found in [Richards, 1963] and [Prishlyak and
Mischenko, 2007], respectively.

Orientable versus non-orientable A compact manifold shape is ori-
entable if normals are consistently oriented. Adjacent faces in a mesh rep-
resentation must have their normals oriented in the same direction relative
to the surface. A sphere, a torus, a disc or a cylinder are orientable. On
the contrary, the Möbius strip in Figure 2.13 or the Klein bottle are non-
orientable shapes because their two sides are connected.
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Figure 2.12 – Some non-compact manifold shapes like the infinite plane or
the infinite cylinder [Ghys, 1995].

Figure 2.13 – The Möbius strip is a non-orientable shape because the normals
in red can not be consistently oriented on the same side.

Euler characteristic and genus The compact manifold shapes can be
further classified. Seifert and Threlfall proved this 1860s classification in
1934 [Seifert and Threlfall, 1934], improved by Conway in 1992 [Francis and
Weeks, 1999].

The classification theorem states that a closed compact manifold shape is
topologically equivalent to a sphere with a certain number of either handles
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or cross-caps. A cross-cap is a self-intersection of a non-orientable shape. In
other words, the genus, the number of handles or cross-caps, characterises
orientable and non-orientable closed shapes, respectively. Table 2.1 shows
the classification for shapes of genus from zero to two.

Table 2.1 – Classification of compact manifold shapes based on their ori-
entability and their genus (source: mathcurve.com).

genus 0 1 2

orientable

sphere torus double torus

non-
orientable

cross surface Klein bottle

The genus g relates to the Euler characteristic X. The Euler character-
istic can be computed from any mesh representation of the shape as:

X = V − E + F, (2.2)

where V is the number of vertices, E the number of edges and F the
number of faces in the mesh. The genus depends on the Euler characteristic
as follows for orientable shapes:

X = 2− 2g, (2.3)

and as follows for non-orientable shapes:

X = 2− g. (2.4)

The doublet (orientability, genus) characterises a closed compact mani-
fold shape.
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Closed versus open Open shapes, which include boundaries, are classi-
fied using equivalent closed shapes, as illustrated in Figure 2.14:

1. the N boundary components are collected;

2. a disc is zipped on each boundary component to close the open shape;

3. the orientability and the genus of the resulting closed shape are com-
puted.

For instance, a cylinder has two openings and zipping a disc along each
one yields a sphere topology. Therefore the cylinder is characterised as an
orientable shape with zero handles and two boundary components. The
triplet (orientability, genus, number of boundary components) characterises
an open compact manifold shape.

(orientable, g=1, N=1)

(orientable, g=1, N=0)(orientable?, g=?, N=1)

re-open

close

Figure 2.14 – Characterisation of an open compact manifold shape via the
equivalent closed shape by temporarily zipping a topological disc along each
boundary.

The Euler characteristic X of an open compact manifold shape is com-
puted without resorting to a mesh representation by correcting Equation 2.3
for orientable shapes as:

X = 2− 2g −N, (2.5)

and Equation 2.4 for non-orientable shapes as:

X = 2− g −N. (2.6)

2.4.1.2 Shape topology in construction

Different shape topologies and corresponding data structures apply to mod-
els in the construction industry. Building Information Modelling (BIM) of
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(a) Orientable shape with zero han-
dles of the British Museum in Lon-
don, England
(Source: e-architect.co.uk)

(b) Orientable shape with a few han-
dles of the Morpheus Hotel in Macau
(Source: macaubusiness.com)

(c) Orientable shape with many han-
dles of the 2015/2016 ICD/ITKE Re-
search Pavilion in Stuttgart, Ger-
many
(Source: archdaily.com)

(d) Non-orientable shape of the Arn-
hem Central Station, The Nether-
lands
(Source: ice.org.uk)

Figure 2.15 – Built projects with different shape topologies.

slabs, walls, beams and columns necessitates topological modelling tools that
handle non-manifold shapes [Aish et al., 2018].

Nevertheless, manifolds can represent most shell-like structures. Even
constrained to orientable compact manifold shapes with a null or low number
of handles, except for some following notable exceptions. Indeed, most roof
structures are orientable shapes with one outer boundary and potentially
inner boundaries, as for the British Museum in London, England (Figure
2.15a). Facade structures can have some handles due to connections be-
tween parts of a building, as for the Morpheus Hotel in Macau (Figure
2.15b). Multi-layer structures can have a high number of handles due to
connection between the layers, as for the 2015/2016 ICD/ITKE Research
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Pavilion (Figure 2.15c). Hybrid structures can be non-orientable, as for the
Arnhem Central Station, The Netherlands (Figure 2.15d). However, a non-
orientable shape as building skin questions the definition of interior and
exterior, and therefore the habitability of the enclosed space.

Opposed to shape topology, local topological properties apply at the level
of the mesh representation of the shape.

2.4.2 Pattern topology

Similarly to shapes, two patterns have the same topology if one can deform
into the other without modifying the connectivity between its elements. For
the same shape topology, different pattern topologies are possible. In the
case of quad meshes, these topologies can differ by their singularities.

2.4.2.1 Singularities

In a closed quad mesh, regular vertices have a valency of four, which means
they have four edges connecting to adjacent vertices. On the boundary of
an open quad mesh, regular vertices have a valency of three. Singularities
are vertices with an irregular valency, meaning different from four off the
boundary and three on the boundary. Singularities generate different degrees
of deviations in the flow of elements in the mesh, as shown in Figure 2.16.

Figure 2.16 – Singularities in quad meshes have a valency different from four
and induce different local flow deviations.

Equivalently, the valency of a singular vertex in a triangular or hexagonal
mesh differs from six and three, respectively. Singularities can also refer
to irregular faces, instead of irregular vertices. Kagome patterns consist
of hexagonal and triangular faces, therefore, a five-or seven-valent face is
singular [Ayres et al., 2018].

Structured meshes are meshes with a low number of singularities rel-
atively to the number of regular vertices. Unstructured meshes result in
disorganised flows of elements. Focus on structured patterns in structural
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design is justified by its positive implications on aesthetics, statics and con-
struction [Stephan et al., 2004].

2.4.2.2 Poles

Poles, characterised by a local polar pattern, are a special type of singu-
larities in quad meshes as they are adjacent to triangles, in grey in Figure
2.17a. The triangles should be interpreted as pseudo-quads with a double
vertex at the location of the pole. The high valency of a pole varies as it
depends on the mesh density. Partial poles are hybrid singularities adjacent
to both quads and triangles, as shown in Figure 2.17b.

(a) Full pole (b) Partial pole

Figure 2.17 – Poles in quad meshes are a special type of singularities adjacent
to triangles, in grey.

Pole points are of particular interest in structural design of patterns.
Isostatic ribbed floors feature such poles. Such examples include the slab of
Pier Luigi Nervi for the Gatti Wool factory in Rome, Italy, in Figure 1.7b
[Nervi, 1965, Halpern et al., 2013], and the slab of Hans-Dieter Hecker for
the lecture hall of the zoological department of the University of Freiburg,
Germany, in Figure 2.1c [Hecker, 1969, Antony et al., 2014]. The principal
stresses converge towards columns and walls thanks to poles in the pat-
tern that attract forces to the supports, but detailing of these high-valency
nodes is more complicated. The structural patterns of the gridshells of the
courtyard roofs of the Dutch Maritime Museum [Adriaenssens et al., 2012]
in Amsterdam, in Figure 1.4b, and of the British Museum [Williams, 2001]
illustrate this trade-off. Indeed, they have similar support conditions, al-
lowing thrust only at the four outer corners. However, the former features
poles, whereas the latter does not.

Moreover, pole points in force patterns can provide an appropriately high
number of loads paths at the location of concentrated loads and improve the
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results of form fitting of target shapes with compression-only force patterns
[Van Mele et al., 2014].

Poles can be understood as a combination of sources and sinks attract-
ing and repelling elements, as done by Nsugbe and Williams [Nsugbe and
Williams, 2001] to generate patterns using complex functions.

2.4.2.3 Indices

Vertices are characterised by their valency, or equivalently by their index.
The singularity index relates directly to the induced deviation in the flow of
mesh elements. The index iv of a vertex v equals the total signed variation
of face orientation dθij between the pairs of adjacent faces fi and fj in the
adjacency of the vertex Fv, normalised by 2π:

iv =
1

2π

∑
fi,fj∈Fv

dθij . (2.7)

Figure 2.18 shows this orientation variation for a six-valent singularity.
The deviation adds up to a negative half-turn, thus an index of -1/2.

Figure 2.18 – A six-valent singularity has an index of -1/2 due to a negative
half-turn of accumulated deviations of face orientations between pairs of
adjacent faces.

In a quad mesh, the index can also be directly computed from the valency
nv and its deviation from the regular valency n0:

iv =
n0 − nv

4
, (2.8)

where the regular valency n0 equals 4, or 3 for boundary vertices. For
each face added or removed, the index is increased or decreased by -1/4,

64



respectively. The index of poles is computed using Equation 2.7: poles have
an index of 1 outside the boundary and 1/2 on the boundary. The index of
partial poles varies and is computed using Equation 2.7 or using Equation
2.8 after collapsing the triangles.

Table 2.2 summarises the indices of singularities, including poles ?.

Table 2.2 – Indices of singularities with valency from 2 to 9, general valency
n, and poles ?.

valency index
outside boundary

index
on boundary

? 1 1/2
2 1/2 1/4
3 1/4 0
4 0 - 1/4
5 - 1/4 - 1/2
6 - 1/2 - 3/4
7 - 3/4 - 1
8 - 1 - 5/4
9 - 5/4 - 3/2
n (4 - n)/4 (3 - n)/4

The index of a vertex has an equivalent in other structured meshes, or
equivalent fields, such as triangular or hexagonal meshes. Generally, the
index provides a measure of the irregularity induced by a singularity [Fogg
et al., 2018].

Pattern and shape topology provide a direct relation between the vertex
indices and the Euler characteristic.

2.4.3 Pattern and shape topology

The Poincaré-Hopf theorem (PHT) links shape topology and pattern topol-
ogy via the Euler characteristic X and the sum of vertex indices iv:

X =
∑
v∈V

iv, (2.9)

where V is the set of all the vertices. The Euler characteristic sets a
constraint on the choice of combinations of singularities for a given shape
topology. Nevertheless, multiple combinations are still permitted.
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For a sphere, X = 2, so both pattern topologies in Figure 2.19a fulfil
the PHT with two poles of index one as in a globe, or eight singularities of
index 1/4 as in a cube. For a torus, X = 0, so no singularities are required
but combinations of pairs of singularities with indices +1/4 and -1/4 also
fulfil the PHT, as shown in Figure 2.19b.

(a) Sphere topology

(b) Torus topology

Figure 2.19 – Quad meshes with the same shape topology but different
pattern topologies.

Differentiation of the PHT due to a topological modification of the pat-
tern that preserves the shape topology yields:

0 =
∑

v∈V +

iv −
∑

v∈V −
iv +

∑
v∈V ∗

∆iv, (2.10)

where V + is the set of added vertices, V − the set of deleted vertices, V ∗
the set of modified vertices, iv the vertex index and ∆iv the modification
of the vertex index. This equation shows that a singularity can not just be
added or deleted independently from the others or it would break the PHT.
Nevertheless, a 5-valent and a 3-valent singularity can be added together, as
shown from Figure 2.20a to 2.20b. Indeed, the sum of their indices is null.
A 6-valent and a 3-valent singularity can be merged into a 5-valent one, as
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shown from Figure 2.20c to 2.20d. Indeed, this operation preserves the sum
of the indices.

Σ=1

+1/4 +1/4

+1/4+1/4

(a) Four singularities

Σ=1

+1/4

-1/4

+1/4+1/4

+1/4 +1/4

(b) Six singularities

Σ=1 +1/4

+1/4

-1/4

+1/2

+1/4

(c) Five singularities

Σ=1+1/4 +1/4

+1/4

+1/4

(d) Four singularities

Figure 2.20 – For a given shape topology, the combination of singularities
must respect the PHT. The circle-homotopic shapes have an Euler charac-
teristic of one, therefore the sum of the vertex indices equals one.

Exploring the combinations of the local singularities must follow this
global constraint. One can not directly add or delete a singularity. The
development of a grammar modifying the singularities must apply at an in-
termediary scale between the vertex and the mesh. For instance, Peng et
al. [Peng et al., 2011] base their connectivity editing operators on pairs of
singularities. The operators simplify the pattern topology of unstructured
dense quad meshes while preserving the quad-mesh and shape-topology con-
straints.

Pattern topology and geometry provide a direct relation between the
vertex indices and curvature.
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2.4.4 Pattern topology and geometry

The Gauss-Bonnet theorem (GBT) links topology and geometry via the
Euler characteristic X and the integral of Gaussian curvature K.

A point on a sufficiently smooth surface has two principal curvature
directions that correspond to the maximum and minimum normal curvatures
k1 and k2. The Gaussian curvature K corresponds to the product of the
principal curvatures K = k1k2. A positive Gaussian curvature corresponds
to a local sphere-like surface, a negative Gaussian curvature corresponds to
a local saddle-like surface, and a null Gaussian curvature corresponds to a
plane or cylinder-like surface.

The GBT links topology and geometry in the case of closed surfaces as
follows:

2πX =

∫∫
S

KdA, (2.11)

with X the Euler characteristic, K the Gaussian curvature and dA a
unitary element of the surface S. For surfaces with a boundary, a correction
term is added:

2πX =

∫∫
S

KdA+

∫
∂S

kgds, (2.12)

where kg is the geodesic curvature and ds a unitary element of the bound-
ary ∂S of the surface S.

Combining the PHT and the GBT creates a link between pattern topol-
ogy and geometry. Namely, a link connects indices and curvatures. Indeed,
singularities with a positive index relate to positively curved areas, and the
ones with a negative index to negatively curved areas.

This relation can be seen in the following expression of the discrete Gaus-
sian curvature Kv at a vertex v in a mesh, derived from the GBT [Meyer
et al., 2003]:

Kv =
1

Av
(2π −

∑
f∈Fv

dθf ), (2.13)

where Fv is the set of faces around the vertex v, dθf the angle of a
incident face f at the vertex v and Av the total area of the adjacent faces. In
a geometrically regular quad mesh with only π/2 angles between consecutive
edges, the index and the curvature have the same sign. Figure 2.21 illustrates
the relation between topology and geometry. A regular vertex adjacent to
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four faces has a null curvature. A singularity with a valency lower than
four has a positive index and curvature. A singularity with a valency higher
than four has a negative index and curvature. Orthogonal networks of curves
feature this right-angle property [Suris and Bobenko, 2008].

(a) Valency 3 – positive
index and curvature

(b) Valency 5 – light
negative index and cur-
vature

(c) Valency 6 – strong
negative index and cur-
vature

Figure 2.21 – Relation between valency, index and curvature in quad meshes
with right angles.

In structural design, a singularity is a natural way to introduce positive
or negative curvature, as shown by the combination of the PHT and the
GBT. Some structural systems, like elastic gridshells, are based on patterns
of hexagons, triangles and quads with a high regularity of their geometry.
These patterns feature equal spacing between the nodes to ease the con-
struction process. Achieving curved geometries implies to release the equal-
spacing constraint or to allow skewed faces. However, these distortions of
geometry can be limited using properly placed singularities. The Dongdae-
mun Design Plaza in Seoul, South Korea, includes a five-valent singularity
in the pattern of cladding in FIgure 2.22. This negative index singularity
reduces the panel distortion in the negative-curvature area. Applications of
this trade-off between geometrical and topological irregularity include wo-
ven structures [Martin, 2015, Ayres et al., 2018], elastic gridshells [Soriano
et al., 2015, Masson, 2017, Avelino and Baverel, 2017] or auxetic materials
[Konaković-Luković et al., 2018a, Konaković-Luković et al., 2018b].

2.5 Summary

Current strategies for topological design of quad-mesh patterns show several
limitations. More specifically, exploration methods are missing for pattern
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Figure 2.22 – The five-valent singularity in the cladding of the Dongdaemun
Design Plaza in Seoul, South Korea, reduces panel distortion in the area with
a negative curvature thanks to its negative index (source: dezeen.com).

singularities, despite their influential aspect on the design. Strategies ex-
ist for the exploration of topological spaces, which lack continuous-valued
parameters. Such strategies rely on rule-based design using grammars and
rules, potentially coupled with discrete-optimisation algorithms. Applica-
tions include a large variety of design topics, including structural design.
However, the structure of meshes, and particularly quad meshes, results in
several topological constraints to embed in the grammar, as opposed to un-
structured networks. So far, such an approach does not exist for structural
design of quad-mesh patterns, although it could support existing strategies.

The next chapter introduces the scope of this thesis with its research
objectives, design approach and intellectual contribution for topological ex-
ploration of patterns in structural design.
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Chapter 3

Thesis scope

If configuration processing provides a means to explore the geometry of space
structures via a formex algebra [Nooshin, 1975, Nooshin, 2017], the aim of
this thesis is to provide an algebra for the exploration of the topology of
pattern of shell-like structures.

In Chapter 1, the context of structural design of quad-mesh patterns for
shell-like structures has been set. In Chapter 2, background on topological
design methods for patterns and the topology of quad meshes has been pro-
vided. This chapter provides the scope of this thesis. Section 3.1 highlights
the research objectives. Section 3.2 presents the design approach. Section
3.3 summarises the intellectual contributions.

3.1 Research objectives

The topology of quad-mesh patterns in structural design, and particularly
their singularity, influences all design aspects, aesthetics, structural, fabri-
cation and construction. Indeed, the singularities define the density and
geometry parameters available for exploration.

However, current design strategies for patterns in structures show limita-
tions on the design, control and choice of singularities. Figure 3.1, revisiting
Nervi’s ribbed slabs, shows how different topologies impact different design
aspects. In the context of multi-objective structural design, flexibility to
accommodate several requirements is essential for the designer. However,
existing strategies do not permit this.

Figure 3.1 presents three patterns for a four-sided plate supported on its
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four corners under uniform loading. The patterns stem from the integration
of the bending cross-field. The integration scheme yields three patterns due
to slight numerical imprecision or geometrical asymmetry. They share sim-
ilar features like the poles at the corners but have some dissimilarities with
have pros and cons that depend on the considered structural system. The
design in Figure 3.1a with its 8-valent singularity has the ideal topology for
structural stiffness and preserves symmetry, which reduces the number of
unique elements. However, high-valency nodes can be complex and expen-
sive to build.

The design in Figure 3.1b with its two 6-valent singularities reduces
the node complexity, although it does not preserve symmetry and deviates
from the mechanically ideal design. The design in Figure 3.1c with its four
5-valent singularities deviates more from the mechanically ideal design but
preserves symmetry and further reduces node complexity. However, the odd-
valency induces a loss of the two-directional pattern structure, in red and
blue, that stems from the cross-field. A third direction, in green, is necessary
to avoid having two polyedges of the same colour overlapping each other.
This property is essential for some structural systems with specific element
organisations such as elastic gridshells with different layers of beams.

Depending on the structural system, the material and the construction
technology, these designs with their similarities and dissimilarities can be
more or less relevant. Moreover, quantifying the degree of similarity between
two quad-mesh topologies would provide a metric for this design space to
support exploration.

(a) One 8-valent singular-
ity

(b) Two 6-valent singular-
ities

(c) Four 5-valent singular-
ities

Figure 3.1 – Three similar but different quad-mesh patterns offer different
pros and cons for structural design.
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Classically, exploration of topological spaces is tackled through rule-
based design using grammar rules. Rule-based design performs beyond para-
metric design and its continuous-valued parameters. Structural design and
optimisation already use such strategies. However, quad meshes have a spe-
cific structure that requires grammar of rules that preserve it.

Although common practice in other fields like computer graphics, topo-
logical modelling of quad meshes is not well spread in architecture, engi-
neering and construction. Indeed, processing methods for geometry and
topology mainly apply to dense and unstructured quad meshes. Moreover,
they do not tackle the challenges of workflow integration the architect and
the engineer have to face.

The goal of this thesis is to introduce and develop topology finding of pat-
terns for structural design, focusing on singularities in quad meshes. Topol-
ogy finding is meant as an analogy and as a complement to form finding and
aims at reproducing its flexible design-oriented approach.

Topology finding performs beyond parametric design and optimisation,
which include form finding, architectural geometry and shape optimisation,
and beyond topology optimisation, which include discrete and continuous
topology optimisation or cross-field integration. Figure 3.2 represents where
topology finding stands in structural design. Topology finding does not
aim at providing an optimised design in the topological space for specific
objectives. Topology finding should offer a means for exploration as form
finding offers it at the level of the geometrical space.

TOPOLOGY

GEOMETRY

PARAMETRIC DESIGN AND OPTIMISATION

TOPOLOGY FINDING
TOPOLOGY

OPTIMISATION

Figure 3.2 – Topology finding tackles topological design like topology optimi-
sation but with the flexibility of parametric design at the level of geometrical
design.
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Nevertheless, topology finding is complementary to form finding and
topology optimisation. Coupling these three approaches enable both explo-
ration and optimisation of the geometry and the topology.

Three main objectives are expected from topology finding, illustrated as
design directions in Figure 3.3:

1. Comprehensive exploration
All designs must be accessible, in the realm of orientable compact
manifold shapes. Any shape topology and any pattern topology. Ex-
ploration can then yield any potential mesh of the design space.

2. Constrained exploration
Exploration must sort out the unfeasible designs if the required topo-
logical properties are not respected. Exploration can then be per-
formed efficiently in the relevant design subspace.

3. Informed exploration
Exploration must guide the designer towards efficient designs. Explo-
ration informs the designer, who can interact with the machine during
the design process, while the multiple design objectives evolve.

unfeasible
designs

feasible
designs

efficient
feasible
designs

Figure 3.3 – The three objectives for topology finding of singularities in quad-
mesh patterns in structural design: comprehensive exploration to reach all
designs; constrained exploration to focus on feasible designs; and informed
exploration to search for efficient designs.

The topology-finding algorithms tackling these research objectives are
meant to apply at an early design stage for the exploration of a large variety
of designs. The computation time of the algorithms should be fast enough for
interactive design. This speed requirement can be assessed through compar-
ison with other algorithms that occur later in the design process, like Finite
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Element Analysis. Speed is vital for smooth user-machine interactivity and
the automation or partial automation of the generation of numerous designs.

For such workflow flexibility and efficiency, the presented work follows a
specific design approach.

3.2 Design approach

TOPOLOGY GEOMETRY

TESSELLATION

GRAMMAR RULES DENSITY PARAMETERS CONWAY OPERATORS XYZ COORDINATES

DENSITYSINGULARITIESDESIGN
SPACE

MESHMESHDENSE QUAD MESHCOARSE QUAD MESHOBJ.

PARAM.

G
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Figure 3.4 – General design space structure for exploration of the singular-
ities in quad-mesh patterns. The design spaces feature a trade-off between
generality and structuredness due to their objects and their parameters.
The singularity design space is the most upstream one and therefore, the
most influential one, the most general one but also the least structured one.
Inspired by [Mueller, 2014, Mesnil et al., 2017a].

The different design aspects of patterns parameterised by quad meshes
are decoupled and handled in different design spaces. This thesis focuses on
the exploration of singularity design space. The exploration approach relies
on a coarse quad mesh that encodes the data related to the singularities in
the quad-mesh pattern. Such a strategy is common in computer graphics in
mesh modelling environments to compute and model lighter meshes before
applying smooth subdivision schemes like the Catmull-Clark subdivision
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[Catmull and Clark, 1978]. Applying a few topological modifications on the
coarse mesh is more efficient than applying multiple ones on a dense mesh.
Some designers and researchers follow this approach for architectural and
structural design, where the interest lies in performing design and optimi-
sation on fewer global parameters [Shepherd and Richens, 2012, Bhooshan
et al., 2018, Mesnil et al., 2017c].

The general design space follows the structure in Figure 3.4. From the
most upstream to the most downstream one, the design space structure deals
first with topology and second with geometry. Topology includes the singu-
larities, the density and the tessellation of the pattern. The more upstream
design spaces offer more exploration freedom but are less structured. The
more downstream design spaces are more constrained but are more struc-
tured for exploration. Each design space defines the design parameters for
exploration of the downstream ones. In this structure, the singularity design
space is the most upstream one and therefore, the largest one and the most
influential one. Nevertheless, exploration of this space relies on grammar
rules, as opposed to continuous or discrete parameters.

1. Singularity design space
Exploration of the singularity design space relies on a coarse quad
mesh that defines the relationship between the singularities. Pseudo-
quad faces allow including pole singularities. A pseudo-quad face has
the geometry of a triangle and the topology of a quad. The exploration
of such design space builds on a grammar of rules.

2. Density design space
The coarse quad mesh yields a dense quad mesh after densification.
Each strip of quad faces corresponds to a densification parameter.
Therefore, exploration applies to non-null positive, discrete parame-
ters. These multiple and independent density parameters are opposed
to the unique global density parameter of the Catmull-Clark subdivi-
sion procedure [Catmull and Clark, 1978].

3. Tessellation design space
The pattern topology comes from the potential application of Conway
operators on the dense quad mesh, resulting in the equivalent density
and singularities. The sequence of applied operators parameterises this
design space. Other topological modifications can be applied, such as
local edge operations like adding, deleting or trimming.

4. Geometry design space
The coordinates of the vertices of the pattern serve as parameters to
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the geometrical design space. Geometrical processing includes form
finding or form optimisation, for instance. In this thesis, relaxation
algorithms are necessary after geometry-blind topological processing
that potentially yields a highly-distorted pattern or a pattern that
does not respect boundary conditions [Williams, 2001, Williams, 2011].
Laplacian smoothing [Botsch et al., 2010] iteratively moves the ver-
tices for a given number of iterations or until convergence below a
given threshold displacement value. Each vertex of the pattern moves
towards the centroid of its adjacent vertices at:

Vf = Vi + (1− d)(Vi − Vi), (3.1)

where Vf is the final position of the vertex, Vi its initial position, Vi the
centroid of its adjacent vertices, and d a damping value between 0 and 1
for convergence stability, classically set to 0.5. Area-based weights take
into account the common tributary area between the vertex and each of
its neighbour when computing the centroid. Additionally, constraints
are set on the vertices to project them back on objects like surfaces,
meshes, curves and points after each iteration.

The design spaces are structured linearly because the upstream ones
encompass the downstream ones. Nevertheless, the exploration of these
design spaces is not necessarily linear. For instance, smoothing can be first
applied on the lighter coarse quad mesh, then on the dense quad mesh, before
application of Conway operators without further smoothing. Application
of smoothing at different density levels tackles geometrical irregularities at
different scales, or frequencies.

Following this design space structure, the contributions on topology find-
ing apply on the coarse quad meshes that populate the singularity design
space.

3.3 Intellectual contributions

The different intellectual contributions propose topology-finding algorithms.
The flexibility of the design approach enables the designer to benefit from
an interactive workflow with existing design and optimisation strategies.

Three encoding strategies are offered: geometry-, graph-and string-coded
topology finding. They each provide complementary pros and cons for topol-
ogy finding. This thesis introduces them from the most intuitive and high-
level to the most fundamental and low-level.
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• Geometry-coded topology finding: exploration is encoded with high-
level geometrical parameters.

◦ Chapter 4 introduces feature-based topology finding. A skeleton-
based decomposition scheme allows generating topologies that
respect alignment with boundaries. Additional point and curve
features allow high-level indirect influence on the topology. This
chapter contributes to comprehensive exploration of shape topolo-
gies, constrained exploration with feature integration and in-
formed exploration thanks to heuristic features.

• Graph-coded topology finding: exploration is directly encoded with
topological rules.

◦ Chapter 5 presents rule-based topology finding. A grammar based
on the strip of faces in quad meshes allows low-level editing of
topologies. This chapter contributes to comprehensive explo-
ration of pattern topologies.

◦ Chapter 6 presents similarity-informed topology finding. A topo-
logical distance allows evaluating the similarity between topolo-
gies and the generation of hybrid topologies. This chapter con-
tributes to informed exploration by combining heuristic designs
stemming from any other method.

◦ Chapter 7 presents two-colouring topology finding. The bipar-
tite organisation in some structural system needs to respect a
topological requirement related to two-colouring. A projection
algorithm allows finding the subspaces of two-coloured topolo-
gies. This chapter contributes to constrained exploration with
the integration of the two-colouring topological properties.

• String-coded topology finding: exploration is encoded with low-level
alphabetical operations.

◦ Chapter 8 presents alphabet-based topology finding. A string-en-
coding strategy of the strip rules opens towards evolutionary ex-
ploration based on the mutation of a genotype. This chapter
contributes to comprehensive exploration with the possibility to
generate any pattern topology.

This research is implemented in an open-source Python library called
compas_singular [Oval, 2017]. compas_singular is a package of COMPAS
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[Van Mele et al., 2017], an open-source, Python-based computational frame-
work for research and collaboration in architecture, engineering, fabrication
and construction. Chapter 9 provides further information on the implemen-
tation.

Chapter 10 summarises the contributions, their limitations and perspec-
tives, before final conclusions.
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Part II

Geometry-coded topology
finding
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Chapter 4

Feature-based exploration

4.1 Motivations

Intents and constraints like a set of boundaries or a surface can drive or in-
form the design of a shell-like structure. The timber gridshell of the Solemar
Therme in Bad Dürrheim, Germany aligns and concentrates the primary
timber elements towards the oculi, which are supported by tree columns
[Adriaenssens et al., 2014].

Integrating additional features can be substantial, like adding poles at
the location of point features or aligning polyedges along with curve fea-
tures. Nervi’s slab for the Gatti Wool Factory and shell for the Palazzetto
dello Sport in Rome, Italy, align the reinforcement rib pattern towards the
columns and buttresses, respectively [Nervi, 1965]. The pattern of the NEST
HiLo cable net is aligned with the facade for aesthetics and detailing [Mén-
dez Echenagucia et al., 2018].

These geometrical features can stem from the static system with its sup-
port and load conditions. The features can also stem from geometry, like cur-
vature concentrations or discontinuities. Designing a pattern whose topology
respects these requirements, as shown in Figure 4.1, is not straightforward
for non-experts and time-consuming for experts. The interest in a genera-
tion method for patterns that fit geometrical features is two-fold. Obtaining
any shape topology for a pattern contributes to comprehensive exploration.
Integrating design features in a pattern contributes to informed exploration.

This chapter introduces feature-based topology finding, using geometri-
cal parameters to perform topological exploration. Section 4.2 develops an
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(a) Outer bound-
ary

(b) Inner bound-
ary

(c) Point features (d) Curve features

Figure 4.1 – Integrating geometrical aspects like boundaries and features in
the design of quad-mesh patterns.

algorithm to generate a coarse quad mesh decomposing a surface using its
topological skeleton. Section 4.3 extends the algorithm to integrate point
and curve features in the coarse quad mesh. Section 4.4 applies this gener-
ative method for feature-based topology finding. Point and curve features
serve as geometrical design parameters for topological exploration.

4.2 Surface decomposition

This section provides a method for decomposition of a surface into a pattern.
Significant topological and geometrical aspects of the surface are the number
of boundaries and the changes of curvature of the boundaries. The resulting
mesh takes into account the topology and the geometry of the shape. The
skeleton of the surface is used to find singularities away from the boundaries.

The skeletonisation and decomposition operations rely on the UV pa-
rameter space of the designed surface. Projection from the XY plane to the
surface is not bijective if the surface overlaps or crosses itself. Nevertheless,
mapping based on the UV parameterisation allows such flexibility on the
input surface. The mapping of the surface is more general than projection
and is therefore not constrained to height-field surfaces. The UV param-
eterisation influences the outcome and should represent the boundaries as
faithfully as possible to yield a pattern that is not too distorted along the
boundaries. For instance, conformal maps can yield strong distortions for
highly-curved shapes [Botsch et al., 2010], but an angle-based flattening
method can improve the results [Sheffer and de Sturler, 2001].

After skeletonisation and decomposition of the surface, the resulting
coarse quad mesh can be densified and relaxed on the surface, as shown
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in Figure 4.2. The pattern, thanks to the singularities stemming from the
skeleton, is aligned with the boundary.

(a) Input

SKELETONISATION

(b) Skeleton

DECOMPOSITION

(c) Decomposition (d) Mesh

Figure 4.2 – Skeleton-based decomposition of a surface in a coarse quad
mesh that yields a quad mesh aligned with the boundary of the surface.

The methods and algorithms are further detailed.

4.2.1 Surface skeletonisation

The topological skeleton – or medial axis – is introduced by Blum [Blum,
1967] as a means to extract features from a surface. The skeleton provides
dimension reduction of the surface into a set of curves. Still, the skeleton
captures key aspects of the topology and the geometry of the surface. The
skeleton is the locus of the points that are equidistant to several points on
the boundaries. The skeleton consists mainly of points that are equidistant
to two boundary points. The skeleton branches end at singular nodes that
are equidistant to at least three boundary points. These singularities are
away from the boundaries and even at the farthest possible location from
them.

One of the strategies to generate a discrete skeleton of a surface is based
on a Delaunay triangulation [Saha et al., 2016], as shown in Figure 4.3. A
discrete approximation is sufficient for the decomposition and generation of
a coarse quad mesh.

The surface is triangulated by a Delaunay mesh using points on the
boundaries as vertices. The boundaries must be discretised into points
densely enough to capture the relevant curvature changes but not too densely
to avoid unnecessary heavy computation. Delaunay triangulation has a
worst-case time complexity of O(n lnn) with a divide-and-conquer algorithm
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(a) Input (b) Delaunay triangula-
tion

SKELETONISATION

(c) Topological skeleton

Figure 4.3 – Generation of the topological skeleton of a surface by connecting
the circumcentres of adjacent faces of a Delaunay triangulation.

[Leach, 1992]. The discretisation parameter di for the number of points of
each curve i is the maximum value of:

• dscale = dli/(αD)e, the upper integer value of the length of the curve
li divided by a percentage α of a scale D of the surface; and

• dmin, a minimum number of points:

di = max(dscale, dmin) (4.1)

In practice, ranges of value of dmin between 5 and 10 and of α between
0.01 and 0.05 of D as the diagonal length of the total bounding box yield
good results.

The Delaunay triangulation also deletes the faces lying outside the bound-
aries, to match the surface.

In the Delaunay mesh, three types of faces are distinguished depending
on the number of adjacent faces:

• regular faces have two adjacent faces;

• singular faces have three adjacent faces; and,

• end faces have one adjacent face.
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The segments connecting the circumcentres of all the pairs of adjacent De-
launay faces compose the skeleton. Groups of segments result in skeleton
branches that end at singular faces and corner faces.

The topological skeleton serves as a basis for surface decomposition.

4.2.2 Skeleton decomposition

The topological skeleton separates regions of the surface, but these regions
must be further decomposed into four-sided patches to obtain a coarse quad
mesh, as shown in Figure 4.4.

Three topological operations are applied based on the connectivity of the
Delaunay mesh:

1. pruning removes the branches connected to end faces;

2. grafting adds branches between the singular face circumcentres and
their three vertices; and

3. closing adds boundary branches, split at the vertices of the singular
faces and the two-valent boundary vertices.

At this stage, these operations have similar results to the ones in the work
of Rigby [Rigby, 2003], yielding coarser quad meshes than other skeleton-
based block decomposition approaches such as the ones of Fogg et al. [Fogg
et al., 2016] used for meshing in Computational Fluid Dynamics.

The coarse quad mesh results from the connectivity of the four-sided
patches.

(a) Skeleton (b) Pruning (c) Grafting (d) Closing

Figure 4.4 – The topological skeleton is converted into four-side patches
by deleting and adding branches depending on their connectivity with the
elements of the Delaunay mesh.
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However, some modifications may be required to improve the quality of
the decomposition.

4.2.3 Decomposition modification

Modifications on the set of patches are necessary to improve the resulting
coarse quad mesh. These modifications ensure the validity of the topology
and the geometry of the coarse quad mesh.

4.2.3.1 Missed concavities

In Figure 4.5, the initial decomposition lost the concave kink in the surface
boundary. On the contrary, the initial decomposition does integrate the
four convex kinks. The skeleton marks convex but not concave kinks, and
the added branches may not spot the concavities. Therefore, branches are
added to include them in the decomposition, as illustrated in Figure 4.5.
The kinks consist in the discontinuities of the boundary curves of the input
surface.

CORRECTION EXTRACTIONEXTRACTION

Figure 4.5 – Modifications of the decomposition for including the concavities
missed by the topological skeleton by adding branches.

4.2.3.2 Unwanted triangles

In Figure 4.6, the initial decomposition contains a triangle, although a quad
decomposition is necessary to describe a quad mesh. If two adjacent singular
faces have one or several coinciding vertices or a coinciding circumcentre,
the missing branch yields triangular faces in the coarse mesh. Therefore,
a branch is inserted to remove triangles from the decomposition, as illus-
trated in Figure 4.6. If two of the three patch corners are on the boundary,
the branch is inserted at the other corner, and reciprocally if two of the
three patch corners are off the boundary. Correcting concavities may yield
unwanted triangles. Therefore, correcting unwanted triangles occurs afters
correcting missed concavities.
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EXTRACTIONCORRECTIONEXTRACTION

Figure 4.6 – Modifications of the decomposition for including the concavities
missed by the topological skeleton by adding branches.

4.2.3.3 Flipped patches

Strongly-curved branches can induce flipped patches in the coarse quad
mesh with the right connectivity but with overlapping elements. There-
fore, branches are added to refine flipped faces for geometrical quality, as
illustrated in Figure 4.7. A face is flipped compared to its original patch if
they have opposite normals nface and npatch, respectively, checked thanks
to the sign of their dot product:

nface · npatch < 0. (4.2)

After a patch subdivision, the check applies to the two resulting sub-
patches. Correcting flipped patches requires a quad decomposition, so it
occurs after correcting unwanted triangles.

EXTRACTIONCORRECTIONEXTRACTION

Figure 4.7 – Modifications of the decomposition for refining the flipped
patches with edge overlaps by adding branches.

4.2.3.4 Collapsed boundaries

If less than three branches represent a boundary, the boundary collapses
in the coarse quad mesh. Therefore, branches are added to subdivide the
boundary, as illustrated in Figure 4.8. Adding branches for other corrections
can solve collapsed boundaries. Therefore, correcting collapsed boundaries
occurs last.
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CORRECTION EXTRACTIONEXTRACTION

Figure 4.8 – Modifications of the decomposition for correcting the collapsed
boundaries due to insufficient boundary branches by adding branches.

4.2.4 Examples
The skeleton-based decomposition is used to generate quad-mesh patterns
for the roof of a couple of example projects: the Jewish Museum in Berlin,
Germany in Figure 4.9, the Hiroshi Senju Museum in Karuizawa, Japan in
Figure 4.10 and Solemar Therme in Bar Dürrheim, Germany in Figure 4.11.
The boundaries are in red, the topological skeleton and the singularities in
pink, the coarse quad mesh in black and the dense quad mesh in grey. The
patterns integrate the geometrical features of the boundaries of the surface.

Distortions around the concave corners of the Jewish Museum show that
the topology of the mesh is perfectible regarding geometrical regularity. For
applications in Computational Fluid Dynamics, specific modifications im-
prove this essential objective [Ruiz Gironès and Sarrate Ramos, 2007, Fogg
et al., 2016]. Nevertheless, skeleton-based decomposition provides a starting
topological design that captures the different characteristic of the surface.

4.2.5 Non-null-genus shapes
This algorithm for skeleton-based decomposition does not apply to any shape
topology. The shape must have zero handles g and at least one boundary
N (g = 0, N ≥ 1) so spheres and torus are excluded. This constraint is due
to the Delaunay triangulation of the boundary points occurring on a planar
map. Otherwise mapping would necessitate the integration of seams to map
the shape.
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(a) Skeletonisation (b) Decomposition

Figure 4.9 – Revisiting the roof of the Jewish Museum in Berlin, Germany,
with a quad-mesh pattern including 25 singularities.

(a) Skeletonisation (b) Decomposition

Figure 4.10 – Revisiting the roof of the Hiroshi Senju Museum in Karuizawa,
Japan, with a quad-mesh pattern including 20 singularities.

(a) Skeletonisation (b) Decomposition

Figure 4.11 – Revisiting the roof of Solemar Therme in Bad Dürrheim,
Germany, with a quad-mesh pattern including 38 singularities.
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(a) Open null-genus medial surface (b) Open null-genus coarse quad mesh
after skeleton-based decomposition

(c) Closed non-null-genus coarse quad
mesh after thickening

(d) Open non-null-genus coarse quad
mesh after perforation

(e) Open non-null-genus quad mesh after densification and relaxation

Figure 4.12 – The generation of a high-genus pattern aligned with boundaries
and handles is performed thanks to skeleton-based decomposition of a medial
surface. The design is inspired by the ICD/ITKE Research Pavilion of
2015/16 [Alvarez et al., 2018].
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Yet, an extension for shapes with any topology (g ≥ 0, N ≥ 0) is pro-
posed. The ICD/ITKE Research Pavilion 2015-16 [Sonntag et al., 2017]
serves as illustrative example with a sketch of its medial shape, shown in
Figure 4.12a:

1. an open null-genus coarse quad mesh (g = 0, N = a ≥ 1) is generated
using the skeleton-based decomposition (Figure 4.12b);

2. the coarse quad mesh is thickened to obtain a closed non-null-genus
coarse quad mesh (g = a − 1 ≥ 0, N = 0) by offsetting it both
directions and adding faces to join the boundaries together (Figure
4.12c);

3. the coarse quad mesh becomes an open non-null-genus (g = a−1 ≥ 0,
N = b ≥ 0) by perforating some of its faces (Figure 4.12d).

The resulting coarse quad mesh, and the pattern shown in Figure 4.12e
after densification and geometrical processing, has a shape topology with
a high number of handles and boundaries (g = 33, N = 28) for an Euler
characteristic X of -92. The pattern is aligned with the boundaries and the
handles.

This approach requires the modelling of a medial surface. The results
have the desired shape topology. Nevertheless, the pattern topology may
not be suitable for shapes that are not faithfully represented by a medial
surface due to high distortions. For instance, high-genus skeletal shapes are
better to model via thickening of a network of lines [Srinivasan, 2004].

4.2.6 Computation time
The computation times for the skeleton-based surface decompositions of
the presented examples are shown in Table 4.1. The discretisation of the
boundaries corresponds to 3% of the length of the diagonal of the bounding
box. The results compare the computation time for decomposition with the
one for Delaunay triangulation, performed using the Python library NumPy.
The computation time is low enough to allow interactive design with real-
time editing of the surface, changing its geometry or adding openings.

The algorithm is deterministic as the same input surface always gives
the same pattern topology – even though the Delaunay triangulation is not
deterministic when co-circular vertices exist. The integration of additional
geometrical features can drive the exploration of different pattern topologies
constrained to a given surface. These features can stem from a design intent
or various design aspects.
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Table 4.1 – Computation times for skeleton-based surface decomposition
compared with Delaunay triangulation.

triangulation [s] decomposition [s]

British Museum
(Figure 4.2) 0.12 0.25

Jewish Museum
(Figure 4.9) 0.16 0.38

Hiroshi Senju Musem
(Figure 4.10) 0.11 0.37

Solemar Therme
(Figure 4.11) 0.11 0.36

ICD/ITKE Pavilion
(Figure 4.12) 0.16 0.87

Rhön-Klinikum Campus
(Figure 4.15) 0.88 0.92

4.3 Additional features

The same skeleton-based decomposition can integrate into the topology
other important features represented as points or curves. Point features
yield a pole singularity and curve features align the pattern in a specific
direction. These geometrical features can stem from a design intent like a
geometrical crease, a specific project feature like a point load. More im-
portantly, these features allow the designer to influence the topology and
explore different designs informed by design aspects.

4.3.1 Point features

Point features allow orientating the pattern around a pole, as shown in
Figures 4.13 and 4.14.

4.3.1.1 Inner point features

Point features on the surface can be included in the coarse quad mesh to
achieve a pattern featuring poles, as shown in Figure 4.13. The set of vertices
for the Delaunay triangulation includes the points. The resulting skeleton
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(a) Input (b) Skeleton (c) Decomposition (d) Mesh

Figure 4.13 – Skeleton-based decomposition of a surface in a coarse quad
mesh to yield a pattern aligned with the boundary and point features off
the boundary.

(a) Input (b) Skeleton (c) Decomposition (d) Mesh

Figure 4.14 – Skeleton-based decomposition of a surface in a coarse quad
mesh to yield a pattern aligned with the boundary and point features on
the boundary.

features new branches around the point features. Following the same mod-
ifications, the resulting coarse quad mesh yields pseudo-quad faces around
the point features, resulting in a pattern with poles.

4.3.1.2 Outer point features

Point features lying on the boundary of the surface require additional mod-
ifications, as shown in Figure 4.14. Outer point features do not directly
modify the coarse quad mesh since boundary points are already part of the
Delaunay triangulation. Therefore, new edges split the quad faces adjacent
to the point features. Each quad yields pseudo-quads in the coarse quad
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(a) No point features, 31 singularities

(b) 14 point features at the inner mast supports, 78 singularities

(c) 33 point features at the inner mast and outer anchor supports, 78 singularities

Figure 4.15 – Revisiting the cable net of the Rhön-Klinikum Campus in Bad
Neustadt, Germany, designed by Werner Sobek [Dürr, 2000], with skeleton-
based generation of a quad-mesh pattern aligned with the boundaries and
featuring poles based on the support conditions.
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mesh by connecting the point feature to the face vertices to create bound-
ary poles in the pattern.

The cable net of the Rhön-Klinikum Campus in Bad Neustadt, Germany,
designed by Werner Sobek, is supported by the inner masts and the outer
anchors [Dürr, 2000]. The cables are organised in an orthogonal quad grid,
trimmed along the boundaries and around the supports. The pattern of the
cable net is revisited using the skeleton-based decomposition, as shown in
Figure 4.15. In Figure 4.15a, the pattern does not have trimmed elements
and provides continuous cables along the unsupported boundary edges. In
Figures 4.15b and 4.15c, the inner mast supports and the boundary an-
chor supports are successively added as point features to yield patterns that
provide a high number of paths to them.

Γ Γ*

G

Figure 4.16 – Form diagram Γ, force diagram Γ∗ and form-found network
G for the Rhön-Klinikum Campus cable net using Thrust Network Analysis
[Block and Ochsendorf, 2007] and RhinoVAULT [Rippmann et al., 2012,
Rippmann and Block, 2013].

The structured boundary-and feature-aligned quad-mesh pattern pro-
vides a suitable input for funicular form finding with graphic statics using
Thrust Network Analysis [Block and Ochsendorf, 2007] and RhinoVAULT
[Rippmann et al., 2012, Rippmann and Block, 2013]. The form diagram Γ
and force diagram Γ∗ in Figure 4.16 feature clear reciprocal areas for the
edge arches and the pole hoops, providing a visual understanding of the
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equilibrium in the structure to form find the tension-only network G.

4.3.2 Curve features
Curve features allow orienting a pattern along with several directions. A
curve features can have its extremities on the boundary or not. The curve
feature in Figure 4.17 as its two extremities on the boundary, which be-
come three-valent boundary vertices. The resulting mesh provides a local
alignment along with this curve feature, stressed in black.

(a) Input

SKELETONISATION

(b) Skeleton

DECOMPOSITION

(c) Decomposition (d) Mesh

Figure 4.17 – Skeleton-based decomposition of a surface in a coarse quad
mesh to yield a pattern aligned with curve features connected to the bound-
ary.

The curve feature in Figure 4.18 as its two extremities off the bound-
ary, which become two-valent vertices. The resulting mesh provides a local
alignment around this curve feature, stressed in black. Curve features can
be combined and superimposed.

(a) Input

SKELETONISATION

(b) Skeleton

DECOMPOSITION

(c) Decomposition (d) Mesh

Figure 4.18 – Skeleton-based decomposition of a surface in a coarse quad
mesh to yield a pattern aligned with curve features disconnected to the
boundary.

The curve features in Figure 4.19 are the same as in Figures 4.17 and
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4.18. The resulting mesh provides alignment with both curve features as a
hybrid between the two previous ones, stressed in black.

(a) Input

SKELETONISATION

(b) Skeleton

DECOMPOSITION

(c) Decomposition (d) Mesh

Figure 4.19 – Skeleton-based decomposition of a surface in a coarse quad
mesh to yield a pattern aligned with multiple curve features.

Additional steps to the original method are required, as illustrated in
Figure 4.20. A set of points subdivide the curve features with their connect-
ing edges set as constraints for the Delaunay triangulation [Chew, 1989].

(a) Skeleton with-
out cut

(b) Skeleton with
cut

DECOMPOSITION

(c) Decomposition (d) Quad decom-
position

Figure 4.20 – Additional steps for skeleton-based generation of coarse quad
meshes including curve features. Curve features are unwelded to avoid the
crossing skeleton branches in dashed pink curves. Pentagonal or higher-
valency faces, in blue, resulting from the unwelding become quad faces by
propagating the seams of the discrepancies on the curve features.

Topological cuts are made in the Delaunay mesh along the curve features
to consider them as boundaries. Unwelding the curve features removes adja-
cency between faces on each side of the curve features, which would otherwise
yield branches crossing the curve features as in Figure 4.20a instead of Figure
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4.20b. After generating the skeleton and applying the same modifications,
the topological cuts in the Delaunay meshes induce discrepancies creating
polygonal faces, highlighted in blue in Figure 4.20c. The resulting polygonal
faces become quad faces by propagating the seams of the discrepancies on
the curve features, highlighted in blue in Figure 4.20d.

A curve extremity that lies on the boundary does not feature a singu-
larity, as in Figures 4.21a and 4.21b. A curve extremity that does not lie
on the boundary features a singularity. Either a two-valent singularity if
adjacent to one singular face, as in Figure 4.21c, or a pole if adjacent to
several singular faces, as in Figure 4.21d. A pole as in Figure 4.22a becomes
a two-valent singularity as in Figure 4.22b due to the corrections for missed
corners and unwanted triangles.

(a) (b) (c) (d)

Figure 4.21 – Exploring the topology of a quad-mesh pattern using skeleton-
based decomposition with different curve features.

(a) A pole thanks to the missed-con-
cavity operation

(b) A two-valent singularity thanks to
the unwanted-triangle operation

Figure 4.22 – Modifying curve feature extremities between a pole and a two-
valent singularity.
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Point and curve features can serve as geometrical design parameters for
topological exploration of the singularities in quad meshes.

4.4 Feature-based topology finding

Skeleton-based decomposition serves as a generative algorithm for feature-
based topology finding of patterns. Point and curve features drive the topol-
ogy of the pattern. These geometrical design parameters directly modify and
influence the orientation of the pattern by modifying its singularities. Point
and curve features can stem from design heuristics like the support condi-
tions. The present application revisits the design of the steel gridshell of the
British Museum.

4.4.1 Design problem

Figure 4.23 shows the geometry, the original pattern and the support con-
ditions of the British Museum Courtyard Roof. The geometry is defined by
Williams [Williams, 2001]. The pattern of the steel gridshell is a triangular
mesh, but this study considers quad meshes with stiff nodes. Therefore the
original pattern is not considered. Williams [Williams, 2011] relaxes some
quad meshes on the same surface to reconcile the square and the circle, but
these patterns result from the trimming of a dense regular grid and include
boundary singularities only. Thrust is only permitted at the four corners,
as the shell is supported along its boundary by sliding bearings to avoid
applying thrust on the existing building. The study discards any additional
stiffening system. Therefore, the analysis focuses on the difference of struc-
tural behaviour between patterns due to their singularities. Engineering and
construction details are found in Sischka et al. [Sischka et al., 2001].

The beams of the actual structure have a box cross-section with a width
of 80 mm and a height varying from 80 mm to 200 mm, oriented with the
surface normal [Sischka et al., 2001]. Here, the S355 steel beams all have
the same cross-section to favour patterns with a homogeneous force flow for
the given support conditions. The beams must be stiffer due to the lack
of triangulation of the quad mesh: they have a width of 250 mm, and an
assumed wall thickness of 20 mm. The height of the beams is minimised to
reduce the structural weight while complying with the relevant structural
requirements. A complementary analysis could study the influence of the
stiffness of the boundary edge. The boundary is not a free edge, as a vertical
reaction applies. However, the boundary does not take thrust and stiffening
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Figure 4.23 – Geometry, original pattern and support conditions of the
roof of the Great Courtyard of the British Museum in London, England
[Williams, 2001, Sischka et al., 2001]. The triangular-mesh gridshell is sup-
ported all along its boundaries on sliding bearings with thrust admitted at
the four corners only.

the edge beam improves the structural behaviour of gridshells [Venuti and
Bruno, 2018].

Several structural requirements apply to different load cases and combi-
nations.

The load cases are:

• the structural self-weight G;

• a downwards dead load G’=0.6kN/m2 for a 24 mm thick glazing [Sis-
chka et al., 2001];

• a downwards projected live load Q=0.5kN/m2 for snow loads, without
taking into account geometry factors;

and the load combinations are:

• the Serviceability Limit State (SLS): 1.0(G+G’)+1.0Q;

• the Ultimate Limit State (ULS): 1.35(G+G’)+1.5Q.
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The structural requirements are:

• a maximal SLS deflection of 140 mm, corresponding to the maximal
span over 200, though a pre-deformation compensates the deflection
of the actual structure [Sischka et al., 2001];

• a maximal ULS stress utilisation of 100%;

• a minimal ULS first load buckling factor of 4, as for the actual structure
[Sischka et al., 2001].

The pre-deformation, as well as the imperfections, based on the first
buckling mode with a maximal value of 140 mm [Sischka et al., 2001], are
not taken into account.

A second-order mechanical analysis is performed, using the Finite Ele-
ment Analysis plugin Karamba for Grasshopper3D [Preisinger, 2013]. The
cross-section optimisation is performed using Constrained Optimisation by
Linear Approximation (COBYLA) [Powell, 1994, Powell, 1998] implemented
in the NLOpt library for non-linear optimisation[Johnson, 2015]. Clune
[Clune, 2013] and Mesnil et al. [Mesnil et al., 2018b, Mesnil et al., 2017a]
use this library for structural shape optimisation, also made available in the
parametric design environment Grasshopper thanks to the plugin goat. A
penalty function allows to formulate the constrained-optimisation problem
into an unconstrained one with the energy:

m

m0
+k(max(0,

f − fmax)

fmax
)+max(0,

u− umax

umax
)+max(

0, bmin − b)
bmin

)) (4.3)

with m the weight and m0 the initial weight for a cross-section height of
500 mm; k a penalty coefficient set to 106; f and fmax the measure and the
criterion of maximum deflection; u and umax the measure and the criterion
of maximum stress utilisation; b and bmin the measure and the criterion of
minimum first load buckling factor.

4.4.2 Pattern design
For the design of the patterns, topology stems from project-related consid-
erations, density from a target length and geometry from the shape intent.

The quad-mesh pattern stemming from the stress field in Figure 2.2 is
not taken into account as Schiftner and Balzer assume a fixed boundary
[Schiftner and Balzer, 2010].
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The support conditions of the roof incite to provide direct load paths to
the corners. As they admit thrust, the corners are the stiffest parts of the
shell. Two heuristic features are identified, supported by the analysis of the
principal stress directions:

1. point features at the corners to concentrate force paths;

2. curve features along the longest spans towards the corners to align
force paths.

Each of the two features can be applied or not, yielding the 22 = 4
designs shown in Figure 4.24.

(a) Without features (b) With curve features

(c) With point features (d) With curve and point features

Figure 4.24 – Four quad-mesh patterns for the British Museum courtyard
roof including some heuristic point and curve features to influence their
topology.

The coarse quad meshes are densified resulting in quad-mesh patterns
with an average beam length of 1.26 m to 1.34 m (6% difference) for a total
of 7140 to 8264 beams (15% difference). The membrane stiffness of quad
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gridshells depends on the edge length [Lebée and Sab, 2013, Mesnil et al.,
2017d]. Therefore, the edge length must be similar in each design to evaluate
the influence of the singularities in the pattern.

The quad meshes are relaxed on the actual surface as a design constraint
using area-weighted Laplacian smoothing with constraints to re-project the
vertices on the surface, its boundaries and its corners [Botsch et al., 2010,
Williams, 2001, Williams, 2011].

4.4.3 Numerical results

Table 4.2 shows the numerical results from structural analysis and sizing
optimisation. The performance metric is the ratio of the structural mass
to the covered area of the gridshell. The pattern without features serves
as a reference to assess the influence of the heuristic features on structural
efficiency.

The ratio of structural mass per covered area is high. This lack of ef-
ficiency is due to the combination of the static system, the geometry and
the quad grid that favour a bending behaviour, as opposed to a membrane
behaviour.

Stress is the most decisive requirement. The choice for a unique cross-
section penalises the designs that do not provide a uniform force flow for
the stress utilisation of the beams. The maximum stresses occur around the
corners. The limiting elements are either the hoops or the rays depending on
the topology. Buckling is the least decisive requirement because the design
favours a bending behaviour instead of a compression behaviour. However,
buckling becomes closer to be decisive for the most efficient designs.

The most efficient designs are the ones with point features only and both
curve and point features, with a weight decrease of 39%. The worst design is
the one with curve features only, with a weight increase of 35%. The curve
features reduce the deflection by orienting multiple load paths towards the
corners but increase the stress utilisation. The point features reduce the
stress utilisation by connecting multiple load paths directly to corners.

Taking into account the support conditions via heuristics such as point
and curve features when designing the topology of the pattern can improve
the structural behaviour and reduce the structural weight.
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Table 4.2 – Structural performance after sizing optimisation of the heuristic
patterns for the British Museum courtyard roof.

(a)
without
features

(b)
with curve
features

(c)
with point
features

(d)
with curve and
point features

Parameters

edge
number [-] 7140 7896 7364 8264

beam
height [mm] 430 600 170 150

Performance

ratio structural mass
to covered area [kg/m2]

343
(100%)

464
(135%)

208
(61%)

210
(61%)

Constraints

max SLS
deflection [mm] 123 81 137 114

max ULS stress
utilisation [-] 0.99 0.99 0.96 0.99

first ULS buckling
load factor [-] 27.9 40.6 6.3 4.7

4.5 Summary of contributions

This chapter introduced feature-based topology finding, using geometrical
parameters to perform topological exploration:

• a skeleton-based decomposition algorithm was developed to generate
patterns that align with the boundaries of a surface;

• an extension was added to integrate point and curve features in the
topology of the pattern. These geometrical features are natural de-
sign parameters in architectural engineering, as illustrated by built
examples;

• the relevance of features stemming from heuristic consideration was
validated on a case study.
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This topology-finding algorithm allows rapid computing and topological
generation using geometrical parameters. Feature-based topology finding
enables topological optimisation when coupled with any shape optimisation
and performance analysis. Indeed, the number and position of the point and
curve features can serve as encoding parameters for optimisation algorithms.

Boundary alignment provides aesthetic, structural and fabrication ben-
efits. However, releasing locally this boundary-alignment constraint can
provide orientation freedom. Therefore, such an extension allows improv-
ing geometrical regularity or alignment with a vector-or cross-field. Lyon
et al. [Lyon et al., 2019] identify thirteen configurations for sub-quads that
combine alignment and non-alignment along the boundaries of patches on
a surface obtained using so-called motorcycle graphs [Campen et al., 2015].
An extension of this skeleton-based decomposition could provide such flexi-
bility by considering only one part of the boundaries for alignment, creating
a surface based on these boundaries for skeleton-based decomposition and
trimming the resulting pattern along the other part of the boundaries.

The skeleton-based decomposition algorithm has some limitations for
non-null-genus shapes. An extension adapted the algorithm for shapes
with handles, modelled via shapes with corresponding boundaries. This
assumption is suitable for shell structures, faithfully modelled as seamless
surfaces, but significant geometrical distortions can occur for general en-
velopes. Adaptation of the algorithm, by adding seams for planar mapping,
for instance, would release this constraint.

Approaching topology finding through geometrical features that can stem
from design aspects of the project is intuitive for the designer. Constrained
exploration allows integrating boundaries, curves or points, making impor-
tant changes on the set of singularities. However, the topology is controlled
indirectly through these geometrical parameters, and it is not guaranteed to
yield any possible topology. Therefore, a complementary means for explo-
ration is necessary to allow comprehensive exploration of the design space,
which does not encode high-level geometrical parameters but low-level of
topological rules.
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Part III

Graph-coded topology
finding
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Chapter 5

Rule-based exploration

5.1 Motivations

Feature-based topology finding allows topological exploration with geomet-
rical parameters. Although influencing the topology with curve and point
features is intuitive, this approach does not give a direct control over the
topology, which makes comprehensive exploration of the design space more
challenging. Figure 5.1 shows how to combine point and curve features in
the skeleton-based decomposition to obtain different designs. These geomet-
rical parameters yield two of the three variations for the Nervi slabs shown
in Figure 3.1. The choice of point and curve features to obtain the third
one is not as intuitive. However, the three variations have similar topolo-
gies, and one could serve as a starting point for the generation of the other
ones. Moreover, topological modifications are lighter than geometrical pro-
cessing. Using the skeleton-based decomposition once before applying topo-
logical modifications is more efficient than resorting to the skeleton-based
decomposition for the generation of each design. These aspects question the
systematic use of a geometry-based generation means, instead of combining
it with topological modifications.

The singularity design space relates to topology. On the contrary to a
geometry-related space, a topological design space is not defined by con-
tinuous numeric parameters. Nonetheless, grammars allow for exploring
topological spaces. Grammars consist of finite sets of rules that perform
topological modifications.

The rules control the accessible design space for exploration. The higher
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?

TOPOLOGICAL RULES?

GEOMETRICAL PARAMETERS

Figure 5.1 – Point and curve features in red serve as geometrical parameters
in the skeleton-based decomposition for the generation of different designs
inspired by the variations of Nervi slabs from Figure 3.1. The generation of
these designs is not as intuitive, despite its topological similarity with the
other designs.

the number of rules, potentially the larger the accessible design space but
the more complex the use of the grammar. A low-level grammar allows
performing comprehensive exploration with a small number of rules.

Prior work on quad-mesh grammars aims at improving the regularity of
dense quad meshes, regarding both topology and geometry [Daniels et al.,
2008, Daniels II et al., 2009, Tarini et al., 2010, Peng et al., 2011]. The
proposed grammars apply to groups of varying numbers and structures of
quad faces. These grammars are tailored for specific optimisation objectives
and do not allow non-linear, comprehensive exploration. Indeed, most rules
are subtractive and do not allow the generation of any quad-mesh topology.
Moreover, these grammars include many rules. Restraining the grammar to
fundamental operations like addition and deletion would reduce the number
of rules without reducing the accessible design space. Nevertheless, these
rules must apply to the right structure in a quad mesh.
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This chapter introduces rule-based topology finding, using topological
rules to perform topological exploration. Section 5.2 identifies a low-level
strip structure in quad meshes. Section 5.3 introduces a corresponding low-
level grammar of strip rules for quad-mesh singularities. Section 5.4 applies
this grammar for rule-based topology finding for multi-objective design of
patterns.

5.2 Quad mesh structure

General polygon meshes consist of faces with any number of vertices. Editing
the connectivity of faces enables topological exploration, allowing changes
in the number of vertices per face. However, quad meshes are by defini-
tion constrained to faces with exactly four vertices. A quad-mesh-specific
topological operation must respect this constraint. The strips of quad faces
provide a suitable structure in quad meshes for rules to perform non-linear,
comprehensive exploration.

The following considerations on the structure of quad meshes apply to
pseudo-quad meshes as well. These meshes include pseudo-quad faces, which
have the geometry of triangles but the topology of quads. One of their
vertices is a pole singularity, equivalent to a double vertex with a collapsed
edge. As shown in Figure 5.2, a pseudo-quad mesh stands as a pseudo-quad
mesh with poles as virtual boundary edges for topological exploration.

Figure 5.2 – Interpreting a pseudo-quad mesh as a quad mesh with poles as
virtual boundary edges.

5.2.1 Quad mesh strips
Quad meshes contain a structure of strips of quad faces. These strips con-
stitute a description of quad meshes at a larger scale than faces themselves.
Strips already apply in some ways for digital [Campen et al., 2012, Campen
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and Kobbelt, 2014] or physical [Akleman et al., 2010, Akleman et al., 2016]
modelling approaches, also referred to as loops, rings or chords.

The strips correspond to the independent parameters for densification of
a quad mesh.

Quad mesh strips depend on the topology of a quad mesh, not its ge-
ometry. Strips are constructed based on the relationship between pairs of
opposite edges across quad faces. The strip data is collected as a list of
edges, as illustrated in Figure 5.3:

1. start with an initial complete list of edges;

2. initiate the collection of a strip by getting one edge from the list (Figure
5.3a);

3. complete the strip by adding the edges across the adjacent quad faces
in both directions (Figure 5.3a). Termination occurs when collection
yields two boundary edges in the case of open strips (strips A to H),
or until it forms a loop in the case of closed strips (strip I);

4. store the strip data as the list of collected edges and remove them from
the initial list of edges;

5. repeat from step 2 until the initial list of edges is empty (Figure 5.3c).

A

(a) Get edge

A

(b) Collect strip

B

A

C

D

E

F

G

H

I

(c) Repeat

Figure 5.3 – Collecting the strip data in a quad mesh as lists of opposite
edges across the quad faces.
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The strip data structure consists of lists of edges, an edge being a pair
of vertices. Each edge appears exactly once. The strip data structure can
convert into a list of faces, potentially more suitable depending on the use.
Each face appears precisely twice, as shown in Figure 5.4 with an exploded
map of the nine strips and their face data. A face can appear in the same
strip if the strip crosses itself.

3

2

15 410

6

7

10

2 6 11

03 9

0

4

11

9

8

1

7

8

5

D

B

A

C

E

H

I

G

F

= [2, 6, 11]
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= [9, 8]
= [4, 10]
= [7, 10, 8, 1]

A
B
C
D
E
F
G
H
I

Figure 5.4 – Exploded map of the strips with their face data.

If the strip has a pole extremity, the strip data encodes the pole as a
pseudo-edge starting and ending at the pole. Poles being virtual boundary
edges, they interrupt strips.

5.2.2 Counting strips

How does the number of strips relate to the number of vertices, edges and
faces, and can it be computed without the strip-collection algorithm?

The number of strips S corresponds to the number of open strips So and
the number of closed strips Sc:
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S = So + Sc. (5.1)

The number of open strips So in a quad mesh actually derives directly
from the number of edges E and the number of faces F .

The number of edges E is divided into the number of boundary edge E′
and the number of non-boundary edge E′′:

E = E′ + E′′. (5.2)

Each boundary edge corresponds to one of the two extremity edges of an
open strip, therefore:

So = E′/2. (5.3)

Summed across the four edges for all faces, boundary edges occur once
and non-boundary edges occur twice:

4F = E′ + 2E′′, (5.4)

which becomes thanks to Equation 5.2:

4F = 2E − E′, (5.5)

which allows to express Equation 5.3 as:

So = E − 2F. (5.6)

A different approach yields this relation. Figure 5.5 shows that when
initially considering one open strip for each edge, this number is reduced by
two for each face. Indeed the two pairs of opposite edges in a quad face each
connect two open strips or close an open strip.

This relation is in agreement with the case of closed meshes. These
meshes consist of closed strips only. Due to the lack of boundary, each edge
is adjacent to two faces, therefore:

E = 2F. (5.7)

No relation is provided here to count the number of closed strips Sc and
know the total number of strips S. Nevertheless, the number of strips and
the number of closed strips relate to each other as:

S − Sc = So = E − 2F. (5.8)
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Figure 5.5 – Counting open strips So as one per edge E minus two per face
F : So = E− 2F . Starting with one strip per edge, the connectivity of quad
faces removes two open strips by merging open strips (in blue) or closing
open strips (in red) for each pair of opposite edges.

The relation in Equation 5.6 is similar to equations on geometrical and
mechanical properties of structures.

First, it relates to the number of degrees of freedom D for parallel trans-
formations, applied to planar-mesh offsetting [Pottmann et al., 2007b, Mes-
nil et al., 2017e], up to the three translation degrees of freedom:

D = E − 2F + 3. (5.9)

Second, it relates to the extension of Maxwell’s rule [Maxwell, 1864] by
Calladine [Calladine, 1978] for computing the difference of states of self-
stress s and the number of mechanisms m for a dual 2D structure of bars:

s−m = E∗ − 2F ∗ + 3. (5.10)

Indeed, a primal and a dual graph have the same number of edges E∗ = E
and dual numbers of vertices and faces V ∗ = F and F ∗ = V . The three extra
parameters correspond to the 3 degrees of freedom for rigid-body motions in
2D. To find s and m, Pellegrino [Pellegrino, 1993] resorts to Singular Value
Decomposition of an equilibrium matrix in which s is the dimension of the
nullspace. This approach also applies to algebraic graphic statics [Van Mele
and Block, 2014].

5.2.3 Strip graph
A graph encoding the strip connectivity compresses the data of quad-mesh
strips. The strip connectivity consists of the crossings between the strips
over the faces.

The strip graph is constructed as illustrated in Figure 5.6:

117



1. collect the strips in the quad mesh (Figure 5.6a);

2. for each mesh strip, a graph vertex is added at the centroid of the
mesh strip: Smesh = Vgraph (Figure 5.6b);

3. for each mesh face, a graph edge is added connecting the two crossing
strips, potentially the same strip in the case of self-crossings: Fmesh =
Egraph (Figure 5.6c).

The quad mesh and the strip graph, as shown in Figure 5.6d, feature a
different type of duality from the one between a primal and a dual mesh,
where a vertex corresponds to a face Vprimal = Fdual, and reciprocally
Fprimal = Vdual, and an edge correspond to an edge Eprimal = Edual.

A

E

FB I H D

G

C

(a) Quad mesh ele-
ments

A

E

FB I H D

G

C

(b) Graph vertices

A

E

FB I H D

G

C

(c) Graph edges

A

E

FB I H D

G

C

(d) Strip graph

Figure 5.6 – Construction of the strip graph of a quad mesh.

The regular quad-mesh grid in Figure 5.7 illustrates the increase in the
number of graph elements with the density. An N × N grid mesh has 2N
strips and N2 faces, therefore its strip graph has 2N vertices and N2 edges.

The graph encodes some but not all of the topological data. Indeed,
two topologically different meshes can have the same strip graph. There
is no isomorphism between the two. Therefore, the strip graph is a sim-
plified object derived from the quad mesh. Moreover, the question is open
whether for any graph corresponds a quad-mesh strip structure or what are
the conditions for it.

Based on this fundamental strip structure, the next section introduces a
low-level grammar for the quad-mesh singularities.
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6x6
12 mesh strips | graph vertices
36 mesh faces | graph edges

10x10
20 mesh strips | graph vertices
100 mesh faces | graph edges

2x2
4 mesh strips| graph vertices
4 mesh faces | graph edges

Figure 5.7 – The number of elements in the strip graph increases with the
density of the quad mesh. An N ×N grid mesh has 2N strips and N2 faces,
and its strip graph has 2N vertices and N2 edges.

5.3 Quad-mesh grammar

A quad-mesh grammar with two low-level rules for addition and deletion
of strips is introduced. This grammar is purely topological, independent
from geometry. Figure 5.8 illustrates the two reciprocal rules for different
configurations of strips with the insertion of strips along a polyedge and
collapse of a strip into a polyedge, in blue.

add

...
delete

add

delete

add

add

delete

delete

add

delete

Figure 5.8 – Quad-mesh grammar of low-level rules for addition and deletion
of strips with different configurations.
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This grammar allows non-linear exploration as any rule can be undone
by its reciprocal rule. Moreover, this grammar allows comprehensive explo-
ration. Indeed, the rules can transform any quad mesh into another. An
inefficient manner consists in first adding the strips of the final quad mesh,
and second, deleting the strips of the initial quad mesh. For a polyedge to be
the reciprocal of a strip, it must have both extremities on the boundary or
close on itself. Nevertheless, self-crosses and self-overlaps are allowed. This
grammar also applies to pseudo-quad meshes thanks to their quad-mesh in-
terpretation with poles as virtual boundary edges. The quad mesh can have
any shape topology, with multiple boundaries and handles or cross-caps.

The implementation of the rules is further detailed.

5.3.1 Strip addition
To add a strip along a polyedge (V0 − ... − Vi − ... − Vn−1), the following
operations are sequentially applied on the polyedge, as illustrated in Figure
5.9:

1. two vertex copies of V0, V ′0 and V ′′0 , are created and the first edge
V0 − V1 yields a triangular face [V ′0 , V1, V

′′
0 ];

2. ∀i ∈ J1;n − 3K, two vertex copies of Vi, V ′i and V ′′i , are created, the
edge Vi − Vi+1 yields a triangular face [V ′i , Vi+1, V

′′
i ] and the previous

triangular face [V ′i−1, Vi, V
′′
i−1] becomes a quad face [V ′i−1, V

′
i , V

′′
i , V

′′
i−1].

3. two pairs of vertex copies of Vn−2 and Vn−1, V ′n−2 and V ′′n−2 and V ′n−1
and V ′′n−1, respectively, are created and the last edge Vn−2 − Vn−1
yields directly a quad face [V ′n−2, V

′
n−1, V

′′
n−1, V

′′
n−2].

0'

0''1''

2 3

1'

1''

2'

2''

3'0'

0''

1 2 3

3''

1'

0'

0'

0 1 2 3

Figure 5.9 – Detailed addition of a strip along a polyedge.

When a pair of new vertices V ′i and V ′′i replaces an old vertex Vi, Vi is
substituted for V ′i in the faces on the left side of the polyedge and for V ′′i on
the right side. This convention is defined by the sense of the polyedge and
the normal of the vertices.
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Finally, the disconnected old vertices are deleted.
Visually, the polyedge is unzipped to become a strip. The temporary

pseudo-quads have their poles oriented downstream the polyedge. In Figure
5.10, a strip is added along polyedge A − B − C without modification of
the singularities, only the density, because the polyedge exactly follows an
existing strip. In Figure 5.11, a strip is added along polyedge A − B − C
inducing new 3-and 5-valent singularities.

B-CA-B-C

A''

A' B'

B''

C'

C''
CB

A''

A'
CBA

Figure 5.10 – Add a strip changing the density.

B-CA-B-C
C'' C'

A'

A''

B'

B''
B

C

A''

A'

C

BA

Figure 5.11 – Add a strip changing the singularities.

Some modifications are necessary for the addition rule to apply to strips
in any configuration.

To add a closed strip, marked with °, along a closed polyedge (V0 −
... − Vi − ... − Vn−2 − V0°), the last edge Vn−2 − V0 becomes the quad face
[V ′n−2, V

′
0 , V

′′
0 , V

′′
n−2] using the vertices added from the first vertex, as illus-

trated in Figure 5.12 along polyedge A−B − C −D°.
A closed polyedge (V0 − ...− Vi − ...− Vn−2 − ...− V0), without °, marks

the addition of an open strip. With V0 occurring twice, this configuration
is a case of a strip with repeated vertices.

Polyedges with repeated vertices have at least one vertex Vi occurring
more than once in the polyedge. When Vi is replaced in the mesh by the
vertices V ′i and V ′′i , the polyedge updates and replaces the remaining Vi.
When inserting a strip along the polyedge:

...− Vi − Vi+1 − ...− Vj−1 − Vi − Vj+1 − ...

121



C-D-A'' °A-B-C-D-A ° B-C-D-A'' ° D-A'' °
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Figure 5.12 – Add a closed strip.

and after deletion of Vi, the remaining polyedge does not exist in the
mesh anymore and is updated as:

Vi+1 − ...− Vj−1 − f(V ′i , V
′′
i )− Vj+1 − ...,

where f(V ′i , V
′′
i ) is the combination of the new vertices V ′i and V ′′i that

constitutes the shortest sub-polyedge from Vj−1 to Vj+1, in order to recon-
struct the polyedge. This shortest path is found using a breadth-first-search
[Eppstein, 2007] in the graph made of the edges connected to vertices Vj−1,
V ′i , V ′′i and Vj+1 only. If the repeated vertex is the last vertex of an open
polyedge at the position n − 1, then the sub-polyedge is from Vn−2 to the
boundary. The choice for the shortest polyedge is not constraining when
combined with other rules to lengthen the polyedge.

In Figure 5.13, the self-crossing polyedge A − B − C −D − E − B − F
yields a self-crossing strip. When deleting B, the shortest path from E
to F is B′ − B′′. The remaining polyedge to add therefore updates to
C −D − E −B′ −B′′ − F .
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Figure 5.13 – Add a self-overlapping strip with update of the polyedge.
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In Figure 5.14, the self-overlapping polyedge A−B−A yields a self-over-
lapping strip. When deleting A, the shortest path from B to the boundary
is either A′ or A′′. The two options provide the same result.

B-A''A-B-A

B''

B'

A'''A''A'A''A'

B

A

B

Figure 5.14 – Add a self-crossing strip with update of the polyedge.

In order to add a strip with poles at one or two extremities, the cor-
responding face extremities become triangles with a pole at the extremity
of the strip to count as pseudo-quad faces. The poles are marked as ∗ like
V ∗0 − ... − V ∗n−1 for strip with two poles, as shown in Figure 5.15. A strip
with two pole extremities must stem from a polyedge with at least two edges.
On the contrary to a regular extremity, the pole extremity of a strip is not
necessarily on the boundary.

A'
B

A''
A

B''

B'
CA B C A

B''

B' C'

C''

A*-B-C A*-B-C* A-B*

Figure 5.15 – Add strips with poles.

5.3.2 Strip deletion
To delete a strip by collapsing it into a polyedge, the following operations
are sequentially applied on the strip, as illustrated in Figure 5.16:

1. get the edges of the strip to delete;

2. build a graph from these edges;

3. collect the disconnected parts of the graph as groups of vertices;

4. delete the faces of the strip;
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5. merge vertices per group into a new vertex.

Figure 5.16 – Delete a strip.

Visually, the strip edges are collapsed to zero-length edges, resulting in
the collapse of the strip faces. This process applies to any configuration
of strips, open, closed, with repeated vertices and with poles, as shown in
Figure 5.17.

Figure 5.17 – Disconnected graphs of vertices to merge for the strip deletion
rule.

Deleting a strip causes the collapse of a boundary if less than three
edges represent the boundary after deletion of the strip edges. This collapse
changes the Euler’s characteristic of the mesh and therefore its shape topol-
ogy, though this grammar should only modify the pattern topology. Figure
5.18 illustrates how this problem is solved, by refining some strips.

Before deleting a strip, a verification predicts potential boundary collapse
if:

|Estrip ∩ Eboundary| < 3, (5.11)

where Estrip is the set of edges of the strip and Eboundary is the set edges
of the boundary.

The boundary edges to remain are refined to avoid boundary collapse by
guaranteeing the minimum number of three edges. For one strip deletion,
there is always at least one edge to remain to refine. Indeed, the minimum
number of boundary edges is three, and the maximum number of boundary
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refine deletedelete

with collapse

Figure 5.18 – When deleting some strips, in blue, refining other strips avoids
boundaries to collapse to less than three edges and close an opening, in grey.

strip edges is two. Refining a strip does not add singularities, it only mod-
ifies its density. The addition rule in Figure 5.10 creates a new strip on a
polyedge along the existing strips. Therefore, the rule does not modify the
set of singularities, only the density, opposed to the rule in Figure 5.11, for
instance, which does not fully follow an existing strip. Such addition rules
apply in Figure 5.18. To avoid the collapse of the boundary marked in grey
due to the deletion of the strip in blue, the remaining strips that end at this
boundary are refined. One of the two polyedges along these strip serves as
input for strip addition, to split a strip in two. Should one boundary edge
remain, the strip is subdivided in three. Should two boundary edge remains,
the two strips are both subdivided in two, to avoid any bias.

5.3.3 Strip data update

After the application of each rule, the strip data updates. Re-collecting all
strips is not efficient, as only the added or deleted strip and the ones crossing
the modified faces need to be updated. Due to topological modifications,
the labels of the vertices and faces change. Nevertheless, the labels of the
strips are preserved in order to keep strip attributes and to combine multiple
rule deletions for instance.

If the deletion rule is applied:

• the deleted strip is removed;

• the old vertices V ′i and V ′′i are replaced by the new one Vi;

• the deleted edges (V ′i , V
′′
i ), which become (Vi, Vi), are removed;

• the duplicated edges (V ′i , V
′
i+1), (V ′′i , V

′′
i+1), which become

(Vi, Vi+1), (Vi, Vi+1), are merged to become (Vi, Vi+1).

If the addition rule is applied:
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• the added strip is stored as [(V ′0 , V
′′
0 ), ..., (V ′n−1, V

′′
n−1))];

• the old edges (Vi, Vi+1) are replaced by the pair of new edges (V ′i , V
′
i+1)

and (V ′′i , V
′′
i+1) in the order to complete the strip;

• the old vertices Vi in the edges Vi, Vj are replaced by the new one
among V ′i and V ′′i that is connected to Vj .

5.3.4 Strip graph relation
Adding or deleting a strip in a quad mesh have corresponding operations on
its strip graph.

In Figure 5.19, adding strip E along the polyedge crossing strips A and
C induces a new vertex E in the graph connected to vertices A and C.
Deleting strip E, deletes vertex E and edges E−A and E−C in the graph.

A C

B

D
D

A

B

C

D

C E

E

A

A C

B

D

B

Figure 5.19 – Corresponding strip graph operations due to the addition and
deletion of the quad-mesh strip E.

Adding a mesh strip along a polyedge induces addition of a graph vertex
connected to the graph vertices of the strips crossing the polyedge. Deleting
a mesh strip with its faces induces deletion of the graph vertex with its
edges.

5.3.5 High-genus example
This approach applies to manifold quad meshes with any shape topology.
The quad mesh in Figure 5.20 has two boundaries and two handles. The
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coarse quad mesh in Figure 5.20a shows a part of the strip structure and
the dense quad mesh in Figure 5.20b shows the full pattern, for clarity. The
dashed red boundaries represent the connection to the other part of the
mesh. Figure 5.21 shows the spatial strip graph for such a topology.

(a) Partial coarse quad mesh.
Dashed boundaries connect to the
other part of the coarse quad mesh.

(b) Quad-mesh pattern

Figure 5.20 – Example of the strip structure in a quad-mesh pattern with a
non-null genus.

The grammar rules also applies to such meshes. The quad meshes in
Figures 5.22 and 5.23 result from the quad mesh in Figure 5.20 after the
addition of three and nine strips in blue, respectively. The three quad-mesh
patterns have the same genus but different sets of singularities.

Figure 5.21 – Example of the strip graph in a quad-mesh pattern with a
non-null genus.
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(a) Partial coarse quad mesh.
Dashed boundaries connect to the
other part of the coarse quad mesh.

(b) Quad-mesh pattern

Figure 5.22 – Adding three strips, in blue, to a non-null-genus mesh.

(a) Partial coarse quad mesh.
Dashed boundaries connect to the
other part of the coarse quad mesh.

(b) Quad-mesh pattern

Figure 5.23 – Adding nine strips, in blue, to a non-null-genus mesh.

Thanks to this quad-mesh grammar, a designer can perform rule-based
topology finding of quad-mesh patterns.
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5.4 Rule-based topology finding

The designer can apply the addition and deletion of strips on a coarse quad
mesh to explore quad-mesh patterns. Instead of geometrical parameters,
topological rules allow topological exploration. The strip parameterisation
guarantees that any quad-mesh topology is achievable while preserving the
shape topology. The low-level rules guarantee non-linear exploration. In-
deed, a rule can be cancelled by its reciprocal rule without resuming explo-
ration.

5.4.1 Design problem

The same design problem as in Section 4.4 on feature-based topology finding
is investigated: the Courtyard Roof of the British Museum.

However, all designs have the same unique box cross-section with a height
of 500 mm, a width of 250 mm and a thickness of 20 mm. The statics-
related metrics are the maximum SLS deflection F , the maximum ULS
stress utilisation U and the inverse of the ULS first load buckling factor B.
These metrics are normalised by the structural weight.

Fabrication-related metrics are added for multi-objective design of steel
and glass gridshells [Mesnil et al., 2017b].

A first metric is the regularity of the beams. The variation of beam
lengths must be minimised to avoid fabrication of too long or too short
elements. The metric on edge length disparity L is the standard deviation
of the edge length in the mesh.

A second metric is the curvature of the panels. Curved panels must
be minimised to avoid expensive bending processes. The metric on face
curvature C is computed as:

C =
1

Amesh

∑
face

AfaceCface, (5.12)

with Amesh the mesh area, Aface the face area and Cface the curvature
of the face as:

Cface =
dL

(L1 + L2)/2
, (5.13)

where L1 and L2 are the lengths of the diagonals of a quad face and dL
the shortest distance between them.
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A third metric is the straightness of the panels. Skewed panels must be
minimised to reduce material loss when cutting the panels. The metric on
face skewness S is computed as:

S =
1

Amesh

∑
face

AfaceSface, (5.14)

with Sface the face skewness as:

Sface = max(
θmax − 90

90
,

90− θmin

90
), (5.15)

where θmin and θmax are the minimal and maximal angles in degrees
between two consecutive edges in the quad face.

5.4.2 Pattern design
Here, topological exploration is performed freely by combining addition and
deletion strip rules starting with the topology stemming from the skeleton-
based generation procedure without features. The generation process follows
the graph in Figure 5.24. From design 0 directly result seven designs (1 to
7). From design 2, a denser design 2’ allows then the generation of three
designs (8 to 9). Finally, a succession of four designs (11 to 14) stem from
design 6.

Figure 5.25 presents the resulting designs.

1

2

3

4

5

6

7

14

2'

8

9

10

11 12 13

0

Figure 5.24 – Graph of the generation process although exploration is open
and non-linear. Fourteen new designs stem from design 0 in a combination
of tree branches of different width and depth.

Although presenting the generation process as a unidirectional tree, the
grammar allows non-linear exploration thanks to the reciprocal rules. In-
deed, different permutations of the same set of rules applied to the same
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initial design can generate the same final design. For instance, topology 13
can come from topology 11 by first deleting strips A and C and then deleting
strips B and D, resulting in another intermediary topology than topology
12.

The resulting quad-mesh patterns with different topologies are shown in
Figure 5.26, after densification and relaxation as in Section 4.4.

5.4.3 Numerical results
The numerical results are displayed in Table 5.1. The number of edges and
their total length show the density disparity. The six metrics X on statics
and fabrication result from normalisation by their respective maximum:

Xi = Xi/max
i
Xi, (5.16)

where Xi is the value of the metric X for the design i. The lower the
metric, the more efficient the design regarding the metric. The best and
worst designs per metric are highlighted in Table 5.1 in green and red,
respectively. The values of the minimum, maximum, average and standard
deviation provide statistics on these results. The results exclude design 2’
because it has the same singularities as design 2.

Design 1 performs the best for two of the three fabrication-related met-
rics: edge length disparity and face curvature skewness. Design 14 performs
the best for two of the three statics-related metrics: maximum deflection
and stress utilisation. Its topology is the same as the one resulting from
skeleton-based decomposition with curve and point features. Nevertheless,
all designs feature different performances to explore.

In multi-objective optimisation, the Pareto front P is made of the designs
that are non-dominated. To be non-dominated, a design must perform at
least as well for each objective and perform better for at least one objective
than each of the other design [Deb, 2001]:

x ∈ P ⇐⇒ ∀y,∀i, xi ≤ yi,∃i/xi < yi, (5.17)

where xi is the performance of design x for the metric i to be minimised.
The Pareto front comprises designs 0, 1, 3, 4, 6, 8, 9, 11, 12, 13 and 14,

underlined in Table 5.1 and Figure 5.26. Only 2, 5, 7 and 10 are dominated
designs, meaning that at least one of the other designs performs at least
the same for all metrics and better for one metric. All of the other design
are worth considering as they offer different trade-offs between the multiple
objectives.
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Figure 5.25 – Rule-based exploration of coarse quad meshes.
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Figure 5.26 – Resulting quad-mesh patterns with different topologies. The
labels of the Pareto designs are underlined.
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Table 5.1 – Statics and fabrication metrics for the quad-mesh patterns with
different singularities. Some metrics X are normalised by the maximum
value to obtain a metric X with a worst, maximum of 1. The Pareto designs
are underlined.

design

number
edges
|E|

total
edge
length

El,tot [m]

edge
length
disp.
L [-]

face
curv.
C [-]

face
skew.
S [-]

max.
SLS
defl.
F [-]

max.
ULS
stress
util.
U [-]

ULS
first
buckl.
load
factor
B [-]

0 7140 9591 0.8 0.71 0.24 1 0.72 0.7
1 7537 9866 0.64 0.88 0.19 0.85 0.8 0.71
2 7896 10247 0.92 0.6 0.54 0.82 0.98 0.76
3 7278 9687 0.82 0.61 0.3 0.86 0.97 0.8
4 8532 10625 0.84 0.86 0.52 0.84 0.71 0.67
5 9760 12028 0.84 1 1 0.84 0.63 1
6 7887 10310 0.87 0.44 0.33 0.6 0.44 0.8
7 7868 10091 0.81 0.64 0.38 0.78 0.81 0.72
8 8060 10632 1 0.38 0.74 0.71 0.55 0.79
9 8474 10475 0.8 0.51 0.39 0.65 0.83 0.71
10 8622 10659 0.87 0.76 0.42 0.69 1 0.8
11 8602 10605 0.81 0.42 0.35 0.64 0.32 0.72
12 7886 10191 0.87 0.35 0.41 0.62 0.31 0.81
13 7364 9786 0.92 0.43 0.39 0.62 0.28 0.84
14 8264 10442 0.9 0.45 0.27 0.5 0.28 0.84

min. 7140 9591 0.64 0.35 0.19 0.5 0.28 0.67
max. 9760 12028 1 1 1 1 1 1
avrg. 8060 10336 0.85 0.61 0.44 0.74 0.66 0.78

st. dev. 650 569 0.08 0.2 0.2 0.13 0.27 0.08

For visualisation, the six-dimension performance space is mapped to a
two-dimension space in Figure 5.27 using a Self-Organising Map (SOM) with
the implementation of Harding for Grasshopper3D is used [Harding, 2016].
SOMs are a type of artificial neural networks for dimensionality reduction of
an N-dimension space to a lower dimension [Kohonen, 2013]. Classically, the
target dimension is two or three for visualisation purpose. A performance-

134



based SOM is different from a parameter-based SOM. For instance, the
SOM of Fuhrimann et al. [Fuhrimann et al., 2018] uses the form and force
parameters that generate the geometry of the designs using Combinatorial
Equilibrium Modelling [Ohlbrock et al., 2017]. A few similar applications
of SOMs in structural design exist [Saldana Ochoa et al., 2019, Pan et al.,
2019].
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Figure 5.27 – Self-organising map for performance-based visualisation in 2D
of the designs of the high-dimension 6D Pareto front. The spider graphs
represent the performance of each design. Non-Pareto designs are excluded.
Coarser meshes are shown for clarity.
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During this open exploration process informed by performance evalua-
tion, a map provides a visualisation of the performance similarity between
the designs. Indeed, the closer two designs, the more similar their respective
performances. The designs form clusters with similar performances, such as
designs 6, 11, 12, 13 and 14. These designs share pole points at the corners,
including both radial and ortho-radial elements, contrary to design 8 that
has radial but not ortho-radial elements.

The map helps to understand the consequences of a topological design
choice during the open exploration process. Moreover, the map suggests that
designs with similar topologies are likely to have a similar performance.

5.5 Summary of contributions

This chapter introduced rule-based topology finding, using topological rules
to perform topological exploration:

• a topological strip structure in quad meshes was identified as a funda-
mental data structure;

• a quad-mesh grammar of low-level rules for reciprocal addition and
deletion of these strips was created;

• this grammar was used for multi-objective exploration using Pareto
fronts and Self-Organising Maps to visualise the results.

More generally, the strip data structure could serve for more specific
computing of quad meshes, as opposed to general face-based or edge-based
data structures.

The grammar allows comprehensive exploration because the low-level
rules apply to fundamental elements. Non-linear exploration is possible
across the design space of quad-mesh singularities.

However, the relationship between exploration and performance is uni-
lateral. The designer generates topologies, processes them and evaluates
them. It belongs to the designer to decide which rule to apply next. In
the context of multi-objective design, only applying rules and cancelling the
ones that do not improve the general performance is not an option as one
seeks for trade-offs. The performance of previous designs should inform the
generation of the next ones. The SOM hints at some similarities between
topology and performance in some designs, with the formation of clusters.
Therefore, informed exploration can shift the problem of obtaining designs
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with a similar performance to designs with a similar topology. Informed
exploration based on design performance would close the loop initiated by
open exploration.
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Chapter 6

Similarity-informed
exploration

6.1 Motivations

Rule-based topology finding allows comprehensive exploration of the singu-
larity design space of quad meshes. Through open exploration, the designer
can search for the rules that yield topologies with strips that improve per-
formance. However, carrying out multi-objective design is driven by the
exploration of trade-offs to fit best the context of the project. Figure 6.1
illustrates this challenge based on the patterns of the waffle slab system in
Figure 1.7a and the ribbed slab system in Figure 1.7b, designed for fabrica-
tion affordability and structural efficiency, respectively.

A heuristic suggested by the study on rule-based topology finding in Sec-
tion 5.4 is that designs with similar topologies have similar performances.
Finding designs with different degrees of topological similarity should offer
different degrees of performance similarity for multi-objective design. This
assumption relaxes the problem from the performance space to the topo-
logical space. Input designs that each perform well for a single objective
inform the generation of topologically similar designs. These input designs
can stem from design intuition or any exploration and optimisation strategy,
like the integration of a stress field for structural efficiency.

This chapter introduces similarity-informed topology finding. Section
6.2 clarifies the topological equality between two quad meshes based on
their strip structure. Section 6.3 defines a topological distance between
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FABRICATION STATICS FABRICATION STATICS FABRICATION

?

STATICS

Figure 6.1 – Challenge for informed exploration of trade-offs between multi-
ple objectives. The search for similarity in performance moves to searching
for similarity in topology.

two quad meshes to assess their similarity. An algorithm allows computing
the distance and the strip rules to convert one mesh into another. Section
6.4 develops a strategy to generate hybrid quad meshes sharing different
degrees of similarity with a set of input quad meshes to combine. Section
6.5 applies this approach to similarity-informed topology finding of designs
based on single-objective heuristic or optimal quad meshes to perform multi-
objective design.

6.2 Quad-mesh equality

Before evaluating topological similarity, topological equality between quad
meshes is tested based on graph-isomorphism checks. The algorithm of
Cordella et al. [Cordella et al., 2001] for graph isomorphism is used, imple-
mented in the Python library NetworkX on the structures, dynamics and
functions of networks [Hagberg et al., 2008]. The isomorphism can integrate
vertex and edge attribute matching.

6.2.1 Graph isomorphism

Isomorphism only depends on topology. Two graphs are isomorphic if a bi-
jection exists that maps the vertices of one graph to the other while preserv-
ing the edge connectivity. If two graphs are isomorphic, several bijections
may be possible.
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In Figure 6.2, the two-edge graph A, B, C is isomorphic to the two-edge
graph 1, 2, 3 because a bijection exists, which maps the pairs of vertices A -
1, B - 2, C - 3. A second bijection exists, which maps A - 3, B - 2 and C - 1.
On the contrary, the two-edge graph A, B, C is not isomorphic to the three-
edge graph 1, 2, 3, because no bijection would preserve the edge connectivity,
here due to the third edge. For two graphs to be isomorphic, having the same
number of vertices and edges is a necessary but non-sufficient condition.

TWO BIJECTIONS
A-1, B-2, C-3
A-3, B-2, C-1

2 3

1

C

B

A

2 3

NO BIJECTION

1

1

2 3

Figure 6.2 – Two graphs are isomorphic if a bijection exists between the
vertices of two graphs that preserves the edge connectivity.

ISOMORPHIC

NOT ISOMORPHIC

Figure 6.3 – Two quad meshes are isomorphic if their graph of edges are
isomorphic while preserving edge boundary attribute marked in red. The
corresponding mesh faces are marked in grey for clarity.
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6.2.2 Mesh isomorphism
Mesh isomorphism relies on graph isomorphism. An edge-based graph loses
the face data compared to a face-based mesh. Therefore, two meshes are
isomorphic if the graphs of their edges are isomorphic with matching edge
boundary attributes. Figure 6.3 presents the difference due to the integra-
tion of edge boundary attributes in red.

6.2.3 Quad-mesh isomorphism
Strip-graph isomorphism is not sufficient to guarantee quad-mesh isomor-
phism. The data reduction of a quad mesh to a strip graph creates a loss of
isomorphism between quad meshes and strip graphs. Indeed, a strip graph
can be the same for two different quad meshes, as illustrated in Figure 6.4.

NOT ISOMORPHIC

ISOMORPHIC

Figure 6.4 – Strip-graph isomorphism is not sufficient for quad-mesh iso-
morphism due to the lack of isomorphism between quad meshes and strip
graphs.

Nevertheless, strip graphs have fewer elements than quad meshes, and
isomorphism check is faster for strip graphs than quad meshes. For instance,
the mesh in Figure 6.5 has thirteen edges and its strip graph only four edges.
A search algorithm can check strip-graph isomorphism before quad-mesh
isomorphism if most of isomorphism checks are likely to fail.

Similarly, a search algorithm can check necessary but non-sufficient con-
ditions before isomorphism check. If two graphs do not have the same num-
ber of vertices with a valency of three, then they are not isomorphic. If
two graphs have the same number of vertices for each valency, they could
be isomorphic. These lighter checks can include diverse local conditions.
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ISOMORPHIC

ISOMORPHIC

Figure 6.5 – A quad-mesh with thirteen edges is heavier than its strip graph
with four edges only. In general, strip graphs have fewer elements than
quad meshes. Checking isomorphism between two quad meshes is slower
than between two strip graphs.

NOT ISOMORPHIC

ISOMORPHIC

NOT ISOMORPHIC

Figure 6.6 – Closed strip data are integrated as graph-vertex attributes
marked as filled dots to reduce the cases of strip-graph isomorphism without
quad-mesh isomorphism. The mesh faces are marked in grey for clarity.
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Examples of such conditions are the distribution of valencies, the existence
of triangles or cliques, which corresponds to a subset of vertices that are
completely connected [Hagberg et al., 2008].

Graph-vertex attribute integrates closed strip data. This addition re-
duces the cases of false positives of strip-graph isomorphism without quad-
mesh isomorphism, as shown in Figure 6.6.

6.2.4 Pseudo-quad-mesh isomorphism

The strip graph can not integrate pole data. If a strip has only one extremity
with a pole as in Figure 6.7, an indeterminacy exists on which extremity.
Indeed, the strip does not have an orientation. Therefore, a vertex attribute
in the graph graphs can not specify the pole location.

NOT ISOMORPHIC

ISOMORPHIC

Figure 6.7 – Pole data can not be integrated as graph-vertex attributes due
to the indeterminacy of the location of the pole at the extremities of the
strip.

However, the mesh graph can integrate pole data. For a pseudo-quad
mesh, the mesh graph stems from the equivalent quad mesh with additional
boundary edges at the location of the poles.

The evaluation of equality serves as a basis for defining and computing
the topological similarity between two quad meshes.

6.3 Quad-mesh similarity

A distance – or metric – measures the similarity between the topology of
two quad meshes.

This distance could rely directly on the singularities, based on their va-
lency or index. Histograms that encode the type and number of singularities
provide a means for comparison. The multiple histogram distances in the
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literature include the Chi-Square Distance or the Earth Moving Distance,
for instance, [Pele and Werman, 2010].

However, a distance based on pure topology would not provide an answer
on how to get from one quad mesh to another. Therefore, a topological dis-
tance based on the strip grammar is used to assess the topological similarity.

In computer science and information theory, string metrics found many
applications to compare discrete data. Some string metrics evaluate the
distance between two strings based on the number of operations – or rules
– to apply to convert one string into the other. The different string metrics
differ by the allowed operations: the Hamming distance [Hamming, 1950]
allows substitutions only whereas the Levenshtein distance [Levenshtein,
1966] allows substitutions, insertions and deletions. Other string metrics
tackle the evaluation of similarity differently, but they all have in common to
respect the triangle inequality. The triangle equality states that the distance
between two objects is equal or shorter than the sum of the distances between
these two objects and any third object.

The definition of the quad-mesh distance follows these principles.

6.3.1 Definition

A topological distance is defined to measure the similarity between two quad
meshes based on the strip grammar as a means for exploration. The distance
is defined as the minimal number of strips to add and delete to go from one
quad mesh to another. The minimality condition is necessary to exclude
reciprocal addition and deletion of the same strip.

As the strip grammar modifies the pattern topology, not the shape topol-
ogy, the distance applies to orientable compact manifold quad meshes with
the same number of handles and the same number of boundaries. The gram-
mar and the distance can be extended to include topological modifications
on the shape topology.

The distance d applies to two elements of the space E = Eg,N of quad
meshes with the same number of handles g and boundaries N and yields a
positive integer in N+:

d : E → N+. (6.1)

The three distance properties are verified:

• the distance is symmetric. The same minimal number of rules apply
from a topology A to a topology B and from B to A, as for each
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addition or deletion strip rule there is a reciprocal one:

∀(A,B) ∈ E2, d(A,B) = d(B,A); (6.2)

• the distance from a topology to itself is null because no rules need to
be applied and if no rules needs to be applied then two topologies are
the same:

∀(A,B) ∈ E2, d(A,B) = 0 ⇐⇒ A = B; (6.3)

• the triangle inequality is satisfied: the same or a lower number of rules
have to be applied to go directly from a topology A to a topology C
than going through an intermediary topology B:

∀(A,B,C) ∈ E3, d(A,C) ≤ d(A,B) + d(B,C). (6.4)

Equality occurs if no rules between A and B and between B and C
are reciprocal and can compensate each other.

During rule-based exploration, successive application of strip rules gen-
erally increases by one the distance and therefore decreases by one the simi-
larity with the initial design. Only application of a reciprocal rule cancelling
a previous rule reduces by one the distance. The rules applied in Figure 6.8
add two strips and delete two other strips. The distance increases by one for
every rule, resulting in a final distance of four. The strip graphs highlight
similarity, even though strip graphs and quad meshes are not isomorphic.

d=1 d=1d=1 d=1

d=4

Figure 6.8 – Applying independent rules on a quad mesh increases the dis-
tance by one, and decreases the similarity by one, for a final distance of four,
highlighted by the strip graphs.

Deleting some strips can cause collateral deletion of other strips whose
faces are all included in the deleted strips. In Figure 6.9, deleting the strip in
pink in a four-strip quad mesh results in a two-strip quad mesh at a distance
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of two due to the secondary deletion of the strip in green. Although one
rule is applied, the distance is not one but two. Therefore, the application
of a deletion rule counts as the application of multiple deletion rules, equal
to one plus the number of collateral deletions.

d≠1

d=1+1=2

Figure 6.9 – Collateral strip deletion occurs when deleting one or several
strips, like the one in pink, results in the deletion of other strips, like the
one in green. Applying such a deletion rule counts as multiple deletions
rules, two in this case.

Computing the existence and number of collateral deletions ncol can oc-
cur before or after applying the deletion rules. Before deletion by collecting
the faces of the strips to delete and checking if other strips have all their
faces part of the faces to delete. After deletion by comparing the number of
deletion rules applied ndel with the difference of strips after s1 and before
s0:

ncol = ndel − (s1 − s0). (6.5)

Computing the distance along with the similar and dissimilar strips pro-
vides the rules to go from one topology to another.

6.3.2 Computation

The computation of the topological distance checks isomorphism between
two meshes while trying combinations of an increasing number of strip dele-
tions.
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6.3.2.1 Approach

The distance between two quad meshes is defined as the minimum number
of strips to add and delete to go from one to another. Searching for combina-
tions of addition and deletion rules to apply on one quad mesh involves the
infinite combinatorial possibilities for strip additions. However, the number
of strip deletions is bounded by 2n for a quad mesh with n strips. Therefore,
the distance results from finding the two minimum sets of strip deletions to
apply on the two quad meshes M1 and M2 that yield the same submesh
M0, up to an isomorphism. In Figure 6.10, the deletion of the strips in
pink yields two isomorphic submeshes. This submesh represents the largest
similar structure of strips in common between the two quad meshes. Two
strip deletion rules are not reciprocal and can not compensate each other.
This property guarantees having the minimum number of rules. Therefore,
finding such a submesh yields the equality case of the triangle inequality:

d(M1,M2) = d(M1,M0) + d(M0,M2), (6.6)

with M1 and M2 the input meshes and M0 their submesh.

d(M1,M2) = d(M1,M0) + d(M0,M2) = 2

d(M1,M0) = 1 d(M0,M2) = 1

M1 M0 M2

Figure 6.10 – Finding the distance between two quad meshesM1 andM2 via
a common submesh M0 using strip deletion rules only. The deleted strips
are highlighted in pink.

Let n1 and n2 the number of strips of the two quad meshes M1 and M2,
respectively, and supposedly n1 ≥ n2. To find the submesh, an increasing
number of strips are deleted on both meshes in parallel. The meshes have a
minimum distance dmin = |n1−n2| = n1−n2 due to a potentially different
number of strips. Starting with k = 0, all pairs of combinations to delete
k+max(0, n1−n2) = k+dmin strips in meshM1 and k+max(0, n2−n1) = k
strips in meshM2 are tested. If a pair of combinations yields two isomorphic
quad meshes after deletion of the respective combinations of strips, then the
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process stops. Otherwise, k increases by one, and the process repeats to find
the submesh.

If there is no such submesh, then the largest similar structure is a single
strip, a quad having at least two strips. The distance between the two quad
meshes is then the maximum:

dmax = (n1 − 1) + (n2 − 1). (6.7)

When the search finds such a submesh, applying Equation 6.6 yields the
distance. Indeed, the enumeration of combinations of rules in an increasing
order guarantees to find the largest submesh, resulting from the minimum
number of rules needed. If the submesh M0 has n0 strips, then the distance
equals:

d(M1,M2) = d(M1,M0) + d(M0,M2)

= n1 − n0 + n2 − n0
= n1 + n2 − 2n0.

(6.8)

The distance can be expressed by the number of iterations k as well, as
n0 equals the number of strips in the quad mesh M2 minus the number of
strips deleted, still assuming n1 ≥ n2:

n0 = n2 − k, (6.9)

therefore:

d(M1,M2) = n1 − n2 + 2k. (6.10)

Figure 6.10 shows the computation of the distance between two meshes
with five strips each. The largest submesh has four strips, resulting from
the deletion of one strip for each input mesh highlighted in pink. Therefore,
the distance between the input meshes equals two.

Deletion rules with collateral deletions are discarded to prevent overes-
timation of the distance. Indeed, they are equivalent to the application of
multiple deletion rules. These multiple rules appear for a higher value of k
and should not count at a lower value.

Several non-isomorphic submeshes with the same number of strips can
occur. Figure 6.11 shows two different submeshes M ′0 and M ′′0 , both with
four strips and at a distance of one the input meshesM1 andM2. Only one is
sufficient to compute the distance between the input meshes. Nevertheless,
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to collect all of these submeshes, the computation should not stop when one
submesh is obtained but finish testing all of the other rule combinations for
the current value of k. Considering these different submeshes enriches quad-
mesh combination, in Section 6.4.

d=1 d=1

d=1d=1

M1 M2

M0’

M0’’

Figure 6.11 – Multiple submeshes M ′0 and M ′′0 with the same number of
strips and at the same distance of input quad meshes M1 and M2 can exist
due to the deletion of different combinations of strips, differentiated in pink
and in green.

6.3.2.2 Algorithm

The algorithm for computation of the topological distance between two quad
meshes is detailed in Algorithm 1. The input quad meshes are M1 and
M2 with the assumption that M1 has the highest number of strips. The
algorithm skips the combinations of strip deletions resulting in collateral
deletions. Isomorphism between the submeshes M1,0 and M2,0, resulting
from strip deletions, is directly checked on the quad-mesh graph. The algo-
rithm returns all largest non-isomorphic submeshes with the same number
of strips. The algorithm also returns the strip deletions to apply to each
input mesh to obtain the largest submesh M0. If no submesh exist, the
common structure is not a mesh, but any unique strip and the distance is
maximal.
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start empty list of results
n1, n2 = number of strips in M1 and M2
for k from 0 to n1 - 2 do

for combinations of n1 - n2 + k strips s1 in M1 do
copy M1 as M10
delete strips s1 in M10
if collateral strip deletion in M10 then

skip this combination
end
for combinations of k strips s2 in M2) do

copy M2 as M20
delete strips s2 in M20
if collateral strip deletion in M20 then

skip this combination
end

end
if meshes M10 and M20 are isomorphic then

if M10 is not isomorphic to any submesh in results then
add M10 to the list of submeshes

end
distance = n1 - n2 + 2k
store submesh in results with distance, s1 and s2

end
end
if results are not empty then

return results
end
return max distance = n1 + n2 - 2

end
Algorithm 1: Algorithm for computing the topological distance and the
dissimilar strips between two quad meshes M1 and M2, assuming that
M1 has the highest number of strips.
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6.3.3 Validation

Several examples validate the algorithm. Table 6.1 shows the numerical
results. The results provide the number of strips n1, n2 and n0 of the
input meshes and their submesh, the level of increment in the search k, the
distance between the meshes d, the number of submeshes, the number of
isomorphism checks and the computation time.

In Figure 6.12a, mesh M2 is included in mesh M1 after deletion of four
strips. Therefore, M2 is a submesh M0, and the distance is equal to four.
Deleting any combination of the vertical strips is possible, but they all yield
isomorphic meshes. In Figure 6.12b, mesh M2 is included in mesh M1 after
deletion of two strips. Therefore, M2 is a submesh M0 and the distance is
equal to two. In Figure 6.12c, no submesh exists because the two meshes
do not share any strip structure. They only have in common one of their
strips. As they have four and two strips, their distance is equal to four.
In Figure 6.12d, the two meshes have a submesh at a distance of two and
one. Therefore their distance is equal to three. In Figure 6.12e, the two
meshes have two non-isomorphic submeshes at a distance of five and three.
Therefore their distance is equal to eight.

6.3.4 Limitation

The computation of the topological distance between two quad meshes is
performed here in an enumerative manner. For large or far quad meshes,
meaning with a high number of strips or a high distance, this algorithm
has limitations for interactive design due to the computational time, as the
number of rule combinations to explore is combinatorial. The examples in
Figures 6.12b and 6.12e show the increase in computation time for a high
distance between two quad meshes with a similar number of strips: 0.52 s
for a distance of 2 between a 10-strip and a 8-strip meshes, and 12.4 s for
a distance of 8 between a 8-strip and a 6-strip meshes. The examples in
Figures 6.13a and 6.13b show the increase in computation time for a higher
density: 0.62 s for a distance of 2 between an 8-strip and a 6-strip mesh and
9.4 s for a distance of 3 between a 12-strip and a 9-strip mesh.

Nevertheless, the presented algorithm allows the computation of the dis-
tance between quad meshes. Moreover, for coarse meshes that differ by a
couple of strips, the computation time is under 1 s. Two improvements are
possible for the algorithm. First, using parallel computing of the isomor-
phism checks. Multi-threading could improve the speed of the algorithm on
the enumeration of pairs of combinations of strips. Second, using stochas-
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Figure 6.12 – Validation examples for computing the topological distance
between two quad meshes. The distances between the meshes M1 and M2

and between their submesh M0 is provided along with one of the possible
combination of strips to delete in blue.
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M2=M0M1

d=2

(a)

M2=M0M1

d=3

(b)

Figure 6.13 – Limitation examples for computing the topological distance
between two dense quad meshes. The distances between the meshes M1

and M2 and between their submesh M0 is provided along with one of the
possible combination of strips to delete in blue.

tic search algorithms informed by a measure of the degree of isomorphism
between two graphs, instead of a boolean check.

Table 6.1 – Numerical results for the validation and limitation examples for
the computation of the distance between two quad meshes.

Figure 6.12a 6.12b 6.12c 6.12d 6.12e 6.13a 6.13b

n1 8 10 4 6 8 8 12
n2 4 8 2 5 6 6 9
n0 4 8 - 4 3 6 9
k 0 0 2 1 3 0 0
d 4 2 4 3 8 2 3

# submeshes 15 1 - 1 2 1 1
# iso. checks 55 41 5 62 1516 28 220
comp. time [s] 0.58 0.52 0.025 0.30 12.4 0.62 9.4

Based on the computation of the distance between two meshes along with
their similar and dissimilar strips, hybrid quad meshes can be generated to
interpolate input quad meshes at different distances with different degrees
of topological similarity.
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6.4 Quad-mesh combination

Patterns with similar topologies perform similarly. Expressed differently,
the less similar two patterns, the less likely they are to perform similarly.
A pattern can be designed to fulfil a single objective. However, designing
to fulfil multiple objectives is more challenging. Designing patterns that
share different degrees of similarity with a set of patterns designed for single
objectives is likely to provide multi-objective trade-offs.

Based on the definition of equality and similarity for quad meshes, a
strategy is proposed to generate hybrid quad meshes based on a set of input
quad meshes. The hybrid quad meshes provide a combination in the sense of
the topological distance, with different degrees of similarity with the input
quad meshes.

The challenge lies in converting deletion rules to additions rules through
mapping of strips and polyedges from one mesh to another.

6.4.1 Approach

The approach for the generation of hybrid meshes is as follows:

1. the input meshes are created by any generation means;

2. the submeshes are computed, which comprise only the strips in com-
mon between the input meshes. The submesh is the intersection of
the sets of strips;

3. the supermeshes are computed, which comprise all of the strips of the
input meshes. The supermesh is the union of the sets of strips;

4. the intermediary meshes are generated, which comprise different com-
binations of the strips of the input meshes.

Figure 6.14 illustrates these steps. In this example, two input meshes
with respectively three and four strips yield seven hybrid meshes that are
not isomorphic and therefore offer different design options. These hybrid
meshes include one submesh with two strips, three supermeshes with five
strips and three intermediary meshes with three to four strips. The hybrid
meshes can correspond to different input strips that yield isomorphic meshes.
The results show only one of these combinations of input strips.

The coloured strips highlight the similarity between each hybrid mesh,
provided as the similarity s, along with the distance d to the input meshes.
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3. UNION SUPERMESH(ES): all strips

2. INTERSECTION SUBMESH(ES): common strips only

4. INTEMEDIARY MESHES: combinations of strips

1. INPUT MESHES

s=(0,4) d=(3,0)s=(3,0) d=(0,3)

s=(2,2) d=(1,2)

s=(3,4) d=(2,1) s=(3,4) d=(2,1) s=(3,4) d=(2,1)

s=(3,3) d=(1,2) s=(3,3) d=(1,2) s=(2,3) d=(2,1)

s:similarity with input meshes
d:distance to input meshes

Figure 6.14 – Approach to generate hybrid quad meshes with different de-
grees of topological similarity with input quad meshes. The colours corre-
spond to similar strips, supporting the values on the similarity and dissimi-
larity with the input meshes.
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The similarity is the number of strips in the common strip structure, and
the distance is the number of strips that are not part of the common strip
structure.

For an input mesh i with ni strips, the similarity si and the distance di
are related as:

ni = si + di. (6.11)

They highlight the variation in the degree of similarity and dissimilarity
with the input meshes.

The following sections present each in-between step.

6.4.2 Hybrid mesh generation
The generation of the hybrid meshes proceeds first with the intersection
submeshes, then the union supermeshes and finally the intermediary meshes.

6.4.2.1 Intersection submeshes

Computing the distance between the input meshes also yields the submeshes.
All non-isomorphic submeshes with the highest number of strips are col-
lected. This process is extended to multiple input meshes as follows:

1. the submeshes M1,2
0 between two input meshes M1 and M2 are com-

puted;

2. new submeshes M1,2,3
0 between each submesh M1,2

0 and another input
mesh M3 are computed;

3. new submeshes M1,...,i
0 between each submesh M1,...,i−1

0 and another
input mesh Mi are computed;

4. the final submeshes areM1,...,N
0 , which are the non-isomorphic meshes

that share the largest strip structure in common between the N input
meshes M1 to Mn.

The submeshes contain all similar strips. The reciprocal polyedges of the
dissimilar strips serve as input for an addition rule to obtain these disimilar
strips. When deleting a strip sj in an input mesh Mi to obtain a submesh
M i

0, a polyedge Pi,j is stored. This polyedge updates during the deletion
of the other strips. For each submesh, there is a set of polyedges that
correspond to the addition rules to apply to revert the applied deletion
rules. These rules are used to obtain supermeshes from the submeshes.
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6.4.2.2 Union supermeshes

Let n0 be the number of strips in the submesh between two meshes n1 and
n2. Exploring all combinations of strip deletions from two input meshes to
a submesh provides a sum of the number of potential designs:

2n1−n0 + 2n2−n0 . (6.12)

Instead, exploring all combinations of strip deletions and their reciprocal
strip additions provides a product of the number of potential designs:

2n1−n0 · 2n2−n0 = 2n1−n0+n2−n0 ; (6.13)

Full combination increases the potential number of hybrid meshes. In
the general case of N meshes, the number of combinations is:

N−1∏
i=0

2ni−n0 = 2
∑N−1

i=0 (ni−n0). (6.14)

The supermesh combines all strips before exploring its combinations of
strips.

Supermeshes are the non-isomorphic meshes that contain the strip struc-
ture of each input mesh. For each submesh, strip additions applies to all
stored polyedges. After each strip addition, the polyedges for the remain-
ing addition rules update. The addition rules on the longest polyedges are
applied first as some polyedges may initially correspond to a single vertex.

6.4.2.3 Intermediary meshes

The intermediary meshes result from the combination of deletions of dissim-
ilar strips. Deleting no strips yields the supermesh. Deleting all strips yields
the submesh. Other deletion combinations yield the intermediary meshes.
For n strips to delete in a supermesh, the combinations to apply equals:

n∑
k=0

(
n

k

)
= 2n. (6.15)

The submeshes have the minimum number of strips:

nmin = n0, (6.16)

and the supermeshes have the maximum number of strips:
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nmax =
∑
i

(ni − n0), (6.17)

with ni the number of strips in the input mesh i. The intermediary
meshes have between nmin and nmax strips, strictly.

6.4.3 Data management

During the generation process, rules are transposed and reversed from one
mesh to another using the input and output polyedges thanks to specific
management of the polyedge and strip data.

6.4.3.1 Updating polyedges

Applying strip rules modifies the topology, the number of elements and their
connectivity in the quad mesh. As a result, the labelling of the vertices
changes, as shown in Figure 6.15. Therefore, polyedges must update to
apply to multiple rules.

{0: [4, 5], 1: [6, 7]} {4: 8, 5: 8, 6: 9, 7: 9}

98

3 2

1

23 3 2

4

7

6

5

0

Figure 6.15 – Maps for vertex relabelling, in red and green, after strip addi-
tion and strip deletion rules, in blue.

Adding a strip duplicates the vertices of the input polyedge. In Figure
6.15, the old edge [0,1] branches to two possibilities with the new edges
[4,6] and [5,7]. The new edges of a polyedge must be selected to rebuild a
new continuous polyedge. Moreover, the polyedge must have its extremities
on the boundary. Unless if the corresponding strip is closed or has pole
extremities. The polyedge update can consider the several possibilities that
fulfil these conditions. Here, the polyedge update considers only the shortest
possibilities.

Deleting a strip merges the vertices of the edges of the input strip. In
Figure 6.15, the old strip edges [4,5] and [6,7] result in the new vertices 8
and 9. Therefore, the old edges [4,6] and [5,7] become the same new edge
[8,9].
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6.4.3.2 Mapping strips

The strips are mapped from one mesh to another by mapping polyedges
for rule application. From the input meshes, strips are deleted to obtain
the submesh. From the submeshes, strips are added to obtain the super-
meshes. Figure 6.16 shows this process for two input meshes yielding two
non-isomorphic submeshes, four non-isomorphic supermeshes and two non-
isomorphic intermediary meshes. The strip structure of one of the input
meshes is coloured in all meshes to highlight the similarity with this input
mesh.

Figure 6.17 illustrates the mapping process of the polyedges from the
input meshes to the submeshes, along which strips can be added to obtain
the supermeshes, all shown in Figure 6.16. The input meshes have two non-
isomorphic submeshes. Therefore, the polyedge-mapping process applies to
each.

Deleting the dissimilar strips on the N input meshes Mi results in N
isomorphic submeshes M i

0. These submeshes are isomorphic, but there can
be multiple bijections that map one submesh to another. In Figure 6.17a
for instance, the red polyedge in M1

0 from M1 and the blue polyedge in
M2

0 from M2 can be combined in two ways. This situation results from the
four possible bijections between the twofold symmetrical submeshes, two of
which are not isomorphic.

The deleted strips provide reciprocal polyedges to apply the addition
rule to obtain the supermesh. However, several possibilities exist to map the
polyedges, two in this case. The multiple strips are added, while updating
the other polyedges, resulting in the supermeshes. In Figure 6.17, the two
submeshes have two polyedge maps each, resulting in the four supermeshes
shown in Figure 6.16.

Deleting strips in the supermeshes yields the intermediary meshes shown
in Figure 6.16. Here, only one strip is deleted, to obtain intermediary meshes
with five strips, between the four-strip submeshes and the six-strip superme-
shes. Most are isomorphic to the other meshes, except for two intermediary
meshes that share different degrees of similarity with the input meshes and
their strip structure.

If there is no strip structure in common and therefore no submesh to use
for combination, a common strip structure must be created.
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SUBMESHES
4 STRIPS

INPUT MESHES
5 STRIPS

INTERMEDIARY MESHES
5 STRIPS

-

-

+

SUPERMESHES
6 STRIPS

Figure 6.16 – Deleting the dissimilar strips between input meshes yields the
submeshes. Adding the dissimilar strips on the submeshes yields the super-
meshes. Deleting combinations of dissimilar strips yields the intermediary
meshes. The strip structure of one of the input meshes is coloured in all
hybrid meshes to highlight the similarity with this input mesh.
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Figure 6.17 – Combining vertex maps to find polyedges across meshes
with different numbers and labels of vertices. The strips become reduced
polyedges through the rule maps from the input meshes Mi and Mjto the
submeshes M i

0 and M j
0 , which are mapped across the submeshes M0 via

isomorphism search. Other submeshes between the same initial meshes re-
sult in different maps and therefore other possibilities for the generation of
hybrid meshes.

6.4.4 Result prediction

Predicting the number of hybrid designs is difficult. It depends on the
number of submeshes, supermeshes, intermediary meshes, as well as the
existence and number of isomorphism between the different meshes.
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This strategy for the combination of quad meshes is applied to similarity-
informed topology finding for multi-objective design.

6.5 Similarity-informed topology finding

Based on quad-mesh patterns designed for single objectives, similarity-in-
formed topology finding is performed using quad-mesh combination to de-
sign hybrid quad-mesh patterns for multi-objective design. In Section 6.5.1,
designs are enumerated based on a unique design, whereas in Section 6.5.2,
designs are combined based on multiple designs.

6.5.1 Similarity from one design

By applying n rules on a design, n other designs are generated. However,
enumerating the 2n combinations of these rules provides a wider set of de-
signs sharing different degrees of similarity with the initial design. At a
distance of k from the initial design,

(
n
k

)
potential designs can be generated,

reduced by the redundant, isomorphic designs.

6.5.1.1 Design problem

This section investigates the design of a quad-mesh pattern for a compression-
only dome on an elliptic boundary of 15 m by 10 m. The structure consists
of load-carrying beam elements covered by planar panels made of timber,
for instance.

To design a compression-only structure, the Force Density Method is
applied [Schek, 1974]. The force density qi in the element i equals to the
ratio of the force fi and the length of the element li:

qi =
fi
li
. (6.18)

All the force densities equal one, qi = 1. The load path LP measures
structural performance, which relates to the necessary structural volume:

LP =
∑
i

fili. (6.19)

The lower the load path, the more efficient the structure. Because the
force densities equal one, the load path equals:
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LP =
∑
i

l2i . (6.20)

Besides, the panels must be planar for fabrication affordability. There-
fore, a planarisation process is applied, which induces deviation from the
desired compression-only geometry. This deviation metric D equals the sum
of the movements of the vertices when enforcing planarisation. Moreover,
the skewness of the panels should be low to reduce material loss during the
cutting process. The curvature C and the skewness S metrics of the panels
of the structure are evaluated as in Section 5.4.

6.5.1.2 Pattern design

A couple of heuristics inform the rule-based exploration in Figure 6.18. To
reduce face skewness, a quad mesh with two orthogonal strips serves as a
starting point, with the addition of two other orthogonal strips. To reduce
face curvature, the lines of curvature of an ellipsoid serve as a basis to apply
three more rules. These rules recreate the strips for the pair of two-valent
singularities due to the lines of curvature of an ellipsoid. Gaspard Monge
uses these lines for the stereotomy of domes [Leroy, 1890]. Indeed, the lines
of curvature form a conjugate network of curves that yield a discretisation
with quasi-planar faces [Liu et al., 2006, Zadravec et al., 2010, Liu et al.,
2011]. Figure 6.18 presents the addition rules with the dashed blue curves
along the polyedges along which to add the strip. The dense quad mesh in
grey helps for visualisation.

Figure 6.18 – Heuristic rule-based exploration with addition of strips along
the polyedges highlighted with blue dashed lines.

The application of the eight rule additions in Figure 6.18 transforms the
two-strip quad-mesh into a ten-strip quad mesh. This supermesh has ten
strips gathered in six groups to preserve the twofold symmetry, represented
by the colour scheme in Figure 6.19.
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Figure 6.19 – The supermesh has ten strips, gathered in six coloured groups
to preserve the twofold symmetry.

The enumeration of the 26 = 64 deletions of the strip groups on the ten-
strip quad mesh yields the 26 quad meshes in Figure 6.20. The ten-strip
supermesh has the reference label 0.

Two reasons explain the 38 missing quad meshes. Some are isomorphic
to one of the 26 quad meshes. For instance, several combinations of strip
deletions yield the simple three-strip mesh 24. Some have a different and
therefore invalid shape topology, that is not manifold or have a different
number of boundaries. For instance, deleting all the strips but the one in
red and orange results in two disconnected parts.

The set of designs does not include the initial two-strip quad mesh, as it
is redundant with the four-strip quad mesh 23. Indeed, the two by two grid
is equivalent to the one by one grid. Other quad meshes like the three-strip
quad mesh 24, however, offer a different distribution of strips with a two by
one grid, for instance.

Opposed to the results in Section 5.4 plotted based on performance simi-
larity, Figure 6.20 organises the designs based on topological similarity, using
the horizontal axis as distance to supermesh 0. The nine-strips designs are
at a distance of one from the supermesh 0; the eight strips designs are at a
distance of two; and so on. The distance to the supermesh directly equals
to the different number of strips.

However, the organisation does not reflect the distance between the other
meshes. The three-strip design 24 and the four-strip design 22 have a dis-
tance of one, corresponding to the pink strip. However, the three-strip design
25 and the four-strip design 23 have a distance of three, corresponding to
the pink and blue strips. Since the distance between intra-group designs is
not null, the distance between inter-group designs is not constant.

The densification of the coarse quad meshes yields the quad-mesh pat-
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Figure 6.20 – Enumeration of the deletions of the coloured strip groups in
quad mesh 0 to generate 25 other quad meshes. These quad meshes share
a different number of these strips and, therefore, feature different degrees of
similarity with quad mesh 0, which directly relates to the difference in the
number of strips.
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terns. The density parameters of the strips are set to the same value to get
as close as possible to the target of 500 faces.

Geometrical design is subdivided in several steps.

1. area-weighted Laplacian smoothing with boundary vertices constrained
to the elliptic boundary;

2. funicular form finding with the force density method with fixed bound-
ary vertices, a uniform force density and a vertical load distributed on
the vertices weighted by their projected tributary area;

3. planarisation with an iterative procedure that independently projects
each face to their best-fit plane before merging the disconnected ver-
tices. This approach is similar to the projection-based algorithm of
ShapeOp for constrained geometrical modelling [Deuss et al., 2015],
implemented in the second version of the plugin Kangaroo for Grasshop-
per [Piker, 2013].

Figure 6.21 show the resulting designs. The singularities are highlighted
in pink, and the polyedges stemming from them are highlighted in black.
The bar charts represent the performance for the different metrics.

6.5.1.3 Numerical results

Table 6.2 shows the numerical results of each design for each objective.
The lower the metrics, the better the design. The maximum values for
each metric normalise the metrics. The results provide the statistics for the
average, the standard deviation, and the minimum and maximum values,
highlighted in green and red, respectively.

The designs present different trade-offs between the multiple objectives.
The Pareto front consists of designs 0, 1, 14, 18 and 19. However, releasing
the Pareto condition allows to consider designs that are quasi on the Pareto
front. For a controlled performance loss, diversity in the pool of designs is
maintained for upcoming considerations in the design process [Brown et al.,
2015]. This quasi-Pareto condition is controlled by a factor α ≤ 1, the case
α = 1 yielding the Pareto front:

x ∈ P ⇐⇒ ∀y, αxi ≤ yi∀i, ∃i/αxi < yi. (6.21)

The quasi-Pareto front with α = 0.95 adds designs 2, 5, 6, 7, 13, 22, 23,
24 and 25 to the strict Pareto front. The 95%-Pareto designs are underlined
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Figure 6.21 – Enumerating different topological designs for a dome on an
elliptic boundary. The designs are organised based on topological similar-
ity with design 0. All designs are close to a compression-only equilibrium
against a vertical projected load and have quasi-planar faces. The bar charts
show the multi-objective trade-offs. The 95%-Pareto designs are underlined.
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Table 6.2 – Performance metrics of the 25 designs in Figure 6.21: normalised
load path LP , normalised panel curvature C, normalised deviation due to
planarisation D and normalised panel skewness S. The 95%-Pareto designs
are underlined.

LP [ - ] C [ - ] D [ - ] S [ - ]

0 0.83 0.16 0.29 0.53
1 0.77 0.18 0.18 0.42
2 0.81 0.25 0.26 0.55
3 0.84 0.37 0.63 0.52
4 0.93 0.58 0.68 0.89
5 0.81 0.42 0.52 0.53
6 0.82 0.62 0.66 0.42
7 0.78 0.49 0.39 0.46
8 0.82 0.82 0.74 0.64
9 0.84 0.39 0.68 0.52
10 0.92 0.49 0.64 0.88
11 1 0.68 0.67 0.75
12 0.84 0.32 0.61 0.67
13 0.8 1 1 0.39
14 0.78 0.23 0.18 0.22
15 0.94 0.17 0.46 0.68
16 0.87 0.37 0.61 0.58
17 0.83 0.64 0.9 0.51
18 0.95 0.19 0.15 0.5
19 0.78 0.17 0.15 0.33
20 0.99 0.43 0.58 1
21 0.85 0.48 0.62 0.68
22 0.82 0.53 0.5 0.35
23 0.78 0.42 0.32 0.36
24 0.8 0.48 0.23 0.42
25 0.82 0.39 0.53 0.34

min. 0.77 0.16 0.15 0.22
max. 1 1 1 1
avrg. 0.85 0.46 0.53 0.55

st. dev. 0.07 0.23 0.24 0.22
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in Table 6.2 and Figure 6.21. The design options provide the designer with
different choices in performance and shape.

The standard deviation is about three times lower for the load path
metric than for the metrics. Indeed, for a fully supported structure, the
structural performance of the different designs is similar.

6.5.2 Similarity from multiple designs
By combining designs with ni strips that have an intersection submesh with
n0 strips,

∏
i 2ni−n0 combinations of rules can be applied to explore designs

with different degrees of similarity with the initial designs. However, the in-
tersection submesh may not exist to create a reference to generate the union
supermesh. Therefore, the designer can add strips to the initial designs to
obtain the submesh and further hybrid meshes.

6.5.2.1 Design problem

This section investigates the design of a quad-mesh pattern for a gridshell
mapped on a pillow-like shape. The shape has a square boundary with a 10
m span and a 2 m height. The four corners are vertically and horizontally
supported, and the structure has to withstand a central point load, as shown
in Figure 6.22.

Figure 6.22 – Design of a pillow-shaped gridshell pinned at the corners and
withstanding a point load.

The built-in steel S235 beams have an RO 114.3/4 tubular cross-section.
The boundary cross-section RO 457.2/6.3 tubular cross-section, around a

170



100 times stiffer for the local stability of the free edge [Venuti and Bruno,
2018].

The performance objectives consist of three metrics to minimise. A rela-
tive edge-length variation L measures geometrical regularity for fabrication:

L = (lmax − lmin)/ltot, (6.22)

with lmax the maximum edge length, lmin the minimum edge length and
ltot the total edge length. Two metrics measure the structural efficiency:
the strain energy EM for a downward mesh load of 2 kN/m2 and the strain
energy EP for the point load of 100 kN. Comparing these two metrics al-
lows differentiating the performance for the specific support conditions and
loading conditions. The values are set to provide similar deflections while
respecting the assumption for infinitesimal strain theory. A second-order
mechanical analysis is performed, using the Finite Element Analysis plugin
Karamba for Grasshopper3D [Preisinger, 2013].

6.5.2.2 Pattern design

The design starts from a regular quad-mesh grid. Figure 6.23 shows two
heuristic designs obtained by applying addition and deletion rules on the
initial design. Coloured dashed polylines highlight the input polyedges and
strips of the rules. The colours show which strips are present in each mesh.
The two-fold symmetry of the design problem is preserved by grouping the
strips.

In Figure 6.23a, the temporary strips in cyan allow adding the strips in
blue and pink to obtain a quad-mesh topology with a pole at the centre, to
provide many load paths to the point load. Its distance from the initial mesh
equals five, due to the strips blue and pink. In Figure 6.23b, the temporary
strips in cyan allow adding the strips in green and red to obtain a quad-
mesh topology with a pole at each corner, to provide many load paths to
the supports. Its distance from the initial mesh equals eight, due to the
strips green and red.

In order to combine these two topological designs, the intersection mesh
(in Figure 6.24a) must be computed before obtaining the union supermesh
(in Figure 6.24b). However, they do not share any strip structure. There-
fore, addition rules create this common strip structure. This process is
represented in Figure 6.25.

The intersection between the two initial designs does not yield any sub-
mesh because the set of their common strips is empty. Their distance equals
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(a) Temporarily adding the strips in cyan to add the the strips in blue and pink
to obtain a quad-mesh topology with a pole at the centre, to provide many load
paths to the point load.

(b) Temporarily adding the strips in cyan to add the the strips in green and red
to obtain a quad-mesh topology with a pole at each corner, to provide many load
paths to the supports.

Figure 6.23 – Two quad-mesh topologies are generated starting from a simple
coarse quad mesh.

(a) Intersection submesh (b) Union supermesh

Figure 6.24 – The reciprocal polyedges for addition in the submesh and
strips for deletion in the supermesh. The colour scheme representing the
strip groups takes into account the symmetry of the design.

eleven. Therefore, the four strips in cyan are added to provide this com-
mon strip structure. The intersection between the two new designs yields
the submesh made of the four cyan strips in common. Their distance now
equals thirteen. As a result, the union between the two new designs yields
the supermesh with seventeen strips: the cyan strips of the intersection sub-
mesh, the blue and pink strips from one of the initial meshes and the green

172



U = Ø

U

U

=

=

+ +

Figure 6.25 – The intersection between the initial designs does not yield
any submesh due to the lack of common strip structure. Adding the strips
in cyan provides such a structure to obtain an intersection submesh and a
union supermesh.

and red strips of the other initial mesh.
The intersection submesh yields the union supermesh. The strip dele-

tions to obtain the submesh yield polyedges that are used for the reciprocal
strip additions to obtain the supermesh. Figure 6.24a represent the sub-
mesh and Figure 6.24b represents the supermesh with the coloured recipro-
cal polyedges and strips.

The seventeen strips in the super mesh represent five groups for 25 = 32
combinations of strip deletions. The removal of the redundant isomorphic
meshes and the meshes with a different shape topology results in the fourteen
meshes with different strip structures in Figure 6.26. The two initial meshes
1 and 2 and the submesh 0 mark the corners of a triangular layout, the
supermesh 13 marks the centre and the other meshes are arranged based
on strip similarity. The fourteen meshes share different degrees of similarity
with the initial meshes, which relate to fabrication and statics.
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Figure 6.26 – Combination of the strip structures of the initial designs 0, 1
and 2. The fourteen designs are arranged based on topological similarity,
highlighted by the common coloured strips.
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Figure 6.27 – Combining different topological designs for a pillow-shaped
gridshell, supported on four corners. The designs are organised based on
topological similarity with designs 0, 1 and 2. The designs provide differ-
ent trade-offs between geometrical regularity and structural efficiency. The
Pareto designs are underlined.
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The coarse quad meshes are densified based on a target number of faces
of 500, each strips having the same density parameter. Surface mapping
and relaxation are performed using area-based Laplacian smoothing [Botsch
et al., 2010]. The fourteen quad-mesh patterns are shown in Figure 6.27,
arranged based on topological similarity, with their measured performance.

6.5.2.3 Numerical results

The numerical results are provided in Table 6.3. The maximum value for
each metric normalises the metrics. The lower the metric, the more efficient
the design for this metric. The minimum and maximum values per metric
are highlighted in green and red, respectively.

Table 6.3 – Performance metrics of the 14 designs in Figure 6.27: normalised
edge-length disparity L, normalised strain energy for a mesh load EM and
normalised strain energy for a point load EP . The Pareto designs are un-
derlined.

L [ - ] EM [ - ] EP [ - ]

0 0.09 0.75 0.91
1 0.75 0.41 0.62
2 0.68 0.59 0.28
3 0.85 0.39 1
4 0.8 0.67 0.54
5 0.55 0.42 0.87
6 0.35 1 0.66
7 0.97 0.51 0.35
8 0.62 0.39 0.28
9 1 0.4 0.22
10 0.85 0.4 0.49
11 0.77 0.45 0.61
12 0.8 0.43 0.5
13 0.51 0.48 0.51

min. 0.09 0.39 0.22
max. 1 1 1
avrg. 0.69 0.52 0.56

st. dev. 0.25 0.18 0.24
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Figure 6.28 – Pareto front for the two metrics to minimised on edge-length
disparity L and strain energy for a point load EP . The Pareto designs for
the three metrics are underlined.
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Designs 0, 1 and 2 are among the best designs for edge-length regular-
ity, mesh-load energy and point-load energy, respectively. However, these
designs do not perform well for the other two metrics. The designs offer
different trade-offs between the multiple objectives. Design 13, from the
supermesh, shows a balanced trade-off between the three objectives.

The Pareto front for the three metrics consists of designs 0, 2, 3, 5, 6, 8,
9 and 13, underlined in Table 6.3 and Figures 6.27 and 6.28. For the two
metrics L and EP , the Pareto front consists of designs 0, 2, 6, 8, 9 and 13,
represented as a dashed curve in Figure 6.28.

A data analysis provides a measure of the influence of each strip group on
the different performance metrics. The influence measure is the covariance
between the presence of a strip group in each design and its performance for
each metric. The matrix in Table 6.4 provides whether a group of strips,
represented by the same colour, are present in each of the designs.

These matrices provide the normalised covariance between the presence
of the five strip groups and the performance of the three metrics. The
resulting 5 × 3 matrix in Table 6.5 shows the relation between topology
and performance. The covariance matrix highlights the positive, negative or
lack of influence of a design choice on a performance design objective. In the
matrix, a valueXij has a negative value if the strips i reduce the performance
metric j and therefore improves the performance and vice versa.

The results are illustrated in Figure 6.29. The cyan strips from the
initial quad-mesh grid improve the fabrication metric but worsen both statics
metrics. The red and green strips from the design with corner poles worsen
the fabrication metric but improve both statics metrics to different extents.
The pink and blue strips of the design with a central pole improve the point-
load strain energy, but the pink strips also improve the fabrication metric,
and the blue strips worsen it.

The use of the covariance complements similarity-informed topology find-
ing by informing quantitatively the designer on the relation between topol-
ogy and performance.
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Table 6.4 – Matrix of the strips per design. 0 and 1 mean that strips are
absent or present, respectively.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
cyan 1 0 0 1 1 1 1 0 0 1 1 1 1 1
red 0 1 0 0 0 1 0 1 1 0 0 1 0 1

green 0 1 0 1 0 1 0 1 1 1 1 1 1 1
pink 0 0 1 0 0 0 1 0 1 1 0 0 1 1
blue 0 0 1 0 1 0 1 1 1 1 1 1 1 1

Table 6.5 – Normalised covariance between topology and performance. The
variance is computed for each metric per strip structure in the designs.
Negative values, in green, mark an improvement and positive values, in red,
mark a worsening.

norm. covar. L [ - ] norm. covar. EP [ - ] norm. covar. EM [ - ]
cyan - 1.5 1.9 4
red 0.3 - 4.1 - 0.5

green 4.4 - 9.6 - 0.8
pink - 0.6 1.5 - 4.2
blue 2.7 1.2 - 6.4

EP

EM

L
-

+

PINKGREENREDCYANSTRIPS BLUE

Figure 6.29 – Relation between topology and performance. The covariance
provides data to see whether and how a group of strips of the same colour
improves or worsens the different metrics in the considered design. The
performance improves for a metric if it decreases, in green, and worsens if
it increases, in red. For instance, the strips in cyan tend to improve the
fabrication metric L but worsen the statics metric EM and EP .
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6.6 Summary of contributions

This chapter introduced similarity-informed topology finding:

• an assessment was presented for topological similarity between two
quad meshes with a topological distance;

• a strategy was developed for the combination of quad meshes to gen-
erate hybrid meshes with different degrees of similarity;

• this strategy was used to perform heuristic multi-objective design of
quad-mesh patterns based on quad meshes designed for single objec-
tives.

This approach enables informed exploration through a heuristic combina-
tion of previous designs that perform well for different objectives, completing
initial open exploration.

The relation between topology and performance can be analysed using
the covariance between strips and metrics among a set of designs for a spe-
cific application. Thereby, the designer is informed about the influence of
design decisions.

Processing of the topological design influences the performance of the
design. Figure 6.30 shows similarity-informed topology finding for a rib pat-
tern on a plate supported on its four corners. The two load cases, symmetric
loading and asymmetric loading, provide two sets of stress isolines for ideal
ribs regarding these load cases. The singularities and their relation provide
a coarse quad mesh and a pattern with equivalent topology. Figure 6.30
shows some of the intermediary meshes between these two topologies at a
distance of fifteen. However, these meshes do not feature a trade-off in their
structural performance for the two load cases. Indeed, the performance of
the input and intermediary meshes is sensitive to the processing from topol-
ogy to geometry. The position of the singularities, the density parameters
and alignment to the cross-fields influence this performance. This exam-
ple illustrates the challenge of geometry-sensitivity in performing similarity-
informed topology finding. Combining topology finding and geometrical op-
timisation is necessary to full benefit from the parametric design space that
relate to each topology [Maia Avelino et al., 2020].

Similarity-driven topology finding applies to the search of trade-offs be-
tween geometry-related objectives to improve. Nevertheless, some require-
ments are constraints to fulfil that depend on topology. Some structural
systems require a specific organisation between their elements. However,
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not any topology of a quad-mesh pattern fulfils this requirement. There-
fore, exploration must be constrained to the subspace of feasible topological
designs.
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SYMMETRIC LOADING

ASYMMETRIC LOADING

etc.

STRESS ISOLINES EXTRACTED TOPOLOGY

STRESS ISOLINES EXTRACTED TOPOLOGY

Figure 6.30 – Similarity-informed topology finding based on structural per-
formance against multiple load cases. Obtaining a performance trade-off is
sensitive to parameters of geometrical processing and may require geomet-
rical optimisation.
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Chapter 7

Two-colouring exploration

7.1 Motivations

Several structural systems rely on a partition of their elements into two
groups. Such an organisation relies on the partition of the elements into
two groups without having two elements of the same group connected. This
partition property is further called two-colouring. Two-colouring relates to
colouring the elements using only two colours without having adjacent ele-
ments of the same colour. Figure 7.1 illustrates this property for different
systems with partitions of nodes, panels or beams grouped in red and blue.
This partition also occurs at the scale of the structure of orthotropic mate-
rials, for the directions with different properties, as in wood, composite or
textile material.

This property is topological, independent from the geometry of the pat-
tern.

A necessary condition for a nexorade to have an alternation of nodes
turning right and left is the two-colouring of its nodes (Figure 7.1a). This
alternation provides uniformity and preserves symmetry, as opposed to a de-
sign with non-alternated nodes [Mesnil et al., 2018a]. A necessary condition
for origami to be flat-foldable is the two-colouring of its faces in a checker-
board pattern, as demonstrated by Maekawa’s theorem [Hull, 1994] (Figure
7.1b). This property guarantees the alternation of panels facing upwards or
downwards when folded. A necessary condition for an elastic gridshell to
be made of two independent sets of continuous beams forming the top and
the bottom layers, respectively, is the two-colouring of its beams (Figure
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(a) Alternating nodes (b) Folding panels (c) Crossing beams

Figure 7.1 – Two-coloured organisation of elements in patterns based on the
partition into two groups, in red and blue, without having elements of the
same group connected to each other.

7.1c). This partition avoids having continuous beams weaving between the
two layers, in order to ease the planar-layout process and avoid inducing
additional bending pre-stresses due to the lifting process [Du Peloux et al.,
2015].

Table 7.1 provides a literature review of the structural systems for which
pattern elements respect a two-colouring property to provide a binary par-
tition between two status.

However, not all quad meshes can be two-coloured. The three-valent
singularities in Figure 7.2 do not allow this alternation between two groups
of elements, in red and blue. Therefore, a third group, in green, is necessary
to avoid having elements of the same group overlapping each other. This
topological design does not allow the partition of continuous beams of an
elastic gridshells into two layers with having some beams weaving between
the two layers.

Quad-mesh patterns resulting from the integration of cross fields such
as the principal curvature directions [Liu et al., 2006, Schiftner et al., 2012,
Takezawa et al., 2016] and the principal stress directions [Schiftner and
Balzer, 2010] fulfil this two-colouring property by definition. Indeed, two
groups of non-overlapping elements partition the resulting polyedges. The
groups correspond to the two directions in the cross-field, as in Figure 7.3
for two patterns stemming from the principal stress directions for differ-
ent loading conditions. Note that the singularities in pink that are off the
boundary have even valencies, mainly two or six, sometimes eight, a mathe-
matical/physical property of these cross-fields. Nevertheless, designing two-
coloured patterns relying on a cross-field is limited and not flexible.
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Table 7.1 – Review of structural systems based patterns with two-coloured
elements.

Structural
system

Pattern
element

Binary
status

References

Reciprocal structures Vertex Rightwards or
leftwards turn

[Baverel, 2000, Mesnil
et al., 2018a, Brocato
and Mondardini, 2010,
Estrin et al., 2011]

Origami Face Mountain or val-
ley fold

[Hull, 1994, Tachi,
2009, Lebée, 2015]

Elastic gridshells Polyedge Top or bottom
layer

[Otto et al.,
1974, Douthe et al.,
2017, Marquis et al.,
2017, Avelino and
Baverel, 2017]

Woven structures Polyedge Warp or weft di-
rection

[Baverel and
Popovic Larsen,
2011, Popescu et al.,
2017, Ayres et al., 2018]

Membranes Polyedge Strip width or
length -

Corrugated shells Polyedge Creasing direc-
tion

[Norman et al., 2009,
Malek and Williams,
2017]

Folded shells Face Folding direction
[Stitic and Weinand,
2015, Mesnil et al.,
2017a]

Developable envelopes Polyedge Ruling direction [Liu et al., 2006, Schift-
ner et al., 2012]

Circular and cyclidic
meshes Face X or Y axis

[Liu and Wang, 2008,
Bobenko and Huhnen-
Venedey, 2014, Mesnil
et al., 2017c]

Caigui et al. [Caigui et al., 2019] generate two-coloured checkerboard
patterns following the diagonals of quad meshes. This approach is equivalent
to applying the ambo Conway operator on any mesh producing two families
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Figure 7.2 – A quad-mesh pattern with a three-valent singularity is an ex-
ample of a topology that can not be two-coloured, in red and blue. A third
group of elements, in green, is necessary to avoid having elements of the
same group overlapping each other. This topology is not suitable for the
design of an elastic gridshell made of continuous beams organised in two
layers without having beams weaving between the two layers.

(a) Symmetric loading (b) Asymmetric loading

Figure 7.3 – Integration of cross fields yields two-coloured patterns by def-
inition. Each cross field direction corresponds to one of the two groups
of elements, in red or blue. The patterns stem from the principal stress
directions for different loading conditions.
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of faces: one from the initial vertices and one from the initial faces. However,
the resulting patterns are not quad meshes due to singularities in the vertices
or faces in the initial quad mesh, which translate into singular faces in the
final mesh.

For the mentioned structural systems, the previous strategies for compre-
hensive and informed exploration must be coupled with search algorithms
for constrained exploration to two-coloured quad-mesh patterns. These re-
sulting patterns should share some degree of similarities with the initial
patterns, according to the topological distance, to preserve the design in-
tent. In order to provide exploration freedom to the designer, not one but
several patterns should be provided to offer different design directions. This
search relates to finding the projection of a pattern that can not be two-
coloured onto the two-coloured subspace.

This chapter introduces two-coloured topology finding. Section 7.2 pro-
vides the requirements and characterisations for two-colouring of the differ-
ent elements in quad meshes. Section 7.3 develops a projection algorithm
to find the most similar two-coloured quad meshes from a quad mesh that
can not be two-coloured. The algorithm is tested and analysed on some val-
idation examples. Section 7.4 applies this search to two-coloured topology
finding of patterns for folded shells.

7.2 Two-colouring characterisation

For the search of two-coloured quad meshes, characterisation strategies on
the requirements of the different types of two-colouring are necessary.

7.2.1 Types of two-colouring

Different types of two-colouring exist for quad meshes, which do not entail
the same requirements. Map colouring inspires the term colouring, coming
from graph theory [Gondran and Minoux, 1984]. The chromatic number of
a graph is the minimum number of colours that can be used to colour all the
vertices while no adjacent vertices have the same colour. In Figure 7.4a, the
vertices of the mesh can be two-coloured as only two colours are necessary.
Colouring is a labelling operation, where the colours can be replaced by the
relevant binary status to encode specific data, like ’up’ versus ’down’ or ’left’
versus ’right’.

Similarly, face colouring relates to colouring all faces while no adjacent
faces have the same colour, as in Figure 7.4b. Polyedge colouring relates to
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(a) Vertices (b) Faces (c) Polyedges

Figure 7.4 – The three types of two-colourability for quad-mesh patterns.

colouring all polyedges while no crossing polyedges have the same colour, as
in Figure 7.4c. Connected extremities of polyedges do not count as crossings.

Previously, polyedges referred to a set of continuous edges in any mesh or
graph. In this chapter, polyedges refer specifically to quad-mesh polyedges.
Quad-mesh polyedges connect edges that are topologically opposite to each
other across the regular four-valent vertices. They stop at singularities, at
boundaries or when forming a loop. Quad-mesh polyedges are dual elements
to quad-mesh strips. Figure 7.5 shows this relationship in a quad mesh M
and its dual mesh M∗ between two pairs of strips and polyedges P and S∗,
and S and P ∗ in blue and red.

P-S*|P*-S

M*M

V-F*

Figure 7.5 – Dual relation in a quad mesh M and its dual M∗ between
topologically continuous polyedges P and strips S, in blue and red. Singular
vertices V become singular faces F∗ in the dual mesh, which is therefore
not a quad mesh but a quad-dominant mesh.
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Quad mesh vertex and face colouring do not correspond to the same
problem on two dual meshes, despite their dual relation. Indeed, the dual
mesh of a quad mesh is, a priori, not a quad mesh, as singular vertices yield
singular faces that are not quads. In Figure 7.5 the dual of the three-valent
vertex V is a three-valent face F ∗ highlighted in pink, which breaks the
quad-face condition, becoming a quad-dominant mesh with primarily quad
faces.

Not any quad mesh guarantees these two-colouring properties.

7.2.2 Two-colouring requirements

A quad mesh can respect all, some or none of these three types of two-
colouring.

The quad mesh in Figure 7.6 has two-coloured polyedges. Nevertheless,
its vertices and faces can not be two-coloured. Indeed, the closed strips
have an odd subdivision and do not allow this binary alternation of the
even number of vertices and faces along it. The quad mesh in Figure 7.7
has two-coloured vertices. Nevertheless, its faces and polyedges can not be
two-coloured. Indeed, the singularity has an odd valency and does not allow
this binary alternation of the five faces and polyedges around it. The quad
mesh in Figure 7.8 mixes odd-subdivided strips and odd-valency singulari-
ties. Therefore, its vertices, faces and polyedges can not be two-coloured.

The different types of two-colouring depend on different topological as-
pects of a quad mesh: its singularities and its density. Table 7.2 summarises
these dependencies.

Table 7.2 – Dependencies between two-colouring types and topological as-
pect in quad meshes.

Two-colourability Vertices Faces Polyedges/strips

Singularity requirement No Yes Yes
Density requirement Yes Yes No

The requirements for two-colouring are treated separately using a coarse
quad mesh. On the one hand, the density requirement depends on the
density of the strips. On the other hand, the singularity requirement depends
on the combination of the strips.
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(a) Vertices (b) Faces (c) Polyedges

Figure 7.6 – Quad mesh with two-coloured polyedges but without two-
coloured vertices or faces due to the odd number of elements along the
closed strips.

(a) Vertices (b) Faces (c) Polyedges

Figure 7.7 – Quad mesh with two-coloured vertices but without two-coloured
faces or polyedges due to the odd number of elements around the singularity.

(a) Vertices (b) Faces (c) Polyedges

Figure 7.8 – Quad mesh without two-coloured vertices, faces or polyedges
due to the odd number of elements along the closed strips and around the
singularity.
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7.2.2.1 Density requirement

Vertex and face two-colouring depend on density, on the contrary to polyedge
two-colouring.

If the quad mesh only has open strips, vertex and face two-colouring
applies. In Figure 7.9, any density parameter can be chosen for the open
strip.

(a) Vertices (b) Faces

Figure 7.9 – The vertex and face elements along an open strip can always
be two-coloured.

If the quad mesh has closed strips, an even number of elements must
cross each of them. This requirement sets a constraint on the sum of the
density parameters dj of the strips j crossing the closed strip i to be even.
A strip counts each time it crosses the closed strip, as there can be multiple
crossings xij . This constraint formalises as:

∀i ∈ Sc,
∑
j∈S⊥i

xijdj ∝ 2, (7.1)

where Sc is the set of closed strips and S⊥i the set of strips crossing the
strip i.

In Figure 7.10, the closed strip is crossed by six elements so its vertices
and faces are two-coloured. However, in Figure 7.11, the closed strip is
crossed by five elements and does not fulfil the constraint. Therefore, the
density of the crossing strips is corrected to provide two-coloured vertices
and faces.

Characterisation and fulfilment for the density requirement are more
direct than for the singularity requirement.

7.2.2.2 Singularity requirement

Face and polyedge two-colouring depend on the singularities, on the contrary
to vertex two-colouring. Indeed, the number of faces and polyedges looping
around a singularity in a quad mesh is equal to its valency n and is not
necessarily even. On the contrary, the number of vertices is equal to twice
its valency 2n and is therefore even.
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(a) Vertices (b) Faces

Figure 7.10 – The vertex and face elements along a closed strip can be two-
coloured if crossed by an even number of elements.

(a) Vertices (b) Faces

Figure 7.11 – The vertex and face elements along a closed strip can not
be two-coloured if crossed by an odd number of elements. This number of
elements can be tuned into an even number by modifying the density of the
crossing strips.

A quad mesh fulfils the singularity requirement for two-colouring un-
der two conditions. The number of strips both around each non-boundary
vertex and along each boundary in the coarse quad mesh should be even.
The requirement on the boundaries depends on all the singularities along
each boundary. This requirement is equivalent to strip two-colouring: strips
should be coloured using only two colours without having crossings between
strips of the same colour.

The topology in Figure 7.12 fulfils this two-colouring requirement be-
cause there are six strips around the non-boundary vertex in pink and six
strips along the boundary.

Otherwise, two-coloured alternation is not possible. In Figure 7.13, three
colours are necessary to colour the three strips around the inner vertex in
Figure 7.13a and along the boundaries in Figure 7.13b without crossings
of strips of the same colour. Therefore, these topologies do not fulfil the
singularity requirement.

Two complementary approaches characterise the singularity requirement
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for two-colouring, with different pros and cons for the search of two-coloured
quad-mesh patterns.

Figure 7.12 – The even numbers of strips around the non-boundary vertex
in pink and along the boundary guarantee the fulfilment of the singularity
requirement for two-colouring.

(a) Around a non-
boundary vertex

(b) Along a boundary

Figure 7.13 – Non-two-colourable coarse quad meshes because of odd num-
bers of strips.

7.2.3 Index-based characterisation

The two conditions on the even number of strips around the inner vertices
and along the boundaries can be translated from the number of strips to the
indices of the vertices, detailed in Section 2.4.2.3. An even number of strips
around each vertex v in the set the non-boundary vertices V \∂V translates
into their index iv being proportional to 1/2:
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∀v ∈ V \ ∂V, iv ∝ 1/2, (7.2)

and an even number of strips along each boundary ∂Vi translates into
the sums of vertex indices iv along each boundary being proportional to 1/2:

∀∂Vi ∈ ∂V,
∑

v∈∂Vi

iv ∝ 1/2. (7.3)

This vertex-based characterisation allows to directly assess if a quad
mesh fulfils the singularity requirement for two-colouring. A metric can be
derived to provide a measure on the degree of fulfilment of this requirement
integrating the two conditions in Equations 7.2 and 7.3:∑

v∈V \∂V

iv mod 1/2 +
∑

∂Vi∈∂V

∑
v∈∂Vi

iv mod 1/2. (7.4)

This characterisation does not provide direct information on how to fulfil
the singularity requirement for two-colouring, event though this metric can
serve for stochastic search.

Another characterisation, more suitable for direct search, is expressed on
the strip graph.

7.2.4 Graph-based characterisation
The singularity requirement can be expressed as colouring all the strips with
only two colours without crossings between strips of the same colour. This
problem is equivalent to vertex colouring of the strip graph, introduced in
Section 5.2.3. Indeed, each graph vertex encodes a strip, and each graph
edge encodes a strip crossing over a face.

Vertex colouring is a classic problem of graph theory that aims at find-
ing the chromatic number. The existing algorithms offer different benefits
and drawbacks in terms of speed and robustness to solve this NP-complete
problem [Dailey, 1980, Gondran and Minoux, 1984]. However, determining
the chromatic number is not necessary here. Assessing whether the graph
is two-colourable or not is sufficient.

The two-colouring process starts by colouring one vertex. The iterative
process colours the vertices that are not coloured and adjacent to a coloured
vertex. If an uncoloured vertex can not be coloured because already adjacent
to vertices of both colours, the process returns a False statement. If all
vertices are assigned a colour, the process returns a True statement. In
Figure 7.14a, two-colouring fails at the fifth vertex, already adjacent to
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blue and red vertices, highlighted with dashed edges. In Figure 7.14b, two-
colouring succeeds after colouring the six vertices.

(a) Fail if one vertex is adjacent to vertices of the two colours

(b) Success if all vertices are coloured

Figure 7.14 – Iterative two-colouring of the vertices of a graph.

The two-colouring algorithm is detailed in Algorithm 2.

store a starting vertex in a first-in, first-out list of vertices to colour
while the list of sources is not empty do

get and remove one vertex from the list
if the neighbour vertices already use both colours then

return False
end
else

colour the vertex with one colour not used by the neighbour
vertices
add the uncoloured neighbour vertices to the list of vertices
to colour

end
end
return True

Algorithm 2: Assessing the two-colourability of the vertices of a graph.

The complexity of the algorithm equals the number of graph vertices
multiplied by their valency. The N ×N quad-mesh grid in Figure 7.15 is a
specific case of two-coloured quad mesh, as each strip of each group crosses
exactly once each strip of the other group. The mesh has 2N strips and
N2 faces. Therefore, the strip graph has 2N vertices, one per strip, and
N2 edges, one per face. The strip graph has the topology of a complete
bipartite graph, noted K(N,N). Such a graph has two partitions of N
vertices, each connected to all the vertices of the other partition [Gondran
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and Minoux, 1984]. A bipartite graph is another name for a graph with two-
coloured vertices. The 2N vertices connect to the N other vertices of the
other partition. Therefore, the algorithm has a quadratic time complexity
O(N2).

STRIP GRAPH
2N VERTICES WITH N VALENCY

N² EDGES

EQUIVALENT
COMPLETE BIPARTITE

GRAPH K(N,N)

QUAD MESH
N² FACES

2N STRIPS

Figure 7.15 – A N × N quad-mesh grid has a strip graph equivalent to a
complete bipartite graph K(N,N), with 2N vertices connected to N ver-
tices, resulting in a quadratic time complexity O(n2) for the two-colouring
algorithm.

In Figure 7.16, the coarse quad mesh has two-coloured strips, evidenced
by its two-coloured strip graph. Therefore the dense quad mesh fulfils the
singularity requirement as well and has two-coloured polyedges. This graph-
based characterisation is in line with the index-based characterisation. In-
deed, the four-valent inner vertex has an index of 0, which is proportional
to 1/2, and the sum of the indices of the four three-valent and four two-
valent vertices along the boundary equals 1, which is proportional to 1/2.
Therefore the singularity requirement for two-colouring is fulfilled.

In Figure 7.17 on the contrary, the coarse quad mesh does not fulfil this
requirement, as shown by its three-coloured strip graph. For representation,
full colouring is completed using the greedy Welsh-Powell algorithm [Welsh
and Powell, 1967]. This graph-based characterisation is in line with the
index-based characterisation. Indeed, the five-valent inner vertices have an
index of -1/4, which is not proportional to 1/2. Therefore the singularity
requirement for two-colouring is not fulfilled.

This graph-based characterisation of the singularity requirement for two-
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colouring of quad meshes can drive exploration. A search algorithm is de-
veloped to find the most similar two-coloured quad-mesh patterns from an
initial pattern that does not fulfil this requirement.

(a) Mesh (b) Graph (c) Polyedges

Figure 7.16 – Quad mesh with two-coloured polyedges characterised by the
two-coloured strip graph of its coarse quad mesh.

(a) Mesh (b) Graph (c) Polyedges

Figure 7.17 – Quad mesh without two-coloured polyedges evidenced by the
three-coloured strip graph of its coarse quad mesh.

7.3 Two-colouring search

To perform two-coloured topology finding, a search algorithm is developed
using the strip grammar rules, introduced in Chapter 5.4. Starting with a
quad mesh that can not be two-coloured, the most similar two-coloured quad
meshes are found, according to the topological distance defined in Chapter
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6. This search for the closest two-coloured quad mesh is a projection onto
the two-coloured design subspace. Moreover, the projection not only yields
the closest design but the closest ones in several directions that provide
different independent options to the designer.

The application of strip rules drive this search for two-coloured quad
meshes, informed by the colouring of the strip graph.

7.3.1 Third-colour deletion
The algorithm provided in Algorithm 2 returns whether the vertices of a
graph can be two-coloured. The design in Figure 7.16 fulfils this requirement.
However, the design in Figure 7.17 does not. The graph can not be two-
coloured, but completing the colouring process with a general colouring
algorithm like the Welsh-Powell algorithm [Welsh and Powell, 1967] informs
on a solution to make this design two-coloured. The graph has one vertex of
the third colour green. Deleting the corresponding third-colour strip yields
the design in Figure 7.18 that can be two-coloured, evidenced by the strip
graph with one vertex less due to the strip deletion. Deleting the strip moved
the five-valent non-boundary singularities to the boundary, along which the
sum of the vertex indices is proportional to 1/2, in line with the vertex-base
characterisation.

(a) Mesh (b) Graph (c) Polyedges

Figure 7.18 – Quad mesh with two-coloured polyedges after deletion of the
third-colour strips, evidenced by new two-coloured strip graph of its coarse
quad mesh.
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However, multiple combinations exist to colour a graph with three colours
or more. Figure 7.19 hints at this richness that goes beyond the unique op-
tion yielded by a colouring algorithm. The nine coloured graphs suggest
different sets of third-colour vertices. They each correspond to a different
set of strip deletion rules to apply to yield a two-coloured quad mesh.

etc.

Figure 7.19 – The combinatorial richness in colouring a graph using more
than two colours provides multiple combinations to delete third-colour
strips.

This combinatorial richness opens up an opportunity to yield multiple
quad meshes of the two-coloured subspace. The search algorithm proposes
a strategy to sort out the most similar quad meshes that provide different
design directions. This approach relates to a projection to the two-coloured
subspace.

7.3.2 Two-colour projection

The distance between two quad meshes is the minimal number of low-level
strip rules to apply to go from one to another.

The search algorithm only applies deletion rules. Indeed, adding a strip
adds a vertex and edges to the strip graph. The old and new strip graph are
a subgraph and a supergraph to each other, respectively. If the subgraph
can not be two-coloured, nor can its supergraph.

The missing reciprocal addition rule does not allow a non-linear search.
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The search is therefore oriented by the successive application of deletion
rules, defining the search direction.

Figure 7.20 shows the directed graph for the search through the 23 = 8
combinations for the deletion of three strips.

UPSTREAM DOWNSTREAM

UPSTREAM
FROM 1 DOWNSTREAM

FROM 1

1,2,31,3

1,2

3

2

1

-

2,3

Figure 7.20 – This graph represents the search organisation through the
combinations of three deletion rules 1, 2 and 3. The search algorithm ap-
plies only deletion rules, defining an orientation the upstream combination
(-) to the downstream combination (1,2,3). For instance, (1,2) is in the
downstream direction of (1) but (2,3) is not in the direction of (1).

The empty combination is upstream to all the combinations and the
complete combination (1,2,3) is downstream to all the combinations. Con-
sidering a specific combination like (1), one part of the graph is upstream,
namely the combination (-) and one part of the graph is downstream, namely
the combinations (1,2), (1,3) and (1,2,3). Any other combination lies in a
different direction of the graph compared to combination (1). The search
algorithm limited to deletion rules can not obtain the mesh corresponding
to combination (2) from the mesh corresponding to combination (1). Never-
theless, the search can obtain the mesh corresponding to combination (1, 2)
from the mesh corresponding to combination (1) by deleting strip 2. Indeed,
combination (1,2) is part of the downstream direction from combination (1).

Finding the closest or most similar two-coloured design is a projection
to the design subspace of two-coloured designs. This projection P applies
to one element of the space of quad meshes E and yields another one, or
several ones if there is equidistance to several two-colourable designs:

P : E → E. (7.5)
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If a quad mesh can already be two-coloured, applying two-colour projec-
tion yields the same quad mesh. Therefore, the idempotence definition of a
projection is respected:

P 2 = P. (7.6)
In order to find the closest designs first, the number of strip deletions

applies in increasing order. All combinations of strip deletions are tested
starting with one strip, then two strips, until the maximum number of strips.
A seven-strip quad mesh that can not be two-coloured serves as example in
Figures 7.21 to 7.23. The figures show completely coloured strip graphs for
better understanding, though not needed for computing.

In Figure 7.21, some strip deletions yield two-coloured quad meshes, as
deleting strips 1 and 2, but some do not, as deleting strip 3. Here, the
resulting two-coloured quad meshes are at a distance of one from the input
quad mesh.

3

2

1

Figure 7.21 – Deleting one strip in a quad mesh that can not be two-coloured
can yield two-coloured quad meshes or not.

The application of more deletion rules on a two-coloured quad mesh
yields another two-coloured quad mesh. In Figure 7.22, deleting strips 1
yields a two-coloured quad mesh at a distance of one, therefore deleting
strips 1 and 3 as well but at a distance of two. Such a combination of
rules is redundant because it yields another two-coloured design in the same
direction but at a farther distance in the two-coloured subspace.
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1

3

3

1

Figure 7.22 – Deleting a second strip of a two-coloured quad mesh is re-
dundant because it yields another two-coloured quad mesh, but at a farther
distance and in the same direction.

Nevertheless, combining multiple deletion rules allows finding two-coloured
quad meshes at farther distances but in different directions. In Figure 7.23,
deleting strips 3 and 6 separately does not yield a two-coloured quad mesh
but combining them yields a two-coloured quad mesh at a distance of two.
Deleting strip 1, for instance, provides a two-coloured quad mesh at a dis-
tance of one, but in another direction. Hence, the interest in such farther
two-coloured quad meshes to provide an alternative to the designer.

6

6

3

3

Figure 7.23 – Deleting two strips separately may not yield a two-coloured
quad mesh, but can yield a two-coloured quad mesh at a farther distance in
a new direction.

Figure 7.24 illustrates the principle of the algorithm for finding the clos-
est designs in the different design directions in the search through the 23 = 8
combinations for the deletion of three strips The result from strip deletions
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in pink can be two-coloured, and the ones in black can not. Finding a two-
coloured design removes all of the downstream designs in the same direc-
tion from the search algorithm, as highlighted by dashed circles and lines.
The output is the closest two-coloured design in their respective directions,
represented by full pink circles. Deleting strips (1) yields a two-coloured
design, so the search does not investigate deleting strips (1,2), (1,3) and
(1,2,3). Indeed, these combinations are part of the same direction, even
though they can be two-coloured. Even though deleting strips (2) and (3)
does not yield two-coloured designs, deleting strips (2,3) is investigated, as
this combination is independent of combination (1). Deleting strips (2,3)
yields a two-coloured design, so the search does not investigate deleting
strips (1,2,3), although the search already discarded this combination. The
algorithm, therefore, reduces computation to the combinations (1), (2), (3)
and (2,3) only and returns the two-coloured design from the combinations
(1) and (2,3).

1,2,31,3

1,2

3

2

1

-

2,3

Figure 7.24 – Principle of the search algorithm for two-coloured quad meshes.
The search yields only the closest two-coloured quad meshes in independent
design directions. The two-coloured quad meshes are highlighted in pink,
and the discarded quad meshes downstream are marked by dashes.

The implementation of the search algorithm is further detailed.

7.3.3 Search algorithm
For an input quad mesh with n strips, the search algorithm iteratively tests
and discard all strip combinations

n∑
k=0

(
n

k

)
= 2n. (7.7)
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Starting with k = 0, the
(
n
k

)
combinations of k strips among the total n

strips are enumerated and tested, k is increased by one and the operation is
repeated.

For each combination, the deletion applies to a copy of the input quad
mesh and its strip graph with deletion of the mesh strips and the graph ver-
tices corresponding to the combination. The search tests the design against
two criteria.

7.3.3.1 Criteria

For each combination, a decision is made based on the validity of the design
against two criteria:

• on shape topology: the new mesh must have the same shape topology;
and,

• on pattern topology: the new graph must be two-coloured.

Shape topology The new mesh must have the same shape topology (see
Section 2.4.1). The mesh must be manifold, have the same Euler charac-
teristic and have the same number of boundaries. This criterion is more
decisive for high numbers of deleted strips. Indeed, deleting too many strips
can result in a different shape topology. In Figure 7.25, deleting two strips
results in a different shape topology, splitting the boundary in two. This
combination is therefore not valid, although yielding a two-coloured design.

5

5

2

2

Figure 7.25 – Deleting some strips can yield a different shape topology,
although yielding a two-coloured quad mesh.

This example highlights an isolated graph vertex resulting from a col-
lateral strip deletion, mentioned in Section 6.3.1. The rule deletions do not
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apply to this strip, but all of its faces are part of the deleted strips. This
combination of two rules creates a distance of three. The combination yields
a two-coloured quad meshes too far and too early. The search must check
the other combinations deleting fewer strips before. Therefore, the search
discards such combinations.

Pattern topology The new graph must be two-coloured. This criterion
is more decisive for low numbers of deleted strips. Indeed, deleting strips
deletes vertices in the graph and subgraphs of two-coloured graphs can be
two-coloured.

The validity of the two criteria provides a reduction strategy on the
search over the 2n combinations.

7.3.3.2 Search reduction

The search does not seek all two-coloured designs, only the closest ones for
each design direction. The number of tests on downstream designs can,
therefore, be reduced based on the results against the two criteria of the
upstream designs. The downstream designs from a design are the ones at
a farther distance in the same direction. A combination of strips X is
downstream another combination of strips Y if X is a subset of Y :

X ⊂ Y. (7.8)

If a combination of strips yields a two-coloured quad mesh, the down-
stream combinations are discarded during the search, as they are farther in
the same direction. If a combination of strips yields a different shape topol-
ogy, the search discards the downstream combinations, as applying more
strip deletions will not restore the shape topology.

Thereby, this scheme reduces the iterative enumeration and avoids test-
ing all combinations.

7.3.3.3 Termination criteria

Termination does not occur after 2n test but earlier. Indeed, iterative enu-
meration terminates before k reaches n, when the reduced search discards
all of the downstream combinations. The designer can also specify custom
termination criteria, like a maximum distance as kmax or a minimum num-
ber of yielded designs. More generally, the designer can terminate the search
when pleased with the current pool of design and does not wish to search
further.
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get a quad mesh with n strips
generate the strip graph of the mesh
start an empty list for the two-coloured topologies with the same
shape topology
start an empty list for the discarding sub-combinations
initiate k = −1
while k < n do

k+ = 1
for each combination of k strips among the n strips do

if the combination causes collateral strip deletions then
discard combination

end
if one of the discarding sub-combinations is a subset of the
combination then

discard combination
end
else

copy the original mesh
delete the k strips of the copy mesh
if the shape topology is different then

add the combination to the list of discarding sub-
combinations

end
else

copy the original graph
delete the corresponding k vertices of the copy graph
if the graph can be two-coloured then

add the copy mesh to the list of two-coloured
topologies with the same shape topology
add the combination to the list of discarding sub-
combinations

end
end

end
end

end
return the successful topologies

Algorithm 3: Projection of a quad mesh to the closest two-colourable
quad meshes in different directions.

206



7.3.3.4 Pseudo-code

Algorithm 3 provides the pseudo-code of the two-colouring search.

7.3.4 Examples
Examples illustrate an application and validate the two-colour projection
algorithm.

7.3.4.1 Application

The coarse quad mesh in Figure 7.26 does not comply with the two-colour-
ing requirements. The five-valent singularities do not allow to fulfil the sin-
gularity requirement. The three-coloured strip graph and the index-based
characterisation evidence this statement.

(a) Coarse quad mesh (b) Strip graph

Figure 7.26 – A coarse quad-mesh that does not comply with the two-colour-
ing requirements. The five-valent singularities does not allow to fulfil the
singularity requirement, as evidenced by the three-coloured strip graph and
the index-based characterisation.

Applying the two-colour projection yields the four coarse quad meshes
with two-coloured strips in Figure 7.27. They all result from one strip dele-
tion and are therefore at a distance of one from the initial coarse quad mesh.
The topology fulfils the two-colouring requirement thanks to merging the ini-
tial five-valent singularities or moving them to the boundary. Integrating
the density requirement allows for generating the checkerboard tiling with
different singularities in Figure 7.27.
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Figure 7.27 – Two-coloured coarse quad meshes resulting from two-coloured
topology finding and their corresponding checkerboard tilings with different
singularities.
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7.3.4.2 Validation

Several examples validate the two-colourability topology-finding algorithm.
The validation tests provide some numerical results on the influence of the
reduction scheme and the size of the two-coloured design subspace.

7.3.4.3 Examples

In Figures 7.28 to 7.31, the found two-coloured designs are grouped by dis-
tance from the initial non-two-coloured design. No user-based termination
criterion is set. Deleting strips coarsens the mesh and can cause faces to
overlap. Nevertheless, the topology is correct and the overlaps fixed during
geometrical processing.

The initial design for the hexagonal shape in Figure 7.28 can not be two-
coloured because of the two five-valent singularities. Two-colour projection
yields seven two-coloured topologies, three are at a distance of one and
four at a distance of two. Two-colouring becomes possible thanks to either
merging the two five-valent singularities into a six-valent one or moving them
to the boundary.

d=2d=1

Figure 7.28 – Two-colour projection applied to a seven-strip quad mesh with
a hexagonal shape.

The initial designs for the pentagonal shape in Figure 7.29 can not be
two-coloured. They differ by one strip only, which was added from the
design in Figure 7.29a to the one in Figure 7.29b. The projection of the
five-strip topology yields five two-colourable topologies, all at a distance of
one, while the projection of the six-strip topology yields eight two-colourable
topologies, all at a distance of two. Adding a strip resulted in having more
but farther two-coloured topologies.
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d=1

(a) Five-strip quad mesh

d=2

(b) Six-strip quad mesh

Figure 7.29 – Two-colour projection applied to quad meshes with a pentag-
onal shape.
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In Figure 7.30 and 7.31, the initial designs result from skeleton-based
decomposition of the shape, presented in Chapter 4.

The initial topology for the rectangular shape with one opening in Figure
7.30 yields nine two-colourable topologies, only one a distance of one, and
eight at a distance of two.

d=2d=1

Figure 7.30 – Two-colour projection applied to a nine-strip quad mesh with
a rectangular shape with one opening.

The initial topology for the rectangular shape with two openings in Fig-
ure 7.31 yields 31 two-colourable topologies.

7.3.4.4 Results

The detailed results for each example are in Tables 7.8 to 7.12 in the Ap-
pendix of this chapter. Each table contains the number of potential com-
binations, the number of tested combinations due to search reduction and
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d=2 d=3

d=3

d=4

Figure 7.31 – Two-colour projection applied to a 14-strip quad mesh with a
rectangular shape with two openings.
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the results against the two validity criteria: the two-coloured topologies with
the right shape topology (O), the non-two-coloured topologies with the right
shape topology (-) and the the topologies with a wrong shape topology (X).
The total number of yielded topologies is highlighted in green and the ter-
mination criterion in red.

Table 7.3 shows the summary results per example: the number of strips
n, the total number of combinations for strip deletions 2n, the percentage
of tested combinations and the percentage of yielded topologies.

Table 7.3 – Condensed results of two-colourable topology finding.

Figure 7.28 7.29a 7.29b 7.30 7.31

n 7 5 6 9 14
2n 128 32 64 512 16,384

% tested 10.2 15.6 37.5 11.1 6.1
% yielded 5.5 15.6 12.5 1.8 0.2

These results highlight:

• the significant decrease of tested combinations thanks to the search
reduction, especially for the topology with many strips, with 6.1% for
the 14-strip topology;

• the small part of combinations to yielded the closest two-coloured
topologies in the different design directions, especially for the topology
with many strips, with 0.2% for the 14-strip topology.

Termination occurs when there is no combination to be tested or when
there is no non-two-coloured topology with the right shape topology at a
value k. These results intuit another practical termination criterion: stop-
ping the procedure when increasing k stops yielding two-coloured topologies
with the right shape topology. This criterion reduces by 34% and 27% the
number of tests for the 9-strip and the 14-strip topology, respectively.

Comparing the results for the two topologies that differ by one strip
in Figure 7.29 illustrates the challenge in including strip additions in two-
colour projection. Although, adding strips can not make a topology two-
coloured, projection yields then more results but at a farther distance. The
fundamental limitation is the infinite combinatorial richness in adding strips.
Nevertheless, an enumerative or stochastic search could integrate the addi-
tion rules.
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This search algorithm for two-coloured quad meshes can apply to two-
coloured topology finding of patterns for structural design.

7.4 Two-coloured topology finding

This section applies two-coloured topology finding to folded shells, a struc-
tural system that necessitates a two-coloured partition of the pattern to
define the folding directions.

Folded or corrugated shells are continuous shells that can efficiently span
large areas. For instance, the CNIT of Nicolas Esquillan at La Défense, Paris
spans the world record for concrete structures of 218 meters [Motro and
Maurin, 2011]. The folded plate in Figure 7.32 illustrates the differentiated
behaviour induced by the folds.

Figure 7.32 – Folded patterns increase the bending stiffness along the folds
and decrease the membrane stiffness across the folds.

Along the folds, the structural height is increased, resulting in higher
bending stiffness. Across the folds, the force eccentricity is increased, re-
sulting in a lower membrane stiffness, as in an accordion.

Folding along two transverse directions yields an egg box pattern that
weakens both directions. Therefore, the direction of the folding must be cho-
sen carefully based on the statics system in order to strengthen the structure
and not weaken it. Folding a structure relying mainly on membrane equi-
librium like a fully supported dome weakens it. Folding a structure relying
on bending can strengthen it, like a plate to reduce deflection or a shell to
reduce buckling.

Previous research investigates the geometry of the folding pattern for
structural performance and fabrication ease, mainly studying cylinder-like

214



surfaces [Norman et al., 2009, Malek andWilliams, 2017, Stitic andWeinand,
2015, Mesnil et al., 2017a, Mesnil et al., 2018b]. The CNIT has a triangular
footprint with supports at the corners only, highlighted in green in Figure
7.33.

Figure 7.33 – Principle of the folding pattern of the CNIT. A six-valent sin-
gularity in pink provides a two-coloured pattern for stiffening the directions
that carry the loads along the free edges directly to the supports in green.
The stiff primary direction is in black and the secondary direction in grey.

The folding pattern is designed using a central singularity highlighted in
pink to strengthen the free edges to carry the loads to the supports. The
quad mesh serves as parameterisation of the continuous shell. The stiffened
direction is in black, and the weakened direction is in grey.

The singularity in the quad mesh that represents and morphs the folded
shell is six-valent. Its index follows the singularity requirement for two-
colouring. Indeed, folds stiffen only one of the two directions. This differen-
tiation in the two surface directions translates to a two-colouring property
of the polyedges of the quad mesh.

Two-coloured topology finding can apply to the quad meshes used for the
parameterisation of shells to explore feasible topologies of folding patterns.
Starting from a pattern that can not be two-coloured, two-colouring topology
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finding is applied. The two-coloured patterns obtained are the closest ones
in different directions of the search for two-colour projection. Data analysis
of the strips and equivalent rules applied is used to combine these design
directions to find patterns at a farther distance but potentially more efficient.

7.4.1 Design problem

The 95 m by 74 m roof of the Great Courtyard of the British Museum,
presented in details in Section 4.4, is vertically supported along its bound-
ary but allows thrust only at the four corners [Sischka et al., 2001]. The
original geometry does not stem from the statics system. The geometry
is analytically defined to smoothly comply with the boundaries [Williams,
2001]. This statics system and the geometry favour bending behaviour.

Therefore, this section investigates a fold pattern to stiffen a continuous
concrete shell. The quad mesh provides a parameterisation of the surface of
the shell to morph the folds.

The constant shell thickness depends on its area. Indeed, the area
changes with the amplitude and the pattern of the folds. A thickness of
20 cm for the average surface of 6000 m2 defines the constant volume.

A C30/37 concrete is chosen with a characteristic strength fck of 30 MPa
and a Young modulus Ecm of 33 GPa. The actual support conditions apply
with full vertical support along the boundary and horizontal support at the
four corners only. A unique load combination includes the self-weight G and
a uniform downward projected snow load Q=0.5kN/m2. This analysis does
not take into account the geometrical factors for snow distribution resulting
from the curved and folded geometry.

A second-order mechanical analysis is performed, using the Finite Ele-
ment Analysis plugin Karamba for Grasshopper3D [Preisinger, 2013]. The
analysis mesh results from densification and triangulation of the quad-mesh
pattern.

Four metrics evaluate the structural performance: the maximum dis-
placement, the strain energy, the maximum stress utilisation and the first
buckling load factor. The lower these metrics, the more structurally efficient
the design, except for the first buckling load factor, which should be higher.

7.4.2 Pattern design

Section 4.4 performs feature-based topology finding, revisiting the pattern
of the gridshell of the British Museum. Skeleton-based decomposition of
the average surface, introduced in Section 4.2, does not yield a two-coloured
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pattern. Indeed, the topology of the pattern, shown in Figure 7.34 with the
strip labels, has four five-valent non-boundary singularities and does not
fulfil the index-based characterisation.

B

A

C

D

E

F

G

H

I

Figure 7.34 – Topology from skeleton-based decomposition of the surface
with labelled strip. The resulting pattern can not be two-coloured due to
the four five-valent non-boundary singularities.

Adding features yields some designs that can be two-coloured and are
more efficient thanks to poles that concentrate elements at the corners. How-
ever, this concentration makes the detailing, fabrication and assembly of the
folds complex. Therefore, the quad mesh from the skeleton-based decompo-
sition of the surface without point features serves as starting topology.

Two-colouring projection applies to this starting topology. Nine two-
coloured topologies are yielded, as shown in Figure 7.31 as part of the vali-
dation examples. Four of these topologies do not respect the two-fold sym-
metry of the project. Therefore, they are discarded, resulting in the pool of
five two-coloured topologies in Figure 7.35.

These topologies are the closest two-coloured topologies in the different
directions from the starting topology. Nevertheless, further deleting strips
yields other two-coloured topologies, but at a farther distance in combined
directions.

The topology needs to fulfil the singularity requirement to select a folding
direction. However, the topology also needs to fulfil the density requirement
to alternate up and down polyedges to form folds transversally to the closed
polyedges. The density requirement imposes an even sum of the density of
the strips transverse to the closed strips. The coarse quad meshes are densi-
fied based on a 1.5 m target length incorporating this density requirement.
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1 2 3

4 5

Figure 7.35 – Five symmetrical two-coloured topologies.

The folds of the CNIT are straight in the plan, resulting in kinks when
folds meet along the polyedges stemming from the singularity represented
in pink in Figure 7.33. The resulting forces in the transverse direction to
the folds are taken over by beams. These beams serve as diaphragms to
locally stiffen the transverse direction. They meet at the singularity and
can redistribute forces along the folds and towards the supports. Here,
the inner boundary hinders the use of straight folds, inducing curved folds.
Therefore, the dense quad meshes are relaxed on the surface, resulting in
curved folds without kinks along the edges from the coarse quad mesh.

The five resulting parameterisation quad meshes are shown in Figure
7.36 with the two potential directions to integrate folds differentiated by red
and blue polyedges.

For each topology, the folds can follow either of the two coloured di-
rections. For a given direction, the folds result from vertex offset of the
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corresponding polyedges. The vertices on the same polyedge move towards
the same side of the surface. The orthogonal offsets alternate up and down
from an adjacent polyedge to another to provide a folded pattern. Three uni-
form amplitudes provide three designs for each topology and each direction:
0.5 m, 1 m and 1.5 m.

The shells in Figure 7.37 represent the ten folded patterns, five topologies
times two directions. The ten designs are labelled X-Y, X representing the
pattern topology and Y the folded direction.

To summarise, 35 designs for the continuous shell are analysed: one
smooth pattern represented by the five topologies in Figure 7.36 and ten
folded patterns in Figure 7.37 for three fold amplitudes.

1 2 3

4 5

Figure 7.36 – The five smooth parameterisation quad meshes patterns with
two-coloured polyedges.
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1-1 1-2

2-1 2-2

3-1 3-2

4-1 4-2

5-1 5-2

Figure 7.37 – The ten folded shells resulting from the five pattern topologies
times the two folded directions, marked as X and Y in the X-Y labels,
respectively.
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7.4.3 Numerical results

The numerical results from structural analysis of the 35 designs are detailed
in Table 7.13 in Appendix 7.6.2. For each topology from 1 to 5, direction 0
provides the smooth design, and directions 1 and 2 provide the two folded
designs for amplitudes 0.5, 1.0 and 1.5 m.

The provided area and the thickness all result in the same volume.
The parameterisation patterns are refined to obtain the mesh for finite

element analysis. First, subdivision refines the quad faces, similarly to a
Catmull-Clark subdivision without smoothing. Second, triangulation splits
the quad faces. A study of the convergence of the strain energy evaluates the
necessary level of refinement, shown in Figure 7.38. The smooth design of
topology 1 serves as a test case. Level one of subdivision provides sufficient
precision for this analysis without resorting to a too large number of faces.
All patterns are discretised following this rule. The resulting number of
faces is featured in Table 7.13 in Appendix 7.6.2.

0 NUMBER OF FACES [-]

312

ST
RA

IN
 E

N
ER

G
Y 

[k
N

.m
]

30912
0

1932 7738

264

292

Figure 7.38 – Study of the convergence of the strain energy for the smooth
design of topology 1. Level one of subdivision, highlighted in red, provides
sufficient precision for this analysis without resorting to a too large number
of faces.

Four metrics evaluate the structural performance: the maximum dis-
placement, the strain energy, the maximum stress utilisation and the first
buckling load factor. The results are detailed in Table 7.13 in Appendix
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7.6.2.
The designs are compared based on their strain energy to assess global

efficiency – the lower the strain energy, the better the design. Figure 7.39
compares the strain energy with the amplitude of the folds.

0 AMPLITUDE [m]

3-2 4-1 4-2 5-1 5-2 6-1 6-23-12-22-11-21-1

0

ST
RA

IN
 E

N
ER

G
Y 

[k
N

.m
]

1.0 1.50.5

600

Figure 7.39 – Influence on the strain energy of introducing folds with differ-
ent directions and amplitudes. Results above twice the initial strain energy
are not shown, as evidenced by the dashed curves.

The smooth shells have similar strain energy with an average of 287
kN.m. Their standard deviation equals 5 kN.m, less than 2% of the average.
Such precision is sufficient for comparison of the different fold patterns.
Folding transverse directions tends to have an opposite qualitative effect on
the structural behaviour, increasing or decreasing the strain energy. For
instance, folds with an amplitude of 1.5 m in topology 2 decrease the strain
energy to 93 kN.m in direction 1 and increase it to 1440 kN.m in direction
2. However, the increase or decrease is not monotonic with the amplitude.
For instance, folds in topology 3 and direction 1 first increases the strain
energy to 328 kN.m for an amplitude of 1.0 m before decreasing to 101 kN.m
for an amplitude of 1.5 m. Most designs increase the strain energy for the
high fold amplitude. Nevertheless, two folded designs significantly decrease
the strain energy to about one-third of the smooth designs: topology 2 with
direction 1 for an amplitude of 1.5 m resulting in a strain energy of 93 kN.m
and topology 3 with direction 1 for an amplitude of 1.5 m resulting in a
strain energy of 101 kN.m. These two designs also perform the best for
the other metrics. They have the lowest deflection, 2.3 cm each; the lowest
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stress utilisation, 0.7 and 0.6, respectively, the only ones below 1; and the
highest first buckling load factor of 68 and 73, respectively.

The two most efficient designs, 2-1 and 3-1, seems to be the ones with the
most direct folds from the outer boundary to the inner boundary. A data
analysis compares this intuition to the evaluation of the positive or negative
contributions in the structural performance of each folded strip across all
designs. Specific matrices representing the fold pattern and the performance
of each design provide this data.

Figure 7.34 shows the A to I labels of the nine strips. The matrix in
Table 7.4 represents for each topology which strips are present or absent by
a 1 and a 0, respectively.

Table 7.4 – Presence matrix of the nine strips for the five topologies: 1 if
the strip is present, 0 otherwise.

1 2 3 4 5
A 1 0 1 1 1
B 1 1 0 1 1
C 1 0 1 1 1
D 1 1 0 1 1
E 1 1 1 1 0
F 1 1 1 0 1
G 1 1 1 1 0
H 1 1 1 0 1
I 0 1 1 1 1

The matrix in Table 7.5 represents for each direction of each topology
which strips are folded by a 1 and which strips are not folded or absent by
a 0.

The matrix in Table 7.6 provides the strain energy as a performance
measure of each of the ten folded designs, averaged across the different
values of amplitude.

For each strip, the covariance between the folding matrix and the per-
formance matrix is computed in Table 7.7.

A negative covariance means that folding the strip decreases the strain
energy and therefore improves structural behaviour on average, and vice
versa. As displayed in Figure 7.40, strips E, F, G, H in green are the only
ones that improve the performance on average. Only designs 2-1 and 3-1
fold all these strips. These designs are the most efficient ones regarding the
strain-energy metric. These four strips are the only ones that connect the
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outer and inner boundaries. The previous intuition is confirmed.

Table 7.5 – Folding matrix of the nine strips for the ten folded designs: 1 if
the strip is present and folded, 0 otherwise.

1-1 1-1 2-1 2-2 3-1 3-2 4-1 4-2 5-1 5-2
A 1 0 0 0 0 1 0 1 1 0
B 0 1 0 1 0 0 1 0 0 1
C 1 0 0 0 0 1 0 1 1 0
D 0 1 0 1 0 0 1 0 0 1
E 0 1 1 0 1 0 1 0 0 0
F 1 0 1 0 1 0 0 0 1 0
G 0 1 1 0 1 0 1 0 0 0
H 1 0 1 0 1 0 0 0 1 0
I 0 0 0 1 0 1 0 1 0 1

Table 7.6 – Performance matrix of the strain energy in kN.m of the ten
folded designs averaged across the different values of amplitude.

1-1 1-2 2-1 2-2 3-1 3-2 4-1 4-2 5-1 5-2
0.0 292 292 279 279 291 291 288 288 287 287
0.5 380 289 272 316 328 406 292 392 321 305
1.0 474 287 156 803 169 715 252 694 294 521
1.5 464 752 93 1440 101 1294 304 1036 329 1394

avrg. 403 405 200 709 222 676 284 602 308 627

Table 7.7 – Covariance matrix in kN2.m2 of the energy performance of the
folded strips, averaged across all designs.

A B C D E F G H I
21 25 21 25 -66 -64 -66 -64 84

The obtained two-coloured topologies are the closest ones in different
directions from the initial topology. The design directions of topology 2 and
3 are the most promising ones for structural performance. These directions
are combined to obtain a farther topology. Topology 2 and 3 result from
the deletion of strips A and C, and B and D, respectively. Topology 6 in
Figure 7.41 is obtained from the deletion of strips A, B, C and D. With
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Figure 7.40 – The covariance in kN2.m2 of each strip with the structural
performance when stiffened in the folded designs highlights their positive or
negative influence.

6

Figure 7.41 – Sixth symmetrical two-coloured topology resulting from the
combination of topologies 2 and 3.

fewer strips, the topology can be two-coloured as well. This topology is at
a distance of four from the input topology, as opposed to a distance of two
for topologies 2 and 3.

The same generation and morphing processes are applied to obtain the
two folded designs in Figure 7.42 represented for the amplitude of 1.0 m.

The complementary numerical results are shown in Table 7.14 in Ap-
pendix 7.6.2. Design 6-1 has folded strips E, F, G, H and form vertically
curved but horizontally straight folds spanning from one boundary to an-
other along the shortest spans. This design performs the best with a strain
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6-1 6-2

Figure 7.42 – Two additional folded shells resulting from the combination of
topologies 2 and 3.

energy of 91 kN.m, a displacement of 2.2 cm, a stress utilisation of 0.6 and
a first buckling load factor of 39, for the amplitude of 1.5 m. Except for the
buckling metric, the other metrics are equal or slightly better than the ones
of designs 2-1 and 3-1, for the fold amplitude of 1.5m.

The fold amplitudes are uniform. However, the spans and the magnitude
of forces are not the same. Differentiating fold amplitudes based on the local
bending moments could extend this study and further improve the designs,
potentially providing different results.

Folding is not necessary for sufficiently stiff areas where the span is short
or the forces low. Local folding could be sufficient, hinting at local two-
colouring of the pattern.

Construction-related objectives are missing in this example. Neverthe-
less, the design process can integrate a fabrication requirement like panel
planarity. Mesnil et al. use parallel transformations to preserve planarity in
form finding of a folded shell [Mesnil et al., 2017a].

A simple performance analysis and data comparison allow evaluating
a small set of topological designs. The results inform the generation of
other topological designs that are farther in the design subspace of two-
coloured patterns. This strategy provides an example to tackle the question
of exploration of combinatorial spaces using data analysis.

7.5 Summary of contributions

This chapter introduced two-coloured topology finding:

• a topological, organisational property in a structural system based on
quad meshes was identified as a two-colouring requirement;
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• the two-colouring requirement was formalised and characterised using
the strip graph;

• a search algorithm was developed to project topologies to the two-
coloured design subspace using the strip grammar;

• this algorithm was applied to the design of folded shells with an exam-
ple of data-based topological combinations to farther explore the two-
coloured design subspace.

The algorithm only considers strip deletion rules. This approach simpli-
fies the search as the number of these rules is finite for a given quad mesh.
Nevertheless, considering strip addition rules can enrich the design direc-
tions, although yielding designs at a farther distance, demonstrated in the
validation example in Figure 7.29.

The enumerative approach for the search can be limited for quad meshes
with a large number of strips. Particularly if not one but all different design
directions are explored. A stochastic search of the two-coloured design is
another strategy to tackle this problem, with the opportunity to embed other
design objectives. Instead of considering two-colouring as a true-or-false
binary property, a measure of the distance to the two-colouring requirement
is necessary. The minimum number of third-colour vertices in the strip graph
or the metric resulting from the index-based characterisation in Equation
7.4 can serve as such measures.

Two-coloured patterns apply to many structural as well as architectural
and decorative applications, with differentiated directions. Moreover, an
extension and adaptation of this constrained-exploration strategy can apply
to patterns with other similar requirements.

A stronger requirement for quad-mesh patterns is to preserve the ori-
entation between strips of the same colour. In Figure 7.43a, the six-valent
singularity is adjacent to three strips per colour. This odd number does not
allow matching directions, marked by red arrows. In Figure 7.43b, the eight-
valent singularity is adjacent to four strips per colour. This even number
allows matching directions.

Such a requirement constrains the pattern to have only 4k-valent vertices,
or poles, which have an integer index, instead of 2k-valent vertices, which
have an index proportional to 1/2. Hu et al. [Hu et al., 2012] address some
aspects of this requirement on patterns with specific symmetries, like the
17 plane-symmetry patterns of the wallpaper group [Fedorov, 1891, Polya,
1924, Grünbaum and Shephard, 1987]. Among other contributions, they
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provide an operation preserving this property that reduces high-valent ver-
tices. For instance, sixteen-valent singularities split into three eight-valent
singularities. The strip addition rule can perform the same operation.

(a) Six-valent singularity with-
out matching strip orientation

(b) Eight-valent singularity with
matching strip orientation

Figure 7.43 – 2k-valent singularities are adjacent to odd number of strips
per colour, which does not provide the symmetry for matching directions,
represented by the red arrows, between the strips of the same colour, opposed
to 4k-valent singularities, which are adjacent to even number of strips per
colour.

Triangular-mesh patterns must fulfil a three-colouring requirement for
organisations like the three-layer structure of beams in Figure 7.44. Tri-
angular meshes also have a strip structure, with three strips crossing over
each face, instead of two in the case of quad meshes. Similarly, triangular
meshes can stem from coarse triangular meshes. Such coarse meshes encode
the data related to the singularities. Then, the dense mesh result from tri-
angle densification like the Loop subdivision [Loop, 1987]. Equivalently, an
index also characterises the singularities in triangular meshes [Fogg et al.,
2018]. In triangular meshes, the index is a measure from the deviation from
the regular valency of six. The three-colouring requirement constrains the
triangulated-mesh pattern to 3k-valent vertices, like the nine-valent singu-
larity in the pattern in Figure 7.44.

The application on folded shells hinted at the potential of informed ex-
ploration provided by performance evaluation of different design directions
through the combination of their different strips. However, considering a
finite set of rules is constrained, even if it includes all the deletion rules.
Considering any addition rules allows comprehensive exploration of the de-
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Figure 7.44 – A three-layer structure of beams organised in a three-coloured
triangular pattern.

sign space. However, the encoding of these topological rules into a vector
is necessary to serve as parameterisation for search algorithms, like genetic
algorithms. Indeed, most search algorithms do not apply on graph data but
on a vector of values or a string of characters.

7.6 Appendix

7.6.1 Algorithm validation results

Tables 7.8 to 7.12 in this appendix contains the detailed results for each vali-
dation example in Figures 7.28 to 7.31 in Section 7.3.4.2. Each table contains
the number of potential combinations, the number of tested combinations
due to the search reduction and the results against the two validity criteria:
the two-coloured topologies with the right shape topology (O), the non-two-
coloured topologies with the right shape topology (-) and the the topologies
with a wrong shape topology (X). The total number of two-coloured designs
with the right shape topology is highlighted in green and the termination
criterion in red.

7.6.2 Structural application results

Tables 7.13 and 7.14 provide the numerical results of the performance anal-
ysis of the 42 folded shell designs in Section 7.4: six smooth designs plus
six folded designs times two folding directions times three amplitudes. The
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labels of each design describe topology (between 1 and 6), folding direc-
tion (1 or 2, or 0 if smooth) and folding amplitude (0.5 m, 1.0 m or 1.5
m). The provided shell area and the thickness respect a constant volume.
The number of faces after discretisation for finite element analysis provides
the density of the analysis mesh. The structural performance is evaluated
based on the strain energy and completed by the maximum deflection, the
maximum stress utilisation and the first buckling load factor.

Table 7.8 – Hexagonal shape (Figure
7.28)

k
(
n
k

)
? O - X

1 7 7 3 4 0
2 21 6 4 2 0
3 35 0 0 0 0

Σ 63 13 7 6 0

Table 7.9 – Pentagonal shape (Fig-
ure 7.29a)

k
(
n
k

)
? O - X

1 5 5 5 0 0

Σ 5 5 5 0 0

Table 7.10 – Pentagonal shape bis
(Figure 7.29b)

k
(
n
k

)
? O - X

1 6 6 0 6 0
2 15 15 8 7 0
3 20 3 0 3 0
4 15 0 0 0 0

Σ 56 24 8 16 0

Table 7.11 – Rectangular shape with
one opening (Figure 7.30)

k
(
n
k

)
? O - X

1 9 9 1 8 0
2 36 28 8 20 0
3 84 16 0 16 0
4 126 4 0 4 0
5 126 0 0 0 0

Σ 381 57 9 48 0

Table 7.12 – Rectangular shape with
two openings (Figure 7.31)

k
(
n
k

)
? O - X

1 14 14 0 14 0
2 91 91 2 83 6
3 364 282 20 236 26
4 1001 332 9 319 4
5 2002 202 0 202 0
6 3003 64 0 64 0
7 3432 10 0 10 0
8 3003 0 0 0 0

Σ 12910 995 31 928 36
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Table 7.13 – Numerical results of the folded shells -part 1.

top. dir. ampl.
[m]

area
[m2]

thick.
[cm]

#
faces

max.
disp.
[cm]

strain
energy
[kN.m]

max.
stress
util.
[−]

first
buckl.
load
fact.
[−]

1 0 0 6001 20 7728 4.2 292 4.2 18
1 1 0.5 6210 19 7728 6.3 380 3.7 30
1 1 1 6800 18 7728 9.3 474 2.7 25
1 1 1.5 7686 16 7728 11.6 464 1.7 28
1 2 0.5 6279 19 7728 3.4 289 2.9 26
1 2 1 7047 17 7728 6.7 287 1.6 24
1 2 1.5 8149 15 7728 17.9 752 3 20

2 0 0 6000 20 10112 4 279 4.3 18
2 1 0.5 6242 19 10112 5.5 272 2.7 48
2 1 1 6894 17 10112 2.6 156 1.2 68
2 1 1.5 7838 15 10112 2.3 93 0.7 82
2 2 0.5 6600 18 10112 4.6 316 2.7 22
2 2 1 8024 15 10112 10.7 803 2.6 21
2 2 1.5 9896 12 10112 24.4 1440 3 12

3 0 0 6000 20 8320 4.2 291 4.3 18
3 1 0.5 6195 19 8320 7 328 3.1 38
3 1 1 6744 18 8320 2.7 169 1.2 61
3 1 1.5 7563 16 8320 2.3 101 0.6 73
3 2 0.5 6353 19 8320 5.2 406 3.4 21
3 2 1 7309 16 8320 9.4 715 2.7 21
3 2 1.5 8666 14 8320 18.7 1294 2.6 14
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Table 7.14 – Numerical results of the folded shells -part 2.

top. dir. ampl.
[m]

area
[m2]

thick.
[cm]

#
faces

max.
disp.
[cm]

strain
energy
[kN.m]

max.
stress
util.
[−]

first
buckl.
load
fact.
[−]

4 0 0 6001 20 10368 4.1 288 5 19
4 1 0.5 6310 19 10368 4.2 292 3.1 29
4 1 1 7156 17 10368 5.4 252 2.8 39
4 1 1.5 8366 14 10368 9.1 304 2.7 28
4 2 0.5 6482 19 10368 5.7 392 4.1 20
4 2 1 7673 16 10368 11.3 694 3.6 20
4 2 1.5 9262 13 10368 17.3 1036 3.6 11

5 0 0 6001 20 9984 4.2 287 4.6 18
5 1 0.5 6253 19 9984 5.4 321 3.4 31
5 1 1 6954 17 9984 7.2 294 1.9 44
5 1 1.5 7975 15 9984 9.3 329 1.7 27
5 2 0.5 6502 18 9984 5.8 305 3.2 20
5 2 1 7721 16 9984 8 521 2.2 25
5 2 1.5 9328 13 9984 24.6 1394 3.3 10

6 0 0 6001 20 12864 4.1 294 2.5 18
6 1 0.5 6329 19 12864 6.4 299 1.9 25
6 1 1 7204 17 12864 2.6 150 1 45
6 1 1.5 8440 14 12864 2.2 91 0.6 39
6 2 0.5 6611 18 12864 7.2 590 3 17
6 2 1 8120 15 12864 10.8 874 1.9 12
6 2 1.5 10090 12 12864 23.8 1860 1.9 9
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Part IV

String-coded topology
finding
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Chapter 8

Alphabet-based exploration

8.1 Motivations

The quad-mesh grammar allows to add and delete strips. The application
in Figure 8.1 of first an addition rule and second a deletion rule allows mod-
ifying the strips highlighted in blue. The added strips share some similarity
with the deleted ones. The difference lies only in a pole, an extra face or a
turn.

Nevertheless, the grammar rules do not allow modifying a strip, only to
add and delete them. A set of operations that apply at a lower-level than
the strips could allow such modifications. The definition of the concepts
of similarity and distance would apply at a different level in searching for
topological designs.

+_

Figure 8.1 – The quad-mesh grammar allows deleting and adding the strips
in blue. However, the grammar can not modify a strip, despite the similarity
between the old and new strips.

Search algorithms like genetic algorithms enable to explore large design
spaces for unstructured problems [Goldberg, 1989]. The flexibility of solvers
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like multi-objective genetic algorithms allows to include a variety of goals
and constraints. Evolutionary approaches rely on the survival of the fittest
design during an evolution process of generation and selection of a pool of
designs over multiple iterations. On the one hand, the designer can drive
the selection process, which selects the preferred designs. The preference
may be qualitative, such as the most beautiful, or quantitative such as the
most efficient, if performance feedback informs the designer. On the other
hand, the selection process can be automated by an algorithm, which se-
lects the most efficient designs based on metrics defined by the designer.
The selection process informs the generation of the next pool of designs by
crossing over their genes. The set of genes forms the genotype. Interpre-
tation of the genotype yields the phenotype of the design, its appearance
and performance. Mutation of the genes can also occur to provide ran-
dom modification in order to maintain the diversity of the pool of designs.
Hybrid evolutionary approaches combine designer selection and algorithmic
optimisation.

However, a string of values, characters or binaries encodes the genotype
to feed the generation algorithms. For geometrical design, the continuous
coordinates of the vertices of the pattern can compose such a string. For
topological design, the rules must translate from a graph to a string of
discrete values. For similarity-driven topology finding in Chapter 6 and
two-coloured topology finding in Chapter 7, the n strips stem from the
input quad meshes. The combinations are therefore limited. A string can
express the rules:

[δi,∀i ∈ 0, ..., n− 1]T , (8.1)

where δi is a boolean value specifying if strip i is to be added or deleted.
This encoding strategy provides a combinatorial design space of 2n strings.
Even though the design space can be large, it remains bounded and does
not offer the unlimited potential for exploration provided by the topologi-
cal rules. Indeed, the unbounded number of strips, the unbounded length
of the strips and their combinatorial nature poses a challenge for general
string encoding of quad-mesh rules. Unlocking the full design space requires
encoding any polyedge for the strip addition rules as well. Encoding the
polyedges by their indices is not possible due to their infinite combinations.
Encoding the polyedges by a list of vertex indices is not suitable neither as
the combinatorics are higher, and only a small part of it represents actual
polyedges. A list of v vertices in a mesh within a total of V vertices has a
probability to yield a valid polyedge equal to the ratio of adjacent vertices
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over total vertices for each vertex of the list:

(
4

V
)v, (8.2)

for a uniform probability of selection of the vertices and an average va-
lency of 4 in the quad mesh. Even for a simple case of a three-edge polyedge
in a twenty-vertex mesh, a list of vertices has a probability below 1% to
represent a polyedge. Moreover, the number and indices – or labels – of the
mesh elements evolve due to the topological transformations. Therefore,
keeping track of the elements is challenging.

Genetic algorithms is only an example of search algorithms that require
string encoding in the realm of generative design and optimisation. Encoding
the topological rules converts a shape grammar to a formal grammar.

This chapter introduces alphabet-based topology finding, using string op-
erations to perform topological exploration. Section 8.2 introduces a strat-
egy to encode the quad-mesh rules in a string of characters that represent
operations. In analogy with genetic algorithms, the string represents the
genotype of the topology of the design. Section 8.3 presents the modifica-
tions of the operations in the string. In analogy with genetic algorithms,
these modifications of the strings act as mutations of the genotype. Section
8.4 defines a string distance and compares it to the topological distance.
In analogy with genetic algorithms, these two distances relate to the geno-
type and the phenotype, respectively. Section 8.5 discusses application to
evolution-driven topology finding through interactive exploration or objec-
tive optimisation.

8.2 String encoding

A string encodes the application of the strip rules on a quad-mesh strip. The
string describes the visit of mesh half-edges to select strips to add and delete.
In order to do so, operations are developed to describe the application of
the rules.

8.2.1 Background

The inspiration for this string-encoding strategy to apply rules on a mesh
stems from two concepts: turtle graphics programming and snake video
game.
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8.2.1.1 Turtle graphics

Turtle graphics, related to the Logo programming language, find many ap-
plications in computer graphics and computational design and is praised for
its educational value in programming [Goldman et al., 2004]. A cursor de-
fined by its position and orientation is programmed to move in the 2D space.
A turtle defined by its tail and its head can serve as equivalent interpreta-
tion. Examples of movement orders are ’move forward by 1 unit’ or ’rotate
leftward by 90°. Lines are drawn along the way, generating different pat-
terns and geometries that stem from the sequence of orders. More advanced
orders include moving by any distance, rotating by any angle, interrupting
and resuming drawing or moving in the 3D space. Recursive application of
the orders allows drawing fractal patterns, which are self-similar patterns at
different scales.

8.2.1.2 L-systems

Turtle graphics appear in L-systems, mentioned in Section 2.2.3.1, intro-
duced by Aristid Lindenmayer in 1968 [Lindenmayer, 1968]. L-systems
combine formal grammars as a string encoder and turtle graphics as a
string interpreter to generate and explore the morphology and growth of
plants [Prusinkiewicz and Lindenmayer, 2012]. L-systems have been applied
to topology optimisation using genetic algorithms by evolving a structural
layout within a domain [Kobayashi, 2010, Bielefeldt et al., 2019b, Hartl
et al., 2016] or by evolving a partition of a domain [Pedro and Kobayashi,
2011, Stanford et al., 2013].

However, these generative strategies utilise turtle graphics to explore an
empty domain. Topological exploration of patterns must integrate a mesh
constraint. Bielefeldt et al. [Bielefeldt et al., 2019a] constrain exploration
to a graph that represents a beam layout for evolutionary topology optimi-
sation. Their graph-based turtle, or SPIDRS for spatial interpretation for
the development of reconfigurable structures, moves between vertices and
edges, along edges and across faces to add elements. However, the gener-
ated layouts are too unstructured and coarse for surface patterns.

8.2.1.3 Snake game

The snake video game features a series of coloured pixels moving horizontally
and vertically that grows when reaching a new coloured pixel. A similar
collection process can be applied by a mesh-constrained turtle to apply strip
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rules. Indeed, edges can be collected to constitute a polyedge to apply a strip
addition rule while the turtle is moving along the mesh edges.

These concepts translate into a set of operations for a mesh-constrained
turtle that applies strip rules. The hybrid between turtle and snake creates a
lizard running along the edges of a mesh. The growing tail collects polyedges
and gets cut after strip addition before growing back.

8.2.2 Movement operations

The movement operations along a mesh follow a halfedge data structure,
illustrated in Figure 8.2. Each edge connecting two vertices Vi and Vj of the
mesh produce two halfedges, in blue, oriented in opposite directions (Vi, Vj)
and (Vj , Vi). The halfedges point towards one of the two adjacent faces.
Except for boundary edges, in red, where one halfedge points to the virtual
boundary face. In Figure 8.2, halfedge (1,4) points to face B, halfedge (4,1)
points to face A, halfedge (1,0) points to face A as well, and halfedge (0,1)
points to the virtual boundary face, for instance. The adjacency of the
faces and the vertices are sorted and ordered in opposite directions here,
illustrated by dashed orange circles. The mesh must be orientable for the
definition of the halfedge data structure.

10 2

3 4 5

6 7 8

A B

C D

Figure 8.2 – Halfedge mesh data structure with edges producing oriented
halfedges, in blue, pointing to the adjacent faces. The elements around
the faces and the vertices are ordered and sorted in opposite directions, in
orange.

The marker moves from one halfedge (Vi, Vj) of the mesh to another,
the start of the halfedge defining the position S = Vi and the end of the
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halfedge defining the direction E = Vj . In the different figures, the marker
stands on one side of the edge to represent the corresponding halfedge.

An intuitive operation like ’forward’ is not correctly defined. Figure 8.3
shows the ambiguity of such an operation for a marker directed towards a
five-valent vertex.

FORWARD
?

Figure 8.3 – Moving a marker forward is ambiguous: for a halfedge directed
towards a n-valent vertex, as n-1 other halfedges may be chosen.

Therefore, two operations are created to move the marker along the
halfedges:

• turn moves the marker to the next halfedge (Vj , Vk) of the face of the
current halfedge. The position and the direction become Vj and Vk,
respectively (Figure 8.4a);

• pivot moves the marker to the next halfedge of the current’s vertex.
The position does not change and the direction becomes Vl (Figure
8.4b).

TURN

(a)

PIVOT

(b)

Figure 8.4 – The two movement operations to travel through the halfedges
of a mesh.
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The two operations can be extended with parameters to apply the oper-
ation multiple times:

• turn(n) applies turn n times, moving the marker to the next n-th
halfedge of the face, as in Figure 8.5a for n=2;

• pivot(n) applies pivot n times to move the marker to the next n-th
halfedge of the vertex, as in Figure 8.5b for n=2.

The parameters can be negative to yield the previous n-th halfedge by
looping over the face or vertex adjacent elements in the reversed order.

TURN x2

(a)

PIVOT x2

(b)

Figure 8.5 – Extension of the two movement operations with a parameter
for multiple application of the operation.

These movement operations are not specific to a quad mesh and apply
to any polygonal mesh. Thanks to these movement operations, the marker
visits the mesh elements based on a string encoding the sequence of these
operations. During these movements, the marker selects the mesh elements
to apply strip rules.

8.2.3 Editing operations

To apply the rules of the quad-mesh grammar presented in Section 5.3, two
editing operations are created for strip deletion and addition.

8.2.3.1 Strip deletion operation

A delete operation deletes the strip to which the halfedge of the marker
belongs. Figure 8.6 highlights the marker in blue, the transverse strip in
a dashed red polyline and the resulting polyedge in red. Strip deletion
deletes the edge of the marker. Therefore, the marker moves with the pivot
operation to an edge of the polyedge resulting from the strip deletion.
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DELETE

Figure 8.6 – The delete operation deletes the strip to which the halfedge, in
blue, of the marker belongs to. The marker is beforehand positioned on the
polyedge resulting from the deleted strip, in red.

If the edge is at an extremity of the strip, as in Figure 8.7, the pivot
operation may not yield an edge of the polyedge. If so, the pivot opera-
tion with parameter -1 applies to move the marker to an edge in the other
direction, guaranteeing the marker to be on the new polyedge, in red.

DELETEDELETE

Figure 8.7 – When applying the delete operation, the pivot operation on
the marker, in blue, may not yield a halfedge on the new polyedge, in red.
Therefore, the marker is moved using the pivot operation with parameter -
1, to bring the marker on the new polyedge.

8.2.3.2 Strip addition operation

An add operation toggles an on-and-off state for the addition of a strip.
Figure 8.8 provides an example where a three-face strip is added. The
encoding string concatenates an add operation, several movement operations
and another add operation to add a strip along the collected polyedge. When
the addition state is toggled on, the collection of a polyedge starts. The first
vertex is the position of the marker when the status is toggled, highlighted
by a red circle. The polyedge grows with the successive positions of the
marker, independently from its direction, highlighted by a red polyedge.
Any turn and pivot operation can be applied to move the marker. Toggling
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off the addition state adds a strip along the collected polyedge, highlighted
by a dashed red polyline, and empties the collected polyedge. The marker
stays on the same halfedge pointing to the same face. However, the labels of
the vertices update due to the strip addition. The vertices of the new strip
replace the vertices of the old polyedge.

TURN
PIVOT x2
TURN x2

ADDADD

Figure 8.8 – The add operation toggles an on-and-off state to add a strip
along a polyedge. Turning it on initiates the collection of a polyedge in red
as the successive positions of the marker in blue. Turning it off adds a strip
along the polyedge and empties the collected polyedge.

If the addition state is not on, the marker moves along the halfedges of
the mesh without collecting a polyedge.

Additional parameters are necessary to include closed strips and strips
with poles.

If a ’close’ parameter, represented as °, is set to both add-on and add-off
operations, the marker adds a closed strip, as in Figure 8.9a after collecting
a closed four-edge polyedge. The polyedge must be closed for the ’close’
parameter to apply.

If a ’pole’ parameter, represented as ∗, is set to the add operation, the
marker adds a strip with poles at the corresponding extremities. The add-
on and add-off operations correspond to the start and the end of the added
strip, respectively. The marker adds two poles if ∗ is set to both add-on and
add-off operations as in Figure 8.9b. The marker adds one pole to the start
of the polyedge if ∗ is set to the add-on operation as in Figure 8.9c. The
marker adds one pole to the end of the polyedge if ∗ is set to the add-off
operation as in Figure 8.9d. If the start or the end is not on the boundary,
the ’pole’ parameter applies by default to the add-on or add-off operation,
respectively.

A variation adds the strip while collecting the polyedge, following the
implementation of the strip addition rule, detailed in Section 5.3.1. In Figure
8.10, addition sets on and the strip faces, in red, are added after each turn
movement, which moves the position of the marker and adds a vertex to the
polyedge.
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ADD°
TURN x5

ADD°

(a) Closed strip due to add-on and
add-off operations with parameters °

ADD*
TURN x5

ADD*

(b) Two poles due to add-on and add-
off operations with parameters ∗

ADD*
TURN x5

ADD

(c) Pole at the start due to an add-
on operation with parameter ∗

ADD
TURN x5

ADD*

(d) Pole at the end due to an add-off
operation with parameter ∗

Figure 8.9 – Extension of the add operation with parameters to add closed
strips and strips with poles.

TURN

ADD

PIVOT
TURN
ADD

TURN

PIVOT
TURN

Figure 8.10 – The strips can be added progressively during the collection of
the polyedge by adding a face of the strip after each turn movement, which
moves the position of the marker and adds a vertex to the polyedge. The
process follows the implementation of the strip addition rule.

8.2.3.3 Combining add and delete operation

If a delete operation during polyedge collection for strip addition, the col-
lected polyedge must be updated. The old polyedge (V0, ..., Vi, ...Vn−1) is
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updated by the function f that maps the old vertices to the new vertices
after strip deletions into the new polyedge (f(V0), ..., f(Vi), ...f(Vn−1)). The
new vertices replace the old vertices in the polyedge. If two consecutive
vertices in the polyedge are identical, the update process removes one.

In Figure 8.11, addition begins and the one-edge polyedge [0,1], in red,
is collected. Then, the strip in green is deleted, mapping the old vertex 1
to the new vertex 6. Therefore, the polyedge [0,1] becomes [0,6]. Finally,
addition ends, and the strip in red added.

1 0 1 2

3 4 5

2

3 4 5

0

3

0 1 2

3 3

6

7 74 5

8

9

10

110

DELETE
TURN
PIVOT ADDADD

[0,1] [0,6][0]POLYEDGE: - -

Figure 8.11 – The collected polyedge for strip addition, in red, updates when
strip deletion applies, in green, by replacing the old vertices by the new ones.

8.2.4 Operation alphabet
The string encoding of the topological rules provides a genotype that de-
scribes the topological design. The genotype interpretation requires an ini-
tial quad-mesh topology and starting position and direction of the marker.
The interpretation of the sequences of movement and editing operations can
generate any quad-mesh topology, thanks to the application of the strip
rules. Although, the shape topology is the same, meaning that the opera-
tions preserve the Euler characteristic and the number of boundaries. The
operations are independent of the labels of the mesh vertices and faces.

The string – or genotype – encodes the sequence of operations as T for
turn, P for pivot, D for delete and A for add. The parameters for closed
strips, °, and strips with poles, ∗, are variations of A.

8.2.5 Examples
The generation of different strings based on this alphabet results in different
quad-mesh topologies. In Figures 8.12 to 8.14, the strings are interpreted
on the same initial quad mesh and same marker. The figures represent the
added strips as dashed red curves. The previous positions of the marker
are represented as dashed blue curves when multiple movement operations

245



A°TPTTPTTPTTPT A°

Figure 8.12 – The string A°TPTTPTTPTTPTA° adds a closed strip along
the boundary.

T A°TP TPPT PT

A° D P D

Figure 8.13 – The string TA°TPTPPTPTA°DPD adds another closed strip
along the boundary and deleting two strips.

A*TPT

A* A*TPT A*

A*TPTA*A* A*TPT

Figure 8.14 – The string A∗TPTA∗A∗TPTA∗A∗TPTA∗A∗TPTA∗ adds four
strips with poles along the boundary.
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apply at once. The string A°TPTTPTTPTTPTA°, in Figure 8.12, adds
a closed strip along the boundary. The string TA°TPTPPTPTA°DPD, in
Figure 8.13, adds a different closed strip and deletes two strips. The string
A∗TPTA∗A∗TPTA∗A∗TPTA∗A∗TPTA∗, in Figure 8.14, adds four strips
with poles at both extremities along the boundary.

8.2.6 Lack of string-to-mesh isomorphism

This string encoding can generate any quad-mesh topology thanks to a com-
bination of movement and editing operations. Meaning that there is a sur-
jection from the string encoding – or genotype – to the mesh – or phenotype.

However, different combinations of movement and editing operations can
result in the same quad-mesh topology. The string can describe the addition
of a strip from any of its two extremities with the same result, for instance.
Or the string can move the marker without applying strip rules with the
same result, for instance. This redundancy means that there is no injection
from the string to the quad-mesh topology.

Therefore, there is no bijection, or isomorphism, between the space of
strings, i.e. the genotype, and the space of quad-mesh topologies, i.e. the
phenotype, for the considered alphabet composing the string.

This redundancy in the genotypic encoding can be problematic for the
application of genetic algorithms [Ronald et al., 1995, Echenagucia and
Block, 2015]. Indeed, a pool of varied genotypes does not then necessar-
ily result in a diverse pool of phenotypes. A lack of variety in designs and
therefore in performances may cause the genetic algorithm to stagnate and
stop improving. This risk depends on the degree of redundancy, i.e. the
proportion of genotypes resulting in the same phenotypes.

Generating different strings by combining the letters of the alphabet
generates different quad-mesh topologies. Nevertheless, modifications can
apply on a starting string to generate and evolve other designs.

8.3 String modification

Applying modifications on the string allows controlling the changes made
during topological exploration of quad meshes. The letter operations apply
on the mesh, or phenotype, whereas, the string modifications apply on the
string, or genotype. Following the analogy with genotypes, these modifica-
tions are equivalent to mutations.
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For clarity, A°, for closed strips, and A∗, for strips with poles, are not
displayed. Nevertheless, the alphabet includes them along with A, D, T and
P.

8.3.1 Definition

The modifications apply to the letters of the string to obtain different strings.
In Figure 8.15, an initial string ATPTA is modified to obtain different topolo-
gies of quad meshes, starting from the same quad mesh and the same po-
sition and orientation of the marker in blue. The indices of the letters in
the string start with 0. The modifications are highlighted in pink in the
new strings. The added strips are represented as dashed red curves, the
collected polyedges as red polyedges and the deleted strips as dashed green
curves. The three types of modifications are: insert, remove and substitute.
These three modifications allow converting one string into any other string.
They allow to increase and decrease the length of the string and change
its content. This set of modifications is the minimum one for maximum
freedom.

8.3.1.1 Insert

Mutation insert(X,i) inserts operation X at index i in the string. For in-
stance, applying insert(T,4) on string ATPTA yields string ATPTTA. In
Figure 8.15, the insertion of operations T lengthens the added strip. In-
serting operation T before operation A to obtain ATPTTA only lengthens
the strip, whereas inserting it earlier to obtain ATTPTA also changes the
configuration of the strip. Inserting operation D to obtain ATPDTA deletes
a strip and change the configuration of the added strip without changing its
length.

8.3.1.2 Remove

Mutation remove(i) removes the operation at index i in the string. For in-
stance, applying remove(4) on string ATPTA yields string ATPT. In Figure
8.15, the removal of operations A cancels strip addition. If the second opera-
tion A is removed to obtain ATPT, the collected polyedge stays unchanged.
Whereas if the first operation A is removed to obtain TPTA, the collected
polyedge becomes a single vertex. The removal of an operation T to obtain
ATPA shortens the added strip. The removal of the operation P to obtain
ATTA modifies the configuration of the added strip. The strip ends with a
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0 1 2 3 4
ATPTA

SUBSTITUTE(3,A): ATATA

INSERT(T,4): ATPTTA

INSERT(T,2): ATTPTA

INSERT(D,3): ATPDTA SUBSTITUTE(3,D): ATPDA

REMOVE(0): -TPTA SUBSTITUTE(2,T): ATTTA

SUBSTITUTE(2,D): ATDTAREMOVE(4): ATPT-

REMOVE(2): AT-TA

REMOVE(3): ATP-A

INSERT SUBSTITUTEREMOVE

Figure 8.15 – Examples of application of the three types of letter modifica-
tions: insert, remove and substitute. The modifications in the initial string
ATPTA are highlighted in pink. A dash marks the removed letters in the
string. The added strip and collected polyedge are highlighted in red and
the deleted strips in green.
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pole because the extremity is no longer on the boundary and the strip does
not close.

8.3.1.3 Substitute

Mutation substitute(i,X) replaces the operation at index i in the string by
operation X. For instance, applying substitute(3,D) on vector ATPTA yields
string ATDTA. In Figure 8.15, the substitution of operation P by D to
obtain ATDTA deletes one strip before adding a similar strip, cancelling
each other. Substitution of operation P by T to obtain ATTTA lengthens
the strip and changes its configuration. Substitution of one operation T by
D to obtain ATPDA shortens the added strip and deletes a transverse strip.
Substitution of operation P by A to obtain ATATA adds a shorter strip and
starts collecting a polyedge for another strip addition from another position.

8.3.2 Combination

Modifications can be combined. In Figure 8.16, applying substitute(3,D)
and remove(2) on ATPTA is performed in two steps: remove(2) is applied
to obtain AT-TA and substitute(3,D) is applied to obtain AT-DA. The se-
quence of modifications updates the input indices when an insertion or re-
moval modification modifies the length of the string. Therefore, applying
substitute(3,D) on AT-TA becomes applying substitute(2,D) on ATTA.

SUBSTITUTE(3,D)
ATPDA

REMOVE(2)
AT-TA

SUBSTITUTE(3,D) x REMOVE(2)
AT-DA

0 1 2 3 4
ATPTA

Figure 8.16 – Combining modifications: substitute(3,D) and remove(2) are
applied on ATPTA to obtain ATDA. The results of the mutations are high-
lighted in pink.
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The order of application of the modifications can yield different results.
An example is insert(A,0) and insert(D,0) that insert two different oper-
ations at the same position. A second example is remove(0) and substi-
tute(0,A) that apply two different mutations at the same position.

Therefore, a specific order is defined to combine modifications in a deter-
ministic way. Per default, the different modifications apply in the following
order:

1. insert;

2. remove;

3. substitute.

For instance, remove(0) applies before substitute(0,A). Per default, the same
modifications with different operations apply in the following order:

1. T;

2. P;

3. D;

4. A.

For instance, insert(D,0) applies before insert(A,0)
A string distance is defined to measure the differences between two

meshes at the level of the string, based on the string modifications.

8.4 String distance

Section 6.3.1 defines a topological distance between two quad meshes as
the minimum number of strips to add and delete to obtain an isomorphism
between the two quad meshes. This definition of the distance applies to the
level of the phenotype of the design.

A distance that applies to the string, at the level of the genotype, can
be defined as well.

8.4.1 Definition

In computer science and information theory, some string metrics evaluate the
distance between two strings based on the number of modifications to apply
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to convert one string into the other. The difference between these metrics lies
in the set of allowed modifications: the Hamming distance [Hamming, 1950]
allows substitutions only whereas the Levenshtein distance [Levenshtein,
1966] allows substitutions as well as insertions and deletions. Other string
metrics follow different principles.

The distance between a pair of strings is defined as the minimum number
of modifications to apply using insertions, deletions and substitutions. This
distance corresponds to the Levenshtein distance. This distance verifies the
three properties of distances on the space of strings E:

• the distance is symmetric:

∀(A,B) ∈ E2, d(A,B) = d(B,A); (8.3)

• the distance from a string to itself is null and if their distance is null
two strings identical:

∀(A,B) ∈ E2, d(A,B) = 0 ⇐⇒ A = B; (8.4)

• the triangle inequality is satisfied: the same or a lower number of
modifications have to be applied to go directly from a string A to a
string C than going first through an intermediary string B:

∀(A,B,C) ∈ E3, d(A,C) ≤ d(A,B) + d(B,C). (8.5)

The string distance and the mesh distance correspond to a genotype and
a phenotype distance, respectively.

A fundamental difference exists between the two distance. The genotype
distance is based on the applied modifications independently from the initial
mesh, whereas the phenotype distance is based on the final mesh indepen-
dently from the modification process. For instance, the difference in the
final position of the marker or the remaining collected polyedge does not
come into play.

Moreover, the influence of the rules and operations differ. The phenotype
rules allow additions and deletions only. The genotype operations allow
modifications as well, thanks to the substitute operation.

8.4.2 Examples
The genotype distance dG is evaluated on some examples and compared to
the phenotype distance dP .
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The genotype distance is computed using the Wagner-Fischer algorithm,
a dynamic-programming computation of the Levenshtein distance between
two strings [Wagner and Fischer, 1974, Navarro, 2001].

ATPDA ATT-A

AT-DAdG=1
dP=2

dG=1
dP=3

dG=2
dP=3

ATDA

ATPDA ATTA

Figure 8.17 – Computing and comparing the genotype distance dG with the
phenotype distance dP between three designs. The distances between the
strings and meshes are highlighted by coloured letters and coloured strips,
respectively. The two distances are not necessarily the same and one does
not serve as a bound to the other.

Table 8.1 – Genotype distance dG and phenotype distance dP between a set
of three strings and the resulting meshes. The results are symmetric.

ATPDA ATTA ATDA

ATPDA dG = 0
dP = 0

dG = 2
dP = 3

dG = 1
dP = 2

ATTA dG = 0
dP = 0

dG = 1
dP = 3

ATDA sym. dG = 0
dP = 0
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The two distances are computed for the strings ATPDA, ATTA and
ATDA, and the resulting quad mesh after interpretation on the same input
quad mesh with the same marker. The results are presented in Figure 8.17
and in Table 8.1. The differences are highlighted by coloured letters in the
strings and coloured strips in the meshes.

The triangle inequality is verified for both distances. For instance,
dG(ATPDA, ATDA) = 1 ≤ dG(ATPDA, ATTA) + dG(ATTA, ATDA) = 3.

The genotype and phenotype distances between the same objects can
differ from each other. For instance,
dG(ATPDA, ATDA) = 1 6= dP(ATPDA, ATDA = 2).

Moreover, one distance does not bound the other: in Figure 8.17
dG(ATPDA, ATDA) = 1 ≤ dP(ATPDA, ATDA) = 2
and in Figure 8.18
dG(ATPTA, ATTPPTTA) = 3 ≥ dP(ATPTA, ATTPPTTA) = 2.

The relation between the genotype and the phenotype distances is com-
plex. The genotype applies at a lower-level than the phenotype. The string
operations and the strip rules do not have the same impact. The string
ATTA in Figure 8.17 adds only one strip but necessitates four operations.
The two strings ATPDA and ATDA in Figure 8.17 both add one strip and
delete one strip. Their genotype distance of one, as only one modification
is necessary, is lower than their phenotype distance of two as they differ
by two strips. In Figure 8.18, however, one strip is added in the designs
ATPTA and ATTPPTTA. Their genotype distance of three is higher than
the phenotype distance of two. Here, the configuration of the added strips
is more different than the global configuration of all the strips.

ATPTA ATTPPTTA

dG=3
dP=2

Figure 8.18 – Two designs with a genotype distance dG larger than the
phenotype distance dP .

Nevertheless, the sum of the delete and add-on/add-off operations in the
pair of strings bounds the phenotype distance.

Due to the lack of isomorphism between the genotype and the pheno-
type, two different strings yielding the same mesh have a non-null genotype
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distance but a null phenotype distance, as for ATPA and ATATA in Figure
8.15.

As evidenced by the comparison of the genotype and phenotype dis-
tances, topological exploration based on a string of operations instead of a
configuration of strips is fundamentally different. This shift from a shape
grammar to a formal grammar has implications in the exploration process.
For instance, the similarity between the designs changes.

Nevertheless, string encoding opens topology finding to the wide set of
search algorithms that require a vector input.

8.5 Towards evolution-driven topology finding

This strategy for alphabet-based exploration lies the groundwork towards
evolution-driven topology finding, although some questions remain to be
answered.

As expressed in this chapter, the string acts as genotype, the quad-mesh
topology as phenotype and the modification as mutations.

Applying mutations on the genotypes results in mutated genotypes, and
potentially mutated phenotypes. After selection of some of the mutated
designs, the mutation-and-selection process repeats. In the case of genetic
algorithms, the selection process automatically keeps the designs with the
best performance.

Nevertheless, a manual or partially-automated selection provides a means
for the designer to include implicit design choices and engage in human-
machine co-design. As such, the designer can influence a generation process
based on randomness or optimisation to include various design aspects that
can are not easily quantifiable like aesthetics [Mueller and Ochsendorf, 2015,
Brown et al., 2015, Danhaive and Mueller, 2015, Turrin et al., 2011].

Beyond genetic algorithms, an exploration framework like the Biomorphs
of Richard Dawkins [Dawkins, 1987] in Figure 8.19 allows such an evolution-
driven design process. The goal is to replicate the step-by-step evolution-
ary process in nature. The interface in Figure 8.19a suggests eight designs
that result from the mutation of the genotype of the current design in the
centre. After many iterations with many mutations taking different routes,
the obtained designs can be very different. Figure 8.19b shows such a set of
designs that look like insects or plants.

The number of mutations simultaneously applied can start at a high value
before decreasing, following a simulated annealing approach [Van Laarhoven
and Aarts, 1987] to browse through a varied design space before converging.
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(a) Selection of mutated designs

(b) Set of evolved designs

Figure 8.19 – Biomorph exploration by Richard Dawkins [Dawkins, 1987].
The evolutionary process is replicated through the iterative selection of mu-
tated designs. Different routes result in different designs as varied as insect-
like or plant-like designs.
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Performance evaluation can inform the designer during the selection pro-
cess.

Harding and Brandt-Olsen [Harding and Brandt-Olsen, 2018] present a
Biomorpher to imitate this evolutionary design process in parametric design.
Encoding topological exploration allows to apply such strategies to trans-
parametric design.

Cross-over is an essential operation in evolutionary algorithms where two
genotypes exchange sequences of their genes, as opposed to mutations that
apply at the level of the gene. The use of cross-over raises the question of the
definition of words made of several letters in this string-encoding strategy.
For instance, the movement operations between a pair of add-on/add-off
operations, which define the configuration of the added strip, can define a
word. Taking into account this adjacency in the string creates a context-
sensitive grammar, as opposed to the presented context-free grammar.

8.6 Summary of contributions

This chapter introduced alphabet-based topology finding, using string op-
erations to perform topological exploration:

• a string-encoding strategy was introduced to describe the application
of the strip rules on quad-meshes;

• operation modifications were used for the exploration of the string;

• a string distance based on the number of modifications was defined,
and compared to the topological distance, which applies at the level
of the mesh;

• potential application of this string-encoded strategy to evolution-driven
topology finding was discussed, with the string as genotype and the
mesh as phenotype.

On the one hand, the phenotype approach directly applies to the quad-
mesh strips. On the other hand, the genotype approach uses lower-level
operations encoding the application of the strip rules.

The complex relationship between the genotype and the phenotype, evi-
denced by the comparison of their two distances, should be analysed further
for a better understanding of the genotype approach.
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Finding the string that describes the operations between two input meshes
would provide flexibility in the initial generation process. These input de-
signs could stem from other strategies and combined with this string-encod-
ing approach.

Tackling the current limitations would allow the application of these ex-
ploration strategies to genetic algorithms. These limitations include the lack
of isomorphism between strings and meshes and lack of context-sensitivity
of the operations.

More generally, string-based parameterisation opens topology finding to
algorithms that require a vector for computing. The operations can be
encoded as integers or binaries to convert the string into a vector of discrete
values.

Section 5.4 utilises Self-Organising Maps (SOM) with vectors encoding
performance as continuous values. Vectors encoding topology as discrete
values can apply to SOMs as categorical data [Hsu, 2006]. SOMs can pro-
vide a visualisation means of the high-dimension space related to topology
into a 2D map where close designs have similar topologies. Mixed vectors
encoding discrete and continuous values can also be computed by SOMs to
map designs based on their topological and performance similarity [Del Coso
et al., 2015].

SOMs can be combined with clustering algorithms to reduce the number
of designs to visualise using only one representative design per cluster. For
instance, k-means clustering groups a set of vector-encoded designs into k
clusters.

SOMs and k-means clustering are types of artificial neural networks and
unsupervised machine learning techniques, respectively. Other algorithms
from the field of artificial intelligence can enhance topology finding using
the string encoding. Specifically, reinforcement learning could improve evo-
lutionary co-design by starting with random mutations before suggesting
mutations informed by the previous choices of mutations made by the de-
signer.
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Part V

Implementation
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Chapter 9

compas_singular

The theoretical developments of the research in this thesis were supported
by a continuous implementation, allowing testing, iterating, applying and
sharing the different concepts.

Figure 9.1 – The COMPAS framework developed by the Block Research
Group of ETH Zurich. The package compas_singular results from the work
in this thesis, in collaboration with the Laboratoire Navier in a project
half-funded by l’École des Ponts ParisTech and half-funded by the Block
Research Group. (Source: compas-dev.github.io)
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9.1 Source

The implementation of this research on topology finding of patterns is made
available in the public Github repository compas_singular [Oval, 2017].

https://github.com/BlockResearchGroup/compas_singular

compas_singular is a Python package of COMPAS, an open-source Python-
based computational framework for research and collaboration in architec-
ture, engineering, fabrication and construction. Figure 9.1 illustrates COM-
PAS’ ecosystem [Van Mele et al., 2017].

9.1.1 Data structures

The data structure backing the topology-finding algorithms is a coarse pseudo-
quad mesh data structure, a specific type of mesh. The coarse pseudo-quad
meshes is the combination of coarse quad meshes and pseudo-quad meshes,
which themselves stem from quad meshes. Figure 9.2 shows the progressive
inclusion of a strip structure, density parameters and pole singularities in
the initial mesh data structure.

STRIPS
DENSITY

POLES DENSITY

POLES

MESH QUAD MESH

COARSE QUAD MESH

PSEUDO-QUAD MESH

COARSE PSEUDO-QUAD MESH

F

E

D

C

BA

E

D

A B

C

Figure 9.2 – From the data structures of meshes to coarse pseudo-quad
meshes for topology finding of quad-mesh singularities. Data is added to
integrate the strip structure in quad meshes, density parameters in coarse
quad meshes and pole singularities in pseudo-quad meshes.
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9.1.1.1 Mesh

Data on both geometry and topology defines a mesh. The geometry stems
from a list of vertices as point coordinates. The topology stems from a list
of faces as lists of vertex keys. Based on this data, a more efficient half-edge
mesh data structure can be computed [Botsch et al., 2010], as available in
the core library of COMPAS.

9.1.1.2 Quad mesh

Quad meshes are meshes with only quad faces, which are defined by exactly
four vertices. In such meshes, regular vertices off the boundary have four
adjacent vertices and regular vertices on the boundary have three adjacent
vertices. Singularities are non-regular vertices. The specific structure in
quad meshes allows the definition and computation of elements at an in-
termediary scale: quad-mesh strips and polyedges. Quad-mesh strips are
consecutive edges opposite to each other in quad faces. These strips stop
at boundaries or close on themselves. Quad-mesh polyedges are consecutive
edges opposite to each other across the regular four-valent vertices. These
polyedges stop at boundaries, at singularities or close on themselves.

9.1.1.3 Coarse quad mesh

Coarse quad meshes are quad meshes with density parameters defined for
each strip of quad faces for densification into a denser quad mesh. Parent-
child relations exist between the different elements of the coarse and dense
meshes: parent vertex to child vertex, parent edge to child polyedge, parent
face to child faces and parent strip to child polyedges. These relations allow
inheritance of data attributes and computing algorithms on dense meshes
via their underlying coarse mesh.

9.1.1.4 Pseudo-quad mesh

Pseudo-quad meshes are quad meshes allowing pseudo-quad faces. A pseudo-
quad face has the geometry of a triangle but the topology of a quad. Tri-
angular faces store the location of the pole among their three vertices. The
location of the pole singularities influences the collection of the quad-mesh
strips and polyedges.
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9.1.1.5 Coarse pseudo-quad mesh

Coarse pseudo-quad meshes combine coarse quad meshes and pseudo-quad
meshes.

9.1.2 Algorithms

The algorithms include the research contributions presented in this thesis
on topology finding of patterns in the directions of:

• geometry-encoded exploration;

• graph-encoded exploration; and

• string-encoded exploration.

9.1.3 Speed

Validation studies provide the computation times of the key algorithms, run
on a 2.7 GHz Intel Core i5 processor.

The speed of the algorithms can be improved by:

• using a compiled language like C# or C++, instead of Python;

• applying parallel computing for the exploration of the multiple rule
combinations;

• turning to a stochastic approach for search algorithms instead of an
enumerative approach.

Nevertheless, the computation times prove that the topology-finding
strategies are suitable for interactive design workflows on a normal ma-
chine. For instance, structural analysis and shape optimisation are more
time consuming than topology finding in the presented applications.

9.2 Applications

Researchers and students have benefited from the presented research and
provided important feedback during its development. Either using source
codes, Rhino scripts or Grasshopper components. These motivated testers
applied topology finding of patterns in the following research projects:
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• optimisation of compression-only networks with Ricardo Avelino (ETH
Zurich | SNSF);

• data-driven exploration of compression-only networks with Kam-Ming
Mark Tam (ETH Zurich | ITA);

• supportless assembly of discrete structures with Gene Kao (ETH Zurich
| NCCR DFAB);

• generation of robotic-arm tool paths for concrete 3D printing with
Paul Carneau (Navier | ENPC);

• fabrication-aware mechanical optimisation of rebar cages for concrete
structures with Sébastien Maitenaz (Navier | DiXite);

and in the following teaching programmes:

• Structural Design VI at ETH Zurich, Switzerland – Fall 2018;

• MIT Design-Build Workshop on Robotic Force Printing at Tongji Uni-
versity in Shanghai, China – January 2019;

• Advanced Master Design by Data at l’École des Ponts ParisTech,
France – April 2019;

• Architecture of Weaving Workshop at Chalmers University of Tech-
nology in Gothenburg, Sweden – April 2019.
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Chapter 10

Conclusion

Crystals, as opposed to other materials, are characterised by a high degree of
organisation, repeating a periodic pattern in the three directions of the phys-
ical space. Although the perfect pattern influences the material properties,
the pattern imperfections have a more profound impact on these properties.

The closer to perfection an object or a shape, the more sensitive it is to
imperfections.

Imperfections, irregularities or singularities in a regular surface pattern
are a translation from 3D to 2D. Understanding and designing these singu-
larities in the pattern allows having a profound qualitative and quantitative
influence regarding both aesthetics and performance.

Concluding on this thesis, this chapter provides an overview of the pre-
sented research, which developed an algebra for the topological exploration
of patterns for shell-like structures. Section 10.1 summarises the research
contributions. Section 10.2 discusses the perspectives for future work in the
light of the limitations and potentials of the current work. Section 10.3
concludes this thesis with final remarks.

10.1 Contributions

This thesis presents topology finding of patterns as a conceptual approach
for trans-parametric design. The focus lies in the topological exploration
of the set of singularities in quad-mesh patterns. Thereof, trans-parametric
design shatters the inherent barriers in parametric design. Trans-parametric
design enables structural exploration at another level across geometrical
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design spaces. For the human to engage in interactive co-design with the
machine, this thesis addresses the following challenges:

• comprehensive exploration of the design space: the designer can po-
tentially reach any design in the topological space thanks to different
encoding strategies using geometrical parameters, topological rules or
string operations;

• constrained exploration of the design space: the designer can focus ex-
ploration on the subspaces that comply with topological requirements,
like feature integration or pattern organisation;

• informed exploration of the design space: the designer can drive ex-
ploration based on feedback on the performance of designs to generate
new designs at different degrees of similarity.

These new concepts, definitions and algorithms have been provided and
evaluated on structural applications, including gridshells, vaults and shells
using material patterns, force patterns or parameterisation patterns.

These contributions are shared via compas_singular, an open-source li-
brary, to allow the flexible combination with existing work like geometrical-
exploration and topology-optimisation strategies, and to foster collaboration
with other researchers and practitioners:

https://github.com/BlockResearchGroup/compas_singular.

This research opens several doors and triggers several questions to inves-
tigate.

10.2 Perspectives

Perspectives for future research are motivated by the current limitations of
the research contributions and of the structural applications.

10.2.1 Richer architectural applications
Although enabled by the presented work, other applications could be in-
vestigated outside quad-mesh patterns and engineering and construction
objectives.

The designer can explore the pattern topology of shapes with a non-null
genus for building facades and envelopes, like the Morpheus Hotel in Macau.
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Architectural objectives that relate to comfort like light, heat and acoustic
can drive the design process.

Quad meshes can serve as parameterisation for other types of patterns,
tessellations and tilings, like Conway operators. Pentagonal or hexagonal
patterns mapped on quad meshes can be used for the design of a tessellated
vault for instance. Exploring the singularities in the underlying quad mesh
modifies the corresponding singularities in the mapped pattern.

Moreover, the boundary-alignment constraint can be fully or partially
released thanks to trimming strategies, providing some flexibility in geo-
metrical optimisation for instance.

10.2.2 Novel approach to topology optimisation

The different encoding strategies opens to the possibility of rethinking topol-
ogy optimisation applied to large-scale shell-like structure based on any
structural system and combined with geometrical optimisation. The opt-
misation algorithms depend on the encoding, with geometrical parameters,
topological rules or string operations, which offer different pros and cons,
and could therefore be combined.

10.2.3 Mapping and clustering for aided exploration

The designer can explore a potentially infinite number of designs in the
topological space and their underlying parametric design spaces. Human-
machine co-design can not be successful if the human is drowning under the
amount of data computed by the machine. Thereof, mapping strategies can
be used to organise designs in 2D maps based on topological and perfor-
mance similarity. Clustering strategies further reduce visual complexity by
providing a representative design of each cluster for the designer to visually
and efficiently browse through design possibilities.

10.2.4 Data-driven exploration

The different encoding strategies enable the use of optimisation and learning
algorithms. However, searching through a topological space is substantial,
and relying on computational power should not replace computational ef-
ficiency. Finding heuristic instead of optimal designs is usually sufficient
as structural and architectural design is a multi-objective design approach.
Overfitting one objective with a perfect solution comes at a price on the
other multiple objectives.
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Moreover, exploration across the different design spaces on topology,
density and geometry is a more challenging, mixed problem of continuous
and discrete parameters. Probabilistic analysis and artificial intelligence
techniques could be investigated to speed trans-space exploration. For in-
stance, machine learning can predict results from geometrical optimisation
for faster topological exploration. Informed exploration would not rely on
the best performance but a probability of best performance after geometrical
optimisation. Reinforcement learning applied at the level of topological ex-
ploration could guide the designer based on a mix of performance evaluation
as well as design preferences.

10.2.5 From the discrete to the continuum

Homogenisation techniques [Winslow et al., 2010, Lebée and Sab, 2013]
translate discrete structures into continuous models. To benefit from these
techniques and combine them with the presented work, the influence of the
pattern singularities has to be integrated in such models.

10.2.6 Advanced construction systems

Many structural systems rely on the simple assembly of geometrically reg-
ular patterns of elements that are easy to fabricate before deploying them
during the construction process. The introduction of singularities in these
patterns opens questions on the design and construction of these systems.
Elastic gridshells [Soriano et al., 2015, Masson, 2017, Avelino and Baverel,
2017], woven structures [Martin, 2015, Ayres et al., 2018] or auxetic ma-
terials [Konaković-Luković et al., 2018a, Konaković-Luković et al., 2018b]
are such examples. The initially regular elements become geometrically dis-
torted once shaped into the final form. Introducing singularities can reduce
geometrical distortions. The condition is to match singularities with positive
or negative indices with areas of positive or negative curvature, respectively.
As evidenced by the Poincaré-Hopf theorem and the Gauss-Bonnet theorem,
matching the signs of indices and curvatures provide geometrically more reg-
ular patters on curved surfaces. On the contrary, not matching the signs
would amplifying the geometrical distortions. These systems tightly connect
topology and geometry. Non-Euclidean geometry offers a trade-off between
irregularities in the geometry and the topology. A fundamental principle
of these systems is to ease the fabrication, assembly and erection process.
However, introducing singularities can cause problems in the deployment of
these systems. Indeed, a singular element can block some kinematics. A
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sequential construction process can solve such problems with a structure
decomposed into singularity-free sub-structures.

10.2.7 Triangle-based patterns

Quad meshes are natural objects to model 2D surface-like objects. Quad
meshes can serve as parameterisation maps for other patterns. However,
the type of singularities stemming from quad meshes is limited. Indeed,
quad meshes have singularities with indices as multiples of 1/4. However,
the indices of singularities in triangular or hexagonal meshes are multiples
of 1/6.

Designing a triangular-mesh pattern based on a quad-mesh pattern is
therefore strongly limited. Moreover, some patterns like the Kagome pat-
terns in woven structures derive more naturally from triangle meshes as pa-
rameterisation. The presented approach can adapt to the modelling of the
family of triangle-parameterised patterns. Indeed, coarse triangular meshes
can encode the data on the singularity. Moreover, equivalent strips exist in
these triangular meshes to develop low-level grammar rules. Edges in trian-
gular meshes belong to three strips and faces belong to three strips, instead
of one and two, respectively, in the case of quad meshes. The coarse trian-
gular meshes can be subdivided following the Loop subdivision algorithm
[Loop, 1987], though providing only a unique global densification parame-
ter. Optionally, the triangular mesh can serve as parameterisation map for
another pattern. The mapped pattern features corresponding singularities
and density as the triangular mesh.

Such a workflow allows designing Kagome patterns, which combine hexagons
and triangles. Singular vertices in the coarse triangular meshes result in sin-
gular faces in the Kagome pattern like heptagons.

The two-colouring scheme can find an equivalent and adapt to trian-
gular meshes. Indeed, a three-colouring property exists, which can be a
requirement for the design of some systems.

10.2.8 Spatial patterns

Polyhedral meshes, spatial lattices or volumetric networks are 3D space-fill-
ing structures, like crystals, that can represent material at a mesoscale. The
design of such 3D patterns of hexahedra also consists of regular elements
with some singular elements that influence the orientation of the spatial
pattern. The design of the singularities can influence the anisotropic me-
chanical behaviour. The design of a hexahedral-mesh grammar can apply
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the addition and deletion of layers, the dimensional extension of strips as
hyper-strips. Other polyhedra – or combinations of polyhedra – can consti-
tute these 3D patterns.

10.2.9 Patterns in additive manufacturing

Automated fabrication using robotic arms can apply to additive manufac-
turing with the printing of concrete beam networks or shell layers [Duballet
et al., 2019, Motamedi et al., 2019] or the winding of composite fibre struc-
tures [Prado et al., 2017, Spadea et al., 2017], for instance. The tool path
of the robotic arm follows the pattern to create the structure However, the
tool path is preferentially continuous. Indeed, temporarily interrupting the
printing, or the winding process can be complicated or impossible in some
applications, breaking or weakening the structural continuity. Integrating
this construction-aware requirement for design a pattern for additive man-
ufacturing implies the existence of an Eulerian path. An Eulerian path is
a sequence of edges where each edge is visited exactly once. A stronger
requirement may be to have a Eulerian cycle where the extremities meet
to add several layers of material at the same time in a continuous manner.
However, not all patterns or graphs feature such topological properties, as
evidenced by Euler in the seven bridges of Königsberg problem [Euler, 1741].
The existence of a Eulerian cycle in a graph is equivalent to having an even
valency at each vertex. This property relates only to the singularities in a
quad mesh. Geometry does not play a role, neither do density as the regular
vertices in a quad mesh already have a four valency. However, designing a
pattern with such cycles must take into account material, geometry, static
system and other aspects of the project.

10.2.10 Meshing applications in other fields

In addition to architectural and structural design applications, meshes have
a wide range of computational applications where discrete data is stored and
represented. Modelling in computer graphics and analysis in computational
mechanics trigger extensive research in quad meshing. The presented quad-
mesh grammar and the developed design algorithms can support existing
meshing approaches, for the generation and optimisation of quad meshes.
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10.3 Conclusions

Structure and pattern are both synonyms of order, organisation, harmony.
Designing a structure means first designing the pattern underlying it. Struc-
ture and pattern are also synonyms of regularity. Nevertheless, regularity
can be broken by irregularities that have a deep influence on the pattern.
This thesis is about mastering these irregularities to bring them into the
field of pattern design for structures.

Parametric design is spreading among students, researchers and practi-
tioners. This thesis contributed to trans-parametric design for exploration
across multiple parametric spaces. The evolving nature of the quantity and
quality of parameters poses a profound challenge in comparing two para-
metric spaces with each other. The combinatorial nature of such problems
is both a gift and a curse. Topology is a gift because it provides the designer
with a rich space to explore, and a curse because its richness can be daunting
and hard to master.

Deepening trans-parametric design raised the fundamental trade-off ques-
tion for the development of concepts and algorithms for human-machine co-
design between asking too much or too little from the designer. In co-de-
sign, the designer should be required to have a certain amount of knowledge,
understanding and mastering of the proposed algorithmic design process
rapidly.

Thanks to the increasing computational power, one can investigate the
use of evolution-based or data-based algorithms to solve high-dimension
problems. These tempting approaches still necessitate a long computation
time or a large data set. Design algorithms should be the first approach to
providing heuristic solutions to a problem.

Leonhard Euler stated that ’nothing takes place in the world whose
meaning is not that of some maximum or minimum’. However, setting up
optimisation algorithms to tackle all of the intricate problems of the world is
not the right route. One shall not forget that structural design is embedded
in a physical and societal reality. The former is immovable and will cause a
design to be a failure, whereas the latter is evolving and will cause a design
to be a disaster. The development of strategies and algorithms for design
must be tailored for interactive and informed exploration to enable human-
machine co-design that can flexibly evolve during the design process to build
elegant, efficient, affordable and sustainable structures.
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